0 2 2 1 0 7 a61aec93-d774-48cf-8598-6718e7650341 Shaded 1 127;201;201;201 127;176;176;176 633740217794324378 XHG.⠀⠀⠀⠀◯⠀옷ߦᗩᴥᕤᕦ⠀◯⠀ᗝᗱᗴߦᗩᙏ⠀◯⠀ᗱᗴᙁ✤ᴥᑎ✤⠀◯⠀ᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕ⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀ᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴ⠀◯⠀✤ᑎᴥ✤ᙁᗱᗴ⠀◯⠀ᙏᗩߦᗱᗴᗝ⠀◯⠀ᕤᕦᴥᗩߦ옷⠀◯⠀⠀⠀⠀.GHX 0 -1171 333 0.8392804 0 0 2 Pufferfish, Version=3.0.0.0, Culture=neutral, PublicKeyToken=null 3.0.0.0 Michael Pryor 1c9de8a1-315f-4c56-af06-8f69fee80a7a Pufferfish 3.0.0.0 CurvePlus, Version=1.2.0.0, Culture=neutral, PublicKeyToken=null 1.2.0.0 David Mans ab81fea9-8d16-4caf-af89-2736c660f36d CurvePlus 1.2.0.0 52 fb6aba99-fead-4e42-b5d8-c6de5ff90ea6 DotNET VB Script (LEGACY) A VB.NET scriptable component f8463a6a-537d-44ae-a102-2cbf6773c33a DotNET VB Script (LEGACY) Turtle 0 Dim i As Integer Dim dir As New On3dVector(1, 0, 0) Dim pos As New On3dVector(0, 0, 0) Dim axis As New On3dVector(0, 0, 1) Dim pnts As New List(Of On3dVector) pnts.Add(pos) For i = 0 To Forward.Count() - 1 Dim P As New On3dVector dir.Rotate(Left(i), axis) P = dir * Forward(i) + pnts(i) pnts.Add(P) Next Points = pnts 988 154 115 44 1049 176 1 1 2 Script Variable Forward Script Variable Left 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 true true Forward Left true true 2 Print, Reflect and Error streams Output parameter Points 3ede854e-c753-40eb-84cb-b48008f14fd4 8ec86459-bf01-4409-baee-174d0d2b13d0 true true Output Points false false 1 false Script Variable Forward ce1f978e-a982-441e-8781-42beeed9349f Forward Forward true 1 true 11d6ae9c-db85-41da-a72e-197fbac37970 1 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 990 156 44 20 1013.5 166 1 false Script Variable Left 57e2c9a0-b37d-4c4b-9e2b-b0e17a521d43 Left Left true 1 true 34b6e5a6-a1ba-4214-b996-0fa3a932cd38 1 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 990 176 44 20 1013.5 186 Print, Reflect and Error streams 33dd288d-3d90-4a29-8ab3-866accaf2be0 Output out false 0 1064 156 37 20 1082.5 166 Output parameter Points a7101779-445c-4899-9b31-ce0a4803f08d Points Points false 0 1064 176 37 20 1082.5 186 e64c5fb1-845c-4ab1-8911-5f338516ba67 Series Create a series of numbers. 3091dae8-d5dc-4fac-a891-c5a5c7118bd1 Series Series 356 212 64 64 387 244 First number in the series bfe8e6e2-eddc-4584-8ce4-005a112f16fc Start S false 0 358 214 14 20 366.5 224 1 1 {0} 0 Step size for each successive number 3ef6124c-d6dc-426b-a979-0ad9d65d59da Step N false ff0daf69-230f-4e05-8c98-bf9c091a451d 1 358 234 14 20 366.5 244 1 1 {0} 1 Number of values in the series 41382c6d-efca-4f46-89a4-f4a83cdfe7f4 Count C false de137ce1-c93e-4980-bb21-a8ca5601e20d 1 358 254 14 20 366.5 264 1 1 {0} 500 1 Series of numbers 4a521433-15f9-4232-bbd6-a4193c7aaecc Series S false 0 402 214 16 60 410 244 dd8134c0-109b-4012-92be-51d843edfff7 Duplicate Data Duplicate data a predefined number of times. b15849e1-cdad-4c2e-becd-859af856d608 Duplicate Data Dup 358 134 65 64 389 166 1 Data to duplicate 907f9087-e15f-4411-b460-551d6e02779d Data D false 04e916a1-e753-499e-a557-73ec31b3076e 1 360 136 14 20 368.5 146 Number of duplicates 4af8efc9-5fa2-429a-bc4a-bc67bfcdce44 Number N false de137ce1-c93e-4980-bb21-a8ca5601e20d 1 360 156 14 20 368.5 166 1 1 {0} 500 Retain list order 96c94299-014f-4d47-a2bf-e758b61acfb5 Order O false 0 360 176 14 20 368.5 186 1 1 {0} true 1 Duplicated data 11d6ae9c-db85-41da-a72e-197fbac37970 Data D false 0 404 136 17 60 412.5 166 f5ea9d41-f062-487e-8dbf-7666ca53fbcd Interpolate Create an interpolated curve through a set of points. 6264624f-4741-4ad5-b390-ffeaf96b650b Interpolate IntCrv 1124 151 65 64 1155 183 1 Interpolation points 9fa61b9f-3d6a-4de9-b3cf-891575df3642 Vertices V false a7101779-445c-4899-9b31-ce0a4803f08d 1 1126 153 14 20 1134.5 163 Curve degree 45884fa8-c111-46db-9464-f554212d0881 Degree D false 92bd684b-349f-4d67-9a67-d634dc52787c 1 1126 173 14 20 1134.5 183 1 1 {0} 3 Periodic curve 39a08521-0941-45d2-b08b-e760b22d1cfd Periodic P false 0 1126 193 14 20 1134.5 203 1 1 {0} false Resulting nurbs curve fbac77a5-b15a-4a25-8bf0-69012470613a Curve C false 0 1170 153 17 20 1178.5 163 Curve length 9e8512d8-16fc-432e-836f-b8d89a934da4 Length L false 0 1170 173 17 20 1178.5 183 Curve domain 0b6cb763-0a93-4ae2-96a2-fdcd7eb5bc57 Domain D false 0 1170 193 17 20 1178.5 203 bc984576-7aa6-491f-a91d-e444c33675a7 Graph Mapper Represents a numeric mapping function Sine wave distribution Sine wave distribution Sine wave distribution Sine wave distribution 12324cf9-85ea-4ccf-8d27-ca279182d95e Graph Mapper Graph false 4a521433-15f9-4232-bbd6-a4193c7aaecc 1 498 -150 325 279 498.8449 -149.1109 false 0 0.0176 0 0.0625 7d54f77a-a866-49ed-95eb-b1f9fb25a1f1 Sine 0 1 0 1 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression (O_EZIS_O_SIZE_O^O_REWOP_O_POWER_O-abs(X-1)^O_REWOP_O_POWER_O)^(1/O_REWOP_TOOR_O_ROOT_POWER_O) 8763ca8a-5eda-4215-b1b6-6bf027e56362 Expression Expression 347 388 1010 84 938 430 4 ba80fd98-91a1-4958-b6a7-a94e40e52bdb ba80fd98-91a1-4958-b6a7-a94e40e52bdb ba80fd98-91a1-4958-b6a7-a94e40e52bdb ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 6f4478b4-8c39-4912-b676-863469bfc82c Variable X X true 4a521433-15f9-4232-bbd6-a4193c7aaecc 1 349 390 188 20 444.5 400 Expression variable c0769443-461d-4126-a64c-6247b39f222a Variable O_EZIS_O_SIZE_O O_EZIS_O_SIZE_O true ecdc8107-f664-40c6-8a7c-3ba81b6844d6 1 349 410 188 20 444.5 420 Expression variable 2148e6a1-a572-410c-b12c-b29e37906877 Variable O_REWOP_TOOR_O_ROOT_POWER_O O_REWOP_TOOR_O_ROOT_POWER_O true 7ea2aa6e-1723-4ee7-bc68-38b1f5deba9c 1 349 430 188 20 444.5 440 Expression variable 37614104-e34b-4a95-b9e4-2f987743f51d Variable O_REWOP_O_POWER_O O_REWOP_O_POWER_O true ede642c9-e41e-43f5-a264-51551af1dc77 1 349 450 188 20 444.5 460 Result of expression 660e66b2-db6b-4f9a-8b80-838ce371dd29 Result R false 0 1339 390 16 80 1347 430 eeafc956-268e-461d-8e73-ee05c6f72c01 Stream Filter Filters a collection of input streams f485a3d6-fb5f-4a4e-8821-7994b356eb8e Stream Filter Stream Filter 870 178 92 124 915 240 6 2e3ab970-8545-46bb-836c-1c11e5610bce 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Index of Gate stream 847151af-072a-4900-879d-0fe8241f89ca Gate Gate false b20871fa-e78c-47ec-a58d-208c8959ba69 1 872 180 28 20 887.5 190 1 1 {0} 0 2 Input stream at index 0 883bcf08-8a23-46f2-949b-114847055ec4 false Stream 0 0 true 476fd755-34c1-41fd-94b7-5d27abb8249b 1 872 200 28 20 887.5 210 2 Input stream at index 1 da7a30e8-0b2e-44d7-b1f2-d66b32e249dd false Stream 1 1 true 12324cf9-85ea-4ccf-8d27-ca279182d95e 1 872 220 28 20 887.5 230 2 Input stream at index 2 fb5094ba-00a6-4552-bcba-3fe5f92e662f false Stream 2 2 true 660e66b2-db6b-4f9a-8b80-838ce371dd29 1 872 240 28 20 887.5 250 2 Input stream at index 3 bf5e7ea2-18bd-4125-bb52-89c062cb16fa false Stream 3 3 true 373c6a08-8824-4c99-a557-ae06da3113d5 1 872 260 28 20 887.5 270 2 Input stream at index 4 1de74f01-6982-4452-8d86-433912ae2f98 false Stream 4 4 true 0 872 280 28 20 887.5 290 2 Filtered stream 34b6e5a6-a1ba-4214-b996-0fa3a932cd38 false Stream S(1) false 0 930 180 30 120 945 240 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 7ea2aa6e-1723-4ee7-bc68-38b1f5deba9c Digit Scroller Digit Scroller false 0 12 Digit Scroller 10 2.00 88 430 250 20 88.89829 430.9977 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers ede642c9-e41e-43f5-a264-51551af1dc77 Digit Scroller Digit Scroller false 0 12 Digit Scroller 10 2.00 89 450 250 20 89.28435 450.8743 7376fe41-74ec-497e-b367-1ffe5072608b Curvature Graph Draws Rhino Curvature Graphs. 5cbda035-78a6-49e1-bc63-6d8b78998d5b Curvature Graph Curvature Graph 1731 230 71 64 1788 262 Curve for Curvature graph display true a0ca1a0e-cbeb-422d-97ac-6bb51c73d82b Curve Curve false 3733e2e8-4bd3-44f1-8b68-31f8853c8921 38cf4e17-ca6a-4dad-8a9a-b880812ed23a 2 1733 232 40 20 1754.5 242 Sampling density of the Graph 82986a14-b7f4-46a2-923a-d5796d52aa6c Density Density false e5a2bf12-6574-4c19-848d-8871fc76cafe 1 1733 252 40 20 1754.5 262 1 1 {0} 5 Scale of graph 059120bb-9495-4b12-b0f3-464a2d863378 Scale Scale false 83a16af3-1073-4b04-bad1-a89ab18700fb 1 1733 272 40 20 1754.5 282 1 1 {0} 105 bc984576-7aa6-491f-a91d-e444c33675a7 Graph Mapper Represents a numeric mapping function Sine wave distribution Sine wave distribution Linear distribution Linear distribution 476fd755-34c1-41fd-94b7-5d27abb8249b Graph Mapper Graph false 4a521433-15f9-4232-bbd6-a4193c7aaecc 1 496 175 100 100 496.2162 175.8607 false 0 1 0 1 1 0 71629651-0343-46d7-ac9e-d6041f9fe66b Linear 0.25 0.75 0.25 0.75 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression asin((x-.5)*2)/(2*atan(1))/2+.5 82eb3cd4-0390-4f09-a917-57e17ff721ba Expression Expression 426 483 490 84 757 525 4 ba80fd98-91a1-4958-b6a7-a94e40e52bdb ba80fd98-91a1-4958-b6a7-a94e40e52bdb ba80fd98-91a1-4958-b6a7-a94e40e52bdb ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 995b6377-1efc-4d78-89de-fceed0c461b6 Variable X X true 4a521433-15f9-4232-bbd6-a4193c7aaecc 1 428 485 188 20 523.5 495 Expression variable 7d6761e4-0d16-4147-b712-3a37c9a0e5cf Variable O_EZIS_O_SIZE_O O_EZIS_O_SIZE_O true 0 428 505 188 20 523.5 515 Expression variable f823d676-a5d4-4ecc-9c6f-db91da944fb4 Variable O_REWOP_TOOR_O_ROOT_POWER_O O_REWOP_TOOR_O_ROOT_POWER_O true 0 428 525 188 20 523.5 535 Expression variable c2796797-c80c-4619-b81c-a427bea8133c Variable O_REWOP_O_POWER_O O_REWOP_O_POWER_O true 0 428 545 188 20 523.5 555 Result of expression 373c6a08-8824-4c99-a557-ae06da3113d5 Result R false 0 898 485 16 80 906 525 aaa665bd-fd6e-4ccb-8d2c-c5b33072125d Curvature Evaluate the curvature of a curve at a specified parameter. true 87ff8105-2e9a-4775-93c9-e06b14dd7f83 Curvature Curvature 1004 501 140 64 1074 533 Curve to evaluate 23e95288-b807-41de-8f49-8399b01a42d3 Curve Curve false fbac77a5-b15a-4a25-8bf0-69012470613a 1 1006 503 53 30 1034 518 Parameter on curve domain to evaluate 8b12d188-950f-4335-b199-9062498f2aab Parameter Parameter false de137ce1-c93e-4980-bb21-a8ca5601e20d 1 1006 533 53 30 1034 548 1 1 {0} 0.5 Point on curve at {t} 18dbee9f-1506-455b-b657-289702f7e0c4 Point Point false 0 1089 503 53 20 1115.5 513 Curvature vector at {t} 32eded9f-30ee-4e0f-ada7-49db7fa1257d Curvature Curvature false 0 1089 523 53 20 1115.5 533 Curvature circle at {t} 8b5d83b7-ae43-4de7-a467-9924c3742f73 Curvature Curvature false 0 1089 543 53 20 1115.5 553 23862862-049a-40be-b558-2418aacbd916 Deconstruct Arc Retrieve the base plane, radius and angle domain of an arc. true 6db8ba10-69cd-44aa-b46c-8f9438ba262b Deconstruct Arc DArc 1165 497 65 64 1196 529 Arc or Circle to deconstruct 51317f3f-3050-425a-a722-3a7261c4c518 Arc A false 8b5d83b7-ae43-4de7-a467-9924c3742f73 1 1167 499 14 60 1175.5 529 Base plane of arc or circle 6af7723e-ae31-443d-a80c-93de3ed8f828 Base Plane B false 0 1211 499 17 20 1219.5 509 Radius of arc or circle a2df70b3-1dd6-4e6c-ac4d-cb6dbd83e362 Radius R false 0 1211 519 17 20 1219.5 529 Angle domain (in radians) of arc c9cf1cf1-9b72-4b32-a69a-c4430a4e8787 Angle A false 0 1211 539 17 20 1219.5 549 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values a235a197-60ae-480c-90e3-7cda396883f0 Panel false 0 a2df70b3-1dd6-4e6c-ac4d-cb6dbd83e362 1 Double click to edit panel content… 1260 508 96 42 0 0 0 1260.479 508.6545 255;255;250;90 true true true false false true 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers ff0daf69-230f-4e05-8c98-bf9c091a451d Digit Scroller Digit Scroller false 0 12 Digit Scroller 1 0.00070038828 81 234 250 20 81.07772 234.3882 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 83a16af3-1073-4b04-bad1-a89ab18700fb Digit Scroller Digit Scroller false 0 12 Digit Scroller 11 115.0 1464 278 250 20 1464.332 278.3159 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers e5a2bf12-6574-4c19-848d-8871fc76cafe Digit Scroller Digit Scroller false 0 12 Digit Scroller 11 1.0 1464 257 250 20 1464.49 257.9594 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers ecdc8107-f664-40c6-8a7c-3ba81b6844d6 Digit Scroller Digit Scroller false 0 12 Digit Scroller 1 1.00000000000 89 410 250 20 89.30597 410.6705 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers de137ce1-c93e-4980-bb21-a8ca5601e20d Digit Scroller Digit Scroller false 0 12 Digit Scroller 11 50.2 81 194 250 20 81.42269 194.2125 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 04e916a1-e753-499e-a557-73ec31b3076e Digit Scroller Digit Scroller false 0 12 Digit Scroller 1 1.00000000000 81 136 250 20 81.06453 136.4197 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers b20871fa-e78c-47ec-a58d-208c8959ba69 Digit Scroller Digit Scroller false 0 12 Digit Scroller 11 1.0 602 190 250 20 602.5042 190.6908 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true 10b2c371-b2e2-4e03-b6ca-9b4d20921a41 Rotate Rotate 1079 75 141 64 1147 107 Base geometry f763f4fc-474e-46a6-8f76-2b1b73f348b0 Geometry Geometry true fbac77a5-b15a-4a25-8bf0-69012470613a 1 1081 77 51 20 1108 87 Rotation angle in radians 607acd44-9b26-464f-b5be-b81a71d429aa Angle Angle false 0 false 1081 97 51 20 1108 107 1 1 {0} 3.1415926535897931 Rotation plane aebd7f4b-0bbb-44aa-afa9-7e952af27373 Plane Plane false 0 1081 117 51 20 1108 127 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry 34a9b59d-4627-4182-bb4e-188bdc9cfb0b Geometry Geometry false 0 1162 77 56 30 1190 92 Transformation data 54266759-a77b-4f34-a0a1-b77642adfc8a Transform Transform false 0 1162 107 56 30 1190 122 cae9fe53-6d63-44ed-9d6d-13180fbf6f89 1c9de8a1-315f-4c56-af06-8f69fee80a7a Curve Graph Mapper Remap values with a custom graph using input curves. 84de47dd-743d-44ec-bafe-1f40762588a7 Curve Graph Mapper Curve Graph Mapper 1405 -302 163 224 1473 -190 1 One or multiple graph curves to graph map values with e8a8681e-a373-4d35-946c-c6a96598a6eb Curves Curves false 3733e2e8-4bd3-44f1-8b68-31f8853c8921 1 1407 -300 51 27 1434 -286.25 Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary 2882ef64-bb55-4120-bb06-5baf0b599da3 Rectangle Rectangle false 84afdc9e-4d24-423c-82c8-17155e3afd53 1 1407 -273 51 28 1434 -258.75 1 Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis 30b25754-20c8-4ed0-8174-e1a35eed58d7 Values Values false 102b1139-a452-4fbb-bfd8-adb85f89960b 1 1407 -245 51 27 1434 -231.25 Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used) a0e0127d-d6f8-4ec7-9107-707b515c4441 X Axis X Axis true dc040710-6476-4601-a4ac-a91e86071f0c 1 1407 -218 51 28 1434 -203.75 1 1 {0} 0 0.0176 Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used) 7866ba6f-91cf-426d-b8f7-10c972f624b9 Y Axis Y Axis true b94d34e6-5bb8-451d-b47b-0aaf8569ad88 1 1407 -190 51 27 1434 -176.25 1 1 {0} 0 0.0625 Flip the graphs X Axis from the bottom of the graph to the top of the graph 6a141eaf-7571-483f-89cc-a1d4a7f9f2e5 Flip Flip false 0 1407 -163 51 28 1434 -148.75 1 1 {0} false Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle beb8e8b8-46f7-45da-a42a-390b6873ef76 Snap Snap false 0 1407 -135 51 27 1434 -121.25 1 1 {0} false Size of the graph labels 2134b815-a446-4b10-8db6-6a45a492747c Text Size Text Size false 0 1407 -108 51 28 1434 -93.75 1 1 {0} 1 1 Resulting graph mapped values, mapped on the Y Axis 805f2edb-cc3f-4a58-b59f-743b168199fd Mapped Mapped false 0 1488 -300 78 20 1527 -290 1 The graph curves inside the boundary of the graph 27d339de-5f5a-4cea-bc49-6784c09e157e Graph Curves Graph Curves false 0 1488 -280 78 20 1527 -270 1 The points on the graph curves where the X Axis input values intersected true 3f7eed88-2037-47a0-befb-dcaee7db036f Graph Points Graph Points false 0 1488 -260 78 20 1527 -250 1 The lines from the X Axis input values to the graph curves true 5c724fee-3b94-449a-a4bd-4f114c89e3bb Value Lines Value Lines false 0 1488 -240 78 20 1527 -230 1 The points plotted on the X Axis which represent the input values true 2b5fcc20-04cc-4c81-aff0-546d1bd70016 Value Points Value Points false 0 1488 -220 78 20 1527 -210 1 The lines from the graph curves to the Y Axis graph mapped values true 17475dde-3ce1-4bda-9b7e-bf0de4f30249 Mapped Lines Mapped Lines false 0 1488 -200 78 20 1527 -190 1 The points mapped on the Y Axis which represent the graph mapped values true 8f345dd4-6e1a-454d-b922-7e33f01fee1c Mapped Points Mapped Points false 0 1488 -180 78 20 1527 -170 The graph boundary background as a surface e51b5694-6190-43e8-bd55-3997886b30c9 Boundary Boundary false 0 1488 -160 78 20 1527 -150 1 The graph labels as curve outlines 7882903a-cab6-42ee-9455-59c8a7ac3f51 Labels Labels false 0 1488 -140 78 20 1527 -130 1 True for input values outside of the X Axis domain bounds False for input values inside of the X Axis domain bounds 9420d3cd-2bca-4698-b668-8394f1278ae6 Out Of Bounds Out Of Bounds false 0 1488 -120 78 20 1527 -110 1 True for input values on the X Axis which intersect a graph curve False for input values on the X Axis which do not intersect a graph curve b332d9f5-5ec6-47d7-a2f2-f27c835511c1 Intersected Intersected false 0 1488 -100 78 20 1527 -90 5edaea74-32cb-4586-bd72-66694eb73160 Rotate Direction Rotate an object from one direction to another. f2c8bf1b-434d-40d9-b17f-dde7b0954fdc Rotate Direction Rotate Direction 1304 61 141 84 1372 103 Base geometry 784f2777-4992-47e7-a14c-4c19068c5088 Geometry Geometry true fbac77a5-b15a-4a25-8bf0-69012470613a 1 1306 63 51 20 1333 73 Rotation center point 2aedc9bc-1ff6-4e49-ab6a-fda36e07f03b Center Center false d555e23e-9e4a-4b65-a9a5-ed4f528321e8 1 1306 83 51 20 1333 93 1 1 {0} 0 0 0 Initial direction c9021d34-0ab3-4a1b-9bea-46be287ebc4c From From false 0 1306 103 51 20 1333 113 1 1 {0} 0 -1 0 Final direction 56437f98-e7c5-41e8-adff-d94d15912ea9 To To false 0 1306 123 51 20 1333 133 1 1 {0} 0 1 0 Rotated geometry 14b4e050-ea18-47db-ba6d-e5b4d260bbc3 Geometry Geometry false 0 1387 63 56 40 1415 83 Transformation data 2bb13c3b-3ce2-4fce-8e40-39dfbed3620c Transform Transform false 0 1387 103 56 40 1415 123 7f6a9d34-0470-4bb7-aadd-07496bcbe572 Point On Curve Evaluates a curve at a specific location d555e23e-9e4a-4b65-a9a5-ed4f528321e8 Point On Curve Point On Curve false fbac77a5-b15a-4a25-8bf0-69012470613a 1 1 1345.854 175.8347 80 20 2625b22f-bb17-4451-958b-d4a057c47ef8 ab81fea9-8d16-4caf-af89-2736c660f36d Bounding Rectangle Solve oriented geometry bounding rectangle 7d0c7537-ce07-4d82-abce-9a3168080568 Bounding Rectangle Bounding Rectangle true 1229 -84 139 44 1297 -62 1 Geometry to Contain ab2c2819-ada9-43ef-80eb-cac34d2c6577 Geometry Geometry false 3733e2e8-4bd3-44f1-8b68-31f8853c8921 1 1231 -82 51 20 1258 -72 Orientation Plane 261f826f-be1e-4fd5-9ed5-96e27c7902c9 Plane Plane true 0 1231 -62 51 20 1258 -52 1 1 {0} 0 0 0 1 0 0 0 1 0 1 The bounding rectangle 84afdc9e-4d24-423c-82c8-17155e3afd53 Rectangle Rectangle false 0 1312 -82 54 40 1339 -62 8073a420-6bec-49e3-9b18-367f6fd76ac3 Join Curves Join as many curves as possible a5e9aa2e-5826-4032-bd58-99b201fb8f42 Join Curves Join Curves 1476 65 121 44 1539 87 1 Curves to join 7da64321-d468-4a45-a949-1cc715ba600f Curves Curves false 14b4e050-ea18-47db-ba6d-e5b4d260bbc3 fbac77a5-b15a-4a25-8bf0-69012470613a 2 1478 67 46 20 1502.5 77 Preserve direction of input curves c10ca07b-1ee6-4cd3-92c6-ef2c53b4c024 Preserve Preserve false 0 1478 87 46 20 1502.5 97 1 1 {0} false 1 Joined curves and individual curves that could not be joined. 3733e2e8-4bd3-44f1-8b68-31f8853c8921 Curves Curves false 0 1554 67 41 40 1574.5 87 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 23de244f-bf52-43f7-802d-5ec15eb4453f Quick Graph Quick Graph false 0 8f345dd4-6e1a-454d-b922-7e33f01fee1c 1 1673 -142 50 50 1673.302 -141.6778 -1 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 0c500c4b-1420-4ebb-99a0-41e3849d151a Panel Panel false 1 805f2edb-cc3f-4a58-b59f-743b168199fd 1 Double click to edit panel content… 1675 -89 87 100 0 0 0 1675.588 -88.60313 255;255;250;90 true true true false false true fb6aba99-fead-4e42-b5d8-c6de5ff90ea6 DotNET VB Script (LEGACY) A VB.NET scriptable component ed8c365e-1c52-4bc0-86ec-29ba5d9b1caa DotNET VB Script (LEGACY) Turtle 0 Dim i As Integer Dim dir As New On3dVector(1, 0, 0) Dim pos As New On3dVector(0, 0, 0) Dim axis As New On3dVector(0, 0, 1) Dim pnts As New List(Of On3dVector) pnts.Add(pos) For i = 0 To Forward.Count() - 1 Dim P As New On3dVector dir.Rotate(Left(i), axis) P = dir * Forward(i) + pnts(i) pnts.Add(P) Next Points = pnts 1637 -503 115 44 1698 -481 1 1 2 Script Variable Forward Script Variable Left 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 true true Forward Left true true 2 Print, Reflect and Error streams Output parameter Points 3ede854e-c753-40eb-84cb-b48008f14fd4 8ec86459-bf01-4409-baee-174d0d2b13d0 true true Output Points false false 1 false Script Variable Forward 96f18e61-32b6-4978-bb73-342a344d899f Forward Forward true 1 true 32d56380-25c9-4a6a-ab1e-4680580d80d4 1 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 1639 -501 44 20 1662.5 -491 1 false Script Variable Left d581249e-acb0-43fc-93d2-e7d3c3cddfca Left Left true 1 true 805f2edb-cc3f-4a58-b59f-743b168199fd 1 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 1639 -481 44 20 1662.5 -471 Print, Reflect and Error streams ee27267c-1c16-45b9-8af6-4b14fad70ab5 Output out false 0 1713 -501 37 20 1731.5 -491 Output parameter Points 3c226f4c-dbc1-4ed0-85b3-d312596e2e17 Points Points false 0 1713 -481 37 20 1731.5 -471 e64c5fb1-845c-4ab1-8911-5f338516ba67 Series Create a series of numbers. a481ac28-d9d7-4e6a-870a-188d20517392 Series Series 1335 -422 64 64 1366 -390 First number in the series 2db415e6-4717-4b58-a15d-0edd4790e563 Start S false 0 1337 -420 14 20 1345.5 -410 1 1 {0} 0 Step size for each successive number c57564c4-07ee-4f14-9720-43cbfa16783e Step N false 21f67352-2275-44ca-8a96-3595d0453de1 1 1337 -400 14 20 1345.5 -390 1 1 {0} 1 Number of values in the series d8b0013f-6e9f-416d-ade9-3ec261500c59 Count C false e6c6998b-7bbe-478c-bf22-fe333baae900 1 1337 -380 14 20 1345.5 -370 1 1 {0} 500 1 Series of numbers 102b1139-a452-4fbb-bfd8-adb85f89960b Series S false 0 1381 -420 16 60 1389 -390 dd8134c0-109b-4012-92be-51d843edfff7 Duplicate Data Duplicate data a predefined number of times. 366fcabf-44d4-4602-80e7-59d2c464cab8 Duplicate Data Dup 1337 -500 65 64 1368 -468 1 Data to duplicate 26b9a5bb-a5b3-4c42-8ec7-f14b99b5eb5f Data D false d06a9085-35c6-4c58-a62b-cdccdee066ed 1 1339 -498 14 20 1347.5 -488 Number of duplicates 1135bcaa-a32f-474c-8a88-9685539ce711 Number N false e6c6998b-7bbe-478c-bf22-fe333baae900 1 1339 -478 14 20 1347.5 -468 1 1 {0} 500 Retain list order f110e97f-6307-4816-9059-6b7448686d97 Order O false 0 1339 -458 14 20 1347.5 -448 1 1 {0} true 1 Duplicated data 32d56380-25c9-4a6a-ab1e-4680580d80d4 Data D false 0 1383 -498 17 60 1391.5 -468 f5ea9d41-f062-487e-8dbf-7666ca53fbcd Interpolate Create an interpolated curve through a set of points. 83435610-396b-45c8-ac61-afe214859efc Interpolate IntCrv 1776 -502 65 64 1807 -470 1 Interpolation points b005b9bb-1f1f-46a4-96d7-539c901886a2 Vertices V false 3c226f4c-dbc1-4ed0-85b3-d312596e2e17 1 1778 -500 14 20 1786.5 -490 Curve degree 848af7ee-736b-417c-a5cb-245f4205dceb Degree D false 0 1778 -480 14 20 1786.5 -470 1 1 {0} 3 Periodic curve 4ad08714-117c-472c-98f1-d373bdf86810 Periodic P false 0 1778 -460 14 20 1786.5 -450 1 1 {0} false Resulting nurbs curve 38cf4e17-ca6a-4dad-8a9a-b880812ed23a Curve C false 0 1822 -500 17 20 1830.5 -490 Curve length 708bf809-e627-4372-b750-e832971359be Length L false 0 1822 -480 17 20 1830.5 -470 Curve domain c44c79d5-855a-4389-82c7-dc385c6ec362 Domain D false 0 1822 -460 17 20 1830.5 -450 bc984576-7aa6-491f-a91d-e444c33675a7 Graph Mapper Represents a numeric mapping function Sine wave distribution Sine wave distribution Linear distribution Linear distribution Linear distribution Linear distribution db82b695-c28d-498a-8d90-3227c158ad9a Graph Mapper Graph false 102b1139-a452-4fbb-bfd8-adb85f89960b 1 1449 -452 100 100 1449.388 -451.5771 false 0 1 0 1 1 0 71629651-0343-46d7-ac9e-d6041f9fe66b Linear 0.25 0.75 0.25 0.75 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 21f67352-2275-44ca-8a96-3595d0453de1 Digit Scroller Digit Scroller false 0 12 Digit Scroller 1 0.00150038828 1060 -399 250 20 1060.219 -398.9518 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers e6c6998b-7bbe-478c-bf22-fe333baae900 Digit Scroller Digit Scroller false 0 12 Digit Scroller 11 99.2 1060 -440 250 20 1060.564 -439.1275 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers d06a9085-35c6-4c58-a62b-cdccdee066ed Digit Scroller Digit Scroller false 0 12 Digit Scroller 1 1.00000000000 1060 -497 250 20 1060.206 -496.9203 d1a28e95-cf96-4936-bf34-8bf142d731bf Construct Domain Create a numeric domain from two numeric extremes. aee65bfc-17c2-4339-b138-309a4e179191 Construct Domain Construct Domain 1140 -331 143 44 1222 -309 Start value of numeric domain 90af7879-9530-41ce-baf2-ad65a39a15c1 Domain start Domain start false 0 1142 -329 65 20 1176 -319 1 1 {0} 0 End value of numeric domain 367fca02-9788-4182-bc68-2ec64f5f62d9 Domain end Domain end false 7b31b4af-f791-41e1-b265-aeac6abb8237 1 1142 -309 65 20 1176 -299 1 1 {0} 1 Numeric domain between {A} and {B} dc040710-6476-4601-a4ac-a91e86071f0c Domain Domain false 0 1237 -329 44 40 1259 -309 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 7b31b4af-f791-41e1-b265-aeac6abb8237 Digit Scroller Digit Scroller false 0 12 Digit Scroller 8 0.1525 1022 -251 250 20 1022.388 -250.8098 d1a28e95-cf96-4936-bf34-8bf142d731bf Construct Domain Create a numeric domain from two numeric extremes. 6697d1f5-126d-465b-9e49-f27e0a355acf Construct Domain Construct Domain 1142 -199 143 44 1224 -177 Start value of numeric domain e3f095a5-e167-4e65-a69a-010eb1736806 Domain start Domain start false 0 1144 -197 65 20 1178 -187 1 1 {0} 0 End value of numeric domain c1c6d7ef-8bc1-42af-bdca-780eee0fb64d Domain end Domain end false a4bde5d6-e053-421d-8330-18c99a954b18 1 1144 -177 65 20 1178 -167 1 1 {0} 1 Numeric domain between {A} and {B} b94d34e6-5bb8-451d-b47b-0aaf8569ad88 Domain Domain false 0 1239 -197 44 40 1261 -177 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers a4bde5d6-e053-421d-8330-18c99a954b18 Digit Scroller Digit Scroller false 0 12 Digit Scroller 8 0.0625 1022 -130 250 20 1022.945 -129.8485 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 5071b8ad-8171-4016-94c9-f1d679f7ac79 Quick Graph Quick Graph false 0 17475dde-3ce1-4bda-9b7e-bf0de4f30249 1 1673 -192 50 50 1673.858 -191.8802 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph b651f598-73d9-4b11-986d-f6efc831d0bd Quick Graph Quick Graph false 0 2b5fcc20-04cc-4c81-aff0-546d1bd70016 1 1673 -244 50 50 1673.234 -243.2632 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 792d8190-32f0-478d-9252-dc81e374ab16 Quick Graph Quick Graph false 0 5c724fee-3b94-449a-a4bd-4f114c89e3bb 1 1672 -294 50 50 1672.61 -293.4656 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 48fea71a-fb74-4c7a-81c2-281ce4299a43 Quick Graph Quick Graph false 0 3f7eed88-2037-47a0-befb-dcaee7db036f 1 1671 -344 50 50 1671.987 -343.6681 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph aef6f2d6-444e-4ec0-b611-2af9be278e74 Quick Graph Quick Graph false 0 27d339de-5f5a-4cea-bc49-6784c09e157e 1 1671 -397 50 50 1671.363 -396.2314 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 6550d345-2259-4fb3-a8d0-21de828e7c83 Quick Graph Quick Graph false 0 805f2edb-cc3f-4a58-b59f-743b168199fd 1 1671 -450 50 50 1671.919 -449.9753 -1 ab14760f-87a6-462e-b481-4a2c26a9a0d7 Derivatives Evaluate the derivatives of a curve at a specified parameter. fb8cb2d8-5e2f-4911-8f58-208b616136d9 Derivatives Derivatives 1915 55 120 144 1985 127 2 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 7 fbac3e32-f100-4292-8692-77240a42fd1a 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 Curve to evaluate 3dc5b186-1e03-4a69-9622-08b74979a28c Curve Curve false 3733e2e8-4bd3-44f1-8b68-31f8853c8921 38cf4e17-ca6a-4dad-8a9a-b880812ed23a 2 1917 57 53 70 1945 92 Parameter on curve domain to evaluate 01741eba-b1a1-44e2-8a78-2d39e0276d92 Parameter Parameter false b053445e-c64a-4606-a743-3fed15e4eda2 1 1917 127 53 70 1945 162 1 1 {0} 1 Point on curve at {t} e41b7d0b-5fce-4572-9731-c958acaaef1a Point Point false 0 2000 57 33 20 2016.5 67 First curve derivative at t (Velocity) c3853d1c-8785-4d32-a116-78a4c2bd40f3 false First derivative 1 false 0 2000 77 33 20 2016.5 87 Second curve derivative at t (Acceleration) 1ef2b93c-59a3-4cfb-b040-53e350df25af false Second derivative 2 false 0 2000 97 33 20 2016.5 107 Third curve derivative at t (Jolt) cd4bddee-e52c-4a18-8019-4101cb872d28 false Third derivative 3 false 0 2000 117 33 20 2016.5 127 Fourth curve derivative at t (Jounce) 11bc788a-de41-4086-8edf-817c6e1ec50f false Fourth derivative 4 false 0 2000 137 33 20 2016.5 147 Fifth curve derivative at t 4c755a46-a63c-4de5-b6d6-57bea0b414ac false Fifth derivative 5 false 0 2000 157 33 20 2016.5 167 Sixth curve derivative at t 90daca75-ad77-4c8c-ae93-8f4ca51fcbfd false Sixth derivative 6 false 0 2000 177 33 20 2016.5 187 7f6a9d34-0470-4bb7-aadd-07496bcbe572 Point On Curve Evaluates a curve at a specific location b053445e-c64a-4606-a743-3fed15e4eda2 Point On Curve Point On Curve false 3733e2e8-4bd3-44f1-8b68-31f8853c8921 1 1 1710.661 162.3443 120 20 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 92bd684b-349f-4d67-9a67-d634dc52787c Digit Scroller Digit Scroller false 0 12 Digit Scroller 11 11.0 997 241 250 20 997.3901 241.4058 2a3f7078-2e25-4dd4-96f7-0efb491bd61c Vector Display false 0 Preview vectors in the viewport 0.1 15 719b86e4-9e3d-4d67-a04d-952b70090645 Vector Display Vector Display 3 false false 255;255;0;0 255;255;0;0 0 35aca1d7-7d80-4473-b98e-de09d3efd465 255;255;165;0 255;255;165;0 0.5 0fce01ef-894a-466d-a629-588de6810ff7 255;124;252;0 255;124;252;0 1 6bcbb8ff-2eb4-44d3-95dc-a10579f6428b 2104 60 70 44 2160 82 Anchor point for preview vector 5e8b1902-1549-4f17-9f38-c774653c5472 Anchor Anchor true e41b7d0b-5fce-4572-9731-c958acaaef1a 1 2106 62 39 20 2127 72 Vector to preview cd8b1052-a424-47d3-8961-105d5b97b077 Vector Vector true cd4bddee-e52c-4a18-8019-4101cb872d28 c3853d1c-8785-4d32-a116-78a4c2bd40f3 1ef2b93c-59a3-4cfb-b040-53e350df25af 11bc788a-de41-4086-8edf-817c6e1ec50f 4c755a46-a63c-4de5-b6d6-57bea0b414ac 90daca75-ad77-4c8c-ae93-8f4ca51fcbfd 6 2106 82 39 20 2127 92 iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAB97SURBVHhe7Z33V1RZtsfnH5kf3nqrf3hrzfzwetasWc/pnjVOT08HbQVaBbux20i3tiIqINkACJJzDlIURS6goAJJVMSEYgLFhDlMB0Mbnq0z8j6w592pKqAoqiQodRbrrluXG84537P3/u69zz33V79ylbegBwZd5Y3tgX8NP+rf1dW1z7IcPHgwKiqqrKzs+PHjGRkZKSkphw8ftjqnvb29sVGfnJxeXl5lMrUbja1s6+qa4uISOzoONjQ0HDhwwOqSyf65f/9+apWampqZmVlSUnLo0KHJfuI03h/gbEEIYAUFBXFxcSdOnIiPj8/Pz1e6g25i/8iRIy0tLcXFpdnZBXp9y8GDxzo7j7Jtb+9MT88xGvfW1dVPPYSdnZ11dXUMuISEhNbWVqo6jV082Y8eB0L6wmAwhIWFUY/du3eXlpaKpALtMHLF2dnZGzasT0xMSU/PranR0V3NzfvYNjW1JCSk1tcbtdo6bjLZzbC6P9Wjbrt27UIKR6qNKa7MZD9uHAh5PJhFR0dXVFQgi2yRPI7k5uaiYNnW1taq1aUxMQkhIVFZWXtKS2tLSmpUqtrCQk1Q0Pbs7JLaWu3UQ0gNEcHw8PD6+npswWR34vTe3wJC0BlZGzBDl6KRYmNjq6urjx49yj5mBvWIFqWDuColJXv1at+dOxMTE/MSEnLYxsam+/j47diRXFVVPcWdSMVMJtPWrVup59ttBQUsCwhH7WtkSK/XM6IpKNXCwkIG+LFjxxQDg6FJSMj46qt1K1Z89913AevW+bNds2ajt7fPrl0Z5eUVXV1TKgdoTpVK5ePjA5MaSdCmV2Im4+kWEI71AFDcsWOHr68vUhgTE8NPc4IA8Pn5xZs3h2/aFLJpU6jyFxCwzd8/HE07xVIIhAEBAdu3b0dJTEaXzbR72gUhnYLkffvtt6gmtVptRRCAs7GxsaGhsba2Dss39FcHjzE16g3QUSR4KhkpYgcX9fLyQmFM8dCZLmjthRB3YvHixZGRkVTUiqO3trYYDKayssrc3IIydYWmWltWqkn0XpYcsLWv//IUOxX4r4GBgeiM7u7u6erTKX6uvRDi3f/5z3+GxUBnRlSxQ6fTp6dn19c37T94tF3fUuH1ZdW2yKTE1I59XfX1U+faI3ZNTU1ff/11R0fHVIr+FGNm9Ti7IMSoEON47733sIUKx8MiolHpNa1Wm59flJVV0NjY3HXynC4ozBAT39HTl5qWrde3odY6O6ciOgNsxB+CgoLS0tJgW9PbrVP5dLsgRCnBDj788EOGNlqUAngYufT0dFxGRn1CQkpqak51VUNzV0/VyjWG8tpGfVtcXEptrR6Ap8YvZGxVVlZ+8803b70vb0sKBR6rMwAA5Nzc3PAYwJKfSF5WVhYmJzk5uaamRqutjYlJDNi6I7VAU7wlJN9tcVGpNienFDqamlpYXQ0jnfTojIyqlStX4vPMEiKqwGQhhbA4o9Fo5TBAEIhUvf/++/QOEPJf4jLwBdxnOgsGOOTap+Wu+Hrt9r/NT/jg49jo1Nj47MjIxFWr1u/cmVxZWTUFzBDNSfAIzjyaqZ5KrTYNz7KAkIEMQmADVBTAI0a8ZcuWefPmIYIYG5QV+OEagpwCDHKbmJKzfN7ir+fMXb1+6+pvNq9ZvRE339v7G6IzGs2ku/bUCovr6elZVVU1G8IxthTp06dPHz58CB2gEE7z8/NbuHAh1gWbRzi7p6cH7xC/AvzM+R4/8/MLE5Jzsgs1GRkF/GXlqbIL1PmFZfHxqWjaSbWF3JyxtWnTptnjy9uC8NatW3fv3g0NDUVtQl7E/mH2EETyEsS4Q0JC9u7dawUJUqjXG5qbW9VqTS2WsVGvycgsjoouzc3v6+vX6XSTmupB7IjMAuEsCaeN1NQWihQIr1y5ggtIv0gh0r9mzRp/f3+ixsuWLYOFYv8Y9VY3woZmZORkZubq9M1VeUXZ8xdosvN3btvZ2rZfp2ucvHQdlo8QPLkw1MZsI6Kj0xmBkBAacoZF3LNnDz4DQU6wJEC6YcMGKANXihblHI7TcdCZioqqnJzC2lrdkdPnTXHJxujdh/suZQ0ngXHtJwlCno6fisInkYlHP6nqehpYit2PtJDCe/fugWJERAQyh3bC/qE2AYkjOTk5EBz6Cy7D2IfLEBclrcpsjIAA/+jo2JycorKy6o4jp+qDIxoTUlsPHEtOzqitbSLlizNpd33sPRHA0O1QZSpJXne2ORLm3WQB4Y0bN5BCUMG7YIyfPHmSGSioKeDkp4RjcCeSkpIAkuMMf6ClB2Ni4nfsiEtPz6/QtZWuWlsWl6ap1kdE7CIJjF/42uUDsWYMgV95eTmjikrOnnDaOLbw+vXrFy5cwP7hTtAvRUVF+O8gJBQU/Nra2jZu3Oju7o69REDFXp440V1QUOLjszlie3xKtjrjowWpkcmJKYVkDUG5tFTz2v1CZA5uTMyPaQN4q7PWCgqcFlIIhNeuXcNtgHmiPHfu3CmGEAzoJkwjeTgi3dB38FOAwUXMzSte8dW3yxd96feXjzf96QPfLeHr1wd6ei6PiEgoKVG/XgjBDwWOJsBa46S+3pvbq8dn0nkWEILf1atXZdaQ5NtAToQPzUkEGQElDoIuxdtT+g46U1Ss2rI5PNg/IsgvJCgsJig4MihoZ1h4THBwdEFB0ajzORzrBMYTQVcqQK1QoVRjNuTlbfeVBYTgd/78eTw5rCCcRcAjU4jwMeq5kQRlgBMfUek7TB0+mV5v0tY1aOt1dWy19fWNhpqauq4DXbrGJkTWMcCsruLRUBjUA16NRqPBQs9mFjO6UzEwMHDp0iUxM/hbsBXcfISS8BVwCmWQycHwCAVCjuPaazRVMTFxbMvU5eVaXUlmzob/frfV1N7c2oZZdR5CnkIR3c6jUeYE/2YzixkTQgQR2DZv3gyQMAX8LfNwqLiDGEtAlRg3BdUKhIWFKrW68sjh40dO9h00tWu9vszcHqkztDc1GZyXQklE4JXCsE6fPo09ZoS5RHAUOoNHce7cOZkdQxGQwGw4HSFe/CFUK0YRKcQmoc04Gb8iNjauoEBVVKjad7intd5Q5ebRrKrIKdGUl9eiUkdGcyYqlNQEVwfkoMoobYnTTvQmb+v5Frbw8uXLfX19ME9ai+iAFrknugzLx6jHHKJU8fo9PDyYkEg/8hNlGxERHhwcmpaWm55XotNo1Z/Mr80uamzvio9LzctTVVdrnew78KNKPEt8GNQ4o8cF4eiKFEOIIAYHB69fvx7WB05wh23btoEWL1QQ7yYtTjSEf2ERsUNs6coTJ47v2VPqu2VbuF9I7tyPMrftziqu4XUUJiGGhsYWFZU6E51B9ImiUQd0KRobRYqGn4VJQRtiYCGFFy9eRAoJGUMZiGgjglAGoTAiAegx/A2rFxXwGdRllT4rN/j8x3+G+WwM3pkYEoxnGbVsGfHxnfn5JUw7dUwQGR9UgzAQRJSnsxWX1MVixgywEZo5deoUVIXUoDgVVqlB7CKc0Nyj4F50rrqsYuO3/iu8Vvqs3+qzxs/HZxOz8Zcv/y4wMIr3mxybeMGzoLJoAjQ5j0CdMouVadqzPBYzToANW4hfiJ7E8GD8oCr4iFwjM9XoU+QSvmrF5pEJo8GQnpGdk1dMvkn5yy8qjYtPptMdCKCIC0FN4E0yksjI44+68BsHQhQpjFSmVkBeyDSJOZRpTsgloVGZdWF+I/qapCAzN3lFdNivH/prMLYUJiSd7TnT3DJhv1DeXORBylwmkX6U6muPmDum4WfUVRa2sL+/n6mYRNFQpzL28Qf4CZEBSxAlZZiXl8c5kriQRCAz3Ej5FhaWJCWl6nQGJgQ3dRxUh0Vsfvd3ukaT0dQyUb8QncmgwYsQz48tHIo6uBzBUYeOBYSwlbNnzyJ/sHaZ7KTEuBE13g9dtGgRGXwiW+zj9cskDHqWN9Dy8/eoVETdug+d6W9OStN+tSIvv1jbYGSi94QgRNYBDAIsOlPeUUWjyhTWGTX8Z0hlrKcCo0tJUyBt8Hh8PiyQRGfYoksRRPIDCKKiY9G6JKSCgkIKC0tJOe09droxNrHK84v2jq7M3CJNWU1dnc5+116mjXNPHieASTgbZ4bBNEO6bKZVwwJCDCGCiITJy0pABXnBCCEHKE+ED22Gc0Zv0sXIFoKI+6FSlezaFRsdnRSfWVQRHlk4z628qqmixhAZGZeSkltRUWNnmxUXUIRPuC7WF4l0qVB7/UK0KBDiPtODkqNHfaHWyFTADMHS/L1nYJaZ3aR8yyuq124MDXL3yvhwXkpacUpGSXJygZ9fSGBgJKJpzzsVoAX7xeJCd4XBihTKnGMXi7EXwjPDBclTEhH0IxKAaWQ2KSEb9kcaJHpfpS7/Ztm3X73zX76+QRs2oYcDN2zYumTJV/iFubnF40ZnkOnm5mZceMRaUZgSFyUv7xJB22rMQpGCH1JIdMZqoQ+0KG41oVGcvJEoAkBFRWVQ4I6wbXEh4TEhIdFkqEIjYsMidjPxgrVfbPuFMpcX1wWdrLh9HARO5F7hvXZq41l4mgWE5HFACNpCV5pzEPoR/oKXRvhUxMI8xDXsF7JcyV6DsYXE79DW2FKnKtNVa7u7cVEabDBSrhWfD5tnLm1UADLlYjH2jEhrCMnXE9RGcyqiQxdLoJLuRt2BIl6HzIYSpSopX97yJeVbpqlUl1eleCxKX7c+fEtAW+u+lrFde3MX3jxyjS4lhgeErljMhCHEo0dnwukJSyoMgg6F6BNykwQvIkXcBMeD8JuQRuaXKinfoyfOdlTWNqxdf7z/SmFxaX29wUbKF7FjNIycBSpZZVcsxh78OMdaCoFEbJKiSNmno8nrCtGQSdwke0kaQCCxkURSmFE9lPItKt1/pMeQnlMfGHKg+0xWVn5FxdAsmlH9QvDDReHOVmyFn4RnldCMnc2YzadZQIhKRKRABR6vWDuxVeLjKz0lATZ8DDyQ4UmLYampuWlpObqWzqrQHZUh2xpaDvCWb27u6ClfmUiINHMfc4rLQ8kz8zhQd8Vi7ByXFhCiu2A0OBXwCAFM+lQWDRrpnIlE9vScYLKor29waFhMZmlDtveq7C3hGfkVAQERoaGEqlVWTgX4iZcp6QjzivIvXoRjWLisoJ34WStSuAwsBstnzmUg9zB+TOBYYjGU8lWXkyZc4b06ZM2G8N/9IXhzaFBIlLf3qoCAHcROzSEEG/KRckOrMSHhUCyxy5G3Hz9rCHEKAQ9TpAgHPzGNIjFj3RdBLFVrNvltX/PlunWLVq5bvnHthoi1a4NXr/EPDk7IyECkWOHyCNEeqA/vOm3fTsDFOHLyiyQo5NW4CbVhlp9soUgxhIRAmaCm5OWBkKkrRLlsSAbS2dbWnpi0K3Z3eGzCjtj47bExvEkTkZS4PTIyIC9vd0M9L8cU1FQXaGuLIyJ8S1WsaGC9eA33Jyo7Mhk5y+Gxp/kWEOJRIBywROyfqE0gxEeEfNogF8ORlBaTwftk90fdh+fxd+Lo/JrKucamv3a0fWxo/KDV9JfDnX/r2v+3g/s+PNo1V1sb1N5uLWfiYFhN6bCnAa5zLCCEdqLHIDXmtlCWlAXUsXQpEOp0xrYWr/Nn/nqm52P5a6x7vyD39yVFf8jO+F1nxwfnznwix8+dmdtQ59/aagGhiKC4ni5IJtoDFhASGrWCCuEDOXKHqNOx+ncYAGNlucfe1vdbjHOb9XPZInntzUN/baa/tBr/9ddsmNts+B+N2o8XT62IqMsKThQ55fzx1yOFQxIXRUTGyhgMQ2hSFS/QqH5fVf5efe2fytV/NDXN1ZTOYUdb9X51xXsa1Zwy1Rz+1WaaU1ri277331I4NHvKaHQR0dcDoUzXtLoXgoijTWgUZ4NI5kijSKS6vsHQe3r57Ruf3b7m/vSh550b7o8fLGF765r73Zsed667s3+5f8GjHxcPDi45sC/YZPq3wpQwjcsXfD0Q4q5BXkZKGyqUqClLl5DHl5cOzXNAQFhXZ7h4bsXgoNfgiy+ePxna/uvv5Rcvny0d/MeXgy+Hjvzz+dLBV4v2dwQpEMr4QMSZMuoKxziGooUiJa4G+UTaRqKIdMJr+C8wIzHsowCBFjiPHjtmNLYdPbS09+SHl859du+WR++peQ9+WHS259Pek/Mu9M2/2PfZ2ZOfdh/+6NY1t1e/uHe0B7a3H5XA6dA0YrWaiIwrr+sYftauPRKGKCjfBrCioDIbmAC3rJUAnExMgoZkZmUFB2/rOfbFox/dvr/j8cPdz+/ddP/hzudgyc6NKwvv3nBnB136073PX71cVFW+IidHLeQICAnJEmt1RWReD4QSFKVbefWEl/kEM/NbA7CknOCuRG144YiZNampaWvXbjx70vv5k0XPHnk+ebDk6cMl//xlKTv8fP7Y68VTL448vr/4f3/2fPUPz3K1d0JCrkzMgciQF3RgurfDDX77LhxlPVKZL4PZI65GJHNUX4LeV96VOXasu6HBcOrE0oGLn8JfHt9fcu3SQkjNwMUFVy8tvH3dfeDiQnb6Ts9DQAcHPdtbN5mah0gTY4V8BWksV1DbmYE15pKyMv0ey4eBtB20HGKk9YZL/V8PDi6FsPwyTGdePvMSCoMIvvpl6dA+pAaaM7jowL6A5mEIQY6JjVO25qwz3TSTr7W1KjCyKFkFpsbYEJQDnXxby9BzbOnt6/O/v+3x493PsX/ozOuXF94ccLt3E4vowZHL5z/7+y2PVy/c97Ztbm4emumLiKNF7Z8oPJP7cRrrNs7CzkJExdkYC0WBsPuw540r84ZYzE0PWChosb3QO//8mXnQ1P6z86Gpt6+5Db6AkQ5BiJVlfMCGXHkJJ+Eff21ubCEuPzE2IqijogiEdXX6vtNfDL5cgvD9fH/x88ewmKE/tOizR0vYQbu+fOr1y1OojVtbix8QDs0+VamI+7gM4aRDyANAkdgpskg2f6QDx3IKxEhPn/C8cuHTG1fcoDNXLy4ArSv9C24MuKFLr1xYACMdfPXl4KB3R+sfU5KWd3QcATnYrPIpNiebMZsvH18KpXfgnwRQQJF4t5XckPyLjNp9/MhHTx5/9vj+Z88eLXh8f/7wdujnT/fm/fzT/BdPFw7+w2Nw8PNG7W93RXvu3zf0CjErWCDZLo/CyfFnL4SCIu4gGhVP3HzaPMtDxcUlGPSpBkOkyRDV1BhpMkYbDVFsTYboZlP00E99lKEpimkVmrKQiopcAjtAKG+euiCcOghFo+JjMBsKl1z8QoRyeBUYwjpH9+4d/uv4/x35afF3ZP+BboKs+/YNvbxIAIH4gCsuM6UQij8uC9mJUKJaITsOwIAUMgnYfCEwJ1syay+fgCJV+khmgWLJePNvLJo6bocyFIjPEQNyMdJx+8r2CY5AyB1Z1YTveqBCmW7jWA3kZRoisS6/0LEOVK6ygNBqbvVYt+Y0hI9MBbEVznE4z4dlJdcBkC5G4wyKFhDipWHeZK2LsYCR+d3wUuwfjh3K0GExGn4xcegrz84kC2UZBQfKW7P+ggWEvIxCspDQM2lYvEB6dqR8ABiiQ9aQGaek8p385DHDhTsw+dixz9URX0WIKUyAs104h5l5FE5jfjpbWRXJtgqRQK7t4rASckbyzK+1gJDaIIXAw5ROOKd8BV1mWsgMCUAlZY8/J3KDOAKnM20QUSCrhTSPOjHHRju5ljHEC3WPHj36Ybzy008/sWDuzZs3v//+e77l8ODBA1abo3UyTGVVDymKWKNm8KBkITp2IN68XknhiHnhyPRG6i0gpCoUqi4vp9FC5BLOwvu9CCWCQkuAVgYvrWVQA6GTlkwcEmYC4Cayo7x5Ou4gFQh5D+THH3/kO0W2C+cgTLihOLI4Raycy5qP69ato4EMSoYsRoR/YeNpI5hRwImAIthzJpez9jyP+Pvf791/8ODhsxcPHz+9/+yXnx8/ZhyDrjPjeNyWToCRMpzNy4sXL+7cuYNQEn8BSObUoPQkwEYBOd7eJqfo/PxdmSqAOmV8MFzoa4TDhj2WJgmEvERAz/KFDXuKLDLHmp23b9/mHS7GDZEmIkQ8mmYSc6dFbIffmIxlkSSMPZSb5nMaDaexDbrGa1cHrrRpBk4euLev+tqlfr3BCIpOwuDM5RZSeGVggEXy0TYUPhvDuONFGcwG69HgRYAin/1BcfE8BJT2Ayo9qKgg5EnmakiRd89G0o2xqsuwYOwzIRF7zJINeP2MblHjAAyick9hLgIh9gzdwDijqhRBUfZHFv4lTaMAIS1CB9JA7k8r5CkyM49q8C+EFQFFBAV4Vjcb3l64dPnyqZKk07sDLqQGnT/ZozeaZhCE2Hm0h/ACxibL0LAGBuE0+hQvni9qs+gFaz2xNhRrA+OVMzbBUgqDFDU1/FFRLYlA5IP+5YakG8WQ0C9oY1k6gW4SvMUOUeg+CsJHz0oASKQBLHkQw5+bcyuZq8i1nAN4PIId8GDkUehuCj8ZfxQ5KIWfgERzwE9+IoU0DeHjWdQfowAS8socVhn9TE14KMO3t7eXRbGU0j9w9XBOQat/YEfYtlOHDjUOXzhTFCnjmpYwAOks4KEZyBzflVu9evVvfvObd955h+/E4A6i69AthMcwJBR2iNRgyehutvQ7pgVaSwF4dC+0iIITKTtS+JcUTpCTuZbChETuxoQalBt35iqeyBRWPsPHN9yoiRTWwfHx8VmxYgUCBB7YNrbUn2pLoSHy5RT+RWEfMFhwVY4AJHDy5RtUJQ9CozBieByDFaNIBbj/0qVLqQ/ISV4TmOFcVdXVvefPNyUmNhcVMwjO9PUxXqd3EqyFIoWk0U4pKA22SMzwJ7E7aQyiyZxuaTZHUEFIgNhFKfJT5ElUn8LxZD4jFInWIo4IJaLJQBGWjzDxFKQBUaYoko0uRUqgGAg3RegGR+hKVBxBPsSIBwEebBNsqDACBKgYMLZAxXEpSCewASQ7/ESpcgKPphWIPldxH1lmgxWSfv3rX7/77rt8lhQsgVA0PPUXGUU1nT57tvfChbO9vYwDgdAZY+bktdbLJTCylAKidD3tREToQTEYSAnLXTBawcABLmrugyvGkh0xn4pZNdexomnNiwwR+p1BwHH5WhgWC2xE8sz1qmhXjnAJulG4KKfRHFQIKoemoT/QK4gjYwJlg6UAV/oBUBleGBdOo73iY2AdxMWU8Sf8y0kYnLncAkJUv3kRsWCwo+skGE1fC4qMVorCLJypgcPXCiMFQuCBZI5awJXjbMEMSQJ1IOQIWxBCIUtgAQ4FMKjQTz75BNaG+RBeg3ihk3nKWIX/guIM8gtloCmFEUf/YrfMVxISicGGASGNn8Y8A9WgZ5FX8DCnG+b7gIfMXWC14/PnRVLlv8grNUchMwKgRcgcAoebOGfOHJqvuElCncYtDo/C13KhdXTGXNHREvoID8kKJ3qNMctohQVMoyUXCNkOgTSigBOMGmvKTnFuLrElUIRbyolcIsF6mob/jj8qXyrmC9SOhfpeCxiO3WSceaSwGOjDSOddUobYDFrucJjbsRorVwmEjDkUI+RrZIG3pGdk+Pv6Zm/derG3FxcH9q9491AeOC2KFPaLvQBI+Mub+B2hMSGka+Sbd6N6PBwEVz7tRHhzuj78IRCCqKwKP7JcvHy5XatN3bKlvK4OewiXgUAK0+YS6o8twFggdlgHGA1exJuYgh4TQmQL827jM7mcwOBduXIlenVaHFuBECqBYoQ8jyxoThbn7Dl48AwKdNg9Bz92OJNLgA2zB66yHgSshHgFKRrn44VOapeJXj4mhBgJtKjtSYLwcgQRaj4t9kMghNADDGZv1AJcYgIJj4kDJyezZQiCGT4ugQi0KFScwJP5ymUT7crpOt+WIkXPWK0ta1VLLCJhCyyK7ZcuJqltQCir9CNew2JmUSQ6qBT+Jx8fZoeD6FL2CTwReUHsZOVxuAwwO+DsTlID7bzt6BCiZPCaMfW220PjITtYEfmioXnCT5Kl3Mc8FWfluUuA1DygI5mmsdbQk7tJJIgdBhB6D7lBtiRkSgXEQ+AEdszDFLh6CCL4scNxQRTlKUvt4F1QQPFNfFl1dAjpXGIWhJdsu31yGrqITmQqBgEOAJAeZATRuXQxagqMxyoEVGFM+C0SKSXoQ0SbUIh5EFwwk1HFiIFxUDFO5iqipnAujBmskoKHDhJUg+ADVBlBBDAp7MvC34ggP4GQgcJ9uCcnMwSpLRx7Gn0kO2Vu5GljQkgX0DbbECrCKkl8zmftEfqRjiYgQECEEBRjHMMzCtcYTmDxFFnvG2bEVbhxqG60HDocYDBRUCogoa85QjwBesX5jBtUN4FW1DgYcH9uhTyxlQyD7JgXIOQqJA8IOc5PKrZq1Sp5wZGGUAGShRLLfbOKLQgRnXGDL3QKaInOlHAwYoTkkViQj7CR+nn27NnjEeXJkyfMgUCG0HjPnz/H15a4CaqM+5AoQEAZE4g4WUl63zx3KNMjwAD8EFlBRYoCngCpFAAW+ROk0aVUlTtLhotCY8Uuvln4UdvRIRSyZ8/Lf/QmOlAWwOB24i/CVCV9yB2QHpAYVZGCNMsu4FkiZ5J5gAPLuzKSjlcSIKP6LVJJHDuAIeFguwAbNwEqIORMLmFMoAN4BIMG+XNmKt70oj46hBLhxdiMG8ClC3Aq0HhWxIf+RYtifiSLxHbUAqHgOJdLAXhJO3P5uP0iEDJ6ED7wtl3AjIHCzeVktrQRU4oiRTkTlJHxN+5DZ+AJFhDyw1XexB74lau8BT3wf+MBGfIY9HiBAAAAAElFTkSuQmCC