diff --git a/ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪/⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪/⚪ᔓᔕ⚪ᴥ⚪ᗱᗴ⚪ИN⚪ᴥ⚪Ⓞ⚪ᑐᑕ⚪◯⚪✤⚪옷⚪ᕤᕦ⚪ꖴ⚪ᗩ⚪ᴥ⚪✤⚪ᔓᔕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᔓᔕ⚪✤⚪ᴥ⚪ᗩ⚪ꖴ⚪ᕤᕦ⚪옷⚪✤⚪◯⚪ᑐᑕ⚪Ⓞ⚪ᴥ⚪ИN⚪ᗱᗴ⚪ᴥ⚪ᔓᔕ⚪/GVƧ.XHG.⚪∷⚪⊚⚪ᔓᔕ⚪ᴥ⚪ᗱᗴ⚪ИN⚪ᴥ⚪Ⓞ⚪ᑐᑕ⚪◯⚪✤⚪옷⚪ᕤᕦ⚪ꖴ⚪ᗩ⚪ᴥ⚪✤⚪ᔓᔕ⚪◯⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪◯⚪ᔓᔕ⚪✤⚪ᴥ⚪ᗩ⚪ꖴ⚪ᕤᕦ⚪옷⚪✤⚪◯⚪ᑐᑕ⚪Ⓞ⚪ᴥ⚪ИN⚪ᗱᗴ⚪ᴥ⚪ᔓᔕ⚪⊚⚪∷⚪.GHX.SVG b/ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪/⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪/⚪ᔓᔕ⚪ᴥ⚪ᗱᗴ⚪ИN⚪ᴥ⚪Ⓞ⚪ᑐᑕ⚪◯⚪✤⚪옷⚪ᕤᕦ⚪ꖴ⚪ᗩ⚪ᴥ⚪✤⚪ᔓᔕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᔓᔕ⚪✤⚪ᴥ⚪ᗩ⚪ꖴ⚪ᕤᕦ⚪옷⚪✤⚪◯⚪ᑐᑕ⚪Ⓞ⚪ᴥ⚪ИN⚪ᗱᗴ⚪ᴥ⚪ᔓᔕ⚪/GVƧ.XHG.⚪∷⚪⊚⚪ᔓᔕ⚪ᴥ⚪ᗱᗴ⚪ИN⚪ᴥ⚪Ⓞ⚪ᑐᑕ⚪◯⚪✤⚪옷⚪ᕤᕦ⚪ꖴ⚪ᗩ⚪ᴥ⚪✤⚪ᔓᔕ⚪◯⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪◯⚪ᔓᔕ⚪✤⚪ᴥ⚪ᗩ⚪ꖴ⚪ᕤᕦ⚪옷⚪✤⚪◯⚪ᑐᑕ⚪Ⓞ⚪ᴥ⚪ИN⚪ᗱᗴ⚪ᴥ⚪ᔓᔕ⚪⊚⚪∷⚪.GHX.SVG new file mode 100644 index 00000000..3db41718 --- /dev/null +++ b/ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪/⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪/⚪ᔓᔕ⚪ᴥ⚪ᗱᗴ⚪ИN⚪ᴥ⚪Ⓞ⚪ᑐᑕ⚪◯⚪✤⚪옷⚪ᕤᕦ⚪ꖴ⚪ᗩ⚪ᴥ⚪✤⚪ᔓᔕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᔓᔕ⚪✤⚪ᴥ⚪ᗩ⚪ꖴ⚪ᕤᕦ⚪옷⚪✤⚪◯⚪ᑐᑕ⚪Ⓞ⚪ᴥ⚪ИN⚪ᗱᗴ⚪ᴥ⚪ᔓᔕ⚪/GVƧ.XHG.⚪∷⚪⊚⚪ᔓᔕ⚪ᴥ⚪ᗱᗴ⚪ИN⚪ᴥ⚪Ⓞ⚪ᑐᑕ⚪◯⚪✤⚪옷⚪ᕤᕦ⚪ꖴ⚪ᗩ⚪ᴥ⚪✤⚪ᔓᔕ⚪◯⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪◯⚪ᔓᔕ⚪✤⚪ᴥ⚪ᗩ⚪ꖴ⚪ᕤᕦ⚪옷⚪✤⚪◯⚪ᑐᑕ⚪Ⓞ⚪ᴥ⚪ИN⚪ᗱᗴ⚪ᴥ⚪ᔓᔕ⚪⊚⚪∷⚪.GHX.SVG @@ -0,0 +1,27 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪/⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪/⚪ᔓᔕ⚪ᴥ⚪ᗱᗴ⚪ИN⚪ᴥ⚪Ⓞ⚪ᑐᑕ⚪◯⚪✤⚪옷⚪ᕤᕦ⚪ꖴ⚪ᗩ⚪ᴥ⚪✤⚪ᔓᔕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᔓᔕ⚪✤⚪ᴥ⚪ᗩ⚪ꖴ⚪ᕤᕦ⚪옷⚪✤⚪◯⚪ᑐᑕ⚪Ⓞ⚪ᴥ⚪ИN⚪ᗱᗴ⚪ᴥ⚪ᔓᔕ⚪/GИP.XHG.⚪∷⚪⊚⚪ᔓᔕ⚪ᴥ⚪ᗱᗴ⚪ИN⚪ᴥ⚪Ⓞ⚪ᑐᑕ⚪◯⚪✤⚪옷⚪ᕤᕦ⚪ꖴ⚪ᗩ⚪ᴥ⚪✤⚪ᔓᔕ⚪◯⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪◯⚪ᔓᔕ⚪✤⚪ᴥ⚪ᗩ⚪ꖴ⚪ᕤᕦ⚪옷⚪✤⚪◯⚪ᑐᑕ⚪Ⓞ⚪ᴥ⚪ИN⚪ᗱᗴ⚪ᴥ⚪ᔓᔕ⚪⊚⚪∷⚪.GHX.PNG b/ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪/⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪/⚪ᔓᔕ⚪ᴥ⚪ᗱᗴ⚪ИN⚪ᴥ⚪Ⓞ⚪ᑐᑕ⚪◯⚪✤⚪옷⚪ᕤᕦ⚪ꖴ⚪ᗩ⚪ᴥ⚪✤⚪ᔓᔕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᔓᔕ⚪✤⚪ᴥ⚪ᗩ⚪ꖴ⚪ᕤᕦ⚪옷⚪✤⚪◯⚪ᑐᑕ⚪Ⓞ⚪ᴥ⚪ИN⚪ᗱᗴ⚪ᴥ⚪ᔓᔕ⚪/GИP.XHG.⚪∷⚪⊚⚪ᔓᔕ⚪ᴥ⚪ᗱᗴ⚪ИN⚪ᴥ⚪Ⓞ⚪ᑐᑕ⚪◯⚪✤⚪옷⚪ᕤᕦ⚪ꖴ⚪ᗩ⚪ᴥ⚪✤⚪ᔓᔕ⚪◯⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪◯⚪ᔓᔕ⚪✤⚪ᴥ⚪ᗩ⚪ꖴ⚪ᕤᕦ⚪옷⚪✤⚪◯⚪ᑐᑕ⚪Ⓞ⚪ᴥ⚪ИN⚪ᗱᗴ⚪ᴥ⚪ᔓᔕ⚪⊚⚪∷⚪.GHX.PNG new file mode 100644 index 00000000..228f91d9 Binary files /dev/null and b/ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪/⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪/⚪ᔓᔕ⚪ᴥ⚪ᗱᗴ⚪ИN⚪ᴥ⚪Ⓞ⚪ᑐᑕ⚪◯⚪✤⚪옷⚪ᕤᕦ⚪ꖴ⚪ᗩ⚪ᴥ⚪✤⚪ᔓᔕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᔓᔕ⚪✤⚪ᴥ⚪ᗩ⚪ꖴ⚪ᕤᕦ⚪옷⚪✤⚪◯⚪ᑐᑕ⚪Ⓞ⚪ᴥ⚪ИN⚪ᗱᗴ⚪ᴥ⚪ᔓᔕ⚪/GИP.XHG.⚪∷⚪⊚⚪ᔓᔕ⚪ᴥ⚪ᗱᗴ⚪ИN⚪ᴥ⚪Ⓞ⚪ᑐᑕ⚪◯⚪✤⚪옷⚪ᕤᕦ⚪ꖴ⚪ᗩ⚪ᴥ⚪✤⚪ᔓᔕ⚪◯⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪◯⚪ᔓᔕ⚪✤⚪ᴥ⚪ᗩ⚪ꖴ⚪ᕤᕦ⚪옷⚪✤⚪◯⚪ᑐᑕ⚪Ⓞ⚪ᴥ⚪ИN⚪ᗱᗴ⚪ᴥ⚪ᔓᔕ⚪⊚⚪∷⚪.GHX.PNG differ diff --git a/ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪/⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪/⚪ᔓᔕ⚪ᴥ⚪ᗱᗴ⚪ИN⚪ᴥ⚪Ⓞ⚪ᑐᑕ⚪◯⚪✤⚪옷⚪ᕤᕦ⚪ꖴ⚪ᗩ⚪ᴥ⚪✤⚪ᔓᔕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᔓᔕ⚪✤⚪ᴥ⚪ᗩ⚪ꖴ⚪ᕤᕦ⚪옷⚪✤⚪◯⚪ᑐᑕ⚪Ⓞ⚪ᴥ⚪ИN⚪ᗱᗴ⚪ᴥ⚪ᔓᔕ⚪/XHG.⚪∷⚪⊚⚪ᔓᔕ⚪ᴥ⚪ᗱᗴ⚪ИN⚪ᴥ⚪Ⓞ⚪ᑐᑕ⚪◯⚪✤⚪옷⚪ᕤᕦ⚪ꖴ⚪ᗩ⚪ᴥ⚪✤⚪ᔓᔕ⚪◯⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪◯⚪ᔓᔕ⚪✤⚪ᴥ⚪ᗩ⚪ꖴ⚪ᕤᕦ⚪옷⚪✤⚪◯⚪ᑐᑕ⚪Ⓞ⚪ᴥ⚪ИN⚪ᗱᗴ⚪ᴥ⚪ᔓᔕ⚪⊚⚪∷⚪.GHX b/ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪/⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪/⚪ᔓᔕ⚪ᴥ⚪ᗱᗴ⚪ИN⚪ᴥ⚪Ⓞ⚪ᑐᑕ⚪◯⚪✤⚪옷⚪ᕤᕦ⚪ꖴ⚪ᗩ⚪ᴥ⚪✤⚪ᔓᔕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᔓᔕ⚪✤⚪ᴥ⚪ᗩ⚪ꖴ⚪ᕤᕦ⚪옷⚪✤⚪◯⚪ᑐᑕ⚪Ⓞ⚪ᴥ⚪ИN⚪ᗱᗴ⚪ᴥ⚪ᔓᔕ⚪/XHG.⚪∷⚪⊚⚪ᔓᔕ⚪ᴥ⚪ᗱᗴ⚪ИN⚪ᴥ⚪Ⓞ⚪ᑐᑕ⚪◯⚪✤⚪옷⚪ᕤᕦ⚪ꖴ⚪ᗩ⚪ᴥ⚪✤⚪ᔓᔕ⚪◯⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪◯⚪ᔓᔕ⚪✤⚪ᴥ⚪ᗩ⚪ꖴ⚪ᕤᕦ⚪옷⚪✤⚪◯⚪ᑐᑕ⚪Ⓞ⚪ᴥ⚪ИN⚪ᗱᗴ⚪ᴥ⚪ᔓᔕ⚪⊚⚪∷⚪.GHX index c706af5b..86296089 100644 --- a/ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪/⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪/⚪ᔓᔕ⚪ᴥ⚪ᗱᗴ⚪ИN⚪ᴥ⚪Ⓞ⚪ᑐᑕ⚪◯⚪✤⚪옷⚪ᕤᕦ⚪ꖴ⚪ᗩ⚪ᴥ⚪✤⚪ᔓᔕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᔓᔕ⚪✤⚪ᴥ⚪ᗩ⚪ꖴ⚪ᕤᕦ⚪옷⚪✤⚪◯⚪ᑐᑕ⚪Ⓞ⚪ᴥ⚪ИN⚪ᗱᗴ⚪ᴥ⚪ᔓᔕ⚪/XHG.⚪∷⚪⊚⚪ᔓᔕ⚪ᴥ⚪ᗱᗴ⚪ИN⚪ᴥ⚪Ⓞ⚪ᑐᑕ⚪◯⚪✤⚪옷⚪ᕤᕦ⚪ꖴ⚪ᗩ⚪ᴥ⚪✤⚪ᔓᔕ⚪◯⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪◯⚪ᔓᔕ⚪✤⚪ᴥ⚪ᗩ⚪ꖴ⚪ᕤᕦ⚪옷⚪✤⚪◯⚪ᑐᑕ⚪Ⓞ⚪ᴥ⚪ИN⚪ᗱᗴ⚪ᴥ⚪ᔓᔕ⚪⊚⚪∷⚪.GHX +++ b/ⵙ∣❁∣ⵙ✤ⵙ✻ⵙЭЄⵙᗩⵙߦⵙറⵙ◯ⵙ◯ⵙറⵙߦⵙᗩⵙЭЄⵙ✻ⵙ✤ⵙ∣❁∣ⵙ/⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪/⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪/⚪ᔓᔕ⚪ᴥ⚪ᗱᗴ⚪ИN⚪ᴥ⚪Ⓞ⚪ᑐᑕ⚪◯⚪✤⚪옷⚪ᕤᕦ⚪ꖴ⚪ᗩ⚪ᴥ⚪✤⚪ᔓᔕ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ᔓᔕ⚪✤⚪ᴥ⚪ᗩ⚪ꖴ⚪ᕤᕦ⚪옷⚪✤⚪◯⚪ᑐᑕ⚪Ⓞ⚪ᴥ⚪ИN⚪ᗱᗴ⚪ᴥ⚪ᔓᔕ⚪/XHG.⚪∷⚪⊚⚪ᔓᔕ⚪ᴥ⚪ᗱᗴ⚪ИN⚪ᴥ⚪Ⓞ⚪ᑐᑕ⚪◯⚪✤⚪옷⚪ᕤᕦ⚪ꖴ⚪ᗩ⚪ᴥ⚪✤⚪ᔓᔕ⚪◯⚪ᗱᗴ⚪ᴥ⚪ᑎ⚪✤⚪ᗩ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪◯⚪ИN⚪Ⓞ⚪ꖴ⚪✤⚪ᑐᑕ⚪ИN⚪ᑎ⚪ꗳ⚪◯⚪ᔓᔕ⚪ᑎ⚪ꖴ⚪⚭⚪ᗩ⚪ꗳ⚪◌⚪◌⚪◌⚪◌⚪◌⚪◌⚪ꗳ⚪ᗩ⚪⚭⚪ꖴ⚪ᑎ⚪ᔓᔕ⚪◯⚪ꗳ⚪ᑎ⚪ИN⚪ᑐᑕ⚪✤⚪ꖴ⚪Ⓞ⚪ИN⚪◯⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗩ⚪✤⚪ᑎ⚪ᴥ⚪ᗱᗴ⚪◯⚪ᔓᔕ⚪✤⚪ᴥ⚪ᗩ⚪ꖴ⚪ᕤᕦ⚪옷⚪✤⚪◯⚪ᑐᑕ⚪Ⓞ⚪ᴥ⚪ИN⚪ᗱᗴ⚪ᴥ⚪ᔓᔕ⚪⊚⚪∷⚪.GHX @@ -48,10 +48,10 @@ - -1771 - 984 + -2544 + 1185 - 0.6783022 + 0.901250362 @@ -68,9 +68,9 @@ - 14 + 15 - + Anemone, Version=0.4.0.0, Culture=neutral, PublicKeyToken=null @@ -211,13 +211,23 @@ 1.2.0.0 + + + RichedGraphMapper, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null + 1.0.0.0 + Daniel Gonzalez Abalde + 6ffcbd5d-525a-4a15-948e-4c777cbffd9a + RichedGraphMapper + 1.0.0 + + - 1209 + 1254 - + e64c5fb1-845c-4ab1-8911-5f338516ba67 @@ -49249,7 +49259,7 @@ Control points for each segment = length of the segment * Division factor. - pLwFVJVL2/+PdHfXprtTFBgaAUFaQulukRBRRCRNVERAUECQVCQElJghN90NEiphoSIKCMJ/+zzHs87vPOdZvO//nb3u/eE7e/bMNXnPXPte4B3Aw8Pbw4Vf/BUo8XFvx829vAMCtQP9/QMDJHis3YNPewcGqClLycpLycnKKxzE/SEjIyvBox3qFxIa7K4W4B4aEuzsJ8FjGuri5+1q5B5hGejrHqCmqCgnd1DWXUXZVVlRUVFehuhXKQz/ylxK3z3Q3z0kOEJKK9g9iBAXTxL273LInYNdvbzD3OXd/MkCg9wDAkKDXU4TujmHOP9KREpKiv/LRFphPDw5HG/vUFCSEeD+oPn1RnQSDw//xwV8vK0T/67O9h4+HuMfVdNuDvws9pBUL2uiYKi1T0xJZLf00A7u86Y/0srhReNpRIv8W9D+yu6Xub9yU6P9z9zY6MoczChG6OAuHu2lA3yfDdkjWH7lRvRHWlr8PxIS465HeH8Pn8F/RP07Hv49phh3sQykBm37amvsx16RXXnDvP1pkC7MObK8Pw0teYioNHX2JbdY/ve14v1peVFHIklMd19ennjtjCnen0j60t1nonr78ns8X69R0f6UmG3CfyWivy9dFJ0Pnincn2lX8QKoRY7sy77XDx7mFexPwsNg8pCwwb48dGuWevDR/gx6e17HU8hwXz7S4Dr7M39/ztytL7staLQv6T/ZL4rm788jetvsSODovozKyjC1ztufVesq8R/4jfflO6PJupiH+9O8l9ZNnsBkX66emY/a1dqf1j9YhMty9+dVs5oTunzH9mVzofWt6Zz9ubP343Utrem+TC3p2r1kuj8vMl/bCIvbnwdCyPwYKvanugS308Tw/kybGGza+7Q/f63Huf7+VY2pQeCyq/pDfWVT2EnzlPxG6gO4mWBx3tX5LoQWtJpNI0/hxukXoWVzj+D0brpBWOtzmEA7MHuUpBxeTkh+QmjXBGNLDSyw96uhUPfqp5eDbbD1ZteujlI9NMp7fO+lZDdstXVVzQttgrxXWNa2dAagNJO/gchAKzRp2aHeWxuCev2V00/FOuC4EDv/z+xRWCucZaQR1w2P1R08+85kAl4xmOUZm+uDE826ArST0/AB6fd4soJBeChLKY3VdQ6+zDl4S3J2GJ7A/CyNCFuAoeQsO9ZMYzD/5Oxh/cOv4dNqm4yLRyfgI40YzU97b+BoIkNE/qUpGB1zKk2WbRnmvlNx6RR4CW9knKEGcm/hKlNj5+u2OUir42VNZfQepk77bJ2WX4D0zhFaaa4fYcmrfNuFS6+gumZ32qvIT5BY76m+wshraDJi53TgwBc4+/BLo5f3IsSbP5vySnsNqjC9HgrbXYI1fPaPUuO/wtzBb1oWt1egc7J6glDnOvze0xn0U/gdNI1b0E6h+A7VrMqWwuvfQ42zsXj4Jhsw9mXKiTXTjzDs+1KacfImrF+7wq62uApfPls7fX5oC+7EE0c8Uf0MMzKHeuIZt2Fw+MyDR8RfoFuurHGA9Q40FDn+/crAFyhdmNxrlfYT8k0OHj2VsQZJegNCOaZ2ob3hlyFtt6+wszCUYJ4KD1XWFI8RSa1DUpWmjdwneIg2cA282FiHu18O8dkcO4AqKRQEXZu+wfXiqqNUnw8g68JQcsor32H21ROPq5LxkbpYuW+R5QZ8qLE9fUyWALVNl6eocW/CB2NCDAuDBOgDA/XDruVNeP8uDdYnmBC1nB9hsSjfgpk2m2fX6YlQxnLG1emzP2Cmzv2SsEoixHOp29NRZxviERlPf7UgRur10lQLVDvQRwPTFbBOjLqiMfWu4zsw249m7m0KCboF9MXfZf+E42l7X90USZHdbkBGkM8unHxGJT0/Sooca/o6f8jvwS1OdSKHMDL0BFmXX/m5BxX14u/MM5OjgctBgrdd8RCl2CE/7xpyZCv2+rpHBx56RbWqtXacAr3qtNpUkTyAzEupnC5uUqCzs6FRDLcOILOqQlPWdEoU+yLAbf37AVTxvo2+VoUKvWBLf/LSHh893m4hdp6iQuuGjykHED4qpGj+QRZJjSTPNfk0CxIg1fVsnnoOGuRzAc40XCZAwuSNo+H1NKjO7B1dyycC5Fqx5HdfihY9cRH1HLIkRCuFTnREF2iR2qeIyffPCVHAg6lnvv20qCeyy4gIQ4TE5trPjWHo0PdLEtMisURIJifntU4QHTJD+AnWb4nQDDs5fjWiQ2Ba5fM1E2Kk5v4uTYSOHvGJ0/n1VRKj+2Vd0vec6RFx5MoyNRsJetbFB2gq6NH8nmOYTRQJcmWlSLqEz4COXaT0L35Ngo7pVkZ+N2dApVGXxwkMSJFCNIOLx0MGtBJwOtP1CSlirTt9ZOwrA+J3POHcwkCGvhFc5dPWYUSqWk+jRSPIUDytrU5JCiNqJef8nDJLhjJUSHspFxmR/eigM6EOOToe2yriociErlLTkYUXkSPG/uhYGMeEGvRNn76lpkCRhw0raceYUOIn1muOIRTo9aW6nuNCzMjAYv7Y+CQFin7M8/V2GDNqXtNIMgOUCF4XzmhpZ0Z5l+cJe/Mo0W6glOZXZhYUzxcdfYScCr0kHfdi9mRBwxUO6m2BVChlhodZqoYFNY7RTuiOUqGPJJGNSiSsiMGkwBB7iBqt48Wnyx5nRfO9jZrG2dRoeys5RKKAFT0xHjs4TESDnqKjMWwbrGh9NKDqpC8NIqtZWN/QY0OpCdQ3Pg7QoPj2dZ6OVDbktSTPq81BizzP7CZeXmJD2eazdkwmtOiIGOmXo0rsaKIxMWU5mhZdiyK9cyCeHZWuyzyBlbRIpOjej8JRdqROt2j5YIkWXQ5wU9QR5EDiXTpziWx0qNkq+shICAeylGQtizpKh36oZtq7tXKgqOT3USEX6BCJHoX+WwZO9CZLLiWsgg4hMn8Jd1dOlLtFTpq4SIeWSFnOj1dwIrufZ7SLWemRwHJRvA4+FzJa7Xm6YESPnNtUk8vNuJDqHA832wV6VB1Ta86Ww4U8Guwa3HHjZkz41UzkZy5ELXBbvXORHiU16ErOAm7ke3LP6QgbAzo4NGagfYMbTa/diVs6yoCWljw9Cme5kVGiRHFsNANKPit0jFYKg/oiPg5oVjEgwi3CpAvnMciaF8+Kb4UBHQpMUPrRg0EvmNOUxDgZURSVk58ONQ9KPszk5mTKiJaNFd+ySfAgWRZ54qRwRuTU+xL/mwEPinl5oLL7PiO6D/QPjXnyIBjRmyfazojiKJ+bNMbxIDFuOv+8j4zIson+dclDHlTPen/wEBMTkr9hcu9BDQ/qgI8YH0gzIYFWvbY73TxIxVIwi8aQCSmN1Elen+NBwjMz5lfdmNBRgQj7xK886KBBCmK8wIS8bnrMXCLhRbVn1s4UpjMhhmddXOcFedEmvEAV38SEyNjt7SK0eVG5KiH5+bdMiL1HNy/MmRfJeHH6XaFjRilX1ttOX+BFk/32vE9VmJF94jh5QBYvSqn7ib/izIzcJp96eLTxooNG0VMJd5mR192uEtuPvGjegqTDoJcZLV8/PabNxIfUbxTHixKwoIX5tHmMGh/qWBE5zKvCgjZK33G8d+NDnGWy2ZKBLIgqQvV49VU+FBR6iOhQPgsC8EVLUBUfulrYy24/zYKcHSY9WWb40DSflO41Olb0tKN7qZCAH9kajjr16bOiQznHFgTF+dGRz4unuKNYUVvE8HSuOT9SSv0eE1DFii6jFTOKs/wo9UVQUu87VlQ45RTtmMOPwscOeh/iZUM7z6Xycjv4kfB2VFntcTa0MM75aPwTPwLqm4uG19lQ+zfyQkoWAWR98RTny1Y2pGrOliivLoDGXnFpX9pmQ9+UL1kccxdAkTrkHBpy7IgR2fi6XhVAeefyLzN7syOD4kzG4EoBZHd0TYI0mx2FyXvSvhwWQIwMOx25vezoe56iic66APLzreM1xW27L1fbbBQyCuLmm+g2rSgHWo8QXaBQFERPh+krFq05UIdQU6mvlSDSkxKj7InlQMT+Fc4VQYLIgfMd9ZkSDpRmTTj//YogwrJ0psoMcaCnB1qaDhYIIu+rtOXrmxyI0Q5UhzYLop8xxbZNGE7kxSD6tvilIAq5cN/5lh4nCl86elJ7TRB938H3X8fN03r/CsdxYiEU69GzZXORE7XcO3/QjUMIice59NTf50TXX0R8fy8thH64W2zx1HOiy+b1n911hNCETA7xuUlOxN1x8tAZKyFEEDPg/u0LJzpt1LQW7SGEoo8m+3uRcyEg5LBzNVwIHU28mjfPx4W68Ix3zyUKIUxdxHFwmAt5CbqxeqcLoVR8YrMMCy6kIQGG9y7gR/8+x/92JixS/c+dCY+p/sGZcO3/4Ey4ibueF5uumt1R0tiPg/bDZTl7+3MpN31S8ILyvgwp+XIzQ/jgvvTI8fO/8ml/6inPqgTOq+xLgd5jxBaDh/bl1Z95cz/jDu/Lcx0v2wJ39+erTbkH7JWq+7L5ep7v7kO1fZktwHzwVYr6vox+kUDYHgf2pXThuRXLwxr7EnP6WV975f6kUV+tOiihuS/3SIXvFeftz0/Djhc5ubT25dz9NM/rd/Znv/egMR619r6ECuQKwfH7s2xPi/3N7v580BWJZx2usy9v3Klawn7anxecPvaoeOnuy4jp4kNyPfsTzo2l+vHo7Ut9ghclUk77c8g+8qr1nf35ax37+6LJKWRovXlJCJWQFZwYtONCxjYNg3EBQrhNvSUbmQsX+nGHPoXEVgjdrBui0PXmQqnqyupXtYWQTIjR96ggLiRS9ymUWgqnnWNO14ZzoaAbvsb6jEKoLp9uzCWaC00Fljw490MQBbYG3aNM4kIXD00TVs4Lort1QoyVN7nQB7sbS2/bBVG2SdJlqwwutGXVc5PvsSB6E4+JX8vlQhX3NaMYcTctrwBRf4snXCguUC6JzBt30xqibi1+zoVCLn0WJtAXRBnu95q+tXKhWJmjwwcEBZGFQcpX2QEu5JTQ8JaQQBBNNZN4nJzG2dNs0P54SgDVErw+8mCFC+lTqc2cqBBAvYLwduc3LnSFKNST7rIA6pz/8noCnxu9cweKnc4CKDd5JLaLhhtR8/qxxKjgburrht/ucXKjofPJ8tukAkjxgFkIlQQ34u18Mx86wY9ippZUTA9zoxsTcXKrBfwoJEp3y9GQGwW8eDvnGM6PYhWVpw7aciPDWwoN7Xr86LGwRu24JzcS8bmQIcnMj8bYDFLDwrjRgYPlBUmLfIhZ3/vUdCw3elNsxzqO2wSd3SN7g38bl/5xwRpDLB/S8N+le5vNjT5SxMRqWPChzOLTxUlPuBHe8OKXHCk+lJ3Wzdlcy404uJOUfpDxIc9tCt/hZm40hnXxMVjkReOrFti6Hm60hBqskxEvuhzBrBMxxo1iP6UqDtzjRfWxo9tk89wojfo8xvQSL0pcsAzzWeJG/Rmfl3p8eNHCbQqKmg/cSDv53oqeOS+a2pAQ+7TGjbS6ue82qvAijGSqLv0WNxqgTvZT4OVFR+7sjmH2uJHQ+nMJ9x0elCDLIatAikENfpGtN8d5kBFeNSMrHQYZbZf31VXwoLCImPpONgzKilegWrzGg6KFAq/o82FQ/v3AIWpvHrTrb6uSLIZBdt6NUl+UeVA+33L3PUUMOih1/ewIMQ8qsH/17ogGBpE/ss4LL8EgruXYhBRDnO7vmTQzwKCpObLCc5YY1OrgRyS3zI1uHxWux3PAoOhVCln6OG509LnOQKwnBn17M2K+yceNCDJ+jOcFYVBAV7HpPMLNk6ubbE4RGGTfmriDdeBCHSO6CtUXMYjxsYDekx1OFMtZ6VuQhEHdd9CNlAxOpOHG8zDtJgaZ+LOHRxzkRCsljzcE0jHo0CXr9/ZjHKjFN+Hx0WwMinhk8/Uw7hB13VavnLYAg97eFFlho+dALzNvjgY/xtX3/ObMRhk7kpif2RqpxKBtmdTGYWN2tHemSn30OQbVScOlx+/ZUEnKsbBQiEGrx1wIE5LYEPvFV9a1rRh0+cJMiKMwGzq4jv8opxODhMqsF5XbWNFxT/5vl/swSHy1oJDGlRUJOQ9WsA9jUGjmc5llPFbEcm4v3XIcgyROTgQ13mdBeV23r6pNY9DawXM/UlRZEDlX64npWQx6zsgT6zvFjAID1yUiXmHQDQqD45pnmFFpG5rqXsSg5VleNyZmZsRvtBk1uYJBT9/N2C9VMqEfHzxTi95jUNxOkWO1GRNKmSLR0ljF1Zc63DX+EyOS6ij4OPYZg9SErE9bXWNElw+ckVT4ikEXDSoJBcQZcetLlefJbxikQJXE/bWDAQkdmOI+voFBDm/4RFo8GJBWayRWcAuDEuvqZW8TMiCHBK6g9R8YJPqIXdwtlx6RdhwmT9vBjb8y94dKGvQo8wXJKuMuBhlODL8jn6VDbYAUE7iHQSUF47ILkXTosa8BtxUeD6IMnz5Tgzv8nqmhfryG0/0fQuCNGloUQclWEX2AB30s9JL3saJF/Ie0dvHwedAz/sqaa0s06NZTHvlQnL5+P8bUiI8GWSq1tc3itAeb+VtSB2rEVO9tc4SABx1Wo+nqSqdCImYjRwpwOqH82mDyKCX60sFC+ROnPbWnK+zoKJFf4JV3hoS4wyaFC5mIMQWyun+N4BZOZw6vOH5LJEfqvTc4J3F6bbBQvL2VDN2J5QliI+JB/jXOxBl4ZIgZlXNZ4vQHny+nglRJEZ9uN8dlnNZna+g5coYEd0g1UKvH6VxsojBvFTGS3Wh3WMXpiaDkU9ufiJCiQNFDTty8GzebIBsXJ0Ju5n2z+jitdHVUuNKTENnJRcEgnH64htd5/SEBCtanG7+L07S2Ej4+c/joyom81Uacvvw+7rouBz5qe8Su9ganQy/3cmKOH0AcyhsWpCQ8aGqleOPbLTxkGBX4SBynyY1M9ZKz9mDDo4vJJjjt1GqYpcC0C2X6b589hdNaP2Lv9F/dgcsTYOc2Tqdewbg4Em7D8CdFgdU4XTtRfGUqcguePc7POYnTPAbez7S+bkDF8HjpHZxOfC48V+zzHX5OfauFIeVBysZsZHiv1qGrpFKDFk7znQ3/pGn7FaqEPIUeOL0Kgn2DBr5A6xf08ldwGp9XPvWK/mc4wU8xUobTxZMXmRbwV+HWNcLDfTgdov3RKTnsPSSqdm/6gNN5e0YKgu9WIHnwd0BBhrOX15Yi++QSpIExUaI4nWa2S4c/+BqmjkrK6+P0o1HRbpGSBci2bHnICac1frL0RZLPQRv6zLkzOE39zMwotnEKimFXd5JxulQuiMY/eAzad1HaFOL0gc0T4SpCQ3BS8X1L46/yor439nX1wkX90fp+nK458oWa3AALh8QKJeZxOu/cAxZhLIJKD5vefcLpdAOzBOvLVfBVYifrHk4vi5d1NrHeh6spI4ZU5DwoW52Ff+L+ZVCqe5OHDacb8uWjqU6UgielwvoCOH3uKZeMBulzQBWNf14apzVtU0+afGkCQ76hjCo4zVo96BPlgAXWmyShWjjtUlf/9J8OfYLk//ND30eyfzj0uf8fDn3euAuDb/brUIf2o0b+s+xovv1pR+aT2pGmuC8TFs8ETr5S2JeGtuQab8n3Z/KrF06QWH5fjvj6XryDL7cv2b9x5PruyuzLhp20uEvr0vtSj+ZHu/QHyX0p9RJ/87O7xL4M9qhkxTqL70sbhXqDxGnRfflKj+uKwrDwvvSxjeqZ7xLcl+u+c1TXmvn35bkojWMqL3j3JYGH62cb3ETaj89V8XW/qXLtS4HeYQ4mZo59WWjrsdhvyLYvf83Dv096jfc/3J66YgHtWZJNxmUM4k67q9HlhQWei/oiObhNz+2mtzvC/liQ7Xxpgu4q7iZ+3YQl+hQWTOqweMXjNnXZ38Sjz4RiwVoxe9iaDAadPQfyDp/Fgp6YC0D/BzdaJHrBERqFBYMPSXputHCjGZa3xwxisOC2wwPz0au4TfIdNq37cVhgGECTw2zNjWb177acTcSCzTVWieMYblTn/eyU1lUsmHkJfhKMc6ENX5pPyjdw5Uu7RZRd50KMfQ9vWt3EArpQRS8HPS70rrd5594tLPjJ5L7CuMuJfjAvjxDexoK+oXHG0WecSA97RfciTg/h5VoyOnGi8hLrW2249HH8IwrO5Jzo5fPctO5kLNBkr+uCVRzI5asHJukaFuhwVbnJOnIgD2/RM19x9pmWC48+I+NAtY9Jgv0vYcFRsRn32lx2VG+nwbQdiQXtAsUmY4fZ0ZKm1vPEYCzY1jckoBllQxK+8RR7HligkXCjzSGADUU1XinQssWC7t1r3ZCEDQ3Q3dSON8KC42FXB3lyWJHMjeOidw9jgbiQDsftQ6yIuLfDwE4UC4TNnjHQj7Cg7pCT2k8ZseD7k/dUd/xZkGGkTHD4z3bQ8qj3OTMJC8JeJMhRX2oHN+6XuadlM6OfS4xE4T3t4LiMWgvrIWZkqahZv1vWDtQ3UuaTh5lQnumKYnlyO3Ar1VXd9mNCE2dPmXkHtIPG+sOGlsRMiCL/hx/v0XbA3Ctr8/gBI+KbdRebE2oH2Qf9Wb8dZERfI5Sjz++2gUM1ejwiQwwo5oLG3thQG1B4aZem68uAhlNsBjsftgHF8JI8U9xmUaA46GF9SBtQott5ap9Fj5T773Yc0WoDAJNkZqlEj6JderaPUraBOE92NfV+OtRnccejeKgV9FGeS8d40aH4GUZDkzutQC7gVRXxATpEd6lKwcCzFagrB5JVVdKijtlDLeLKrYC9OCDdzYMWSVonkL4nbAWaK5mV7Gy06AzRlbmEgRagl0k80HGXBtmEEN7cSm8BD9w8XWJ/UqO7DHgVGaEtYCrFnK00lRqx9uew6Jq2AML5kaJFaWrUF8YR+U20Bdga3xSW7qRCOxcI6YrwW4BOvDRRogsVcrUX4zw51QzmKTZ6V7cpUZTAa4n3Wc3AyJJvm9SFEqW1u+kecmwG2kk+EVodFGhLxCpMk7sZ8H27ZXVXigI1iXkGbk01gfYnzWoEd8jRAteUhOOdJmAe2xMas02GnGo6om4ebAI1RrFoTIoMffxZ6/FwHIFBChMnYxdSRP7ybva1YARejbO6v7xDgk4N/Qi0JkOATTg+J6qTGJm4tXXKH4SAYdcsXPwnEarlv1P54mQjoBrlMp6QIUKwJmBFKbIBdMkfqU92I0S5R09eeplcD+S0SeKN0wiQuJPTVfoHdaDU40UvRQ8+is3zWbV59AJEC6RstO8dQLMrIaYPHj8Hlq/8eWPkDyAyh3iKjce1IOZQgOQhTzw0i9ij3hTUAFPJDy2TinuwhOOcOklmNaDIJpUXyfoJi0l2VXcvPwMdMm/sTxLuwIKvFw5/i6gCl5pg7C3fH3AsiO8Mcq0EGkF2nk+GNuEl4fh8RoMKYPODPqZEZQNeCcRunRQrB32T8YkJ2d+giQjPbAfJUyDr0nxSg2QdvvJf8ZSTfAJYs0h3rlSuQUWlVt8o3VIw9q7aHjp+gWcKj50osykGUsZtRZMUn6GG003Wbo9CkH016Uh14Ef49ppFMHnQI5Bh3CN1FfsOfpjRpw3tyAO7MfIG5y+vQLtmJls/roeAuC7L08R4CV5IO8xFF5gDHjFIyuHTvoHpOcZG2pEPQP/WhFHW0ALMvjehwsuQCfLu31IyFJuDWoy3j3yNSgfszzoxLO3T0OymkH/TcioQWK7/2Os8ATVTT3i9NU4BCvZZN4J/jsCZxIIXW+U3wQUXnzaK9EFILyGiOi9yHWiR3zGS9+6B0rLPpyN6kgB7iiMdf1M75HPJypr0jwMfeFqZCNiaIIGPPfEm1UUwZytb2rFQDZ/rjX0vs40A5H2+zBV8BfDvT56o7XqP/nXT+GijjfXXs4gDRH9sBP/6LOJJ/P/5TlIQ/y8Z/Aq/nrOk/j/sJH892/jfnj18oaseZqii+yc7sry/cpLp/8me0yatZoWGfzIxL8Go/ojJn9zwaXU5TWb6J//bszu/7FdTHUnEqHXAp+E6xixqHSAjy3CYGUdvmYuYm05YuHqznnXICQu+PGhfnynvBPQnt7vPRbXDuGGTtx5R7SBM8cjwHKYbbHUpXqZuaIWEQKSRu6EVUIucCy3E7wPvQn4Eyk+3wMaejV6Z6RbQkqbLqxjSD1L960W4lJqg2yf7ISGlJhDDnnhNaHEQlFQQEuF9bITfRpb8dz80gqX78bHC9sPg/MnPJa4Pa2DcuXcnvB7WgMDEVLXHMmNg58chINtXCRVn40ul+yrBqnN92b1r42A2yMtPZqEIss7/zBJeKAKqXIX5+KyTIKb6OUfLXh5keX1Uc2gvD8T71sHimEkgtfZJkSXrDqRsaJ/czLwDAtKCG0QZpoAf9koZcXocJPvRpC6cHgfaHji+whyaAhT3NSk5bwQ1DpabtxHGBTQayevV56tMgUiH7q//dGx5eeB/PtjyD/zDYCP/Pww2Srz//lvVrg/D+TBl1T+5bkBcdvOjxp+8xS2i9qBJ+0/+Nx/0L/vynSiY164HNWqfz7spgGsU5T8axUk6pFqQOgN+HxyrIMJ72TiV71J4GBe/GugEru8Wwaqmq0YigwnqdpiYSOelSSDAkHFRkvU5pCVnRJqN+o0075Uu9pRMAMYfJ4fO3muEUfSyz8bIM9RfjVKRvMGOg5qvn2oFPVphvHvNWZrAuEYbLaJplcZR8JBnd4cQtsNnVJcU1YwK1H0yah7mZoyA3PmxSFHXbrg2u+1Jhoob1YZ5rEePDYHWOG7L3ae9UKa06F4nwXf1piLeszPCgwChhuIDeAPQKyDJj1OtoFE1/MICTgPj/JMO/9TZJ/8XnS34T51N/H/obFK8/35GVedQndz8IvEn/9ve/Ff5GTn/rvSB4OLbGFylw1L/XemTC9Hfh/b64TJ3/p6WSC7omSiseLvXD/xWCBwolfvh+y+q9mr0FcDN79ErIuV+QGZOUXbYqgey/vQIlZdrAvbddgkaVj3AodyThcmsCxbvaqdlt7aCn/rxfvZmXYAovLn514qEVz6k/GtFum5o2fRrRWLhVVb6p7W9mP6PBjzwlx64Sf+fPcDS4aT/+i89UCJyvfFXD9j+zuB3DxD/cdH8MXX+//YEA+4qrysS6K8WQvtReSH6tWcE/3/wc0WJYqYK83/wQoFcNvHSFvw7qQQdI3M/9oH9+Ov+83CwXlSFnwftx2UFudknJLT/wd3FO6+ScLugv7PtttoYQWgh2I9VvzqMi/WoP6cZPGD1VqWILwWuB1TUZDJOgf4+j1jrHksg+CCW8wz1CZB/dmvBLXQKuA4a30vNCwVaD69/Ky2+Cy4QdPvZEUyBHf7v/XHnY8BA+dGmw9hH4PBTkXJGgSlwP3lEM6HsChBv0Z1l1akCP8bXv1XTTQEBWfdoE/HroJ1+OnCqvQGg9A8j20JT4FgFNcl8zzWQWa/Kc+IRArV8nLtaB6fAZ5WNm8aql4FrUQEH1fcWsDJcLKx3agrYaQrh7+KfB3gbn58lQCwg2mDcC/42BdjEmydSd3yBneiHd823OkF3x642v9408FYixMS3WUJ3oyd9FgndYNQ47xS2eBpsqbncnw07B4+f+SDSmtkLAiwFuej5Z8Adht6l85GX4KlRcq4X2bfg188Xa66wTIF4ltbzqe/OQ538u8pTi96gKs4x1P7MFOA0562XY/CBWYPZnaZ06cBQ+QIFF/4UsMAGvyRSNAZCTp8fdfgWgM69y1S+uHbgn36xZT11Bjw7Hm+DiasC6o/vvRGemwSD/i/3MmA0aO0Q55X/0ADePpIsvjsyCWLNal1oGC8C+4tshqGVCChWgYHpqUnAYF5VgZd/HoxHK1a5bLYAB2yxgjfeFHBIDufWeu0MpMajMvmrsYBy4fubJ7h2E9m4/eizhQW8M1jaSR3bCXjpUs0ZX0wBTf8HdFNNYXC3I0hC6XQ3+JIbfzeCeRqk6eKTLDjGwzkllyz+S73ggl4oz/X4aXAs5PZZWvdbkOCENIMp5014stP2lCr9FCDIfHSPXCMZ3q3K/ohZDAYul9cKa4KngEbMg6aXMwlQX5nPwiYsAxwZuxdfsjkJ1uyt396oOQ9lPFW5b1MXAotbHrrlG5MgL9dbVlbqOHy97nsnrbUKvKvce/OxYBLQHQ9XJamzBWc7t68z0TSCb3vGs27Rk0DiyCM6qmUnEFH0gu4wRIBZzT7s8rlJQBIkKyj91RY4M5/5prrVAvofSb3iSZ4E5o2NYhNUntBctGJDvAQL8u4dyWn5NAkqwiWvULKegZFE7Jim053AjHduyEtmCmzlsWFs3GPh9rrtZMTJbtCY5zRFHzcFjvCFso60Xoe718345z17wfS2a0nIR9w+Jfz5AQOCe/D4s09jExo3oImy47WfhLj2rz2tzLiXBj0r2XpCnpwBTOWfibFuUyCTxBXbdycFumTGmsH+e4BX6FNNwzLOnk6+n2/jbsDOO+GFn4sKQby4keHs2CRoPjt3S1ozBipYqOG74j0D19OX5o75TQL38ohrG90hkG73ZWqIZCPIybIxCRWbBNUsNA3CoadgLIWhS2kHAgs6tGSnuCZBpOhUKdtaEKx5sMhVsNECzsWbHkjkmQSW4rlebhLR0Djlh3ZZFha4H9hu7AucBNfDXDNDZ+Og1f1IxhWnTlARKaJ/qGgSmIW41GAeXIPWn3LlZXS7wfvhtOPl3yeB/sdLV56X34bWR0yPUBj2gtHYALFXx3FbEBPfC1r9pRBLEnC7iyAOaqvuzH6snwSTgVFcYpSlcNPw2PNyrXhAXjNW6EczBZ6+FrjwrrwIiheQ2LfxZQMHJTkBy7uT4EsrkcDt5kfw1MdLT1+iYhDImrvrZzQJfja43rc+lgupygkn/duegUfPJdIDrkyAu4l66/NFWfCYtRqZanwjwLt3OXnp+zjoTysmpCq/B/EkakqT5xGYCg+IlO0ZB/HmPwJWvNPh60z1O4XLLeDhm9eHddLHwXqUS3fIbgakfDyd+9oFC0pXXdc0K8bBVsiSY8NQJjQrS0/aoO8EWtgxk6fD46DwIe/NlKIH0O3DMeaq113go1ryQXayCcDqevw4PsyB8MTRksqRHkCpvERy2HwCXO3jsyttewbn4y68tjOOgN9mnVRs2CaBz4joxZGzz6BCcb137Pg1MHOqMWRZfxI0Bp6f2TpaBfn1ye639eaAgocdOtqvJ8D3BApqs6IKKDZe6kptUgpIfQZu2V6cAAl2LFask2VQ443pozyRavCE6YhE2v1xEBE8RcvKUQI50sylNWIaQWLMg9dnpsYA19PkLv2cIrjZz2/O1IXAhbd7DuX3xgCT8ynd8hsF8F3d5NHXRS1g7Cv9aKL2GNAcr12WsimAw1/7+ju22sHHnRst9ApjoMSJ1AH0FcCd28+HQlM7wK1zXXZ+uPSPvrYp0bQWQmXe8+K1Fl1gdbX1XoHHGGDrZn61olgMBdiPy/fJ9ICROSI146wxkJhyWUy74QXsfPkKY9YaBM3FWPIO+E0AUhZlxbVLL2Dm6txF0JwMyh1S2/yTJ8BEra3VttNzmLNzkKTgQS4gVt8ZcRKYAEWcGqJFj2tg5s2ee8eWSsHbh4+KAtrHwZk2mgbG2ipY6fxOetOiGixwBnJbvR4D6UIfXeK2y+FGI3XOQZ9GoBXhGLRCNAYC3XPPtrOVQ9/jBvcqniJwZYcjpQO3FR47PHguJ6kM6prk/Lx3ugVEnmphSTQfBc8YrqccLn0CL1jf6XDJawcs0b5y/RKjQKgm0U528gk0ONS180y+A8jdpc5SlxsFnCfp5o9cLINBxNDgyqtOoHi0RwFrOAr6PDyEA82ewqs/Hwj0PcWtS6IZp4+GjQLLcd5XkctNkNJZQ3X5gCMkj3DjejgzBrrkZk23Jpqgyvl2Wfn6WwDSTi1nr+L68Qq1Hbd1E8S7EUqpHf8QlDvxspheHwObCxkXdGIQrK+ePbUw8hi8z92UuMQ9BgbEGEi+jzVAqwbtz12XqsG8hGMppc4oiCzLuDZz5wU8dujV+oxgI3iRlzYVZDUCBneX07IjcEcLgwltr1AECg73FV49MAKqtDOJ85/UQNkea8RM3ALyDXSWz0cOgx5dhhqxJ9VwN2vaGLPZBj7pRcc9lhkGD++FfbkRXQ1FslfE7X2wwNRrztdbYBi4JNzWO3ujGvLL9+457XSAWkmazSWxYRAra+CSP14Nd7YpSrNLu8CShG6RmvYwyOxjepy31QZ/Yr9lFnyxgduq1IIhP0eAUoGEafT3Nqhx1rL4rcFtQBH09qs3ySho4sWvH01qgwU6fhbD8w+Bvnq8JH7tCIhWX96r6W+FHa7UfbyCT0Dy8kZp0YkRsCz24MkVixb489OlGoryavDGQGKcOnkYxNi4Nt/KaYLTrUrtC4yNYO5RmRz+vSEwa4uvfoa0CUp2+Rh7OyDgIHdH9aHuEKjU8W3NXYPwnRgBfNLYDOpK5kOXigdBBpnD55jTjVBn6s7DKr824Kup33UQDALR/HCVK+SNUEtRoGYVtgPnfqoP1/gHAYlt81zmQAOcm5JD/eIdIFa11v4U8yAIFw6/GdjWAJsUDTTbn3YCtlUiO2LWQfDWSfytzTwWKvk+Nb+4chyODBHRnKUaAQWpkQ7Bc1hIuVa6Un39NrAlOp+cxDgC8ChZDVouYKEQb2vOZ9Y80DLBzm0wMAwMH5t72Yy1w/i626HWHk+ADN/FZ40Rw4CnwhS8CGiDESWF9Pyj1eCpfcK2avUQSGhw4vnc3AJ7zGemtmUawcVPvgsf2geBLfoQlSjcAk8wmseneyLwfbcz2DlwEHw0vdJORtsMt3nHDvbWNYOT5djvtQMDALuQrn1fqQkK5kR/UjRqA0+JyGmLrQdAgYnhOsEXBM2ieAhTL7eDVW7PW+yyA6Dkx2GatWYEU8hZk8JfY4F2SeAVZ/YB0HUPpcQWIVi8uFc7Yt4JMi12XnfSDoCL5idEI0u7oF5sP+st7ePwtGvdO7uiIbAgwhXs/aQLXrl24zAnZQrQCNQYNH8yBPwTiDKWbLvgoyIhV0H/PNBFNZ9fGTYEzq34vONt64Tj8UM1ES+eAPPBs4sVokOg5u6XzJULHVB78cyDSqYaYC5SOacTPgh4srQ/nnrVDhsSyC8kBDaC2Q9t8P31AWCW78dhZNAOq1KT3xPGIWDF0Bf24+AAkOJko0nib4PCae7Un5ubwdBsS+ZR/n5QoxUUm8TYCukPnHhERd8GuHKj0iM+9YIwCtakI89aIP4JQ6pM+XbwKqWAKje+FwjfJFc+49gCHZNHyikdsMA+uDM0U7QXnLZE0noMLTD8iQ+1160OYJo8a6I52QNmiO7d3g7thT+1lySfkVhDD3XyvUWdQXDbOSicO7wXEoz69uWcSgF1XbzfBvUHAYjmKrSU7YWSJ+2Kj8/kgfdC/dIqmEGwKoMnpVDdA9/y+8YuRJaB+ykBVdpzA8DIA898KLUbLorjGTsX14AxacKK15oDgGys83wdcxckKthQecELQWddR/3b0T7gc+at8qu4TvikG1K8xt3fvZ95n92Q6wOhnASb+T4dkL8g2TWMpwW8PRDSxfe5B5AyhJB6qWNh6navx7xuG9i+456dcrcb8Kha18/Bdmgdy6onB9rBPd8mPVaSbvCIfa4MabfDpXyDm+0qWGBd0v46OKILtMzQd+51tsGiwdqkSKUO4GbWPHPoUyd4Lp95t8iuD35oUSVIfGcFCWxe5KsNDQD3SJKVHPs+qGBpsHE7MQVk+C+pDY0MAGv9Ig0irj4YN2UpS0eZD0z4RtNaKgbA5A8W61slvbDPgrg4bKQMcE0vugyGD4DEuRh7w4weWOrvD5Y+1YAKKfcmm/Z+cKPz2fNHQt0wejpYXPAMBJG65A+nhfvANaubF5LSu6B75vFHJNRNgERspEkvqReIY7/WHE/ohHS3vAeMLFuAiMrFdDWzHtAjcppB/3gHfJ+yWMwb3AYKH9xVPv61CxT7WRjf7MPCZBbLHFKHdpDrlH2lx6oL4NMkl7QdwUKaOrGLvEexgABgLifVdYLNhE+JNK3tMMpAqZ3tcAd4h1mv+czXCTypHxe1gn4Yk8NoaC5lBZWtesslnXD18i0IStDshyqmdaQvylOAuHXigrTrAKi7VRmUS9oPSdeubdzVzgd4Lt7t67oDwDCzuY/hXh/UbopxXKV7Cl4T7p4wphoAmilSIjG3eqFKdropl0gtaKJu7P/2sw8QBENBrGAP3JVbWSutgqAv69G3H169QMSloGk8vRs6V+r1UYk3AX3SGwOz3T3Av4JPnf9aF1RTdhmND24Brp1VMawZ3QDSB59rdO+E8tKOnXdT28DFBxvJH3S7QDilisnQXAfsOlP58XRsOzg4qrGrU9IJVCz5K9dsO+D1u/1YxVNYQFJBP/yDphOM4fHtXBjGQj6JrzRiJzuAeM63r5iQDsCU/5hHjH4AtsT1zxrJWkFjkCB3cbofOBoo8F/ExSdNUGlqwhTgvGgu92muH7zmdDeQ/9gPlZUvN/bb5gNbf9qu1YJ+YKZxK3PybD8kpKMgJ2J/CvY6L7m9ku0HcRkrIq5BfVDM1iLTQqwW2JbHl9gx9wHsu8Z3UXs9MKf4MM9aNgStzXeiys/3AO+biUlUQT24feD07B5bE5jQrkY+M91A6PI703mXbug/IydlbNcC7L3FR1SKukDQSNaDSoMuOF9eeXMsqQ2sRBzFbLp1giibi8e3ejrhK7LviTPR7eBB1vlv4yMdQOXcCYNAk07I8DbPcigEC2D2ZPRZzQ7QS2QuOtDbAfnEqdnPeHSAdJpNzXDceW53y+jlX71WArJz6r+8Vul4f3M65dh25/9ye9mkXNH65fZiDDnW9cvt9fvRlV9Uz1aJN2QzVf/l5bK5IERHciOo8fLdyBLGuIBGzT98rb/T//43FL+/K1n+b3eewmc2PG61gsbJ+H+78/D/SIv/l/Qp0SYvfxk5+ncjf4ffv1T8/iXhd4G/C5XU5nz/Sokd/D3dX9P8dkD/diD/NuJ3mt95/D0d/l+M/e3X/O23/Gvl8f+Sx9/TOTL4tv6q4J2/O1//W+X+2qJ/bVk8vM9eAcLj6rgsmoS8Xqn/t+/+tzDEJX+/YXNx7zd/V/6fGuevvfT/2oBmKkg/4oYV6aStm8x/NNj/1obfDfxPjfvXUfL/2HD02livEdMv12iavX63+t+/+7+1YTom0fdXBwn+8Tnt78J+d9RfR8uvIJlxOfbXF2T/0HT/3Fv/HMw+x7z+vWD9dkT+nsC/HYV/d8z9KqyW5Y8yfrmcC/4Qf3U5vxkZN9F/O0wHF//tcpZ8znHil8s58I+0iuG4t+v/Yc/fXcyfwW838W/37W/X7G9Xaq5V0JS0DYmGvKdigXn+T8COF90onq5dXbSiqS5xJrYSi+Ph3kHcOI0Gf7ngX66/xf1quV8z5A8TmH635T+15+9p9vd42n3aPUFn2ZD1ePW/vvevkdXb8yu8Af8um+mPZL/7mvB3sslrKmSxtsrdf9okKiYiiicsRiAhKS5xQERSgoCQEP+AhAQhvoQEkbSMlDSBuIw0ETExIYG0NDGhtDSpnLysHJGUvBwpGRkxkZwcGbGcHDkJMRmlopKCIqmskiIlFRUZqaIiFZmiIjU5GRUNBTk1HRUlLT01FR0DDTU9Mx0tEws9HTMrAz0LGyMDKyczEwcXCzMnNysLF4aNlZuHnQ3Dx8nBy8/FySfAzcUviOEWEOLBCArb2tmJCdvZ4dkKC4vZiYjYi9jZWR+3sbGxsrY2xxMVtbG1ssIXPXDAFs/KSlLE3v6EuKSk/QlJyRMnZWQcZR0cpE46ODgpOTqekBEXPyklI+MgKy/vpKCkpCTr6Cgv5eCg4OTsbIlnYYFnaWVlgWdujm8mKnoMn5DQXNTMzAzf1NQU/9gxQpNjx0wIjY2PGpOQkBgTEpIYGhkRk+BodPSogSEJCbkBCckRAwoKCgNycv0jFBT6FHp6NHoUFDS6enq6NDo6lAq0tLTOLi4uTLS0bkyurkwurq7uHG5ubhxMTD58vLx+/Hx8vBzu7rzuHh46NAwMvnw+Pp5eHh6+frh4bx8fb14vryBBAYHAIAGBAAF+/oBAHPn9/fn9/P09vHh5g04JCmppMzLqMGprazKysWlosrFpMWpqMuowMAANdnY2dg0NdcDOrqbOw8POo66uqsbDEywkKHhYVUgoROj06eDTQkLBgqdOhRwSElI5FBoqdOjwYZWwgwfDlA8eDA1TUTkUEhrKI6Sq6kyroJBChIcn8l6I/1+jzemPZwTOTFENbyuPRHCSOIUcjrTMFPIu8e5m9imQcUtrfDDOnE96csZ646TdIVFBQ2MfM4YC8zCr2KxkCY+DzvFvvs4etAzoLdZmIb8jVfcsRemmz/bCFsP9PEMyaaorTGMss7FeRzoZeofjjr0gtlm9/OZG3WKP0tah2bbU06esywdUqqkXTpPXTp89Xr0Rorhkp7Z47ecJp/jYD2t19Wgw65l/UeuF1PHn34LEjKy8Fnw3mLgKnwupcg01F6LEJ+c+u9Eo30Wvj4AbHss2WAcqD6/Dz7/mCgn59l8qCTlk9XNYxLJ0ZP7ZFzc7zme3/N/2JYRHk6X3G3m2zL1xSR8XWTuuUL7GIHYiLMW8REs6JMIRTVvQrx116KXu6YuZV7yixSVn8z2OUkDXJIeOIiO99YtEu1DaUGoyb5iIOJvspJHo6yHJphCPQ48EpHJzuDHM71LJh6mFzQs8Kp4xWARFFVCp9TZ03g8RXDj9w6/L8pyTkZKQlje45ucqxNO7KTO1DgaWbf1jQj3lwiS/5JdG7n4Ynbotc/obX5Fh23eMSnyCs1HhaGnc407z5q/pmW8C1StUb9jMbJQ/zHfg8yr7oNt3SybjxVJjdpIhglE5VWf7Dn0/qJH0wwAM/ujzS53BJEwTXBx5M9B1zhGD5pGY+Qv2ZiiPvz4tNxUxQGleYFp1NOSNENulNR1fNYkr179Mk5Cz6MUraUWEEniW3SZUDdBKDyV1XGJrNH3sFX+t9jK2UZGRu77w0krhZfsjUuQsRwPns9bxHX3GGmXezVJlGm3e0wfpvAejePIulCwrFXTFfXnnY7k0u6TpctM0xfqSUrosE3aa4kMl9bQJ9dcZZUWtugjB4ktUXm+TPhG2jR+XOT1CKTcoo1mXS8otyWdYayO98uzu5+SelRsanguuEWTq6o5H7/SzaG/E3TXJjsqKDmXjFrmaOthzXi4z+IvmFr4ok1Sy1g8vrqPbggqbejGip5pIxZ7m5uGLE076YSd7mXXuSfL43mjuMXCpSBeIt4ug3WbvfXvkoUrz0KubjMoXR04xJA+GM+6uncpLvtGit/F6/rxrYUkgpc13Ua/gq4W8WNJxYgundLXWhsoEm/pwdkPHb2s/jjf0mN5JqquM3Hw9qVb6Vpe5eWb16/mADdvN+itn6mz6sbUr6ae8Dry75huRcEpy+u6J2C+eYrWbR4kYFlPmJyUVPzXke/R5hkzYh93/JHq4fyZG/MuRW82fjpjbTHnFLO88PKG0J2I0ZUH1bC6Ae7HmXpu3z0IWG1r2IH7q2H9CfzxS5cKWQ5+WP4fM7tO0buortud1GK5WPSjW8wJk2z8DtEJ3fEYvvz5OBK3V+HTLraRybTR/rEkzilOWBDPGN28NSwZdVz+R4ctlewg+J4oPHCp5VPD8XfsTn4tjwWJ3yzIeiq+MPXyz2K+ararje3+AkjBv7Uqo4HfNVaqDk1Fx2x9Kq5TDa+OnDtNs9oWaJwwl+zDubSbZB9IE1/qZxuW9f22g+C3rfJMlV/y9tjcutzzhK2tZhYv0PtIzb54iRUwWdnH9fO1QjpI6x+Ok7rer76nyG7ferlBsFMwp954uLTS6OCaeZn1td35l6BT+cClfYWlEpp9bGf1ryqicxuU+O4ZLjkEFH2jdRQmIXD/y1lZx5Um2hMe1Vl9KJEvi9bWn+O55hHKtWrTQ2RivrtL44up9r6EQLudLaoM2p6QvmzAXpy03iFwNuZG9c5FcqVYV/2tWWHJxXpytykcU7SFuFVLv5KFrv3CC4ejPLeIjRWTxxh+E6I3ZKc5/EDq6G5xKsbTCQRqb9Vj6m62tU3yWdIjJbN5q6nxapfJ9E3uThjp3UkZp7N4U/5NJqYOe5r8W3Y3AJO5/LboWfy66RE1kBxm9cIvucmawzpFcNjlt30S2mk/S4lw+g/FSNMdIuLQGeaurUyqyDh2/fP2x5LRueM/Ge5t84+vVBX4TebcDyp3FthvNv05+sM2NKWOUblteYjgaFUXuaCaPac5a7KlZJrxRfxsvy4hDPCu190FDxsVtf+MevU3hY/fZrrlTEK1LSt0QjtVx2WkpKz1jzSWtzhw/9NnBQ/bhFWluhsTOm2NuDHewkvnOZ2j58h9f4TjzPVUjb5N9sO8IF83h+WtaJPwv5AyiY0XCM6VSB2+3gFPHI2gzHz/2ivzMpe6bQ1MBEwu3fDCB619adfn5XwnRt+bXaW4/uNV+/cirRd9zCye99QkuEJdVmb4ej2KwWx1tsyg4O38+jpfMVYA1+V08g3d8VcgeXlqI2NPOsayAFN0gg5vEYYb6UzU/KaUZi8tzZq9Sfmp4BeAXnbtdyVIBzM1NzVzC4qESmj7X2eSUP0gq5aWPPdpMzkPYG2Jd4WtvVBIUVrLEHn5paKufHCW5cf3esNlJfsfVh5qXnqlHpLFmF3dRUI0GTrrks9F/OosCtEi2v+Qp+nx/7mz6guQxhfzy24/qR4bvWjRIPJh+u1Mu2ZnZvEmlDtRpD71kSQ1vuP3enwy19D7u2XrOKp0SVWu/w3Ka04fCuFBZ6v6D7p0uR0vmM+684i+uPiP5MGZoMfR08BwHw7cbr05/ynftWuPyW2rz8g83FiJ+51BOl/DA53htf+vgOx/mPMOFmrMezq8+2HkkR1qV3OrR/okneucY3ZfpqNs314sS3Km7Fycfyyb2jvJ/uhVot807fPOHF6kutcJiWR3WSReKfjSw6Z/Wwja1d16W4CL+TDXKMHjzcTahL6/jF46WmDvf37Dd7v52nQGf/82IlfBiFzZnMwfG6VoezlHVpnY/Jn/4pXhLn5ZnGnvoU465eI0BOU5bYkebnypGmT7BF8s1NF65MfS8D9LswLhUHGXS7GM8yCrMW3lJi/O6FQ80OGp9im+iTmyAVvzRy2d8J0zFB9xEH337pGPD9RjFHuMjv3v5lFcFPlG/7ogYnatbLv6yr67lpmVs4DRTrS0Pn/tF0vA4wxGbJBE9Hq0zV+hNHsYqjFklKjgqW66QJarJxj9cOhzSfVXE9Smd1rravGneMZXl9VPfEllevYdP8cfL6scGWbizTpZ6hijD25yxxykcKjclyyImc03PDfi651Pd2GKuObVZO89d6eU7b5VuNpERkuW+WtdOlVkwf/ENpS/3+YySPYPo8gt0kV9DpMMTDeLTsXbM5/0lbxRYvlm94f4u0bs+8JzQ2ms3P/PkW9Ict+Oaj21c2ihx8AmP6tO8K3eoVgrobit6MRnGl5HZ8J1kr31xgclPaYY8tdBOTOrliaRjggullUI1uYb3qbxnqYVuWm1iwh1iGpiOp4f13Y9OoaMwe16cFfqAfXFua0PCj5rFVP/E6qL7Sws6Oxddd46yzRmTG1ojRvqX5dTPL1hjWTkNrW+Vts8P5b6gjY0tWXmzGfXg5Hv8L5HLRwwzIlF4WitNqHT92x9LEtAmnebFsSLRJ+fi5z56s6+HFotuufYuhvlSrZ0dHZE5tGee+5yY6zp718SbC88LTl6z+DRa9d3vRbW00bVkktmq3Q8kH2PlAlXvRpq95VTsJ/3ePFbDrbCsyz6epMpr/fz27a9SUSfeXm+69mRdqvzq4ZkQXZu5oOLTTxZo2qQ6vFPNzo/K75ZpXP/2U7voVPJ1bBnX5avmh1/IGCSO6vsv5AVqN+l6dIjWNN+iYlb4yeKbyeaZxF/twhcZmcZM2VweXVb6rpG/EfonrFaHVesJYoeZ9Xdo1h7mKDB4x2zX4o7KrhU31/61zg7i/15n1Qb8j147xYr9UnU4I2tkKP4Q81pykgJN7+pXGHUrPdbwoMX7A4/z7cSHB18bm4cPnY2LC2mNv8zbX18oUCRjodBp8sjG3qiX/fFa0MuNtXeVe6HnHXfC29705PR/G+7wMNotaytLzqs2/Ni7FvmhWfxjr0ljA3ND9sKImX/fWmZWJubqradbmeJn+tfuL6p1b0cern+m1h2ZuvHhjfraB/wZbjo7bPC/XiZh8nVk493Nz+4v/n7tJn6LHquc+f3CeoVbxEUpW515Qjqyml1C/jOquCPDPrc31CpnzoxJf1V9YOlF8cCnQvIrP3TvvS/Wgg/EXEoe/X/t2ms0FNoeAHCPJCMcQhLlLY8MoVHeSiZDhPJKOQzCeOZxcCjRaNIQR3m/zoSDUk7e45UyIeMxMoio45E3eY2acG73rntX665777of7rf7/33Ze/3Xf62994e9117/vT13+i4YG58SblFG4PXFYxU+qEpRBNTK5YV4KVu3h8NZiuek+QWe8o2e/9DGIL4cznKuoQ4Tou8YKIe8w7cUHdv90HyZWYXARPGPmjOeo5v0xVKRp8fj7k8Pu8fWhimMWI302JNZZAt2p6REOC8d5eJLJH/A9B9pOBvY8igpypQr/Y6CodNa8JifaB3NtH81bprYty8wbCcdZ6+5pkbKdvjS3VesYC74+7PYlE0m9vZrmeKvivcPJUjMOB0wtnMrOaBjGLebGFQun53BpNzCkNIDcwcInTeCU9a/pN07V2eNqTfcFNtREN1Ctm+HJBrbVSn6aj2It4rXFXqo5PIih8WBrI0e9NMxRVIX/5jkUxrSW0+fVxnoDRrXtL45dOaA/tFCtiJ9DX7vY0LyJ0iMLpx11G/yYl9l+wYqG9OYUXZlKywPiOsdHynVpDayY8gigaKSyht25hqio+TtxFMHjvbs7okME8TF0P3xwRaCdl6yinVP8lyP3BMtEarI7SIVqiNoFy9YWRbe/FK9vqZr8/zBKV1BPxtnv6enXGxVZplZSbZZ3E8yc9Ab7ca2GcjfJDnxmgbu/ryK21s/vr9wnOJIUjuUQmT1RmyzSV/M/MQ5VdXyn8oL/pwsLJY4X/W/7gDjf9w03PoiNVLCBDmXy0+7490pIup30380m3zja57M+2lw2oxgWqHpESFNMO2Nl3pIKlCutMFilKTMHTWI1abd5iI+kjOtVVYyVmGeB0VbfK/PZ+vP5+auNjCYWatZzDlUAa6xymDvmLEgZzbdgdUHU8dv67uqT8aWfnxWclSiNcpq6y83ShUT18tTZJ3aycYCFROLzknju82RRZ150oqYKXpnL5UUcEg34PJb1eo0lAuCa11p+7iX28xGb00iJVJjMS58QrnDW613gRRwmMicJjDfND/cHnU749wuyWaigK/T09jIL+cjRk4TIrcscpzCpQsNzvVR1Vo7zgswewcTKVEaG6Tyw8QtlURGqjdmdPbL98GtnXeZ6v0/L1gYRS829rh2YUy1G3DBO3zEE6MHv/goVz7yz0ajEiliSzzZcyU1ysXjc1O9aeOR+Ydx9NivI239VJLaqwgjpdaYr/UeuHc6Doytp6r9C3f9pcJ+cczp9OSwry0z8/l5UaGWEvXmStMs6wF68dnXpfNSzLxs+YtVyTzWi3ttMyNlXntXYXleNUmKJ2g+/vUNb1IcUs9rTWnTQGWhosTzrrhsruO23iJ9NUnHPl8nIrOIk88G33g8IGaCbBZOXvlFb+J+M38oXfVzIC6L+gQV+z4hvnY3Bwnbtdi1WsVBMRhqRD56YBEddMwoZEJC/CpyY4VMXnvf/jgVFfK66IZXc+XCtGakP3eEWM9r15v0e7qBSu4Cm62pgjXy5XmBOafr/cr5sbeF98t5dTp7Jrna6g2LhJcx58/xqMYpxbjVf16wEfHq6aAe1Hr68XKozLiieBbWwx1/4vpWrm1j27aWM+IWSuaU9Gedtns/ZfANqUlM0i40ieGFYivQfXRauurw6uMIrMZhhFNB47CGmepSgtW7cB8e7lstqHSknX8lY2VN2E/yKvKksE+pekxhiq2Q+nXBaLLD+bCaWB6P+hxeMZfB5pCZgL6xFapklmhl3WQZT1C2Ra9+0B32rOld8XfQjntK9HtrJNvZHOrXx+6b7T91dQk12t97qafnnC9xy3qvRfqVjZPzE4YtSM2DiskL74NmHw3inTF2LYhEtH9Ss6mnpbDH+ABjqUsj+DoyOiK9DEHM4pNMlvC9Srdp26T0MGz1vbW2bcXclh25cLm1U7HWDZroSeSKWOnL5Z4hg7HwfBaXkYJ1rlKc5CDzfdyiEtsRHDWqe0HYsIFG635xek+FeEdcchSr5bAv7RKd67m6usJV0Ri+1dCguno96ViO4bT4eI9VZ+tBcgAzwuiHnzoHu9cmDfonP20mqEhWfO4TNNam5tUra4zHX9xzGYO8G3bItZm1yH3ORZf/yMqweEGg6MtXnE5ozR9YJ2apg+lqXCLsL1Ls8VLoNe1tdN5mnNj0nneTrjI33W56X7OWFaXNfvJA7bRLHQlFX97BGmqfuHQgv3rIbtcIrfBxwFz/Sz4HUgN3sZTlcQttOa0SuYozYSWH6AMMivmzZxjbfQG0G43Ocof/yNSbYRiXENowesE4vOxp98grSeom5rED7UZXMgI/tLz9VWQl5Cj/Mc3CiuZY9vNv7+0L7fQi0IgET6UZXFqOaukSPpKHP7UJ13VNkZtusvw7Fb8kcFQ3/RjKdbdO1ngeL6FMaor46JMd1ojzSYlobjdCwqpKq/pEj3zM8TL0Y5cLAslzrfbUIPZlS6Kcx8n7+2qFR3S35QQtozauBJQ5nbXzzlg0Wa7Afl7hqUSxC+1qigwOEY+4IcOOLXd07BYgeCUpZjPufN2PC8pPYR3f0vp2oD78rjr7r4rC7hHs23/r/bsf0//sf5/3bV46UteILCzsz5v6Or9/iDs4xlHwbRkcfw8Ql9ho39po4QTP7xO5/7vBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4P/Xnw== + pLwFVJVL2/+PdHfXprtTFBhSBARpCaW7RUJEEZE0UREBQaURUCQElJghN90NUkpYqIgCgvDfPs/xrPM7z3kW7/t/Z697f/jOnj1zTd4z174XeAfw8PD2cOEXfwVKfNzbCTNPL/8A7QA/vwB/CR4rt6AzXgH+aspSsvJScrLyCgdxf8jIyErwaIf4BocEuan5u4UEBzn5SvCYhDj7erkYuoVbBPi4+aspKsrJHZR1U1F2UVZUVJSXIfpVCsO/MpfScwvwcwsOCpfSCnILJMTFk4T+uxxypyAXT69QN3lXP7KAQDd//5Ag5zOErk7BTr8SkZKS4v8ykVYYD08Oxzs7FJRkBLg/aH69EZ3Cw8P/cREfb+vkv6uzvYePx/hH1bSbAj6L5ZAeyRwvGGzpFVMS2S05tIP7vPGPtHJ4UXgaUSL/FrS/svtl7q/c1Gj/Mzc2ulJ7U4phOriLR3v5AN9nA/Zwll+5Ef2Rlhb/j4TEuCsf7+/hM/iPqH/Hw7/HFOEulv6UwG0fbY392COyK2+Quz/104Q5h5f3p4EFDxGVps6+5BbL+75WtD8tLulIJIrp7ssr46+dMEX7E0lfvvdc9Mi+/B7H12P4eH9KzDTiL4jo7UtnRaeDZwv3Z+o1PH9qkaP7svf1w5zcgv1JeBhMHBLW35eHbs9QD+Tvz8C3F3Q8hAz2Zb4G17mfeftz+l5d6R1Bw31J/8luUTRvfx49ss2OBI7ty8jMdBOr3P1Zua4S94HfaF++M5yojc7Zn2Y9tK7yBMb7cvXsXOSu1v60+sEiXJq9P6+ZVp/U5Tu+L5sKrW5PZe3Pnb0fr2toTfZlSnHn7mWT/XmJ+fpGaOz+PBBM5stQvj/VJbgdx4f2Z+r4QOPep/35az3O9vOrbEgJBFdc1HP0lE1gB80z8pspD+FmvPkFF6d7EJrTajYOP4MbZ16GlM7mw6ndNP3QlhcwnrZ/5hhJGbwSn/SU0LYRxpTom2MfVEGhrtVPrwZaYcutzl0dpTpomPvk/ivJLthi46KaG9IIea+yrG3p9ENpJj99kf4WaNy8Q723NgiP9FVMPRNrh2NC7Pw/H43AGuFMQ43YLni89uC5d8bj8Kr+DM/obC8cb9IVoJ2Ygg9Jv8eRFQzAQ5lKqawus/BV1sHbkjND8CTmZ0l46DwMIWfZsWIahXmnZg7rHX4Nn1VZp186Ng7zNaI1P+29gSMJDOF5lydhVPTpVFm2ZZj9TsW5Q+AVvJl+lhrIvYWrTA0dr1tnIa2OpxWV4XuYMuW9dUZ+HtI7hWulunyExQt5NvOXF6C6ZlfqQsQnSHzkmZ7C8GtoPGzreODAFziT86XB02sR4s2dS17QXoMqTK8HQ3eXYDWfXX5K3FeYPfBNy/zOCnRKUo8X6liH37s7An8Kv4MmsfPayRTfoZpl6VJY3XuocS4GD994A8a8Sj65ZvIRhn5fSjVK2oR1a1fZ1RZX4avna2cuDG7BnTji8Keqn2F6xmB3HOM2DAqbfphP/AW6Zssa+VvtQAORE9+v9n+B0oVJPZapPyHfxMCx0+lrkKTHP4RjchfaGXwZ1Hb9CjsKQwjmqPBQRXXRKJHUOiRVadzIfoqHaAPWwMuNdbj75RCf9fEDqIJCQdCl8RtcL6o8RvX5ALIqDCGnvPodPrp28kllEj5SFyvzeWyxAXM0tqeOyxKg1qmyZDXuTfhwVIhhfoAAfWCgzulc3oQP7tFgvYMIUfOFYRbzsi2YYb15bp2eCKUvp1+bOvcDZug8KA6tIEI8l7s8HHS2IR6R0dRXc2KkXidNNU+1A701MJ3+68SoMwpT5zK2Ax/50sy+TSZBt4Ge+LtHP+FY6t5XV0VSZLvrnx7ovQsnnlNJz42QIofq3o4f8ntwi1OdyD6UDD1FVmVXf+5BxSNxd+eYyVH/lUDBOy54iFLskK9XNTmyEXt9w70dDy1QrWqtnaBACx2WmyqSB5BZCZXjpU0KdG4mJJLh9gFkWllowppGiWJe+ruufz+Ayt+30teoUKGXbGlPX9nhoyfbzcROk1Ro3eAJZT/CR4UUTT/IIqiR5PlG7yZBAqS6/oinjoMGeV+E0/VXCJAwecNIWB0NqjV9R9f8iQC5lC/5PpCiRU+dRT0GLQjRSqEjHdFFWqT2KXzi/QtC5P9w8rlPHy3qjug0JMIQIbHZtvOjGDr0/bLElEgMEZLJynqtE0iHTBF+vNVbIjTNTo5fhegQmFL5fN2YGKm5vUsVoaNHfOJ0vr0VxOhBaaf0fSd6RByxskzNRoKed/IBmnJ6NLfnEGodSYJcWCkSL+MzoOOXKP2KXpOg47oVEd/NGFBJ5JUxAn1SpBDF4Oyew4BW/M9kuDwlRay1Z46OfmVA/A4nnZoZyNA3gmt82jqMSFXrWZRoOBmKo7XRKU5mRC3knJ+TZ8hQugppD+UiI7IbGXAi1CFHJ2JaRNwVmdA1ajqysMfkiLEvKgbGMqF6PZNnb6kpUMRhgwraUSaU8In1ukMwBXp9ubb7hBAz0jefOz42QYGinvB8vRPKjJrWNBJNASWCN4TTm9uYUe6VOcKeXEq0GyCl+ZWZBcXxRUUdJadCr0jHPJk9WNBQub16awAVSp7mYZaqZkENo7TjuiNU6CNJRIMSCStiMC4wwB6iRut4cWmyJ1jRXE+DptEjarS9lRQsUcCKnhqNHhwiokHP0LFotg1WtD7iX3nKhwaRVc+vbxxhQynx1Dc/9tOguLZ1nvYUNuS5JM+rzUGLPM7uJlxZYkOPzGZsmYxp0VEx0i/HlNjReENC8nIULboeSXr3QBw7KlmXeQoraJHI4/s/CkfYkTrdosXDJVp0xd9VUUeQA4l36swmsNGhJsuoo8PBHMhCkrU08hgd+qGaYefawoEik95HBl+kQyRHKPTeMnCiN5lyyaHldAiR+Um4uXCi7C1y0oRFOrREynJhrJwT2f48q13ESo8Elh/H6eBzIcPV7mfzhvTIqVU1qcyUC6nO8nCzXaRHVdE1ZmxZXMi93rbeDTduRoUXpiM+cyFqgTvqHYv0KLFeV3IGcCOfU3uOR9kY0MHBUX3tm9xoau1u7NIxBrS05OFeOMONDBMkimKiGFDSOaHjtFIY1Bv+sV+zkgERbhEmXryAQVa8eJZ8KwzoUEC80o9uDHrJnKokxsmIIqkcfXWoeVDSYSZXRxNGtGyk+JZNggfJssgTJ4YxIseeV/jf9HlQ9KsDFV0PGNEDoHdo1IMHwfCeXNE2RhRL+cK4IZYHiXHT+eV+ZEQWjfSvi3N4UB3rg4FDTExI/qbx/YfVPKgd5jM+lGZCAi1HWu928SAVC8FMGgMmpDRcK3ljlgcJT0+bXXNlQscEwu0SvvKgg/rJiPEiE/K85T59mYQX1ZxdO1uYxoQYnndyXRDkRZvwIlVcIxMiY7ezDdfmRWWqhOQX3jIh9m7d3FAnXiTjyel7lY4ZJV9dbz1zkRdN9NnxPlNhRnYJY+T+mbwoufYn/ooTM3KdeObu3sqLDhpGTcbfY0ae9zqLbT7yojlzknb9Hma0fOPMqDYTH1K/WRQnSsCC5udS5zBqfKh9ReQwrwoL2ih5x/HelQ9xlso+kgxgQVThqieqrvGhwJBDRIfyWBCAL5sDK/nQtcIedrspFuRkP+HBMs2HpvikdK/TsaJn7V1LhQT8yMZgxLFXjxUdyjo+LyjOj45+XjzNHcmKWsOHprLN+JFSyvdo/0pWdAWtmFKc40cpLwMTe96xosJJxyiHLH4UNnrQ6xAvG9p5IZWb3c6PhLcjS2tOsKH5Mc78sU/8CKhvLhrcYENt38gLKVkEkNWl05yvWtiQqhlbgry6ABpd4NK+vM2GvilfNj/uJoAidMg5NOTYESOy9nG5JoByz+ddYfZiR/pFGYxBFQLI9tiaBOkjdhQq70H7akgAMTLstGf3sKPvuYrGOusCyNenltcEt+2+UmW9UcgoiJtvotu0ohxoPVx0nkJRED0boi9ftOJA7UKNJT6WguiIlBhldwwHIvYrdyoPFET2nO+ozxZzoFQrwrnvVwURlqUjRWaQAz070Nx4sEAQeV2jLVvf5ECMtqAqpEkQ/YwusmnEcCJPBtG3Ra8EUfDFB063j3CisKVjp7TXBNH3HXy/ddw8rfMrdxgjFkIx7t1b1pc4UfP9CwddOYSQeKxzd90DTnTjZfj399JC6Ieb+RZPHSe6Ylb32U1HCI3LZBGfn+BE3O2nDp21FEIE0f1u375wojOGjWtR7kIo6liSnyc5FwJC9jvXwoTQsYRruXN8XKgTz2j3fIIQwtSGnwCHuZCnoCurV5oQSsEnNk0350IaEmBo7yJ+1O9z/G9nwiLV/9yZ8ITqH5wJ1/8PzoRbuOtFkcmq6V0ljf04YDdUmrW3P5ey0yYELyrvy+DiL7fShQ/uS/csX7+rn/bnEeUZlYA5lX0p0HOc2Hzg0L689jN39mfs4X15vv1Va8Du/lzYlHvIXqG6L5tu5Prs5qjty0cCzAcXktX3ZdTLeMK2WLAvpQvPr1gc1tiXmDPPe9sq9ieN+mrlQQnNfblHKny/KHd/fhpyuMTJpbUvZx+kety4uz/7vAaM8Ki19yVUIFcIitufpXta7G929+fDzgg8qzCdfXnzbuUS9tP+vOj4sVvFU3dfhk8VHZLr3p9wdjTFl+fIvtQjeFks5bg/B+0irlnd3Z+/1rG/L5qcQgZWm5eFUDFZwckBWy5kZF0/EOsvhNvUW7CROXOhH3fpk0lshNCt2kEKXS8ulKKurH5NWwjJBBt+jwzkQiK1n0KopXDaKfpMTRgXCrzpY6THKIRq8+hGnaO40GRA8cPzPwRRQEvgfcpELnTp0BRhxZwgulcrxFhxiwt9sL259LZNED0yTrximc6Ftiy7b/E9EURv4jBxa9lcqPyBZiQj7qbl6S/qZ/6UC8UGyCWSeeFuWoPULUUvuFDw5c/CBHqCKN3tfuO3Fi4UI3Ns6ICgIDLXT/4q28+FHOPr3xISCKLJJhL3U1M4e5r0255MCqAagtdHH65wIT0qtemT5QKoRxDe6fjGha4ShXjQXRFAHXNfXo/jc6N3bkCxw0kAZScNx3TScCNqXl+WaBXcTX3d4Nt9Tm40eCFJfptUACkeMA2mkuBGvB1v5kLG+VH05JKKyWFudHM8Vm61gB8FR+puORhwI/+Xb2cdwvhRjKLy5EEbbmRwW6G+7Qg/eiKsUTPmwY1EvC+mSzLzo1E2/ZTQUG504GBZQeIiH2LW8zo9FcON3hTZso7hNkHn9sje4N/BpX9SsMYQw4c0/Hbp3j7iRh8pomM0zPlQRtGZosSn3AhvaPFLlhQfepTaxdlUw404uBOVfpDxIY9tCp+hJm40inX21l/kRWOr5tjabm60hOqtkhAvuhLOrBM+yo1iPqUo9t/nRXUxI9tkc9wolfoCxuQyL0qYtwj1XuJGfemfl7q9edH8HQqK6g/cSDvp/soRM140uSEh9mmNG2l1cd9rUOFFGMkUXfotbtRPneSrwMuLjt7dHcXscSOh9RcSbjs8KF6WQ1aBFIPqfSNabo3xIEO8KkZWOgwy3C7rrS3nQaHh0XUdbBiUGadAtXidB0UJBVzV48OgvAcBg9RePGjXz0YlSQyDbL0apL4o86A8vuWu+4oYdFDqxrlhYh5UYLfw7qgGBpHnW+WGFWMQ13JMfLIBTvd1T5jqY9DkLFnheQsMarH3JZJb5kZ3jgnX4dljUNQqhSx9LDc69kKnP8YDg769GTbb5ONGBOk/xnIDMci/s8hkDuHmybVNNsdwDLJrSdjB2nOh9mFdhapLGMT4RODI0x1OFMNZ4VOQiEFdd9HN5HROpOHKk5N6C4OM/djDwg9yopXiJxsCaRh06LLVe7tRDtTsE//k2CMMCs+3/noYd4i6YXOkjLYAg97eEllho+dArzJujQQ9wdX3wub0Rik7kpib3hquwKBtmZSGISN2tHe2Un3kBQbVSsOlJ+/ZUHHy8dAQiEGrx50J4xPZEPulBauaFgy6cnE62EGYDR1cx8/P6sAgoVKrReVWVnTCg//blV4MEl8tKKRxYUVCTgPl7EMYFJLxQmYZjxWxnN9LsxjDIIlT44END1hQbueda2pTGLR28PyPZFUWRM7VcnJqBoNeMPLE+Ewyo4CAdYnwBQy6SaF/QvMsMyppRZNdixi0PMPrysTMjPgNNyMnVjDo2btpu6UKJvTjg0fK4/cYFLvz2KHKlAklT5Joaazi6ksd5hL3iRFJtRd8HP2MQWpCVmcsrzOiKwfOSip8xaBL+hWEAuKMuPWl0uPUNwxSoErk/trOgIQOTHKf2MAg+zd8Is3uDEirJQIruIVBCbV1sncIGZB9PFfg+g8MEs1nF3fNpkek7YfJU3dw46/ULUdJgx5lvCRZZdzFIIPxoXfkM3SoFZBiAvYwqLhgTHY+gg498dHntsTjQZRhU2ercYffs9XUT9Zwuu9DMLxZTYvCKdnKow7woI+FnvLelrSI/5DWLh4+D3rOX1F9fYkG3X7GIx+C0zceRJsY8tEgC6XW1hmcdmcze0tqT42Y6rysjxLwoMNqNJ2daVRIxHT4aAFOx5ddH0gaoURf2lkof+K0h/ZUuS0dJfINuPrOgBB32KRwJhMxokCWD64T3MbpjKEVh28J5Ei95ybnBE6vDRSKt7WQobsxPIFsRDzIr9qJOB2PDDGjMi4LnP7g/eV0oCop4tPt4riC03ps9d1Hz5LgDqn6anU4nY1NEOatJEayG232qzg9Hph0evsTEVIUeJzDiZt3Y6bjZGPiRMjVrHdGD6eVro0IV3gQIlu5SBiI0zlreB03cghQkB7d2D2cprWR8PaexUdXT+auNuD0lfexN3Q58FFrPrvaG5wOudLDiTlxAHEob5iTkvCgyZWijW+38ZBBZEC+OE6TG5ocScrcg/X5l5KMcdqxxSBTgWkXyvTdOXcap7V+xNztu7YDl8fBzh2cTrmKcXYg3IZhTx8HVOF0zXjR1cmILXjuBD/nBE7z6Hs91/q6ARXD4qR3cDrhhfBskfd3+DnlrRaGlAcpG7GR4S2sQxdJpXotnOY7F/ZJ0+YrVAl+Bt1xehUE+QT2f4FWL+nlr+I0Pq98ylW9z3Ccn2K4FKeLJi4xzeOvwq3rhId7cTpY+6NjUuh7SFTl1vgBp3P3DBUE361A8qDvgIIMZy+vDcWjU0uQBkZHiuJ0qukuHf7Aa5gyIimvh9P5I6JdIsXzkG3Z4pAjTmv8ZOmNIJ+F1vQZs2dxmvq5qWFMwyQUw67uJOF0iVwgjV/QKLTrpLQuxOkDmyfDVIQG4YTi++aGX+VFfm/o7eyBi3ojdX04XX30CzW5PhYOihVKzOF07vmHLMJYBJVyGt99wuk0fdN4qyuVcCGhg3UPp5fFSzsaWR/A1eRhAypyHvRInYV//MEVUKJ7i4cNp+vz5KOoTpaApyXCegI4ff4Zl4wG6QtAFYV/QRqnNW1SThl/aQSDPiGMKjjNWjXgHWmPBVabJCFaOO1cW/fsnw59guT/80PfR7J/OPS5/R8OfV64C4Nv+utQh/ajRt7zR1F8+9OWzDulPVVxX8Yvng2YWFDYlwY25Bpvyfdn0sJLR0gsvy+HfXwu3cWX25fs3ziyfXZl9mX9Tmrs5XXpfXmE5keb9AfJfSn1Cn/zs5vEvgxyr2DFOonvS2uFOv2EKdF9uXCE66rCkPC+9LaJ7J7rFNyX6z6zVNeb+Pfl+UiN4yovefclgbvLZ2vcRNqPL1Txdb+pcu1LgZ4hDiZmjn1ZaOO+2GfAti9/zcO/T3qN9z9cn7lgAe05kk3GZQziTr2n0emJBR6LeiJZuE3Pnca3O8J+WPDI6fI43TXcTfyGMUvUaSyY0GHxjMNt6h59E486G4IFa0XsoWsyGHTuPMg9fA4LuqMvAr0f3GiR6CVHSCQWDOSQdN9s5kbTLG+P60djwR37h2Yj13Cb5LtsWg9iscDAnyaL2Yobzejdaz6XgAWba6wSJzDcqNbr+Wmta1gw/Qr8JBjjQhs+NJ+Ub+LKl3YNL73BhRh7c25Z3sICuhBFT/sjXOhdT9PO/dtY8JPJbYVxlxP9YF4eJryDBb2DY4wjzznREexV3Us4PYiXbcHoyInKiq1ut+LSx/IPKziRc6JXL7JTu5KwQJO9thNWciDnr+6YxOtYoMNV6SrrwIHcvUTPfsXZZ1ImPPKcjAPVPCEJ8ruMBcfEpt1qstlRna0G03YEFrQJFBmPHmZHS5paLxKCsGBbz4CAZoQNSfjEUey5Y4FG/M1We382FNlwtUDLBgu6dq93QRI21E93SzvOEAtOhF4b4MliRTI3T4jeO4wF4kI6HHcOsSLinnZ9W1EsEDZ9zkA/zIK6gk9pP2PEgu9P31Pd9WNBBhEyQWE/20Bzfs8LZhIWhL1EkKW+1AZuPih1S33EjH4uMRKFdbeBEzJqzayHmJGFombdbmkbUN9InksaYkK5JiuKZUltwLVEV3XblwmNnztt6uXfBhrqDhtYEDMhirwfvrzH2gBzj6z1k4eMiG/GTWxWqA08OujH+u0gI/oarhx1YbcVHKo+wiMyyICiL2rsjQ62AoVXtqm6PgxoKNl6oCOnFSiGFeea4DaLAkWBOXXBrUCJbueZXSY9Uu67135UqxUATKKphRI9inLu3j5G2QpiPdjV1PvoUK/5XfeiwRbQS3k+DeNJh+KmGQ2M77YAOf+FSuIDdIjucqWCvkcLUFcOIKusoEXtM4eaxZVbAHuRf5qrOy2StIonfU/YAjRXMirY2WjRWaKrs/H9zeBIBnF/+z0aZB1MeGsrrRk8dPVwjvlJje4x4JWnhzSDyWQztpIUasTal8Wia9IMCOeGHy9KU6PeUI6Ib6LNwMbolrB0BxXauUhI9xi/GejESRMlOFMhFzsxzlOTTWCOYqNndZsSRQq8lnif2QQMLfi2SZ0pUWqbq+4hhyagnegdrtVOgbZELEM1uZsA37fblvekKFCjmEfA1mQjaHvapEZwlxzNc01KONxtBGYx3SHR22TIsbo98tbBRlBtGINGpcjQx5817jljCAxQGDsaOZMi8lf3Hl0PQmBhjNXt1V0SdHrwR4AVGQJswnFZkR3EyNi1tUP+IAQMu6Zh4j+JUA3/3YqXpxoA1QiX0bgMEYLV/itKEfWgU/5oXZIrIco+duryq6Q6IKdNEmeUSoDEHR2v0T+sBSXuL3souvFRTK73qnX+SxAlkLzRtncAzawEmzx88gJYLPjxRssfQGT2cRQbT2pA9CF/yUMeeGgGsUe+KagGJpIfmicU92Axx3l1kowqQPGIVF4k8ycsItlV3b3yHLTLvLE7RbgDC75ePPwtvBJcboQxt31+wNFAvrPIpQJoBNp6PB3chJeF4/IY9cuB9Q/66GKVDXg1ALt1SqwM9E7EJcQ/+gaNRXhm2kmeAVnnplMaJOtwwW/FQ07yKWDNJN25WrEGFZVafCJ1S8Douyo76PAFni08frLUughIGbU+nqD4DDUcb7F2uReCR9cSj1YFfIRvr5sHkQfmg3Sjbqlr2Hfww7QebUh7LtiNlte/cGUF2jYx2fhy5QDi2kwPY6MleDH1MBddQBbIZ5CUw6d9A9OyjAy1Ix6Cvq1xw8zBefjo/rgKL0MGyH1wW8lAbBZqMd45+jUyDbA/78CwtE1B01tCfo3LKUBgue5jj9M41Ew56fnWKBko2GXeDPo5DKcTCl5uld0CF529WynSBiC9hIjqnMgNoEV+11DeqxtKy76YCu9OBOzJDnT8jW2Qzzkzc8IvFnzgaWEiYGuEBN52xJtUl8CsjWxJ+3wVfHFk9HupTTgg7/VhLucrgH9/8kRt12vkr5vG/I1W1l/PIvYT/bER/OuziKfw/+c7SUH8v2TwK/x6zpL6/7CT/PVs43979vClrnqogYrun2zP9PrKSab3J7vPGLeYFhr8yYTceMO6o8Z/csO7xfkMmcmf/G/P7vyyX011OAGj1g6fhekYsai1g/RMgyFmHL1kLmFuOWLh6q061kFHLPjysG19uqwD0J/a7jof2QZjh4zfuke2gVDFo0OzmC6w1al4hbq+BRICkQbu+hZALXI+pBC/F7wL/hEgP9UMG7o3emSmmkFzqi6vYnAfSPGrE+FSaoSun+wGhZQaQTR7wnWhxQFQXE5IhPexAX4bXvLb/dAAlh7ExQjbDYELpz4Xu+RUw9jz70565lSDgIQUtScyo2DnxyEg21sBFWfiSqR7K8CqU13p/etjYCbQ01dm/jFknfuZKTz/GKhyFebhs06A6KoXHM17uZDl9THNwb1cEOdTC4uiJ4DU2idFlsy7kLK+bWIz4y7wTw2qF2WYBL7Yq6XEabGQ7EejunBaLGh96LCAOTQJKB5oUnLeDGwYKDNrJYz1bzCUP1KXpzIJIuy7vv7TseXVgf/5YMs78A+Djfz/MNgo8f77b1W73gwXQpVV/+S6PnHprY8af/I2t4jaw0btP/nffNC/7MtzpGBeuxHYoH0h95YArlGU/2gUR+ngKkHqdPh9YLScCO9Vw2Sec+FhXPxqgCO4sfsYVjZeMxQZiFe3xURHOC1NAAGG9EuSrC8gLTkj0mzQa6B5r3Spu3gcMP44NXjufgOMpJd9Pkqerr4wQkXyBjsGqr9+qhF0b4FxbtXnaAJiG6y1iKZUGkZADs/uDiFsg8+pLiuqGRaoe6dX52SnD4PsudEIUZcuuDaz7UGGihrUhnisRo4PgpZYbovdZz1QpuTx/Q6C7+qNj3nPTQsPAITqiw7g9UNP/0RfTrWCBtWwi/M4DYzyTtn/U2ef+l90tuA/dTbx/6GzSfH++xlVnUN1YvOLxJ/8b3vzX+WnZ/270geCiu5gcJUOTfl3pU/NR30f3OuDy9x5e1oi2aB7vLD87V4f8F0hsKdU7oPvv6jaqdGXA1ff/AUi5T5AZkZRetiyG7L+dA+Rl2sEdl228RqW3cC+zIOFybQTFu1qpz5qaQE/9eJ87Uw7AVFYU9OvFQmvbFD514p0w8Ci8deKxMKrrPRPa3sR/R8NeOAvPXCL/j97gKXdUe/1X3qgWORGw68esPmdwe8eIP7jovlj6vz/7QkG3FVW+1igr0oI7Ufl+ajXHuH8/8HP5cWKGSrM/8GLBXKPiJe24N9JJegQkf2xF+zHX/efnIE6URV+HrQflxXkZp6S0P4HdxfvLiTidkF/Z+sdtVGCkEKwHyt/dRgX6zE/TlN4wPKtymO+ZLjuX16dwTgJ+nrdY6y6LYDgwxjOs9QnQd65rXnXkEngMmB0PyU3BGjl3PhWUnQPXCTo8rUlmAQ7/N/7Yi9Eg/6yY42Hsfng8DORMkaBSfAgaVgzvvQqEG/WnWHVqQQ/xta/VdFNAgFZtyhj8RugjX4qYLKtHqC0D8PbQpPgeDk1yVz3dZBRp8pzMh+BGj7OXa2Dk+CzysYtI9UrwOVxAQfV92awMlQkfOT0JLDVFMLfxb8A8DY+P4+HWEC0wbgX9G0SsIk3jafs+ABb0Q/vmm53gK72XW3+I1PAS4kQE9dqAd0Mn/aax3eBEaPc09iiKbCl5vxgJvQ8PHH2g0hLRg/wtxDkouefBncZepYuRFyGp0fIuV4+ug2/fr5UfZVlEsSxtFxIeXcB6uTdU55c9AKVsQ4hdmcnAacZb50cgzfMHHjUYUKXBgyUL1Jw4U8Cc2zQKyJFIyDk+Dm/3acAdOxdofLBtQP/1Mstq8mz4PmJOGtMbCVQf3L/jfDsBBjwe7WXDqNAS7s4r/yHevA2X7Lo3vAEiDGtcaZhvATsLrEZhFQgoFgJ+qcmJwCDWWU5Xt4FMBalWOm82QzssUUKXniTwD4pjFvrtROQGovM4K/CAsr572+e4tpNZONO/mdzc3h3oKSDOqYD8NKlmDG+nASafg/pJhtD4W57oITSmS7wJTvuXjjzFEjVxSeZd4iDs0rOmfyXe8DFIyE8N+KmwPHgO+do3W5DgpPSDCact+CpDpvTqvSTgCAj/z65RhK8V/noI2YxCDhfWSusDpoEGtEPG19Nx0M9ZT5z69B0cHT0flzx5gRYs7N6e7P6ApTxUOW+Q10IzG+765ZtTIDcbC9ZWakT8PW6z93UlkrwrmLvzceCCUB3IkyVpNYGnOvYvsFE0wC+7RnNuEZNAImj+XRUy44g/PFLusMQAWY1u9Ar5ycASaCsoPRXG+DEfPab6lYz6MuXWuBJmgBmDQ1i41Qe0Ey0fEO8GAty7x/Nav40AcrDJK9Ssp6FEUTsmMYzHcCUd3bQU2YSbOWyYazdYuD2us1E+Kku0JDrOEkfOwmO8oWwDrfcgLs3TPnnPHrA1LZLcfBH3D4l7MUBfYL78MTzT6PjGjehsbLD9Z+EuPavOaPMuJcKPSrYuoOfngVMZZ+Jsa6TIIPEBdt7Nxk6Z8SYwr77gFfoU3X9Ms6eDr6fb2Nvwo67YYWfHxeCOHFDg5nRCdB0bva2tGY0VDBXw3fBew5upC3NHvedAG5l4dc3uoIh3e6rlGDJBpCVaW0cIjYBqlho6oVDTsMYCgPnknYE5nVoyU5zTYAI0ckStrVAWP1wkatgoxmcjzM5kMAzASzEsz1dJaKgUfIP7dJMLHA7sN3QGzABboS6ZITMxELLBxGMK44doDxCRO/Q4wlgGuxcjXl4HVp9ypaX0e0C74dST5R9nwB6Hy9ffVF2B1odNTlKYdADRmL8xRZO4LYgxj4XtfpKIJbE/04nQSzUVt2Z+Vg3ASYCIrnEKEvgpsHxF2VacYC8erTQl2YSPHstcPFd2WMoXkBi18r3CNgryQlY3JsAX1qIBO405cPTHy8/e4WKQABr9q6v4QT4We/ywOp4NqQqI5zwa30O8l9IpPlfHQf3Eo6szz3OhMet1MhU4xoA3v0rSUvfx0BfahEhVdl9iCdRXZI0h8BkmH+EbPcYiDP74b/ilQZfZ6jfLVxuBjlvXh/WSRsD65HOXcG76ZDyyVT2a2csKFl1WdMsHwNbwUsO9YMZ0LQ0LXGDvgNoYUeNnw2NgcIc3lvJjx9C1w/HmStfd4KPakkH2cnGAavLiRP4MAvCk8eKK4a7AaXyEslhs3FwrZfPtqT1OZyLvfja1igcfptxVLFmmwDew6KXhs89hwpFdV4xY9fB9OmG4GW9CdAQcGF661gl5Ncje9DakwUKctp1tF+Pg+/xFNSmj8uh2FiJC7VxCSD17r9tc2kcxNuyWLJOlEKNNyb5uSJV4CnTUYnUB2MgPGiSlpWjGHKkmklrRDeAhOiHr89OjgKuZ0mdelmP4WYfvxlTJwIX3+7Zl90fBUxOp3XLbhbAd7UTx14/bgajX+lHErRHgeZYzbKUdQEc+trb177VBj7u3GymVxgFxY6k9qC3AO7ceTEYktIObp/vtPXFpc//2qpE01IIlXkviNeYd4LV1Zb7Be6jgK2LeWFFsQgKsJ+Q75XpBsOzRGpGmaMgIfmKmHb9S9jxagFj2hIIzcRYcg/4jgNSFmXFtcsvYcbq7CXQlATK7FNa/ZLGwXiNjeW24wuYtXOQpOBhNiBW3xl2FBgHjzk1RB8/qYYZt7rvH18qAW9z8h/7t42Bs6009Yw1lbDC6Z30pnkVmOcM4LZ8PQrShD46x26XwY0G6qyD3g1AK9whcIVoFAS4ZZ9rYyuDPif075c/Q+DqDkdyO24rPHp44HxWYinUNc76ef9MM4g43cySYDYCnjPcSD5c8hRetLrb7pzbBliifOT6JEaAUHWCrezEU6h/qHPnuXw7kLtHnakuNwI4T9HNHb1UCgOJof7VhQ6geKxbAWswAnrd3YUDTJ/Baz8fCvQ+w61LoulnjoWOAIsx3oWI5UZI6aShunzAAZKHu3LlTI+CTrkZk63xRqhyoU1Wvu42gLSTy49Wcf14ldqW26oR4t0ModSOywFljrwsJjdGweZ8+kWdaATrqmZOzw8/Ae+zNyUuc4+CfjEGku+j9dCyXvtz5+UqMCfhUEKpMwIiStOvT999CY8fWlifFmwAL3NTJwMth8HA7nLqo3Dc0UJ/XNszBIGCw72F1w4Mg0rtDOK8p9VQttsKMRM3gzx9neULEUOgW5ehWuxpFdzNnDLCbLaCT0eiYp/IDIGc+6FfbkZVQZFHK+J23lhg4jnr4yUwBJzj7xw5d7MK8sv37DnutIMaSZrNJbEhECOr75w3VgV3tilKHpV0giUJ3cdq2kMgo5fpSe5WK/yJ/ZZR8MUabqtSCwb/HAZKBRImUd9bocY5i6K3+ncAReDbr14kI6CRF79uJLEVFuj4mg/N5QA99ThJ/JphEKW+vFfd1wLbXah7eQWfgqTljZLHJ4fBstjDp1fNm+HPT5erKcqqwBt9iTHqpCEQbe3SdDurEU61KLXNMzaA2fxSOfz7g2DGBl/9LGkjlOz0NvKyR8Be7q5qju4gqNDxacleg/CdGAF82tAEaovnQpaKBkA6mf3n6DMNUGfybk6lbyvw0dTrPAgGgGhemMpV8gaopShQvQrbgFMf1Yfr/AOAxKZpNqO/Hs5OyqE+8XYQo1pjd5p5AIQJh90KaK2HjYr6mm3POgDbKpEtMesAeOso/tZ6DguVfJ6ZXVo5AYcHiWjOUQ2DgpQI+6BZLKRcK1mpunEH2BBdSEpkHAZ4lKz6zRexUIi3Jeszay5oHmfn1u8fAgZPzDytR9tgXO2dECv3p0CG79LzhvAhwFNuAl76t8Lw4kJ6/pEq8Mwuflu1ahDE1zvyfG5qht1m05PbMg3g0ief+Q9tA8AGfYhMEG6GJxnN4tI8EPi+2xHkFDAAPppcbSOjbYLbvKMHe2qbwKky7Pea/n6AnU/TfqDUCAWzoj4pGraCZ0TktEVW/aDA2GCd4AuCppE8hClX2sAqt8dtdtl+UPzjMM1aE4LJ5KyJYa+xQLs44KoTez/ovI+SYx4jWLS4VzNs1gEyzHded9D2g0tmJ0UjSjrhkZg+1tvaJ+AZl9p3to8HwbwIV5DX00549frNw5yUyUAjQGPA7Okg8IsnSl+y6YT5j4VcBP1yQSfVXF5F6CA4v+L9jre1A47FDVaHv3wKzAbOLZaLDoLqe18yVi62Q+3Fsw8rmKqBmUjFrE7YAODJ1P54eqEN1seTX4wPaAAzH1rh+xv9wDTPl8NQvw1WpiS9J4xFwJKhN/THwX4gxclGk8jfCoVT3ag/NzWBwZnmjGP8faBaKzAmkbEF0h84mU9F3wq4siPTwj/1gFAK1sSjz5sh/kkDqgz5NrCQXECVHdcDhG+RK591aIYOScNllPZYYBfUEZIh2gPOWCDpIwzNMOypN7Xn7XZgkjRjrDnRDaaJ7t/ZDumBP7WXJJ+TWEF3dfK9RZ0BcMcpMIw7rAcSjPj0Zp1OBrWdvN8G9AYAiOIqtJDtgZKnbItOTOeC90J90iqYAbAqgyelUNUN3/L7xMxHlIIHyf6V2rP9wNAdz2wwpQsuiuMZORVVg1FpwvLXmv2AbLTjQi1zJyQq2FB5yQtBR2173duRXuB99q3yQmwHfNoFKV7j7u9ez73Obcj1ghBOgs0873bIX5DkEsrTDN4eCO7k+9wNSBmCST3VsTBlu8d9TrcVbN91e5R8rwvwqFrVzcI2aBXDekQOtIH7Po1HWEm6QD77bCnSboNLefq32lSwwKq47XVQeCdonqbv2OtohY8HahIjlNqBq2nT9KFPHeCFfMa9x7a98EOzKkHCO0tIYP0yT22wH7hFkKxk2fVCBQv9jTsJySDdb0ltcLgfWOk91iDi6oWxkxaydJR5wJhvJLW5vB9M/GCxul3cA3vNiYtCh0sB19Si80BYP0iYjbYzSO+GJX5+YOlTNSiXcmu0busDNzuev8gX6oJRU0HigmchiNAlz5kS7gXXLW9dTEzrhG4ZJ/JJqBsBidhw45HEHiCO/Vp9Ir4D0t326je0aAYiKpfS1Ey7QbfIGQa9E+3wffJiEW9QKyh8eE/5xNdOUORrbnSrFwuTWCyySO3bQLbjo6vdlp0AnyapuPUoFtLUil3iPYYFBABzJbG2A2zGf0qgaWmDkfpKbWyH28E7zHr1Z74O4EH95HEL6IPRWYwGZlKWUNmyp0zSEVcvn4LAeM0+qGJSS/qyLBmIWyXMS7v0g9rbFYHZpH2QdO36xj3tPIDn7NW2rtsPDDKaehnu90LtxmiHVbpn4DXh7kkjqn6gmSwlEn27B6o8SjPhEqkBjdQNfd9+9gKCICiIFeyGu3IrayWVEPRm5n/74dkDRJwLGsfSuqBTxZFeKvFGoEd6s3+mqxv4lfOp81/vhGrKziNxQc3ApaMymjW9C0D6oPMNbh1QXtqh415KK7j0cCPpg24nCKNUMR6cbYedZys+nolpAwdHNHZ1ijuAigV/xZpNO7xxrw+reBoLSMrph37QdIBRPL6di0NYyCfxlUbsVDsQz/r2FRPcDpjynvCI0ffD5ti+GUNZS2gE4uUuTfUBB30F/ku4+MRxKk1NmAycFs3kPs32gdecbvryH/ugsvKVhj6bPGDjR9u5WtAHTDVuZ0yc64OEdBTkROzPwF7HZdcF2T4Qm74i4hLYC8VszDPMxWqATVlcsS1zL8C+a3gXudcNs4oO86w9gqCl6W5k2YVu4HUrIZEqsBu3D5ya2WNrBOPaVch7ugsIXXlnMufcBf2m5aSMbJuBnZf4sMrjThA4nPmwQr8TzpVV3BpNbAUr4ccwm64dINL60omt7g64QPY9YTqqDTzMvPBtbLgdqJw/qR9g3AEZ3uZaDAZjAXw0EXVOsx30EJmJ9ve0Qz5xavaz7u0gjWZTMwx3ntvdMnz1V6+VgOys+i+vVRre35xOWTZdeb/cXtbJV7V+ub0Yg493/nJ7/X505RfVH6nEGbCZqP/ycllfFKIjuRnYcOVeRDFjrH+D5h++1t/pf/8bit/flSz7tztP4TMbHrdaQcNE3L/defh/pMX/S/rkKONXv4wc+buRv8PvXyp+/5Lwu8DfhUpqc75fUGIHf0/31zS/HdC/Hci/jfid5ncef0+H/xdjf/s1f/st/1p5/L/k8fd0Dgw+Lb8qePfvztf/Vrm/tuhfWxYP77Onv/CYOi6LRiHPBfX/9t3/Fga55B/Uby7u/ebvyv9T4/y1l/5fG9B0OelH3LAinbBxlfmPBvvf2vC7gf+pcf86Sv4fG45dH+0xZPrlGk210+tS//t3/7c2TEUn+PzqIME/Pqf9XdjvjvrraPkVJNOvxPz6guwfmu6fe+ufg+nn6Ne/F6zfjsjfE/i3o/DvjrlfhdWw/FHGL5dzwR/iry7nN8Njxnpvh+jg4r9dzpIvOE7+cjkH/JFWMQz3duM/7Pm7i/kz+O0m/u2+/e2a/e1KzbYMnJS2JtGQ91AsMMv7CTjxohok07SrClY01cXOxlR04KjWM4Abp1HgLxf8y/W3uF8t92uG/GEC0++2/Kf2/D3N/h5Pu0+7x+ssG7CeqPrX9/41snq6f4U34N9lM/2R7HdfE/5ONnFdhSzGRrnrT5tExURE8YTFCCQkxSUOiEhKEBAS4h+QkCDEl5AgkpaRkiYQl5EmIiYmJJCWJiaUliaVk5eVI5KSlyMlIyMmkpMjI5aTIychJqNUVFJQJJVVUqSkoiIjVVSkIlNUpCYno6KhIKemo6KkpaemomOgoaZnpqNlYqGnY2ZloGdhY2Rg5WRm4uBiYebkZmXhwrCxcvOws2H4ODl4+bk4+QS4ufgFMdwCQjwYQWEbW1sxYVtbPBthYTFbERE7EVtbqxPW1taWVlZmeKKi1jaWlviiBw7Y4FlaSorY2Z0Ul5S0OykpefKUjIyDrL291Cl7e0clB4eTMuLip6RkZOxl5eUdFZSUlGQdHOSl7O0VHJ2cLPDMzfEsLC3N8czM8E1FRY/jExKaiZqamuKbmJjgHz9OaHz8uDGhkdExIxISEiNCQhIDQ0NiEhwNjx3TNyAhIdcnITmqT0FBoU9OrneUgkKP4sgRmiMUFDS6R47o0ujoUCrQ0tI6OTs7M9HSujK5uDA5u7i4cbi6unIwMXnz8fL68vPx8XK4ufG6ubvr0DAw+PB5e3t4urv7+OLivby9vXg9PQMFBQQCAgUE/AX4+f0DcOT38+P39fNz9+TlDTwtKKilzciow6itrcnIxqahycamxaipyajDwAA02NnZ2DU01AE7u5o6Dw87j7q6qhoPT5CQoOBhVSGhYKEzZ4LOCAkFCZ4+HXxISEjlUEiI0KHDh1VCDx4MVT54MCRUReVQcEgIj5CqqhOtgkIyER6eyHsh/n+NNsc/nhE4O0k1tK08HM5J4hh8OMIiQ8ir2KuL2btAxjW14eEYcx7pqWmrjVO2h0QFDYy8TRkKzEItYzKTJNwPOsW9+Tpz0MK/p0ibhfyuVO3zZKVb3tvzWwwPcg3IpKmuMo2yzMR4Hu1g6BmKPf6S2Hr1ypubtYvdSluHZlpTzpy2KutXqaKeP0NeM3XuRNVGsOKSrdri9Z8nHeNiPqzV1qGBzOd+j1supoy9+BYoZmjpOe+zwcRV+EJIlWuwqRAlPD3/2ZVG+R56fRTcdF+2xtpTuXsefvE1W0jIp+9ycfAhy59DIhYlw3PPv7jacj6/7fe2Nz4siiytz9CjefaNc9qYyNoJhbI1BrGToclmxVrSweEOaMqcfu2YfQ91d2/0nOJVLS456++xlAK6xll0FOlpLV8k2oRSB1OSeENFxNlkJwxFXw9KNga7H8oXkMrO4sYwv0shH6IWNitwL3/OYB4YWUCl1lPf8SBYcP7MD99Oi/OOhkpCWl7guq+LEE/PpszkOuhftvGLDvGQC5X8klcSsfthZPKOzJlvfI8NWr9jVOLinQwLR0pin3SYNX1Ny3gToF6uetN6eqMsJ8+ez7P0g27vbZn0l0sNjxINEIzMqjzXe+j7QY3EH/pg4Eevb8o0Jn6K4NLwm/7O8w4YNIfEzF6yN0F5/PUpucnwfkqzApPKY8FvhNgur+n4qElcvfFlioSc5UicklZ4CIFH6R1CVX+ttBBShyW2BpMnnnHXa65gGxQZuesKL68UXrE7KkXOcixgLnMd38F7tEHm3QxVhuHmfT2Qxnswkif3YvGyUkFn7Jd33hZLM0uazrdMkq0uK6XJMmGnKD5UUE8ZU3+dVlbUqg0XLLpM5fk28RNh69gJmTPDlHIDMpq12aTcknwGNdbSK8/vfU7qXrmp4THvEk6mru5w7G4fi/ZG7D3jR5GZUSFs3CLXUga6L8hlBH3R3MIXZZJK0vrhyXVsW1Bh80i06OlGUrFn2bn44oQTvtiJHmad+5I8PjebuvWdy9ME4mzDabfZe94ezVFpGly4xah8afg0Q9JAGOPu2uncpJvNRzZez11wKSwOoLT+LuoZdK2QF0s6RmzumKbWUl8Rb10Xxm7g8G3tx4n6bpO7ibUVEZuvJ9RK3uoyN02vfr3gv2GzWXf1bK11H7ZmJe2054F3133C409LTt07GfPFQ6xm8xgRw2Ly3ISk4qf6PPdej+Bxu9AHn0QP901Hi385ervp01Ez60nP6OWdnJNKeyKGk+ZUz2f9uRer77d6ec9nsqFld+JnDn0n9cYiVC5u2fdq+XHI7D5L7aK+anNBh+Fa5cOiI56AbPunv1bIjvfIldcniKCVGp9umaVUtrXmjzVpRnHK4iDGuKatIcnAG+on0324bA7BF0RxAYPF+QUv3rU99b40GiR2rzQ9R3xlNOfNYp/qI1Udnwf9lIS5a1dDBL9rrlIdnIiM3f5QUqkcVhM3eZhmszfELH4wyZtxbzPRLoAmqMbXJDb3/Wt9xW+ZFxotuOLut75xvu0BF6xkFS7Re0tPv3mGFDGZ2MX1CzWDWUrqHE8Su96uvqfKa9h6u0KxUTCr3HOmpNDw0qh4qtX13bmVwdP4QyV8hSXhGb6upfSvKSOzGpZ7bRkuOwQWfKB1EyUgcvnIW1PJlSvZHBbbUnU5gSyR18eO4rvHUcq1KtFCJyO82gqjS6sPPAeDuZwuqw1Yn5a+YsxclLpcL3It+OajnUvkSjWq+F8zQ5OKcmNtVD6iKHdxy+A6R3ddu/mTDMd+bhEffUwWZ/RBiN6IneLCB6Fju0EpFEsrHKQxmU+kv9nYOMZlSgcbz+SupsylVig/MLYzrq91I2WUxu5N8j+dkDroYfZr0d0ISOT+16Jr/ueiS9RIdpDRE7foLmcE6RzNZpPT9klgq/4kLc7lPRAnRXOchEtrgLeqKrk889CJKzeeSE7phnVvvLfOM7pRVeA7nnvHv8xJbLvB7OvEB5vs6FJG6dblJYZjkZHkDqbymKbMxe7qZcKbdXfwMg05xDNTeh7Wp1/a9jPqPrIpfPwB23U3CqJ1SambwjE6zjvNpSVnrbik1ZnjBj/bu8vmXJXmZkjouDXqynAXK5nndJaWL+/JVY6z31M0cjfZB3qPctEcnruuRcL/Uk4/KkYkLEMqZeBOMzh9Ipw248kTz4jPXOo+WTTlMKFwyxsTsP6lRZeff0GIviWvVnP74e22G0cXFn3Oz5/y0iO4SFxaafJ6LJLBdnWk1bzg3NyFWF4yFwHWpHdxDF5xlcF7eKnBYs86RjP9k3UD9W8RhxroTVb/pJRmLCrLmrlG+al+AcAvOvc6k6T8mZsam7iExUMkNL1vsMkpf5BUyk0bzd9MykXYm2KdYWtvVOIVVjLFcr7Ut9ZNjJDcvHF/yPQUv8Nqjubl5+rhqayPijopqEYCJpzz2Og/nUP+WiTbX3IVvb+/cDJ5SfKEQn757Uf1o0P3zOslHk693SmT7Mho2qRSB+q0h16xpITV33nvR4aae550b71glU6OrLHbYTnD6U1hVKgs9eBh106ngwXzWTde8ZfXnpN8GDUwH3w2cJ6D4dvNhTOf8lw617h8l1o9/cKMhIjf2ZfRxT/0PlHT1zLwzps512C++py708IHW/ekCMvi293aP/FE7x6n+zIVeefW+uN4N+quxYknsgk9I/yfbgfYbvMO3frhSapLrbBYWot11IWiH/Wt+6a0sI1tHVckuIg/U40wDNx68ojQh9fhC0dz9N3vb9judH27wYDP/2bYUnixE5u1mQVjdS0OZ6lqU7sdlz/8Sry5V8sjlT3kGcdsnEa/HKcNsYP1TxXDDO+gS2UaGguuDN3vAzXbMc7lx5g0exkPsgrzVlzW4rxhyQP1j1md5huvFeunFc9/9ZzvpIl4v6to/rdPOtZcT1DMcT7ye1dOe5bjE/XpDovRubhm4y/76FpsWsQETDHV2PDwuV0iDYs1GLZOFDnCo3X2Kr1xTozCqGWCgoOyxQpZgppsXM7S4eCuayIuz+i01tXmTHKPqyyvn/6WwLLwHj7DHyutGx1g4c48VeIRrAzvcMacoLCv2JQsDZ/INjnf7+OWR3Vzi7n69GbNHHeFp8+cZZrpeHpwpttqbRtVRsHcpTeUPtwX0ov39KPKLtJFfA2WDkvQj0vD2jJf8JO8WWDxZvWm27sEr7qA80Jrr119zZJuS3PciW06vnF5o9jeOyyyV/Oe3KEaKaC7rejJZBBXSmbNd4q95uVFJl+lafKUQlsxqVcnE48LzpdUCFVnGzyg8pqhFrpluYkJs4+uZzqRFtr7ICqZjsL0RVFmyEP2xdmtDQlfahYTvZOri26vzOlsnXXdOEo3p41vag0b6l2RU78wb4Vl5TSwul3SNjeY/ZI2JqZ45c1m5MNT7/G/RCwfNUiPQGGpLTQh0nVvfyxJQOs0mpfHH4s+PR83+9GLfT2kSHTLpWcx1Idq7dzIsMyhPbPsF8RcN9g7x99cfFFw6rr5p5HK774vq6QNryeRzFTufiD5GCMXoHovwvQtp2If6fem0WpuhWVd9rFEVV6rF3fufJWKPPn2RuP1p+tSZdcOTwfrWs8GFp15Ok/TKtXulWJ6YUR+t1Tjxref2o9PJ93AlnJduWZ2+KWMfsKInt98boB2o657u2h1020qZoWfLD4ZbB6J/FXOfBERqcyUTWVRpSXvGvgboF/8alVo1RFB7BCz3g7NWk6WAoNX9HYN7qjsUn5r7V/r7AD+73VWrd/v2PXTrNgvlYfTM4cH4w4xryUlKtD0rH6FkbfTYgwOmr8/8CTPVnxo4LWRWdjgudjY4Ja4K7x9dYUCj2XMFTqM863tDHvYn6wFvtpYe1exF3LBYSes9U13Vt+3oXZ3w93S1tKk3CqDjz1rER+axD/2GDfUM9c/mh829etdy8jMwFy7/WwrQ/xs39qDRbWu7YjDdc/VuiJSNj68UV/7gD/NTWeLDfrXyzhUvpZsrKvp+YPF36/dhG9RoxXTv19YzzDz2Ehly7NPSYdXHxWT/4wsak+3y+4JscyaNWXSW1XvX3pZ1P+pkPzqD93774u04EMx5+L8/69de42GQtsDAO6RZIRDSKK85ZEhRHkrmQwRyivlMAjjmcfBoUSjSUMc5f06Ew5KOXmPV8qEjMfIIKKOR97kNWoyzu3ede9q3XXvXffD/Xb/vy97r//6r7X3/rD32uu/t9dO/wUTk1PCrcoInIF4nMIHVSmygFqFvBAvefv2SARLybw0v8BTvrHzH9rphJcj2S61lBF8zB1D5dB3uNbiY7sfWqwwqhHoaP4xC/pzVLOBWBry9ET8/ZkRj7i6cIVR69FeBxKLbOHu1NRIl+WjXHxJpA/ogSONZ4NaHyVHm3Fl3FEwcl4PGfcXraeaDazFzxD69wWF72RgHTTX1Yg5jl96+ksULAR/fxaXusXA3H4tU/JV8f6hRIlZ5wMm9u6lB3SN4ncTgivkczIZ5FtoYkZQ3iC+60ZI6saX9Hvn6m3QDUZbYjsKotvIDmZokol9taKf9oME6wQ9oYdKri9yWRxJOqghf10zJGXpjyk+pWH9jYwFlcG+4AlNm5vDZw4YHC1iKzbQ4Pc5JiR/gkjvxtpE/yYv9lW2f7CqKZ0RbV++yvKAsNH5kVxDbCc5hS7hySppvOFnriE6S99OPnXk6Mjpmcw0RVwM258QYilo7y2rWP8k3+3IPdFSocq8bmKROoJ68YK1VdHNLzUb63q2zx+c0hP0t3Xxf3rK1U5ljpGdbJfN/SQrF7XZYWKXifxNkhOnaegRwKvI3P7x/YXjZCei2qFUAqsPgskmfTHrE+d0det/Ki8EcLKwWGH91P+6A0z+cdNw74/SSA0X5FypOO2B8yCLqN/N+NF86o2fRQrvp6EZc7xZpaZnpDTerC9B6iGxULnKFoNWkrJw0iDUmPVYiPhKzrZVW8tYh3sdFG31u76QY7CQl7fWSGdkr2Uz5rUKsU3VhnvHTQQ5c2iOrL7oen47vzUDEqbs47PSoxJt0dbbf7lRqpi6XZ4m6dZNNRWqmFp2TZncbYkq7sqXVkRP07r6KMTAQ3qBl9+q1qRruSK4NpSYx73dZzf7apPIURpL8RGTyp0+an2LxMDDBMYMnvGm5SFzzP2MS4ckm6kCrl5fY7Oggo8QNYOP2rbMdY6QLjI8109Ra+s8L8DoG0oiR2tsEisOE7ZVkuhpPuixuS/fB7d33mWpD/y8aGkcs9TU69aNNtNpxIbs8BFOjB384qtc9SggB6WVRBZb5smZL61VLpmYn+5Ln4gqOIylxX0dbR+gENVeRRortcV+bfDEvtN1pG8/VR1YvBsgFf6LU26XF4dDXbm5789LCnXk6DdXmudYD9BKzr4uW5Bi5OfIX6xO4bFZ2muXFSXz2qcaw/OqWVI8UfPxr294k+OR+t7rSluGKouVpV53xWXznJj6S7S1ZF2HAt3IrGJOPltc0/HA2EmSeQRp9Rf9yfst/GE01c9B2GzKE62494kJdbs5iJjupe61ag6y4XAT8tEDy5jgY8ahkxLiV5GbqyTS+vuOx2laoa+Lb3i3VC3OaEYFcEeK9b52u0m7pxek5CGw1ZYmWCtfkR+Ue7rBv4Ifc1t4v5x3l4tXspud/ohIRDlj4RyParxSrHvD50VbEe/eTspB7acfL4fJTCiKZ2M8PXAnrm/n2TW1M7VdELe0ZE5Jf9Ztv/dTJt+wmsQU9UKzGE4orhLVT6NmqI6sPY7EaBxGOBc2jWiYqy4nWr+L8OXhvtWqlYG0D6iir64L+0teRZ4U9i1Tjy1KtRNSvy4YQ3I8H14bx+PZkMsr5jrUEjob2D++SpHMFq2qnyrnCc6x7DMIvsOePbMr4Q7KaU+pQV+tZAebY8PG+H3z/aeuLmuNDfRd6u0950fYttlrmXFl8+TCpFErUvOgYsri++C5R0M4F7R9KyIJFZDcYuZlJew5MUhf7tYIuY6MicwoRxCy+SRTJPyu0mzbt8i9dDsDH22mnZj7ihMXNq9uOs6mURM1hVwVK3u50jtsOB5RwOI6WrjBVYaVHGK8j19SYjuCpUT3LAobNVKpPS9O76kU74xPiWa1GvGjXqJxPVdXV7gqGsu3FhZc36AvHccxkp6Q4LnmYjNECmREGv/wU9dQz/qU4cDUp61EFcnKz/2CJjqU/AZljYmEi3suo5F3ww+5tbAWe8y76vEfWR0RLwwSffmK0xml+QPr5BxlKEONS4T9RaoDTgq1rsNE5W/Fi83seTflJnPT/abPNRtZUercJ0+tnQ6pI2GoyzsYI50Tlw4U1Azb7xqlFj0OnB94yedIbOQukbI6bqkjp10qV3kmvPQQbZBOtnj2DG23L5B6o8lF7vAfWfqzdJNSfDtaPwSLkz3tEXUlWd3UIm6ww/hKZtCH1re/iqyGHuU/pllU2RLHfv7tvX1hXd54KgHvpTSLTc9VLVvGRfHwpzVju68pctNMV36n4JYFjuplHNNy262bPZHPiy+XmiY8+mSPMeZ8Uiqa14OQsK7WrjnRKx97vBz12PWCQMp8mwMlmH3FiiDnefL+vjrhUT2mnKBV9OaVwHLns/Y+mUumK5WYz6s8VVrsQruao0JCxSNvyLBjKpycegTw3smKOfQ7X/djgwtSWSe2tb8dqA+/q87+q6KwRyQ782+9f/dj+p/97/O+zUtX6hqBhYU9SM5c8/uHuIPjHIXflsHx9wBhmY36rY0RTvT6PpH7vxsMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/n/9CQ== 00000000-0000-0000-0000-000000000000 @@ -50510,7 +50520,7 @@ Control points for each segment = length of the segment * Division factor. - 7boHVFTL2rBJzjnnJoNIkpxLEERQJAiI5KxIEgQFRaIIiKAiknOSLBJFhF0gOUqUKAoIkpQgGWHae47nP3PuvcM365+1ZtYaHtbup9/d1btq166urrfZGJgYGBiHaH75FyRY6IfLetccXFzPuDo7u7oIshvaud90cHVRlBY+JS4sdkpcQgb9RFT0lCD7GU8nD093O0UXO08PdysnQXYdT2snB5vzdt76ro52LoqSkmJiMqfsZKVtpCUlJcVFcX/VQv2vgwur27k623m4ewuruNvdwEHvx7/1Rz1EVu421xxu2YnbOhO63rBzcfF0t76JY2vlYfWrEAEBAdavJlLwYWCIof1sn5iEEBv9hPzXwxddDAysXT8sjBHdP05n7xALg+bPUzvT4LoikElwNnn4RV9jt4AU/0Gh3D769fQ/y4ph+GOchtx/BBS/Dverub+OVkvw70djpHxprks8QIkcYFAEYXKuaDJ50/86WvCfZSmw/iyIh94MMf7JCvi3XX/sR/65xxi9MdXxLUmJTyFHOXTcNjpx//ORNpfAWWWuOdocHVS70bZHe4st8Nvnn5+O9LzXiAFv4NEe6xOtvY53tBOvUGiY004eaT9ShH6O9eORtql3nnXlnTjS6p4sFdvC40f65ImOoADpsSNNPuGtR3R69EivP+HneHZu5EinyOATCd0dPtI89twsqO4PR7qP1mYQdf5oF+lN8MxPDB3pX58HBjqB0cOaKrBL39F5j4AdutsrhGK1VIE1s1ckjeMoWFh68/6b3ipgyOal+DAXBZWD+O7JjVaBfb74AgUPFHxQvz5eM1UFPEwOlRYBCqp6nU8RWKgCg5zqghHEKOjO0zdDs14FYOQwT20nG2w2FKP22K0CB/Y1S6MRbDA/qTeiBuM1+PLk1sf5i2yweK9m+hnua2Ch1Wa8SM4GKQtcF0gIX4OieHXf2feskKJBwDyT9DUwZfNlyrnHChcctV4PkL8GEy+oM40FWKGzsYF9IDpu3ycIoPrAAslq+bELSF4DqVc9+Z+CWGDDvuW4Dv5rwOsgwPFelAXS1yOpm+j6iWLmRGS7mWH2UsQs1VYVuNoYztfryAyjrVrWyuarAIaDcX8BITP0yuUiwxmpAspV3XldL5igng4JgXBTFejuZikRO8sEy6voMM4Voc9PZk8x4T0jHHdS6u95UgVOE17VszFhhItJwS8oblSBzEauwgezDJBCwWlA43wVaBiVXFh2Y4CdshzsiZzo8lmIRdBPehgqPeS4tFMJap01BhnC6OHosytDBl2VIGFBM3Cchh4mRbl67yRVgncoF47XaXTwht00w6drleCTLYPkc0E6+LN3sIPsVCVQiPCXsXpNCx8ptfoq7lSAxIqv8kKqtHBIVVatvLYCKNSTiXztoYE3E13CbvtWgE/T3575mdDAyL7C2VD5CqBv03VlZpYainE2vlr6UQ5WPr5zJXOnhgNuYz46xeXgofGbYJmfVPBgpKMCz7YcaPS1LvKFUkEVHNIYSrpycGjKBvupqGDT844PtxvLQG5r0bR8MiXMjcDcPOVaBqRez0/Z81HCR8HSNEuMZaDxBc/U01cUsHd6hmwXlgJJZrJaP3kKWBVp0GRnWwpqpb713n1IDgUIIBkJTimY470gUJ5MBlXVhPM+pr4CxNjzX4tKSKFZYNKZV/KvgMhk8IsX70ggaxCZSEl/CdB6YdVpPUQMaS6n9/ZfLQFDMryEP74SQRcR2jfaKy/BV4nn327sEcIkm+FPiYQvQYZAq80GKSFsj03E/8pZDEzZ94a92QngR19tpWGJIlBHvjaBK44Ps0c/nioChUCppKu3TA0PkrG5Z/ecKQBpQcln0o1w4X6swVSFcj6g8DWk/uqIAxcoZVFJIA/4e5FPC/thQ5MGJ56z0rngIP4VRU8UFrylsuohcOIF6GnHqZzKwYTlHOQ4nbQ5QPr6217/GgyY/2ShLfVnFnivt3nomn6IpB02Pb75JROI9940/djxE9E6MH/k3ZoB+B4fTvhu7SE5rcq1fC/SgVYspHXl3kXaLk++mglIA3o9F3Bq9LaRTRelTYzSFMDbOGRiELiJGN8rfsDflATyPyOcnzE2ED+x3RHt/gQw9IDo/CX/deQSjoZp73gccGGjNc7EWEPIGxdObn2OAcbeSqfrAlYQF6vIjI2paLAtuKT4E+8b4t9mTesk8Qw0JH0Y/RS4iJjp5lR8D3wKFmQ8bV4efkVuvYlU0Ul+DKg4MU2V780iGFmlJ9VFHoFi38KL+nvTSObkwRb221Dgpawdkub9GcmxC9VxQD0AmxWYpPV8k0jgrNJCj18QqLLlLw40HUMunyaMZJ7wB8JVBsI8Tz8gr10Xh2ZdfYBLfs9OZVM/8sP50yty1G2w4PT8TNZaD4I7ebAeVOIOuA0wuk8ntyEGUdX5E3ecwJCC290HZ98hAdhz5IzRNiDy1Y8Stc/VSA7fpmCStAHwJCt6rHM5H8mWe6wEaARA7hi9IfYJM4QGc0Dt0A/L//c64vdi5gvp/3wxU0T6HxYzEf8bi5mn6K3gzy+Bo8zMQc8Zdeto4wz6uqfsDh7p/o4u/knDo41pe4cgOHrgSNdKV++b5vcfaW/i7RUJ2HekJSelvpAM9R7p1VLPkZnF90e66EF511vMo/2+fDbohEj3kT5naus0Ytx5pOuwp/TDHrQfaakCC0XZ0tYjXfiv8dB8pLl3jcniCZuOdEL68OY5yXdHmkrDcHLbsv5of37xWJcROdIYopmWr27UHOkV35RTlK1VR/pjVzyWG6r8SHexPO9/f6vkSHt9YNewSso70oae9Ivs5zOO9H3n7fepN+KO9Fp5j6Ohw6MjzWr7aBUOeh/pP6ca/6P8ax7756TpE0nRKziQhdQWlBI9Zk9ElJROE13+XI6Iy7s8uiedjyQT8ZwKuIIgaqRe7wRvlCG+kDm47Wsj8u1J9W5CYzVi/zBsY5e7Hem4MBtZQQKRgRvvJZWk3iMrJC4kDcPvkEt5n2lZjPsRYyG/XZrsFiR6z7ERx3cI+ZHhC5+7dSAM0eRae+kjSD3Vi4iLSj1I7KOXmttN44jhq0OjxOBe5KrFbjDRrU+IQLAfpiLBAJJFehjKFjaFPGRm2cEPH0IaBV5IiCfNIMEjghe2SUeQBmXBG2deziJprFacBE/HkIcxS2vnG74i+g98qSVoPiI+mrnT0TKLSCV+7U57CDqx+p653le8jDgkJFQ8xp1CCAse7/hRrSDu06DeNmgaudt982u41iqCfaOhRh3zC3IGVVocHrqGbOrN7Uv5zSJmVV7LZDg/EOEgdz6L818RV12KB/5+Gwgqpowrnn4BKfFVezexu4k82cbjm5peRKaozWl5bm0jWGJemrIly8hjV+vzBqs7SNyajnCqz3dEocM+INhpD4kdoQkLzFpB7JcNE1Pm9hGPnxJjbx+uIuKyHU6p1gfInQdPJw5urCENiWbCIROHiPAoQbbG5XUk8P7FcIFCDIhLfG4qRfEHwi3v4vfUAROOy4egfnBtIGy3Zx4s8mLBDxqRfZeINpGMnmdAZgYLpmRuFCIrm0jfeKLG7XRsuL2iiiH3YQsZEfwpnWuOAy/tmUU11W4jn3zMeUeYcWEx7m1u3awdBJIz7uwN40Lirisbyw93kai3imcoYvBgT4dRa4rbHvKtafIh7SV82PqKYNDeaB/J+BmkRExBAFOHSp00wE/EQJJ/DaOLAN7aM8UR5D1ArBK7KefCCKGgBSbfCdJD5ASWDXHtWSK4Ud/IqfrjEHnE/kEyEJsYoryGRKAzBsS2W0ckITE8EWJkf+MzBryTR64570MCJWJGk9gNMCE2zYB4uCwp5E2+vjjVigldnYULmTZJYVAvY9trBSz4fUerOqaUDJrHLrlklmBBgX1ZzgMXcph0VdE/kxsbih9GNZXSUsBR6cinmXHYUET+O9/4TQroS2VGVk2CAwMmvibu9lLAgauKiTP+ONB1b8qGVJQSenEWqvBu4MBsb+s46khKqMOSL3HPAReObX3uZFyihPx0ubwDE7jQaGjWmVqTCkpoS9qc1sODhRfdog9fUMFd/zi2+mY8uBuyKjSBSw2Fu+8X6svjw8AnT7ELbKhhja957PZLfEgYf2rEq54anhORCUziJoDtN1YXpFA0UPTMYZtOPAHsEeTFmPGhgWTfm35QkRHC5o0vjb6jNPCyOd/oZCB6kS3t0osrQwuf/fjwpWyLEHZ6b048ek4L3z8MXQ1xIoLDEupiGOu0EONcKJfNZyKo6bP92FyHDm4enPZSMSSG88wP5HOK6CDVhQdkHB3EsB6r++YQET38OIiM/gQkMH6ethDvGj0sttjJGS0ngfn0DG6oJnoowsuXV3GCFGKKB/1EcTLA7VaLwIgUUlhN4LWL78cAdQ5ima2pyWBf48johzEGSPXqRp9kKBlc9JeveSHDCAdsNMIIf5JBWy4iP4vnjBAzusFs3I0cnlXRLjtcZYRcP+oqSmbJoSQes3nYRSZYrD9X2SREAWkE7iwd5DNBgi8oPLlrFPCH1sgdD3xmaOtpZFCcQQEbezuWBm2YoX9NfeyJCQrYkO6OwwWZYc8pQvxiekr4lhqDzIaFBQ5OFJ05o0cJOwY/aD71YoGnebY15h9RwtHYlyHIAAvMd1LRedxCCffzerfGRFmhl7YY+1ksKphRXHZ/+xErvO9cQ8yiSAXJ4Dmu8/OsEP9yXpWUFxUMVxXiGVJjg5bNvv0JZVSQoI2SzyqDDb6R1P9+8I0KxkC1R9yHbHBegPJuoQA1nFDlGxQ2RcGo4e/zL+2poYvNtT3vahQclp32I8ikhstfKW/fI2aH2484yUsnqSF3muuKohw7ZPhklWLCQgPP+RHpMDqwQ2qeZV7DKzTQWNj1IWEcO7wr9GIgKYYGuuuU/sBpYYdScUREvAM0sK6s5C3mJvp1me+lc5S0kIj+5f0Dbg4Ih/tN8rRpYWjNtfz9SxzwcbGsV2YELTzNR2myFsgBH7qdX+rooIXsRhatg684oCLuhhkDER2cNc+aSP3EAS/q7C35n6ODRXbzaw7knNAiEdNn/gEdNFHhKWFS4oTdybb8Lk10ULnq2U6+EyekNUgkx8ehh2etZ0zpEjlhYfbPJ8Uq9FCoQReatnHCGetqcZsAekjDiXBlbnFCFnbPIXpIDyekNEIaebjgusbDhJEDeqg2WVgHL3FB/NCHxC8UGSBTdu9OYgAX5BxE9QX6MEC27KZN85dcsCvv2pBnDQPkzK5e55jggl6+r0av7TJAw0mf0k4iblg2WsRyU5YRTl8+aXxdhhuqCJYtZ3gxQtmwZwihPTfkvcU8T/SaEUrczOsuf8YNe/1qhaq3GKH0npxfUjU3xG2SkY4WZIK4RMUyjya5oeTP+4WpVkzQeGTwchguD9yO4CCcjmGCm/WqrDEneeB7D/cV604mKHWqGrdAlwea+jkE02ExQ48dlQboxgMv0vgoG4gwQzdrN7XxpzxwXb6k8LUpM6xXlb61+4oHEqPkNRQfMkNH9QNLyj4eeD+XimSoihnSaC46Mq3xwPmmyt3bX5gh7nyIhTERL6zvIpzAImCBnyfnLaI40fHHPIxnAiyw/J1jc60cL/wRgphxaLFAp3pQPqHHCxk8la8UubJAnfrL7YvXeaFw8cZFwSgW+Nq7aXjHlxd2V3x/962YBdIPn/ffi+KFHymKT+Z2sEA3U6Ob+zm8kKniPIvdVxaYkWv2cPoNL+R53/ADB5cVytg7X2np5oWv/Q/b0jhY4aqmx+H/J5O+6nydb7rPpU4f5V6T/pfph0d7NiN+hMdP+kh7FKw+TeCTOdL26U7O4d+P9lnpj7Kun2SPNHeXNt6lXrkj/ehn1uTPYPkj7dM60eR6cLSntsVSmcoUjnRDZJbjQabikU7jppOZilY60v5vQnCag8GRFsn1+aovf/pIo25WdDeXHW1ypW/lMoLKR/qQgC8xP+tof++3CGBhVTnSkylxVyOfH+0eh14tDLIzRxqRIJJwf3C0Xx6qMM0cHO3U9rsYhrdVj/Tj5+WzLd+Ptp/lcqfsNbUj7T2WLyfWebSRyaEYJ/azR1od+02BsOXR7jO5+8jw+dH+NY/9c9Isv7R+Ub6aF3I8vy3ziZ8VCo/LeBRl8sIaF2FXdvRiJYDy/g3qSF4YxZwWbifNCl/wMqr7ePFCMtu0p7lKrNCoX99uypoXvqm1t1lUY4UCCw9Cd87xwgDPlc20i6zw9sOpehIRXmgyaggML7NCt4pzley0vFDLgvkigSUrpGqYeyuxxwOdHL7ZVV5jhaUXeEQ1P/PA14I358zdWOHH5N3npAgPzL8WiN/jwwqvjnN59SfxwB8FjlclQ1nhY9xAs+Q7PLBuVGYn8hkrbNzZ2Xc04oFZ6kkYIymsMP5+KDWQ4oFY7G/NKfNZoX50xFYxKQ+UCbgTa13FCt9lT/HwfOGGyi6r3xIaWWE/W4NH+ltuuMycXl7Zi/6SScyM4ozmhgz8Hqiyj6zw1l3q3RxHbggT4tcjFlkh9uD22Cc5bthgFtdAtMcKPbldg1DoRcDLWdR7QyI2iMK1sLQc4YKjtO8uujCyQRk2Ha/UXC4oo7P34CI/G9x9VT04fJsLNrVeJtuUYoO1alziVOpcUE+5/HkyevF3Qh93SI2OC5JuSziR6LPBs2dpWG584YSpKy7PTluzQWliutzIck44+RyLSvoGGyw+LL2YHsQJCYRvCy3dY4N4Vbnnv5tzQt40MiyJUDbIVP08VkqOE35JmCG7HMUGwwiiaW/TcsIkbpLmS0lsMKqFQPfVCge0xBi34c9hg85nSTRmOzhgXOx9tv6XbFB/xeabeRkHrNPVXFGtZIO8CR8VBhM4YNZdae6st2zQpi/FTwO9yHPyGRBbaWCDI5r6DG8dOODHFr1n/G1skGXXx01IlwP6CrY0XOhhgxiYcrcvC3LAG+82CIOG2eCpM7tFvvgckIy6eyr8Mxs8lzp5N2uKHQIr2Wd2C2yQU47Xs72WHZropPqSrbNBP2n7llX0IpW7n9QoeI8NaofVTL6/yg7vB2x6d+OhYJezsVmpFDt0lLKMq6NEwU/NhTjxuOyQ0kAtXo8FBUPD36eR5KFgf+mmfSgvCiqQ3Uz4dhYFcRpHrSxEUXDtCW30+xk2KDFYZyolh15cx01/rw5kg33xg/eLz6Dgs5zvCjnsbNA7l5Oi5QIKbt4LpHtWxwpXPFse+xmg4MBIqIKfKSvUVebVGDZDwRLJx9aOuyywlCQY65Q9ChLQEQ4axrHA/cHkjRMuKNhZwap/WooF9qQG2r/zRMG4FqU6vgFmqLIYoX3gg4ILS5mnSd2Z4YXB2aTxIBRUpCJ8t0bODPURsPDmIQrSnS81Gypigmvqs4kKT1HwnL2O0uvzTPApFUaqTSwKyr1dn42bZ4Rt6k86xJLR7T3LEOQVwghFGXRpijPQ7etVQBnxMMKYr5RmJ3JRUOrpVLHUOwYooI/doFOEgtKzrT40Vgzw9Km7NPylKJjI4Cm1il48k/DuPy6vRMGrbwbMOpPo4bZVy7e9NygobioR/EKOHs4kR2mdQdCvO6szBQzTwe/suY/V3qHg58Gep5dv0aGTnNNxhC0oaJShMnGChg5mM9npxrSjILfdBs/eK1q4ICPbvdSFgqt8uS6d6ORC+DLp+TO9KEj9OaE8aRmdnICn4TYDKMjUAj84hdNAy7deDrofULCZ1ee00gka+NnS7TH5KAoGePsbUrZQQ1NVKe30cfT1HrzvNGNLDYf49sjEJ1EQX6pPpBqLGmpqProW9xl9vqE/lJ6kUUFDUzHngWkUHKPFqHNQooK38t9LLHxBwTvr6jFq45Qwo8G5YHwOXX/vYxeOO5Swa5SIs2ceBSsPqNMO0ckibm2Oesoi+vrgi1B8qkAnkxFxpFrL6Ov5JNyi4RIFzEg2PvvxG3p8jtqxXJgmhzytS6n6Kyi4/KzcmxpFDnPXfHfaV1HQfC3u+YQxGeyS/nyTdx0FvV/z3ciLIYWM/n1vHX6gYJ0aU6dnHwkc14g3jd1AQWy8V87KZCTQ+uvbl6820eOhWZ2cVJMYfn3wCatzCwUjqgM3PwQTwVO7loT92yi4VSMym1ZPCD9Yz6PadlDw4flP6fY/CSCBQ8Dtkl0UjIlcJueXJYB3FFspw/dQMKN39968Bz5cpCQvtNtHQd5W25ScEjyYVI4TJv4TBenDww3Nl3ChqL1x/iY6zm96X0zOjwvv09pMlRygj589OVVtgwNbvyK9Noco6Bj8jc42FRvimUdaEmOww3iiFl78MSyYPjIrboWOgy32L2TQYcECUlXxcnQcKLS8JaGHCX25uOlwMdnhvFRIQ10EBmQmT7mjj47T/FWYnkYdIq936Scz0fEZorZvUYQHCNvbk02r6Fh/VV8m0H8fibKYb1fCYof7/JMB5lu7iJ8/kWc4Otbolorlc9lBhpS5hIfRcczNyMKVmS1EEFthjhubHYY9KIvIMdlElm0vvHRDx0NxxAQafT+Q70jvSh06/nQ178TwuXWkIFpxnwSHHfroRZ3XR1aRmUwzXFN0nKZHc7rCawXBESFNTUbHNK7d8lS23xD75/fnJtHxS1YZwbShRaT1ncU+J3reyvV5iUerMY8o3QhctkfH5+7R9rnVzCJx9CE1Bei4/N6y+9voGUTu9XDZF3TcxPTmcMN5Cqlr2zjHjscOf34dFEGpf0K+ieLfNUHHGDfvOLidHkeSTo2oxKJjjyrr1JC1D8g9QPykHx1zbh70O5QMIJplEZKY+OxQum0qSN6lF/H66MMngo7zAspP7l7uRIqfuVqYoeN3seTCNv1NyI5ESW/4r/Km6svmyXWIfoyQxxt0LNUYMbBaV4b0VToYfEbH35uJEqphOiLOImREQMAOW2mSGjhn/ICIlrWLCDp+Nec0K/cmD9wzqU0yRMf/vHOC4Ued+d+TvpytJoZf9zLp4P2ZyP39XqYJzP95JpiN+bcD/OLXfVpE/xuZIAnGf7+XiYqt0CnU7PNf7qnqxXMN/vSX6RuLlRezJ/7yf7u35Ff7KF1Ecx0Pe5DpwmbrebXKunwBDM6rhz2ALsG/tAfzPRKXc8fj3lwA6GGVOjGA+R6w8Nefz9ztQdKFHFNfY0YBjO72Cxm7PcCHPO0nVn0P8tDwo+qrxXRQyLjJ9hP2AP+3pqHfnvQgoVdr8Bg1ckBtlS7/6pMecMh5IShkqBupOCVNyPfwFRApHdd+NNQNGDGcVyj5uxHQgvsxPb0CkGKSblPxdwNcdl9y2+kOpPRixHmVzxCY3/jAc226A6S9mjJIoWlHzDquispnNgKUsoNrLk07MHlRaXxbsRXRvVE2eUWxFVCtNZigYzA1RhXzn9J+M6z/+cXmwfoPF5vsf+NiU2D89//1zlHcm3zM2/uX7/rMXbYfaP7LiMKyuWd+5V/uOp9fQFKQ8w/H/OU/q/T/p3+13+jPTjP4R6dFvxgJ+pbTjDzf5VFKfNEMqEMiLvNrd4AqGbMo+91GRINgVfXabiPAkcd3KTrfDZo3QNGhVz0y4FfWtudVDxq5VFQDiPsAb8TrHGJ1BGFS4zLFUUdA/1WsioWb/cB4zat3K7wKcXkzTkv0qAqkM5PeusE2BO7LHK7Hh5UhD6yrZcLCyoD3SeeSGJsPQANMJK3fzEN43+zhYHjkgYXmJj8bzBHgldOWpdSahWDF70vqt2aBGVQsOd+dEVCNu4dh9TIB2fog36H8MgF8Zq561rgxAgZqf+wFhTxHSG4tUtiGPAc9Se6vk2hGARwfVUt9G4wUFr6mZK0LBhEiyzTE0qOgb38qpzPBEwl+KzRHE+sJNuikLzDIjYLibNY+d+YndfNlZ2lofUuUriv+AE9lR8FLXuyV/zTY/l+fWf7bb0ofFlVWiSUU/jKu8aBL5dLpv6xD5jbzsv7MX/5vueOv9uk+Hz97A90pRfKPqejQnRL2Z6e8SbN2iTqIR8K4X+T2Fa/WaXo2epSjO5HX7XpT3bc8ZOeJWOZeeWXdKO3TzsnZEXA7qvB8Knk1kpHL5s66U6H0prNvl6hoGJy0aQ+SfF6HeBbT+H8pSFS6oJwXzNf2Acy4RQg12DYiM9P9pa8e+NXZjGjwtdYNguuMVsuP6poRMc0SVmtcNyWyEMf4nwkDIMf+4oqkTQeSYmn+xG7uSp1df/hMrXYfYPlm4N5f2oUsdG7UuYtnKhFrmEQV8PeCEL0/Zsxg35ua39AzZr/4HzOme5qA3X/6bnlD/OcFxPzbCEgn/vcRQN9qqT79txFQwB9Z92sEOPw+wO8RgPfn9utKEv5vjIRf0041Y8JzqSVeeJTNir6OyhZx/ZtF9fat1+Lp/s24ZNpXq23egaP86xdUCn+Pitsc7PAoJ1NcIUjDofg3Cw/uR6RR5IKj7ISuy9YuVkIhxQhpCt7FNjiIRrq4eJJTxEaBrN6ctguxCVCN8zQbb2YBCG56iit6VD5QvWbV+vEGwN0MKNueiwGU+U2G541GQSJhfz+B631Q/zEim6ksG5iuvyyT/zICwhTvw8OgcNBmS1SgnlgJuk7GXC87Mwp8V2SNxP3CAZcISe6GYz1ofdD7WnllFFStymQTHoSB8qcMdvyBjSBe17Pnjt4YcNks7SL3DQZhzL6ag7UtIHn+NFVT3xiQjzr7lDvjFggX5ckqPdsBIN9D7uDgcfCs+pm8uMx9pPzls1rmkGcIrYZ9FT3fKMjup+MSMfdBig7T+ofKroDPHyP041RGwXZh68C3aTckzfsOqax2HGA3xgPptqMgs6/X6rKvGZj78KNpzCgH6PWSzDJNjAB+v723mgdeYDK27gzOWCW44s5xzYx1FCCnzdLMz/iCfo2821Xe9SBlt6nmTvIoIJhbq9QR9wWD/Onr6fcbQbMzrXz/3ChQGT4Qn+b0AkFNOCZaFS1gL1rG7ZzuGBjCuUwQiGcCNi8pPSYT7wBXdKf1mJbHgBGO6HxXURTCmvajcpQ4CjmvrpWaxDwKaB6s2YK6x8hg1RUpj6lrwLcOU2hWdRRE7pxyGrnwEAnUFlMWrYwHHMSndzLQ58VwUWDG44c3IsFJoxywkwNY8+zqPrWMALe9EsfbJZeQ9rSffm/pqoAWofuboKURoI/xgIrIyhAkrc/kpd6vB0zCvQomp0dBx6t1fIHXlgBPv/OsFfq81u0VUpY8RsG0tmkeiYc+MKitUFLLbwEIdZtFausoKOqa8agftEa8kuKfcrN2AK+AidRPF9HnW6C+4iqXiAy8VSbDin2CkNLMIAwkowCDynIdKy0OsbGzH7mo4w5YmNtlHyqOgp2xtuKOvueIv4KD6h2+REDAPGZ2TRPdD7aboiWhEciu3EOZ/acvwK5qudpq8ggYTsWdlbocgNR+GG9RuVgF4AtTOJg3AgwV2+TuH7gj5VfmVq49qgdjKKOemj50+a/DEjTYjgj1bPKSUEAj2LFZvnR7fQTMJzoE5bE6IW25cjP3ktDndWHCsgX9eXFuEST8Pu6NjNJoNFXjdIDtQaOd7qxR8CKSo1O8uxDJb/uUQ4gfghQ8bGryqBsBV69yHfB8K0AoaTxEQvWDQBCh/JoI/iiQsxjF8qLIR0xcTT/P66aCD4EXCM43jICh0+0VP75mIxQur2Mr9PIAV9ijtMqfw6BELZOv3CsdmRK6mWy2XAWiA4eyCrOGwbRLdzdKKwERxqtWEkOfFzLdRxEuOwxkyxoVs9/GIEUNcU92zRtBzCzTlSzGYRDzgD+CKTwauSs0MMqh3wLiBkLVD6iHgc2tQWIroefIV9Nb8QGx7SBhkNspSmUY7Ed9ZV2CFYj7kxez4hfuIZ+eD5Fl0o2AtGbH7tKACsRDRyKrVDocpJjWqjNrjAB/ZtVb61rliPtd6WHQlQaiH066PMRA9/OThKUxnlJEO5bX+UZFPrjTl7P3RWYY/PQ+fOfbW4ScEQxkOztbBRKSsqkclT+Auh1SP1z4AgnNSEHGtOvBj0N322KfIUCEaFIsUWQjvaLi88SYjeD7yRcpknxDYO0zm7QFRiZCodNTqNHfDEZdte4ofx8Em5EE02QOGYhMgkPs5FYb8Dk5Jem0NAgw/N+oztS8QaK1zIvN/TwQTU+1qmdOw4DkUYfA3YA3iLBJma1WUiTQrwvufB8+DCjvdR0EplQjqMSmWWL8DICf/XhJ1GgYMCUov+U2qULcLvJmt4UXgHuZlq+u5aGXamRke55VZchbydZ4cq7XwG+S9vR6xBDw/pbxOVquBEF1Y0fLnasHcletIm4/GwSq5tbnW0WLECPxJ2Udn98BsB9yaMw9CDQv3fHqyctHmu3lHa0ym8EX5NPs/b4BYFMxLOrvn4dkhGRcyXvVBlx1F5ssygZAJ81patW1BuQezgpK3NEKyXISLfPwHwLn1/lJn8w2IB0HO7VEylEAFyO0kCxyCARasojkBjQgzqzcg8namSA1gmNGy3wIlH4wbJdMrEekAqeWigOKQFXYdvupiUGwdMJTW5QHQW65TnVkR70Gd3bxPJ9Woev9jEnxibEGOWX/5VXsxXqgRasmtxzdDwivjr24hFWNGM/m02fVvAPtVreQlzt9YJTmoZshSxUiRBKfKqfUDO5vM65l3uwDLuO1A6bclUhjuULldZE2cM52MTZfsA/YlslxXO5tQcY37CfDTUyQSLG0W3GsAyC79iDXo6sFeW78Ie0+wTPgK3OLfpdzAARcPTcck9yCYMYQiImSZwHuLtM8d+IB8DS5mSi/rBm539svxfG5COx+UV+Uf9IPlg2I7Pdxm5DHxi9j1/Zfg+KM+tLzRX0gfDzG+Np2AxJG/mnDybweFFA/IhmJ6AV5Ma+mcTrrkdDm+2w9Ke9A3+wz3vml9+AzVXFy5g5EFC3JlIjkmsGazFqy2O33AGlXe5zrBpFyIp9AfqY28OCtbu/CiffAf3eGpPZRO5KLYV/wRsgEGYz1MRMr6wMWtlgzxk/akbVoycTDiGfgyhWnL6Jv+oDwEp7uff12RNTa04fbLgvI0tgpWCf2ARXGb07k+W3IJsvbu5cLi0HOQsg7VuU+YHin7Tv5agvic/qqUIp0Nfhxu+HyxUu9QK/1eoUidTPCoWqmyxxVDwS4CN/1X3oPvj8PE62tb0QGPmd+sUl7B6Za0kToFXrAgmBdcOWTdwjF3UQ+wr4mYIfXM9u90QU2b7KtptY3INdPI/2vLFoB9oNX3ieou4CK5Fm3aosuBNvFqjGK3Qj5XmdOnIOut3WY5/s93S5ExCJ7eIM9GiQvKpPYafcCq0dDOd+1uxDedKFA4R9ZoKNwXUgDvf9gekHcz6sTSVM0Gg1Ufwl8zJkz5T69B9UW6eozW+2I0BaT2+SbamD0AekMoH0Pthn4hw++tyJSynjLo0n1gKtyf8XmoAvolDiNShO2IiecitwuEzWCSF1gvIzTBQ4+jzQYdTUjnz7eprvG2wymRKt7h0o6QI4gn3xKWRNys7rax9SmFdyazicjC2gHMhqkbHqU7xFvzrLdZxP6SISJNuv50R6gUu08nkD/HrnJgRnj/yQaaAyYilkt9IAMqyXsVsz3SJYaXbCbbjY44MnKLqntAU6R8wytij1IW3IdL2X+SxCRkLlfuNoNphhIap6jV9+hrhHpCuPVALmRV85h0AXi8UXGUGUdyIZJO9vNtHqwa2xggS/dAfhwFd2uVLQjOfPtVmDuHVCWlhsl4W0HIudk1dsz2hBVrzCOfv5mgFefEffhoBWE2yUwwfBW5OQ8huOOeSsQ5ONkX+1tASSXcjL/vornPjWp9GsVH/97zfx7EX7B8o80oJw2eWgRnQYoifyRBvy+FQAL43/xa9Vv/GdufekfuTXW38pg/O29/qz3Hrmh06eOrevPfuWUd/5Mn7D+LPv34yuyemb+auTgPxv5m9+/HP3+5ed3hb8rFTrDsjglxQT+We7vZQr+9t5f7fvdiN9lfh/jn+Ww/tbY33nm7zzx7yeP9bdj/LOcTuq07a8TfP7PZPi/ndzfe/TvPYsR2ry+dR8DnSK9b4rZzVb6b+/9b/SxiqfUbn85/O3fJ/+fOufvV+n/1AaIeaJukwlgnDaxFZPh/bcO+7/bht8d/J8695+j8H8x0EeYSIDuB7oAy0/i/9bh/3fbUBW8+vDXBeL583WK35X9vlB/Hy2/EEp4eP/XG079GVP+x6v1X9BdCZz+PdH8TuR+f4B/J2D/TJB+VdZK92cdv1Lwqj+Dv6fgMwMfLqrP91MiX/5IwYWqmU1/peB+f5aVvIF+CPq39vwz5V4Bv9Pm32nu7xT2dyp6UPGst3BqG2wFn5KkSl8A1/f86vAk5iqLF5WV/Mb8y8cXlJViO3uV0MMB/G1D/rb9Y9+vnvv1CfmzCbS/+/I/9efvj9k/91Mc0e8hqnOaDJcr//W+f42srs5fzIA/6qb9s9jva43zu9hIhCzh/SvSHX+9KHDyhAAG/0kBLGxsTAwBAWxMAQEcIWFBIawTwkI4uLjYWEJCuNhCQgS4OPiEeLgEJAT4xKSEBCRkRISkFCTE5JSkJBRUZKSUZFTU1LQU5DR0lBS09FSUdAzUVPTMtDRMLHS0zKz0dCxsDPSsKEYGNk5mJg4uFmZOblYWLh42Vm5eFBsPHzuK19LK1dXK2tX1JL+NjbUNP/+Jk2jzY2CYW5qZWZpbWLiamJqauaI3S1dXVwxjY1drDAw7YVtbO3tBwWvEV6/i21+96kB87Zqt8IkTdoLCwoL4ODj2+IKC+FeJiW1sT5y4YoyJ6WpsYmJ0BRMT0xj9YbiMiYmNZ2BghHn58mVsQ0NsA0NDfQM8vEv6eHjYuHh4unpERHiEenqX8PT0dHSJiPQIiYjItImItMkuXiTS1tG5oEVNTaZ18eL5C9TUWmTU1A7kxMQ05NevO1wnJ3ekuX7dicnRkcaRicmZyclJk5qBQYyTg0OCi5OTg8nZmcPZxYVTTFxcjOPUKXEJTk7RUxwcIqIuLjLc0tJS0tzc3FxSUlJckpJcEpKSLqIcHDI83NznNBgZNRk1NNQZUaiz6ijUOUZ1dUZNBga1s+zsKPazZ1XV2NnPqPLxsfOpqqqc4eOT5eXhkefj5ZXnlZOTlePlleWRkVHgk5cHp5WUlJVOn1ZSVlRUVlFUVORTUOBTVFE5T62peRoX/f3FRFf0rxFEgfvHCPIapW3yNur0ZsG/kejl4fRlWLWAU1BOUivEd7Iq6qGBE+Md08SLH/rOJF7jifbQShwRZnVvNKTR03KoS81pHrr1pEYiekhINSbFTHv0qsXh26yXmdUFB0rpr16Qmq0qj+/Uk8S4/9Q2VTBuj5Buv38Gr+uas+AnYSW6R7EFooPLSo8fygg5Keap3r4l/3jvQ6Sk103bMX6vs7pUBeEFARpleFdQteyqCQOBtocr3kzdhdsF1xVeebeh9nLEJjxjSxrKnrXc54/T9GGT14vgv60jzHDoTsmVydv38cyjvPWOlaZzIbzNWa/YDQNZyyRyh54YVd+kdOIz6d9+xd3JqEC887p6RmwkIv6lcMN89Dz3ub54jzbCax+lM+6f3FjS9WGznmXWeX8DML9sVxluUfthdjvzk0Q6hhom+3pReHyhGP1IAUveBW4bOlSppbitFvElJiOL1yTFumXzF8aZeeu4mkbp+68FppCxXeH5fCsaTKw60X1c+PkgsOmkRtm7cFklDXXDYum8JDGj/sd6ThqmF/iyBWavPsEJxXV3Q1kuJHl5tKmVF2viK9qQf6qHCvkmlg8vl04Y9VZEFNtWEKZKPLuhXRv2dlbQhucMYe4Iy7nLLKXDpw1Z2Lhfpl/FP7SkJN+06bpuYbwzw8pVNvGVpTY68IznqV5v+eKdN30WsVqv6kQY1lKCFIbb+758Gb0leMe0u4UhpuZt3cAjjhaSFM0wFWdl4ln6mRXGuSkz4eHKhhDFmdoX4A3OtsRp5w+ttdnegcuhRMqYWvtjc7dNHz58af1uzoioJC/X/YCFeKzYSDN0g960xnrVwxIYkExSG+NvTn9bYlCpZHRMZMXuT7omdoXTqlu2V5QkPKNn1e0CDR1uYj4BlfqseE8+gepsyKUMc1r5JFSk9q2xXLdFSSnDclLkRbDuXI/2lXvGDC5t2A4xvaJ77OSq57/cGXXKjth6vrgq2pS6mbqPN5p3QOCxldn10/7cza13I0qu7gNljRVKrj47beF1X+UabtTQL+xO5E4/HzvMnIzWrWJ8J5Rp9/XW7Yw75HwSoTzX1uh7IRPlOJ0zHPMcyvpoSWp2n+NnSPWP+tvCAzcbVvUUnmmy2ls/a2aTmU/Qe118YukM+Wm3u0QGH1OwUHYKTJEXMs6r81rVWFHtC24QxuyGEsVYq+apiUQb8yvcpaEi1zL+mk44/fEC/22ydWr5kPh4F2EVFrwdgRDloaveLF+Se7y05sRj5u8QEYUlgNjcEbKestfmffWkmvJGeY4n7G8VeFlWPbQzjp5+YNwdMuDOe83w05Ve2YPKryzyH0yDJ+iCFVozntSOGYR36jBOsgnYnM2U5T5PfrMgOyTeM4vKoaVhJ8Xmc2eFRjCTH6HfdxGrulqtYarlRpOM5GE+b+KovYidCV+bSh8r+fI50pNyc2TETzk+9NZq5xGMvaChap6Ea0tBD4ds8INVFhMZMvPSvcSNz3zNfR2mvxHQXnrbbWpmM/FcZ+ulfa475rU3B7V8XOLb7y7v5Wu//Qo/PhE1t/umu7y6KOnE2jYrRPzdIGuvwjq6MBIIJQrXdSboJG49CfkeL2JeWYY5estiW98h9SejEO5SwY/c2fyw2khvyR9MOb1buuPFhetYZ3eu9EUzXqxcTuGJi3rrn1JlMKyGUgr+FM3j4WPzyuy8G9vC7SLec5uhdS7tcNKXw8PcXqRv4SkntKYnPdF9ebbuvH+6Ox39j8sE07Oen8BCYGDq9ko+wa9J8mZYb92/JkmSvyZJ0v6ISyTX0JPkSKXx2OZBxpvRduGxnIpBl2uLOxsq8dmXQubVeNTW+kRzk3JIrvKL5HF7JsWeuR36Lvm8s6KFC4FbbOiTqreePG2DkvotO/RK4qn5ue8EnXoFzSslqbsnWuKfXRbqYSnDeJNinzOJRI216r3aauapHM0JnpSVop+6efjqUsoVnw70VD3zoV5z6fs66707uauhPBt1c0IR/U/kbbUcvwl/EcZSdMrOPHFjRir2eUjG1sbdW2e3A/ZmcK062jClfA8oLlfiNJgtXFSsst4pjKPIkjDRdRiXNPe6KlDsTeygoQ6Qiovh3AGU8xlKbp8dSd+Gv/36QCCaniWOKD2ImFB9YfuVL2l+pfH797MuH1O+he9bXSJyRE11Y19vZBXNmZXANPfSVhn1pB3hObmj+Rjj0V5XUGHq5fVoAcC9uDw/MPjCx3aWu1VL6Nyar//V+/mWa32PmDaw9reHmIu6ePVvmN/f7iLijtzMDrDGZ3PIVFsXl9VwJF/97rsZ7FwtThs8MZ0+qJTbVZKdEnhbYTVOmi3uis4La4nK77rsIsqqX9isFUhiufLPqhr4aXy600ddv1Fn63Ol8Z2So87Bc3qDFoM1pWQmvoMnfSO79mzDLxvJP1+cmRl/Z/ZY+7R9AGtwWMR7TzuWGbWYH+4IwW4b22snoRzMbNqDziecwl8ZTt7hdx22r2Iq7gtZem1hd2a/yIPG5EPpcHCeT9M6z40xz6eeJEXOXj6+uLPeBG3tT6Vp+Jq4nG/ydbxsndpN2Qm9MtlTejXJwetLTGA+s7HYjxSCtZU+dtv3qUxb3Y4yRjnBPzmA8d3Bhy0Su1zqxTmN6h071sFMPE3UDnfmfD+KxIeOTxPdWXT8pG7vd4rkSb/kHh3bjybluGUNMQ187fx1Vc+Q6LNC3i3itt9unPfIzubhUng9TMu8Vf2k3sK/o99UZ2H6gkYnzXPMiyXmSjE+b5rZ5+jVnZyqXsjG07XufvXfk3fOLWpmmhyTy7jxlEcjZkw5cZFAuRy3y8fusf4rLpnY9yke8k4s0/c/L1NptlUGtHbj2nlTjVJdDQ65WLwtaagSPiUoWm9K1KF087q8dWSZ2be4zFN8SlqP7DZS+HVD2zRk8cYe2r2/Ffo1xvD+yfjp9MOhR91qCRwKhgFOYSfCOLV65c6EeV69n8VwFcu5VZVFSzon1NDGiZN2QAxzQouC/YujJEnXWe4QyuK5bQ6PZn69KxEqFzLxfmqrG7kuE6BI4km8x/A33fvUlfa/hK/PY87abIoc6lPdV9FCXWLaWq2hve8RIt15si6xap/1QU3G5cL5ZWJhofDTe20tnTsv1BV2y9meyhuPJOUafmOSZJbb8KR7Nt54eTkpfN8WO/FLm/diAo5P2TSO4/OUWXIFOhV6427BLf0VO1zGJ3ZzpbuZsj73fgi8NUm3YbUxGF/2Jrvel4ITq/jSsdUoIYRHeiLo6tBkweHcFuk14yXX7R/surG73tgu9lK4LS/HKWxNnpFfscKpUZzQoz/REVxjKR3uKSjJkpwUHIpLfyUiNUi5VYySYrSJ39vF8nu4xPab+Pe7le1QNBwntHL06bblNm5bzjXThWi9jf1vo18mng6X6Cg/ts7dtHck2MTNax0u8Fmo5GRN+bGr9z5NzTLTlqjv7s/5leSHJ7aSsPyJmUpZ94tdZIyJzWoe5CAjBlUm2U2Bj5kSjOKz79rnqZ2w6IzmnVXo4sc/xHZddKINkp308EfnmQvcVQT/miBrsH5PkJJ99y50urHgr8hpR+g5PH82MLV7plVTb2vP92PyhSLdCwN0XzgMizpRbBk1qedJbeYcEoLTPfIzI5YFvePEu68/etDXNFDej5J+LBkcrISM/dwYnVv39TvY+cas80zdLt2cRvTbxgzR9Vr9zE7BnswNKTt7xXX7HWEe6TfRih13h8pETjCkCzFZ3Oh2//X3MerU5bYr3eg/7eK2uLDI2jbNx1/YOhRj7ha+2HK0UyCTLjTYFdy68q1s/Gp1z53di5MXsuoE9L4Z1dnsRH6Rj/n+64nwaW+QeQNJ1DWtNBT4PjXEP/79Ko3i0w/Pa00yWyvaS7QqHBe/teeWslA7XZlQTThVByoscQel2ksSBPJqzjYzf5dLuKfT3EfE3DZmO3B285mAAZ733XRFn7eH71CPQ0iGR5kxKyb8G/BfGfk2Y/z0tmTv8Q/oE5RQZ1zx0MWMIV2gXPXl86BTNL1rK1hXzex4celd8lj21+vDwVl3g0UraLk+956VSXFtath0wtn88tl2TmDGp6M56COtzOLzsPfKhHiHEgx1gvUDT2hk1OnSjJJx5nBIYwqm04iIWh58YpBwCHRrcmW7PxOiaSDTd5M33U+GYd7C79LUi/lrkbefrm/QkLDcUX8nJZIlk6Lbt8thTHM7tX3woty9H3hXUjz6b2ypCZgPXgxI510Qq9LtScf+MRUWbN239nVujlg/7Rm/fWBYZGxIf+T8nd0PirwuES6cLzp47SUDimuLqDa/P5WoHtC+f28lpyVsY3SQt8bLazp0+/o1mjcFAg8lUdQHg3L5G2OCxv2PaMzKjGwjzHPq2VGfRUFW/VKsnocL6ufya27Pi3vqAYub54up/HLXxLMeFhJ4POqK1aOydiuWUxUgwtYDu+dmQXyJBUt/93yPevhg9sTHOmr1DBbjnyOM7X7b5DcuOJnXJGff+79Mw/ExMCJqprP+NdaF/1oMmA3clYj2ZsC/EXPqUdipZoYH3l1xjKSU86KEL88LM+aV93m45RnWLLdplifqLMVcH4s2UW8q7fXoz+G51L53TissW1+/f7ZPbYk781zZ9UqwKX03EoC5nXtIj+zNlNtDFq7lP3Rv1jMURCz9KA/aOPR2VQtKk47CtRocKz38JPt1tvVa3bC0tY9bUrJLpMK9A7FIEOxs719t8sVxdUtw4q7tDzbv3T3czZA3VA8dSvjzplxGzz4QfvxorZUf/cA3m3XxrHe/h7dttPpZ75l570eohm2XYRzNSTxyBW7Gxd0nuiixhTNn77X27yVFkj5/+4L59A1ayeUgo/NpvrYDjx/tPtUFYgvqKR9Bhn3jLfoLVCYvVxvcxwze3Gu9hhIbDXm0yZH559NvRa37PQar67Jv9lS+FZc5J4vuHCo97WWZoHd3J76a6H5CfYuNsevKhbmW0WY8U5uJoRS7JYxC3qiO6HQWC9E3VjJBzQEtxNdxnqUWrU2aAjt7/DNXfHqdvbF9vWZUpskumXyl1thheoHnk8ZV4RHYHpj/ROUF07ya6SUODpS0jYpKb8BjofOLq31yl4ubkzDnGolystVYu72j2aKvnsUn679p1/OZ2KuoF78aISTtU+nrcMfrmX6Jx1+81aYvc9d2TCylEm+yu+Oc8ECU1WKABTV9RVLDXSKkuty1D0P4bOPmVeICt5FHNnrvYo05R6ZS1+y/E/n0aQHe4u+KlNwf+8TvniU0F/KdXUz3OjMed86JqWMsArlTV2lIWqtaoV0Hum80awsUxTKHDlFUc+A1ECiTW0XJbsk0VSUzZFIUySfhhZUcBH41/kidIS1S6XUxKeHcda+xWJuNwNZauvXTYuuKnweXvMO6DCmVJh/MJV3SpnzubZ9RH3R9SnPA/HIf0z322O0NC/tH1Lt25cF72CTKSIVdjsE8t9UdOb+PKupiMicj6UpkL6nqXPVSpo/HenBekHXKzrhBfsXwzJdJfdGpu+0levfeJ1pElWS+YzHPnhyLo3PFOHPQKSJzUvCTvnfgZv4THLEtmoOHJh7viZcf78pY4zxdl5R//pHEK9FA2olL+gHp5QLbHb7CT4FZfYu6ZLjCh6KLytzvmHBu90id4NFnqHnH/mGuxFL/ncZ1m4SAmu89veOUzKGZ/MWKi9IhOoc2VfjZTgzXYu8XvHG4AWZd7i2Qyr9eZ5Y85z2IZeT9Rb2JjYVg5f3J8zLKIc3FgVprYiSBDVKdVCylOHqvDG6vC+O3ypQq7utKYesPeI8LAOHQKFZ5rEuF0DPcaurFKWGcyKKsJ1Txn2472BDzTtd3TrJ+jBMue5D1squ6Vk+dYN4ojovIrt7ZseuN5SWla7PtDxuVpChWV3LobwWTn3iYNoh12yS3PbVW3PMZRu6V9gthoaQRKl8caNUJMD98l+AjXDqdVK5xp+wMwVry6BBRsaJgmNw0Va0hhovSnS/4kaPvHkdZFiS4qfPH7Xls1fdMnomv8XHoZWN7ZG/0eKltBpasLV0GI+71M/RcL7v5WCiUDIrEH9VDLqUze92kQZEh3e/S52/pWHPseSjhBjE/pr89Qjd2ekmgrPyzJsmCKVvc7aFTyoPnXg57sgZJq8/2itcIKrtmX+qN1RZdSb5ze9I1Gu/lzdSR7TzRa5tVjzuvXkoXWjK/uIODx4erhT3SEZHWaDng3KNOEjh5wpCediEg+iCKuuhw5zYbgSK1jtJFhrpQd3mnTxh7B3rNrwlSqM8U7I4OcOMPg5oL9cKeAz/BPnH+CUPtqBufKH7NnFl/+7XyP/1Ian8X++CPZ//tjqp/8v98uV/tUuC8GYGBga1o0af/939MMU/iZv86DdzfOyK+Y/X9cjfC3Pn3gsT/s8qOOeaYY4455phjjjnmmGOOOeaYY4455phjjjnmmGOOOeaYY4455phjjjnmmGOOOeaYY4455phjjjnmmGOOOeaYY4455phjjjnmmGOOOeaYY4455phjjjnmmGOOOeaYY4455phjjvn/G/8H + 7boHVFTL2rBJzjnnJoNIkpxLEERQJAiI5KxIEgQFRaIIiKAiknOSLBJFhF0gOUqUKAoIkpQgGWHae47nP3PuvcM365+1ZtYaHtbup9/d1btq166urrfZGJgYGBiHaH75FyRY6IfLetccXFzPuDo7u7oIshvaud90cHVRlBY+JS4sdkpcQgb9RFT0lCD7GU8nD093O0UXO08PdysnQXYdT2snB5vzdt76ro52LoqSkmJiMqfsZKVtpCUlJcVFcX/VQv2vgwur27k623m4ewuruNvdwEHvx7/1Rz1EVu421xxu2YnbOhO63rBzcfF0t76JY2vlYfWrEAEBAdavJlLwYWCIof1sn5iEEBv9hPzXwxddDAysXT8sjBHdP05n7xALg+bPUzvT4LoikElwNnn4RV9jt4AU/0Gh3D769fQ/y4ph+GOchtx/BBS/Dverub+OVkvw70djpHxprks8QIkcYFAEYXKuaDJ50/86WvCfZSmw/iyIh94MMf7JCvi3XX/sR/65xxi9MdXxLUmJTyFHOXTcNjpx//ORNpfAWWWuOdocHVS70bZHe4st8Nvnn5+O9LzXiAFv4NEe6xOtvY53tBOvUGiY004eaT9ShH6O9eORtql3nnXlnTjS6p4sFdvC40f65ImOoADpsSNNPuGtR3R69EivP+HneHZu5EinyOATCd0dPtI89twsqO4PR7qP1mYQdf5oF+lN8MxPDB3pX58HBjqB0cOaKrBL39F5j4AdutsrhGK1VIE1s1ckjeMoWFh68/6b3ipgyOal+DAXBZWD+O7JjVaBfb74AgUPFHxQvz5eM1UFPEwOlRYBCqp6nU8RWKgCg5zqghHEKOjO0zdDs14FYOQwT20nG2w2FKP22K0CB/Y1S6MRbDA/qTeiBuM1+PLk1sf5i2yweK9m+hnua2Ch1Wa8SM4GKQtcF0gIX4OieHXf2feskKJBwDyT9DUwZfNlyrnHChcctV4PkL8GEy+oM40FWKGzsYF9IDpu3ycIoPrAAslq+bELSF4DqVc9+Z+CWGDDvuW4Dv5rwOsgwPFelAXS1yOpm+j6iWLmRGS7mWH2UsQs1VYVuNoYztfryAyjrVrWyuarAIaDcX8BITP0yuUiwxmpAspV3XldL5igng4JgXBTFejuZikRO8sEy6voMM4Voc9PZk8x4T0jHHdS6u95UgVOE17VszFhhItJwS8oblSBzEauwgezDJBCwWlA43wVaBiVXFh2Y4CdshzsiZzo8lmIRdBPehgqPeS4tFMJap01BhnC6OHosytDBl2VIGFBM3Cchh4mRbl67yRVgncoF47XaXTwht00w6drleCTLYPkc0E6+LN3sIPsVCVQiPCXsXpNCx8ptfoq7lSAxIqv8kKqtHBIVVatvLYCKNSTiXztoYE3E13CbvtWgE/T3575mdDAyL7C2VD5CqBv03VlZpYainE2vlr6UQ5WPr5zJXOnhgNuYz46xeXgofGbYJmfVPBgpKMCz7YcaPS1LvKFUkEVHNIYSrpycGjKBvupqGDT844PtxvLQG5r0bR8MiXMjcDcPOVaBqRez0/Z81HCR8HSNEuMZaDxBc/U01cUsHd6hmwXlgJJZrJaP3kKWBVp0GRnWwpqpb713n1IDgUIIBkJTimY470gUJ5MBlXVhPM+pr4CxNjzX4tKSKFZYNKZV/KvgMhk8IsX70ggaxCZSEl/CdB6YdVpPUQMaS6n9/ZfLQFDMryEP74SQRcR2jfaKy/BV4nn327sEcIkm+FPiYQvQYZAq80GKSFsj03E/8pZDEzZ94a92QngR19tpWGJIlBHvjaBK44Ps0c/nioChUCppKu3TA0PkrG5Z/ecKQBpQcln0o1w4X6swVSFcj6g8DWk/uqIAxcoZVFJIA/4e5FPC/thQ5MGJ56z0rngIP4VRU8UFrylsuohcOIF6GnHqZzKwYTlHOQ4nbQ5QPr6217/GgyY/2ShLfVnFnivt3nomn6IpB02Pb75JROI9940/djxE9E6MH/k3ZoB+B4fTvhu7SE5rcq1fC/SgVYspHXl3kXaLk++mglIA3o9F3Bq9LaRTRelTYzSFMDbOGRiELiJGN8rfsDflATyPyOcnzE2ED+x3RHt/gQw9IDo/CX/deQSjoZp73gccGGjNc7EWEPIGxdObn2OAcbeSqfrAlYQF6vIjI2paLAtuKT4E+8b4t9mTesk8Qw0JH0Y/RS4iJjp5lR8D3wKFmQ8bV4efkVuvYlU0Ul+DKg4MU2V780iGFmlJ9VFHoFi38KL+nvTSObkwRb221Dgpawdkub9GcmxC9VxQD0AmxWYpPV8k0jgrNJCj18QqLLlLw40HUMunyaMZJ7wB8JVBsI8Tz8gr10Xh2ZdfYBLfs9OZVM/8sP50yty1G2w4PT8TNZaD4I7ebAeVOIOuA0wuk8ntyEGUdX5E3ecwJCC290HZ98hAdhz5IzRNiDy1Y8Stc/VSA7fpmCStAHwJCt6rHM5H8mWe6wEaARA7hi9IfYJM4QGc0Dt0A/L//c64vdi5gvp/3wxU0T6HxYzEf8bi5mn6K3gzy+Bo8zMQc8Zdeto4wz6uqfsDh7p/o4u/knDo41pe4cgOHrgSNdKV++b5vcfaW/i7RUJ2HekJSelvpAM9R7p1VLPkZnF90e66EF511vMo/2+fDbohEj3kT5naus0Ytx5pOuwp/TDHrQfaakCC0XZ0tYjXfiv8dB8pLl3jcniCZuOdEL68OY5yXdHmkrDcHLbsv5of37xWJcROdIYopmWr27UHOkV35RTlK1VR/pjVzyWG6r8SHexPO9/f6vkSHt9YNewSso70oae9Ivs5zOO9H3n7fepN+KO9Fp5j6Ohw6MjzWr7aBUOeh/pP6ca/6P8ax7756TpE0nRKziQhdQWlBI9Zk9ElJROE13+XI6Iy7s8uiedjyQT8ZwKuIIgaqRe7wRvlCG+kDm47Wsj8u1J9W5CYzVi/zBsY5e7Hem4MBtZQQKRgRvvJZWk3iMrJC4kDcPvkEt5n2lZjPsRYyG/XZrsFiR6z7ERx3cI+ZHhC5+7dSAM0eRae+kjSD3Vi4iLSj1I7KOXmttN44jhq0OjxOBe5KrFbjDRrU+IQLAfpiLBAJJFehjKFjaFPGRm2cEPH0IaBV5IiCfNIMEjghe2SUeQBmXBG2deziJprFacBE/HkIcxS2vnG74i+g98qSVoPiI+mrnT0TKLSCV+7U57CDqx+p653le8jDgkJFQ8xp1CCAse7/hRrSDu06DeNmgaudt982u41iqCfaOhRh3zC3IGVVocHrqGbOrN7Uv5zSJmVV7LZDg/EOEgdz6L818RV12KB/5+Gwgqpowrnn4BKfFVezexu4k82cbjm5peRKaozWl5bm0jWGJemrIly8hjV+vzBqs7SNyajnCqz3dEocM+INhpD4kdoQkLzFpB7JcNE1Pm9hGPnxJjbx+uIuKyHU6p1gfInQdPJw5urCENiWbCIROHiPAoQbbG5XUk8P7FcIFCDIhLfG4qRfEHwi3v4vfUAROOy4egfnBtIGy3Zx4s8mLBDxqRfZeINpGMnmdAZgYLpmRuFCIrm0jfeKLG7XRsuL2iiiH3YQsZEfwpnWuOAy/tmUU11W4jn3zMeUeYcWEx7m1u3awdBJIz7uwN40Lirisbyw93kai3imcoYvBgT4dRa4rbHvKtafIh7SV82PqKYNDeaB/J+BmkRExBAFOHSp00wE/EQJJ/DaOLAN7aM8UR5D1ArBK7KefCCKGgBSbfCdJD5ASWDXHtWSK4Ud/IqfrjEHnE/kEyEJsYoryGRKAzBsS2W0ckITE8EWJkf+MzBryTR64570MCJWJGk9gNMCE2zYB4uCwp5E2+vjjVigldnYULmTZJYVAvY9trBSz4fUerOqaUDJrHLrlklmBBgX1ZzgMXcph0VdE/kxsbih9GNZXSUsBR6cinmXHYUET+O9/4TQroS2VGVk2CAwMmvibu9lLAgauKiTP+ONB1b8qGVJQSenEWqvBu4MBsb+s46khKqMOSL3HPAReObX3uZFyihPx0ubwDE7jQaGjWmVqTCkpoS9qc1sODhRfdog9fUMFd/zi2+mY8uBuyKjSBSw2Fu+8X6svjw8AnT7ELbKhhja957PZLfEgYf2rEq54anhORCUziJoDtN1YXpFA0UPTMYZtOPAHsEeTFmPGhgWTfm35QkRHC5o0vjb6jNPCyOd/oZCB6kS3t0osrQwuf/fjwpWyLEHZ6b048ek4L3z8MXQ1xIoLDEupiGOu0EONcKJfNZyKo6bP92FyHDm4enPZSMSSG88wP5HOK6CDVhQdkHB3EsB6r++YQET38OIiM/gQkMH6ethDvGj0sttjJGS0ngfn0DG6oJnoowsuXV3GCFGKKB/1EcTLA7VaLwIgUUlhN4LWL78cAdQ5ima2pyWBf48johzEGSPXqRp9kKBlc9JeveSHDCAdsNMIIf5JBWy4iP4vnjBAzusFs3I0cnlXRLjtcZYRcP+oqSmbJoSQes3nYRSZYrD9X2SREAWkE7iwd5DNBgi8oPLlrFPCH1sgdD3xmaOtpZFCcQQEbezuWBm2YoX9NfeyJCQrYkO6OwwWZYc8pQvxiekr4lhqDzIaFBQ5OFJ05o0cJOwY/aD71YoGnebY15h9RwtHYlyHIAAvMd1LRedxCCffzerfGRFmhl7YY+1ksKphRXHZ/+xErvO9cQ8yiSAXJ4Dmu8/OsEP9yXpWUFxUMVxXiGVJjg5bNvv0JZVSQoI2SzyqDDb6R1P9+8I0KxkC1R9yHbHBegPJuoQA1nFDlGxQ2RcGo4e/zL+2poYvNtT3vahQclp32I8ikhstfKW/fI2aH2484yUsnqSF3muuKohw7ZPhklWLCQgPP+RHpMDqwQ2qeZV7DKzTQWNj1IWEcO7wr9GIgKYYGuuuU/sBpYYdScUREvAM0sK6s5C3mJvp1me+lc5S0kIj+5f0Dbg4Ih/tN8rRpYWjNtfz9SxzwcbGsV2YELTzNR2myFsgBH7qdX+rooIXsRhatg684oCLuhhkDER2cNc+aSP3EAS/q7C35n6ODRXbzaw7knNAiEdNn/gEdNFHhKWFS4oTdybb8Lk10ULnq2U6+EyekNUgkx8ehh2etZ0zpEjlhYfbPJ8Uq9FCoQReatnHCGetqcZsAekjDiXBlbnFCFnbPIXpIDyekNEIaebjgusbDhJEDeqg2WVgHL3FB/NCHxC8UGSBTdu9OYgAX5BxE9QX6MEC27KZN85dcsCvv2pBnDQPkzK5e55jggl6+r0av7TJAw0mf0k4iblg2WsRyU5YRTl8+aXxdhhuqCJYtZ3gxQtmwZwihPTfkvcU8T/SaEUrczOsuf8YNe/1qhaq3GKH0npxfUjU3xG2SkY4WZIK4RMUyjya5oeTP+4WpVkzQeGTwchguD9yO4CCcjmGCm/WqrDEneeB7D/cV604mKHWqGrdAlwea+jkE02ExQ48dlQboxgMv0vgoG4gwQzdrN7XxpzxwXb6k8LUpM6xXlb61+4oHEqPkNRQfMkNH9QNLyj4eeD+XimSoihnSaC46Mq3xwPmmyt3bX5gh7nyIhTERL6zvIpzAImCBnyfnLaI40fHHPIxnAiyw/J1jc60cL/wRgphxaLFAp3pQPqHHCxk8la8UubJAnfrL7YvXeaFw8cZFwSgW+Nq7aXjHlxd2V3x/962YBdIPn/ffi+KFHymKT+Z2sEA3U6Ob+zm8kKniPIvdVxaYkWv2cPoNL+R53/ADB5cVytg7X2np5oWv/Q/b0jhY4aqmx+H/J5O+6nydb7rPpU4f5V6T/pfph0d7NiN+hMdP+kh7FKw+TeCTOdL26U7O4d+P9lnpj7Kun2SPNHeXNt6lXrkj/ehn1uTPYPkj7dM60eR6cLSntsVSmcoUjnRDZJbjQabikU7jppOZilY60v5vQnCag8GRFsn1+aovf/pIo25WdDeXHW1ypW/lMoLKR/qQgC8xP+tof++3CGBhVTnSkylxVyOfH+0eh14tDLIzRxqRIJJwf3C0Xx6qMM0cHO3U9rsYhrdVj/Tj5+WzLd+Ptp/lcqfsNbUj7T2WLyfWebSRyaEYJ/azR1od+02BsOXR7jO5+8jw+dH+NY/9c9Isv7R+Ub6aF3I8vy3ziZ8VCo/LeBRl8sIaF2FXdvRiJYDy/g3qSF4YxZwWbifNCl/wMqr7ePFCMtu0p7lKrNCoX99uypoXvqm1t1lUY4UCCw9Cd87xwgDPlc20i6zw9sOpehIRXmgyaggML7NCt4pzley0vFDLgvkigSUrpGqYeyuxxwOdHL7ZVV5jhaUXeEQ1P/PA14I358zdWOHH5N3npAgPzL8WiN/jwwqvjnN59SfxwB8FjlclQ1nhY9xAs+Q7PLBuVGYn8hkrbNzZ2Xc04oFZ6kkYIymsMP5+KDWQ4oFY7G/NKfNZoX50xFYxKQ+UCbgTa13FCt9lT/HwfOGGyi6r3xIaWWE/W4NH+ltuuMycXl7Zi/6SScyM4ozmhgz8Hqiyj6zw1l3q3RxHbggT4tcjFlkh9uD22Cc5bthgFtdAtMcKPbldg1DoRcDLWdR7QyI2iMK1sLQc4YKjtO8uujCyQRk2Ha/UXC4oo7P34CI/G9x9VT04fJsLNrVeJtuUYoO1alziVOpcUE+5/HkyevF3Qh93SI2OC5JuSziR6LPBs2dpWG584YSpKy7PTluzQWliutzIck44+RyLSvoGGyw+LL2YHsQJCYRvCy3dY4N4Vbnnv5tzQt40MiyJUDbIVP08VkqOE35JmCG7HMUGwwiiaW/TcsIkbpLmS0lsMKqFQPfVCge0xBi34c9hg85nSTRmOzhgXOx9tv6XbFB/xeabeRkHrNPVXFGtZIO8CR8VBhM4YNZdae6st2zQpi/FTwO9yHPyGRBbaWCDI5r6DG8dOODHFr1n/G1skGXXx01IlwP6CrY0XOhhgxiYcrcvC3LAG+82CIOG2eCpM7tFvvgckIy6eyr8Mxs8lzp5N2uKHQIr2Wd2C2yQU47Xs72WHZropPqSrbNBP2n7llX0IpW7n9QoeI8NaofVTL6/yg7vB2x6d+OhYJezsVmpFDt0lLKMq6NEwU/NhTjxuOyQ0kAtXo8FBUPD36eR5KFgf+mmfSgvCiqQ3Uz4dhYFcRpHrSxEUXDtCW30+xk2KDFYZyolh15cx01/rw5kg33xg/eLz6Dgs5zvCjnsbNA7l5Oi5QIKbt4LpHtWxwpXPFse+xmg4MBIqIKfKSvUVebVGDZDwRLJx9aOuyywlCQY65Q9ChLQEQ4axrHA/cHkjRMuKNhZwap/WooF9qQG2r/zRMG4FqU6vgFmqLIYoX3gg4ILS5mnSd2Z4YXB2aTxIBRUpCJ8t0bODPURsPDmIQrSnS81Gypigmvqs4kKT1HwnL2O0uvzTPApFUaqTSwKyr1dn42bZ4Rt6k86xJLR7T3LEOQVwghFGXRpijPQ7etVQBnxMMKYr5RmJ3JRUOrpVLHUOwYooI/doFOEgtKzrT40Vgzw9Km7NPylKJjI4Cm1il48k/DuPy6vRMGrbwbMOpPo4bZVy7e9NygobioR/EKOHs4kR2mdQdCvO6szBQzTwe/suY/V3qHg58Gep5dv0aGTnNNxhC0oaJShMnGChg5mM9npxrSjILfdBs/eK1q4ICPbvdSFgqt8uS6d6ORC+DLp+TO9KEj9OaE8aRmdnICn4TYDKMjUAj84hdNAy7deDrofULCZ1ee00gka+NnS7TH5KAoGePsbUrZQQ1NVKe30cfT1HrzvNGNLDYf49sjEJ1EQX6pPpBqLGmpqProW9xl9vqE/lJ6kUUFDUzHngWkUHKPFqHNQooK38t9LLHxBwTvr6jFq45Qwo8G5YHwOXX/vYxeOO5Swa5SIs2ceBSsPqNMO0ckibm2Oesoi+vrgi1B8qkAnkxFxpFrL6Ov5JNyi4RIFzEg2PvvxG3p8jtqxXJgmhzytS6n6Kyi4/KzcmxpFDnPXfHfaV1HQfC3u+YQxGeyS/nyTdx0FvV/z3ciLIYWM/n1vHX6gYJ0aU6dnHwkc14g3jd1AQWy8V87KZCTQ+uvbl6820eOhWZ2cVJMYfn3wCatzCwUjqgM3PwQTwVO7loT92yi4VSMym1ZPCD9Yz6PadlDw4flP6fY/CSCBQ8Dtkl0UjIlcJueXJYB3FFspw/dQMKN39968Bz5cpCQvtNtHQd5W25ScEjyYVI4TJv4TBenDww3Nl3ChqL1x/iY6zm96X0zOjwvv09pMlRygj589OVVtgwNbvyK9Noco6Bj8jc42FRvimUdaEmOww3iiFl78MSyYPjIrboWOgy32L2TQYcECUlXxcnQcKLS8JaGHCX25uOlwMdnhvFRIQ10EBmQmT7mjj47T/FWYnkYdIq936Scz0fEZorZvUYQHCNvbk02r6Fh/VV8m0H8fibKYb1fCYof7/JMB5lu7iJ8/kWc4Otbolorlc9lBhpS5hIfRcczNyMKVmS1EEFthjhubHYY9KIvIMdlElm0vvHRDx0NxxAQafT+Q70jvSh06/nQ178TwuXWkIFpxnwSHHfroRZ3XR1aRmUwzXFN0nKZHc7rCawXBESFNTUbHNK7d8lS23xD75/fnJtHxS1YZwbShRaT1ncU+J3reyvV5iUerMY8o3QhctkfH5+7R9rnVzCJx9CE1Bei4/N6y+9voGUTu9XDZF3TcxPTmcMN5Cqlr2zjHjscOf34dFEGpf0K+ieLfNUHHGDfvOLidHkeSTo2oxKJjjyrr1JC1D8g9QPykHx1zbh70O5QMIJplEZKY+OxQum0qSN6lF/H66MMngo7zAspP7l7uRIqfuVqYoeN3seTCNv1NyI5ESW/4r/Km6svmyXWIfoyQxxt0LNUYMbBaV4b0VToYfEbH35uJEqphOiLOImREQMAOW2mSGjhn/ICIlrWLCDp+Nec0K/cmD9wzqU0yRMf/vHOC4Ued+d+TvpytJoZf9zLp4P2ZyP39XqYJzP95JpiN+bcD/OLXfVpE/xuZIAnGf7+XiYqt0CnU7PNf7qnqxXMN/vSX6RuLlRezJ/7yf7u35Ff7KF1Ecx0Pe5DpwmbrebXKunwBDM6rhz2ALsG/tAfzPRKXc8fj3lwA6GGVOjGA+R6w8Nefz9ztQdKFHFNfY0YBjO72Cxm7PcCHPO0nVn0P8tDwo+qrxXRQyLjJ9hP2AP+3pqHfnvQgoVdr8Bg1ckBtlS7/6pMecMh5IShkqBupOCVNyPfwFRApHdd+NNQNGDGcVyj5uxHQgvsxPb0CkGKSblPxdwNcdl9y2+kOpPRixHmVzxCY3/jAc226A6S9mjJIoWlHzDquispnNgKUsoNrLk07MHlRaXxbsRXRvVE2eUWxFVCtNZigYzA1RhXzn9J+M6z/+cXmwfoPF5vsf+NiU2D89//1zlHcm3zM2/uX7/rMXbYfaP7LiMKyuWd+5V/uOp9fQFKQ8w/H/OU/q/T/p3+13+jPTjP4R6dFvxgJ+pbTjDzf5VFKfNEMqEMiLvNrd4AqGbMo+91GRINgVfXabiPAkcd3KTrfDZo3QNGhVz0y4FfWtudVDxq5VFQDiPsAb8TrHGJ1BGFS4zLFUUdA/1WsioWb/cB4zat3K7wKcXkzTkv0qAqkM5PeusE2BO7LHK7Hh5UhD6yrZcLCyoD3SeeSGJsPQANMJK3fzEN43+zhYHjkgYXmJj8bzBHgldOWpdSahWDF70vqt2aBGVQsOd+dEVCNu4dh9TIB2fog36H8MgF8Zq561rgxAgZqf+wFhTxHSG4tUtiGPAc9Se6vk2hGARwfVUt9G4wUFr6mZK0LBhEiyzTE0qOgb38qpzPBEwl+KzRHE+sJNuikLzDIjYLibNY+d+YndfNlZ2lofUuUriv+AE9lR8FLXuyV/zTY/l+fWf7bb0ofFlVWiSUU/jKu8aBL5dLpv6xD5jbzsv7MX/5vueOv9uk+Hz97A90pRfKPqejQnRL2Z6e8SbN2iTqIR8K4X+T2Fa/WaXo2epSjO5HX7XpT3bc8ZOeJWOZeeWXdKO3TzsnZEXA7qvB8Knk1kpHL5s66U6H0prNvl6hoGJy0aQ+SfF6HeBbT+H8pSFS6oJwXzNf2Acy4RQg12DYiM9P9pa8e+NXZjGjwtdYNguuMVsuP6poRMc0SVmtcNyWyEMf4nwkDIMf+4oqkTQeSYmn+xG7uSp1df/hMrXYfYPlm4N5f2oUsdG7UuYtnKhFrmEQV8PeCEL0/Zsxg35ua39AzZr/4HzOme5qA3X/6bnlD/OcFxPzbCEgn/vcRQN9qqT79txFQwB9Z92sEOPw+wO8RgPfn9utKEv5vjIRf0041Y8JzqSVeeJTNir6OyhZx/ZtF9fat1+Lp/s24ZNpXq23egaP86xdUCn+Pitsc7PAoJ1NcIUjDofg3Cw/uR6RR5IKj7ISuy9YuVkIhxQhpCt7FNjiIRrq4eJJTxEaBrN6ctguxCVCN8zQbb2YBCG56iit6VD5QvWbV+vEGwN0MKNueiwGU+U2G541GQSJhfz+B631Q/zEim6ksG5iuvyyT/zICwhTvw8OgcNBmS1SgnlgJuk7GXC87Mwp8V2SNxP3CAZcISe6GYz1ofdD7WnllFFStymQTHoSB8qcMdvyBjSBe17Pnjt4YcNks7SL3DQZhzL6ag7UtIHn+NFVT3xiQjzr7lDvjFggX5ckqPdsBIN9D7uDgcfCs+pm8uMx9pPzls1rmkGcIrYZ9FT3fKMjup+MSMfdBig7T+ofKroDPHyP041RGwXZh68C3aTckzfsOqax2HGA3xgPptqMgs6/X6rKvGZj78KNpzCgH6PWSzDJNjAB+v723mgdeYDK27gzOWCW44s5xzYx1FCCnzdLMz/iCfo2821Xe9SBlt6nmTvIoIJhbq9QR9wWD/Onr6fcbQbMzrXz/3ChQGT4Qn+b0AkFNOCZaFS1gL1rG7ZzuGBjCuUwQiGcCNi8pPSYT7wBXdKf1mJbHgBGO6HxXURTCmvajcpQ4CjmvrpWaxDwKaB6s2YK6x8hg1RUpj6lrwLcOU2hWdRRE7pxyGrnwEAnUFlMWrYwHHMSndzLQ58VwUWDG44c3IsFJoxywkwNY8+zqPrWMALe9EsfbJZeQ9rSffm/pqoAWofuboKURoI/xgIrIyhAkrc/kpd6vB0zCvQomp0dBx6t1fIHXlgBPv/OsFfq81u0VUpY8RsG0tmkeiYc+MKitUFLLbwEIdZtFausoKOqa8agftEa8kuKfcrN2AK+AidRPF9HnW6C+4iqXiAy8VSbDin2CkNLMIAwkowCDynIdKy0OsbGzH7mo4w5YmNtlHyqOgp2xtuKOvueIv4KD6h2+REDAPGZ2TRPdD7aboiWhEciu3EOZ/acvwK5qudpq8ggYTsWdlbocgNR+GG9RuVgF4AtTOJg3AgwV2+TuH7gj5VfmVq49qgdjKKOemj50+a/DEjTYjgj1bPKSUEAj2LFZvnR7fQTMJzoE5bE6IW25cjP3ktDndWHCsgX9eXFuEST8Pu6NjNJoNFXjdIDtQaOd7qxR8CKSo1O8uxDJb/uUQ4gfghQ8bGryqBsBV69yHfB8K0AoaTxEQvWDQBCh/JoI/iiQsxjF8qLIR0xcTT/P66aCD4EXCM43jICh0+0VP75mIxQur2Mr9PIAV9ijtMqfw6BELZOv3CsdmRK6mWy2XAWiA4eyCrOGwbRLdzdKKwERxqtWEkOfFzLdRxEuOwxkyxoVs9/GIEUNcU92zRtBzCzTlSzGYRDzgD+CKTwauSs0MMqh3wLiBkLVD6iHgc2tQWIroefIV9Nb8QGx7SBhkNspSmUY7Ed9ZV2CFYj7kxez4hfuIZ+eD5Fl0o2AtGbH7tKACsRDRyKrVDocpJjWqjNrjAB/ZtVb61rliPtd6WHQlQaiH066PMRA9/OThKUxnlJEO5bX+UZFPrjTl7P3RWYY/PQ+fOfbW4ScEQxkOztbBRKSsqkclT+Auh1SP1z4AgnNSEHGtOvBj0N322KfIUCEaFIsUWQjvaLi88SYjeD7yRcpknxDYO0zm7QFRiZCodNTqNHfDEZdte4ofx8Em5EE02QOGYhMgkPs5FYb8Dk5Jem0NAgw/N+oztS8QaK1zIvN/TwQTU+1qmdOw4DkUYfA3YA3iLBJma1WUiTQrwvufB8+DCjvdR0EplQjqMSmWWL8DICf/XhJ1GgYMCUov+U2qULcLvJmt4UXgHuZlq+u5aGXamRke55VZchbydZ4cq7XwG+S9vR6xBDw/pbxOVquBEF1Y0fLnasHcletIm4/GwSq5tbnW0WLECPxJ2Udn98BsB9yaMw9CDQv3fHqyctHmu3lHa0ym8EX5NPs/b4BYFMxLOrvn4dkhGRcyXvVBlx1F5ssygZAJ81patW1BuQezgpK3NEKyXISLfPwHwLn1/lJn8w2IB0HO7VEylEAFyO0kCxyCARasojkBjQgzqzcg8namSA1gmNGy3wIlH4wbJdMrEekAqeWigOKQFXYdvupiUGwdMJTW5QHQW65TnVkR70Gd3bxPJ9Woev9jEnxibEGOWX/5VXsxXqgRasmtxzdDwivjr24hFWNGM/m02fVvAPtVreQlzt9YJTmoZshSxUiRBKfKqfUDO5vM65l3uwDLuO1A6bclUhjuULldZE2cM52MTZfsA/YlslxXO5tQcY37CfDTUyQSLG0W3GsAyC79iDXo6sFeW78Ie0+wTPgK3OLfpdzAARcPTcck9yCYMYQiImSZwHuLtM8d+IB8DS5mSi/rBm539svxfG5COx+UV+Uf9IPlg2I7Pdxm5DHxi9j1/Zfg+KM+tLzRX0gfDzG+Np2AxJG/mnDybweFFA/IhmJ6AV5Ma+mcTrrkdDm+2w9Ke9A3+wz3vml9+AzVXFy5g5EFC3JlIjkmsGazFqy2O33AGlXe5zrBpFyIp9AfqY28OCtbu/CiffAf3eGpPZRO5KLYV/wRsgEGYz1MRMr6wMWtlgzxk/akbVoycTDiGfgyhWnL6Jv+oDwEp7uff12RNTa04fbLgvI0tgpWCf2ARXGb07k+W3IJsvbu5cLi0HOQsg7VuU+YHin7Tv5agvic/qqUIp0Nfhxu+HyxUu9QK/1eoUidTPCoWqmyxxVDwS4CN/1X3oPvj8PE62tb0QGPmd+sUl7B6Za0kToFXrAgmBdcOWTdwjF3UQ+wr4mYIfXM9u90QU2b7KtptY3INdPI/2vLFoB9oNX3ieou4CK5Fm3aosuBNvFqjGK3Qj5XmdOnIOut3WY5/s93S5ExCJ7eIM9GiQvKpPYafcCq0dDOd+1uxDedKFA4R9ZoKNwXUgDvf9gekHcz6sTSVM0Gg1Ufwl8zJkz5T69B9UW6eozW+2I0BaT2+SbamD0AekMoH0Pthn4hw++tyJSynjLo0n1gKtyf8XmoAvolDiNShO2IiecitwuEzWCSF1gvIzTBQ4+jzQYdTUjnz7eprvG2wymRKt7h0o6QI4gn3xKWRNys7rax9SmFdyazicjC2gHMhqkbHqU7xFvzrLdZxP6SISJNuv50R6gUu08nkD/HrnJgRnj/yQaaAyYilkt9IAMqyXsVsz3SJYaXbCbbjY44MnKLqntAU6R8wytij1IW3IdL2X+SxCRkLlfuNoNphhIap6jV9+hrhHpCuPVALmRV85h0AXi8UXGUGUdyIZJO9vNtHqwa2xggS/dAfhwFd2uVLQjOfPtVmDuHVCWlhsl4W0HIudk1dsz2hBVrzCOfv5mgFefEffhoBWE2yUwwfBW5OQ8huOOeSsQ5ONkX+1tASSXcjL/vornPjWp9GsVH/97zfx7EX7B8o80oJw2eWgRnQYoifyRBvy+FQAL43/xa9Vv/GdufekfuTXW38pg/O29/qz3Hrmh06eOrevPfuWUd/5Mn7D+LPv34yuyemb+auTgPxv5m9+/HP3+5ed3hb8rFTrDsjglxQT+We7vZQr+9t5f7fvdiN9lfh/jn+Ww/tbY33nm7zzx7yeP9bdj/LOcTuq07a8TfP7PZPi/ndzfe/TvPYsR2ry+dR8DnSK9b4rZzVb6b+/9b/SxiqfUbn85/O3fJ/+fOufvV+n/1AaIeaJukwlgnDaxFZPh/bcO+7/bht8d/J8695+j8H8x0EeYSIDuB7oAy0/i/9bh/3fbUBW8+vDXBeL583WK35X9vlB/Hy2/EEp4eP/XG079GVP+x6v1X9BdCZz+PdH8TuR+f4B/J2D/TJB+VdZK92cdv1Lwqj+Dv6fgMwMfLqrP91MiX/5IwYWqmU1/peB+f5aVvIF+CPq39vwz5V4Bv9Pm32nu7xT2dyp6UPGst3BqG2wFn5KkSl8ATnt+dQQSc5WFi8pK98b8yz8uKCvFd/YqoYcD+NuG/G37x75fPffrE/JnE2h/9+V/6s/fH7N/7qc4ot9DVOc0GS5X/ut9/xpZXZ2/mAF/1E37Z7Hf1xrnd7GRCFnC+1ekO/56UeDkCQEM/pMCWNjYmBgCAtiYAgI4QsKCQlgnhIVwcHGxsYSEcLGFhAhwcfAJ8XAJSAjwiUkJCUjIiAhJKUiIySlJSSioyEgpyaioqWkpyGnoKClo6ako6RioqeiZaWmYWOhomVnp6VjYGOhZUYwMbJzMTBxcLMyc3KwsXDxsrNy8KDYePnYUr6WVq6uVtavrSX4bG2sbfv4TJ9Hmx8AwtzQzszS3sHA1MTU1c0Vvlq6urhjGxq7WGBh2wra2dvaCgteIr17Ft7961YH42jVb4RMn7ASFhQXxcXDs8QUF8a8SE9vYnjhxxRgT09XYxMToCiYmpjH6w3AZExMbz8DACPPy5cvYhobYBoaG+gZ4eJf08fCwcfHwdPWIiPAI9fQu4enp6egSEekREhGRaRMRaZNdvEikraNzQYuamkzr4sXzF6iptcioqR3IiYlpyK9fd7hOTu5Ic/26E5OjI40jE5Mzk5OTJjUDgxgnB4cEFycnB5OzM4eziwunmLi4GMepU+ISnJyipzg4RERdXGS4paWlpLm5ubmkpKS4JCW5JCQlXUQ5OGR4uLnPaTAyajJqaKgzolBn1VGoc4zq6oyaDAxqZ9nZUexnz6qqsbOfUeXjY+dTVVU5w8cny8vDI8/HyyvPKycnK8fLK8sjI6PAJy8PTispKSudPq2krKiorKKoqMinoMCnqKJynlpT8zQu+vuLia7oXyOIAvePEeQ1StvkbdTpzYJ/I9HLw+nLsGoBp6CcpFaI72RV1EMDJ8Y7pokXP/SdSbzGE+2hlTgizOreaEijp+VQl5rTPHTrSY1E9JCQakyKmfboVYvDt1kvM6sLDpTSX70gNVtVHt+pJ4lx/6ltqmDcHiHdfv8MXtc1Z8FPwkp0j2ILRAeXlR4/lBFyUsxTvX1L/vHeh0hJr5u2Y/xeZ3WpCsILAjTK8K6gatlVEwYCbQ9XvJm6C7cLriu88m5D7eWITXjGljSUPWu5zx+n6cMmrxfBf1tHmOHQnZIrk7fv45lHeesdK03nQnibs16xGwaylknkDj0xqr5J6cRn0r/9iruTUYF453X1jNhIRPxL4Yb56Hnuc33xHm2E1z5KZ9w/ubGk68NmPcus8/4GYH7ZrjLcovbD7HbmJ4l0DDVM9vWi8PhCMfqRApa8C9w2dKhSS3FbLeJLTEYWr0mKdcvmL4wz89ZxNY3S918LTCFju8Lz+VY0mFh1ovu48PNBYNNJjbJ34bJKGuqGxdJ5SWJG/Y/1nDRML/BlC8xefYITiuvuhrJcSPLyaFMrL9bEV7Qh/1QPFfJNLB9eLp0w6q2IKLatIEyVeHZDuzbs7aygDc8ZwtwRlnOXWUqHTxuysHG/TL+Kf2hJSb5p03XdwnhnhpWrbOIrS2104BnPU73e8sU7b/osYrVe1YkwrKUEKQy39335MnpL8I5pdwtDTM3buoFHHC0kKZphKs7KxLP0MyuMc1NmwsOVDSGKM7UvwBucbYnTzh9aa7O9A5dDiZQxtfbH5m6bPnz40vrdnBFRSV6u+wEL8VixkWboBr1pjfWqhyUwIJmkNsbfnP62xKBSyeiYyIrdn3RN7AqnVbdsryhJeEbPqtsFGjrcxHwCKvVZ8Z58AtXZkEsZ5rTySahI7VtjuW6LklKG5aTIi2DduR7tK/eMGVzasB1iekX32MlVz3+5M+qUHbH1fHFVtCl1M3UfbzTvgMBjK7Prp/25m1vvRpRc3QfKGiuUXH122sLrvso13KihX9idyJ1+PnaYORmtW8X4TijT7uut2xl3yPkkQnmurdH3QibKcTpnOOY5lPXRktTsPsfPkOof9beFB242rOopPNNktbd+1swmM5+g97r4xNIZ8tNud4kMPqZgoewUmCIvZJxX57WqsaLaF9wgjNkNJYqxVs1TE4k25le4S0NFrmX8NZ1w+uMF/ttk69TyIfHxLsIqLHg7AiHKQ1e9Wb4k93hpzYnHzN8hIgpLALG5I2Q9Za/N++pJNeWN8hxP2N8q8LKsemhnHD39wLg7ZMCd95rhpyu9sgeVX1nkP5gGT9AFK7RmPKkdMwjv1GGcZBOwOZspy32e/GZBdki8ZxaVQ0vDTorN584KjWAmP0K/7yJWdbVaw1TLjSYZycN83sRRexE7E742lT5W8uVzpCfl5siIn3J86K3VziMYe0FD1TwJ15aCHg7Z4AerLCYyZOale4kbn/ma+zpMfyOgvfS229TMZuK5ztZL+1x3zGtvDmr5uMS3313ey9d++xV+fCJqbvdNd3l1UdKJtW1WiPi7QdZehXV0YSQQShSu60zQSdx6EvI9XsS8sgxz9JbFtr5D6k9GIdylgh+5s/lhtZHekj+Ycnq3dMeLC9exzu5c6YtmvFi5nMITF/XWP6XKYFgNpRT8KZrHw8fmldl5N7aF20W85zZD61za4aQvh4e5vUjfwlNOaE1PeqL78mzdef90dzr6H5cJpmc9P4GFwMDU7ZV8gl+T5M2w3rp/TZIkf02SpP0Rl0iuoSfJkUrjsc2DjDej7cJjORWDLtcWdzZU4rMvhcyr8ait9YnmJuWQXOUXyeP2TIo9czv0XfJ5Z0ULFwK32NAnVW89edoGJfVbduiVxFPzc98JOvUKmldKUndPtMQ/uyzUw1KG8SbFPmcSiRpr1Xu11cxTOZoTPCkrRT918/DVpZQrPh3oqXrmQ73m0vd11nt3cldDeTbq5oQi+p/I22o5fhP+Ioyl6JSdeeLGjFTs85CMrY27t85uB+zN4Fp1tGFK+R5QXK7EaTBbuKhYZb1TGEeRJWGi6zAuae51VaDYm9hBQx0gFRfDuQMo5zOU3D47kr4Nf/v1gUA0PUscUXoQMaH6wvYrX9L8SuP372ddPqZ8C9+3ukTkiJrqxr7eyCqaMyuBae6lrTLqSTvCc3JH8zHGo72uoMLUy+vRAoB7cXl+YPCFj+0sd6uW0Lk1X/+r9/Mt1/oeMW1g7W8PMRd18erfML+/3UXEHbmZHWCNz+aQqbYuLqvhSL763Xcz2LlanDZ4Yjp9UCm3qyQ7JfC2wmqcNFvcFZ0X1hKV33XZRZRVv7BZK5DEcuWfVTXw0/h0p4+6fqPO1udK4zslR52D5/QGLQZrSslMfAdP+kZ27dmGXzaSf744MzP+zuyx9mn7ANbgsIj3nnYsM2oxP9wRgt02ttdOQjmY2bQHnU84hb8ynLzD7zpsX8VU3Bey9NrC7sx+kQeNyYfS4eA8n6Z1nhtjnk89SYqcvXx8cWe9Cdran0rT8DVxOd/k63jZOrWbshN6ZbKn9GqSg9eXmMB8ZmOxHykEayt97LbvU5m2uh1ljHKCf3IA47uDD1skdrnUi3Ma1Tt2rIOZeJqoHe7M+X4UiQ8dnya6s+j4Sd3e7xTJk37JPTq2H03KccsaYhr42vnrqp4h0WeFvFvEbb/dOO+Rnc3DpfB6mJZ5q/pJvYV/R7+pzsL0BY1OmueYF0vMlWJ83jSzz9GrOzlVvZCNp2vd/eq/J++cW9TMNDkml3HjKY9GzJhy4iKBcjlul4/dY/1XXDKx71M85J1Ypu9/XqbSbKsMaO3GtfOmGqW6GhxysXhb0lAlfEpQtN6UqEPp5nV568gys29xmaf4lLQe2W2k8OuGtmnI4o09tHt/K/RrjOH9k/HT6YdDj7rVEjgUDAOcwk6EcWr1yp0J87x6P4vhKpZzqyqLlnROqKGNEyftgBjmhBYF+xdHSZKus9whlMVz2xwezfx6VyJULmTi/dRWN3JdJkCRxJN4j+FvuvepK+1/CV+fx5y12RQ51Ke6r6KFusS0tVpDe98jRLrzZF1i1T7rg5qMy4Xzy8TCQuGn99paOndeqCvslrM9lTceSco1/MYkySy34Un3bLzx8nJS+L4tduKXNu/FBByfsmkcx+cps+QKdCr0xt2CW/ordriMT+zmSnczZX3u/RB4a5Juw2pjML7sTXa9LwUnVvGlY6tRQgiP9ETQ1aHJgsO5LdJrxkuu2z/YdWN3vbFd7KVwW16OU9iaPCO/YoVTozihR3+iI7jGUjrcU1CSJTkpOBSX/kpEapByqxglxWgTv7eL5fdwie038e93K9uhaDhOaOXo023Lbdy2nGumC9F6G/vfRr9MPB0u0VF+bJ27ae9IsImb1zpc4LNQycma8mNX732ammWmLVHf3Z/zK8kPT2wlYfkTM5Wy7he7yBgTm9U8yEFGDKpMspsCHzMlGMVn37XPUzth0RnNO6vQxY9/iO266EQbJDvp4Y/OMxe4qwj+NUHWYP2eICX77l3odGPBX5HTjtBzeP5sYGr3TKum3tae78fkC0W6FwbovnAYFnWi2DJqUs+T2sw5JASne+RnRiwLeseJd19/9KCvaaC8HyX9WDI4WAkZ+7kxOrfu63ew841Z55m6Xbo5jei3jRmi67X6mZ2CPZkbUnb2iuv2O8I80m+iFTvuDpWJnGBIF2KyuNHt/uvvY9Spy21XutF/2sVtcWGRtW2aj7+wdSjG3C18seVop0AmXWiwK7h15VvZ+NXqnju7FycvZNUJ6H0zqrPZifwiH/P91xPh094g8waSqGtaaSjwfWqIf/z7VRrFpx+e15pktla0l2hVOC5+a88tZaF2ujKhmnCqDlRY4g5KtZckCOTVnG1m/i6XcE+nuY+IuW3MduDs5jMBAzzvu+mKPm8P36Eeh5AMjzJjVkz4N+C/MvJtxvjpbcne4x/QJyihzrjioYsZQ7pAuerL50GnaHrXVrCumtnx4tK75LHsr9eHg7PuBotW0HJ97j0rk+La1LDphLP55bPtnMCMT0dz0EdamcXnYe+VCfEOJRjqBOsHntDIqNOlGSXjzOGQxhRMpxERtTz4xCDhEOjW5Mp2fyZE00Cm7yZvup8Mw7yF36WpF/PXIm8/Xd+gIWG5o/5OSiRLJkW3b5fDmOZ2avvgRbl7P/CupHj039hSEzAfvBiQzrsgVqXbk479Yyos2Lpv7evcHLF+2jN++8CwyNiQ/sj5O7sfFHldIlw4X3Tw2ksGFNcWUW1+fypRPaB9/95KTkvYxuggb42X13To9vVrNG8KBB5KoqgPBuXyN8YEjfsf0ZiVGdlGmOfUs6M+i4Ks+qVYPQ8X1M/l19yeF/fUAxY3zxdT+eWuiWc9LCTweNQVq0dl7VYspypAhK0Hds/NgvgSC5b+7vke9fDB7ImPddTqGSzGP0cY2/22yW9ccDKvSc6+93+ZhuNjYETUTGf9a6wL/7UYMBu4KxHtzYB/I+bUo7BTzQwPvLviGEkp50UJX54XZswr7/NwyzOsWW7TLE/UWYq5PhZtot5U2uvRn8NzqX3vnFZYtr5+/2yf2hJ35rmy65VgU/puJABzO/eQHtmbKbeHLFzLf+jerGcoiFj6UR60cejtqhaUJh2FazU4Vnr4SfbrbOu1umFpax+3pGSXSIV7B2KRINjZ3r/a5Ivj6pbgxF3bH2zeu3u4myFvqB46lPDnTbmMnn0g/PjRWis/+oFvNuviWe9+D2/baPWz3jPz3o9QDdsuwziak3jkCtyMi7tPdFFiC2fO3mvt30uKJH3+9gXz6Ru0kstBRufTfG0HHj/afaoLxBbUUz6CDPvGW/QXqExerja4jxm8udd6DSU2GvJokyPzz6ffilr3ewxW12Xf7Kl8Ky5zThbdOVR62ssyQe/uTnw10f2E+hYbY9eVC3Mto814pjYTQyl2SxiFvFEd0eksFqJvrGSCmgNaiK/jPEstWps0BXb2+Geu+PQ6e2P7es2oTJNdMvlKrbHD9ALPJ42rwiOwPTD/icoLpnk100scHChpGxWV3oDHQucXV/vkLhc3J2HONRLlZKuxdntHs0VfPYtP1n/TruczsVdRL341Qkjap9LX4Y7XM/0Sj794q01f5q7tmFhKJd5kd8c54YEoq8UAC2r6iqSGu0RIdblrH4bw2cbNq8QFbiOPbPTexRpzjkylrtl/J/Lp0wK8xd8VKbk/9onfPUtoLuQ7u5judWY87pwTU8dYBHKnrtKQtFa1QrsOdN9o1hYoimUOHaKo5sBrIFAmt4qS3ZJpqkpmyKQokk/CCys5CPxq/JE6Q1qk0utiUsK5615jsTYbga21dOunxdYVPw8ueYd1GVIqTT6YS7qkTfnc2z6jPuj6lOaA+eU+pnvssdsbFvaPqHftyoP3sEmUkQq7HIN5bqs7cn4fVdTFZE5G0pXIXlLVueqlTB+P9eC8IOuUnXGD/IrhmS+T+qJTd9tL9O69T7SIKsl8x2KePTkWR+eKceagU0TmpOAnfe/AzfwnOGJbNAcPTTzeEy8/3pWxxnm6Lin//COJV6KBtBOX9APSywW2O3yFnwKz+hZ1yXCFD0UXlbnfMeHc7pE6waPPUPOO/cNciaX+O43rNgkBNd97escpmUMz+YsVF6VDdA5tqvCznRiuxd4veONwA8y63FsglX+9zix5znsQy8j7i3oTGwvByvuT52WUQ5qLA7XWxEgCG6Q6qVhKcfReGdxeF8ZvlSlV3NeVwtYf8B4XAMKhUazyWJcKoWe41dSLU8I4kUVZT6jiP912sCHmna7vnGT9GCdc9iDrZVd1rZ46wbxRHBeRXb2zY9cby0tK12bbHzYqSVGsruTQ3womP/EwbRDrtklue2qtuOczjNwr7RfCQkkjVL440KoTYH74LsFHuHQ6qVzjTtkZgrXk0SGiYkXBMLlpqlpDDBelO1/wI0ffPY6yLEhwU+eP2/PYqu+ZPBNf4+PQy8b2yN7o8VLbDCxZW7oMRtzrZ+i5XnbzsVAoGRSJP6qHXEpn9rpJgyJDut+lz9/SsebY81DCDWJ+TH97hG7s9JJAWflnTZIFU7a420OnlAfPvRz2ZA2SVp/tFa8RVHbNvtQbqy26knzn9qRrNN7Lm6kj23mi1zarHndevZQutGR+cQcHjw9XC3ukIyKt0XLAuUedJHDyhCE97UJA9EEUddHhzm02AkVqHaWLDHWh7vJOnzD2DvSaXxOkUJ8p2B0d4MYfBjUX6oU9B36CfeL8E4baUTc+UfyaObP+9mvlf/qR1P4u9sEfz/7bHVX/5P/5cr/apcB5MwIDA/szkYf33/8xxTyJm/3rNHB/74j4jtX3y90Ic+ffCxL/zyo75phjjjnmmGOOOeaYY4455phjjjnmmGOOOeaYY4455phjjjnmmGOOOeaYY4455phjjjnmmGOOOeaYY4455phjjjnmmGOOOeaYY4455phjjjnmmGOOOeaYY4455phjjjnmmGOOOeb/b/wf 00000000-0000-0000-0000-000000000000 @@ -53503,7 +53513,7 @@ If an integer greater than zero, Point Sample match method is used. When input c - 7bt1WBVb34BNd3dvupEGCZkRpJQGke6UlFJAQQVEKaVEFBCQkFBpkJohBKS7GxQJaZDm255zPN95z3POxftez/ffx+013Ps3s/bMmrVmr71+s0cUVBQUlFMkP/0TAjTknxs6Do6ubgpuLi5urvzM+rYeno5urpckLwiLXhARFhW7iHwhJCTMz6zg7ezl7WF7ydXW28vD0pmfWcvbytnR+pqtr56bk63rJXFxEZGLwrZSktaS4uLiokKYP49C/tvOLyjburnYenn4XpD3sHXHQK7H9vn9OHiWHtYOjj62ojYuuG7utq6u3h5Wnhg2ll6WPwvh4OCg/awiCRcKigjSsUf4BLjoyBfEP//M6qKgoB0EoqEM6v5+OoenaCgUf5yaQr3bOu8bHKXk4ezexk5eCe6TfOkj5PaUP8qKoNxHAVM5fw9Ifu7uZ3V/7q0G5z/3Rkv6wUwbv58UOkEhCUJlXb9K50v9c28hf5QlQfujIBZy0Uf5O+vAf6z6fT309zVGyCVK/gm866cInuX7KUXcx5NnO7Qsc39XX+lMJ+BjvvTeOdsFaJ21sYXKZ5p9UXPjYpzKmX7R1cM26aN6pgnKdPWDDK+e6ftJA4+5Za+d6e2HN6o6mNTOtIPjyHcPVPUzPa5pzEwzf7a1JCZ0apo0znQjg3mIVY7mmV7DpbgOi2idaZ8ShczTB2fbF6yJPKo527dWe+pO1872z8/Dyuvu+xKqFtAicdonG3pTSErfZmbipTP0mjPNiehmLiRgobiC4uMF6ZkkFALbH6Gsyu3phld+0AaTsnW7XgOktDkbOG1+H2p3VhxlL/gMDdsZDjG7B0Fjiit1Bxjd0BNRYapOhlCILt9YEru/D8oODzHebwqDnK7s9u+nDUFjA5uqXK5R0Fh/d9tbtzEozN78aQ9ONJRqpCh8IjsFzX+8ufJgOAZyLcVZ5QmZgVRuV4yTXIqHuKmKVslx5qHOBa9kvJQEKEd3gu8k7CtkWEyVvHCQCEUZC6jwEC1Cup+qLfV0k6C3Cl02A9HL0DDn+BxFdgrUIe3fwEu1CumvQJLUpakQLRlhv8+TdYiMu9rSkDwdkkUrC9DE2YRMqH12mVzfQKXhZHifQrcgq2h7Io1PGZBTHn3IKvYOpL8QaFpDkwUV6X7XHX68C30dYdUqLMyG5jsOLyYY7EFMrTcoxBRzoJLiyKsuPAfQ56QxVtS+XGjTluHA7fAQEsEboH1vlA+9mHzU+arzGGpHVWp8MvYOunLz4+Jo+ilkv1/mamvyAdo78EaLrEKBE2s0v0o6FUDaVz1FJbJQ4fW8Ze8A9kJIT/iFulk0GryNdeQYOVIIWXUHMm7cRYc/fn2w9P1JEbQhPzo86IABBzRhO2lIF0P3S8XiqvUwYQw+9DsoX4uhZ4eoMjsgFsyUQcEbFVEC+eLycDgKYMPPcm2iHgmUQkMuaW+PaHHg6KN+nsKWUii/iprrBRYuHKOh+GnMugy6jxuVKbqFC7OsDCRc3C+DWkE0xNAUHvxivmcn9HE5JDdg2+LYjg+vCSv3d5NWQNzcr+tGKghgIwNhi8vxFVCUTeIPukxCuCmAfqWQ5iO0nRorYBJNBCsF+HFcff4RGmzSSHW9RwyLv/I3dySqhIj96a+9FSOB6/lezno+qISe6MmM38slgXmfxYdQrFVCL9FkGgSYSeHY7WfcpSZVUH6BdO5EPCk8zO+4vNxYBemJ0i3Y45PBaPxyN+u5qqEG6tbAz/fJYNlyN0G2kGpoMq7vDdouGaxDpZxJPVENGR7ebqZ1IoftvZnoCcRroH5LhmWhaXLY8O2ry3GhNVBBoTER53UKOIa0rLOgvwZCR5k5OPlMAYtQil9zZqiFeIx6sJvkKGG1jbbdbrNaiLc+1y20mBK267BKF09DxrzBQyrcVPDeA9J7CpO1EFaq0kuMZCqYjQFfDZMKghBMEutNpNQw3fa92UcqENSavcWb8ogaPoEg/w5vCIpvv62WcEgNz4ajUlK8gSCLjUOXZ+40cOE1skJEGwRdK1TyyftCA9/qlNLb/Q5BOGqUEjtGtPD2PFZxKyYMMRWomvh208ISNlVFh6Qw5Psu91BaiQ7GGWPjpmOAIZw7Rax72XQwmaBI/k12GBIO0nozhUsPUzjP4S7zwhDbdhH6lhM9zMh8lPdSEIYK6GY+CnbSw2Tlwvq+IjCUEfgWDhNigIcvc2jNi8HQSZxQl0MQA8z2qFIaUwKG7rSlWJkMMsDBcRHdU+IwxFE3zmbBwwhfDeyed0eWPwSp7zvcZYQZFqsw64RhqPpjQotTFyPsVzSuU4E8Xvh+vLU8ERMcsr1X/oMfhjAl+ymp1Jlgg+PtQi8eGLrv2pw0Hc4Ev3tbHHmDA4acN7HF0luZYCuHHB8HZhgqm46f0MJFwN+v1zteQ56vimohIvYSAu6RPnBNooYhT9RCqZZbCNjn82HAFzIYEhl/a3aSiYDRPk1XEhHC0Iu0KynkowhY1svohAwbhoL6uNXIsJlhlO+I+6eBaPd/zSN+TWa+EP7vJzPvCP9hMhP5X0xmopFLr7F/hH68EnyWldEr8y5YnG1oavC5M/PZ9h3LlRZpVzzTgRbf26UczvbT+JKvzWtXzvTrVn8U/dtn+8OpPN38icKZhsTwxDwene0uxx51FKKzPZXywj4qXv5Mr/WZP2BgPNunOFyvcjMun2liudWSi/xnG+FZ2tlUDJ5pwbd3v+nJnO37laEYTSHAmU5lp7o4Gyd3puujMpxO3lw607N7Iq/pimXP9N2WiU9uJzJnOuI4Y+o45Gyzd2hi6fZIn2klyUkpt2mpM22X5uwSvnbxTHvlbUS/5DrbX9MTRzgCJc90j3Hfh7RTiTP9MVdrVTv+bP8cx/4+aGoN0AzT8JdC16mm+w6wmOFqoUwStrgMaMufSngOGYfy2STm71kB4N0rKq3IWM9UfZ9vKwt4L8dmUYiMh1oCH6gYlwFHMMpUAjJW3OcX0SipA0hI4pR9kTF7svaDWekWADMaq98QGWMZWOxZ13UCd9uP26WQMe+sMvXCm17ghXgSAS0y3qUdvUeyMABMXqXK+oHJDAtj5nUYS4wC3CKWj9qQMcP06YeYkEngtdbHKynI+MLdwAHDmzPAq1l4wQ0Z03kF4UxFzwFFDpiBIDLGeUIaavDxC+BcrIVPgoxffDp4OK/8DYja1X4yiMEMF8vmoFoMLgEZb6WfvkLGTaW+3q0234EOBSVOc2TsY5nrw7a1BhCIZF1jQcYy78YtS8ENoOmqwe4MOjM8+joUfaR1E3hvc/ttPDKepppuW9PbBvZ2FsWUkTFhFkfg/uQOQBggHraLxgyT2AKnOw4/gG/vCEPeIGNU8jrFL5t7wNvwvO/qyHgTlo/ov3sAODiq6u+hMsPdpvyJZVhHAP5OPn8qMu7HqLMPf3YM3GrmkFJExoZe7/B06U6B1ScDggsozPBhW8Yclg4KyI0l9T4EGbdObF6ep0IFrR4m8bMj48zPNAJVY6hgsbu9bcApAiaJymoOT0UDuzaWq/JPEPBn4tea+rbo4Kqg8s3eYwT88LUzLz0vBti+jHVt9Qj5pSsojTm9igHmZjfx4SHj3fZxkdfFmKDyzJIcwyECHsVqpza8gwUKx2Cbsx0g4OfcrwCiS9jgqG+NKNM+Au7Da9eBUHHA1fQMfvw95PG/H9m6N+GAqO3hHHu7CLjz6VMbxnBcMFAiQ35oBwHPqmPtNmnigZcnn21lbSPgArn0SRcKfJDDdsLNdgsBm7vQz5GN4INetXVFJJsImCgpbqE8mQBspM7aqVpHwKk4y9jGVoRggALrqe4aclKBUMc+5iQCV/ajWwe/I+BlXjA3ZZkINLk1SCW/goC3ySb8wQJisCjshU3sEgIOOK7mvCVNAuJkGBXNf0PA7ebTnPVJJKCi+UtUhgUEXNy6FkR+SgIakjf2SnxBwK1C2Ta2lqSgT/6xg8gcAi5zMntf3kAK8ipTtuDPIOD0LMo9XE4ycGqGn+vLJAK2KWvPNXlMBvIFsGomjSPg14E5WR+WyMDUz3EqF5CTHBsd1gQ0dXKQ3YSuJ2EIAU8XuOfofSAHnVsiHwz0I2ATYqgqi5QCLBZDFSHvRcBP92fXfnhSgLV+VngcXQh48D56ufIgcjszvSN2OwJuyPhiEneREtS4KElb3oKA1QKrv4+/pAQv4WGmCn5CwAOGsQEcx5Qg/3gv59s6BHywZHbgaE4FujvoBC/WIOAXnLwPsuqowPSLjgMbHxGw68NA1Ak2arAwrpXtYykCplKS3yB6RA1yk1cSSRUi4FpczBnwGzWYGp2zX5GPgCXFxUHXqzTgAxGuBxvZCFjTXOBTQj4N+KRoqmo8HQF3H46N1hDRglYdRkneyQj4ZjK16bQ7Lfj+cYZBRQICxgB0p9D6aMEDhVWKw2gE/PELfSeLOB1Y+Rrr3UI4AuZevsl0KYEOfHGlW9EvBFnfFFpXvX06MDsbh7kgAAFHj6Ll2BvTI79Egx1DbyPgMKqVOb8aenA44bTIzB0BE44R44UhGMBD9lqnIQcEvJZ0ih3/gAEsev2wbs0CASdRrpMnzTGAW4ptvVkGCPhk1dQnVZER5L/V43qkiYAtWtqGM7IZQZukITwdZeT1hlYenYXLBMapvRJWkkPAbbOvF7OcmMBcWf3CYTEEfMXF+PLbDibwWZoBNh4fAi5CjK++F0SA+p/ssMeYETBrr0lSaTQCpF/0ws6nQsBP8tNf120hwLq2qEIGAgT8JprOaoWXGfRjrn4ngIqAv/ETbB4aM4OPnj1EzOwwweoLHM8JIpnBa/deiEgvMcE0olKkI4XM4PTqN5R7M0ywPckbrqxBZjCJanc/YpgJbtxVSvI4ZAaPli97OHUxwYWLms2yzCxg/uQAEV0TE4xTo8+PrsgC3jy9Hfuymgm+/LrALdSUBfwKRT1XLGOCI6VLMPF8WMA0LGnG8Q9M8HVhnXthUSzgpSGSd2Y5THAu1ycXnGwWsECOu7cjnQke4PgUHASxgJ8vSVLzJjHBVGyKXLLzLKBrdUeAWAwTvHfrocUqDiuoqqXtSvGYCWZbsqVNFGAFq14yV7XdY4Ldi5Xey+iwgrrsg+ImnsjzM2bnGfRhBWHY+n6zA/L8v1xjzchmBY9l2ubyjJjgOGftEuthVpB7x5dXQw15/vwuMxS4bCARi5Vs0SUmWNwdXPgoxQYWiCaYjl1ggoVlGl/o32QDuYTMKdsRTPAFLJWrWy/ZwBR+ro5qEibY0OBudmgbG7hE9pDeG5UJLokM7KU+YgP9JKlZfmwwwqnKiKFsfnYQwyPeSGmWEQ5+3UUoY8oOatREd9n1MsIK6AJ2ESHsYIEFFY70J0Z4TYtpc+odO/g9KArnezkjvMOxESM5yA4SIxgkH+YywvqR6rTxJ+ygs/8lraMkRpjGXQBrn5MDhHr0xs2eMsKFmAWlKKocYPQi45WvQYxwzL76OoETB2jSwb1tcocRfh4seYEpkgMcm6vcbHRmhK2htHHRDxxg3fWqIWZLRjgl8GmAWg8HeHIXJdLzOjLpc9rqpl/mAE0ndGqT1BhhLNbL/SsYnOBNI+p8WIERfhnHKFnLxAmGPkn4Ni3NCLdPMsc9u8gJkgkF0Z8IM8LkKtu65jqc4AHXrCg9Msm8WGPtPmfPCdao5iYUsTDCkl9gXNt7nGCl7Mk3VTpGeCmvMngxhhPsNqLkmiJjhOl/CIhaveUErRML7vniM8I2w3iMIzWcoJ/OzTcUGIxwGW7gxj8lfZ+I//dJXyTxPyR9af9F0pf5zwX/EfyG7ljKvC/AWX77qUXlav+PM/1lfP9JZCAGeJZJzfUzcz4QnemI3+60U57pZ9ft39Ok0J/pqyWsGsnTzGfa+fA6dqsA25nmv9/xMKaM/UxrNKPIQuhcZ7q7e01Ei5L3TOuMTvLMcAqc6aUNOxIpBqEzneszGY6aKXymfz9v0TP9+3mLnelVDMUTI0DiTL9/Uu3L1iJ5pt2JxHaWtaTOtFBsnnvJiPSZ3qRmW7lrJXumi5Je2isuXzrTXixkc4RewJmm67si6BQAnmm/eBSXLvnLZ3r0RnWuKLb8mZamu/Mtoe1svxwX5Tx6qnCmqzMWF45Frpxp0yN5V73qsx14KnXzKrvimY744xe6s/xznP37oH7PJyqJJ58TVIzCrRpZYoDFDUf2fV5ygstAc9GrHgaYg5DQJv8xJ7hf0XikVMEAV10LDJr14QRxfEIv7aQwwLSWme+JbDnBd4FuI0khDHAGy7OofE1OkJs+5pqEPQMceU+OQVaaEzRs/nChSYUBTlLiHW9g5wTR8xIK9XgZ4DevVPvkiTnBx6y3LWfxGWAhH+zFqn0OULLCSNDzOz0cIzRRcG2CA8xZ4kyQ+0QPV8+EivfAHOBEfrobcTI9HCfKsKSVwQESKl3uWPGih2Xf7HzrDOUA5WOccMbV6GGP/P5lNeSX8nDXyq0pdnq4aLpkyQf5pS30qv+V4w4d3BsMrKVycYDlBPWiJE108H2FDvVOTA5Qq2bEdeg5HWxwyHXlZI4dtHGd+lFjTwfvphuFXahnB8c1Elfgi3RwZQUquUciO3jN9UiBHYUOLnkURVzmzg7ap94eL2imhVuZ5T13ldnBj1b5iZZPaeF4jnUTfgQ7WLtnpXvhBi3cuNRDobvLBr4rMaIiQ9DCWx+K23072MAkd52Rna80cIj4Z53oDDbQRyc8c/09Dbwhyf451p8N5H0WfnLgQwOnehJFBeiwgXibdtXkAA389uQFoMPDBt6dv4txCZsGLnjCtsGBwgauDsao2XVRw2Q2Gk9nB1nBLcM5ptQEalh0vVHz8TtWkLqkdnfZnBouYKcVoQtmBSXicMQ1uKnhMnzPtCQjVjCVZViqfZ0KPrqz6xUgwwoWtXnW8DZTwR/oOhJuMLCCYHbl9ItkKrjLFv0LzzEL6GfydpHGiwp+58hc8GOCBfQyG7v37ioVrGkQpNZQywKqDzWxGLJQwVVqn0p2clhA0XtET9swqWDCyBJ2rngW8PsNCVmVJUp4KoxAzeA+C5hcRrXQ1UkJ81BUTjxxYgHTBRuvWRdTwvaNyp7V+iwgTlIQKvoLSrhRLUn3sSRyey1rzKYrJdzEn3NXn4YF7L/CO3KsSAnH2u7S8uwzgzfS72JzMVLCqZ8oC1FHmcHv6p42btsUMMnmNYKZSmbQvKZBZaiNAtYUiBOyiEZO6rNH2MrjKWAmKxaTZXtm0OE7CkGXOQUso1tSGSTHDK7e11hg4qWAbXgEnbkpmcF34SO7b7bJYbenp3apQwiQ2c1wSAsih6naU3fWghFgnM5I+fETcpg08fsHRREEWEOk4dirRw7L5030JU4xgTR8qbdbEORwJHHmw5UIJrCrYzlgcokMrumnl5SRZgLLFnT5ScvI4O+JMctPFhjBJNTqEYUHZDAaXJHZH8cIFsaAArFqZDCHPyo3rTwj6BdNgHNETQbnHpPp6K8xgJG21S3+c6SwVYCye1gSAyhEY6JB/IEUpjv1j6pVZQD7Ww/70v1IYYyAvtTFXXoQzySc6aoSKQwl8ZriZ9CDwT+Kt9DISGEyOwUYoU0PfrOIfN0yQQLjAAA6zwkdaDK88PRlDgl8Qi2jJJJHB3Zryt939iaB41DoHIUM6EC9AcbSq5dJYEJmeiVKTDqwtIFFk5eQBJY1iH6NWkQLEpbKecoWEcN3rPvE2sxowSsrBgDlVWK4zJWyNQ6fFgxg88RfnSGC0dTZXslU0IDqNvmd5b5EcLKF5IGCLQ2oWyhHRElGBFM0NE9VkNKAGfcGBnpyCOG3lYnSYC016LKd3VJ1mRCWLnKKb75JDYo7+VVljhDAX+UCbS2pqUGfiMcj1bcI4AjHBcWmBiqQJM/WKguXAH7Ek3kg5E4FMlwOzslNw4fLtxmiIhmowGemtZofpPDhRSiOZamFEsTw29sp7sGDdZ83xV70pgSnGDQOKxzx4NzgudT7LJQgHykDbTMqHmzx4Isy1EEBDtEtdo8k4sIWmK+Pf/hSgBilmbPbwsj4iUGxECcFKKRptU3cigPnxH2+bd1LDo75ElmIWuHAT7MERKIDyMHJ2+zvzQ+wYS0JtY4qXnIQby2s9nkMNmz5pYptfpAMlE47Ih7hxYY94/j8CILIwJu6rpb0DVjwoNVKuIggGZgMLm85GGPBo1yUATfGSEFNl5DM+i1MeP5rLNXdUFIwpo22jzsCE25If/4tVZQUfPQEN+EVOyacbpZY+WmKBLyjvG9EVIMB36BmbloKJwHpba+URl7HgJPvzr4guUgCvvFo/ki7ig7fUJg5dW0hBuUKLvMWPUKHFTcpuSBmYvDoSnCsPgIdlki7qkHsSwRWjjQdHZSjwT9KEjotewjBpE89ZnlaaPCoTeR4GQ8haOLPpGK/iAofuWUqEj0kAGlkZikuPESFOdYQ2faj+KBY3gjhKR0qrOb6EqdOBB/UoO/B6i5Ggf0sb1sxhOOBn2WO+PLUUOC8x8GavnO4oCA0H4poO4U8Ql5LD8ngghYrd1APjk6gA9Tqh+JxOGD4WhDe/IUTKDhguDV2BRus2Iwi77Q4hjr8dt02r2CDM20k+c0xR9BkXVGPVjIW+LBckKGr8RCqu1Sm8H4HEyy9/jRsdvcAaiTn4sTTwAQ5hJOoUHgOoJbFBBy7LAwwniAnndF4H1qm9TGGT9BBeQ5rNcXIPciIM8iX5gY6+IL1jqA39AMqon7U5PIBDaQg/mCSt7EL3Vv+8RzCRgPFODY3vrDtQiqQoz2pBSqoKyMeyqy/A4V6X60yr0ABqfyDg80fb0OkBpKTOSQoYCp34klq5Rb0ol2Ue7LnBMARMWefW9mEtkweVpg8PAY4xU1BdsQmpPG9W2VM5Ai4ctHYxFZ7A3q28fZYfe4AoBWPds0MWofmZ7lXimL3gUc31hM/Oa1BXTymqdhX9gCL8PvDkt3fIWmd6T7V7V3gOC6v87XYCpTlZ40dkbEDvEwZbMROXIJig8Urq/S2gcN7SR62x98g76+L0YMYW4AMLd/XMssFSOf5UuZoyQZwtylo7PDTF4gh905hs806MLqVJyDBOw9pPUGrynu1CqgJmPa59c9CAxSN+m9dVgBGWjSO9IAZqO+l724wsAR0XCrj7eSehpomQ40VSL8B8dc2PFcyJ6CrVgEfF2a/ABnTr/qkDkYhGreD7TsE80DnnviQUOUwhAOkl/0QnwWOSucWOPwGoTvLeY/szKeBBrp7mgzS/dDCTkVxDOkEMDgheZP6oAcCFvI8VW1GgBKrnlgRry6IxbS0rP7VIID2eSdWgKAdupFD5C7a1we0bFLrC2W0QO89JqdS8XoAdWLyMVnZT5AYDU4ndXA7UIp1JKzbXwf1l19+d7zZBHAghMa+DldDmRBPwqRGPfBWNlYawVcOqWhWn8RdrwIMjZqNbO8VQqbH/W8MCIuA9YI3bbavs6Fvjm+qUMLTgKnvd7/JPX4B/f3JmDysffu/JvVZPz7R/HxWjQTrj0T9r8+qJaP+7zN9W9S/7OAnP5/Dw/kvMn08lH9/Vg2/mzekp+jan6bGZgcT2zX+9L89K/SzPptuxMY0Mi0QgpHz/nfpFgD2UuYjkWkBhJj7Lq0JtEJPeD4sihY1Aqd+JNwBF1oBbbp44ySGdkjueXreDGYd4F3pPhPD0A4o3EtBLdHvhKI5cVGdRkqBdWdikRr9TgD5rWwxvdMJnZ7GFhblFwIwwWHzxE4nUEXW5fq5qwviZ/4yN02WDtQgSvbburqAS94Pw6tRuyFsXjFm7+No4IdOnl0lajeQDaLKFp52QWPq6S25l6JqI5I4cIpPuwAHFO+Jf7otM/F/6KzMf+osvP+iswhQ/v23+I37e3St9Qp/moDCNQNrDfzTEZOjUpwXZf/0v/3G9rN+xzq/N8pkBn9vGbJR4kN/b5TVudZ6kuIOyGmb65JD5HO56XsLqwNcPUBzqRoPsW0b9O2DLAPDlnptCuz9fkqjF2DWT6RUqm+CrPj1PBNrveR4JlI1uBP7gQdslHczHRshVJkNrPooz9qksgdvYqsHgCOX1KyFtFqoyO+JnWJCjBwvaAgsNg0BsW92q6sZPkJX1m774IXlyqnFL/vL5w0DL15vLbxFzYW2rbixr3jl1r6YxyS58RU5TMh1IBRJX0I+1c+/m3Sv1Rp1uejKSo8CBd+8ihQDHtRO3xQ2WnyeLXfwWaIxWmoUYE/Y2P+nzjZF+993NgfaP3Q20X/R2ST/XPA3fHt71ukNMcH/aco//fyrT/5HLY4/3YanOSLqLv6n2xdm3MxpwT/9b7ntz/rT7Mc3X0U2GograLqAbLTGPxrtypWIIsV4b+iIv6tsL8YbGND6akyGbOTnZD0TbEUhkJFGveFwUQgQSBjypk10FMiWAKgJA+KhPIRm2My9eOBplefXJOJR4DWvX4/cu5fQbu7kLOe7lwCDoYcG2uYIUL5E3Ws2kwHN5BGfus1kAE1uU4e090YA/t3bqTZ5OZAWCiaWfV4OYMpeHLSNNwKQNYS5NmYWQzFL/t0fM4uB4H40FHa/IaDlcPheVnw5tDmvnfAuvhzAzcCLuss7CFRnZquw0kGQn1fMRS46CDhplUClvNkH6J0ELRbr10EeLn69SAPJHTfJh/d7AMnENQHTkUYIUsaNQxrITSMZ/8bVCQStfCCUiW6CTuUUVrlimoDSOa37MtJtgH0w0W8j4KRJfMDPEXC1Zoj/5wjIowUG/NN3QyX+H/2O+pcrMA3/P69A6hYL5bm/XIF53FG1P69Ax187+HUFYv2x/Bw2cP/LK5E9TYmwIboZOsuEj7kQm75U4N+Nr6H7/HkS23+4lO46hcoY55n++VjTmDEaLz4zM3yWEyvcltkwSP7Tu2xK6CRvgbPsjDxWY1vRQglpN/TQ7h1B25YetO8Wv3002gUYqWkOFVB0Q9eE3iYGP48DGi4lqj2b7wJeTJhmh+13QaeDtMrmyplAM3T3Bn1JFxC+pSPAZ9EFYWRFwnLTH4ARta/r5RTI8kG3ki+sd0BcQrE4ncyVQD3F9onh0w6guVz9A8FyG+R+eywyFa4Dsgygb3iWbUBqeiXO8lgrdPQstPzWYQMgEMovwSDRCsjjNGr4NXyGZjg+feuTaAKs8rfJQtA+AyUKu2sY6S3Q2MAum65FCzDQ3G21V9cMfHB/qMlo3gG5oYub9HXoQ081HOSidXqAmMNsfzvDDkhhbG1GUjkOwK5l/LCNXM+T8lq9UaIDQnfbhlaWMwCDosy8xMs9QJeVE2Pxm3YICKfTckv+AJSbuq/473QDZfb2+DwCbVD+IxUH8v2PQNmqc8QH/m4gt3vLJUDmMxTmajyz018HfCvUNHKQ6QS2wzQaH/K0QIyqhFNSXI3A3aUwpw3SDkBFrUnuU1cTZNmM45vK0ASYLXJXisa0ARWndSUqmZ8gvjmbGFWVFiCB67GWqnorIJWYY3zjaSv0iWkUK2fCEJq45smnWtwLXPhkjueNXB8zcMylUhoLMKxWRvlW9AI+13Gu7Si3QjzzlKn1uhlAdH8o8nPUC/CRvkMjzvoMLeeFUCuFvwdImdzU06V6AZyZJxWux83QM0S2aij/R4Ai5rg+TbcHODC9zfJs8xO0wvkWK8KpDrjZxo2terEbOE76fmdZEzlaGJDlL7A0AFVCdDWnrzsBHEwUHHzRBuh+s4DtQ9tPgGK9N2e+YwfAEy903f52PbSaNm/GSdACfBFbSfVPawf6Od6OsPY3Q5j7ETbUMSZQ6ivte5fo+4Fmf3hkurcZmvRDK5PBiwWqamBuabZ+IO7KlbArIc3QK3Z6abHRNwDbm6c5eFt9wFOiNxUj75sgydnonZCMd0Ak0au9sdA+4LpHadPjb43Qw4ndTxbVFQBv3oTF1otegCVW0mi+px4KykttfgDUAbqMq0qjXj2AoGK2h19UHYTtELZ6aNsADLyO6w1r7AYG3hxTu6PUQVUlM+72Wk3ArC6urapvN+BB3IXfNgVD2LepZQ7zPgPMVF5e9127gaVjet+c/XrI2qd/PO+GFUTYN4iTcW8QSHT1pLvwvR6SL/LXDZKKAQi+wguTkYNA1e2PFNl36iFRsWQhbpk3QLi940KRyiDQubuxSZpeB9GLZ4nHJLwD0K4pho71DwDd49OP1gggiDLp8gqfZwWwAQ7m5ZT0A+bGkZKJO5VQke+iJqdCHeDbY7EERiMzh8+jn69HVED6QmMSM8ENwHetcd3eyV5AMrsmhFOjHPrELPGY0KQJ2BfDZxp41AuQPY7oFHQuhyxt7nkTf/sMPEVNJRGN7QXa5KriONoqofuD6WmHud6QA6u+6ZTDMDC/TJPVE4s87koHG19wFNCmGinr/XQYsNx37r4f9xHSeyUy57qfBlCbGVq8lx8Gsr4vDCZElkOi9eOtNHV5AMX3GcWgqiHgClOSotV8MaTD59gzLVsBEJ6imolmIzOhwacY0tIFUBoDd4PZ5TqAmVUbHy9mAFiEgqwHcN5BWe2Dczw9DQCp4KOXvVQDwJuLSwP5DXkQ2wu0OKevTQCGSTmh+Eo/kPV+3Im0PR8i7Feuno9Ezsu7aZuiaQeAE9xYY82+UmhFZGSKdDQA4vC93VxFMQLQxdyVuvWsFBIjf7YBfgoDTmMjOJyujgCTPbgKt0xLIMGLbYxD/anAhAx3odrOMCDT+TQ88k4RFMxXfmeFLA94+z14HdN6GDDzviPdQfkesspvbGNaLwce7+DrvtcfAgyVPzz/PJkNtd1KfSmnXQfsCrbUkfoNAg4WbAYbKxkQjIMuJ7PZAJQ6OE6VEg8Cg1+OHmAJZkBLP1LcTRiagXvhzua2xwMAqbx9Y0RHJpTezdIeOdYK2CTefS17ZRDQX3VYLFnOh5Q+EGWwMz6GrsdS/EiuGAG84z4lvmbJh9y6QNmF9w8Be0mohxM5W5n/1vz5FmYupMN/k0+gOQU41bJ00CwaASJqiRk5jbMgUSt7/BmXHCCXo9D+gG0EcKnyW5PXT4M4+oOHX/eUA2lLhuuuT4aBiQtPJQUiEqEszfqouTt1QEuVbZj5/hCQ8PbjvmlWPCQ+h0Opr9AIWLrw+SzXDwFf7aY47+I/h4YfHvBcftYMGBomU2pPDAE+70hPi6leQVgOzuwBrm2A9i1rS36tYUCKLiwCNHkF5QQNu2WqRUNb23rFZOijgHn+1/ZawkTIgOHuSNMLd6DZ8c1jDr1RYFxHZOKZQzz0Mkab4K7qS0D9gqdoBtMocMHpUrp6bBTE5GA0oeaVDdyIZ/+6iWyfE0LrlUKy+1BzYOF2CkM5IMByE+dx+AhgE5Zq7tvqBKmv6zpKu9UBCSpdy1UPRgD1WqLKZz4m0FHlyZ6ZWSMgum41af1kBKi5eIx5MnMLerT15FFgbzMgl+/mHj43AgSW/yCejAiF2hafXnYaaANkDohr6OJGgeqrCbTfmmMgwMAtuqkjBmKKP0V3IB0FMgs9LYevPoOs3N0RnUK2AGnxi053s1FAPHJa7PmdJ1AP1g8VtdEXwOCGpwAoNgoIvvwR8nrGH7rd5sUYNZAFoChR0PhMjgBTMhO1GKeXITfDdrhvtgzIps4Xju4aAW5g6Xy8+M0WuP5+wX7BDvn5Qr3RK7A6Auxopw/1kboClTdKymMtG4FNHhEEjDMKfAxk/jhIKg34uQtx3ZluBo5T3dN2vEeBBw8Ld23lAiC+q48FDr+3AQ6S9/E4pMaARjR5HXfDYGhxrSeoUj8OYvVxz6ehGwUU5amrZ9EDoDU3O93BIm2ACuNr5Ij5KMAi+BBtk8MdQnx8tT5qlwDwKgdUc14cBfabIq+gc+oDPu6+i2wXsoBU5Q9VtjsjAB+zY7NPuT9wmnX5UDujDKA5oHligKznZOywFPXUA+CDVcrN58Z1QNCdiaJFbWQ7Sxk1u4c8BPL3yT16kOeFRfxjUOzBKKDhpHDdZdoLuLUQ+7x8uRkADsI1JtHGgKEkRzAq1AnKvryug43RDqDucUWTjo4BbBzh46xYhtBeR6hv8kg8xHqbbX0TeV0lF0VfX0vUA9KukqF5YMlAeM5LZXuGo0Dl7CP1q7keQIQ7kdrUVjyQXKP9yEMY2Y+Smg7+QUGAYlQK3bOgTIDJV7ehFXUU2JVd0SYdiACMZ3f22KzLADxtCvYXyOyE+grPJxmJKCBGR0SEU6MO8CcOb+YvGAUYHm+P5N2MBOxTXnASWjQCTRLv8zB3R4E4gUuyel+DgBRlnM+InWYAfmSPsIscA6YVrrywFJMHvloPDt6iaQd+pHc2oPuNAxtV4xx/ncWzC0/J/ZzFJ/6aM/+ahPMf/J4GnFSbBv5MA24kEv+WBvx6VOOnv1x3xZ8rR5X7OevvVf099zbxte8oQObeJDG/596/yv/6b5+/3jvvjnlJBZmekUgXGH9DpmdTf6RnaH+URftL+ZyLJRY/Kznw90r+4tedn193cn4d8NdBBRQYlmcl6IC/l/trmV83JH7dUPhViV9lfu3j7+XQ/lbZn/zKQ/968mh/2cffy23rMxb+PMH4v995+beT+2uL/rVlUcjIounxLyAPUPGQP3NM7t/e+2/0Moqm1Ox9Of3lXyf/T43z1176H3VAGQ7xfYeBrENytp6E0H802P+1Dn9v4L827l/X/486TL8CppKZAZT1J6nEz3n/o8H/r3VYf3oz6GcHcfyxneTXwX511F+vlp8IvAwL/vkG4T9i0n/srX9Be/3h3K+E7dcA9CsR+jVA/P2D/VvtqP84xs8UnOKP4K8p+Hz/kIbyYh8p9OX3FFzgI73JzxR8nOr37eKeyD+P/6M+f0+514FfafOvNPfPFPaPVNTCW6tT1QwTJE5M95CfWwISjgNrWYK6y7yGL8uJb+KX+A5dlnvV3iOHgnIf+MsC/WX527qfLffzE/JHFSh/teU/teffP2a/+LdbU6FXFq7S3BgEfnfZb+/77cp6mfiTReD3Y1P+UfxXX2P8KjYSKYXLJ9oR8WsjDioKNi4aKg4eOhouPgY6HgEmBj4hFiYBMQ42EQkuDjEpHi4JGT4eKTkBPhklMREFFQkxJTUpCRUNGSk1HSUFLT0VJR0DNRU9Ex0tI4KejomZgR7BwsPHzcPIy8fDwsrKxMjDw8rEw8OGYGJlF7jAL8DCfUGAnYODlUVAgINVQIBTSFhQiJ1fWIiTi4uDXUiIi0NISIRTUBAFvHxZHgW5XEFBUUS5ckXhirw8KgCCcgAq6iU5NLRLaLKyMrLo6NIy6OggCioqtqKSEhE2clFWUaEgUlFRUiYikkNFQ5NFQ0enZqChkUbHwKBQUVVVxEZBkZLGwJC8iImJcVFKSkISCwsTS1LSzR0LS1wCCwsD8+JFUTEPD/FbYmIeYrdu3RLHwrqF5e7uSE5G5kxATu7gSENDRuPoSGPv4HCT3NHRDcvV1RWLkNDFlZDQ2YWAwIWQgIDcydnZifzmTdWrtLRXr9HSqvOpqfFeU1PTuKCuzkjLy3uNF7mOm49P/QI3Nx+vmtoFDX5+YX5NTQ1Nfn5BYU1NLRFBQU0tQUERLW3t69o6Ovoi2toiXJyc13X09HT1dHSu62trWzIjEMzWDAyWCAsLBJuFhaUVM7Mdg62tnT0NjQ2DtTWDja2tNbOVlR0NAwOXMQeHgSEXl6ERFxeXiIGBgciNG+ZsZmamZmxsFmzm5iamHBymbBwcHMYmJsZcRkasHGxs+jdERGgpVFVtMFFQhHDtwn67qkQxf7+q7owSfvK/OHCbAXs9Q0u6lZeY42OGVQaRNHHAVPk1D3+72GvaFBOiA8FWuvLJhjiUaf2xegoGMY/XQj0gb+l3TVcUc7NfehvqyjKWDQGCjMlCB/wJ+DzqqhU2VbF+VP6iNWM61Yk4LHMPRJ25WUmJ5bCeXXWkNv7uhzNWP9j95ERbIpUpRPaaZC5u75XTO9wi7Ss5396SZi0+Yr77ABB39MatUdZMzekLfc97r22FsW/DoozrCaGHQaAj3vhW0qKZtoyxQ1zwW30ZD3/p+nx0MtKvF7KOFUS1v9GHb5CQ84YLXRldvMdd7pM1qPhOvnDR0HmzNDvntFI0PInBRkOFm1c4vDBMLTiM3+E4iOrrISsj3ZsmPYGTFgq2z+6aAxwdkBgJc+zsSf+XjPQ+5vz3tcGMI1nbHIMhE/dinh54KHiEX/p0gSI5qOwDEaW4WOFqNQP7Yhfrq2BiNWCZAo/ha6yLELVPbvzM09SPenRFYe+ODAioCUmvP022aADMLq+62pJ9EisiGbtrs5J4lUNYMnh2QfKW//HFIfVy++sJfOs1Q0IAY1wdA6Wtu8TKlw/1dC+MA0hrT/qbqT9S4DF9WJ4+vtx0CctleHnbiLt/eY9YtG84fPWV+2FW3FTKSwEGuckInl3qO9/8hIsV0Ss953xfKqaTME084O/TutAhZFlVbyxscxEub9Yc5qEctBaQ2zzsCyTP13MStn3HO0HbS2UUlkfCdvfrJCPr5R6z8ADehcSceB88VXyxKYmN48vUwWkdhO4eNxe8iZ5+118WY7V8EgcQF5T6iw2iOhU7p1h6m7gLuyi0lxabrC1QVBXKuAyvrDYTNvngb5CaOny7lVHgqtz446JVemN8Cn8smN1O+V07heJjB0EvekqF/YpCbDqBVkEjtvfQ8efAZCpZ170G31UlozfpRG7vIl/MFIQQBdDZGxIZdzsXxZ5MHsXUiI/g1gwKSS+zWw++s+xOYtIgL+dNtPG7qIfF9lk9pZmKQIl1RPjlqPXTAr1mhxcdh094b+8XnjbjfQgSKxi+b+jPiLHDyPqlyTUta43Eb3nOoVc2cMbyHkMUz6yKNINZ9LvHDdrh97YXsLjaFBt0hjFdM5sYRdoqV/XYufIzt7okDPQ3dNdrp5UcJ3KfX+tKfvDF1rjSOs0thyH5aa2KaOUep+Y4VESy6kb17Gpg6MXyHAJss5vPFiaVnx+I8t063r7o1tVRIL2dg9UQi9h6kBaQp85Sri2n39DBWW748YJbU5LpyPjXBif81dEo4QHGI/WO9NbpjAsvRtoXomvU4zsVRPTUpIxluDbMMsueMmgg+vn0Jyjyn95uvVVyLafsra7qHSNmZWeLu+/Yuc1aqD/fuuN0z2X5uR/LYg2BcR5FKdF1vDSvCdNtk/4vonheidANroOrznvtOvQ+G9fpSyb3N0LWjl4chFFhYIZ63nK/SG4oXj9i0LoTmclvmcFE9JXr4/t9VbvYduG7p7KB7qey9Ew5j8rqrsu1TfNuKXBE0epvODfwljn7S4lh0++F1WGV8adTYMvbVjPrNdXiCcjreAp+uLlqSztlqvT5m+ek6EHSE7UtYfXtFEHyGnso4iuL1j7+U+2T+uolD/d7H0Q2alq5ozoaAQ9xutg8SzAJNfEJ1rFrOuouP+aNdPu+Dz3Fac+fB09Ku/jpZUdax7DhJGUof4rdLpjWZ6h2jnBIfkfK2vSj4ZIXT2KIQMjHCabtZKHsF2qeGGsTjzy/WF39yPIowJWZYIzd653Cw2BjOS1ZCpVegemIdvRTVPLbz+6TmivG/BxHE3mqn/02jnL9v+NoX7gxoR1yHO377lWZS5nd9lK6Mi9Kd8HLe1KwkE6VhXWgIIwxrahlTkeB2qiXrkMrI1z1Cba2X6AphZ1CjzNrZiRXCU4Opctp/YKv3OqSSOsdQatLJqim/tgxB2vWdHnzKsSFGU8S3+XnmjzyJbNeqj6O+XRv+RGFNSnhc7zoi7PBo/XaFxiFL3+/7p8kebcB26PdcswJv0uaZ4TLsLhsGe9FUrTWj+03ztbBaJKx6p8VPRIE7s4/qH3t/U1hn57zlk8zO8637sdES6wm0StijctO6oUjo6Q6xuqtj8Xrm24Zb+tV6qQteJWZrzxpevZ5e/c6pW5HvHVipPCE3aV86RZG6dDSHB3x1qNtm/VaPuYq+srHBO51kniEN1VEGt+2onJc1ojz8RceS5omHNDFHzVpTMyKZeBFKEiT9XXx5mbPqELPOiVwhSpMwh730fXvygePsumm7Y0/mh+qtdNgfbS2m9h9HCo5HLJoplLYl1bou2bQXEFANPFSj19fecmJx+7gVe+Y4qvhDPEH3QTdWUDDWsEFKwduuoWPgQSFuHWT7uXU3cS4aDTH7Mo+aXSfmlwsgTJ+ec+7wO07t0MzQzvr4vLlTm4Mo1gT26O5MN59K5XicqcYje1HwEwW3wdhxRs0clRxm70KlwkYN3Bi9Nexegyzrpo8aJYe3V5OlLBd6HNfuZSlbMhibDD70KJdxk3jUZBmXKcY9cEp/dKKb8Y8ORVzSW74jSEKPgRlU/oPEBDkvWrnt8XK7HC3qzz+lq2mrliRiOaGsZHOF1VV1hdhW1/emxfNIeYsXozUXwrQ1JVgMA9/W+LsqsNvHfBA9XHvaQvjIaAYkETZboyZUdZBpuCU/6zcRMUUzTPfsyQ4sRL1o71mY2SDXcsN0bSp8QjLr8xK07jCvjUDQQsawvVN/C3phvhHSVIPefPfVllG1PiUyn/7Mei1tOP53NI1SJWurJHjh+HCBeNGaiktAws2XWAVRbQrJ07PtDPFS7qBty8yt2zFEtXMtULSWEmqoS5fwOjRct+lx4RvRT/4M1VUKmpgt+pzi4pTCnVqafnF77Xu6knNYn3pp5bQo+fUZy6/oUGJTXh3YYyPxEdRw5/46l3yIMo7671BvG2dforGflZ9fLTq1zLbrt5z62+/9SZPuEpQeXU76FBfefTWYJs9z+sH2DcHM8R9+uw1lZk98tQcbzxf6Z0b1nr7HGdx2EnVZSDcdq+q6OlUm3B+acUJ5aY0XcUJbuKHvGPpxpWWBcL913vxoxzWpm4oQ6e3y9fyPhv3vLz9ZhKYN0i2myPCML+5RYg/aVx+R5by+JbcTvaCDF/H7ezZB3uWx35dPl8Ymr9fXLgYuUBVUVCozqPVpruhbq+n5m9EVo/vccdH60JxpEH4zKpVbWl68KUURNDbAeq93QHqRL87FLP2pet7LVQ+241kGGVlnnPTPhIriDCzjgsB3DOk/uSXqMOtUja0g+zzbzpLVAdh3bFpQYk1bAcf9pDcThRvbL151N0v2XrNNVJkQFdwrxlHpcEIRfEjA/bznNiQWungZJF+2f7U8Hd0FQXaYSFdp5CEMX7W4vu9UKfoGSwWOqUsVtYbKl2phE89O3FUejjn7Fy2V2/LXw57LCdKarmooazHufiM1STYMIfo22Y3xyB7fTq/f/61Po7Xx9IG5g6hphKVXotBF7CWnFl8+VhlBNEpyjUv7xU8U7Ojs1R+hbHKJ/65qBkjL9dlXfEJXQ7l4+jqETqukDkTIzfUwOzPe8QYEbp92fxZvi+Qmet16Zdsv42ddWi/xk7Fdhf+AUsaLHfpYNa19s/Ge8y63FT+KQu1CQnpFI+CKQ2NX5YXODhf7LzSop0oUTzbkqOyU+esnaaYo89S6DgZ2VjSqn8vZxW6/jqg6vVyZUrPHhFLV1zdN8Q7K8oY1jxlkXEz/M/3L8qoFhsBqmtFKgSns+glbI7KvVEZjKoyMT7s37HkEq7+9kJlNBq5JaFo+MKO6lJsP1eOps6U+02jpeh+thxlna4yNWIert/+acaMXJNSRf5z8Lm2xl6Dbbua4LrpppmSQzFxz+705DSQ79OBGc9krWf8pne81TEi844OS8YP5MtplWAvY0qqjcJizApbnhAgIDEqM014vJEV1dAXJbRAKJ9mY55J8XEaF+MdtXBsMz2arTRJoj1hhVd5+pHRXwQKlRKpssojCsLu81QkbsYpSu7c33pDlMXnFlx47fbwvXi0ooWXiQ80mdvF345s5hNty+kWJ4Z49Mx8sJz7em/FYAGTZUyifRTfCxa6E/XFALve5sftMtm39+9eQ0+Z6scRdZIYZ62iNgiiPq3LTnNnjsnmKVkPznqRgJCsCy2kC+geIv20TvNaaPPKhJuSvES4wVCp8pUpooaX2J8fcnBOL1PzWlolPfiS45JemYcyV23+BOeHiaxkJrplPG3LQGf3/iIF0dheQ9SzK/z46hgKO9pJMFqLMa4y1zGv0A+cuuEfOxbJldTfw4wv/whDSPt5yeuVU0uXXwpdiv9OU3OLor1c2tITlm3H+Cws9Z3P5Jp4Q6WcAP/70eDFID+a8UpUbznny9cH6OLaDdJz7ZnoqJ0Lvbwxip4n9fS/RywljGudgtgt1DXu4sroWcW1FctKAuN0ysFpW+ue7gizk3gs/OPQ7ku7Qmo+SpYNNclanpJMCiWRaRrJwa+WOYPHBvreeny8YMLXZaEqhEeteOEEK7/AWuybWRb5vyT4vyGEzFKbrBbhv2Vdtj2GWrH2NJjTBVjyBJbC7MH8JA9xWK+Fv9Xa4ilLHaad0xGgg/Gu1qVTUOTjEBgpZqRTaPegaRR6cRvdeIYW8AFfQfFdlPND/uckStcouItwuHfS1wJ7zOS2AhaS2l/nTw/L12pCvKVHkaHhMGrRyU6e+LuBVVkW660O717pFIE53aHyH3wR+xGl4qxVRayiTbcor+UrxRLQ0Cue7j74uoqj/hjfNKvAr3kl7RZxpL/DuMIcE92P7gqum9oHAlt25L/i0KZLYquRHFSTtiFGIscOK8rWAN1hz/BUYIvVatMrCTUE3WH3cGhTbaortq9xFWOssjVTpK/YV9MdTMVZVOHfwn2lhFlX7dAI36dNP3j22Y5Lr0e1Mx5Pyfm/dmT1Tqj3nuhbf2LWcxpwGriGrEY208EDqm/sakyRt8eViSV37mY6xYmu9dyRNHOjijWfbxzfUXzauyAQnirI3zWoGCbutb3uVIXu9LRnu8dewHViQizHjmtZ0FY4M+jwqdsSXSo5JtEn2iUdabmK7Ks7HhFlGOV2FyjNU+MltOtL6hxHN0ok3vSsiXR0P/+Y/ELsYVXRo3DKdKftrsfMkXG2WIlMZgv3rvEtNsbfIvbXvcAeGmIju5qf/opNLnL/eUdoyeBjux+vBvo7XZNtOZrpmj7f3FH0Fhj4eO1lYFlByMejyda9JHqv6Fej/s9DUHTqk99TrKb1u5foadeRyhedBlm/NkYhDJ+XqBUrxqZfLjSYJdz2alt6IsCAXTF/V/PjEPm3ozHtW99NeDDYH9UW26FPDH2rrH8pgH0v78cr3DT9L3u2ekse5FIrIsmxzNRRbwe/MlBdjZx3t2+et3rwUpFuUpGHuGB+/fCO9lDcOx4pElMydz95rB+m9bcJyo1JdtzdjiIgW63eV4Uy30hfz38xGto6sNHS++q9/M2Wvte1N6uyhz3om2GVkc4mRoaS9fa6SSmBxyvTcYXbYY9fPeV0X8Clzei6GBPo9w49J9rBTfBp3IM8q8rJyRtKuwVXcxPabEGDgOcPGJR72T5LxQRq4uGHhLOGxSa33P7wnRD9TWZByIDXerDGZX0bv32PSZXp/lU79TdGqkSPTLkHs64xb+Iq9+ovy9caUm69eVeIUWHmqY+1YdIS0phaGPFjio+l0f1BgpLqMCXWVzQ+4TjJFZdC7tuciRvjsY92d9dtLo/u5+Ji4q6tVHJph8ECa05d5XV4OvRiA1XdyjjGalYaL7/IRKcQnqThNhIFz4xgplyKsrF9gav9gQLm/LSCUhPK9kS9eKX/rjC5idLr5aux88FOW+6L9k/KLBo76YPvichnYKLXhTrDdz8PFK+d4saIPTcNLBmm204mLgJk18Cr899N7XPzpzsHsCwbrYR9aRYdBoZaQqsxwwePe9hZQ5bvXfOXFkjjzxK/3aDPIjWSuYllzFShv3NPROoC8/grUTKzEPeZw4jVA1ND0SeW3eE1rccMFk/1N8vCXFQ7Nlxc48XttE56fR+bu6ofYae4fGcQxow2dxrJQeFjrdmr/n5Dk7ybLj8xxdRCFau+aO6SdQQcar0tr9PBcUjsI/VBzh5lTlnUOlm6XbViqDlAozxrkTPWCRFSLc7hPcZEP2V4UVF3B/B2i6MjL2JpM73rnfTo8LWwQZoIMyvTHWiTJo2x0/5RqdfVeBmBWYdroQ4O61+kbg6+uMl4u4iNX0szdP5uh2Auy/Vadg5eu5QoiYhvX81fruhOPH61Pf1uKVXqc+KI6wFVfMIFe//L4/cOiG3CJQvGVk3Efw6fGX+5FfpPd2Dt/NFPfn/1b49r/Z3/78v9rJcsq2ckCgo6rydD9V9/9aKfwsz8eRqYv1ZErqH1/vRRdOv2Xwvi/+8Ods4555xzzjnnnHPOOeecc84555xzzjnnnHPOOeecc84555xzzjnnnHPOOeecc84555xzzjnnnHPOOeecc84555xzzjnnnHPOOeecc84555xzzjnnnHPOOeecc84555xzzjnnnHPOOef8/4b/Bw== + 7bt1WBVb34BNd3dvupEGCZkRpJQGke6UlFJAQQVEKaVEFBCQkFBpkJohBKS7GxQJaZDm255zPN95z3POxftez/ffx+013Ps3s/bMmrVmr71+s0cUVBQUlFMkP/0TAjTknxs6Do6ubgpuLi5urvzM+rYeno5urpckLwiLXhARFhW7iHwhJCTMz6zg7ezl7WF7ydXW28vD0pmfWcvbytnR+pqtr56bk63rJXFxEZGLwrZSktaS4uLiokKYP49C/tvOLyjburnYenn4XpD3sHXHQK7H9vn9OHiWHtYOjj62ojYuuG7utq6u3h5Wnhg2ll6WPwvh4OCg/awiCRcKigjSsUf4BLjoyBfEP//M6qKgoB0EoqEM6v5+OoenaCgUf5yaQr3bOu8bHKXk4ezexk5eCe6TfOkj5PaUP8qKoNxHAVM5fw9Ifu7uZ3V/7q0G5z/3Rkv6wUwbv58UOkEhCUJlXb9K50v9c28hf5QlQfujIBZy0Uf5O+vAf6z6fT309zVGyCVK/gm866cInuX7KUXcx5NnO7Qsc39XX+lMJ+BjvvTeOdsFaJ21sYXKZ5p9UXPjYpzKmX7R1cM26aN6pgnKdPWDDK+e6ftJA4+5Za+d6e2HN6o6mNTOtIPjyHcPVPUzPa5pzEwzf7a1JCZ0apo0znQjg3mIVY7mmV7DpbgOi2idaZ8ShczTB2fbF6yJPKo527dWe+pO1872z8/Dyuvu+xKqFtAicdonG3pTSErfZmbipTP0mjPNiehmLiRgobiC4uMF6ZkkFALbH6Gsyu3phld+0AaTsnW7XgOktDkbOG1+H2p3VhxlL/gMDdsZDjG7B0Fjiit1Bxjd0BNRYapOhlCILt9YEru/D8oODzHebwqDnK7s9u+nDUFjA5uqXK5R0Fh/d9tbtzEozN78aQ9ONJRqpCh8IjsFzX+8ufJgOAZyLcVZ5QmZgVRuV4yTXIqHuKmKVslx5qHOBa9kvJQEKEd3gu8k7CtkWEyVvHCQCEUZC6jwEC1Cup+qLfV0k6C3Cl02A9HL0DDn+BxFdgrUIe3fwEu1CumvQJLUpakQLRlhv8+TdYiMu9rSkDwdkkUrC9DE2YRMqH12mVzfQKXhZHifQrcgq2h7Io1PGZBTHn3IKvYOpL8QaFpDkwUV6X7XHX68C30dYdUqLMyG5jsOLyYY7EFMrTcoxBRzoJLiyKsuPAfQ56QxVtS+XGjTluHA7fAQEsEboH1vlA+9mHzU+arzGGpHVWp8MvYOunLz4+Jo+ilkv1/mamvyAdo78EaLrEKBE2s0v0o6FUDaVz1FJbJQ4fW8Ze8A9kJIT/iFulk0GryNdeQYOVIIWXUHMm7cRYc/fn2w9P1JEbQhPzo86IABBzRhO2lIF0P3S8XiqvUwYQw+9DsoX4uhZ4eoMjsgFsyUQcEbFVEC+eLycDgKYMPPcm2iHgmUQkMuaW+PaHHg6KN+nsKWUii/iprrBRYuHKOh+GnMugy6jxuVKbqFC7OsDCRc3C+DWkE0xNAUHvxivmcn9HE5JDdg2+LYjg+vCSv3d5NWQNzcr+tGKghgIwNhi8vxFVCUTeIPukxCuCmAfqWQ5iO0nRorYBJNBCsF+HFcff4RGmzSSHW9RwyLv/I3dySqhIj96a+9FSOB6/lezno+qISe6MmM38slgXmfxYdQrFVCL9FkGgSYSeHY7WfcpSZVUH6BdO5EPCk8zO+4vNxYBemJ0i3Y45PBaPxyN+u5qqEG6tbAz/fJYNlyN0G2kGpoMq7vDdouGaxDpZxJPVENGR7ebqZ1IoftvZnoCcRroH5LhmWhaXLY8O2ry3GhNVBBoTER53UKOIa0rLOgvwZCR5k5OPlMAYtQil9zZqiFeIx6sJvkKGG1jbbdbrNaiLc+1y20mBK267BKF09DxrzBQyrcVPDeA9J7CpO1EFaq0kuMZCqYjQFfDZMKghBMEutNpNQw3fa92UcqENSavcWb8ogaPoEg/w5vCIpvv62WcEgNz4ajUlK8gSCLjUOXZ+40cOE1skJEGwRdK1TyyftCA9/qlNLb/Q5BOGqUEjtGtPD2PFZxKyYMMRWomvh208ISNlVFh6Qw5Psu91BaiQ7GGWPjpmOAIZw7Rax72XQwmaBI/k12GBIO0nozhUsPUzjP4S7zwhDbdhH6lhM9zMh8lPdSEIYK6GY+CnbSw2Tlwvq+IjCUEfgWDhNigIcvc2jNi8HQSZxQl0MQA8z2qFIaUwKG7rSlWJkMMsDBcRHdU+IwxFE3zmbBwwhfDeyed0eWPwSp7zvcZYQZFqsw64RhqPpjQotTFyPsVzSuU4E8Xvh+vLU8ERMcsr1X/oMfhjAl+ymp1Jlgg+PtQi8eGLrv2pw0Hc4Ev3tbHHmDA4acN7HF0luZYCuHHB8HZhgqm46f0MJFwN+v1zteQ56vimohIvYSAu6RPnBNooYhT9RCqZZbCNjn82HAFzIYEhl/a3aSiYDRPk1XEhHC0Iu0KynkowhY1svohAwbhoL6uNXIsJlhlO+I+6eBaPd/zSN+TWa+EP7vJzPvCP9hMhP5X0xmopFLr7F/hH68EnyWldEr8y5YnG1oavC5M/PZ9h3LlRZpVzzTgRbf26UczvbT+JKvzWtXzvTrVn8U/dtn+8OpPN38icKZhsTwxDwene0uxx51FKKzPZXywj4qXv5Mr/WZP2BgPNunOFyvcjMun2liudWSi/xnG+FZ2tlUDJ5pwbd3v+nJnO37laEYTSHAmU5lp7o4Gyd3puujMpxO3lw607N7Iq/pimXP9N2WiU9uJzJnOuI4Y+o45Gyzd2hi6fZIn2klyUkpt2mpM22X5uwSvnbxTHvlbUS/5DrbX9MTRzgCJc90j3Hfh7RTiTP9MVdrVTv+bP8cx/4+aGoN0AzT8JdC16mm+w6wmOFqoUwStrgMaMufSngOGYfy2STm71kB4N0rKq3IWM9UfZ9vKwt4L8dmUYiMh1oCH6gYlwFHMMpUAjJW3OcX0SipA0hI4pR9kTF7svaDWekWADMaq98QGWMZWOxZ13UCd9uP26WQMe+sMvXCm17ghXgSAS0y3qUdvUeyMABMXqXK+oHJDAtj5nUYS4wC3CKWj9qQMcP06YeYkEngtdbHKynI+MLdwAHDmzPAq1l4wQ0Z03kF4UxFzwFFDpiBIDLGeUIaavDxC+BcrIVPgoxffDp4OK/8DYja1X4yiMEMF8vmoFoMLgEZb6WfvkLGTaW+3q0234EOBSVOc2TsY5nrw7a1BhCIZF1jQcYy78YtS8ENoOmqwe4MOjM8+joUfaR1E3hvc/ttPDKepppuW9PbBvZ2FsWUkTFhFkfg/uQOQBggHraLxgyT2AKnOw4/gG/vCEPeIGNU8jrFL5t7wNvwvO/qyHgTlo/ov3sAODiq6u+hMsPdpvyJZVhHAP5OPn8qMu7HqLMPf3YM3GrmkFJExoZe7/B06U6B1ScDggsozPBhW8Yclg4KyI0l9T4EGbdObF6ep0IFrR4m8bMj48zPNAJVY6hgsbu9bcApAiaJymoOT0UDuzaWq/JPEPBn4tea+rbo4Kqg8s3eYwT88LUzLz0vBti+jHVt9Qj5pSsojTm9igHmZjfx4SHj3fZxkdfFmKDyzJIcwyECHsVqpza8gwUKx2Cbsx0g4OfcrwCiS9jgqG+NKNM+Au7Da9eBUHHA1fQMfvw95PG/H9m6N+GAqO3hHHu7CLjz6VMbxnBcMFAiQ35oBwHPqmPtNmnigZcnn21lbSPgArn0SRcKfJDDdsLNdgsBm7vQz5GN4INetXVFJJsImCgpbqE8mQBspM7aqVpHwKk4y9jGVoRggALrqe4aclKBUMc+5iQCV/ajWwe/I+BlXjA3ZZkINLk1SCW/goC3ySb8wQJisCjshU3sEgIOOK7mvCVNAuJkGBXNf0PA7ebTnPVJJKCi+UtUhgUEXNy6FkR+SgIakjf2SnxBwK1C2Ta2lqSgT/6xg8gcAi5zMntf3kAK8ipTtuDPIOD0LMo9XE4ycGqGn+vLJAK2KWvPNXlMBvIFsGomjSPg14E5WR+WyMDUz3EqF5CTHBsd1gQ0dXKQ3YSuJ2EIAU8XuOfofSAHnVsiHwz0I2ATYqgqi5QCLBZDFSHvRcBP92fXfnhSgLV+VngcXQh48D56ufIgcjszvSN2OwJuyPhiEneREtS4KElb3oKA1QKrv4+/pAQv4WGmCn5CwAOGsQEcx5Qg/3gv59s6BHywZHbgaE4FujvoBC/WIOAXnLwPsuqowPSLjgMbHxGw68NA1Ak2arAwrpXtYykCplKS3yB6RA1yk1cSSRUi4FpczBnwGzWYGp2zX5GPgCXFxUHXqzTgAxGuBxvZCFjTXOBTQj4N+KRoqmo8HQF3H46N1hDRglYdRkneyQj4ZjK16bQ7Lfj+cYZBRQICxgB0p9D6aMEDhVWKw2gE/PELfSeLOB1Y+Rrr3UI4AuZevsl0KYEOfHGlW9EvBFnfFFpXvX06MDsbh7kgAAFHj6Ll2BvTI79Egx1DbyPgMKqVOb8aenA44bTIzB0BE44R44UhGMBD9lqnIQcEvJZ0ih3/gAEsev2wbs0CASdRrpMnzTGAW4ptvVkGCPhk1dQnVZER5L/V43qkiYAtWtqGM7IZQZukITwdZeT1hlYenYXLBMapvRJWkkPAbbOvF7OcmMBcWf3CYTEEfMXF+PLbDibwWZoBNh4fAi5CjK++F0SA+p/ssMeYETBrr0lSaTQCpF/0ws6nQsBP8tNf120hwLq2qEIGAgT8JprOaoWXGfRjrn4ngIqAv/ETbB4aM4OPnj1EzOwwweoLHM8JIpnBa/deiEgvMcE0olKkI4XM4PTqN5R7M0ywPckbrqxBZjCJanc/YpgJbtxVSvI4ZAaPli97OHUxwYWLms2yzCxg/uQAEV0TE4xTo8+PrsgC3jy9Hfuymgm+/LrALdSUBfwKRT1XLGOCI6VLMPF8WMA0LGnG8Q9M8HVhnXthUSzgpSGSd2Y5THAu1ycXnGwWsECOu7cjnQke4PgUHASxgJ8vSVLzJjHBVGyKXLLzLKBrdUeAWAwTvHfrocUqDiuoqqXtSvGYCWZbsqVNFGAFq14yV7XdY4Ldi5Xey+iwgrrsg+ImnsjzM2bnGfRhBWHY+n6zA/L8v1xjzchmBY9l2ubyjJjgOGftEuthVpB7x5dXQw15/vwuMxS4bCARi5Vs0SUmWNwdXPgoxQYWiCaYjl1ggoVlGl/o32QDuYTMKdsRTPAFLJWrWy/ZwBR+ro5qEibY0OBudmgbG7hE9pDeG5UJLokM7KU+YgP9JKlZfmwwwqnKiKFsfnYQwyPeSGmWEQ5+3UUoY8oOatREd9n1MsIK6AJ2ESHsYIEFFY70J0Z4TYtpc+odO/g9KArnezkjvMOxESM5yA4SIxgkH+YywvqR6rTxJ+ygs/8lraMkRpjGXQBrn5MDhHr0xs2eMsKFmAWlKKocYPQi45WvQYxwzL76OoETB2jSwb1tcocRfh4seYEpkgMcm6vcbHRmhK2htHHRDxxg3fWqIWZLRjgl8GmAWg8HeHIXJdLzOjLpc9rqpl/mAE0ndGqT1BhhLNbL/SsYnOBNI+p8WIERfhnHKFnLxAmGPkn4Ni3NCLdPMsc9u8gJkgkF0Z8IM8LkKtu65jqc4AHXrCg9Msm8WGPtPmfPCdao5iYUsTDCkl9gXNt7nGCl7Mk3VTpGeCmvMngxhhPsNqLkmiJjhOl/CIhaveUErRML7vniM8I2w3iMIzWcoJ/OzTcUGIxwGW7gxj8lfZ+I//dJXyTxPyR9af9F0pf5zwX/EfyG7ljKvC/AWX77qUXlav+PM/1lfP9JZCAGeJZJzfUzcz4QnemI3+60U57pZ9ft39Ok0J/pqyWsGsnTzGfa+fA6dqsA25nmv9/xMKaM/UxrNKPIQuhcZ7q7e01Ei5L3TOuMTvLMcAqc6aUNOxIpBqEzneszGY6aKXymfz9v0TP9+3mLnelVDMUTI0DiTL9/Uu3L1iJ5pt2JxHaWtaTOtFBsnnvJiPSZ3qRmW7lrJXumi5Je2isuXzrTXixkc4RewJmm67si6BQAnmm/eBSXLvnLZ3r0RnWuKLb8mZamu/Mtoe1svxwX5Tx6qnCmqzMWF45Frpxp0yN5V73qsx14KnXzKrvimY744xe6s/xznP37oH7PJyqJJ58TVIzCrRpZYoDFDUf2fV5ygstAc9GrHgaYg5DQJv8xJ7hf0XikVMEAV10LDJr14QRxfEIv7aQwwLSWme+JbDnBd4FuI0khDHAGy7OofE1OkJs+5pqEPQMceU+OQVaaEzRs/nChSYUBTlLiHW9g5wTR8xIK9XgZ4DevVPvkiTnBx6y3LWfxGWAhH+zFqn0OULLCSNDzOz0cIzRRcG2CA8xZ4kyQ+0QPV8+EivfAHOBEfrobcTI9HCfKsKSVwQESKl3uWPGih2Xf7HzrDOUA5WOccMbV6GGP/P5lNeSX8nDXyq0pdnq4aLpkyQf5pS30qv+V4w4d3BsMrKVycYDlBPWiJE108H2FDvVOTA5Qq2bEdeg5HWxwyHXlZI4dtHGd+lFjTwfvphuFXahnB8c1Elfgi3RwZQUquUciO3jN9UiBHYUOLnkURVzmzg7ap94eL2imhVuZ5T13ldnBj1b5iZZPaeF4jnUTfgQ7WLtnpXvhBi3cuNRDobvLBr4rMaIiQ9DCWx+K23072MAkd52Rna80cIj4Z53oDDbQRyc8c/09Dbwhyf451p8N5H0WfnLgQwOnehJFBeiwgXibdtXkAA389uQFoMPDBt6dv4txCZsGLnjCtsGBwgauDsao2XVRw2Q2Gk9nB1nBLcM5ptQEalh0vVHz8TtWkLqkdnfZnBouYKcVoQtmBSXicMQ1uKnhMnzPtCQjVjCVZViqfZ0KPrqz6xUgwwoWtXnW8DZTwR/oOhJuMLCCYHbl9ItkKrjLFv0LzzEL6GfydpHGiwp+58hc8GOCBfQyG7v37ioVrGkQpNZQywKqDzWxGLJQwVVqn0p2clhA0XtET9swqWDCyBJ2rngW8PsNCVmVJUp4KoxAzeA+C5hcRrXQ1UkJ81BUTjxxYgHTBRuvWRdTwvaNyp7V+iwgTlIQKvoLSrhRLUn3sSRyey1rzKYrJdzEn3NXn4YF7L/CO3KsSAnH2u7S8uwzgzfS72JzMVLCqZ8oC1FHmcHv6p42btsUMMnmNYKZSmbQvKZBZaiNAtYUiBOyiEZO6rNH2MrjKWAmKxaTZXtm0OE7CkGXOQUso1tSGSTHDK7e11hg4qWAbXgEnbkpmcF34SO7b7bJYbenp3apQwiQ2c1wSAsih6naU3fWghFgnM5I+fETcpg08fsHRREEWEOk4dirRw7L5030JU4xgTR8qbdbEORwJHHmw5UIJrCrYzlgcokMrumnl5SRZgLLFnT5ScvI4O+JMctPFhjBJNTqEYUHZDAaXJHZH8cIFsaAArFqZDCHPyo3rTwj6BdNgHNETQbnHpPp6K8xgJG21S3+c6SwVYCye1gSAyhEY6JB/IEUpjv1j6pVZQD7Ww/70v1IYYyAvtTFXXoQzySc6aoSKQwl8ZriZ9CDwT+Kt9DISGEyOwUYoU0PfrOIfN0yQQLjAAA6zwkdaDK88PRlDgl8Qi2jJJJHB3Zryt939iaB41DoHIUM6EC9AcbSq5dJYEJmeiVKTDqwtIFFk5eQBJY1iH6NWkQLEpbKecoWEcN3rPvE2sxowSsrBgDlVWK4zJWyNQ6fFgxg88RfnSGC0dTZXslU0IDqNvmd5b5EcLKF5IGCLQ2oWyhHRElGBFM0NE9VkNKAGfcGBnpyCOG3lYnSYC016LKd3VJ1mRCWLnKKb75JDYo7+VVljhDAX+UCbS2pqUGfiMcj1bcI4AjHBcWmBiqQJM/WKguXAH7Ek3kg5E4FMlwOzslNw4fLtxmiIhmowGemtZofpPDhRSiOZamFEsTw29sp7sGDdZ83xV70pgSnGDQOKxzx4NzgudT7LJQgHykDbTMqHmzx4Isy1EEBDtEtdo8k4sIWmK+Pf/hSgBilmbPbwsj4iUGxECcFKKRptU3cigPnxH2+bd1LDo75ElmIWuHAT7MERKIDyMHJ2+zvzQ+wYS0JtY4qXnIQby2s9nkMNmz5pYptfpAMlE47Ih7hxYY94/j8CILIwJu6rpb0DVjwoNVKuIggGZgMLm85GGPBo1yUATfGSEFNl5DM+i1MeP5rLNXdUFIwpo22jzsCE25If/4tVZQUfPQEN+EVOyacbpZY+WmKBLyjvG9EVIMB36BmbloKJwHpba+URl7HgJPvzr4guUgCvvFo/ki7ig7fUJg5dW0hBuUKLvMWPUKHFTcpuSBmYvDoSnCsPgIdlki7qkHsSwRWjjQdHZSjwT9KEjotewjBpE89ZnlaaPCoTeR4GQ8haOLPpGK/iAofuWUqEj0kAGlkZikuPESFOdYQ2faj+KBY3gjhKR0qrOb6EqdOBB/UoO/B6i5Ggf0sb1sxhOOBn2WO+PLUUOC8x8GavnO4oCA0H4poO4U8Ql5LD8ngghYrd1APjk6gA9Tqh+JxOGD4WhDe/IUTKDhguDV2BRus2Iwi77Q4hjr8dt02r2CDM20k+c0xR9BkXVGPVjIW+LBckKGr8RCqu1Sm8H4HEyy9/jRsdvcAaiTn4sTTwAQ5hJOoUHgOoJbFBBy7LAwwniAnndF4H1qm9TGGT9BBeQ5rNcXIPciIM8iX5gY6+IL1jqA39AMqon7U5PIBDaQg/mCSt7EL3Vv+8RzCRgPFODY3vrDtQiqQoz2pBSqoKyMeyqy/A4V6X60yr0ABqfyDg80fb0OkBpKTOSQoYCp34klq5Rb0ol2Ue7LnBMARMWefW9mEtkweVpg8PAY4xU1BdsQmpPG9W2VM5Ai4ctHYxFZ7A3q28fZYfe4AoBWPds0MWofmZ7lXimL3gUc31hM/Oa1BXTymqdhX9gCL8PvDkt3fIWmd6T7V7V3gOC6v87XYCpTlZ40dkbEDvEwZbMROXIJig8Urq/S2gcN7SR62x98g76+L0YMYW4AMLd/XMssFSOf5UuZoyQZwtylo7PDTF4gh905hs806MLqVJyDBOw9pPUGrynu1CqgJmPa59c9CAxSN+m9dVgBGWjSO9IAZqO+l724wsAR0XCrj7eSehpomQ40VSL8B8dc2PFcyJ6CrVgEfF2a/ABnTr/qkDkYhGreD7TsE80DnnviQUOUwhAOkl/0QnwWOSucWOPwGoTvLeY/szKeBBrp7mgzS/dDCTkVxDOkEMDgheZP6oAcCFvI8VW1GgBKrnlgRry6IxbS0rP7VIID2eSdWgKAdupFD5C7a1we0bFLrC2W0QO89JqdS8XoAdWLyMVnZT5AYDU4ndXA7UIp1JKzbXwf1l19+d7zZBHAghMa+DldDmRBPwqRGPfBWNlYawVcOqWhWn8RdrwIMjZqNbO8VQqbH/W8MCIuA9YI3bbavs6Fvjm+qUMLTgKnvd7/JPX4B/f3JmDysffu/JvVZPz7R/HxWjQTrj0T9r8+qJaP+7zN9W9S/7OAnP5/Dw/kvMn08lH9/Vg2/mzekp+jan6bGZgcT2zX+9L89K/SzPptuxMY0Mi0QgpHz/nfpFgD2UuYjkWkBhJj7Lq0JtEJPeD4sihY1Aqd+JNwBF1oBbbp44ySGdkjueXreDGYd4F3pPhPD0A4o3EtBLdHvhKI5cVGdRkqBdWdikRr9TgD5rWwxvdMJnZ7GFhblFwIwwWHzxE4nUEXW5fq5qwviZ/4yN02WDtQgSvbburqAS94Pw6tRuyFsXjFm7+No4IdOnl0lajeQDaLKFp52QWPq6S25l6JqI5I4cIpPuwAHFO+Jf7otM/F/6KzMf+osvP+iswhQ/v23+I37e3St9Qp/moDCNQNrDfzTEZOjUpwXZf/0v/3G9rN+xzq/N8pkBn9vGbJR4kN/b5TVudZ6kuIOyGmb65JD5HO56XsLqwNcPUBzqRoPsW0b9O2DLAPDlnptCuz9fkqjF2DWT6RUqm+CrPj1PBNrveR4JlI1uBP7gQdslHczHRshVJkNrPooz9qksgdvYqsHgCOX1KyFtFqoyO+JnWJCjBwvaAgsNg0BsW92q6sZPkJX1m774IXlyqnFL/vL5w0DL15vLbxFzYW2rbixr3jl1r6YxyS58RU5TMh1IBRJX0I+1c+/m3Sv1Rp1uejKSo8CBd+8ihQDHtRO3xQ2WnyeLXfwWaIxWmoUYE/Y2P+nzjZF+993NgfaP3Q20X/R2ST/XPA3fHt71ukNMcH/aco//fyrT/5HLY4/3YanOSLqLv6n2xdm3MxpwT/9b7ntz/rT7Mc3X0U2GograLqAbLTGPxrtypWIIsV4b+iIv6tsL8YbGND6akyGbOTnZD0TbEUhkJFGveFwUQgQSBjypk10FMiWAKgJA+KhPIRm2My9eOBplefXJOJR4DWvX4/cu5fQbu7kLOe7lwCDoYcG2uYIUL5E3Ws2kwHN5BGfus1kAE1uU4e090YA/t3bqTZ5OZAWCiaWfV4OYMpeHLSNNwKQNYS5NmYWQzFL/t0fM4uB4H40FHa/IaDlcPheVnw5tDmvnfAuvhzAzcCLuss7CFRnZquw0kGQn1fMRS46CDhplUClvNkH6J0ELRbr10EeLn69SAPJHTfJh/d7AMnENQHTkUYIUsaNQxrITSMZ/8bVCQStfCCUiW6CTuUUVrlimoDSOa37MtJtgH0w0W8j4KRJfMDPEXC1Zoj/5wjIowUG/NN3QyX+H/2O+pcrMA3/P69A6hYL5bm/XIF53FG1P69Ax187+HUFYv2x/Bw2cP/LK5E9TYmwIboZOsuEj7kQm75U4N+Nr6H7/HkS23+4lO46hcoY55n++VjTmDEaLz4zM3yWEyvcltkwSP7Tu2xK6CRvgbPsjDxWY1vRQglpN/TQ7h1B25YetO8Wv3002gUYqWkOFVB0Q9eE3iYGP48DGi4lqj2b7wJeTJhmh+13QaeDtMrmyplAM3T3Bn1JFxC+pSPAZ9EFYWRFwnLTH4ARta/r5RTI8kG3ki+sd0BcQrE4ncyVQD3F9onh0w6guVz9A8FyG+R+eywyFa4Dsgygb3iWbUBqeiXO8lgrdPQstPzWYQMgEMovwSDRCsjjNGr4NXyGZjg+feuTaAKs8rfJQtA+AyUKu2sY6S3Q2MAum65FCzDQ3G21V9cMfHB/qMlo3gG5oYub9HXoQ081HOSidXqAmMNsfzvDDkhhbG1GUjkOwK5l/LCNXM+T8lq9UaIDQnfbhlaWMwCDosy8xMs9QJeVE2Pxm3YICKfTckv+AJSbuq/473QDZfb2+DwCbVD+IxUH8v2PQNmqc8QH/m4gt3vLJUDmMxTmajyz018HfCvUNHKQ6QS2wzQaH/K0QIyqhFNSXI3A3aUwpw3SDkBFrUnuU1cTZNmM45vK0ASYLXJXisa0ARWndSUqmZ8gvjmbGFWVFiCB67GWqnorIJWYY3zjaSv0iWkUK2fCEJq45smnWtwLXPhkjueNXB8zcMylUhoLMKxWRvlW9AI+13Gu7Si3QjzzlKn1uhlAdH8o8nPUC/CRvkMjzvoMLeeFUCuFvwdImdzU06V6AZyZJxWux83QM0S2aij/R4Ai5rg+TbcHODC9zfJs8xO0wvkWK8KpDrjZxo2terEbOE76fmdZEzlaGJDlL7A0AFVCdDWnrzsBHEwUHHzRBuh+s4DtQ9tPgGK9N2e+YwfAEy903f52PbSaNm/GSdACfBFbSfVPawf6Od6OsPY3Q5j7ETbUMSZQ6ivte5fo+4Fmf3hkurcZmvRDK5PBiwWqamBuabZ+IO7KlbArIc3QK3Z6abHRNwDbm6c5eFt9wFOiNxUj75sgydnonZCMd0Ak0au9sdA+4LpHadPjb43Qw4ndTxbVFQBv3oTF1otegCVW0mi+px4KykttfgDUAbqMq0qjXj2AoGK2h19UHYTtELZ6aNsADLyO6w1r7AYG3hxTu6PUQVUlM+72Wk3ArC6urapvN+BB3IXfNgVD2LepZQ7zPgPMVF5e9127gaVjet+c/XrI2qd/PO+GFUTYN4iTcW8QSHT1pLvwvR6SL/LXDZKKAQi+wguTkYNA1e2PFNl36iFRsWQhbpk3QLi940KRyiDQubuxSZpeB9GLZ4nHJLwD0K4pho71DwDd49OP1gggiDLp8gqfZwWwAQ7m5ZT0A+bGkZKJO5VQke+iJqdCHeDbY7EERiMzh8+jn69HVED6QmMSM8ENwHetcd3eyV5AMrsmhFOjHPrELPGY0KQJ2BfDZxp41AuQPY7oFHQuhyxt7nkTf/sMPEVNJRGN7QXa5KriONoqofuD6WmHud6QA6u+6ZTDMDC/TJPVE4s87koHG19wFNCmGinr/XQYsNx37r4f9xHSeyUy57qfBlCbGVq8lx8Gsr4vDCZElkOi9eOtNHV5AMX3GcWgqiHgClOSotV8MaTD59gzLVsBEJ6imolmIzOhwacY0tIFUBoDd4PZ5TqAmVUbHy9mAFiEgqwHcN5BWe2Dczw9DQCp4KOXvVQDwJuLSwP5DXkQ2wu0OKevTQCGSTmh+Eo/kPV+3Im0PR8i7Feuno9Ezsu7aZuiaQeAE9xYY82+UmhFZGSKdDQA4vC93VxFMQLQxdyVuvWsFBIjf7YBfgoDTmMjOJyujgCTPbgKt0xLIMGLbYxD/anAhAx3odrOMCDT+TQ88k4RFMxXfmeFLA94+z14HdN6GDDzviPdQfkesspvbGNaLwce7+DrvtcfAgyVPzz/PJkNtd1KfSmnXQfsCrbUkfoNAg4WbAYbKxkQjIMuJ7PZAJQ6OE6VEg8Cg1+OHmAJZkBLP1LcTRiagXvhzua2xwMAqbx9Y0RHJpTezdIeOdYK2CTefS17ZRDQX3VYLFnOh5Q+EGWwMz6GrsdS/EiuGAG84z4lvmbJh9y6QNmF9w8Be0mohxM5W5n/1vz5FmYupMN/k0+gOQU41bJ00CwaASJqiRk5jbMgUSt7/BmXHCCXo9D+gG0EcKnyW5PXT4M4+oOHX/eUA2lLhuuuT4aBiQtPJQUiEqEszfqouTt1QEuVbZj5/hCQ8PbjvmlWPCQ+h0Opr9AIWLrw+SzXDwFf7aY47+I/h4YfHvBcftYMGBomU2pPDAE+70hPi6leQVgOzuwBrm2A9i1rS36tYUCKLiwCNHkF5QQNu2WqRUNb23rFZOijgHn+1/ZawkTIgOHuSNMLd6DZ8c1jDr1RYFxHZOKZQzz0Mkab4K7qS0D9gqdoBtMocMHpUrp6bBTE5GA0oeaVDdyIZ/+6iWyfE0LrlUKy+1BzYOF2CkM5IMByE+dx+AhgE5Zq7tvqBKmv6zpKu9UBCSpdy1UPRgD1WqLKZz4m0FHlyZ6ZWSMgum41af1kBKi5eIx5MnMLerT15FFgbzMgl+/mHj43AgSW/yCejAiF2hafXnYaaANkDohr6OJGgeqrCbTfmmMgwMAtuqkjBmKKP0V3IB0FMgs9LYevPoOs3N0RnUK2AGnxi053s1FAPHJa7PmdJ1AP1g8VtdEXwOCGpwAoNgoIvvwR8nrGH7rd5sUYNZAFoChR0PhMjgBTMhO1GKeXITfDdrhvtgzIps4Xju4aAW5g6Xy8+M0WuP5+wX7BDvn5Qr3RK7A6Auxopw/1kboClTdKymMtG4FNHhEEjDMKfAxk/jhIKg34uQtx3ZluBo5T3dN2vEeBBw8Ld23lAiC+q48FDr+3AQ6S9/E4pMaARjR5HXfDYGhxrSeoUj8OYvVxz6ehGwUU5amrZ9EDoDU3O93BIm2ACuNr5Ij5KMAi+BBtk8MdQnx8tT5qlwDwKgdUc14cBfabIq+gc+oDPu6+i2wXsoBU5Q9VtjsjAB+zY7NPuT9wmnX5UDujDKA5oHligKznZOywFPXUA+CDVcrN58Z1QNCdiaJFbWQ7Sxk1u4c8BPL3yT16kOeFRfxjUOzBKKDhpHDdZdoLuLUQ+7x8uRkADsI1JtHGgKEkRzAq1AnKvryug43RDqDucUWTjo4BbBzh46xYhtBeR6hv8kg8xHqbbX0TeV0lF0VfX0vUA9KukqF5YMlAeM5LZXuGo0Dl7CP1q7keQIQ7kdrUVjyQXKP9yEMY2Y+Smg7+QUGAYlQK3bOgTIDJV7ehFXUU2JVd0SYdiACMZ3f22KzLADxtCvYXyOyE+grPJxmJKCBGR0SEU6MO8CcOb+YvGAUYHm+P5N2MBOxTXnASWjQCTRLv8zB3R4E4gUuyel+DgBRlnM+InWYAfmSPsIscA6YVrrywFJMHvloPDt6iaQd+pHc2oPuNAxtV4xx/ncWzC0/J/ZzFJ/6aM/+ahPMf/J4GnFSbBv5MA24kEv+WBvx6VOOnv1x3xZ8rR5X7OevvVf099zbxte8oQObeJDG/596/yv/6b5+/3jvvjnlJBZmekUgXGH9DpmdTf6RnaH+URftL+ZyLJRY/Kznw90r+4tedn193cn4d8NdBBRQYlmcl6IC/l/trmV83JH7dUPhViV9lfu3j7+XQ/lbZn/zKQ/968mh/2cffy23rMxb+PMH4v995+beT+2uL/rVlUcjIounxLyAPUPGQP3NM7t/e+2/0Moqm1Ox9Of3lXyf/T43z1176H3VAGQ7xfYeBrENytp6E0H802P+1Dn9v4L827l/X/486TL8CppKZAZT1J6nEz3n/o8H/r3VYf3oz6GcHcfyxneTXwX511F+vlp8IvAwL/vkG4T9i0n/srX9Be/3h3K+E7dcA9CsR+jVA/P2D/VvtqP84xs8UnOKP4K8p+Hz/kIbyYh8p9OX3FFzgI73JzxR8nOr37eKeyD+P/6M+f0+514FfafOvNPfPFPaPVNTCW6tT1QwTJE5M95CfWwISjwNr2YK6yzyGL8uJbuKX+A9dlktu75FDQbkP/GWB/rL8bd3Plvv5CfmjCpS/2vKf2vPvH7Nf/NutqdArC1dpbgwCv7vst/f9dmW9TPzJIvD7sSn/KP6rrzF+FRuJlMLlE+2I+LURBxUFGxcNFQcPHQ0XHwMdjwATA58QC5OAGAebiAQXh5gUD5eEDB+PlJwAn4ySmIiCioSYkpqUhIqGjJSajpKClp6Kko6BmoqeiY6WEUFPx8TMQI9g4eHj5mHk5eNhYWVlYuThYWXi4WFDMLGyC1zgF2DhviDAzsHByiIgwMEqIMApJCwoxM4vLMTJxcXBLiTExSEkJMIpKIgCXr4sj4JcrqCgKKJcuaJwRV4eFQBBOQAV9ZIcGtolNFlZGVl0dGkZdHQQBRUVW1FJiQgbuSirqFAQqagoKRMRyaGiocmioaNTM9DQSKNjYFCoqKoqYqOgSEljYEhexMTEuCglJSGJhYWJJSnp5o6FJS6BhYWBefGiqJiHh/gtMTEPsVu3boljYd3Ccnd3JCcjcyYgJ3dwpKEho3F0pLF3cLhJ7ujohuXq6opFSOjiSkjo7EJA4EJIQEDu5OzsRH7zpupVWtqr12hp1fnU1HivqalpXFBXZ6Tl5b3Gi1zHzcenfoGbm49XTe2CBj+/ML+mpoYmP7+gsKamloigoKaWoKCIlrb2dW0dHX0RbW0RLk7O6zp6erp6OjrX9bW1LZkRCGZrBgZLhIUFgs3CwtKKmdmOwdbWzp6GxobB2prBxtbWmtnKyo6GgYHLmIPDwJCLy9CIi4tLxMDAQOTGDXM2MzNTMzY2CzZzcxNTDg5TNg4ODmMTE2MuIyNWDjY2/RsiIrQUqqo2mCgoQrh2Yb9dVaKYv19Vd0YJP/lfHLjNgL2eoSXdykvM8THDKoNImjhgqvyah79d7DVtignRgWArXflkQxzKtP5YPQWDmMdroR6Qt/S7piuKudkvvQ11ZRnLhgBBxmShA/4EfB511Qqbqlg/Kn/RmjGd6kQclrkHos7crKTEcljPrjpSG3/3wxmrH+x+cqItkcoUIntNMhe398rpHW6R9pWcb29JsxYfMd99AIg7euPWKGum5vSFvue917bC2LdhUcb1hNDDINARb3wradFMW8bYIS74rb6Mh790fT46GenXC1nHCqLa3+jDN0jIecOFrowu3uMu98kaVHwnX7ho6LxZmp1zWikansRgo6HCzSscXhimFhzG73AcRPX1kJWR7k2TnsBJCwXbZ3fNAY4OSIyEOXb2pP9LRnofc/772mDGkaxtjsGQiXsxTw88FDzCL326QJEcVPaBiFJcrHC1moF9sYv1VTCxGrBMgcfwNdZFiNonN37maepHPbqisHdHBgTUhKTXnyZbNABml1ddbck+iRWRjN21WUm8yiEsGTy7IHnL//jikHq5/fUEvvWaISGAMa6OgdLWXWLly4d6uhfGAaS1J/3N1B8p8Jg+LE8fX266hOUyvLxtxN2/vEcs2jccvvrK/TArbirlpQCD3GQEzy71nW9+wsWK6JWec74vFdNJmCYe8PdpXegQsqyqNxa2uQiXN2sO81AOWgvIbR72BZLn6zkJ277jnaDtpTIKyyNhu/t1kpH1co9ZeADvQmJOvA+eKr7YlMTG8WXq4LQOQnePmwveRE+/6y+LsVo+iQOIC0r9xQZRnYqdUyy9TdyFXRTaS4tN1hYoqgplXIZXVpsJm3zwN0hNHb7dyihwVW78cdEqvTE+hT8WzG6n/K6dQvGxg6AXPaXCfkUhNp1Aq6AR23vo+HNgMpWs616D76qS0Zt0Ird3kS9mCkKIAujsDYmMu52LYk8mj2JqxEdwawaFpJfZrQffWXYnMWmQl/Mm2vhd1MNi+6ye0kxFoMQ6Ivxy1PppgV6zw4uOwye8t/cLT5vxPgSJFQzfN/RnxNhhZP3S5JqWtUbitzzn0CsbOGN5jyGKZ1ZFmsEs+t3jBu3we9sLWFxtig06w5iumU2MIm2Vq3rsXPmZW10SBvobuuu100qOE7nPr3UlP/hia1xpneaWw5D8tFZFtHKPU3McKiJZdaN6djUw9GJ5DgG22c1nC5PKzw9E+W4db1906+ookN7OwWqIRWw9SAvIU2cp15bTb+jgLDf8eMGtKcl0ZPxrgxP+6miU8ADjkXpHeut0xoUXI+0L0TXq8Z0KInpqUsYyXBtmmWVPGTQQ/Xz6ExT5T2+33iq5llP2Vlf1jhGzsrPF3Xfs3GYt1J9v3XG657L83I9lsYbAOI+ilOg6XprXhOm2Sf8XUTyvROgG18FV5712HXqfjev0JZP7GyFrRy8OwqgwMEM9b7lfJDcUrx8xaN2JzOS3zGAi+sr18f2+ql1su/DdU9lA91NZeqacR2V11+Xapnm3FDiiaPU3nBt4y5z9pcSw6ffC6rDK+NMpsOVtq5n1mmrxBOR1PAU/3Fy1pZ0yVfr8zXNS9CDpidqWsPp2iiB5jT0U8ZVFax//qfZJffWSh/u9DyIbNa3cUR2NgIc4XWyeJZiEmvgE69g1HXWXH/NGun3fh57itOfPgyelXfz0siOtY9hwkjKUP8VuF0zrM1Q7RzgkvyNlbfrRcMmLJzFEIOTjBNN2slD2CzVPjLWJR55frK5+ZHkU4MpMMMbu9U7hYbCxnJYshUqvwHREO/opKvntZ/dJzRVjfo6jiTzVz34bR7n+33G0L9yY0A45jvZ996rMpcxueyldmRelu+DlPSlYSKfKwjpQEMaYVtQyp6NAbdRL16GVEa76BFvbL9CUwk6hx5k1M5KrBCeH0uW0fsFXbnVJpPWOoNUlE1RTf+yYgzVrurx5FeLCjCeJ7/JzTR75klkvVR/HfLq3/IjCmpTwOV70xdng0XrtC4zCl79f90+SvNuA7dFuOeaE3yXNM8JlWFy2jPciKVrrx/YbZ+tgNMlY9c+KHgkCd+cf1L72/qawT895y6eZHedb92OiJVaT6BWxxmUn9cKRUVIdY/XWx+L1TbeMt/UqddIWvMrMV540Pfu8vXudUrcj3joxUnjC7lK+dAujdGhpjo5469G2zXotH3MVfeVjAvc6STzCmyoijW9bUTkua8T5+AuPJU0TDujij5o0JmbFMvAiFKTJ+rp4c7NnVKFnnRK4QhUmYY/76Pp35YNH2XTT9sYfzQ/V2mmwPlrbTew+DpUcDlk0UynsSyv0XTNoriAgmnipx6+vvOTEY3fwqndM8dVwhviDboLuLKBhreCClQM33cLHQIJC3LpJ93LqbmJcNJpjdmWfNLpPTS6WQBm/vOdd4Pad26GZoZ11cflyJzeGUayJ7dFcGO++lUpxuVOMxvYjYCaL74Ow4g0aOaq4zV6FywSMGzgx+utYPYZZV00eNEuPbi8nStgu9LmvXMpSNmQxNph9aNEu46bxKEgzrlOM+uCUfmnFN2OenIq5JDf8xhAFH4KyKf0HCAjyXrXz22JldrjbVR5/y1ZTV6xIRHPD2Ejni6oq64uwrS/vzYvmEHMWL0bqLwVo6kowmIe/LXF21eG3Dnig+rj3tIXxEFAMSKJsN8bMKOsgU3DKf1ZuomKK5pnvWRKcWIn60V6zMbLBruWGaNrUeITlV2alaVxh35qBoAUN4fom/pZ0Q/yjJKmHvPlvqywjanxK5b/9GPRa2vF8bukapEpX1sjxw3DhgnEjtZSWgQWbLrCKItqVE6dn2pniJd3A2xeZW7ZiiWrmWiFprCTVUJcvYPRoue/SY8K3oh/8mSoqFTWwW/W5RcUphTq1tPzi91p39aRmsb70U0vo0XPqM5ff0KDEJry7MMZH4qOo4U989S55EOWd9d4g3rZOP0VjP6s+Plr1a5ltV++59bffepMnXCWovLoddKivPHprsM2e5/UD7JuDGeI+ffaaysweeWqON56v9M4Na719jrM47KTqMhBuu1dV9HSqTTi/tOKEclOaruIEN/FD3rF040rLAuH+6734UQ5rUzeUodPb5Wt5n417Xt5+MwnMGyTbzRFhmN/cIsSfNC6/I0t5fEtuJ3tBhq/jdvbsgz3LY78uny8Mzd8vLlyMXKCqKChU59Fq091Qt9dT8zciq8f3uOOjdaE40iB8ZtWqtjQ9+FIKIujtAPXe7gB1ot8diln70vW9Fiqf7UYyjLIyz7lpH4kVRJhZx4UA7hlSf/JL1OFWKRvaQfb5N50lqoOw7ti0oMQatoMPe0huJ4o3tt486u6XbL3mGikyoCu414yj0mCEoviRAft5TmxIrXRwski/bH9q+Du6igLtsJCuU0jCGD9r8f1eqFP0DBYLnVIWK+sNla5UwqeenTgqPZxzdi7bq7flL4c9lhMltVzUUNbjXHzGahJsmEP0bbObY5C9Pp3fP/9aH8frY2kDc4dQU4lKr8WgC1hLziy+fKwygugU5ZqX9wqeqdnRWSq/wljlE/9c1IyRl+uyrviELofycXT1CB1XyJyJkRtqYPbnPWKMCN2+bP4s3xfIzPW69Eu238bOOrRfY6diuwv/gCUNlrt0MOta+2fjPWZdbir/lIXahIR0ikfBlIbGL8sLHJwvdl5p0U6UKJ5tyVHZqXPWTlPM0WcpdJyMbCxp1b+Xswpdfx1Q9Xq5MqVnj4ilK67uG+KdFWUMa56yyLgZ/uf7F2VUi40A1bUiFYLTWfQSNkfl3qgMRlWZGB/271hyCVd/e6EyGo3cklA0fGFHdSm2nytHU2fK/abRUnQ/W46yTleZGjEP12//NGNGrkmpIv85+FxbY6/Btl1NcN1000zJoZi4Z3d6chrI9+nAjGey1jN+0zve6hiReUeHJeMH8uW0SrCXMSXVRmExZoUtTwgQkBiVmSY83siKauiLEloglE+zMc+k+DiNi/GOWji2mR7NVpok0Z6wwqs8/cjoLwKFSolUWeURBWH3eSoSN+MUJXfub70hyuJzCy68dnv4Xjxa0cLLxAeazO3ib0c284m25XSLE0M8emY+WM59vbdisIDJMibRPorvBQvdifpigF1v8+N2mezb+3evoadM9eOIOkmMs1ZRGwRRn9Zlp7kzx2TzlKwHZ71IQEjWhRbSBXQPkX5ap3kttHllwk1JXiLcYKhU+coUUcNL7M8POTinl6l5La2SHnzJcUmvzEOZqzZ/gvPDRFYyE90ynrZloLN7f5GCaGyvIerZFX58dQyFHe0kGK3FGFeZ65hX6AdO3fCPHYvkSurvYcaXf4QhpP285PXKqaXLL4UuxX+nqblF0V4ubekJy7ZjfBaW+s5nck28oVJOgP/9aPBikB/NeCWqt5zz5esDdHHtBum59kx01M6FXt4YRc+TevrfI5YSxrVOQewW6hp3cWX0rOLaimUlgXE65eC0rXVPd4TZSTwW/nFo96VdITUfJcuGmmQtT0kmhZLINI3k4FfLnMFjA31vPT5eMOHrslAVwqNWvHCClV9gLfbNLIv8XxL83xBCZqlNVovw37Iu2x5DrVh7GszpAix5Akth9mB+koc4rNfC32pt8ZSlDtPO6QjQwXhX69IpKPJxCIwUM9IptHvQNAq9uI1uPEML+ICvoPguyvkh/3MSpWsU3EU43Dvpa4E9ZnJbAQtJ7a/zp4flazUh3tKjyNBwGLXoZCdP/N3AqiyL9VaHd690isCc7lD5D76I/YhScdaqIlbRpluU1/KVYglo6BVPdx98XcVRf4xvmlXg17ySdos40t9hXGGOie5HdwXXTe0DgS078l9xaNMlsdVIDqpJ2xAjkWOHFWVrgO6wZ3gqsMVqtemVhBqC7rB7OLSpNtUV29e4ijFW2Zop0lfsq+kOpuIsqvBv4b5SwqyrdmiE79OmHzz7bMel16PaGY+n5PxfO7J6J9R7T/StPzHrOQ04DVxDViOb6eAB1Td2NabI2+PKxJI7dzOd4kTXeu5ImrlRxZrPN47vKD7tXRAITxXk7xpUDBP32l53qkJ3etqz3WMv4DoxIZZjx7UsaCucGXT41G2JLpUck+gT7ZKOtFxF9tUdj4gyjHK7C5TmqfES2vUldY6jGyUSb3rWRDq6n39MfiH2sKroUThlutN212PmyDhbrEQms4V71/gWG+NvEfvrXmAPDbGRXc1Pf8UmF7n/vCO0ZPCx3Y9XA/2drsm2HM10TZ9v7ih6Cwx8vPYysKwg5OPRZOteEr1X9KtR/+chKDr1ye8pVtP63Uv0tOtI5YtOg6xfG6MQhs9L1IoVY9MvFxrMEm57tS09EWDArpi/q/lxiPzb0Zj2re8mPBjsj2qL7dAnhr5V1r8UwL6X9+MVbpr+lz1bvSUPcqkVkeRYZuqot4NfGaiuRs672zfPWz14qUg3qchDXDC/fnhHeyjuHY8UiSmZu5881g/T+tsE5cYkO+5uRxGQrVbvq0KZb6Sv578YDW0d2GjpffVe/mZL3+vam1XZwx70zbDKSGcTI0PJenvdpJTA45XpuMLtsMevnnK6L+DSZnRdjAn0e4eeE+3gJvg07kGeVeXk5A2l3YKruQlttqBBwPMHDMq9bJ+lYgI18fBDwlnDYpNbbn/4Toj+JrMgZMBrPVjjsr6N377HpMp0/6qd+hsjVaJHptyDWdeYN3GVe/WX5WsNKbfevCvEqDDz1MfaMGkJaUwtjPgxxcfS6P4gQUl1mBLrKxqfcJzkiksh923OxI3x2Ee7u+s2l0f3c3ExcddWKrm0w2CBNaeu8jo8HXqxgapuZRxjNSuNl19kolMIT9JwG4mCZ0YwUy5F2di+wNX+QAFzflpBqQlle6JevNJ/V5jcROn18tXY+WCnLfdF+ydlFo2d9MH3ROQzMNHrQp3hu58HitdOcWPEnpsGlgzTbScTFwGya+DV+e+m9rn5050DWJaNVsK+NIsOA0MtodWY4YPHPeysIcv3rvlLC6TxZ4nfbtBnkRrJ3MQyZqrQ37knInWBefyVKJlZiPvMYcTqgamh6BPL7vCa1mMGi6f6m2VhLqodGy6u8eJ2Wie9vo/NXdWPsFNcvjMIY0abO43koPCx1uxVf7+hSd5Nl5+YYmqhilVfNHfJOgIOtd6W1+ngOCT2kfogZ48ypyxqnSzdrlox1BygUZ61yBnrhAipFufwHmOinzK8qKi7A3i7xdGRF7G0md71Tnp0+FrYIE2EmZXpDrRJk8bYaf+o1OtqvIzArMO1UAeH9S9SNwdf3GS8XcTGr6UZOn+3QzCX5XotOwevXUqURMS3r+YvV3QnHr/ann63lCr1OXHE9YAqPuGCvf/l8XsHxDbhkgVjqybiP4fPjL/cCv2nO7B2/ugnv7/6t8e1/s7/9+V+1kuW1TMSBQW91OZr219/9aKfwsz8eRqYv1ZErqH1/vRRdOv2Xwvi/+8Ods4555xzzjnnnHPOOeecc84555xzzjnnnHPOOeecc84555xzzjnnnHPOOeecc84555xzzjnnnHPOOeecc84555xzzjnnnHPOOeecc84555xzzjnnnHPOOeecc84555xzzjnnnHPOOef8/4b/Bw== 00000000-0000-0000-0000-000000000000 @@ -53587,7 +53597,7 @@ If an integer greater than zero, Point Sample match method is used. When input c - 7bt1WFRb//dPd3cODUp3CSykRVJCpTsEREkBFSUEFBBQpAQlBQRpRAT2IqW7G0WUkFJUVOAZ7nO8f+c597kvvs/1/f3Je649Lz5r1uyVs/Z6z2wwMDEwMA7QOuShSLDQT+fPubhe9lT19PDwvCzIburo5e3qeVlRRlhMQlhcTEJSFv2HqKiYILuqr7uPr5ej4mVHXx8vW3dBdgNfO3dX+7OOAcaebo6XFaWkxMVlxRzlZOxlpKSkJERxD0uh/tfJhTUdPT0cfbwChFW8HK/goNPx/f4oh8jWy97F1c9RwsGD0POK4+XLvl523jgOtj62h5kICAiwDqtIwYeBIY7mg1/EJITY6D/ID5+ojDAwsH4EY2HgGf3RnJ8HWBg0fzZNtclzkz+bQCN9/NlgSy+/9In9Ivlf6Nd7z/3xujjGLQzlp7x/BBSHpzus7uHZWsn/82yMlCVWhsTDlMg+BkUoJuemNlMA/eHZYv7MS4H1Z0Y89JGJ8Xdtgv9I+iMd+XtKLvqIVomCXwPV4VEMPpC7pM19NC1/qVw2rlM7knU5yx/2xI9m6rQE76/7qkdSnunax6QulSM5eb6uUAL/aAYmYnj0qZw+kkxDaiJuN5WPpA8H1TtSH3Akyx+nOquvKh7JbXqutet2CkdS9MHzK5UT8kfyCpnkzqqB3JF8EVUXwNUucyTXcdT3zYD0kRS81ROSUC15JN1/muB3CkkcyUK/2XuYuWJHcmXLiUKORfRInpucPbnAK3Qk+/s3xA1o+Y+k3hsMBQSb70j+0W7uI/lHu7mOpHYlp176PPuRjDNxfsGQwXwk/1gXaI8kpbVpbkEJ2ZF8P70bFROMcyTzW9u1tIe/IUeRuLn/Ae3z90fyz6Xw1lE8XGdf+lCgqhOsQSx3TaF+sxWCt7Yt2RCXifBECUbbv0hGLoHIxwzk5QgLhfWTszXPkCWP5JOnTV8jXz7lXW+OLkPG6TfNn+s1IcwatunOii+RjeB7QWrbbQjTRV4mxvU6hKIp9FN9SDdiszya+Xy+EdGjiMTMIxxARmr7zhlrtyI6/UbI2sAQIk4kgIVX2Y4EKn9dFE8dRV6r0NyArN2I77Vn57ztJpCntAz+tyP6kIWeklJr8hkkTEIAtYgziDAqbhByWM0jpPkYgqQaw8i9d/b7kZJvkfqV7Di5iFFEPtEQZ5FoEfn6+EyOY/s4UrIdOyqy8B5pe5T4KYZwCinHVti3Jf+I4CWei0msnkFsOqNe31RcQcTTiFe7xOaR2AdG2iFuawhv440UzcgFxOzFlJ5byjoiRilg8nr2LfI41VIk3X4TKZ+b3eKRWkRYtD++zq7YQpRnVe6UDbxHtAqXriZhf0bef9edEbn8AbEQAQvXjL4ghLXJ8xlEy4j+2C9B7ewdhHfCv3A/bwX5qJAyQvr5KyJwPumEoeoaEpIldXNA5TsiOlKdlz33CWlqLQ2NSNhFWMrpJj4GbSClhpHnxN/+QOqx7VQoozcRs9iQK8Niv5DrHnabJ822EIXPU02et/cQnCdJ6sonthHWC1K0xAP7SHR/d6rp120kbftrjz4FBpzpkE661PIZaRVxL6CvwYCcA3s0NxO+INdcr3bOWGPCjegg1AObHcQlULwzCx8L/uSs/PBc+Cty4d7nDucSLIj/aq205ddXJML7Sr7AeWx47uS83ELnN8RrnPLr+j421JoQKcZO+Y5cMTHgK8/DgYs2vYbCzrvIlcmLL3z1cOF3OHTJXuoHctXaXkruKy4k4ZgITcb+iXivyVDtpePB5IvqlOMDP5E35tVljer4EBnzPsf99Bdyk/Ln7YhP+LA7LfJO8OU9ZL6PYEYvkQBifJDsXFXYR9Ri6WTpFAmhtPgC6QXiA8TY5BPr3CIhTMDhsR2ZOEDYgk4vF0QTwaTbUVvixhiQ+2r7vJ8kMdRraekIf40Bv1Ns02lME8O2mAT2RU5M2F3KrEsbRgKVztv4q9zFhJ4/PjQuCZBCv2dQp2gLE0ZHmYTXDpFCc4O34ZwXsWDy2KBXXBAZZGB23MyFWNDc7tS+Mxc53BTxYpc5gQ3ZPmVHgS5y2KYWbNB+HxvqTgZdjJajgBXZdBrO37ChZgtNQEAMBZT2oUqiscaBsTKhhU4LFJBUXyi9vw0HRj79KWUkRQkzH5iYpgnjwhBCn0YQRQmlx2+QOz3ChSIuX/MEZihh1J2KILCPC7dTVU/SiVHBD33nE/ic8CCf6UWz/TAqWPO9cZ+1Fw9W+ydtvR2nglhXumc5pPGhWspI5BtBaqj7YbSBJwMf8nMo3Mm/RQ3Ji29TyeARQPW4ttWwYWpIwe1z3uQyAYwJuF9idoIG+vRXPb45SgAtP1APnbhOA+Mk7RTKlQihsEny1699NLA4mWz6fR4hjNIcD6jnooVhlTyjXOREsGcxp++aPy186sp0xsWfCNoYs68KdNHCHxJK91/OEUF3mXH8PhQdfHDv0XMCLWJ4jSmO28uLDgq+W39zsZQY7l4JU8Fto4N47UG1RQwkcCWHxOAxIz28aCVez3ybBJoy/2j+5U4P6Vo57K2WSSB/qBLNZUgPhVwEsvoMSeHBSojDHDUDVCOWWlCuJYVKaqh4W2cGWLVy4dU8Jxlc6nq8oFfLAHtWc9vn75LBa0HRTo9JGeHsNPOB72cy+E56HbPNhhHeDQQie+bkUG9bP32jghHKMthbh7WQw/uvuPR38Jigslhqy006CohxPvcWphkTXB4pkurXpoCxV1AJn4uYoLuIhSdXMAW8qtYOJw6YYH6okUJoBQU0YfDaQM4xw3dj2oTvPlDAuDydU6m5zHCM966rPgslBGshd5y+M0Pci/kD7QaU0DxPZuXEWRZoaPJu1CicEnrNirQvpLNAGaT+0fYrSniX7kRe6iYLRJ1MNo1fp4SPu+33z6iywicYVAOqXFSQxqA7bSuRFZ79/IaI9AIV1DhP/TLhIyvMuO0SvRFNBUXJwHORUyi4LUhjv95IBZlbLz3pjkFBjXFE7tNXKtggEOTuOI+CaU/9HAnQ86gG413lL3E2GHdGhU/VlhrW870LTAhng5ylayMZj6hh0ekHBcLjbJCJXGKeo5sa9hZzuDvSskOqywErOZg0UKFy4GW1Ejv0ajU30Jehge76+xE0LuxQImrUV9iDBpYv044Gx7ND1dsnqNWzaSAjrX/Ct1p2SEzyUebBBA18toNYU06yQ85K/yFdLFo4IUMlIL7LDuG+5HM+AVr4Ygxb+iIDB3q+NduyG9PCldbX+OEyHFDqZk+B9A1amKrQfavClAPq9RCcdcmjhY7SY7w33DhgZVF49WwjLXyV2/9D8xYHVI3NO2M7QwtFrkIn6kQOmECK7bbxnRZivuZ/PVvAAWOfc1tE0tBBu3nzswUNHJBlotNCQJQO+iTnck3McEAv1paZJxfpYGTDZRX8PQ44nPMMUyCUDu74JFmJsXDCuw6fTnUW0cF08leCJqc4oQaInw0cpYOjIWMjV8w4IVODWbo8Bj1kf1NIshrKCecoqbYWZeihbmtPu2kxJ3xIf5Oj0JMeBkcz5peMcsKA+oKGsGf0cLbvZv72ASe8BXVtr8zRQ4XNikC2k1wwY8b+oRs9A0yhWNbROccF634EvHHSZ4BfSdc37YK44IYY1r2rEQzQv9Onyi6HC1Z167RHIQzQT/AsjV4PF7y16NRZ+o0BUo1K+PF/5YL88tpLn0QYYWkwyzgeGzccuy+EJeDCCNeu0CsOa3JDR65JmZtPGSFtRBBe0hVu2GW9cHNtnBE+PSdRaJLCDXVO/SC4SckEv5h9n6Bu4obPREqpZbWZ4HqlEeb7d9zw8oZ1iG4AExzl7B2vwuWBsnEnx2/mM8GJj+tXI/l4oDpGKX7fGBO8kyloZXmGB5ZP4l0H+MxwNlQHJebGA9faRyi7pZlh26czUmURPPCy4I/BKStmaK2n6C+awwOzqVDRB3eY4fmrDjTFkAcSnqH6JlnCDI0nRCY4Z3hg8svGFr8xZnjy3oWzMbs8cA+V9bH+gBl+f9s1Sk7OCyOTkrlPoVjgA2uD9/e4eeF0jYPnawUWmBeqc2tfjhf6Fg9My5uzQB8eo0YXfV74iIlpviaABW6bWe00O/DCi9mdxkLJLPB68CROgh8vTPRZ1o8vY4EqJxQzTCJ5oaZlQN56J/r8T2bmGFN5oe0bj1W9RRboUm8p0/qcF56KsnmUvMcCDdrv6XrU80Lv18Xcc3Ss8J48642DYKzfe8R/m/r3pP9zU19M+g+mPuZ/Yerj0cerQoN1w0Rp5aM4YD5UknlwNJeyUiZ4gmWOpM/zrfhUPtkj6ZTp7nFv42hqyMzKec7LHUnuHn08owH5Ixm9lzO3F37qSF5vn2n13D+ab7+LP2GqUDiSTbE5bvvZikfyKTed7NuHSkfyVm0ETls4OJIi+dc/Gp9SPpJs3lW9bRVHk1xpvVJW8PSRPCDgSyvMOZobQ9a3WVhVjuRcRrJzbOLR7HMd0MUgUz2SiCSRpNedo1lyoMK0uH80n3QGYZj6qx3J+4mVS282jmawzaduORf1IxkwVSgv3n00kbnRR+7sGkdSE7v2ubDN0Rw0D4o2TTyah+vY3xdNJ5mZa7vPeKF1Ri22FooVvg/krwpN4IVCdYa3ynhY4fjLxCGMG7xwRY0rCiXECmfEGhpvOaMX5UQZxyhJVigymXh9z5AXdj/eN/t8ihWaru02iMjyQuNQ5oUxNVaox5jhZIlCl3f/LfNrXVboi8+nfQ+HF34ANLappqzQK5+ksGaFB7p1b8/5WLNC2fqk1aV+HigGrzGccWGFeY3hdF0veCCVp+/3bW9WqCUMukqjeeBpaur38cGskDIiLSXlEg9UmOkh47rHCjGgsOQdLR5IxznzPfsRKzSfwtHy4+WBLDjDvVRZrFAoyeYhwT43VAmOLc4pYYWjy9dan4xwwxeSITSs9ayQjnkx+VQxN7xtKdRyrZMVqm6LRkyGcUPtUDOzqjF0/XBqdwItuKFrVnNn/yIrPBcs+3hUgBua5t2/mvaFFf4Q97ki+ZMLwtudP6RwUFDl+anI+E4uyPhyceQxNQq6dDlbr6RwQb02S6ceThR0uB44LO/KBSvt9fRbxVDQTijmzD1ZLsiECWTrlVFQ1vOOxRA+F6wQfBZwXR8Fw3Qx9cjHOCGz/LQLhhUKDi+wLSvkccK91QsZ6u4oSOJBK27hywnb2m8TaAWioG9iT36FASe0uMw+3hGGgjBfjxJbkBPSrFnT8t5Hwb01YQdtfE4YvniX1DwFBT2KJzTuvuWANW0/Z5yyUVCK03uwuZ4Dfnjv8VSzGAUprkyEgVwOaJHr4D9TgYL1NW8da6I5IIFmmYBNLQryMVxvF/bhgA9PKAv1QRRM1yKmyzbngGQVdqsn36Cg3IU7kFaVA4ZpXJvy7EHBvA0leBrFAauzk5vHR1FQSJGI8hJ6U8s5wjxNhd58u+wIiscNs8PVr1KGLMsoGDJp3VdVwg7ltAIvf95CQa32Bf7pu+zQKXhz4NEPFPxRIvfj1UV2qI2KNWXGY4MGUu+ZU06ww88sIkuqlGzw1ykM4t11Nijy5bUkKQsbRFnerOyKZoPdZyuwfXnZ4NeNsNgcfjY43zb9IFCUDfaF3HO50Y6CX07jcd+SZ4PWEUzeFk4oeHPe1pdLjQ0+HVe9qYgeZ2aswHR7XTYYzSdzAYWeZ4w62RTKpmzQjXDk4x5ghcKze79qrNig9qpXwMwMC1S7cmFZzBldvs1r+DqIBV7RXtTT9GSDDlzeeUmMLHAwO91s148N6uQU81x9yQylmbh2tG6ywUvvXAO0TJjhMKoZSxZtPiI4eXvYPjPBK1z2FHzodkyyOex8iWOC6tWs8VUJbLD4grBQuzATPDVQ4vo+GV2evs5OSjcjzCI18X2VwQZVBiasLl1ihN8SRF9K5bBBJyPndnkCRqjDQLJbVsAGFW0dhgjzGGDsEuvV0RdscCRepXxMlQEGSZUTPqtgg7oP0qayF+ghQYEf+ckaNnhAvHvLI5geqtWmxNjVscGyMFNeGVZ6eKurjvgxZIPpPjWa+7V00C1QCSumhQ2uYWrvwQt0cDb20RmFdjZoKtoUdeMrLSx/dS+hrIsNVpRezZV5SAtPD95ZWO9lgxRiHI1bYrSwf+W2qOAgG7TBJnAvQJtyhq2QcLERNthuFBlmjTZTL9ky3bDRZqw8vPYZLTEN/FbYI507yQbPhaEMu/OpIVY4SwnTDBvcCgn5EaJBDcms3fji5tiguh4Dv/wiFXwfMa0zscAGwZe0jO3bVHD15aPi3XdskHm9MLWIjQo2hw+9/vKeDSrYfRByqaeEpjjOOT0f2KDVKFcjlzklXAn5EZ23zAZbWmJW579TQNnyRX3LVXT/J2e9fPKIArY4tqB21thgT6zOprUkBVQPtd66gp6XkwlX7qjkkEMzjLNhQxvo8gi0BFvnyODlG9L00lvo8cDNxtNmJoO0Zl6XgrfZYKDIxyv9pqSw7Km5fPlnNihpoBR3PoEE3snmwx/4gm7fhZiY2R5iiLd/i3p2hw2+sJ2+60hIDO9cmGRb/coGPc5xO62pEcESoka3pW9sMOigScPrFiEUycaXH/yOjqe+mX59TQDf/mKKK91F96+I2Zz/N3w4mhggE/qDDdKG1TnviuPDLuHxWZOfbLDEQMfl2mU8iIUfMsbyiw3Gz2Se+FKAC58o4q5OoOM4r0ky9/c4ME+W8lnsHhv8XLWRP8eOA7+QcNso7KPHfxdH1cgCG6osSDOuoGPW1a9xTUlYcCzWoC/ugA1yx79hExrChJbvglYZMNjhddnMnAQyTPiNuInHGR3vt21sbJ/BgNd9FaIq0DHm8+t+eUQHCMZc9doBOrZ4hJ1qcXsP8YxyDNDGZIcfX1Cv4n//iVAO4GU9QMcejo8V8i//QOCL4IYpdOwSf99P8f13JMHFnJQLix061IeUDpp/Q+w5ZSwuoeMRq/lBi8Ed5HyN70wpOr6RpvJmSusLMiJR1PcVHcsm3Y/WR7aR7isr5xWw2eGVKA/5GqktZBbBDr2NjpPff6Cimt1ACmmo12rRsfBMmUuOwSdkTPUbzRd0vLR0M5aveQVZX3bGEcJhh1xff9SnSX1EsBf2qh3R8ZcTq/qY+e+RpXZD5gx0vBQQZWJ0+x0y9Ox8Rg86NjWQ+JlqtoDoKvcv/0LHtlP5tGXOs8iUjcJXAVx2WFVNd5WBaRL5lVxRYoaOmR5iiXl0jyCoAyOcKHTsU1RXd/PuIPI0MpCuCB0Xii0pEsf3IlvEE+u96DhKMOwRNmk7EpKfGbSFjr1/HdxfiWxEMF5j9VDjscM0yYvqgYTViNrPvWIpdHyNPF948nweolRWv2aIjg38oqTfxRkhVyIsZzzQsWQ1z8woKheIbj2biELH0/jkHmc8qsDCID91LjqWljGOf8QDgdlBoDhExyHkY+7/ZPrqCf7npi+c4B9Mn+n/wvSZoY+r6wONBxsG8CgGKNfH/Ko/mn6VqrkHt4/mBiGNCRQ/mi0s1uF2BfpH0kB65lx9m96RnNY3Z2dY1D2SLq4Tn7wwj+aXkPOve1A6R/LW45HIEwpnjyRJtZFp6EXtI5ncN8A163fmSHIv62/JPtQ6kqVYvQ0PyjSPZBIxbqrvjsaRjKjO3f1qejRvZZSf2JtVP5Kxf95RcBQPPw9///BNLQRGCwlC4Mv65MqNCTa4uz1EnSUOQWRGjaxfLvpitNYlQiwLgY1wJLPeVTY4fTqB+rIiBOay4lu8iuiLl4BwiLYKBBQddeHbBGywVIedj00LghfMV32NOw83XaZm4roQXK/xNcq+h4KczrfTawwh4JlPJV3WQUHReqHb0SYQYDXM2PKQoeCi+tvMlxcgWAslibbqY4X8irxCHywgWHCaZ7hynRXeoFKU2LSG4FT2N7brJ1lhtLOjcactBG4fIlWiR1kgrxGnmr8dur6JXiRFoSyQ2Wq8dQv9+kuruYF5URbYuKFpbISOo0lWuB73MsMhuVZJXPT5JsWwcX3dmeHOuFs2jjkEhfQMvn5EzHDykyBKD10/ukh1jOx8JviRen5kFt2eD8lFHLsaTDApmQouq0HwvbyuXm+AEZosDM/5yEHgfdrx5bw5IywUyFQPFIDgRlH6/vMl9KbLAfVpkwkCD+i3mHOVAWL4PR3uxIdAVp09quEXPSQiV792ZhkBWJ0dQuMR9PD6u3NvmusRkI+oxlNR00NJ40LD5WgE1OHdyrbJoIOPVHhePzJFQKFh4k7FSTroaxxqWcCEzk/jx49RRQuNnRYOXs82gLwxU2sdZVpYlsY5JZHeACqpsP3ju2jg+RszVesmDeDFlyCqZlMaaOFustVBgM6fplI6ukANve4OGBdX1QOvT1yX2typYWS+bk2cXT1QArjc1d+oYNlOj+p1wnowfQrzx+0QKuipmJZlUFgHFiXXbLlIqaBgmAIHkXodmI5Vpk1NooRuwTEa8ROvgeTHYtVlDkpYGDjrxnD5Nbh3mtlLtogCuvLPyXj8qgWnUzOZbaQpYKCyOkFbWC3g6//YOHyLHH5LYZftwKsFXi/DaV8+JINmq99weUJegZBY9yCXfFJYr9A3dGuvBiQ4Gi0w1pFAvDtZQMqrBjgLhl1M7SOG+cHeKazzL8FtfszQr2+JYNGQzI6y5ktQ7oUyUP5KCNlfhG6vPasG2jeVeuMICeGDyL6NZIJq8DbKSmeBhQD6LmfF9tihL2YXbgfJiuLDkLtxlQPVlYCgj5fvhSoeVFJ2eMeDWwkwgli4rM7jwmRNmfv6ehWA4rKHvI0bDtzWIzoVkFQOOGwbDO2CseHKs2n7a1NlQDvtUlj1Ayzoa5lrO8RUBhbMCBp98jHhGY3PMVSmpaDlZYZFWT0GnPr5pF+cuQS04T91XM87QLjdLoYr3y0G2E+xqAIH9xDSa6KPZraeg2q6NAmGg5/I5uSY6ei5QnD99eOVWcEfyGWS03FFxflA5czG5oD5dyQvQkeqGusZaHrNTj597yuS9zlTxvhpLvDGCXjcQrSDWFovB3yWywGViraeHnc/I08wAyTe9GWBM68D1TuJtpEWFuysTdtMsG1oJtRybxO5pY0Vpr3wBBQO4gu7Ma0jCqPlUlje6SD/REdDR+IqMs7CUzdwkAqURsd2ByiXEU+dvMgfEcngG+VwjXnsEuI/f1+yj/gR0HyAuc1LvIjszizkjdx7AEp7Iwk/RywgNNl3nByexQPBrLYwdpU5pOnZ/aGo2/fBq0idHXOfKQSHzuqLTuk9YPy0KVUpbwwppe5qnZiKABi6WtqzY0PI6IJu802cMMC0wjjjQNCPYIw63y7ovwVCSWqsVKs7EOXKL/4ZUkHgR9xnOWmzZqR1crBHrt0HqKfj9hfuvUJu3xfYOV/sDuQpKdcZAguRv9/BIOur4vfXzUzet1aGw3vVKPD+3KD89V41S6z/+Q6HB+svJzjU4X14ZP+LHQ4Fxn+/V23rCVuDDKPyv0mFM5lId1Xq3+w9qXglwZDn33x8M9q3xIz2b8T9N/8s8tbfeVh/m0/loYyn2pEKqW7eT/LtYI+vLpPyVDvoyFA+4IlvQzRatK7QJ7SBtarWNQ35LlBbc2bp9EQLotA7QKw60QIqSXw7qU70gpthBASNpo3IjOfkZoNpI+i7UrjStzsAGhuf0eMxI8jb6XSed+iV0WI5TAXz0hA45ZMAyB+9RB7kUqZrPXoJ4hv8sBn5R0HY1PefkXkViNNcxKRbXgW4mETy/mfAGCAyf8/qXFSAXIuqK7ldVABSMO1Qg0QToNPhG27u2xyEZHJRI/ZtDsAUuhtFfmMCPDyb08xWkopIW9pYkJSkguTcn6TftyZAB5LR1RGciGQzz/l6BSeCx9/jn2WRT4Jz8hIM0pXhSIZAubZbZTiIZIs9GJaYBLrOVzszEn0RedllfLuHvkAW/+bPbblJoFZH1/28I15p+XmSocNavBLfpYz2R+j0sgQrtn/aTs9g/s8nWy7mP0w2ov/FZCPB+O+/ofTqK0ZdlVb4N6U/hLmWfVL+N6mdLlydb1T9N//bd6OH9VOIETv/At0pVtayZ13QnWL2Z6ckhO0mVxKlIpIuVWtNtW8bpGTxrKfR6QbFi6V1uwVIUSURMK4rbNhorfMOX5oAcoEkRiF0rxDKiIbKpu8FSvQDngyMRePArGxYTyqtAaEb8GVdJ0xWintwkEbRPgaK8cPDHzu1ID0uuKtcYrcadAouZx3UjwDP9eH150gbAoN2/XAfBCqFNpjdupw6DO4siM8m2nchFyiBspy3WcOFmzzwqf4gMEScmkzLe5Dt6WkpmZRsJcfO8ScyJwaA4Hll+bKDPuS+qNl4+ueUBlkQMV9+0AeYiaef/NNgp/8/DLbjPw02wf9isA8H4r95JWwDnqGdLr1/s1tIWhu//Oy/+d/2rof1+aH1RycUgKWCZHQnJOr/0Qm8nA5BlZj9iMhGuPY1zAQgS3f3fRlmP7i4Nknwqq8PuWeUsplIlwU+peP51vX1gc/7r+Vv7fQi3FZvje+UoK+9cVuKN3Z6wUzh02kF014E78VIoMN0FSDJz1pVN+0FrS6mA9ws3cjJPBefSbxGkC1NJsnK0g3Yq2N+ZAt1Iu7hORal5S1Atd+1X1i4E/TOVfxrRXP6YnHicEX7+kHg6eGK1m+n/OCfrg21xH8OAOZfRjCT+D9HkL7dRvPdX0bw+YnYhsMRdP19gt8jiPfncfixI/xfjOThNWLqxO2s6UleeBQZcdN3gx9z/QdXVJ/NtQTQ/Qe1HrxsZkTegKN4+HMu0xlurFds7PAo6nI2vlvHovgPdnEuN1Rh5YOj6I4uS9yfI0lWzQyxgc202QaJyBneVqzPgpMg6PI93YggC9D0JJK/2o4FlD4s5pZTngR5JeOYmUOXQY1uNz+j4yPw4twPlQTzSZCM+fPJVtkdQMN1btejIRc4L7kzSrRMAC0a1kU/wjCQkyjdf+5WNRivfnunmXwKJNVtYBva3wHmD8Sv749CsEvSq+V3chp0KB4UeZtEAeUZ/B/cN5tB+tuQWY28aWCveOMmbU4k8I20YHS3aQPJ3/HjdzRmAK7A6dZM/VBQhDDvfo3vABNZbWIaNLPAdQRH2zU8DEkX2Fki7HuAkOEU2eKemASpWx632PCuI/sC8mGMp81AHr4gXrnGJBCyQuUqBHgjJX6dV8umkkDA/sfCGttJkER44k3UHWdAEXPvZ4RbHmhjI5mTqJwAWGSzJnnLjkCvK5YmpK0aYAVVb9l1TIKntZ+ycJj9QOz+eqvrJwjSmcI1edKmgOVm8s3qk8EgurE2KzOmGRBWXe/+tDMFGMlJPP2NbwEdbs/+1Ett4E7I/sGY3zQYt6vMS8i9Bs5kmbUJJneAR5JsrCS8M0CTW63/xUwC4u3UJTSilYBwi4/HL6MmwZbWJUyp2PtIhoZsZaCLK5jZJGzYVp8EY0L9gXl895CURTOlLP0UMPEjkRbfahKEDwtVvmvwRagIVgOcqJ8Bp3SnphtpE2DRHRezi8ALuS2NRf+d4CWY6LwxNXx9EiDEInt7r7iQIqnBWQvMRrAr/f39LuEUqCDNSr/Z4wQ6PYWFVlKbQVTK9ps29SmgPpJ8joXfE0y4VQbNe7WB7PhTBVoFU6CI1nwzCtcBaOSqBw887gAtn+4YvFeYBj4nLv4iv5qGvA97Rh3dGYc0PezgMkbvE4wf8ne8CU1GhEZeGp4v9AK4Z3XOJZ2aBL9enFr2Ov0IEaC4yyhWlwq69xX1vc9MgodjGJSb4feQNL3u3ZrSZwCqmxlj+k2APrUQ6VzXCIQ+aKIEUX8Jmj4H59nyTgIeAwWqHBN/REPWTxObqhGAHmmSAq9J4Fvt2LbLaIs4nQy/RJnbDCwfdXDfT5gE3OP+zFnKSkhWzWiHw7U24H9x2Bs1NQkUPSuGznwwRm5xrJCTPOkAtwVqG5+ZTIHXLsMfMreLEK4NqwY8sQjEJdJUjbBpAlS9yCTO63uOOFzdZzJMDwWddHqyIt8mwKuLOJ43rhci59XYCqHoE3Cz1mRydn4CtBu1xN7LzEWsRPNw8LMLQNHXpY2bH8fBlxs1fOwpWQiBDI3Uc+wa8GM32mZofhzIlibHLe6mIFwlSqyn5NDjFSgaXnh+HIRHt29QszxEZl5/s9evbQbvkjg2klnHwdoD4yA7uzgkl9Zc5uX1NiDSd07tJdk4SJkWkn08HIuImzg+M0/pAMO9smIxsuOgJQCfXHawConN/nxm6OQNZMW+0zGHaQI0oZhzay2qECk9ql3vx/fAuHBmdaLYBCDf0PosCyuRB8WaLnR7TwH5m+BNfPkJIISjJmzCWY50MO8FkJ96DjYLfj6ckx4HmwIH05duvUCoiH5KRnPWgFIhh0VRuzGgV89haSr4DNEha96uFWkEJnRYMl9sRsHZiXjp79eykYtvMh3i0PNQzlgJEK6OgJate3N+G0+R9hOKQQnn2kAONuVEdt4I+KjF6G8x9QS5azDG2e7eAfA+uDBbPx0BqSdkl6hbaxEaE6+hYW4f5IHiVOSs+zjIJaVbdrSvRSrK7XxMNO4DRfqOSo4b4yAyTazTkK8WyQ/WPUnOngVYcefISFLGgbW2ySsb15dIy/nnbc7Dz8G5EtVa90p0/eU4c4JIKpG3j2+8zkY79Wt5d4jfvRgF2ndFgjfwSxEnmQmyLrFGIFeb5uJ6awTQ6LP8yGAoQhZcmMmfpDcDhUcSqJ5vw2CEk/XLE8MC5Pxr8aZ2dLtCPy/ZracPg2Ab4SIDqnykDMXM33ypAzS10OM/DhkGlyvuDzDuNCExodYpMgY2iLxQ/IOu4FHgxtXHfXWhCdkuLVOnuZEA2Avr7B5HjYKpAnEvfnQ6+/WmDxPa2cB1sPwL1ZNRQIg38j06sxF5q1RjFeFVDHxTK0RSJkbAwHD2/o8PDYjqtfIbqv41YLj+sWl6/jDQNTnNOSj1GrntdonnrlUj6IxuGwp/OgSeYHp3ETXUID1dSGdnWjO43VHYarA4CAZ+YfgHcr5ESvcvfLVQbgMNsQV0d64MgnUNiI2dUI0wZVre6fbuACuGW4Ha2oNAO4mG6dnAG6S303vNjcwcyeJxn6RiHQbzT1PTlDreIKLe5yu/sD8APUuu5xnYh4FLq/Pdsp43SID3D7rghWzwZEmI4QHXMBBecR0YbmtDfrpe5ZkuLAYstue+pt8fAjFl4vxJsy3IavnbaYqqGmBQyWWQ9GAQaF0ui/hV14Q82HjIqCnVCPxb04cFXAeA20HhjZqcRoRmN42g+nYzMFkXFLAb7AdlqNbyH6SNiCbGp5Hb6OuXm66RjvftfsAXpIuX2A0RAb3Ic7bodV5rt7Hb2b4fALmsNZyYTmTf8pRIEaMZIkcbeO5U5SAQIe8lG4vuRApiWswKXz0A4Z3GqbBmECQsoD5r5nQiTvL3yLZCc8BH0/6frW8GgV9gqi/RbAeycoDR8lKgBLyPLRw2uTgIaicJA4ZU2xGdIKppx5RX4P3mAwbVoAFA2jQqoDXZigSZtr16ZNwIFG+wk3Dy9wOfn0V6jnotSEv20k0J7mbwIb2wqSmtF8T48BMmyzUjr7GMmp0vtwLj+HFclGcPuNAV1rfli55XC72rWSTtQGSgJc/tcTeIdKlz9rXqQVoV6hUaec8jNqWuZziNBgAn7cWrp016kC+KTM0FGg9BXnDjgb/hAHBIMO68K9eDpIjFDNxezwFtd1SXTqgNgM/BTrFzad2IUX9Mju6TEsBCsvRIfrsfSCvMTiWc7EKetn2Qdfn2CtyQJXySINgPWN3D36zIdCDFtb84qMcbwSmlljY1uV7QA6/ct+BpR1SYfApIeVrAUvvy6jWyHhDysO1kWH8b4r5uru6CagOGqrWj3QldYI7cg8oorxWRzNhepziD9u9vRdQ9dToB0c7s0hxlP6K93v3oYMcYcTr1qjFrsg9oZhc19tH0I+rVO18y0x8CQuyHleGLfUCV2XDjxG4fYho99uGGbi7YyTrLSVzZB+xj1gTWrPoQomQjjKyPJaDKAEdAjbYP1Ni3E9d96kG3q+cu4KkFd3SEXnnF9QBc7MYdl+Uu5FG6jd9gYyN4bz2WdsO2C4hOO94tmupENO3f7BX/agYrNJOWNdKdgFDeGaXa3IHcci6X+CndBmx9XR/2Y3YAbiNHJsLsdqTu4aibjE072GGywpVvfAPqzn5g/+sunltsTulwF5/ye8/8exOe5PSHDSBJfMh3aAN+4H/5lw34/RPVISen8GLzXmIqHe76IXcOZTHau+bguug5ob2r8p/e9Xf+3//2+fu91AZ/2CEWWfbTaWg75KT5hx3C+jMv1l/yj2UJTR5WcuTvlfyt39/8/Bne+l3g70KFVFlW30ozgb/n+2ue34b+tyH/XYnfeX6f4+/5sP5S2d8+8bfv+2vjsf5yjr/ne54urn7YwMS/m9n/1ri/9uhfexYDY+OS1S92gMFOv1qCEviPBmMcoUFWiYz67+8PfvN34/+pc/46Sv93HSKpWsx+oKdVdrJJP/d/dNj/ax1+d/A/de5fZ8n/VYeQwdO8d4TQVpGX5KLFtNLf3/v/WocS0M5/OEA8f75O8buw3wP119lyKKHUu2GHbxD7M6b859H6Zxluhrz7vdD8NnK/P8C/DdXvjelvg3RYmAndn2UcWnC1P4O/WvDF4TE9zeUhSuT9HxZc6BWzxaEFJ/kzr5QHxj9Nkr9b7k3w2zb/trm/LexvK0pqTsGiLv0L6JS5MWK7rICkveCGpYHr1bfGTyv56cZK+o2dVmruHlBClwb+ciB/Of6Wdthzh5+QP6tA+7sv/6k/f3/M/p5O8V/6O0LtgzbD+VHwB6v/9b5/zazUlEMtgz/Kpv0z+++xxvmdbSJGjlBAoif694sYvHw8JzBPnjyJwcODLSDIL4B5QlAAGwcHC1NAAAdLQAAPBxuXEA+XgAgfj5CEkICYlIiQhIKEmJySlISCioyUkpaCnIaOkoKWnoqSjoGaip6JloaRmY6WiYWejpmVgZ6FnYmRjYOZiZ2ThZmDi5WFkxvFyqXPq6dnwKevr8/Hy2twkoeHz4CHx/CEgYHBiZMndfV0dM7q6OnxntXT08I4eRLrJCbmGV70PDvHz3/OCBfXhMDY2BjXyMiU2MTEkF9QEBcbnY7Lz0+Aa2xMYEJMfMJQUFCb98wZXu2zZ89gaGlhaZ48qY6Fg6N1UlNTE0tDQwNLXR1HTV1dDUdVVUUVHx9PFQfntAqa+Kqqyqfx8YmAsjI+kbIyKRkRkRKRoiKREgCnFMjIFMkUFMjkT52ikicjIyJTVDxPbGpKfv7ChQs05ORmjBcv0ly4eNGc0czsIiMNjQ07G5sdBzs7G6O5OZu5hYU8FTW1LbuNjaWVhYWtHTrd2sbGms3KyonT0dHBkZOTk8PBwYHD3p7Dzt7ewoqNzYmLk1NWjpqaWk5eXkaWmppBWkaGmkFGhlWKgUFSCoVikJKWFpdAoSRREhIobnFxKVYU6hK3qyuXCze3G/elS+LcYmKu3C4uzi5cXKLcIiLcomJiIu7Cwu5CwsJu7ujYTUTEmcvJ6Tw5MTELLgYG1xT1i3/Nmk2cP2bNtUnSoRiZEX8W/E21gv47rLbcjJlFtYtb324kcTp+fOge6BW4bZwQZPQhdUWPxZDbVl095b1x2NR05Iazf8R28pQu6oG8Y0K6pIBAonvJwUKVREd6n8kv7uHvLzNtXKmS5BcJhIjNRJdq7uMHvC6dK5Gx4a4M07x3N7wP259yPq1PZhYj7WU+WdmWooLPOyEOw2IcVpcFMSrPPMeeTMHit8++PnZ8U+GZ+T2dt97KkE9Sp7it7Dv59fzOJN9O/oXNVmK9Ke+J1x8c80tlcjVF0sJPf/aSBNLcxUKYgkgBjqdpT9bwDwUnajOS8AGaS3Fz9qvL4u4V9EM/y3+GOE3S0ihUcV2cCvT7MC4yHuCPEkqysDlDuEtwUizroqpHt88l4VT9lUGWT2d4HznY2jXQ7973JcjdoY9T8pfzYCG0C/Xefup+JY9Wddfd2YmMN0+u38hN6ufQhmTnpSWjKheic136T+cUk+t82QiJg3ptXI3YhSarUzwepbedn70p6fdBfDVStxn8eO4y/pbjbDzrmwzK8+feuMIVe6y2ZzfOeipGi2WeVK86TRNgeY2T2ycX7jvK+ooQ23bwdHw/H4SfbmXZIu3C0+RtLfo+2q88Oa9ZdpZC2fKdkSET++mCePqqD8lQTobErNfql1V+p+XLPFJ1Wt5pNSahNULTRtB+90Nx3fKS+YuQqTc0L+pBT/ZPJ+Lokk/z2OZ6RFzpxS7BVr254GtgneI4xvNx7+tLO9cXCk2oSQSFt6teJaJSE3VdPn3NaRfWz/EPyipQfbpsiWVm0pDv6pP5lI6eZJos7IWFmoSA+tO64lK5d8or7vhF0YTh3IOPqjeq1EspYnpemNKsO4VndqhekHDVc+brGTjP1VzioBPuEO0zxt2dyJTQMEzxQeKc6NBN6frytJiPH1wZgkVDJ1Hdt1QeRtnb6W5TuzVtXyHjdL7+lq0KlFF0tpo1G+6P2jxMQZDItpOhFkqOccsTdCovi5MiqnfKlRCBGsbst/F2tOb0N0ldRVauzRuwno15dfs5cWFNiQft8zmeiChdwqTJh6Lkp2/Hv8B6MWIJ19oKF4Q733qrXSwSS1QdU0r5Ns5TAcV4NDhbfl0MS9b1LtLc/cmu9EspMkXYFTKHMwcXX7EviUgtLRiODj4hZt83WqXyzDFrtCFAZfMgk9QaZTC6L2hKFKFh0k6kn19P84hdYcDo3elnGp/ek5EuBMYzxe8/e6z2WvwxTfElixU566lspaILNadj1GZKAt76RjV5K+OeucEwNzxryOj7FtU9IXdTlF9rP8ZaYrFHyiJj8iP31YZ7qoVvFGa/iDzTjQ+Gdm+cG+R/3B3yZ6o64Zahm0L7IPalLm2+QdoQxhzfCmKNVxGnXqny5uzDxQDaJxIzJ63qu7cMVTiaxEfj+JubDJHvCo9QvzIeCXjKto062/vPX+YnopML+Jbb7JUZdvl9kuz6jfRoamrxlfqnPz6thZEUaDNOFBPSUT0UT95hzd1CXuM8aMjuN/cPq7nPI2HhjyPdtuWjdCpSSDT2japWh4JAlK8yUUCwYCuppUPMXtmVZGHedD/cKVnL6Lu1J+5OZdl9W8kycGA9zTFIXzQjj6XUJMz/WK4DRfR6UxuEmX3x2Wxkx2l+f3Aw4xS2t23zuIwop132rHsVWZhbEfC4fyFsIXT/gsWK6u2zFvMBzfgHmPU7vloOGBnLh4vgkKJh7L8WwU//3yLYFwXo/Fjwr7x8U5YYMK2okvFxobE5m+Hm3MOBGCHz3hzdXvHcbs5h/lx7swJjt54qn3H5xWs3nyyrG1llZb17r1MVRl9CprmT82mPra7nrEzZL5Tmi9lyQnKy/d4QiZAAL3+qFvBQ4okKbnA9L9EerdCa3/tLDZl2Qh/dWQWKkT5vO1O7foMOFkuua/vzMhSmvmWjeXzXd79zTq/eaFJJ4/0esb+7qSeVsxRrY2VVg+Mc+zyhdJ3Rf/pTzBeTB2vP9KQYaF9nt87e8Zr5FeAj0ajhzeRxcbwL/+4iewGeb2sB16khxmf8Uh/f4knJVp9qLrJQ0TSx3B2/qd+SLp3nsyPd4DNIW6viUVv+ncs/dSmkzsA3NbsAc1Xc+cLaCPv9a6yyS2cp5hZ1JpJ6aobdhXv5Ik94WJNaZ6/ijcgFVp76wFNSkpgppBwz7SE1z7aOVWxvVPRswejClHa/7Ip2hJLL54xnl6+sVOSq893bXTkrzi2uevfq6ru+H5algmfuUd0wWWB9F808+NLdfsAnH5UIg3eDpGdMIhc6J8Z3wh/jyDEpbKYKuG+zuIS22aLmlsJaNR5VNrxMNPf0C3NAMOvlRRtzB6gUfh1cTi4hv/qM9XLY/bJ7SrwUp7rbPseT5J3KLrzcz8+6kxSS3D6X7CzjeTrGSrTihkLx5cYyEoLRdOfOwfC7RdgnRZPYbB6dpd98OEBzPTj3QX3hdJbWaybirWL0jBJ93HcvWjUliKtCYk+vrEiIslneSMfTBa+37V7pfjsNM4OY5r1rvPJJ+YO9mNTu+lUqT86li5+J7CByc6B1HYh/N7S1VE1qt08RZ/qVL242PTzzNKu411BziW91JNFIruZ53831hwz0YbUOgyK3bL65R6r6fLRPxSC86Pedx0L5rCXOhWS3+3OjLkYr2B4PabtvH6CEtLdG7myX40zJS550SaTjnZNnH9N5oK2WWvOER70kFS/xiUmEbYIESnvE5Vkxk4OIAwVjQZxvLZGZftfW+eYgvynjDhHF1IgXRVelTWTaxpqIdXWz3c//JPgmkXaftrVvYsf5YNvb/qYW84qTofrMNJc7oSDXenmAif/uT9zTm0KXbbKiNBrqv7s9rruSMvPQdEvTWr2p6zsJsQD/AsC/TvxwsSKkP3RagZuSUexqd41Q1IbvmfCGVxJThQ+3k2OWCaj8fhZtI9kMFV1q8wSfJwzdshnmykjzMsmkZOlWfb+/k+Zumf4ycYpnV+FHIN3kt92KCFKeKtuKm2rG7RzSQ3l1o+0cpCHUwRI91LVVI+UO7trBjYWcSNHlTxfuncxTx+OKQZluqCycO5ETihnx/Ks7Wcj+R51JhQtXP30cwljMGX9wxsZ6pzV4yT69hJr2Eq8x88aWyo+46Dts1puSopvKLXHM6jj1X92fiNHzE8l1vHl5fs5iKfY2n1dnz8l8RprXXJ9yH7fZuSk+0J2Jr+xK94slrN8rX9SKjR9KB9m0VXTrySRXuTxofRvK20g9Bx1yeK0ajbjFL9CdMuzfUrDy/Bhmg49/10PonUY91UOPquyg+J1pfVt8kj5Ojw/402uRQi/ozOLVfCOdb16KybCjTF838LLUpMyQSXuwIKSb45t2ms5GRYD3C8W4K9ZMSJ/WsgNGtiqv7PlCfcsAjchA17udr8wqz7WSzNwTLN1pIOJxMINKOmEHGE9eO9kIeAbJu6DNIcfS27x/rYBFWL9XQMX+YJ3uqyxvthbJHPmqs4rNzBBZ/p77bxuefDsbVZnYfZ/0quXApK3vA+Gr30yea8SW7rvsiU6PPhJwysttvXvB2Nj8Xgwt9dkzRh6meRM/p1ZK3sxufPv8pE+znjeOSV+I50PZl4CXrLU6DT/EHZ0CrAxmsrrXpi2ejOktq2d3ZrxX7Pr5JklqXrEryO+y9akXd04QG6wLzl1sqPD+5o97+7vj6EnWrj8elhZvlXLtX/3r8aFWcjJqxSZ7sGL69+N5YnB5VKYk/fv6ismWNWRCLdNj7Ffw1vSnE+eWLnrY+bzFqq1w/F7Qyzmcih3x05WFX9JWs5/QeDx6cyKQhjG34Iqu7K3lTm4F/agIox3ML2n2/cEAs/c8T92LOdyOBsLGvltPSFczAykJh6YwioIYY5+WzGpdHuF07mRN6dn/XmYRuqdfZ9tfeHXlNv5sko5R/Q3Gt3MkRls9rZteP7W4yqlRy6dOvHR+bCopGZ93Pa4b5esjnnm/1+F8/NcgZtb1V9p3uGIq5ZcUXs1ejTPhprzDf4ZWwHC13M1HdCoii1Po4Y/5J1fCVgsOnO5pMWGG09FHrp68ubiQS/lG+3GBVNML7x4X6vq2s5yLtjHt4nJGajm6Xz5FZVUZdXDaeKNImZvVvs17aH+z5l7L7VlMmBNObCGLC7Z8lZOeklnPmjL46t3lyN67j+76/8zKl1buJCFuHqqhTXDliatT5/HV+3T648szlj23UNgZofKVjvP3q89/+5kZHWVS4sMRI16IVxI5zsvI1pDvYhsa3RAjVpmpp7Eec13ctF00aDa35Trjk/XKuAn2d57DzvxRcWWW78Me3HNgaJvuH3HF9d1t6nNS36sXnb5b/bZD/emlQaykFrXv40IX3maQ+Nbh6rIyfie3umfRM5sW6/Bf7PK/1I+HgaHDmZn1hzPG/T25HQfdJIcDGODVpFRbHXs70VTXfXuS4pG8xdRt+pOJ4tpjtOZ57429RR9LDBaYJlUwFIjmD008JOk61xL28cBnKi+2KKtbPHNS+90jSUtRp6AyZML7y7Z3xofdhsBzdXNGVqUsC934VDu6+MRki8a2v1QiPFkmqZPCnlSECjJ/aP1ytVtUU+MzecbL0hOg2jZW4QZK7EOGcekYk3HUolgt8VDp/eiv8QNKfNd/dXGKN/8rerbx7mLRi2lqyfmAGmnPOjvXGk2Nb+0fUQE/bihbGL5ppua+IM2rT3yXgzmwPT8i+o+nF8gnlgJrSfWnKPEVjuzDJ/0NS9LmG87xvmo3wjW2Wvxhv6bGDYfhP5/2Hh7sL3+Y+jz4wUh2nuOFULn7/gESN8CyR79dY2BjX5v+rSc4M8DQjfLUAebYYRPcOnxiOfmY+pbGkiJmYjk7NRnfncXPoHpTYe4prOXGMd/v3xS9NdZCX6VU552UunnmU8XYj/tU4W3EflHY1pQpZ0XSpFcBlYpI606wNAkVfZLMx7TIM1ktcsrVDYEPGTBlJBgvk1z63NJxmk1owb/r9SRjGiar1Jvnvc3OTSs382ov38V5Y2Ffy3ZHh6qT4X3XrPMStGz4pD3Ppbj1dU/8TW6P8ccVcnqWQsk7XK43bB0/CGJ275u5xTsQeWY/ZI7Zc8YW2VFbp5tLmU/lI+ouqMS6EcMuPRtJIhVjx+Ak8XRxQ3hOV1uitC6uIlDrErbOt+bGDT1DDOlfkxQKl4k3fAp4NKYKKK5K/CwSjCX09yFyonqCR/zI4ufnCeqgmgoKaryYCyHll1eLISwJfjrFErTJyPpVAM/stcDE04DefJu5FNLWZSP7PR0yhhTRvvsmF04zGq3vfzyBl/ue3s+xs4jjqfik3Nmm8OrIs75RriQEcu8NDPZCsY1/TrqO8o7fqnSuvrAzjTk90ZP+wLAaknlQWcZtKaeeWxmic8LP4rgYZBXJxaC+l7FC3x428yRcNf5dLHtiu1RVxtfSqx0DEZ1ESmuvZE+brcnjx7blX6SO16PY5Lzqj38fV9HqFaNDqoTPkBDgn3CnOJG7qtbTG+dTnzDndorepfVmBumCHkXxK/Hr3P7CJLMxIvF1XmGv95YHaksOxPXjno6nNYVWqi1Uj++xxI15EA6mnLqleSkquzANm3SWuGAJxVDXUZMpu3SnMWFeq8wNh/nEbCGWjBieCJ7eHR/eidC0HEGkkAHbZK0rj/ZV9TyPd8HYdKtyuvXrUDMPUkoh5xXrArF2y480VlPa+LVPFS/K3DpNP009YEwnasLQdWnI7ql3yvbJl5yN+GdWO8LOkLBr2Xs51VNeS5v2LJJ+G8LeVw3nzM62r8iWv+G1GC94zeSpG3wGh+Sh8MbjRlyRjcihXb1bnmPParGjiPku5kku8EJgye1BayAnKlC/cLpRD+r6bZhLufTiCfmn1yribN4QdpvkcfK26X84JmNLds1T50IdXzihUBZ2SLQNFhB1XyzJGm+KQV0sZ9zAE6ab4OEzF7VR/zjy6MtZ3Rq3oYnUZhqBa5IG7r7fb3JlTPQmdfMNNYbkxT8vX736aVVqbqw3pwnFvHtnfUBeQbjzw/2XgeKRp4ifbIOR+cXB7epQ6jz2EkU3iapP4rPG37tKN9MzLlCyMb0KdGTcf/f0xdWtfr63W/rRhSPkdzf3M3rWhjMoOcn1L1SpBjEl1ToW5+zsUB1ghflZfWnaX/3Xzys5f/nq8J++sXQKwt7/46//dnvT3/X/f77DeilwesdgYGAvuNNp//VXIuY53NzDZuD+TojZwBo8pLRVkPNfMxL/zwo71rGOdaxjHetYxzrWsY51rGMd61jHOtaxjnWsYx3rWMc61rGOdaxjHetYxzrWsY51rGMd61jHOtaxjnWsYx3rWMc61rGOdaxjHetYxzrWsY51rGMd61jHOtaxjnWsYx3rWMc61rGOdaxjHetYxzrWsY71X/V/AA== + 7bt1WFRb//dPd3cODUp3CSykRVJCpTsEREkBFSUEFBBQpAQlBQRpRAT2IqW7G0WUkFJUVOAZ7nO8f+c597kvvs/1/f3Je649Lz5r1uyVs/Z6z2wwMDEwMA7QOuShSLDQT+fPubhe9lT19PDwvCzIburo5e3qeVlRRlhMQlhcTEJSFv2HqKiYILuqr7uPr5ej4mVHXx8vW3dBdgNfO3dX+7OOAcaebo6XFaWkxMVlxRzlZOxlpKSkJERxD0uh/tfJhTUdPT0cfbwChFW8HK/goNPx/f4oh8jWy97F1c9RwsGD0POK4+XLvl523jgOtj62h5kICAiwDqtIwYeBIY7mg1/EJITY6D/ID5+ojDAwsH4EY2HgGf3RnJ8HWBg0fzZNtclzkz+bQCN9/NlgSy+/9In9Ivlf6Nd7z/3xujjGLQzlp7x/BBSHpzus7uHZWsn/82yMlCVWhsTDlMg+BkUoJuemNlMA/eHZYv7MS4H1Z0Y89JGJ8Xdtgv9I+iMd+XtKLvqIVomCXwPV4VEMPpC7pM19NC1/qVw2rlM7knU5yx/2xI9m6rQE76/7qkdSnunax6QulSM5eb6uUAL/aAYmYnj0qZw+kkxDaiJuN5WPpA8H1TtSH3Akyx+nOquvKh7JbXqutet2CkdS9MHzK5UT8kfyCpnkzqqB3JF8EVUXwNUucyTXcdT3zYD0kRS81ROSUC15JN1/muB3CkkcyUK/2XuYuWJHcmXLiUKORfRInpucPbnAK3Qk+/s3xA1o+Y+k3hsMBQSb70j+0W7uI/lHu7mOpHYlp176PPuRjDNxfsGQwXwk/1gXaI8kpbVpbkEJ2ZF8P70bFROMcyTzW9u1tIe/IUeRuLn/Ae3z90fyz6Xw1lE8XGdf+lCgqhOsQSx3TaF+sxWCt7Yt2RCXifBECUbbv0hGLoHIxwzk5QgLhfWTszXPkCWP5JOnTV8jXz7lXW+OLkPG6TfNn+s1IcwatunOii+RjeB7QWrbbQjTRV4mxvU6hKIp9FN9SDdiszya+Xy+EdGjiMTMIxxARmr7zhlrtyI6/UbI2sAQIk4kgIVX2Y4EKn9dFE8dRV6r0NyArN2I77Vn57ztJpCntAz+tyP6kIWeklJr8hkkTEIAtYgziDAqbhByWM0jpPkYgqQaw8i9d/b7kZJvkfqV7Di5iFFEPtEQZ5FoEfn6+EyOY/s4UrIdOyqy8B5pe5T4KYZwCinHVti3Jf+I4CWei0msnkFsOqNe31RcQcTTiFe7xOaR2AdG2iFuawhv440UzcgFxOzFlJ5byjoiRilg8nr2LfI41VIk3X4TKZ+b3eKRWkRYtD++zq7YQpRnVe6UDbxHtAqXriZhf0bef9edEbn8AbEQAQvXjL4ghLXJ8xlEy4j+2C9B7ewdhHfCv3A/bwX5qJAyQvr5KyJwPumEoeoaEpIldXNA5TsiOlKdlz33CWlqLQ2NSNhFWMrpJj4GbSClhpHnxN/+QOqx7VQoozcRs9iQK8Niv5DrHnabJ822EIXPU02et/cQnCdJ6sonthHWC1K0xAP7SHR/d6rp120kbftrjz4FBpzpkE661PIZaRVxL6CvwYCcA3s0NxO+INdcr3bOWGPCjegg1AObHcQlULwzCx8L/uSs/PBc+Cty4d7nDucSLIj/aq205ddXJML7Sr7AeWx47uS83ELnN8RrnPLr+j421JoQKcZO+Y5cMTHgK8/DgYs2vYbCzrvIlcmLL3z1cOF3OHTJXuoHctXaXkruKy4k4ZgITcb+iXivyVDtpePB5IvqlOMDP5E35tVljer4EBnzPsf99Bdyk/Ln7YhP+LA7LfJO8OU9ZL6PYEYvkQBifJDsXFXYR9Ri6WTpFAmhtPgC6QXiA8TY5BPr3CIhTMDhsR2ZOEDYgk4vF0QTwaTbUVvixhiQ+2r7vJ8kMdRraekIf40Bv1Ns02lME8O2mAT2RU5M2F3KrEsbRgKVztv4q9zFhJ4/PjQuCZBCv2dQp2gLE0ZHmYTXDpFCc4O34ZwXsWDy2KBXXBAZZGB23MyFWNDc7tS+Mxc53BTxYpc5gQ3ZPmVHgS5y2KYWbNB+HxvqTgZdjJajgBXZdBrO37ChZgtNQEAMBZT2oUqiscaBsTKhhU4LFJBUXyi9vw0HRj79KWUkRQkzH5iYpgnjwhBCn0YQRQmlx2+QOz3ChSIuX/MEZihh1J2KILCPC7dTVU/SiVHBD33nE/ic8CCf6UWz/TAqWPO9cZ+1Fw9W+ydtvR2nglhXumc5pPGhWspI5BtBaqj7YbSBJwMf8nMo3Mm/RQ3Ji29TyeARQPW4ttWwYWpIwe1z3uQyAYwJuF9idoIG+vRXPb45SgAtP1APnbhOA+Mk7RTKlQihsEny1699NLA4mWz6fR4hjNIcD6jnooVhlTyjXOREsGcxp++aPy186sp0xsWfCNoYs68KdNHCHxJK91/OEUF3mXH8PhQdfHDv0XMCLWJ4jSmO28uLDgq+W39zsZQY7l4JU8Fto4N47UG1RQwkcCWHxOAxIz28aCVez3ybBJoy/2j+5U4P6Vo57K2WSSB/qBLNZUgPhVwEsvoMSeHBSojDHDUDVCOWWlCuJYVKaqh4W2cGWLVy4dU8Jxlc6nq8oFfLAHtWc9vn75LBa0HRTo9JGeHsNPOB72cy+E56HbPNhhHeDQQie+bkUG9bP32jghHKMthbh7WQw/uvuPR38Jigslhqy006CohxPvcWphkTXB4pkurXpoCxV1AJn4uYoLuIhSdXMAW8qtYOJw6YYH6okUJoBQU0YfDaQM4xw3dj2oTvPlDAuDydU6m5zHCM966rPgslBGshd5y+M0Pci/kD7QaU0DxPZuXEWRZoaPJu1CicEnrNirQvpLNAGaT+0fYrSniX7kRe6iYLRJ1MNo1fp4SPu+33z6iywicYVAOqXFSQxqA7bSuRFZ79/IaI9AIV1DhP/TLhIyvMuO0SvRFNBUXJwHORUyi4LUhjv95IBZlbLz3pjkFBjXFE7tNXKtggEOTuOI+CaU/9HAnQ86gG413lL3E2GHdGhU/VlhrW870LTAhng5ylayMZj6hh0ekHBcLjbJCJXGKeo5sa9hZzuDvSskOqywErOZg0UKFy4GW1Ejv0ajU30Jehge76+xE0LuxQImrUV9iDBpYv044Gx7ND1dsnqNWzaSAjrX/Ct1p2SEzyUebBBA18toNYU06yQ85K/yFdLFo4IUMlIL7LDuG+5HM+AVr4Ygxb+iIDB3q+NduyG9PCldbX+OEyHFDqZk+B9A1amKrQfavClAPq9RCcdcmjhY7SY7w33DhgZVF49WwjLXyV2/9D8xYHVI3NO2M7QwtFrkIn6kQOmECK7bbxnRZivuZ/PVvAAWOfc1tE0tBBu3nzswUNHJBlotNCQJQO+iTnck3McEAv1paZJxfpYGTDZRX8PQ44nPMMUyCUDu74JFmJsXDCuw6fTnUW0cF08leCJqc4oQaInw0cpYOjIWMjV8w4IVODWbo8Bj1kf1NIshrKCecoqbYWZeihbmtPu2kxJ3xIf5Oj0JMeBkcz5peMcsKA+oKGsGf0cLbvZv72ASe8BXVtr8zRQ4XNikC2k1wwY8b+oRs9A0yhWNbROccF634EvHHSZ4BfSdc37YK44IYY1r2rEQzQv9Onyi6HC1Z167RHIQzQT/AsjV4PF7y16NRZ+o0BUo1K+PF/5YL88tpLn0QYYWkwyzgeGzccuy+EJeDCCNeu0CsOa3JDR65JmZtPGSFtRBBe0hVu2GW9cHNtnBE+PSdRaJLCDXVO/SC4SckEv5h9n6Bu4obPREqpZbWZ4HqlEeb7d9zw8oZ1iG4AExzl7B2vwuWBsnEnx2/mM8GJj+tXI/l4oDpGKX7fGBO8kyloZXmGB5ZP4l0H+MxwNlQHJebGA9faRyi7pZlh26czUmURPPCy4I/BKStmaK2n6C+awwOzqVDRB3eY4fmrDjTFkAcSnqH6JlnCDI0nRCY4Z3hg8svGFr8xZnjy3oWzMbs8cA+V9bH+gBl+f9s1Sk7OCyOTkrlPoVjgA2uD9/e4eeF0jYPnawUWmBeqc2tfjhf6Fg9My5uzQB8eo0YXfV74iIlpviaABW6bWe00O/DCi9mdxkLJLPB68CROgh8vTPRZ1o8vY4EqJxQzTCJ5oaZlQN56J/r8T2bmGFN5oe0bj1W9RRboUm8p0/qcF56KsnmUvMcCDdrv6XrU80Lv18Xcc3Ss8J48642DYKzfe8R/m/r3pP9zU19M+g+mPuZ/Yerj0cerQoN1w0Rp5aM4YD5UknlwNJeyUiZ4gmWOpM/zrfhUPtkj6ZTp7nFv42hqyMzKec7LHUnuHn08owH5Ixm9lzO3F37qSF5vn2n13D+ab7+LP2GqUDiSTbE5bvvZikfyKTed7NuHSkfyVm0ETls4OJIi+dc/Gp9SPpJs3lW9bRVHk1xpvVJW8PSRPCDgSyvMOZobQ9a3WVhVjuRcRrJzbOLR7HMd0MUgUz2SiCSRpNedo1lyoMK0uH80n3QGYZj6qx3J+4mVS282jmawzaduORf1IxkwVSgv3n00kbnRR+7sGkdSE7v2ubDN0Rw0D4o2TTyah+vY3xdNJ5mZa7vPeKF1Ri22FooVvg/krwpN4IVCdYa3ynhY4fjLxCGMG7xwRY0rCiXECmfEGhpvOaMX5UQZxyhJVigymXh9z5AXdj/eN/t8ihWaru02iMjyQuNQ5oUxNVaox5jhZIlCl3f/LfNrXVboi8+nfQ+HF34ANLappqzQK5+ksGaFB7p1b8/5WLNC2fqk1aV+HigGrzGccWGFeY3hdF0veCCVp+/3bW9WqCUMukqjeeBpaur38cGskDIiLSXlEg9UmOkh47rHCjGgsOQdLR5IxznzPfsRKzSfwtHy4+WBLDjDvVRZrFAoyeYhwT43VAmOLc4pYYWjy9dan4xwwxeSITSs9ayQjnkx+VQxN7xtKdRyrZMVqm6LRkyGcUPtUDOzqjF0/XBqdwItuKFrVnNn/yIrPBcs+3hUgBua5t2/mvaFFf4Q97ki+ZMLwtudP6RwUFDl+anI+E4uyPhyceQxNQq6dDlbr6RwQb02S6ceThR0uB44LO/KBSvt9fRbxVDQTijmzD1ZLsiECWTrlVFQ1vOOxRA+F6wQfBZwXR8Fw3Qx9cjHOCGz/LQLhhUKDi+wLSvkccK91QsZ6u4oSOJBK27hywnb2m8TaAWioG9iT36FASe0uMw+3hGGgjBfjxJbkBPSrFnT8t5Hwb01YQdtfE4YvniX1DwFBT2KJzTuvuWANW0/Z5yyUVCK03uwuZ4Dfnjv8VSzGAUprkyEgVwOaJHr4D9TgYL1NW8da6I5IIFmmYBNLQryMVxvF/bhgA9PKAv1QRRM1yKmyzbngGQVdqsn36Cg3IU7kFaVA4ZpXJvy7EHBvA0leBrFAauzk5vHR1FQSJGI8hJ6U8s5wjxNhd58u+wIiscNs8PVr1KGLMsoGDJp3VdVwg7ltAIvf95CQa32Bf7pu+zQKXhz4NEPFPxRIvfj1UV2qI2KNWXGY4MGUu+ZU06ww88sIkuqlGzw1ykM4t11Nijy5bUkKQsbRFnerOyKZoPdZyuwfXnZ4NeNsNgcfjY43zb9IFCUDfaF3HO50Y6CX07jcd+SZ4PWEUzeFk4oeHPe1pdLjQ0+HVe9qYgeZ2aswHR7XTYYzSdzAYWeZ4w62RTKpmzQjXDk4x5ghcKze79qrNig9qpXwMwMC1S7cmFZzBldvs1r+DqIBV7RXtTT9GSDDlzeeUmMLHAwO91s148N6uQU81x9yQylmbh2tG6ywUvvXAO0TJjhMKoZSxZtPiI4eXvYPjPBK1z2FHzodkyyOex8iWOC6tWs8VUJbLD4grBQuzATPDVQ4vo+GV2evs5OSjcjzCI18X2VwQZVBiasLl1ihN8SRF9K5bBBJyPndnkCRqjDQLJbVsAGFW0dhgjzGGDsEuvV0RdscCRepXxMlQEGSZUTPqtgg7oP0qayF+ghQYEf+ckaNnhAvHvLI5geqtWmxNjVscGyMFNeGVZ6eKurjvgxZIPpPjWa+7V00C1QCSumhQ2uYWrvwQt0cDb20RmFdjZoKtoUdeMrLSx/dS+hrIsNVpRezZV5SAtPD95ZWO9lgxRiHI1bYrSwf+W2qOAgG7TBJnAvQJtyhq2QcLERNthuFBlmjTZTL9ky3bDRZqw8vPYZLTEN/FbYI507yQbPhaEMu/OpIVY4SwnTDBvcCgn5EaJBDcms3fji5tiguh4Dv/wiFXwfMa0zscAGwZe0jO3bVHD15aPi3XdskHm9MLWIjQo2hw+9/vKeDSrYfRByqaeEpjjOOT0f2KDVKFcjlzklXAn5EZ23zAZbWmJW579TQNnyRX3LVXT/J2e9fPKIArY4tqB21thgT6zOprUkBVQPtd66gp6XkwlX7qjkkEMzjLNhQxvo8gi0BFvnyODlG9L00lvo8cDNxtNmJoO0Zl6XgrfZYKDIxyv9pqSw7Km5fPlnNihpoBR3PoEE3snmwx/4gm7fhZiY2R5iiLd/i3p2hw2+sJ2+60hIDO9cmGRb/coGPc5xO62pEcESoka3pW9sMOigScPrFiEUycaXH/yOjqe+mX59TQDf/mKKK91F96+I2Zz/N3w4mhggE/qDDdKG1TnviuPDLuHxWZOfbLDEQMfl2mU8iIUfMsbyiw3Gz2Se+FKAC58o4q5OoOM4r0ky9/c4ME+W8lnsHhv8XLWRP8eOA7+QcNso7KPHfxdH1cgCG6osSDOuoGPW1a9xTUlYcCzWoC/ugA1yx79hExrChJbvglYZMNjhddnMnAQyTPiNuInHGR3vt21sbJ/BgNd9FaIq0DHm8+t+eUQHCMZc9doBOrZ4hJ1qcXsP8YxyDNDGZIcfX1Cv4n//iVAO4GU9QMcejo8V8i//QOCL4IYpdOwSf99P8f13JMHFnJQLix061IeUDpp/Q+w5ZSwuoeMRq/lBi8Ed5HyN70wpOr6RpvJmSusLMiJR1PcVHcsm3Y/WR7aR7isr5xWw2eGVKA/5GqktZBbBDr2NjpPff6Cimt1ACmmo12rRsfBMmUuOwSdkTPUbzRd0vLR0M5aveQVZX3bGEcJhh1xff9SnSX1EsBf2qh3R8ZcTq/qY+e+RpXZD5gx0vBQQZWJ0+x0y9Ox8Rg86NjWQ+JlqtoDoKvcv/0LHtlP5tGXOs8iUjcJXAVx2WFVNd5WBaRL5lVxRYoaOmR5iiXl0jyCoAyOcKHTsU1RXd/PuIPI0MpCuCB0Xii0pEsf3IlvEE+u96DhKMOwRNmk7EpKfGbSFjr1/HdxfiWxEMF5j9VDjscM0yYvqgYTViNrPvWIpdHyNPF948nweolRWv2aIjg38oqTfxRkhVyIsZzzQsWQ1z8woKheIbj2biELH0/jkHmc8qsDCID91LjqWljGOf8QDgdlBoDhExyHkY+7/ZPrqCf7npi+c4B9Mn+n/wvSZoY+r6wONBxsG8CgGKNfH/Ko/mn6VqrkHt4/mBiGNCRQ/mi0s1uF2BfpH0kB65lx9m96RnNY3Z2dY1D2SLq4Tn7wwj+aXkPOve1A6R/LW45HIEwpnjyRJtZFp6EXtI5ncN8A163fmSHIv62/JPtQ6kqVYvQ0PyjSPZBIxbqrvjsaRjKjO3f1qejRvZZSf2JtVP5Kxf95RcBQPPw9///BNLQRGCwlC4Mv65MqNCTa4uz1EnSUOQWRGjaxfLvpitNYlQiwLgY1wJLPeVTY4fTqB+rIiBOay4lu8iuiLl4BwiLYKBBQddeHbBGywVIedj00LghfMV32NOw83XaZm4roQXK/xNcq+h4KczrfTawwh4JlPJV3WQUHReqHb0SYQYDXM2PKQoeCi+tvMlxcgWAslibbqY4X8irxCHywgWHCaZ7hynRXeoFKU2LSG4FT2N7brJ1lhtLOjcactBG4fIlWiR1kgrxGnmr8dur6JXiRFoSyQ2Wq8dQv9+kuruYF5URbYuKFpbISOo0lWuB73MsMhuVZJXPT5JsWwcX3dmeHOuFs2jjkEhfQMvn5EzHDykyBKD10/ukh1jOx8JviRen5kFt2eD8lFHLsaTDApmQouq0HwvbyuXm+AEZosDM/5yEHgfdrx5bw5IywUyFQPFIDgRlH6/vMl9KbLAfVpkwkCD+i3mHOVAWL4PR3uxIdAVp09quEXPSQiV792ZhkBWJ0dQuMR9PD6u3NvmusRkI+oxlNR00NJ40LD5WgE1OHdyrbJoIOPVHhePzJFQKFh4k7FSTroaxxqWcCEzk/jx49RRQuNnRYOXs82gLwxU2sdZVpYlsY5JZHeACqpsP3ju2jg+RszVesmDeDFlyCqZlMaaOFustVBgM6fplI6ukANve4OGBdX1QOvT1yX2typYWS+bk2cXT1QArjc1d+oYNlOj+p1wnowfQrzx+0QKuipmJZlUFgHFiXXbLlIqaBgmAIHkXodmI5Vpk1NooRuwTEa8ROvgeTHYtVlDkpYGDjrxnD5Nbh3mtlLtogCuvLPyXj8qgWnUzOZbaQpYKCyOkFbWC3g6//YOHyLHH5LYZftwKsFXi/DaV8+JINmq99weUJegZBY9yCXfFJYr9A3dGuvBiQ4Gi0w1pFAvDtZQMqrBjgLhl1M7SOG+cHeKazzL8FtfszQr2+JYNGQzI6y5ktQ7oUyUP5KCNlfhG6vPasG2jeVeuMICeGDyL6NZIJq8DbKSmeBhQD6LmfF9tihL2YXbgfJiuLDkLtxlQPVlYCgj5fvhSoeVFJ2eMeDWwkwgli4rM7jwmRNmfv6ehWA4rKHvI0bDtzWIzoVkFQOOGwbDO2CseHKs2n7a1NlQDvtUlj1Ayzoa5lrO8RUBhbMCBp98jHhGY3PMVSmpaDlZYZFWT0GnPr5pF+cuQS04T91XM87QLjdLoYr3y0G2E+xqAIH9xDSa6KPZraeg2q6NAmGg5/I5uSY6ei5QnD99eOVWcEfyGWS03FFxflA5czG5oD5dyQvQkeqGusZaHrNTj597yuS9zlTxvhpLvDGCXjcQrSDWFovB3yWywGViraeHnc/I08wAyTe9GWBM68D1TuJtpEWFuysTdtMsG1oJtRybxO5pY0Vpr3wBBQO4gu7Ma0jCqPlUlje6SD/REdDR+IqMs7CUzdwkAqURsd2ByiXEU+dvMgfEcngG+VwjXnsEuI/f1+yj/gR0HyAuc1LvIjszizkjdx7AEp7Iwk/RywgNNl3nByexQPBrLYwdpU5pOnZ/aGo2/fBq0idHXOfKQSHzuqLTuk9YPy0KVUpbwwppe5qnZiKABi6WtqzY0PI6IJu802cMMC0wjjjQNCPYIw63y7ovwVCSWqsVKs7EOXKL/4ZUkHgR9xnOWmzZqR1crBHrt0HqKfj9hfuvUJu3xfYOV/sDuQpKdcZAguRv9/BIOur4vfXzUzet1aGw3vVKPD+3KD89V41S6z/+Q6HB+svJzjU4X14ZP+LHQ4Fxn+/V23rCVuDDKPyv0mFM5lId1Xq3+w9qXglwZDn33x8M9q3xIz2b8T9N/8s8tbfeVh/m0/loYyn2pEKqW7eT/LtYI+vLpPyVDvoyFA+4IlvQzRatK7QJ7SBtarWNQ35LlBbc2bp9EQLotA7QKw60QIqSXw7qU70gpthBASNpo3IjOfkZoNpI+i7UrjStzsAGhuf0eMxI8jb6XSed+iV0WI5TAXz0hA45ZMAyB+9RB7kUqZrPXoJ4hv8sBn5R0HY1PefkXkViNNcxKRbXgW4mETy/mfAGCAyf8/qXFSAXIuqK7ldVABSMO1Qg0QToNPhG27u2xyEZHJRI/ZtDsAUuhtFfmMCPDyb08xWkopIW9pYkJSkguTcn6TftyZAB5LR1RGciGQzz/l6BSeCx9/jn2WRT4Jz8hIM0pXhSIZAubZbZTiIZIs9GJaYBLrOVzszEn0RedllfLuHvkAW/+bPbblJoFZH1/28I15p+XmSocNavBLfpYz2R+j0sgQrtn/aTs9g/s8nWy7mP0w2ov/FZCPB+O+/ofTqK0ZdlVb4N6U/hLmWfVL+N6mdLlydb1T9N//bd6OH9VOIETv/At0pVtayZ13QnWL2Z6ckhO0mVxKlIpIuVWtNtW8bpGTxrKfR6QbFi6V1uwVIUSURMK4rbNhorfMOX5oAcoEkRiF0rxDKiIbKpu8FSvQDngyMRePArGxYTyqtAaEb8GVdJ0xWintwkEbRPgaK8cPDHzu1ID0uuKtcYrcadAouZx3UjwDP9eH150gbAoN2/XAfBCqFNpjdupw6DO4siM8m2nchFyiBspy3WcOFmzzwqf4gMEScmkzLe5Dt6WkpmZRsJcfO8ScyJwaA4Hll+bKDPuS+qNl4+ueUBlkQMV9+0AeYiaef/NNgp/8/DLbjPw02wf9isA8H4r95JWwDnqGdLr1/s1tIWhu//Oy/+d/2rof1+aH1RycUgKWCZHQnJOr/0Qm8nA5BlZj9iMhGuPY1zAQgS3f3fRlmP7i4Nknwqq8PuWeUsplIlwU+peP51vX1gc/7r+Vv7fQi3FZvje+UoK+9cVuKN3Z6wUzh02kF014E78VIoMN0FSDJz1pVN+0FrS6mA9ws3cjJPBefSbxGkC1NJsnK0g3Yq2N+ZAt1Iu7hORal5S1Atd+1X1i4E/TOVfxrRXP6YnHicEX7+kHg6eGK1m+n/OCfrg21xH8OAOZfRjCT+D9HkL7dRvPdX0bw+YnYhsMRdP19gt8jiPfncfixI/xfjOThNWLqxO2s6UleeBQZcdN3gx9z/QdXVJ/NtQTQ/Qe1HrxsZkTegKN4+HMu0xlurFds7PAo6nI2vlvHovgPdnEuN1Rh5YOj6I4uS9yfI0lWzQyxgc202QaJyBneVqzPgpMg6PI93YggC9D0JJK/2o4FlD4s5pZTngR5JeOYmUOXQY1uNz+j4yPw4twPlQTzSZCM+fPJVtkdQMN1btejIRc4L7kzSrRMAC0a1kU/wjCQkyjdf+5WNRivfnunmXwKJNVtYBva3wHmD8Sv749CsEvSq+V3chp0KB4UeZtEAeUZ/B/cN5tB+tuQWY28aWCveOMmbU4k8I20YHS3aQPJ3/HjdzRmAK7A6dZM/VBQhDDvfo3vABNZbWIaNLPAdQRH2zU8DEkX2Fki7HuAkOEU2eKemASpWx632PCuI/sC8mGMp81AHr4gXrnGJBCyQuUqBHgjJX6dV8umkkDA/sfCGttJkER44k3UHWdAEXPvZ4RbHmhjI5mTqJwAWGSzJnnLjkCvK5YmpK0aYAVVb9l1TIKntZ+ycJj9QOz+eqvrJwjSmcI1edKmgOVm8s3qk8EgurE2KzOmGRBWXe/+tDMFGMlJPP2NbwEdbs/+1Ett4E7I/sGY3zQYt6vMS8i9Bs5kmbUJJneAR5JsrCS8M0CTW63/xUwC4u3UJTSilYBwi4/HL6MmwZbWJUyp2PtIhoZsZaCLK5jZJGzYVp8EY0L9gXl895CURTOlLP0UMPEjkRbfahKEDwtVvmvwRagIVgOcqJ8Bp3SnphtpE2DRHRezi8ALuS2NRf+d4CWY6LwxNXx9EiDEInt7r7iQIqnBWQvMRrAr/f39LuEUqCDNSr/Z4wQ6PYWFVlKbQVTK9ps29SmgPpJ8joXfE0y4VQbNe7WB7PhTBVoFU6CI1nwzCtcBaOSqBw887gAtn+4YvFeYBj4nLv4iv5qGvA97Rh3dGYc0PezgMkbvE4wf8ne8CU1GhEZeGp4v9AK4Z3XOJZ2aBL9enFr2Ov0IEaC4yyhWlwq69xX1vc9MgodjGJSb4feQNL3u3ZrSZwCqmxlj+k2APrUQ6VzXCIQ+aKIEUX8Jmj4H59nyTgIeAwWqHBN/REPWTxObqhGAHmmSAq9J4Fvt2LbLaIs4nQy/RJnbDCwfdXDfT5gE3OP+zFnKSkhWzWiHw7U24H9x2Bs1NQkUPSuGznwwRm5xrJCTPOkAtwVqG5+ZTIHXLsMfMreLEK4NqwY8sQjEJdJUjbBpAlS9yCTO63uOOFzdZzJMDwWddHqyIt8mwKuLOJ43rhci59XYCqHoE3Cz1mRydn4CtBu1xN7LzEWsRPNw8LMLQNHXpY2bH8fBlxs1fOwpWQiBDI3Uc+wa8GM32mZofhzIlibHLe6mIFwlSqyn5NDjFSgaXnh+HIRHt29QszxEZl5/s9evbQbvkjg2klnHwdoD4yA7uzgkl9Zc5uX1NiDSd07tJdk4SJkWkn08HIuImzg+M0/pAMO9smIxsuOgJQCfXHawConN/nxm6OQNZMW+0zGHaQI0oZhzay2qECk9ql3vx/fAuHBmdaLYBCDf0PosCyuRB8WaLnR7TwH5m+BNfPkJIISjJmzCWY50MO8FkJ96DjYLfj6ckx4HmwIH05duvUCoiH5KRnPWgFIhh0VRuzGgV89haSr4DNEha96uFWkEJnRYMl9sRsHZiXjp79eykYtvMh3i0PNQzlgJEK6OgJate3N+G0+R9hOKQQnn2kAONuVEdt4I+KjF6G8x9QS5azDG2e7eAfA+uDBbPx0BqSdkl6hbaxEaE6+hYW4f5IHiVOSs+zjIJaVbdrSvRSrK7XxMNO4DRfqOSo4b4yAyTazTkK8WyQ/WPUnOngVYcefISFLGgbW2ySsb15dIy/nnbc7Dz8G5EtVa90p0/eU4c4JIKpG3j2+8zkY79Wt5d4jfvRgF2ndFgjfwSxEnmQmyLrFGIFeb5uJ6awTQ6LP8yGAoQhZcmMmfpDcDhUcSqJ5vw2CEk/XLE8MC5Pxr8aZ2dLtCPy/ZracPg2Ab4SIDqnykDMXM33ypAzS10OM/DhkGlyvuDzDuNCExodYpMgY2iLxQ/IOu4FHgxtXHfXWhCdkuLVOnuZEA2Avr7B5HjYKpAnEvfnQ6+/WmDxPa2cB1sPwL1ZNRQIg38j06sxF5q1RjFeFVDHxTK0RSJkbAwHD2/o8PDYjqtfIbqv41YLj+sWl6/jDQNTnNOSj1GrntdonnrlUj6IxuGwp/OgSeYHp3ETXUID1dSGdnWjO43VHYarA4CAZ+YfgHcr5ESvcvfLVQbgMNsQV0d64MgnUNiI2dUI0wZVre6fbuACuGW4Ha2oNAO4mG6dnAG6S303vNjcwcyeJxn6RiHQbzT1PTlDreIKLe5yu/sD8APUuu5xnYh4FLq/Pdsp43SID3D7rghWzwZEmI4QHXMBBecR0YbmtDfrpe5ZkuLAYstue+pt8fAjFl4vxJsy3IavnbaYqqGmBQyWWQ9GAQaF0ui/hV14Q82HjIqCnVCPxb04cFXAeA20HhjZqcRoRmN42g+nYzMFkXFLAb7AdlqNbyH6SNiCbGp5Hb6OuXm66RjvftfsAXpIuX2A0RAb3Ic7bodV5rt7Hb2b4fALmsNZyYTmTf8pRIEaMZIkcbeO5U5SAQIe8lG4vuRApiWswKXz0A4Z3GqbBmECQsoD5r5nQiTvL3yLZCc8BH0/6frW8GgV9gqi/RbAeycoDR8lKgBLyPLRw2uTgIaicJA4ZU2xGdIKppx5RX4P3mAwbVoAFA2jQqoDXZigSZtr16ZNwIFG+wk3Dy9wOfn0V6jnotSEv20k0J7mbwIb2wqSmtF8T48BMmyzUjr7GMmp0vtwLj+HFclGcPuNAV1rfli55XC72rWSTtQGSgJc/tcTeIdKlz9rXqQVoV6hUaec8jNqWuZziNBgAn7cWrp016kC+KTM0FGg9BXnDjgb/hAHBIMO68K9eDpIjFDNxezwFtd1SXTqgNgM/BTrFzad2IUX9Mju6TEsBCsvRIfrsfSCvMTiWc7EKetn2Qdfn2CtyQJXySINgPWN3D36zIdCDFtb84qMcbwSmlljY1uV7QA6/ct+BpR1SYfApIeVrAUvvy6jWyHhDysO1kWH8b4r5uru6CagOGqrWj3QldYI7cg8oorxWRzNhepziD9u9vRdQ9dToB0c7s0hxlP6K93v3oYMcYcTr1qjFrsg9oZhc19tH0I+rVO18y0x8CQuyHleGLfUCV2XDjxG4fYho99uGGbi7YyTrLSVzZB+xj1gTWrPoQomQjjKyPJaDKAEdAjbYP1Ni3E9d96kG3q+cu4KkFd3SEXnnF9QBc7MYdl+Uu5FG6jd9gYyN4bz2WdsO2C4hOO94tmupENO3f7BX/agYrNJOWNdKdgFDeGaXa3IHcci6X+CndBmx9XR/2Y3YAbiNHJsLsdqTu4aibjE072GGywpVvfAPqzn5g/+sunltsTulwF5/ye8/8exOe5PSHDSBJfMh3aAN+4H/5lw34/RPVISen8GLzXmIqHe76IXcOZTHau+bguug5ob2r8p/e9Xf+3//2+fu91AZ/2CEWWfbTaWg75KT5hx3C+jMv1l/yj2UJTR5WcuTvlfyt39/8/Bne+l3g70KFVFlW30ozgb/n+2ue34b+tyH/XYnfeX6f4+/5sP5S2d8+8bfv+2vjsf5yjr/ne54urn7YwMS/m9n/1ri/9uhfexYDY+OS1S92gMFOv1qCEviPBmMcoUFWiYz67+8PfvN34/+pc/46Sv93HSKpWsx+oKdVdrJJP/d/dNj/ax1+d/A/de5fZ8n/VYeQwdO8d4TQVpGX5KLFtNLf3/v/WocS0M5/OEA8f75O8buw3wP119lyKKHUu2GHbxD7M6b859H6Zxluhrz7vdD8NnK/P8C/DdXvjelvg3RYmAndn2UcWnC1P4O/WvDF4TE9zeUhSuT9HxZc6BWzxaEFJ/kzr5QHxj9Nkr9b7k3w2zb/trm/LexvK0pqTsGiLv0L6JS5MWK7rICUveCGjwPXq2+On1a6phsreW3stFJr94ASujTwlwP5y/G3tMOeO/yE/FkF2t99+U/9+ftj9vd0iv/S3xFqH7QZzo+CP1j9r/f9a2alphxqGfxRNu2f2X+PNc7vbBMxcoQCEj3Rv1/E4OXjOYF58uRJDB4ebAFBfgHME4IC2Dg4WJgCAjhYAgJ4ONi4hHi4BET4eIQkhATEpESEJBQkxOSUpCQUVGSklLQU5DR0lBS09FSUdAzUVPRMtDSMzHS0TCz0dMysDPQs7EyMbBzMTOycLMwcXKwsnNwoVi59Xj09Az59fX0+Xl6Dkzw8fAY8PIYnDAwMTpw8qauno3NWR0+P96yenhbGyZNYJzExz/Ci59k5fv5zRri4JgTGxsa4RkamxCYmhvyCgrjY6HRcfn4CXGNjAhNi4hOGgoLavGfO8GqfPXsGQ0sLS/PkSXUsHBytk5qamlgaGhpY6uo4aurqajiqqiqq+Ph4qjg4p1XQxFdVVT6Nj08ElJXxiZSVScmIiJSIFBWJlAA4pUBGpkimoEAmf+oUlTwZGRGZouJ5YlNT8vMXLlygISc3Y7x4kebCxYvmjGZmFxlpaGzY2djsONjZ2RjNzdnMLSzkqaipbdltbCytLCxs7dDp1jY21mxWVk6cjo4OjpycnBwODg4c9vYcdvb2FlZsbE5cnJyyctTU1HLy8jKy1NQM0jIy1AwyMqxSDAySUigUg5S0tLgECiWJkpBAcYuLS7GiUJe4XV25XLi53bgvXRLnFhNz5XZxcXbh4hLlFhHhFhUTE3EXFnYXEhZ2c0fHbiIizlxOTufJiYlZcDEwuKaoX/xr1mzi/DFrrk2SDsXIjPiz4G+qFfTfYbXlZswsql3c+nYjidPx40P3QK/AbeOEIKMPqSt6LIbcturqKe+Nw6amIzec/SO2k6d0UQ/kHRPSJQUEEt1LDhaqJDrS+0x+cQ9/f5lp40qVJL9IIERsJrpUcx8/4HXpXImMDXdlmOa9u+F92P6U82l9MrMYaS/zycq2FBV83glxGBbjsLosiFF55jn2ZAoWv3329bHjmwrPzO/pvPVWhnySOsVtZd/Jr+d3Jvl28i9sthLrTXlPvP7gmF8qk6spkhZ++rOXJJDmLhbCFEQKcDxNe7KGfyg4UZuRhA/QXIqbs19dFnevoB/6Wf4zxGmSlkahiuviVKDfh3GR8QB/lFCShc0Zwl2Ck2JZF1U9un0uCafqrwyyfDrD+8jB1q6Bfve+L0HuDn2ckr+cBwuhXaj39lP3K3m0qrvuzk5kvHly/UZuUj+HNiQ7Ly0ZVbkQnevSfzqnmFzny0ZIHNRr42rELjRZneLxKL3t/OxNSb8P4quRus3gx3OX8bccZ+NZ32RQnj/3xhWu2GO1Pbtx1lMxWizzpHrVaZoAy2uc3D65cN9R1leE2LaDp+P7+SD8dCvLFmkXniZva9H30X7lyXnNsrMUypbvjAyZ2E8XxNNXfUiGcjIkZr1Wv6zyOy1f5pGq0/JOqzEJrRGaNoL2ux+K65aXzF+ETL2heVEPerJ/OhFHl3yaxzbXI+JKL3YJturNBV8D6xTHMZ6Pe19f2rm+UGhCTSIovF31KhGVmqjr8ulrTruwfo5/UFaB6tNlSywzk4Z8V5/Mp3T0JNNkYS8s1CQE1J/WFZfKvVNecccviiYM5x58VL1RpV5KEdPzwpRm3Sk8s0P1goSrnjNfz8B5ruYSB51wh2ifMe7uRKaEhmGKDxLnRIduSteXp8V8/ODKECwaOonqvqXyMMreTneb2q1p+woZp/P1t2xVoIyis9Ws2XB/1OZhCoJEtp0MtVByjFueoFN5WZwUUb1TroQI1DBmv423ozWnv0nqKrJybd6A9WzMq9vPiQtrSjxon8/xRETpEiZNPhQlP307/gXWixFLuNZWuCDc+dZb7WKRWKLqmFLKt3GeCijGo8HZ8utiWLKud5Hm7k92pV9KkSnCrpA5nDm4+Ip9SURqacFwdPAJMfu+0SqVZ45Zow0BKpsHmaTWKIPRfUFToggNk3Yi/fx6mkfsCgNG704/0/j0nox0ITCeKX7/2WO11+KPaYovWazIWU9lKxVdqDkdozZTEvDWN6rJWxn3zA2GueFZQ0bft6juCbmbovxa+zHWEos9UhYZkx+5rzbcUy18ozD7ReSZbnwwtHvj3CD/4+6QP1PVCbcM3RTaB7EvdWnzDdKGMOb4VhBrvIo49UqVN2cfLgbQPpGYOWlV371lqMLRJD4ax9/cZIh8V3iE+pXxSMBTtm3U2d5//jI/EZ1cwLfcZq/MsMvvk2TXb6RHU1OLr9Q//fFpLYykQJtxopiQjuqhePIOa+4W8hrnQUN2v7l/WM19HgkLfxzpti0fpVORQqKxb1S1OhQEonyViQKCBVtJLR1i9squJAvzpvvhTslaRt+tPXF3Ksvu20qWgQPraY5B+qIZeSylJmH+x3IdKKLXm9ogzOyLz2YjO07z+4ODGaewvW2bx2VEOe2yZ92ryMLcioDH/QthC6H7FyxWVG+ftZgPaMY/wKzf8dVywMhYPlwEhxQNY/+1CH76/xbBvihA58eCf+Xlm7LEgGlFlYyPC43N2Qw35x4OxAiZ9+bo9orndnMO8+famxUYu/VU+YzLL167+WRZ3cgqK+vde52qMPoSMs2dnE97bHU9Z2XKfqE0X8yWE5KT7feGSIQEePlTtYCHEk9UcIPreYn2aIXW/N5fasi0E/rozipQjPR525na9Rt0sFhyXdufl6Ew9S0bzeO7vvudc3r1RpNKGu/3iP3dTT2pnKVYGyurGhzn2OcJpeuM/tOfYr6YPFh7pifFQPs6u3X2jtfMrwAfiUYNbyaPi+Nd+HcX2QvwfFsLuE4NMT7jl/r4Fk9KtvpUc5GFiqaJ5e74Tf2WdOk8nx3pBp9B2loVj9ry71z+qUshdQa+qdkFmKvizhfWRtjvX2OVXTpLMbeoM5HUUzPsLtzLF3nCw5rUOnsVb0QusPLUB56SksRMIeWYaQ+pebZ1rGJ7o6JnC0YXprT7ZVe0I5RcPmc8u3xlpSJXne/e7spZcW5x1btXV9/1/bAsFTxzj+qGyQLru2jmwZfu9gM++ahEGLwbJD1jErnQOTG+E/4YR45JYTNVwH2bxSW0zRY1txTWqvGosuFlormnX5gDglkvL9qYO0Cl8OvgcnIJ+dVnrJfD7pfdU+KlONXd9jmeJO9UduHlfn7WnaSQ5Pa5ZGcZz9MxVqIVNxSKLzeWkRCMpjt3DobfLcI+KZrEZvPoLP3mwwGa68G5D+oLp7O0XjMRbxWjZ5To47570aopQVwVEnt6ZUVClM3yRjqeLni9bfdK99tpmBnENO9d45VPyh/sxaR2169SeXIuXfxMZAeRmwOt60D8u6GtpWpSu32KONOvfHGz6eGZp1nFvYaaS3yrI4lGcjXP+26uP2SgD6t1GBS5ZfPNPVLV56N9KgbhRb/vPBbKZy1xLiS73Z8bdTFawfZ4SNt9+wAlpL01cme7HGdKXvKkSyId75w8+5jOA2211JonPOolqXiJT0wibBMkUNojLs+KmRxEHCgYC+J8a4nM9Lu2zjcH+U0Zd4gopka8KLoqbSLTNtZErKub7X7+J8E3ibT7tK19EzvOB9ve9je1mFecDNVnprncCQW51ssDTPx3f+Ke3hS6bJMVpdFQ/93tcd2VlJmHplua1upNXd9JiAX4FwD+deKHixUh/aHTCtyUjGJXu2uEojZ8z4Q3vJKYKny4nRyzTEDl97NoG8lmqOhSmyf4PGHols0wV0aal0kmJUu36vv9nTR3y/SXiVM8uwo/Aukmv+1WRJDyVNlW3FQzbueQHsqrG23nIA2hDpbooa6tGil3cNcObizkRIouf7pw72SeOh5XDMp0Q2Xh3ImcUMyI51/dyUL2P+pMKly4+unjEMZizviDMzbWO63BS/bpJdS0l3iNmTe2VH7ERd9hs96UFN1UboljVsep/+r+RIyen0iu483L83MWS7G3+bw6e07mM9K85vqU+7jNzk3xge5MfGVXul8sYf1e+aJWbPxQOsimraJbTya5yuVB69tQ3kbqOeiQw2vVaMQtfoHulGH/loKV58cwG3z8ux5C7zTqqR56VGUHxe9M69vik/RxenzAn16LFHpBZxav5hvpfPNSTIYdZfq6gZelJmWGTNqDBSHdHN+003Q2KgK8XyjGXbFmQvq0lh0wslV5Zc8X6lsGaEQGut7tfGVWea6VZOaeYOlOAxGPgxlU0gk7wHjy2slGwDNI3gVtDjmW3ub9awUswvq9Air2B+t0X2V5s7VI5shXnVVsZobI8vfcf9vw5NvZqMrE7vukVy0HJm19Hwhf/WbyXCO2dN9lT3R69JGAU15u690Lxsbm92Joqc+eMfIwzZv4ObVS8mZ249vnJ32a9bxxTPpCPB/KvgS8ZK3Vafgh7ugUYGUwk9W9Nm3xZExvWT27M+O9YtfPN0lS84pdQX6XrU+9uHOC2GBdcO5iQ4X3N3/c298dR0+ydv3xsLR4q5Rr/+pfjw+1kpNRKzbZgxXTvx/PE4PLozIl6d/XV0y2rCETapkeY7+Ct6Y/nTi3dNHDzuctVm2F4/eCXs7hVOyIn64s/JK2mv2ExuPRmxOBNIy5BVd0ZW8td3Ir6EdFGO1gfkmz7w8GmL3neepezOF2NBA29t16QrqaGUhJODSFURTEGPu0ZFbr8gincydrSs/+9zKL0D39Otv+wqsrt/Fnk3SM6m8wvp0jMdrqad30+qnFVU6NWj514qXzY1NJyfi863HdKF8f8cz7vQ7n478GMbOuv9K+wxVTKb+k8Gr2apwJN+Ud/jO0Aoar5W4+olMRWZxCD3/MP7kStlpw4HRPiwkznI4+cvXkzcWFXMo32o8LpJpeePe4UNe3neVctI1pF5czUsvR/fIpKqvKqIPTxhtFytys9m3eQ/ubNfdabs9iwpxwYgtZXLDlq5z0lMx61pTBV+8uR/befXTX/2dWvrRyJwlx81ANbYIrT1ydOo+v3qfTH1+esey5hcLOCJWvdJy/X33+28/M6CiTEh+OGPFCvJLIcV5GtoZ8F9vQ6IYYscpMPY31mOvipu2iQbO5LdcZn6xXxk2wv/McduaPiiuzfB/24J4DQ9t0/4grru9uU5+T+l696PTd6rcd6k8vDWIltah9Hxe68DaDxLcOV5eV8Tu51T2Lntm0WIf/Ypf/pX48DAwdzsysP5wx7u/J7TjoJjkcwACvJqXa6tjbiaa67tuTFI/kLaZu059MFNceozXPe2/sLfpYYrDANKmCoUA0f2jiIUnXuZawjwc+U3mxRVnd4pmT2u8eSVqKOgWVIRPeX7a9Mz7sNgSeq5szsiplWejGp9rRxScmWzS2/aUS4ckySZ0U9qQiVJD5Q+uXq92imhqfyTNelp4A1baxCjdQYh8yjEvHmIyjFsVqiYdK70d/jR9Q4rv+q4tTvPlf0bONdxeLXkxTS84H1Eh71tm51mhqfGv/iAr4cUPZwvBNMzX3BWlefeK7HMyB7fkR0X88vUA+sRRYS6o/RYmvcGQfPulvWJI233CO91W7Ea6x1eIP+zU1bjgM//m09/Bgf/nD1OfBD0ay8xwvhMrd9w+QuAGWPfrtGgMb+9r0bz3BmQGGbpSnDjDHDpvg1uETy8nH1Lc0lhQxE8vZqcn47ix+BtWbCnNPYS03jvl+/6borbEW+iqlOu+k1M0znyrGftynCm8j9ovCtqZMOSuSJr0KqFREWneCpUmo6JNkPqZFnslqkVOubgh8yIApI8F4meTS55aO02xCC/5drycZ0zBZpd487212blq5mVd7+S7OGwv7WrY7OlSdDO+7Zp2XoGXDJ+15LsWtr3vib3J7jD+ukNOzFEre4XK9Yev4QRCze9/MLd6ByDP7IXPMnjO2yI7aOt1cynwqH1F3QSXWjRh26dlIEqkYOwYniaeLG8JzutoSpXVxFYFal7B1vjU3bugZYkj/mqRQuEy84VPAozFVQHFV4meRYCyhvw+RE9UTPOJHFj8/T1AH1VRQUOPFXAgpv7xaDGFJ8NMplqBNRtavAnhmrwUmngb05tvMpZC2LhvZ7+mQMaSI9t03uXCa0Wh9/+MJvNz39H6OnUUcT8Un5c42hVdHnvWNciUhkHtvYLAXim38c9J1lHf8VqVz9YWdaczpiZ70B4bVkMyDyjJuSzn13MoQnRN+FsfFIKtILgb1vYwV+vawmSfhqvHvYtkT26WqMr6WXu0YiOgkUlp7JXvabE0eP7Yt/yJ1vB7FJudVf/z7uIpWrxgdUiV8hoQA/4Q7xYncVbWe3jif+oQ5t1P0Lq03M0gX9CiKX4lf5/YXJpmNEYmv8wp7vbc8UFtyIK4f93Q8rSm0Um2henyPJW7Mg3Aw5dQtzUtR2YVp2KSzxAVLKIa6jppM2aU7jQnzWmVuOMwnZguxZMTwRPD07vjwToSm5QgihQzYJmtdebSvqud5vAvGpluV061fh5p5kFIKOa9YF4i1W36ksZrSxq99qnhR5tZp+mnqAWM6UROGrktDdk+9U7ZPvuRsxD+z2hF2hoRdy97LqZ7yWtq0Z5H02xD2vmo4Z3a2fUW2/A2vxXjBayZP3eAzOCQPhTceN+KKbEQO7erd8hx7VosdRcx3MU9ygRcCS24PWgM5UYH6hdONelDXb8NcyqUXT8g/vVYRZ/OGsNskj5O3Tf/DMRlbsmueOhfq+MIJhbKwQ6JtsICo+2JJ1nhTDOpiOeMGnjDdBA+fuaiN+seRR1/O6ta4DU2kNtMIXJM0cPf9fpMrY6I3qZtvqDEkL/55+erVT6tSc2O9OU0o5t076wPyCsKdH+6/DBSPPEX8ZBuMzC8ObleHUuexlyi6SVR9Ep81/t5VupmecYGSjelVoCPj/runL65u9fO93dKPLhwhv7u5n9GzNpxByUmuf6FKNYgpqdaxOGdnh+oAK8zP6kvT/uq/fl7J+ctXh//0jaVTEPb+H3/9t9ub/q7///Md1kuB0zsGAwP7up8Ozl9/JWKew809bAbu74SYDazBQ0pbBTn/NSPx/6ywYx3rWMc61rGOdaxjHetYxzrWsY51rGMd61jHOtaxjnWsYx3rWMc61rGOdaxjHetYxzrWsY51rGMd61jHOtaxjnWsYx3rWMc61rGOdaxjHetYxzrWsY51rGMd61jHOtaxjnWsYx3rWMc61rGOdaxjHetY/1X/Bw== 00000000-0000-0000-0000-000000000000 @@ -70688,8 +70698,9 @@ Besides You can Right click on the component's icon and choose one of three prov - + Allows for customized geometry previews + true true e286f87e-7fc1-43eb-b9a4-a2366f90ae24 Custom Preview @@ -71102,8 +71113,9 @@ Besides You can Right click on the component's icon and choose one of three prov - + Allows for customized geometry previews + true true fd34a320-94b5-40d0-945e-128f98958485 Custom Preview @@ -138318,8 +138330,9 @@ Besides You can Right click on the component's icon and choose one of three prov - + Contains a collection of generic curves + true 506f2123-b521-4a52-9165-68e803a30009 2 Curve @@ -147813,8 +147826,9 @@ Besides You can Right click on the component's icon and choose one of three prov - + Contains a collection of generic curves + true d9dd41ea-65dd-49f2-9ef2-87054b73f6a6 Curve Curve @@ -149578,66 +149592,68 @@ Besides You can Right click on the component's icon and choose one of three prov - 2917 - -1306 - 255 - 155 + 3067 + -941 + 223 + 104 - 3111 - -1228 + 3229 + -889 - + 1 A list of Graphic Plus Shapes, or Curves, Breps, Meshes 4b61386e-a750-49aa-bd3b-f73ac4781ad5 + 1 Shapes / Geometry Shapes / Geometry false - 35bc5113-4418-448f-9167-9200450e67a6 + e367fb22-04e7-4324-a914-8410bbe94d48 1 - 2919 - -1304 - 180 + 3069 + -939 + 148 20 - 3009 - -1294 + 3151 + -929 - + An optional frame for the drawing. If blank, the shapes bounding box will be used 7a2e5a07-1e3c-4ac8-b6ea-b43e40d6917f Boundary Boundary true - 0 + a70c88fb-eb29-4569-a95d-7b398b6e49b6 + 1 - 2919 - -1284 - 180 - 71 + 3069 + -919 + 148 + 20 - 3009 - -1248.5 + 3151 + -909 @@ -149656,14 +149672,14 @@ Besides You can Right click on the component's icon and choose one of three prov - 2919 - -1213 - 180 + 3069 + -899 + 148 20 - 3009 - -1203 + 3151 + -889 @@ -149680,7 +149696,7 @@ Besides You can Right click on the component's icon and choose one of three prov - 1024 + 16384 @@ -149702,14 +149718,14 @@ Besides You can Right click on the component's icon and choose one of three prov - 2919 - -1193 - 180 + 3069 + -879 + 148 20 - 3009 - -1183 + 3151 + -869 @@ -149726,7 +149742,7 @@ Besides You can Right click on the component's icon and choose one of three prov - 1024 + 16384 @@ -149748,14 +149764,14 @@ Besides You can Right click on the component's icon and choose one of three prov - 2919 - -1173 - 180 + 3069 + -859 + 148 20 - 3009 - -1163 + 3151 + -849 @@ -149773,7 +149789,7 @@ Besides You can Right click on the component's icon and choose one of three prov - 0;255;255;255 + 255;255;255;255 @@ -149796,14 +149812,14 @@ Besides You can Right click on the component's icon and choose one of three prov - 3123 - -1304 + 3241 + -939 47 - 75 + 50 - 3146.5 - -1266.25 + 3264.5 + -914 @@ -149822,14 +149838,14 @@ Besides You can Right click on the component's icon and choose one of three prov - 3123 - -1229 + 3241 + -889 47 - 76 + 50 - 3146.5 - -1190.75 + 3264.5 + -864 @@ -149859,40 +149875,39 @@ Note: Right click on the component to save the image or svg - 3209 - -1827 + 3309 + -1823 1024 1068 - 3387 - -1805 + 3487 + -1801 - + 1 A list of Graphic Plus Drawing, Shapes, or Geometry (Curves, Breps, Meshes). 27526542-4370-4706-8fb5-8ff7c27013a2 Drawings / Shapes / Geometry Drawings / Shapes / Geometry false - 25a54f3c-b88d-4ca7-9044-bf3a051d6a90 - 1 + 0 - 3211 - -1825 + 3311 + -1821 164 20 - 3293 - -1815 + 3393 + -1811 @@ -149911,14 +149926,14 @@ Note: Right click on the component to save the image or svg - 3211 - -1805 + 3311 + -1801 164 20 - 3293 - -1795 + 3393 + -1791 @@ -150366,190 +150381,15 @@ Note: Right click on the component to save the image or svg - - 0bb3d234-9097-45db-9998-621639c87d3b - Bounding Box - - - - - Solve oriented geometry bounding boxes. - true - 2354e21f-9d7e-4287-befd-2aa60ed6533d - Bounding Box - Bounding Box - - - - - true - - - - - - 2574 - -1166 - 172 - 61 - - - 2711 - -1135 - - - - - - 1 - Geometry to contain - a2f9dacd-4baa-4afa-a43a-49443afdbc49 - Content - Content - false - d9e30bd1-881c-41b4-84bf-b6204ae7e773 - 1 - - - - - - 2576 - -1164 - 123 - 20 - - - 2637.5 - -1154 - - - - - - - - BoundingBox orientation plane - true - e5f3b86a-4478-4c9d-be1e-719bc9f9681b - Plane - Plane - false - 0 - - - - - - 2576 - -1144 - 123 - 37 - - - 2637.5 - -1125.5 - - - - - - 1 - - - - - 1 - {0} - - - - - - 0 - 0 - 0 - 1 - 0 - 0 - 0 - 1 - 0 - - - - - - - - - - - - Aligned bounding box in world coordinates - 78645ad0-61fd-435d-a56a-f3f03dee0de3 - Box - Box - false - 0 - - - - - - 2723 - -1164 - 21 - 28 - - - 2733.5 - -1149.75 - - - - - - - - Bounding box in orientation plane coordinates - true - 51fc4854-a750-4789-82b6-5b7b8b5182a8 - Box - Box - false - 0 - - - - - - 2723 - -1136 - 21 - 29 - - - 2733.5 - -1121.25 - - - - - - - - - - fca5ad7e-ecac-401d-a357-edda0a251cbc Polar Array - + Create a polar array of geometry. + true bae1800c-05f7-41c1-b77b-8db2b7100022 Polar Array Polar Array @@ -150576,7 +150416,7 @@ Note: Right click on the component to save the image or svg Geometry Geometry true - 17eab43d-f378-464e-94b9-16c6b57b57c3 + 6a637eae-f047-40be-8df7-bcf7942d748a 1 @@ -150804,7 +150644,7 @@ Note: Right click on the component to save the image or svg - + 0bb3d234-9097-45db-9998-621639c87d3b Bounding Box @@ -150827,14 +150667,14 @@ Note: Right click on the component to save the image or svg - 2601 - -1030 + 2559 + -1226 172 61 - 2738 - -999 + 2696 + -1195 @@ -150853,14 +150693,14 @@ Note: Right click on the component to save the image or svg - 2603 - -1028 + 2561 + -1224 123 20 - 2664.5 - -1018 + 2622.5 + -1214 @@ -150880,14 +150720,14 @@ Note: Right click on the component to save the image or svg - 2603 - -1008 + 2561 + -1204 123 37 - 2664.5 - -989.5 + 2622.5 + -1185.5 @@ -150936,14 +150776,14 @@ Note: Right click on the component to save the image or svg - 2750 - -1028 + 2708 + -1224 21 28 - 2760.5 - -1013.75 + 2718.5 + -1209.75 @@ -150963,14 +150803,14 @@ Note: Right click on the component to save the image or svg - 2750 - -1000 + 2708 + -1196 21 29 - 2760.5 - -985.25 + 2718.5 + -1181.25 @@ -150980,7 +150820,7 @@ Note: Right click on the component to save the image or svg - + 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale @@ -150998,14 +150838,14 @@ Note: Right click on the component to save the image or svg - 2838 - -1040 + 2968 + -1392 201 64 - 2975 - -1008 + 3105 + -1360 @@ -151023,14 +150863,14 @@ Note: Right click on the component to save the image or svg - 2840 - -1038 + 2970 + -1390 123 20 - 2901.5 - -1028 + 3031.5 + -1380 @@ -151049,14 +150889,14 @@ Note: Right click on the component to save the image or svg - 2840 - -1018 + 2970 + -1370 123 20 - 2901.5 - -1008 + 3031.5 + -1360 @@ -151100,14 +150940,14 @@ Note: Right click on the component to save the image or svg - 2840 - -998 + 2970 + -1350 123 20 - 2901.5 - -988 + 3031.5 + -1340 @@ -151146,14 +150986,14 @@ Note: Right click on the component to save the image or svg - 2987 - -1038 + 3117 + -1390 50 30 - 3012 - -1023 + 3142 + -1375 @@ -151172,14 +151012,14 @@ Note: Right click on the component to save the image or svg - 2987 - -1008 + 3117 + -1360 50 30 - 3012 - -993 + 3142 + -1345 @@ -151189,16 +151029,15 @@ Note: Right click on the component to save the image or svg - + e9eb1dcf-92f6-4d4d-84ae-96222d60f56b Move - + Translate (move) an object along a vector. - true 4d2d69df-6cda-426e-a8cc-887473580639 Move Move @@ -151351,16 +151190,15 @@ Note: Right click on the component to save the image or svg - + b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate - + Rotate an object in a plane. - true 7a26a586-ff1f-4532-a9b2-292ce4a14a25 Rotate Rotate @@ -151370,13 +151208,13 @@ Note: Right click on the component to save the image or svg 2145 - -669 + -702 226 81 2307 - -628 + -661 @@ -151395,13 +151233,13 @@ Note: Right click on the component to save the image or svg 2147 - -667 + -700 148 20 2229 - -657 + -690 @@ -151422,13 +151260,13 @@ Note: Right click on the component to save the image or svg 2147 - -647 + -680 148 20 2229 - -637 + -670 @@ -151468,13 +151306,13 @@ Note: Right click on the component to save the image or svg 2147 - -627 + -660 148 37 2229 - -608.5 + -641.5 @@ -151524,13 +151362,13 @@ Note: Right click on the component to save the image or svg 2319 - -667 + -700 50 38 2344 - -647.75 + -680.75 @@ -151550,13 +151388,13 @@ Note: Right click on the component to save the image or svg 2319 - -629 + -662 50 39 2344 - -609.25 + -642.25 @@ -151566,7 +151404,7 @@ Note: Right click on the component to save the image or svg - + e9eb1dcf-92f6-4d4d-84ae-96222d60f56b Move @@ -151728,7 +151566,7 @@ Note: Right click on the component to save the image or svg - + 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge @@ -151916,7 +151754,7 @@ Note: Right click on the component to save the image or svg - + 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge @@ -152104,7 +151942,7 @@ Note: Right click on the component to save the image or svg - + db7d83b1-2898-4ef9-9be5-4e94b4e2048d Deconstruct Box @@ -152268,7 +152106,7 @@ Note: Right click on the component to save the image or svg - + 575660b1-8c79-4b8d-9222-7ab4a6ddb359 Rectangle 2Pt @@ -152559,15 +152397,16 @@ Note: Right click on the component to save the image or svg - + 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge - + Merge a bunch of data streams + true 683861b6-a570-40f3-8c56-aa46a0348533 Merge Merge @@ -152719,7 +152558,7 @@ Note: Right click on the component to save the image or svg - + 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge @@ -152850,7 +152689,7 @@ Note: Right click on the component to save the image or svg - + 030b487b-a566-476f-96a4-a0ae2ad283af a48ac930-c378-48dc-84da-26b2af9d8302 @@ -153106,7 +152945,7 @@ Note: Right click on the component to save the image or svg - + 071c3940-a12d-4b77-bb23-42b5d3314a0d Clean Tree @@ -153346,7 +153185,7 @@ Note: Right click on the component to save the image or svg - + 030b487b-a566-476f-96a4-a0ae2ad283af a48ac930-c378-48dc-84da-26b2af9d8302 @@ -153602,7 +153441,7 @@ Note: Right click on the component to save the image or svg - + 071c3940-a12d-4b77-bb23-42b5d3314a0d Clean Tree @@ -153842,7 +153681,7 @@ Note: Right click on the component to save the image or svg - + 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge @@ -153973,7 +153812,7 @@ Note: Right click on the component to save the image or svg - + 030b487b-a566-476f-96a4-a0ae2ad283af a48ac930-c378-48dc-84da-26b2af9d8302 @@ -154229,7 +154068,7 @@ Note: Right click on the component to save the image or svg - + 071c3940-a12d-4b77-bb23-42b5d3314a0d Clean Tree @@ -154469,7 +154308,7 @@ Note: Right click on the component to save the image or svg - + 030b487b-a566-476f-96a4-a0ae2ad283af a48ac930-c378-48dc-84da-26b2af9d8302 @@ -154725,7 +154564,7 @@ Note: Right click on the component to save the image or svg - + 071c3940-a12d-4b77-bb23-42b5d3314a0d Clean Tree @@ -154965,7 +154804,7 @@ Note: Right click on the component to save the image or svg - + 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge @@ -155096,7 +154935,7 @@ Note: Right click on the component to save the image or svg - + 030b487b-a566-476f-96a4-a0ae2ad283af a48ac930-c378-48dc-84da-26b2af9d8302 @@ -155352,7 +155191,7 @@ Note: Right click on the component to save the image or svg - + 071c3940-a12d-4b77-bb23-42b5d3314a0d Clean Tree @@ -155592,7 +155431,7 @@ Note: Right click on the component to save the image or svg - + 030b487b-a566-476f-96a4-a0ae2ad283af a48ac930-c378-48dc-84da-26b2af9d8302 @@ -155848,7 +155687,7 @@ Note: Right click on the component to save the image or svg - + 071c3940-a12d-4b77-bb23-42b5d3314a0d Clean Tree @@ -156088,7 +155927,7 @@ Note: Right click on the component to save the image or svg - + 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge @@ -156219,7 +156058,7 @@ Note: Right click on the component to save the image or svg - + 030b487b-a566-476f-96a4-a0ae2ad283af a48ac930-c378-48dc-84da-26b2af9d8302 @@ -156475,7 +156314,7 @@ Note: Right click on the component to save the image or svg - + 071c3940-a12d-4b77-bb23-42b5d3314a0d Clean Tree @@ -156715,7 +156554,7 @@ Note: Right click on the component to save the image or svg - + 030b487b-a566-476f-96a4-a0ae2ad283af a48ac930-c378-48dc-84da-26b2af9d8302 @@ -156971,7 +156810,7 @@ Note: Right click on the component to save the image or svg - + 071c3940-a12d-4b77-bb23-42b5d3314a0d Clean Tree @@ -157211,15 +157050,16 @@ Note: Right click on the component to save the image or svg - + 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge - + Merge a bunch of data streams + true 8eda1d7f-ad72-44d9-bcae-fb25aaa5e85f Merge Merge @@ -157558,7 +157398,7 @@ Note: Right click on the component to save the image or svg - + 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge @@ -157689,7 +157529,7 @@ Note: Right click on the component to save the image or svg - + 030b487b-a566-476f-96a4-a0ae2ad283af a48ac930-c378-48dc-84da-26b2af9d8302 @@ -157945,7 +157785,7 @@ Note: Right click on the component to save the image or svg - + 071c3940-a12d-4b77-bb23-42b5d3314a0d Clean Tree @@ -158185,7 +158025,7 @@ Note: Right click on the component to save the image or svg - + 030b487b-a566-476f-96a4-a0ae2ad283af a48ac930-c378-48dc-84da-26b2af9d8302 @@ -158441,7 +158281,7 @@ Note: Right click on the component to save the image or svg - + 071c3940-a12d-4b77-bb23-42b5d3314a0d Clean Tree @@ -158681,7 +158521,7 @@ Note: Right click on the component to save the image or svg - + 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge @@ -158812,7 +158652,7 @@ Note: Right click on the component to save the image or svg - + 030b487b-a566-476f-96a4-a0ae2ad283af a48ac930-c378-48dc-84da-26b2af9d8302 @@ -159068,7 +158908,7 @@ Note: Right click on the component to save the image or svg - + 071c3940-a12d-4b77-bb23-42b5d3314a0d Clean Tree @@ -159308,7 +159148,7 @@ Note: Right click on the component to save the image or svg - + 030b487b-a566-476f-96a4-a0ae2ad283af a48ac930-c378-48dc-84da-26b2af9d8302 @@ -159564,7 +159404,7 @@ Note: Right click on the component to save the image or svg - + 071c3940-a12d-4b77-bb23-42b5d3314a0d Clean Tree @@ -159804,7 +159644,7 @@ Note: Right click on the component to save the image or svg - + 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge @@ -159935,7 +159775,7 @@ Note: Right click on the component to save the image or svg - + 030b487b-a566-476f-96a4-a0ae2ad283af a48ac930-c378-48dc-84da-26b2af9d8302 @@ -160191,7 +160031,7 @@ Note: Right click on the component to save the image or svg - + 071c3940-a12d-4b77-bb23-42b5d3314a0d Clean Tree @@ -160431,7 +160271,7 @@ Note: Right click on the component to save the image or svg - + 030b487b-a566-476f-96a4-a0ae2ad283af a48ac930-c378-48dc-84da-26b2af9d8302 @@ -160687,7 +160527,7 @@ Note: Right click on the component to save the image or svg - + 071c3940-a12d-4b77-bb23-42b5d3314a0d Clean Tree @@ -160927,7 +160767,7 @@ Note: Right click on the component to save the image or svg - + 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge @@ -161058,7 +160898,7 @@ Note: Right click on the component to save the image or svg - + 030b487b-a566-476f-96a4-a0ae2ad283af a48ac930-c378-48dc-84da-26b2af9d8302 @@ -161314,7 +161154,7 @@ Note: Right click on the component to save the image or svg - + 071c3940-a12d-4b77-bb23-42b5d3314a0d Clean Tree @@ -161554,7 +161394,7 @@ Note: Right click on the component to save the image or svg - + 030b487b-a566-476f-96a4-a0ae2ad283af a48ac930-c378-48dc-84da-26b2af9d8302 @@ -161810,7 +161650,7 @@ Note: Right click on the component to save the image or svg - + 071c3940-a12d-4b77-bb23-42b5d3314a0d Clean Tree @@ -162050,15 +161890,16 @@ Note: Right click on the component to save the image or svg - + 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge - + Merge a bunch of data streams + true 07638e88-17dd-4fc8-a8e6-1e0e786eebeb Merge Merge @@ -162367,15 +162208,16 @@ Note: Right click on the component to save the image or svg - + 8ec86459-bf01-4409-baee-174d0d2b13d0 Data - + Contains a collection of generic data + true 17eab43d-f378-464e-94b9-16c6b57b57c3 Data Data @@ -162387,14 +162229,14 @@ Note: Right click on the component to save the image or svg - 2187 - -266 + 2235 + -286 50 24 - 2212.784 - -254.7444 + 2260.208 + -274.4081 @@ -162402,7 +162244,7 @@ Note: Right click on the component to save the image or svg - + 8ec86459-bf01-4409-baee-174d0d2b13d0 Data @@ -162423,14 +162265,14 @@ Note: Right click on the component to save the image or svg - 2316 - -808 + 2334 + -836 50 24 - 2349.008 - -796.3932 + 2367.45 + -824.0569 @@ -162438,7 +162280,7 @@ Note: Right click on the component to save the image or svg - + c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group @@ -162471,7 +162313,7 @@ Note: Right click on the component to save the image or svg - + 030b487b-a566-476f-96a4-a0ae2ad283af a48ac930-c378-48dc-84da-26b2af9d8302 @@ -162490,14 +162332,14 @@ Note: Right click on the component to save the image or svg - 2645 - -1356 - 210 + 3077 + -793 + 196 104 - 2809 - -1304 + 3227 + -741 @@ -162515,14 +162357,14 @@ Note: Right click on the component to save the image or svg - 2647 - -1354 - 150 + 3079 + -791 + 136 20 - 2722 - -1344 + 3147 + -781 @@ -162541,14 +162383,14 @@ Note: Right click on the component to save the image or svg - 2647 - -1334 - 150 + 3079 + -771 + 136 20 - 2722 - -1324 + 3147 + -761 @@ -162566,7 +162408,7 @@ Note: Right click on the component to save the image or svg - 255;211;211;211 + 255;186;186;186 @@ -162589,14 +162431,14 @@ Note: Right click on the component to save the image or svg - 2647 - -1314 - 150 + 3079 + -751 + 136 20 - 2722 - -1304 + 3147 + -741 @@ -162613,7 +162455,7 @@ Note: Right click on the component to save the image or svg - 1.599609375 + 4 @@ -162636,14 +162478,14 @@ Note: Right click on the component to save the image or svg - 2647 - -1294 - 150 + 3079 + -731 + 136 20 - 2722 - -1284 + 3147 + -721 @@ -162662,14 +162504,14 @@ Note: Right click on the component to save the image or svg - 2647 - -1274 - 150 + 3079 + -711 + 136 20 - 2722 - -1264 + 3147 + -701 @@ -162709,14 +162551,14 @@ Note: Right click on the component to save the image or svg - 2821 - -1354 + 3239 + -791 32 100 - 2837 - -1304 + 3255 + -741 @@ -162726,7 +162568,7 @@ Note: Right click on the component to save the image or svg - + b6236720-8d88-4289-93c3-ac4c99f9b97b Relay @@ -162747,14 +162589,14 @@ Note: Right click on the component to save the image or svg - 2509 - -1250 + 2365 + -994 40 16 - 2529 - -1242 + 2385 + -986 @@ -162762,15 +162604,16 @@ Note: Right click on the component to save the image or svg - + 8073a420-6bec-49e3-9b18-367f6fd76ac3 Join Curves - + Join as many curves as possible + true 1c5dd4e2-172a-4905-995f-518af6b8556c Join Curves Join Curves @@ -162779,40 +162622,39 @@ Note: Right click on the component to save the image or svg - 2767 - -757 + 2712 + -811 116 44 - 2834 - -735 + 2779 + -789 - + 1 Curves to join 135f12d9-edc0-4264-897c-a1352f10e84b Curves Curves false - 5bad4014-9c60-4551-acad-f7373991da9c - 1 + 0 - 2769 - -755 + 2714 + -809 53 20 - 2795.5 - -745 + 2740.5 + -799 @@ -162831,14 +162673,14 @@ Note: Right click on the component to save the image or svg - 2769 - -735 + 2714 + -789 53 20 - 2795.5 - -725 + 2740.5 + -779 @@ -162878,14 +162720,14 @@ Note: Right click on the component to save the image or svg - 2846 - -755 + 2791 + -809 35 40 - 2863.5 - -735 + 2808.5 + -789 @@ -162895,142 +162737,7 @@ Note: Right click on the component to save the image or svg - - - 5881d944-0281-4fc8-b203-ce6a55dbf2a6 - a48ac930-c378-48dc-84da-26b2af9d8302 - Solid Fill - - - - - Applies a Solid Fill color to a Shape - 7dc4af16-1d8e-437a-9b91-198fcfb49673 - Solid Fill - Solid Fill - - - - - - 2790 - -883 - 162 - 44 - - - 2906 - -861 - - - - - - A Graphic Plus Shape, or a Curve, Brep, Mesh - 9ab09c96-b907-430f-b1d5-a95241fa62d3 - Shape / Geometry - Shape / Geometry - false - f61e0820-a86e-448f-ad30-b5a4455324e7 - 1 - - - - - - 2792 - -881 - 102 - 20 - - - 2843 - -871 - - - - - - - - The solid fill Color - b64e9620-040b-4b2c-ae17-c5d4dc9cb4d3 - Color - Color - true - 0 - - - - - - 2792 - -861 - 102 - 20 - - - 2843 - -851 - - - - - - 1 - - - - - 1 - {0} - - - - - - 255;0;255;255 - - - - - - - - - - - - A Graphic Plus Shape Object - true - 35bc5113-4418-448f-9167-9200450e67a6 - Shape - Shape - false - 0 - - - - - - 2918 - -881 - 32 - 40 - - - 2934 - -861 - - - - - - - - - - + 030b487b-a566-476f-96a4-a0ae2ad283af a48ac930-c378-48dc-84da-26b2af9d8302 @@ -163049,39 +162756,38 @@ Note: Right click on the component to save the image or svg - 2964 - -738 + 3679 + -711 210 104 - 3128 - -686 + 3843 + -659 - + A Graphic Plus Shape, or a Curve, Brep, Mesh a5a5d1ed-914f-49ad-aacf-e987caa2f011 Shape / Geometry Shape / Geometry false - 11b8aed9-fc72-4dcf-ae88-dd6a1fc2e0ba - 1 + 0 - 2966 - -736 + 3681 + -709 150 20 - 3041 - -726 + 3756 + -699 @@ -163100,14 +162806,14 @@ Note: Right click on the component to save the image or svg - 2966 - -716 + 3681 + -689 150 20 - 3041 - -706 + 3756 + -679 @@ -163148,14 +162854,14 @@ Note: Right click on the component to save the image or svg - 2966 - -696 + 3681 + -669 150 20 - 3041 - -686 + 3756 + -659 @@ -163195,14 +162901,14 @@ Note: Right click on the component to save the image or svg - 2966 - -676 + 3681 + -649 150 20 - 3041 - -666 + 3756 + -639 @@ -163221,14 +162927,14 @@ Note: Right click on the component to save the image or svg - 2966 - -656 + 3681 + -629 150 20 - 3041 - -646 + 3756 + -619 @@ -163268,14 +162974,8100 @@ Note: Right click on the component to save the image or svg - 3140 - -736 + 3855 + -709 32 100 - 3156 - -686 + 3871 + -659 + + + + + + + + + + + + db7d83b1-2898-4ef9-9be5-4e94b4e2048d + Deconstruct Box + + + + + Deconstruct a box into its constituent parts. + bfe3c625-133e-43eb-bba2-bed04bc679e3 + Deconstruct Box + Deconstruct Box + + + + + + 2740 + -423 + 77 + 84 + + + 2775 + -381 + + + + + + Base box + 394c39ad-d339-4a69-8419-64291b7549db + Box + Box + false + 6afce9c4-b17b-47d7-b75f-e6ec4a295280 + 1 + + + + + + 2742 + -421 + 21 + 80 + + + 2752.5 + -381 + + + + + + + + Box plane + 7cf04bd2-638e-439d-a486-81882cb7e145 + Plane + Plane + false + 0 + + + + + + 2787 + -421 + 28 + 20 + + + 2801 + -411 + + + + + + + + {x} dimension of box + d22c2f49-ea86-49fb-ad62-1b55a8d38b00 + X + X + false + 0 + + + + + + 2787 + -401 + 28 + 20 + + + 2801 + -391 + + + + + + + + {y} dimension of box + ed2e0d66-3dc3-4a72-86e9-120e54328e2f + Y + Y + false + 0 + + + + + + 2787 + -381 + 28 + 20 + + + 2801 + -371 + + + + + + + + {z} dimension of box + 826941b6-6f7b-4138-90df-9d21f072906d + Z + Z + false + 0 + + + + + + 2787 + -361 + 28 + 20 + + + 2801 + -351 + + + + + + + + + + + + b7798b74-037e-4f0c-8ac7-dc1043d093e0 + Rotate + + + + + Rotate an object in a plane. + true + d80d4513-2a51-4993-9891-d4cce0243fff + Rotate + Rotate + + + + + + 2500 + -1039 + 226 + 81 + + + 2662 + -998 + + + + + + Base geometry + b83320a7-545c-429a-a27a-22fc4971d37a + Geometry + Geometry + true + 5bad4014-9c60-4551-acad-f7373991da9c + 1 + + + + + + 2502 + -1037 + 148 + 20 + + + 2584 + -1027 + + + + + + + + Rotation angle in degrees + 6543a66b-9043-49dc-8062-5c6d1b7435b5 + Angle + Angle + false + 0 + true + + + + + + 2502 + -1017 + 148 + 20 + + + 2584 + -1007 + + + + + + 1 + + + + + 1 + {0} + + + + + 45 + + + + + + + + + + + Rotation plane + df17c062-6ed2-496e-a8b5-d8d570ab9bc2 + Plane + Plane + false + 0 + + + + + + 2502 + -997 + 148 + 37 + + + 2584 + -978.5 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 1 + 0 + + + + + + + + + + + + Rotated geometry + 4673d3e6-7bf7-41dd-ad88-a57f9eeadf53 + Geometry + Geometry + false + 0 + + + + + + 2674 + -1037 + 50 + 38 + + + 2699 + -1017.75 + + + + + + + + Transformation data + fd6ef691-217a-470c-a651-3dc799194ef8 + Transform + Transform + false + 0 + + + + + + 2674 + -999 + 50 + 39 + + + 2699 + -979.25 + + + + + + + + + + + + 46b5564d-d3eb-4bf1-ae16-15ed132cfd88 + Ellipse + + + + + Create an ellipse defined by base plane and two radii. + b152af22-95ae-43ce-92bf-1d7dddc24eed + Ellipse + Ellipse + + + + + + 2952 + -292 + 211 + 81 + + + 3109 + -251 + + + + + + Base plane of ellipse + 8580a49d-c312-42e6-9466-e37fc340e7a4 + Plane + Plane + false + 0 + + + + + + 2954 + -290 + 143 + 37 + + + 3033.5 + -271.5 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 1 + 0 + + + + + + + + + + + + Radius in {x} direction + 93656d02-79e4-4504-8f1e-ca377e5362d8 + X/2 + Radius 1 + Radius 1 + false + 09dd62e4-baf4-427f-8bf7-9dcb47097299 + 1 + + + + + + 2954 + -253 + 143 + 20 + + + 3033.5 + -243 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Radius in {y} direction + d1bdb12b-a89b-408d-818a-4721e6073ea8 + X/2 + Radius 2 + Radius 2 + false + c7eeabee-14c5-48d4-84de-728518e323ea + 1 + + + + + + 2954 + -233 + 143 + 20 + + + 3033.5 + -223 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Resulting ellipse + a70c88fb-eb29-4569-a95d-7b398b6e49b6 + Ellipse + Ellipse + false + 0 + + + + + + 3121 + -290 + 40 + 25 + + + 3141 + -277.1667 + + + + + + + + First focus point + true + 455d037d-e559-4310-b578-ba7ca6a6b43d + Focus 1 + Focus 1 + false + 0 + + + + + + 3121 + -265 + 40 + 26 + + + 3141 + -251.5 + + + + + + + + Second focus point + true + 43b64fcd-5fee-4665-9e28-e1a506314815 + Focus 2 + Focus 2 + false + 0 + + + + + + 3121 + -239 + 40 + 26 + + + 3141 + -225.8333 + + + + + + + + + + + + 825ea536-aebb-41e9-af32-8baeb2ecb590 + Deconstruct Domain + + + + + Deconstruct a numeric domain into its component parts. + true + 0f6e124f-ce28-4717-9957-2ce6cdc61c33 + Deconstruct Domain + Deconstruct Domain + + + + + + 2729 + -241 + 108 + 44 + + + 2781 + -219 + + + + + + Base domain + 6fd1b988-f027-4754-9853-6edc490826aa + Domain + Domain + false + d22c2f49-ea86-49fb-ad62-1b55a8d38b00 + 1 + + + + + + 2731 + -239 + 38 + 40 + + + 2750 + -219 + + + + + + + + Start of domain + dc56826a-83c2-470f-98cc-726a7d88fd63 + ABS(X) + Start + Start + false + 0 + + + + + + 2793 + -239 + 42 + 20 + + + 2806 + -229 + + + + + + + + End of domain + 9c7fe524-e2c2-4733-a305-6c3b0bd827b1 + End + End + false + 0 + + + + + + 2793 + -219 + 42 + 20 + + + 2806 + -209 + + + + + + + + + + + + 825ea536-aebb-41e9-af32-8baeb2ecb590 + Deconstruct Domain + + + + + Deconstruct a numeric domain into its component parts. + true + 322e86dc-1f21-4403-b944-b87b39a89d5f + Deconstruct Domain + Deconstruct Domain + + + + + + 2727 + -184 + 108 + 44 + + + 2779 + -162 + + + + + + Base domain + 3f278867-77af-4574-9fc1-951552bef148 + Domain + Domain + false + ed2e0d66-3dc3-4a72-86e9-120e54328e2f + 1 + + + + + + 2729 + -182 + 38 + 40 + + + 2748 + -162 + + + + + + + + Start of domain + fa179bd7-3caf-4ff0-bf57-3128d60df3b7 + ABS(X) + Start + Start + false + 0 + + + + + + 2791 + -182 + 42 + 20 + + + 2804 + -172 + + + + + + + + End of domain + 0af08690-d4ea-48c3-8fe8-7d930c816d3c + End + End + false + 0 + + + + + + 2791 + -162 + 42 + 20 + + + 2804 + -152 + + + + + + + + + + + + a0d62394-a118-422d-abb3-6af115c75b25 + Addition + + + + + Mathematical addition + true + 548a5159-28a2-46e1-bd31-a35248f6cea4 + Addition + Addition + + + + + + 2852 + -241 + 70 + 44 + + + 2877 + -219 + + + + + + 2 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + First item for addition + 3493a79e-b88b-4370-a45e-874aa19b9840 + A + A + true + dc56826a-83c2-470f-98cc-726a7d88fd63 + 1 + + + + + + 2854 + -239 + 11 + 20 + + + 2859.5 + -229 + + + + + + + + Second item for addition + 4ab17f7f-5187-42eb-832b-092cf5221524 + B + B + true + 9c7fe524-e2c2-4733-a305-6c3b0bd827b1 + 1 + + + + + + 2854 + -219 + 11 + 20 + + + 2859.5 + -209 + + + + + + + + Result of addition + 09dd62e4-baf4-427f-8bf7-9dcb47097299 + Result + Result + false + 0 + + + + + + 2889 + -239 + 31 + 40 + + + 2904.5 + -219 + + + + + + + + + + + + + + a0d62394-a118-422d-abb3-6af115c75b25 + Addition + + + + + Mathematical addition + true + 520954b0-9ebe-408e-a71c-fff6b9e8a4f8 + Addition + Addition + + + + + + 2854 + -184 + 70 + 44 + + + 2879 + -162 + + + + + + 2 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + First item for addition + bfbfbb2c-6987-4fc3-b44b-f73917d20416 + A + A + true + fa179bd7-3caf-4ff0-bf57-3128d60df3b7 + 1 + + + + + + 2856 + -182 + 11 + 20 + + + 2861.5 + -172 + + + + + + + + Second item for addition + 4ea082e5-b026-448c-b630-b0299df41d4b + B + B + true + 0af08690-d4ea-48c3-8fe8-7d930c816d3c + 1 + + + + + + 2856 + -162 + 11 + 20 + + + 2861.5 + -152 + + + + + + + + Result of addition + c7eeabee-14c5-48d4-84de-728518e323ea + Result + Result + false + 0 + + + + + + 2891 + -182 + 31 + 40 + + + 2906.5 + -162 + + + + + + + + + + + + + + 5881d944-0281-4fc8-b203-ce6a55dbf2a6 + a48ac930-c378-48dc-84da-26b2af9d8302 + Solid Fill + + + + + Applies a Solid Fill color to a Shape + e544f35b-a65c-4604-8ec4-0197ac401c45 + Solid Fill + Solid Fill + + + + + + 3122 + -477 + 162 + 44 + + + 3238 + -455 + + + + + + A Graphic Plus Shape, or a Curve, Brep, Mesh + a87ea7f4-68ec-4adc-89a7-53ebe4ee6215 + Shape / Geometry + Shape / Geometry + false + c2f5906c-99b9-44b0-b921-0301d916ceeb + 1 + + + + + + 3124 + -475 + 102 + 20 + + + 3175 + -465 + + + + + + + + The solid fill Color + e386aa6c-69d6-481a-b0b8-d969e64f78fa + Color + Color + true + 0 + + + + + + 3124 + -455 + 102 + 20 + + + 3175 + -445 + + + + + + 1 + + + + + 1 + {0} + + + + + + 255;253;253;253 + + + + + + + + + + + + A Graphic Plus Shape Object + true + 077f46b9-73ab-4009-ac23-fc747f5589be + Shape + Shape + false + 0 + + + + + + 3250 + -475 + 32 + 40 + + + 3266 + -455 + + + + + + + + + + + + 030b487b-a566-476f-96a4-a0ae2ad283af + a48ac930-c378-48dc-84da-26b2af9d8302 + Stroke + + + + + Applies Stroke properties to a Shape + true + c60c0fcd-fecd-4bfd-abef-dabf43b0a95f + Stroke + Stroke + + + + + + 3183 + -382 + 210 + 104 + + + 3347 + -330 + + + + + + A Graphic Plus Shape, or a Curve, Brep, Mesh + 610f562d-e241-4106-a8af-e2754a6af36e + Shape / Geometry + Shape / Geometry + false + a70c88fb-eb29-4569-a95d-7b398b6e49b6 + 1 + + + + + + 3185 + -380 + 150 + 20 + + + 3260 + -370 + + + + + + + + The stroke color + 0ad0cb3b-6736-4475-b55e-dae0e283919c + Color + Color + true + 0 + + + + + + 3185 + -360 + 150 + 20 + + + 3260 + -350 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0;212;212;212 + + + + + + + + + + + + The stroke weight + cb343e22-9e5d-449c-8f90-1ea1f57a3abe + Weight + Weight + true + 0 + + + + + + 3185 + -340 + 150 + 20 + + + 3260 + -330 + + + + + + 1 + + + + + 1 + {0} + + + + + 1.599609375 + + + + + + + + + + + 1 + The stroke pattern + fa3465c0-43a1-4066-a3a0-8eb7bdd8f6e7 + Pattern + Pattern + true + 0 + + + + + + 3185 + -320 + 150 + 20 + + + 3260 + -310 + + + + + + + + The shape to be used at the end of open path + 4d71cba4-8cd3-47a7-a215-f2943318dc77 + End Cap + End Cap + true + 0 + + + + + + 3185 + -300 + 150 + 20 + + + 3260 + -290 + + + + + + 1 + + + + + 1 + {0} + + + + + 2 + + + + + + + + + + + A Graphic Plus Shape Object + true + c2f5906c-99b9-44b0-b921-0301d916ceeb + Shape + Shape + false + 0 + + + + + + 3359 + -380 + 32 + 100 + + + 3375 + -330 + + + + + + + + + + + + 3cadddef-1e2b-4c09-9390-0e8f78f7609f + Merge + + + + + Merge a bunch of data streams + 76303493-a254-43f0-84be-99ff111fe412 + Merge + Merge + + + + + + 3629 + -575 + 122 + 104 + + + 3690 + -523 + + + + + + 5 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + 2 + Data stream 1 + 141c4d50-d6c7-4fb8-8de2-de45677e3c3d + 1 + false + Data 1 + D1 + true + 9b545ea8-d3f4-45eb-ab0f-79f46e4a2580 + 1 + + + + + + 3631 + -573 + 47 + 20 + + + 3662.5 + -563 + + + + + + + + 2 + Data stream 2 + 6c667f88-f3ff-48f7-9297-69516d00e40e + 1 + false + Data 2 + D2 + true + 0 + + + + + + 3631 + -553 + 47 + 20 + + + 3662.5 + -543 + + + + + + + + 2 + Data stream 3 + c1b4b0fa-ed6b-412a-a0b5-fb7dc9fbabf9 + 1 + false + Data 3 + D3 + true + f5e2fda1-3be0-4fd7-8c57-4e93b25d5276 + 1 + + + + + + 3631 + -533 + 47 + 20 + + + 3662.5 + -523 + + + + + + + + 2 + Data stream 4 + ccd232d2-b36e-4a70-8ac8-fb5d07b22a4c + 1 + false + Data 4 + D4 + true + 0 + + + + + + 3631 + -513 + 47 + 20 + + + 3662.5 + -503 + + + + + + + + 2 + Data stream 5 + b507e9b6-47e3-4048-ab41-2f827ae6291b + false + Data 5 + D5 + true + 0 + + + + + + 3631 + -493 + 47 + 20 + + + 3662.5 + -483 + + + + + + + + 2 + Result of merge + e367fb22-04e7-4324-a914-8410bbe94d48 + Result + Result + false + true + 0 + + + + + + 3702 + -573 + 47 + 100 + + + 3717.5 + -523 + + + + + + + + + + + + + + 0bb3d234-9097-45db-9998-621639c87d3b + Bounding Box + + + + + Solve oriented geometry bounding boxes. + true + ef018817-ae71-4f5e-befa-0a2eda48bed0 + Bounding Box + Bounding Box + + + + + true + + + + + + 2859 + -746 + 172 + 61 + + + 2996 + -715 + + + + + + 1 + Geometry to contain + 5959b9a8-b876-4f0d-a523-76fb1eeec814 + Content + Content + false + 4673d3e6-7bf7-41dd-ad88-a57f9eeadf53 + 1 + + + + + + 2861 + -744 + 123 + 20 + + + 2922.5 + -734 + + + + + + + + BoundingBox orientation plane + true + 18540181-0248-44eb-a131-f2e9a090c46b + Plane + Plane + false + 0 + + + + + + 2861 + -724 + 123 + 37 + + + 2922.5 + -705.5 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 1 + 0 + + + + + + + + + + + + Aligned bounding box in world coordinates + 6afce9c4-b17b-47d7-b75f-e6ec4a295280 + Box + Box + false + 0 + + + + + + 3008 + -744 + 21 + 28 + + + 3018.5 + -729.75 + + + + + + + + Bounding box in orientation plane coordinates + true + fe9a602d-7254-4694-8efe-59f12feac708 + Box + Box + false + 0 + + + + + + 3008 + -716 + 21 + 29 + + + 3018.5 + -701.25 + + + + + + + + + + + + fca5ad7e-ecac-401d-a357-edda0a251cbc + Polar Array + + + + + Create a polar array of geometry. + 9231472e-8485-45ab-b4f1-675ffe1d32bd + Polar Array + Polar Array + + + + + + 2263 + -1 + 226 + 101 + + + 2409 + 50 + + + + + + Base geometry + f32fc1f2-04d7-4d3b-b57d-428ab41bdc43 + Geometry + Geometry + true + 17eab43d-f378-464e-94b9-16c6b57b57c3 + 1 + + + + + + 2265 + 1 + 132 + 20 + + + 2331 + 11 + + + + + + + + Polar array plane + 9600e010-1f8b-43e9-a3be-21ac6f5d5270 + Plane + Plane + false + 0 + + + + + + 2265 + 21 + 132 + 37 + + + 2331 + 39.5 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 1 + 0 + + + + + + + + + + + + Number of elements in array. + fb85ea22-6e01-4518-8f80-8c65b8d26cd2 + Count + Count + false + 0 + + + + + + 2265 + 58 + 132 + 20 + + + 2331 + 68 + + + + + + 1 + + + + + 1 + {0} + + + + + 4 + + + + + + + + + + + Sweep angle in radians (counter-clockwise, starting from plane x-axis) + 97313f66-dc8b-4303-bc3a-ee4dd9980b4f + Angle + Angle + false + 0 + false + + + + + + 2265 + 78 + 132 + 20 + + + 2331 + 88 + + + + + + 1 + + + + + 1 + {0} + + + + + 6.2831853071795862 + + + + + + + + + + + 1 + Arrayed geometry + 76dbf9ef-d4b9-4f57-9f8d-269957660353 + 1 + Geometry + Geometry + false + 0 + + + + + + 2421 + 1 + 66 + 48 + + + 2446 + 25.25 + + + + + + + + 1 + Transformation data + 7effe024-9462-4ea5-b8f3-59842d3f5e8c + Transform + Transform + false + 0 + + + + + + 2421 + 49 + 66 + 49 + + + 2446 + 73.75 + + + + + + + + + + + + 8073a420-6bec-49e3-9b18-367f6fd76ac3 + Join Curves + + + + + Join as many curves as possible + 4b52b770-9306-44c5-9f1b-b6a6bd883927 + Join Curves + Join Curves + + + + + + 2585 + -102 + 116 + 44 + + + 2652 + -80 + + + + + + 1 + Curves to join + 050ada30-33b8-4aad-a3db-e12810a47239 + Curves + Curves + false + 76dbf9ef-d4b9-4f57-9f8d-269957660353 + 1 + + + + + + 2587 + -100 + 53 + 20 + + + 2613.5 + -90 + + + + + + + + Preserve direction of input curves + 74c8e707-2941-4a86-916f-38c749afd0f5 + Preserve + Preserve + false + 0 + + + + + + 2587 + -80 + 53 + 20 + + + 2613.5 + -70 + + + + + + 1 + + + + + 1 + {0} + + + + + false + + + + + + + + + + + 1 + Joined curves and individual curves that could not be joined. + d5b4aeff-ff26-4ef9-b2e5-496815defd19 + Curves + Curves + false + 0 + + + + + + 2664 + -100 + 35 + 40 + + + 2681.5 + -80 + + + + + + + + + + + + b7798b74-037e-4f0c-8ac7-dc1043d093e0 + Rotate + + + + + Rotate an object in a plane. + true + 4645469b-13c3-428b-ab57-ccb8a3b22cbd + Rotate + Rotate + + + + + + 2743 + -111 + 226 + 81 + + + 2905 + -70 + + + + + + Base geometry + c0069909-ff23-4479-97ce-cd4bc727b2c0 + Geometry + Geometry + true + d5b4aeff-ff26-4ef9-b2e5-496815defd19 + 1 + + + + + + 2745 + -109 + 148 + 20 + + + 2827 + -99 + + + + + + + + Rotation angle in degrees + 6e8c6acb-7433-4fe3-a661-1b44b3432c89 + Angle + Angle + false + 0 + true + + + + + + 2745 + -89 + 148 + 20 + + + 2827 + -79 + + + + + + 1 + + + + + 1 + {0} + + + + + 45 + + + + + + + + + + + Rotation plane + a264b5f2-cbe7-47aa-9536-8799e4d12399 + Plane + Plane + false + 0 + + + + + + 2745 + -69 + 148 + 37 + + + 2827 + -50.5 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 1 + 0 + + + + + + + + + + + + Rotated geometry + 9448fed2-8115-48c5-aedd-782651c12cc0 + Geometry + Geometry + false + 0 + + + + + + 2917 + -109 + 50 + 38 + + + 2942 + -89.75 + + + + + + + + Transformation data + 554125b3-7ba6-4ed9-bc77-9111f8302665 + Transform + Transform + false + 0 + + + + + + 2917 + -71 + 50 + 39 + + + 2942 + -51.25 + + + + + + + + + + + + 290f418a-65ee-406a-a9d0-35699815b512 + Scale NU + + + + + Scale an object with non-uniform factors. + true + 1bae24dc-6171-4efb-981b-28ed9aa8892e + Scale NU + Scale NU + + + + + + 3036 + -157 + 210 + 121 + + + 3182 + -96 + + + + + + Base geometry + 2b2abd39-b77d-4f89-b3af-697b7687ffba + Geometry + Geometry + true + 9448fed2-8115-48c5-aedd-782651c12cc0 + 1 + + + + + + 3038 + -155 + 132 + 20 + + + 3104 + -145 + + + + + + + + Base plane + 4cc897be-ccf3-4f16-9ed5-fe94ce8b9581 + Plane + Plane + false + 0 + + + + + + 3038 + -135 + 132 + 37 + + + 3104 + -116.5 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 1 + 0 + + + + + + + + + + + + Scaling factor in {x} direction + d5e63d1b-d70e-451e-970e-00cb7cec03b8 + Scale X + Scale X + false + 09dd62e4-baf4-427f-8bf7-9dcb47097299 + 1 + + + + + + 3038 + -98 + 132 + 20 + + + 3104 + -88 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Scaling factor in {y} direction + ac2e9831-274b-44a4-b182-d4e0276dfbbd + Scale Y + Scale Y + false + c7eeabee-14c5-48d4-84de-728518e323ea + 1 + + + + + + 3038 + -78 + 132 + 20 + + + 3104 + -68 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Scaling factor in {z} direction + cf6f3120-2f97-4671-a2f6-d98cd8987965 + Scale Z + Scale Z + false + 0 + + + + + + 3038 + -58 + 132 + 20 + + + 3104 + -48 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Scaled geometry + aacc257b-f887-4a36-91f4-4a1bf76b4ed0 + Geometry + Geometry + false + 0 + + + + + + 3194 + -155 + 50 + 58 + + + 3219 + -125.75 + + + + + + + + Transformation data + 26e1976d-a505-46b9-a2a8-bb2d8c2d0a7d + Transform + Transform + false + 0 + + + + + + 3194 + -97 + 50 + 59 + + + 3219 + -67.25 + + + + + + + + + + + + 0bb3d234-9097-45db-9998-621639c87d3b + Bounding Box + + + + + Solve oriented geometry bounding boxes. + true + bd58a9f6-15ba-4600-bdb2-1aa1096d0ab4 + Bounding Box + Bounding Box + + + + + true + + + + + + 2789 + 7 + 172 + 61 + + + 2926 + 38 + + + + + + 1 + Geometry to contain + 3e306692-6956-488f-85d3-1dd106a587ec + Content + Content + false + aacc257b-f887-4a36-91f4-4a1bf76b4ed0 + 1 + + + + + + 2791 + 9 + 123 + 20 + + + 2852.5 + 19 + + + + + + + + BoundingBox orientation plane + true + 5a43ec66-8241-41b9-85b3-0067ea659c0d + Plane + Plane + false + 0 + + + + + + 2791 + 29 + 123 + 37 + + + 2852.5 + 47.5 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 1 + 0 + + + + + + + + + + + + Aligned bounding box in world coordinates + 2504c031-aa84-467d-b1b0-9cf6426fb42e + Box + Box + false + 0 + + + + + + 2938 + 9 + 21 + 28 + + + 2948.5 + 23.25 + + + + + + + + Bounding box in orientation plane coordinates + true + 48636f2e-45df-43f7-a9d9-8a350a1bf850 + Box + Box + false + 0 + + + + + + 2938 + 37 + 21 + 29 + + + 2948.5 + 51.75 + + + + + + + + + + + + 290f418a-65ee-406a-a9d0-35699815b512 + Scale NU + + + + + Scale an object with non-uniform factors. + true + 57ad8a7c-39d5-4c28-9a11-7131d4e7a826 + Scale NU + Scale NU + + + + + + 3306 + 30 + 210 + 121 + + + 3452 + 91 + + + + + + Base geometry + c17881a1-c0c0-4b5d-9979-4c6996a7462c + Geometry + Geometry + true + aacc257b-f887-4a36-91f4-4a1bf76b4ed0 + 1 + + + + + + 3308 + 32 + 132 + 20 + + + 3374 + 42 + + + + + + + + Base plane + b5417381-611d-494e-941b-526df7be987b + Plane + Plane + false + 0 + + + + + + 3308 + 52 + 132 + 37 + + + 3374 + 70.5 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 1 + 0 + + + + + + + + + + + + Scaling factor in {x} direction + ffa1c457-cc0d-4a0e-84b3-feaad15c59f2 + Scale X + Scale X + false + bd994786-94fb-4df8-b567-710a5bd24592 + 1 + + + + + + 3308 + 89 + 132 + 20 + + + 3374 + 99 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Scaling factor in {y} direction + 387d75d0-02db-412b-a55d-486857810fd6 + Scale Y + Scale Y + false + 10a67763-da98-477a-9eaa-bd3d135f02dd + 1 + + + + + + 3308 + 109 + 132 + 20 + + + 3374 + 119 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Scaling factor in {z} direction + 0df97b2c-4f72-482b-b654-c4452a5f7b37 + Scale Z + Scale Z + false + 0 + + + + + + 3308 + 129 + 132 + 20 + + + 3374 + 139 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Scaled geometry + 53d13c61-e388-479b-b037-c21e588328f1 + Geometry + Geometry + false + 0 + + + + + + 3464 + 32 + 50 + 58 + + + 3489 + 61.25 + + + + + + + + Transformation data + bee637af-8569-412a-b1c4-3b90e8bddbe1 + Transform + Transform + false + 0 + + + + + + 3464 + 90 + 50 + 59 + + + 3489 + 119.75 + + + + + + + + + + + + db7d83b1-2898-4ef9-9be5-4e94b4e2048d + Deconstruct Box + + + + + Deconstruct a box into its constituent parts. + 28064703-db99-41ba-bda1-1cbde09d729f + Deconstruct Box + Deconstruct Box + + + + + + 2840 + 104 + 77 + 84 + + + 2875 + 146 + + + + + + Base box + 8b52fc5f-1684-43c8-8a4d-d43302eaaab0 + Box + Box + false + 2504c031-aa84-467d-b1b0-9cf6426fb42e + 1 + + + + + + 2842 + 106 + 21 + 80 + + + 2852.5 + 146 + + + + + + + + Box plane + f8528408-e278-4681-8214-87480c4faced + Plane + Plane + false + 0 + + + + + + 2887 + 106 + 28 + 20 + + + 2901 + 116 + + + + + + + + {x} dimension of box + 2689392c-1100-4e15-8127-7a5601aa581b + X + X + false + 0 + + + + + + 2887 + 126 + 28 + 20 + + + 2901 + 136 + + + + + + + + {y} dimension of box + f2e6dc76-48bd-4dc6-8478-fbcb22a719b1 + Y + Y + false + 0 + + + + + + 2887 + 146 + 28 + 20 + + + 2901 + 156 + + + + + + + + {z} dimension of box + ddb100c1-7c0d-450b-820e-da476b28bc87 + Z + Z + false + 0 + + + + + + 2887 + 166 + 28 + 20 + + + 2901 + 176 + + + + + + + + + + + + 825ea536-aebb-41e9-af32-8baeb2ecb590 + Deconstruct Domain + + + + + Deconstruct a numeric domain into its component parts. + true + c3edbfdd-58af-4c96-90fd-8c98e7fba5c3 + Deconstruct Domain + Deconstruct Domain + + + + + + 2963 + 99 + 108 + 44 + + + 3015 + 121 + + + + + + Base domain + 2bdd6499-4d81-45b0-b822-88e082b65de6 + Domain + Domain + false + 2689392c-1100-4e15-8127-7a5601aa581b + 1 + + + + + + 2965 + 101 + 38 + 40 + + + 2984 + 121 + + + + + + + + Start of domain + 2edc82fc-38a8-4c70-b479-e7f2b3aab632 + ABS(X) + Start + Start + false + 0 + + + + + + 3027 + 101 + 42 + 20 + + + 3040 + 111 + + + + + + + + End of domain + 2dd4500c-4753-42fd-a825-76b6a981ec05 + End + End + false + 0 + + + + + + 3027 + 121 + 42 + 20 + + + 3040 + 131 + + + + + + + + + + + + 825ea536-aebb-41e9-af32-8baeb2ecb590 + Deconstruct Domain + + + + + Deconstruct a numeric domain into its component parts. + true + f668cdc5-41ae-4ba9-8089-5314197cfc0c + Deconstruct Domain + Deconstruct Domain + + + + + + 2961 + 156 + 108 + 44 + + + 3013 + 178 + + + + + + Base domain + 98c5fc26-a141-4a04-8f70-98a47fba01fd + Domain + Domain + false + f2e6dc76-48bd-4dc6-8478-fbcb22a719b1 + 1 + + + + + + 2963 + 158 + 38 + 40 + + + 2982 + 178 + + + + + + + + Start of domain + 044e21b3-1364-45b2-b092-fd97addf3c30 + ABS(X) + Start + Start + false + 0 + + + + + + 3025 + 158 + 42 + 20 + + + 3038 + 168 + + + + + + + + End of domain + dc2a9266-cce1-4ec8-8306-04f5386e1dcc + End + End + false + 0 + + + + + + 3025 + 178 + 42 + 20 + + + 3038 + 188 + + + + + + + + + + + + a0d62394-a118-422d-abb3-6af115c75b25 + Addition + + + + + Mathematical addition + true + bb2ace4f-43b6-44e0-9ec7-bb582df01734 + Addition + Addition + + + + + + 3086 + 99 + 70 + 44 + + + 3111 + 121 + + + + + + 2 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + First item for addition + 7ee12a60-36bc-4818-8525-79d2c492e8b1 + A + A + true + 2edc82fc-38a8-4c70-b479-e7f2b3aab632 + 1 + + + + + + 3088 + 101 + 11 + 20 + + + 3093.5 + 111 + + + + + + + + Second item for addition + e20cec20-653a-4c38-a65d-418332d6918b + B + B + true + 2dd4500c-4753-42fd-a825-76b6a981ec05 + 1 + + + + + + 3088 + 121 + 11 + 20 + + + 3093.5 + 131 + + + + + + + + Result of addition + da4a872f-96c2-4c2e-89fa-c092560e9435 + Result + Result + false + 0 + + + + + + 3123 + 101 + 31 + 40 + + + 3138.5 + 121 + + + + + + + + + + + + + + a0d62394-a118-422d-abb3-6af115c75b25 + Addition + + + + + Mathematical addition + true + b773e031-45c5-4af5-badf-4ec0d7d9c286 + Addition + Addition + + + + + + 3088 + 156 + 70 + 44 + + + 3113 + 178 + + + + + + 2 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + First item for addition + d5821398-e340-40fd-bf8c-0d1a321cb3f9 + A + A + true + 044e21b3-1364-45b2-b092-fd97addf3c30 + 1 + + + + + + 3090 + 158 + 11 + 20 + + + 3095.5 + 168 + + + + + + + + Second item for addition + 47dba23e-cda5-4ccf-8a3c-30cd754cd501 + B + B + true + dc2a9266-cce1-4ec8-8306-04f5386e1dcc + 1 + + + + + + 3090 + 178 + 11 + 20 + + + 3095.5 + 188 + + + + + + + + Result of addition + 3bcb1232-bc8d-4371-9481-579bcdc0a37c + Result + Result + false + 0 + + + + + + 3125 + 158 + 31 + 40 + + + 3140.5 + 178 + + + + + + + + + + + + + + 9c85271f-89fa-4e9f-9f4a-d75802120ccc + Division + + + + + Mathematical division + 2dc3b07c-3824-49ca-8d2c-2dd266821f7e + Division + Division + + + + + + 3192 + 72 + 70 + 44 + + + 3217 + 94 + + + + + + Item to divide (dividend) + 3f2d58c4-fd83-4754-b47d-3f87ac7bdaea + A + A + false + 09dd62e4-baf4-427f-8bf7-9dcb47097299 + 1 + + + + + + 3194 + 74 + 11 + 20 + + + 3199.5 + 84 + + + + + + + + Item to divide with (divisor) + e3918744-1ebe-4b10-a851-356989cdd580 + B + B + false + da4a872f-96c2-4c2e-89fa-c092560e9435 + 1 + + + + + + 3194 + 94 + 11 + 20 + + + 3199.5 + 104 + + + + + + + + The result of the Division + bd994786-94fb-4df8-b567-710a5bd24592 + Result + Result + false + 0 + + + + + + 3229 + 74 + 31 + 40 + + + 3244.5 + 94 + + + + + + + + + + + + 9c85271f-89fa-4e9f-9f4a-d75802120ccc + Division + + + + + Mathematical division + a23f8aba-9edd-42f6-a4b4-9d179aea39df + Division + Division + + + + + + 3190 + 146 + 70 + 44 + + + 3215 + 168 + + + + + + Item to divide (dividend) + 4c9c9004-eab6-493f-b9f9-185d111441ec + A + A + false + c7eeabee-14c5-48d4-84de-728518e323ea + 1 + + + + + + 3192 + 148 + 11 + 20 + + + 3197.5 + 158 + + + + + + + + Item to divide with (divisor) + c5c24b1f-c828-49ed-b3be-9ee41ed1de8b + B + B + false + 3bcb1232-bc8d-4371-9481-579bcdc0a37c + 1 + + + + + + 3192 + 168 + 11 + 20 + + + 3197.5 + 178 + + + + + + + + The result of the Division + 10a67763-da98-477a-9eaa-bd3d135f02dd + Result + Result + false + 0 + + + + + + 3227 + 148 + 31 + 40 + + + 3242.5 + 168 + + + + + + + + + + + + b7798b74-037e-4f0c-8ac7-dc1043d093e0 + Rotate + + + + + Rotate an object in a plane. + 57138232-05e8-41be-a574-ea5e1f4a7514 + Rotate + Rotate + + + + + + 3561 + 49 + 226 + 81 + + + 3723 + 90 + + + + + + Base geometry + 1ad57197-10ff-4641-a8aa-2c095d7986c8 + Geometry + Geometry + true + 53d13c61-e388-479b-b037-c21e588328f1 + 1 + + + + + + 3563 + 51 + 148 + 20 + + + 3645 + 61 + + + + + + + + Rotation angle in degrees + cdb74829-2841-4f74-a823-b27a311cd038 + Angle + Angle + false + 0 + true + + + + + + 3563 + 71 + 148 + 20 + + + 3645 + 81 + + + + + + 1 + + + + + 1 + {0} + + + + + 45 + + + + + + + + + + + Rotation plane + 24e01d70-934e-4f3f-b7ab-4c99013a33cd + Plane + Plane + false + 0 + + + + + + 3563 + 91 + 148 + 37 + + + 3645 + 109.5 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 1 + 0 + + + + + + + + + + + + Rotated geometry + 3f312eb8-c4bc-4aab-abf8-17b7bdb9b3fc + Geometry + Geometry + false + 0 + + + + + + 3735 + 51 + 50 + 38 + + + 3760 + 70.25 + + + + + + + + Transformation data + 2db39a28-9f84-4598-9a90-9a7175906887 + Transform + Transform + false + 0 + + + + + + 3735 + 89 + 50 + 39 + + + 3760 + 108.75 + + + + + + + + + + + + 5881d944-0281-4fc8-b203-ce6a55dbf2a6 + a48ac930-c378-48dc-84da-26b2af9d8302 + Solid Fill + + + + + Applies a Solid Fill color to a Shape + b4a33b1a-7429-4e1b-9acd-9f903eaabe58 + Solid Fill + Solid Fill + + + + + + 3109 + -573 + 162 + 44 + + + 3225 + -551 + + + + + + A Graphic Plus Shape, or a Curve, Brep, Mesh + 4c26c4a8-51b7-42ba-acd6-762f4f107fae + Shape / Geometry + Shape / Geometry + false + 115805d1-8d4c-48be-b77a-c986e4fcad30 + 1 + + + + + + 3111 + -571 + 102 + 20 + + + 3162 + -561 + + + + + + + + The solid fill Color + 90b3f5f7-74bd-4881-9b83-b965b955964e + Color + Color + true + 0 + + + + + + 3111 + -551 + 102 + 20 + + + 3162 + -541 + + + + + + 1 + + + + + 1 + {0} + + + + + + 255;254;254;254 + + + + + + + + + + + + A Graphic Plus Shape Object + true + f5e2fda1-3be0-4fd7-8c57-4e93b25d5276 + Shape + Shape + false + 0 + + + + + + 3237 + -571 + 32 + 40 + + + 3253 + -551 + + + + + + + + + + + + 030b487b-a566-476f-96a4-a0ae2ad283af + a48ac930-c378-48dc-84da-26b2af9d8302 + Stroke + + + + + Applies Stroke properties to a Shape + true + 912b18d6-6dbb-44fc-a40f-0a235eef3ab9 + Stroke + Stroke + + + + + + 3437 + -129 + 210 + 104 + + + 3601 + -77 + + + + + + A Graphic Plus Shape, or a Curve, Brep, Mesh + 4191b89f-a80b-42ce-9bf4-beee143a6f6f + Shape / Geometry + Shape / Geometry + false + 3f312eb8-c4bc-4aab-abf8-17b7bdb9b3fc + 1 + + + + + + 3439 + -127 + 150 + 20 + + + 3514 + -117 + + + + + + + + The stroke color + 77eb8635-9386-48da-9fa1-e97491a41a64 + Color + Color + true + 0 + + + + + + 3439 + -107 + 150 + 20 + + + 3514 + -97 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0;212;212;212 + + + + + + + + + + + + The stroke weight + 27724ee0-b9a3-4af8-b2c8-3b3bad8c9a46 + Weight + Weight + true + 0 + + + + + + 3439 + -87 + 150 + 20 + + + 3514 + -77 + + + + + + 1 + + + + + 1 + {0} + + + + + 1.599609375 + + + + + + + + + + + 1 + The stroke pattern + 6d2b021d-1a41-42ce-be26-8ad654730032 + Pattern + Pattern + true + 0 + + + + + + 3439 + -67 + 150 + 20 + + + 3514 + -57 + + + + + + + + The shape to be used at the end of open path + e53ae221-fc08-4f6e-ac11-711b8b3d8ad0 + End Cap + End Cap + true + 0 + + + + + + 3439 + -47 + 150 + 20 + + + 3514 + -37 + + + + + + 1 + + + + + 1 + {0} + + + + + 2 + + + + + + + + + + + A Graphic Plus Shape Object + true + 115805d1-8d4c-48be-b77a-c986e4fcad30 + Shape + Shape + false + 0 + + + + + + 3613 + -127 + 32 + 100 + + + 3629 + -77 + + + + + + + + + + + + 5881d944-0281-4fc8-b203-ce6a55dbf2a6 + a48ac930-c378-48dc-84da-26b2af9d8302 + Solid Fill + + + + + Applies a Solid Fill color to a Shape + 094b241c-4ba3-4343-8745-17a25e1a18d5 + Solid Fill + Solid Fill + + + + + + 3106 + -646 + 162 + 44 + + + 3222 + -624 + + + + + + A Graphic Plus Shape, or a Curve, Brep, Mesh + 23bd9ad5-0ed7-4bd5-9ebf-540a6ef29898 + Shape / Geometry + Shape / Geometry + false + 459c146e-b950-4487-9814-03c0b98d439f + 1 + + + + + + 3108 + -644 + 102 + 20 + + + 3159 + -634 + + + + + + + + The solid fill Color + 821cf43e-983c-41cd-9ae5-93e78e154639 + Color + Color + true + 0 + + + + + + 3108 + -624 + 102 + 20 + + + 3159 + -614 + + + + + + 1 + + + + + 1 + {0} + + + + + + 255;255;255;255 + + + + + + + + + + + + A Graphic Plus Shape Object + true + d91d7edd-1058-45d7-83bd-c03acddb095d + Shape + Shape + false + 0 + + + + + + 3234 + -644 + 32 + 40 + + + 3250 + -624 + + + + + + + + + + + + 030b487b-a566-476f-96a4-a0ae2ad283af + a48ac930-c378-48dc-84da-26b2af9d8302 + Stroke + + + + + Applies Stroke properties to a Shape + true + 7b5a9a86-c795-4535-9dcb-e11a8115d709 + Stroke + Stroke + + + + + + 2245 + 150 + 210 + 104 + + + 2409 + 202 + + + + + + A Graphic Plus Shape, or a Curve, Brep, Mesh + 41184173-460d-4935-8d2a-b395bd72e4cf + Shape / Geometry + Shape / Geometry + false + d5b4aeff-ff26-4ef9-b2e5-496815defd19 + 1 + + + + + + 2247 + 152 + 150 + 20 + + + 2322 + 162 + + + + + + + + The stroke color + cd2a8d19-a05c-4b58-928a-acec91724c8f + Color + Color + true + 0 + + + + + + 2247 + 172 + 150 + 20 + + + 2322 + 182 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0;212;212;212 + + + + + + + + + + + + The stroke weight + af3deb4d-921e-419b-bb17-e6ea5c6560d6 + Weight + Weight + true + 0 + + + + + + 2247 + 192 + 150 + 20 + + + 2322 + 202 + + + + + + 1 + + + + + 1 + {0} + + + + + 1.599609375 + + + + + + + + + + + 1 + The stroke pattern + 044c0805-b6e4-47b3-8a63-28db1416baf7 + Pattern + Pattern + true + 0 + + + + + + 2247 + 212 + 150 + 20 + + + 2322 + 222 + + + + + + + + The shape to be used at the end of open path + ecd41d37-9728-4d7b-89b2-ce69e6e82acb + End Cap + End Cap + true + 0 + + + + + + 2247 + 232 + 150 + 20 + + + 2322 + 242 + + + + + + 1 + + + + + 1 + {0} + + + + + 2 + + + + + + + + + + + A Graphic Plus Shape Object + true + 459c146e-b950-4487-9814-03c0b98d439f + Shape + Shape + false + 0 + + + + + + 2421 + 152 + 32 + 100 + + + 2437 + 202 + + + + + + + + + + + + ae8329c9-147c-4440-b557-2977e71e7195 + a48ac930-c378-48dc-84da-26b2af9d8302 + Blur + + + + + Applies a Blur Effect to a Shape + d1f66e6c-d809-4b52-ab33-d5f0fd7fa67e + Blur + Blur + + + + + + 3297 + -622 + 183 + 44 + + + 3434 + -600 + + + + + + A Graphic Plus Shape, or a Curve, Brep, Mesh + 7f9fbeac-12da-452a-8949-36ad5971594a + Shape / Geometry + Shape / Geometry + false + d91d7edd-1058-45d7-83bd-c03acddb095d + 1 + + + + + + 3299 + -620 + 123 + 20 + + + 3360.5 + -610 + + + + + + + + The radius of the blur effect + c35e1a89-d0f8-49d9-8a3c-0ee5cb7cd0d6 + Blur Radius + Blur Radius + true + 0 + + + + + + 3299 + -600 + 123 + 20 + + + 3360.5 + -590 + + + + + + 1 + + + + + 1 + {0} + + + + + 1873 + + + + + + + + + + + A Graphic Plus Shape Object + true + 1b83cf23-4bb9-41c6-995e-34bcc3847f32 + Shape + Shape + false + 0 + + + + + + 3446 + -620 + 32 + 40 + + + 3462 + -600 + + + + + + + + + + + + 310f9597-267e-4471-a7d7-048725557528 + 08bdcae0-d034-48dd-a145-24a9fcf3d3ff + GraphMapper+ + + + + + External Graph mapper +You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode. + 86516fa6-1a29-401a-89ee-beff2a4a71be + GraphMapper+ + GraphMapper+ + + + + + true + + + + + + 2331 + -239 + 200 + 155 + + + 2478 + -161 + + + + + + External curve as a graph + 2a62c603-ff0d-4b02-9c51-19896bb4670e + Curve + Curve + false + f110d2a6-04ba-40d1-8ede-576629de1ee0 + 1 + + + + + + 2333 + -237 + 133 + 20 + + + 2399.5 + -227 + + + + + + + + Optional Rectangle boundary. If omitted the curve's would be landed + 3676e81d-aa14-4d99-8a29-6dd22cb97c19 + Boundary + Boundary + true + 0 + + + + + + 2333 + -217 + 133 + 71 + + + 2399.5 + -181.5 + + + + + + + + 1 + List of input numbers + b636a3d1-7793-408c-84e3-26e2731f59c4 + Numbers + Numbers + false + dc1f0f58-8adb-425c-a5a4-72b7549f074b + 1 + + + + + + 2333 + -146 + 133 + 20 + + + 2399.5 + -136 + + + + + + 1 + + + + + 9 + {0} + + + + + 0.1 + + + + + 0.2 + + + + + 0.3 + + + + + 0.4 + + + + + 0.5 + + + + + 0.6 + + + + + 0.7 + + + + + 0.8 + + + + + 0.9 + + + + + + + + + + + (Optional) Input Domain +if omitted, it would be 0-1 in "Normalize" mode by default + or be the interval of the input list in case of selecting "AutoDomain" mode + d7a1fb96-cedd-465e-a75a-08f646090e4d + Input + Input + true + 0 + + + + + + 2333 + -126 + 133 + 20 + + + 2399.5 + -116 + + + + + + + + (Optional) Output Domain + if omitted, it would be 0-1 in "Normalize" mode by default + or be the interval of the input list in case of selecting "AutoDomain" mode + 87642418-c6c9-406c-a417-46458eb64db2 + Output + Output + true + 0 + + + + + + 2333 + -106 + 133 + 20 + + + 2399.5 + -96 + + + + + + + + 1 + Output Numbers + 5ce4f1f2-6252-427d-be62-bc0a9535dd71 + Number + Number + false + 0 + + + + + + 2490 + -237 + 39 + 151 + + + 2509.5 + -161.5 + + + + + + + + + + + + 3cadddef-1e2b-4c09-9390-0e8f78f7609f + Merge + + + + + Merge a bunch of data streams + true + e997adff-dd39-4839-a3ba-005ec6fc52aa + Merge + Merge + + + + + + 1961 + -290 + 90 + 64 + + + 2006 + -258 + + + + + + 3 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + 2 + Data stream 1 + bf77ca9c-2289-4dc5-923a-5755e886f414 + false + Data 1 + D1 + true + 0b623e50-0ddb-4c5a-8522-9b22b8669904 + 1 + + + + + + 1963 + -288 + 31 + 20 + + + 1978.5 + -278 + + + + + + + + 2 + Data stream 2 + 06b3985f-140a-46bf-bc8e-d38d13cbc7bd + false + Data 2 + D2 + true + 000617f7-d240-4fc8-ae4d-4525fd018986 + 1 + + + + + + 1963 + -268 + 31 + 20 + + + 1978.5 + -258 + + + + + + + + 2 + Data stream 3 + d684ff21-68c2-4f6d-8131-8724e7dd5072 + false + Data 3 + D3 + true + 0 + + + + + + 1963 + -248 + 31 + 20 + + + 1978.5 + -238 + + + + + + + + 2 + Result of merge + dcf72494-3a24-4054-8e57-73ff14e59867 + Result + Result + false + 0 + + + + + + 2018 + -288 + 31 + 60 + + + 2033.5 + -258 + + + + + + + + + + + + + + 8073a420-6bec-49e3-9b18-367f6fd76ac3 + Join Curves + + + + + Join as many curves as possible + cde9ae79-6dfc-4694-91e2-ee29e1d1dcd7 + Join Curves + Join Curves + + + + + + 2065 + -205 + 116 + 44 + + + 2132 + -183 + + + + + + 1 + Curves to join + 7e85ddef-afbe-4a51-8eb9-f1bf04d0e562 + Curves + Curves + false + dcf72494-3a24-4054-8e57-73ff14e59867 + 1 + + + + + + 2067 + -203 + 53 + 20 + + + 2093.5 + -193 + + + + + + + + Preserve direction of input curves + e052876e-6956-4144-81f8-c77fa5c3b19b + Preserve + Preserve + false + 0 + + + + + + 2067 + -183 + 53 + 20 + + + 2093.5 + -173 + + + + + + 1 + + + + + 1 + {0} + + + + + false + + + + + + + + + + + 1 + Joined curves and individual curves that could not be joined. + f110d2a6-04ba-40d1-8ede-576629de1ee0 + Curves + Curves + false + 0 + + + + + + 2144 + -203 + 35 + 40 + + + 2161.5 + -183 + + + + + + + + + + + + 6da9f120-3ad0-4b6e-9fe0-f8cde3a649b7 + Gradient + + + + + Represents a multiple colour gradient + 4ce826ff-60b9-473f-b4eb-19a5a0af2170 + Gradient + Gradient + + + + + 2 + false + false + + + + + + 255;255;255;255 + + + 255;255;255;255 + + 0 + 65f3deb5-94e8-456a-99e9-356a6e56e15f + + + + + + 255;0;0;0 + + + 255;0;0;0 + + 1 + 09e104d2-ab4e-487e-8284-4e7e46408bc1 + + + + + + + + 2005 + -110 + 250 + 64 + + + + + + Lower limit of gradient range + 945cfa44-8efc-4474-beb8-68346657865d + Lower limit + Lower limit + false + 0 + + + + + + 2011 + -108 + 71 + 20 + + + 2046.5 + -98 + + + + + + 1 + + + + + 1 + {0} + + + + + 0 + + + + + + + + + + + Upper limit of gradient range + b5bbc1f3-0799-4b1f-8720-7900ecb64630 + Upper limit + Upper limit + false + 0 + + + + + + 2011 + -88 + 71 + 20 + + + 2046.5 + -78 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Parameter along gradient range + c8a087a3-d6c3-4075-94f5-b6f03f5a18b8 + Parameter + Parameter + false + 0 + + + + + + 2011 + -68 + 71 + 20 + + + 2046.5 + -58 + + + + + + 1 + + + + + 1 + {0} + + + + + 0.5 + + + + + + + + + + + Colour along gradient at parameter + dc1f0f58-8adb-425c-a5a4-72b7549f074b + Colour + Colour + false + 0 + + + + + + 2255 + -110 + 0 + 64 + + + + + + + + + + + + f44b92b0-3b5b-493a-86f4-fd7408c3daf3 + Bounds + + + + + Create a numeric domain which encompasses a list of numbers. + 73688d20-ee53-456b-b585-492357d5b4d0 + Bounds + Bounds + + + + + + 2068 + -37 + 110 + 28 + + + 2126 + -23 + + + + + + 1 + Numbers to include in Bounds + 53f4ce57-ff16-487d-8441-74fef124b562 + Numbers + Numbers + false + dc1f0f58-8adb-425c-a5a4-72b7549f074b + 1 + + + + + + 2070 + -35 + 44 + 24 + + + 2092 + -23 + + + + + + + + Numeric Domain between the lowest and highest numbers in {N} + 0ff1a809-670a-45b7-b851-7fc3bf208445 + Domain + Domain + false + 0 + + + + + + 2138 + -35 + 38 + 24 + + + 2157 + -23 + + + + + + + + + + + + ae8329c9-147c-4440-b557-2977e71e7195 + a48ac930-c378-48dc-84da-26b2af9d8302 + Blur + + + + + Applies a Blur Effect to a Shape + e1697a07-a9ef-47c4-be33-bd2577c238b3 + Blur + Blur + + + + + + 3309 + -702 + 167 + 44 + + + 3430 + -680 + + + + + + A Graphic Plus Shape, or a Curve, Brep, Mesh + 55536ade-da41-411e-869c-66f8f104949a + Shape / Geometry + Shape / Geometry + false + 9b545ea8-d3f4-45eb-ab0f-79f46e4a2580 + 1 + + + + + + 3311 + -700 + 107 + 20 + + + 3364.5 + -690 + + + + + + + + The radius of the blur effect + c5060ea3-181f-4105-bb73-304ce2614be6 + Blur Radius + Blur Radius + true + 0 + + + + + + 3311 + -680 + 107 + 20 + + + 3364.5 + -670 + + + + + + 1 + + + + + 1 + {0} + + + + + 4 + + + + + + + + + + + A Graphic Plus Shape Object + true + 8ea3d944-5234-46ce-8de0-309341193327 + Shape + Shape + false + 0 + + + + + + 3442 + -700 + 32 + 40 + + + 3458 + -680 + + + + + + + + + + + + e168ff6b-e5c0-48f1-b831-f6996bf3b459 + Interpolate data + + + + + Interpolate a collection of data. + c38bf768-8e55-4765-a68e-79216a92a01f + 1 + Interpolate data + Interp + + + + + + 4213 + -443 + 49 + 44 + + + 4238 + -421 + + + + + + 1 + Data to interpolate (simple data types only). + ee7aa4b8-d343-4799-9e97-44326e8b51b2 + Data + D + false + ba66facb-933d-4bdd-9084-fdf31378561d + 1 + + + + + + 4215 + -441 + 11 + 20 + + + 4220.5 + -431 + + + + + + + + Normalised interpolation parameter. + 651ee240-e128-441b-b3cd-7c874bf4a566 + Parameter + t + false + ef04d9bd-6df7-4f34-9b5e-95c0bba48b81 + 1 + + + + + + 4215 + -421 + 11 + 20 + + + 4220.5 + -411 + + + + + + + + Interpolated value. + 15f97ead-92d7-4e3c-bc72-cd786e882edb + Value + V + false + 0 + + + + + + 4250 + -441 + 10 + 40 + + + 4255 + -421 + + + + + + + + + + + + 9c53bac0-ba66-40bd-8154-ce9829b9db1a + Red + + + + + Colour (palette) swatch + + iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsAAAA7AAWrWiQkAAAQsSURBVEhLtZZtTFtVGMfvvS0QNMbNb0aj8Yua6BfNpjFRF/ziloKWlVZ0sIpBEKnQAIWJwCAQEMarLS8pg4LQUVDeSoFaAoGBicZPDuWLiUaQTjrikNe+0P4952C94J1GE3aTX+7tPef8/+d5nvO05eglCIJBLpevk0ccBxEREetE7xJ5llHxD0wFbwf9PzmB7e+OBf+PTtRmJQaYCXFz+270AMuTx4r3209pJLc4nudDuGHG3eDPlHGA+Vng+ofAl8X/D2c60K8g658Bah8UuXoamHjnkMHHhMb7yeQzwBcXAVfKnbErAevzQNujRCjqYN2/IBp8cgiTnOzoJGB5SKTtPsAoOzrvPyAaXL07iAbXDmHl4MnksZ7A4RetgECrOOZv5OB+S2Bjaxoe7lQZvFUcghYOoS4Ovhry/j0B7sSDOcxAxhNB8uL2JR4hG4ffCzl8HR+NF547hdIzD2P1ogB8RgwI7jcF6GOehEKhgPa8ApdfP4U51QNwqwXcJHylOYErqtPQJ59HV1eXGEG38Qocr51grt+o7oH6bAxiY2NxNuYleNRE/PMD1tQ8lK++gtTUVBQUFCA3NxeZmZlIS0tDeno69Ho9iouLUV1djaWlJdFgcXERSqUScXFxSEhIQEpKCrRaLZLOvYxVEh0GiQHhJgm/LvYJZGRkoKqqCo2Njaivr0dtbS27Nzc3o7OzE1arFRsbG6KBz+djiyhZWVnIyclhJpfPPQW3jhgMEQNCoIPURSPDuxfUKCkpYYJmsxkdHR0sJT09Pejr60N/fz82NzdFA3rl5eWxsAsLC2EwGJCcnAwXya+3/kA8zG/5PPpUj7H5JpNJIj4wMIDBwUGpQVic5pAuTkxMxM8aOYK9ZHxYJNDJ4Yc3oqDT6dDU1ITu7m709vYeER8ZGZEahMVLS0uRn5/PDDykqCGa/xER+pkWm6aTGtxJfGxsTGoQFi8vL2dmSUlJLN/BPjI+KhIkfULf01q1tLQcER8dHYXD4cDExITUoKysDBUVFex00Gd69K6rTsJLmgt2kVvZAmyax9mGLBaLRHxychIul0tqEBavqalh55gWukz9ItwXBBZFcIDDbQOP7zX3Qq97n6XHZrNhaGhIIj49PY2tra2jBmHxuro6NDQ0oLKyEtnZ2ejUPI1VkpJfSac6NI8gLzONzaO5/yfx2dlZqUFYnDaP0WhkR5BGQutBO5RSVFTExv8u7nQ6MTU1hZmZGczNzWF+fl40iIyM9Ozs7LBBGjYVbm1tZQ3U3t6OtrY21lD0Ts87baLh4WHY7XaMj49LxBcWFtjXxPLyMqKjo9c4+sNMCurd3t5GKBRCMBjE/v4+IxAIwO/3M2i3U7xeL/b29v5id3eXQTdJoTorKyuIj4/fI5un/yw4GTEpiYqK8rCQjgGycw8R/4jjONkfpJ+5nr65zmwAAAAASUVORK5CYII= + + a9deea43-1b76-4a2c-b8e8-8305cc642fac + Red + Swatch + false + 0 + + 255;255;255;255 + + + + + + + 4015 + -447 + 87 + 20 + + + 4015.299 + -446.2288 + + + + + + + + + + 9c53bac0-ba66-40bd-8154-ce9829b9db1a + Yellow + + + + + Colour (palette) swatch + + iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsAAAA7AAWrWiQkAAAQsSURBVEhLtZZtTFtVGMdvbwtDjXHbN6PR+EVN9Itm0yxRF/ziloLWlVZ0sAbDi9gOGqAwERgEAsIKFFteUkYBobagvJUCtQQCAxONnxzKFxONIJ10xCGvfaH9e87BesFOowm7yS/39J5z/v/zPOc895ajF8/zOolEskaaOApiYmLWiN4V0hZT8cumQlUo8JML2PruSAj86IL+cnKQmRA3j/9mD7A0caT4vv2ERnKbE4lEYdw0417wZ8o4wPw8cOMD4MvS/4crC+iTkvnPAfqHBa6fBsbfPWDwEcHwEBl8FvjiEuBOuzsOGWB9EWh7nAgd25/3LwgGHx/AJCErOgF0PiLQ9iBgFB8e9x8QDK7fGwSDTw9g5eBVi7CWxOEXFY9gq9AXMHDwvMOzvlWlCJ50MXw1HEKdHMJdHPx15Pl7PDzJ+2OYgVhEBMmDO1dECNs5/F7M4es378OZF06h/OyjWLnEA58RA4LnbR7a+KchlUqhuiDF1TdOYVZ+Eh4Fj1uEr5THcU1+GtrUC+jq6hIi6DZeg/P148z1G/n9UJyLR0JCAs7Fvwyvgoh/vs+qQgTZa68iPT0dRUVFyM/Ph1qtRmZmJrKysqDValFaWora2losLi4KBgsLC5DJZEhMTERSUhLS0tKgUqmQcv4VrJDoMEAMCLdI+PUJTyE7Oxs1NTUwGAxoaGiAXq9n9+bmZlgsFlitVqyvrwsGfr+fTaLk5OQgLy+PmVw9/ww8GmIwSAwIwQ6yL0oxMi4qUFZWxgTNZjM6OjpYSnp6emCz2dDX14eNjQ3BgF4FBQUs7OLiYuh0OqSmpsJN8utr2BeP8FuhCDb5E2y8yWSKEu/v78fAwEC0QUSc5pBOTk5Oxs9KCUK9pH9IIGjh8MNbx6DRaNDU1ITu7m709vYeEh8eHo42iIiXl5ejsLCQGXjJpoZp/ocF6G+62TSd1OBu4qOjo9EGEfHKykpmlpKSwvIdspH+EYEQqRP6nO5VS0vLIfGRkRE4nU6Mj49HG1RUVKCqqoqdDtqmR++G/AR8pLjgELidy8OufJItqLOzM0p8YmICbrc72iAiXldXx84x3egKxUvwXORZFKF+Dnd0InyvfABazfssPXa7HYODg1HiU1NT2NzcPGwQEa+vr0djYyOqq6uRm5sLi/JZrJCU/Eoq1al8DAXqTDaO5v6fxGdmZqINIuK0eIxGIzuCNBK6H7RCKSUlJaz/7+IulwuTk5OYnp7G7Ows5ubmBIPY2Fjv9vY266RhU+HW1lZWQO3t7Whra2MFRe/0vNMiGhoagsPhwNjYWJT4/Pw8e00sLS0hLi5ulaMf5oyMDN/W1hbC4TBCoRD29vYYwWAQgUCAQaud4vP5sLu7+xc7OzsMukgK1VleXqavnl2yePrPghMTkzIaCQvpCCAr9xK9DzmOE/8BhAC5jGJuiB8AAAAASUVORK5CYII= + + ba1ef004-608d-4f51-aa3a-a2c349cd47c0 + Yellow + Swatch + false + 0 + + 255;0;0;0 + + + + + + + 4010 + -414 + 87 + 20 + + + 4010.518 + -413.9519 + + + + + + + + + + 3cadddef-1e2b-4c09-9390-0e8f78f7609f + Merge + + + + + Merge a bunch of data streams + f9953386-7c6e-460f-bc91-46f5ca1ee00b + Merge + Merge + + + + + + 4116 + -449 + 69 + 84 + + + 4161 + -407 + + + + + + 4 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + 2 + Data stream 1 + b4ea415e-35a4-4cab-b503-fc1fc3276b05 + false + Data 1 + D1 + true + a9deea43-1b76-4a2c-b8e8-8305cc642fac + 1 + + + + + + 4118 + -447 + 31 + 20 + + + 4133.5 + -437 + + + + + + + + 2 + Data stream 2 + 22ede97d-8028-4a34-bce7-4dbde100001b + false + Data 2 + D2 + true + ba1ef004-608d-4f51-aa3a-a2c349cd47c0 + 1 + + + + + + 4118 + -427 + 31 + 20 + + + 4133.5 + -417 + + + + + + + + 2 + Data stream 3 + 2676b1ef-6a99-4ce4-93cb-286fd4d93a19 + false + Data 3 + D3 + true + 0 + + + + + + 4118 + -407 + 31 + 20 + + + 4133.5 + -397 + + + + + + + + 2 + Data stream 4 + d66cfe0d-47da-4143-95bf-9f2038721a45 + false + Data 4 + D4 + true + 0 + + + + + + 4118 + -387 + 31 + 20 + + + 4133.5 + -377 + + + + + + + + 2 + Result of merge + ba66facb-933d-4bdd-9084-fdf31378561d + Result + R + false + 0 + + + + + + 4173 + -447 + 10 + 80 + + + 4178 + -407 + + + + + + + + + + + + + + 9445ca40-cc73-4861-a455-146308676855 + Range + + + + + Create a range of numbers. + 1436f406-dac7-433c-a2f9-f67cfbae27b7 + Range + Range + + + + + + 3977 + -225 + 95 + 44 + + + 4048 + -203 + + + + + + Domain of numeric range + 14967fb6-27a6-4492-b450-1b1dfb702f9e + Domain + D + false + 0 + + + + + + 3979 + -223 + 57 + 20 + + + 4007.5 + -213 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0 + 1 + + + + + + + + + + + + Number of steps + c8751f1e-5e24-4a20-991b-8e16b1638d21 + Steps + N + false + bf2ad2f2-b518-4383-9f2b-9712b84ae44d + 1 + + + + + + 3979 + -203 + 57 + 20 + + + 4007.5 + -193 + + + + + + 1 + + + + + 1 + {0} + + + + + 10 + + + + + + + + + + + 1 + Range of numbers + ef04d9bd-6df7-4f34-9b5e-95c0bba48b81 + Range + R + false + 0 + + + + + + 4060 + -223 + 10 + 40 + + + 4065 + -203 + + + + + + + + + + + + 59e0b89a-e487-49f8-bab8-b5bab16be14c + Pan + + + + + A panel for custom notes and String values + + iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwAAADsABataJCQAABKpJREFUSEutlgtQVFUcxvfBM3dDa4KUUFPwkSilBuWjmnQ0QzIhBUEtcTSzmqZpTJqyZphezmRCA5PiDKkVJJZp2DAxggTIc0F2gUVgIXnIe+UlLCC7X9+5u2Cz2sQ0MHxz7p7d+/3+9zv/e++RiT8nJ8UBtYu8g4eYDAkvekbxWClzdVa8HRq8esjUcw0wD1EDwGgfcLubMgIj7cBwK9UMDDUApnpgsJaqBgb0wC0dVQb0lwB9RVQ+jHVnsHHd4kEJ4qZWNA9284SaSKBo9uRIH4IuQxJULvJ2mUIuswD8v9cP/5ceBYrnwNKTPRaZDJMCKKaxZi5Q4g2UzmNUORMD9Pw+AxVHp2IkZ+Zd3w1leaHxe3eYi+bQ2MdqfHUBULaQgNyJAYT5b5FKZEe5YjRvlm3eGoM+7kHpu5YUT5vxY4B2EaBbzEW/MjGAqDzjXWfJqChaBUvxnRjqEj2k+Yq4h2jqC5QvASr8gMon2Fl5EwMI9aV7IW2fo2Sm+3raeAyDufOQuluJtDecMKJh1cJYvwyoWk5A/n8AxKIxBmhYLfNt/fkRCSBkSJxujaHcD7pYd2lOG+NO4yeBawFA9VO8Rwr+BfCPbhjJ90ZVggf6MvmZ2YoohNnFPQ7oTOOi6pdiSOMnXYGY77rEmGpXAIZVvBEL7QBStcL4TjdUJjyM5O0KXNjrhIHcBTBr/ZD1/pRxSPM5Xh2rbTjrLc1lvDcF5prVQP2zBBTZAYRp6Xwas8W0oht8UZXoiR/CFfiJkIyDapjLl6L3T1/m7iAZirEllb83rEbuJ9OkufoUelxfw0dKsR1A9K7UYr4YLubIbuhIn49TYYpxiO5btmPN09Cf8JLMxq7EkOQDY/Yy6XP2ITZB03oCNHYAadGW4PwBNxwPc0B39iJYKpfjZIQDTm1TIHmnEmd2KND2hy9G9CuZu7V1x5T1gZs0pr3pAtx4kQ/GEjtAxePoveKLpLdUOLpJjuT9zFMfgIsHpyIxVIHCGE/8GKHAuT1O6Mn3hzbeehUVCbNZ9QPjoLJ4NkrrS3z6ltoB2LvfhDnhcKAMXwXJEUPI5cPTURA3Eye2KFCTshCa+FlIIuT8XmfkfuqOC7uUqEvherUEoitvJVozA2Bp3QS0BxNw1Q7AbvhuvxqfbZBJkCM2yNl33HAsRI5CUVnjOhRzFJAURvZrJKPUsGPahOlmoIPGna8AXVv4HimzA9SuQslJH0Svl+FzQtK/9ERssBKxhMRtlqPoGFu4eQPzDURbzgqUHJ+LzoJnbMYhNuOtgDEUuLmNLyutHYC9a6l7DqnRM/DLRx4YrV+Dxkx/nN53P06/rkJv+fPMNshW7cvWaoWxqFaYGsOA7nAqAujZQYDODiB6t2GtFAOaXhivFi0brYt2rxjGqhXGPduBXhr3vcon6Wuw3C63AtSuyg7Tres86ZCdMauVjFntXTGwWslYVCuMd9qMd/Eht5v3wBfo6rgElcqxXewoosK3rjWZ+vkytwxTJoovfnM/1UvdpLqoToobAHMLdYMbgyaO3ASM/kXxXLOBqqGqYey8jKAgf5NtZyFT8uBj9X0Ok7dtUTuKbcuHMplM+Tey79rSRZW4IgAAAABJRU5ErkJggg== + + bf2ad2f2-b518-4383-9f2b-9712b84ae44d + Pan + + false + 0 + 0 + 4 + + + + + + 4025 + -278 + 50 + 20 + + 0 + 0 + 0 + + 4025.384 + -277.2247 + + + + + + + 255;255;255;255 + + true + true + true + false + false + true + + + + + + + + + f6867cdd-2216-4451-9134-7da94bdcd5af + Legend + + + + + Display a legend consisting of Tags and Colours + d2ef2f7c-c00a-4248-b6b6-08a83adc6ff3 + 101 + Legend + Legend + + + + + + 4347 + -487 + 157 + 274.1462 + + + + + + 1 + Legend colours + 4389a896-2c34-4782-9650-d386271cd8f4 + Colour + C + true + 960b6a09-375a-4c65-b6b9-df0259548702 + 1 + + + + + + 4353 + -485 + 97 + 48 + + + 4401.5 + -460.6625 + + + + + + 1 + + + + + 4 + {0} + + + + + + 255;211;211;211 + + + + + + + 255;105;105;105 + + + + + + + 255;128;0;0 + + + + + + + 255;0;0;128 + + + + + + + + + + + + 1 + Legend tags + cbd75621-bd10-4d49-aa8f-92b7cad089dd + Tags + T + true + ef04d9bd-6df7-4f34-9b5e-95c0bba48b81 + 1 + + + + + + 4353 + -437 + 97 + 49 + + + 4401.5 + -411.9875 + + + + + + 1 + + + + + 4 + {0} + + + + + false + One Fish + + + + + false + Two Fish + + + + + false + Red Fish + + + + + false + Blue Fish + + + + + + + + + + + Optional legend rectangle in 3D space + 53ce7cb4-bb65-42bf-8bcd-d86d4201b50c + Rectangle + R + true + 0 + + + + + + 4353 + -388 + 97 + 173 + + + 4401.5 + -301.2519 + + + + + + + + + + + + f35132c0-c298-4b9c-b446-42e960f52677 + Colour RGB (f) + + + + + Create a colour from floating point {RGB} channels. + dc271d42-cf7c-456e-b096-ccaf6e0feb89 + Colour RGB (f) + Colour RGB (f) + + + + + + 4206 + -275 + 109 + 84 + + + 4268 + -233 + + + + + + Alpha channel (1.0 = opaque) + ac797edf-e63e-4c36-96b9-54c90d54f3a2 + Alpha + Alpha + false + 0 + + + + + + 4208 + -273 + 48 + 20 + + + 4232 + -263 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Red channel + a77a8205-7244-42de-b546-3bcd72f58931 + Red + Red + false + 66ad94f7-2238-41e9-b70a-22877af50e02 + 1 + + + + + + 4208 + -253 + 48 + 20 + + + 4232 + -243 + + + + + + 1 + + + + + 1 + {0} + + + + + 0 + + + + + + + + + + + Green channel + a47e94f8-36e6-46ad-af4d-fedf3cfeda40 + Green + Green + false + 66ad94f7-2238-41e9-b70a-22877af50e02 + 1 + + + + + + 4208 + -233 + 48 + 20 + + + 4232 + -223 + + + + + + 1 + + + + + 1 + {0} + + + + + 0 + + + + + + + + + + + Blue channel + 87164a72-c2f1-4017-b661-9a774880f855 + Blue + Blue + false + 66ad94f7-2238-41e9-b70a-22877af50e02 + 1 + + + + + + 4208 + -213 + 48 + 20 + + + 4232 + -203 + + + + + + 1 + + + + + 1 + {0} + + + + + 0 + + + + + + + + + + + Resulting colour + 960b6a09-375a-4c65-b6b9-df0259548702 + Colour + Colour + false + 0 + + + + + + 4280 + -273 + 33 + 80 + + + 4296.5 + -233 + + + + + + + + + + + + e2996e6c-e067-42fa-8f44-2192c6763262 + 6ffcbd5d-525a-4a15-948e-4c777cbffd9a + Rich Graph Mapper + + + + + Represents a numeric mapping function + af973be9-d260-446b-bbca-970970ab8222 + Rich Graph Mapper + Rich Graph Mapper + false + + + + + + 4062 + -134 + 214 + 100 + + + 4062.373 + -134.697 + + + + + + 1 + Input values + 0a5c1a33-55df-4ea4-b643-6bae8a7ec6ff + Values + Values + false + ef04d9bd-6df7-4f34-9b5e-95c0bba48b81 + 1 + + + + + + 4065 + -135 + 81 + 33 + + + 4021.5 + -118.3333 + + + + + + + + Source domain + 92a1512d-29d3-4463-8ba9-6fcee66840c3 + Source + Source + false + 0 + + + + + + 4065 + -102 + 81 + 33 + + + 4021.5 + -85.00001 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0 + 1 + + + + + + + + + + + + Target domain + 0ca2a109-8bd3-47a6-84b1-aaba04fe9c12 + Target + Target + false + 0 + + + + + + 4065 + -69 + 81 + 33 + + + 4021.5 + -51.66667 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0 + 1 + + + + + + + + + + + + 1 + Output values + 66ad94f7-2238-41e9-b70a-22877af50e02 + Values + Values + false + 0 + + + + + + 4240 + -105 + 33 + 40 + + + 4292.5 + -85 + + + + + + + + false + + + + + 0 + 1 + 0 + 1 + + + + + d261fdb4-a2a5-4861-a206-f7ac8f9109cb + Sigmoid-Logits + 0.12576016783714294 + -100 + 100 + + + + + + + + + + + e6d4e3dd-2058-40b0-958a-53b8bb6c13ae + a48ac930-c378-48dc-84da-26b2af9d8302 + Save Svg + + + + + Save a SVG file of a Drawing. + 2a0c0e22-b754-464f-98f5-ac790dc06319 + true + Save Svg + Save Svg + + + + + + 2729 + -1070 + 564 + 84 + + + 3240 + -1028 + + + + + + 1 + A list of Graphic Plus Drawing, Shapes, or Geometry (Curves, Breps, Meshes). + 022178df-036e-4691-bdfe-57ce8323b836 + true + Drawings / Shapes / Geometry + Drawings / Shapes / Geometry + false + 25a54f3c-b88d-4ca7-9044-bf3a051d6a90 + 1 + + + + + + 2731 + -1068 + 497 + 20 + + + 2979.5 + -1058 + + + + + + + + The folderpath to save the file + 4c12421b-f816-406f-9423-ecbc3096aabc + true + Folder Path + Folder Path + true + 0 + + + + + + 2731 + -1048 + 497 + 20 + + + 2979.5 + -1038 + + + + + + 1 + + + + + 1 + {0} + + + + + false + C:\ + + + + + + + + + + + The filename for the Svg export + 828d915b-75b1-4cb4-a077-3d95abbd4028 + true + File Name + File Name + true + 0 + + + + + + 2731 + -1028 + 497 + 20 + + + 2979.5 + -1018 + + + + + + 1 + + + + + 1 + {0} + + + + + false + 16384 FABIUS FUNCTION CURWATURE STRAIGHT ANGLE CORNERS..SVG + + + + + + + + + + + If true, the new file will be written or overwritten + a7dcd153-756c-4587-a394-bacd93272e02 + true + Save + Save + true + 0 + + + + + + 2731 + -1008 + 497 + 20 + + + 2979.5 + -998 + + + + + + 1 + + + + + 1 + {0} + + + + + false + + + + + + + + + + + The full path to the new file + 4d681291-6e7d-4866-b97a-1301373bc7ae + true + Filepath + Filepath + false + 0 + + + + + + 3252 + -1068 + 39 + 80 + + + 3271.5 + -1028 + + + + + + + + + + + + 33104752-99ac-4ed7-a11e-a6f6d9502462 + a48ac930-c378-48dc-84da-26b2af9d8302 + Save Bitmap + + + + + Save a Bitmap file of a Drawing. + 036bdb7d-d4e3-4f7d-8f8c-93d4904d14ba + true + Save Bitmap + Save Bitmap + + + + + + 2729 + -1231 + 564 + 124 + + + 3240 + -1169 + + + + + + 1 + A list of Graphic Plus Drawing, Shapes, or Geometry (Curves, Breps, Meshes). + b291643a-47eb-4407-974a-aed721e88aaa + true + Drawings / Shapes / Geometry + Drawings / Shapes / Geometry + false + 25a54f3c-b88d-4ca7-9044-bf3a051d6a90 + 1 + + + + + + 2731 + -1229 + 497 + 20 + + + 2979.5 + -1219 + + + + + + + + The folder path to save the file + bfc23369-cb3b-43d4-a800-5b3043761b7c + true + Folder Path + Folder Path + true + 0 + + + + + + 2731 + -1209 + 497 + 20 + + + 2979.5 + -1199 + + + + + + 1 + + + + + 1 + {0} + + + + + false + C:\ + + + + + + + + + + + The file name for the bitmap + a74d8e37-1228-4e0d-aa2f-17b623c94178 + true + File Name + File Name + true + 0 + + + + + + 2731 + -1189 + 497 + 20 + + + 2979.5 + -1179 + + + + + + 1 + + + + + 1 + {0} + + + + + false + 16384 FABIUS FUNCTION CURWATURE STRAIGHT ANGLE CORNERS..PNG + + + + + + + + + + + File type extension + 13e14468-790e-4997-b4f5-6d14bfb22918 + true + Extension + Extension + true + 0 + + + + + + 2731 + -1169 + 497 + 20 + + + 2979.5 + -1159 + + + + + + 1 + + + + + 1 + {0} + + + + + 0 + + + + + + + + + + + The PPI (Pixels Per Inch) resolution for the image which must be greater than or equal to 72. + 83014e14-a185-438a-9208-bcb081f80e6a + true + Resolution + Resolution + true + 0 + + + + + + 2731 + -1149 + 497 + 20 + + + 2979.5 + -1139 + + + + + + 1 + + + + + 1 + {0} + + + + + 96 + + + + + + + + + + + If true, save image file + f3a05004-8fc0-4fc8-8f25-6b4f036c6684 + true + Save + Save + true + 0 + + + + + + 2731 + -1129 + 497 + 20 + + + 2979.5 + -1119 + + + + + + 1 + + + + + 1 + {0} + + + + + true + + + + + + + + + + + The full path to the new file + fc720a4a-7aea-4227-bb74-e284c9c915ca + true + Filepath + Filepath + false + 0 + + + + + + 3252 + -1229 + 39 + 120 + + + 3271.5 + -1169 @@ -163292,7 +171084,7 @@ Note: Right click on the component to save the image or svg - iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABeJSURBVHhe7Z1LbFxZWsdbgACN2LUQggVIMxICiQVCsGLBsATBbGAEEsOC2fRISCwQI8QG9SAhQGo0I0aanqaltJ10d2I7j3YedmxXko7txHEeThzHrvKjk9jld/x2/I59+dX5n7p17qNedqWJq/qvm6tzT517Tt3vd7/vfOdWlfPWV6oGeV/p2CqHcHBw8M6dO52dnXohpN3d3cXFxYWFhc3NTVuV1ezs7OXLl4eGhuyxo6dPn3Z0dHz++ec3btzo6uqifwocvm719vayv3H9+mB395/v7HB51bqhHMInT55g5fb2dlMfo42NjfX19b29PXuc1fz8/KVLl0C4tbUVevXZs2eJRCJjzRs34Nfd3f0lILx582aNIuzr63vw4MHw8LCpD+jVq1fwOzg4oIwXPnr06O7duyDBUhTu3buH1fofPXrc3/+wrw9P3dnZ4RTa01tbW5ssS0sV0PXr16+9NtE/b4x7peYQ9vf3c/Hnzp0z9QGBZGJiYm5ubnp6emRkhGY9PT2wwWUJvCCE/elPT+OC01NTfQ/68MvJyUlcFoN+/PHHOPetW7c4xXdBvBPSS0tLBGf04sULTlHZFw0Op4GBgdu3b9ciwocPH96/fz92SnMFzlQqNTY29oURhWQyeaf3Dq458Pgxjkg4tU09j5euXr2KMXELQAKPWFpXVzc6OoqtuSfYqz0UwbZsRDk645au58+fK2LXohfiK/iNqQ+IKDozM4O5sbJLSBJRMpf9/X1blRXWZC7U5IRJQYjX4r50RaTd3t4mS6JAS/Y4MXtEpTuncqieuXtUw4kqxIp3wu1SiwhxIxBy4aY+LKwGPPbRdIYJD0HRHjvCmgRbwpoiGwjZ4+ulOBlTKczwVPIsxBBECNJmPJtQSTy37SIi5utCajSQYiNTnxNO8PLlS6wJP/Z4CZVMdfgWgZNTECZLp9Nq70oIcUEaZ+ZAk8hwWBQho9CG24VuRY5RiNuMyNTL7ULBNvU85lTcGhGECRj039LSwog1ms6cP3/e1OeEHbEOIRSQhFOSFCppDAycgzxzfHx8dXWVstq7Im0RM7kgIlBzSuFIiIicOD13D/Misykn4naAIQ1moIsXL3LD2aYmSV5bW1tZWeEdgpDGZ8+ezcTSGvRCEktiFBbBfK5wPnmhDmkAS/wAa+IfFDiR8EV9SDgQmYXCmiGY0ZUrVzC3GT0nbgIAMIQK8nUG5SbAlUl/AD87O0uHeCGjR6OFL5xVS4tanAuhqL3EStEVNZrSiFGA0QznixrqQ8KOuKABZ0WzDz/8EAZm9JwIhjgc/Jj8EBRVD0tyIkDi9xcuXFDqhJNxqAZRwds+EqrBQCpyyEKLEyklsTGTLBQTzQAWeqhGmR58QiWK8IjH44V4JBSJ6vg9b7jz5s35uTnbKKvaRYi7uBRDEj8VYOBSySfa0Kfye1tlKvHOchEyKXIWzoeD4oWfffZZY0PDzPT06MgIK1HbKKvaRYhxyfryURRCRJlm4lFYGJ0JLARbh+UiZO5kxiX8wo/VBSnVpUuXOtrb+x70zc3O2kZZ1TRCjA4hdzoMSRRpEGUTEq9qjowixC/LRYiYEUlkSJqgSD/sCafMnfZlR7WL0LdvPoTiJ9Gm8CdHvEQUJeTa46yYHevr65nVzOhhsXoBEmvBWMbcN7BhikW8AVsbERmp/XikBhFmLtt4T2w4tfSyoibqZL6A5y4HfVHf2NhI8mlGD4vlIOsKpEWFq4ODA63x2ZPaJJNJ1bN0Ia6y/IA6BU7kzbe2thJRahQhkgPF+qKllxU1eFWUEzU9PT2h5aCvtra26LoQwQ8MwGDpGX2Mh2DDmrK9vZ09M6IqiaX4NGsSMp2pqSmI0v+ZM2cyb6xmEUpk7SGKlpsjVcYmqNwE+IE9cIRlP/jgg+i6EIGQQCoSULS1WeGF3BNMhyRTvDcK9oWIcFAwM1bNIWSa8YUJ9CQMe2GsqIQQQTGUoIIzuhz0pcrYNKSotC4cHx/XwyBbGxGZDpeQGavWEGIaV2SApBW4y7QjjIjwkoGBAezoU3QTVArwiw2wiPoTJ07QiRk9LJwPL2TQqBf6Wl5exh0LpDO1m5GWIiYqVtmkDEDyESIo+m5H/CSKGl4xIuqyQmfqsj1GRDhF9iBOGxsbjIU72uOIatcLC+vlyur+wT5LMVyQMHjq1Ck3nCIokqASfnER9zsWIVGvdUsqlWK1HhLO7ctWRaRn68geB8WJfp5ccwjJBrE+gW5ychI8uAvhFFfrutX7oOv8jZ9+s6vhv80pmUfPAHO9UKKSs3AR9gKWTyzsMDSrt9ch/+6pOYS4F5ZVSJSjQBQYA0OjLU0/6vr3X+p8/1/NKZnkkKwvihBxOlGUfmTEAioQbCulWvTCc+fOffLJJ0wzLLwIleQF3NEnT9YT9JZn0rs7O/Pz8+Qaa2trTU1NJKKWW1ZAJZRB0Zowv+gWhEWd9YiqOYQknGQBkNCSjgJTmlxtKPu1NkIouSJJDauOKEIkhKU8QZWvF252RNUcQnxLAIioxEl4MCnifxRYhJEHIvHDX4EaOxfSA/UU/AQ1VrzE/ZFv4VEpCeG3agchnkeKgbAss2CowKuSCFlojqjv7+9nBhVa2nBiPkLUZ0bK36AiEsK/rB2E5CAYtLBowwQGnliKuKAtGdEmX6iksvDaoyLi7Q51d/9t7SAsMazJ+nibBZUVNXhhNLqCPNotNdAtHGyPLhAmu7vfqR2ErAVLNCjNsH6IouZRe2AknHqCGu0ZtORNrxthqrv7X2oHIbYuPcvH9CD3mVEIRVFJFGNvDqbV142QsA/C92oHIY5Vuk1p5qY2hFBkqAVEA7WJjZkMZ0uvRyBkLqyrHYS4YOhjo8ICCfOZEMZGUXrzxSEz6LVr1zCrRJl0hn7scX5puEOIcwe6u6/WDkIuGLfA0BTAU4poqdRGy0FLLxtX3UfVKuOLWksgTuQUtyZWNLNAyhdv72F396OdnZ8NXnY1bQGEIMGr9GCldOFMOBl4LD3Dj+Q2lUq9NL9wYL++vs5en1LtFRQN9vf3Dw4OtEecxVsChsVSjjjrbnf37M7OLwcvu5q2AMLV1dWVlRXMvVaCaAYe9kNDQ/gKVoYcYkZMJpMXL17kblheXl5cXNRPeefm5iBkRiwiWnIKQ3A6BUZpamriRrFYyhEIb3d37+3s/G7wsqtpQzmEMrepLK6dncxvjnAa5jPsC0ITLx8TVAFJCjo9PW2bOoJHOp0Gz/b2NgVuGpxscnJyaWl5bXEm/eTK7vamHJcGW1tbulEaGxsPjZB4wHv9dvCyq2lDOYRELVOTEWXsqBoK+hgda+JJy3Pp50O3X66vwRtDd3R0NDc3YyncToEUkHgh85zOnTdaMH9Dgcbt7e1Mb0Tgq1evcgppbevVq+2Jzrt17wz89Bsz4/arhb54DwTqQwdSIfy34GVX04ZyCCUMvbm5mUgkMDH+hJVbWlpwMuze0tLafetBT8NffPb9t0fv2y+QjY2N6VNWRETlFBwRp2Eu5FUAmDkuI8pEXSItL42MjECakJv51efAk96ent6T3xrs+N/tndxPtHUDydHp3GIpRz7CK8HLrqYN5RDq++2YjOAGDLJTYBASSRrNuuA+prxz9/FAxw9u/fDP5scnacZZpJr6xh/C0JwFJMDruy20IWxmfmloftbLPEfjtrY2GOOpra2t4OcWYZSt7YyjM/rs7OzMzAwtKeC+vKWPPvqIZhqiLPkIiem/GLzyqtlQDqFyGWIjARMrnzx5EmzAqK+vZ497nTlzhuUcLfGOza0tfQJ1+fLlhoYGGlizff45CC9cuIDjmv4zWRICJGW4clvwEqS157YYHBwk6u6YGyJWvJmjBFLSGTr5g+CVV82Gcgglwpe8kKBHrMPQFJjhADM6OqoZzhVeSMhlSpPVcETKsIcWKSW3BfAkDslx6EdfXpKIpdTQCckRYSAq6mOf7JQiIWRq4H3+c/DKq2ZDOYTELqTsgxkOt9OflYEHUxdlwh04pxyBBK8KuQjmxnBQp70vbgVEV7T3xRBQpCXUCa35ZPstXy7CruCVV80WQCgrS9ga4YtYEPtiC0QBPExLrqi3BnNEMyIkhDIZavZhN/uQfKL4WWw/RxR9+ggJ018PXnx1bAGEMrcvWdkao3xBkVtBFNWVX/AlhGrD7XK4aFlALkJUlbEUxSOUiZmitIazJilfQHJ9MSTfCynQAHNXlmII4ZDn/Uzw+qtgQ/EIESbG+uwPbVZO7OzstN0ZGXABMQTpDAh1GPsR/6EVQoj+NHj9VbChQggRjngU5+BETi/giFS6CCn4ye3RFUV4I3j9VbChvAgRNtVjz6N4Buf6qY04uaIShPbAHDKD2jOPrChC9MdBExz3DRVBiJ6Yv9KFOaxhyhcUQ6mNKxchos2hF4IhxSK8EzTBcd9QIYQIm2JifPGI4ZS98Ph7XyGEiAYVSVBjEaK/C1rhWG+oOEK8B0ekoHWhNU9EvJRPvIo1ldoYRjkx+YEwWk/NUW4aKR/CBc/7laAhju+GCiGUKdnLEQmGBWxqYGWE4UIFRPnatWtdXV0wsw9ssmKu5S4x4MI6YoKaDyG6EDTE8d1QDqGfN7qSKXkJhBzGfu6TSCRgvLi4uLKysmo++tcn9RRC2tjYYKC9V6/sY1OjsbExjRKVEtRDUyyAEP1D0BbHdEPFEapALFUDPMm1KTZqaGjQ3yGZn5+fnZ3FZPv7+3Pm726bJ9WZP5QuOy4vLdXX1UHGDG01OTlJt/66whc11Bd2/cIqjHDf874ZNMdx3FAOIR5GTMvgCkoGhR9rRFnWWigrLDU6OkoPr8y3m/RRLXt9hSlT5h/a2/vwJz/5m+9853vvfC85NARjeOOX9ECMpX8N5EoUK/JJRayYFH8raJFjt6EcQszEzBTyRWtL44tCSKHX+cYw01VzczO2Nr2Ftbm5mfkK09raw3T6T0ZH/un99//+u9/9wbvvriwvY1n46UN5+olFiETxcAlqUYTomef9RtAox2tDAYSh52G+ZE2mQ+a8kE2Jq42NjexNb2HhhVtbW692dm5NTLw9NNScTs9MTIRsmk6nuXU0RFQMpxGBUS7FUhCiMc/7RtAux2hDOYRcMzaCTcgRJazJXo4o+ekie06ZcDQ+Ps4MR6icmpqCUEbj42P9/RPPn8/Nz09PT6sZ1TPmTzQDyXYakRAiyuUmqCUiRGnP+/2gaY7LhgIIETaKhlMkg4JQZfY00ykIY3UERZpKMnnL/AkN+qSGVQWVetUXUVQ955MFaBCyLytBLR0hWve8vwpa51hsKIew3YjcEstirFiK5Du+I1JTONHgJYQR9U0ZfbXebU8ZJOpKfcbKEMyIMv3Yk0tQWQil9zzv54M2esM3lENIfoiIfgQ3nMNQC0gGBaGfelApJ7M2i1MGo5ll6RMA7BUPkV5lHvU7j8rSy4qa0hPUQyBE9zzvD4NmepM3lEPoihkRW8sRsZprYn12IWtKJQY3tcEXAYlfir2kCdh2FyfxkzgsMUE9HELpx573a0FjvZkbyouQ68dYUf+gxk1qOCxr9W2QZTxP0ZWBqGRdiG9Fx5IsOkdUFvV+dBSEiFXju573q0GTvWkbyouQ1IPr9x3RFxZkaaHVhWpogMsWNagrwzEcXSmow6gMuLCKJqhHRCgB8n887/eChntzNpQXIdePgXCOKEUCKeEUI9pjQzH04K1E6RSiKwOBkJ7pze1ZMshiVDiGVwShL1a+/+h5vx204P/7hgohlCGwVJSikhpessfGyhhUp5QrMCC8iuhKz3rOF+o8KuqhbruIU2URSq8874Hn/cjzvu15v+l5vxA06Je/oSIIsawyxhBC+GFr7IgRJZaJCr+xKuUbvYzFoARVorSeBAmkxKC25IhK92lfSEKon2W9Jk143nXPe9/zvu95f+15f+R5v+N5v+55b3ve1zzv54Lmfh0bKoIQYSBlp4adFcYF4ZMnT0ZHR8ey/6Po06dPBwcHqddLyC/jWOqtqBgOKvTPiGbOzfytfkssTrwZ3m0sRSoJDPraf8WVSiZHk8nxZHImmXxhNgrPksmhZPJeMtmZTLYkk03J5MfJ5Ilk8oNU6sep1A9TqfdSqf8aHmb7z+Hh/6jEBqziCCWczHVEysxe3OM0Xltb29jYYP8y/38gsre3R+N87oIYzhVuDR49OwWhH1qpiYp6QgWOrnNDo9g48KXoWiJxI5G4mUh0JRK3EomeRKI3kbhrtnsdHffN9qCiG7bNIfR/2IdCCDEKExVGREKIWbnBW1tbaby5mflp7rr5Qb1OH0ilbl+4sDAxsZ3V6uoqjdVVVHTOiPg6ewRs7g+5IPAQBUIr3kyBoWPF6ZxIZkRvetu1IKydQ7i1teVPG9jRRYgwNJVYSggRt/+Q+b/sdYqELy4vLp4/cWKgr293d3fJaN78FdO6ujrchSAJHtHSE1RllYuLi/pZNjcECQj96JDbAjEKvSHuMxWi0kvsp6encQj7vqtd2DyHUIYwIGIQIgxNfJMjwpLDs2fPLpv/ABuBin1Pby9T0+IXX6gfXziiOgEYQU/uAkhwMlZ9ff3CwoJI468HBwfsZ2dn9Yk/YhTbUQnibdQoQkxJ6mGMkBchAOAniko69KtgxO2P90xNTWHuAxOWVY8o41XuSpyCLwYCpz7fL0t4Z+yCgVuhRhG2tbURG40R4hEiLI65/XBKQXOVL6YrPURFAJa3IQq2i4hIQ06fPg1mDe2K+wMXnJubwyltVVbU8Gb8N+wKhB3mPzmoBXG9OYTurJYPIcJwfjhFTG9RZdJEkygCT4kiZ9nzI+LV5ubmWIRIzh1d2xGZCQNMxstLSyHAKysr3DH53n+VievNIVTEM0YogtANp/kklrQp+uBNgHE4De2L0EpMJrvh3iIO4/F0RahAxEneg04fGhx63N8/OTlJG9If0JLOcOsUHbc6hKFyCLnZS0GIMA23eWGECITa++aOFW564sSJWC8kMSEqmt+ET0GFRTrj0htJEIH66dOnZ5uaSKNIfJK44/Iy2RB7Ivmnn37KnpZVTxEr5RC6RiyMEGEapTOiFSvjh0WegSFeIjWN9UJbMkqn0/pvpHA49qOjo0DlDQwNDrK5eQ3U6ZChCfh2jOoV15tDSNbAbW6MUByhhJliKYqcCipj7nwU8cJTp05FvZCQCC0cC19kerO1WeGC4+PjzIX22BFLEW4aJmPGLXz3VIG43hxCjAUPY4SSEGIa5ptSHBFRdhcVrhiopaUl6oUIR2SG5iU3nZF36j8jSqVS0dUISSyRlkFFEY+sYopcbw4hxjIWyKhEL8Q0GKsARfFDlDGoPS0oBmpvbw8hBAzpCSKdUZ5CJe545coVehMhFjCxCPFCNZAYukAMOO7ienMICVwlpjMhwSYfRWtFIw6xbNSUBNK6ujqN64r3s27+k14yFChSQ1zlXQ0PDxPwx8bGWEv0R/5Te0R7F6FUrQkq1xtA6N/RpSPELnoCLmaurPEcUUlKGTIlh1SSVeJkrnAmsk2iInvK1OiPR+m5AQV6GxkZ4aWQiLH6oMMV91lVJqjAyiF0VZYXYhfaF6DoF6RYU7LUKyreErcLoge8Sg+JSFhCCvEDHqJQlQkqsCqAEIEEM5Xii9RgyqN7Az1AMdp/PokigI8+9BslYFUMIc5hkIUlC7qisiJZIj3I+22/+SV+7Cs19JsjYFUGIcIuWmsbcAHJjq6orEh+QQ9kLrFDRAVCUaymBBVYOYSkM4gMkKTmEAgRdiFIRilaE0bElGbPPJoExnYaJxr4BZWrJkENIGRlhjKf7+3uEm0OhxAqwuZLtouKlyoyM/mD2n7jFEWIYrOqY6cAQkkUD4cQYRT3CbiMlc++1OPuFaHIoPlGQcImfhKH1ZGggqzCCBEGxb1ciu4+JCrJgypCsXBqI2wqSJSrIEEFWRihnkYeBaGEgWKZRYU17TlHk26dAoMKmwoS5eOeoAIrhzDzNaOFhRcvXnA7Y4ujIMQobjhFGEv7qKiPffB2OAEm30BI5FxReawT1ADCr3RMZRF+pWOst976P8SkW4dy5fXhAAAAAElFTkSuQmCC + iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAB2JSURBVHhe7Z35c1VlmseZrp6aqan5A6Zqaqanp0ena0Z/sKu0RQVlVzZFB1tlXFFxLUvLHUdURjZBgiSQCAHZ40AgJCwSBDvbDUlIwNCAsnWjbOJCAoFAQsh8zvmenHtyzr3nnpub5N6k/NZbL+/7nnd9vu/zvM9778mlz8/oDWj9GT0WYQpffvnlF1988XUTr732GlkS77zzzvvvv/+/PR+TJk1atGhRSWlpqKz0cnOzFu+DK1ciBNDYeJEQrUKXBtDQcL7ZnLyzMEzhnXfeeccddwwfPnzUqFEjR44cMWIEaQrHjh37Xz0c99xzDwuZP39+WSiUOIUXLjRGq9ClAUBhU1OTc3QQpnDcuHH/bYKEnX7ggQfuu++++1MYTO/uu+8eM2YMW80q8oA6EJmZmQmDCVJ46VLT+fMXolXo0gAY+uLFS87RQZjCu+66C/2T2pFQlpWz/pTFH0xg8KdOnfrCCy+gbdaD9qAOj9DCBCkkNDdfbmho8KnQdQGYNqDdBgJhCjGbt99++7Bhw9jRQFkSEkFqAmIeeuih3NzcoqIiWGTPWQ/a495772Uh8+bNS5xCwtmz51wl3RNAU1PzuXPtNhAIU8hSvWxp8WikweqYMegoaWWVACq0S5RwVVahDUwfMRX0CKgckLY7tMu9XSkBZ9gMPC/8r0cffZRuyXqBLaGHjIyMxCkE586dc/kU3RnOnj3rzIIwhaNHj2adSIGEZETMNh8/fvyTTz752GOPkXj22WcnTJjwxBNPkFXiqaeeevrpp4l5+vjjj1OiBAJ97rnnqPPMM888/PDDZPVUTR588EFieqPyI488Qm8MIVDz+eefp6H6oRpQV7RF56hAghhgPCnhwGYIzm9ma3gvJkjbYFGQnZ6eHiovT5zCxsZL58+f96nTdQEwNOexPToIU4jZvO2227Cf2FISQ4YMGThwIEQuWbIkOzsbX4CzZN26datXr8Y7xygtXrx4wYIFK1euXL9+/bJlyz7++OOsrCyeUsIj6q9du/bTTz9dunQpjxYuXEj8ySefUIGnKATV6I3OV6xYQT9UACSoX1hYSE16A1SmpKCggGoU0gk9U4058BQTqqGJJ06cOGjQICYsR9pirw342DTcUVGRuCEl1NefbWm54irsnsBhjCLaMwRhCg3D1GajiIGUcsaMGbNnz541axaxkJaW9qEJConJ6qlK7CwgMXPmTEqASpx1jC7M5pQTU1NZYrsyhSqnvhoCEjz94IMPpk2bRloV0OBbb70V/gYMGMD+Gzp0KDH7EgwePJh9+cYbb3y+bduO8lCCFALcCteZ1G0BMLR9NwVhCjE1cOYELGJUJQUBQQhW3kS0rDPhhP3IjgWjavvKKgF22i4nZqvJZrLPgMijHF2EPO64MEcJMeAplnn1mjVVlRWJayFAFS5eTM4dH/Wvq6tHHY15OClknVhOgBVVzPoRFizCbqphxIgRkydP5nhDHfFROCHI3nTTTRhMEaxdqAMeoJRTpkxJ/Cx0hCv19fWuW1r3BAB/dXV1YjFMIfvU2OftQSFCSTXAH0qGheeYnDt3LmdqbW0tdpI9x4QBFayqbUA1qVlevqPzKCRcQRcbGs6TDtykcwIwWawnEabQu2ygj9lSE2gYwNpDp6yr9SASsCvoa/mOzqXQqMldG3W8cKGxpaXFbNoOrvqdGMzOjX/CFN5yyy24A2zk/v37Y0UFHSqpCWgDqBd3kjfffJOLB2nrmQesBZen0ykkAMg7f/4CGsmtH5OOr4HfzzUcRQkSLl9uIeDimiNbcI0SLYAwhfb554Tt1KUsmPN7772Xn5//9ttvswWtUg94BIU7uoBCBQE+OB3RSIjEwJohMvAqnSB7zkIDaq2PDoBrFG8AYQq1qYG1aBNkcQRSGXhhY8eO5WqPUdVdIiL69evH9aPrKLRDh0FbFBHdZQeYCn3WeYWPFkCYQtYvYI5kS9FCVNMqTWGgYVzeoVDXiYi4+eabuT52A4UJBhsoImYZ6MBz1nEGEKaQ9QNdLfDOActGOpToUcqib9++X3zxxZw5c2644QaryAPqfPDBB5316Uw3BIFjFV9JjpKrggIIU8j6we9N3NgGZSPCWT+5uP7669l2WA4SVpEH11xzzdSpUysqK3sKhQoAcwqL6KLrkQIIU/juu+9OmjTp9ddfx7vzBzewiRMncpVWfbLWg+Th1Vdf9Zk5M+Rpbm5ucXFxz6KQAHw+zwNhCr/++usDBw7s2rWrooLNGhs1NTX79u3bv3+/mgRslSxUVVWVlpZu27atx1FIAByKeDreiYEwhVAisFU5Wv4YC9TZvn07ctlpoqysjGyQhkkEM+yJFBK4ruDdeCcGIlAIioqKApLhIpIEJQHbdj96LoUACiHSNTcQgUIMI2RYiw4G0ebUSJVYj1MGPZrCxsZG78tzIEyhpC9UV1dzheLkiAufm0CDdTSSsB6kACCPAyI4hcApqaQHwE2xocH9tgAIU7h58+bPTJBQesOGDevjR56JTZs20YNVlGzk5+evXbu2oKAAReyhFBJaWq7g1LgmBsIUTp8+fdq0afquHHARTktLmzdvXmaHMN+ElUkBfPTRR0uWLCkpKem5FBK4WrhKQJjCESNGDB48eOjQofp0VB8tjh49Wm+A9Wjc0/Y2d/A32IBLWEkPAAqNbzTaF4YpvP/++x8w4UxY7yKmNu42X2mEqmivvN57773U6R0UXr4cnUIWOWbMGGJkwZ615cL6UxbmW6Jjn3rqqZdeemn8+PFoG4XizAnqsJa4XgUGTkmlQgAxKBxifkcxcODAUaNGDR8+nKzSMkSpCYjBWqxatQqf87333mPC7Dwmr80nggFpFpKVlRX8Y27BKaykB2BSeNlVGKbQeAWxDdJIwXi7oQ0IwkoFgF0ZnVbChl1CwvWUrHeUiF2R5vyGoRkzZqSnp0+YMKFfv36UQCT7j4OcWOc6Zzyx9RJiKNBLiIJTWEkPIAaFI0eOlFxIEAuUsIUxTUiK2D4dsU46eJwx0N6X7UI/SNBEhapAghIUiCYkyJJWNZ5SSGXSymoU1VSWyupKfY4bN44YnQOQd5v5KrOcMiWgkxiQfeyxx9asWVNVEeglRMEprKQHEINCVnvLLbewcwcMGMB2Ju7fvz/bH3ecO4auHPjlCxYs4OIxderUOXPmzJo1C3+dwoyMDC4haMPChQtJcxuhgl6+JkvDmTNnUoEmNCeePHmyGtL53LlzeURXjELMUwRNTG+UUwENW7FiBScZhXQFqAaYEj0wFvPh6SuvvHLTTTcNGzaMhRCbihpWX9Y1ZcqU8sAvIQpOYSU9gBgU3tH2HhgJdjFplo0I9PY73BAvNQE3ZLOzs/Vo+fLlxIASvT+vBPIlpg71ARWIKaStnSWmPtVUk4Zkly1bphJq6mV+CqmphionQWUSGos5vPzyy2w703AaS0DtnIBXdkPw158Ep7CSHkAMCrVylwhIAGyUoEJg5c0SbwVXWgkbKnHGAmll6dBZAuy0XW6XCLKW5mQNaBVOxPv6kw2XvC5evBTklZauCCAGhcZN3lQ+ZHHzzTdjRVk2m5dC1DGVwSSfe+65hx56SLONiHhff7LhkteFC41JeYObAGJQqHdM4I+YBQNYxDSpJJXBPDk1uRpylltFHvTt25fDtZdTaL7xZAEttGEVRYdVLwoQKzESBEHqR4PdUP0oLZD9vfm+j5X3gArXXXed8QZbnPdCwSmvlKaQC3JwrDSRk5ODWyGfIiLwQZYtW0Y1QH15LtTHcwE+Db1QZQ1KJ67m/l3p6ZYtW+L6psKGU14pTeFXX32134TeiCEOgr1791ZUVOCsY6MiQo+qqqpqampqa2v/ZILE7t27d+7cqbahUMinBxd27drFoPRQWVlJQ6s0AOL9vtAJW17JpbChoaG5OTqFiEbf2gvVgQETMb+g15f4SJC4qKiotLQUmcKr+QWzQSRklJSU2DWBGnqhp1DO0LAoYqxnsdBJFCbxp4MMCp2jgzCFiBXNsAg0KbQT/qAOovQRuheiAZA2vsMLhWBRdMIr7DIZvb8j1tXKCbN13ER2mEIgeTUm+9efXO+xgTCFLA+J2CyKG8WCQVcUoMHIPYgQIwIyRFW8CqpscCITpxAVRBGV7eYAoNB1KwVhCrVCBGFbVNEjeEtcoBWy7jCLNsSK+oESr4KWlZU5FdROBCGS8g5TKCDBpP7chduMg3YUCghCbMWkzQUqoy5I0+ooFra1vTG1NToKCwvxJImpRs/QA4WwBUiILfVAHWJKoJxHdG52YIE6jJg4hZcvt+AWkrCF2G0B4Em5fj4MuCmUmFyuDbBYCgCpiHqLBlXANT148OChQ4e+bY9vvvnmLyZIKGuXHz169M8mSB8/fvy77747efKkXR8cOXKEmEKeUk2FAOcZ/hKnEKkl69efCPgyrjeggJtCwDrZxbBocdKmlAGBxYtJIbskLy8PI0l9TB9MgLPG360bfykpW8EF6MyZM+bfQF8w/+KygQqNjcY51AHQVq8iJkghYCZJ/JiUDeT8yRsQgULAUjl1pIsiJjiL1IQVfxbpfP78+bD4sfmDQ6gL6oUCoSuk0SFYbG5uPnHixOHDh1EyElJE6uh35OIFW4FxYTFxCpuampJoS1m+0yUGkSkEcID7IF2EleAUAir7O6hoIYcZN3T5KfqNzc4CWxRlNTZqW5b4xx9/ZDksKlSaKIUAU+F6h6XbQktLS319lF9/sqTbHuJDsRIBQWV/B5VHx44dM6YQHbKiWFQ0ElZQTdLWs+hgkeguR+yBAwcUo8eob0ZGBjeWTqHQfLE6aYqIR2M7NcCPQvas7dqIFSUCgsrRHFR0dNasWaiFMYXowA2BAPjAuuL4YGZJBzkOL5kQ64CtAIuZmZm4WokbUoG9lcQLIke7PucDfhQCdMXl2sQFWIzooEJtfn4+hlST8AFmUH+mLPiYXFweajorO/HTTz8xE5bTWRQCLtpiEbik3NUBj6aurp7dydAxKAQsW66NRUsAcLw5Y6sjB+iTR7gt5vJjA8Nlc8M5xG0EjSTWR/Nff/11qKyMi+GyJUu+3L1b1VyAws7ySJ1AE/XtgbIuQXddMMcyfnuKRGwKgVwbWdHgtlQUUl9+hNWXCTQbX5RtYcwlFiAPnmALqjCndKu/3Vm9enVBQQGmPmfVqo0FG6jJzfGLbdvVyoUuohBgGBAlRHLTQDms0uhwkZFIEIJSSCw+THYCwdZCWrkcVChcuHBhbW2tJhETiAmjgakkRv/wTTgdgS743GEy5s7l4sFgVZWVVpv26DoKBY5e3VwxEqaBNU7KtrP4UlswfhXKRUOCAQSiEMAiB5jt2gQHFIpFp4NKgksFjr4xhTiBpJjGnj17MKScpl9++SUKyjDo386qKvsu4UJXUygweHPzZXiCPAIsOoP5+/YXbel3SgBBKQTG+kOhIIcinNmxIBZtBxXnfvny5XBgTCEW8Cd1MQDc7qEN+7lhw4acnJy8vLytW7diVJ28Rbx4sF0YuqspDAIXBwkGEAeFABFUVFQEd20MBXTQCYtyUFHB2bNnx7xUCNio06dPYyePHj2KMqF23PY4FDkgieEVQ0q5KqOFKCU2VsaWCuD777+nWnp6Ogdn91DoEnTXBRCmUMIVLMYigafwEdycmiRaUFadfP7551z7jCnECdiCJBgC9MBNETg1T2fSmTNniNHguro6ElCYlpbWbRQKLnF3RQBhCqVb+B0yd4Joc4JCyIbC4CwCmz9aoXz0gw2ECWMKAQAHMIEyQYzztMNnoBOUEk21iqLghx9+wIQkxZA6Jd7pAYQp1OeWSFk+CwaTE0ucubgkK9dG9PiA3oAzDeh89+7d06dPD2hIAcp06tQpqZ2TLbLYWAwm7FpFUdA97owPXKLvrADCFIobgJLh9OsiCEiQtc2sWEQW8B2cReDMQiE+SHAtjAYcPDrB2Yn2oYwNNkFyKXTCRUMiAbSj0AZUsVoSKCLqCJGwheihDWUVl1TAj/BnkSZWypE2ODR1kYsBCqQfDusYcFVQxJMnTxLDpU9XOEGacypQ6ISLkngDiEyhDbEFYI5jEgLEGWlxiY6avESGTZugrF1IWzaB/4sXMUFzZkI/+vRAr194gQqynBSkMBpcVEULIAaFNkQkwKJyO4QGcQkNWEVREgQ0FIVK1NbWaitYw3QIag6FzIT5MEOZEC96EIXBEZRCJ0wqDalxRsqW6vVqm0uR5EwAk7IweQBxY98oiSbxuEAnkMd8mAbGnxJN0oleTmFRcbG10MAQl8gFkXGw6UMvYhFjs6W0YJcQS4PhXjbQ6jQBaDJ4y/TPxsJaaIbW415P4fbikLXQ+CEWTQe2Bv6cXFJiM+eF6lPB/yv+uCDasBDmdGrwyFTCo15OYVF5jUTQYcCE2FJCGgaXAJ5QC9HmhKqhhRhAesDvwD3pFMivse+vnLjw18spXL/Z+K1AkdEBsM1pzq436TNgk4QQxSV6SUIy5RGGlPThw4ftt0O5GOw3oRsCsaA05fviAfUZjgMSC8FGYZcwybKSkl5L4fLVBRgfi5AOgT1OD2LICZtLCHaaWcRKq59++unHH39sbGy8ZIKZcE+/cOGC+bqmvmO7RFaP4sWVK1eYEkoJkewYY4dVVTV36gtzSUeYwuo/HWKdIqPDgEWsopdFICIFsjomP/zww9OnT3P1PnToEBrDVf2c8SPUTT/88ANqRxbVREfRwiNHjlCoSQcHXUEhs0L/iIuLS3bVVPdaLazacxDp69hPBPRg7XcHRJv4c2LLli36KxPgeAPFvLJ6EPNTNC9sCjU3Lvhlpb3XkJZWGX+WpqUmAm0CMecEhNkJgTQjYiQ1lYiANmwp7Ebkr66uDmv83XffWXkPXBSS6N1X+y8QKAvuFEV0uTbApk0xwMuYM2eOrYURAcHHjh3Dou7du9f7dQQDLV68eP369Vbeg4gUWs96C8IUIo5y80/0EqcQICxk5zoUXRRib3NycvwpBNAAcGe8b1TgE9EDNz/SEV8RjkBhKHTq2LGj+/d/81VvCKwxTKEWidCRCGdG4uBahvjgCW8ekBBzgojE9cdOmtKOgGiHogA9KCgsnjhxgjFC7JiaGpo4TS512JfOTRmqqFyRMXf03/zirr/7xZi/7/GBNbajkKVi3BAuksX9w90/Y4IjhzR2LF7QidrSCW4nLNoqCMhiBvXHCRFBQ64fOKu6MrreeKNk7dq1eNErV6zAZaUECpn5AfMbKF03GZ0h2Ew2i6HKqpXzMwb16TO4T58hviFmhVQIrDpMoawNdoajBUHj3CNBPP6TJ0/qj/8MscUP+z6n95To2WaR7ZKZmenjzjQb/wHcWaaBtrEbXDWhDRU8fvx47ppcrpmUoIuQzZ5gx3z77bc0IZ2dnc1eQRdZHUSWlJZtylv3xshhrwwd+Ort0cKAiaOGvn3XHa8PH/TKsNvIeiqkSmDVYQrZzqyQpeJilJSUsHhEgCadMtExCpuam1ALrnTQQJ8oBFol/kQkd8Egf+YSETBK53ik9L+zqqq0uIS09awNbCBuSjCNb8UZYRnVouId1dU+oXxndeWuXXtQ80OHd+/dR0moaqezQuoE1himkK0qa8NdDaNnSiAyOG84Y7xpYKavNF1s3rdj0/HDu5ovNSNETjv0CZ3D7ulDbQEW8/PzfQwp2o+SsY0wBqRdNcnipmIzNVvnNGxQqBcPAHvIJlIaSewDQ2XbvvQQ9zGbdD9YY5hClqcvffBEIv7lH2TABDLdsGFDYWEhVhHt3LRpE2nMLyLevHkz9JeEar4s/HDrvP/4v7f6Hf7qsNW4tRUa0Dk5NVJBhps5c6aPIcVZxVVhRKwiBxvm0Xpggg458EjQbcTXf4EoZKkoKGZGfrJTI/1ZUQW51rSiK3rwb9JFKCouLiop9QbWGKYQsWqWthYiF+fGxzUgiywQPXsfDlAplodwIYZFsmcp373n0MYlL305t8/K+//lxJEjVuPWVmhAFWgFGEss0tyHQn+wpbCQ8Meg0XxXKGQINqWGFiXAJtL7naIXqgDl1Gfa+tLDetYtgL+tmz/bkrduc966TevWGmHt2s3rjCxrbEch4KxKS0uDSEpQAlwGjNV+blHffGOIxCQSqlgPssPlQQSkkQ6HpdKVVdWnT/yl9rPMA+WfN11uwRuCeETJ+vPy8ogNDtsUkYGi3QsZiEcAjhmII5N448aN+tAAShiL04oJcxb6UyiJM7TS+ioKoJfmfcf4qRoKcVx9QH1iemC/aluoHPjvgATBJLdu3V666qOjxZmnyxedrV5av3NJ3c4lp8qyT5QuZI1uClGs3NxcZkkJcgESIlueBHLEdq1atYo6dI1icbNes2YN68f2ssiCgoKNGzZcbruYYXj18ifuDLPRX/ZCgFhEm2fMmBFNC7GfuJc0h0s6Z8egc8hLTLCNSKimvyEVbUiZHUYTiKdbGWf2JcBWcyIwBCU2lMXAMHkbZGlLE9W3S9iIXcdiefmOD+fM3zLlzi3vXLvxnRvyJvXd+O6Nf84ecHHNoFNLbmWNbgoRMXHETx31fRBKSQUWgDjQTrYwafhAG8iic/SA0K02DiBoDlHmhCjFIv1Auc/V3gW0EBcUwXFThFqBtC6FEcEWFIWMi5TRXXZbfX09tBHTIcaDOuwAstw7yQLKZQN4ZHXkC5ZMt6bAOx+IKz3zkz++P7hu0b+eybrq8KxfH//oN+cXXn1x8b+3LP0to7spBCgHG9CcWwSwME5Kth7MsccPHjyIHKlPGlHyiBLSVm0H2LAYH+aEQBElLDIWSg8l8lmAnRDIOh+xPxhLo8jCA7YOk6HziMBm6LLEuCTYQ+np6ZBEEx6x5xgdM4C1gD99hsC6gDQMXq3Z4+5V10x6639w9ki7lJ5pYBWk66bYOxnbiyv3zP9Da85VrSuvac25tnXVta0rrmldboaIFALka1yKzD8gcgEhsnKdf6rGNoF1rBxCQQTSEqu2CbI0cVobEowiRYROmgN6Q6eVjggGpbJ5eBmgE/Y+28LnGHMpB1Kmfge+tILjkXcM/2Wfv7r+ut8hAVZKzE5iaajsp59+yv5g/sTS+E5EWVkoa9HK4veHtK66unXZf7qDk0IJVMAy4HnK3yN2AlPGLLOysj42gYfCbW/BggVLly5FxOxHmrhaoSh06Fwb0me1jGgPSgU0EuOsbECoK/UZBKrsPTg5qlFNeEIjubpwXuCCybqy83B2mOe4++7/21/+9YB+/TkIMUXUxzBwZ6XVokWL9JEWQmOTMUQnElm+Y8e0mRlfvHtr64p/a/3kt+4QTQtFIaIHFg/tAVVwaRgy05QBJeynSghk6dAla7JIR+ZUgD8GpaaVDwBvtz6Aifz8fPxtrxaiTGwgFAtiMNHYDOZMIdOjf5aADUDnFmcvYlNbbRxgGnAGRLacJhoGn5sP2OtbtoV2pY1q/eRXrYuudodoFEo5DB0x/X56YXJOYPrt2JmQPWEBriZkrRk5wJqpabPIyhGW0hHhZZfpsevpx+rRF8wB04rNMMUeCGgkXEItsVUUCcxExzycMRltTYAnlTiRJSWlObmbyqcMMijMvsodXBQiEVMy7cCpw7Q0FX9QjcqSqVXUBms6HqiJWGR0VEGDBgSk0orDmH6sHmMBfcJPMe4NDsiFAc40wI1CKfUxL1meYjxPnz6NLdWFhBJi2+kVtGRmhVFhegl6OjsqKt6dMnv7Wze2Lv7n1gW/cYdoWugEk2DZMWVEBciTSbGKAkOjEKOFdMJwigOCynSiq7cLXsFRYj0LBtSLFREri3+EUTG8KfPFV+MDgsLCiPSokLnpdMAGdEAygB2Qm19Y8f6A1oX/2Jr1a3dwuTOSoxeUO/1JL5gcJpGaPnWigSYIRUOz31ER9jVurYCLKy/XCzTDBll8YyfQHmL/aXcMYoL1YvljWksqQx4UQiS7jZJ458OBtLGwuHrqoNasf2id/yt38GphNBaB1aUHzBKjQcN4J2eDHhCENA9XkCuaXh8FTAzPEMcdJ5As5QC/MeLV0wtmpVOq02GyZn1w6k8khSwQZWIyVEZW0WpGBDKZPH3O9td+Z1CY8U/u4KTwZ/RQWBT+jB6MPn3+H/gF9m538i0AAAAAAElFTkSuQmCC