O-/𖣠⚪ᗩ𔗢∣𔗢ᗝ𔗢∣𔗢Ẏ𖣓𖡼𔗢𖡼𔗢𖡼𔗢𖡼⚪🞋⚪𖡼𔗢𖡼𔗢𖡼𔗢𖡼𖣓Ẏ𔗢∣𔗢ᗝ𔗢∣𔗢ᗩ⚪𖣠/⚪✤⚪ᴥ⚪ᗩ⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪ᗩ⚪ᴥ⚪✤⚪/⚪ᗱᗴ⚪ᴥ⚪ᗩ⚪ᗯ⚪✤⚪ꗳ⚪Ⓞ⚪ᔓᔕ⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪ᔓᔕ⚪Ⓞ⚪ꗳ⚪✤⚪ᗯ⚪ᗩ⚪ᴥ⚪ᗱᗴ⚪/⚪ЭЄ⚪ᗩ⚪Н⚪ߦ⚪ᗱᗴ⚪ᙏ⚪ЭЄ⚪Ⓞ⚪ߦ⚪✤⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪𖡼⚪✤⚪ߦ⚪Ⓞ⚪ЭЄ⚪ᙏ⚪ᗱᗴ⚪ߦ⚪Н⚪ᗩ⚪ЭЄ⚪/⚪ᔓᔕ⚪Ⓞ⚪ᴥ⚪ᗱᗴ⚪ᑐᑕ⚪Ⓞ⚪ИN⚪ꖴ⚪옷⚪ᴥ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᴥ⚪옷⚪ꖴ⚪ИN⚪Ⓞ‎⚪ᑐᑕ⚪ᗱᗴ⚪ᴥ⚪Ⓞ⚪ᔓᔕ⚪/⚪ᴥ⚪ᗱᗴ⚪ߦ⚪Ⓞ⚪옷⚪ᔓᔕ⚪ᗩ⚪ᴥ⚪ᕤᕦ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᕤᕦ⚪ᴥ⚪ᗩ⚪ᔓᔕ⚪옷⚪Ⓞ⚪ߦ⚪ᗱᗴ⚪ᴥ⚪/TXT.⚪ᔓᔕ⚪ᗱᗴ⚪ᙁ⚪ᑐᑕ⚪ᴥ⚪ꖴ⚪ᑐᑕ⚪◯⚪✤⚪ИN⚪ᗱᗴ⚪ᕤᕦ⚪ИN⚪ᗩ⚪✤⚪◯⚪ᙁ⚪ᗩ⚪ꖴ⚪ᗝ⚪ᗩ⚪ᴥ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᴥ⚪ᗩ⚪ᗝ⚪ꖴ⚪ᗩ⚪ᙁ⚪◯⚪✤⚪ᗩ⚪ИN⚪ᕤᕦ⚪ᗱᗴ⚪ИN⚪✤⚪◯⚪ᑐᑕ⚪ꖴ⚪ᴥ⚪ᑐᑕ⚪ᙁ⚪ᗱᗴ⚪ᔓᔕ⚪.TXT

31 lines
2.3 KiB
Plaintext
Raw Normal View History

<EFBFBD><EFBFBD>A_N = TAN^2((<00> *N)/(4* (N + 2)))
3 cot^2((<00>)/12)H"13.92820323027550 tan^2((<00>)/12)H"0.071796769724490742
4 cot^2(<00>/8)H"5.8284271247461
5 cot^2((3 <00>)/20)H"3.851839996319182
6 cot^2((<00>)/6)=3
7 cot^2((5 <00>)/28)H"2.532843230615688
8 cot^2((3 <00>)/16)H"2.239828808843550
9 cot^2((7 <00>)/36)H"2.03960672916147
10 cot^2((<00>)/5)H"1.89442719099991
11 cot^2((9 <00>)/44)H"1.78447814814636
12 cot^2((5 <00>)/24)H"1.6983963724170
13 cot^2((11 <00>)/52)H"1.629211495628917
14 cot^2((3 <00>)/14)H"1.572416528431
15 cot^2((13 <00>)/60)H"1.524970987218355
16 cot^2((7 <00>)/32)H"1.4847508418703
17 cot^2((15 <00>)/68)H"1.450228261611679
18 cot^2((2 <00>)/9)H"1.420276625461
19 cot^2((17 <00>)/76)H"1.3940472215425
20 cot^2((9 <00>)/40)H"1.370888706465
21 cot^2((19 <00>)/84)H"1.350292994004402
22 cot^2((5 <00>)/22)H"1.33185799317496
23 cot^2((21 <00>)/92)H"1.3152613845107677
24 cot^2((11 <00>)/48)H"1.300241803840
25 cot^2((23 <00>)/100)H"1.28658510503
26 cot^2((3 <00>)/13)H"1.27411417292
27 cot^2((25 <00>)/108)H"1.2626812613688
28 cot^2((13 <00>)/56)H"1.25216215588
29 cot^2((27 <00>)/116)H"1.24245167383
30 cot^2((7 <00>)/30)H"1.23346015809
31 cot^2((29 <00>)/124)H"1.225110717528
32 cot^2((15 <00>)/64)H"1.21733703535