O-/𖣠⚪𔗢⚪∣❁∣⚪𔗢⚪𖣠⚪𔗢⚪✤⚪𔗢⚪𖣠⚪𔗢⚪✻⚪𔗢⚪𖣠⚪𔗢⚪ЭЄ⚪𔗢⚪𖣠⚪𔗢⚪ᗩ⚪𔗢⚪𖣠⚪𔗢⚪ߦ⚪𔗢⚪𖣠⚪𔗢⚪റ⚪𔗢⚪𖣠⚪𔗢⚪𖣓⚪𔗢⚪𖣠⚪𔗢⚪𖡼⚪𔗢⚪𖣠⚪𔗢⚪𖡼⚪𔗢⚪𖣠⚪𔗢⚪𖡼⚪𔗢⚪𖣠⚪𔗢⚪𖡼⚪𔗢⚪🞋⚪𔗢⚪𖡼⚪𔗢⚪𖣠⚪𔗢⚪𖡼⚪𔗢⚪𖣠⚪𔗢⚪𖡼⚪𔗢⚪𖣠⚪𔗢⚪𖡼⚪𔗢⚪𖣠⚪𔗢⚪𖣓⚪𔗢⚪𖣠⚪𔗢⚪റ⚪𔗢⚪𖣠⚪𔗢⚪ߦ⚪𔗢⚪𖣠⚪𔗢⚪ᗩ⚪𔗢⚪𖣠⚪𔗢⚪ЭЄ⚪𔗢⚪𖣠⚪𔗢⚪✻⚪𔗢⚪𖣠⚪𔗢⚪✤⚪𔗢⚪𖣠⚪𔗢⚪∣❁∣⚪𔗢⚪𖣠/𖣠⚪𔗢⚪ИN⚪𔗢⚪𖣠⚪𔗢⚪Ⓞ⚪𔗢⚪𖣠⚪𔗢⚪ꖴ⚪𔗢⚪𖣠⚪𔗢⚪✤⚪𔗢⚪𖣠⚪𔗢⚪ᑐᑕ⚪𔗢⚪𖣠⚪𔗢⚪ИN⚪𔗢⚪𖣠⚪𔗢⚪ᑎ⚪𔗢⚪𖣠⚪𔗢⚪ꗳ⚪𔗢⚪𖣠⚪𔗢⚪𖣓⚪𔗢⚪𖣠⚪𔗢⚪ᔓᔕ⚪𔗢⚪𖣠⚪𔗢⚪ᑎ⚪𔗢⚪𖣠⚪𔗢⚪ꖴ⚪𔗢⚪𖣠⚪𔗢⚪⚭⚪𔗢⚪𖣠⚪𔗢⚪ᗩ⚪𔗢⚪𖣠⚪𔗢⚪ꗳ⚪𔗢⚪𖣠⚪𔗢⚪𖣓⚪𔗢⚪𖣠⚪𔗢⚪𖡼⚪𔗢⚪𖣠⚪𔗢⚪𖡼⚪𔗢⚪𖣠⚪𔗢⚪𖡼⚪𔗢⚪𖣠⚪𔗢⚪𖡼⚪𔗢⚪🞋⚪𔗢⚪𖡼⚪𔗢⚪𖣠⚪𔗢⚪𖡼⚪𔗢⚪𖣠⚪𔗢⚪𖡼⚪𔗢⚪𖣠⚪𔗢⚪𖡼⚪𔗢⚪𖣠⚪𔗢⚪𖣓⚪𔗢⚪𖣠⚪𔗢⚪ꗳ⚪𔗢⚪𖣠⚪𔗢⚪ᗩ⚪𔗢⚪𖣠⚪𔗢⚪⚭⚪𔗢⚪𖣠⚪𔗢⚪ꖴ⚪𔗢⚪𖣠⚪𔗢⚪ᑎ⚪𔗢⚪𖣠⚪𔗢⚪ᔓᔕ⚪𔗢⚪𖣠⚪𔗢⚪𖣓⚪𔗢⚪𖣠⚪𔗢⚪ꗳ⚪𔗢⚪𖣠⚪𔗢⚪ᑎ⚪𔗢⚪𖣠⚪𔗢⚪ИN⚪𔗢⚪𖣠⚪𔗢⚪ᑐᑕ⚪𔗢⚪𖣠⚪𔗢⚪✤⚪𔗢⚪𖣠⚪𔗢⚪ꖴ⚪𔗢⚪𖣠⚪𔗢⚪Ⓞ⚪𔗢⚪𖣠⚪𔗢⚪ИN⚪𔗢⚪𖣠/ᗺИ.𖣠⚪𔗢⚪ИN⚪Ⓞ⚪ᔓᔕ⚪ꖴ⚪ᴥ⚪ᗩ⚪ߦ⚪ᙏ⚪Ⓞ⚪ᑐᑕ⚪𖣓⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᗩ⚪ᙏ⚪ꖴ⚪ꕤ⚪Ⓞ⚪ᴥ⚪ߦ⚪ᗩ⚪𖣓⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪𖣓⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪𔗢⚪𖣠⚪𔗢⚪𖡼⚪𔗢⚪🞋⚪𔗢⚪𖡼⚪𔗢⚪𖣠⚪𔗢⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪𖣓⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪𖣓⚪ᗩ⚪ߦ⚪ᴥ⚪Ⓞ⚪ꕤ⚪ꖴ⚪ᙏ⚪ᗩ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪𖣓⚪ᑐᑕ⚪Ⓞ⚪ᙏ⚪ߦ⚪ᗩ⚪ᴥ⚪ꖴ⚪ᔓᔕ⚪Ⓞ⚪ИN⚪𔗢⚪𖣠.NB

1379 lines
65 KiB
Plaintext
Raw Normal View History

(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 64846, 1370]
NotebookOptionsPosition[ 63783, 1342]
NotebookOutlinePosition[ 64663, 1368]
CellTagsIndexPosition[ 64620, 1365]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"ariasD", "[", "0", "]"}], " ", "=", " ", "1"}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"ariasD", "[",
RowBox[{"n_Integer", "?", "Positive"}], "]"}], " ", ":=", " ",
RowBox[{
RowBox[{"ariasD", "[", "n", "]"}], " ", "=", " ",
RowBox[{
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{"2", "^",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"k", " ",
RowBox[{"(",
RowBox[{"k", " ", "-", " ", "1"}], ")"}]}], " ", "-", " ",
RowBox[{"n", " ",
RowBox[{"(",
RowBox[{"n", " ", "-", " ", "1"}], ")"}]}]}], ")"}], "/",
"2"}], ")"}]}], " ",
RowBox[{
RowBox[{"ariasD", "[", "k", "]"}], "/",
RowBox[{
RowBox[{"(",
RowBox[{"n", " ", "-", " ", "k", " ", "+", " ", "1"}], ")"}],
"!"}]}]}], ",", " ",
RowBox[{"{",
RowBox[{"k", ",", " ", "0", ",", " ",
RowBox[{"n", " ", "-", " ", "1"}]}], "}"}]}], "]"}], "/",
RowBox[{"(",
RowBox[{
RowBox[{"2", "^", "n"}], " ", "-", " ", "1"}], ")"}]}]}]}], ";"}],
"\n",
RowBox[{
RowBox[{"iFabiusF", "[", "x_", "]"}], " ", ":=", " ",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"prec", " ", "=", " ",
RowBox[{"Precision", "[", "x", "]"}]}], ",", " ", "n", ",", " ", "p",
",", " ", "q", ",", " ", "s", ",", " ", "tol", ",", " ", "w", ",",
" ", "y", ",", " ", "z"}], "}"}], ",", "\n", " ",
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{"x", " ", "<", " ", "0"}], ",", " ",
RowBox[{"Return", "[",
RowBox[{"0", ",", " ", "Module"}], "]"}]}], "]"}], ";", " ",
RowBox[{"tol", " ", "=", " ",
RowBox[{"10", "^",
RowBox[{"(",
RowBox[{"-", "prec"}], ")"}]}]}], ";", "\n", " ",
RowBox[{"z", " ", "=", " ",
RowBox[{"SetPrecision", "[",
RowBox[{"x", ",", " ", "Infinity"}], "]"}]}], ";", " ",
RowBox[{"s", " ", "=", " ", "1"}], ";", " ",
RowBox[{"y", " ", "=", " ", "0"}], ";", "\n", " ",
RowBox[{"z", " ", "=", " ",
RowBox[{"If", "[",
RowBox[{
RowBox[{"0", " ", "<=", " ", "z", " ", "<=", " ", "2"}], ",", " ",
RowBox[{"1", " ", "-", " ",
RowBox[{"Abs", "[",
RowBox[{"1", " ", "-", " ", "z"}], "]"}]}], ",", "\n", " ",
RowBox[{
RowBox[{"q", " ", "=", " ",
RowBox[{"Quotient", "[",
RowBox[{"z", ",", " ", "2"}], "]"}]}], ";", "\n", " ",
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"ThueMorse", "[", "q", "]"}], " ", "==", " ", "1"}],
",", " ",
RowBox[{"s", " ", "=", " ",
RowBox[{"-", "1"}]}]}], "]"}], ";", "\n", " ",
RowBox[{"1", " ", "-", " ",
RowBox[{"Abs", "[",
RowBox[{"1", " ", "-", " ", "z", " ", "+", " ",
RowBox[{"2", " ", "q"}]}], "]"}]}]}]}], "]"}]}], ";", "\n",
" ",
RowBox[{"While", "[",
RowBox[{
RowBox[{"z", " ", ">", " ", "0"}], ",", "\n", " ",
RowBox[{
RowBox[{"n", " ", "=", " ",
RowBox[{"-",
RowBox[{"Floor", "[",
RowBox[{"RealExponent", "[",
RowBox[{"z", ",", " ", "2"}], "]"}], "]"}]}]}], ";", " ",
RowBox[{"p", " ", "=", " ",
RowBox[{"2", "^", "n"}]}], ";", "\n", " ",
RowBox[{"z", " ", "-=", " ",
RowBox[{"1", "/", "p"}]}], ";", " ",
RowBox[{"w", " ", "=", " ", "1"}], ";", "\n", " ",
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"w", " ", "=", " ",
RowBox[{
RowBox[{"ariasD", "[", "m", "]"}], " ", "+", " ",
RowBox[{"p", " ", "z", " ",
RowBox[{"w", "/",
RowBox[{"(",
RowBox[{"n", " ", "-", " ", "m", " ", "+", " ", "1"}],
")"}]}]}]}]}], ";", " ",
RowBox[{"p", " ", "/=", " ", "2"}]}], ",", " ",
RowBox[{"{",
RowBox[{"m", ",", " ", "n"}], "}"}]}], "]"}], ";", "\n", " ",
RowBox[{"y", " ", "=", " ",
RowBox[{"w", " ", "-", " ", "y"}]}], ";", "\n", " ",
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"Abs", "[", "w", "]"}], " ", "<", " ",
RowBox[{
RowBox[{"Abs", "[", "y", "]"}], " ", "tol"}]}], ",", " ",
RowBox[{"Break", "[", "]"}]}], "]"}]}]}], "]"}], ";", "\n", " ",
RowBox[{"SetPrecision", "[",
RowBox[{
RowBox[{"s", " ",
RowBox[{"Abs", "[", "y", "]"}]}], ",", " ", "prec"}], "]"}]}]}],
"]"}]}], "\n",
RowBox[{
RowBox[{
RowBox[{"FabiusF", "[", "Infinity", "]"}], " ", "=", " ",
RowBox[{"Interval", "[",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", " ", "1"}], "}"}], "]"}]}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"FabiusF", "[",
RowBox[{"x_", "?", "NumberQ"}], "]"}], " ", "/;", " ",
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"Im", "[", "x", "]"}], " ", "==", " ", "0"}], ",", " ",
RowBox[{"TrueQ", "[",
RowBox[{
RowBox[{
RowBox[{"Composition", "[",
RowBox[{
RowBox[{
RowBox[{"BitAnd", "[",
RowBox[{"#", ",", " ",
RowBox[{"#", " ", "-", " ", "1"}]}], "]"}], " ", "&"}], ",",
" ", "Denominator"}], "]"}], "[", "x", "]"}], " ", "==", " ",
"0"}], "]"}], ",", " ", "False"}], "]"}]}], " ", ":=", " ",
RowBox[{"iFabiusF", "[", "x", "]"}]}], "\n",
RowBox[{
RowBox[{
RowBox[{"Derivative", "[", "n_Integer", "]"}], "[", "FabiusF", "]"}],
" ", ":=", " ",
RowBox[{
RowBox[{
RowBox[{"2", "^",
RowBox[{"(",
RowBox[{"n", " ",
RowBox[{
RowBox[{"(",
RowBox[{"n", " ", "+", " ", "1"}], ")"}], "/", "2"}]}], ")"}]}],
" ",
RowBox[{"FabiusF", "[",
RowBox[{
RowBox[{"2", "^", "n"}], " ", "#"}], "]"}]}], " ", "&"}]}], "\n",
RowBox[{
RowBox[{"SetAttributes", "[",
RowBox[{"FabiusF", ",", " ",
RowBox[{"{",
RowBox[{"NumericFunction", ",", " ", "Listable"}], "}"}]}], "]"}],
";"}]}]}]], "Input",
FontFamily->"Segoe UI Symbol",
FontSize->12,
FontWeight->"Normal",
CellLabel->
"3/26/24 05:47:23 \
In[1]:=",ExpressionUUID->"a4addeb7-2708-41df-8367-f56fd1c4c60d"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"OO", "=",
RowBox[{
RowBox[{"(",
RowBox[{"1", "/", "32"}], ")"}], "*",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"8", "*",
RowBox[{"(",
RowBox[{"x", "-", "1"}], ")"}]}]}], ")"}], "*",
RowBox[{"Abs", "[",
RowBox[{"1", "-",
RowBox[{"8", "*",
RowBox[{"(",
RowBox[{"x", "-", "1"}], ")"}]}]}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"8", "*",
RowBox[{"(",
RowBox[{"x", "-", "1"}], ")"}]}], "+", "7"}], ")"}], "*",
RowBox[{"Abs", "[",
RowBox[{
RowBox[{"8", "*",
RowBox[{"(",
RowBox[{"x", "-", "1"}], ")"}]}], "+", "7"}], "]"}]}], "-",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"8", "*",
RowBox[{"(",
RowBox[{"x", "-", "1"}], ")"}]}], "+", "5"}], ")"}], "*",
RowBox[{"Abs", "[",
RowBox[{
RowBox[{"8", "*",
RowBox[{"(",
RowBox[{"x", "-", "1"}], ")"}]}], "+", "5"}], "]"}]}], "-",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"8", "*",
RowBox[{"(",
RowBox[{"x", "-", "1"}], ")"}]}], "+", "3"}], ")"}], "*",
RowBox[{"Abs", "[",
RowBox[{
RowBox[{"8", "*",
RowBox[{"(",
RowBox[{"x", "-", "1"}], ")"}]}], "+", "3"}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"8", "*",
RowBox[{"(",
RowBox[{"x", "-", "1"}], ")"}]}], "+", "1"}], ")"}], "*",
RowBox[{"Abs", "[",
RowBox[{
RowBox[{"8", "*",
RowBox[{"(",
RowBox[{"x", "-", "1"}], ")"}]}], "+", "1"}], "]"}]}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"3", "-",
RowBox[{"8", "*",
RowBox[{"(",
RowBox[{"x", "-", "1"}], ")"}]}]}], ")"}], "*",
RowBox[{"Abs", "[",
RowBox[{"3", "-",
RowBox[{"8", "*",
RowBox[{"(",
RowBox[{"x", "-", "1"}], ")"}]}]}], "]"}]}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"5", "-",
RowBox[{"8", "*",
RowBox[{"(",
RowBox[{"x", "-", "1"}], ")"}]}]}], ")"}], "*",
RowBox[{"Abs", "[",
RowBox[{"5", "-",
RowBox[{"8", "*",
RowBox[{"(",
RowBox[{"x", "-", "1"}], ")"}]}]}], "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"7", "-",
RowBox[{"8", "*",
RowBox[{"(",
RowBox[{"x", "-", "1"}], ")"}]}]}], ")"}], "*",
RowBox[{"Abs", "[",
RowBox[{"7", "-",
RowBox[{"8", "*",
RowBox[{"(",
RowBox[{"x", "-", "1"}], ")"}]}]}], "]"}]}]}], ")"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"OOOO", "=",
RowBox[{
RowBox[{"-",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{"0", "-",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"-", "1"}], ")"}], "^",
RowBox[{"Floor", "[",
RowBox[{
RowBox[{"x", "/", "1"}], "+", "0."}], "]"}]}], "*",
RowBox[{"(",
RowBox[{
RowBox[{"Exp", "[",
RowBox[{"-",
RowBox[{"(",
RowBox[{"1", "/",
RowBox[{"(",
RowBox[{"x", "-",
RowBox[{"1", "*",
RowBox[{"Floor", "[",
RowBox[{"x", "/", "1"}], "]"}]}]}], ")"}]}], ")"}]}],
"]"}], "/",
RowBox[{"(",
RowBox[{
RowBox[{"Exp", "[",
RowBox[{"-",
RowBox[{"(",
RowBox[{"1", "/",
RowBox[{"(",
RowBox[{"x", "-",
RowBox[{"1", "*",
RowBox[{"Floor", "[",
RowBox[{"x", "/", "1"}], "]"}]}]}], ")"}]}], ")"}]}],
"]"}], "+",
RowBox[{"Exp", "[",
RowBox[{"-",
RowBox[{"(",
RowBox[{"1", "/",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"(",
RowBox[{"x", "-",
RowBox[{"1", "*",
RowBox[{"Floor", "[",
RowBox[{"x", "/", "1"}], "]"}]}]}], ")"}]}], ")"}]}],
")"}]}], "]"}]}], ")"}]}], ")"}]}], "+",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"-", "1"}], ")"}], "^",
RowBox[{"Floor", "[",
RowBox[{
RowBox[{"x", "/", "1"}], "+", "0."}], "]"}]}], "*",
RowBox[{"(",
RowBox[{
RowBox[{"Exp", "[",
RowBox[{"-",
RowBox[{"(",
RowBox[{"1", "/",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"(",
RowBox[{"x", "-",
RowBox[{"1", "*",
RowBox[{"Floor", "[",
RowBox[{"x", "/", "1"}], "]"}]}]}], ")"}]}], ")"}]}],
")"}]}], "]"}], "/",
RowBox[{"(",
RowBox[{
RowBox[{"Exp", "[",
RowBox[{"-",
RowBox[{"(",
RowBox[{"1", "/",
RowBox[{"(",
RowBox[{"x", "-",
RowBox[{"1", "*",
RowBox[{"Floor", "[",
RowBox[{"x", "/", "1"}], "]"}]}]}], ")"}]}], ")"}]}],
"]"}], "+",
RowBox[{"Exp", "[",
RowBox[{"-",
RowBox[{"(",
RowBox[{"1", "/",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"(",
RowBox[{"x", "-",
RowBox[{"1", "*",
RowBox[{"Floor", "[",
RowBox[{"x", "/", "1"}], "]"}]}]}], ")"}]}], ")"}]}],
")"}]}], "]"}]}], ")"}]}], ")"}]}]}], ")"}], "/", "2"}],
")"}]}], "+", "0.5"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{"OO", ",", "OOOO", ",",
RowBox[{"FabiusF", "[", "x", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0.5`", ",", "1"}], "}"}], ",",
RowBox[{"ImageSize", "\[Rule]", "Full"}], ",",
RowBox[{"Axes", "\[Rule]", "False"}], ",",
RowBox[{"MaxRecursion", "\[Rule]", "0"}], ",",
RowBox[{"PlotPoints", "\[Rule]",
RowBox[{"1", "+",
SuperscriptBox["2", "8"]}]}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Thickness", "[", "0.00001`", "]"}]}], ",",
RowBox[{"PlotLegends", "\[Rule]", " ",
RowBox[{"Placed", "[",
RowBox[{"\"\<Expressions\>\"", ",",
RowBox[{"{",
RowBox[{"Center", ",", "Top"}], "}"}]}], "]"}]}], ",",
RowBox[{"PlotRangePadding", "\[Rule]", "0"}]}], "]"}]}], "Input",
FontFamily->"Segoe UI Symbol",
FontSize->12,
FontWeight->"Normal",
CellLabel->
"3/26/24 08:10:33 \
In[139]:=",ExpressionUUID->"4b599907-b90e-4af8-8102-af55e168ea88"],
Cell[BoxData[
TagBox[
GraphicsBox[{{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], Thickness[0.00001], Opacity[
1.], LineBox[CompressedData["
1:eJxNl3k8VVsbxw8pzae66pZkiG5UOmnQoPy4mqQchApJKc24uUV1idJEHITb
ZEiGTB1cuSVzJSHkKrlJ+8zz2aJ54N3v/dy3/e5/1v5+fs9e67fW86zn89lG
OwJcdmkyGAwNDQbjv+OxgNHUG4Hensma/x0n7NKM8WUSMG3U0n2kT2AceSFk
giEBw54pb0xsCIzNWbU1m0VgsmN0+fptBF5s+aSttCZQ9Ecf80UogeHXbSeE
sqnvfj5l8jmVwOJJdyb2exPwnxM4W1xJoNngfkhpAIFLOPNmz2sC5iaPr88M
J+CxNsGOzeAh1v3b/RMcAnqFn88O6vPgNq1+lXE6gbxlF6JX2/AwdUJlTT6X
gKXJsYhN23go1OBqiKuo74d4D2kO5SHr9KKM/a0EHEftX9mZysO1xXKr5z0E
lgR0BBdU8vApdMGiCySBvi9++ya/5sG4Ovht/yCB1WGkVDLIw/q58gIbJg+X
vDq2ROjz8dLizYMXBjyU+fLPF4OPvb4/PXdj8dBev74g35uPrWa9q/UpX+Uu
RMzycD6myUtDLznxYNWx98u863y8epFT+IHyWV7M9iSr+RjixVqREciD5h3v
Yyt5fJiOET20COfBSbcx2pchwJS7STpBHB7mH5ptJtYXIPDT33WDaTwQfbdP
D0KAR7sd9/3C5YHTeq2D7y3AqX3uv8yt4WHYswK+V7gAo/dssU5p42FKW8lv
y64LkHgxSusNtU/TmRNH8KsFOLnRaVZcLw8aOemuhjwBAmxX2usw+Og5eS7B
lCGE2awFc9cx+XBx9fNK1BdibU7ZoSYDPuIcD4qSIcRulz1FFiw+mjLbfHy9
hVDG39ogoM6l03jr1foTQgQOThceZfNBDKxq6E8VomZ3gk0ddU7hrSYRkZVC
HNmZ/NUtgA9lw5xP+T1CzOE0FLeE8bFZP9435ZsQaxw59QkcPmKv6cfMMBCB
Ndz5+vB0PrzHZfw83kaESb02h325fJgTEfJ6bxF8Dzy8OaKGj/oXUc4/hIvA
nRTyLLGVijfvzTNLE6Hh3oyGpz2U/2CHuBuVIqx+t1vXg+TjnLx1YWmPCA+8
Xux6NEDx3aKm2G8i3Nz8alw4UwCn4nIjhoEYm9mvIuQGAhSllg95BjG0fx2l
XMoSYIx00osgbzH0zFtud1B5WeJxbX/uCTEsdKpDXNkC7DANe3MzVYx8zsqr
Bj4CuBuct0SNGH1DH566FiiAdFSU9lKeGEvygnYNnKDy7Cpp/DoohpBflp0f
J0DDw4MbNhlJwLE35a1IF0D/olPdcRsJtPMTeRFcAUa6m90fsk0CYXqS7fga
Kt529qnp4RLUPnhw5XQrlefz5xeNSpNAK/TcxlWEACM+j8uJqpHgh3lr2st6
BfjJJzbzIE8Co/EL142h8n5wrEuiLkOKpDO3jbjjqLxtlAdbGUkxYtauvkWG
QnjvaFoghxT2Dczz/iwhGju2dt3fKgX52fFEH1UXz60SnotCpUj0rPD3ZAvx
qvhS/o2rUqQ5VVUyfYS40HZRI/WeFLlB6qG5AUIULjgdbdUlRXj8FJ23YUKw
F9w4OeK9FBV2XRFRHCGwp+Tk0IkyfDR+JB2aJkTBQGZ9iYUMVy7Zc5u5QpTs
MGOddJJh+PBHVqtqhMhJ0jgW6i/D4axDtRmtQvxg4RmwJEqGtZ0l2Q6EEBvm
GFcNuynD1MVGp7tIITJj3cZeuy9DeXyU2ZRBIeZVFqr398hQHX7OPJMpQuSz
v8ttvshwP6V0lg5Vh92rrGPlE+UwZx8+28oSYeW02F9i5svh+2Ve3nKqLudc
99vq5yjH5We69bFsEd5u6iuYvkeOhSsv287xoepuaLHD41NytBKrym4FiDC3
sC3NI0UOyxBVLz9MBJf4jrR5ZXIMyTSL3sERwa//ZTS/jYr/dlH/UaoID3VI
0xiZHBrKhPHBXBGWTUrs0dZSYMHwmm+jqkWIO7U37aSeAhYGUq5LiwjTt+nF
rlmoQFJjZq2QqvNrHzcZtWxQ4OMNTrOnWgTjK+1NO3YpUDueuVh/UIQBlCwt
DFPA/dj53QlMMdLz2x1W/K6AYtz8eIW+GK5ZbzplhQqIrAJ041hiEGfW+6yo
V+B14t/XplD3Yu0Bzp+l3QpkSW1Ero5irB4i9grvU+Bpm1XMS+qerNvalSgc
ocRX8c65a/zF0J+dkXLMQImY+OmsgTAqXuLhk2KphNzy5Ts/jhipHvVy5gYl
1oysu11K3aOEq1mpdduVGHloxbMNXDGq8m+z+4OVaNaWqJqqxIhrkBzdf0GJ
txYz/JJaxZjwQFHulqGE1N07cxwhRpHNEZekP5Xozn34MpAUY/4Xk+ZZTUpY
xtce0mNI0NI0mmNMKMHJVmgWMiWYN7DiwtF+JUrLxm0h9SUI/4S4BcNUgGfj
2FCWBKOXHTj4s64Kj81LKklrCeI/jI+pmKPC3cS5zYVsCSrUn3JO2Khw5H1W
+jQfCW7NdrHN2KjC/DMO/ocCJLgi1/rNepcKrnmnr06g7m3fj01qnRAVDn9V
1f7OkcCn9JnbgfMq7LB3vtWSKkFZoAnP4ooKt2fZf3biUus38KyNC1QYviwA
d6okcAnti71RoULtKzPhvlYJ+NmMbrsWFY5yJ5zUfC2BF+P+kWM9Knw7/l7k
oJYgFsV3TNQqSLr9c4kBCcYe0Y8gBlRo2z/Rz2OsFD0ZJVk2Y9Uw4DidNDCQ
4kJkxsFsfTWsCs/sTGZJoWvj7XJ8rhrun+Tos5ZiScbOj5or1OjsEhy7zJbi
b1vTkIj1amySjuTO2CbFLGMvZrmHGjfezMn19Zfikk5OQOAeNdw4Ak1VmBQj
H1xZwQxWQ9uzwc0zVgprttPMI5HU+vdsh09Mk0K+TDPzboIaQyaVhYdzpeC/
yN5xJF0NcermvrYqqm88Z14aUagGq4Jz/0ArNd89m+v7ytUI1n4Xo+qRItLX
8FBuvRozJOo/75JSrD26d27eX2qk1wpyFjNk+Jy6u8KMUEO3cVj8FaYMrsJj
oUkKNT77VXWtNZThWJBsS+kHNbosMqd2s2QI2d9SV69JIvJDpLERZKgbOrvI
bwyJJOfPUcVsGSyrvFfnTyaR3ZWi+GmbDO0mKUFvppOY9v5ZviRABuuJTXvb
zEn4jBkx3yNcBvfa9Z5LlpDIcNlXXMyRoXed/qoiWxLr5vjEuaZT8Uus5pc4
kOhbELmnmyvD5okt+5tcSfhZ3hg2qVoGop1h/9tWEjZP3LWutsrQ+HBn7U0/
ElMSlnzRei1DRW3xmc/+JDYrbjmXkzJE2VUzK4JJ+MLQ34hB9aGDkWXjwkn4
11afOsiUg3HDXePyWRI9nf0ftQzl+LiI63qSQ8JRz313BEuO2KLBK9nJJEze
rV9kbyOHYeUfWoapJOobrB/XOclxrmGb7vwsErsbvd2NfOTQTI6Oismn5vf5
wa4pUA4fY20XVgmJwybvTT3C5Vi+YGeT0R0SawV/dVzhyFFQ91vavUoSEZar
iZ/S5Uhe7OkVc5/E3T/Fwt+5cmzvb3ta2UBi05Op9q41cqy85bNRt4Wk6t8h
qI7qm8dnPsiZ8heJ2Xp5yRMJOZ4nzZhwppPEZ/W1KaW9clyc+6Ge2U3iMVmZ
tJihwPjVKsEYgsRORVfnASbV9+ZqhVQKSOw6HnVUZaCA3q79fcclFC/dq7OR
pYBNSfTTCjmJpujusVo2CixzeFTHUJOwGB2meYWtQN7eLUEtvdT5ntWt4Hkr
4FDgM21jP4kvyQ7Pfg2g+mzp+Z3N70gkdORJlFTf3VesEfLqA0n1n9QtRRwF
CtxLV3d+ovIVFBM/I10B/edvI099IWHkn1d3gqvApEzz/mdfSbC/eW6cUaPA
5stnXTUHSISWW73itirQobPcqpvi4EOTzJU9CqR2/bw8eJBEZ9Xp7iBSgczl
Lx++othyqfFpYoDaz96szkGKv6xxi7nEVGLwn4fEBeeTnpqGSjD+eXox7fyr
6c4smnXcntgrQPNItmLvPjbNfq9SZAt9aI71c2AVB9JcNm2m/4Rwmu32/j66
Oo7mNv6iTKd0ms02tWokcpUY+NefdNu3quk1tJ6dvOVwciutN25fF+1G0Hr5
TMvd9b005011Wq7HUH3fLyNzILBynOq77ubxMtXOkNaPjPoj4TiL1r85GYgH
oILGvxz54O783WxaD2yW9uj60LqX5urIPwJoXWdBKvktTPXd7/yPUeUXObTO
VmSFjU2juf2QW0YHVwXNf9no3WD0+hraX2DWC//cVjp+hnxVsTNBc5cXT9lD
0vFbGoPV0wZpf2jOYN9kqr/rM75+yf3RQE3vp0bm286i+dyJdoG1Dc1pB2Re
cWya9dSJi8x91N/nv5Tir80NoHXeGrs0fhjNnDMFyds59Por+u3OPkyldee3
AZ2/cmneadxoOKKaZrsNBvPYLf/nb9SINKKH5icfDLU3qWk/ISFPWiYP0jrZ
/6vXBSb5ff1dKesEQn3yu277svTxORat663ZkDsetP6gkHBc70hz+83hru3e
NL9+6u2ywp9mF459UX8YPV/8GlaHJ9Vn/+ev1dyO+o+g44NuKg7acun4H53r
BFVVtG4Ua373bCutf3h40VWToPXm2aay7STNZ+L6B/6p+3/5P+cN97A=
"]]},
Annotation[#, "Charting`Private`Tag$29341#1"]& ],
TagBox[
{RGBColor[0.880722, 0.611041, 0.142051], Thickness[0.00001], Opacity[
1.], LineBox[CompressedData["
1:eJxF1Xk8Vfn/B3CpyRot2nGpVBQ3LappeTEtstSlUCEpYVoGoUlmLElFqktJ
iyxJssRtkVZbpVL2Sch29/2eY6iULN+j+f0ezj+f83ycz+N83o/PeX9ex3Cv
/1ZvZSUlpVGjlJSGx1B/TeqOjc8d05SHx4neyue8tNlQn3V6/Bt9NsaTZ0Mm
GrBxSrEweY4lG1q3N+zKorPxMf1But1uNpp3fleRr2XDeVX1qcYwNlRvWE0M
Y7AxqmKLypdUNpZPeTy5x4ONmgrDoPZiNqpoL0MK/dnYZJ//3LWTDdM5lTfm
RVLreAdVrVTi4LzLwMsIJhuhfDtPjj4HznqvN8xOZyNQpf6ariUHMycWl+Wx
2LAuNJpmsJuD/FGsUcISNoKbY5qjwzi4dXJZxsFaNnxegPtXKgfXl0tXfexg
43p/pPqqYg6+hy1ZdpZko/tyxPa4Dg5mlx793DPERhHjz+RVQxzYm0nvWGpz
8Ntru9GFely0mv/7qpnGQSQ/ve7ZWi72e8396EznwOJq1MO4XVzsMu7aqE/V
NTHCkSkJ50JPWhh2xYGDpcEHLbPSuGhvvp3fS9WpqHRwWFDCxWh3+pqMAA6u
ptTTV3dyMX+coMI8koMj3mbHJw9yMf3JJZ0gJgdOBcG1m3V5CPj+6cVQGgeJ
MQuStdfw8MZ3y4HDLA72mYh3X3Pj4cQBl8NmZRzMsve5e+dvHjR/37k2pY6D
wtX1K3RTeEi8eGbMv50c7I+JC3R+xkPUNgeT+C4OmI7h3pPaePC3Wm+jo8TF
HsWWbcl9PBibLDGz1ebCrp6lcXwaH5tuFwW+p3GRWPo8RLyCD9+tv981p3Nh
QdNrnbGdD3lCwWYeuIjICz5YdZSPgKFZ/GMMLqweqO6ySeKjzPeC5QsPLkxc
XTbOLuTjz31J/c7+XGQfLmkI+cDHQubbezXUvqlfdlFJ7ubDegvz9QUmFwER
J8TLJglAV3W8oZrORXC6q9OCJQJM6bI84sWi3v/8GkE4COB1qCJbrYwL3uvi
UfMOC8CaEtKYWMuFS8hR0pQpwNtnRm/rO7jwUH1UGn9HgI1ffGe4klw4cNde
8aoS4JV7s/cbat/bswb1VaQCZO9oHx+pzcOOace+TVEXYgej/biUxkOftlJ1
hLEQKsEa8pV0Hu7HZfo92yiErmnNww/gwerIv6YePkKY65SGODF4+Ksu/+6H
E0LkMdcn0zx5ML8/QaPgphDdv1ScuB7Aw9zDjSadL4RYkRvkPRjBQ/rZN1eE
nULwuUVZefE8nC9/I7AdEoJpM5+zJp2HspTpead0RVDJS+QcZ/Gwd6t/rO5K
Efjpl6wmlPFQ/n7uWLUdIpS/enXtZC0Pr2/vE9YGizAmLGbbBjYPpxOs6OKL
IkxaZN1Q1MXDAQ2t+y73RTCcsNR2nBIfkQcyxBk1Ilw69dCQNZ6PLU2mjJUK
EdRMvLuXGfChT3z5XKAmhs1b7Vg/Oh9nnWukYUZikH1bIrrBh8oj9zjmOjES
3Z77uTH4EIkkxtG7xUhzKCnW9uTDY1KB+cMwMXKCiF9y/Pnwyjg39v1VMSIT
put8Dufjw9L+IysfivF8XcvxM0w+dn5d3NraIMa32W/Ev6TxscAvYo8vIca1
KzasKhYfq8e5N9M0JVBVfbNqQxkfo9OeEAuMJThyK7A8o5bqO174kNF6CTY1
3c+yY/Nxg6HvtW6PBDOXG55sIan1tk4e7/i3BE8TzhhPH+KjL8b+e1GSBKWR
MaaZ2lQfWIdaWzyQ4GVKoYkOTYAz1hKrvGoJTBlHTtfSBbgy7Z23uVQCrx+L
cldbCmDbf1VffawUVxtnvD7PEKCppOJ4B02KpeuvWi30FMDNLK7j8Sopatkb
igr8BTAIXV+Z4CyFRYiiixsuAJv3QOulnxSjM43j9lJ9G5M1rYGIpeYPXNR/
kyrAEfuqp7SbUoySX5hwlCWARt2vN6xKpFiiWjagUSpARUhC78EmKcxpYtbW
GgFmvmo/SZBSXHqXWc7voOp/2BrurC7Dt5vMKjdCgKHtqc5Vs2Qon6C9XH9I
ALOAgSV6a2RwCY31vaAthKPL7dhSFxlk4xcnyPSFyPRXlh/zk0Gwyn9GPF2I
9MKt+5ViZOhM/HR9OoRIinfqzUiT4ZbYUuC0RYg73BzltCIZ6utWnWv1EOKT
1o7RO2tl6BfuM7P2E6Lsisnn5UIZziXMog+GC/HL0kbzykEZpBatX3yYQjR7
F+femSKHtfqLh4WpQsgd/CpLFsqhHrimcTNLiLroFc+C1stRpSJSvC8R4uuj
sXPcXeX4bG7kc6lWiHgVadunw3KIXTwyx7Op9b/J5t2JkaMtp6I1gBRCk6l2
51mKHBYJ5YG6SiIMpj4bciiUg5klU87Xps5NcIDMuFKOwqLxO0l9Eea1B8zx
bJcDbu+0wugiRNf+k6LRI0el6f1icq0IbTfyFoxVUeBJollVPkOE+Wdy9/2u
q8CfX2+l63mKYH3tu5GBuQKLT9n5BfqLkKRrf2DJegWcck8mT4wUwaTladb1
HQoc6VeUX2aKkMt6kud7UIG9No4FNakiqE6aUZ4YpsBDE5s+Bxb1PHfpsrEJ
Cqj+6o/HJSIUnu1MEGYoUN5uzD9QK8JcYZe4/6ECx1gTo5Q7Rbg3XXVs7BsF
Bv76KrAjRMiqNENoswKiNr8c9qAInz9et2ZKFag7ONnHVUsMnd6GDfN/KEBj
OkTRaGJ4JnRYftQksCr/1L4kuhhJHZYtHD0CLt+l6F4rRktXZXykKYGmFl7o
VYYY1R8i9xuuJbBdrM4yonIguNd63q7NBG7+uzDHy486x1oZ6mPdCTgzecqK
cDG4ES8zUw8SUHF76+x2Xoy+rpBGzjECtGdWqpPTxGBkyF/9Ektg9JSiyEiW
GIGdKlPjLxMQpu7orisRI2T/7ZTGTAL058yXh2rF0PotdLHkPoGjKl/OKToo
l2+6VFZKwEhEPHpCisH+mDlnezWB9HLe7eVKEmykP9Zw/URgxruxCde0JZh8
hly9WEigz6ekZZOBBPMKJtk+6ibQYp45s40uQdEi2bMZgwSie6NnG0KCv1n1
Rf2qJC459p25x5BAurp5ZqgOiayWFNnc3RIo0QvOivRJ6H1tzBP5SxAdbunE
NSbhOU5tsWukBPzXbf0uS0lkbD1w7x5TghzX/HE1a0jYLvSMd0qXwORkcnK5
NYnuJdG/t7EkcI3KXlbuQMLH4ubYKaUSvB6n82XzThKW1S5jkmup+dLRx6z3
kph+YcWPMZ0SJHnUW+w+QGKHrMDxKSlBFI2c3hRIwgsGfoZKUnwqFWxrCSXh
V1564g9tKTbGjPbTjCLR0dTzbYyBFNbfD+glxJLYouvie5wuRdzh9liHeBJz
vtgvs7GUUj3oqetymcTrt2srXzhIMc3sYGdXCgnfdx4uhp5SlBj9/aP5JvV+
z0nr3gdIQfTZH+3LIXFkztf5rpFS5C7UpAexSGzi/fPhGlOKgm72p8RCEsct
NrLnpkuxm4xP5D8h8eSRkH+ZJcVlq+JfU0pIbK+eaeNURuXsqChF6EuS6n+7
oBd1VI6qKW9WfktigW5u0mS2FCruvcvHVJHoI65PL+yi5ieG1RjWkagkiy8t
V5LhcbKWy8t/SOyTtTQd0pbhQlqFk2ETCe+/zhxT0GRYevCE7sVPlFfu19lG
l6EtfL7y1XYS7+PatMZYyrBc9CbgDpuEuWa48jWGDFPMxkncedT+np7xnONB
5e6t1KhGAYkfSXaNwf4yFPbpfncWk7jwIVckD5dhxbG3PlFSksqf1J13mZRb
NBfdl1PfK+hcglG6DL+ZlEjyCRKGfrkvIlgy2IbMr/XqIsEYcNtmVCbDWZbw
2PRuEmFPV7WzqJw1XvOsNb6HxNHAKabyDhnmGCRZ8z6T1H/pZFsQKcNckYb2
kq8kLFbOPsmmcvfurIRoh16qPmvnc1e05dhgHLZ9/zcSZx2j3JQN5HC4n8/Z
853q39j2WY50OfJu6Q4t7iOh41xtI4Mci/4wLhqkrM6Q7T/AkGOG34S72T+o
/mxPkSz1lMN2Y3m0fT+J8z529HsBcoT/ennfJ8pFevP8JkbK4fTj2CLGAIl1
+y9rlsbL4Z1Oty+hXMddlumQLkdwz7ayaYMkjLfXjkpkyRFZ3ETzoSzePVAy
q0yOiNAV6QWUs5J2HkmqpepXK7kppvxuj22cM1uOU5akkf4QiafzLHxfd8kx
LbvM1pZy7kyH1bpKCoRVT+YcoqyUORhQPF6BRv67mWcpO7u2pq4zUEDt8MbZ
mZT/1Hhw4S+6AhK21rlHlAccaMJBKPC8sirzLeXoV08W+zIU+Dyb9Ucj5YAq
cccMTwXGxDv7sim7K2+MfuCvwMczib5iyjpLUsmBcAViCGk0QXnxtzNPLzIV
yJafS+yhzJDdCtdKo55XraT1Um4IdM74wKL+C/VTe75TNvwyFGdfpsBM+8fk
j+H1bjX75dQqMKvDxmqAspF0wz1HtgKp9RqWg5Rb3DnyDlKB+T6LOMPe+e4o
oTekgMurk3ZDlFGVwcjWJvBlsVXSsI36f+RMpRE4cbGzfNgBZRKvBjoBV83g
jmHHRDTw1loS+CYIJYaddkjiHs8gMHXo09dh6xKJy0w9CZQsevxj2FdS/FRY
/gRUlykPDptjvS6NG05AvEBvaNjMU3eS9jAJWN/M/uk1PetOV6QSaOd3/LTj
Z/+mYBaBhtgvP71v9jsDNSrXB9/3//S6zbRFjBoCe2cO/XSMhloau4MAt+Y/
V/caqGwnCCqH/3NISHXNtCEC1wb/M9kT7H5Wm0Tz0H/2TrHl8anc7v8/W7UW
VsbQqT75eXVB13pzzgSM+FU+e4v9lhE3ZKs6NXiMuLPeY+savxFvZdrc7Qkf
cYI1/YMbc8S1puv+zU4dcVC27A8r1oinOr7glZSM2PC86ZPTtSPurbjopMwe
cdWC+ZI95IhPxff8/A7/7/8Bv1lxXw==
"]]},
Annotation[#, "Charting`Private`Tag$29341#2"]& ],
TagBox[
{RGBColor[0.560181, 0.691569, 0.194885], Thickness[0.00001], Opacity[
1.], LineBox[CompressedData["
1:eJw11nlcTPv/B/BKtHCNJVLSFKEoIxEueuWGJDWFUGmxFV0qLYSrxUW2TIuy
VYq0IEMKhTYp0mYJ0TL7Pue0CEn1O93v4zf/nHk+Pp8z8z6fz/vzehzjHUEb
dqupqKioqqqoDF+PBI2hvnHwrX2K2vB1wm61uJ00Dkxq1fVrDDkYR56PmGDE
weh2vS4TWw7G5qz2ymZw4L32XMl6Hw4+u/dpKGw4sNvYTft8jAPNzJUTjjE5
uHM1yuRXOgeLJz+Z1OPNQV7ztrmi5xzU0V9EFAZx8JFl2bWngwMLk9eZs6M5
aLAJ/4upwsWFzQMvolgcpChGnRwy5MJtWvXqGRkcnAvWP7HGloupE56X32Fz
wAs8dmCLDxf5qmxVUSkHOVfUBG+OcXHr5KIbfzdycPvUQ41P6VykLpYt+9jO
Qd+UPX/cfc5F3zGrRedJDlr9M+7rdnAxo+zQt54hDnp9JUWiIS7Wz5PdtaVx
YR7UExVlyMNXy66qz3Qu7NdW3bkHHvbunPXRjcGFV3fK4RxvHrzMOtcYUnX9
VaTrax3NwzRZ4bHLLtT9KYvmmGby0PY5J/8HVWeDvMaJX8bDiG2MFTeCuaCd
vsKx4vJg+ofwpWU0Fy0nvE44qfChV5ysE8riwq9Q45/XhnwE932pHLrORUFU
I6cFfNT4OwccYHNR6PyWV+DNx78Bmw/MK+ciaT59Az2ajzF73G3SmrjYciEg
X5HBx8Wks+pd1HOq/vHe+HgZH8c3usyJ7+SiuPDm7DwOH0ErVznoqPCgPTav
4dIQH2ZzrOato/FwuTQvVDRNgLU5j0Le0HnQyAxZX2UjgP+GPfctGTxkZ69Y
u9dLAEXCPSc+tS5BJVabr0UKEDw0XXCYycPROqHGxTQByv0TbSupdSLcTeJl
TwU4uCvlt1sQD+Qz3fu1rQKYs149aIjkITVzh9GBfgHsnVnViSwe+sMrpqYb
CMHQdM3UzOBhDNNx/8wVQkzutA3fyeahekvS9xBPIXbue5mrVU6NZ1bO/+sf
IdiTI5ovNvJAC7Bw+3RViFdPZ756287DoYrHi6qfCLGm11/fg+Sh/vH29ZYt
QlRt+7y7ZpAH+sDX4h0/hMjd2jYumsbHT53rT0ZPEWErsy1GRufDaXl8idYS
ETTCRiuWMviYRDccanATwcCioegDtS8mZS0C9YMiWOqURWxi8uGTRGeqXRTh
DmvVNbovH5XLi3ICCkXoHvny39RgPq7YuBww+SDCktuhuwej+BjlpHUpp0sE
Ae9R9p14PiwGx+yNGy8Gy8GUu4LaR4uYw1tXMMTQuHORG8PmI0MQtNR2vRiC
jOSV48v5ePWlbFza32JUVFVdPdnIx4D2nZbq02KoHzu9cTW1z3xSxd8uV4yJ
8+3fPeqk6p/hIx5TI4bx+IXr/lARwPLv4m/ZfDGSTxUZs8cJMN/gCfuMmgRa
c3Z3LzISYNWdjzdt6BI4vKKdCWQIUFkYwbFbJgH5yzmqGwJojAl2jXWX4KLn
s0BPpgAdp2YlZIZLcN2l9DnNV4ALn174diVJkBdKjMwLEsC6PutP/fsSRCfo
6Xyj+maFq5E44Y0Ez+xaYs6yBLD9PvKwlVSCnzNqJCOvCyCU3K18qC7F1csO
7Dq2AG26FW6bpkuhqVmzbHW5AGvaU94thxTht0IqbjQK0PnDPlnbQ4q1nwqy
HTkCPMh8mCw/KMXUxcYnW0gBdiUMji9KkKIk4ayZ3pAAywU+3Lo7UpRFn7bI
oglRMu5XvqxGihdphXN06EIk5fbF/uRKYcEMj21kCPFl6HGs6qAUO/vn315u
K0TYmYMvXPVkuNKsX32BKcSz+KvXri6QYeGqKyvNfYWYnbPKpslJhkbO6kf3
goRQFBQ2qvnLYB2h7ORFCvFIPrjiZJQMI7LMzu1gCcF6l2oqukLNH0gyrEkX
wmp1VYpTgQyqisTxh9hC6A387Iitk8FKs3xgdJkQiWEaj+sFMljSJewNDUJE
MJ727fotQ3JtVoWgXYij+8s2lU+S4+dNVp0nQdU7m6e9wEKOivG0xYZDQgQH
7273XCPH5iNn/BNpIpBJnUVN3nLIxy1IkBuKsHZqTq5/uBzCZUH68QwRrPl2
wTlxcnRc/JKqBxH2nSv2oWXJcUtiK9zkLAIjy35PQ7Ecb5uWxX31FuHLhf1e
s9/K8Vu0a559oAghd3d8KRTJEZcwnTEYKYJW4Z9zmwbkkFl/7fVjiVDteLhn
uY4C9tqVRYXpIrin1ATJTRXQDlnR7MQWgTM38NIUKFCnIVa+KRWBOXui7YWN
CnyznOmX3CiC6YntRw/uVUCy2TtrHEcEsxjVrMJIBVrzXn4NJkVw3qZi5pCo
gHVCRYiBihiHtO2tVuYowMqWq+XTxNg1MeRZSokChY/GuZOGYuRmD4S51CsA
z9qxx6hzGLHhqKEPV4HXFgXPSRsxTl0zN27pUaD44ry6fKYYn6yWzUnVUOLg
91sZ03zF+EALKSnVV2LBKcfAkCAx3uzq7PQwV2LT7ZPXJkSLQW+9vd0SSoT/
VlZcYolxYcf3mtMuSuxwcL3XkC6GWuyIjc7blSia4/DLhU2N6+ffR6gSmn8G
4UmpGNEmJSrl/ypR0WYmCGgUY2NtjZNvshKH2ROOq3WIwTc4K0m5pcTA0e9C
R0KMAc+IOSuLlBC3BuZxBsU4nijs/v1Siaa/J/l5jJXApeywrlezEnSWy3E6
de7HZe7tqBQqsSz/1K4UhgR/7phZdalXic19MnTbSBBGNw+gqxP41MI/coUp
weIJPdK0iQS2SLTZM30ksPtuHfPRmMDNLvO8nYESLHcv4Z5nEHBj8dWUkRK8
Vfjfn2tDQMPzlZvnBQn2eLRcS3QkQH+6UnPSdWp+8weDj+4ERkx+FB3NlmD9
5XWCRH8CovSt3U2lEmxJn2w2K4wA4xnrxb5GCfb+rGDGxhA4pNEbp2yXICP0
tnN1HIGZYuJxMSnB6VMjPWuuEsio4OcsVpFiqc61nfY5BPRrRyVcpUmhfa6o
/mEBgV9+pS1rjaSIPKxe8L6UQItl1tRWhhSj/GrDxK8JnPhxYoYxlTtSK2uL
Mx8IJLv+OvuAKcX0Rl2fpg4C2S1p8lk+UuSkHavQkxGY9r35jjhIiqfZbcsG
vhHw/UNrgUe0FF0FjoKAIQI3NgQ8eMCSImSC73GpJol15r7xmzKkaGue98+3
CSS6rU7saWVL8Wf2ZMMpBiT8rG+OmlwmRUPcQtdmExK29ZvVrzVKsSOfoRg/
j4Re4pJ+9Q4pYmJrCsKtSWyV33MtIaW45zWw1xkkdsIo0FhFhu9TWCNK7UkE
VpT9u58mwzP91KydTBLtn3p+qhvJ8OmMo/TAFhLOBpv9YxgypHaYq5R6kzDp
Xb/IwZbKHeu2gT1+JKpf2byudJEhd6KqsmA/Cf9a783GvjKcdX4Q6RBG/b7v
RLs3wTJ8ncWqtDpKItzku6lHtAxTuj3DQ2JIrOW//3CVJUPMQtoDn1gSMdZr
OLMyZNh8PdgvJY5E8WOR4BJbhrLtwfmMJBJb6qc6bCqXYcDy1CLtKyTV/46h
lU0yGLFrnyWmk5hrcDtlEoeaX3yk/9xNEr+IVL3CThkqkhTez3NJvCafJy9W
kaP3UojSL5/ELnnLp300OfRDdHfUPyCx++jZw0q6HGP1RM07H1FeuldnI0MO
UewPVlQJiTfnWseq28qRndpXUFVKwnJMpNpVphwJUY1LUyqp9Y3Vf8alcvSt
wahf5tUk+lMcm8OC5LCddH6J6DWJxA+3xYpIOU52u5osqSep/El3v8+SY1fM
UyK7idqv0LiEmRlydG2frNn6noRx4O3KKLYc6f3ko6KPJJgDnhtnlssxYtbI
fdktJI6VLGtjN1LjZ7k9K1tJHAqZbKFop3Jf/4v9/XYSn0pPtoaSchR/9kyc
zyVhvXTGSc4g9Xyr5i/241P12bvFXaYpMH3mlII8IYnzrsc91YwUCDuunlEh
JjHtTNt0V4YCzKY9/ZelJHTc6h3kVA5r6l8zPyInoc2U7w1gKrBAr1zXSEn1
Z1uadKGvAudtI3PqCBIX/BwZD4IV0N34NN6tk8SjabMDJ0QroP74pfXdLhJ2
ey+NKYtXYMR7zt1RPSSaeIuyXDIU1HsGkWH1jYTZlkbVi2wFlk1xDF3TS0Li
M1A6vVyBov3WnR7fSWSnuIenNCpw9m/TZIcfJGq3rzvnxlGgNIFhvOQniZLZ
1v7VnQpYPbTWovWRuD3VZbmBihILz5nPq6GskjUY/HycEgkBWWMjf5Fw8/ia
bmekRAGXxtXrJ3Fw9MPEowwqh7dm/3OL8oALXTRI5ba9/uB0xm8SJ6qKF/gz
ldgzTcv/JuXgOkm7vq8Scz2caZMGSGxTW3PiYZASZ1Ife4VR1rFKJwcilfh3
aLrvK8oLfp4tSWJRuZow7YneILW/8luRY68r8fnjdjMvyu9C3G58YCvxJb6v
Io2yce/QufXlSqz2qnZtphx863NgXqMSW5/FlasNkZgpW/3AlaOE/FLZXQvK
Ldu4inZSiX9+uHi6UHavPURMG1IiqCKhbj9l1N1g5tIIvM34bXpm+P7f/Xm6
dAJmRxZ9SaccXC7d+Y7K7do8v7wCyqej3vFtbAmYJni8raR8fZ90WzyTwPvQ
ExsaKRsQFxdZ+BIYudXq4BfKl9MCNdhBBI7d5Ip4lLn2dtd5kQSUpFqqlDLr
1N2U7SwCzRsC/EnKK3rsYl+mE5g0+XlWD2XXb0GfwtgEpnJsLX9Q3jWj1kir
jMBC7XmFfZTtnOjzmQ0EwnqTWP3D9Y3Wus5pJ9D7uFRrgHL9DyONLQSV+6Wj
Rg1Sjoiob5hC5e6kgXVVwyZ7wradp5GQGtfbDlHenbaOLzCkzqEq5/ywV34t
fH2aQSJzzIfyYRvYO+WNp3I0/F5r27Cr8jnO651JpJ0MJob9Lldz0zsqJ6Xn
TX4Ou+Ot94YVgVTf5Wb8HvYGlsP9nkgSo+e9HRx2gj3jgyeLhKAsa2jYjRZ2
XblUjtHvi/9zaK58/0o2ifmV/f9Z17WSX0rlTlP40H82vmBRHNtIYnbf//zj
ZdImNQ4J+dD/XDfXVLqdpPr8v08nTsX3/Pe//+//A/HyjRU=
"]]},
Annotation[#, "Charting`Private`Tag$29341#3"]& ]}, {}}, InsetBox[
TemplateBox[{"OO", "OOOO",
RowBox[{"FabiusF", "(",
TagBox["x", HoldForm], ")"}]},
"LineLegend",
DisplayFunction->(FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6],
Thickness[0.00018]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6],
Thickness[0.00018]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6],
Thickness[0.00018]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6],
Thickness[0.00018]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6],
Thickness[0.00018]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6],
Thickness[0.00018]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
Editable->True,
InterpretationFunction:>(RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
RowBox[{"Thickness", "[", "0.00001`", "]"}]}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
RowBox[{"Thickness", "[", "0.00001`", "]"}]}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.37345400000000006`, 0.461046, 0.12992333333333334`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.560181, 0.691569, 0.194885];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
RowBox[{"Thickness", "[", "0.00001`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{
TagBox[#, HoldForm], ",",
TagBox[#2, HoldForm], ",",
TagBox[#3, HoldForm]}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& )],
Scaled[{0.5, 0.99}], ImageScaled[{0.5, 1}],
BaseStyle->{FontSize -> Larger},
FormatType->StandardForm]},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{False, False},
AxesLabel->{None, None},
AxesOrigin->{0.5, 0.5000000039062495},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImageMargins->0,
ImagePadding->All,
ImageSize->Full,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0.5, 1}, {0.5000000039062495, 1.0000000000000004`}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}],
InterpretTemplate[Legended[
Graphics[{{{{}, {},
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6],
Thickness[0.00001]],
Line[CompressedData["
1:eJxNl3k8VVsbxw8pzae66pZkiG5UOmnQoPy4mqQchApJKc24uUV1idJEHITb
ZEiGTB1cuSVzJSHkKrlJ+8zz2aJ54N3v/dy3/e5/1v5+fs9e67fW86zn89lG
OwJcdmkyGAwNDQbjv+OxgNHUG4Hensma/x0n7NKM8WUSMG3U0n2kT2AceSFk
giEBw54pb0xsCIzNWbU1m0VgsmN0+fptBF5s+aSttCZQ9Ecf80UogeHXbSeE
sqnvfj5l8jmVwOJJdyb2exPwnxM4W1xJoNngfkhpAIFLOPNmz2sC5iaPr88M
J+CxNsGOzeAh1v3b/RMcAnqFn88O6vPgNq1+lXE6gbxlF6JX2/AwdUJlTT6X
gKXJsYhN23go1OBqiKuo74d4D2kO5SHr9KKM/a0EHEftX9mZysO1xXKr5z0E
lgR0BBdU8vApdMGiCySBvi9++ya/5sG4Ovht/yCB1WGkVDLIw/q58gIbJg+X
vDq2ROjz8dLizYMXBjyU+fLPF4OPvb4/PXdj8dBev74g35uPrWa9q/UpX+Uu
RMzycD6myUtDLznxYNWx98u863y8epFT+IHyWV7M9iSr+RjixVqREciD5h3v
Yyt5fJiOET20COfBSbcx2pchwJS7STpBHB7mH5ptJtYXIPDT33WDaTwQfbdP
D0KAR7sd9/3C5YHTeq2D7y3AqX3uv8yt4WHYswK+V7gAo/dssU5p42FKW8lv
y64LkHgxSusNtU/TmRNH8KsFOLnRaVZcLw8aOemuhjwBAmxX2usw+Og5eS7B
lCGE2awFc9cx+XBx9fNK1BdibU7ZoSYDPuIcD4qSIcRulz1FFiw+mjLbfHy9
hVDG39ogoM6l03jr1foTQgQOThceZfNBDKxq6E8VomZ3gk0ddU7hrSYRkZVC
HNmZ/NUtgA9lw5xP+T1CzOE0FLeE8bFZP9435ZsQaxw59QkcPmKv6cfMMBCB
Ndz5+vB0PrzHZfw83kaESb02h325fJgTEfJ6bxF8Dzy8OaKGj/oXUc4/hIvA
nRTyLLGVijfvzTNLE6Hh3oyGpz2U/2CHuBuVIqx+t1vXg+TjnLx1YWmPCA+8
Xux6NEDx3aKm2G8i3Nz8alw4UwCn4nIjhoEYm9mvIuQGAhSllg95BjG0fx2l
XMoSYIx00osgbzH0zFtud1B5WeJxbX/uCTEsdKpDXNkC7DANe3MzVYx8zsqr
Bj4CuBuct0SNGH1DH566FiiAdFSU9lKeGEvygnYNnKDy7Cpp/DoohpBflp0f
J0DDw4MbNhlJwLE35a1IF0D/olPdcRsJtPMTeRFcAUa6m90fsk0CYXqS7fga
Kt529qnp4RLUPnhw5XQrlefz5xeNSpNAK/TcxlWEACM+j8uJqpHgh3lr2st6
BfjJJzbzIE8Co/EL142h8n5wrEuiLkOKpDO3jbjjqLxtlAdbGUkxYtauvkWG
QnjvaFoghxT2Dczz/iwhGju2dt3fKgX52fFEH1UXz60SnotCpUj0rPD3ZAvx
qvhS/o2rUqQ5VVUyfYS40HZRI/WeFLlB6qG5AUIULjgdbdUlRXj8FJ23YUKw
F9w4OeK9FBV2XRFRHCGwp+Tk0IkyfDR+JB2aJkTBQGZ9iYUMVy7Zc5u5QpTs
MGOddJJh+PBHVqtqhMhJ0jgW6i/D4axDtRmtQvxg4RmwJEqGtZ0l2Q6EEBvm
GFcNuynD1MVGp7tIITJj3cZeuy9DeXyU2ZRBIeZVFqr398hQHX7OPJMpQuSz
v8ttvshwP6V0lg5Vh92rrGPlE+UwZx8+28oSYeW02F9i5svh+2Ve3nKqLudc
99vq5yjH5We69bFsEd5u6iuYvkeOhSsv287xoepuaLHD41NytBKrym4FiDC3
sC3NI0UOyxBVLz9MBJf4jrR5ZXIMyTSL3sERwa//ZTS/jYr/dlH/UaoID3VI
0xiZHBrKhPHBXBGWTUrs0dZSYMHwmm+jqkWIO7U37aSeAhYGUq5LiwjTt+nF
rlmoQFJjZq2QqvNrHzcZtWxQ4OMNTrOnWgTjK+1NO3YpUDueuVh/UIQBlCwt
DFPA/dj53QlMMdLz2x1W/K6AYtz8eIW+GK5ZbzplhQqIrAJ041hiEGfW+6yo
V+B14t/XplD3Yu0Bzp+l3QpkSW1Ero5irB4i9grvU+Bpm1XMS+qerNvalSgc
ocRX8c65a/zF0J+dkXLMQImY+OmsgTAqXuLhk2KphNzy5Ts/jhipHvVy5gYl
1oysu11K3aOEq1mpdduVGHloxbMNXDGq8m+z+4OVaNaWqJqqxIhrkBzdf0GJ
txYz/JJaxZjwQFHulqGE1N07cxwhRpHNEZekP5Xozn34MpAUY/4Xk+ZZTUpY
xtce0mNI0NI0mmNMKMHJVmgWMiWYN7DiwtF+JUrLxm0h9SUI/4S4BcNUgGfj
2FCWBKOXHTj4s64Kj81LKklrCeI/jI+pmKPC3cS5zYVsCSrUn3JO2Khw5H1W
+jQfCW7NdrHN2KjC/DMO/ocCJLgi1/rNepcKrnmnr06g7m3fj01qnRAVDn9V
1f7OkcCn9JnbgfMq7LB3vtWSKkFZoAnP4ooKt2fZf3biUus38KyNC1QYviwA
d6okcAnti71RoULtKzPhvlYJ+NmMbrsWFY5yJ5zUfC2BF+P+kWM9Knw7/l7k
oJYgFsV3TNQqSLr9c4kBCcYe0Y8gBlRo2z/Rz2OsFD0ZJVk2Y9Uw4DidNDCQ
4kJkxsFsfTWsCs/sTGZJoWvj7XJ8rhrun+Tos5ZiScbOj5or1OjsEhy7zJbi
b1vTkIj1amySjuTO2CbFLGMvZrmHGjfezMn19Zfikk5OQOAeNdw4Ak1VmBQj
H1xZwQxWQ9uzwc0zVgprttPMI5HU+vdsh09Mk0K+TDPzboIaQyaVhYdzpeC/
yN5xJF0NcermvrYqqm88Z14aUagGq4Jz/0ArNd89m+v7ytUI1n4Xo+qRItLX
8FBuvRozJOo/75JSrD26d27eX2qk1wpyFjNk+Jy6u8KMUEO3cVj8FaYMrsJj
oUkKNT77VXWtNZThWJBsS+kHNbosMqd2s2QI2d9SV69JIvJDpLERZKgbOrvI
bwyJJOfPUcVsGSyrvFfnTyaR3ZWi+GmbDO0mKUFvppOY9v5ZviRABuuJTXvb
zEn4jBkx3yNcBvfa9Z5LlpDIcNlXXMyRoXed/qoiWxLr5vjEuaZT8Uus5pc4
kOhbELmnmyvD5okt+5tcSfhZ3hg2qVoGop1h/9tWEjZP3LWutsrQ+HBn7U0/
ElMSlnzRei1DRW3xmc/+JDYrbjmXkzJE2VUzK4JJ+MLQ34hB9aGDkWXjwkn4
11afOsiUg3HDXePyWRI9nf0ftQzl+LiI63qSQ8JRz313BEuO2KLBK9nJJEze
rV9kbyOHYeUfWoapJOobrB/XOclxrmGb7vwsErsbvd2NfOTQTI6Oismn5vf5
wa4pUA4fY20XVgmJwybvTT3C5Vi+YGeT0R0SawV/dVzhyFFQ91vavUoSEZar
iZ/S5Uhe7OkVc5/E3T/Fwt+5cmzvb3ta2UBi05Op9q41cqy85bNRt4Wk6t8h
qI7qm8dnPsiZ8heJ2Xp5yRMJOZ4nzZhwppPEZ/W1KaW9clyc+6Ge2U3iMVmZ
tJihwPjVKsEYgsRORVfnASbV9+ZqhVQKSOw6HnVUZaCA3q79fcclFC/dq7OR
pYBNSfTTCjmJpujusVo2CixzeFTHUJOwGB2meYWtQN7eLUEtvdT5ntWt4Hkr
4FDgM21jP4kvyQ7Pfg2g+mzp+Z3N70gkdORJlFTf3VesEfLqA0n1n9QtRRwF
CtxLV3d+ovIVFBM/I10B/edvI099IWHkn1d3gqvApEzz/mdfSbC/eW6cUaPA
5stnXTUHSISWW73itirQobPcqpvi4EOTzJU9CqR2/bw8eJBEZ9Xp7iBSgczl
Lx++othyqfFpYoDaz96szkGKv6xxi7nEVGLwn4fEBeeTnpqGSjD+eXox7fyr
6c4smnXcntgrQPNItmLvPjbNfq9SZAt9aI71c2AVB9JcNm2m/4Rwmu32/j66
Oo7mNv6iTKd0ms02tWokcpUY+NefdNu3quk1tJ6dvOVwciutN25fF+1G0Hr5
TMvd9b005011Wq7HUH3fLyNzILBynOq77ubxMtXOkNaPjPoj4TiL1r85GYgH
oILGvxz54O783WxaD2yW9uj60LqX5urIPwJoXWdBKvktTPXd7/yPUeUXObTO
VmSFjU2juf2QW0YHVwXNf9no3WD0+hraX2DWC//cVjp+hnxVsTNBc5cXT9lD
0vFbGoPV0wZpf2jOYN9kqr/rM75+yf3RQE3vp0bm286i+dyJdoG1Dc1pB2Re
cWya9dSJi8x91N/nv5Tir80NoHXeGrs0fhjNnDMFyds59Por+u3OPkyldee3
AZ2/cmneadxoOKKaZrsNBvPYLf/nb9SINKKH5icfDLU3qWk/ISFPWiYP0jrZ
/6vXBSb5ff1dKesEQn3yu277svTxORat663ZkDsetP6gkHBc70hz+83hru3e
NL9+6u2ywp9mF459UX8YPV/8GlaHJ9Vn/+ev1dyO+o+g44NuKg7acun4H53r
BFVVtG4Ua373bCutf3h40VWToPXm2aay7STNZ+L6B/6p+3/5P+cN97A=
"]]}, "Charting`Private`Tag$29341#1"],
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6],
Thickness[0.00001]],
Line[CompressedData["
1:eJxF1Xk8Vfn/B3CpyRot2nGpVBQ3LappeTEtstSlUCEpYVoGoUlmLElFqktJ
iyxJssRtkVZbpVL2Sch29/2eY6iULN+j+f0ezj+f83ycz+N83o/PeX9ex3Cv
/1ZvZSUlpVGjlJSGx1B/TeqOjc8d05SHx4neyue8tNlQn3V6/Bt9NsaTZ0Mm
GrBxSrEweY4lG1q3N+zKorPxMf1But1uNpp3fleRr2XDeVX1qcYwNlRvWE0M
Y7AxqmKLypdUNpZPeTy5x4ONmgrDoPZiNqpoL0MK/dnYZJ//3LWTDdM5lTfm
RVLreAdVrVTi4LzLwMsIJhuhfDtPjj4HznqvN8xOZyNQpf6ariUHMycWl+Wx
2LAuNJpmsJuD/FGsUcISNoKbY5qjwzi4dXJZxsFaNnxegPtXKgfXl0tXfexg
43p/pPqqYg6+hy1ZdpZko/tyxPa4Dg5mlx793DPERhHjz+RVQxzYm0nvWGpz
8Ntru9GFely0mv/7qpnGQSQ/ve7ZWi72e8396EznwOJq1MO4XVzsMu7aqE/V
NTHCkSkJ50JPWhh2xYGDpcEHLbPSuGhvvp3fS9WpqHRwWFDCxWh3+pqMAA6u
ptTTV3dyMX+coMI8koMj3mbHJw9yMf3JJZ0gJgdOBcG1m3V5CPj+6cVQGgeJ
MQuStdfw8MZ3y4HDLA72mYh3X3Pj4cQBl8NmZRzMsve5e+dvHjR/37k2pY6D
wtX1K3RTeEi8eGbMv50c7I+JC3R+xkPUNgeT+C4OmI7h3pPaePC3Wm+jo8TF
HsWWbcl9PBibLDGz1ebCrp6lcXwaH5tuFwW+p3GRWPo8RLyCD9+tv981p3Nh
QdNrnbGdD3lCwWYeuIjICz5YdZSPgKFZ/GMMLqweqO6ySeKjzPeC5QsPLkxc
XTbOLuTjz31J/c7+XGQfLmkI+cDHQubbezXUvqlfdlFJ7ubDegvz9QUmFwER
J8TLJglAV3W8oZrORXC6q9OCJQJM6bI84sWi3v/8GkE4COB1qCJbrYwL3uvi
UfMOC8CaEtKYWMuFS8hR0pQpwNtnRm/rO7jwUH1UGn9HgI1ffGe4klw4cNde
8aoS4JV7s/cbat/bswb1VaQCZO9oHx+pzcOOace+TVEXYgej/biUxkOftlJ1
hLEQKsEa8pV0Hu7HZfo92yiErmnNww/gwerIv6YePkKY65SGODF4+Ksu/+6H
E0LkMdcn0zx5ML8/QaPgphDdv1ScuB7Aw9zDjSadL4RYkRvkPRjBQ/rZN1eE
nULwuUVZefE8nC9/I7AdEoJpM5+zJp2HspTpead0RVDJS+QcZ/Gwd6t/rO5K
Efjpl6wmlPFQ/n7uWLUdIpS/enXtZC0Pr2/vE9YGizAmLGbbBjYPpxOs6OKL
IkxaZN1Q1MXDAQ2t+y73RTCcsNR2nBIfkQcyxBk1Ilw69dCQNZ6PLU2mjJUK
EdRMvLuXGfChT3z5XKAmhs1b7Vg/Oh9nnWukYUZikH1bIrrBh8oj9zjmOjES
3Z77uTH4EIkkxtG7xUhzKCnW9uTDY1KB+cMwMXKCiF9y/Pnwyjg39v1VMSIT
put8Dufjw9L+IysfivF8XcvxM0w+dn5d3NraIMa32W/Ev6TxscAvYo8vIca1
KzasKhYfq8e5N9M0JVBVfbNqQxkfo9OeEAuMJThyK7A8o5bqO174kNF6CTY1
3c+yY/Nxg6HvtW6PBDOXG55sIan1tk4e7/i3BE8TzhhPH+KjL8b+e1GSBKWR
MaaZ2lQfWIdaWzyQ4GVKoYkOTYAz1hKrvGoJTBlHTtfSBbgy7Z23uVQCrx+L
cldbCmDbf1VffawUVxtnvD7PEKCppOJ4B02KpeuvWi30FMDNLK7j8Sopatkb
igr8BTAIXV+Z4CyFRYiiixsuAJv3QOulnxSjM43j9lJ9G5M1rYGIpeYPXNR/
kyrAEfuqp7SbUoySX5hwlCWARt2vN6xKpFiiWjagUSpARUhC78EmKcxpYtbW
GgFmvmo/SZBSXHqXWc7voOp/2BrurC7Dt5vMKjdCgKHtqc5Vs2Qon6C9XH9I
ALOAgSV6a2RwCY31vaAthKPL7dhSFxlk4xcnyPSFyPRXlh/zk0Gwyn9GPF2I
9MKt+5ViZOhM/HR9OoRIinfqzUiT4ZbYUuC0RYg73BzltCIZ6utWnWv1EOKT
1o7RO2tl6BfuM7P2E6Lsisnn5UIZziXMog+GC/HL0kbzykEZpBatX3yYQjR7
F+femSKHtfqLh4WpQsgd/CpLFsqhHrimcTNLiLroFc+C1stRpSJSvC8R4uuj
sXPcXeX4bG7kc6lWiHgVadunw3KIXTwyx7Op9b/J5t2JkaMtp6I1gBRCk6l2
51mKHBYJ5YG6SiIMpj4bciiUg5klU87Xps5NcIDMuFKOwqLxO0l9Eea1B8zx
bJcDbu+0wugiRNf+k6LRI0el6f1icq0IbTfyFoxVUeBJollVPkOE+Wdy9/2u
q8CfX2+l63mKYH3tu5GBuQKLT9n5BfqLkKRrf2DJegWcck8mT4wUwaTladb1
HQoc6VeUX2aKkMt6kud7UIG9No4FNakiqE6aUZ4YpsBDE5s+Bxb1PHfpsrEJ
Cqj+6o/HJSIUnu1MEGYoUN5uzD9QK8JcYZe4/6ECx1gTo5Q7Rbg3XXVs7BsF
Bv76KrAjRMiqNENoswKiNr8c9qAInz9et2ZKFag7ONnHVUsMnd6GDfN/KEBj
OkTRaGJ4JnRYftQksCr/1L4kuhhJHZYtHD0CLt+l6F4rRktXZXykKYGmFl7o
VYYY1R8i9xuuJbBdrM4yonIguNd63q7NBG7+uzDHy486x1oZ6mPdCTgzecqK
cDG4ES8zUw8SUHF76+x2Xoy+rpBGzjECtGdWqpPTxGBkyF/9Ektg9JSiyEiW
GIGdKlPjLxMQpu7orisRI2T/7ZTGTAL058yXh2rF0PotdLHkPoGjKl/OKToo
l2+6VFZKwEhEPHpCisH+mDlnezWB9HLe7eVKEmykP9Zw/URgxruxCde0JZh8
hly9WEigz6ekZZOBBPMKJtk+6ibQYp45s40uQdEi2bMZgwSie6NnG0KCv1n1
Rf2qJC459p25x5BAurp5ZqgOiayWFNnc3RIo0QvOivRJ6H1tzBP5SxAdbunE
NSbhOU5tsWukBPzXbf0uS0lkbD1w7x5TghzX/HE1a0jYLvSMd0qXwORkcnK5
NYnuJdG/t7EkcI3KXlbuQMLH4ubYKaUSvB6n82XzThKW1S5jkmup+dLRx6z3
kph+YcWPMZ0SJHnUW+w+QGKHrMDxKSlBFI2c3hRIwgsGfoZKUnwqFWxrCSXh
V1564g9tKTbGjPbTjCLR0dTzbYyBFNbfD+glxJLYouvie5wuRdzh9liHeBJz
vtgvs7GUUj3oqetymcTrt2srXzhIMc3sYGdXCgnfdx4uhp5SlBj9/aP5JvV+
z0nr3gdIQfTZH+3LIXFkztf5rpFS5C7UpAexSGzi/fPhGlOKgm72p8RCEsct
NrLnpkuxm4xP5D8h8eSRkH+ZJcVlq+JfU0pIbK+eaeNURuXsqChF6EuS6n+7
oBd1VI6qKW9WfktigW5u0mS2FCruvcvHVJHoI65PL+yi5ieG1RjWkagkiy8t
V5LhcbKWy8t/SOyTtTQd0pbhQlqFk2ETCe+/zhxT0GRYevCE7sVPlFfu19lG
l6EtfL7y1XYS7+PatMZYyrBc9CbgDpuEuWa48jWGDFPMxkncedT+np7xnONB
5e6t1KhGAYkfSXaNwf4yFPbpfncWk7jwIVckD5dhxbG3PlFSksqf1J13mZRb
NBfdl1PfK+hcglG6DL+ZlEjyCRKGfrkvIlgy2IbMr/XqIsEYcNtmVCbDWZbw
2PRuEmFPV7WzqJw1XvOsNb6HxNHAKabyDhnmGCRZ8z6T1H/pZFsQKcNckYb2
kq8kLFbOPsmmcvfurIRoh16qPmvnc1e05dhgHLZ9/zcSZx2j3JQN5HC4n8/Z
853q39j2WY50OfJu6Q4t7iOh41xtI4Mci/4wLhqkrM6Q7T/AkGOG34S72T+o
/mxPkSz1lMN2Y3m0fT+J8z529HsBcoT/ennfJ8pFevP8JkbK4fTj2CLGAIl1
+y9rlsbL4Z1Oty+hXMddlumQLkdwz7ayaYMkjLfXjkpkyRFZ3ETzoSzePVAy
q0yOiNAV6QWUs5J2HkmqpepXK7kppvxuj22cM1uOU5akkf4QiafzLHxfd8kx
LbvM1pZy7kyH1bpKCoRVT+YcoqyUORhQPF6BRv67mWcpO7u2pq4zUEDt8MbZ
mZT/1Hhw4S+6AhK21rlHlAccaMJBKPC8sirzLeXoV08W+zIU+Dyb9Ucj5YAq
cccMTwXGxDv7sim7K2+MfuCvwMczib5iyjpLUsmBcAViCGk0QXnxtzNPLzIV
yJafS+yhzJDdCtdKo55XraT1Um4IdM74wKL+C/VTe75TNvwyFGdfpsBM+8fk
j+H1bjX75dQqMKvDxmqAspF0wz1HtgKp9RqWg5Rb3DnyDlKB+T6LOMPe+e4o
oTekgMurk3ZDlFGVwcjWJvBlsVXSsI36f+RMpRE4cbGzfNgBZRKvBjoBV83g
jmHHRDTw1loS+CYIJYaddkjiHs8gMHXo09dh6xKJy0w9CZQsevxj2FdS/FRY
/gRUlykPDptjvS6NG05AvEBvaNjMU3eS9jAJWN/M/uk1PetOV6QSaOd3/LTj
Z/+mYBaBhtgvP71v9jsDNSrXB9/3//S6zbRFjBoCe2cO/XSMhloau4MAt+Y/
V/caqGwnCCqH/3NISHXNtCEC1wb/M9kT7H5Wm0Tz0H/2TrHl8anc7v8/W7UW
VsbQqT75eXVB13pzzgSM+FU+e4v9lhE3ZKs6NXiMuLPeY+savxFvZdrc7Qkf
cYI1/YMbc8S1puv+zU4dcVC27A8r1oinOr7glZSM2PC86ZPTtSPurbjopMwe
cdWC+ZI95IhPxff8/A7/7/8Bv1lxXw==
"]]}, "Charting`Private`Tag$29341#2"],
Annotation[{
Directive[
Opacity[1.],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6],
Thickness[0.00001]],
Line[CompressedData["
1:eJw11nlcTPv/B/BKtHCNJVLSFKEoIxEueuWGJDWFUGmxFV0qLYSrxUW2TIuy
VYq0IEMKhTYp0mYJ0TL7Pue0CEn1O93v4zf/nHk+Pp8z8z6fz/vzehzjHUEb
dqupqKioqqqoDF+PBI2hvnHwrX2K2vB1wm61uJ00Dkxq1fVrDDkYR56PmGDE
weh2vS4TWw7G5qz2ymZw4L32XMl6Hw4+u/dpKGw4sNvYTft8jAPNzJUTjjE5
uHM1yuRXOgeLJz+Z1OPNQV7ztrmi5xzU0V9EFAZx8JFl2bWngwMLk9eZs6M5
aLAJ/4upwsWFzQMvolgcpChGnRwy5MJtWvXqGRkcnAvWP7HGloupE56X32Fz
wAs8dmCLDxf5qmxVUSkHOVfUBG+OcXHr5KIbfzdycPvUQ41P6VykLpYt+9jO
Qd+UPX/cfc5F3zGrRedJDlr9M+7rdnAxo+zQt54hDnp9JUWiIS7Wz5PdtaVx
YR7UExVlyMNXy66qz3Qu7NdW3bkHHvbunPXRjcGFV3fK4RxvHrzMOtcYUnX9
VaTrax3NwzRZ4bHLLtT9KYvmmGby0PY5J/8HVWeDvMaJX8bDiG2MFTeCuaCd
vsKx4vJg+ofwpWU0Fy0nvE44qfChV5ysE8riwq9Q45/XhnwE932pHLrORUFU
I6cFfNT4OwccYHNR6PyWV+DNx78Bmw/MK+ciaT59Az2ajzF73G3SmrjYciEg
X5HBx8Wks+pd1HOq/vHe+HgZH8c3usyJ7+SiuPDm7DwOH0ErVznoqPCgPTav
4dIQH2ZzrOato/FwuTQvVDRNgLU5j0Le0HnQyAxZX2UjgP+GPfctGTxkZ69Y
u9dLAEXCPSc+tS5BJVabr0UKEDw0XXCYycPROqHGxTQByv0TbSupdSLcTeJl
TwU4uCvlt1sQD+Qz3fu1rQKYs149aIjkITVzh9GBfgHsnVnViSwe+sMrpqYb
CMHQdM3UzOBhDNNx/8wVQkzutA3fyeahekvS9xBPIXbue5mrVU6NZ1bO/+sf
IdiTI5ovNvJAC7Bw+3RViFdPZ756287DoYrHi6qfCLGm11/fg+Sh/vH29ZYt
QlRt+7y7ZpAH+sDX4h0/hMjd2jYumsbHT53rT0ZPEWErsy1GRufDaXl8idYS
ETTCRiuWMviYRDccanATwcCioegDtS8mZS0C9YMiWOqURWxi8uGTRGeqXRTh
DmvVNbovH5XLi3ICCkXoHvny39RgPq7YuBww+SDCktuhuwej+BjlpHUpp0sE
Ae9R9p14PiwGx+yNGy8Gy8GUu4LaR4uYw1tXMMTQuHORG8PmI0MQtNR2vRiC
jOSV48v5ePWlbFza32JUVFVdPdnIx4D2nZbq02KoHzu9cTW1z3xSxd8uV4yJ
8+3fPeqk6p/hIx5TI4bx+IXr/lARwPLv4m/ZfDGSTxUZs8cJMN/gCfuMmgRa
c3Z3LzISYNWdjzdt6BI4vKKdCWQIUFkYwbFbJgH5yzmqGwJojAl2jXWX4KLn
s0BPpgAdp2YlZIZLcN2l9DnNV4ALn174diVJkBdKjMwLEsC6PutP/fsSRCfo
6Xyj+maFq5E44Y0Ez+xaYs6yBLD9PvKwlVSCnzNqJCOvCyCU3K18qC7F1csO
7Dq2AG26FW6bpkuhqVmzbHW5AGvaU94thxTht0IqbjQK0PnDPlnbQ4q1nwqy
HTkCPMh8mCw/KMXUxcYnW0gBdiUMji9KkKIk4ayZ3pAAywU+3Lo7UpRFn7bI
oglRMu5XvqxGihdphXN06EIk5fbF/uRKYcEMj21kCPFl6HGs6qAUO/vn315u
K0TYmYMvXPVkuNKsX32BKcSz+KvXri6QYeGqKyvNfYWYnbPKpslJhkbO6kf3
goRQFBQ2qvnLYB2h7ORFCvFIPrjiZJQMI7LMzu1gCcF6l2oqukLNH0gyrEkX
wmp1VYpTgQyqisTxh9hC6A387Iitk8FKs3xgdJkQiWEaj+sFMljSJewNDUJE
MJ727fotQ3JtVoWgXYij+8s2lU+S4+dNVp0nQdU7m6e9wEKOivG0xYZDQgQH
7273XCPH5iNn/BNpIpBJnUVN3nLIxy1IkBuKsHZqTq5/uBzCZUH68QwRrPl2
wTlxcnRc/JKqBxH2nSv2oWXJcUtiK9zkLAIjy35PQ7Ecb5uWxX31FuHLhf1e
s9/K8Vu0a559oAghd3d8KRTJEZcwnTEYKYJW4Z9zmwbkkFl/7fVjiVDteLhn
uY4C9tqVRYXpIrin1ATJTRXQDlnR7MQWgTM38NIUKFCnIVa+KRWBOXui7YWN
CnyznOmX3CiC6YntRw/uVUCy2TtrHEcEsxjVrMJIBVrzXn4NJkVw3qZi5pCo
gHVCRYiBihiHtO2tVuYowMqWq+XTxNg1MeRZSokChY/GuZOGYuRmD4S51CsA
z9qxx6hzGLHhqKEPV4HXFgXPSRsxTl0zN27pUaD44ry6fKYYn6yWzUnVUOLg
91sZ03zF+EALKSnVV2LBKcfAkCAx3uzq7PQwV2LT7ZPXJkSLQW+9vd0SSoT/
VlZcYolxYcf3mtMuSuxwcL3XkC6GWuyIjc7blSia4/DLhU2N6+ffR6gSmn8G
4UmpGNEmJSrl/ypR0WYmCGgUY2NtjZNvshKH2ROOq3WIwTc4K0m5pcTA0e9C
R0KMAc+IOSuLlBC3BuZxBsU4nijs/v1Siaa/J/l5jJXApeywrlezEnSWy3E6
de7HZe7tqBQqsSz/1K4UhgR/7phZdalXic19MnTbSBBGNw+gqxP41MI/coUp
weIJPdK0iQS2SLTZM30ksPtuHfPRmMDNLvO8nYESLHcv4Z5nEHBj8dWUkRK8
Vfjfn2tDQMPzlZvnBQn2eLRcS3QkQH+6UnPSdWp+8weDj+4ERkx+FB3NlmD9
5XWCRH8CovSt3U2lEmxJn2w2K4wA4xnrxb5GCfb+rGDGxhA4pNEbp2yXICP0
tnN1HIGZYuJxMSnB6VMjPWuuEsio4OcsVpFiqc61nfY5BPRrRyVcpUmhfa6o
/mEBgV9+pS1rjaSIPKxe8L6UQItl1tRWhhSj/GrDxK8JnPhxYoYxlTtSK2uL
Mx8IJLv+OvuAKcX0Rl2fpg4C2S1p8lk+UuSkHavQkxGY9r35jjhIiqfZbcsG
vhHw/UNrgUe0FF0FjoKAIQI3NgQ8eMCSImSC73GpJol15r7xmzKkaGue98+3
CSS6rU7saWVL8Wf2ZMMpBiT8rG+OmlwmRUPcQtdmExK29ZvVrzVKsSOfoRg/
j4Re4pJ+9Q4pYmJrCsKtSWyV33MtIaW45zWw1xkkdsIo0FhFhu9TWCNK7UkE
VpT9u58mwzP91KydTBLtn3p+qhvJ8OmMo/TAFhLOBpv9YxgypHaYq5R6kzDp
Xb/IwZbKHeu2gT1+JKpf2byudJEhd6KqsmA/Cf9a783GvjKcdX4Q6RBG/b7v
RLs3wTJ8ncWqtDpKItzku6lHtAxTuj3DQ2JIrOW//3CVJUPMQtoDn1gSMdZr
OLMyZNh8PdgvJY5E8WOR4BJbhrLtwfmMJBJb6qc6bCqXYcDy1CLtKyTV/46h
lU0yGLFrnyWmk5hrcDtlEoeaX3yk/9xNEr+IVL3CThkqkhTez3NJvCafJy9W
kaP3UojSL5/ELnnLp300OfRDdHfUPyCx++jZw0q6HGP1RM07H1FeuldnI0MO
UewPVlQJiTfnWseq28qRndpXUFVKwnJMpNpVphwJUY1LUyqp9Y3Vf8alcvSt
wahf5tUk+lMcm8OC5LCddH6J6DWJxA+3xYpIOU52u5osqSep/El3v8+SY1fM
UyK7idqv0LiEmRlydG2frNn6noRx4O3KKLYc6f3ko6KPJJgDnhtnlssxYtbI
fdktJI6VLGtjN1LjZ7k9K1tJHAqZbKFop3Jf/4v9/XYSn0pPtoaSchR/9kyc
zyVhvXTGSc4g9Xyr5i/241P12bvFXaYpMH3mlII8IYnzrsc91YwUCDuunlEh
JjHtTNt0V4YCzKY9/ZelJHTc6h3kVA5r6l8zPyInoc2U7w1gKrBAr1zXSEn1
Z1uadKGvAudtI3PqCBIX/BwZD4IV0N34NN6tk8SjabMDJ0QroP74pfXdLhJ2
ey+NKYtXYMR7zt1RPSSaeIuyXDIU1HsGkWH1jYTZlkbVi2wFlk1xDF3TS0Li
M1A6vVyBov3WnR7fSWSnuIenNCpw9m/TZIcfJGq3rzvnxlGgNIFhvOQniZLZ
1v7VnQpYPbTWovWRuD3VZbmBihILz5nPq6GskjUY/HycEgkBWWMjf5Fw8/ia
bmekRAGXxtXrJ3Fw9MPEowwqh7dm/3OL8oALXTRI5ba9/uB0xm8SJ6qKF/gz
ldgzTcv/JuXgOkm7vq8Scz2caZMGSGxTW3PiYZASZ1Ife4VR1rFKJwcilfh3
aLrvK8oLfp4tSWJRuZow7YneILW/8luRY68r8fnjdjMvyu9C3G58YCvxJb6v
Io2yce/QufXlSqz2qnZtphx863NgXqMSW5/FlasNkZgpW/3AlaOE/FLZXQvK
Ldu4inZSiX9+uHi6UHavPURMG1IiqCKhbj9l1N1g5tIIvM34bXpm+P7f/Xm6
dAJmRxZ9SaccXC7d+Y7K7do8v7wCyqej3vFtbAmYJni8raR8fZ90WzyTwPvQ
ExsaKRsQFxdZ+BIYudXq4BfKl9MCNdhBBI7d5Ip4lLn2dtd5kQSUpFqqlDLr
1N2U7SwCzRsC/EnKK3rsYl+mE5g0+XlWD2XXb0GfwtgEpnJsLX9Q3jWj1kir
jMBC7XmFfZTtnOjzmQ0EwnqTWP3D9Y3Wus5pJ9D7uFRrgHL9DyONLQSV+6Wj
Rg1Sjoiob5hC5e6kgXVVwyZ7wradp5GQGtfbDlHenbaOLzCkzqEq5/ywV34t
fH2aQSJzzIfyYRvYO+WNp3I0/F5r27Cr8jnO651JpJ0MJob9Lldz0zsqJ6Xn
TX4Ou+Ot94YVgVTf5Wb8HvYGlsP9nkgSo+e9HRx2gj3jgyeLhKAsa2jYjRZ2
XblUjtHvi/9zaK58/0o2ifmV/f9Z17WSX0rlTlP40H82vmBRHNtIYnbf//zj
ZdImNQ4J+dD/XDfXVLqdpPr8v08nTsX3/Pe//+//A/HyjRU=
"]]}, "Charting`Private`Tag$29341#3"]}}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0.5, 0.5000000039062495},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, DisplayFunction -> Identity,
PlotRangePadding -> {{0, 0}, {0, 0}}, PlotRangeClipping -> True,
ImagePadding -> All, DisplayFunction -> Identity, AspectRatio ->
GoldenRatio^(-1), Axes -> {False, False}, AxesLabel -> {None, None},
AxesOrigin -> {0.5, 0.5000000039062495}, DisplayFunction :> Identity,
Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize -> Full,
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{0.5, 1}, {0.5000000039062495, 1.0000000000000004`}},
PlotRangeClipping -> True, PlotRangePadding -> {{0, 0}, {0, 0}},
Ticks -> {Automatic, Automatic}}],
Placed[
Unevaluated[
LineLegend[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6],
Thickness[0.00001]],
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6],
Thickness[0.00001]],
Directive[
Opacity[1.],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6],
Thickness[0.00001]]}, {
HoldForm[$CellContext`OO],
HoldForm[$CellContext`OOOO],
HoldForm[
$CellContext`FabiusF[
HoldForm[$CellContext`x]]]}, LegendMarkers -> None,
LabelStyle -> {}, LegendLayout -> "Column"]], {Center, Top},
Identity]]& ],
AutoDelete->True,
Editable->True,
SelectWithContents->False,
Selectable->True]], "Output",
CellLabel->
"3/26/24 08:10:33 \
Out[141]=",ExpressionUUID->"7d0295ed-c431-49cc-9cbf-6cd1fb622c72"]
}, Open ]]
},
WindowSize->{Full, Full},
WindowMargins->{{-4, Automatic}, {Automatic, -4}},
FrontEndVersion->"12.2 for Microsoft Windows (64-bit) (December 12, 2020)",
StyleDefinitions->Notebook[{
Cell[
StyleData[StyleDefinitions -> "Default.nb"]],
Cell[
StyleData[All], TextAlignment -> Center, FontFamily -> "Segoe UI Symbol",
FontSize -> 12, FontWeight -> "Normal", FontSlant -> "Plain",
FontTracking -> "Plain",
FontVariations -> {"StrikeThrough" -> False, "Underline" -> False}]},
Visible -> False, FrontEndVersion ->
"12.2 for Microsoft Windows (64-bit) (December 12, 2020)", StyleDefinitions ->
"PrivateStylesheetFormatting.nb"],
ExpressionUUID->"bda66dbb-c3e7-454c-8e2d-9a39cf5233a8"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 6970, 185, 431, "Input",ExpressionUUID->"a4addeb7-2708-41df-8367-f56fd1c4c60d"],
Cell[CellGroupData[{
Cell[7553, 209, 7373, 220, 89, "Input",ExpressionUUID->"4b599907-b90e-4af8-8102-af55e168ea88"],
Cell[14929, 431, 48838, 908, 999, "Output",ExpressionUUID->"7d0295ed-c431-49cc-9cbf-6cd1fb622c72"]
}, Open ]]
}
]
*)