-
0
2
2
-
1
0
7
- a61aec93-d774-48cf-8598-6718e7650341
- Shaded
- 1
-
127;201;201;201
-
127;176;176;176
- 633740217794324378
- XHG.⠀⠀⠀⠀◯⠀옷ߦᗩᴥᕤᕦ⠀◯⠀ᗝᗱᗴߦᗩᙏ⠀◯⠀ᗱᗴᙁ✤ᴥᑎ✤⠀◯⠀ᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕ⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀ᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴ⠀◯⠀✤ᑎᴥ✤ᙁᗱᗴ⠀◯⠀ᙏᗩߦᗱᗴᗝ⠀◯⠀ᕤᕦᴥᗩߦ옷⠀◯⠀⠀⠀⠀.GHX
- 0
-
-1171
333
- 0.8392804
- 0
- 0
- 2
- Pufferfish, Version=3.0.0.0, Culture=neutral, PublicKeyToken=null
- 3.0.0.0
- Michael Pryor
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Pufferfish
- 3.0.0.0
- CurvePlus, Version=1.2.0.0, Culture=neutral, PublicKeyToken=null
- 1.2.0.0
- David Mans
- ab81fea9-8d16-4caf-af89-2736c660f36d
- CurvePlus
- 1.2.0.0
- 52
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
- A VB.NET scriptable component
- f8463a6a-537d-44ae-a102-2cbf6773c33a
- DotNET VB Script (LEGACY)
- Turtle
- 0
- Dim i As Integer
Dim dir As New On3dVector(1, 0, 0)
Dim pos As New On3dVector(0, 0, 0)
Dim axis As New On3dVector(0, 0, 1)
Dim pnts As New List(Of On3dVector)
pnts.Add(pos)
For i = 0 To Forward.Count() - 1
Dim P As New On3dVector
dir.Rotate(Left(i), axis)
P = dir * Forward(i) + pnts(i)
pnts.Add(P)
Next
Points = pnts
-
988
154
115
44
-
1049
176
- 1
- 1
- 2
- Script Variable Forward
- Script Variable Left
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- true
- true
- Forward
- Left
- true
- true
- 2
- Print, Reflect and Error streams
- Output parameter Points
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- true
- Output
- Points
- false
- false
- 1
- false
- Script Variable Forward
- ce1f978e-a982-441e-8781-42beeed9349f
- Forward
- Forward
- true
- 1
- true
- 11d6ae9c-db85-41da-a72e-197fbac37970
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
990
156
44
20
-
1013.5
166
- 1
- false
- Script Variable Left
- 57e2c9a0-b37d-4c4b-9e2b-b0e17a521d43
- Left
- Left
- true
- 1
- true
- 34b6e5a6-a1ba-4214-b996-0fa3a932cd38
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
990
176
44
20
-
1013.5
186
- Print, Reflect and Error streams
- 33dd288d-3d90-4a29-8ab3-866accaf2be0
- Output
- out
- false
- 0
-
1064
156
37
20
-
1082.5
166
- Output parameter Points
- a7101779-445c-4899-9b31-ce0a4803f08d
- Points
- Points
- false
- 0
-
1064
176
37
20
-
1082.5
186
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- 3091dae8-d5dc-4fac-a891-c5a5c7118bd1
- Series
- Series
-
356
212
64
64
-
387
244
- First number in the series
- bfe8e6e2-eddc-4584-8ce4-005a112f16fc
- Start
- S
- false
- 0
-
358
214
14
20
-
366.5
224
- 1
- 1
- {0}
- 0
- Step size for each successive number
- 3ef6124c-d6dc-426b-a979-0ad9d65d59da
- Step
- N
- false
- ff0daf69-230f-4e05-8c98-bf9c091a451d
- 1
-
358
234
14
20
-
366.5
244
- 1
- 1
- {0}
- 1
- Number of values in the series
- 41382c6d-efca-4f46-89a4-f4a83cdfe7f4
- Count
- C
- false
- de137ce1-c93e-4980-bb21-a8ca5601e20d
- 1
-
358
254
14
20
-
366.5
264
- 1
- 1
- {0}
- 500
- 1
- Series of numbers
- 4a521433-15f9-4232-bbd6-a4193c7aaecc
- Series
- S
- false
- 0
-
402
214
16
60
-
410
244
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
- Duplicate data a predefined number of times.
- b15849e1-cdad-4c2e-becd-859af856d608
- Duplicate Data
- Dup
-
358
134
65
64
-
389
166
- 1
- Data to duplicate
- 907f9087-e15f-4411-b460-551d6e02779d
- Data
- D
- false
- 04e916a1-e753-499e-a557-73ec31b3076e
- 1
-
360
136
14
20
-
368.5
146
- Number of duplicates
- 4af8efc9-5fa2-429a-bc4a-bc67bfcdce44
- Number
- N
- false
- de137ce1-c93e-4980-bb21-a8ca5601e20d
- 1
-
360
156
14
20
-
368.5
166
- 1
- 1
- {0}
- 500
- Retain list order
- 96c94299-014f-4d47-a2bf-e758b61acfb5
- Order
- O
- false
- 0
-
360
176
14
20
-
368.5
186
- 1
- 1
- {0}
- true
- 1
- Duplicated data
- 11d6ae9c-db85-41da-a72e-197fbac37970
- Data
- D
- false
- 0
-
404
136
17
60
-
412.5
166
- f5ea9d41-f062-487e-8dbf-7666ca53fbcd
- Interpolate
- Create an interpolated curve through a set of points.
- 6264624f-4741-4ad5-b390-ffeaf96b650b
- Interpolate
- IntCrv
-
1124
151
65
64
-
1155
183
- 1
- Interpolation points
- 9fa61b9f-3d6a-4de9-b3cf-891575df3642
- Vertices
- V
- false
- a7101779-445c-4899-9b31-ce0a4803f08d
- 1
-
1126
153
14
20
-
1134.5
163
- Curve degree
- 45884fa8-c111-46db-9464-f554212d0881
- Degree
- D
- false
- 92bd684b-349f-4d67-9a67-d634dc52787c
- 1
-
1126
173
14
20
-
1134.5
183
- 1
- 1
- {0}
- 3
- Periodic curve
- 39a08521-0941-45d2-b08b-e760b22d1cfd
- Periodic
- P
- false
- 0
-
1126
193
14
20
-
1134.5
203
- 1
- 1
- {0}
- false
- Resulting nurbs curve
- fbac77a5-b15a-4a25-8bf0-69012470613a
- Curve
- C
- false
- 0
-
1170
153
17
20
-
1178.5
163
- Curve length
- 9e8512d8-16fc-432e-836f-b8d89a934da4
- Length
- L
- false
- 0
-
1170
173
17
20
-
1178.5
183
- Curve domain
- 0b6cb763-0a93-4ae2-96a2-fdcd7eb5bc57
- Domain
- D
- false
- 0
-
1170
193
17
20
-
1178.5
203
- bc984576-7aa6-491f-a91d-e444c33675a7
- Graph Mapper
- Represents a numeric mapping function
Sine wave distribution
Sine wave distribution
Sine wave distribution
Sine wave distribution
- 12324cf9-85ea-4ccf-8d27-ca279182d95e
- Graph Mapper
- Graph
- false
- 4a521433-15f9-4232-bbd6-a4193c7aaecc
- 1
-
498
-150
325
279
-
498.8449
-149.1109
- false
- 0
- 0.0176
- 0
- 0.0625
- 7d54f77a-a866-49ed-95eb-b1f9fb25a1f1
- Sine
- 0
- 1
- 0
- 1
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- (O_EZIS_O_SIZE_O^O_REWOP_O_POWER_O-abs(X-1)^O_REWOP_O_POWER_O)^(1/O_REWOP_TOOR_O_ROOT_POWER_O)
- 8763ca8a-5eda-4215-b1b6-6bf027e56362
- Expression
- Expression
-
347
388
1010
84
-
938
430
- 4
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 6f4478b4-8c39-4912-b676-863469bfc82c
- Variable X
- X
- true
- 4a521433-15f9-4232-bbd6-a4193c7aaecc
- 1
-
349
390
188
20
-
444.5
400
- Expression variable
- c0769443-461d-4126-a64c-6247b39f222a
- Variable O_EZIS_O_SIZE_O
- O_EZIS_O_SIZE_O
- true
- ecdc8107-f664-40c6-8a7c-3ba81b6844d6
- 1
-
349
410
188
20
-
444.5
420
- Expression variable
- 2148e6a1-a572-410c-b12c-b29e37906877
- Variable O_REWOP_TOOR_O_ROOT_POWER_O
- O_REWOP_TOOR_O_ROOT_POWER_O
- true
- 7ea2aa6e-1723-4ee7-bc68-38b1f5deba9c
- 1
-
349
430
188
20
-
444.5
440
- Expression variable
- 37614104-e34b-4a95-b9e4-2f987743f51d
- Variable O_REWOP_O_POWER_O
- O_REWOP_O_POWER_O
- true
- ede642c9-e41e-43f5-a264-51551af1dc77
- 1
-
349
450
188
20
-
444.5
460
- Result of expression
- 660e66b2-db6b-4f9a-8b80-838ce371dd29
- Result
- R
- false
- 0
-
1339
390
16
80
-
1347
430
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
- Filters a collection of input streams
- f485a3d6-fb5f-4a4e-8821-7994b356eb8e
- Stream Filter
- Stream Filter
-
870
178
92
124
-
915
240
- 6
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Index of Gate stream
- 847151af-072a-4900-879d-0fe8241f89ca
- Gate
- Gate
- false
- b20871fa-e78c-47ec-a58d-208c8959ba69
- 1
-
872
180
28
20
-
887.5
190
- 1
- 1
- {0}
- 0
- 2
- Input stream at index 0
- 883bcf08-8a23-46f2-949b-114847055ec4
- false
- Stream 0
- 0
- true
- 476fd755-34c1-41fd-94b7-5d27abb8249b
- 1
-
872
200
28
20
-
887.5
210
- 2
- Input stream at index 1
- da7a30e8-0b2e-44d7-b1f2-d66b32e249dd
- false
- Stream 1
- 1
- true
- 12324cf9-85ea-4ccf-8d27-ca279182d95e
- 1
-
872
220
28
20
-
887.5
230
- 2
- Input stream at index 2
- fb5094ba-00a6-4552-bcba-3fe5f92e662f
- false
- Stream 2
- 2
- true
- 660e66b2-db6b-4f9a-8b80-838ce371dd29
- 1
-
872
240
28
20
-
887.5
250
- 2
- Input stream at index 3
- bf5e7ea2-18bd-4125-bb52-89c062cb16fa
- false
- Stream 3
- 3
- true
- 373c6a08-8824-4c99-a557-ae06da3113d5
- 1
-
872
260
28
20
-
887.5
270
- 2
- Input stream at index 4
- 1de74f01-6982-4452-8d86-433912ae2f98
- false
- Stream 4
- 4
- true
- 0
-
872
280
28
20
-
887.5
290
- 2
- Filtered stream
- 34b6e5a6-a1ba-4214-b996-0fa3a932cd38
- false
- Stream
- S(1)
- false
- 0
-
930
180
30
120
-
945
240
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 7ea2aa6e-1723-4ee7-bc68-38b1f5deba9c
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 10
- 2.00
-
88
430
250
20
-
88.89829
430.9977
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- ede642c9-e41e-43f5-a264-51551af1dc77
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 10
- 2.00
-
89
450
250
20
-
89.28435
450.8743
- 7376fe41-74ec-497e-b367-1ffe5072608b
- Curvature Graph
- Draws Rhino Curvature Graphs.
- 5cbda035-78a6-49e1-bc63-6d8b78998d5b
- Curvature Graph
- Curvature Graph
-
1731
230
71
64
-
1788
262
- Curve for Curvature graph display
- true
- a0ca1a0e-cbeb-422d-97ac-6bb51c73d82b
- Curve
- Curve
- false
- 3733e2e8-4bd3-44f1-8b68-31f8853c8921
- 38cf4e17-ca6a-4dad-8a9a-b880812ed23a
- 2
-
1733
232
40
20
-
1754.5
242
- Sampling density of the Graph
- 82986a14-b7f4-46a2-923a-d5796d52aa6c
- Density
- Density
- false
- e5a2bf12-6574-4c19-848d-8871fc76cafe
- 1
-
1733
252
40
20
-
1754.5
262
- 1
- 1
- {0}
- 5
- Scale of graph
- 059120bb-9495-4b12-b0f3-464a2d863378
- Scale
- Scale
- false
- 83a16af3-1073-4b04-bad1-a89ab18700fb
- 1
-
1733
272
40
20
-
1754.5
282
- 1
- 1
- {0}
- 105
- bc984576-7aa6-491f-a91d-e444c33675a7
- Graph Mapper
- Represents a numeric mapping function
Sine wave distribution
Sine wave distribution
Linear distribution
Linear distribution
- 476fd755-34c1-41fd-94b7-5d27abb8249b
- Graph Mapper
- Graph
- false
- 4a521433-15f9-4232-bbd6-a4193c7aaecc
- 1
-
496
175
100
100
-
496.2162
175.8607
- false
- 0
- 1
- 0
- 1
- 1
- 0
- 71629651-0343-46d7-ac9e-d6041f9fe66b
- Linear
- 0.25
- 0.75
- 0.25
- 0.75
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- asin((x-.5)*2)/(2*atan(1))/2+.5
- 82eb3cd4-0390-4f09-a917-57e17ff721ba
- Expression
- Expression
-
426
483
490
84
-
757
525
- 4
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 995b6377-1efc-4d78-89de-fceed0c461b6
- Variable X
- X
- true
- 4a521433-15f9-4232-bbd6-a4193c7aaecc
- 1
-
428
485
188
20
-
523.5
495
- Expression variable
- 7d6761e4-0d16-4147-b712-3a37c9a0e5cf
- Variable O_EZIS_O_SIZE_O
- O_EZIS_O_SIZE_O
- true
- 0
-
428
505
188
20
-
523.5
515
- Expression variable
- f823d676-a5d4-4ecc-9c6f-db91da944fb4
- Variable O_REWOP_TOOR_O_ROOT_POWER_O
- O_REWOP_TOOR_O_ROOT_POWER_O
- true
- 0
-
428
525
188
20
-
523.5
535
- Expression variable
- c2796797-c80c-4619-b81c-a427bea8133c
- Variable O_REWOP_O_POWER_O
- O_REWOP_O_POWER_O
- true
- 0
-
428
545
188
20
-
523.5
555
- Result of expression
- 373c6a08-8824-4c99-a557-ae06da3113d5
- Result
- R
- false
- 0
-
898
485
16
80
-
906
525
- aaa665bd-fd6e-4ccb-8d2c-c5b33072125d
- Curvature
- Evaluate the curvature of a curve at a specified parameter.
- true
- 87ff8105-2e9a-4775-93c9-e06b14dd7f83
- Curvature
- Curvature
-
1004
501
140
64
-
1074
533
- Curve to evaluate
- 23e95288-b807-41de-8f49-8399b01a42d3
- Curve
- Curve
- false
- fbac77a5-b15a-4a25-8bf0-69012470613a
- 1
-
1006
503
53
30
-
1034
518
- Parameter on curve domain to evaluate
- 8b12d188-950f-4335-b199-9062498f2aab
- Parameter
- Parameter
- false
- de137ce1-c93e-4980-bb21-a8ca5601e20d
- 1
-
1006
533
53
30
-
1034
548
- 1
- 1
- {0}
- 0.5
- Point on curve at {t}
- 18dbee9f-1506-455b-b657-289702f7e0c4
- Point
- Point
- false
- 0
-
1089
503
53
20
-
1115.5
513
- Curvature vector at {t}
- 32eded9f-30ee-4e0f-ada7-49db7fa1257d
- Curvature
- Curvature
- false
- 0
-
1089
523
53
20
-
1115.5
533
- Curvature circle at {t}
- 8b5d83b7-ae43-4de7-a467-9924c3742f73
- Curvature
- Curvature
- false
- 0
-
1089
543
53
20
-
1115.5
553
- 23862862-049a-40be-b558-2418aacbd916
- Deconstruct Arc
- Retrieve the base plane, radius and angle domain of an arc.
- true
- 6db8ba10-69cd-44aa-b46c-8f9438ba262b
- Deconstruct Arc
- DArc
-
1165
497
65
64
-
1196
529
- Arc or Circle to deconstruct
- 51317f3f-3050-425a-a722-3a7261c4c518
- Arc
- A
- false
- 8b5d83b7-ae43-4de7-a467-9924c3742f73
- 1
-
1167
499
14
60
-
1175.5
529
- Base plane of arc or circle
- 6af7723e-ae31-443d-a80c-93de3ed8f828
- Base Plane
- B
- false
- 0
-
1211
499
17
20
-
1219.5
509
- Radius of arc or circle
- a2df70b3-1dd6-4e6c-ac4d-cb6dbd83e362
- Radius
- R
- false
- 0
-
1211
519
17
20
-
1219.5
529
- Angle domain (in radians) of arc
- c9cf1cf1-9b72-4b32-a69a-c4430a4e8787
- Angle
- A
- false
- 0
-
1211
539
17
20
-
1219.5
549
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- a235a197-60ae-480c-90e3-7cda396883f0
- Panel
- false
- 0
- a2df70b3-1dd6-4e6c-ac4d-cb6dbd83e362
- 1
- Double click to edit panel content…
-
1260
508
96
42
- 0
- 0
- 0
-
1260.479
508.6545
-
255;255;250;90
- true
- true
- true
- false
- false
- true
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- ff0daf69-230f-4e05-8c98-bf9c091a451d
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 1
- 0.00070038828
-
81
234
250
20
-
81.07772
234.3882
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 83a16af3-1073-4b04-bad1-a89ab18700fb
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 11
- 115.0
-
1464
278
250
20
-
1464.332
278.3159
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- e5a2bf12-6574-4c19-848d-8871fc76cafe
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 11
- 1.0
-
1464
257
250
20
-
1464.49
257.9594
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- ecdc8107-f664-40c6-8a7c-3ba81b6844d6
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 1
- 1.00000000000
-
89
410
250
20
-
89.30597
410.6705
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- de137ce1-c93e-4980-bb21-a8ca5601e20d
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 11
- 50.2
-
81
194
250
20
-
81.42269
194.2125
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 04e916a1-e753-499e-a557-73ec31b3076e
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 1
- 1.00000000000
-
81
136
250
20
-
81.06453
136.4197
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- b20871fa-e78c-47ec-a58d-208c8959ba69
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 11
- 1.0
-
602
190
250
20
-
602.5042
190.6908
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- 10b2c371-b2e2-4e03-b6ca-9b4d20921a41
- Rotate
- Rotate
-
1079
75
141
64
-
1147
107
- Base geometry
- f763f4fc-474e-46a6-8f76-2b1b73f348b0
- Geometry
- Geometry
- true
- fbac77a5-b15a-4a25-8bf0-69012470613a
- 1
-
1081
77
51
20
-
1108
87
- Rotation angle in radians
- 607acd44-9b26-464f-b5be-b81a71d429aa
- Angle
- Angle
- false
- 0
- false
-
1081
97
51
20
-
1108
107
- 1
- 1
- {0}
- 3.1415926535897931
- Rotation plane
- aebd7f4b-0bbb-44aa-afa9-7e952af27373
- Plane
- Plane
- false
- 0
-
1081
117
51
20
-
1108
127
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 34a9b59d-4627-4182-bb4e-188bdc9cfb0b
- Geometry
- Geometry
- false
- 0
-
1162
77
56
30
-
1190
92
- Transformation data
- 54266759-a77b-4f34-a0a1-b77642adfc8a
- Transform
- Transform
- false
- 0
-
1162
107
56
30
-
1190
122
- cae9fe53-6d63-44ed-9d6d-13180fbf6f89
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Curve Graph Mapper
- Remap values with a custom graph using input curves.
- 84de47dd-743d-44ec-bafe-1f40762588a7
- Curve Graph Mapper
- Curve Graph Mapper
-
1405
-302
163
224
-
1473
-190
- 1
- One or multiple graph curves to graph map values with
- e8a8681e-a373-4d35-946c-c6a96598a6eb
- Curves
- Curves
- false
- 3733e2e8-4bd3-44f1-8b68-31f8853c8921
- 1
-
1407
-300
51
27
-
1434
-286.25
- Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
- 2882ef64-bb55-4120-bb06-5baf0b599da3
- Rectangle
- Rectangle
- false
- 84afdc9e-4d24-423c-82c8-17155e3afd53
- 1
-
1407
-273
51
28
-
1434
-258.75
- 1
- Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
- 30b25754-20c8-4ed0-8174-e1a35eed58d7
- Values
- Values
- false
- 102b1139-a452-4fbb-bfd8-adb85f89960b
- 1
-
1407
-245
51
27
-
1434
-231.25
- Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
- a0e0127d-d6f8-4ec7-9107-707b515c4441
- X Axis
- X Axis
- true
- dc040710-6476-4601-a4ac-a91e86071f0c
- 1
-
1407
-218
51
28
-
1434
-203.75
- 1
- 1
- {0}
-
0
0.0176
- Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
- 7866ba6f-91cf-426d-b8f7-10c972f624b9
- Y Axis
- Y Axis
- true
- b94d34e6-5bb8-451d-b47b-0aaf8569ad88
- 1
-
1407
-190
51
27
-
1434
-176.25
- 1
- 1
- {0}
-
0
0.0625
- Flip the graphs X Axis from the bottom of the graph to the top of the graph
- 6a141eaf-7571-483f-89cc-a1d4a7f9f2e5
- Flip
- Flip
- false
- 0
-
1407
-163
51
28
-
1434
-148.75
- 1
- 1
- {0}
- false
- Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
- beb8e8b8-46f7-45da-a42a-390b6873ef76
- Snap
- Snap
- false
- 0
-
1407
-135
51
27
-
1434
-121.25
- 1
- 1
- {0}
- false
- Size of the graph labels
- 2134b815-a446-4b10-8db6-6a45a492747c
- Text Size
- Text Size
- false
- 0
-
1407
-108
51
28
-
1434
-93.75
- 1
- 1
- {0}
- 1
- 1
- Resulting graph mapped values, mapped on the Y Axis
- 805f2edb-cc3f-4a58-b59f-743b168199fd
- Mapped
- Mapped
- false
- 0
-
1488
-300
78
20
-
1527
-290
- 1
- The graph curves inside the boundary of the graph
- 27d339de-5f5a-4cea-bc49-6784c09e157e
- Graph Curves
- Graph Curves
- false
- 0
-
1488
-280
78
20
-
1527
-270
- 1
- The points on the graph curves where the X Axis input values intersected
- true
- 3f7eed88-2037-47a0-befb-dcaee7db036f
- Graph Points
- Graph Points
- false
- 0
-
1488
-260
78
20
-
1527
-250
- 1
- The lines from the X Axis input values to the graph curves
- true
- 5c724fee-3b94-449a-a4bd-4f114c89e3bb
- Value Lines
- Value Lines
- false
- 0
-
1488
-240
78
20
-
1527
-230
- 1
- The points plotted on the X Axis which represent the input values
- true
- 2b5fcc20-04cc-4c81-aff0-546d1bd70016
- Value Points
- Value Points
- false
- 0
-
1488
-220
78
20
-
1527
-210
- 1
- The lines from the graph curves to the Y Axis graph mapped values
- true
- 17475dde-3ce1-4bda-9b7e-bf0de4f30249
- Mapped Lines
- Mapped Lines
- false
- 0
-
1488
-200
78
20
-
1527
-190
- 1
- The points mapped on the Y Axis which represent the graph mapped values
- true
- 8f345dd4-6e1a-454d-b922-7e33f01fee1c
- Mapped Points
- Mapped Points
- false
- 0
-
1488
-180
78
20
-
1527
-170
- The graph boundary background as a surface
- e51b5694-6190-43e8-bd55-3997886b30c9
- Boundary
- Boundary
- false
- 0
-
1488
-160
78
20
-
1527
-150
- 1
- The graph labels as curve outlines
- 7882903a-cab6-42ee-9455-59c8a7ac3f51
- Labels
- Labels
- false
- 0
-
1488
-140
78
20
-
1527
-130
- 1
- True for input values outside of the X Axis domain bounds
False for input values inside of the X Axis domain bounds
- 9420d3cd-2bca-4698-b668-8394f1278ae6
- Out Of Bounds
- Out Of Bounds
- false
- 0
-
1488
-120
78
20
-
1527
-110
- 1
- True for input values on the X Axis which intersect a graph curve
False for input values on the X Axis which do not intersect a graph curve
- b332d9f5-5ec6-47d7-a2f2-f27c835511c1
- Intersected
- Intersected
- false
- 0
-
1488
-100
78
20
-
1527
-90
- 5edaea74-32cb-4586-bd72-66694eb73160
- Rotate Direction
- Rotate an object from one direction to another.
- f2c8bf1b-434d-40d9-b17f-dde7b0954fdc
- Rotate Direction
- Rotate Direction
-
1304
61
141
84
-
1372
103
- Base geometry
- 784f2777-4992-47e7-a14c-4c19068c5088
- Geometry
- Geometry
- true
- fbac77a5-b15a-4a25-8bf0-69012470613a
- 1
-
1306
63
51
20
-
1333
73
- Rotation center point
- 2aedc9bc-1ff6-4e49-ab6a-fda36e07f03b
- Center
- Center
- false
- d555e23e-9e4a-4b65-a9a5-ed4f528321e8
- 1
-
1306
83
51
20
-
1333
93
- 1
- 1
- {0}
-
0
0
0
- Initial direction
- c9021d34-0ab3-4a1b-9bea-46be287ebc4c
- From
- From
- false
- 0
-
1306
103
51
20
-
1333
113
- 1
- 1
- {0}
-
0
-1
0
- Final direction
- 56437f98-e7c5-41e8-adff-d94d15912ea9
- To
- To
- false
- 0
-
1306
123
51
20
-
1333
133
- 1
- 1
- {0}
-
0
1
0
- Rotated geometry
- 14b4e050-ea18-47db-ba6d-e5b4d260bbc3
- Geometry
- Geometry
- false
- 0
-
1387
63
56
40
-
1415
83
- Transformation data
- 2bb13c3b-3ce2-4fce-8e40-39dfbed3620c
- Transform
- Transform
- false
- 0
-
1387
103
56
40
-
1415
123
- 7f6a9d34-0470-4bb7-aadd-07496bcbe572
- Point On Curve
- Evaluates a curve at a specific location
- d555e23e-9e4a-4b65-a9a5-ed4f528321e8
- Point On Curve
- Point On Curve
- false
- fbac77a5-b15a-4a25-8bf0-69012470613a
- 1
- 1
-
1345.854
175.8347
80
20
- 2625b22f-bb17-4451-958b-d4a057c47ef8
- ab81fea9-8d16-4caf-af89-2736c660f36d
- Bounding Rectangle
- Solve oriented geometry bounding rectangle
- 7d0c7537-ce07-4d82-abce-9a3168080568
- Bounding Rectangle
- Bounding Rectangle
- true
-
1229
-84
139
44
-
1297
-62
- 1
- Geometry to Contain
- ab2c2819-ada9-43ef-80eb-cac34d2c6577
- Geometry
- Geometry
- false
- 3733e2e8-4bd3-44f1-8b68-31f8853c8921
- 1
-
1231
-82
51
20
-
1258
-72
- Orientation Plane
- 261f826f-be1e-4fd5-9ed5-96e27c7902c9
- Plane
- Plane
- true
- 0
-
1231
-62
51
20
-
1258
-52
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- 1
- The bounding rectangle
- 84afdc9e-4d24-423c-82c8-17155e3afd53
- Rectangle
- Rectangle
- false
- 0
-
1312
-82
54
40
-
1339
-62
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- a5e9aa2e-5826-4032-bd58-99b201fb8f42
- Join Curves
- Join Curves
-
1476
65
121
44
-
1539
87
- 1
- Curves to join
- 7da64321-d468-4a45-a949-1cc715ba600f
- Curves
- Curves
- false
- 14b4e050-ea18-47db-ba6d-e5b4d260bbc3
- fbac77a5-b15a-4a25-8bf0-69012470613a
- 2
-
1478
67
46
20
-
1502.5
77
- Preserve direction of input curves
- c10ca07b-1ee6-4cd3-92c6-ef2c53b4c024
- Preserve
- Preserve
- false
- 0
-
1478
87
46
20
-
1502.5
97
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- 3733e2e8-4bd3-44f1-8b68-31f8853c8921
- Curves
- Curves
- false
- 0
-
1554
67
41
40
-
1574.5
87
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 23de244f-bf52-43f7-802d-5ec15eb4453f
- Quick Graph
- Quick Graph
- false
- 0
- 8f345dd4-6e1a-454d-b922-7e33f01fee1c
- 1
-
1673
-142
50
50
-
1673.302
-141.6778
- -1
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 0c500c4b-1420-4ebb-99a0-41e3849d151a
- Panel
- Panel
- false
- 1
- 805f2edb-cc3f-4a58-b59f-743b168199fd
- 1
- Double click to edit panel content…
-
1675
-89
87
100
- 0
- 0
- 0
-
1675.588
-88.60313
-
255;255;250;90
- true
- true
- true
- false
- false
- true
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
- A VB.NET scriptable component
- ed8c365e-1c52-4bc0-86ec-29ba5d9b1caa
- DotNET VB Script (LEGACY)
- Turtle
- 0
- Dim i As Integer
Dim dir As New On3dVector(1, 0, 0)
Dim pos As New On3dVector(0, 0, 0)
Dim axis As New On3dVector(0, 0, 1)
Dim pnts As New List(Of On3dVector)
pnts.Add(pos)
For i = 0 To Forward.Count() - 1
Dim P As New On3dVector
dir.Rotate(Left(i), axis)
P = dir * Forward(i) + pnts(i)
pnts.Add(P)
Next
Points = pnts
-
1637
-503
115
44
-
1698
-481
- 1
- 1
- 2
- Script Variable Forward
- Script Variable Left
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- true
- true
- Forward
- Left
- true
- true
- 2
- Print, Reflect and Error streams
- Output parameter Points
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- true
- Output
- Points
- false
- false
- 1
- false
- Script Variable Forward
- 96f18e61-32b6-4978-bb73-342a344d899f
- Forward
- Forward
- true
- 1
- true
- 32d56380-25c9-4a6a-ab1e-4680580d80d4
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
1639
-501
44
20
-
1662.5
-491
- 1
- false
- Script Variable Left
- d581249e-acb0-43fc-93d2-e7d3c3cddfca
- Left
- Left
- true
- 1
- true
- 805f2edb-cc3f-4a58-b59f-743b168199fd
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
1639
-481
44
20
-
1662.5
-471
- Print, Reflect and Error streams
- ee27267c-1c16-45b9-8af6-4b14fad70ab5
- Output
- out
- false
- 0
-
1713
-501
37
20
-
1731.5
-491
- Output parameter Points
- 3c226f4c-dbc1-4ed0-85b3-d312596e2e17
- Points
- Points
- false
- 0
-
1713
-481
37
20
-
1731.5
-471
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- a481ac28-d9d7-4e6a-870a-188d20517392
- Series
- Series
-
1335
-422
64
64
-
1366
-390
- First number in the series
- 2db415e6-4717-4b58-a15d-0edd4790e563
- Start
- S
- false
- 0
-
1337
-420
14
20
-
1345.5
-410
- 1
- 1
- {0}
- 0
- Step size for each successive number
- c57564c4-07ee-4f14-9720-43cbfa16783e
- Step
- N
- false
- 21f67352-2275-44ca-8a96-3595d0453de1
- 1
-
1337
-400
14
20
-
1345.5
-390
- 1
- 1
- {0}
- 1
- Number of values in the series
- d8b0013f-6e9f-416d-ade9-3ec261500c59
- Count
- C
- false
- e6c6998b-7bbe-478c-bf22-fe333baae900
- 1
-
1337
-380
14
20
-
1345.5
-370
- 1
- 1
- {0}
- 500
- 1
- Series of numbers
- 102b1139-a452-4fbb-bfd8-adb85f89960b
- Series
- S
- false
- 0
-
1381
-420
16
60
-
1389
-390
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
- Duplicate data a predefined number of times.
- 366fcabf-44d4-4602-80e7-59d2c464cab8
- Duplicate Data
- Dup
-
1337
-500
65
64
-
1368
-468
- 1
- Data to duplicate
- 26b9a5bb-a5b3-4c42-8ec7-f14b99b5eb5f
- Data
- D
- false
- d06a9085-35c6-4c58-a62b-cdccdee066ed
- 1
-
1339
-498
14
20
-
1347.5
-488
- Number of duplicates
- 1135bcaa-a32f-474c-8a88-9685539ce711
- Number
- N
- false
- e6c6998b-7bbe-478c-bf22-fe333baae900
- 1
-
1339
-478
14
20
-
1347.5
-468
- 1
- 1
- {0}
- 500
- Retain list order
- f110e97f-6307-4816-9059-6b7448686d97
- Order
- O
- false
- 0
-
1339
-458
14
20
-
1347.5
-448
- 1
- 1
- {0}
- true
- 1
- Duplicated data
- 32d56380-25c9-4a6a-ab1e-4680580d80d4
- Data
- D
- false
- 0
-
1383
-498
17
60
-
1391.5
-468
- f5ea9d41-f062-487e-8dbf-7666ca53fbcd
- Interpolate
- Create an interpolated curve through a set of points.
- 83435610-396b-45c8-ac61-afe214859efc
- Interpolate
- IntCrv
-
1776
-502
65
64
-
1807
-470
- 1
- Interpolation points
- b005b9bb-1f1f-46a4-96d7-539c901886a2
- Vertices
- V
- false
- 3c226f4c-dbc1-4ed0-85b3-d312596e2e17
- 1
-
1778
-500
14
20
-
1786.5
-490
- Curve degree
- 848af7ee-736b-417c-a5cb-245f4205dceb
- Degree
- D
- false
- 0
-
1778
-480
14
20
-
1786.5
-470
- 1
- 1
- {0}
- 3
- Periodic curve
- 4ad08714-117c-472c-98f1-d373bdf86810
- Periodic
- P
- false
- 0
-
1778
-460
14
20
-
1786.5
-450
- 1
- 1
- {0}
- false
- Resulting nurbs curve
- 38cf4e17-ca6a-4dad-8a9a-b880812ed23a
- Curve
- C
- false
- 0
-
1822
-500
17
20
-
1830.5
-490
- Curve length
- 708bf809-e627-4372-b750-e832971359be
- Length
- L
- false
- 0
-
1822
-480
17
20
-
1830.5
-470
- Curve domain
- c44c79d5-855a-4389-82c7-dc385c6ec362
- Domain
- D
- false
- 0
-
1822
-460
17
20
-
1830.5
-450
- bc984576-7aa6-491f-a91d-e444c33675a7
- Graph Mapper
- Represents a numeric mapping function
Sine wave distribution
Sine wave distribution
Linear distribution
Linear distribution
Linear distribution
Linear distribution
- db82b695-c28d-498a-8d90-3227c158ad9a
- Graph Mapper
- Graph
- false
- 102b1139-a452-4fbb-bfd8-adb85f89960b
- 1
-
1449
-452
100
100
-
1449.388
-451.5771
- false
- 0
- 1
- 0
- 1
- 1
- 0
- 71629651-0343-46d7-ac9e-d6041f9fe66b
- Linear
- 0.25
- 0.75
- 0.25
- 0.75
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 21f67352-2275-44ca-8a96-3595d0453de1
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 1
- 0.00150038828
-
1060
-399
250
20
-
1060.219
-398.9518
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- e6c6998b-7bbe-478c-bf22-fe333baae900
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 11
- 99.2
-
1060
-440
250
20
-
1060.564
-439.1275
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- d06a9085-35c6-4c58-a62b-cdccdee066ed
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 1
- 1.00000000000
-
1060
-497
250
20
-
1060.206
-496.9203
- d1a28e95-cf96-4936-bf34-8bf142d731bf
- Construct Domain
- Create a numeric domain from two numeric extremes.
- aee65bfc-17c2-4339-b138-309a4e179191
- Construct Domain
- Construct Domain
-
1140
-331
143
44
-
1222
-309
- Start value of numeric domain
- 90af7879-9530-41ce-baf2-ad65a39a15c1
- Domain start
- Domain start
- false
- 0
-
1142
-329
65
20
-
1176
-319
- 1
- 1
- {0}
- 0
- End value of numeric domain
- 367fca02-9788-4182-bc68-2ec64f5f62d9
- Domain end
- Domain end
- false
- 7b31b4af-f791-41e1-b265-aeac6abb8237
- 1
-
1142
-309
65
20
-
1176
-299
- 1
- 1
- {0}
- 1
- Numeric domain between {A} and {B}
- dc040710-6476-4601-a4ac-a91e86071f0c
- Domain
- Domain
- false
- 0
-
1237
-329
44
40
-
1259
-309
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 7b31b4af-f791-41e1-b265-aeac6abb8237
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 8
- 0.1525
-
1022
-251
250
20
-
1022.388
-250.8098
- d1a28e95-cf96-4936-bf34-8bf142d731bf
- Construct Domain
- Create a numeric domain from two numeric extremes.
- 6697d1f5-126d-465b-9e49-f27e0a355acf
- Construct Domain
- Construct Domain
-
1142
-199
143
44
-
1224
-177
- Start value of numeric domain
- e3f095a5-e167-4e65-a69a-010eb1736806
- Domain start
- Domain start
- false
- 0
-
1144
-197
65
20
-
1178
-187
- 1
- 1
- {0}
- 0
- End value of numeric domain
- c1c6d7ef-8bc1-42af-bdca-780eee0fb64d
- Domain end
- Domain end
- false
- a4bde5d6-e053-421d-8330-18c99a954b18
- 1
-
1144
-177
65
20
-
1178
-167
- 1
- 1
- {0}
- 1
- Numeric domain between {A} and {B}
- b94d34e6-5bb8-451d-b47b-0aaf8569ad88
- Domain
- Domain
- false
- 0
-
1239
-197
44
40
-
1261
-177
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- a4bde5d6-e053-421d-8330-18c99a954b18
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 8
- 0.0625
-
1022
-130
250
20
-
1022.945
-129.8485
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 5071b8ad-8171-4016-94c9-f1d679f7ac79
- Quick Graph
- Quick Graph
- false
- 0
- 17475dde-3ce1-4bda-9b7e-bf0de4f30249
- 1
-
1673
-192
50
50
-
1673.858
-191.8802
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- b651f598-73d9-4b11-986d-f6efc831d0bd
- Quick Graph
- Quick Graph
- false
- 0
- 2b5fcc20-04cc-4c81-aff0-546d1bd70016
- 1
-
1673
-244
50
50
-
1673.234
-243.2632
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 792d8190-32f0-478d-9252-dc81e374ab16
- Quick Graph
- Quick Graph
- false
- 0
- 5c724fee-3b94-449a-a4bd-4f114c89e3bb
- 1
-
1672
-294
50
50
-
1672.61
-293.4656
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 48fea71a-fb74-4c7a-81c2-281ce4299a43
- Quick Graph
- Quick Graph
- false
- 0
- 3f7eed88-2037-47a0-befb-dcaee7db036f
- 1
-
1671
-344
50
50
-
1671.987
-343.6681
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- aef6f2d6-444e-4ec0-b611-2af9be278e74
- Quick Graph
- Quick Graph
- false
- 0
- 27d339de-5f5a-4cea-bc49-6784c09e157e
- 1
-
1671
-397
50
50
-
1671.363
-396.2314
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 6550d345-2259-4fb3-a8d0-21de828e7c83
- Quick Graph
- Quick Graph
- false
- 0
- 805f2edb-cc3f-4a58-b59f-743b168199fd
- 1
-
1671
-450
50
50
-
1671.919
-449.9753
- -1
- ab14760f-87a6-462e-b481-4a2c26a9a0d7
- Derivatives
- Evaluate the derivatives of a curve at a specified parameter.
- fb8cb2d8-5e2f-4911-8f58-208b616136d9
- Derivatives
- Derivatives
-
1915
55
120
144
-
1985
127
- 2
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 7
- fbac3e32-f100-4292-8692-77240a42fd1a
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- Curve to evaluate
- 3dc5b186-1e03-4a69-9622-08b74979a28c
- Curve
- Curve
- false
- 3733e2e8-4bd3-44f1-8b68-31f8853c8921
- 38cf4e17-ca6a-4dad-8a9a-b880812ed23a
- 2
-
1917
57
53
70
-
1945
92
- Parameter on curve domain to evaluate
- 01741eba-b1a1-44e2-8a78-2d39e0276d92
- Parameter
- Parameter
- false
- b053445e-c64a-4606-a743-3fed15e4eda2
- 1
-
1917
127
53
70
-
1945
162
- 1
- 1
- {0}
- 1
- Point on curve at {t}
- e41b7d0b-5fce-4572-9731-c958acaaef1a
- Point
- Point
- false
- 0
-
2000
57
33
20
-
2016.5
67
- First curve derivative at t (Velocity)
- c3853d1c-8785-4d32-a116-78a4c2bd40f3
- false
- First derivative
- 1
- false
- 0
-
2000
77
33
20
-
2016.5
87
- Second curve derivative at t (Acceleration)
- 1ef2b93c-59a3-4cfb-b040-53e350df25af
- false
- Second derivative
- 2
- false
- 0
-
2000
97
33
20
-
2016.5
107
- Third curve derivative at t (Jolt)
- cd4bddee-e52c-4a18-8019-4101cb872d28
- false
- Third derivative
- 3
- false
- 0
-
2000
117
33
20
-
2016.5
127
- Fourth curve derivative at t (Jounce)
- 11bc788a-de41-4086-8edf-817c6e1ec50f
- false
- Fourth derivative
- 4
- false
- 0
-
2000
137
33
20
-
2016.5
147
- Fifth curve derivative at t
- 4c755a46-a63c-4de5-b6d6-57bea0b414ac
- false
- Fifth derivative
- 5
- false
- 0
-
2000
157
33
20
-
2016.5
167
- Sixth curve derivative at t
- 90daca75-ad77-4c8c-ae93-8f4ca51fcbfd
- false
- Sixth derivative
- 6
- false
- 0
-
2000
177
33
20
-
2016.5
187
- 7f6a9d34-0470-4bb7-aadd-07496bcbe572
- Point On Curve
- Evaluates a curve at a specific location
- b053445e-c64a-4606-a743-3fed15e4eda2
- Point On Curve
- Point On Curve
- false
- 3733e2e8-4bd3-44f1-8b68-31f8853c8921
- 1
- 1
-
1710.661
162.3443
120
20
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 92bd684b-349f-4d67-9a67-d634dc52787c
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 11
- 11.0
-
997
241
250
20
-
997.3901
241.4058
- 2a3f7078-2e25-4dd4-96f7-0efb491bd61c
- Vector Display
- false
- 0
- Preview vectors in the viewport
- 0.1
- 15
- 719b86e4-9e3d-4d67-a04d-952b70090645
- Vector Display
- Vector Display
- 3
- false
- false
-
255;255;0;0
-
255;255;0;0
- 0
- 35aca1d7-7d80-4473-b98e-de09d3efd465
-
255;255;165;0
-
255;255;165;0
- 0.5
- 0fce01ef-894a-466d-a629-588de6810ff7
-
255;124;252;0
-
255;124;252;0
- 1
- 6bcbb8ff-2eb4-44d3-95dc-a10579f6428b
-
2104
60
70
44
-
2160
82
- Anchor point for preview vector
- 5e8b1902-1549-4f17-9f38-c774653c5472
- Anchor
- Anchor
- true
- e41b7d0b-5fce-4572-9731-c958acaaef1a
- 1
-
2106
62
39
20
-
2127
72
- Vector to preview
- cd8b1052-a424-47d3-8961-105d5b97b077
- Vector
- Vector
- true
- cd4bddee-e52c-4a18-8019-4101cb872d28
- c3853d1c-8785-4d32-a116-78a4c2bd40f3
- 1ef2b93c-59a3-4cfb-b040-53e350df25af
- 11bc788a-de41-4086-8edf-817c6e1ec50f
- 4c755a46-a63c-4de5-b6d6-57bea0b414ac
- 90daca75-ad77-4c8c-ae93-8f4ca51fcbfd
- 6
-
2106
82
39
20
-
2127
92
-
iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAB97SURBVHhe7Z33V1RZtsfnH5kf3nqrf3hrzfzwetasWc/pnjVOT08HbQVaBbux20i3tiIqINkACJJzDlIURS6goAJJVMSEYgLFhDlMB0Mbnq0z8j6w592pKqAoqiQodRbrrluXG84537P3/u69zz33V79ylbegBwZd5Y3tgX8NP+rf1dW1z7IcPHgwKiqqrKzs+PHjGRkZKSkphw8ftjqnvb29sVGfnJxeXl5lMrUbja1s6+qa4uISOzoONjQ0HDhwwOqSyf65f/9+apWampqZmVlSUnLo0KHJfuI03h/gbEEIYAUFBXFxcSdOnIiPj8/Pz1e6g25i/8iRIy0tLcXFpdnZBXp9y8GDxzo7j7Jtb+9MT88xGvfW1dVPPYSdnZ11dXUMuISEhNbWVqo6jV082Y8eB0L6wmAwhIWFUY/du3eXlpaKpALtMHLF2dnZGzasT0xMSU/PranR0V3NzfvYNjW1JCSk1tcbtdo6bjLZzbC6P9Wjbrt27UIKR6qNKa7MZD9uHAh5PJhFR0dXVFQgi2yRPI7k5uaiYNnW1taq1aUxMQkhIVFZWXtKS2tLSmpUqtrCQk1Q0Pbs7JLaWu3UQ0gNEcHw8PD6+npswWR34vTe3wJC0BlZGzBDl6KRYmNjq6urjx49yj5mBvWIFqWDuColJXv1at+dOxMTE/MSEnLYxsam+/j47diRXFVVPcWdSMVMJtPWrVup59ttBQUsCwhH7WtkSK/XM6IpKNXCwkIG+LFjxxQDg6FJSMj46qt1K1Z89913AevW+bNds2ajt7fPrl0Z5eUVXV1TKgdoTpVK5ePjA5MaSdCmV2Im4+kWEI71AFDcsWOHr68vUhgTE8NPc4IA8Pn5xZs3h2/aFLJpU6jyFxCwzd8/HE07xVIIhAEBAdu3b0dJTEaXzbR72gUhnYLkffvtt6gmtVptRRCAs7GxsaGhsba2Dss39FcHjzE16g3QUSR4KhkpYgcX9fLyQmFM8dCZLmjthRB3YvHixZGRkVTUiqO3trYYDKayssrc3IIydYWmWltWqkn0XpYcsLWv//IUOxX4r4GBgeiM7u7u6erTKX6uvRDi3f/5z3+GxUBnRlSxQ6fTp6dn19c37T94tF3fUuH1ZdW2yKTE1I59XfX1U+faI3ZNTU1ff/11R0fHVIr+FGNm9Ti7IMSoEON47733sIUKx8MiolHpNa1Wm59flJVV0NjY3HXynC4ozBAT39HTl5qWrde3odY6O6ciOgNsxB+CgoLS0tJgW9PbrVP5dLsgRCnBDj788EOGNlqUAngYufT0dFxGRn1CQkpqak51VUNzV0/VyjWG8tpGfVtcXEptrR6Ap8YvZGxVVlZ+8803b70vb0sKBR6rMwAA5Nzc3PAYwJKfSF5WVhYmJzk5uaamRqutjYlJDNi6I7VAU7wlJN9tcVGpNienFDqamlpYXQ0jnfTojIyqlStX4vPMEiKqwGQhhbA4o9Fo5TBAEIhUvf/++/QOEPJf4jLwBdxnOgsGOOTap+Wu+Hrt9r/NT/jg49jo1Nj47MjIxFWr1u/cmVxZWTUFzBDNSfAIzjyaqZ5KrTYNz7KAkIEMQmADVBTAI0a8ZcuWefPmIYIYG5QV+OEagpwCDHKbmJKzfN7ir+fMXb1+6+pvNq9ZvRE339v7G6IzGs2ku/bUCovr6elZVVU1G8IxthTp06dPHz58CB2gEE7z8/NbuHAh1gWbRzi7p6cH7xC/AvzM+R4/8/MLE5Jzsgs1GRkF/GXlqbIL1PmFZfHxqWjaSbWF3JyxtWnTptnjy9uC8NatW3fv3g0NDUVtQl7E/mH2EETyEsS4Q0JC9u7dawUJUqjXG5qbW9VqTS2WsVGvycgsjoouzc3v6+vX6XSTmupB7IjMAuEsCaeN1NQWihQIr1y5ggtIv0gh0r9mzRp/f3+ixsuWLYOFYv8Y9VY3woZmZORkZubq9M1VeUXZ8xdosvN3btvZ2rZfp2ucvHQdlo8QPLkw1MZsI6Kj0xmBkBAacoZF3LNnDz4DQU6wJEC6YcMGKANXihblHI7TcdCZioqqnJzC2lrdkdPnTXHJxujdh/suZQ0ngXHtJwlCno6fisInkYlHP6nqehpYit2PtJDCe/fugWJERAQyh3bC/qE2AYkjOTk5EBz6Cy7D2IfLEBclrcpsjIAA/+jo2JycorKy6o4jp+qDIxoTUlsPHEtOzqitbSLlizNpd33sPRHA0O1QZSpJXne2ORLm3WQB4Y0bN5BCUMG7YIyfPHmSGSioKeDkp4RjcCeSkpIAkuMMf6ClB2Ni4nfsiEtPz6/QtZWuWlsWl6ap1kdE7CIJjF/42uUDsWYMgV95eTmjikrOnnDaOLbw+vXrFy5cwP7hTtAvRUVF+O8gJBQU/Nra2jZu3Oju7o69REDFXp440V1QUOLjszlie3xKtjrjowWpkcmJKYVkDUG5tFTz2v1CZA5uTMyPaQN4q7PWCgqcFlIIhNeuXcNtgHmiPHfu3CmGEAzoJkwjeTgi3dB38FOAwUXMzSte8dW3yxd96feXjzf96QPfLeHr1wd6ei6PiEgoKVG/XgjBDwWOJsBa46S+3pvbq8dn0nkWEILf1atXZdaQ5NtAToQPzUkEGQElDoIuxdtT+g46U1Ss2rI5PNg/IsgvJCgsJig4MihoZ1h4THBwdEFB0ajzORzrBMYTQVcqQK1QoVRjNuTlbfeVBYTgd/78eTw5rCCcRcAjU4jwMeq5kQRlgBMfUek7TB0+mV5v0tY1aOt1dWy19fWNhpqauq4DXbrGJkTWMcCsruLRUBjUA16NRqPBQs9mFjO6UzEwMHDp0iUxM/hbsBXcfISS8BVwCmWQycHwCAVCjuPaazRVMTFxbMvU5eVaXUlmzob/frfV1N7c2oZZdR5CnkIR3c6jUeYE/2YzixkTQgQR2DZv3gyQMAX8LfNwqLiDGEtAlRg3BdUKhIWFKrW68sjh40dO9h00tWu9vszcHqkztDc1GZyXQklE4JXCsE6fPo09ZoS5RHAUOoNHce7cOZkdQxGQwGw4HSFe/CFUK0YRKcQmoc04Gb8iNjauoEBVVKjad7intd5Q5ebRrKrIKdGUl9eiUkdGcyYqlNQEVwfkoMoobYnTTvQmb+v5Frbw8uXLfX19ME9ai+iAFrknugzLx6jHHKJU8fo9PDyYkEg/8hNlGxERHhwcmpaWm55XotNo1Z/Mr80uamzvio9LzctTVVdrnew78KNKPEt8GNQ4o8cF4eiKFEOIIAYHB69fvx7WB05wh23btoEWL1QQ7yYtTjSEf2ERsUNs6coTJ47v2VPqu2VbuF9I7tyPMrftziqu4XUUJiGGhsYWFZU6E51B9ImiUQd0KRobRYqGn4VJQRtiYCGFFy9eRAoJGUMZiGgjglAGoTAiAegx/A2rFxXwGdRllT4rN/j8x3+G+WwM3pkYEoxnGbVsGfHxnfn5JUw7dUwQGR9UgzAQRJSnsxWX1MVixgywEZo5deoUVIXUoDgVVqlB7CKc0Nyj4F50rrqsYuO3/iu8Vvqs3+qzxs/HZxOz8Zcv/y4wMIr3mxybeMGzoLJoAjQ5j0CdMouVadqzPBYzToANW4hfiJ7E8GD8oCr4iFwjM9XoU+QSvmrF5pEJo8GQnpGdk1dMvkn5yy8qjYtPptMdCKCIC0FN4E0yksjI44+68BsHQhQpjFSmVkBeyDSJOZRpTsgloVGZdWF+I/qapCAzN3lFdNivH/prMLYUJiSd7TnT3DJhv1DeXORBylwmkX6U6muPmDum4WfUVRa2sL+/n6mYRNFQpzL28Qf4CZEBSxAlZZiXl8c5kriQRCAz3Ej5FhaWJCWl6nQGJgQ3dRxUh0Vsfvd3ukaT0dQyUb8QncmgwYsQz48tHIo6uBzBUYeOBYSwlbNnzyJ/sHaZ7KTEuBE13g9dtGgRGXwiW+zj9cskDHqWN9Dy8/eoVETdug+d6W9OStN+tSIvv1jbYGSi94QgRNYBDAIsOlPeUUWjyhTWGTX8Z0hlrKcCo0tJUyBt8Hh8PiyQRGfYoksRRPIDCKKiY9G6JKSCgkIKC0tJOe09droxNrHK84v2jq7M3CJNWU1dnc5+116mjXNPHieASTgbZ4bBNEO6bKZVwwJCDCGCiITJy0pABXnBCCEHKE+ED22Gc0Zv0sXIFoKI+6FSlezaFRsdnRSfWVQRHlk4z628qqmixhAZGZeSkltRUWNnmxUXUIRPuC7WF4l0qVB7/UK0KBDiPtODkqNHfaHWyFTADMHS/L1nYJaZ3aR8yyuq124MDXL3yvhwXkpacUpGSXJygZ9fSGBgJKJpzzsVoAX7xeJCd4XBihTKnGMXi7EXwjPDBclTEhH0IxKAaWQ2KSEb9kcaJHpfpS7/Ztm3X73zX76+QRs2oYcDN2zYumTJV/iFubnF40ZnkOnm5mZceMRaUZgSFyUv7xJB22rMQpGCH1JIdMZqoQ+0KG41oVGcvJEoAkBFRWVQ4I6wbXEh4TEhIdFkqEIjYsMidjPxgrVfbPuFMpcX1wWdrLh9HARO5F7hvXZq41l4mgWE5HFACNpCV5pzEPoR/oKXRvhUxMI8xDXsF7JcyV6DsYXE79DW2FKnKtNVa7u7cVEabDBSrhWfD5tnLm1UADLlYjH2jEhrCMnXE9RGcyqiQxdLoJLuRt2BIl6HzIYSpSopX97yJeVbpqlUl1eleCxKX7c+fEtAW+u+lrFde3MX3jxyjS4lhgeErljMhCHEo0dnwukJSyoMgg6F6BNykwQvIkXcBMeD8JuQRuaXKinfoyfOdlTWNqxdf7z/SmFxaX29wUbKF7FjNIycBSpZZVcsxh78OMdaCoFEbJKiSNmno8nrCtGQSdwke0kaQCCxkURSmFE9lPItKt1/pMeQnlMfGHKg+0xWVn5FxdAsmlH9QvDDReHOVmyFn4RnldCMnc2YzadZQIhKRKRABR6vWDuxVeLjKz0lATZ8DDyQ4UmLYampuWlpObqWzqrQHZUh2xpaDvCWb27u6ClfmUiINHMfc4rLQ8kz8zhQd8Vi7ByXFhCiu2A0OBXwCAFM+lQWDRrpnIlE9vScYLKor29waFhMZmlDtveq7C3hGfkVAQERoaGEqlVWTgX4iZcp6QjzivIvXoRjWLisoJ34WStSuAwsBstnzmUg9zB+TOBYYjGU8lWXkyZc4b06ZM2G8N/9IXhzaFBIlLf3qoCAHcROzSEEG/KRckOrMSHhUCyxy5G3Hz9rCHEKAQ9TpAgHPzGNIjFj3RdBLFVrNvltX/PlunWLVq5bvnHthoi1a4NXr/EPDk7IyECkWOHyCNEeqA/vOm3fTsDFOHLyiyQo5NW4CbVhlp9soUgxhIRAmaCm5OWBkKkrRLlsSAbS2dbWnpi0K3Z3eGzCjtj47bExvEkTkZS4PTIyIC9vd0M9L8cU1FQXaGuLIyJ8S1WsaGC9eA33Jyo7Mhk5y+Gxp/kWEOJRIBywROyfqE0gxEeEfNogF8ORlBaTwftk90fdh+fxd+Lo/JrKucamv3a0fWxo/KDV9JfDnX/r2v+3g/s+PNo1V1sb1N5uLWfiYFhN6bCnAa5zLCCEdqLHIDXmtlCWlAXUsXQpEOp0xrYWr/Nn/nqm52P5a6x7vyD39yVFf8jO+F1nxwfnznwix8+dmdtQ59/aagGhiKC4ni5IJtoDFhASGrWCCuEDOXKHqNOx+ncYAGNlucfe1vdbjHOb9XPZInntzUN/baa/tBr/9ddsmNts+B+N2o8XT62IqMsKThQ55fzx1yOFQxIXRUTGyhgMQ2hSFS/QqH5fVf5efe2fytV/NDXN1ZTOYUdb9X51xXsa1Zwy1Rz+1WaaU1ri277331I4NHvKaHQR0dcDoUzXtLoXgoijTWgUZ4NI5kijSKS6vsHQe3r57Ruf3b7m/vSh550b7o8fLGF765r73Zsed667s3+5f8GjHxcPDi45sC/YZPq3wpQwjcsXfD0Q4q5BXkZKGyqUqClLl5DHl5cOzXNAQFhXZ7h4bsXgoNfgiy+ePxna/uvv5Rcvny0d/MeXgy+Hjvzz+dLBV4v2dwQpEMr4QMSZMuoKxziGooUiJa4G+UTaRqKIdMJr+C8wIzHsowCBFjiPHjtmNLYdPbS09+SHl859du+WR++peQ9+WHS259Pek/Mu9M2/2PfZ2ZOfdh/+6NY1t1e/uHe0B7a3H5XA6dA0YrWaiIwrr+sYftauPRKGKCjfBrCioDIbmAC3rJUAnExMgoZkZmUFB2/rOfbFox/dvr/j8cPdz+/ddP/hzudgyc6NKwvv3nBnB136073PX71cVFW+IidHLeQICAnJEmt1RWReD4QSFKVbefWEl/kEM/NbA7CknOCuRG144YiZNampaWvXbjx70vv5k0XPHnk+ebDk6cMl//xlKTv8fP7Y68VTL448vr/4f3/2fPUPz3K1d0JCrkzMgciQF3RgurfDDX77LhxlPVKZL4PZI65GJHNUX4LeV96VOXasu6HBcOrE0oGLn8JfHt9fcu3SQkjNwMUFVy8tvH3dfeDiQnb6Ts9DQAcHPdtbN5mah0gTY4V8BWksV1DbmYE15pKyMv0ey4eBtB20HGKk9YZL/V8PDi6FsPwyTGdePvMSCoMIvvpl6dA+pAaaM7jowL6A5mEIQY6JjVO25qwz3TSTr7W1KjCyKFkFpsbYEJQDnXxby9BzbOnt6/O/v+3x493PsX/ozOuXF94ccLt3E4vowZHL5z/7+y2PVy/c97Ztbm4emumLiKNF7Z8oPJP7cRrrNs7CzkJExdkYC0WBsPuw540r84ZYzE0PWChosb3QO//8mXnQ1P6z86Gpt6+5Db6AkQ5BiJVlfMCGXHkJJ+Eff21ubCEuPzE2IqijogiEdXX6vtNfDL5cgvD9fH/x88ewmKE/tOizR0vYQbu+fOr1y1OojVtbix8QDs0+VamI+7gM4aRDyANAkdgpskg2f6QDx3IKxEhPn/C8cuHTG1fcoDNXLy4ArSv9C24MuKFLr1xYACMdfPXl4KB3R+sfU5KWd3QcATnYrPIpNiebMZsvH18KpXfgnwRQQJF4t5XckPyLjNp9/MhHTx5/9vj+Z88eLXh8f/7wdujnT/fm/fzT/BdPFw7+w2Nw8PNG7W93RXvu3zf0CjErWCDZLo/CyfFnL4SCIu4gGhVP3HzaPMtDxcUlGPSpBkOkyRDV1BhpMkYbDVFsTYboZlP00E99lKEpimkVmrKQiopcAjtAKG+euiCcOghFo+JjMBsKl1z8QoRyeBUYwjpH9+4d/uv4/x35afF3ZP+BboKs+/YNvbxIAIH4gCsuM6UQij8uC9mJUKJaITsOwIAUMgnYfCEwJ1syay+fgCJV+khmgWLJePNvLJo6bocyFIjPEQNyMdJx+8r2CY5AyB1Z1YTveqBCmW7jWA3kZRoisS6/0LEOVK6ygNBqbvVYt+Y0hI9MBbEVznE4z4dlJdcBkC5G4wyKFhDipWHeZK2LsYCR+d3wUuwfjh3K0GExGn4xcegrz84kC2UZBQfKW7P+ggWEvIxCspDQM2lYvEB6dqR8ABiiQ9aQGaek8p385DHDhTsw+dixz9URX0WIKUyAs104h5l5FE5jfjpbWRXJtgqRQK7t4rASckbyzK+1gJDaIIXAw5ROOKd8BV1mWsgMCUAlZY8/J3KDOAKnM20QUSCrhTSPOjHHRju5ljHEC3WPHj36Ybzy008/sWDuzZs3v//+e77l8ODBA1abo3UyTGVVDymKWKNm8KBkITp2IN68XknhiHnhyPRG6i0gpCoUqi4vp9FC5BLOwvu9CCWCQkuAVgYvrWVQA6GTlkwcEmYC4Cayo7x5Ou4gFQh5D+THH3/kO0W2C+cgTLihOLI4Raycy5qP69ato4EMSoYsRoR/YeNpI5hRwImAIthzJpez9jyP+Pvf791/8ODhsxcPHz+9/+yXnx8/ZhyDrjPjeNyWToCRMpzNy4sXL+7cuYNQEn8BSObUoPQkwEYBOd7eJqfo/PxdmSqAOmV8MFzoa4TDhj2WJgmEvERAz/KFDXuKLDLHmp23b9/mHS7GDZEmIkQ8mmYSc6dFbIffmIxlkSSMPZSb5nMaDaexDbrGa1cHrrRpBk4euLev+tqlfr3BCIpOwuDM5RZSeGVggEXy0TYUPhvDuONFGcwG69HgRYAin/1BcfE8BJT2Ayo9qKgg5EnmakiRd89G0o2xqsuwYOwzIRF7zJINeP2MblHjAAyick9hLgIh9gzdwDijqhRBUfZHFv4lTaMAIS1CB9JA7k8r5CkyM49q8C+EFQFFBAV4Vjcb3l64dPnyqZKk07sDLqQGnT/ZozeaZhCE2Hm0h/ACxibL0LAGBuE0+hQvni9qs+gFaz2xNhRrA+OVMzbBUgqDFDU1/FFRLYlA5IP+5YakG8WQ0C9oY1k6gW4SvMUOUeg+CsJHz0oASKQBLHkQw5+bcyuZq8i1nAN4PIId8GDkUehuCj8ZfxQ5KIWfgERzwE9+IoU0DeHjWdQfowAS8socVhn9TE14KMO3t7eXRbGU0j9w9XBOQat/YEfYtlOHDjUOXzhTFCnjmpYwAOks4KEZyBzflVu9evVvfvObd955h+/E4A6i69AthMcwJBR2iNRgyehutvQ7pgVaSwF4dC+0iIITKTtS+JcUTpCTuZbChETuxoQalBt35iqeyBRWPsPHN9yoiRTWwfHx8VmxYgUCBB7YNrbUn2pLoSHy5RT+RWEfMFhwVY4AJHDy5RtUJQ9CozBieByDFaNIBbj/0qVLqQ/ISV4TmOFcVdXVvefPNyUmNhcVMwjO9PUxXqd3EqyFIoWk0U4pKA22SMzwJ7E7aQyiyZxuaTZHUEFIgNhFKfJT5ElUn8LxZD4jFInWIo4IJaLJQBGWjzDxFKQBUaYoko0uRUqgGAg3RegGR+hKVBxBPsSIBwEebBNsqDACBKgYMLZAxXEpSCewASQ7/ESpcgKPphWIPldxH1lmgxWSfv3rX7/77rt8lhQsgVA0PPUXGUU1nT57tvfChbO9vYwDgdAZY+bktdbLJTCylAKidD3tREToQTEYSAnLXTBawcABLmrugyvGkh0xn4pZNdexomnNiwwR+p1BwHH5WhgWC2xE8sz1qmhXjnAJulG4KKfRHFQIKoemoT/QK4gjYwJlg6UAV/oBUBleGBdOo73iY2AdxMWU8Sf8y0kYnLncAkJUv3kRsWCwo+skGE1fC4qMVorCLJypgcPXCiMFQuCBZI5awJXjbMEMSQJ1IOQIWxBCIUtgAQ4FMKjQTz75BNaG+RBeg3ihk3nKWIX/guIM8gtloCmFEUf/YrfMVxISicGGASGNn8Y8A9WgZ5FX8DCnG+b7gIfMXWC14/PnRVLlv8grNUchMwKgRcgcAoebOGfOHJqvuElCncYtDo/C13KhdXTGXNHREvoID8kKJ3qNMctohQVMoyUXCNkOgTSigBOMGmvKTnFuLrElUIRbyolcIsF6mob/jj8qXyrmC9SOhfpeCxiO3WSceaSwGOjDSOddUobYDFrucJjbsRorVwmEjDkUI+RrZIG3pGdk+Pv6Zm/derG3FxcH9q9491AeOC2KFPaLvQBI+Mub+B2hMSGka+Sbd6N6PBwEVz7tRHhzuj78IRCCqKwKP7JcvHy5XatN3bKlvK4OewiXgUAK0+YS6o8twFggdlgHGA1exJuYgh4TQmQL827jM7mcwOBduXIlenVaHFuBECqBYoQ8jyxoThbn7Dl48AwKdNg9Bz92OJNLgA2zB66yHgSshHgFKRrn44VOapeJXj4mhBgJtKjtSYLwcgQRaj4t9kMghNADDGZv1AJcYgIJj4kDJyezZQiCGT4ugQi0KFScwJP5ymUT7crpOt+WIkXPWK0ta1VLLCJhCyyK7ZcuJqltQCir9CNew2JmUSQ6qBT+Jx8fZoeD6FL2CTwReUHsZOVxuAwwO+DsTlID7bzt6BCiZPCaMfW220PjITtYEfmioXnCT5Kl3Mc8FWfluUuA1DygI5mmsdbQk7tJJIgdBhB6D7lBtiRkSgXEQ+AEdszDFLh6CCL4scNxQRTlKUvt4F1QQPFNfFl1dAjpXGIWhJdsu31yGrqITmQqBgEOAJAeZATRuXQxagqMxyoEVGFM+C0SKSXoQ0SbUIh5EFwwk1HFiIFxUDFO5iqipnAujBmskoKHDhJUg+ADVBlBBDAp7MvC34ggP4GQgcJ9uCcnMwSpLRx7Gn0kO2Vu5GljQkgX0DbbECrCKkl8zmftEfqRjiYgQECEEBRjHMMzCtcYTmDxFFnvG2bEVbhxqG60HDocYDBRUCogoa85QjwBesX5jBtUN4FW1DgYcH9uhTyxlQyD7JgXIOQqJA8IOc5PKrZq1Sp5wZGGUAGShRLLfbOKLQgRnXGDL3QKaInOlHAwYoTkkViQj7CR+nn27NnjEeXJkyfMgUCG0HjPnz/H15a4CaqM+5AoQEAZE4g4WUl63zx3KNMjwAD8EFlBRYoCngCpFAAW+ROk0aVUlTtLhotCY8Uuvln4UdvRIRSyZ8/Lf/QmOlAWwOB24i/CVCV9yB2QHpAYVZGCNMsu4FkiZ5J5gAPLuzKSjlcSIKP6LVJJHDuAIeFguwAbNwEqIORMLmFMoAN4BIMG+XNmKt70oj46hBLhxdiMG8ClC3Aq0HhWxIf+RYtifiSLxHbUAqHgOJdLAXhJO3P5uP0iEDJ6ED7wtl3AjIHCzeVktrQRU4oiRTkTlJHxN+5DZ+AJFhDyw1XexB74lau8BT3wf+MBGfIY9HiBAAAAAElFTkSuQmCC