0 2 2 1 0 7 d3b98059-03da-4b8b-a57a-069658ce8766 Shaded 3 255;196;196;196 255;156;156;156 638252831365521843 XHG.......ⵙ∷ⵙ꞉ⵙⵔⵙ·ⵙ⊚ⵙ꞉ⵙ◯ⵙᗱᗴⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ◯ⵙИNⵙⓄⵙꖴⵙ✤ⵙꖴⵙᔓᔕⵙИNⵙᗩⵙᴥⵙ✤ⵙ◯ⵙꗳⵙᙁⵙᗱᗴⵙᔓᔕⵙ◯ⵙᙁⵙᗩⵙᗱᗴⵙᗝⵙꖴⵙ⊚ⵙ◌ⵙ⊚ⵙ◌ⵙ⊚ⵙ◌ⵙ⚪ⵙ◯ⵙ◯ⵙ⚪ⵙ◌ⵙ⊚ⵙ◌ⵙ⊚ⵙ◌ⵙ⊚ⵙꖴⵙᗝⵙᗱᗴⵙᗩⵙᙁⵙ◯ⵙᔓᔕⵙᗱᗴⵙᙁⵙꗳⵙ◯ⵙ✤ⵙᴥⵙᗩⵙИNⵙᔓᔕⵙꖴⵙ✤ⵙꖴⵙⓄⵙИNⵙ◯ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗱᗴⵙ◯ⵙ꞉ⵙ⊚ⵙ·ⵙⵔⵙ꞉ⵙ∷ⵙ.......GHX 0 98 399 0.05292158 0 0 5 Palette, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null 1.0.0.0 Michael Pryor d94849ce-6c4d-4303-8ff4-765a58e82529 Palette Bengesht, Version=3.3.0.0, Culture=neutral, PublicKeyToken=null 3.3.0.0 00000000-0000-0000-0000-000000000000 Heteroptera, Version=0.7.3.0, Culture=neutral, PublicKeyToken=null 0.7.3.0 Amin Bahrami [Studio Helioripple] 08bdcae0-d034-48dd-a145-24a9fcf3d3ff Heteroptera 0.7.3.4 Anemone, Version=0.4.0.0, Culture=neutral, PublicKeyToken=null 0.4.0.0 Mateusz Zwierzycki 4442bb24-c702-460c-a1e4-fcdd321eb886 Anemone 0.4 Pufferfish, Version=3.0.0.0, Culture=neutral, PublicKeyToken=null 3.0.0.0 Michael Pryor 1c9de8a1-315f-4c56-af06-8f69fee80a7a Pufferfish 3.0.0.0 604 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects ce1ec062-ce13-4671-9f88-a44eb02106ee d8073bf9-317e-46c3-870a-95ce7aa609eb a9485951-a0a3-4d49-94ea-8e98b365eb1f eef6124b-3fcd-4667-95f3-62a6f5701b13 73d57946-2d79-4acc-ace4-f082f53db977 782b8411-b435-4f86-b51e-83a746dc8746 ca32a89c-9e1e-4608-af15-c2f8c5aebe82 fadad9fa-e0cd-463a-97cb-627c4001f1b1 8df9fc13-813a-47d6-97e1-b7c7f9640157 5e44e181-5006-4610-a893-b56165fdc072 cfd355a8-73ed-4ac8-8ec9-98a00fe36d6e 1934f7b7-8597-495a-8e31-29665ed66e6b 83cfdb23-e108-47d2-a227-49545aed148a f955a134-e1c3-41cc-a613-c147701720d6 fa041d61-2260-4390-8bf7-5700f6f72f0e ef3f33aa-8e82-44fb-abca-b0f773702dc0 1735a3f4-3ca3-458b-8d07-6d3524379f45 634a94ce-52a8-49bc-9452-6f6366b08a22 1ff051ba-031f-4327-ae05-2bee20ca6608 19 a9218d1d-6e7b-4690-9057-5874c724dcb2 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects e5ad68df-cc7f-49c4-94ee-29300cdc9a84 d12c1703-3bed-49f0-b846-8fdc87815d79 a8715700-f6aa-423f-ace5-a52d21979d01 a120cfc4-5b43-48b9-9cbc-5df113280928 585f30f0-d789-4121-84e7-74deb7cbf39e 9a23593c-d205-4c67-9e60-eb7fab25bffb 3cbe7052-5c66-4c76-9a5d-17a6a39fde97 4df237da-2232-4199-b650-fa712c3de91c bb54191d-58b0-442b-9afb-87b613ded20c a9893790-7d4b-4087-a7b8-ff6a5935408a aad237bb-fdad-42e4-849e-0c964ea67289 21ff9a12-aa27-4fa9-b211-20114f77e0e1 24362cd7-326d-4731-b2ad-502bf575d612 d28d279b-fd8f-4171-b331-ca63b44f17ee 3f9fe5ec-6176-4d1f-9f91-5abbe39e027c b21b215d-ad9f-41b3-9e3e-7353cf23abca 135bf4da-4db7-4259-a721-301f23da2e3d 237f4f0d-fdc6-4d87-9054-fe8570c642bc c45d1ab1-067e-4c98-9c6d-556fdc34bea0 23e9200c-3132-40f5-9759-cbaa05f45d91 1457c7e7-78e6-482d-8e72-8c651cdabc1d 74231a10-52cb-4139-8b54-b46d2ae77465 62497d70-cabf-4568-93b9-483a2778e8e0 21840820-7b03-45cf-914e-8d05118a8772 154459f8-56b4-47e3-8f74-2be68cd83b0e 83a04ee0-dcaa-4764-8f51-9a5af7e9c6c8 fae63135-516e-4bfe-ab70-dc4f2b45ab66 c6aecd68-308a-4a6a-b29f-68933f542f84 c2a92653-9119-4312-8a0a-bfe4efc11ad1 cd852686-49f6-43b5-930a-504e7c0e8fa4 dd3e81a3-f392-4fff-9fba-35855c2e8144 c4fdf2ab-39ec-4f9b-947c-a8f85d40334d fb4a3cd7-41d4-44c5-9aaf-914e96b16bad a65c84f5-46fc-4b72-8e74-2acff1ca258b 58b84e16-46ab-4bef-af27-b755fa42c6db 8c191374-3718-4371-8f0d-4782a857fbcf f023b241-9d43-4d09-a743-5754826ed592 82f09685-9fec-40ef-8635-845751351416 7ea03512-0074-40d1-8807-06c5269c256c d6cd2b21-684d-4d55-84dc-cf67022c00fd dfa3d6d1-68ca-4f13-b440-3d042a308f48 dbda2230-e7eb-467e-aa88-5c1e6b723f5a 48b9bf60-45d3-45d4-a928-df64b25235ff a7828cae-f032-48ad-9499-baf0a62e9b16 3bac0bc7-d166-4c5e-bb08-20a20985222f 199759e7-6c7b-4150-b4bf-9b4fdf05a03f 65486801-6614-44c2-ba37-ac0384a48812 053e6276-507a-47e0-a156-4f54d918eed9 ef414688-663d-4a76-b64c-d9da5e08c56c c118d3a6-21e5-404c-965f-22c44c00965b 240fa235-09b9-405d-989a-af59edf91192 da31bf03-7f19-4df6-83b7-e4247638b6ba ae83d3bf-85ae-4eb8-9a93-d7b82f6eb1ff 1b18947f-649b-4aa7-b635-0c8ffaba1c52 659c929d-50c0-47c3-a9f8-7a31b3925ddc 55 9fdfb721-bd12-4bc0-bbde-bec7b225ed1d Group 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph e5ad68df-cc7f-49c4-94ee-29300cdc9a84 Quick Graph Quick Graph false 0 71331d5b-b298-4259-a4fe-dc9adc2b0144 1 7469 -2700 50 50 7469.181 -2699.249 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph d12c1703-3bed-49f0-b846-8fdc87815d79 Quick Graph Quick Graph false 0 fb284101-9ac9-4a70-b2f4-a594ed3bc763 1 7468 -2678 50 50 7468.181 -2677.249 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph a8715700-f6aa-423f-ace5-a52d21979d01 Quick Graph Quick Graph false 0 9c1ef8b4-e132-41e0-8db8-0eb2de24c077 1 7469 -2656 50 50 7469.181 -2655.249 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph a120cfc4-5b43-48b9-9cbc-5df113280928 Quick Graph Quick Graph false 0 5331dc73-40c7-45dd-9ec5-6ae050d5dace 1 7468 -2633 50 50 7468.181 -2632.249 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 585f30f0-d789-4121-84e7-74deb7cbf39e Quick Graph Quick Graph false 0 25257494-4b0e-4bf8-8e7b-5a202abd036b 1 7469 -2611 50 50 7469.181 -2610.249 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 9a23593c-d205-4c67-9e60-eb7fab25bffb Quick Graph Quick Graph false 0 1bd632db-815a-49df-8056-d9b68aac1b2d 1 7468 -2589 50 50 7468.181 -2588.249 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 3cbe7052-5c66-4c76-9a5d-17a6a39fde97 Quick Graph Quick Graph false 0 c303f18c-ec2e-44f6-bcc9-c6c97dcdaea8 1 7468 -2566 50 50 7468.181 -2565.249 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 4df237da-2232-4199-b650-fa712c3de91c Quick Graph Quick Graph false 0 cd9ab9ba-48a6-43fd-bf09-e50035dc093d 1 7469 -2544 50 50 7469.181 -2543.249 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph bb54191d-58b0-442b-9afb-87b613ded20c Quick Graph Quick Graph false 0 93d932e5-f99c-4911-8200-065f7e63b31c 1 7469 -2522 50 50 7469.181 -2521.249 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph a9893790-7d4b-4087-a7b8-ff6a5935408a Quick Graph Quick Graph false 0 80aa9ec5-4e68-4151-87f5-77dd9cb73995 1 7468 -2499 50 50 7468.181 -2498.249 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph aad237bb-fdad-42e4-849e-0c964ea67289 Quick Graph Quick Graph false 0 1c283afd-2268-4211-af8f-8cdf4d25d66c 1 7469 -2477 50 50 7469.181 -2476.249 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 21ff9a12-aa27-4fa9-b211-20114f77e0e1 Quick Graph Quick Graph false 0 844bd38b-b927-437c-8231-bd2cb384f4ce 1 7469 -2455 50 50 7469.181 -2454.249 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 24362cd7-326d-4731-b2ad-502bf575d612 Quick Graph Quick Graph false 0 f582ca69-21fd-4e0c-ac4c-c757f53b16e7 1 7468 -2432 50 50 7468.181 -2431.249 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph d28d279b-fd8f-4171-b331-ca63b44f17ee Quick Graph Quick Graph false 0 0ea07907-b707-47fb-aac5-b80ec6de4038 1 7468 -2410 50 50 7468.181 -2409.249 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 3f9fe5ec-6176-4d1f-9f91-5abbe39e027c Quick Graph Quick Graph false 0 7e4bc6cb-be01-4aad-8929-fa0633ad5eab 1 7468 -2388 50 50 7468.181 -2387.249 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph b21b215d-ad9f-41b3-9e3e-7353cf23abca Quick Graph Quick Graph false 0 54c2ec9f-a8b8-4bb9-bfcb-571630ac488b 1 7469 -2365 50 50 7469.181 -2364.249 -1 e1905a16-da43-4705-bd65-41d34328c4e6 Bar Graph 255;255;0;90 9999 Bar graph representation of a set of numbers 135bf4da-4db7-4259-a721-301f23da2e3d Bar Graph Bar Graph false 71331d5b-b298-4259-a4fe-dc9adc2b0144 1 7395.181 -2700.249 50 50 e1905a16-da43-4705-bd65-41d34328c4e6 Bar Graph 255;255;0;90 9999 Bar graph representation of a set of numbers 237f4f0d-fdc6-4d87-9054-fe8570c642bc Bar Graph Bar Graph false fb284101-9ac9-4a70-b2f4-a594ed3bc763 1 7395.181 -2677.249 50 50 e1905a16-da43-4705-bd65-41d34328c4e6 Bar Graph 255;255;0;90 9999 Bar graph representation of a set of numbers c45d1ab1-067e-4c98-9c6d-556fdc34bea0 Bar Graph Bar Graph false 9c1ef8b4-e132-41e0-8db8-0eb2de24c077 1 7395.181 -2655.249 50 50 e1905a16-da43-4705-bd65-41d34328c4e6 Bar Graph 255;255;0;90 9999 Bar graph representation of a set of numbers 23e9200c-3132-40f5-9759-cbaa05f45d91 Bar Graph Bar Graph false 5331dc73-40c7-45dd-9ec5-6ae050d5dace 1 7395.181 -2633.249 50 50 e1905a16-da43-4705-bd65-41d34328c4e6 Bar Graph 255;255;0;90 9999 Bar graph representation of a set of numbers 1457c7e7-78e6-482d-8e72-8c651cdabc1d Bar Graph Bar Graph false 25257494-4b0e-4bf8-8e7b-5a202abd036b 1 7395.181 -2611.249 50 50 e1905a16-da43-4705-bd65-41d34328c4e6 Bar Graph 255;255;0;90 9999 Bar graph representation of a set of numbers 74231a10-52cb-4139-8b54-b46d2ae77465 Bar Graph Bar Graph false 1bd632db-815a-49df-8056-d9b68aac1b2d 1 7395.181 -2588.249 50 50 e1905a16-da43-4705-bd65-41d34328c4e6 Bar Graph 255;255;0;90 9999 Bar graph representation of a set of numbers 62497d70-cabf-4568-93b9-483a2778e8e0 Bar Graph Bar Graph false c303f18c-ec2e-44f6-bcc9-c6c97dcdaea8 1 7395.181 -2565.249 50 50 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 63e9037d-576c-413f-bfe1-195094d49159 bc131f89-e2c1-43d2-ac21-36cce03c61c4 7571d6a7-f9fb-43c5-b492-ebb1699bbe58 5705c628-a671-4ea2-8861-c39e6c31f184 8ce21e2b-1311-46c7-8305-9be4aeadbc48 acb47850-cd31-4ea1-ad1c-8d027295fe5b a2e7717e-c537-462c-a03e-36d06f4600e8 b5e8ba51-1f5f-453f-b4d3-f2e760598a98 07127bdd-1ca8-43c8-a0e6-b6634f4ea7e2 6e897604-8413-4005-967f-aa26aa4bacbb 4caac69f-0c5a-4d20-bfd4-d541b3bc321b 6d8b0409-1300-453d-a4c2-65b0b0989f4b 97d086c9-1f66-4d81-a605-b5c3e54b2cb1 27066b99-163c-49af-b78d-2b373f91b9b5 36490051-2898-452f-96c1-81007a065ffb 81df0eaa-5106-4fa2-bfe7-c2073c37a781 2a8e46a0-9509-4aff-8701-b3c411851f02 8839b1ee-a905-40a7-ad7e-621a91f28769 369d0c3d-b9de-4c16-aaec-07a459ba87fd 477360fe-ea68-469f-abe5-7f5fa5fbd55a b05af234-ce5b-432e-8b3f-32a94a964bbf 21 51946891-2a4d-4858-928b-3fff076fc412 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 07127bdd-1ca8-43c8-a0e6-b6634f4ea7e2 6e897604-8413-4005-967f-aa26aa4bacbb 4caac69f-0c5a-4d20-bfd4-d541b3bc321b 3 63e9037d-576c-413f-bfe1-195094d49159 Group ac3c856d-819d-4565-a2cc-8d1cbdc05c97 d94849ce-6c4d-4303-8ff4-765a58e82529 Palette Customize Grasshopper's GUI and toggle between your Custom GUI and Grasshopper's standard GUI. true cf580cd3-8c86-4628-8244-702ca09bb9a6 Palette Palette 166 -975 256 1344 408 -303 True = Custom False = Standard 6a6c6aa9-0d90-44dd-a419-91bdcd0085fb Mode(Custom/Standard) Mode(Custom/Standard) false 0 168 -973 228 20 282 -963 1 1 {0} true This input does nothing, it is just a spacer c8adee2d-568a-431a-9a3b-65078c21d9d3 Spacer Spacer true 0 168 -953 228 20 282 -943 Component_Normal_Deselected_Fill_Color f6b959c6-305e-4556-851e-dfe3db8616ce Component_Normal_Deselected_Fill_Color Component_Normal_Deselected_Fill_Color false 5d9fa098-4495-4ddf-aeb5-b9e61060f110 1 168 -933 228 20 282 -923 1 1 {0} 255;255;255;255 Component_Normal_Deselected_Edge_Color 58f3f6bb-4870-4132-b2ed-38ba0cd16373 Component_Normal_Deselected_Edge_Color Component_Normal_Deselected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -913 228 20 282 -903 1 1 {0} 255;201;201;201 Component_Normal_Deselected_Text_Color 44b220b8-34dd-484a-947e-534161ff26b0 Component_Normal_Deselected_Text_Color Component_Normal_Deselected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 168 -893 228 20 282 -883 1 1 {0} 255;82;82;82 Component_Normal_Selected_Fill_Color 0a62a62f-77bd-4dda-b0ed-3a12b7fc7643 Component_Normal_Selected_Fill_Color Component_Normal_Selected_Fill_Color false 2d4bf402-3325-4e67-89d9-d7cd367c5896 1 168 -873 228 20 282 -863 1 1 {0} 255;224;224;224 Component_Normal_Selected_Edge_Color 3e3bf076-2f8d-473e-8fb4-f92db28df2ff Component_Normal_Selected_Edge_Color Component_Normal_Selected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -853 228 20 282 -843 1 1 {0} 255;186;186;186 Component_Normal_Selected_Text_Color 095dd5d8-570e-49a2-8e67-cea92b6be7a3 Component_Normal_Selected_Text_Color Component_Normal_Selected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 168 -833 228 20 282 -823 1 1 {0} 255;92;92;92 This input does nothing, it is just a spacer d905c0b0-8e82-4b7f-8eba-51505c30c8e7 Spacer Spacer true 0 168 -813 228 20 282 -803 Component_Hidden_Deselected_Fill_Color 321957b9-2793-4637-848c-5ce91391c786 Component_Hidden_Deselected_Fill_Color Component_Hidden_Deselected_Fill_Color false 5d9fa098-4495-4ddf-aeb5-b9e61060f110 1 168 -793 228 20 282 -783 1 1 {0} 255;255;255;255 Component_Hidden_Deselected_Edge_Color 0a7dd4a1-56e3-4430-83fa-b6dee39ba5e2 Component_Hidden_Deselected_Edge_Color Component_Hidden_Deselected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -773 228 20 282 -763 1 1 {0} 255;140;140;140 Component_Hidden_Deselected_Text_Color d4ff0608-c217-43bf-90b9-c3174669c5b5 Component_Hidden_Deselected_Text_Color Component_Hidden_Deselected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 168 -753 228 20 282 -743 1 1 {0} 255;66;66;66 Component_Hidden_Selected_Fill_Color fe81550d-42f1-474d-82fa-fc63ded3a33c Component_Hidden_Selected_Fill_Color Component_Hidden_Selected_Fill_Color false 2d4bf402-3325-4e67-89d9-d7cd367c5896 1 168 -733 228 20 282 -723 1 1 {0} 255;207;207;207 Component_Hidden_Selected_Edge_Color d242f68d-4dde-4615-b1e4-cfc397eef79a Component_Hidden_Selected_Edge_Color Component_Hidden_Selected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -713 228 20 282 -703 1 1 {0} 255;148;148;148 Component_Hidden_Selected_Text_Color bda0eb10-ab2b-48c8-9d8e-97a6e8fd4ae1 Component_Hidden_Selected_Text_Color Component_Hidden_Selected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 168 -693 228 20 282 -683 1 1 {0} 255;0;25;0 This input does nothing, it is just a spacer 4673c598-8f3d-4e72-b57e-b181a741ced8 Spacer Spacer true 0 168 -673 228 20 282 -663 Component_Disabled_Deselected_Fill_Color 7bde9353-e2ff-4945-b4c9-14b806259c72 Component_Disabled_Deselected_Fill_Color Component_Disabled_Deselected_Fill_Color false 1da98593-0ce8-41ff-a667-7c2be94a0815 1 168 -653 228 20 282 -643 1 1 {0} 255;173;173;173 Component_Disabled_Deselected_Edge_Color 71159c9b-1e20-4c06-97da-3c2eb5b91d32 Component_Disabled_Deselected_Edge_Color Component_Disabled_Deselected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -633 228 20 282 -623 1 1 {0} 255;135;135;135 Component_Disabled_Deselected_Text_Color 4b17e381-1311-43c2-8544-d1d5b9458697 Component_Disabled_Deselected_Text_Color Component_Disabled_Deselected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 168 -613 228 20 282 -603 1 1 {0} 255;66;66;66 Component_Disabled_Selected_Fill_Color 12baaaf6-1012-42ee-86b6-cbdc737d8de1 Component_Disabled_Selected_Fill_Color Component_Disabled_Selected_Fill_Color false 41622ff4-285a-4767-ad45-9c5a68eb3205 1 168 -593 228 20 282 -583 1 1 {0} 255;145;145;145 Component_Disabled_Selected_Edge_Color c8896686-befd-4231-b333-7faff2e2c4fb Component_Disabled_Selected_Edge_Color Component_Disabled_Selected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -573 228 20 282 -563 1 1 {0} 255;122;122;122 Component_Disabled_Selected_Text_Color baa2bdde-0550-4e7c-abf0-07aabbc25870 Component_Disabled_Selected_Text_Color Component_Disabled_Selected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 168 -553 228 20 282 -543 1 1 {0} 255;110;110;110 This input does nothing, it is just a spacer 156de1c3-5ce0-4b3c-b550-7dc589cf19f9 Spacer Spacer true 0 168 -533 228 20 282 -523 Component_Warning_Deselected_Fill_Color f011810c-2c52-41fe-a8af-3048783663f4 Component_Warning_Deselected_Fill_Color Component_Warning_Deselected_Fill_Color false 5d9fa098-4495-4ddf-aeb5-b9e61060f110 1 168 -513 228 20 282 -503 1 1 {0} 255;255;255;255 Component_Warning_Deselected_Edge_Color 9edde004-fda3-4653-99de-fbc2c5927c8d Component_Warning_Deselected_Edge_Color Component_Warning_Deselected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -493 228 20 282 -483 1 1 {0} 255;125;125;125 Component_Warning_Deselected_Text_Color a7c322df-e6ad-4443-833b-a5027d642b5a Component_Warning_Deselected_Text_Color Component_Warning_Deselected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 168 -473 228 20 282 -463 1 1 {0} 255;0;0;0 Component_Warning_Selected_Fill_Color 4332093e-f0bf-4490-9902-f6cb75830c83 Component_Warning_Selected_Fill_Color Component_Warning_Selected_Fill_Color false 2d4bf402-3325-4e67-89d9-d7cd367c5896 1 168 -453 228 20 282 -443 1 1 {0} 255;230;230;230 Component_Warning_Selected_Edge_Color 2a4c368c-47ff-4197-9cd7-c08a1cfc5cd2 Component_Warning_Selected_Edge_Color Component_Warning_Selected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -433 228 20 282 -423 1 1 {0} 255;0;50;0 Component_Warning_Selected_Text_Color 4ad8f30a-a901-41f6-9368-60f73d1feafa Component_Warning_Selected_Text_Color Component_Warning_Selected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 168 -413 228 20 282 -403 1 1 {0} 255;0;0;0 This input does nothing, it is just a spacer 83a35c52-95be-4aa6-b663-9f62ca3af846 Spacer Spacer true 0 168 -393 228 20 282 -383 Component_Error_Deselected_Fill_Color 0a0cf5a2-ebc6-47a6-aa59-29d08219bc7c Component_Error_Deselected_Fill_Color Component_Error_Deselected_Fill_Color false 5d9fa098-4495-4ddf-aeb5-b9e61060f110 1 168 -373 228 20 282 -363 1 1 {0} 255;200;0;0 Component_Error_Deselected_Edge_Color f2d5a1d2-54e4-4d9e-849a-7a321a51c71f Component_Error_Deselected_Edge_Color Component_Error_Deselected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -353 228 20 282 -343 1 1 {0} 255;60;0;0 Component_Error_Deselected_Text_Color 10f13eed-fb06-48d2-88fe-4ccd2b4c1de1 Component_Error_Deselected_Text_Color Component_Error_Deselected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 168 -333 228 20 282 -323 1 1 {0} 255;0;0;0 Component_Error_Selected_Fill_Color 3c282599-5602-4c4f-a224-4e67e49976af Component_Error_Selected_Fill_Color Component_Error_Selected_Fill_Color false 0 168 -313 228 20 282 -303 1 1 {0} 255;255;255;255 Component_Error_Selected_Edge_Color 1cce579f-e827-4b62-a4eb-2db9743078b4 Component_Error_Selected_Edge_Color Component_Error_Selected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -293 228 20 282 -283 1 1 {0} 255;0;50;0 Component_Error_Selected_Text_Color 45c987ff-932c-44a5-a12c-9b6313e72b8a Component_Error_Selected_Text_Color Component_Error_Selected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 168 -273 228 20 282 -263 1 1 {0} 255;255;255;255 This input does nothing, it is just a spacer 5b2574b8-2175-4877-90c0-7d3edea60d33 Spacer Spacer true 0 168 -253 228 20 282 -243 Component_Label_Deselected_Fill_Color 2c1c26ee-6404-49ca-b28a-cfb4ead0d2e1 Component_Label_Deselected_Fill_Color Component_Label_Deselected_Fill_Color false 0 168 -233 228 20 282 -223 1 1 {0} 255;50;50;50 Component_Label_Deselected_Edge_Color 602244c8-bf52-4371-a87b-388a0612939a Component_Label_Deselected_Edge_Color Component_Label_Deselected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -213 228 20 282 -203 1 1 {0} 255;0;0;0 Component_Label_Deselected_Text_Color 4f76b9df-5ef3-4336-a982-66c0a18b2f8c Component_Label_Deselected_Text_Color Component_Label_Deselected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 168 -193 228 20 282 -183 1 1 {0} 255;255;255;255 Component_Label_Selected_Fill_Color 4755f628-28f0-43e7-9567-c9f4a6347eb7 Component_Label_Selected_Fill_Color Component_Label_Selected_Fill_Color false 0 168 -173 228 20 282 -163 1 1 {0} 255;25;60;25 Component_Label_Selected_Edge_Color 1a80ded9-3255-4d13-b155-c6a4b3fbc080 Component_Label_Selected_Edge_Color Component_Label_Selected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -153 228 20 282 -143 1 1 {0} 255;0;35;0 Component_Label_Selected_Text_Color 7ceb31d3-04c8-461d-811f-f33619dd34a8 Component_Label_Selected_Text_Color Component_Label_Selected_Text_Color false a5070296-591f-454e-b939-4e1ba45b08e2 1 168 -133 228 20 282 -123 1 1 {0} 255;190;250;180 This input does nothing, it is just a spacer d652999b-5a4b-41c8-a7b9-a9ae76fb5699 Spacer Spacer true 0 168 -113 228 20 282 -103 Galapagos_Deselected_Fill_Color b9fafc3f-9f97-4907-93d7-d61a29223c7f Galapagos_Deselected_Fill_Color Galapagos_Deselected_Fill_Color false 0 168 -93 228 20 282 -83 1 1 {0} 255;252;252;252 Galapagos_Deselected_Edge_Color 74a688e8-b34e-4091-9b76-27007c49de29 Galapagos_Deselected_Edge_Color Galapagos_Deselected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -73 228 20 282 -63 1 1 {0} 255;100;0;50 Galapagos_Selected_Fill_Color 1e33c84f-2937-486e-bb9f-9ab17866e471 Galapagos_Selected_Fill_Color Galapagos_Selected_Fill_Color false 0 168 -53 228 20 282 -43 1 1 {0} 255;255;255;255 Galapagos_Selected_Edge_Color 200dc3d8-e55f-429e-aac4-6083a05e41e4 Galapagos_Selected_Edge_Color Galapagos_Selected_Edge_Color false b5a6a551-46d2-4806-81c1-4e694142c31a 1 168 -33 228 20 282 -23 1 1 {0} 255;0;50;0 This input does nothing, it is just a spacer f728dada-ea5d-41b0-b98a-8de512f00fc4 Spacer Spacer true 0 168 -13 228 20 282 -3 Wire_Normal_Color 0fcc9cb5-ff01-4adc-80db-8249b1cb1362 Wire_Normal_Color Wire_Normal_Color false ab85a55e-b675-4974-8817-fc5f46ae741a 1 168 7 228 20 282 17 1 1 {0} 255;230;230;230 Wire_Empty_Color 78a2afee-b670-426b-a371-999235a7e337 Wire_Empty_Color Wire_Empty_Color false ab85a55e-b675-4974-8817-fc5f46ae741a 1 168 27 228 20 282 37 1 1 {0} 180;230;55;2 Wire_Selected_Start_Color d41f6915-a75d-46dc-b44c-982c253a5b9e Wire_Selected_Start_Color Wire_Selected_Start_Color false 2251b2a2-b627-43f5-aa8b-4c758e59a7bf 1 168 47 228 20 282 57 1 1 {0} 255;230;230;230 Wire_Selected_End_Color 2410a63c-6af9-409a-b554-f2e05e8d3950 Wire_Selected_End_Color Wire_Selected_End_Color false 2251b2a2-b627-43f5-aa8b-4c758e59a7bf 1 168 67 228 20 282 77 1 1 {0} 255;230;230;230 This input does nothing, it is just a spacer be73375b-cea8-4bb4-b84f-47c1c53dba45 Spacer Spacer true 0 168 87 228 20 282 97 Panel_Default_Color This does not change the color of Panels already on the canvas, it changes the default color for new Panels 29278a69-6358-418c-aba8-2f26dfb10578 Panel_Default_Color Panel_Default_Color false 0 168 107 228 20 282 117 1 1 {0} 255;255;255;255 Group_Default_Color This does not change the color of Groups already on the canvas, it changes the default color for new Groups 99defed7-0c8b-446e-be4d-436c05592d1b Group_Default_Color Group_Default_Color false 0 168 127 228 20 282 137 1 1 {0} 255;255;255;255 This input does nothing, it is just a spacer 19fc00c2-190e-4e70-998b-e26dc4f9f8af Spacer Spacer true 0 168 147 228 20 282 157 Canvas_Background_Color 8b28a632-1507-43a4-8735-9a181ad39bcc Canvas_Background_Color Canvas_Background_Color false 0 168 167 228 20 282 177 1 1 {0} 255;255;255;255 Canvas_Gridline_Color 72826570-5a41-4ef5-936d-59e648e96383 Canvas_Gridline_Color Canvas_Gridline_Color false 0 168 187 228 20 282 197 1 1 {0} 255;240;240;240 Canvas_Gridline_Width f2e7af00-bbdc-4f45-a020-e3f2020b5345 Canvas_Gridline_Width Canvas_Gridline_Width false 0 168 207 228 20 282 217 1 1 {0} 2 Canvas_Gridline_Height b32ba782-b9e0-40b1-9b49-c17de5b67dae Canvas_Gridline_Height Canvas_Gridline_Height false 0 168 227 228 20 282 237 1 1 {0} 2 Canvas_Edge_Color 5859d87e-580c-4f1f-af8c-3683e3dc94d8 Canvas_Edge_Color Canvas_Edge_Color false 0 168 247 228 20 282 257 1 1 {0} 255;207;207;207 Canvas_Shadow_Color 6f769f3e-eb42-4a27-af68-d95482a87942 Canvas_Shadow_Color Canvas_Shadow_Color false 0 168 267 228 20 282 277 1 1 {0} 0;237;237;237 Canvas_Shadow_Size 57186c1f-9afb-4410-9800-b9138d1f1a74 Canvas_Shadow_Size Canvas_Shadow_Size false 0 168 287 228 20 282 297 1 1 {0} 2 This input does nothing, it is just a spacer 288db22f-a056-435a-ba44-1260facefde8 Spacer Spacer true 0 168 307 228 20 282 317 True = Removes Canvas Grid, Edge, and Shadow - Canvas uses Monochromatic_Color False = Keeps Canvas Grid, Edge, and Shadow - Canvas uses Canvas_Background_Color d5f8a2aa-1f17-4d15-adf8-66c82a72a6ee Monochromatic(On/Off) Monochromatic(On/Off) false 0 168 327 228 20 282 337 1 1 {0} false Monochromatic_Color 55f56dcf-b4a3-4ffe-b7fa-e71cbe5737fb Monochromatic_Color Monochromatic_Color false 0 168 347 228 20 282 357 1 1 {0} 255;255;255;255 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers bc131f89-e2c1-43d2-ac21-36cce03c61c4 Digit Scroller SEMENT LENGTH false 0 12 SEMENT LENGTH 2 0.0023000000 1266 -56 250 20 1266.726 -55.83565 e64c5fb1-845c-4ab1-8911-5f338516ba67 Series Create a series of numbers. true 7571d6a7-f9fb-43c5-b492-ebb1699bbe58 Series Series 1344 -19 106 64 1405 13 First number in the series 9a4fd554-d7a2-4807-aa3b-c5bc6f8f54ab Start Start false 0 1346 -17 47 20 1369.5 -7 1 1 {0} 0 Step size for each successive number 3989d717-5c52-4fc1-9e3f-d8cf0c4e6334 Step Step false 7ea2aa96-2d9e-44d9-bf1b-90bc86fbf709 1 1346 3 47 20 1369.5 13 1 1 {0} 1 Number of values in the series 83ae208f-c932-4aaf-9f7f-74fdb4f54dae Count Count false b5e8ba51-1f5f-453f-b4d3-f2e760598a98 1 1346 23 47 20 1369.5 33 1 1 {0} 10 1 Series of numbers 90e3f7ea-df08-465a-8194-bf4035c20fb1 Series Series false 0 1417 -17 31 60 1432.5 13 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 5705c628-a671-4ea2-8861-c39e6c31f184 Digit Scroller INCREASE BEND PER SEGMENT false 0 12 INCREASE BEND PER SEGMENT 1 0.49222173845 1281 222 250 20 1281.69 222.3956 9c53bac0-ba66-40bd-8154-ce9829b9db1a Colour Swatch Colour (palette) swatch b5a6a551-46d2-4806-81c1-4e694142c31a Colour Swatch false 0 255;209;209;209 24 -144 60 20 24 -143.6801 9c53bac0-ba66-40bd-8154-ce9829b9db1a Colour Swatch Colour (palette) swatch 5d9fa098-4495-4ddf-aeb5-b9e61060f110 Colour Swatch false 0 255;255;255;255 24 -1073 60 20 24 -1072.802 9c53bac0-ba66-40bd-8154-ce9829b9db1a Colour Swatch Colour (palette) swatch a5070296-591f-454e-b939-4e1ba45b08e2 Colour Swatch false 0 255;115;115;115 24 -184 60 20 24 -183.6801 9c53bac0-ba66-40bd-8154-ce9829b9db1a Colour Swatch Colour (palette) swatch 2d4bf402-3325-4e67-89d9-d7cd367c5896 Colour Swatch false 0 255;227;227;227 24 -1013 60 20 24 -1012.802 9c53bac0-ba66-40bd-8154-ce9829b9db1a Colour Swatch Colour (palette) swatch ab85a55e-b675-4974-8817-fc5f46ae741a Colour Swatch false 0 255;222;222;222 24 211 60 20 24 211.0692 9c53bac0-ba66-40bd-8154-ce9829b9db1a Colour Swatch Colour (palette) swatch 2251b2a2-b627-43f5-aa8b-4c758e59a7bf Colour Swatch false 0 255;168;168;168 24 271 60 20 24 271.0692 de131812-96cf-4cef-b9ee-7c7031802751 00000000-0000-0000-0000-000000000000 InfoGlasses To show the components' advances information.Right click to have advanced options true c54e16b2-ccf6-4f4e-95dc-0fd1ce565c24 0 true InfoGlasses InfoGlasses 0 0 255;255;255;255 255;115;115;115 true true true 255;59;59;59 1000 8 false 0 false true false 2 1 8 false false false 211 -1168 176 28 316 -1154 Run 72e93834-66d7-4933-aef0-991e6bdf6f81 true Run Run false 0 213 -1166 31 24 288.5 -1154 1 1 {0} true b6d7ba20-cf74-4191-a756-2216a36e30a7 Rotate Rotate a vector around an axis. true 8ce21e2b-1311-46c7-8305-9be4aeadbc48 Rotate Rotate 1310 -344 150 64 1413 -312 Vector to rotate 7e771656-f78f-4d30-a2ec-6451880f237a Vector Vector false 6cb3a800-b587-4653-acc2-5744ae0cdd07 1 1312 -342 89 20 1384.5 -332 Rotation axis 42e4c4a3-e40f-4dd6-80da-7db696fc492c Axis Axis false f447cd71-4dec-426b-9c17-991c06398d6d 1 1312 -322 89 20 1384.5 -312 Rotation angle (in degrees) d36dc3cf-9b9b-4570-818a-af1d2a32e878 -X Angle Angle false true 50431618-b1c9-44cb-915e-6a1ce1fcbf6a 1 true 1312 -302 89 20 1384.5 -292 Rotated vector c13cd37b-e089-4f8d-883b-54203d5df027 Vector Vector false 0 1425 -342 33 60 1441.5 -312 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 27066b99-163c-49af-b78d-2b373f91b9b5 Interpolate Interpolate 1391 -680 225 84 1564 -638 1 Interpolation points 1cfa6ffd-56c1-44b4-8264-031c3bfcadc9 Vertices Vertices false 2a8e46a0-9509-4aff-8701-b3c411851f02 1 1393 -678 159 20 1472.5 -668 Curve degree 4e7bb25b-6ce9-4b77-879b-a77033e4f7f1 Degree Degree false 0 1393 -658 159 20 1472.5 -648 1 1 {0} 3 Periodic curve bc7913c7-f8c4-4cf1-a3b1-425a45cf7d60 Periodic Periodic false 0 1393 -638 159 20 1472.5 -628 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 6252188d-187f-4d0b-b8c7-ba56fa4c5af2 KnotStyle KnotStyle false 0 1393 -618 159 20 1472.5 -608 1 1 {0} 2 Resulting nurbs curve 812b2004-5d23-4a36-8867-c4d7e1d7c8c3 Curve Curve false 0 1576 -678 38 26 1595 -664.6667 Curve length cd8cb434-3248-490d-b1bd-9d308f8f6e84 Length Length false 0 1576 -652 38 27 1595 -638 Curve domain cad893e9-0cca-4cc6-9205-224b9074636b Domain Domain false 0 1576 -625 38 27 1595 -611.3334 79f9fbb3-8f1d-4d9a-88a9-f7961b1012cd Unit X Unit vector parallel to the world {x} axis. true acb47850-cd31-4ea1-ad1c-8d027295fe5b Unit X Unit X 1346 -192 114 28 1392 -178 Unit multiplication 9c8e3800-eb50-4449-8428-e70fa45c8743 Factor Factor false c45782da-fece-45d1-903c-95142361b873 1 1348 -190 32 24 1364 -178 1 1 {0} 1 World {x} vector 21b93f54-19f5-40ef-a176-df902815f398 Unit vector Unit vector false 0 1404 -190 54 24 1431 -178 9103c240-a6a9-4223-9b42-dbd19bf38e2b Unit Z Unit vector parallel to the world {z} axis. true a2e7717e-c537-462c-a03e-36d06f4600e8 Unit Z Unit Z 1148 -345 114 28 1194 -331 Unit multiplication aa91a118-d75b-43c7-a0d7-4a6fbf6865f8 Factor Factor false 06332314-4669-466a-9627-5ee802d91f0f 1 1150 -343 32 24 1166 -331 1 1 {0} 1 World {z} vector f447cd71-4dec-426b-9c17-991c06398d6d Unit vector Unit vector false 0 1206 -343 54 24 1233 -331 ab14760f-87a6-462e-b481-4a2c26a9a0d7 Derivatives Evaluate the derivatives of a curve at a specified parameter. true c3a5eb6d-f6f6-4e7d-8ede-60fcdc1f4260 true Derivatives Derivatives 527 -4713 120 144 606 -4641 2 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 7 fbac3e32-f100-4292-8692-77240a42fd1a 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 16ef3e75-e315-4899-b531-d3166b42dac9 Curve to evaluate f3ee6bc2-fdad-4aa8-bc05-a096970cebc8 true Curve Curve false 0 529 -4711 65 70 561.5 -4676 Parameter on curve domain to evaluate 04c36552-d571-45f3-874e-eb0200b47d22 true Parameter Parameter false 0 529 -4641 65 70 561.5 -4606 Point on curve at {t} baaac401-d9a7-411b-805d-a15c35db80eb true Point Point false 0 618 -4711 27 20 631.5 -4701 First curve derivative at t (Velocity) d5b87ddb-341e-4bd8-afdb-367567c6bba3 true false First derivative 1 false 0 618 -4691 27 20 631.5 -4681 Second curve derivative at t (Acceleration) 2639343a-12c6-4387-90cc-a3114bd783d6 true false Second derivative 2 false 0 618 -4671 27 20 631.5 -4661 Third curve derivative at t (Jolt) 06921a77-02a5-44a5-ab76-62a2ec504ada true false Third derivative 3 false 0 618 -4651 27 20 631.5 -4641 Fourth curve derivative at t (Jounce) 92510296-d128-4ce9-a581-482c09cbc15e true false Fourth derivative 4 false 0 618 -4631 27 20 631.5 -4621 Fifth curve derivative at t ce3af00f-0726-43e6-b974-248803cfe0e6 true false Fifth derivative 5 false 0 618 -4611 27 20 631.5 -4601 Sixth curve derivative at t e943f2d8-f1f9-4bb1-aef8-c108ef86c002 true false Sixth derivative 6 false 0 618 -4591 27 20 631.5 -4581 4c619bc9-39fd-4717-82a6-1e07ea237bbe Line SDL Create a line segment defined by start point, tangent and length.} true a28e949a-03f8-43f8-b244-d21a8d6e41e4 true Line SDL Line SDL 409 -5976 179 64 552 -5944 Line start point 79adb25f-f822-4463-a547-0638ba3af362 true Start Start false 0 411 -5974 129 20 483.5 -5964 Line tangent (direction) 03636d62-1370-4942-88f4-857a65464d92 true Direction Direction false 06921a77-02a5-44a5-ab76-62a2ec504ada 1 411 -5954 129 20 483.5 -5944 1 1 {0} 0 0 1 Line length 71e8a980-e875-42d1-82e8-80286c8cbc52 -X true Length Length false 0 411 -5934 129 20 483.5 -5924 1 1 {0} 1 Line segment b317086f-b6bc-47a5-ac87-3e7d34547ac2 true Line Line false 0 564 -5974 22 60 575 -5944 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 391756f9-4358-45d1-936e-c496ba6104e0 true Create Material Create Material 447 -6100 152 104 545 -6048 Colour of the diffuse channel 99cd1941-02ef-4b60-9081-2924d6df2987 true Diffuse Diffuse false 0 449 -6098 84 20 491 -6088 1 1 {0} 255;232;232;232 Colour of the specular highlight b4fa067f-1df1-4344-b55f-bc629475264a true Specular Specular false 0 449 -6078 84 20 491 -6068 1 1 {0} 255;0;255;255 Emissive colour of the material 38f16f51-687d-44ec-9aab-4b4c5db2f705 true Emission Emission false 0 449 -6058 84 20 491 -6048 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent f0216951-6a43-4fe8-8f72-957347479ac7 true Transparency Transparency false 0 449 -6038 84 20 491 -6028 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine 1a0cdefa-8194-428a-b2af-d416a232075e true Shine Shine false 0 449 -6018 84 20 491 -6008 1 1 {0} 100 Resulting material 200bbd93-5b58-4c27-8078-0adeb21b162c true Material Material false 0 557 -6098 40 100 577 -6048 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true d7be4360-884f-4c85-be96-44fb8a798a7d true Custom Preview Custom Preview 560 -6163 76 44 622 -6141 Geometry to preview true 7d2280d0-5877-4448-8407-b4d0b2e99066 true Geometry Geometry false b317086f-b6bc-47a5-ac87-3e7d34547ac2 1 562 -6161 48 20 586 -6151 The material override 0ab4a55d-2d50-496f-9431-24974e37bb78 true Material Material false 200bbd93-5b58-4c27-8078-0adeb21b162c 1 562 -6141 48 20 586 -6131 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 4f93409d-e3de-4e47-b8ce-b1a1fa6684c9 true Evaluate Length Evaluate Length 450 -6247 149 64 535 -6215 Curve to evaluate ece5eb15-d68e-4325-8ac6-14e1983b8848 true Curve Curve false b317086f-b6bc-47a5-ac87-3e7d34547ac2 1 452 -6245 71 20 487.5 -6235 Length factor for curve evaluation b7b17610-8182-4eb0-beff-f9003e5cd200 true Length Length false 0 452 -6225 71 20 487.5 -6215 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) e9204942-5fcb-43c4-9bd7-bad7da1f1095 true Normalized Normalized false 0 452 -6205 71 20 487.5 -6195 1 1 {0} true Point at the specified length 0b07833a-e9b0-4c65-b08a-a86c6f095e42 true Point Point false 0 547 -6245 50 20 572 -6235 Tangent vector at the specified length d4d0d2a3-7672-4c9b-847d-0720f0276387 true Tangent Tangent false 0 547 -6225 50 20 572 -6215 Curve parameter at the specified length 4821c9f2-9535-42fb-89a8-46c9b7c32eca true Parameter Parameter false 0 547 -6205 50 20 572 -6195 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true f8bf8b17-5f64-4003-9ce1-9026aaac4695 true Interpolate Interpolate 364 -6351 225 84 537 -6309 1 Interpolation points 5b1939bb-f0f0-413a-9564-dbeb140f85b7 true Vertices Vertices false 0b07833a-e9b0-4c65-b08a-a86c6f095e42 1 366 -6349 159 20 445.5 -6339 Curve degree 03f9d6bf-b682-46a6-9e8a-34324164c9b0 true Degree Degree false 0 366 -6329 159 20 445.5 -6319 1 1 {0} 3 Periodic curve cf0efaf9-d364-4835-a799-f77814defd1e true Periodic Periodic false 0 366 -6309 159 20 445.5 -6299 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 68ab4f2d-155f-49e9-9089-6cceba7398b5 true KnotStyle KnotStyle false 0 366 -6289 159 20 445.5 -6279 1 1 {0} 2 Resulting nurbs curve cd554e84-a87c-47bc-a79c-19347e2f0445 true Curve Curve false 0 549 -6349 38 26 568 -6335.667 Curve length 84582cb4-6638-42b4-a325-f4e841513b71 true Length Length false 0 549 -6323 38 27 568 -6309 Curve domain 2d16f12e-6fb5-4594-8c47-80e046dd4a10 true Domain Domain false 0 549 -6296 38 27 568 -6282.333 76975309-75a6-446a-afed-f8653720a9f2 Create Material Create an OpenGL material. true 59480eb6-f67d-4aed-af3c-80bcc65b0c97 true Create Material Create Material 447 -6475 152 104 545 -6423 Colour of the diffuse channel d0a233c4-5cbf-47b6-b827-30877f3c0605 true Diffuse Diffuse false 0 449 -6473 84 20 491 -6463 1 1 {0} 255;207;207;207 Colour of the specular highlight f52f3c21-e882-40ff-8233-68e3e5495edb true Specular Specular false 0 449 -6453 84 20 491 -6443 1 1 {0} 255;0;255;255 Emissive colour of the material b9730379-a406-4b51-a3c9-a8491583fea5 true Emission Emission false 0 449 -6433 84 20 491 -6423 1 1 {0} 255;0;0;0 Amount of transparency (0.0 = opaque, 1.0 = transparent 34d39782-03a8-4ac3-8ce4-9b4b5b91336e true Transparency Transparency false 0 449 -6413 84 20 491 -6403 1 1 {0} 0.5 Amount of shinyness (0 = none, 1 = low shine, 100 = max shine cbcb1a83-292f-4d78-a691-b5e20a9d993d true Shine Shine false 0 449 -6393 84 20 491 -6383 1 1 {0} 100 Resulting material d1ae5845-db5c-4627-82e9-c54c822208ed true Material Material false 0 557 -6473 40 100 577 -6423 537b0419-bbc2-4ff4-bf08-afe526367b2c Custom Preview Allows for customized geometry previews true true 570796f7-f90e-4361-858c-c1f014778449 true Custom Preview Custom Preview 560 -6538 76 44 622 -6516 Geometry to preview true 501744d7-62ef-4952-a5df-acf7700d473f true Geometry Geometry false cd554e84-a87c-47bc-a79c-19347e2f0445 1 562 -6536 48 20 586 -6526 The material override e4f2c01f-e44e-43f1-b46b-56bcc7fb4ad8 true Material Material false d1ae5845-db5c-4627-82e9-c54c822208ed 1 562 -6516 48 20 586 -6506 1 1 {0} 255;221;160;221 255;66;48;66 0.5 255;255;255;255 0 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 7bba5658-4cbd-432f-a660-fc5cb3f3794c true Quick Graph Quick Graph false 0 baaac401-d9a7-411b-805d-a15c35db80eb 1 523 -4876 150 150 523.7125 -4875.101 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 167436ff-de50-491f-8e47-5da60e700291 true Quick Graph Quick Graph false 0 d5b87ddb-341e-4bd8-afdb-367567c6bba3 1 523 -5045 150 150 523.7125 -5044.101 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 93ccbc8f-68af-4b11-adf7-aabf23dbd5b7 true Quick Graph Quick Graph false 0 2639343a-12c6-4387-90cc-a3114bd783d6 1 523 -5212 150 150 523.7125 -5211.101 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 8afb402c-3b86-45d3-84ea-d3432b3a52a6 true Quick Graph Quick Graph false 0 06921a77-02a5-44a5-ab76-62a2ec504ada 1 523 -5381 150 150 523.7125 -5380.101 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 08ca05ad-d4b6-4ba5-9d86-2dfa8d24fbe1 true Quick Graph Quick Graph false 0 92510296-d128-4ce9-a581-482c09cbc15e 1 523 -5551 150 150 523.7125 -5550.101 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph efd6e82c-6389-40c3-b1fa-a1f3d7f406cb true Quick Graph Quick Graph false 0 ce3af00f-0726-43e6-b974-248803cfe0e6 1 523 -5721 150 150 523.7125 -5720.101 -1 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph dc664508-b5c0-4996-9899-a06cb3c1f6cf true Quick Graph Quick Graph false 0 e943f2d8-f1f9-4bb1-aef8-c108ef86c002 1 523 -5889 150 150 523.7125 -5888.101 -1 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 36490051-2898-452f-96c1-81007a065ffb Relay false 9fd99022-1a7f-4cea-a05e-11bb80d4ec7d 1 1385 -442 40 16 1405 -434 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object b5e8ba51-1f5f-453f-b4d3-f2e760598a98 Relay false 502e62c7-4437-40b9-bd0f-64f09fc22560 1 1388 242 40 16 1408 250 a0d62394-a118-422d-abb3-6af115c75b25 Addition Mathematical addition true 07127bdd-1ca8-43c8-a0e6-b6634f4ea7e2 Addition Addition 1365 268 85 44 1405 290 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for addition 3efa2d60-d24c-4da5-b586-ead577c32d7b A A true 0 1367 270 26 20 1380 280 1 1 {0} Grasshopper.Kernel.Types.GH_String false 1 Second item for addition 493117c9-0781-4f7a-9da2-810c2c0c8e21 B B true 891c2d5f-30f4-4657-a7f6-e91f07dc0e63 1 1367 290 26 20 1380 300 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 2 Result of addition 502e62c7-4437-40b9-bd0f-64f09fc22560 Result Result false 0 1417 270 31 40 1432.5 290 a0d62394-a118-422d-abb3-6af115c75b25 Addition Mathematical addition true 6e897604-8413-4005-967f-aa26aa4bacbb Addition Addition 1318 333 155 44 1358 355 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for addition 06b19fd1-cc87-433b-8994-3b63504bbe2d A A true 0 1320 335 26 20 1333 345 1 1 {0} Grasshopper.Kernel.Types.GH_String false 1 Second item for addition b04a041f-efb2-463f-88b8-e8d878371e7c B B true b05af234-ce5b-432e-8b3f-32a94a964bbf 1 1320 355 26 20 1333 365 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 1 Result of addition 891c2d5f-30f4-4657-a7f6-e91f07dc0e63 Result NUMBER OF POINTS false 0 1370 335 101 40 1420.5 355 e2039b07-d3f3-40f8-af88-d74fed238727 Insert Items Insert a collection of items into a list. true 81df0eaa-5106-4fa2-bfe7-c2073c37a781 Insert Items Insert Items 1344 -543 116 84 1427 -501 1 List to modify 07b21d74-57aa-470b-9886-25c6218657ca List List false 36490051-2898-452f-96c1-81007a065ffb 1 1346 -541 69 20 1380.5 -531 1 Items to insert. If no items are supplied, nulls will be inserted. b2066849-f7ec-46b6-bbac-bbdda3212e65 Item Item true 0 1346 -521 69 20 1380.5 -511 1 1 {0} Grasshopper.Kernel.Types.GH_String false {0,0,0} 1 Insertion index for each item b77429fa-e425-429a-8f89-628efd4a0362 Indices Indices false 0 1346 -501 69 20 1380.5 -491 1 1 {0} 0 If true, indices will be wrapped 89a48d9c-1bc1-457e-b823-d92ff7d61eda Wrap Wrap false 0 1346 -481 69 20 1380.5 -471 1 1 {0} false 1 List with inserted values 9bfa77bb-a647-437e-ae62-842d46b2a2f1 List List false 0 1439 -541 19 80 1448.5 -501 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 2a8e46a0-9509-4aff-8701-b3c411851f02 Relay ⊙☉⊙ false db6ab01e-9fb2-4f8e-99b4-ceef5dc1505f 1 1753 -650 44 16 1775 -642 9c53bac0-ba66-40bd-8154-ce9829b9db1a Colour Swatch Colour (palette) swatch 1da98593-0ce8-41ff-a667-7c2be94a0815 Colour Swatch false 0 255;196;196;196 24 -648 60 20 24 -647.6801 9c53bac0-ba66-40bd-8154-ce9829b9db1a Colour Swatch Colour (palette) swatch 41622ff4-285a-4767-ad45-9c5a68eb3205 Colour Swatch false 0 255;176;176;176 24 -588 60 20 24 -587.6801 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 07127bdd-1ca8-43c8-a0e6-b6634f4ea7e2 6e897604-8413-4005-967f-aa26aa4bacbb 2 4caac69f-0c5a-4d20-bfd4-d541b3bc321b Group f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ 7VsJdBNlHp+2aZqjh1AVUJDR4nqwFnTxKbJgk6ZHaNPGFhAEH50m03YgycRkUuSy5UFBKiBdLD0ALT6oINUqlCqHEt3isiuLZQEBRXvo4sqxsquuuKt0v2/mm7RzJC00tfCw7yWd+f+/8/c/v/9MVAba4rGTDqYD/IVgGKYAn2inzZNPOWYWki43RTsgywzIkA3/ImATvl8qSVhJF2wSjtganmU0QLIakMZcOjtytZdIqP/3oYZTmoq5EWYXWUiRcyBfA/jK7AIwijUGkU2ku2DSXCcJ2WFo4ijEy6BddsIGOSMAdePGjR18r2zSRloY0srzKIrquNFA5lEOigG7MLtoJ+liKNLNDws/CgPBsPOowM2ONntp2bJPVVoD6ba4KCeDNg+XiCkyCDvJ350Pm5qaEh/fvrPqzIvLwXd7RT34bqt4s62igb1gbxs2w++yVez36raycl/L5soMeL1mCRxhLezSvn6T77rthTVtL5T7mrVVbPWNxjXjBjlTsQPSqxYJpub7oiUh7lbh8jZ0zltazTZeEei6+lXfgOgbUQL2Yq/RjtgZuyxgq29taJ38sjvbsFxuj2hSdu8IVXYEhA/fV4okhzBCm5uIFwSSCxpNID4ELyvZ+PiU1KnqLKBh0BTcvJnAvyiemkh7OAMK400AKNssoIxIf0IRWTmJcOWTbMvbwG39zx0dC0AXxRM0bectaEb0jY+GTwHqLJhKDSmSadRZFmc6MZf2MF3balJctMcpaTyg0xQyc+HifBPEgI+Wowl6QbqSo8MBQpElKlImd1r27aEl0+/a+XHaityvdQV/dfxXYCVRJsLtxnVWKzurOpF2MATl6PQW0NfI2drdZtKVB+wct8P+BOqP03k4gdsoNwOvKIa0u5WplNVKOviNhEQaHW6GcFjIFA9l5ZeYde8QY4GCTFrvTDrqHdR6JMASVRmUZbZ/tkbHMC4q18NwPsQnVj1AzcqS4uB9zmEDlpDWhGH/0WPYaH24mSqkWVCHQ27xxwbMm9SkdRIuwj6Tcjg9LLoqhK5SZ7GQbp+PCvED0XAj7IgXEjYP6cYBWEKs4mWRaD+uO765/s7MNfUzZu2fe/BbARLh7IgSBBA5k52dc7ysoimzaY/LQrJqCHX5zImwPQ+8ZiyuLZt3TrewVsuxBfoE+/UQwhoAoXcigPCEDsNwMYTmIyyEkRyEQP0RhsoAgA3KIt0eG6s6AqRkgcoZyZiXPTw5bePDpkcpe4FHAJSSG0mCFE+XQCWHBdZzLLATCItngTrV6ERYJJwCypYqxALOGnF5+jQoHdkVGIehCBvuYjfjloUnY8DzCysOz0xtNHy07WVLcaUAnhgzGoGDwy3BSdKgTwBLCghYYhNybCH+HNv9m7L2T6/fmrxlU8yH7z/z/VqhrbAuVujQhvCA62kXyoj4JEOZSNvAjvjEBP6Xk8FtOjwfjgvFkOICSlpAO0HKgtOcuw41Gnhr2/v9yJ/+kntj8luN4y/u1Jy/AbBCEKvi2WP3LnQcNe3539jVD936kA6wQv3YKGCFIdaEphGF65406JYe/PKBhyfc/yVgKRDrnainNR+UJOpWRZfeY8kebgCscMQSe1bAUiLWV3t/GHjg9Cjdcuv3UWWmk07AikCs4bHjl6hm70wuqc2d/zMW2w5YKn7xT72+H1/vyax5Y8ePKe+9qgYsNWINxMdNyK4rz3zh3S+KJsfEXQIsDd9rfcffqFtWJ1RvemyxjigsBSwtYkVuqco4dPiCvuaH7xQjT6xsAKxIxBpf/fzYoqPbU98ZM6ShapR1GmBFIdbce8pLKuM6THsXTGEWlI35CbCiEWvI19/dd+HgtIw/ZH6DPzPkk2GAFYNYiw8NO3XAHJ/2zp4Nm1KGzhgKWDcg1ruvT45vHFOSsmr2cXvdxI7lgDUAsSz3XYiek16fVmp4Lun8ix3vqYyGmQLFHwi3IWeF8zNObVA8cbN+2xuxRUZs/lYZDZXYntiEMN6EOGsI9WcNeH5c47Mrl+vX/LEuverHXfOFc2WRNmKu0Br8hLNQP+4nVofPoVwk8DpgJKTwspsW67DMQqSb7jZ6iaXay+iFHQcOKKoJRi4Q78UOqPgk4Gp5BxR21UMu9g3BgXxpS+GjxPRLaSUt2q8ysyLWBQHy1rpAkLdu4yFX+IO8pmyl59zEiylrn7rZXV362yeFYT8ZnjwZaRbrD+CHuA64m7aTuJVgCNzjphz5uNNGWMgC2gaCBEhDHFaYvYF2DOQxRH7PklqxY5NbqjRD4eiXkcYW3wEgDU0ECIpzsFYQRotvaYoyw7yDZEgXOEgTkAsjAERYwyaOAnnCTwRLNlp5Pcgo+XxC9p/OJiz5sKFY9a/Mozyfj2eLH99Y9IlzRmqlt6bqdOWKCTyfD2rTrAdWhexTG3b/c5ApamRsszaTTYEkeqTi6P4n5tbLbodFI4BktZPIpxkkNlnpTLVhyTVYdsbuUQ9+dfD9EecuRzpBT4dgLo1BOa6XS4fgcaR4eFO0GdZ63AzpYHhBhiDkwiVYKvUusOMCrIsdSRspzARTwO8tbP7ohQojOLLxfdh9OTw220w32IMjv9NNdN6z/mX+6EeyFnaRTUg3shmY3GlNFpBeelykrIiafw7dvP3t8PTKO1LjqD175wlEFJHI9ZTIyMfoEyENCyikW35RIfHVBEV6IucgYZcin12zsoDj8lFHThZ3wFXiDI1TDjfpYnDgDMEUAgcoK5tP98dOWFG/LWPfka3MK+cWlEeYPAyRayN9YAvtiZ1ltERWIaMlUgrp+1MrNjigEG9qQg5K4Gj8ARiNlJm04gxwObJg7Vt304ppSybpq14r/fuxhTHHBNgooKeSIMNRg63COZ8jP+MFZ3anJF60sCqMQjAfNyUh+LEvWjIjbIdSXtr1bmhR4+1LBbvRZBdQeQwOj6rSMBzuB8NbM/Py3CRQPpuNKxoBbUR1pPgehVrxAcjfkiQwd+H1EEL8qAEkIQDCV/UyIbfmE8Bd2dvKURR70gdG6Yarkz/f5647P72V0r+cHodPTftMmFwoZPfKUbtL+sSFg17aWw6AKwfCNVjO3rzA3vDVArj4woi/4BHJSYxmNUYWmim1LS/FXoqduOPBjlvrXjy7S5gMs92lJTSO3B044kNiEMBpXRUIHKBL/RFRlA6PPbezQMLqaRcZhWLdJF+PuwgnKnzKiije883e+9bWJW7+YNHpcR7bY0Lthb2l2stSg+4QoXquCKiez/WLBCJyadpGEj6/h0kqqZdZPeTsBkQp6FVlhSI+7l25S+mlUPBTyGdUykUp82esWaAoxauhJEpVv906bdmXF4273965+83ZbelCL2AmHKRNGKDUART6bh3uhD3YKr7F42ZoO+6gwTbYwyGM+4G0XVz8kllKT07n2myLi7bZsghAh0Ql1vkn8lPihMOfn1JNBkkfzDT4ae800B6QxeEWG1gPjECklWLQ3i0ALWAC7cW1IjnyT5XFckxoBvnEOCDHWHA6fVmvMRGufMqRTuYJlELLkbOo/ALhkzOOPol2dqUKleFQRrNhS+64phgWROHj4wh+VXKVXRcxx+iwUhbS94QtRA2J0C67kEzgKEHZgIb4SJHZTtJCEbZE2trZF8DPuEjC7rtnnZWvD1JVPqpdzaoqLvz2vaq+UhtydF6x1/jWWMPJC+NUh/tHVXOgqm7pS1VNntVsODlvy7Whqip/qnoNld/ETyP6qPzmnRWo/ObN/bX8JiudoUWDp7+uNSYt2ZugvvRM3PB+L78lzApUFPDmX3/ltzONpxrH1x8xlTg6fmzJeu/Oq6D8lkAGFFLudVN+GxqRtnvoCKtpV5UhR7XBMqbPym9BLgewQswJKMQng15+G2z+xwL1uMakutWr1p59fltmv5bfWD/jt/wGVBiFYD7Hu5ZDsPgNgz4Kwdj6QCEYq/w1BMtKR6N+qt1gr9I3PO44+MNvmj/v9xDsXRewLl99/YVgz10tO+45U59afnzQ+ZE/jaq9GkJwVSAhAWO7XkLwaUeNeeyfv51Yfdbzu98vHjanz0JwkF/DYC1tbUBLKw96CBaf8vs1BLN+xm8IBiqMQrAGu/oLNuLX8fq+YCPOpvqvYNO6qC8LNhfpZkPL8UXXRsFG609Vb25faRj4yEeJGx/8Yl/9gTmGbl9RU6NRBiSyqij3MxsNxxKoVDSiiVWtV6+1id/5u8LX2nroMnwPv0Sq5j0GnEJ4E3QX0G0gxCP9IX6pZPum2HiFvnHG4Opap2lzt4hrriLExS/IBudFQvHriT2MYIEEkrBdLJCoKzMB9rHYL24C3T/FFj9q7s1T7CAYQMIyMd7RV2QA6BcYv7gFXNZvS8QvfPfutyUiYxD/cCUIxoBN8Qnn/w== true iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAZdJREFUSEvV1M8rBGEcx/GHJL8ixYHdcnBwcuBgExYnF6Tk4K4cXJjZuLg4uOxhy4+U5Cgl+QMUSXIQ/gMkSn4lF1La8f7uzjbraWaatRx86nWYp5nnM/PMPKP+S5px7aIWeacMa7Bc1CFQejGqacUArnCIvAr2oF98i3N0oQDFLgKlHA/QCz4RRw0qMexCls83IZziCAtIZBmzx56wAf0GRAM8E4Esw0zqyDthbMKzoBRvmg+8YBBBUo8VLGmqkVont/ZZ/ErkCV4173iEbKAgKYQ8ha4InpFv/R5tqSP/yHtwW4UW+KYfd+iGLGW2zHcuN3CCHxVI+vAM/eJdrOIGJmTTnWma4CSppsNJZUbTYo32sGQdeoG8p2VUIFiSyohZyrQEJYv2sGQeF5pjyA6fQxUmXXz/F/kUeEV2+hYuoT+h6GBSM5JUU+NpxrZTYOxnxi1ldHKyX0bgVWDEM5N64SZkl/qlBPJL0YV+q8A7fC3tlEzYdpyJjQNn3Izap+cXJsv1JeeWPy9g4h5KEoIlGrKH84hSX+x+CmKBvnCmAAAAAElFTkSuQmCC 6d8b0409-1300-453d-a4c2-65b0b0989f4b ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ true 4 107520da-eb3b-47a9-9721-33358834b9e6 24b8a3ee-14d2-47ce-a373-78c04667a5da 50431618-b1c9-44cb-915e-6a1ce1fcbf6a ec77cd0b-e393-4575-96cb-81a591e15b27 2e55aebe-34b6-4785-8e6b-d76dac4aff89 0ef02d63-4c77-4baf-8a44-8b45ed9effc1 dc1dce83-50c8-4b2e-bdbb-9da4471c5c1c 2df4e919-ccf0-4e59-924f-ef207e19da1d 1380 -261 49 44 1409 -239 2 2e3ab970-8545-46bb-836c-1c11e5610bce b6236720-8d88-4289-93c3-ac4c99f9b97b 2 b6236720-8d88-4289-93c3-ac4c99f9b97b 8ec86459-bf01-4409-baee-174d0d2b13d0 Shift offset 107520da-eb3b-47a9-9721-33358834b9e6 Shift true 0 1382 -259 15 20 1389.5 -249 1 1 {0} 1 2 A wire relay object ec77cd0b-e393-4575-96cb-81a591e15b27 Relay true 90e3f7ea-df08-465a-8194-bf4035c20fb1 1 1382 -239 15 20 1389.5 -229 2 A wire relay object 50431618-b1c9-44cb-915e-6a1ce1fcbf6a Relay false 0 1421 -259 6 20 1424 -249 Result of mass addition 24b8a3ee-14d2-47ce-a373-78c04667a5da Result false 0 1421 -239 6 20 1424 -229 f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ 7VsJdBNlHp+2aZqjh1AVUJDR4nqwFnTxKbJgk6ZHaNPGFhAEH50m03YgycRkUuSy5UFBKiBdLD0ALT6oINUqlCqHEt3isiuLZQEBRXvo4sqxsquuuKt0v2/mm7RzJC00tfCw7yWd+f+/8/c/v/9MVAba4rGTDqYD/IVgGKYAn2inzZNPOWYWki43RTsgywzIkA3/ImATvl8qSVhJF2wSjtganmU0QLIakMZcOjtytZdIqP/3oYZTmoq5EWYXWUiRcyBfA/jK7AIwijUGkU2ku2DSXCcJ2WFo4ijEy6BddsIGOSMAdePGjR18r2zSRloY0srzKIrquNFA5lEOigG7MLtoJ+liKNLNDws/CgPBsPOowM2ONntp2bJPVVoD6ba4KCeDNg+XiCkyCDvJ350Pm5qaEh/fvrPqzIvLwXd7RT34bqt4s62igb1gbxs2w++yVez36raycl/L5soMeL1mCRxhLezSvn6T77rthTVtL5T7mrVVbPWNxjXjBjlTsQPSqxYJpub7oiUh7lbh8jZ0zltazTZeEei6+lXfgOgbUQL2Yq/RjtgZuyxgq29taJ38sjvbsFxuj2hSdu8IVXYEhA/fV4okhzBCm5uIFwSSCxpNID4ELyvZ+PiU1KnqLKBh0BTcvJnAvyiemkh7OAMK400AKNssoIxIf0IRWTmJcOWTbMvbwG39zx0dC0AXxRM0bectaEb0jY+GTwHqLJhKDSmSadRZFmc6MZf2MF3balJctMcpaTyg0xQyc+HifBPEgI+Wowl6QbqSo8MBQpElKlImd1r27aEl0+/a+XHaityvdQV/dfxXYCVRJsLtxnVWKzurOpF2MATl6PQW0NfI2drdZtKVB+wct8P+BOqP03k4gdsoNwOvKIa0u5WplNVKOviNhEQaHW6GcFjIFA9l5ZeYde8QY4GCTFrvTDrqHdR6JMASVRmUZbZ/tkbHMC4q18NwPsQnVj1AzcqS4uB9zmEDlpDWhGH/0WPYaH24mSqkWVCHQ27xxwbMm9SkdRIuwj6Tcjg9LLoqhK5SZ7GQbp+PCvED0XAj7IgXEjYP6cYBWEKs4mWRaD+uO765/s7MNfUzZu2fe/BbARLh7IgSBBA5k52dc7ysoimzaY/LQrJqCHX5zImwPQ+8ZiyuLZt3TrewVsuxBfoE+/UQwhoAoXcigPCEDsNwMYTmIyyEkRyEQP0RhsoAgA3KIt0eG6s6AqRkgcoZyZiXPTw5bePDpkcpe4FHAJSSG0mCFE+XQCWHBdZzLLATCItngTrV6ERYJJwCypYqxALOGnF5+jQoHdkVGIehCBvuYjfjloUnY8DzCysOz0xtNHy07WVLcaUAnhgzGoGDwy3BSdKgTwBLCghYYhNybCH+HNv9m7L2T6/fmrxlU8yH7z/z/VqhrbAuVujQhvCA62kXyoj4JEOZSNvAjvjEBP6Xk8FtOjwfjgvFkOICSlpAO0HKgtOcuw41Gnhr2/v9yJ/+kntj8luN4y/u1Jy/AbBCEKvi2WP3LnQcNe3539jVD936kA6wQv3YKGCFIdaEphGF65406JYe/PKBhyfc/yVgKRDrnainNR+UJOpWRZfeY8kebgCscMQSe1bAUiLWV3t/GHjg9Cjdcuv3UWWmk07AikCs4bHjl6hm70wuqc2d/zMW2w5YKn7xT72+H1/vyax5Y8ePKe+9qgYsNWINxMdNyK4rz3zh3S+KJsfEXQIsDd9rfcffqFtWJ1RvemyxjigsBSwtYkVuqco4dPiCvuaH7xQjT6xsAKxIxBpf/fzYoqPbU98ZM6ShapR1GmBFIdbce8pLKuM6THsXTGEWlI35CbCiEWvI19/dd+HgtIw/ZH6DPzPkk2GAFYNYiw8NO3XAHJ/2zp4Nm1KGzhgKWDcg1ruvT45vHFOSsmr2cXvdxI7lgDUAsSz3XYiek16fVmp4Lun8ix3vqYyGmQLFHwi3IWeF8zNObVA8cbN+2xuxRUZs/lYZDZXYntiEMN6EOGsI9WcNeH5c47Mrl+vX/LEuverHXfOFc2WRNmKu0Br8hLNQP+4nVofPoVwk8DpgJKTwspsW67DMQqSb7jZ6iaXay+iFHQcOKKoJRi4Q78UOqPgk4Gp5BxR21UMu9g3BgXxpS+GjxPRLaSUt2q8ysyLWBQHy1rpAkLdu4yFX+IO8pmyl59zEiylrn7rZXV362yeFYT8ZnjwZaRbrD+CHuA64m7aTuJVgCNzjphz5uNNGWMgC2gaCBEhDHFaYvYF2DOQxRH7PklqxY5NbqjRD4eiXkcYW3wEgDU0ECIpzsFYQRotvaYoyw7yDZEgXOEgTkAsjAERYwyaOAnnCTwRLNlp5Pcgo+XxC9p/OJiz5sKFY9a/Mozyfj2eLH99Y9IlzRmqlt6bqdOWKCTyfD2rTrAdWhexTG3b/c5ApamRsszaTTYEkeqTi6P4n5tbLbodFI4BktZPIpxkkNlnpTLVhyTVYdsbuUQ9+dfD9EecuRzpBT4dgLo1BOa6XS4fgcaR4eFO0GdZ63AzpYHhBhiDkwiVYKvUusOMCrIsdSRspzARTwO8tbP7ohQojOLLxfdh9OTw220w32IMjv9NNdN6z/mX+6EeyFnaRTUg3shmY3GlNFpBeelykrIiafw7dvP3t8PTKO1LjqD175wlEFJHI9ZTIyMfoEyENCyikW35RIfHVBEV6IucgYZcin12zsoDj8lFHThZ3wFXiDI1TDjfpYnDgDMEUAgcoK5tP98dOWFG/LWPfka3MK+cWlEeYPAyRayN9YAvtiZ1ltERWIaMlUgrp+1MrNjigEG9qQg5K4Gj8ARiNlJm04gxwObJg7Vt304ppSybpq14r/fuxhTHHBNgooKeSIMNRg63COZ8jP+MFZ3anJF60sCqMQjAfNyUh+LEvWjIjbIdSXtr1bmhR4+1LBbvRZBdQeQwOj6rSMBzuB8NbM/Py3CRQPpuNKxoBbUR1pPgehVrxAcjfkiQwd+H1EEL8qAEkIQDCV/UyIbfmE8Bd2dvKURR70gdG6Yarkz/f5647P72V0r+cHodPTftMmFwoZPfKUbtL+sSFg17aWw6AKwfCNVjO3rzA3vDVArj4woi/4BHJSYxmNUYWmim1LS/FXoqduOPBjlvrXjy7S5gMs92lJTSO3B044kNiEMBpXRUIHKBL/RFRlA6PPbezQMLqaRcZhWLdJF+PuwgnKnzKiije883e+9bWJW7+YNHpcR7bY0Lthb2l2stSg+4QoXquCKiez/WLBCJyadpGEj6/h0kqqZdZPeTsBkQp6FVlhSI+7l25S+mlUPBTyGdUykUp82esWaAoxauhJEpVv906bdmXF4273965+83ZbelCL2AmHKRNGKDUART6bh3uhD3YKr7F42ZoO+6gwTbYwyGM+4G0XVz8kllKT07n2myLi7bZsghAh0Ql1vkn8lPihMOfn1JNBkkfzDT4ae800B6QxeEWG1gPjECklWLQ3i0ALWAC7cW1IjnyT5XFckxoBvnEOCDHWHA6fVmvMRGufMqRTuYJlELLkbOo/ALhkzOOPol2dqUKleFQRrNhS+64phgWROHj4wh+VXKVXRcxx+iwUhbS94QtRA2J0C67kEzgKEHZgIb4SJHZTtJCEbZE2trZF8DPuEjC7rtnnZWvD1JVPqpdzaoqLvz2vaq+UhtydF6x1/jWWMPJC+NUh/tHVXOgqm7pS1VNntVsODlvy7Whqip/qnoNld/ETyP6qPzmnRWo/ObN/bX8JiudoUWDp7+uNSYt2ZugvvRM3PB+L78lzApUFPDmX3/ltzONpxrH1x8xlTg6fmzJeu/Oq6D8lkAGFFLudVN+GxqRtnvoCKtpV5UhR7XBMqbPym9BLgewQswJKMQng15+G2z+xwL1uMakutWr1p59fltmv5bfWD/jt/wGVBiFYD7Hu5ZDsPgNgz4Kwdj6QCEYq/w1BMtKR6N+qt1gr9I3PO44+MNvmj/v9xDsXRewLl99/YVgz10tO+45U59afnzQ+ZE/jaq9GkJwVSAhAWO7XkLwaUeNeeyfv51Yfdbzu98vHjanz0JwkF/DYC1tbUBLKw96CBaf8vs1BLN+xm8IBiqMQrAGu/oLNuLX8fq+YCPOpvqvYNO6qC8LNhfpZkPL8UXXRsFG609Vb25faRj4yEeJGx/8Yl/9gTmGbl9RU6NRBiSyqij3MxsNxxKoVDSiiVWtV6+1id/5u8LX2nroMnwPv0Sq5j0GnEJ4E3QX0G0gxCP9IX6pZPum2HiFvnHG4Opap2lzt4hrriLExS/IBudFQvHriT2MYIEEkrBdLJCoKzMB9rHYL24C3T/FFj9q7s1T7CAYQMIyMd7RV2QA6BcYv7gFXNZvS8QvfPfutyUiYxD/cCUIxoBN8Qnn/w== true iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAZdJREFUSEvV1M8rBGEcx/GHJL8ixYHdcnBwcuBgExYnF6Tk4K4cXJjZuLg4uOxhy4+U5Cgl+QMUSXIQ/gMkSn4lF1La8f7uzjbraWaatRx86nWYp5nnM/PMPKP+S5px7aIWeacMa7Bc1CFQejGqacUArnCIvAr2oF98i3N0oQDFLgKlHA/QCz4RRw0qMexCls83IZziCAtIZBmzx56wAf0GRAM8E4Esw0zqyDthbMKzoBRvmg+8YBBBUo8VLGmqkVont/ZZ/ErkCV4173iEbKAgKYQ8ha4InpFv/R5tqSP/yHtwW4UW+KYfd+iGLGW2zHcuN3CCHxVI+vAM/eJdrOIGJmTTnWma4CSppsNJZUbTYo32sGQdeoG8p2VUIFiSyohZyrQEJYv2sGQeF5pjyA6fQxUmXXz/F/kUeEV2+hYuoT+h6GBSM5JUU+NpxrZTYOxnxi1ldHKyX0bgVWDEM5N64SZkl/qlBPJL0YV+q8A7fC3tlEzYdpyJjQNn3Izap+cXJsv1JeeWPy9g4h5KEoIlGrKH84hSX+x+CmKBvnCmAAAAAElFTkSuQmCC 97d086c9-1f66-4d81-a605-b5c3e54b2cb1 ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ true 4 145c00d8-7777-4049-bf74-b9b5e909ef37 174144b0-4ae3-4180-953b-db9eb75aae07 9fd99022-1a7f-4cea-a05e-11bb80d4ec7d a5c6a97b-9ebf-4882-90fd-6067bef90fd6 0ef02d63-4c77-4baf-8a44-8b45ed9effc1 2df4e919-ccf0-4e59-924f-ef207e19da1d dc1dce83-50c8-4b2e-bdbb-9da4471c5c1c 2e55aebe-34b6-4785-8e6b-d76dac4aff89 1380 -407 49 44 1409 -385 2 2e3ab970-8545-46bb-836c-1c11e5610bce b6236720-8d88-4289-93c3-ac4c99f9b97b 2 b6236720-8d88-4289-93c3-ac4c99f9b97b 8ec86459-bf01-4409-baee-174d0d2b13d0 Shift offset a5c6a97b-9ebf-4882-90fd-6067bef90fd6 Shift true 0 1382 -405 15 20 1389.5 -395 1 1 {0} -1 2 A wire relay object 174144b0-4ae3-4180-953b-db9eb75aae07 Relay true c13cd37b-e089-4f8d-883b-54203d5df027 1 1382 -385 15 20 1389.5 -375 2 A wire relay object 9fd99022-1a7f-4cea-a05e-11bb80d4ec7d Relay false 0 1421 -405 6 20 1424 -395 Result of mass addition 145c00d8-7777-4049-bf74-b9b5e909ef37 Result false 0 1421 -385 6 20 1424 -375 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 21840820-7b03-45cf-914e-8d05118a8772 Digit Scroller false 0 12 3 0.099999999 6701 -2366 250 20 6701.182 -2365.249 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 154459f8-56b4-47e3-8f74-2be68cd83b0e Digit Scroller false 0 12 2 0.0800000000 6701 -2386 250 20 6701.182 -2385.249 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 83a04ee0-dcaa-4764-8f51-9a5af7e9c6c8 Digit Scroller false 0 12 1 0.07250000000 6701 -2406 250 20 6701.182 -2405.249 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers fae63135-516e-4bfe-ab70-dc4f2b45ab66 Digit Scroller false 0 12 5 5.3225000 6701 -2426 250 20 6701.182 -2425.249 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers c6aecd68-308a-4a6a-b29f-68933f542f84 Digit Scroller false 0 12 2 0.2225000000 6701 -2446 250 20 6701.182 -2445.249 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers c2a92653-9119-4312-8a0a-bfe4efc11ad1 Digit Scroller false 0 12 6 5101.122500 6701 -2466 250 20 6701.182 -2465.249 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers cd852686-49f6-43b5-930a-504e7c0e8fa4 Digit Scroller false 0 12 2 0.1225000000 6701 -2486 250 20 6701.182 -2485.249 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers dd3e81a3-f392-4fff-9fba-35855c2e8144 Digit Scroller false 0 12 6 0.122500 6701 -2506 250 20 6701.182 -2505.249 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true c4fdf2ab-39ec-4f9b-947c-a8f85d40334d 2 Curve Curve false 329990e8-083a-43f7-baaa-90fed18836f2 1 6902 -2326 50 24 6935.181 -2314.249 f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a DIFERENCE CURWATURE SHAPED GRAPH 7H0HXBNZ13dQpEpRUVAswYp07KishBCKhKKgYlsJJEA0JDEJCmtZVOwNFRVREXsX7NgboK5l7b2vq9hW7GUt372TmZCZzAzJQ4A83/u4P12Yk5nc+Z9zT7n33HPMAiTxKckCseIn+GPEYDDqgL/WUlFKolA8bJRAJhdKxJAUCS5DMvxjCj+C3Rcs4PEFMviROijZAiOFBMDL5uCS9+HO46fcm8Ne+/b9woW3t5iZRsoEo4SC0ZBuAegmUUngKXwb9HKYQJ4UnSYVQHJt9IutUFq4RJbME0FKa3B15cqVP7G7ogQiQbxCwMdoQqHwp12AIEEoFirAW0TKJFKBTCEUyLHHwr/GATwF8j1m4JedD5NnzJt628wyQCCPlwmlCvTl4RAZxuG8ZAH226vaMcFBHh6Pdi95njsd/PtocT749+Hi7Q8X70J+QH7dtRb+O28O8m/mw3kLVZ+8kB0Of16QAZ+wCN7yaNka1c8PsxY8zFqo+tjDxRtVT1N+TPmQ54t3wutLJuC+GrsXHRJK3Ygf3vLy752Rg3x4Ft3POZtUD0T/Ra/Q3oX8jL4R8o1qA9ioGhs6TmzY5Z9BqMp3RL8UeXcUVeQJKD7YvZpIKhFG0VZ+EcYIlC/o03DsQ+FFOOvhERQcY94XSBicCnJsmsA/VthVtiRFOYFqY1MACNtwIIyo/NRCL5tE82SJAuSTzcGvpz/9/Gm5HkjWIIkkGZtB6/8d2KtOfyDOuK8yh1c0vsa8b7yUy0uTpCjUP2sRJJOkSDU+XDcomMUVxsl4MnQKGKEzqw7uo/CKqfJzaciY0dttWXK5IDlOlBaYIhKpTwVWZEpCgkCWIJQnuTH7KzWGb0cPL/ifG5OdIlKkyAS+YkGKQsYTuTEjU+JEwvhQQVq0ZIRA7CsGT7PBHt2/XN/AJ5uiTzFhpSiSJDLsslWYMD6JJxAxI2VpElmtED6mZVaWLm86zLs/N99krvBHqcVvuBlrUT5MU4rvqVeuLCLiIPtUMEUBDloqr+HAgtdNlNchRrVQ/IyD+qnpvjV9iwfnbwzcsMbmzPHxHxbhRlUH4ZU5WyJW8IRipR51Rp9i4i+RoaoVY4wJWyKSpMgwDQf/T6armrOYifC5TEkCM0jGk8uTJFKg+5gS5VvVCglApAf8XdD3+diB7xPDZ3i+8Pj6LGURIBmhpJ+xt67ev9s6NKvP9mHZZ/+wAKRaKEk25odbqZdlQP4f+S8dC0IbAlJtlPTIqTvvqMdM7uZVm71fCWycAckYJW0/yRr11dEh+MiTB3O72TrdA6Q6KOnd1UeFqxqUcvOePB2aEbP5GSCZoKQVBzvaXf1eN+iQUa3C8c2zvwKSKUqS5nNzN9t056Q3msMKaTN+NCCZoaSJHw8yrA8bRxQc7GZ0cW/QGkAyR0nTThT3O/KXFXdLxqN53Z59dgUkC5Qk3uP+vOTZNs6mB5tjfZz3fQEkS5RU+8CIq3V8fvjlvZr/YIfnwKuAVBclzRjf5tura3GBC60iX72PdBwESFYoKfVDIydXaXbo6vEzTZd+nj4AkKxR0rdHrbufe9W5916fKPeRK2PfA5INSvq+n7V80MLVATnmPy+uvplhBki2KKlFi+VnZnd6GDwv91TRjqCvCwCpHkpaEvqCe3RzN+78Pa5Ncwf1cQOk+ijp1eq6TQvu2UbsiO3Dv+vYsgiQGqAkJ/Njrl6hb1iF0d+OzqvTqBsg2aGkJkOky+t3fR2y0Hif5UjrkMWA1BAl3Xv+fv3sjEbB246NeGy7ZelGQGqEkkrbcUr+zezFPrCU5Rk/7uNDQLJHSb/PzjY79fp74DS3y/l/rJ2QBEgOKCmhYdQXoyljA6ca7ZWJnUKnAVJjlBSRXTgxtXY4a9WwxPovzDL+BaQmKOlkSsdOb8enhx28t/bmVbO0CYDkiJLOd1kwev7xC70L6q8/wCyZ4AJITVFS9uQre78uT2ZtfeNkzRfnQIlqhk2HIuGU+vbZnMy3nA7Hub4vAKk5Sup5qcWVBblHWGvHbpmYPGLMJkBqgb3XvQ0D10/uHDEh4ekdBiMrDpCYKClXmJy1a7UHZ22dnBsHf/TfYxYSMAynQZygZg4RyxU8cbwgKEWoUmaTZH/WuXmkVvCRPWGzHxzlGZOoDbNwYfwI9csMC5ZCIRPGpSiUGh5V3ZiKMtKbiupejSqqY3Th4m8h19kbej3rytp7SaGmoqS7muWbmCZz8q+7dZ4+8fkQNRW1Of/8tomv7ofuiLONfWXVy1ZNRU3oF/7h1LrUwI2S6cHT/NOOq6moxy/3rXgTFOI/3bX9XEYw87GaitqZf+xH8O6B3NnNZ5adWXzURk1F9YtuerL5gJ+sJSc65ZlHf3+vpqKiezZOntL6RcTMcKP3k6xCv6qpqHFBCsnwtd5BB2pdzrhf98g7NRW11DW8eeC/v4Zvly9dut5lwnY1FfU1OzVgUwgjaEejmb5PJ/V7q6aiFkzjdLrgOCZwVffVnCdFO1upqaiy3+vV+3NKWPDS4Ba7ot3bf1RTURZhXT5eXN4yOL/3jV6/tr5yTk1FXYh8W+D+NIyzsdWq5lbecg81FTXDdXWaYyQ3KDMtx3HHpb771VTU3iVFpo6mMu66Adeam14tGqimotrvunXqzYcXobNWvvGMGmCfpaaiavnumP/bvvERiz718O0w7ecVNRV1/GXk2yY2LqFL3JYvt1gfuFVNRX3I7x9oke8Xuq+VZ73Evr22qqmo28OYwv1X+wYvc7rc99qwAyvUVNSM4azPs86uCNme9q5B3uOwVDUVxfgrsWvk7jL/zNZvXg+d1fO6mopiRA18evTK6t47LjfeV2fmrfpqKqpvF9/sBlGurF1Dpvd2nvsqQ01FTW082jFn59nQmWN49kUvhzPVVFT/lGHsjkVpoTtNfQvs3staqako7nmHkuWF9QJzj/6e0HBnh59qKuq99wKOz5uy4J3svP1XhrZOVlNRdf6ZnsIaOCN4Wh/W4HOSYD81FbXlXcS6rp9bB+y22P722IQFMjUV1erjHy/9nI4FLTPZwpwcY9wAkJxQko/LQa4nu2vg9pMhXVgjdswFpJYoaUSgdz+TnSv8J1hNnjX+7mnoArTCBh+dMWTzMuPAJXEf19kf+K0XILVGSYecXi+KnerAmnIy64bvtkNHAKkNSkp3ztzUqvk8/wPt90cvHvTQAZDaoqTx3N2DTiZvCNyb3HXpnAEt7AGpHUpyv81cwv/sy5nZdbl99wFy+F3O2AgHXLJeOqp975z1tm2fFfWaAUjtUdLCej/Du/DHhi1/0fLdbXlYH0ByQUmr3QsW3PCY7jebGT0lsmjuLUByRUnNV/v+cSY5KXDX6m03lzM6swHJDSVtNOrT+hQ3ij3lUs4w056WpwHJHSWVzLc1+eXN/bB1a5Y/CD936BAgeWBTb8qqkrpWr3uv6+NhG9O7pSMgeaKkfxt3XvNrhxi/Qys//cU97SYBJC+U9Onz4/XnmpYFT/lFfDGz5aUxgOSNkv5wO9HoTO05YUemf3B6YVZ/KSB1QElrJ3d1yx18039Hc4XtH82vTNMwRB0ZFIZo8vqnMay2p4MnPDs5y8JmnLUeDBFU0qSG6PC6Wb9s+J7fe/fRntGnDsjr477LJDwlOU4gw1siU/RRZDbGE/2knMljxktEImVABi1OgkjCUwjFiUypRChWMMXIg+Wkr080P2RD0nh/7HoEMh7lcgUSnplEAdsYL2CgXFn/cEnjcTe7he/7c3xSmOuFyZZKskZARoBTFU/6gw/ykUtw8jHSXTiMWFYxgxHsz2AcZdWJFI6SIM+BaoBh68ZJyPUrto6E0Y9cIRArAngKHn0kaOIvA4AkMdQYpvkh40ieIgl79dpjvMYZhygEyQxG+YqRiRJh+BksnmQwMv1QcahNJQ6HBOs2ib+f4c52K97pJas/FIe9OTtFNooHg0u8RECDbUIhET04o3iiFJ5CwFQkCZjx2AOgSPCQXwVMngL8KJcK4oUJQgGfKeXJwHcqBDIPk2Ahny8Qq/AilRaiR0IxYg2BKSdpyWqmM4eRFw5Y/RWwOt2fwGqmG6Byiy2R0Q8TiqUpSHxqioJMBk09NvL6CglTgGJE+oJjXz9zeZm1KmTWYMsO/Va9n4DXBsgzNF4OvVzRZCD6ZZWcDH4AofRwdDKUESfDhfYcRmYYDiGjChBqE4nJAhNoEaW08CXJQPAqRG1+aqt839CeoVuvXttvn91MhhcL1XM1xaKcVBF6PwbME5XWzQmcWjvdo2f/qbv0gB6QIBr0CkKL6yrRk6QoUAEzoYGvYSSia1XQgYk2RjGOFC7HwQvuLPKO9Ntt87BJ4NWBUXghQ56jKWTKyxowkeHA0B6HB26oFPUEOOQRcYjx4DAehOFxMKoAB3vVVGeOAspPIqNDgv/IzITLnsldGfJLtzVvLrzQXZ9UCSJ+YXSIALnBIVJLe0TihbJ4Ea1snBlw/WfwumNhm3iif4rsHvkZCCIMLh0isaHFqK2DkSaprfN4Guf0TfY5NGvglRueGzbZ4d6rboBwlJAvYCKKVNPcmVIA2x69DbNtYIIARTUyhSdiigTiREUSUy5IhDs1cq2MGzGmph6iBvo4qpawegEV5BcCYP1IZuIyXQE1SCcTZ6MycXxkNKQv2Wt5ytSbT+oGZ0w9vGlOSNEPwzVwkQAfJsSHSSZ2mUBFpweTGjgqf7m+0muF3hAmF6QQXUitF9u2sSJ8ucWTc91/m7qeABF8HRKIkMsVQUSMe/QA0YMgOoiACNWwQwxvYkKOqHEK05hUnLKPkoqEChWXoL4cIRSPoIhg/uhonDumRciB2V+fNho5YyCeXaHwPk12KS/rW1NCfuQF0vGDEVgj/DCNk0hEAp5KATI0XBtMsZiw4uMFcrn640l1DVR4cJNJGWKSc2b5HZ7Jhuv3WKs61vmbw+99GB9bIg6NJmuw63rnjRuqToaQ8cbMA1EnGp6OjrC0jOaJEwFjUdcHkVy+FkjtbirYkBs6kzUp7Pq0hft7P8QhZYY+VBOrckpVoIVoFkq0gGbR8IJ0RKtVecQBowuB1nARgwHCTij2VE3A1GlVARky+SkhA5MfdZPqMCjcpBVjFl39p3QEe8PW9t/P/9nhKol5xvtH5jT4tqNcIAJCI5AJ45V+k3beEdG6m4bxpFKhOBFDCr6OHp2JRx2NG5jfPRA2Z0XWcOeI4C6VtJQwovOyB8yZQbJ0NCjHjeMkboQxx4SKOXHOU1rlGB/22x3T2mHTmZuNcK9rEyCIlwDcZCnxCiZLFq/pxtahYFOPvgLwCoJRylWbOJ5cwJSKeGKBG1PG4wtTAPfEfPA3UaSKx+F6jpjJk8Vrt2pD3PahHbcGw4gf0DZqALbwQhRA/CyZe8sA7u2FPjq5t03BdzNBOMlWxlDQzS0fGOl739uT/tzxzaDAfcM7ZHIiiu7g3rs22bsiFysSTWKIVknRZMDFBghUHovBkBKBymuPAKXTUoSjv0qGEFFR4qaMPUmBWv2n0YbbXqmB+1v0athOvrQZXp8iT4uET9PUp2o0fevTo64oLjFk+lTqzmHYRum4NNFXOZ+0wiRg98Hjh2feDZiRda3D+NGWn/DOi/JJms4Ler0qsJD2pcOCKCMVLUowWeoKxRn8hcqGJ5a3R+EhBcWssKSB8ft89rbXyxXPyz4+wCt85JGaCl95uSog8epDB0lmJKbRsahQQ6N7zh+X1qz7j8B5/TrPZCwduBgv+BFg/kSMAt5JjKYyr02BawO2JBnADyYenHzw5lTtlDRxA55qKJpzsJymracCdEpeKoCuAED3gAgdA/gxR0frpJotQ+CnlE4c6cstfVrvR/G2fhGb7E92uB7FI6x49of3acqN8nJF2pi4K1xJbSyF6woQm1IWyR5TjAuCjU7auG4E8jEadF7wRzSuO6hhxG6/Ubc6Xn6QQ1A1AnmKSHPFAbuu93nlhgLwmQyAQncEAHRemVHNq5FHhK7C8E3svYcjRE8fD36NeyPLPingXWBajDSJ3JnVMn5oHSCUAyuXBne0BAqot9LcsUAC+ryJ8BtIESemtFCOTwN2HFEDe/MoiUwRoZ4zRCKxxJQULSVW9TQCw2LbcRiREwHDGrHhX4JrO7wdZ0vwxGIrLHs8RMwXpGKPg/9HWWlOxcoX/cO5xp5f2AtXnw1cGREyCAeVMRewTlM5GlMwzIktE8DdSR5TBD7OjBMoRgsEYqZitASN9rRTlcSsI80habANuaqD55qnQD1XLw3PFcwAP7lO6tEWfjkTvIdMoXxP0rdq33jZI6PnKzmzh0zc/MNqpwNeJqOQu8n3hnDEivQlcfNJD95rOgQrkswM5wF9+UCu0zakNQKWAIQ81FA93v1Lp13uj/03XuzP61vgMwu/ScIB95IDpUaqCCaiS6wHmIDU0MCUJ9PRrCiFSrlESopSUnJacN+7u9lbj7jVmjxyaittp4n+TYo7KiMFLLg0SnTVPBBoUD1kQaWHTi/lcb/72AdNXNfc9HmrMfjFRDMEjKgArvZRtz9eF6FAgpgyAfzKZ8alqU9YN6YCXdiDsbhyc8ljnFbKipgHST5uzaU9jKIlxnlAaZmtAhjfIQu3/QAHzFZWgdKKbnRua3SvYZzJiZZjPa9bBOIdO0QvaTp2ysvVrKiOAoA+ryyGITbJDGSCaGLDSp22kxwQgDC5cOYLZcr1tfakQP2eZM/bwH3LmbkkuMGu9pGWeJUVgN2sqbLKSRUBRtxM1wNgMbSAAYmqkc0l5eI6/ExHBtWfsl7EDSfMWSUNYBBeKuc1ebr6Jd7Jo2mFnP2mwV+mOe22rR8iVghkgBmcVKkMuKpqz6rlHoN34LnIYzUdePR6RWwlZt/qga2FeXRsTcqr6T3D8iS6sl56Noox+yc8fdu6NHzW3c9dGy/qv6jGjCLDA9VHBWTLfgUeyPRCjaIlg8Io9m9Ra0TWdlv/fStFr3uMMwvGr+yqsgGVkqZ9YsU+I9WtuLzBeIEMPoCZwFMm9ogk4kSmUCHHLCL6RShdzozniYGTz5SnSKUimG0YJwFEIZYhlSKGt0KDKkYOvQp/Ax9BLnow2UlQryIL4oPDh5anKcJlX4UkES5dqaIH8BkYQSRL+AItAwjiAQRa2DQXxAkf0HZlAcRp0k3FcImIxELngbBburEqUhodD75LSfG04U58tn1z2oGry/W4SUOcTJVUTZkAodhN6CaNhmoqBC607SYNE02XR9ASJ4/MBLjii2CGAgY+SgqZtUnknAF7d3HmGQf+cWTGxNjK6fNKKgqIytGNdKgAuTEgha1LokenkARmtCxF4IbMYjy3hHJ1veDs5eHFHM/09vAi969MNwvyNi5tG5Kx9ZDdSudOn/HLp+GqB2kun6rRqoJ1TFrWXdhgEPkgRjpZ2WbKVFdgEiDXypPJafyn+Xcn1M50PNx7S9b5w315L/Bbp9Wb8hrrjmqZYDKmlHkgWkanfaW2+KwPnYDx8rnS2a6dLTv3hnnRjRUX8Mv+puiDNaBREaoCHETZUIIDlI1OG03tlFaq3ILrgg4/dXFW7c77uRsKjt8Nap8+Rx+J5XpAiEmLEJjTqN9Wl0Hht3FYLq4/fa+wNtxrvvFS7uuO+LU+JLaQSkTAomv6bGYUOHfG1jPEMA8Wu5+PGjxFkkySkphUvlKuy3or8VAm5Wg1VybViNr6xW04jLytAF8ecJM2EN2kC54cRuQWDTfJDFOP2m0c2JUPq4JMo9g3FxtHb0oNnGOcciJkz/WZ+NWb/rDgCvhCzdUbFaUiF4qoGCvpQjEBepkQvRZsEul0cOEw/Lbq5ELVVU5fviBRJiD3L8/lWbc1G72AM/NkbtbfP9654J2lAORGTWcJva7v2Qnfv2wL3fvnbalpZ0klmTo4SnDIQgkfS9kiZcSW+ds9DnUv5OwZ/lf6/thnf+NlFXuApqyqKFXBjEhaZjBqhhka6bDqrKhdASs8QsUSBTBfvHh4wtLZyxeErCCySHZjevvGJ0lkfDdmB1/5SJkC+YXcW53W3GLa2NxBAVPOeD9MyvxZgrdr8AuiFGkkuRRqpKpgVsFmOmbFbjaEmQMfpdvBLOVGOWSWOEUWJ6eZQZmf7DJ6/lLWe9IjR/GzSc1vVSZUrmzo4IUqcgfgZlwgsuOoN6dfm626eamoJqfxtrrld/E6POx82Ny+p8PsvXb1rdmwFwBwdAsKwA0SAKBq0ckTxUwZkvJECsDo7ZYpXcLbctYuqTfws+X9MoIpQ24kMWXK61UBQOlmGgA2/bYZczStGBSO5n924pwKQb2cOCfW8dDriXPicXY9nDiPLKA4cT6oiRsn7WU+xgNrKh7onNNtRsMCveZ0E+um6HFpkKhK9cCIB9voGDF2G8YIGypGMBNb7Zk2e7r/ghNbuEu+7BuDf92+AhEvjZwRhLCCyjNowGKOFsoETBl8ElrqhxR3YgYQyUA0cDdiVog5MY+ssjnzAPMLaehppnSScguMyDQMc1sqzM2jFo9alzI8IP/VZ0FX5kZ87GiDxqxh4B+ZkCfSfoeiSXm0GyEViIO4zGT0GdqFtMTaP7TD0twBIHxA27zLdiA4WQs1OnCxLmjkQbgDQNdohLZ0rmgzZTEqOPvhkgpfmJCQIhcw45N4YrFARPriN907PzpxJ9vv4IZfz//WNvA0fr0pQPkEzfUmjKBvIwc3RR5ASDaQrabYAgnMXFsjXmcdoFwlqjJfnz59+qlL1MzEMwaudaWIeDJmkjAxSQT+kquFM8O+/znt+ISw9d++L3Sc+uMEPoCLQh+iGcCpKFXBHT9a7pStMQDu/PzJ+KlLMN2CkyyUy4XAF4zHsQlTIaTMkazZkntty8rQXXUnvGie8eQgnjnKJ5Lkb5RTqoI5eWvomBNpCMyB/NElvO7KSoZfifAEDAfE2TKBOD5NuQHky5RIeSPhfpE38lv5J8hnVJ+c27Jmzo7cudN//y7d3iMJf6Q/Wu35mkf6cdSqYB6DlnkFq2s62i7f1HuA29QzroCDvuUclCcJxWli4DoB9gF2iSXwVJs3+EkkGY0Q4a9ekJTMS1VeIF/aCru+7PrTT/6ztzp9WiL7mUhIM0siS9tAL1cF52JX03HOtsY5B2/iM3RcJ6lfvk5CqwhzuZw+gU4mAYW79ry5PHJNHbwipPSZyin65oiXB+pDQD/1lIZb5YkoQtRPrceg8FMbG4+JOn7gfcQRs/y/23YZ44Z7K2t2ilwhSWaildjxbirElOo0UDuWCEi6HM08gM9ANrMTBZJkgUKWxpQqHyi3CRHHi1L4ghBxX4EYPT1A7bwSq1PSjVWDDwS6Nay8LZXIFIFCkUKgKkKtLfYFcA97PcA+myxXPhPula2n3K0hjaGCMGwUEgwerTx6s1q/55981jZoSr5oc/0GHefjxRJ7qqZYqijVnOwCTyQfhcj5kemRSHjgb71O+agNo9VcGOTomYyqCEwzn5xuDxq9Cdm31n9oh1aE6Oc/msIErIg6Qg9YMWmxurCuWnUu1gvCFA254Iegs3M37+5PMwHq8WEX/b38f9ZBbBvRqpphgQH2Ufj/uupuD/4OBlZhsj6VGjPQcJtYNLfawm0/b7pwm+FR1eH26vVN5A9m1g9eMnvl3xbPDy0xgHCb6U3nvKR7GUDMUFBQUA3hdukyzpE7sS0CF/79sFCgcH1uEOH2A0867vh5GgB3qiXcvvZplS3v8Sv2RLMVy38fdzfSMMJtDzrmAG1S88xh1GS4XTrjqc1q5hP29q+nno8a3mGGQYXbse50zDvqVtNBmwGF29khPiXXW3b2397PJsLr6K8jajjcZrrRWizXmuZclYbbs861edn5mjl79ZsOdc1srAsMItxGfAjKcBsoQtRPbcD4/yDcJrZ1qOFwu6ArXbgd2aV6wu2BfEvPnkN9QyY1uz2wTePtO/Uebuu5mihSELsrXQhZ1qWqwu29F3wmiS4+Dtoo6ijhuvzzq97DbaKO0ANWQI5osCro/H8q3LajUmMGGm4Tu81UW7idtJsu3D61s6rDbYtp669kDhzAzopY8KPlWKOVBhBux+ymc17MdhtAzHDv3r1qCLc7ZDuv7danXcTcxA61T3d+ud8gwu3CXXTcSdplANyplnD7ejbXcXv+ipCsF7fTHkU7WRpEuO1AyxygTWqeOYyaDLctQna0vDLAgpWV3vJewfUfvQ0q3E7dScc855phnmGG27e7rbb9caAte4LX7B2tbZptruFw+8YOOs5N21HTnKvScNvGtZWTT+uY0JkzDszrmSbfaBDhNuJDUIbbQBGifmpDxv8H4TaxH2INh9uxe+nC7YI91RNu+7uyFw/vm9Z7ztLYy0fuN36l93CbmAqujxByL10IydhbVeH20/l3GygU0b13Xp/2r82eX+7qPdwm6gg9YAXkiAar2D3/p8LtRlRqjPVjlPylYnzIzsQWPyJlsTMJca2qzRJJaVH4NVRlKZsFyHhAjfUFLyFhEp6i5RFpYqdWE64kfoSAr7qJdqQkETj+A9qeGIJFBnvBSuL+JBVmCmDhSl8NdUXXQMBJeWIK6vfyESFVVUE0jpRe1QqcH56N540sELLzBjmHpzE6dqIFx6B6EEEDwOxFVbYRTs30X3RSY82ieMlSEfRCAGpyoSINi86CKGvVFv7y+q/SznUDFtSX/Wj8POsPWvRMA5SPJVnjQAn69k8gRA986SACQmcAHiMi4zqUhLOOiueJkPr51GWE29hNSWh5Zm7oxt7TgwcUtbGlF2zkgSSOPHK5IsEm9nvWg2Dn9aTjGqOnIXBNyFBZBXsGhVVI+XKw44686NAl32OGTO+ROw3vMAYIE4UKZlS8DB6W06G7bqvwlGTkPJ0cvRVRg3IhUjaf7nwjkVO0QkEYnlanvqgmrBn2FHgRs+EmyBeojq7BiiQmwDlOEKaWf0Ud2LVAVRTaEhG+lAS1j6C12DHIErBvZCg5p23PzdYcxgUfIHO/sTVlblDv1hyn8z5YJONAxWx2u7OePpPuc/MCV75R+DTGt6qw6itI5kmZyrOicu375rZT3odyVdlHkMcUC0bDS4gQKA8Na2XtiO3XaUaowW48WduzkSBmT88uhgXhSMy+Fyy+u1inwnLWCLdhiCKDwyFvlrhPlhw06GzQxvEPVk/PPnFPjxX9iZ3oK6nq8mDdPQhPDpmqM3MBFj5bJxtupRwP3UFyi5adxaeCpEE7Pobe5rM8zfBnnJX3a55xRq9XhE/kgcvPbc+e464ZtSKyz5fDDfSAz4XFdPgA8akJU2CGVOkZpQSiJ4P4R7dKc1bRPFmiQEHHtI9D+2zb19cudN8AztA5c9/hi2maKO/XZBp6Xd9uFeSKFy1XHiwyTK7otCxngyg8qYCPKl9SxoT2Ket95sMtbpYotN82l0X40z8mYcj9moxBr+ubMWXuqDqB63EanaO9PDmMz4t1K8zhqMIA1kKNFwkrwuPrOCPL8NPF3NnfPyRyul96g48A2MoHaEYAGKEqEElfTIeI2WLMrjdmUNj1gvmh7wf36B4y5f13hdmJW/gy6eg3at+Fp6equDvegDNHJwnjk5gCcbwkWcqTy2GnEKYIzCDo56PmX7uAn/FXYtfI3WX+ma3fvB46q+d1svFqyqTyug4l3csWoiXdNdr0+ME+LQsrWwmtKepqQGMvVK7SwgK9ypGQvrjo+R4Lp37RESsUowsiXEYdwgsflWOjIlSz8YfVrh9ADL38SbrZMF0QDHXSWD2xuEBZ9gVXhlgkGS2QK3sEwL1w+HO5T8kcE07e8ptoz2u06gxsb4IA5kAGGNyMAIChk7kJ1WQ2mEIbRGnSU6GN/7CDD+UCMBDD1Cy6QhvdsjDMHQ0ec2K9ej1hbmX8dfme8CDW4o8rfrcfnfaXHjDPXkGHecwKDPOmVJiH7w08f5pRxE4f1LiH8HnvevjQPgzuN0pFwnikyqSm8aJC2jEM+GDAJVCAO0XMZNxTtLJNUxuPdszZeTZ05hiefdHL4Uy6YWnuoOHp2vZMas9hFOYCOGeR7ZRJYbOI3GIrVVVWzFvFbLgF0kAOx0v4TabI5RA+JgMD+afmGB0xD9j/j32YlWuDCxjdiIJuqWy9piEjZsrr1A9WjgcZLvwIXbDcLFAoA3peCNxkZIUIzy9S/niYZgjG71kYmDO/4d/tRw3FN5g3YmnODpbG7DAizI5mr4/dWdx2fsiyEUkjto3cuKqy7YrA7NgA2enFIok+YBe8mNxiNZCMKgCpeRRs1crXCaXkpc5j599/FrF+9ssZr4+I8cWpjPw1UfKvEKU/3E40OlN7TtiR6R+cXpjVX6oHlMxoUSpcXozKoEqW6HwLB2WSAnRGtQCIqBFrtG2glxsqMbBtoEaPJ2d3BClUnzaj0qc5hQ8GTn38OWR/4e7920c85BKqhPPEApFmw0AqNerMYkrhHWrpCUyxRCFQtpxQCFLRlozkbi73vEPJ8sJ6gblHf09ouLPDT5KhaGDLIEMVWZPtC7kIL6oXyicIJ2t7UlsLh6bcScOS18Vc5VOu8Jv1kwtk0WD42Ne2CZCkxIkEMHKMH4G0g+ALFei7g1kHVwcepa8j8FG1PkzM4m3LYdhKAB992Iz0qWyLMJ4sUSjmChJwQmGpvNwXJnuqXzdXXo+WSNWvElZ6+7blxBhJim0QECNlEimslawclSk2KmWGKbyEbRxbwk3aEDEfVlVWzW9zeBEuWahdQuyXCN2PVhpJmEIq5InYsEOIijUmUQoQJCarfjceIONJyzWHUlSbU4mqwbhb770XcHzelAXvZOftvzK0dbKe3C2i/OvB3XogpXO3YqWYemhh8JgTe87qCXNiy2k9YJ7Xjw5zZj8McyYV5t5r+hYPzt8YuGGNzZnj4z/g+yXVCZJJUqR4zOtimPtL1PugGlHNahJngcVMhM+FZjBIxpPLkyRSoCNQhshrhQRggPVPGcbuWJQWutPUt8DuvawVIGGuIFF+AakWSiLOGECqzSBvJgxIxijpZ492t99ctWdtrv90Sq3H5+zMQgKG4TgDNSp58aJ3Eeu6fm4dsNti+9tjExbISCDUNCUEHjMwHivZ5UTFLgOyoD4uB7me7K6B20+GdGGN2DFX7xZUY/4U9bgzdDFvnX+BdMSDfv/86V4zFvRCGw7j6FxYqrTKLOitNpy0g3P/OyxoSypRNRhtPiLQu5/JzhX+E6wmzxp/93RDPWlzovzrQZsHz6PT5mbzMG3eyuAx50ZnDNm8zDhwSdzHdfYHfutluAtzXpPoMC+biGHemgrzr3GDT3a0WB+29lDt74yk7wvIqqprv7PRPEzAk8M0PGS9WdkwC9hJtE2fdnsXh5xeL4qd6sCacjLrhu+2Q0d0qfOubTgI20K3B8gVku1dlLkCz8RZt3a0qmZ3yUoASN/sxJSFnJjReyJmdPw7aEQ+n+AMG1JmYSRMLYcAlbFI1tn9XBCAdOt9WWF9/85Gjd/MZksD9nzwSyq4Mrtm6/sXuKEAmJFtNMCW0QAAdG61oZpbBroAm+6cualV83n+B9rvj1486KFDNS3Axi6lW4AtyPnfAizKn20jWm+YP2oCZ8PggAPP96b01cMC7MJ6P8O78MeGLX/R8t1teVgfPSwtRi6lW1pkLK3qBdiZjvcjfH7Zwdm8bmLD5CFyBz0swBIzOfSAEhBrGpRic6pwAZa46F7jC7CIxFAuwAKkUH3alkqfGox/OJ67e9DJ5A2Be5O7Lp0zoIW9Nv4hSfBY9e7htO107mHwdgzydgYP+YgBl6yXjmrfO2e9bdtnRb1m6AfypOS04L53d7O3HnGrNXnk1Fb6WNNKoV3TSsEgdzZ4yIlGQz+QE908PUAes4QOcoclGOTtqSBvmLAvP6f4NGfZlke/nWk6Ng+fNcRJlYokfJJml3UoEG6L3oHFPcqUbXkyD0nUR/u/a5nJtaDv87ED3yeGz/B84fH1Wcoi0qFpJjShBG3dM1ja8VAxXJchcc8iAYheh/7DeEigHAjpu/1lF2gfseti4J6pAz9+7cpZqsd4SM8HRhnOHMYFCBCfLN/1FAwnD+nUuLJzXwEQDaQOBl8A0/0kciGkM8H4hCImkBSVnDB5MtjgXpIsjCdF8U+TN7VsVoUG5kyfXNygSyJeQsxV36PZra+cpPc0LWdEYmjgenDQIForanaWxqRaywxFd3Si8cvZpUjiKZjJvBECZooUWQeJ48G6QJRt/TbUHtYmd7M8dInt+sSZM7fYEirPoI8lqTyDUfTNPVt3VNgDyLiX7YEIu0YOsY7AOWE9aLEjhgIikKRgLXU7GJ8xu29ozlNZTPNts/C7Ff9Rx1s9gOVFCxYQddT+uDAo7E//FrVGZG239d+3UvS6xzgzfG6/DQduY8B8YarVOKpCXfuMVLdilgiIJvgRgAGTQ9FW9jyRRJwIYi85ujrjgW91L2fG82AiKVOeIgURB+BQnAQQwf3KR6aI4a1wz0Ws6lWvvOjBZCfBTuAIfweHD1Vrsw0sg0KSCA+rqWeoKkZLmMlwEV872/gz9tbV+3dbh2b12T4s++wfFrSwaR5jJnxA2w7bsHrMUcDwhmTnmeC6UeoRnWxlvXJbiQ6I9GWHd+DYBF5bFryV6zj6+raieno0lkQNVNlueLDUGkRoDtmUKATa3+GoTsayJU4e0f0+iBkKGFUE7Kv49nHEuEth269G7I/p6RtdoyuKEJVTR+hQAXJjoFWHKjq+1CkkgRktg6Wh4CzGc0soV9cLSCWp8bCCFHnr4f7zZ/02tbAfd9+Gbt9Wf7xwGccyi3DVgzTYpk6rCtY507LuxmEDdWfolpOaRSLdUIFJwOrkCROgeqdZo085fdHbJPddyIQ74n1xR6cRNsaQ52kqIeVlvdeCcke1TDAZUxieiJbR6aRT22horAAiowRKu6gDMI1/1r7g4fIHZ2PWeEbWzBeECBJ9sGaYhhGqAhxE2VCCA5SNTu2J2ymtVLkF1wWd3nN35p+wSQ6ZXeverNSOtgvxIYpq2V8zRCknVQVCzrQIgTmN+m2uDAq/7fRSHve7j33QxHXNTZ+3GnMY741ygY/GjArgar9w4K86GAbzGzBPGESICeBX4HelMQG2MoWyjTFQtqi8Qt8Ldd3GaeU4ycb8cCv1sgzI/yP/pWNBaEPycWt60RhFhyNiXh/RI2IarpIf9Jw/6LasgAxADQPyajc7evp0bxAQvGnBP/14h6acJ9S5gHeT1LlALlfkKRH1nx7OfzEhQFIyIWTCzkEfdDr87YAAhMmFM18oU3ZgJje21zctezzLakJgegPeoMKyR7vw0zIAu1lzWpaTKgLM2+u9S8TfS3vnLjPaavTjTIIeAEv/QAcYkKgacaKUNgN+piOD6o/mmXC6Ei+WCC9ptKosY7+ibdyboOkNxY1+m3TCoj5y9hkwg5MqlQlUZbAQp5blH+Uc075yDjCBtckF04+kFjsGZliPWGrRSjFBH2ch39OxNvO94fjHmbodJK/LVdPnpMy0Mzd1a5fTNmBh46nb+rU7iG9qYcwlK7KpvKr3tTsPVCcVsCAviPGtBzLFUMPoxqAwjP5X7O+O6rrTb+vgXx1m9j+ET/S0g1sHCrj0CStbC2CtNYEOp6c92ZJkALlyAwN5DL/8MUhwWH5omg+ERCuL+MipO++ox0zu5lWbvV8JbJwrHrAGO0g/pa03Ai3lGQB6KVlCUiwQ/qN/VPYwNYurBgpcboCJmdDbkIiZzthBYIAeYliRn5Q6TQ5XoyWjBXxyI3IlZbrdNS9e2N7FPdrty/F2wesYpKYKyVFz9HpFOiYr0MUlNOqX4IVPI7zPDPHpWEkdkwntLYTZmCyrJ7s9AnNll4TbqLFftboVLxHLBfEpiHjALAfy1c3Rd50Z33u7+uceigoZkr64Jw5Ly/Lnaoa/OKK+VQLTDYVtCBlsN9wR2FCV4E6lEs5Yt3rn3UUSNuXt61CPy79ziIWHpCJevIAZniISkegCKofZHbtPDO+DMisUj+KJhHylkI8WwvxDEKbItNcE20+yRn11dAg+8uTB3G62TvdoxklWIEmNrG2qGawAdBqga0m2+ZYH0T1V2bnfCBo1pIyCAh77h0oSIkaeWHP+xJ9bLvUOXDjr+JqB75+G4N1n5EGa7rPyckXTeeLHgwzrw8YRBQe7GV3cG7Smsnu/sG8WRG4VmcsAE2xsT1O6z1oi56hCToYTNSha5Nl1JQ+npjG4gTtPmra/0mvmV3zZc1RAyLd08FR9z2KIFpAkGrSkp6rVwcIGahadJhWo49BK7VyNRyhwaQUiD/gZuUdQ8DDo5CYKZIRKfPBPZRV3I8RAQsaCR4CgOk3JalIuEw1TZSZJJfka64HOgjKyNLNIT2QW6LQQ5qAshwJ9BcRWYaLPJy8QEhba9vKWzN7bUiasvJbwmVBRAXkrko0J5HJVQIGIOCUUQMRRQ+XBMPT8G6K21E/+DTF3TR/VQU7SVgc5iUHuafCQTztR3O/IX1bcLRmP5nV79tlVP5CP+dY23PvO2LCDA4wORm6yL9UD5Dcu0UGefQmD3IsKcp1PTtpgkFfDyUliNKZ2cpLonqmdnHx39VHhqgal3LwnT4dmxGx+pnZycsXBjnZXv9cNOmRUq3B88+yvaicnpfnc3M023TnpjeawQtqMHw1IdRjk7gogmaAkoqAAkilKym4m9ro3KSl4qsMWd6PHV+5pHMWEwksqfeI97s9Lnm3jbHqwOdbHed8XPRzF9Kbif8vQIve72y0C1xvz4649s8Xzv4FysZ8tksihu4hs4Ghfr7RloBAewEyCJxaVD0BCShhn6nQQqPaBEVfr+Pzwy3s1/8EOz4FXKxyiBjhkH9LWKwehYrcTYJLdIFu7hicWuh3Xae3aUbnbhnRWkCCHmiUwK5A6L8hl2p8lD4XiiIIlVnXNmzT4vTJ7bVW7jH0BYOV8AjW7GiX2jsIGAsdJ/XAqrBqqUiLUsSKvvsjvblPWoV3IgsUDfvVJqHPHcM9UQZSAzNCgdPSYbmeq3CKxeYVMNgQzbMrBUA/LPaPeKkkebVbWmLkvYs+wzAEJ/Zva1+B+LjwhgAgR6YYcPHF147hubqyLavcQQqSEBy20CCwQTjeRV7AZHtPoX/m/IavsFNfPXQpJNoBdSwjStON0IHU7rtu+bpsAofLNVUtV5SKjrPhJqaA2nWBe+7rUMWy/zcKGPuMWtcbvImLP1dxFVFGqAp3SY3ToZB/DHKMODArD+KJ/ONfY8wt74eqzgSsjQgZpLsRrWkKq1h1O+P1cVarbaAm6yqqdIZwxvs23V9fiAhdaRb56H+lIMiTyvQFts7+BYiooBrCdJTucB0suMoqrYJt2o6noUpPk2f4bNi1rfebe8In4xU5kP5bCrOOIFW5TEVRcZTPBYWuCYqrWBHnwYFyxTrbOGgFLAGYaNVQ5tUPX7fLpF7ho/od676KPifGaiAPuJQdKjVTNLgGEiUELU0GRjgeIK9xCI+4119gWGnI8uBjdQtM47Cb1QKBB9VBHKj1k+K0EUj80cnKVZoeuHj/TdOnn6QOqpZXA0Zd0rQSOvtB7K4HXHx5atvzlvN+Ozxvq2wTUa6rHVgLf97OWD1q4OiDH/OfF1TczzPRQKr/gJV1R9tiX+m4l0EzShSmrw+s9ocHNft3jbm3RayuBa63afeSyOrG2NetUtO+Z7I4e8LGlxQeIj0EWrddzK4G27tPH/Jy5LmDufiNjpwaT29R4KwHpCzquMA2KK2VHMK7ov5VA9IFjd/1NH7JmmfkIkrs5P6zxVgKIOqEsnN/tZRW3Eujiyy7Z0GcCZ+7aKfPkWxsTDj/WSCuBoy/oEAl+gdn1TgwKu/7f1krg26PW3c+96tx7r0+U+8iVse+rqJWA13O6VgJHn1V/K4GzQ/wuSsL6cw503LSRf+z0Jz23EtCz8UdSSZ/TtRIAGNZwKwGiPa/xVgIIYJStBABg6GTuTDWZDWbjiihNeqpYRtzm0MPOVWEp3c5VaimGeRcqzA20qlKLFsvPzO70MHhe7qmiHUFfF9ANS49VlT6/pauqFPz2f1WVUP5cSCvqdmv/haDJvh2sTUReT/VQVena0lNzHji1jlj2rdad/FibSq+ZgNlR+pauXlD226quqrRAtPLS6nPrwreN2uLh0ikhQA9VlaZ2vsCctu8Re37YNUE0a21ld78hSsG0KH1+U4VVlYhZ7zVeVQmRGMqqSgApVJ92/S/Tp0tCX3CPbu7Gnb/HtWnuoD5u1aRP817T6dOyf/6nT1H+PPzZ4eOfd2YErl/snb794f6NetCnr1bXbVpwzzZiR2wf/l3HlkV60BSZr+k0hd/rqtan/UfODRnlnxIwo3PzWqu6u4/Rgz4lLhLoASUg1jQo5f1ThfqUaENrXJ8iEkOpTwFSqD7tRqVPDSYmIE4ng63flf2KLiSIeYVB7kMFuc7JbNYY5NWQzEbcJlFLZiOuraglsxEDOrVkNmKkoZbMRjSaaslsRGlQS2YjemgaGWtQK5KKmJP5MVev0DeswuhvR+fVadRNDxlr3fXGZMtqZDKxTJsak4lVatSYTMxwU2Mycc9fgyfGVDxpMkS6vH7X1yELjfdZjrQOWawHnvSg4okBNXQobccp+TezF/vAUpZn/LiPD0mGoueWSKuckqfwb81gLfR7nN5tZdq2mmuJFPmwuIpbIh3kPvzvaOjQk0pUDcYs/z472+zU6++B09wu5/+xdkKSnpbqiPKvB7sc+YjOLts+wuyyr8FjntAw6ovRlLGBU432ysROodMMd3m09DId5hsuY5j/QoW5zmbSilF9ZvLe8/frZ2c0Ct52bMRj2y1LN6qZSaL8qplJ4oxRM5NExqr5Qum73e6fanWGs6lk8fkeHi3t1HyhnRv9Z+SH3+NuS/rUfum6TjM1jCvU+qSCFJFdODG1djhr1bDE+i/MMv7Vg3HtRcVJ86jFo9alDA/If/VZ0JW58S2+vB268RcG/pEBVal9VcAm2JahmBkhFYiDuMxk9BnabQieTOnY6e349LCD99bevGqWNoF2WJpV9wgf0LYhRTsOg/kV7tawwTzRWJqBPd4/a2wR0qVJNFOKNlZ9EpYQSIFlOpN4YmDkSF9cLhwWNagr33/WyIBfkxWtH+E3BAOUT9DcEMQIeq9gBNNZICQbyBInbOGO35caSZyoEw+gVSmNsrKyn7oU+2PiGQPrS6WIeDJkn1EE3RdS3mSf2JY9OrdH2JHshv92frt5J6GIKvoQkiKqGKUquCP9QscdpiFwB2ijn7pkF7XgJAvlSNnieBybMBVCypxd/aR7ywbPjJhwwivA8cTmsXjmKJ9IsohbTqkK5lz4TMccoE1qnjmQP+rMwSwTFXO6spLhVyI8AcORg1sF4vg0ZdFFX6ZEyhsJazR6I7+Vf4J8Rr05s2bgztRv/mu7/tPuwc7O+DoIdaPVnq95jh1HrQrmedEy78EnwykUhC+kaVwBB33LOShPEorTxMAJBuwD7BJLxJB14CeRZDRChL96QVIyL1V5gZSPwoUtuvdZ+1f4zBN3Vkj6B14gVENLIkuLRi9XBecyP9Fxzq/GOQdvgjsqOqXK1FeuRwvFifSK0ON2/OFlQo+QaUljWj877foBrwgpfaZyit4XvD1QHwJGHKc03CpPRBGifqofg8JPbWw8Jur4gfcRR8zy/27bZQxhp46tXMiJlAlGCQWj8W4qxJQqs60dC1YdkqstBiEFZBMFkmSBQpbGlCofKLcJUWZzhYj7CsRo/ELtvJ7vsmD0/OMXehfUX3+AWTLBhW6smruKeLp1f/CPVCJTBApFCuUXk7n7lCdM23MYMd8A9tlku42ZwKXd8C9l1htpNByEYYMcnETGqJVH77ap3vK96U0jMq5enPH78+n4c8dm2FM1xVJFqShOJhY3q2ycDJALhsj5kemRSFcO4/O/OiW6N4xWc2GYklECmUxI0bPC3jL017pO1zlr69Y5NenEtgaVn8IErIg6Qg9YATmiwSrm32rVudg6pikacsEPQWfnbt7dn2YC1OPDLvp7+f+sg9g2olU1wwID7KPw/3XV3R78Hapwm0Wlxv5XhP8/KsKfPfnK3q/Lk1lb3zhZ88U5X2lh01cRfuhJOPwshif8SU4C5cGuPz+qogj/fnb28Il3j/feXzui/QpGs8d6PG2uZx2ZCRAygwjNIJv3sGZ54Y9qKcLfrN6OPQduL2VPGm6/fca+5NAaLcIPUUn6QYcKkBuDiR10O/ijvyL8E5J6NVg9u17wZq/lrGe9tww1iCL8kHWnvtOxLvX7/40i/HWeTNp46rBdwJKyM03/PPaqJ2GnszqLNsS6o1qG9MR9mQeiZaqtCP+UX099u9M0PWir/36fZbOn47MRqr8IPwQHUTaU4Dj8qMYi/Ieueh0/vKnEf0OdZWGbP1y9aQDlLCBCyJymRAjMadRv82dQ+G0clovrT98rrA33mm+8lPsaX4rPEjnEJ5WIgEXX9NnMKHDuXL5FIiy/H62FARCXSVISk4APJxcgSzW61HJYUCScUt8+m5P5ltPhONf3BeVoNaseqBG1ze1rw2F4GZUwGDw2XHQh4HsBhPfTGCWVPFhlVz4scBXFgvTVTV1c1j8cHxWyUB4yaW2JZ2nle3cRXCiiYqykC8UE6DlD9FqwSaTTAXY5NirRxYVCe6DzBYkyAbl/aTXFckFOzPveGeev1bXcf6UF4YQUciPJCSnldb2X/QXvf4NB9/4FjBIDWK5DJFMHRwkOWSjhC+NpattEj42zdP+2J3SCw4Ssh1186uBlFXuApqyqKFXBjGm0zIitGWYQ3R+GLjsWHqFiiQKYL148XDt19vIFISuILJLdmN6+8UkSGd+N2cFXPlKmQH4h91Yvdn1qXTDrof+c09KL6azgSXi7Br8gSpEmIul/WU6qCmZ1o2WWrUHMHPgonbzVhuUL3eIUWZycZga5nu5SyOzvxZ5XtGjfyIzrnyoTKlc2dPBCFTk86nlBoy6UN2fzW0aJTl4qqslpvK2wmPpck5ZzIrYPub/7D+mVHTUb9gIAjjJQAG6QAABVi06eKGbKqItMpH0zDor96MHd+GePfx0b9ZpVo4d9IQDRDBoJ6N+MUYI6mmzGf1c+Ts9LLa4syD3CWjt2y8TkEWM2VVs+jlvtEpp8nCG1NDxLPefjjH5Sr+Gfcdv8dn18O2/Z6MxQA8jHaQ0hodzd/FarRpQ+Pqng2rVr1ZCP8/uaVyyrG1vDVjwK43f8OaK7QeTjXKlFx50thsCdasnHuVFk1O6UhZybNf5nmwHtHh8wiHycDFrmDDEE5jBqMh9nu2lXo/l/xbJ2Ojqw/nLs1cqg8nE60TKvbs0wzzDzcSSZO/q/S+gRUTg7MuHXG4Mdazgf57ERHecOGtU056o0H2dxclgO+5l3yFzh+Ev+XqdLDSIfB/EhKPNxgCJE/dQAxv8H+Ti/39swcP3kzhETEp7eYTCy4mo4H6eTcQlNPs6d2pSLpXrNx0loFrZAYT/YL+NN9nX/eXGZes/HIcbmesgxcYPIUeaYGBtrLJTqKR+H+3s2d5RNit++JWFhbVrWra33fByijtADVndq02G1q3a16tyazsfhUKmxkUeErsLwTey9hyNETx8Pfo3fKemTAs9OBsl40iTNE6Y6bF+0DhDKpfD0mGo3J81decqUyYM18xLhN5BKXq4wOWvXag/O2jo5Nw7+6L+HcnyaOznqRA35M48CKixC/SgWiVQSzz1pKZWqpxE34mDp2KfFDEYjNvxLOP85vB3n4JanxVZRAhFgmIAfAvR6KvY4hK1KVgZSsVLnM2nOKtmu+jNpNrPSumd0rud/uMhmb7fwWjPVzqTNeveuafrNm0EZSU8GN2tlGqF2Jm2u9xue/6ag8M0e/7azNXZarHYm7UzM/tBbbov8d19ImO18znOm2pm0ubZh7RcHZQauan1zWE6HQz/VzqSdHxp7h9P6Y8SmL+On1w+45al2Pr97+KWTi9oWBWcO6CNb3GxqvlqzmbkPeSXRt6ScfFGj7vujNnoDkhlKWtLsoWPC1J7+m9Ikd5fnOcOzduYoqcOfq3+sTwjlrLebOXil+a0pgGSBko7IL99LsbgSNj33wnjvkw12AJIlSprvk/L3gjH3Q+bx5ndr0FYeCEh1UVL9+i3bdDJi9s6f/PRySMKv0wHJCiVNsYge0SuUH7TpXlETeYDPRUCyRknDhjHX/x3VMXDenLzxz0f9OR+QbFCSz9nQg1NDI8OnuUrth445NhKQbFFS+60JCTc7nuudX8uk94qYH2GAVA8leRQ/ONTa+4TfrN+i4y4vW3oOkOqjpAvNXKbtGXEncNIvn5tcmmUxFpAaoKTg/cGpS8oSg/MfpjTLrnVrHyDZoSRpiw5W4Rd3sbKPlF0aMrBRIiA1REl/Rx35efuyOetAc6H3l96HfwWkRigp/tw18/arcjiHWrxqP/kfn0mAZI8N/vLjhJAp37kzfunKCBha3B+QHDBhi7GbcXiJKWvv9vNPSvok/A1IjVFSp34RliMO+YXv/P3HquUTcniA1AQlWcWvtjs7Pi7o8MRtZ+Ybt58MSI4o6XnHsi+xLx6Er5xwb+/JyDndAKkpSvKXdPqc+yIpYEJmq12vv+yIA6RmGJdvCb5cnHvUP9d0/IvxR0/NAKTmKMn7knWj1Nf7I1aXuI9rUvfpP4DUAiVt6WD/4sTVOv6ZLTuJ7T+cge/FREml7CK70uJF/lu6D39Sq+EhmcZhSycGxWHLJfU7Nyt1eMqe6mfX5PWgc7/q4bBlEJWKapiwLz+n+DRn2ZZHv51pOjYPv5jISZWKJHySDAKqxqRt0TtUOZ9IqXV5Mk8kAkoIrWKvZcoAUUGRDk1znRMlaFv7CliAYPMSqF9JvN9INw6jzEzD+6VtAlGeUakcCOm7dahTd4+bYyl35ruz8RZ9Rv7QY0Klnp1chjOH4QcB4pM5bqdg6qC5TtkAnfsCh0mGrN3xBbBMr0QuRFIowPiEIth0WSUnTOBBMXkw5IonRfHv+Kbnfxm4mD3Jyar9DZ/fW+K3QFXfo7kFWk7Se3lVZ0RiaOA6ZWYQ+9Wa6Xo6tg11Rycav5xdiiSeAsQvIwRM4ICo2jBR75X+eNxcUnhtbWjWh08PnXoVpxJWy9HHkqyWYxR9c8/WHRX2ADLuZXsgwq6xY6ojcE5YYg+2aC0gAkkKVt+Gu/d8yLnkP6vZ0d9WjvmcVPk0Ij2AhYg6JVhA1FH7E8z43+kDfZ4+IHro1XL6AEZLWRYlsE8dyemDAmAr7Sx0spVanj64n5G6LvXqtOA9ddo2b9HGYbwejSVRA1XSWMJOLbMgQnOokrX5FjoZy//09MHKuUKXFauF4buneMc8athhRY2mYUBUetKiAuTGQHdKqu/0weRb+W57H6f1nrs6y3rFuajlBnH6ALLupTkd64rMDdSd0fPpg6eNSsSLN7dlzwg5Xmfh6uMXa/D0AUwzQbQMafo4wxPRMtV2+uDkpJzNYd/MAhbcet/a62lM2xo+fQDB6UkLjp2FbjlflTp9MLz/uvYD0r7656aa3Kvb4yW+BkjNnD6ACCFzmhIhMKdRvy2EQeG3nV7K4373sQ+auK656fNWYw7jvVGkZ11UAFf7hQN/fMtI1BMGEWIC+BX4XWnqfRWBskXlFfpeqOs2TivHibh+ST5uTS8ao+jQ2kXRpkTZ2kXDVfIDHHjfWrdlBa16S0omT23r6CvxX1v4V4s1zPXtCJvs8G6STXbkckWeElH/6aFviwgCJCUTQqYrhxHQRqe9MwcEIEwunPlCGRBfQCc3tmcGbZ5gMdaDkzm4KO5Om2P4GsHmAdjNmtOynFQRYP/0n1O8b2Bm4ITLLUTX2oVW9kA7BKwpLWBAomrEiVLaDPiZjgyqP5pHOs1oeGmJ8JJGq/rP3P4ys3Mq54BT4rGNuxI+1UcO4wBmcFKlMoFq6w5xaln+Uc4x7SvnABNYK7OZO/tJ4+lhczo+GXqpT8EBPbD2bGs61q6pIdaS+ceZujWAq7h/aZCX1fU6T9z8p9nUCf7cYUB6jfUvZXigOgn2L5VqxLceyBRDDWNvBoVh9L9if3dU151+Wwf/6jCz/yF8aWA7WHJTAZc+YTauAO4PC3ToeubJliQDyJWFP5HH8MsfgwSH5c3O+EBItLKIxG27igeswQ7ST2nrjcAFUxsAeqk/SRO0WCD8hTaVPavH4qqBApcbYClf6G1IxExnrIEXQE95iA/+pNRpcrgaLRktoDiBcznQ2bFjzMLAOS3yZ4h2h9ngdQzSC5WkRRx6vcL8C+v+9p3NerK3d3f7vkbWqUNl6yIAmEshzMb+JG2/stsjMFd2SbiNGvtVq1vxErFcEJ+CiAdsIUG+ull7U3Jq319PBOVfZfebxzsXj88qKH+uZviLI+r9RJMbCtsQMthuuCOwoSohlEolnLFu9c67iyRsytvXoR6Xf+cQGwZLRbx4ATM8RSQi0QVUDrM7dp8Y3gdlVigexRMJ+UohHy1UJDElIEyRaa8JiLv0NOMka2ysRtY29QyW8oToWpJtvuVBdK0rO/cbQaOGtD9UwHZ9UElCxEgB2HF8zajE0svh81/9FnTqkclRvPuMPEjTfVZermg6E7MSKptOBcucQORWkbkMsHvJA2tK91lL5BxVyMlwogZFixS+hYErUx6cOx9y0M6DO/rYq+f4VG1UQMi3dPBUfc9iiBaQJBq0Mq2r1cHCBmoWnSYVqOPQSi1nxyMUuLQCkQf8jNwjKHgYdHITBTJCljD8U1nF3QgxkJCx4BEgqE5Tspo8eZhgmCozSSpbR8EDnQVlLLKkQk9kFui0EOagbGMKfQXEVmGizyeFYmJAB4s7FoHswoO7ZImLxxkTNibgW5FsTCCXqwIKRMQpoQAijhoqLoPCUBlM3XqittRPC58qKFtvZ40mrZOWrX9vhUEeZvCQE3Pj9AO5wwH3dld+JoSuuDHdrsOXs4/1AHlRAzrI1zTAIA+nglznrEwbDPJqyMokSaLEsjJJkiixrEySJEosK5MkiVKVlamZRIllZZIkUWJZmSRJlFhW5q/BLZ83PPDEbx2fyxtgN2eqRsobFF5S6SOmX+oh5S2Civ8tQ4vc7263CFxvzI+79swWz/8GysV+tkgih+4isoGj6ZSbUMy2loFC2LInCfa4UT4ACSlhnImmIWi3vU9MOa1wiBrgkH1IW68chIrvLcEku0G2dg3bQSosdVq7dlTutiGnQSSQNQAP8At1XtB9/98vOWVN95u6iBd78vjZdZXZa6vaZewLAKuXlqjZLdM4YA/C6gJLUj+cCquGqpQIdaxIUbppnj/5/p2WnMncMX8nv9nO0GNaxIR+4R9OrUsN3CiZHjzNP+24HlBS0KLUzVJz8YHOT3OLxOYVMtkQzLApB0M9LPeMeqtkyrf9PXiC+5ylTsknbXMVN2twPxe2X0SEiHRD7igIg4ssdXNjXVS7hxCieLWaFdAC4XQTeWIl63nxn8u2BE/mHbtkM65sngHsWkKQltGCpLDUbV+3TYBQ+eaqpapykUE2FqkVlOWPk4eujvozZMnioL8uM1fjK+6ZYc/V3EVUUaoCHS4tOq0tMccokkFhGF/0D+cae35hL1x9NnBlRMggzYV4TUtoTAGuE34/V5XqNlqiU9k44gELbfcGtM3+BorJywrAdpbs7CMDwHajbhVs06Z1GNDAJG2n/4FZxrsuu8w9jl/sRPZjKcw6jliRFiequMpmggM97QzBiiSTsTxYF85KJ1tnjYAlADONGqrvjc9cybIv8Fv0pEHY0l4ifGN2cw64lxwoNVI1uwQQJiA1NDAV1NXN2FW8hUbca66xLTSoaRAZgVtoGp2EpR4INKge6kOlh9jtznr6TLrPzQtc+Ubh07gZcR06mSdlKtdpSNbLqVzzdsr7sN0e5FwKjykWjIaXBDJhPGogtVJLxMNdNCMkWylXI+uQh3eQWQJTZkl8ci+Y88TUSVFZI9tQysVdMBzSt/zNNf/kpZKtIXlr251ZvL6rF95FQh6g6SIpL1c054jn3Co55/IAPLsgPDlkc84MzLlZTJ2ySayU46Er9DVu6ZTtF88sZB1I55Scj6k9EL/7p7xfc/cPvV4RPlc2nB4vWDw98FCzZ12mPRaL9IAPnxYfID41kWFghiRujFIC0ZNB/KNbJXCraJ4sUaCgY1rn5Y1zevVZHbbXvt6q0ZwDhLQQ5f2aTEOv61tZQq7Y0XLlZQtD4krZEYwrOpkvG0ThSQV8VPmSMsblvO/t3V+WBc92iMx1zOi9DM+YMOR+Tcag1/XNmDJ3VJ3AZUaNeNXLk8NIZeoWkDmqMEACC5GwIjxOnWgxKOLNmICJDuZS6ZPao/BZtWzlAzSzajFCVSDSkxYRBhOz630ZFHa9YH7o+8E9uodMef9dYXbi1js8j5XfqH0yTE9VhIE34MzRScL4JOBWwrOFPLkcVjRQZcWg5l+74IN4TptsvJoyqbyuS55oCzRPVCP7xQ9EdT1bVHYHvCnqakBjL1QWqYFHmJQjIe/2ujzQcvI/PwPyBnqePbRpBt7wm1I5NipCNRt/JJUUYuhFlqPBdEEw1Elj9QxHJUpZlhN3UAvmA8mV6wOwFCD8udynZI4JH0eKKNGe12hVUBjXIoA5kAEGazEBwNDJHEU1mQ1m44ooTXrqcU3c5tDDzlVhc7qdq+zmGObRVJiH7w08f5pRxE4f1LiH8HnveviqUUg/ealIGI8cC9NUpFRIO4YBfwCYJwW4U8RMxj1FKz1JrExBNyzNYlZ4urYLNzDIbgXgnEW2cAP3KNJblVipViMxzwmzJxYhUJfieAm/yRS5HMLHZGAg/9QcoyPmAfv/sQ+zcm1wAaMbUdAtIxD1oiEjZsrr1A9WjgcZLvwIXeDWLFAoAzoHZicgyUx4fpHy53H20MtRH46GTM4NiRvx5Hd88z8jlubsYGnMDiPC7OhWN6bnCa/uIRu7D5+f+KStorJrJmB2XIDs9CLLXoAJOhtalaiBVNHKUvMoQbwEaGhdUBroPOPw148pAZuCv77L27zkEh4lf02U/CtE6VlZ6f73Lsv9sgZtbGL2vWiQHlBKp0UpplUJKoMqWaLNdlHWC4SOkRYAEbPe8TZM+ShNG4Zer4oFb0RiPpMtNDm7I0ih+rTff5k+JZbzqSZ96taSTp9ecfqfPkX5U9/s+L4ZzaaHr/rYp+fya4mletCnxDJNetAUrVvSaYpvTlWtT1dy101qfOUFa8Xf2YsKjwxcpgd9Slwk0ANKQKxpUNriVIX6lGhDa1yfIhJDqU8BUqg+7U+lTw0mJiBOJ/0ks3U2avxmNlsasOeDX1LBldl99RASODvRhQRmKsgHUEGuczKbNQZ5NSSzkdTAw1Q9SQ08LJmNpAYelsxGUgMPS2YjqYGHJbOR1MDDktmIHppGxhrUiqQiRqyep4eMtRi9MdmyGpn8n9WRJCmqiDGZuOevwRNjKp4QyxbqgScDqXiSU/hg4NTHn0P2F+7ev33EQ/w5vzqRPLFApFmglUqxObOYUniHWpVppliiECiLCykEqQqmsjgr6WsT6y6SDEUbbWcZFS+TiER9ocWCF9UbshI04Z7bE6/xBg73P/JHsU+/b7W+UmlCs35ygSwaDB/72jYBkpQ4EczVgpVgYeEfvlCBvjvwMOAux6P0dQSWYKV6NZqxtOUwypoABerDZqRPZVuE8WSJQjFXkIAzgJbKy31hzw716+bK69ESqfpVQgnYvm05Gf80KbFBQIyUwXODCqFyVKbYqMgmlIw3OkTMh2W3MHiNzOFFuPWidgnx1UVoWWFlQAA7gQh5IjasBaVmiBQyAS9Z9bvxABlPqroHFdVBVKJqMGaZWAVUT0t1RPnXg13OcKSzy3xHzC4PNnjMieVVDXd5NNaODnM/OwzzIVSY62wmrRjVZyZJ6uZiZpKkbi5mJknq5mJmkqRuLuYLvahbLyful9zgOY15MS36j7yi5gtxF2Vlt4xuGbz60+B+7MXOPhrGFWp9UkEiFuPVg3EdSsVJA205Riw6XG0tx0Tt6FqOLWtb1S3HolyLpx1/7BqWM6phu917M/CFVmum5Ri/HV0Dl57tDKBvUmlpaTW0HHv2amfcvPwmQYu7zRt2uGzHdoNoOWZHy52XbQ2AO9XSckx6KfqXFt/cWDkmOTzP5t/PGkTLsaK2dMxZZgjMYdRky7F97+Y8y5C/YBcOH+nwMessPue4pluOKWiZx60Z5hlmy7Fj/Tq2vXdmCXtb420HE0Nm4nf0qr/lWGtazn1rU9OcgzdVWcuxXnsaP21y8jf2wfVH7Vp33oqvTFdTLccQH4Ky5RhQhKif+iuDwk/9b2o5RmyLUcMtx6Y507Uc83KuppZjHxb29Lz5JWQ1J92ixGzaR723HCMWN9NDG610Z7o2WjHOVdVybOybvf7zG48My1iecjt2UYunem85RtQResDKixYrM+f/Uy3HhlGpsf8V4f+PivATuwlVSxF+6EmUti+BJ/xJTgLluXEYSe2rogj/nnrypt03TQ2dkdim5ZXJ9f31eNpczzoyEyD0ACI0g2zew5rlhe2rpQi/+YJZASs23Ou9iTHxyq1RiR41WoQfopJJiwqQG4OJHXQ7+KO/Ivz/fGt2qHHzv8JmXvZ1X2h5+qRBFOGHrPOjZZ1DzbCu2ovw298R1pcf2hU0J+5H82aXe12vwaINse6oliE9cV/mgWiZaivCH+RonXP7WJ+gLaLx+65Yf8Fr5+ovwg/ByaQFJ6l9NRbhN7K++9NOEhI6q2V+6tnmg3cbQDkLiJAfLUJgTqN+WyyDwm/jsFxcf/peYW2413zjpdzXHfF1BJBDfFKJCFh0TZ/NjALnzuVbJMLy+9FaGABxmSQlMYmpahqrSy0HYodFytFqVj1QI2qb29eGw5jlCvDlseGiCwHfCyC8f+xS2YNVduXDAldRLEhfve7Fc6HDAw4FFgxdyTu3bKF95Xt3EVwoomKspAvFBOhlQPRasEmk08GFwxjiqpMLVVc5ffmCRJmA3L+88e+fiz98FYXlz922c9qyHmLCCSnkRpITUsrrei/7C96/E+3713WtaWdJJZk6OEpwyEIJXxhPU9tmzI4lk5yfWoUtznh3dfj+UgFeVrEHaMqqilIVzACTlYYZB10Mwv1h6LJj4REqliiA+eLFw7VTZy9fELKCyCLZjentG58kkfHdmB185SNlCuQXcm81J3/ThVzPZxHrOxbta5Pouhlv1+AXRCnSRCT9L8tJVcGsLFpmiWqGWYSZAx+lk7fasHyhW5wii5PTzKBbjCUm1k+Mwg+/OuK257PzjMqEypUNHbxQRQ6Pel7QqAvlzdkc7qqbl4pqchpv6xT3gKhRj1VB69bVGXNTHDWmZsNeAEBTDIAbJABA1aKTJ4qZMuoiE9tu97C/dMszKOv70LCcsYp2BFNWvYd9IQAFLjQA9E9zwRxNHuO/Kx+H2Ji72vJxprnT5eMUulV1Ps6nJ3G//lvaK3yvzSgj7uE5fQwgHyfdnW53M8bdAJIK/vzzz2rIx8m8vmvJ4MD4kHWRAzvbnT0bYRD5OF603DEzBO5USz5O608LB4iXGfktyPM8GWiVsN0g8nEeuNExB2iTmmcOoybzcepJdvdJNLcO3ng6OMn47C9DDSofJ5OWeUk1wzzDzMe5v7Cva/MjBwPnbt3xy8LfrnSt4XwcP1rOOdQ456o0H2d6V/6B1J6PuBssPROnTJm+0SDycRAfgjIfByhC1E+NY/x/kI+zpYP9ixNX6/hntuwktv9wpn8N5+NketDl43TzqJ58nAabza7G3AsLXer70n7D/dbz9J6PQ4zN9ZBjMs2DLsck1qOq8nG8lky+HjM3O2DFjpzlg3c4vNV7Pg5RR+gBq260WNl6/J/Kx4mnUmMjjwhdheGb2HsPR4iePh78Gr9T0icFnp0MkvGkSZonTHXYvmgdIJRL4ekx1W5OmrvylCmTB2vmJcJvIJW8UnaRXWnxIv8t3Yc/qdXwkIxyfJo7OepEDfkzjwIqLEL9KBaJVBLPPWkplaqnETfigCdgDAtzNWLDv4Tzn8PbcSbXal5iFSUQAYYJ+CFAr6dij0PYqmQln4qVOp9Jc1bJdtWfSWuU2fximw9/cyfeahvp9nniW7UzaS3mhg9r72nVe2ODTjavNrT5oXYm7drP72/8OuzgrJcZxS+NyjysdiZN3p93vp5pUeiBPhFxuaWjf1M7k7bzWrBk0P5OYbnDbyayu4Xz1M6k3V83O+iz26uISfeDmGkrHr5UO58/iiHZ+9F6EHfXzFoOdf5YuVOt2Uz3hafb/L1hit/Wv002NkzNCgUkM5SUFfHLzaTLzwIX7rtQGB9xfDYgmaOkKw0Wc1YMCeAs2/erVZ+RF58DkgVKCju44O3wexHh6z7K7q45E+kESJYoKdjip4znxePMXi1z9RnxdiUg1UVJFvWHZv1bEBu663jAxKLkm+sByQolZYy7PX5Enyz/jTsaFY3JeASP4VljI4yfbRJTb2/AalG9uq+/plsBkg1Kcpk2cEhiqx2ha1KL5wSv6DAGkGwxhTxQcTdUPj9i5t/N+1qf8oAY1kNJt5d2H5mwaVDoWvsh7lOXWmQDUn2UdPzU8ANtCweGrJOnMn1ENyGXG6CkAaM7t/rGbRqc3jDIeE6QbStAssPu2vMwauX3/oEr70YP3nBJAZFviJLuesSaXlvCCFiwuseMf9sszACkRihp7tzF97w/NQ7dZu01XVQ6YjQg2aOkvZ+nz3h0qmfQyv3RYRMHb54KSA4o6aLr9BayJsfZ+x8954afOZUJSI1R0hjfdPtiQTf/gxHtT6+R3+0FSE1Q0pTnkc5dhr8LmJHn2WOr/T93AMkRJZ0LkPS99WN/4CJbx3V5+wLbAFJTlJTff9WySzNe+i0b7xRduugcFLZmmESZiOY+uiP3y2jU51u3Hy6pgNQcJa0qXe7bOaNVyNb6n/zHjM+QAlILlPRk5c2kVM6X8L0u8b7zVk2E1SWYKMnKZ+NYtztXOfvTGiUe/vXZa43Dlk4MisOWm2YsfXXHKTV84tAlc+8/zLqvh8OWAioV1TBhX35O8WnOsi2PfjvTdGwefjGRkyoVSfgkGQRUjUnboneocj6RUuvyZJ5IBJQQWsVey5QBooIiHZrmOidK0Lb2FTxV410C9SuJ9xvpxmE09datCUR5RqVyIKTvZuL7bL9Hrht79fmtHZyaH9BnQqWenVwGLLAKAeKTOW6ngFsX4K1TNkDnvsBhkiFrd3wBLNMrkQuRFAowPqEINl1WyQkTeFBMHgy54klRdB5QMOjeifv+hYuSmo1pW/s9fgtU9T2aW6DlJL2XV3VGJIYGrvdeBrFfrZmup2PbUHd0ovHL2aVI4ilA/DJCwAQOiKoNE/Ve6dhG50onv+sZVjCldYMngwPsCKvl6GNJVssxir65Z+uOCnsAGfeyPRBh19gx1RE4JyyxB1u0FhCBJAVr44/Pg7bF/MGdueMs53Rhq4LKpxHpAaymtGABUUftTwKDwv787/TBf3T6gOihV8vpAxgtHe1QAvvUkZw+KIB1OjpUxekD97SGj/0V80IKr7ar7/w+MESPxpKogSppLGGnlkKI0ByqZO3MDtVy+sBhfmD3g00z/PZNjPknJOt7ZI2mYUBUkmhRAXJjoDsl1Xf6YMJDl3/zXff675E1azu/2YBeBnH6ALLOgZZ1Zd4G6s7o+fQBP3SLl0X65ZCpsicF7Z/zJ/w/9q4DrImsa0cXFUWwAYJYYkek2bsSQuhNwO6qkQSIBoIhCioqYkNBxY6Iir0rNkRUcC3YlV0b9t5Xxbara/vvncyEzMydgSwhyfd/H8/j88gcZjJ5z73nnnvPe87RY/YBRjNpz0Qf5zhhVkZn2QeXB03wTv+nsXdmwf5nJzo2P6Ln7AMITgQrOC7tdZh94DiwRgfRpbkeW+YO3vPVoZjc21g/2QcQIStWhMCcxv22cA6D33ZmhdD3e7f6HokbG1d72XxiHtkbxXrWBbv5lv3gwJXcMhL3hMEOMQz8Cvyu8ep9FYGxxccr9L1w121SmRwn6vkl+r3pXjQh0aC1y/MAvLULzVVygWM0oAJ6S25aO+Pkt9Tn/tMTut6Yl3vxLSXIDu9GBNmxy6V5SlT7p4W+LfchQNGoQchtCyxcgEaxMysMIGJc2IokcjB8gRy92IYM61N8oENH7/kN/27+9/iG6eRp6UbcTJ+WJaLSANt98fOE+EXN3ZPuvkz6mN/IWguApbICBkaUXpwo5ZoB/6YDh+mHntJpzKJLE0yXLFbVtzB+1Du7WwHL3xSenZL56EVdLBkHKEMQFy0Xq0J3mFPLcw22HdimfA4wRbXrbuXPXnnssF/in9stJ/0M2a0F1bqwqtZKT6pF+cepmjWAK71/6YvUyh47LD64H9w2qMerF3IzvfUv5TjiNgn2L42m7W8dsSmGL4wRHIaF0fVK/Tvjuux12TFkmFVy/yPk0sDmsOSmAh59QjauGMaHxRp0PXPiyyIB5MrCn9hjRCWPwTaHJc3ORGCQlGlFpIbtSn9hmjqQf1VWbwQemHYFoD93RTRBGwEG/+Mu5c3V4/mqgQKPG2ApX+htyKK4tkQDL4CeMokP/k9p02LgabQsVsyQgfNg8ox1ozvnCHITao46+3tKEdnGYL1QES3i8Oul2ZgWtT61Hf6ti+v6G3MbHz6wzqq8dREAzOYQZiNXRNuvtDYYzOU9Em6ppn7V6VaoLCpGHDoWGx6whQT6dHNr38V1jj6q5THbKHNevxccckV1k5Ln0re/JKHWM5rscdiGomArcsBgw02ChMkknDNr/qFdZ5nfzPdvfRwvTxFQGwZHS4WhYq7/WKkUYQuYHGYH4r4oeB8cs5KocUKpRKQc5LESRQRXBrYp8rJbAmqUnuU9UY2N1cRlpZ61FnB6dgHomqCCb5kQ3c7lnfuWcFHD2h8qYLs+aCQhYgw9Hy8EdrpdnTejif/ILqv8X5PdZ+xBdPdZebm06UxlJZSXTgWQ6wiRW4tyGWD3kppdGN3nMiJno0JOThpqcGgh4Uu87lAjKegP/613rAfE1u+wiEzVxgcIOqRDlmp7FkO0wEhiQetwZ506WMSLGoeMjxar49BcjbPj6ANcWrHUEf5NjKOH53Do5IaL5RSWMPwpr+G2xBZIqFjwCLCpHq9UNTqLgrIwlWeSlLeOgiM+C4p5KFKhEzYLNDoIs1K2MYW+ArZWEUNfhITC2HRpzA//F76HxHsDb5m/eEAJTMBvhQhMYJcrAgpsiDNCAYY4vlCN4jAsVAZTt55qLbXTwqcCyta7dGYrW89VQT7a4CGncuO0A3mL81O+RNX9wZ96b2rmg4fxTbQAeXEPNsgLexCQS5kg15iVWYuAXAesTASJkmBlIkiUBCsTQaIkWJkIEiXBykSQKAlWJoJESbAyESRKgpU565dZHsKtV93ydhbWsXh88Vca5Q0OXuToo9IvtUB5i2TSfzOfEw53dtdw32QkGnntRW2y/uspD/v5UlkMdBexAA7dKa/KMNuauUtgy54I2ONG+QBsSwn3mTgNoWzhfSrltNRXpIGD+qOyeuVgq8jtCCZZEersGraDzOyg0dm1jTLahmWDyKBqAB7gF2ZekLW8/9bkoTEue56fmGw5xKlneWJtFXuMXQiwsuqIL7vFtAR7sK2+3QHphzNhZaGiRKhjhUTJ5NLXQKP+A/mLsuvOX1UlvaEWaRFT+/l/Or0xzn2LbLZnkuv4Y1pACYwZFpREHTRr0m4fSMwrbLJhmBFTDm71CO4ZS6jkW8dxPxLzvLLdOiTO4kpO6DGeC9svYoMIGZA7CrbBxR00c2PtVNFDCFGoWs0KuAKRbBMSnPmTu7dMf7Wet1Bi3oxrU2+4AUQtIUinO7CBlNlBs7huSzeJ8purjqpKhgwWWGQ2ULENnvZfYXLbNyl04O/zflt+kRxFJJ5LjyKqJBWBThwrOoEdCMcoisOwML7q7+9r5PSFv2Tdefc1AV6D6Qfx9JXQiAHcpuR4rorqFivTqGwcNcGirLGBsrK/gWEa2gnAdh6V+8gBsBl1qoAw7cVuMwLyHAf4L7v6pG4Po5aU0n1YPJZhWScJS7PiVBNXXiY4sNMhEKxA1BjLBK65fSeN1jozDCwxmGnMULlUXxI52POU73rfS+NyHdf2I1siAbgXDZSaSMcuAYTJiBWm2x01W+xKD6FRY816C6FBS4ONERhCo3USjnbEoMHtkIzJDvFbn3fqNu2eb6b7mneKbtaNqOfQkcJorvKcBnFezuSat1beR0R7sLwUITdKHAsvieWSUHyBLJNZoiZ3sbwh6qRcTawBD8/ZpwBSZhE+uTNAPctbI0NlhoWhlIe74HXQZQJ6WSw2+t6dP6tO+D7P3kPI37IK9gC6i6S8XNqco+a5lXPOZQJ4bCE86ag5ZwzmHMdHIzaJqfJ92Ap92fX/uf3Zi8a8xYWj+7Xst3YlOfqnvJ8e/cOvl4ZPvQb1jXs9vuC7IffbkFqzejtrAZ8ibzZ8wPDRB8PAGCNujFMC0ZND/dGsErhpiFAeLlawKU3qcnJH96KfLjlGH75vrtqGUp1NeT9dafh1bRtLqJUkVq2MMCitFOcTWtFo+aqFGbxosQg3vkjFKJZY5E8wn+N15NuDNdcyR9qQFeOH3U9XDH5d24opdsDNCTxmpO1XnZ0EnD+9NduQ2agwwDYWUklpeJhFhF0cs/Q8bztHePK1YP54MquWr3wAnVVLCCoCkSxvNkQU3sS6Hs1hWNezFvp8HNKju9fMj98VxsdvfiDrWPmJZSfD9FTtMMgLODc2QhIaAdxKmFsojImBFQ1UrBh8+S/b5oOap416X/qYVF7XhCfqhfNEaewXF7Cry/IqbwS8Ie5qwMVeoixSA1OYlG+C/OKTPSYleHt5eWyyfnBzyC0rciC3GpNjoxLoePHHqKQQQ2cUR4Nrh2GokcXq6Y+PKGVZTlKiFuQDxSjPB2ApQPj/Ep+SO9F/Erq0DWU912tVULivxQCzQgEGazEBwPDJPIZpMhtM4Io6mrTU45oa5tBC5Mreiy1yVVOFuZwJc/8D7hfPcE7wEwZb95C89K5DrhqF9ZOPlkpCsbQwuiFlQtrGD/gDYHlSgDul3EjSU8pkJ6mVKdhei17Miiwv68EN2GT7+gM4U1AHNzBG8dGvwFR1Gkl4TsR6UsML2lKSLuEnVcMue4mIMTBIdHpepfzqbrlv6vuZtq1XSMgrMchNAjDzQhsjxsrrzA9Wvg/2uvBP2DZujdwlcmBzIDsBIzOR9YXUz5GTzS4c/xDkvlG+cLWV1UQyJbUSjz47eLTZUYkyOzpnW/ZN9e7mN6dhs5meRzvHl/fMBMwON6hOZxR7ARJ0GvoXqIFU2slS42BxqAxYaE1Qct6xPtOku6Xr9rwZPj0ube1NRsmVjpJrqSi96iffuD7MwXVnoY/owuI/orWAEhjWLCid9yvAx6BqLLGyXZT1AqFjVAaAqKx38hqmfBR9DcOvV8SBNzZiPqMOmmwdMKRwexrzH2ZPqeV8dGVPfVntqc//7Cmun3YHqr/IbX+BtzV90NrZRQ2basGeUss0acOe+rLaU9+Ktqdp9R5P37ZnoecBuXXVUZsrtdGCPaUeEmjDnvqw2lOfCrSn1DVU//bUl9We+hD2VMFkTw1mT0CdTtohs3WqZP1uLj/aLfuTS0TWlblBWtgSZPiwbQniVZCPZYJcYzKbGQG5DshsiBp4hKlH1MAjyGyIGngEmQ1RA48gsyFq4BFkNkQNPILMRvXQaIw1aBWRQ4xaPU8LjLVxWlOyiQ6V/O/qSCKKKhJKpsb8aToxYtIJtWyhFnQSy6ST9Jz7g2Y9/uyVm7M/d/foB+RNVZVAYZRYSi/QymTYbHncaHiHWpVpbpRMIVYWF1KI4xRcZXFWNFuHUncR8SplsXYmwaFymVQaBFcseFG9ISvFEtpfbZxge7urR1LS22k+A1Yz5jYb94sRy0PA6xMf29JNNnakFHK1YCVYWPhHJFHg3x14GDDK8TBhI0UlRKleWjOWVgLOQAEwoN34nIRZ/Bp+Qnm4JMpXHEZaAE2Ul4Ngzw7169WV10Nk0epXKSVgg1oJPAcICmphIAbKYd6gQqJ8q2rEW6EmlFwY6xUlgmW3CHgrVYcXYehF7RLmq0vxssLKDQHsBCIRSvmwFpTaQqSQi4WRqt+NBsiF0ap78KEaxzRUDWZZplYB1dJRHXX8a2Fd/ixgW5eLBMS6PN7gMaeWVzXc49GUnmyYS3sSmE9gwlzjZdKUo7tlElE3l1gmEXVziWUSUTeXWCYRdXMJX6goc3mvj7P2uu5MqWcUKazWVc0X6lgsr2NissXtUPGu0Tk21yvTFldo9dGtISnFeLWwuE5k0qSBthyjFh3WWcux+33ZWo7V7lvRLcc+rDT72OXMvoCUjkO/bk0cvNYAWo4V9WVr4JLV1wD6Jt2/f18HLcdWLPb79cT8NF6Gx6uxuU/ivhpEy7EkVu2MMATt6KTl2MF/6iW8Ddvpt6/my2t9e7ch01f11XKsK6tyahuCcjj6bDl2tbfg6L4DlXnpM+b+3BXuuc+gWo49D2RT3tFAwykUpPeWY9/yIi81uzLTb9OewHaZF8MS9dxyLI1Vc9F61xy8qcJaju36tdny3y785bV3RKNn+z9kGRlEyzHMh2BsOQYMIe6nxnMY/NT/pJZj1LYYem459i2IreXY+iDdtBxrt+RskKxmgCB3ek73eVeibmq95Ri1uJkW2mh9DGJro3U+qKJajg1ekW3ad2O9gFnG9sMsNqzdqPWWY1QboQWs1rNiFR/0X9VybBKTGftfEf5/VYSf2k1IJ0X4oScxNKQAZvgjMoEy7QWc28EVUYS/YEGbe65VI90P/Dn685qQ+eR26+XLNteyjUwFCIVAhOag5j2sWW4fopMi/P1n252x3FDXc3ZfUY26yT1r6bUIP0TFiBUVMG4MZu+gWeKP9orw1zWZu7mvl7dge+RW69HrI8jH9voqwg9Vty+YTXUp+lGdzovwdwhpKAgfEuiXWH3Vx7pHRvL1WLRhhANuZZAZ98WOmJXRWRH+Bem+NvGP0z1zB1f9srTOFXLBLN0X4YfgGLGCA4yN7orwm89s9qV2vxX+cwN//9RB/pxcTkc/5SwgQticZkQIzGncb5vMYfDbBDy7tj97XeFtvtt4yx+r3lLqCGBJfNEyKVjR6T6bMQPOnUpCJJKS+/FaGABxuWxseARX1TRWk1oO1A6LjG9Lr3qgJiwrt6+lACzAAF8hHx66UPAtBNv7gf3Km1hlXvJa4CqOBfKrf1m3ul4tSQ+vJS8iDl0p7Edm9P6r3l0UF4pqGMvpQnEBep/7AfSa8BGj08pOwCnsp5ELVVM5fUXicLkY7V+eSex+7F3RE/7aJIu8m+uKPSgZUtiNiAwp5XWtl/0F338z6/dP6KdvZ0k1MjVwlOArS2QiSShLbZvem72mzfYP9l5srvBL2LY4mTxWiQfQx6pKUhHKGMiqDGf9KIPq/nA0iVg4+kTJFGD5EobCs1Nb515gywp2FpH23Ha9QiNkcpE9t32vmDFyBfYL2lsNnna1qOBMc8GCQc9eFN84IyOva/ADghXjpYj+lyWiilCWMauy7ocYwsyBj9LIW7UoOeiOGisfGcMygxLvmFg4jQzgTz+UuSjwfeeW5dkql3fr4IwbcpjqWUirC9VOsO1YP828VNySs3hbxyxni4yrP+QdSJmR3cPz8wz9bnsBAKkEAEUIAKBp0cgTJZYy5iITbvmPa888FOCWvPfG4D2N+jbQa7IvBKAFGwD9X4cQjuYUzn8WH4famFtnfJxvA9j4OPYDKpqPw90WO3F/fpHruie//fm2aNJxA+DjfBzAFt08P8AASAWnTp3SAR/n5vBKOZ37DXPbcUuxt2b4mziD4OOsZ9VOvCFoRyd8nPwAzohWAaaeyU0Sspou/3WwQfBxQliVY28IyuHok4/T9/fUJ0dP8X0SMjskH8zaaWxQfBwjVuXd7q9vZ9eA+DhONW2e1tpe4Dvt0ZOmcw53665nPs6+/myaS9G75iqUj2O/UXSNf32Vx5Kt81am/ro3wyD4OJgPwcjHAYYQ91MTOP8P+DhP19yIiBN88T9gF9prwdrEeD3zcYwGsfFxtg/UDR8n4VLG5MWnMj1S4hYPkh5ov0XrfBzq3lwLHJNvA9k4JlcGVhQfZ94JnxUPxw51z14f3vrHL0c3a52PQ7URWsBqOytW0wf+V/FxpjKZsTH5krYS/638A3kB0mePh5Db+Jr0HQtzJz3kwugIeoapBuGLFm6SmGiYPaaK5ox3UGaZcoWwZl44/ATkyDPttiXe/vZVQe54y/C8YS+Y348eyVEX0sZf9WBgwgLUU7EQo5Ka91TGUal6GjUQBzyBCE8wKi358B8l/3NUa4FnuGeBabBYChQmFnkBux5HPA5Tq1KViUyq1DgnzVY1tis+J23RmH9if2nU339FyqreU6ec6qOWk3a608LD96p58HZ0tnjbpceWN2o5abXCZpsZnz3Pm93dKfVFhxYJajlp7t1//vbnPzv8VtY9MO/O1D4xajlp9+ufGxG5z4639bcWtp+XL96jlpPWUtbjXeVpU3iZC3IkofmPXqrl57fY9dTo8l9nPebOyvtWeKX7OrVmMxbplwOmXh3uPeuQz4+teV/aA5ExLjpUc1xxTq8zgn19Htn6xo7vCETVcdGrKeZOixp1dkma9fdU3qdt64GoBi76Ou3zN8/Oi/mLDjo8Pfi3ZygQmeCiuicbF0/N3uSbbHTVo0+/GzuBqCYuOpu+qNrXDiLPeeJqR15ndvwFiExx0Rfv294Dpmz13l1t95azp/adAyIzXJSa+bzopPyq59ok0f0/TXfcA6JauKi6ZP2qxLxvAav37X2y9/Id+Bq1cdGbBu4b5x1N9M4cdrvqo+X28LPq4KLWz4y318rb6r2ow3TxstS7EUBUFxedDDa7XtzxrMuWOtLngwuXRwJRPVw0PGXDHE4vB9fD+W/n3g2yvQ5E5rhI7nH+7g7/Ga67fWotDfpSrzYQWeCiM+ePZSjOtvRKfZjf9tXqzJFAZImLqkT2yC9OzfLYbNU4d1xejzAgqo+LhtrOXjFs6YqANctuRtU/+fE0EFnhok/L1vX9/P5TwKrtng5BQxo+ByJrXORxf8Axn6ubvWbe63LqU7d9PYCoAS7aVOw0dffs9R5TV/5Y7twmFN5lg4vm55gYt99+yX/ak1Fdhw09bQZEDXHRO8nBt696nBUkzunQfsP32R5A1AgXPbIxa3zzarHrzLZN9/Z5VfcoEDUmvle7ad0/nUjk7XOabmE3MHwpEDXBRV2c7wywibXyXzCxx6ubd24uAyIuLnJ9EpkgX3E+YMaUbXaHbjW5QEu2bMphSLbMKG5/z2Lufd6C0Cbtny/5YI8wG5omW05jMlEWYQd3pZ88I8jY/nDCuYbxmeTDREFctFQmQjAImBqTtsLvUHE+sVLrMZFCqRQYIbyKfRkpA1QDhXw1+jknLihr7SuwAsQNK4D2FeH9BsI+bsM0awJRwqhUvgiaj5+6pMaG3G7+Oy9dikxf+zJbi4RKLTu5HFsBJxoCJEI5bqeBW+c5TCM2QKcg4DDJsbM7kRiW6ZXFSDAKBXg/iRQ2XVaNEy7woLhCuOUKRaK4jddtw0obuX9ux2q5aTfib5FDoKrPoYdAS0RaL69qi40YFrg+/2oQ8Wo6XU/DtqEO+EQTlahLESFUgP3LaDEXOCCqNkzMsdKCGb5nfrNdy9v11DXznavbMsppOf5YxGk5IdG29mo74IPdDaW9NEdssNMiphoC15Qg9hCH1mIqkEiwKi+obX+rSlW/5QGcnGsXhFXKTyPSAlhcVrDAUMfXn+kchvXnf9kH/yr7gOqh6yT7AO6WTgwvgH3qENkHWbCI3PCKyD648KTY6lb1Zn6r/unZpVHNc2ZaXCypFqiciyXs1HIYIjSPiay9eLhOsg+KGl4c/7yj1GOFnXTAsdeRx/RKw4CoSFlRAePGQCMluss+WLphwV8fPw12X/wo/ajsayz5XEVf2QdQdQ1ZVfdxmIG6M1rOPhicbhkj9ajiO7v54BrJ25911WP2AaSZYFYGSR/nOGFWRmfZBy0b+9ZJifF1OTLu1s+a/Y2les4+gOBIWcFxG67D7APLWKd2k27f9ljQcf95kwVGRwwg+wAi1JAVITCncb9tBofBbzuzQuj7vVt9j8SNjau9bD4xj+yNYj3rgt18y35w4EpuGYl7wmCHGAZ+BX7XePW+isDY4uMV+l646zapTI4T9fwS/d50L5qQaNDaJW0i3tqF5iq5AA1YTayA3pIPXadIr47Z5j+jyukVw3LfW1GC7PBuRJAdu1yap0S1f1ro25IKAYpGDUJuWwEnYqJGsTMrDCBiXNiKJHIwfIEcvdhuPSXInjppEn/Gbz6/r7t1cxJ5WroRN9OnZYmoNMCOXAq+/bUK32dlt8Z7hjvbmWsBMBdWwMCI0osTpVwz4N904DD90FM6jVl0aYLpksWqxlgohic9dXTdtcam6NvvT9/WxZJxgDIEcdFysSp0hzm1PNdg24FtyucAU1Qb7LmF82vPXJ+919ztomb6uWhBtcUT2FR7eoLh+MepmjWAK71/6YdqwYszTNw8prs4NVte80CA3vqXchxxmwT7l0bT9reO2BTDF8aZHIaF0fVK/Tvjuux12TFkmFVy/yPk0sDmsOSmAh59QjauGMaHxRp0PXPiyyIB5MrCn9hjRCWPwTaHJc3ORGCQlGlFpIbtSn9hmjqQf1VWbwQemIoB6M9dEU3QRoDB/1xU3lw9nq8aKPC4AZbyhd6GLIprSzTwAugpk/jg/5Q2LQaeRstixQwZOGePb4jnnknxXvG7eHVbn+FPyDYG64WKaBGHXy/NxlT79sNI/M9gt/m8dz0fPhCUl3+RCmC2gjAbuSLafqW1wWAu75FwSzX1q063QmVRMeLQsdjwgC0k0KebPvVeHLfgr/deXVskcEwaWo/MKih5Ln37SxJqPaPJHodtKAq2IgcMNtwkzGIyCefMmn9o11nmN/P9Wx/Hy1ME1IbB0VJhqJjrP1YqRdgCJofZgbgvCt4Hx6wkapxQKhEpB3msRBHBlYFtirzsloAapWd5T1RjYzVxWalnrYFPIwLomqCCb5kQ3dDyzn1LuKhh7Q8VsF0fNJIQMTSpKmCly5/rBvGWVvp59GtjyVOy+4w9iO4+Ky+XNp2prITy0qlgJUeI3FqUywC7l9QWMbrPZUTORoWcnDTU4NBC9zmc9ujhk6vTPBbeDv7E+5n7D5mqjQ8QdEiHLNX2LIZogZHEgtbRUJ06WMSLGoeMjxar49BcjbPj6ANcWrHUEf5NjKOH53Do5IaL5RSWMPwpr+G2xBZIqFjwCLCpHq9UNVLL1IWpPJOkvHUUHPFZUMxDkQqdsFmg0UGYlbKNKfQVsLWKGPoiJBRtMo0iN8hmeC3PzgmeErd6FyUwAb8VIjCBXa4IKLAhzggFGOL4QpXEYVioDKZuPdVaaqeFTwWUrXcLZStb30IF+WyDh5zKjdMO5G+li1dVNx7E3/fwnxGtnYZ81ALkHyPYIL8SQUA+hwlyjVmZtQjIdcDKRJAoCVYmgkRJsDIRJEqClYkgURKsTASJkmBlIkiUqq5JdBIlwcp0vN+n19wxRe5ZQ2YmWPf149Eob3DwIkcflX6pBcpbMpP+m/mccLizu4b7JiPRyGsvapP1X0952M+XymKgu4gFcOhOeVWG2dbMXQJb9kTAHjfKB2BbSrjPxGkIZQvvUymnpb4iDRzUH5XVKwdbxRZCMMmKUGfXsB3k+hEanV3bKKNtWDaIDKoG4AF+YeYFTdnX6OzwE2b+iZ67muw9vG1xeWJtFXuMXQiwaijEl91iWoI92FbfH4H0w5mwslBRItSxQnNA1u7ObuuzyX3O6QnvvLpXn6JFWsTUfv6fTm+Mc98im+2Z5Dr+mBZQAmOGBaWIEZo1abcPJOYVNtkwzIgpB7d6BPeMOVTSP/Xsqgut53vsuDvGy+bFg7d6jOfC9ovYIEIG5I7C9osjNHNj7VTRQwhRqFrNCrgCkWwTEpyVXXyvv+9x1D/tasJcwequswwgaglBOj+CDaT1IzSL67Z0kyi/ueqoqmTIYIFFZgN1dLnkQY5zpFfOX4fNUy5enEyOIhLPpUcRVZKKQCeeFZ2QEYRjlMJhWBhf9ff3NXL6wl+y7rz7mgCvwfSDePpKaMQAblNyPFdFdYuVaVQ2jppgUdbYQFnZ38AwjRgJYDuPyn3kANiMR1ZAmDa5s/fG86NFvmsuBV7p5sZdRT7sxOKxDMs6SViaFaeauPIywYGdHgjBCkSNsUxYimukRmudGQaWGMw0ZqgGpjftOTegv1vi/RH7U5t3IbNeqwvAvWig1EQ6dgkgTMasMN0XarbYlR5Co8aa9RZCg5YGGyMwhEbrJBztiEGD26G5THaI3/q8U7dp93wz3de8U3SzbkQ9h44URnOV5zSI83Im17y18j4i2oPlpQi5UeJYeEksl4TiC2SZzBI1uYvlDVEn5WpiDXh498cVQMoswid3BqiPGKeRoTLDwlDKw13wOuhCQ58nnQ9f/pfrOrNz0iXre9Ulu0jYA+gukvJyaXOOmudWzjmXCXuCQXjSUXPOGPYEG6cRm8RU+T5shb4cH3ycuanNA7dNK/YZjd5e9xI5+qe8nx79w6+Xhs/e4e+8irv+7pngO37YrEXiv7WATxIrPmD46INhYIwRN8YpgejJof5oVgncNEQoDxcr2JTmUV0S4zfhGi//XrRTpwsLCslKU95PVxp+XdvGEmqlK6tWahuUVorzCa1otHzVwgxetFiEG1/0dqxpfuUWo6vzVo+4dnvhsqrk+G9VP+x+umLw69pWTLEDbk7gMSNtv+rsJOBkjNNsQ2ajwgDbWEglpeHxtGCE7OCfdXyTzF5Vb9WlKzm1rRpf+QA6q5YQVAQiI1gRaTGOWNfncRjW9ayFPh+H9OjuNfPjd4Xx8ZsfyDpWfmLZyTA9VTsM8gLOjY2QhEYAtxLmFgpjYmBFAxUrBl/+y7b5oOZpo96XPiaV1zXhiY7FeaI09osL2NWNGFveCHhD3NWAi71EWaQGpjAp3wT5xW1m32hxYMMa36Sf0Z+za64jc92rMTk2KoGOF3+MSgoxdEZxNLh2GIYaWaye/viIUpblJCVqQT5QjPJ8AJYChP8v8Sm5E/0nIRGlrud6rQoK97UYYFYowGAtJgAYPpnnM01mgwlcUUeTlnpcU8McWohc3VawRa4OKwjMU5kw9z/gfvEM5wQ/YbB1D8lL7zrkqlFYP/loqSQUSwujG1ImpG38gD8AlicFuFPKjSQ9pUx2klqZgu216MWsyPKyHtzA0kvjAZwpqIMbLEYxvsBUdRpJeE7EelLDC9pSki7hJ1XDLnuJiDEwSHR6XqX86m65b+r7mbatV0jIKzHITQIw80IbI8bK68wPVr4P9rrwT9g2bo3cJXJgcyA7ASMzkfWF1M9GYY1NNVY9dd+/qbD6VEdpZ5J+KvHos4NHmx2VKLPjpNffT2rOM3LN2zvHeHebgpTynpnAuC5UpzOKvQAJOufHF6iBVNrJUuNgcagMWGhNUGq3wSVx5pRlXjtGZS3JEM4YSUbJlY6Sa6ko/WXWozn/8zW35d9WXao2ySZOCyitZ0UpfnwBPgZVY4mV7aKsFwgdozIARGW9k9cw5aPoaxh+vSIOvLER8xl10GTrgCGF29MF/2H2lFrOR0f2NDCOzZ5+jv2fPcX1M+eo1+rii/28slbbuFt8utpSG/aUUqZJC5bCM47NUnDjKtqeTpese92z3RSPJY+sLSw823XTgj2lHhJoASUwrFlQKoytQHtKXUP1bk+xEcNoTwFSuD1dyGRPDWZPQJ1O2iGzdapk/W4uP9ot+5NLRNaVuUFa2BL4xrJtCexVkC9iglxjMpsZAbkOyGyIGniEqUfUwCPIbIgaeASZDVEDjyCzIWrgEWQ2RA08gsxG9dBojDVoFZFDjFo9TwuMtcVaU7KJDpX87+pIIooqEkqmxvxpOjFi0gm1bKEWdLKESSfpOfcHzXr82Ss3Z3/u7tEPyHl+VQKFUWIpvUArk2Gz5XGj4R1qVaa5UTKFWFlcSCGOU3CVxVmRX5tadxHxKmWxdibBoXKZVBoEVyx4Ub0hK8USvjlT73yL+z5uixf88c35rD0jk9q4X4xYHgJen/jYlm6ysSOlkKsFK8HCwj8iiQL/7sDDgFGOhwkbKSohSvVSDahLKwHHaAwwoN34nIRZ/Bp+Qnm4JMpXHEZaAE2Ul4Ngzw7169WV10Nk0epXyVbYyLuVYGflMQW1MBAD5TBvUCFRvlU14q1QE0oujPWKEsGyWwS8larDizD0onYJ89WleFlh5YYAdgKRCKV8WAtKbSFSyMXCSNXvRgPkwmjVPfhQXco0VA1mWaZWAdXSUR11/GthXd48hm1dThpDrMvLDB5zanlVwz0ezZCwYR4vITBPY8Jc42XSlKO7ZRJRN5dYJhF1c4llElE3l1gmEXVzCV/IeGH+y/Qle13nvPt0scPjGw3UfCG7UcnZvxW88c55HNQ3qvBtC9riCq0+OnROKcarhcV1OZMmDbTlGLXosM5ajqVOYms5djS+oluOpbW6ajx40wzPPZ2DR8973GSlAbQcS5rE1sBlxCQD6Jt048YNHbQcC4gNut5U+j5g+m8rZ0+QzTQxiJZjXVm1U9sQtKOTlmNLKucM/H3yRZ+8b50uRQTfHG0QLceex7MpB1gT/SuHo8+WY5GVijOCRbl++S8WTohYdHCaQbUcS2NVXrR+lGeYLccu33no+e2rZ0C29OZfl9ZNXK3nlmOerJrj6l1z8KYKaznGC800CWmr8Ej62b2tuXV/vkG0HMN8CMaWY8AQ4n5qOofBT/1PajlGbYuh55Zj2yeztRwLmayblmPcOkFj/o47KNj1D8c9yHf4cq23HKMWN9NCG631k9naaMVPrqiWY/k/7rXweNnSfXnxpqGFnv1WaL3lGNVGaAGrEFas7Cf/V7UcW8Fkxv5XhP9fFeGndhPSSRF+6ElUTSiAGf6ITKBMewEnZUpFFOEfY/vz4DeLEL85ba+ffBG2hUwiK1+2uZZtZCpAqDJEaA5q3sOa5ben6KQI/8PvbcKy7c399ppOm+pXa2NrvRbhh6jsm8KGChg3BrN30CzxR3tF+Ic8Wm3N6R3hnT14z55mVezbGkQRfqg6EavqeupHdTovwh+VFtOg2tyaLguG3Dq4quOhND0WbRjhgFsZZMZ9sSNmZXRWhN+pYHXr+38MdF24eMqGheOyq+q5CD8EBzM2jOCkTNFhEf43NcyHLpAUueTF9srbNOnyDgMoZwERErEiBOY07rdlcBj8NgHPru3PXld4m+823vLHqrcdyHUEsCS+aJkUrOh0n82YAedOJSESScn9eC0MgLhcNjY8gqtqGqtJLQdqh0XGt6VXPVATlpXb11LAKYLTU8iHhy4UfAvB9n56QnkTq8xLXgtcxbFAfvXfOnyu2vbUI/7CURf92lXbRu6y+K96d1FcKKphLKcLxQXoXYHoNeEjRqcVPCVO0MiFqqmcviJxuFyM9i8tHG7efyrIdJ1lsvG33GfJaykZUtiNiAwp5XWtl/0F33876/dPS9C3s6QamRo4SvCVJTKRJJSlts2yrU98cxM++2WIfR42ed+/KXmsEg+gj1WVpCKUMZ1VGdH6UQbV/eFoErFw9ImSKcDyJQyFZ6e2zr3AlhXsLCLtue16hUbI5CJ7bvteMWPkCuwXtLdafUf2De9xc1ymD287y2iCV1/yugY/IFgxXorof1kiqghlDWVVlqdBzBz4KI28VYuSg+6osfKRMSwzaOyPJm2HzVzjf6hS9Ze/Xe92vzxb5fJuHZxxQw5TPQtpdaHaCfodTNDMS8UtOYu3dURiNGFDq41eRyxuNGmakdBfv9teAEAmAUARAgBoWjTyRImljLnIRLOo5VPCLau4JDvXPSHytXus12RfCMAoNgC2+icQjuZKzn8WH4famFtnfJxrU9n4OFFTK5qPc+NVwcgdN4M8M1832m+ZNaGuAfBx/pjKFt3Mm2oApIL8/Hwd8HFGNzuSvmRiqG/uSw6n7avMAoPg42xl1c5SQ9COTvg4iQ2T6t0IOO22112yeq/vQWOD4OMksionyhCUw9EnH4fz+O+I65+H+a16dbuSpNbQ+QbFxxnMqjx3/SjPMPk4/Z27Js44pPDIzjeN+97D8aWe+TjtWTXXWO+aq1A+jkVkx55jCnJdVg8c1/uSuKfQIPg4mA/ByMcBhhD3U1dx/h/wcbo43xlgE2vlv2Bij1c379xcpmc+zuBENj6OY6Ju+DiXLHfedduw2yspPzdl9gD5ea3zcah7cy1wTPonsnFMXBMrio8z+PC1+vYb53itanjjepf7n85onY9DtRFawMqRFasGif9VfJzVTGZsTL6krcR/K/9AXoD02eMh5Nr0Jn3HwtxJD7kwOoKeYapB+KKFmyQmGmaPqaI54x2UWaZcIayZFw4/ATnyXJ9EJshXnA+YMWWb3aFbTS4wvh89kqMupI2/6sHAhAWop2IhRiU176mMo1L1NGogDvagg4W5LPnwH3lUDh7VWmDeU1FgGiyWAoWJRV7ArscRj8PUqlRlJpMqNc5Js1WN7YrPSRsaWqfns7CTggX3P5xb136dUC0njfv1cuDdj3U9Vlu32+r1dd4BtZw0U5Opsdd+KHirh47qbDa9gUItJ23ncYvbPzKKPBetzWo8+djAILWcNOvhh7qO6ZnhMat7/CGJtFm+Wk4ab2D08ztrBN5zHzrun9zlZLh6fr599KaEsfFuixt3qTJq4TiBWrOZAWavXm9v/9J7+YCBOTcWTrwGRMa4yHjXt/P7Kkl8cq0TGm3KG/gViKrjoqqD+v3NX5Mn2Pf0VNKokF1RQFQDF7W547/qyezYgA2ZP74NedP2FBCZ4KJGbf758P7dSPfpK12Gm5q9fQ1ENXHR3YfvN8T8HSpYFmwybPfd9rC4gCku8n3ybOiW9dP9t5/bsLTy+YhbQGSGi2YFmDnf8ijg5S4xilrxscplIKqFiyZUPbk0seNR94wFF7j7h+y1A6LauKjLi4Lxo4JD/Tfuef5Pm25O3kBUBxdVqiXYfqfBDo+pHvWLrjzcUgBEdXFRS89BD2u7zwlIj2rt7Z9b5wYQ1cNFtzqPz+/QP5Y/c0RQsn3zlWeByBwXPTmYPuPkfFOvqa+bHn+3qsp+ILLARbsv7Z/ZIKmjYPnSV4k9qz6HX9kSF/U9s/X5dEVT7/1x61+djPd1AKL6uOhR53E9XK77CfbYzDKv3mb/FCCywkWvLoV4jvylr2vu6tY/XM7L4GCzxkU149+/SOs7xW/OUbtR57NnbgCiBrgoa2ndMTGXNvlMH2605kOiJRTZ4KImEbe79zZt77+m3dIZx66ehJ/VEBd5TD/Yau9NT795NhZ7q1dZawREjXCR1a7wN9uOrfPZmvX5TAOLHmlA1BgX8R/NjtswfTt/g5VDrwN1+uwGoia4aKPCss6nZfO8UxXLm9WrvBm+BhcXbdnz8vYPwUDftXOTbXuv7X6ClmzZlMOQbCkytzJ1vnTPb+GIX7dc6O8UgTAbmiZbrmEyURZhB3elnzwjyNj+cMK5hvHk4HQ1QVy0VCZCMAiYGpO2wu9QcT6xUusxkUKpFBghvIp9GSkDVAOFfDX6OScuKGvtK7ACdJ9eAO0rwvsNtBdwzKZr1gSihFGpfBHkdxvm6htUX1SZt/6ea73WvVq+0iKhUstOLsdWwOkMARKhHLfTwK1rNl0jNkCnIOAwybGzO5EYlumVxUgwCgV4P4kUNl1WjRMu8KC4QrjlCkWiGProk0vWSWP/tIJfn7vc/hZIDoGqPoceAi0Rab28qi02Yljg+meaQcSr6XQ9DduGOuATTVSiLkWEUAH2L6PFXOCAqNowMcdKg9usO/bNosBnZ+HVgYseHutNOS3HH4s4LSck2tZebQd8sLuhtJfmiA12WsRUQ+CaEsQe4tBaTAUSXXOodvzCqhv/5mVfTOcM7P80tfw0Ii2AZcYKFhjq+PqzlvO/7ANtZh9QPXSdZB/A3dJ9qHALVPZBFlgrMzVbK8uYfVB8VzFqxc/3nodsNtetFjMkQouLJdUClXOxhJ1abkOE5jGRtU9rtlj+2+wDr4fvF/Rded1t39yJLY9PEC3TKw0DorKPFRUwbgw0UqK77IOZ0x9v7Wu1xy+h38c+eyLfHzOI7AOouhRW1cXpR3U6zz5oHfDlw6QMa/fcDitsCt+u/lWP2QeQZoJZGSR9nOOEWRmdZR+s+x7Z7OOmnfy5jcwyGt6NJ58H6j77AIKzjxWczOk6zD5o3+DL3DNd1nscmmplXtV/9A8DyD6ACKWwIgTmNO63reMw+G1nVgh9v3er75G4sXG1l80n5pG9UaxnXbCbb9kPDlzJLSNxTxjsEMPAr8DvGq/eVxEYW3y8Qt8Ld90mlclxop5fot+b7kUTEg1auzxeiLd2oblKLrBC+cIK6C35ItT2585OSz2nef/ZaX6Nf85SguzwbkSQHbtcmqdEtX9a6NtyHwIUjRqE3LYCzvmFGsXOrDCAiHFhK5LIwfAFcvRie9/1xrV9H6/7bvYVTqs6PeINeVq6ETfTp2WJqDTADhy/ltbhcrLfjEoHnd8cbSDVAmA5rICBEaUXJ0q5ZsC/6cBh+qGndBqz6NIE0yWLVT298tRk3+nHA/ZOu7Jodk1Zfl0sGQcoQxAXLRerQneYU8tzDbYd2KZ8DjBFtQOm36nXMOyZIMPtWJ9pT59/1kYPI1bVxutJtSj/OFWzBnCl9y99OaVVWuuON71m/6oI2jU3MkFv/Us5jrhNgv1Lo2n7W0dsiuEL43oOw8LoeqX+nXFd9rrsGDLMKrn/EXJpYHNYclMBjz4hG1cM48NiDbqeOfFlkQByZeFP7DGiksdgm8OSZmciMEjKtCJSw3alvzBNHci/Kqs3Agb/vFkA9OeuiCZoI8Dgl88qb64ez1cNFHjcAEv5Qm9DFsW1JRp4AfSUSXzwf0qbFgNPo2WxYoYMHJsYp6O72x12XVwj//sIo/4Sso3BeqEiWsTh10uzMcm+Nz5+G9eet/bRuzvLtvUeUt66CADmORBmI1dE26+0NhjM5T0SbqmmftXpVqgsKkYcOhYbHrCFBPp0M/P4L6ZvCme7bzl0aG7h9OGdyKyCkufSt78kodYzmuxx2IaiYCtywGDDTcIGJpNwzqz5h3adZX4z37/1cbw8RUBtGBwtFYaKuf5jpVKELWBymB2I+6LgfXDMSqLGCaUSkXKQx0oUEVwZ2KbIy24JqFF6lvdENTZWE5eVetZawGkM0TVBBd8yAbrvZ5Z37lvCRQ1rf6iA7fqgkYSIobnGrqfXp/3o6LvkzudT951788juM/YguvusvFzadKayEspLpwLINYDIrUW5DLB7SdVZjO5zGZGzUSEnJw01OLSQ8A2aZuPc4MGegOSRKWviZ7aKJVO18QGCDumQpdqexRAtMJJY0Lo7U6cOFvGixiHjo8XqODRX4+w4+gCXVix1hH8T4+jhORw6ueFiOYUlDH/Ka7gtsQUSKhY8AmyqxytVjdQydWEqzyQpbx0FR3wWFPNQpEInbBZodBBmpWxjCn0FbK0ihr4IvWg9yX6fsOOae6rJhsYn7j9JpgQm4LdCBCawyxUBBTbEGaEAQxxfqDZyGBYqg6lbT7WW2mnhUwFl6zNnspWtT1VBvsngIady47QDubjysH31/in2SDQqLHDOrrxHC5DHzWaDPGI2AflmJsg1ZmXWIiDXASsTQaIkWJkIEiXBykSQKAlWJoJESbAyESRKgpWJIFESrEwEiZJgZS7KOHc1zfdXj50TPvtJg8fUoVHe4OBFjj4q/VILlLctTPpv5nPC4c7uGu6bjEQjr72oTdZ/PeVhP18qi4HuIhbAoTvlVRlmWzN3CWzZEwF73CgfgG0p4T4TpyGULbxPpZyW+oo0cFB/VFavHB5HzQCTrAh1dg3bQQbO0Ojs2kYZbcOyQWRQNQAP8AszL2hAneLJQa6ufttuHYwKyPyrqDyxtoo9xi4EWKXMwJfdYlqCPdhWR81A+uFMWFmoKBHqWCFROmEknXrPcWHA1u/baoe1f9hQi7SIqf38P53eGOe+RTbbM8l1/DEtoBTIilL7GZo1abcPJOYVNtkwzIgpB7d6BPeMOVSSHHnEbok33zfx9lhxfNR0Rz3Gc2H7RWwQIQNyR8E2OG6GZm6snSp6CCEKVatZAVcgkm1CglNr+pnuvRN+8jdm3q2/or63iQFELSFIIlaQAmdoFtdt6SZRfnPVUVXJkMECi8wGyj58Ta/Aoj4e6+sMWJllJzAiRxGJ59KjiCpJRaDTkxUd2xmEY7SVw7Awvurv72vk9IW/ZN159zUBXoPpB/H0ldCIAdym5HiuiuoWK9OobBw1waKssYGysr+BYXKELvx5VO4jB1Z5pB9AlT9Me0d4om8ld6n73rg/FcOzk+qRDzuxeCzDsk4SlnqETDFx5WWCAzttB8EKRI2xTOCaW87UaK0zw8ASg5nGDFWcT2XP+OerBfmtN7Wp3WbicLIlEoB70UCpiXTsEkCYKrPC9EbDxa70EBo11qy3EBq0NNgYgSE0WifhaEcMGtwObWOyQ/zW5526Tbvnm+m+5p2im3Uj6jl0pDCaqzynQZyXM7nmrZX3EdEeLC9FyI0Sx8JLYrkkFF8gy2SWqMldLG+IOilXE2vAw0tKLYCUWYRP7gxQ90zVyFCZYWEo5eEueB3kt/znRbekTdYxHksXOLa7t/sHpWMj9gC6i6S8XNqco+a5lXPOZQJ4pkN40lFzzhhWCUzViE1iqnwftkJfozPGTN2cvN578aUo47zktmPI0T/l/fToH369NHxm/XR8tmHzD7dFNx4v9b/Zf6MW8BnKig8YPvpgGBhjxI1xSiB6cqg/mlUCNw0RysPFCjal3Wr4ZqTdgwy/xZucDvBfN99MVpryfrrS8OvaNpZQKx1ZtcI1KK0U5xNa0Wj5qoUZvGixCDe+SMUsmHr/eovw4b7bliz7dfO8BmPJivHD7qcrBr+ubcUUO+DmBB4z0varzk4CTliqZhsyGxUG2MZCKikNj+dhj7u4v853nVHgWuQ09g8XMquWr3wAnVVLCCoCEU9WROxSiXV9O4dhXc9a6PNxSI/uXjM/flcYH7/5gaxj5SeWnQzTU7XDIC/g3NgISWgEcCthbqEwJgZWNFCxYvDlv2ybD2qeNup96WNSeV0Tnuh8nCdKY7+4gF3d6fnljYA3xF0NuNhLlEVqYAqT8k3Q3aIetLQe+8PUPX3K40UbssyPkAcfk2OjEuh48ceopBBDZxRHg2uHYaiRxerpj48oZVlOUqIW5APFKM8HYClA+P8Sn5I70X8SeihR1nO9VgWF+1oMMCsUYLAWEwAMn8w7mCazwQSuqKNJSz2uqWEOLUSuZs5ni1yNU2G+kwlz/wPuF89wTvATBlv3kLz0rkOuGoX1k4+WSkKxtDC6IWVC2sYP+ANgeVKAO6XcSNJTymQnqZUp2F6LXsyKLC/rwQ3YZFtCqmYK6uAGxiheLigwVZ1GEp4TsZ7U8IK2lKRL+EnVsMteImIMDBKdnlcpv7pb7pv6fqZt6xUS8koMcpMAzLzQxoix8jrzg5Xvg70u/BO2jVsjd4kc2BzITsDITGR9IfUTstBt89JKK3ymHzhxemKYDXnYVOLRZwePNjsqUWbHqnlPrA+ftQvIHXKl8SCjEeXt2sQBs6MuVKczir0ACTo/FhSogVTayVLjYHGoDFhoTVB62HrUpzybHW7zVizKfln40pSMkisdJddSUfpsmnWnWBzovu7U7JORm4pHawElMKxZULq2oAAfg6qxxMp2UdYLhI5RGQCist7Ja5jyUfQ1DL9eEQfe2Ij5jDposnXAkMLt6a7/MHtKLeejI3vqsoDNnpr/z54S+onfMGCn14c9PktuD5/4zS7+sRbsKbVMkxYsRU9WS2Fb4fY0ckzzjOZ5vV2XXouOKurlsFML9pR6SKAFlMxZUeJUpD2lrqF6t6fYiGG0p+Yqe5rFZE8NZk9AnU7aIbN1qmT9bi4/2i37k0tE1pW5QVrYEuSlsm0JdqrOVHYzQa4xmc2MgFwHZDZEDTzC1CNq4BFkNkQNPILMhqiBR5DZEDXwCDIbogYeQWajemg0xhq0iuiTZEr1PC0w1vZoTckmOlTyv6sjiSiqSCiZGvOn6cSISSfUsoVa0MleJp0sff5ppUO/FN+DZwN+8/iZ2YxcrqMkD5WsGLaYk2VJyaIoWBMKf0ANek5rHfeAID9eiG2zic7dgyY1sw9oUya/klq6saqvLHS0WKS6iekr0CuOlMjKSk9vJeAkJgNb15nPcM4ZlozwL41wuBD+JeayUPzLtO8JuWsWDPTK3rTF3+VJ21va8h9Zq12XYMEdJ5RLhCOlaM5Q3+hOZ5ctzHXJXsU36fTsTC47+v3xR3ED6I5SQKmOErWmZnnLGgHtTU7GHSV6FlwrTHtUR4nNnzQvcZRKBjoStaujrZt9GMtx2zOp1e1ru/96z4oak9OEOu4rp7/k0g6H5KgLApLodhgkuA3Zx2RD0nPuD5r1+LNXbs7+3N2jH5BzhasECqPEUnqRZybzYcvjRsM71CrVc6NkCrGyQJlCHKfgKgs8o0cnpXYr4lXK4jGZBIfKZVJpEPR64cWStPHiPpQx6u9k8bv13lCXrAVrXbtN3LeXaYwa94sRy0PA6xMf29JNNhbOjFAprCYNi4eJJAr8u4NdCoyUPkzYSNEjUe6b1tAJDN7UuUCP3fichFn8Gn5CebgkylccRhoUJsrLQbDvj/r16srrIbJo9auUMtJBrQTX588tqIWBGCiHuccKifKtqhFvhVqU5cJYrygRLN2nGu3V4UUYvlW7hO33pXhpcqXxh92EJEIpH9aTU6mmarBCLhZGqn43GiAXRpcYEOVQ3c80VA3GtadWEtbScT91/GvBt/9zLptvf3suYR6yDR5z6nJiuCGW86zJQYdVyUEHmDDX2NU25ejO1UbU3iZcbUTtbcLVRtTeJlxtRO1tYj9lmTC6fae+tp7Z6Wsb1m/coKrafmrCl5dbH66b5nvofsffz2zy2kJz0KHVRw4kakFvLTjoOUyaNNC2hdTC5TprW3h/EVvbwrhFFd22UNTSquO0U28DtrevFnK70y9iA2hbeHsRWxOo04sMoPfa77//roO2ha0Hr8gWTa/nl2E+8H1Dq/RZBtG2cB+rdjINQTs6aVtY8+OTXr/cOy6Y8UfyvYPLjciNnvXVtjCFVTlxhqAcjj7bFiaebdrx+68c/7yTjmvrZGwg10fUd9tCEavyAvWjPMNsWyi7fGFNcWEtfl598afAFlat9dy2sCer5mz1rjl4U4W1LXx8Pfnch/kP/PZ7p0ydPG7UFYNoW4j5EIxtC4EhxP3UgxwGP/U/qW0htbWOntsWRi1ma1voulg3bQvbWvjy23p/FWxODrXqlMkl9+PWRttCaoFELbTiG7WYrRVf/8UV1bbwwP6190NvLHQ7fKprsXFjmVH5pzAFK6qN0AJWrqxYOS7+r2pbmMtkxv7XyONfNfKgdiTTSSMP6Ek0XlIAq4Qgsgkz7QWcu3TbqYVGHq8eHD3z/p+uPtlhfVLOvlv1UIsVK7RsI1NhfT2I0BzUvId9D6ou0UkjD4H3m4B//pzvcuT19ht5dVuQ68frupEHROX9YjZU7urWGrLuHTRLHtReI4+Mzyln556r5J8yNf7LoQZDJhhEIw+ourOsqsvWj+p03shj4qm67Uy/XvJNbDQs2mRWvJkeC7+McMCtDLJqR7EjZmV01shjamqty7sOTPXaaPTcrsYF3m09N/KA4GDGhhEcYGx018iDM6rvmy+zt7it7p3tmTqxfrYBlMSBCJ1lRQjMadxvO8Rh8NsEPLu2P3td4W2+23jLH6vediDXIsESgaNlUrCi0302YwacO5WESCQl9+P1dADictnY8AiuqvG0JvVgqF1aGd+WXjlFTVhWfnBLAacYTk8hHx66UPAtBNv7jCXlTc40L3ktyCBSYoH86j2OhDmsTLzHz1sbW9Re9hu52Oi/6v9HcaGohrGcLhQXoPcnRK8JHzE6rewEnCLNXKiayukrEofLxWj/MvBZu6SHf/4iyPhaPLin45uTlCxL7EZElqXyutZLh4Pvf4L1+2ct0bezpBqZGjhK8JUlMpEklKU+1mGHC9vynJMCpnmuez9+/K/W5LFKPIA+VlWSilBGBqsykvSjDKr7w9EkYuHoEyVTgOVLGArPTm2de4EtK9hZRNpz2/UKjZDJRfbc9r1ixsgV2C9ob/VOSu/wxyP3C3YMSh7rvaPmIfK6Bj8gWDFeiuihWyKqCGUpWJU1wiBmDnyURt6qRclBd9RY+cgYlhn0Ivvds1/jF3pP7bNu18vkPUfKs1Uu79bBGTfkMF28kFZbrp2g3+8aeqm4JWfxtoq5Ph7HbLcHzDk7SbDpQfAM/W57AQA5BABFCACgadHIEyWWMuZCNdt3fVt7qeluQXrDiDeFrd7Uoyxlui0YAAFIZANga9gSwtE8zPnP4uPwH82O2zB9O3+DlUOvA3X67NYZH+fNUjY+zsylFc3H2fTD76WnWRWfhd6O7d/V/hBqAHycl0vZopvXlhoAqSAnJ0cHfJyH/b/IBy8v8l8Z1+9Zxhe/WgbBxznGqp2dhqAdnfBxOhTzUwLfHPbZsORYUeRfe8cbBB8nnVU5Mw1BORx98nHWB1/cttM/3mtBo7VpLpFrHxgUH0fOqrxh+lGeYfJxXuccklUZ1sYl8eGx19s7/8zUMx/Hm1VznfWuuQrl43BTZIlPRvu6rqzTNH+Yt3WaQfBxMB+CkY8DDCHupx7h/D/g42xUWNb5tGyed6piebN6lTdv0DMfR76MjY/jvkw3fJy+d2v8trjPHcHmMQV9+vfyHaB1Pg51b64FjknUMjaOyeBlFcXH+cRrPMVywFm/uUveLg79lrFV63wcqo3QAlburFi1X/ZfxcfJYzJjY/IlbSX+W/kH8gKkzx4PeUuOlPQdC3MnPeTC6Ah6hqkG4YsWbpKYaJg9pormjHdQZplyhbDuZjj8BOTI27Ln5e0fgoG+a+cm2/Ze2/0E4/vRIznqQtr4qx4MTFiAeioWYlT+y/xo1dOogTjgCVjB4n6WfPiPkv85qrXgev35BabBYilQmFjkBex6HPE4TK1KVeYzqVLjnDRb1diu+Jy0TYKONuaOV/hLoieFHqjklqGWk3YtLXt3/B9ywb79rnEPRUkP1XLSrtaeK51j/drt8DuxvHfGiV5qOWl+7R4FZ9otFiw/MH3H4Ic5jdRy0pLGr5oyaBrXL+W04/AOH3t+VctJa/Ti5FJJgY0g/1D1W1Nfbi9Uq/HReckSjm/zvV5bjgycW/jew1WtYdXcvMETuGc9/HdMXBY+4dDNj0BkTDwwbF3X5lvWemQ1bPo+scYv94CoOiGSrcht2Hiay4L0q3V5R5pIgagG8fLWwwojn0T5bXIO2aKYdas2EJngop3Bf7p/+m28f9KG4V97/zMkGYhq4qIBw2TzPmfH8tYKfbtukO2DxTBMcdGalS1uT1nX323a0rat/RrUjQAiM1x02y819kCvI74zRly7W7vT/N5AVAsX1d97+kpC4A3P5CHb77Y/urkeENXGRbKa6UeO9+rKW98mvPmn3Q0tgagOLnoX1av2yrGD3dftfeNdt/aNbUBUFxdx0mz9ikKqum84fiI5YMDMX4GoHi7aVmnxxOhqHwN227Ty3JX9pAUQmeOi7qvrnJxvl+I/93bYxX8m+T0CIgviNR704ca+buy2L6la6K1eh7KAyBIX/Qyzfdty1GbezJnx3q+HST2BqD4uOiLkLFt7rpPnnKAmT/27JXwGIitcNHpK/OhdB8f6zMpK+fX+k6vdgcgaF3V68npXgne+35zBM9uvOfb8BRA1wEXJYxT+Q6fV8Z0xeOz2hYlpAUBkg4t+q/ryUrUEc989Hb8a18gZUwREDXGR+QjvZh26bXU//P2+vKnEbTEQNcJFk/Mn5yxNlXovOn7C+uz9sxD5xoS+JA3XN19/3evwL6d+8u77wAHQBBdd8Aw8Lv34t39SszHWspCkZUDExUWPpr2Im/yyOm/l6fN5zZJvutOSLZtyGJItMy6uMHFInOq97ebXoZd+mr5HmA1Nky2PMpkoi7CDu9JPnhFkbH844VzDePK2rJogLloqEyEYBEzNjVvhd6g4n1i7hphIoVQKjBDeCaOMlAGqgUK+Gv2cExeUtX4eWAG+pRVA+4rwfgPtBZzCNM0ayZQwKpUvgvb/7RYN+y6s6zcjjTuce+B6by0SKrXs5HJsBZzPECARynE7Ddy6x2kasQE6BQGHSY6d3YnEsNS3LEaCUSjA+0mksHG7apxwgQfFFcItVygSRWHGi2OCLZ/4adK7sio3Gy4nh0BVn0MPgZaItF6i2RYbMSxwHU4ziHg1na6nYethB3yiiUrUpYgQKsD+ZbSYCxwQVSs3lm5cB82DBny95XakY7+2XR7fFlBOy/HHIk7LCYm2tVfbAR/sbijtpTlig50WMdUQuKYEsYc4tBZTgUT3LO7fmLO98yr/lHu17nVv+pJXfhqRFsAqZAULDHV8/fmN87/sA21mH1A9dJ1kH8Dd0sblBbDXJSL7IAvWAlteEdkHH/4aEffhylX/BVcvexxqXve5FhdLqgUqb70tgNBaiNA8JrL2vOU6yT6Q82t6JT/1F8y/VS1sUeDs5nqlYUBUJrCiAsaNgUZKdJd98GPN2IWj+pjxs83u7H+wYn4Lg8g+gKoLYlVdb/2oTufZB5f7NRxkHDPO83Cqk922c/Om6zH7ANJMMCuDpI9znDAro7Psg3nL+EYrB81yzeMOkXZauopcMEH32QcQnAms4IQt12H2Qc/G4/yTr+5xn2M0qNqb/nFDDSD7ACIUxIoQmNO433aMw+C3nVkh9P3erb5H4sbG1V42n0jWujHW9zLYzbfsBweu5LazuCcMdohh4Ffgd41X780KjC0+XqHvhbtuk8rkOFHPL9HvTfeiCYkG7aFub8LbQ9FcJReggYxNFdCftm41+3OSqCzXdadXL8mtEliHEmSHdyOC7Njl0jwlqv3TQu+nIghQNGoQctsKOCc2aRQ7s8IAIsaFrUgiB8MXyNGLrdfJI71frM/irezwPP+sW8Yx8rR0I26mT8sSUWmA7f2tVf3IkB4BC4yzzpp2zi9vzXsIWBYrYGBE6cWJUq4Z8G86cJh+6Cmdxiy6NMF0yWJVeU9vBQztf8Ijzct+YeP4hx/rYsk4QBn0kstVea7BtgPblM8Bpqh237cfq9885bmn5/VOuDqhxQUtqDaJVbUKPakW5R+natZEsvQeyIpmj0YNbmbtsdo4aGMzl9x8vfVA5jjiNgn2QI6m7W8dsSmGL4zHOQwLo+uV+nfGddnrsmPIMKvk/kfIpYHNYclNBTz6hGxcMYwPizXonOjEl0UCyJWFP7HHiEoeg20OSxomisAgKdOKSA3blf7CNHUg/6qs3ggY/CEZAPTnrogC4yPA4O+aUd5cPZ6vGijwuAGW8oXehiyKa0s0AQToKZP44P+UNi0GnkbLYsUMGThe3tcFbSPjeEut4xQfOrwlt1muivVTRrSZxK+XZmP+Gn/kQuS3mfzFvZxHtv62/EN56yIAmAMhzEauiLLXaW0wmMt7JNxSTf2q061QWVSMOHQsNjxgGxr06WZYz25dmpj/E7By9YpJJgV55FZ0JiXPpW9/SUKtZzTZ47ANRcFW5IDBhpuEE0wm4ZxZ8w/tOsv8Zr5/6+N4eQr5mNs0SBwtFYaKuf5jpVKELWBymB2I+6LgfXDMSqLGCaUSkXKQx0oUEVwZ2KbIy24JqFF6lvdENUdXE5eVetZawHm8AqBrggq+ZQJ0c1aUd+5bwkUNa6GqgC0/oZGEiKFTSkyszj7+WNn34OcbYTPF49qT3WfsQXT3WXm5tOlMZSWUl04F68JC5NaiXAbYAen8Ckb3uYzI2aiQk5OGGhxaSPiW1vXItEyt4rNs68GQXoO3/kqmauMDBB3SIUu1PYshWjmsaK1foVMHi3hR45Dx0WJ1HJqrcXYcfYBLK5Y6wr+JcfTwHA6d3HCxnMIShj/lNdyW2AIJFQseATbV45WqRmqZujCVZ5KUt46CIz4LinkoUqETNgs0OgizUrZChr4CtlYRQ1+EhOJt3swlUX5vPA+8u/+iYe3fm1ACE/BbIQIT2OWKgCKHFQowxPGF6iSHYaEymLr1VGupnTZgFVC2PmwFW9n6/irICwwfcgo3TjuQd3w3MmPiwbreK1f3+Xi2lri8p0YQ8t6r2CB3XEVAfooJco1ZmbUIyHXAykSQKAlWJoJESbAyESRKgpWJIFESrEwEiVLFyqSTKAlWJoJESbAypYGnC6vXaMBf4x01s8Fn3480yhscvOhNKIV+qQXK22km/TfzOeFwZ3cN901GopHXXtQm67+e8rCfL5XFQHcRC+DQnfKqDLOtmbsEtuyJgD1ulA/AtpRwn4nTEMoW3qdSTkt9RRo4qD8qq1cOtor908EkK0KdXcOWspbpGp1d2yijbVg2iAyqBuABfmHmBf0TVvX4alkLt5zDI7seiyoeXJ5YW8UeYxcCrILS8WW3mJZgD7bVHdORfjgTVhYqSoQ6VkiUhnyckH+pkpyX+yijVcCBQ5W1SIuY2s//0+mNce5bZLM9k1zHH9MCSpasKH1eTj98YPPT7AOJeYVNNgwzYsrBrR7BPWMOlYR/b90nL6O1IPFSpxUmPi1q6TGeC1u4YoMIGZA7CrbBvdM1c2PtVNFDCFGoWs0KuAKRbBM6WdPfqcvXP/Z457TatrqS77j5BhC1hCDZsYJkma5ZXLelm0T5zVVHVSVDBgssMhuocfX6jh70xyK/be0PJH8TOJCb2RkTz6VHEVWSikCnMis6b1Qx3TMchoXxVX9/XyOnL/wl6867rwnwGkw/iKevhEYM4DYlx3NVVLdYmUZl46gJFmWNDZSV/Q0M00cI23lU7iMHwHZas6WubGHavOQhl6/deOq+17FfjNVi+5rkw04sHsuwrJOEpVlxqokrLxMc2OliCFYgaoxlAtf8tmZrnRkGlhjMNGao7o3aN6KaeYHXqpPDH+38qyCVbIkE4F40UGoiHbsEEKbTrDDtS9dssSs9hEaNNesthAYtDTZGYAiN1o082hGDBrdDZ5nsEL/1eadu0+75ZrqveafoZt2Ieg4dKYzmKs9pEOflTK55a+V9RLQHy0sRcqPEsfCSWC4JxRfIMpklanIXyxuiTsrVxBrw8BI2FEDKLMIndwaou2zQyFCZYWEo5eEueB3kt5xwycnSvWidy9wxlVbm7tg1huwiYQ+gu0jKy6XNOWqeWznnXCaAJx7Ck46ac8ZgzkVs0IhNYqp8H7ZCX4JJgcLCRWt880LHid2bJf1Cjv4p76dH//DrpeHTzW/Mw+8Zn/wO9rp9Lu3Yq3dawCeEFR8wfPTBMDDGiBvjlED05FB/NKsEbhoilIeLFWxK+2f8ooBdOe5+C4I+m2akPSdTyasq76crDb+ubWMJtWLPqhUrg9JKcT6hFY2Wr1qYwYsWi3Djiy5JkjZ+YOdIb9dpa6sONO3IOUxWjB92P10x+HVtK6bYATcn8JiRtl91dhJwhm3QbENmo8IA21hIJaXh8eVTZ9OBPDOfpB+fHBo7dWxKZtXylQ+gs2oJQUUg4sKKSLMNxLp+jsOwrmct9Pk4pEd3r5kfvyuMj98kR47wTyw7GaanaodBXsC5sRGS0AjgVsLcQmFMDKxooGLF4Mt/2TYf1Dxt1PvSx6TyuiY80fU4T5TGfnEBu7qj68sbAW+IuxpwsZcoi9TAFCblm6C3t0++VHF8U9NjazDv8+3l68mnsdWYHBuVQMeLP0YlhRg6ozgaXDsMQ40sVk9/fEQpy3KSErUgHyhGeT4ASwHC/5f4lNyJ/pOQiFLXc71WBYX7WgwwKxRgsBYTAAyfzOeZJrPBBK6oo0lLPa6pYQ4tRK4mr2eLXEWpML/AhLn/AfeLZzgn+AmDrXtIXnqT6d1mWD/5aKkkFEsLoxtSJqRt/IA/AJYnBbhTyo0kPaVMdpJamYLttejFrMjysh7cgE22GaRqpqAObmCM4uHGAlPVaSThORHrSQ0vaEtJuoSfVA277CUixsAg0el5lfKru+W+qe9n2rZeISGvxCA3CcDMC22MGCuvMz9Y+T7Y68I/Ydu4NXKXyIHNgewEjMxE1hdSP6M71y+o8vtT39R+t6yf7s+YStJPJR59dvBos6MSZXa0rrHmLafJGL9Vd/qE5l8qPl7eMxMwO2pAdTqj2AuQoPPXxgI1kEo7WWocLA6VAQutCUoh6+zNOwf85T9/8bXMDjG/u5FRcqWj5FoqSrPf2b+7ujLZJ9HBYfOQ7RPKm10KUQLDmgWlixsL8DGoGkusbBdlvUDoGJUBICrrnbyGKR9FX8Pw6xVx4I2NmM+ogyZbBwwp3J5e/A+zp9RyPjqyp103stnTmv+zp4R++rmfGDWjcVf3A+7jal8aPkiuBXtKLdOkBUvRkdVScCvcnnY3WemQen2ST3rEkM09VhlFacGeUg8JtIBSTVaUPm+oQHtKXUP1bk+xEcNoT2uq7OklJntqMHsC6nTSDpmtUyXrd3P50W7Zn1wisq7MDdLCliB7A9uWYKPqTKWQCXKNyWxmBOQ6ILMhauARph5RA48gsyFq4BFkNkQNPILMhqiBR5DZEDXwCDIb1UOjMdagVUQOMWr1PC0w1n7XmpJNdKjkf1dHElFUkVAyNeZP04kRk06oZQu1oJM/mHSSnnN/0KzHn71yc/bn7h79gJznVyVQGCWW0gu0Mhk2Wx43Gt6hVmWaGyVTiJXFhRTiOAVXWZwV+bWpdRcRr1IWa2cSHCqXSaVBcMWCF9UbslIs4fQ2S/0ftDjun7Jw7sIj9989Y7KExv1ixPIQ8PrEx7Z0k40dKYVcLVgJFhb+EUkU+HcHHgaMcjxM2EhRCVGql9aMpRXY8awFBrQbn5Mwi1/DTygPl0T5isNIC6CJ8nIQ7Nmhfr268nqILFr9KtkKVw1uJRh3fm1BLQzEQDnMG1RIlG9VjXgr1ISSC2O9okSw7BYBb6Xq8CIMvahdwnx1KV5WWLkhgJ1AJEIpH9aCUluIFHKxMFL1u9EAuTBadQ8+VC8zDVWDWZapVUC1dFRHHf9aWJcfr2Vbl6+sJdblKwaPObW8quEejy5kJfYnqoj9V5kw13iZNOXobplE1M0llklE3VximUTUzSWWSUTdXMIXWur+pUGPeB5/3yHekEVD9/HUfKE+Hi5exYOT3XOvPKyfvjp8HW1xhVYfOZCoxXi1sLheY9KkgbYcoxYd1lnLsaLNbC3HojdXdMux/a1TjxTG+3suCjqtkA1I4RpAy7Erm9kauBzdbAB9k86cOaODlmMv/uTXqLX+T+/cM33TDkxqb2sQLce2s2onzRC0o5OWY9+e7PVyOmHmvrtWcR9xWi6ZyqivlmPTWZUTbQjK4eiz5djac1fjg1b39Vte+fLSiL+T2hlUy7GhrMrz1I/yDLPl2JQXySlVB90TTPsx6FnzlQUcPbcc68iqOa7eNQdvqrCWY0dPerSwsanklZ85ZkUT3z+7GUTLMcyHYGw5Bgwh7qde5zD4qf9JLceobTH03HIsbAtby7HuW3TTcszIyfLxnE3HeYmWWw6s2/6UzAfWRssxanEzLbTRGrmFrY2W/5aKajn2snb/5FqPZN6bbpo9XLBlzyyttxyj2ggtYNWdFatWW/6rWo4VMZmx/xXh/1dF+KndhHRShB96EpZbC2CGPyITKNNewLlGt51aKMIf3dur7dnWl3yyD7SVZeV77dFitrmWbWQqQKguRGgOat7DmuU/6DayIorwH/ncMK8Gr6XP1lqd7ZYfzCYXmdV1EX6IysstbKhc0601ZN07aJb4o70i/GPvTXj9q9Ted/Xv04a0az6AXHhDX0X4oeqOsapup35Up/Mi/B1WvKk3oMZs90X5wvCwpO5WeizaMMIBtzLIjPtiR8zK6KwIf/KmajctK9XyXX0t9X71nF4Wei7CD8HBjA0jONe26LAI/1TZ+geLKzfySDi4a32f2jGnDKCcBUToGCtCYE7jftsNDoPfJuDZtf3Z6wpv893GW/5Y9bYDuY4AlsQXLZOCFZ3usxkz4NypJEQiKbkfr4UBEJfLxoZHcFVNYzWp5UDtsMj4tvSqB2rCsnL7Wgo4z+H0FPLhoQsF30KwvV+8tbyJVeYlrwWu4lggv3rhu7CO4d6bA/afOtMi9vTv5EZ1/6p3F8WFohrGcrpQXIDeY4heEz5idFrZCTiFWzVyoWoqp69IHC4Xo/3LmAadulcNu+eSe+7ewdEbq5GPUqq6YTciMqSU17Ve9hd8/8Os33/zVn07S6qRqYGjBF9ZIhNJQllq2xgfGxZrH/XZf53573+endjiDnmsEg+gj1WVpCKUsZhVGQn6UQbV/eFoErFw9ImSKcDyJQyFZ6e2zr3AlhXsLCLtue16hUbI5CJ7bvteMWPkCuwXtLda+VVu7arjNnnuUvxyU/7kCJ+8rsEPCFaMlyL6X5aIKkJZUlZlDTSImQMfpZG3alFy0B01Vj4yhmUGJZts/pHzobLPgU617Ve6Hm9Wnq1yebcOzrghh6mehbS6UO0E/c5s1cxLxS05i7d1wfHVs7o5PgEpoYOjj5k3qa7fbS8AIIsAoAgBADQtGnmixFLGXGTiQv6hDk1vnvHOmVb1a7NPecspS5luk30hABPYANg6bCvhaN7k/GfxcaiNuXXGx3m6jY2PM3lbRfNx7hpduNhgfjf3TZvfbnTeNy7MAPg4D7exRTcvbjMAUkFWVpYO+Di1/mpx422t7n6bviS5h4aNemoQfJxcVu1sNATt6ISPEzPxrdP6E2sCMjZ2GtLzb2M7g+DjLGRVzmRDUA5Hn3yc3FurckY4vnGZVc+kdvHzrESD4uOMYlVef/0ozzD5OH8aBXxNMKnrNiPD8tu5DdU/6pmP48qqOUe9a65C+TivvYdEnIw7651sfvBh2sdeHQyCj4P5EIx8HGAIcT/1Fuf/AR/ngmfgcenHv/2Tmo2xloUkLdMzH2fUdjY+Tu/tuuHjtFpeEGw/Zbhg6bW2j0/s+SVb63wc6t5cCxyTsO1sHJOg7RXFx+lr0ur1oDfdvfOsk7odqM77qHU+DtVGaAGr3qxY2W3/r+Lj3GYyY2PyJW0l/lv5B/ICpM8eD3lLjpT0HQtzJz3kwugIeoapBuGLFm6SmGiYPaaK5ox3UGaZcoWwZl44/ATkyHs07UXc5JfVeStPn89rlnzTnfH96JEcdSFt/FUPBiYsQD0VCzEqqXlPZRyVqqdRA3HAE6gJC3NZ8uE/8qgcPKq1YEaN9QWmwWIpUJhY5AXsehzxOEytSlXeYVKlxjlptqqxXfE5admXbZt+vzrZfY3j0vOf3i4ZrZaTtrr3Cfv6qb+4HhI22/6ooY+VWk7a5HGJ3C5Vu3vNdm2/M9c3RKqWk/bymclBu8VfPfa+EnlP/NiqWC0nbejqVrW51lt85nz/5aH/hT8lajlpHj9OLZdMKA5IKaq71c/80Si1/PwbXZbKF7ys5ps8OGh7Bn9sulqzma2PZq/xz9rD2zUgzrlVTMARIDLGRb0iN0+b/P6lx9r4P062rG2UBkTVcdGScZknQ5qauebLM+y/DQ3YCEQ1cJF7/U1bnDK/uqfNTP59+90lAUBkgosaKaw6vrsu5yXd+cVin09nmMheExd1rX+5Ur0/5L576vWOtniaag5Eprio71z34mHRJwQ5A5b9s+ln3yQgMiO+V+M/lnt63fXfcrZyC/OXlh2AqBYuirtru0EwuT4v58Hir08X7D8BRLVx0R8rJv00PZDknmQqDKk3yHkmENXBRbWLek4Up1YOyN8fNlZR88QjIKqLi96+fWr2fL0xf0GnYst3q5p8B6J6uMjfOyJzyrYY/zVXI5/Pv3z4IhCZ4yKXVoKAp+2W8Xb9+mtno7CQG0BkgYte1Xkyv0Pd+V6b/77sd+Wv+j+ByBIX1S2c+jLlxW8BCwfcmS457PMLENXHRYs3dT95sJud7xqLHZWHmVZaDURWuMhxesq6kcd/es55m+Pa9fsfG4DIGhcN6vO6vaJZB/clKbe/zz1iAbXcABdNCzJrX3ePuefWIctsL9dQfAEiG1zkuUh++vTT1R4zXxvPut3w7BkgaoiLQlrUMpN98OYduH7wsCXHCmLYCBctMyvo3XVmR4+cT/MPScMbhANRY1zkldn9z2V5HQMWFOcFjRu2cwEQNcFFD6vWmmwe4cVLV1Qe0vpw5AQg4uKiC38MX9K3ymO/bbxDHnuXbRHRki2bchiSLVuIrz3b5njBP+HXI5cH5b+eo4Vky7tMJsoi7OCu9JNnBBnbH0441zA+k3yYKIiLlspECAYBU2PSVvgdKs4nVmo9JlIolQIjhFexLyNlgGqgkK9GP+fEBWWtfQWLh+8ogPYV4f0Gwg6wOzRrAlHCqFS+CPK7rRz/Zpi80iiXpZGL4ltNtKpdnihRxTq5HFsBJw4CJEI5bqeBWyfaoREboFMQcJjk2NmdSAzL9MpiJBiFAryfRAqbLqvGCRd4UFwh3HKFonN8NkQfPe/7xnXl5N+EzXv+H3vXAdfE8vyjoqJYsHeNHRUQe1eSEGooCmIvEQJEQ4JJsPvEhl2xdwU76BMLFlDRp4Jdefbee0XF3v67l7vA3e0diRxJ/v6en4/vyS13uXxndr6zO7MzQ66TQ6D6z6GHQLOHOC+vaodpDAtcHf+2iHg1PV3PyLahDvhEC84WlzZMqgXrlyEyPnBA9G2YmGOlJ4tcixwqaeKx40W9ilW7N+VTdsvxxyJ2y4kRrqVn64AruwtKekscMWWnRUyNBK42kdhDbFrLqECiW6/eTapUbtwelwM9F2+w2tx7Td7TiDgAy48VLKDqOP/c4THwz3+nD37r9AHVQzfJ6QO4WqqzNR32qUOcPtgGuPK+cVxp4OmDAlPHXx6TFCdIWilJ6WG3fjuHZEm1QHkkS9ippSZEaDZTsnbxrSY5fXBocbn6/d5VFE8M3Nip+8+ZI8yahgFR+fg3Gyr3zcOJBkRKTHf6IGO3eOjFsOle+29+X/5izrVtFnH6AIruLKvoUizVneH49MHGHiFZyeNHihP/ejR/6uIYSj8kk54+gGkmmJVBpo/zmmJWxmSnDzrw5IN2T2gnGZ+ZFNWi7ilyVN30pw8gOJixYQTn/t8mPH0wv/Qbfogw1CupTOnR53zKW1nA6QOI0FlWhFL0fttdHoPfdmK5VPKjXSW3CRtqFn1ed3Qq2RvFetb5u0gM3zgQkltG4p4wWCGGgB+B3zUyZ19FYGxxfYW+F+66jTXsHAJl/xL93nQvmhgxorVL8f14axeaq+QMJHByXz70ljzxtGutck2uO08vUPh8A2mlNpQgO7wbEWTHLufmKVHtHwd9W4pAgCJQSshvIua922dU7KwyBhChF3bBcjVQXzCOJlsnUefT5d9Heu6fV+uFX+dus8nT0oW4mT4ts4dyA8xv1FXZhIFpwoRS1ZZWEb6bzwFgt/exAQY0yixOlI4z4O+04DH9oR/ptGaRpQ0mSxaretH3fM2MX/Vc5qrXRH6qVfNJWewwDhCGeESEWqYP3WFOrUDob9ezUd4cYIpoBUNtWwztXUMc82n1TO2gRz4ciHY3q2jXmEm0KP84xrgGcLn3L33f7/jw6BGZ4i3NG88p7OfQ3Gz9S3mOuE2C/UsjaOtbR2yK4cR4j8dAjMKLlW4Na7PT+e8+/SvPCDxALg1cHpbc1MKtT5iNK4PxYZkRXc+ailThAHJd4U/sMcHZj8EWh9nNzoKBkhjEiNSwXe4vTBMH8rcM9UaA8mdsA6A/FSKaoA0Eyp+0La9n9QSSHKDA7QZYyhd6Gyol345o4AXQ0x3ig//S2TQN3I1WDZcxnMDp/bX+/C9V4gVzC35P63H2+k2yjcF6oSJaxOHXc7Uxlyc/erVpl/PmvTdLjK85IiGvdREAzKchzFZCRNuvJY0wmPO6JVw/h/j1u1tBKqVGFhSJqQdsIcHQda7BZf+Cbdp6b0qX3bl/Z3ArclZB9nPpy1/SIOcnmuxx2PqiYLvqgMGGm4T7TCbhVKm675u1VnlHv3vj5XhhnJjaMDhCIQ2S8X0iFQqELWBymB2I+5TwPqizcuUwqUIerFPy4XJtGF8Flilqwy0BNUrP8p6oxsY5hg1NPWso5g2E6Nqggm+xAN2WeZ77FSGpYe0PtbBdHzSSEDEkAG2vufUo1nmeIKGM7S6fUjXrkt1n7EF091l3ObfpTM1KyGs6FSwGCJFbg3IZYPcS922M7rOByFXTI6cmqRpULXTcOuHtkHsr+T7RBUcMdszyG0dO1cYVBB3SIY9yPYshWi1Z0eJvM6mDRbyodcDICFlOHOrmyNlx9AIurUzhCH9H4+jmPgA6uaEyNSVLGP7Jq+GuiBEkFCx4BFhUj9SJGillKjHlZZLktY6CIz4LMgWopMKm2CwwaiOssq6NKfQVMK4iVD8YCcW5yqVKjbuhFsybctWl+/HCPymBCfitEIEJ7HJ+QNGSFQq+nqge8BiIymLq1lOtJTctfPKhbP39RLay9ecTCcgfWjzk1Nw4biCX1v7lXWvIOLfN7kUqV2vmfIkDyFN2sEGesIOA/BET5EZnZZYmIDdBViYiiZLIykQkURJZmYgkSiIrE5FESWRlIpIoiaxMRBIlkZWJSKIksjLvL6/1rfmOxt7r+oSemr7L25GW8gaVF6l91PRLDlLeHjPJv47XUYdb24u7brQKHnT5mS1Z/uV0m/0ihUoD3UUsgEN3yoswzLY6rnLYsicM9rjRPQBbUsJ1Jp6GYFh4n5pymusr0sBB/ZKhXjlYKp6H4aWrqL1r2A5y3laj9q6r6aJt2GkQFRQNwAP8wJwX9PWExrPnpsruG+46jX7kmdYvL7G2/N3GzgBYnd2K024m7YA9WFZvowf82bCqoE+JyIkVEqXwfe7PX235W7S3nFu5tl3ja3OYFjG+u8+H4xtGuMarprlPFY48zAFK81hR0m41rkm7vR8xr7DJhmFGTDm41CNyz5hDJQEXji51eTvYfUn/kOieL2+ONmM8F7ZfPMsYzz0ElsEpRsZzG+ujhxCioBw1KyADkWwTOmrp5e9ye3IxyfhGLnPOdoj/aQFRSwjSBlaQ5m01Lq5b30Wu++b6rapslcECi8wG6lHXr42HPGrsnVjO/d/vq1ZFkaOIxHPpUUT9SH6g8xcrOoO3Eo7REx4DMb4I9JFYNf0iWrj2tGucr0dv+kY8nQmtGMCtTY7n6lPdhquMKhtHPWBhaGzA0OxvYJgioAt/GnX2kQdgc0nMhzDtoqOZ2ujWE91WLetdRXLh8m3yZicWj2WgddJgblacauLymgkO7LQCguWH0rFYWN0p0SiuK4WBJQMzjRmq7mlLy+xf1dP1gHaLO/+EHZnkionBvWigcgyZ2CWAMLmwwuSUaBzZ5R5Co8aazRZCg5YG0xEYQqN1Eo5wxKDB7dBTJjskani6abuJdySxrnFvte2q1KDuQ4dLI/i6fRrEfjmTa95Qdx8R7cHOpUj5StlweEmmlgfhBGmQWaIe7mJ5Q9ROeY5hI/Lwtianw5RZhE/uBFBXJhtlqEphYSjd5i54HeS3rFlrdd/5Dp88ov0Pq64MvLGC7CJhD6C7SLrLuc056jm3PM65WABPAoRnGWrOWYM5tyjZqGySkrr3YSv0NbPQtMA1z/7y2tnteTPXe6MKkKN/uvvp0T/8em74RHQZ9e+qlntcZpTzXL6r9r1wDvCZwIoPUB9zZBhYY4kbw3RAdORR/xhXCbxkgFQdKtOyCa394RENbxwp4h1/PlK9svu4V2Sh6e6nCw2/zrWxhFLpzSoVV4uSSuZBQipG0VdpzOBFyIJx44sUTOvpmx+JC80T7rFJ2Xj30GApWTDe2P10weDXuRZMpgNuTuA2I2296tRUzJuZbNyCrJoeA2xhoZDnhseJfXe+LnJ57nrgS9rQso1+NiVn1Yp0D6Bn1RID+YGIkhURv2SC15/xGHh92zyvrD4d2ntEZ/3QWh+5/p4sY90nGp4M01G/wiATOH94mDwoDLiV8GyhVKOBFQ30WTE4/Ru2+KCe00a9L10nddeNyRNNxvNEadkvzmBV93pvXiPg1XFXA5K9XFekBh5h0r0J8ouLbz64OTj4pXPM66pXCldKJrdSL8rk2OgHTEz+WCopxNAJlaPBb4xhaJTF6uiDa5SuLCfpoBbMB9Lo9gdgKUD472yfkj/aZyy6gQqFz81aFRSuazHAKqMAg7WYAGD4ZH7ONJktJnBF1SaOelxTwxwcRK627GWLXK3QY/6CCXOfPa5nT/COiqJ6V+kgf+5Zhlw1CusnH6GQB2HHwuiGlAnpat7AHwD0pAV3KvjhpKcYZCeplSnYXotezIo8bujGDTxIDVNmZ6I2bmCMwnZfekn9biThORF8UtwD2lKSLOEnFcUuewQTOtAr+PjsAgeLuaS8ruRdskm5DGK8AMO4jS9mXmg6Yq27zvxg3ftgrwt/hW3hVsNVrgY2B2YnYMlMZHkh5RP01Tm2Wvk23nGSrg/S/bZNI8mngIA+OwS02VGAMjt6TSrYYutsa6895SMDPfpNf5XXPRMwO9pCcTqhshdggk69fek5QMptZ6mmvyxIBSy0MSjtn79qR+13v5xjJtYbc04US85ALCCkoyTMFaU6917uK1n8i+hAzd2PBz9xucMBSrasKH1PScd1UK9LrNkuunqB0DEyACBq1juZw3SPonMYfj0/NrwxjfmM2miyc8CQwu3py/9n9pRazsdE9jQkhc2etk/5z57i8lk/rN7cFnZ8yfRTHeur5C8Hc2BPqWWaOLAUg1LYLIVPSn7b02fLxPLZY6dK5jWfOLxKWsI0DuwpdZOAA5Tas6LUID/tKZVDzW5PMY1htKcAKdyevmKypxazJqBOJ26S2VoVqPJ2lijCZfcH57BtF2d142BJ8DCZbUlwUb+n8poJcqOT2UoRkJsgmQ1RA48w9YgaeEQyG6IGHpHMhqiBRySzIWrgEclsiBp4RDIb1UOjZaxBq4hUMWr1PA4y1t5wJmQbEwr59+pIIooqEkKmxvxpMrFikgm1bCEHMslkksmyvXd7TXn42SNl766U7UPukc/5FfaTKmUKeoFWJsNmJ+BHwDtyVJnmK1Vama64kFY2QsvXFWdFfm1q3UXEqxhi7Wz8g9QqhaIbZCx4MWdDVool9Lrq7GBddIJwzpaR9w87dS3HZAmtu2tk6gDw+sTH1ndRRQ5SwFwtWAkWFv4Jlmvx7w48DBjluB+1gSISolQvrRlLA2AidwMD2k7Ei5oiKu4tVYfKlRJZCIkAbXSXu8GeHTmvF9NdD1BF5LxKKQHbrYH4yPnd6aUxEP3U8NygVq57q6LEW6EmlFo63EMZDMtuEfAWKAYvwtBLjkuYr67AywrrFgSwE4hcqhDBWlA5iEirlknD9T9b9VBLI/T34Kr6lklVLYaWqVVAOdqqo+o/B7xcdg8bLxfcQ/DyO4vHnFpe1XK3R3+yJva/1if2v2fC3GiaLMkzHU0i6uYSNImom0vQJKJuLkGTiLq5hC+0z/Hk9VMNstynTm74l4hfel4OX2jdolpNNSuFrslBJfys54Zl0sgVWn30coVSjJcDcs1ikqSFthyjFh02WcuxIgfYWo6t2p/fLcc8fz4rdy8jULBq5UzH2g6rIy2g5VjBA2wNXF7vt4C+SYcPHzZByzG3zVUOL/lcVrjlWEJ656FulGYuZmo5dn0/m3TSLUE6Jmk59leE47ZdWZddtziNSUz7mRxsES3HdrAKZ5UlCIdnzpZjFWYvPfb9n92uqev2n7zQ/PsAi2o5Np1VeMPMIzzLbDnWbkraZeuXboI5GVfsszSXDpm55dggVsn5mF1y8KZ8azk2qkXH6ZlXe/ismzPmSa1HoUUtouUY5kMwthwDhhD3Uz/wGPzU/08tx6htMczccmzBAbaWY2EHTNNyrFXLL6uFR4J9Fs5ZvHnt6/PkmDYXLceoxc04aKMVc4CtjdaYA/nVciytYn1Jvaxo13XhBQv/U2jL+rxPYQpWVBvBAVZhrFgFHPifajn2kcmM/VeE/7eK8FO7CZmkCD/0JFxS0+EJf8RJoFh7Mc8qNT+K8O84fHzklIA2zuPPuN0dNyFtIYenzTm2kTEAIWeI0HTUvIc1y+1TTVKE/4a9Q8D4ER7OyTUGr/o5fQy5sqKpi/BDVCqzogL0xmLWDsYd/OGuCH+NyAOr+rqt9Z6mXtLIa8KF4RZRhB+KLvMAm+humpbICNGZvAj/o9IP64wf3Vs483CRlWt2dOtsxqINAx1wK4M8cZ/piFkZkxXh//lS03eM/xe3hfftqxzOuHLQzEX4ITiVWcGxSjVhEf5CrrWXvOrv6hs3r0tsmbnKZAsoZwERwuY0I0JgTuN+2yceg98mFjRu8qvTRcGm2zXjz696Q976tcEO8UWoFIDR6T6bNQPOrbJDJPLs+/FaGABxtSoyNIyvbxprTC0HaodFxrelVz3IMWhobl99Ma/iQYCvVAQ3XSj4ZoDl/WG6m2Tkwary2a8FruJYIL/6tB2Vz5Q+81oYfdo6scDzYq/z3ruL4kJRDWMeXSg+QK8sRK+WCKGdlWGw1jgXqoRu+gbLQtUytH/5c2NaAS87gdfa9prY5Z+cTlFOSGE3Ik5I6a5zXvYXfP/nqWzf/7LZnSW9ZhrhKMFXlquC5UEstW2u+vMPr08v4H3Ac8pRu71N+5J1lXgAXVf1I/khjMOswthqHmFQ3R+eMRELRy+lSgvoSxoE907tnDqBJStYWYTb85t1CgpTqYPt+c07aYaqtdgPaG9VunjxgLdti/ssGef7oNbxq/5kXoMf4K8dqUD0v8weyg9hLWMVVrRFzBz4KKO81QrZG93KSPUgDcsM2pM21bnwm3NuiS/XVD9y72OpvCyV87p0cMINOTzqmUGrC9VM3P2TkV4qbslZvK2FskpvTjrFCQ8m7/fr2rbTDfMuewEAt1NxAK4iAICmxShPlKAy5iITkksXEs+PXuKzK6Hww+OPzgea9bAvBGATGwAJM1MJR/Mz7/9XPg61MbfJ8nHKH2LLx9lyML/zcRacu5x2qqyDR5KT2xBfjyG1LCAfx/YQW3Tz+0ELSCrYtGmTCfJxVi+2Xe7ftZv7vksrvDfc63TEIvJxnh5kk85FS5COSfJxfEePbJ444pbHzr6fph9612GXReTjHGIVzhZLEA7PnPk41w8n11rKS3Gfln7ofqRvfKBF5eMsYRXeJPMIzzLzcVw+zvmUuiLQec+gnq7pN6cvNHM+TgSr5PqaXXL5mo/jP+XVfXmPpc6L6lfd19+290+LyMfBfAjGfBxgCHE/9QvvD8jHuV+k9F/lwzwEy7QF+zTcHz7KzPk4Sw6x5eMoDpkmH6dJn8zA9uMTJSv6ppQbU6XgSM7zcahrcw5yTBYcYssxiTqUX/k40+Iybu69tlAQc35dvwOf5h7mPB+HaiM4wErBilXPQ/9T+ThfmczY0IPyJnKfBNGeVF/Fk4d93pAjJV0j4dlJN7U0Iox+wtSI8EU9F7kmAp4e00dzRjroTpnypbBmXij8BKTmnTk/YGHXwg+9Nwv2ue1cHB/M+H70SE7OQZr+FfMHJsw351EshFZSzz0ZqJX6p1EDccATaAsLc1UUwb+U85+DG4q9W+9NL+kvUwCByYI9gF0fQTwOE6tOlN+YRNkiyUfYvkkv99TEKO/pmYlXKFYeiE+tUugKVRvR/K+1eATQryBdCBTfjsQfhfewhPlQQ5Qq2M0yhG9U75G1DtvmX3Wc5jyLHxDtd3TOdbY3RvASadyIktkxtdJ4vKNCRE7TIWAZYmqk5UNOU8ClDTUfrFGI9iX8VA7idQvlMKeJ4w4afIBQBEQIdtCgtaaF/ipAKK9d4GqLyDqEL6h9oH45wNiEIxLF6mNGf67U8LUw6cWe208XViA3HS/CoCjEda7dyCh7HCg+imRgefKMmmm0DW8jgaraQwa3fzCEyPMOjdDPSusOpDe76zFXfDBGXGTqVfJ2Hf4w+nYdMZAfGDnVZMOIqkwFfwMjLL6Fp7IAnHLVogldFiauuOESv/T1XyW8N30nz0X4MERbQd3l/MAnszobPn7V03DD/53J8Df6UanyVn4h8S5h5jdZzVCy4bfB+i0y5dMyrUNqeMukmki1Lp9VF4DRWXdY3dYw415zbaeTp8LDXJPWbr22ktdKxPhWdObOMWiMWa8DcDwsRBS3tQVmfVttmlk3MgejmBD2bIEAIL/vjNoBB6fOP+WzXnPAY42miQu1MYKGnhSlu5qbfacaPS7sO4RqiQBRkhWm+AGoGO07MjmF2slSruRLkBgdGD8x9tsYF89pyU93LKoXtqMsltYCvrt4BFi66Z1gzH3u6dDMrOG8jCY4TjBtiobTXXsMJ3xq/sCnEm1qWjXLEpQ6luG+tnXr6wUS6x4pJJEPIsbinq6sPqBZoCSxyBz5z6fFyatyPPSnSzoxfN7y3WQ6T02X/qIr5WK0XxZfoGu94xJ/UfT5ZQOKdrQ5wfxm9F3QnKNGaKRfVYD0ftTkvQvlUMUon4yv98lC0XCg66C3uT3qyGgH8fpdWdXtMnnlLNdFcwaAOVXFXTR6VeXGGGBG7eVVcaHoi77XGbpparEz649LbgkSRrn3Pb3gn1BK2Nm0GVTwIAKGhi1qokIOBWjgE/Unj4FDFz39sNKh+0xJ8knff9x+xdYhZ2Nnmyf6Vh7T9krF7BMpSr5M/4DidFNXWOAgbNLMoJlZPHpNeomSbzw3dHW07elZpxrTa9KTxrPHjOjNGNMgTdebEVmn06l+Wp7rdC75EZUSN7enx+6N8T7Oj5rcoNbppI6bok5nuWyswIRQy6WDFOhpcPHJBJ/vo8Tes+c6nqtX9NUWsjQC8Vv5v1Wmk0qVHPRFjIDSRBagtAMGJaN+mhFlOg3GiNe0yNJ+H9w9oycm/KvsKmzLgNFvFemkmiEOMAI6zYJRTL00Y4p0ls8u0pltAJAobby3tMrYa219ks/9FebdJGOyWQt0woRxTFeQBTp7OmIo4Qb1F5NBrXh/lkvZ9udEca0eHEw8PtwFwaboLcUyungDAk5ecd0QqewPHp6glQNCZ/brPhBuOQapFHCfDeovEE+oTIl1YcAoD51Yfb+FVblit/Z5z169YLCdr3trE6Ta6SN11AAWYPiBldLg9gxkPFwUED3jRVFAaHIx/E6J35P2RyqeKjTb++C0D7VfWJdd/hslfrlAPXMFFfUCfzLqU1pl8Kcm3xfN874sCxCsf2om1D9nUlEv+Cej/izzaUpW45XOC3rHV7X+cbS3mVC/WyedgnqhPxn1F93VG9aFOAi3ZngFn1lwPsJMqHf0pqJu9Sej/rFUh7qiz5ddln5fda7o2GojzIQ6fyQV9cJ/MuqfS267lSnzc117bFpa+MbMIWZCPXYuFfUifzLq097av720cobXBAeHTX22jBKbCfWYDVTUi/7JqFPrrpsJ9b0pVNStfwt1XdaJyZEvm73Hj3eHRq+SvlVpta5/857OB+I+PZCcsFch3h2xSsIu5wfqti5Uz7EYE+o/J+9YV87RSri7b+VlGyK8UdWLyagXz3/UDS69/Onzw41nqme6R3dW/htT5zyqBvTvlF4u7t36478r67gnel7t0r/exTMGbrCwrltHUyVS/I+USNQu+zvH654SJ6QvPtvBsU55jiQSUsH/S4HoMa5TCuxRK2t7TeVAIlGXqBKx+SMl8qJEmWWDOq9yn11F2rNW4NCLHElkZs/y01OXFhXs2X72cXrXkEccSIRfgcoVJf5IiVyNXdopa8pO4daZ5azCpUXbciSRf5tMq6WueliUcv+5xOfU8RgOJNKzE1UiJf9IiVjPO/h82cKdwulvP5xt8fBaVY4k8mHx2q6f333wXbXF3aFbn+pPOZBI2GCqREr9kRKpGDWkeauudu67l62pXqlm1SIcSeTFuQD3QYW6ClNWN/zpfFq1hwOJtJ5OlUjpP1Iii1y/VO0wRiBK2ifoM79vkoAjiQwZN2ZIYnKk15RtM/vdfXSpPQcSyVpFlYjtHykRahMKjiTym+nfbBLpvZMqkTJMEun64I5vUcVZt9XJqQXH7a5NLvlY3D9MHqLlw/wxsljgWTumVO5qviEhMP1eqlBkJ2rhKX1IXJfUUDrdnhjmPqXyFocCDy/eZnoFBLiGhhoBJsfPAf8zAJWOHWEPRs/mNW+vJJZOqFXB44IhaAUqd3FC1y3Twr2Tzv1j3XlfVXLiGTp3zwD9GX7LjvfDs4lw1QF/j75RizvmMTwdBXcRzuGJe/R6J00AJ55LM6pSkk6CKkwrkLhsiSw1r/3QINGGiok2TV+Ovkw7RhliGDB5zZIF37wy6zcHWmIBRygxDTTiXLkN7K3F1m6t8acOnzbadnZfM2Fvu4ZNz5JjElhnLlPBP+IsG/x25oGfVhUpr8cSdDMCVvhjyvId/b2BT7ObY7z39yiw3y+h0tPftBR5PcHqgJuCQ86IMxowfwNMCJxgylowwfR3r/O8wr7HzhuCJdIe5WdPyR+CqVc2nYVg1pXJa3E+Awim8MpF5ar+8hTNaXXh7xH/Vq3NDcEUSggf0a3/EbfES6Luc6VngjggmOoQK8Z5nlXGuFJ8uRLMtD6hnkMC1Z6JhbsvSH0yb68ZCeZ0GbZvDrTkTyQYt1fXCq+4Xcl75gCR6uj8oo3NRzBjWOEPMA/8ZiCYyvscGl78FeK1+uq08s2/nH5oPoLBTAEjwYAJgRNMOQsmmCmFprhJEy65pG7NKFPh4dl++UMwM9uzEUyJ9iYgmF0NapS8v6uV86zmI50KrQ2/wg3BJHRdUObQg9Ju06xiZ3d/xkvmgGAmtWeb533bc0wwr3916TCl9zfBds+zxz4lh7w2I8G0ZP3mQEv+RIIpLo22v+c61SfZSTmodIt4MxLMw3Zs8O9v979CMPVOj/uiLPtTNP7O+Nh798fUMh/BYKaAkWDAhMAJpjwTwcTOnRX50vOz26KhFTXLptuTrXsRV9gmQWv4gZ02uhv4GlW4jB8MNIAfqYHFjSIU0iBZmEoRDNQDK3YQgv0eVvhIKw3VGHRw51eHhjfeXqok2Fz2SXTBh2fKF5GogobIgvU3oV6dnvCvu27omVg7Mc+5D1gkFhShSh3ApgK9EAd4IESQgxEHeOBf6gEen8m3O/sfe+E86VRSlPVb34vUAzwTe8SNux7R133Jodilj5fM7EyMF+Shz+kYfMCH+sGIAz6MVgv2icfFiA4V7y0ZLmnaySX148J6r5qsHpoXaXFf9xjIlQ/lugJ1ZjwGRvR7m3Q7hnhRG2WkQjFAA76DMlT/ZYtk/4xR7min9t3GIg4aMcmqrGv2bAuKVGgj1ehzRvt9t2ee3TnbLTpq+oWFvhfjWEVWVKR7Er0QAjGQH0K724tNaGAymoOBrCQinUGFt4zTz3tMNsQcZSKbOvAtoV8qV2pkaqy/CvgIksFEympMT/8XvNOp4oV/D/C6WLpyc6qsinpHauGpMD34lPOl8FOd6CzllOuBscKvp0UKek13n9pV0OeMyt05r0fpgVBje7IJldeTdmCM7VRdKVzZAX9rgYlCgifYHtageOXqkokDwjf0vBS8mlXRraClo9cdwK5y7mQ54nbpkABB6c5NMRXHKb3CH0Dp6ye3sV/V55pwR02t7cmaF6eaiNIrR7NReuXJ/1E6+oRl1fWj5u6Z4BJd65BbWufdnS2O0q2j2QzJ3sn/e5QeJXi4cOIovmTNsYIxh9ffklggpYdNZhNaZdMKzZyUXuSltpZzW3vReIdR05fsXn3RZJQuCZjUd/MKK9elgz5uqLRvVBcOKP34JDahjpjEOaUf7XCz32LpBuG2iCF3u78+52BRlI7ZJUZKByqOU3rFP4DSd8YLpyf63JZsDfvUaPmGljNMROnWV9ko3frKf5SO7snx9ZdY1Evmu156IfX4oqS5Fkfpn6+wGZJNV/73KL3viA3jylQf67r5fOFDs/pKylggpfdkFZq1aYVmTkofPa33qpS0Zl5TX/i+aMyz6WsySv/NMy5sQt17mU2oYZc5p/Q1tcOjg69PFyx0fhjVNm7kVouidMwuMVI6UHGc0iv9AZQuWbRgSZ2AOu5rP/XpLlps185UG+8V01ko/VCF9P8oHSWtaE3JB1cnlvNZ2+VJzIWIAV0sjtLbQrkyGhLbiiaNIloEpV9vHjf4bLkJwjVfrKZ4i6/Vt0BKf1qBTWhgMv6vUHrQ8A9K+yIFJZMWXm1yNTzmksko/TcPSbIJdQmrUCMqpHNN6btvTLgs7TVYePBkWrvu3wt+tShKx+wSI6UDFccpvfIfQOktM9VlbGziXfZlJg7ZW+1KQRNR+vfObJQ+pvN/lI6UVuamAwcG3z3mtaSb15i0sa3LWhylZ3VmMySnO//vUfrlmRoX8aEirnNPeaqX3j71wQIpfR2r0MaYVmjmpPRK9Y8kJu695h4tHdTjo2LFNZNR+m+esmcTagCrUO07c07p9pdqRtndbOs2deqbiV49VlexKErH7BIjpQMVxym9yh9A6Y0Hz9j9T/prz70Pu3VVZrypZyJKL6Fgo/SZQ/6jdKS0StdXbRuZ2VAyp9neCiEVzy+3OEq3UrAZkptD/vco3XZ8847Wu+sLp8huDy3Zxa+uBVJ60hA2oc00rdDMSeltDi0cX/uZynf7bfnn7ZP7VDUZpf9mmRY2oQazCrXjEM4p/fWJcqfr3fVyWTD3/Henk/bPLYrSMbvESOlAxXFKr/oHUPqoL88T7q+dKNl3t+W/JzZ6xJuI0l9PZ6P0rdP/o3S0A7Z04M2vc9cL55er6FLomJqdH8xB6c+nsxmSy9P/9yjd8apfnZ9fJ7mv62Pf/5vL864WSOmHWYW21bRCMyelD70Z/9dP3n3v6DbKjXsXdq5jMkr/zTpfbEJdxirU6OmcU7pP0wr/VtkZ5Lxt7hphu9FJOy2K0jG7xEjpQMVxSq/2B1B6Fzdnj8zeM1xTLt6vtGx16FoTUfrt1WyUvmr1f5SOlNaefUffPWzf2nnyYLu+HUbe2G9xlH59NZshSV/9v0fp0mZnn0+QughnjBkzV3C4AfspUfNQ+g5Woa0yrdDMSenLm4+6te7dZp8UT0HNi0Ep00xG6b9ZKJJNqNNZhTpsNeeUPqnRIp979Y74zJw3a96Bu2+fWBSlY3aJkdKBiuOUXv0PoPR1i2o11awUuiYHlfCznhuWaSJKb5zERunPd/5H6UhpyRQ1AzZm7HZPdfun2ZsaybMsjtIbJLEZkrJJ/3uUrlV0bWXX4x+XndMdi/xw6NvHAin95042oYHJ+L9C6f+mvih34Emsx4wDV16f7PmgpMko/TcrDbMJ9TKrUA/v5JzSva46O1gXnSCcs2Xk/cNOXctZFKVjdomR0oGK45Reg4nSm63rltYnMd5107rSpw7/9WERuY6Um1oVGUFmdDv9dFCpg8kFloqIVArwjeCleuBH+H9ksyMBPxQ+F/bccVNLNZowVUQEbMGDvammoIcLoT4Nk8dtHZLWy2Xi3IpW+xrd7A+GCJrb0eKvqEXn90l2t1R4VEv/6Q6GiNmzU9n+oeRRfdGa+cXHLYr72gQMFcKHnp748t76faj7pH0Z9q3PZCnAkBU+tKZevw7i6LcucS/fDxn97VgtMFQYH3o82nfqvuaNPGPaPyi3rn3tWDBUBB+aW2VCh/hdhby2azyLBnQ5chAMFcWH+v5Trdn1Ow6esWtTKz6S92sKhqzxoSODrw9N2vVNeOCz7ZPTzkP+BUPF8KHxVTue73j4q2h7k4LKe7HivmCoOD6UfL7pgrFpvV2n3FVFVV89DaJhgw/trfB87hPpHueYsqVPz6l/zRoMlcCH2meodwj2q0WLAz/bJA86cQIMlcSH7gw++u6m+wjndYUX3J68uv4oMFQKHxIdu2Vf6G8bn7VxG2e0PVK2EhgqjQ9tnL35y+Mq333jTsw7J41dugcM2eJDrssKpjfY7+Gd/H3H+r/jhsOvXAYfOr5p5puViuPOSYpWZ9qu6v4SDJXFh07947Po2ZCLvlP61N/4SNS0Oxgqhw95zKpWJcW1j9uCrFZ3bn98fB4MlceHzoinJF4p2FAy/a1iX82GBxuCoQr40Isyj+a0KDvHY9OnC94XP1b6BYYq4kNukw/sHP/UTbCgZeFaO29/hqKshA/Nqy6/+6nbKPGM3oF7FfX9zoGhyvjQ6jmPhqVUS3LePqXqz2IJNv5gqAo+VOv8jWFRJbx8ZvXtdGtk33MTwFBVfGhhh8eD2lf8KNnRb0aHhCoXT4KhavjQ+QernfsfTPCcHSp6feLhVvjA6vjQq4TYqj9GFHZJmXOwXRmnExPBUA18aMO9rsOT/vYR7r5YeALfpRPU3pr40NhTA2XL7/QUThQ2qrhEvvkdGKqFD71//GtDlY7xgk0l2p9+uTgtDgzx8aFnpxZ1vbBLLFh4MWFfr9RAa2sPlwEka1Qb/EUaxerNz+6UtXL3mrmovCQ0cV9phNmgWUGqXeMRdk1nomoymagKIcmJy9JOiFdsuT/qVPUxsWTPQjwiQqEKpvRchjOXqdZiA/wOvlTXFRmQKaxAGC5VKIARIpqAORq0yqAaKOSr0Z0efMBAO3+3oZjndDgd2ldEw3o/ezHP6jCtEiMb69li3ZuhHyHTvQjyux0stzCw4sDO3ou8DnxLq3QlT32hKW7BnrSpzoXfnHNLfLmm+pF7H0vl0S2ACy97CFAwyi043kjMq3zYqPKLrbrJgGpo5ACkYFmQKjxCpZHDcT54P7kCq9JJ6AlfqgaapFWFy4OQKA7JWP1M0fugz5aGt885DxhILgRcTP85NCRzDHHtN0C4rFjhyvzHIooGFshr0UAHfKIFZ4tLGwac5nDpEBkfOCDaMBl/kFQj0xkCpPyS12dZV42+Ll6xvuTcm8J/OpDkZ+2PP5YmvuwRrqVn64AruwtKekscMWUnAVfAeOBqB4LlhRz8JvTRIEoyKpBIsN6vfpm1vtdW0cy2C6PHyf6pRwaLeCYdLP1IfoBlxQoWUHWcf2ox8U9grYJDFmy3FSbHKd50GGvtTvpWpcWwSKhUK+NLZMpQbRidh4oyYJxcQH8rwURANcE/ARjgAfwQaZBWpQbGRgVW4nKgugrsAxzxD8LHNfwgqZI/SMbXREZEKORAQoNUYBDcr3tkpBLeCnfRlHCpo5CPAr+CXXTki8KkylAZJt8+Pv34EcTOFGQGrSo0VAFmh0w7XCZTYr+jHa7ihwMlMJAbqR46K2w0naD+gqFViwFXXoYCr4Dag9sGuHKRcVxZJpsr8RdC9046mr4ivPpE1wNr4lYVaFoojkOypFqgvNYqBgidhwjNRk2JvcD6pxpHlnVI+oh1r9WpHg6YnKF/rXBDQaHL6gRB1OcDzVMKLOCT9xwY1IK4zvlaGqCSwIoK0Bsz1zEuwiP+3O1iTC3jlh4h/AB1pMwem8Vkack1Oe2CnZOjE/8vfjNHp0ZIkaWHVb219myYx4rNc4b+1b9uA3LVcR/9g2hiyzmWH6KbwCo6pXlEl7s7U4TF8NTwU4GFCaQEKDVNhCxIHgLNu44FkOIZ0WBFyI1my9wO/F247Oqxh4uTjRD2PLoR0l3mWigRDriVcUcJhdcUszI0L4UNjwYBkKwAIsNkOl40ApijE4u8Przghm9yi+E/Fk+7voK8TMMfTF+mEQP5AU4CKziLKOAUzAWchjqWymZwY9CpV7Z41g75cfeo5l98bnT8NZu8RNHHq+hLlOyh/EBoAitCYE7jfhufyW87sVwq+dGuktuEDTWLPq87OpXsjUqAj8b3d5EYvnEgFKllOm9NAe/FPWGwQgwBPwK/ayQfYKvW8iPgjALGFtdX6HvhrttYw4p1UfYv0e9N96KJEQMxjgXLwNQMgPFNIcJVcgYS+CvDuG0F7AVyYID8dnNa/jvramJf96iAXovnHLtBbo1U2B/eTTdSusu5eUpU+5dHT+kQACglA+9rSFNCfhMxb0MGzVNiC61VxgAi9MIuWK4G6gvG0WQbtku9+Hn4BJ+NM1s3Xh96KYQ8LV2Im+nTMnso1z5Llfde3HH4vXBlVpVCgc3X5LV6AQRsHitgQKPM4kTpOAP+Tgse059MmlNlzSJLG0yWLFb1YomdNj/2OXikdH8z5tzkgEtlPZTAUgJhiEdEqMESPMezigiE/nY9G+XNAaaIdmPamJHzl78V7kopGzCietPHHIh2MKtoA80kWpR/HNPFKFerhCSHPUcK89X0zHExqe7eUYfWup2VXsug9pZQ0ld3uquc79054jZpGyrmt80Rm2I4MdZmIkbhxUq3hrXZ6fx3n/6VZwQekJC+TXnYVlYLtz5d5CEhMrUMQKGhk2QhBiybilThAHJdc1vsMcHZj8EWh7q2RnBjCeb8GMSI1LBd7i9MEwfytwz1RoDyT0oDoD8Fyn+XqvwDYYPStLy2QhJIcoACtxtUETI19DZUSr6dTsc1fIAeRqzYv3Q2TQN3o1XDZcFoEtm6sF+lIOtMn/0hNeLix62tS7YxgVh/G7qNwa/nZmMav3hTqPT+H+6TXOsNfP3PzEt5tDExAOYoCLOVEMa0qZt1jTCY87olXD+H+PW7W0EqpUYWFImpB9Z+C4nl/MjNiU6HfV3nHx1abe8Tt5skLG2yn0tf/pIGOc90scdh64uC7aoDBhtuEuowmYRTpeq+b9Za5R397o2X44VxYtJ3K9lNhqWY8H0iFQqELWBymB2I+2CeEqazcuUwqUIerFPy4XJtGF8Flilqwy0BNUrP8p40KZCHDUR3W0MxrzxE1wYVfIsF6D49mte5X9EDa/kGd11lGixPDkMMCcD2nd9/jFqf5BkV7nsn4LWSnH1SGHsQ3X3WXc5tOlOzEvI4nTMAcrYQuTUol6FnYzHv+1FG99lA5KrpkVOTVA2qFhI+qzNWST2uPhLvq1awcLJq/SESfCVwBUGHdMijXM9iiBbQJBa0Lh41S5KhdcDICFlOHOrmyNlx9AIurUzhCH9H4+jmPgA6uaEyNaX7GvyTV8NdESNIKFjwCLCoHqkTNfrQJ4WY8jJJ8ijXgY74LMgUIOTq1xSbBUZthFX2wbCFvoKuVSSu+sHo9hCl+yw6snynx6a6f22s5VhvECUwAb8VIjCBXc4PKDAVZ4QCqDhOVHWZiIofWnf31FnThPOPbJEs/ZI8mvx9oJM3kkxQDLaYaV1XTgB0TK1zX0fiKWlIYKnWEvEi9AyYXG3wwmGxaQG1SwkPqlfYf+/ruyGvNhjYjUUQcj7c46FCbgs8h2g95PUsHnJqbhw3kHtYrf/ZeWysYM3hwA+Liy68wwHkymNskPc/RkBen7OszNIE5CbIykQkURJZmYgkSiIrE5FESWRlIpIoiaxMRBIlkZWJSKIksjIRSZREVua1otUdU7ZJXSZe6/Rga+G9TWgpb1B50ZkglPRLDlLeGjDJv47XUYdb24u7brQKHnT5mS1Z/uV0m/0ihUoD3UUsgEN3yoswzLY6rnJlMBYcCMIfgC0p4ToTT0MwLLxPTTnN9RVp4KB+yVCvHCwVo4+ASXYVtXcdAVbkrkeM2ruupou2AUcyQq3CogoqmBXInBfUZkvtPmGPigpS672+V1UavS0vsbb83cbOAFhNOILTbibVIB0Cy+rgI0g/nAmrCvqUiJxYIVF6+LZ4wRZPfH1XTrvmEXTsdDyHaRHju/t8OL5hhGu8apr7VOHIwxyg5MqKkt0R+uYDm59m70fMK2yyYZgRUw4u9YjcM+ZQSZc3ze0+FHrpvDBj89hztkfszBjPdbLHlQgZkINn25RHjHNjG+ujhxAiHTzBqnCY+QQYiGSb0M7A6z3/Xik91HP1yWNl1r8b890CopYQpN6sILkeMS6uW99Frvvm+q2qbJXBAovMBkpwvPnWgZ+3uu04smiHq+AbObpgTTyXHkXUj+QHOs1Z0al5hHCMGjIR44tAH4lV0y+ihWtPu8b5evSmb8TTmdCKAdza5HiuPtVtuArfZTWMCKkHLAyNDRia/Q0MUz3owp8WIjageAC2z8ZRnWFh2ldLosuduNDdY2Gv/jf8lpyeTt7sxOKxDLROGszNilNNXF4zwYGd5kOw/FA6Fgtc8xLoPScmsEphYMnATGOG6lzsd59Ze1+5rxu7eHifPpHklWAxMbgXDVSOIRO7BBCmz0fYYHpoJNnlHkKjxprNFkKDlgbTERhC49N8R0cMGtwO2THZIVHD003bTbwjiXWNe6ttV6UGdR86XBrB1+3TIPbLmVzzhrr7iGgPdi5FylfKhsNLMrU8CCdIg8wS9XAXyxuidspzDBuRhzfobDpMmUX45E4A9TpnjTJUpbAwlG5zF7wO8luW3KH5sVDa1ScpoWcNz28RVmQXCXsA3UXSXc41gk4555bHORcL4OkP4VmGmnPWYM55njUqm6Sk7n1wnUCiM9mmXr8pqfV9k6Xvbk0aHrOJHP3T3U+P/uHXc8PncoW6LZMOufmmVt7T4vzdkLzaJIhPa1Z8gPqYI8PAGkvcGKYDoiOP+oeeNsKWi1syQKoOlWnZhFZWmbin6NIB3jEdi7c4/z6OfO6qiO5+utDw61wbSyiVUqxS+XrGkqSSeZCQilH0VRozeBGyYNz4IgUz8ETD2yPqVPFOmv7+VO+9fZLJgvHG7qcLBr/OtWAyHXBzArcZaetVJ9iU/KxxC7JqegywhYVCnhseccdilrbsWU6yflP5n706LKtGqfigewCi4gM+kB+I1GFFxOosweuNmHh92zyvrD4d2ntEZ/3QWh+5/p4sY90nGp4M01G/wiATOH94mDwoDLiV8GyhVANWujmyYnD6N2zxQT2njXpfuk7qrhuTJ3oGzxOlZb84g1XdmjN5jYBXx10NXW2LIEVkMDyWy9e9CfKLfxpu/1dDj5POk6aeu7Pl+rt0svIxOTb6AROTP5ZKCjF0QuVo8BtjGBplsTr64BrlotOonAe1YD6QRrc/ECYPDYP/zvYp+aN9xqKbo1D4nFIDBPsYuirh1znPc3PAAauMAszJEQMMn8yNLT5wRdUmQwJXBfi5b4FSwhwcRK4GnmGLXPnpMW/ChLnPHtezJ3hHRVG9q3SQP/csQ/qqpbwjFVp5hEIehB0LoxtSJqSreQN/ANCTFtyp4IeTnmKQnaRWpmB7LZooKOOGbtzAg9TnAJwzURs3MEZx9ByiHBjBJ4hyYPCTqOXAqOW8qOXAfrvcF/VGRLkvJttUw1WuBjYHZidgyUxkeSHls6LB38d/Hh3tsa1dcpMNbcsOJMmngIA+OwS51h5aE7L34MI3lYQp12ukDG5/xi2veyZgdryE4nRCZS/ABJ2r59IRdbaYQKrpLwtSAQttDEqXK7YoFdRsgnBBxPOI4eX7k4sJFBDSURLmitLYAamt53ca6LO8p2Ns2bAjvzhA6SgrStvO0So0sWa7dJNpADDQMTIAIGrWO5nDdI+icxh+PT82vDGN+YzaaLJzwJDC7an9/zN7Si3nYyJ7WpXVnr4++589xeXzdL8kKXDFHtcpA9tJrz6oNZsDe0ot08SBpajIaikK5rs9bVG1YMl6y/u4Ld0Yv3j/53PFObCn1E0CDlB6fZYNpetn89GeUjnU7Pa0Iqs9fa1f4DtY/JqAOp24SWZrVaDK21miCJfdH5zDtl2c1Y2DJcGSs2xLgql6yB05S2YrRUBugmQ2RA08wtQjauARyWyIGnhEMhuiBh6RzIaogUcksyFq4BHJbFQPjZaxBq0iUsWo1fM4yFhrypmQbUwo5N+rI4koqkgImRrzp8nEikkm1LKFHMjEiUkmy/be7TXl4WePlL27UrYPuUc+51fYT6qUKcgyKcZi2OwE/Ah4B17gRaNVhfOVKq1MV1wIVk/lD8OOjSG/NrXuIuJVDLF2Nv5BapVC0Q0yFryYfeQzswvFEsZ/cDkcv2iL+6KEoO8JnS89ZLKE1t01MjWsz0p8bH0XVeQgBczVAu+DFf4Jlmvx7w48DBjluB+1gSKSwgwG1LmBmBd1ChjQdiJe1BRRcW+pOlSulMhCSARoo7vcTR4aRrpeTHc9QBWR8yrZCh/zaCCOH3cqvTQGop8anhvUynVvVZR4K9SEUkuHeyiDYdktAt4CxeBFGHrJcQnz1WGCjP5SCX9YVUKqEMFaUDmISKuWScP1P1v1UEsj9PfgqtrM4mmZWgWUo606qv5zwMvpp9h4efcpgpebWzzm1PKqlrs9uoM1sX+NPrG/BWc0WZJnOppE1M0laBJRN5egSUTdXIImEXVzCV9oyfwbU6NP8oWTd/7bNsK1QOkcvtCPcYEfxpezd91kO8Xm4cDwCzRyhVYfqUjUYrwckGtLJkkW8188bEPkYJfEV59lbfjx78jl7fDAnzf4jxqYSsOrAlYlQoZKvm+ETOkm4YfjzzAsIEgtOsz6WvSqe5RfMHBq+DUU81L+hdEaEZgntK0ZsDLr9i8tRMiWJlFDp9pE9UlYQiASlukMkyoBySG/+OxOBxsV7DNMuLDP5SdLWkwdSg4IuuieQA8IEgOcVzACkOyGkGxCJU7Ywojfv2ZJnCgcBKDVG42UlJRfxhT745MFA+tLRSqkaizOqIDuCzpzomHrVl5DBrqv7LGoX/e9T8nbCNb++EMQRVSJkfyQzmxW6YyyBOkAa/TLmOyiWuJwuQYrWxxEEhNhQpDCKT91WU9F+8ZeKds9Xuye+tKFLBzdExGbuNkj+SGcEFbhdLME4UD55BQOwUxMwmkjCIcfickEvI4G3CpTBo3UFV3sxFdFSIfCGo3NsJ+yfwM9o9rYf90cX/qKILnVo1k7Z1zZTj7HHpDj+fRz7KTR/BBeZ1bhNTaP8AwopGmViwQ7ZUtQEyZXjlQCJxiID4hLqVJC0YF/KVTDsUH4oxMcCpeO0F1AyvH52erqCJ9Cwj3HA08tn/LvFUo1tDBUWjR+OT8kV5FVcgXNLjl4E4yoGJUqU1a3Hw0bGrEawrFBArsdz9Z4rH12Inh5akIS2RAy+kzZI5xveDviPgRccRynuVVNMUOI+6mtmPzUKlaj/Q/vy/I9aJ34qEHr0fbkSJ1It5Hjp5YNk8uG03u3MWW2NRTAqkOaHJtBWAHZUJkqXKZVj+RH6B6oKe2hy+byUHaTKfH1C7PzSm2Lwfau9KgiebxUIPhPhEqtdZUrtLoPRrn7jCdMG4l57ucB9ktQ0cYY4NJWP8+Y9YZcDbsR2GAHJ7F3NMijT1j07Lzt7pYeMdoKdvuGlM0iqyXxVLpa6kdyWydTi5vldZ0MkHOByDmj7IhfEzHP6bxRie4VAnK4MHzVMJlaLWfoWXHJrfLyRj73hPEPJ5z+NM3pet6nMDVdgmIjOMCqOitW1udNanOJfcyi+JIL/hJ0dm7F3vplLcM9PuKi0En4qzDGbVRWtSYWBsSvwv+XyOn2kO/QL7dbM5mx/4rw/1YRfmo3IZMU4YeexGeo1eVQJ4Fi7cW8vXTbyUER/rcVHy49+GOw898epZNGPx9HPu6St9PmHNvIGIBQFkRoOmrew5rld+k2Mj+K8Nt1fnfaIc7Oe9nzSnULPJQ6m7UIP0TlNCsqe01rDVnXDsYd/OGuCP+h6LLtii7v4rb/2OwZjYquJUcozFWEH4puHavoYswjOpMX4a8tvbT9zKwMccyD0zOGO16eY8aiDQMdcCuDPHGf6YhZGZMV4T/21uOy6GVR32kxk6zbPMtabuYi/BCc06zg7D1vwiL8ktF9/1YNtRLuLWpTSpS4kVxPxjzlLCBC61gRAnMa99vaMPltYkHjJr86XRRsul0z/vyqNy3IdQSwQ3wRKgVgdLrPZs2Ac6vsEIk8+368FgZAXK2KDA0DPpxGhm3VGFPLgdphkfFt6VUPcgwamttXX8w7eQHgKxXBTRcKvhlgeT/sQl4PVpXPfi1wFccC+dULx0x9f7HXY7fZgY0HHbEN0+S9dxfFhaIaxrz2AgbopUP0aokQ2lkZBmsvGOVCldBN32BZqFqG9i8bzo7pXm9CDfGkh8euF6ud7kE5IYXdiDghpbvOedlf8P1XsX7/6RfM7SzpNdMIRwm+slwVLA9iqW3zKPNt6RexG8TRJZ1ndNi0lpx9bk08gK6r+pH8EMYwVmEMMo8wqO4Pz5iIhaOXUqUF9CUNgnundk6dwJIVrCzC7fnNOgWFqdTB9vzmnTRD1VrsB7S3OqKjw5t/XqdIlre++nb49pPryLwGP8BfO1KB6H+ZPZQfwvJhFVZ7i5g58FFGeasVsje6lZHqQRqWGVTtlv8s6Z0tHhNPLfB4fux647wslfO6dHDCDTk86plBqwvVTNx98wXjvFTckrN4WyHlWnQv87mOcFPK2B5BP8ZWM++yFwAwjwDgKgIAaFqM8kQJKmMuMrFi3ljllqIv3P7e+LTjVVmyC4XKTHvYFwLQlw2ABOcLhKPZ9v9ZPg61MbfJ8nGOX2TLxxl4Mb/zcSosc9u3q5Kj74LuNR1XdbtaygLycY5eZItubrtoAUkFcXFxJsjHabt8hcfMgWfFSfNtNW1T+H4WkY+zglU6Uy1BOibJx8noULhRoSOP3eeXHFUobs6qFhaRj6NlFc5ASxAOz5z5OEcvxm20C3b13J0hDYyft22fReXjSFiF19Y8wrPMfJw7EZtDC71s55M04Yvfjc2dFpg5H6ceq+RszS65fM3H+TfWweP0+0bOsy8EKO/z0ntZRD4O5kMw5uMAQ4j7qe3+hHyc949/bajSMV6wqUT70y8Xp8WZOR9HcoktH4d/yTT5OPzCI5c89rIX/v3se4nwtFcazvNxqGtzDnJM3C+x5Zi0vJRf+TgPggW8Z7Mqec/uUOHKKqtH9znPx6HaCA6w4rNiVeLS/1Q+TnsmMzb0oLyJ3CdBtCfVV/HkYZ835EhJ10h4dtJNLY0Io58wNSJ8Uc9FromAp8f00ZyRDrpTpnwprJkXCj8BqXnPTi3qemGXWLDwYsK+XqmB1ozvR4/k5Byk6V8xf2DCfHMexUJoJfXck4FaqX8aNRAHPIGHp4FWVhTBv5Tzn9KG4hYPTqeX9JcpgMBkwR7Aro8gHoeJVSfKDkyirHh/lkvZ9udEca0eHEw8Ppy8F1RAiBZgGZ11R8iMV1w3RDpkhZMB7fAVV5U8qIfkf6OSh6HeQQEGKTkBj0wBy1PAFrmHBDjqHZlQ/zl5x7pyjlbC3X0rL9sQ4b0+19OXxfMfeYNPbFJP73F0YvM35w2bREodp0qkE5NEYufOinzp+dlt0dCKmmXT7fuR90RdYfKMlu6RMS4vdTfwNYD1df0uIzXQ5cV6tYWpFMGwHCNMCQzBfg9zh7XSUI1BPgj1iGQRiSpoiCxYfxPq1enbubrrhkar7cS82xDMgqikPlhUfdVxRPklCBFcxyHKL8G/1PJLPpNvd/Y/9sJ50qmkKOu3vhep5Zcm9ogbdz2ir/uSQ7FLHy+Z2ZkYJw6j/nZ5JuoHI8ozMUnaBlYPwMWIlNaMnUfaDd0cIonyGZ1RPD3AIS/S4j4aBuR6Hcp1BcrliYEHzY+bpfGkDezvOEADvoMyNNtgZP+MmZrRTu27jUVUiWKSVVnX7NkGHCJtpJrBcb0/on79EcN8UkpsFjTpl7GKVWRFRbonIWod4wP5IbQdrEJbZVqhESbYSiLSGVR4yzj9vMdkQ8xRJmevjgve+lqu1MjUWNYd+AiSwUTKalnX5q/6NbzgOT/T+tnzl8EzqLIq6h2plQ5S6AtY8CjBLvipTnS6csq11tdv0hWbUKezCnXYcVqtL9YGCriyy3T1WZDgUcuksCq6FbR09DYd2FWuVTzKEbdLhwSITvfOTTEVxym9MxOld31wx7eo4qzb6uTUguN2144m58r6h8lDtHzYV5ZM65CvmHpaV/MNCYFLEalCgbdflcPGebB4tyMSYMe7XTrNGnrVdVuf6KgqXb0FTK+A8JcMzdMDmtE3FCAVIEQ1w7MX826G5DWPrCTWfRfMTQ18YXTxhUmee7sVauwTdb7K4mvfKtemNnhBfsVcXUKvcs+OVBCt81xtGyx2nNq3XB7nWBTAKgBitUSAyv0AC3z7UOOyxnQSVGFagcTFS9OivnfJu97b5VsPb0yvd4e2pRxiGDB5nU/gm1uxfnOgJRawnYxpoBExNhtYZ4it9NRhR6mj6JPQe8bKvr1+Fbz9gqyX8G5TwZ8Uwgb/TPPAT8sQy2ujbt2MgNnO4JsgJfJGsWBVMeteoqT7Xwc2bNon6zctRV538x1wU3DIGUEwMPkZTAicYLpYMMHMX3Hq0hJJP7etoz57K/yHlskfglk2lY1gek81AcGcO6oJtjr+yH3ipCKPpu3+5sgNwcQeKVTydcY01/h9+2ZlTBrQigOCWTSVbZ5PmMoxwcxaVnH1r2+BbtO8vU6NGTDAy4wEo2T95kBL/kSCqbrsQ+GPH2+4TXXqcKvzsXv9zUcwrqzwNzcP/GYgGFnB/knlvma6TbDKSHfaXXCH+QgGMwWMBAMmBE4wzhZMMAq/4xnFilcVxXkqo6t+lmTlD8FEr2QjGNeVJiCYskktD9rVTPJMOBcw5LuDJI4bggnp2K5NrfJffVeuXj7WJj3VkwOCmbCSbZ4rV3JMMNPKtxTdvbDVbfHq3puL+JxfZkaC6c36zYGW/IkEs1BaadCqQ688NnXdWX9uZrHn5iOY5qzw1zQP/GYgmJZvB60YnVzWc+XqLlknS8smmY9gMFPASDBgQuAEI7Bggrm/vNa35jsae6/rE3pq+i5vx/whmKztbASTtN0EBJPineZfc5S9x8LhhWY13v40iRuCGdbgsn/BNm29N6XL7ty/M5iLFUzmdtaNou0cE0znIYFHO7Y77bOs8KjXq337ZpmRYI6zfnOgJX8iwXTd0Gjmiqs24oPNurTfXH5GX/MRTCwr/DPNA78ZCEZa+5d3rSHj3Da7F6lcrZnzJfMRDGYKGAkGTAicYIQWTDDXilZ3TNkmdZl4rdODrYX3NskfgtmQzkYwIekmIJjNY+0Djv81yWveqtfbv75YcosbgpkfuTnR6bCv6/yjQ6vtfeJ2kwOCWZPONs9np3NMMAMjPvX46DXZeUv1rHtlb89zMSPBjGL95kBL/kSCGfWuXv0Cn0+J195a+eTarxVu5iOYbqzwdzYP/GYgGA+r9T87j40VrDkc+GFx0YV3zEcwmClgJBgwIXCCETERjNE9Fez00sv/ngrVbtd8+8+I8ZJF3999WhyZmpqjp4LjkcQH4oq1JTMEDjVnNxdMz9FTYcpfO6tf1gR6Lgrc2r1K4o2ZOXoq3A5r9qzf8rteKbxCsellgufl6KnQyO1e8AteWZfZj9dGlpcHfs7RU+HxaN+p+5o38oxp/6Dcuva1Y3P0l5pbZUKH+F2FvLZrPIsGdDlyEAwVxYf6/lOt2fU7Dp6xa1MrPpL3g72srPEhl1528/s0HeSxdm9KRNDN1bADVjF8qMWThPGxV72dUzLUc52y3HzAUHF86PPMw/v69Wsm/Ht8v2qBW2bAXhE2+BC/16964saXPBbvHDfu8rNJW8BQCXzIXhGffHveMY+EzQ+S5h/wTgdDJfGhSUtXrU+bV0gUs6lMM3d714dgqBQ+lDGn+byCT1f6Tt24ycGvRufWYKg0PnRrfVOf7wVOuO36bNXr27mNPDBkiw8Fdno7+/r7Ft5Rvi1sS37t/A8YKoMPLSj7MeGO9J3bWvsyTb5kFBoEhsoS8AYWXFJmj8Z30fT425ucWkDkyxEPjCmWOGruUs/4yx7Pv+9LrAuGyuND8xpVmvHtXhnxkh4PZzQ4XrsYGKrAY2zFUZF44F/jIo562wkTL/6oWbhB5jgwVAkfUkm+LF+z4Ibnsn9/PapvXXg8GKpMCMXuc9cBC6/5Lur5vECvnZfagaEq+FBI5fnFW0yxd5/uGrth2IyA4mCoKj70qs6bkuFV1rhua7vuScKjZcPAUDV8qJLm7qG2rTZ4RQ2SJq79XqQCGKqODyVYZ3w77zvEZafP16yGvUIDwVANfKhbyQIRkTYbxas/2jezuioaCYZq4kNbvwXENXI65by13andLwudmQGGauFDq8Y6+mTdCpGs//jiROinxiPAEB8fWlfrdOrJj7GC5aXmSxclLn9LaxZSm8fQLOSALH1m6bOrReusUldU63ZtO8JsGNssxIXJRFUISU5clnZCvGLL/VGnqo8ht78qKh4RoVAFIypgMTnADfA7+ETNUrkSuoXhwCEGRkgjCw2XGVzyimqgkK9Gz2zEBwzt3dpQzLt9NR3aV8TpLT/gHu+4alRFUNvsiqC6F0F+t6gT6d+H8bv6jt9VQPBE8HY+hwVBOT6kBbOrr0OAglG5f8cbiXnpV43yiVt1kwHVwM6eB8uCVOERKo0cKwEG3k+uwJZOhJ7wpWpY9VYVLg9Ca8j9Fb86bPLx2vVrzj8jFWMDyCV89J9DL+GTPcS13wDh2sEK16qrFuHJ0ctNGunJOeATLThbXNowqZYfLh0i4wMHBJYTGCSFtTgYa/00eXL1evfD74QbO1sPP7msw7+Uag/4YxHVHogRrqVn64AruwtKekscMWWnVfwxErjaRGE6ouiCjAokuiVw0dJH7rQrK9r+dGBgnR7jnua9DB4HYO1gBQuoOs4/Yib++a969m9Vz6Z66Capng1P+026BgReAXXQZhvgSpdr+VE9+9iXJmcVzrbCHWVC7mzpcSiIQ7KkWqC8biABhKIgQrNRUwIWG1ZcM0n17OSrdz/5tPF32z1xHq9nlldvs5YRg6j0ZEUF6I2FVvrIbYOJu+rZ8645lx3Mv+O67+Lgg9e2r9ltEdWzoeicWEVX3TyiM3n17PryhCOC81/dZh1KfRR5aw7fjNWzYZk0zMogyx/zmmJWxmTVsz+tsasoi/YSrJ6oONT+jBU5hGH66tkQnJ6s4LhcM2H17FJZ3xe3in3lGz/nbDeXld6DLaB6NkTIiRUhMKdxv82VyW87sVwq+dGuktuEDTWLPq87mrw4t5YAH43v7yIxfONASFQz5MOOzoQnDFaIIeBH4HeN5ANs1VpdnWhgbHF9hb4X7rqNNchxou5fot+b7kUTIwZiHAuWgYonAOObqKibM5CA/RPjthWwF8iBAdpTal7mfqE+Apc9icsD5P1ntqBEk+DdiCJR2OXcPCWq/cujp3QIABT2BD8BT1NCfhMxL+CJUbVfKmMAEXphFyxXA/UF42iyDVdWqB24vKnnwkNPvoffPi4nT0sX4mb6tMweyrUh0+XrkldlF7stfBX7ZO7xq+85AMyZFTCgUWZxonScAX+nBY/pD70liTWLLG0wWbJY1edx7t2j7qs8dvSaWmedW3rNslgxeSAM8YgItUxfegZzagVCf7uejfLmAFNEW2rxtPV/uZ0ULh18MbX9Ja03B6KtzCpaKzOJFuUfx3QxytUqIclhz5HCLOMx91bIlSJeK9ymnhw2sX4wNeCHKGynu8r53p0jbpO2CRAxv22O2BTDidGNiRiFFyvdGtZmp/PfffpXnhF4QEL6NuVhARIt3PqE1WRlsL6RTEMnyUIMWDYVqcIB5LoyKNhjgrMfgy0OdbkmcGMJFvYwiBGpYbvcX5gmDuRvGeqNAOVvfhOA/hQo/12q8g8Eyl/xZl7zUwSSHKDA7QZVhEwNvQ2Vkm+n03ENH6Cna0IB/6WzaRq4G60aLmOoIF9ieZqDwK23a0xgse6iQd1tyDYmEEs6oNsY/HpuNuZ6+UN+814+8lof5StY4rNOm9e+XgBmRwizlRAeXKdu1jXCYM7rlnD9HOLX724FqZQaWVAkph5YThR6FfG501Cf6zPEk/oNFsSPsCOXt7TJfi59+Usa5LychT0OW18UbFcdMNhwk+DOZBJOlar7vllrlXf0uzdejhfGiUnfrWQ3GVZHgu8TqVAgbAGTw+xA3AeLkWA6K1cOkyrkwTolHy7XhvFVYJmiNtwSUKP0LO9JkwJ52NDSiQ3FvMM3ALo2qOBbLDyldCOvc7+iB5aHB3ddZRqsGA6GGBIAn8J1CngXaeI5++ugV79mT+xEdp+xB9HdZ93l3KYzNSshr+UAAXKpELk1KJehZ2MxL+EGo/tsIHLV9MipSaoGVQsJ35WO8zwLBz10m1z6/vZXn95QWn/jCoIO6ZBHuZ7FEK1FrGhNuGGWSkLWASMjZDlxqJsjZ8fRC7i0MoUj/B2No5v7AOjkhsrUlJQ4+CevhrsiRpBQsOARYFE9UidqpJSpxJSXSZLXPmCO+CzIRKXN+TXFZoFRG2GVfTBsoa+gy9/FVT8YCUWNcd8LX6v/VbgnIFl53r5Ha0pgAn4rRGACu5wfUCxihQKoOE5UHkxExQ+tu3vqrGnC+Ue2SJZ+SR6da+U/BlvMtK4zuIof1VoaUsWPl6sNHl+14/mOh7+KtjcpqLwXK+6bVxsM7IbLDbzochStDDbwHFrqIfe0eMipuXHcQJ6+JVrb7cUJl5gf1bNGVZlzmQPIq99mg7zEbQJyL86yMksTkJsgKxORRElkZSKSKImsTEQSJZGViUiiJLIyEUmURFYmIomSyMpEJFESWZmtS92Lend5sevydOtXD7zq29BS3qDyIrWPmn7JQcqbhEn+dbyOOtzaXtx1o1XwoMvPbMnyL6fb7BcpVBroLmIBHLpTXoRhttVxlSuDseBAEP4AbEkJ15l4GoJh4X1qymmur0gDB/VLhnrlYKnY8jqYZFeRJ0bAijzLuDB/NV20DatmroKiAXiAH5jzghoHKJNF1ad7xqnTHmwMWtI+L7G2/N3GzgBYOV3HaTeT1iAKLKvLXkf64UxYVdCnROTEColSTVlCyxoNOvrsu1z+8o/q789xmBYxvrvPh+MbRrjGq6a5TxWOPMwBSlnX2FC6fI2++cDmp9n7EfMKm2wYZsSUg0s9IveMOVQyOWt9Vj+FozDGwU9Rc8QUiRnjuU72uBIhA3KwgG3168a5sY310UMIUVCOnmuQgUi2CQnOr3nxHybtribcvdw2LDhks8gCopYQJGtWkLKMjOvWd5Hrvrl+qypbZbDAIrOB0nzoGn/7/lPvxXuSHn52d9hPjiISz6VHEfUj+YHOXcaYLkTntD6m681EjC8CfSRWTb+IFq497Rrn69GbvhFPZ0IrBnBrk+O5+lS34Sqj2h5TD1gYGhswNPsbGKbzUKlOCxEbUDwA24br+RCmFT8fsV62apPzCj5vyEmvzuQOdDZYPJaB1kmDuVlxqonLayY4sNNnIVh+KB2LBa55inFcVwoDSwZmGjNU9TrLmg9cGSBaV3XU4/k1i7ciWyIxuBcNVI4hE7sEEKYNrDDNu24c2eUeQqPGms0WQoOWBtMRGELj03xHRwwa3A75MNkhUcPTTdtNvCOJdY17q21XpQZ1HzpcGsHX7dMg9suZXPOGuvuIaA92LkXKV8qGw0sytTwIJ0iDzBL1cBfLG6J2ynMMG5GHZ/soHabMInxyeFgx46FRhqoUFobSbe6C10F+S8nPLl9OV5opSK31U7bnwEDKOSTsAXQXSXc5tzlHPeeWxzkXC+ApAeFZhppz1mDOfX5oVDZJSd37sDWqXds50sl7/HvBwmv7Wq1Lm51Ijv7p7qdH//DrueFz7lit7eEnHFzmDdmZOl9RpgsH+Dx8yIYPUB9zZBhYY4kbw3RAdORR/9DTRthycUsGSNWhMi2b0N5c21XV1WuN+4Qhg0MWtD1Rjyw03f10oeHXuTaWUCr7WaWyyaKkknmQkIpR9FUaM3gRsmDc+CIFM7LLsBrxDad5bEia8XyXx9qCZMF4Y/fTBYNf51owmQ64OYHbjLT1qlNTMe/1Q+MWZNX0GGALC4U8Nzwm2i2q0XSarfvB5CEtKpd+1pTS1kH3AERbB3wgPxDJeMiGyI6HBK/7MvH6tnleWX06tPeIzvqhtT5yneyl4J9oeDJMR/0Kg0zg/OFh8qAw4FbCs4VSjQZ25NJnxeD0b9jig3pOG/W+dJ3UXTcmT/QhnidKy35xBqs6PzqvGxkBr467GroGFliTRXiESfcmyC++Y9+LKbe2H/CJf3XTa9y4a8vJysfk2OgHTEz+WCopxNAJlaPBb4xhaJTF6uiDa5SurTzpoBbMB9Lo9gdgK2v472yfkj/aZyy6QjSFz83a1R6uazHAKqMAg71E/fST2c/iA1dUbeKo4xc1zMFB5KrUQ7bI1c8HBOZdmTD32eN69gTvqCiqd5UO8uee5ILqpbxJzejohpQJ6WrewB8A9KQFdyooLe0MspPUyhRsr0VvxkoeN3TjBh6kfgzgnInauIExCvVjRM8vgk8QPb/gJ1F7flF7dlF7fv12Ty/qjYieXky2qYarXA1sjjEtCOc13Tiw9lNbn4XSg+s3L7b5i9yCUECfHYJcGwx93798aru/OnrOe1Dw2Mbi8nd53TOBdfyhOJ1Q2QswQSf6cTqimRYTSL/TqHFFg+j92oaFnA86Sp//LCYlbzUa1qiRitLE5w96fev61XXG9fmz7s0YwwVKalaU+j+mtWFizXbR9buGjpEBAFGz3skcpnsUncPw6/mx4Y1pzGfURpOdA4YUbk+7/T+zp9RyPiayp8cfsdnTFY/+s6e4fBptFjk6rN3uE3d9Rsg/L1POcmBPqWWaOLAURx+xWYptj/Lbnrar4LlgbOO6ztEby24Y3XptGgf2lLpJwAFKK1hRmvooH+0plUPNbk8xjWG0pwAp3J76W/yagDqduElma1WgyttZogiX3R+cw7ZdnNWNgyWB6yO2JUFrPeQBnCWzlSIgN0EyG6IGHmHqETXwiGQ2RA08IpkNUQOPSGZD1MDTlxik18AjktmoHhotYw1aRfSih1I9j4OMte6cCdnGhEL+vTqSiKKKhJCpMX+aTKyYZEItW8iBTAKZZLJs791eUx5+9kjZuytl+5B71PwhqVKmoPenZzJsdgJ+BLwDL/AC26LzlSqtTFdcCLZIZathS627iHgVQ6ydjX+QWqVQdIOMBS9mH/nM7EKxhGttXt+qGtHIJcVVpllfcI6ayRJad9fI1LAJK/Gx9V1UkYMUMFcLvA9W+CdYrsW/O/AwYJTjftQGikgKMxhQ5wZiXuP7wIC2E/GipoiKe0vVoXKlRBZCIkAb3eVu8tAw0vViuusBqoicV8lWuLakgfhbo/vppTEQ/dTw3KBWrnurosRboSaUWjrcQxkMy24R8BYoBi/C0EuOS5ivDhNk9JdK+MOqElKFCNaCykFEWrVMGq7/GStMrL8HV9UeFk/L1CqgHG3VUfWfA17W3mfj5eD7BC/3tHjMqeVVLXd7dCBrYr+fPrG/F2c0WZJnOppE1M0laBJRN5egSUTdXIImEXVzCV/ofvLAp23uVpYsmd6uE2/B1Yc5fKEB8/45G++V5rln8IOG9SVjg2nkCq0+UpGoxXg5INfeTJIs5r942IbIwS6Jrz7L2vDjyUuj0njgzxv8Rw1MpeFVAasSIUMl3zdCpnST8MPxZxgWEKQWHWZ9LXrVPcovGDg1/BqKeWFPYbRGBOYJbWsGrMx4T2khQrY0iRo61SaqT8ISApGwTGeYVAlIDvnF06tG7l572UGwal6nU5uflitEDgi66J5ADwgSA5xXMAKQBENINqESJ2xhxO+pWRInCgcBaPVGY8eOHb+MKfbHJwsG1peKVEjVWJxRAd0XpGz833g+2Os12nvhgorWn9dJb1KKqOIPQRRRJUbyQzodWaVjZwnSAdbolzHZRbXE4XINVrY4iCQmwoSgE+kPiq412X3Sc9sD+Zqs7WvJoTFr3RMRm7jZI/khnPKswuFZgnAgdDmFQzATk3DaCMLhR2IyAa+jAbfKlEEjdUUXO/FVEdKhsEZjM+yn7N9gSM++Iu0o2dJZ8PfSLwnl5i4MJ59jD8jxfPo5dtJofgjv5RM24V21oEJB5EKaVrlIsFO2BDVhcuVIJXCCgfiAuJQqJRQd+JdCNRwbhD86waFw6QjdBXRNkQxNwy2vinmsmVxgW7VDa4fTeusg0qLxy/khuaOskttmdsnBm2BExahUmbK6/Wi5MpTdEN4O/uS053gr300l+o8qkDye7D1aM/pM2SOcb3g74j4EXHEcp7lVTTFDiPupfZj81CpWo/0P78vyPWid+KhB69H25EidSLeR46eWDZPLhpPdVIgpU2ZbQwGsOqTJsRmEFZANlanCZVr1SH6E7oGa0h66bC4PZTeZEl+/MDuv1LYYbO9KjyqSx0sFgv9EqNRaV7lCq/tglLvPeMK0kZj3EWK/BBVtjAEu7Um6S0sskJGrYTcCG+zgJPaOBnn0pTvuaFK3RnuPjXWc0oefKECuPWZNPJWulvqR3NbJ1OJmeV0nA+TeQeScUXbEr4mYd/upUYnuFQJyuDB81TCZWi1n6FnB2+UxUiUb5TY/ZsDHMjPeN8v7FKZgRbURHGB1khWr3aZ1dYh9zKL4kgv+EnR2bsXe+mUtwz0+4qLQSfirMMZtVFa1JhYGxK/C/5fI6faQ79Avt/symbH/ivD/VhF+ajchkxThh57Ehmfp8IQ/4iRQLOzn+Cw/ivCPj+32tLxymPvuZotT/XpuWs/haXOObWQMQGgNRGg6at7DmuWzn5mkCP/cV4F+Pd5tEs/jZzx6u3TMCbMW4YeojGJFBeiNxawdjDv4w10R/pKVNG+XjeI5r205eEvfEMclFlGEH4quG6voOptHdCYvwr/kSsi9Oau7+2723xiT5TntuxmLNsAWkJiVQZ64z3TErIzJivAXWxtXcmuXMLdJM71CWl+RXDBzEX4IzihWcEKembAI/8oqE4tWv1PVdUq517WXR4epLKCcBUSoGytCYE7jfls/Jr9NLGjc5Feni4JNt2vGn1/1hlzu3QY7xBehUgBGp/ts1gw4t8oOkciz78drYQDE1arI0DDgw8Eu16oQo2o5UDssMr4tvepBjkFDc/vqi3kjngN8pSK46ULBNwMs7+s9z+vBqvLZrwWu4lggv/rxEf1k8ycI3Bcf99362T3DKu+9uyguFNUw5tGF4gP0tBC9WiJUP2IYrH1uXCNs3fQNloWqZWj/0rOlS4m4B3u8o9aUP7a/4c/FlBNS2I2IE1K665yX/QXfX8L6/ds+N7ezpNdMIxwl+MpyVbA8iKW2zcJ7vEO2vPleSar7fZpu/0jpM0c8gK6r+pH8EEY9VmHYmkcYtObYxkQsHL2UKi2gL2kQ3Du1c+oElqxgZRFuz2/WKShMpQ625zfvpBmq1mI/oL3Vx10r+1zxvCfeOPXWjoPttd/IvAY/wF87UoHof5k9lB/C+v6MTVhPzb7MIPJqjPJWK2RvdCsj1YM0LDMo4YNf96SZsZ6pfsHTNVm9O+dlqZzXpYMTbsjhUc8MWl2oZuLuvZ4b56XilpzF24p8OXfhy1nRvvNLfwuzSXGSmHfZCwBwJgC4igAAmhajPFGCypiLTEy+NTuhiMN38ZqEk40mBr5pRqEy0x72hQAUZwMg4bXe0ez//ywfh9qY+//Y+w6wJpL3/+ihNBFFQRTFWAGlqWdvQAi9KZY7eyRBooFgElTEgr1iPRU7NhAVxa7YsPfuqeedDXs5xd71P7PZDezu7JKYJcn39z+ex+eRfdnN5vPOvPPOzGc+r8H4OEOesfFxKj4rbT5O7t9LB961KQzdNbdnnwv3C4+aAB9H8Yxtd7PPMxMgFSxcuNAAfJwHPbOUZk39Q1bfvNiyzpxH902CjxPC6p0WpuAdg/BxpkU6h77Z6h68edT9d0sfKGaYBB+nLqtzKpqCc3jG5ONUjK80sdbFlz7pFQrHZVnYpZoUH+fzUzbnPTT6NNGE+DgD3MrwqoyqH77y/qw01/hJ/xiZj3OJ1XP7je65UuXj+Hxr+XJ8vTaB2beqPHT5sueaSfBxsByCkY8DAiGep/b9v8DHWTbSM+LtzdiwNe+fnRzwodEwI/NxPj9j4+Oco6e0pcLH2SOyu3aiSpXATR335z8dnyXlnI9DnZtzwDF5/4yNY1LwrLT4OKrrj6KqjI7wWWA2oN2Xj0/iOefjUGMEB1idY8Uqz7CpjrH5OP2YwtjgA9LG0oh1gp37I2WP7vd8Sd4p6ZQEz04GKkSJcfQTpjpsX9T3lyoT4ekxzW5Osof6lClfBDXzBsBPQLa81bXP7D/1PsN3ccW5ovmbFr9ifD/6Tk5xI639WUaDEBZZ/CgWolVSzz1p2So1T6NuxIFMYMY90CodBPAf5fyn2EU4Ie3eMZtoiQw4TCIOBnF9GPE4zK1qV4qYXOlQkOZv1+a8YEXzewc2nRjqT1HBQDuwsjq6I3zGs1KbSIes8MGAdviKKyUP6iH5n1Dy0DY7KMPgJW+QkdWAcj+wRG6+L456fybUv0/YsrqKp5nfjl6OizITwylkJcTpS6vSR17rE5vU03tcndj8uX7D5pG9t6geiWHySMbstKTnIR8D5w92UC6a6t6bvCYaAMkzKnpGxji9VN/AV4JRX13vMkkJU16sVlucXCaGcoyQEhiL/R2WDqtEA5Ra5SDUI5Llw+QxgyRizU2oV6cv56qva7tb7SrkTb8NwCyLIvVBUfWw2wj5JQgRnMch5JfgP6r8UsSEWx2ijz/zGX96W6rFq8grVPmlcd1XjL6R2CsoPT9j4cP06R0IO3EY9aflmagfjJBnYvK0NVQPwN2I3gOz/LC69ZzFIdvlvq1u7drfUh9vcb8bBvw6Gfp1CSrlmQUPmt82SuFJa1jfsa8SfIeEAUUBo+h3LNSkeLfpPBKhEsXkK7uAot4GEiJVkgKduD4NPPlrlwqnfSbHjT/kWbPDNVaXmQvUT0JoHeOG0nBaP1anhRnWaUQINgsTqAMqvGW0pt9jviH6KFOyV9cfL30tTVBKFBjrDnwEKWAifTWo07Y+Ix4v891ba1/TkNBqa6i+Mg9PUon6yzQCFjzKZhf8VG/6cOVdotbXTw5XbE5txerU+rdpWl+sBRTwxi5R67OgSwRQZFJYG7oZjHT0Mh3YVa6beKonHpfyfRGV7n28sCaOD+lipiG9073bkeayc4HLd+8vO3pHnYlkrmx0nDRWxYd1ZcnDOhyvmGpaO0XGxsKpiEgmw8uvSmHhPCje7YkEmFpwkOkVEPmStjw90DK63ARIdfFDFcNzF/Kq3tSXR2aDVd8FfVMJXxgtj19n05Yvh/JDZo/OfvrIvDCHWuAF+RVLTAmpRdf17GOp8OA9xCrdF8X9ABP8djd1Y42pPSjHWgUSl55B6a1uT9okSPsnKmbCzPVutCXlWO2A0bc/wUPtrN8ctBITWE7GWqAOe2zWUGeITXqqa+Tm1Bq/jBeM6y2vcWL7jVxyu4R3Gwp+Hiv8z/8xDYaYvoW61T0Csp3BN0FLdVAq7v5kpNB3Nd8DDwX5PogBBpKfQYfABxgJ0wCjs56Pq8Z7pa/no5qdP6r/iVa++2qmJS8cWielmJ5Pk8Vnff5YUj08/cj4x/9um2xXTM/npOek347Hromc3XzGoNN9rcOL6fkcqbS3/mBHaeTaMoJJr28LFxfT89ntVC4wsWaB785NKyYn9P5zZnFtQ3rlX0LbEFH5lyjUi6j8a4GbFlbr06tPXoZfate/gx/++QEKM1ripvL7Kq6xS+gStrTumTcfIkIrApMVbqpbIWDDi31zQ3ePjh8rsq2RAEzWuMm/09HokS4nfGfVXPfZb9L6b8BUATfl3hnu5tDuUkB2dMe7snm92wOTDW66e2VCtVTrd8HLvf44Nb76syBgqoibmgbI33vtXeq3dPjQ/MDDgVuByRY3ZcWNqpF2vFroKrus0fVn9agETJVw0y/x24/Wsn0uXPalT0bPg+Z+wFQZN73+Z9ultbEDBUv/jX9Zdu229cBkh5veP5/QZYdT+6Cdos6DJsRaKoCpCm6q3eHF9qwT6YLV72c1SbmSkQZMVYnvNWR+reETVZErLK80WzjtSQww2fMYZaAccNP6z8PjGswKEayr3PHk36IpjsBUDTfdSdrXIbZXQMCsJ45jDvT7WhOYHHHTmDv5Ze40auGzvFvDFsfthwwGpuq46dvi9Y3WuQ/z2dP/2F83vrxaB0w1cNP916rMu20mh0yYX+NNj+F/LgUmJ9zUzPHQrnsvX4UtnjJwbnTOYQhUTdwUd+f7svEjDvhmL2hX/y/3527AVAs3SVrWm/umq1/45pQedqsa72sATM6Ev7a3Nr9+84vfmosxr+vWTISinbVx0z2hS8jwhwrh4uV5Oe3eL5wOTHyiO0S/WZwcHRS+07vWuA09RrnQhKrq8BiEqu7LfhfVPlchaN6nf1zbzLS6wIFQVSxTiLKP3b1p0dGTwiUbCoafrjkigzx1FQ5LlMnFiNMXTAlwQ/wOPnFeFitTp4wHCTEIQngFQC2PW1ADFPLV6LNq3KCtbrgLmFa9OAbjK2LnMAoWZH+hWwHNotOo6hdBfrdHNRe1ffIgLmjFhc+H7YbV3sjhYVSONwjhyt6vECAxat55wk3I47/QKSdu3lkCmgbGexJLYIkjuVKKHT8B7yeVYVMnop3wRQp44loeL41BM9WGpzQqU2dkSNaSVnck+TtWkOnjms+h08eLTJyXpnHFWgwLXB//NYlMjn7UUcdMzgPvaOIid6niRCp+vGiQhA8SEE0Ja2aeuUWu/ODI2psDN+0zOxoTLqtNYRrij0UwDQkL196r5IE3dn+U99I9scZOY5vrCFwd4lAUQfiTUIFEguXdordQ4eQeNrWR/4kTXWaTI/VPHcHiAKwKrGCBpo6PPwOYxp//lBt+SrmBmqEbRLkB7jTfgg63R23y5IKxcpluY6WWyg0v2//2t21+leC8eeLh1d+fvcfhYEmNQPouIAGEbkCEZjAddD+m22D5s8oNXZ3XNd5xcWD4+E91zBo7ZCUZ9QgLRGULKyqg3Zgoy9Rwyg1+98s1n5Nwz2elR7kw8f02A0xCuQG6biqr64YYx3UGV27gl8ncIJ/aU7DJ8VuM/NCUF0ZUboBHdLAogzx6z/PCoozBlBuOD+PbDpm3I2LCjhpBq2YUrDOycgMEZwsrOMteGFC5oeEEyzuuq8Qh09+/ibn14SC5KJtxlBsgQlNZEQJ9Gs/b4pjytpOLRWHfWlcLHJvpbP60Xsp+cjYaBnI0frR/mPYLB36aYriwmgCRCYMZYiz4FeRdyXyArUKl1igAwRZvrzD3wlO3kVolTtT1S/R707NowqJDWdxjX/GyuLRUyQd4YOJX3ZYVsBcohgHy22XyLvc5eOZmwMR/57XZNvxNf8puErwbcUABu1xSpkSNfxzUvD30FWdf0Rohv7GQt/GrTrxjRwwgol24iqUK0HyBHT3YWnhZ87euehy+utpzhZXTCLKssaU/cTO9WxaZSgJsrO3Z5ZcqPBNuzX1vfqBLywYcALaIFTDQooySRKnHDPg3zXhMP3Q5LAsWX1pjvmSJql7mp+c9FZUN3pi+eXXqzWs/7DAhE+AM4bBEhURDe8aSWl+/aNff3PRLgCmu3ROVXk84qHPoplav3o7LynXlwLUKVtf2MZJrUfnxrI46pVoVworFc6QzR93pdivo5DCf9NrnO6dkX99L3fBDHKpSX+V87c4Tj0m5KFJJrifWxfCBUco0MPpdqXZzSMutPjk9+zhO67aPLB5QFZJfVXDpE55klkBuvUSHivFeAnk8gFxNwcUeIy56DDY5LCoUD0mlWo2I1G27kl+Y5g7kX2mbjUDm6CsA+mM/RAH5fqDxJ77Sl5/iG1YMFLjcAMsgwWxDnsB3JYqfA/TUAkjwf+qYpoSr0fKhEgb1kj+zu6a1aPRMsOyo3T81vZeQR9vy3TDSAT3G4NdLijE1Pt5yG/ohIGLbojYNrZt03ayvpiQkckKYzfwQJdPT3TCY9V0SblDM/ZrVrRh5glISk4Q1D4wThdbW4t/5Z8elw0G7xjn4BL+/Sy54aF30XPr0l2TknErpjsPWCwXbdQ8MNjwkDGQKCacr1nvTpIU8fOLrl6Gel0cLSd/NprME4zDyI5JkMkQsYEqYPYj7IBEWa7PShCEimVSsbuRDpao4vhxMUxTaRwLqLj3Le9K8QDZre2zPRcirCdG1Rm2+ZQB0Cwv17fsOwRgPD666SpQYERtDDAnAMM+J39p0GRM5ffvTMnVPXO9BTp+xB9HTZ/XlkrozlZWg71E0gJwjRG4lKmWAlV/NXjGmz1oi56RBTkFqarBpIeF7v2mI7dw1VfzGtXrx22f/NuSkugLeQNBbOmQr170YogVaEgta/xQahcVu0SU5UVIch3rFODueoSCllcg84d8oPQOD+sIkd4BEQaHEwR99A7cDNkBCx4JHgEl1strVSC9TByZ9Oom+GpSeeC8oRNHmorywXqDTQphjBIYtzBXU/F286YuRUDQatXj4mhvrIse1tCp/YEjkDcrGBPxWiI0J7HJpQIE1cUYoQBPHB6pBTAOVydT8o0ZLbsofl0LJv2WFbCX/Zmggl5k85FRuHDeQjzEr32xOm9jgxaq2K/c+c+rIAeRD3rBBHvuGgDyeM1amLQG5AViZCBIlwcpEkCgJViaCREmwMhEkSoKViSBREqxMBImSYGUiSJQEK7N9muS92RJBwPzpB1WHrS2W0ihvsPEiWx+VfskB5S2Byf91Q4943NxsFZBlJu5/9Uklsv+rqBf7BTK5EqaL2AYOPSkvz9Db6gZIYbnjOFgfWP0AbEoJ55k4DUG77X0q5bTEV6SBg/ojbbNyMFWc8RJ0suvIEyNgRh7xUqe1ayf1bhumpCGHrgF4gF+YeUFdZnwf/rDT87D0eNfM2pMLtumz11a6y9gXAFZTX+LDbiFNnBBMq2UvkXk4E1b2GkpEcayQKM1d0C320VUXn3Vub+atGzA+iENaxJiuEe9OZA4LyJZPCZrsl3yIA5QiWFHyfklffGDL09yjiH6FdTYMM6LLwakewT1j3ippNO1jmY0d/g0ba32mlqKPzWsj7ud6u+ONCLkhBw9PD3mpWxrbSLN7CCGKKab3CUcgUmxCgnM0xT+v/1P7oNlRW2enXh3X0wR2LSFI/VlBinip275uA3+p+ptrlqqKmgy2scgcoF72WdfcNSAnJMvHerVrRFcKcZF4Ln0XUWMpDXTasKLT8CWRGMmZBsZn3SLCzLw+CeatOhOwIjK4B30hnj4SmjGAW4e8n6uhug2V6yS5Tz1goe3egLbsbxCY3GEKf8YPsQDFg6WJ6QtQ+m/T/upk2/Ovfot8xzeKrRzS9Dm5DLM1th/LMKyTjCVFcWqI05cJDuK0KwQrCtXGMkBqXrVQp7GuIgaWBPQ0ZqhUv9fPKrdDGTj9r5ZbutvWPUOOREJwLxqoYiYDpwQQJh4rTM91HOxK3kKj7jUbbQsNRhqsjcAtND4td/TEoMHjUCJTHBK4nPFqPe52WEbAileq1tVrUdeh40WJfPU6DWK9nCk1d1HfR+z2YOdSRPwEyVB4SaKQxuADpFZhiXq4i+UNUSvlxcw68PAGfj4GKbOInBweVmz0WadAVRHbhlIv7oLXQS+H/xiZutb3nd+uV22chW1ukUuelsMeQE+R1JdL6nPUc2569rkMAE8shGcRqs9ZgD7X+bNObBIb9fuwiaR3fHFjvIdjq+DUhkf/DllYKZu8+6e+n777h18vCZ/qVwqeDmm2KXxMYCOLnn16DuQAnw6s+IDmYwyGgQVG3BiiBqIdj/qjWxU1my4ixQCJis1pT7eI637Oyo7M7TDoirO8R2ey09T3052GX+c6WEKvOLB6paxJeaXwAOEVnYYvWyzgJUrEePBFOubm0CVT9rbcKFjm2HRIaMvR58mOCcfupzsGv861Ywo98HAClxlp81VvLyEv6LNuEzInDQbYxEImLQmPqLW1T3gMnhaWvT18y14zuz0USSH1AxCSQrihNBBpxIpIhc/EuD6YaVzPnRP6tmfbNsET335TWRy+8YbsY/Unak+GaaeZYZAHcP7QOGlMHEgr4dlCkVIJ1SA1rBh8+Ndu8kE9p416X3qbVF/XhSf6CeeJ0tgvPmBWt+6TvjvgNfFUQy2ehAn8wiNM6jdBfnHP57Oi4uV3w+c5b3gXaN6lObnxMSU2GoOBB3+MSgox9EZxNPiNMAx1iljtIvAWpS5pQjqoBflASvX6ACyjAP9flFPyUyJGIhGljudGragC57UYYI4owKCONQAM78wKk9+4orYmjtQmqdscHOxcxX1i27n6TYO5kgnziJ0B507yjghSe1RvK30aUpmsuB1OEkKlB1ImpJ3CQT4AhicVuFNGkVPVKk5SlSnYXosuBE62a7twAw9SfwFwTkct3MA9ijNfEHqTxHiC0JuEn0TVm6TqRVL1Jn9aT5J6I0JPkik21QqQKkDM0UX+9nnlb84NLT19Z/RxO9o+r8FfZPlbX3rv8C1R3O5zh7hyjVo+j1xSOKLgbr7zcn3XTEDveAvd6Y1iL0CCzp0vxxBCjkwg/YxI8LeTt3Pa160VPv22zcrQaXXJ56u1EwmmonSnVb1RD76Kg/OOP5XVb/RdXw4nROkMK0q7vtAkAFnZLupaCzAx0gIgKuudPIapH0Ufw/DrpbHgjbWYj6iFJlcPDCk8nqr+x+IpVc7HQPG0Lms8ff/5v3iK+0fiJ7KfoHoeMmd9bLZbec9lHMRTqkwTB5HCmTVSWJV6PH1hM0e48FVY6PImnd5UzL40ioN4Sl0k4ACl95/ZUCr4XIrxlDqGGj2eOrPG0/eaCX6Syc8JqN2JGzJb8zLVX6UJEv13vPOJy72S1pmDKUHGZ7YpwSwN5EM4I7NVJCA3AJkNoYFHhHqEBh5BZkNo4BFkNoQGHkFmQ2jgEWQ2hAYeQWajZmg0xhqMisgmRlXP44CxNpQzJ1sb0Mk/pyOJEFUknEzd86f5xIzJJ1TZQg58MozJJ4t23fl90v2PwXm7tudtHnSXfM6vXJQoQSKj10ZhCmyuvvxEeEexCl38BLlKohYXgvLcbBq2VN1FxKtoE+2so2MUcpmsMxyx4MWiI5+FHSmRcHvP769uZ5ePnK08NfjFpOqMTGqLrkqJAgqAEx/bwF+e1F8GuVqwig4U/hFLVfh3BxkG3OUoSM2kuIQoc0QNoD4NhbyxH0AAbS3gpU4SWIWLFAOkCWGSWNIAaK2+3BnWOy1+3VJ9vYs8sfhVchSuGtFQeGnMh2O2GIhRCnhuUCVVv5U58VaoDqUQDQ1OEEPZLQLeMpbwItx6KXYJy9VleEkm9YQAVlGVimQCqAVVbCBSKSSieM3vmDCx5h68qSab/LBMVQHlaKmO2v45GJfPfWAbl/d/IMbl4SaPOVVe1XSXR/NYif3rNMT+FM6GSRue4YZJhG4uMUwidHOJYRKhm0sMkwjdXCIXiu1QJfruxLqCPROGf11zqHZksVzo0LjkA9d3jPOd0ONcH9sRj2/RBlcY9dHrYxQxXg4G1xFMnjTRcu1U0WGDlWs/9I2tXHuPb6Vdrv3YoEXv0ltHBMw+bN7oWP/fY02gXPv+b2zFb9d9M4Ga0+vXrzdAufbgs85tnv+eHrls3/2V0a0XUyqOGqlc+3xW74w1Be8YpFz7L1EXC5Rb4nyW8uKnbR+aucQkyrUnsDqnhyk4h2fMcu1nIs9dyTvV03dn7MPynQcdJdelNXa59gBW5zU1jvNMs1z7/go5dR29l/hO3btW8tclC3K1KsOXa3dm9ZyV0T0Hbyq1cu2tJR/sV3o6hW2fu2pch6hNZG0IY5Vrx3IIxnLtIBDieepIpjz1f6lcO7UshpHLtUd9ZyvXXv+7Ycq1V3kfvuLg7PDgve8D411WlxvEebl2qrgZByXIw76zlSBv9b20yrVXGpdbbd7ERRGrO7Vqluw8cBfn5dqpMYIDrOqzYlXp+/9X5dpHMYWx/0T4f0qEn1pNyCAi/DCT4P04Bk/4I04CZbgLefn02MmBCP+fHXy9Z9dtFbBilFOiZE06WZ5cv9PmHMfIWQChr7DfT0X1e6hZ/pgeI0tDhH9V4Zns69cbB63yfNbac5WwtVFF+CEqV1hRyTdsNGSdO+h28Ic7Ef5Ymysd3+xrEj6h3pLdDbc5k0vXG0uEH7puA6vr0o3jOoOL8HeYM/i3TzWr+m8YOvF55wpXKbsqBhVtgCUgsSiDPHFf6IlFGYOJ8OeeuHpK1F4QmlvT7euF8w3JO2uGF+GH4FxhBSf/uwFF+Nsc/XFg35+z/Td8XNbTJtubPE0zjpwFRGgDK0KgT+N522imvE3o26jxj/ZXfNfecs6+tOxlM7KOAHaIL1EuAyM6PWezYMC5edEWibToflwLAyCukCcNiAM5HKxyLY/VScuBWmGR8W3pqgfFjNpy+xoIeZdgmiQSwEUXCr4XwPR+1A99D1ZVLXotcBXHAvnVlyh71k3PLRQsO2TrZd8nkSxx/VO1uygpFDUw6ltsHqB3DqJXW4CqRww3a3/oVghb3X3FkgEKCTq/bJC1iOc7snLY9OsbHDcfjuVTTkhhNyJOSKmvcy77C75/Juv3n/PD2MmSpmXqkCjBV5bKxdIYFm2bqOZmC5MvbPPfdqnyPVXO+Zbktko8gN5WNZbScMYoVmcMNI4zaMWxddmx8AxNkKvA8CWKgWunrt7twZQVzCzi3flN2sfEyRVid37T9srBChX2CzpbvRFz4Wn1iMigxY93hczMb7aaPK7BD4hWJcsQ9S+LTKXhrG6szvIziZ4DH6VTtmpftNCdkKTor2TpQeOmqLKDCxaE7Gp0a3jGh8r79Jkq6zt18MYDOTzqeYGmC9VE2HXrD92yVDySs2RbWS3vZB4/KhOsWnnqePDzDguMO+0FACwiALiOAACGFp0yUWIoYxaZaNA06Ihl8/U+eyx7D5k+WrWXMpQZ9rAvBEDMBsC6oB9Eopn6P8bHoRbmNhgfJ453nIWP8yvveCnzcVZujqrzedLjiEljZm9d0zw1ywT4OLEQEsbdzV6848YnFcyePdsAfJzr6YWb7Rpn+02qXqbptwppy0yCj9OZ1TtBpuAdg/Bx2taefurdFX7kzl1/nmz9qdMFk+DjdGB1zq+m4ByeMfk4cXFXM1sHroqYuyVkyun2EedMio/TiNV5fOM4zzT5OAu3ebZa6fYuYEPswSVDvjRvYGQ+jgOr5yoY3XOlysdZObd7k5N2/PD5O3ccbfPHyqsmwcfBcghGPg4IhHieOub/Ah/nntAlZPhDhXDx8rycdu8XTjcyH2cdxJ6Rj/MHPaUtFT7Ol7RxJ6sogsMzL2w88araGQHnfBzq3JwDjslaiBwjx2QZGTkO+Tjv7JXvg8yWRWzrsrBJ+YZLkznn41BjBAdY/cGK1VTDxlxj83HGMoWxwQekjaUR6wQ790fKHt3v+ZK8U9IpCZ6dDFSIEuPoJ0x12L6o7y9VJsLTY5rdnGQP9SlTvghq5g2An4AuGRn9ZnFydFD4Tu9a4zb0GOXC+H70nZziRlr7s4wGISyy+FEsRKuknnvSslVqnkbdiAOZwMOPx3g8BwH8Rzn/Gesi7PXg4zGbaIkMOEwiDgZxfRjxOMytaleOY3KlQ0Gav12b84IVze8d2HRiqD9FBQPtwMrq6I7wGc9KbSIdssIHA9rhK66UPKiH5H9CyUPb7KAMg5e8QUam+oKXyM33xVEfz4T69wlbVlfxNPPb0ctxUWZi+JoST19alT7yWp/YpJ7e4+jE5k/2GzaPOLylemQCk0cyZqclPQ/5GDh/sINy0VT33uQ10QBInlHRMzLG6aX6Br4SjPrqepdJSpjyYrXa4uQyMZRjhJTAWOzvsHRYJRqg1CoHoR6RLB8mjxkkEWtuQr06fTlXfV3b3WpXEIQgmGVRpD4oqp75FiG/BCGC8ziE/BL8R5Vfiphwq0P08Wc+409vS7V4FXmFKr80rvuK0TcSewWl52csfJg+vQNhJw6j/rQ8E/WDEfJMTJ62huoBuBuR3rJ61i7tn2yviH1xhUOvDKpcoI+3uN8NA34tgH5dgkp5ZsGD5m+NUnjSGtZ37KsE3yFhQFHAKPodCzUp3m06j0SoRDH5yi6gqLeBhEiVpEAnri0v1W9xtl1q6Nor1atVkBTeZ3WZuUD9JITWMW4oDaflsTot07BOI0KwWZhAHVDhLaM1/R7zDdFHmZK9uv546WtpglKiwFh34CNIARPpq+WREo9OIxeFZsY/Nx+4+FY/qq/Mw5NUov4yjYAFj7LZBT/Vmz5ceZeo9fWTwxWbU+ewOnXUW5rWF2sBBbyxS9T6LEjwqDIprA3dDEY6epkO7CrXTTzVE49L+b6ISvc+XlgTx4f0iUxDeqd7tyPNZecCl+/eX3b0jjoTyVzZ6DhprIoP68qSh3U4XjHVtHaKjI2FUxGRTIaXX5XCwnlQvNsTCTC14CDTKyDyJW15eqBlbHwNkOrihyqG5y7kJbzWl0dmg1XfBX1TCV8Y+UX9bO1eLL71NGTG9L2D7Y59jqIWeEF+xRJTQmrRdT37WCo8eA+xSvdFcT/ABH/+a91YY2oPyrFWgcTFwfXtsxHdbUP3DFgpbvT71++0JeVY7YDRtz/BQ+2s3xy0EhNYTsZaoA57bNZQZ4hNeqqlbFe6z5U5grlBs35sbxnei9wu4d2Ggr8HK/wBxoGfxhDTt1C3ukdAtjP4Jmi9H0rF3Z+MFPqu5nvgoSDfBzHAQPIz6BD4ADOJaYDRWc/HVeO90tfz6e7cpXHyod2+K/4d3cn+TcewYno+V75e/fuL62BhntitwvZgq4fF9HxG5V6dv2zdbyGzVJWnvGhSOLiYnk9MY17fJ9//8V125Yp0W99el4vp+czJaewyK/FiyIIzQRUP3m34qpieD6LyL6FtiKj8SxTqRVT+tcBNt4/UaGLbbXrYmE/r/61+6sFhYLLETRYp5Va8lz4Pz17TT5q9UwbRsMJNd1sfrN7ulxs+aRVVQdGDnjQHJmvcdHnQs6X/dCsQpA0O6b3vmvM5YKqAm25unnvKffn5kPWBv/Ka/X3lNjDZ4KaclB/zfSKlfmPcm53+MTcoGZgq4qagqJZi73NKwX7x0+yp1zpkAZMtbkrxspANvT0jKK/d13vpudLZwFQJN7XcKr786M2GsNQ7CQvvHD1dC5gq46apr846P5GUD8s4efqfgv7XbYDJDjedab/9wpc8+4j0Zs0vJLzs9yswVSHgbTCqzKqjF0P2n55f/922x0eAqSpuKv/yzoPm2YME26td3/zxatMewGTPY5SBcsBNk9c+eLm589TgTb0P97kurtUPmKrhpoDZVwZ2vDM3eKLr8hSnhW1PApMjbhqfpjyy5k4H38kXg/opDh/fA0zVcZPn1M2xERkD/dd4lN3Qu6fLVWCqgZuEW7affSd7EjapTpsKgindoEKUE27qXMVs3bl/LgpmnXY7faNFw6fAVBM3VXVu5a2Sn/Rb7jXDfufXJ7Bt1MJNn5eN6PCqz1e/tJ2P+TvMclcCkzNuap0r7XzHbbj/NPEo+/mtHPKBqTZuqlDWTbip4vCAidMSbuQvrAI/i4+bPjm3OT1ndoOArJkVgj7vOB9FE6qqw2MQqrJa3uBs925ePiv6qmbO35cn50CoajJTiLKP3b1p0dGTwiUbCoafrjmCLBpvLhyWKJOLEacvmBLghvgdfOK8LFamThkPEmIQhPAKgFoet6AGKOSr0WfVuEFb3XAXIa+wzHEYXxE7h1EgPb5RhrZzyFpAs+g0qvpFkN+tzJtA5YLunoK1r7oM7rR4YjkOD6NyvEEIV/ZeQIDEqHnnCTch734Z2gYhW0rWvLMENA2M9ySWwBJHcqUUO34C3k8qw6ZORDvhixTwxLU8XhqDrmDnuOPQ1DUFkROORN4buERELkNqqfkcOn28yMR5aRpXrMWwwHWhjFF4GSUfddQxk/PAO5q4yF2qOJGKHy8aJOGDBERTwpqZZ976Xvyryks+hG94cSpvkRmfXMzOIhp/LIJpSFi49l4lD7yx+6O8l+6JNXYa21xH4OoQh6IIwp+ECiQSrOkrJ3e0eyGImFPmwYRt/o3JJyR/6ggWB2DdYAULNHV8/JnCNP78p9zwU8oN1AzdIMoNcKdZUBY43B61yZMLxsp6ZXUaK7VUbnB6l/qtn8dpQd6a0z2mHbRw5XCwpEYgfReQAEK+EKEZTAfdW5bVabD8WeUGXr2UbfNG3fRZdbDx2Oy+Ky8b9QgLRMWDFRXQbkyUZWo45YZK//Z4d+T6u8gNOfM9eO+7kLf8jaXcAF1XndV1tsZxncGVG6r1yfHwSszxXXjL/GqzPpTjvYZVboBHdLAogzx6z/PCoozBlBvOZx7InT2gZWTO9weh19fwybo6hldugOB4sIJTjwJOqSo3JHh+CrifdihyWZtdX+zHlXlvAsoNEKHqrAiBPo3nbVOZ8raTi0Vh31pXCxyb6Wz+tF7KfnI2GgZyNH60f5j2Cwd+mmK4sJoAkQmDGWIs+BXkXcl8gK1CpdYoAMEWb68w98JTt5FaJU7U9Uv0e9OzaMKiQ1nclpbH1WVxaamSD/BANUvdlhWwFyiGAfLb/eswoGXang6RGZ0Xbpn41awfZTcJ3o04oIBdLilTosY/DmreNocAJaIaIb+xkNfYUifesSMGENEuXMVSBWi+wI4ebKe82/7y/tejPlurSKs22hpI1uGx9CdupnfLIlNJgOW5XJv1d79e/rl3f5nc6uThfA4Aq8MKGGhRRkmi1GMG/JtmPKYfuhyWBYsvrTFfskRV2xf3t9Q62SZo3fiuzV/teJhjhwmZAGcIhyUqJBraM5bU+vpFu/7mpl8CTHHtyY2pp+4O+js875SHq/sgGz8OXGvD6tpfjORaVH48q6NOqVaFsGLxHOnM+f5vhlo8bx24VLTh3uuInX7UDT/EoSr1Vc7X7jzxmJSLIpXkemJdDB8YpzENjH5Xqt0c0nKrT07PPo7Tuu0jr1pXheRXFVz6hCeZJZBbL9GhYryXQB4PIFdTcLHHiIseg00OiwrFQ1KpViMidduu5BemuQP5V9pmI6DxL/oFgP7YD1FAvh9o/NN/YTy6o+WKm29YMVDgcgMsgwSzDXkC35Uofg7QUwsgwf+pY5oSrkbLh0oY1Euq1cr5/ln1VDhVfvXT3envyHsn5bthpAN6jMGvlxRjagXetB24caNgTcLzF+JGM5fpqykJYE6HMJv5IUqmp7thMOu7JNygmPs1q1sx8gSlJCYJax4YJwqJZZO3+VemvdgWuLkir3aPCy2ukU9kFD2XPv0lGTmnUrrjsPVCwXbdA4MNDwnTmULC6Yr13jRpIQ+f+PplqOfl0ULSd7PpLME4jPyIJJkMEQuYEmYP4j5IhMXarDRhiEgmFasb+VCpKo4vB9MUhfaRgLpLz/KeNC+Qzdoe23MR8vpDdK1Rm28ZAN0wvfu+QzDGw4OrrhIlRsTGEEM3QlFUe0FmrYB5VyYmBS6aUYucPmMPoqfP6ssldWcqK0Hfo2gAuX4QuZWolAFWfu32C2P6rCVyThrkFKSmBpsWEr4301bl1Wq4MWjX3MIBVb+X/518zB1vIOgtHbKV614M0QpjRcvvF4MmWMSLWnRJTpQUx6FeMc6OZyhIaSUyT/g3Ss/AoL4wyR0gUVAocfBH38DtgA2Q0LHgEWBSnax2NdLL1IFJn06irwalJ94LClG0uSgvrBfotBDmGIFhC3MFNX8Xb/pitCxnvuWUVm+8/GZXuvXXtw/25ykbE/BbITYmsMulAUUYKxR+moEqjWmgMpmaf9RoyU3541Io+VfvF/zAP7Lkn5MG8hkmDzmVG8cN5LF/OHWXTt3rk9bhw8PH5sIPHEA+04wN8klmBOQzOWNl2hKQG4CViSBREqxMBImSYGUiSJQEKxNBoiRYmQgSJcHKRJAoCVYmgkRJsDIn7QurZzvFPWDO/L+aRn3atYxGeYONF9n6qPRLDihvs5j8Xzf0iMfNzVYBWWbi/lefVCL7v4p6sV8gkythuoht4NCT8vIMva1ugBSWO46D9YHVD8CmlHCeidMQtNvep1JOS3xFGjioP9I2KwdTxcVwf+A68sQImJGn6LbN76TebcOUNOTQNQAP8AszL+hISBeHxFlzIqY/d2vvNb7tKX322kp3GfsCwGphWXzYLaSJE4Jp9VT6hj8bVvYaSkRxrJAopR92nbI371349rLzm9W4NvY0h7SIMV0j3p3IHBaQLZ8SNNkv+RAHKKWwoiQrS198YMvT3KOIfoV1NgwzosvBqR7BPWPeKvlhl1F9waZ+YbtdlVfP5rZRGXE/19sdb0TIDTl4eHqmjvu5jTS7hxCimGJ6n3AEIsUmJDgb3szMj/j4S2BeOfeFV4eM9TaBXUsI0gRWkFJ03Ndt4C9Vf3PNUlVRk8E2FpkD1Mcclz9kiQVBmdnPfEIC/qFw8Yjn0ncRNZbSQGcwKzoDNHu6s5kGxmfdIsLMvD4J5q06E7AiMrgHfSGePhKaMYBbh7yfq6G6DZXrJLlPPWCh7d6AtuxvEJieQtjO+CEWoHiwCIRuQ51227Szb+x88rj8qohx336PbjLswE7yYie2H8swrJOMJUVxaojTlwkOCw9BsKJQbSwDpOa3dBvrKmJgSUBPY4bqadLDsGrpgUHjm7xOmXhuOFnM3VII7kUDVcxk4JQAwnSFFaZTOg52JW+hUfeajbaFBiMN1kbgFhqfljt6YtDgcWgOUxwSuJzxaj3udlhGwIpXqtbVa1HXoeNFiXz1Og1ivZwpNXdR30fs9mDnUkT8BMlQeEmikMbgA6RWYYl6uIvlDVEr5cXMOvDwLC2OQ8osIieHhxWfmOsUqCpi21DqxV3wOshvGVJ25vFpPzYHT9xad+ebuJxG5BQJewA9RVJfLqnPUc+56dnnMgA85hCeRag+ZwH63DdzndgkNur3YRNJ3zSogJ9d39pvw+aLh8tOPn6PvPunvp+++4dfLwmfh8ebukVVmeKzJyXb3+LfZvqum0B83piz4QOajzEYBhYYcWOIGoh2POqPblXUbLqIFAMkKjan7e1RbvLRPzYFZkUuzh3c/Gso2Wnq++lOw69zHSyhV26zeuVPk/JK4QHCKzoNX7ZYwEuUiPHgi6658CSHt7n9Cr8ZeSent7CPdCY7Jhy7n+4Y/DrXjin0wMMJXGakzVe9vYS8j+a6TcicNBhgEwuZtCQ8lqUI97ZK/zV4+osedUcULBBTJIXUD0BICuGG0kDkiTkbIjfMiXF9LtO4njsn9G3Ptm2CJ779prI4fOMN2cfqT9SeDNNOM8MgD+D8oXHSmDiQVsKzhSKlEqpBalgx+PCv3eSDek4b9b70Nqm+rgNPdKc5zhOlsV98wKwumz6u67gDXhNPNdTiSZjALzzCpH4T5Be33KCMnvTWzXdPfHzTOtJ+5KHNnCmx0RgMPPhD+tx2iKE3iqPBb4RhqFPEaheBtyh1SRPSQS3IB1Kq1wdgGQX4/6Kckp8SMRKJKHU8N2pFFTivxQBzRAEGdayzNZ35D5PfuKK2Jo7UJqnbHBzsXE02Z9u5StVgPo8J84idAedO8o4IUntUbyt9GlKZrLgdThJCpQdSJqSdwkE+AIYnFbhTRpFT1SpOUpUp2F6LLgROtmu7cAMPUsMRejpq4QbuUeRZHKfrTRLjCUJvEn4SVW+SqhdJ1Zv8aT1J6o0IPUmm2FQrQKoAMUcX+dsukw7m3Tx2SLAo7s2eI79ssCfL3/rSe4dvieJ2hUrnUWbhAyOX/Wv+LfLog+P6rplAIUnoTm8UewESdI5YHEcIOTKB9DMiwTfDjkn6zwkPmm15qrO7c6t1PyESTEUp+fe7aRUqrw4+MPiTey97ib4cTohSHitKuRbHqRKArGwXda0FmBhpARCV9U4ew9SPoo9h+PXSWPDGWsxH1EKTqweGFB5P5/+PxVOqnI+B4qmENZ5G/hdPCf9M27U+tEmzf/1WzKxkpvzr3g0O4ilVpomDSBHDGil+L/V4mjKrV4dXUzzCVgTeyxu1ek8DDuIpdZGAA5QiWVESlmY8pY6hRo+nMazxNFITTxeY/JyA2p24IbM1L1P9VZog0X/HO5+43Ctp+opFwClBfQu2KUFNDeTpnJHZKhKQG4DMhtDAI0I9QgOPILMhNPAIMhtCA48gsyE08AgyG0IDjyCzUTM0GmMNRkX0Hi5FPY8DxtpCzpxsbUAn/5yOJEJUkXAydc+f5hMzJp9QZQs58MkiJp8s2nXn90n3Pwbn7dqet3nQXfI5v3JRogSJjF4bhSmwufryE+EdxSp08RPkKolaXAjKc7Np2FJ1FxGvok20s46OUchlss5wxIIXi458FnakRMK2XtVP1Jhcx2dW3Tje4xpJjLrLFl2VEgUUACc+toG/PKm/DHK1YBUdKPwjlqrw7w4yDLjLUZCaSXEJUeaIVsi2oZA3tzwIoK0FvNRJAqtwkWKANCFMEksaAK3VlzvDeqfFr1uqr3eRJxa/So7CFTs1FNrMKX/cFgMxSgHPDaqk6rcyJ94K1aEUoqHBCWIou0XAW8YSXoRbL8UuYbm6DC/JpJ4QwCqqUpFMALWgig1EKoVEFK/5HRMm1tyDN9XFJj8sU1VAOVqqo7Z/DsblPeXZxuWt5YlxeYnJY06VVzXd5dHNrMT+bA2xfylnw6QNz3DDJEI3lxgmEbq5xDCJ0M0lhkmEbi6RC+Wd8T79x9rTws1/jh9+jdepQbFcaPFf2xb6PmkVPLtiQrM1oSNH0QZXGPWRDYkqxsvB4LqMyZMmWq6dKjpssHLt2y3ZyrWPoUvJcFyu/UGPSmXLpo4MT0/2Spu3s08HEyjXvtWSrfhttnEEM8g1p1etWmWAcu19PRpEx049JVw0aUL3IbWEC0yiXPtyVu/MMwXvGKRc+8VjNdctUk31mfIt1qzza4sHJlGufRqrc8aYgnN4xizXvsripmzPzjyfrZLrh27LKtmaVLn2oazOizchoSCjl2t3uNGDX27wLcG827+cOhgy1snI5dpjWD33u9E9B28qtXLtfMnvlRrt8whY1C7RLKvivYsmUa4dyyEYy7WP0Yg9LWfKU/+XyrVTy2IYuVz7V0u2cu0P6SltqZRrl/uf7zV18Z/+0+rGhv5rmbWD83LtVHEzDkqQf7ZkK0FeqJtsog7l2v+u3Kzsir5b/be0Ti/j1lwyUf8uTMGKGiM4wOohK1b/GDbmGrtcewZTGPtPhP+nRPip1YQMIsIPM4kuVsfhCX/ESaAMdyHvV6vSEOFvyx/d8BB/jWDewbvfdph1usXhaXOOY+QsgFBniNBUVL+HmuVBVgYR4X905EabgblfI7PKfU06fLhPsFFF+CEqHVhRAe3GZOYOuh384U6EP+TU6ZspPmd9DsyzcPKs8/mMSYjwQ9c1YnUd3ziuM7gIf422S2V5+94FT2nae9/ga1ffU3Y6DSnaAEtAYlEGeeK+0BOLMgYT4R8mW/HXp8f5kSt/xFiNiYyZbGQRfghOB1ZwfrUyoAj/P149Lbf9+j1k8YXyGZ8PJpOnPsaRs4AINWJFCPRpPG9bwZS3CX0bNf7R/orv2lvO2ZeWvWxG1hHADvElymVgRKfnbBYMODcv2iKRFt2Pa2EAxBXypAFxIIeDVa7lsTppOVArLDK+LV31oJhRW25fAyFvH8RXJICLLhR8L4Dp/Vx6mqTjwaqqRa8FruJYoMlCfeZ9uNi0aui6wze7pJyyoBQ6+5naXZQUihoY9S02D9DbA9GrLUDVI4abtbqlUBXU3VcsGaCQoPNL8UhPxdcvdfx2LD38LGljXgLlhBR2I+KElPo657K/4PtnsX7/pUZPljQtU4dECb6yVC6WxrBo24yqVXfdxsu8gCkx+Q7LuoysT26rxAPobVVjKQ1nzGV1xhTTSH94uuxYeIYmyFVg+BLFwLVTV+/2YMoKZhbx7vwm7WPi5AqxO79pe+VghQr7BZ2tjv0wircydn7oikHpAX+s6LucPK7BD4hWJcsQ9S+LTKXhrNGszkoyiZ4DH6VTtmpftNCdkKTor2TpQU4zZk0e4fBP8J75g5fOrTphqD5TZX2nDt54IIdHPS/QdKGaCNfn6Jil4pGcJdvaroxKbOTsGJi6fE+gf9NKJ4077QUArCAAuI4AAIYWnTJRYihjFpk4+vJOeprYLGjOn/Xu9pl5J5kylBn2sC8EYCIbAN2GaRLNlf9jfBxqYW6D8XHaWbPxcSysS5uP8/eLLsLBPb6FzZVs6B3X20VhAnycNtZsu5ve1iZAKpg6daoB+DhW0/dM9mt3w2/5RJekf2qLzpoEH6chq3dqmoJ3DMLH2T9QGN/nXrfgKX3fCuq8V8abBB/HjtU5FqbgHJ4x+TjL4qKds+omhqVNn3rGzdb5g0nxcb5bsTnvrdGTXRPi4xRcXuOd4jvDb/NU34TBx6o3NjIf5ymr5+4Y3XOlysf58WF/oFvDlr5z7VolTxVf2WQSfBwsh2Dk44BAiOepq/4v8HEqlHUTbqo4PGDitIQb+QurGJuPM8qajY8TR09pS4WPM3b0wbgPL1MEe+b4NBlv6/Kacz4OdW7OAcdkhDUbx0RhXVp8nMrbX8vNfpX4LVpzro1t2+gxnPNxqDGCA6ziWLHqY9hUx9h8nNVMYWzwAWljacQ6wc79kbJH93u+JO+UdEqCZycDFaLEOPoJUx22L+r7S5WJ8PSYZjcn2UN9ypQvgpp5A+AnIFveJ+c2p+fMbhCQNbNC0Ocd56MY34++k1PcSGt/ltEghEUWP4qFaJXUc09atkrN06gbcSAT8IfCXA4C+I9y/lPqIrwkMD9uEy2RAYdJxMEgrg8jHoe5Ve3KNUyudChI87drc16wovm9A5tODPWnqGCgHVhZHd0RPuNZqU2kQ1b4YEA7fMWVkgf1kPxPKHlomx2UYfCSN8jIZljgJXLzfXHUM5lQ/z5hy+oqnmZ+O3o5LspMDF9T4ulLq9JHXusTm9TTexyd2PzJfsPmkdtmVI9kMXkkY3Za0vOQj4HzBzsoF011701eEw2A5BkVPSNjnF6qb+ArwaivrneZpIQpL1arLU4uE0M5RkgJjMX+DkuHVaIBSq1yEOoRyfJh8phBErHmJtSr05dz1de13a12FfICywEwy6JIfVBU3aUcQn4JQgTncQj5JfiPKr8UMeFWh+jjz3zGn96WavEq8gpVfmlc9xWjbyT2CkrPz1j4MH16B8JOHEb9aXkm6gcj5JmYPG0N1QNwN6LFBz8/He5SuEk4703+2c9d9+zUx1vc74YBvwqhX5egUp5ZoAu1LWeUwpPWsL5jXyX4DgkDigJG0e9YqEnxbtN5JEIlislXdgFFvQ0kRKokBTpxPdFIuHjlvcrhua//lA1qlf0vq8vMBeonIbSOcUNpOK0Jq9NcDOs0IgSbhQnUARXeMlrT7zHfEH2UKdmr64+XvpYmKCUKjHUHPoIUMJG+Gvrq04txWe8jpv1aPzN3ySge1Vfm4UkqUX+ZRsCCR9nsgp/qTR+uvEvU+vrJ4YrNqbVYnVqlHE3ri7WAAt7YJWp9FjRnmiKTwtrQzWCko5fpwK5y3cRTPfG4lO+LqHTv44U1cXxIX8s0pHe6dzvSXHYucPnu/WVH76hDPg9iFR0njVXxYV1Z8rAOxyummtZOkbGxcCoiksnw8qtSWDgPind7IgGmFhxkegVEvqQtTw+0jMYwzenihyqG5y7kWZvpyyOzwarvgr6phC+M/KKh3nsXZi45EDGhU179CV3Hk9WGzBi+YokpIbXoup59LBVg5QaxSvdFcT/ABL+2mW6sMbUH5VirQOKS6934jpvzGb+JVTY0X1fw2Za2pByrHTD69ifwze1ZvzloJSawnIy1QB322KyhzhCb9FT+9j7DqkyWBM1pxh9ye1u7o+R2Ce82FPxlWOH/YNj63gT8NIaYvoW61T0Csp3BN0F6hFpx9ycjhb6r+R54KMj3QQwwkPxsrdHzyWYaYHTW83HVeK/09XwEaVt7+Lh+C9nZIGhM93PllcX0fDxeNOAlp62NWHXe9h/VfIfsYno+LRq2GxW/4oDP1gtOj/PXupQrpudzMjxlWvbDyiFznr1cKdoR9U8xPZ/VZ1c+dho1K3Tt9ibj7lU51qKYng+i8i+hbYio/EsU6kVU/rXATU0XVA1ev/W7YGqt7wd97qauBiZL3LTAPCCplZ80eIb/H/VOfTg3F5iscJPVjDURUX19wxeM33svavRUH2Cyxk0FwyKWJ31YHL7TNr13u5fvofpiBdw0K2vlgZRIG//906cm9u/RNBiYbHBTm1+uBVR+/zx0Srmz5zOb9jsOTBWJB665d2Fywo2IdWvsW70Ut7QEJlvcFOf+e1cPRZOQhVfLvonvOWk4MFXCTW6JVvZ9+fsDc4TfLEbdTpgMTJVxk6KJTxTP41Lg/rJnA0f53UkDJjvc1PLrmDH+5YWhY5eH+Xwe22IBMFXBTU/WyWzEiT3DM6Z8PGv2b7e3wFQVN8UeeWK+Z9Bn//GJt95e7z37ETDZ8xhloBxw0+Wejb5VePWHT+7qlTHz1z7YCkzVcNOrZ0cOh1qNDl3Q32+JbZO5UEjRETeN2DE9LsymU+DmQwni7m3EFsBUHTdtcyz3sMGtpPAFOVdrjrqw4CAw1cBN1qP+7jJo4bXQzS4N9zQLmKIAJifc5PDgidvp2S8j5yqtKnf2qTQLmGripkk9LMImJHcUzksb/Cph1CczYKqFm+pGe5zc83SY3/Le73fNdWwFTc646TfBjN9HuP4Vvm04v1KlPMeFwFQbNwW5qf64O6yG3x+DLjbLqZL8BJj4RCfafeDI5cwR4Tktr/jFt3E8TROqqsNjEKqKeyXf27zGmchlkqkNNkyqdxIRNnQVqlrHFKLsY3dvWnT0pHDJhoLhp2uOyCBPXYXDEmVyMeL0BVMC3BC/g0+cl8XK1CnjQUIMghBeAVDL4xbUAIV8NfqsGjdoqxsOS1hVOA7jK2LnMAqkxycr6FZAs+g0qvpF0MXqK9ydcv3XqIAlY3794HXyHlmKXr/DqBxvEMKVvZsQIDFq3nnCTci7XEGnnLh5ZwloGhjvSSyBJY7kSil2/AS8n1SGTZ2IdsIXKeCJa3m8NAaJYp8nhRsmhvODF9df+rp9dOJDMn1c8zl0+niRifPSNK5Yi2GB60AFk8jk6EcddczkPPCOJi5ylypOpOLHiwZJ+CAB0ZSwZuaZW13efmhewDlBetyrTa9/9a1GYRrij0UwDQkL196r5IE3dn+U99I9scZOY5vrCFwd4lAUQfiTUIFEgrUkosbAfS+X+M9bann/RMetZB3MnzqCxQFYJ1nBAk0dH3/WM40//yk3/JRyAzVDN4hyA9xpbmoDHG6P2uTJBWOlnU1pKDc4WlxYfuxofMTyJZvrvFmW34zDwZIagfRdQAIIeUOEZjAddG9oYxDlhmXml9ZOOOEgyMtpeKequ2ULox5hgajUZEUFtBsTZZkaTrnhfGiF4BZfEkLWVtmZumrCtJ4modwAXWfB6rrvpprOcKzcYDVyTY9TFvMiM74f+bz0tie5RpxhlRvgER0syiCP3vO8sChjMOWGFk5zU198+yJcME9k/m/2mB9GVm6A4NRkBcfOxoDKDYt/q1gwanmjwKWOmXvrdV733ASUG7ATXqwIfdfkbRuY8raTi0Vh31pXCxyb6Wz+tF7KfnI2GgZyNH60f5j2Cwd+mmK4sJoAkQmDGWIs+BXkXcl8gK1CpdYoAMEWb68w98JTt5FaJU7U9Uv0e9OzaMKiQ1nchlXxsri0VMkHeKB8Vd2WFbAXKIYBmhT/x9Z/bktGB25bXD2v3cC4V5TdJHg34oACdrnETIkS/zioeVu/Ks6+ojVCfmMhr0ZVnXjHjhhARLtwFUsVoPkCO3qwPRy9O7vhyd/CVib1nJyd8vA7uVv6EzfTu2WRqSTAHh+/U79O4uyIqQ/5z3Z32t6IA8AqsQIGWpRRkij1mAH/phmP6Ycuh2XB4ktrzJcsUXX887cXKk0IDN9n37Uwc+WWnnaYkAlwhnBYokKioT1jSa2vX7Trb276JcAU1/ZXJNf/Nutd0NZnU6rfVjiEceDar1XYXPu6iunkx7M66pRqVQgrFs/RkmUrLeym+Mz12T5hyYi/lr3fTd3wQxyqUl/lfO3OE49JuShSSa4n1sXwgTGHaWD0u1Lt5pCWW31yevZxnNZtH5noUBWSX1Vw6ROeZJZAbr1Eh4rxXgJ5PIBcTcHFHiMuegw2OSwqFA9JpVqNiNRtu5JfmOYO5F9pm42Axj+lIgD9sR+igHw/0PhTKurLT/ENKwYKXG6AZZBgtiFP4LsSxc8BemoBJPg/dUxTwtVo+VAJg3pJ//Xeh6qM3+2XO+Hggshjtcllict3w0gH9BiDXy8pxowM++t42lmfoKlDNoY25d3ara+mJIB5EoTZzA9RMj3dDYNZ3yXhBsXcr1ndipEnKCUxSVjzwDhRSCx3/73yT7/Rn3ym+1x4dmnDuBrkExlFz6VPf0lGzqmU7jhsvVCwXffAYMNDwkamkHC6Yr03TVrIwye+fhnqeXm0kPTdbDpLMA4jPyJJJkPEAqaE2YO4DxJhsTYrTRgikknF6kY+VKqK48vBNEWhfSSg7tKzvCfNC2Sztsf2XIS8ThBda9TmWwZAt63efd8hGOPhwVVXiRIjYmOIIQFoMPrd5DPC/gFL/51sMTmuL4WMhT2Inj6rL5fUnamsBH2PogHkIiFyK1EpA1b5tSJj+qwlck4a5BSkpgabFrqQi8vw+RH+g4PXPKsx6bN8cV/yMXe8gaC3dMhWrnsxRKstK1pNKhqFxW7RJTlRUhyHesU4O56hIKWVyDzh3yg9A4P6wiR3gERBocTBH30DtwM2QELHgkeASXWy2tVIL1MHJn06ib4alJ54LyhE0eaivLBeoNNCmGMEhi3MFdT8Xbzpi5FQDCgY79zn4kWfdV5NN0V9zThH2ZiA3wqxMYFdLg0o2rJC0UQzUG1iGqhMpuYfNVpyU/64FEr+2VVkK/lnpYE81+Qhp3LjuIH8q/TyE6uGnfzXPpQvCOKPzOcA8lG2bJAPsSUg38wZK9OWgNwArEwEiZJgZSJIlAQrE0GiJFiZCBIlwcpEkCgJViaCREmwMhEkSoKVOf9YTi0X2aeAHS1lOea5uZtolDfYeNG7KxT6JQeUty1M/q8besTj5margCwzcf+rTyqR/V9FvdgvkMmVMF3ENnDoSXl5ht5WN0AKyx3HwfrA6gdgU0o4z8RpCNpt71MppyW+Ig0c1B9pm5WDqeJUuD9wHXliBMzIB+q2ze+k3m3DlDTk0DUAD/ALMy9o3MKrX2aYpwmyf/n7RKFX1iR99tpKdxn7AsBqsg0+7BbSxAnBtDqZvuHPhpW9hhJRHCv0VsZdW+/JwV99xrVyyrn24Px8DmkRY7pGvDuROSwgWz4laLJf8iEOUBrIilJPG/riA1ue5h5F9Cuss2GYEV0OTvUI7hnzVknIyZt/d2j+IHLP6Efr7mXaPzLifq63O96IkBty8PD0KB33cxtpdg8hRDHF9D7hCESKTUhwchpE1f/VeXdY2mRlpmJchtwEdi0hSCpWkAbquK/bwF+q/uaapaqiJoNtLDIHqBbP06webforYEZaoyPNq+1uRd5FJJ5L30XUWEoDnX6s6HSzIRKjrUwD47NuEWFmXp8E81adCVgRGdyDvhBPHwnNGMCtQ97P1VDdhsp1ktynHrDQdm9AW/Y3CEx/QdjO+CEWoHgAtsO6DXXabdNOb3HOen3a3wHbL65/cPFjYD/yYie2H8swrJOMJUVxaojTlwkO4vQ1CFYUqo1lgNT8rG5jXUUMLAnoacxQjRp8dewNq1uB6+wOdUrv4dyGHImE4F40UMVMBk4JIEyHWWHareNgV/IWGnWv2WhbaDDSYG0EbqHxabmjJwYNHoe2McUhgcsZr9bjbodlBKx4pWpdvRZ1HTpelMhXr9Mg1suZUnMX9X3Ebg92LkXET5AMhZckCmkMPkBqFZaoh7tY3hC1Ul7MrAMP76PdcUiZReTk8LDidTudAlVFbBtKvbgLXgf5La8973u9/qFhwTn9Wh39cr5gJDlFwh5AT5HUl0vqc9Rzbnr2uQwAz3sIzyJUn7MAfe65nU5sEhv1+7CJpOesT9tzeFpNwUan7DPfE8LIKkf416Xv/uHXS8Jn0NbP0gsXbQPSbpxPKrAx53OATwErPqD5GINhYIERN4aogWjHo/7oVkXNpotIMUCiYnPax0nN9jV79Htgaj+HO9FVbzYlO019P91p+HWugyX0yjlWrxwxKa8UHiC8otPwZYsFvESJGA++aCX8oIMVAt44R84ftOHA8OzB5cmOCcfupzsGv861Ywo98HAClxlp81VvLyHvkZ1uEzInDQbYxEImLQmPIWWvnxk755b/ho4LD1b73LY7RVJI/QCEpBBuKA1ErrMictKOGNe3M43ruXNC3/Zs2yZ44ttvKovDN96Qfaz+RO3JMO00MwzyAM4fGieNiQNpJTxbKFIqoRqkhhWDD/9arsJRzmmj3pfeJtXXdeCJZtrhPFEa+8UHzOrS6eO6jjvgNfFUQy2ehAn8wiNM6jdBfvFfJlSfHDL/e+iY8s9W+pdtW5Pc+JgSG43BwIM/pM+thhh6ozga/EYYhjpFrHYReItSlzQhHdSCfCClen0AllGA/y/KKfkpESORiFLHc6NWVIHzWgwwRxRgUMc6XdOZd5j8xhW1NXGkNknd5uBg52qoHdvOlVyD+U4mzCN2Bpw7yTsiSO1Rva30aUhlsuJ2OEkIlR5ImZB2Cgf5ABieVOBOGUVOVas4SVWmYHstuhA42a7twg08SA0ps9NRCzdwjyK7CkJvkhhPEHqT8JOoepNUvUiq3uRP60lSb0ToSTLFploBUgWIObrI3/p6XinYMlwcOKb2/Vkftn16Qpa/9aX3Dt8Sxe2iGoVeH/jwjG9eYOrDOhebe+m7ZgJ6xz7oTm8UewESdLZWOY4QcmQC6WdEgj16y0cva+MSnLE/bfX0BXVG/IRIMBWl+tm9lVn3TgnniVscbNB/hBUHKGWzorS8Ck0CkJXtoq61ABMjLQCist7JY5j6UfQxDL9eGgveWIv5iFpocvXAkMLj6a7/sXhKlfMxUDztwhpPO/wXTwn/ZL8bl1H12s2IfXuP964+VHGCg3hKlWniIFJ0Zo0UQaUeT2vFHGo1f+3tgDXSZ/+G/L6xOQfxlLpIwAFKHVhR+rU04yl1DDV6PO3MGk87aOLpbpOfE1C7EzdktuZlqr9KEyT673jnE5d7Ja0zB1OCKlXYpgTWGsjzOCOzVSQgNwCZDaGBR4R6hAYeQWZDaOARZDaEBh5BZkNo4BFkNoQGHkFmo2ZoNMYajIrIJkZVz+OAsbaHMydbG9DJP6cjiRBVJJxM3fOn+cSMySdU2UIOfLKXySeLdt35fdL9j8F5u7bnbR50l5wNl4sSJUhk9NooTIHN1ZefCO8oVqGLnyBXSdTiQlCem03Dlqq7iHgVbaKddXSMQi6TdYYjFrxYdOSzsCMlElbsej5E7PU6MudL7XprZrSszBQJLboqJQooAE58bAN/eVJ/GeRqwSo6UPhHLFXh3x1kGHCXoyA1k+ISoswRrZBtQyEvtTIIoK0FvNRJAqtwkWKANCFMEksaAK3VlzvDeqfFr1uqr3eRJxa/So7CM8FHvBld+bgtBmKUAp4bVEnVb2VOvBWqQylEQ4MTxFB2i4C3jCW8CLdeil3CcnUZXpJJPSGAVVSlIpkAakEVG4hUCokoXvM7JkysuQdvqvtMflimqoBytFRHbf8cjMvrKrONyysrE+PyfpPHnCqvarrLoxmsxP50DbH/AGfDpA3PcMMkQjeXGCYRurnEMInQzSWGSYRuLpELbd7r4nZ87fzgbeedrZXfFe7FcqFLh68fajDzZVja0Kir8QdkB2mDK4z6yIZEFePlYHDNZ/KkiZZrp4oOG6xc++qqbOXaE+lSMhyXa7d13PHHUenz8FWX/hzbLPOQKZRrX1mVrfhtunG0UMg1p5csWWKAcu1T5w6yDEmND1vk3fnyxD9PDjWJcu0zWL0z3hS8Y5By7Z9lDaPtGqwUblPUute+ehR5J91Y5dqHszon0RScwzNmufY51rmJqk2ioEWFf7ukfDhGliU2drn2WFbn9TKSBpRJlms/7NA1tWebOWHpoRO3exxIyjRyufbOrJ4LMrrn4E2lVq49pYZ53dS6CeFzAmzOJNtNJRc2N1a5diyHYCzXnqgRezrIlKf+L5Vrp5bFMHK59mdV2cq1/0lPaUulXDtv3F9t1566Ebizz4K/a8qmbOK8XDtV3IyDEuRPqrKVIL+tm2yiDuXaPy5PyVVuqxq5aXTB5Jp/963Aebl2aozgAKs/WbE6bdiYa+xy7YeYwth/Ivw/JcJPrSZkEBF+mEkI7I/DE/6Ik0AZ7kJePfvSEOHvPrWW6sWEXwM2rB146dBZn3scnjbnOEbOAgj5QoSmovo91CxvaW8QEf6ci4/jz1yoGTAv9KDt3jHK7UYV4YeoeLCiAtqNycwddDv4w50If/mJMdscIq8E5Z5dPSJmgGMvkxDhh66rzuo6W+O4zuAi/FcfdsgLfRceMn/whczHA9J3GFG0AZaAxKIM8sR9oScWZQwmwv9QnLrysluA7+TuiVFmDarNNLIIPwTHgxWcevYGFOHf8dSifX5+l6CtB3cda1bvr5cmIGcBEarOihDo03jedpgpbxP6Nmr8o/0V37W3nLMvLXtJLoxjjR3iS5TLwIhOz9ksGHBuXrRFIi26H9fCAIgr5EkD4kAOB6tcy2N10nKgVlhkfFu66kExo7bcvgZC3gaIr0gAF10o+F4A0/ux9DRJx4NVVYteC1zFsUBPnUaL/TZszwrMsegw7k6VJeSatj9Vu4uSQlEDo77F5gF66yB6tQWoesRws1a3FKqCuvuKJQMUEnR+ueHO9NzvZ+YFrq8e7PVPu0yylmJ5f+xGxAkp9XXOZX/B95/P+v2nGz1Z0rRMHRIl+MpSuVgaw6Jt0+jjbIccSSX/7EZRiW3XZVHaKvEAelvVWErDGWNZnTHMNNIfni47Fp6hCXIVGL5EMXDt1NW7PZiygplFvDu/SfuYOLlC7M5v2l45WKHCfkFnqw/aOezqMK67b+br3Zvax1cmL+lZwg+IViXLEPUvi0yl4awEVmeJTaLnwEfplK3aFy10JyQp+itZetCx2Z6n+3Q5EjRuU9UtPSzNnuozVdZ36uCNB3J41PMCTReqiXD9Eh2zVDySs2RbSU9m+u587RqU7X96OS//83jjTnsBALMIAK4jAIChRadMlBjKmEUmWpf7vuGf1I0BeV1/dW5VrscYox72hQAksQHQbYAm0TzyP8bHoRbmNhgfp7EDGx/nAz2z5JiPE9AicvJzi06h63tK+l9Yfe5PE+DjuDmw7W7WdjABUsHYsWMNwMcZ2Xr0j3mzV4cu3+13OUNY8NQk+Dj2rN6xNgXvGISPs9hx3nPZlWV+27f0+eaTdLyKSfBxyrA654Nx8iUT4uPEnGq/80hYQ58cvwcVauaUfWpSfJx/7dmcd8/oya4J8XGc81b3eH6le2Dq6S81t/ufrW9kPs5frJ47b3TPlSofx771ge0r5OOCJz1bs7BF2SmTTIKPg+UQjHycD5o89ej/BT5OkJvqj7vDavj9Mehis5wqyU+MzMeJd2Dj43R3MAwfp/KdsRLltZO+qwqHuc7c67GMcz4OdW7OAcdkkAMbx0TkUFp8nLNpi7p7e24O3/iy5YOz16+e5ZyPQ40RHGDVnRWrcMPmocbm4xxjCmODD0gbSyPWCXbuj5Q9ut+TvF9l3SkJnp0MVIgS4+gnTHXYvqjvL1UmwtNjmt2cZA/1KVO+CGrmDYCfgJbK2X3gyOXMEeE5La/4xbdxPM34fvSdnOJGWvuzjAYhLLL4USxEq6See9KyVWqeRt2IA5lAUyjM5SCA/yjnP+NchDua2B23iZbIgMMk4mAQ14cRj8PcqnblcSZXOhSk+du1OS9Y0fzegU0nhvpTVDDQDqysju4In/Gs1CbSISt8MKAdvuJKyYN6SP4nlDy0zQ7KMHjJG2RkI4kSufm+OOonmFD/PmHL6iqeZn47ejkuykwMX1Pi6Uur0kde6xOb1NN7HJ3Y/Ml+w+aRc7ZUj5xk8kjG7LSk5yEfA+cPdlAumurem7wmGgDJMyp6RsY4vVTfwFeCUV9d7zJJCVNerFZbnFwmhnKMkBIYi/0dlg6rRAOUWuUg1COS5cPkMYMkYs1NqFenL+eqr2u7W+0q5LWoBMAsiyL1QVF1h0oI+SUIEZzHIeSX4D+q/FLEhFsdoo8/8xl/eluqxavIK1T5pXHdV4y+kdgrKD0/Y+HD9OkdCDtxGPWn5ZmoH4yQZ2LytDVUD8DdiC4Q8KvzlhVlCgL/aJM5MGvSseb6eIv73TDg11+hX5egUp5ZoAs1qmSUwpPWsL5jXyX4DgkDigJG0e9YqEnxbtN5JEIlislXdgFFvQ0kRKokBTpxNV/K//H291OC5bE3DyY522WwusxcoH4SQusYN5SG0/isTnMwrNOIEGwWJlAHVHjLaE2/x3xD9FGmZK+uP176WpqglCgw1h34CFLARPrqxrDhp+dKc4VbK2z8PvJRb1eqr8zDk1Si/jKNgAWPstkFP9WbPlx5l6j19ZPDFZtTK7A6tWwlmtYXawEFvLFL1PosSPCoMimsDd0MRjp6mQ7sKtdNPNUTj0v5vohK9z5eWBPHh/RTTEN6p3u3I81l5wKX795fdvSOOhPJXNnoOGmsig/rypKHdTheMdW0doqMjYVTEZFMhpdflcLCeVC82xMJMLXgINMrIPIlbXl6oGXUgGlOFz9UMTx3Ie+z3iWqbbDqu6BvKuELI7/o4KXvnvwV31E461HVTgNytpCVU8wYvmKJKSG16LqefSwVYOUIsUr3RXE/wAS/oq1urDG1B+VYq0Di0raf/S92CxIiNsSVf9bE+sw52pJyrHbA6NufwDc3Y/3mnw1bYJphORlrgTrssVlDnSE26an966rWkE20CphU7va/z2XdyGtQmEqRoeAvrMgG/0PjwE9jiOlbqFvdIyDbGXwTpEeoFXd/MlLou5rvgYeCfB/EAAPJz581tZFPMw0wOuv5uGq8V/p6PvsKFWatR1wI2lYwNXL4/Pr8Yno+dt0tfDsd3RK8otICh/FZsnvF9HwOD91441Tr88EZ0uvP0mOCmxTT8zl8b+Ds3osVobsXvbOsO7zZrWJ6Pu/vZq3eqRjsMy/EJta+n92xYno+iMq/hLYhovIvUagXUfnXAjdNtGwVsntUrYiMMftT7rV7Yg1Mlrjpxe6/UhL9/wzZOi1sl4dr87HAZIWbrs+Zn7mzsLPPotUrF/Qa0aIjMFnjJov6d7sfvtozdMeIOaqklF0CYKqAm9qOqeAu3vubf+r50xK3Tff3AJMNbnpcJirra+fHIdsaXF0weEtVX2CqSKDR0bLrwMghPou+9+rW+e8tfwCTLW7yONLN4cPEy34rbl3tNnu3KBCYKuGmMiPMw8vyef7LCuoXPJx1dCUwVcZNZVsFxh555O2z788aNuOHu08EJjvctGNEhdbZ5+74bjsSuXLZg2b9gKkKbhrjGbGv829fg3NSb73tUmnPHGCqipuGhtSUltlxLPTA1W6PbT/+XQGY7HmMMlAOuGnbpr/ceQrwwMc7naY+jb0GTNVw08Dhz8omvy4Innln3cfhime7gMkRN41Nqv77oqfjgzaWiVFlfkr2BqbquGnWuMMVOr27Erns4qJfZro0HglMNXCT//azPLOXbSMneb92OnQlvz4wOeGmgLTn1yd/2Rgyxsdf2Sp/CfRyTdzU5ur8gloPv4bvEC5PDvmlPNSVqoWbqtXfcE9QRhmwI0BRZY9drRhgcsZNLi57Xi/e9Ejwx8sn836bXFEKTLVxU/vUS/KhAQ19to18NuZmjwVQIJSPm+qO3d7r0w/HyAO/3/owxSNkEU2oqg6PQaiq9eOVQ5plZfnsnrH+2vI97zM4EKo6wxSi7GN3b1p09KRwyYaC4adrjiB/lrlwWKJMLkacvmBKgBvid/CJ87JYmTplPEiIQRDCKwBqedyCGqCQr0afVeMGbXXDXYS8U9WOw/iK2DmMAunxtmq6FdAsOo2qfhF0/b3KMRGnW3cIXXvi2bV5gZOnc3gYleMNQriydwICJEbNO0+4CXn7q+mUEzfvLAFNA+M9iSWwxJFcKcWOn4D3k8qwqRPRTvgiBTxxLY+XxiBRPPUkoXprywUhs4OPb1gwquI8Mn1c8zl0+niRifPSNK5Yi2GBa101k8jk6EcddczkPPCOJi5ylypOpOLHiwZJ+CAB0ZSwZuaZ8xpOvDqp/WC/rAt/bL/4uGtPCtMQfyyCaUhYuPZeJQ+8sfujvJfuiTV2GttcR+DqEIeiCMKfhAokEqxFQ0Nrt6h0IHSKxR7rkKDe5JniTx3B4gCsbaxggaaOjz9nmcaf/5Qbfkq5gZqhG0S5Ae4013IEDrdHbfLkgrHym25jpZbKDaqXzedOeXDdZ+2tAed/ez5zGoeDJTUC6buABBByggjNYDroXtnRIMoNdTvb7cp2Wy1YfPvvVmb3Wy036hEWiIo5KyrfjDMmasEyNZxyg+fZ+xeuZZwWzpe7rS57eNVGk1BugK57U43NdU9MNZ3hWLlh9LKEO28X9Qtcs7p97+lPrp0xonIDPKKDRRnk0XueFxZlDKbcMNv91i/W3sfCs5tUvuAzuwGZFG145QYIjjkrON+qGVC54UfXvB89v23znxe0fKDlskdkCUfjKDdAhLA+zYjQE03edo4pbzu5WBT2rXW1wLGZzuZP66XsJ2ejYSBH40f7h2m/cOCnKYYLqwkQmTCYIcaCX0HelcwH2CpUao0CEGzx9gpzLzx1G6lV4kRdv0S/Nz2LJiw6lMWtXBsvi0tLlXyAB14567asgL1AMQzQBxReJM7x7+/ps9w5uHr7y6GXKbtJ8G7EAQXsckmZEjX+cVDz1rY2zr6iNUJ+YyGvXG2deMeOGEBEu3AVSxWg+QI7erBVNpk34cTF1xHT5oyS/zvarT25W/oTN9O7ZZGpJMCCZUFP+hY0D50pOxnSffRpew4A++LMBhhoUUZJotRjBvybZjymH7oclgWLL60xX7KNOUcX3s/o8N4nt0WDZ4+SbCvbYUImwBnCYYkKiYb2jCW1vn7Rrr+56ZcAU1x79PWPAv8+nQL2u9yc/Wl0izYcuPYRq2tvGsm1qPx4VkedUq0KYcXiOdKZ7aavy2o9o2NIjuppzqj+fB/qhh/iUJX6Kudrd554TMpFkUpyPbEuhg+M55kGRr8r1W4OabnVJ6dnH8dp3faRyypVheRXFVz6hCeZJZBbL9GhYryXQB4PIFdTcLHHiIseg00OiwrFQ1KpdiMiZduu5BemuQP5V9pmI6Dxq6oD0B/7IQrI9wONP7a6vvwU37BioMDlBlgGCWYb8gS+K1H8HKCnFkCC/1PHNCVcjZYPlTCol2T1lFesy88M35LV7E+RcBz5EHv5bhjpgB5j8OslxRi/hecSNxy28tniuHXmoN+W1NZXUxLArIAwm/khSqanu2Ew67sk3KCY+zWrWzHyBKUkJglrHhgnCk3Ty3pwc/bnwLDFY7rNfX5/4mLyiYyi59KnvyQj51RKdxy2XijYrntgsOEh4QJTSDhdsd6bJi3k4RNfvwz1vDxaSPpuNp0lGIeRH5EkkyFiAVPC7EHcB4mwWJuVJgwRyaRidSMfKlXF8eVgmqLQPhJQd+lZ3pPmBbJZ22N7LkJeO4iuNWrzLQOg21Dvvu8QjPHw4KqrRIkRsTHEkACcX3d69ouCcv5bO7Tvu+vsiZ3k9Bl7ED19Vl8uqTtTWQn6HkUDyLWByK1EpQyw8qt3dcb0WUvknDTIKUhNDTYtJHyvN7hNnv9pYvi6W7trDVknsiEfc8cbCHpLh2zluhdDtBqyolWzulFY7BZdkhMlxXGoV4yz4xkKUlqJzBP+jdIzMKgvTHIHSBQUShz80TdwO2ADJHQseASYVCerXY30MnVg0qeT6KtB6Yn3gkIUbS7KC+sFOi2EOUZg2MJcQc3fxZu+GAmFk3RIjWsZz/3z5t26Nyd6c0vKxgT8VoiNCexyaUDRkBWKmpqB6iLTQGUyNf+o0ZKb8selUPLvmyNbyb93jgTkl0wecio3jhvIrQa8v9JgU0Logu0Rwtpvc19xALm0BhvkohoE5Jc5Y2XaEpAbgJWJIFESrEwEiZJgZSJIlAQrE0GiJFiZCBIlwcpEkCgJViaCREmwMgf7hY7oW7dTyKxdQ86n+BacolHeYONFtj4q/ZIDytsVJv/XDT3icXOzVUCWmbj/1SeVyP6vol7sF8jkSpguYhs49KS8PENvqxsgheWO42B9YPUDsCklnGfiNATttveplNMSX5EGDuqPtM3KwVQxCca168gTI2BG3tVRp7VrJ/VuG6akIYeuAXiAX5h5QZduTUyxaFfBf1Liq30eKzwn6LPXVrrL2BcAVkpHfNgtpIkTgmm1mL7hz4aVvYYSURwrJEoLfrn9IHRHtO/SL6NebDX/UpdDWsSYrhHvTmQOC8iWTwma7Jd8iAOUurKiFOBIX3xgy9Pco4h+hXU2DDOiy8GpHsE9Y94qiWu9+bTr798jxmRl/Fm799SBRtzP9XbHGxFyQw4enpbquJ/bSLN7CCGKKab3CUcgUmxCgjPE5/at2sHPhNnBsb+Hna8WbAK7lhCkvqwgdXXUbV+3gb9U/c01S1VFTQbbWGQOUDHXfyQdv1fff8KvbdY3OmoxhbyLSDyXvouosZQGOqGs6PhqctE/mQbGZ90iwsy8PgnmrToTsCIyuAd9IZ4+EpoxgFuHvJ+roboNleskuU89YKHt3oC27G8QmI5A2M74IRageAC2jboNddpt01bPDTh5hZ8RNn/InRSv1aPJm1PW2H4sw7BOMpYUxakhTl8mOIjThyBYUag2lgFS8126jXUVMbAkoKcxQ1XoNFVcuKJu0MbU6hef95i5lRyJhOBeNFDFTAZOCSBMG1lhWq3jYFfyFhp1r9loW2gw0mBtBG6h8Wm5oycGDR6HrjLFIYHLGa/W426HZQSseKVqXb0WdR06XpTIV6/TINbLmVJzF/V9xG4Pdi5FxE+QDIWXJAppDD5AahWWqIe7WN4QtVJezKwDD+9ereOQMovIyeFhxcO1dApUFbFtKPXiLnid/9fed4A1kbz/R+UURewiiiVYQWkWLNgSktCLgl1PjRAgGggmQcRyolhQwY4iVuy99342bOfZe69nOct53ql36n9mS2B3Z5eELEnu9//yPD6P7LDJ7ueded93Zj7zeZFvuXJqxoyWo/YH7JSV2ns/JaIVNUXCPoCZIuGXCxtz9HNuJo65pQCehxCeHNSYswVj7nodo9gk9vjzcImkHy3xtG+7vd1Euf+U2Wr3XRJM3f3D72fu/hHXC8On7JpuF9/aBYTsatrgnDxojQMP+PzCiQ/oPpZgGNhixI1hOBAdBPQf46qo2XeTa2IVOi6jPfnybmCJvO0hGa0jO6w9ebc11Wj4/UyjEdf5dpbQKns5rbLZqqzy7jBpFaPCV0XM4SUqognnizTMuKltIoYfvx+65bHHS+dyzamLMqVDsfuZhiGu822Yd+6EO4HLjIz5qpenTHCpjnETMic9BtjEQqUsDI8HJUq+3/33Xv/D4hJujaJGUpdjy0jwD0BIChENxYHIMU5EdtQh4/p1tri+ZVbwn33b+wRO/POrzvbYrQ9UG+PfaDgZpoN+hkEN4MLkOGVUHEgr4dlCuVYL1SD1rBgi/Bs2+aCf00Y9L7NP4teN4InOrEPwRBnsFxGY1aUx47qRO+C1iVQDF0/CBH7hESb8SdD1X6pm+HdscS54u7zfJLdDp+TUzseW2OgbzBz8IX1uOsTQC8XREDbFMDTKY3UII3oUXtKEclAL8oG0+PoALKMA/5+fUwpHho1GIkqP5xatqALntRhgjijAoI51mn4w37D6jSt6b+JJbZK+zcHDztWgOlw7V330mN9kwzxst9/504LjktQ+NdsrXwZVpipuh1KEUJmOlA1pp1CQD4DwpAN3qmhyqgb5SboyBddjMYXAqe2GLtzAg9SQMpuBWriBexRz6iL0Jsl4gtCbhN9E15uk60XS9SaLrCdJvxGhJ8nmm+r4KTXA5xgjfysPWOt1epAqYF+tpv6h8vaZVPlbMXN0iAsVtxv86+2PvUp4iWaWmDuv3dC+LU1dMwGjYw00pxeKvQAJOovr5iGEHNlAKopI8Jl+OzZUurRPln09pVvisOcRRRAJpqMUmbZy2+kXirC1goQvMQHzGvKA0hxOlKbUZUgAcrJd8FoLMDEyACA6650aw/CPYsYw4npxLHhjPeYTaqHJxR1DivCnt/5j/pQu52Mmf9qZ05+6/s+fkvZpnXZ0X4mfgqVb9x37u8fLHnIe/CldpokHT9GR01O0LHZ/euWnjLbHBiYE767Rqt3hx3cjefCn9EUCHlBy5USpXnH6U3oMtbg/7cjpT131/vS21c8J6MOJHzKbd4ma7zMlidJdH0VxW65kRvAwJfjGOSX4Sz8luMMbma0CCbkZyGwIDTw9mY2pgUeS2RAaeCSZDaGBR5LZEBp4JJkNoYFHktnoGRqDsQa9IrKL0dXzeGCs3eXNyHZmNHLRdCQRooqkkel7/gyb2LDZhC5byINN7rHZJGfPg96TnnwK3Ldn576tQx5Sz/n90EWeoFAxa6OwOTYXsTAR3lGgQpcwQa1T4OJCUJ6bS8OWrruIeBRDvJ1dZJRGrVJFwIgFL+Yf+XzXmeYJl48IfTjx7aHQvT0WyFKk9sPZPKFtd61CAwXAya9tJFUnDVJBrhasogOFf6KVOuLdQYYBdzkepa6imYQsc8QoZNtYJlDWBg60nUSQOklSLlSuiVUmhChiKAHQDr8cAeudFrxeFr/eTZ1Y8CrVCy/u3li2Nq52XkUMxC4aeG5Qp8Sfqgz5VKgBpZEnByZEQ9ktEt4SZeFFuPVS4BKWq6uIkkz4hABWUVXKVRKoBVUgEOk0Cnm8/ndMmFh/D9FV71t9WKargPK0VEfv/zzE5azaXHE5szYZlx9YPeZ0eVXrXR6dyknsT9MT+x/yFibtBeYLkwjdXDJMInRzyTCJ0M0lwyRCN5fMhX7J/jp2+ekfRRPjf//j32V+YwrkQl2eva+0JLOcX9qmiSf7dn2SxAiu0OsjOxJdjJeH4PqIzZJWWq6dLjpstnLt0+txlWvvW6+4y7Wf1e0OXVMmSrYi6O7+wDk/U+dTlinXnlmPq/htWj0rqDk9Z84cM5RrH3wqq2n/X6r4b92wektqr7+zraJcewqnddTWYB2zlGs/8+bXkvPqOIkyv/2cJD9Yk6ptYqly7QpO4/S1BuMILFmuvema3+dE7ZUGHe46x7ZmyMFrVlWuvSun8fwtYzzrLNfeed9v33MDFgcuKatqVGrB2x8sXK69I6flWlrccvCmYivXvriCT6Dw8IrANc+2jyvzptM/VlGuHcshWMu1A0dI5KmP2fLU/1K5dnpZDAuXa79Wj6tc+xFmSlss5dodIrfZKN1c/df//XDRhe/9R/Berp0ubsZDCfIr9bhKkJ8xTjbRiHLtupDjE9Ym75Nsj1reXT5mXXXThzANK7qP4AGrI5xY7TKvz7V0ufYnbG7sfyL8RRLhp1cTMosIP8wkPIR58IQ/4iTQUjeZoIKwOET4d+67O+3+l1HS3OsH/Pqda12Gx9PmPPvIGQAhN4jQFNS4h5rl9YVmEeFvOSW006Gd1cJXec8dNWpSBalFRfghKo6cqIB+YzVzB+MO/vAnwj9X86xKmZ1t/TMG1knS1axOFcO0lAg/NJ0Np+m+WGbyYHYR/sqddDXLHtBJVg+Y/mHG98d5FhRtgCUgMS+DPHH/zgPzMmYT4b+7bNEQ2+qLAw+e7rayw+nfe1pYhB+C48gJTgWhGUX4Z31oMT+lXMfQhc2DG9Ub+9dYK5CzgAjZcCL0RT/9fMqWt8nETZt973hFvOZe3bWXFr+lMsjssEN8iWoViOjMnM2WBWfv/C0SZf79hBYGQFyjToqNAzkcrHKtjjFKy4FeYZH1aZmqBwUaDeX2NZIJ5kF85RK46ELD9wKY3scz0yQjD1ZVy38scJXAAi037+bTek1ebki6/GzjBYsWrDa9dhcthaI7RlOLzQP0siB69SSoesRws9a4FKo8PnyjFbEaBTq/vDCzwV37Ay/Es+bWFme4HV5MOyGF3Yg4IYVf5132F7z/WM73T7Z4sqTvmUYkSvCRlepoZRSHtk2fDV++x7UOF2dtPv348MeQitS+Sn4As6/qW4rDGPGcxoiyjDEYxbGN2bHwCE5Q60D4kkfBtVMXr45gygpmFvFuwuYdo+LUmmg3YYuO2qEaHfYLOlstcyQ+2k3+WbphwOJdVbwfUrfky8IviNSlqBD1L/ObisNYvTmNFW4VIwd+lFHZavX8he6EJM0gLccI+jW78mEHdfWAlfUGj7u0P/WOKVNlU6cOXoQjh0c9LzB0oZrL1k8yMkslPDlHtnVepPik6bo1eH9N79D7z/fssey0FwAwkgTgBgIA6FqMykTJUMYuMlH58ckQ+5wewXPqVttZSf7ki0UP+0IABnIB0CNCSCaaz/5jfBx6YW6z8XEcnLn4OI+YmSXPfJwf3old+gizA7Oa/rzh7n2nH62Aj1PNmWt3s5yzFZAKRowYYQY+zoPFo2O/JseL5q1q3b/asjfPrIKPI+C0zl+WCckW4OOMPe4siWvZwG9/lcm/1PJ65W8VfJzXQi7jPLIG4wgsycdJC9DO77fwdMiCw43n3B9+epNV8XFucBrvvMWTXSvi49jPG13X4+j1oKmlnqT7xC/+3cJ8nOOclttnccsVKx9n2w5x3UWLPMN3bO/zIOtqUIJV8HGwHIKVj/NIn6c+/7/Ax+mYekmd7NdYtGP0q7F3+8zLszAfp5czFx/H19k8fJz2rikfSiRcD02N7t7qn44rVvHOx6HPzXngmPRw5uKYhDgXFx/nVN93lye4nZJmh7g/sat/NZ53Pg7dR/CAlS8nVm3NO0uwNB/nNzY3NvSwspkybJ1k96Fw1fMnfd9Sd0q6JsGzk/4aeWIc84SpEdsXDaVKbSI8PabfzUlxx0+ZCuVQMy8WfgOy59Uft7Pf5++O4Yd73/t7sntQDuvzMXdyCjYy+l/ZSODCwgsexUL0Svq5JwN7pf7T6BtxIBNwgqfwHSTwH+38Z3wTmapWnTz7SIUKGEwRHQj8+nDy4zCz4qZ8wWZKh0eZ0io+v0pyvR8f3nwqmcoBKeGLNmBl3LsjbCYohzdRDlkRwYBx+IovJQ/6IfkiKHkYmh2UYLGSF8jI4sgSuUfEBOov2VD/NmHbiqoeNr67+jnmrEoMXVno6ctyxY+8wSc26af3eDqxWcRxw2WRvbXoFnnFZpGlMzOTXgd98p871EGbM8WNumJV2g+SZ3TMjIx1eonfINSCqI/Xu0zSwpQXq9UWp1ZFQzlGSAmMwf4OS4d18litQTkI/Yhk6RB11BBFtP4m1KMzl3Px64buVrvIBM5OAMySKFIfFFUv4YSQX4IQwXkcQn4J/qPLL4VNuNcpMu+VaPzZHam278Ov0OWX0nrmjrmV2C8g+8jS+c+yMzqR7eRh1CLLM9G/GCHPxGZpO6geQJgRXQUnt96Mksk3JJtc4j7uvRfVyBRr8b8bBuxaD9p1ISrlmQGGUHUnixSetIP1HQdowTskxOY7jPzfMVcz0ssnYjRCJYrNVlX88kcbSIh0SRp04rrZrVzsgpvrfPePvnWxenxlIafJykjwT0JoHRMNxWE0O06jlTCv0UgXbBMiwR0qvGWMftxjtiHHKFuyV19KlL5WJmgVGox1B76C4jCRturx+FPp0mvTgsdv2T50Re7gs3RblQlN0skHqfQCFgLaZhf8Vi9muPIqXOuraOGKy6h/1+Iy6u+1GFpfnAUUiM6uwPVZkODRZVI4O7oN9HTMMh3YVb67eKoH4ZeOiBGV7kWeWBcnQvprtpDe9fH98DKq8/5L9h4qOWaXM1WmsFxknDJGJ4R1ZalhHcYrtprWTuExMXAqIlepiPKrSlg4D4p3eyABphccZHsERL5kKE8P9IwfYL/p5osqhucmEzw1uUS1PVZ9F4xNLXxgNL8zb8TLZVl5opyRvzpEeoRRC6LasLxioSkhvei6iWMsFWBVCmKVLUZxP8AE/zOzKDUnawy3oBrrFeiy8aeXtxwx+w/JjhULGy1X/ixnLCnHGAaMqeMJvPnbmlxv/tS8BaZZlpOxHmjEHpsd1Bnikp6a38Bh7Pnf0/3mpL2pcyqzZRi1X8K7zQX/bU74L1oGfgZDzNRC3fiIgGxn8CZIi9Ar7hbRU5i6mu9OuIIjIkSAgeTnp/py1L+zBRij9Xxc9NYrfj2f6hc8XZf8ek288VZewyNvsvIK6Pm0/Wv+wCriQeKFqs+Sv6O8XhTQ8/H55fKlg7WXiqfP7v3p7xO7rxbQ89E8uLIo+ugq6b5St87NfTj9hwJ6Pke+2l5/uO9gwOGo30JDb8a9LaDng6j8S2obIir/koV6EZV/bYmmdcsb3SzfIcJ/il38Jo9qDr+BprJEU7uPGSMevzgqTutz/MsNm4WlQFM5omlGl+fOl6e+CtrWO+zr+84fToAmO6KpblDjHU9nf/PL7NBU+3Wl/TPQVJ5oups9vsritp39c4MGH69dW6ABTfYkUFHtx3RovcovbcvQH6/+smIoaKpANAkfrTi6dHI52cYdXZQtdklTQFNFommKqH451zb1/HZtu/a8hFuKN2iqRDR1yTp6rOY/dwK2dvUZ27Pl6HqgqTLRdND+U/ZRxWRRxkibUxWd9kMlpSpEU2zc08HCgEqBqV+eVQwo2yMWNFUlmtZUefhXsyZTRKm1Hj6ceNoffmA1oml9tveipT1vhuweluu344lmBGiqLmCVgXIgmj6fdBh1+sha6fLsGY2yfI62Bk01iCb5q3bd3HyC/bLr3616aV7oBdDkSDR9T0w77uzhI90oKVv5QMNYEWiqSTS5VfXN6yRZ5Zthb1vm60/PXoGmWkTT+clVdt6qFuU7dXniL53ntOgBmpyIplLN2oQLbo0O3e5VqlWV+Rqo51ibaMpa8+VcU59SwYfajZjc58rWRaCpDtkBfp797VQLx7Ctj/fcrX3dKRg01SWaMk8Fd6z0eL3f9EWBU6q1en0ENNUjmrq+L98k2Fkjmu55NKL5B0kd0CQkmlpv37OubGRg4KJVJ0ofe1jGliFU5SxgEapqX/tK9WfL7ENWZjtdf9rnYBTCbRgrVPWGzUVVj9m7OefEadnCDY9GnK09ail16iobnqhSRyNOX7AlwI2JO4TkeVmsTJ02HiTEwAkRFQANPG5Bd1DIR2POqokGQ3XDIbeoQR70r4idwy4gPX5Z37gCmvmnUfEHQb7bwLvTO+h+Hxa2/kRN55mSoFweD6PyvEEIV/a+1QcARaPmnadcZYI/6xuVE3tHKEDXwHhP0QpY4kitVWLHT8DzKVXY1InsJ0K5Bp64Vscro9AK3RsdSw2tZRe+71r5RT0OTOxOpY/rv4dJH89v4r00jQvWYzjgelDfKjI55lFHIzM5d2KgReebSxcn1wnj5UMUQpCA6EtYs/PMvx0aMqx27XDJHMHlE906ruhEYxoSH4tgGpItfFuvkjvR2aUo62V7YJ2dwTY3Ejhn8lAUSfhT0IFEgqWp0WNt5P3x0pkZ4p5vBH4dTT+CxQNYLznBAl2diD9v2eLP/5QbiqTcQM/QzaLcAHeaI2GsrI7a5NkCYmXLBsWh3OC+40Rii9/TA9Y1rdZjzMx5q3kMlnQPZOoCEtQ3gwhNYzvo7t/ALMoNk8bMStocvtt/btvUHvu73Tlv0SMsEJWOnKiAfmOlLFPzKTecXqcrse1DJ9/ZgzddLb/jwFWrUG6ApnPlNF09y5jO7MoNL6vVfFlh8r3QNX4nX+RVmuViQeUGeEQH8zLIo/cCT8zLmE25QeMzrM3ESil+k5Wrlv/8pAZtBml25QYITkdOcFo2MKNyQ9Ke2TcC1WeCxq07tvl8zz4PrEC5ASLkyokQGNNE3vaOLW87vUAe8rVdDf9xq+qWedlg5CFqNhoCcjRhpDTE8IUDX30xXFhNgMyEwQwxBvwK8q4UIcBWo8M1CoCzJforzL2I1G20YZJXtPVL9HMzs2iyxYiyuP5NibK4jFRJBCzQpKlxywrYAxTAAPl2bSRRQTO+/itNO1/jyr9/tqJlSpHwbsQBBexyYZkS3f/xUPNW1pRgXzE6obCZTNC+qVG8Y0cMILJfuEQrNaD7gnZ0sO1yOaLUwaulRel7l/h1XaOkVvwsKyVvZg7L/KbCABtca1Pbug+cpKsdhPKmfa8reQCsOSdgoEdZJInCYwb8m5YCth+mHJYthy3tMFtyeNWM48dPzro4Urot9tqAo9rfc6pgQibAGLLhiRqFnvaMJbVi30iXXq6mJcD0sphd2lQemPdbQHpauuv5B1N68WDaOpymrWoh06Ly4xmdjUq1yocU8Ododu7LjHKDwj/6bZ5X/8Psx93r0Tf8EIeq8Ku8r915ED5pC4pUssUDG2JEYHzPFhh9r9S4O6zNdtHGvv0dp/Y4SC2rVA2SX3Vw6ROeZFZAbr3CiIrxnhJ1PIAcp+BiHxOd/zHY5DC/UDwklRoUEenbdoU/MMMcyL8yNBsBnX9dQwD6b76IAvIDQedf2NBUfoo4pAAocLkBlkGC2YY6QehCFj8H6OECSPB/uE/TwtVodbKCRb1k0B3Pm0+z1km39/AsO1i5R0H1MT0w0gHTxxDXC/MxP0oGLnB/1Eg0V5fbbeLAnrtM1ZQEMK+BMNv4IkqmZ7tiMJu6JNyogPn1q1tR6gStIioJ6x4YJwqJZcIg3cX6QzL8Vn1qtvvmq2+O1BMZ+Z/LnP5SGnmnUroRsPVDwXbDHYONcAl/sLmEsxUafGjeWh068Y+3wR6Xx8go72YfocA4jMKwJJUK4QvYEmZ38j5IhMX6rDJhmFyljMY7ebJSFydUg2mKxnBPQN+l53hOhhWozYYe22siE2ggunaozbelAN1+Jo99h0CMhwdXXRVajIiNIYYE4NHd0ZteVb4lTu17fcX3sY2OUdNn7IOY6TN+ubDhTGclmHoUDSCXCJFbhkoZYOXXmIas6bOByDnpkdNQuhrsWkj4Fp0dN/Rvm6cBa4bUUSR0rb2Besyd6CDoLR1qK9+jGKLVjxOtiIYWYbHbdktJVBTEoUEBzo5HMEhpFSoP+DdaD/+AATDJjVVoaJQ4+GOq43bAAiQ0LPgIMKlOwU2NtDI9MJkySEzVoPQgRsE7FG2uiyc2CoxaCHMMw7CFuQLO3yW6fjQSilJjm54feeqw/7qDlaYFzhxD8xfYWyE2JrDLxQFFP04oIvSB6gNboLKamn90b8lP+eNiKPnXsiFXyb9mesj/tHrI6dw4fiAXdvontHKLmdJMh81uFfZHLOMB8iWNuCCf14iE/CNvrMyKJORmYGUiSJQkKxNBoiRZmQgSJcnKRJAoSVYmgkRJsjIRJEqSlYkgUZKszE821T60HZXnv2JAjRLyLs9/YVDeYOdF12ak0S95oLz9xWb/+sHH3e9uLee32iZ60LUXlaj2r4ov9ktUai1MF7ENHGZSXppltNX3U8Jyx3GwPjD+AdiUEs4zCRqCYdv7dMppoY/IAAf1R4Zm5WCquB7uD9xAnhgBM/Kpxm3zO+G7bZiShhqaBuABfmHnBTXt++b27XuVAzYvHP691sTbfqbstRXvMvYFgNXaBkTYfccQJwTT6hzmhj8XVtX1lIiCWKGP1Li4bX7yqVHQzN5HHtV6pdXxSIsY2z3s46lVw/3WqicHpPumHOUBpamcKI1qwFx84MrT3LqQ4wobbBhm5JCDUz2Se8a+VeLXN2pFmX8CZAttvaeMU4xNseB+rpcb0YmQG3Lw8PQSI/dzm+p3DyFEUQX0PmEEovgm9ErAsKbhp0qGyzbcTJjc5Mzvp61g1xKClMUJ0lQj93UbSZX4m+uXqvK7DLaxyO6gHIcqbe0aPg1ZUMnxn9xBf9ei7iKSn8vcRdS3FAc6YznRSdbv6f7NFhhf9QgLsfH8LMlafs4vNzywD3MhnhkJbVjAdabu5+qpbslqoyT36QcsDN0bMJT9DRzTFwjbOV/EApQAwPbEuFBn2Dbt63K19qXnLAnaubZ88rO3L9tQFzux/ViWsE5pLMyL012cqUxw4Kc/QbC6oPrYUpCavzEu1lXAwFKAkcYO1c5R5649T1kQsG5i/I7fvP+mFv0rKwP3ooEq0GTmlADC9IQTpltGBrvCt9Doe80W20KDngbrI3ALTcjIHT0waAg/9InND0manPNsl3Y/ZKlf7ntdu5p16OvQ8fJEIb5Og1gvZ0vNm+D3kbs92LkUuTBBkQwvKTTKKCJAGsYioR3u4nhC1Ep5gWYjeHg1XfMgZRaRk8PDip9djHJUFbBtKHxxFzwO8i2bH3jpoyo70X/zh3rDA7ddbUJNkbAPYKZI+OXCxhz9nJuJY24pgKcGhCcHNeZswZizdzWKTWKPPw+XSHpYyoB237p2DFr/ote4Nq9vUCcpxOsyd/+I64UebG/39aRrSp2QTZujfv93QvWePOBTihMf0H0swTCwxYgbw3AgOgjoP8ZVUbPvJtfEKnRcRjtV8vDYVj/3Ec8+OfJ7o48/U4/WlcbvZxqNuM63s4RWeevCZZWnVmWVd4dJqxgVvipiDi9REU04X3TNhaGRgQq/gYFjw8Tze9ZacJdqmFDsfqZhiOt8G+adO+FO4DIjY77q5SkT2LoaNyFz0mOATSxUysLwmNe/6z/SkI5hy4TLay/7a/xAmqQQ/gEISSGioTgQ+ezChchLFzKuf2aL61tmBf/Zt71P4MQ/v+psj936QLUx/o2Gk2E66GcY1AAuTI5TRsWBtBKeLZRrtVANUs+KIcK/YZMP+jlt1PMy+yR+3QieaJ4LwRNlsF9EYFa3lxnXjdwBr02kGrh4EibwC48w4U+CfPG/5nxIfvTv16A185+4PPy7BZU8V4YtsdE3mDn4Q/rcCYihF4qjIWyKYWiUx+oQRvQovKQJ5aAW5ANp8fUBWEYB/j8/pxSODBuNlnmhxXOLVlSB81oMMEcUYFDHeq9+MH+x+o0rem/iSW2Svs3Bw85VtgvXztUMPeb/sGEettvv/GnBcUlqn5rtlS+DKlMVt0MpQqhMR8qGtFMoyAdAeNKBO1U0OVXD9CZpyhRcj8UUAqe2G7pwAw9SwwidgVq4gXsUZ1wRepNkPEHoTcJvoutN0vUi6XqTRdaTpN+I0JNk8011/JQa4HOMkb9dJ/vl/NgtLwJm/b7tH8326NlU+Vsxc3SICxW3m3E6slLJp0sCNt06KWuRNsPUc5MCMDruQXN6odgLkKBzxTUPIeTIBlJRRIKT0seJHm2sJ553eNackbZrWxdBJJiO0u4PNZb/NuGl3+G1e/4uv/KYqYQDiNIZTpSOuDIkADnZLnitBZgYGaKiTGO9U2MY/lHMGEZcL44Fb6zHfEItNLm4Y0gR/vTf/5g/pcv5mMmfJnH60wH/86ekfeb3VUQ8ttkgWnFnwJtz3Zbs5MGf0mWaePAUWk5PoSx2f3pwxzOffbV6BM0OebQxdeng1zz4U/oiAQ8oDeBEqXtx+lN6DLW4P9Vy+tMBen/61ernBPThxA+ZzbtEzfeZkkTpro+iuC1XMiN4mBK0cuWaErjpIf/GG5mtAgm5GchsCA080tUjNPBIMhtCA48ksyE08EgyG0IDjySzITTwSDIbPUNjMNagV0R2Mbp6Hg+Mte+8GdnOjEYumo4kQlSRNDJ9z59hExs2m9BlC3mwCTQI0iY5ex70nvTkU+C+PTv3bR3ykHrO74cu8gSFilkbhc2xuYiFifCOAhW6hAlqnQIXF4Ly3FwatnTdRcSjGOLt7CKjNGqVKgJGLHgx/8jnu840T7jQaX5Wtb6j/bNKTqwWOMvlNJsntO2uVWigADj5tY2k6qRBKsjVglV0oPBPtFJHvDvIMOAux6PUVTSTkGWOGIVsG8sEC5sAB9pOIkidJCkXKtfEKhNCFDGUAGiHX46A9U4LXi+LX++mTix4leqFe0Q0lrVc0CSvIgZiFw08N6hT4k9Vhnwq1IDSyJMDE6Kh7BYJb4my8CLceilwCcvVVURJJnxCAKuoKuUqCdSCKhCIdBqFPF7/OyZMrL+H6Kol2Lqq1YRlugooT0t19P7PQ1w+24QrLh9rQsblklaPOV1e1XqXR3/mJPbv1RP7S7FhbnSYtBeYL0widHPJMInQzSXDJEI3lwyTCN1cMhca32rewqqPZ0hXp3bYED3+j2MFcqHr63scHPRr/bDlqcmyrleS1zCCK/T6yI5EF+PlIbjasFnSSsu100WHzVau/URTrnLtM5lSMjyXa7+i2zf0o/SR5PDUuVOfP3N+ZwXl2o815Sp+u9cyghnUmtMZGRlmKNf+9I/MyuXCpvvujg3cskOXQl0ttFS59s2c1llpDdYxS7n2qMp1vncMbi+Zfq1t0LG2IdQVZkuVa1/AaZyZ1mAcgSXLtVe+WupV73tDguaFt2lf+XCPMlZVrn0Sp/FGW5FQkMXLtU+rn+4+TlrRb3+Vy38O3KUYZeFy7VpOyyktbjl4U7GVay/zefecmHtq8fIxOZ+Eyz5/tIpy7VgOwVqufaZe7OkHtjz1v1SunV4Ww8Ll2ss34yrX/hczpS2Wcu2DI+8MCZu/1H+x8scXy37cRZOD5KFcO13cjIcS5OWacZUgFzQrrnLtrw6IS/7rezF0w/kBo7pmvDnJe7l2uo/gAau/mnJh9dq8PtfS5dpLs7mx/4nwF0mEn15NyCwi/DCTiIYeoCrqJNBSN5lA2qw4RPhf/Zmw5+DvjoEL3uz8NsutTn0eT5vz7CNnAIQGQYSmoMY91CzvxfSRxSHCX2H85tTAna3CNtUqf/7LY/9si4rwQ1TCOFEB/cZq5g7GHfzhT4S/6hzHTYExpSR7OlXu06fWl4pWIcIPTefDaTovy5jO7CL8v1y//2/C1rai6WO7RWxfV74ibafTnKINsAQk5mWQJ+7feWBexmwi/JkHHD8n/TxXPEOU/e2h2+0aFhbhh+CEcYIjbWZGEf47GzzOj2+w3Hd5+R0fj62pO90K5CwgQj6cCIExTeRtZdjyNpm4abPvHa+I19yru/bS4rctqToC2CG+RLUKRHRmzmbLgrN3/haJMv9+QgsDIK5RJ8XGgRwOVrlWxxil5UCvsMj6tEzVgwKNhnL7GskEv0B85RK46ELD9wKY3i9npklGHqyqlv9Y4CqBBfLVh7+/JK1crYd07rQOC1b59aHqqRSpdhcthaI7RlOLzQP0zkL06klQ9YjhZq1xKVR5fPhGK2I1CnR+GViltG9Zn/ah2fdyWm66tv4J7YQUdiPihBR+nXfZX/D+uznff6PFkyV9zzQiUYKPrFRHK6M4tG3C2j8pd+7nB77zvzbTPPw3QkXtq+QHMPuqvqU4jLGc0xjzrSP9ERizY+ERnKDWgfAlj4Jrpy5eHcGUFcws4t2EzTtGxak10W7CFh21QzU67Bd0tirqvPTKX8Jj/uMdu+78un4mldtRFn5BpC5Fhah/md9UHMaazmmsCVYxcuBHGZWtVs9f6E5I0gzScoygdTtFvTPSy4TMvFeteuC1cU9MmSqbOnXwIhw5POp5gaEL1Vy2/qCRWSrhyTmyrVLKrw32vBgZsF5VWrypcb2tlp32AgC2kgDcQAAAXYtRmSgZythFJm48/BzSUN1BfGDy5G3NXwVNsOhhXwjAXC4AeqTrE03b/xgfh16Y22x8nBA3Lj6Oo1tx83FGxQ6J+sn+Yei8HVnp16qmDbQCPk6QG9fupsjNCkgFWpDSFz8f527PX6at7joiKGtvmvNd2xtlrYKP05rTOm7WYB2z8HES0zbX2pp6zm/e7d4PVn1JO2kVfJz6nMZxtAbjCCzJx3lY6+63e8vtwlY+DF/3Zc/UI1bFx6nAaTwbyxjPOvk46aWWugSU+Ekyb+kVt9RrD3wtzMf50ozLcu+sYppSbHycSR96X59zda547YLdj1+XbS61Cj4OlkOw8nGAIyTy1LL/F/g4Xd+XbxLsrBFN9zwa0fyDpI6F+TjT3Lj4OMOZKW2x8HGav+6yZ0j6q4AtkZ/rNdt20593Pg59bs4DxyTDjYtjMs6tuPg49nGeCUNWf5Kk5QS1s6mZcIR3Pg7dR/CA1XBOrBLMGy0tzccpx+bGhh5WNlOGrZPsPhSuev6kL7UQm13XJHh20l8jT4xjnjA1YvuioVSpTYSnx/S7OSnu+ClToRxq5sXCb0D2vNbb96wrGxkYuGjVidLHHpaxZX0+5k5OwUZG/ysbCVxYeMGjWIheST/3ZGCv1H8afSMOZAKhUJjLQQL/0c5/Dm4i+yvEJc8+UqECBlNEBwK/Ppz8OMysuCnt2Ezp8ChTWsXnV0mu9+PDm08lU+NsCV+0ASvj3h1hM0E5vIlyyIoIBozDV3wpedAPyRdBycPQ7KAEi5W8QEa22JUokXtETKBeng31bxO2rajqYeO7q59jzqrE0JWFnr4sV/zIG3xik356j6cTm0UcN1wWeduIbhF7NossnZmZ9Drok//coQ7anCluP1LXRP0geUbHzMhYp5f4DUItiPp4vcskLUx5sVptcWpVNJRjhJTAGOzvsHRYJ4/VGpSD0I9Ilg5RRw1RROtvQj06czkXv27obrWLTNCzMQCzJIrUB0XV2zRGyC9BiOA8DiG/BP/R5ZfCJtzrFJn3SjT+7I5U2/fhV+jyS2k9c8fcSuwXkH1k6fxn2RmdyHbyMGqR5ZnoX4yQZ2KztB1UDyDMiNZ8cNt9QFVVEzLn2bAviRXPnzPFWvzvhgG7dod2XYhKeWaAIRTc2CKFJ+1gfccBWvAOCbH5DiP/d8zVjPTyiRiNUIlis1UVv/zRBhIiXZIGnbgOjT30YWGXzQHZKUcF19fFL+E0WRkJ/kkIrWOioTiMJuY0WhvzGo10wTYhEtyhwlvG6Mc9ZhtyjLIle/WlROlrZYJWocFYd+ArKA4TLZi+++H14TfeirftT95as/WdSXRblQlN0skHqfQCFgLaZhf8Vi9muPIqVOuriOGKy6junEZt0Jih9cVZQIHo7ApcnwUJHl0mhbOj20BPxyzTgV3lu4unehB+6YgYUele5Il1cSKkV2AL6V0f3w8vozrvv2TvoZJjdjlPpHJlI+OUMTohrCtLDeswXrHVtHYKj4mBUxG5SkWUX1XCwnlQvNsDCTC94CDbIyDyJUN5eqBntIdpTjdfVDE8N5nAqZGpPDJ7rPouGJta+MDIFw1/dW/cliZZkuXZF8qvGRF3kF7gBfmKhaaE9KLrJo6xVIBVO4hVthjF/QATfM9GxrHGcAuqsV6BxMVueHiJnHWLwjeLVT06/SgvzVhSjjEMGFPHE3jzRpxvDnqJFSwnYz3QiD02O6gzxCU91TNK5jx8mkQ0veyAGvdy5q+j9kt4t7ngr8wJfxnLwM9giJlaqBsfEZDtDN4EXbSAVnG3iJ7C1NV8d8IVHBEhAgwkPzvp9XwqsgUYo/V8XPTWK349nziniWH3ZrYJSD+QVTN5deuC2oafss6eex+ulE6/vG/SkS+CLQX0fPrJGj4s0X+waEvc4SYxd1o5FtDzGZ/4dnazU9XDZl2b/MX/5LDWBfR8SoQ/XVktdr/kQLVLw4SNxP0L6PkgKv+S2oaIyr9koV5E5V9boqnUUvuZF1blhh84sE/s+/BhfdBUlmhampQ8cs6Ga74zloz82lIxuhZoKkc0bV9bUdRn8FDp4d/HnPvk9Q1+oB3RNGyYx8glT1Si7A9Da6Z+TasBmsoTTV1+Wnvc8Z+y0sxHIyf97JebBJrsiSaPtw6XpkUeDZ91+vayZ7G+M0BTBaJpgOex0Fs1T4Vs3L3esXngfTFoqkga5cuKmdt/vhlwoEXI2mO7B8PHqEQ0la/vN8pjj5N0U8syW7vnDnAFTZWJptNLhI+/5Wj8UpM3Z/42SvQjaKpCNNne/fNAH7vaAVvD/Tq5JnbvDJqqEk0OHT/23j+hUfAcv/6jfpmg2AyaqhFNK1NjXjc/eFl0uO2ANoEBeVVBU3UBqwyUA9F0/3iOuOb8paKDpXr2f6+L8gFNNYgm+5Sy+yvMqSzLcV/21LX2GdgBHImm4A8LNMnNZ/lndT/Q9+KbBPhdNUkr994THFArSTSxddiqKdmx3UFTLaLpQk6fw1Wkc0R7SgXfbF932nTQ5EQ07fdv1LR6uRX+i7OuZa2Mc5eDptpE06+/XHx2r2ZYQG6vSxPi7JfsBE11iKZtQ7KchFNPypbdCe6t/Hb2EWiqSzTZ2HX1qrp+lGzGpZtDxO8r3AZN9Ygmv1Y7vOpdjw7NXZnWLfKE9w3QJCSaHp13l//7Zo547J0Lx95VvHmaIVTlLGARqord/NSnfO+/wg/cTzpXOfazPQ9CVZXYXFT1mL2bc06cli3c8GjE2dqjllKnrrLhiSp1NOL0BVsC3Ji4Q0iel8XK1GnjQUIMnBBRAdDA4xZ0B4V8NOasmmgw0M9XAtOqxR550L8idg5TQXqc7mFcAc3806j4gyDfrXd8QM/o1RX9JhxdffjHKarrPB5G5XmD0AsAtBACFI2ad35ylQlmeRiVE3tHKEDXwHhP0QpY4kitVWLHT8DzKVXY1InsJ0K5Bp64Vscro5Ao9n1TqXyt+g7Bs1a0uN8sY/tMKn1c/z1M+nh+E+95gwvWYzjg+snDKjI55lFHIzM5d2KgReebSxcn1wnj5UMUQpCA6EtYs/PM19Tt4u+W01mybe4//TKWVbxBYxoSH4tgGpItfFtP5E50dinKeqc8sM7OYJsbCZwzeSiKJPwp6EAiwXpn1+nfCbO8JZvXlhuVfbF8tOlHsHgAK50TLNDVifhTmS3+/E+5oUjKDfQM3SzKDfAY93to8OqoTZ4HIFZeNC5WGqjckDSlpEZy8Kh40l0X+RWfD/d5DJZ0D2RisNwCC2JChKahhsRvwPs/NS5YFlW5odqEUvV3zWkXeHhV3OEJR+dS+4e5j7BAVG5zonLRMjHRAJZpYQtM/Ck3nPn6vMrAiU9CV7Y8MtPd92h7q1BugKbL4zTdQWtNZ3hWbkiyr+r1qury0MnrP2afrFzyiwWVG5a6E14GefQe1jJ9ishSiku5oc7J7I3VtgjC92SW/Vi5zicqQcj8yg0QnNuc4Fz0MKNyQ3oZp6nrM7uEp8aOLCmVdmllBcoNEKE8ToQO6vO2Kmx52+kF8pCv7Wr4j1tVt8zLBiMPUbPREJCjCSOlIYYvHPjqi+HCagJkJgxmiDHgV5B3pQgBthodrlEAnC3RX2HuRaRuow1KnOjrl+jnZmbRZIuhVFEwDXzqTZTFZe66wfql3sYtK2APUAAD5Ns1jC2Vnjj9Uti+0Z4hlXym0Q7uRsK7EQcUsMuFZUp0/2dipvQOAPTYm2BfIbm0N72N4h07YgCR/cIlWqkB3Re0o4Ntn562bSZfayLac+fJk2kjBZOow1JK3swclvlNhQH2/Gp0swnZf0kyFbVTttdXHeABsF85AQM9yiJJFB4z4N+0FLD9MOWwbDlsaYfZksOrhq50Sw1tvz9w75SZb3qWnupRBRMyAcaQDU/UKPS0ZyypFftGuvRyNS0Bppn2TJ0Pv3WYNkKSlev65tWcXFP13qBp93OadquFTIvKj2d0NirVKh9SwJ+jjzTW+21n7NgH0sXnnAZHefteoW/4IQ5V4VeL4wQP5pO2oEglDzywIUYExqpsgdH3So27w9psF23s299xao+D1LJK1SD5VQeXPuFJZgXk1iuMqBjvKVHHA8hxCi72MdH5H4NNDvMLxUNSqUERkb5tV/gDM8yB/CsjCsgHeAHQf/NFFJCfATq/j5ep/BRxSAFQ4HIDLIMEsw11gtCFLH4O0MMFkOD/cJ+mhavR6mQFi3rJI23Jip9neYXnDD6Wu1jSmlqkr3QPjHTA9DHE9cJ8jOLh1dx+ohV+ExJdNBO/RqTxUGPeD8Js44somX7KFYPZ1CXhRgXMr1/dilInaBVRSVj3wDhRSCznpXt8k+SKpLvSHg6Jmxl4m3oiI/9zmdNfSiPfLqGLGwFbPxRsth4YbIRLqMbmEs5WaPCheWt16MQ/3gZ7XB4jo7ybfYQC4zAKw5JUKoQvYEuY3cn7IBEW67PKhGFylTIa7+TJSl2cUA2mKRrDPQF9l57jORlWoDYbWrS3iUxQCaJrh9p8uwCy5C+epo59h0CMhwdXXRVajIiNIYYE4Gz/7ZtTHgkCch+8F6b5nW1HTZ+xD2Kmz/jlwoYznZVgauVXMJwrQOSWoVKGdHhw24s1fTYQOSc9chpKV4NdCwmfrMvUbVXulA2eWu/d0RaZA6nCW+WJDoLe0qG28j2KIVqgJ3Gg9c7TIix2224piYqCODQowNnxCAYprULlAf9G6+EfMAAmubEKDY0SB39MddwOWICEhgUfASbVKbipkVamByZTBomp0kAexCh4h6LNpXpio8CohTDHMAxbmCvg/F2i60cjodBOCz96dVm3wPHP+1388FZF43dhb4XYmMAuFwcUWBdnhQJ0cSJQVWcLVFZT84/uLfkpf8xzyT8ByE0verKV/BOBzOG0HnIHq4eczo3jB/JjJ+7IG010CF4x+OKDeUc+xvAAecfmXJB7Nychr8EbK7MiCbkZWJkIEiXJykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrs+x5725vKm6RZDcunTUuY28Sg/IGOy+y99HplzxQ3hzZ7F8/+Lj73a3l/FbbRA+69qIS1f5V8cV+iUqthekitoHDTMpLs4y2+n5KWO44DtYHxj8Am1LCeSZBQzBse59OOS30ERngoP7I0KwcZEuB0K/dQK1dLwVD0JWZlXOtXTvhu22YkoYamgbgAX5h5wXVbVFr/NM5MwKn/bAo1L9pnQRT9tqKdxlbACbO/mTYfcdQwQatbT2ReTgbVtX1lIiCWCFR+vefw/2qd78sm7ti8IwDunFPeaRFjO0e9vHUquF+a9WTA9J9U47ygJIrJ0q1PJmLD1x5mlsXclxhgw3DjBxycKpHcs/Yt0oGHcl72PJIj6BZoqehgjVjFZZU4ncjOhFaSh1Mgzt6GpfGNtXvHkKIogrofcIIRPFN6DqxwtW2jxc+FE+6fnvF23JxU6xg1xKC1JITJFdP4/Z1G0mV+Jvrl6ryuwy2scjhoE6Nevr+4PHQ8fNf/Fjq+6lN1F1E8nOZu4j6luJApx4nOtX1uWhNtsD4qkdYiI3nZ0nW8nN+ueGBfZgL8cxIaMMCrjN1P1dPdUtWGyW5Tz9gYejegKHsb+B6siFs53wRC1DwDNA440KdYdu0sU6D//K8U0qWKkr5uPXt0zPUxU5sP5YlrFMaC/PidBdnKhMcgDUXgtUF1cdgAfQM42JdBQwsBRhp7FDNHPP7/gzPsrLJUQ1dX27Y24HqiWTgXjRQBZrMnBJAmMZxwjTcyGBX+BYafa/ZYlto0NNgfQRuoQkZuaMHBg3hh2qx+SFJk3Oe7dLuhyz1y32va1ezDn0dOl6eKMTXaRDr5WypeRP8PnK3BzuXIhcmKJLhJYVGGUUESIPcEv1wF8cTolbKCzQbwcPb3SoPUmYROTk8jjivlVGOqgK2DYUv7oLHQb7l/T6H8uqfT5etSxn5b7eTbR2oKRL2AcwUCb9c2Jijn3MzVZkNwLMTwpODGnNtwZhb38ooNok9/jxcIum1k17LrwzoL8l23xO+SrR8A3X3D7+fuftHXC8MnyPTd9WOvzovbMXg3HvNczZc4AGfXE58QPexBMPAFiNuDMOB6CCg/xhXRc2+m1wTq9BxGe3g1supUyOGSBadHOJ3cUNMENVo+P1MoxHX+XaW0CqZnFZJsyqrvDtMWsWo8FURc3iJimjC+SIN06Z0jnZU3BX/6bkbbz/vvId62K90KHY/0zDEdd4FdDwIdwKXGRnz1YGeMsGqVsZNyJz0GGATC5WyMDyW91XuGPL6VuiizBqTE7LPedEkhfAPQEgKEQ3Fgcg8TkTSW5Fx3Yktrm+ZFfxn3/Y+gRP//KqzPXbrA9XG+DcaTobpoJ9hUAO4MDlOGRUH0kp4tlCu1UI1SD0rhgj/hk0+6Oe0Uc/L7JP4dSN4oopWBE+UwX6B6iw9mXHdyB3w2kSqgYsnYQK/8AgT/iTIF3/ZaNQJv8Gt/JbfXjY3tMdKWudjS2z0DWYO/pA+FwUx9EJxNLo0xTA0ymN1CCN6FF7ShHJQC/KBtPj6ACyjAP+fn1MKR4aNRiJKj+cWragC57UYYI4owAZ6YIARg7m21W9c0XsTT2qT9G0OHnauWrfi2rny0GNehw3zsN1+508LjktS+9Rsr3wZVJmquB1KEUJlOlI2pJ1CQT4AwpMO3Kmiyaka5CfpyhRcj8UUAqe2G7pwA0b1T5CqmYFauIF7FHHeCL1JMp4g9CbhN9H1Jul6kXS9ySLrSdJvROhJsvmmOn5KDfA5xsjftnGM/HRBKvHdc+7FMt3Oq2qq/K2YOTrEhYrbjajsObVi+cvSXYGqDcM1rQaZumYCzDkKmtMLxV6ABB2Ndx5CyJENpKKIBG8ZvuP9nfkTfedPfbLrrPPBy0UQCaajpOgZEXR/bfvw6ZuOHvIae2EHDyjFcaLU35shAcjJdsFrLcDEyACA6Kx3agzDP4oZw4jrxbHgjfWYT6iFpl7uGFKEP637H/OndDkfM/nTqpz+9Gur//lTwj6vSq6Prj36R2n2QY9PSn+bcjz4U7pMEw+eojKnpyhT7P70tOTQlloek0MXpx+IrrlYXBTRdTpK9EUCHlD62ooLpQ+titGf0mOoxf1pZU5/+lWfn9az+jkBfTjxQ2bzLlHzfaYkUbrroyhuy5XMCB6mBJc4pwRn9JALeSOzVSAhNwOZDaGBR7p6hAYeSWZDaOCRZDaEBh5JZkNo4JFkNoQGHklmo2doDMYa9IrILkZXz+OBsebMm5HtzGjkoulIIkQVSSPT9/wZNrFhswldtpAHm9Rns0nOnge9Jz35FLhvz859W4c8pJ7z+6GLPEGhYtZGYXNsLmJhIryjQIUuYYJap8DFhaA8N5eGLV13EfEohng7u8gojVqlioARC17MP/L5rjPNE/7a3H/L9YTRobObbH3g1+WBO5sntO2uVWigADj5tY2k6qRBKsjVglV0oPBPtFJHvDvIMOAux6PUVTSTkGWOGJz3xjJBu5bAgbaTCFInScqFyjWxyoQQRQwlANrhlyNgvdOC18vi17upEwtepXrhd/May+zbtsyriIHYRQPPDeqU+FOVIZ8KNaA08uTAhGgou0XCW6IsvAi3XgpcwnJ1FVGSCZ8QwCqqSrlKArWgCgQinUYhj9f/jgkT6+8humoDqw/LdBVQnpbq6P2fh7isbMkVl+Utybjc0Ooxp8urWu/y6ABOYn9PPbG/EW9h0l5gvjCJ0M0lwyRCN5cMkwjdXDJMInRzyVyo2YaRszuvmyAd7706+Ifx7rcK5EKqe7M6nazwMGin8103cc4aMSO4Qq+PVk6hifHyEFwbs1nSSsu100WHzVKuPbWJTBDVmq1cOxTz8Wxd3OXaj9UUjt6sPS1bO8u3rXxhberJTvOXa18KIJG3Zit+K4I7fq2toOb0hAkTzFCufU3LGbr9S7PCtt1IGns/Mpq6+2KJcu3QOqGc1pFYg3XMUq69Vocse2fxB99Jz+fsL3Gj0y6Ll2uHxmnHaRxPazCOwJLl2o+GnFEOqRUs3jt1QP8GlcZRlXYtWa4dGq8Rp/GcLGM86yzXLlkwtkbXKjrZ4qx+J09WD9lrwXLt0HKVOS1XxuKWgzcVW7n2cu/7HLdvNUS02C6r9pmSGyQWL9cOaS5YDoEs177UE3OERJ7ahC1P/S+Va6eXxbBgufYHrjLButZs5dphtdA5zJS2WMq1/53a/PGYAd/8N89K+q3f5hyqYCIf5drp4mamzpOBp1jTmq0EeSqYRS9uXVzl2u86XA7xW9nPf2zHQ0KR4uJD3su1030ED1jN4cRqinl9rqXLtbuwubH/ifAXSYSfXk3ILCL8MJMo2SYPnvBHnAS64CYTPGL6Th5E+Ev//Ne4epU6Bc5+nL5/571jz3g8bc6zjzwCEBJAhKagxj3ULP+L6SOLQ4Tf07vP3d+n9/FdKAnbvtFrL7UOurlF+CEqr1tzofLI4hlowR0ny4jw16gdr7KN2CddUKNG2taVAxZYhQg/NN0NTtOdt4zpzC7CX+aj65jHATm+K7bMSjrl2e6NBUUbZrgTXgZ54l7oiXkZs4nwP7nwMs350/3ALFevJrJwWTMLi/BDcDBnwwrOo9ZmFOEfvmz7vLSmTyWzGq/dXLLhzrtWIGcBEbrBidB5/fTTlS1vk4mbNvve8Yp4zb26ay8tftuSqiOAHeJLVKtARGfmbLYsOHvnb5Eo8+8ntDAA4hp1UmwcyOFglWt1jFFaDvQKi6xPy1Q9KNBoKLevkUwwBA5PuQQuutDwFXjJBOI2ph6sqpb/WOAqgQXy1duW7xZ8NGl++J6dGbMP1Eo5bnrtLloKRXeMJqZQXQB6SohePQmidwaAidWANsYVwsaHb7QiVqNA55dD53Wp2mL+2/DNDs01Y5JqUwsxl5ZiNyJOSOHXeZf9Be/fnfP9g9tYOlnS90wjEiX4yEp1tDKKQ9vmt71H166tleE7rsehN4K0z1Q9cFvyA5h9Vd9SHMYQcxqjjWWMwSiObcyOhUdwgloHwpc8Cq6dunh1BFNWMLOIdxM27xgVp9ZEuwlbdNQO1eiwX9DZaoMHo5XbP08WLQx87LstcDg1HSoLvyBSl6JC1L/MbyoOY7lzGquBVYwc+FFGZavV8xe6E5I0g7QcIyjXe3j59PhXvnsjQ0Zk2j18a8pU2dSpgxfhyOFRzwsMXajmsvV92xiXpRKenCPbmpjhPOTN+Eqh85skjHaon33ZstNeAEA4CcANBADQtRiViZKhjF1konVqjfUb6j8NXXMnosqIbSF1aKHMvId9IQCtuADo0bgNmWg2/Y/xceiFuc3Gx3nZhouPs4uZWfLMx7E9OmzstrDxIfOHr/5piPbNOCvg4/zWhmt3855lnD6VVDBkyBAz8HGSa8xc1aRWJcm2un1a/BJ9X2gVfJwrnNY5Yw3WMQsfp8+332vEPI8IPrx60L3MiRs+WgUf5wincXZZg3EEluTjlBwzOa5DWrLvXK9PiUe+fw23Kj7OBk7jLbN4smtFfJxPSaMzWyfGSNJqzc740Gd9LQvzcbI5LTfN4pYrVj6O+y9Oi+Ymrw3buPLsjzN/Vr21Cj4OlkOw8nF26fPUZv8X+Dh+rXZ41bseHZq7Mq1b5AnvGxbm47i15eLjOLQ1Dx+nlvL78sO+faSbTm1uPk1wqQ7vfBz63JwHjknTtlwcE2Hb4uLjOEdXcwx6uzR0ypEryx5JK6/gnY9D9xE8YOXAiVX5tv9f8XHc2NzY0MPKZsqwdZLdh8JVz5/0pTpnu65J8Oykv0aeGMc8YWrE9kVDqVKbCE+P6XdzUtzxU6ZCOdTMi4XfgC58eN5d/u+bOeKxdy4ce1fx5mnW52Pu5BRsZPS/spHAhYUXPIqF6JX0c08G9kr9pyEygZfwtJ+DBP6jnf/c3ET264uWefaRChUwmCI6EPj14eTHYWbFTenOZkqHR5nSKj6/SnK9Hx/efCqZWh29hC/agJVx746wmaAc3kQ5ZEUEA8bhK76UPOiH5Iug5GFodlCCxUoDge/oQJbIPSImUPdgQ/3bhG0rqnrY+O7q55izKjF0ZaGnL8sVP/IGn9ikn97j6cRmEccNl0Uym9Mt4slmkaUzM5NeB33ynzvUQZszxY2qaVTaD5JndMyMjHV6id8g1IKoj9e7TNLClBer1RanVkVDOUZICYzB/g5Lh3XyWK1BOQj9iGTpEHXUEEW0/ibUozOXc/Hrhu5Wu8gEHyGYJVGkPiiqfrU5Qn4JQgTncQj5JfiPLr8UNuFep8i8V6LxZ3ek2r4Pv0KXX0rrmTvmVmK/gOwjS+c/y87oRLaTh1GLLM9E/2KEPBObpe2gegBhRqS1Bmr+3LihgVfo7KxDxx/U2xtqirX43w0Ddv0A7boQlfIcAUPoRXOLFJ60g/UdB2jBOyTE5juM/N8xVzPSyydiNEIlis1WVfzyRxtIiHRJGnTiet7xRef6IX1CZq3revrZ88oNOE1WRoJ/EkLrmGgoDqPd5zTaVfMajXTBNiES3KHCW8boxz1mG3KMsiV79aVE6WtlglahwVh34CsoDhN95Nkzqp7nxpLBu2eUfOS8ZGJjuq3KhCbp5INUegELAW2zC36rFzNceRWq9VXEcMVl1LOcRv25OUPri7OAAtHZFbg+C5ogTpNJ4ezoNtDTMct0YFf57uJbPAi/dESMqHSf6Il1cSKke7GF9K6P74eXUZ33X7L3UMkxu5wnUrmykXHKGJ0Q1pWlhnUYr9hqWjuFx8TAqYhcpSLKryph4Two3u2BBJhecJDtERD5kqE8PdAzbsISs918UcXw3GSCvSaXp7fHqu+CsamFD4x80R77G2xYc2RB2N45FQaOX7ZcSS/wgnzFQlNCetF1E8fYFoDVdYhVthjF/QAT/F+YRak5WWO4BdVYr0DikjEh/cvx3B9k20d4e29wdy7NWFKOMQwYU8cTePNjnG8OeokVLCdjPdCIPTY7qDPEJT0V6PHu1cE71YL2r7p3u+X78+nUfgnvNhf8mznhX2kZ+BkMMVMLdeMjArKdwZugpTpoFXeL6ClMXc13J1zBEREiwEDyMxgQRIBpzhZgjNbzcdFbr/j1fG4Jq+1erbWRHmz31KZUh4vBBfR8PjwrF3o4Z3DIwl19yjjI9qsL6PmE6cJuBocuC179pyjJPyhzTQE9nx5Vox4NdTnrOzNy6m2bM3VCC+j53OuQ89G+yyDZodaf7Cp5LlYU0PNBVP4ltQ0RlX/JQr2Iyr+2RFPjVnbN+znkBi764fdc1fbov0BTWaLpRcmHDU9sT5TN6RV1rdPRur6gqRzR1KTW67WRrVLCl2QFz2kb8Gsr0GRHNN3euDbulvtgca78xsXhl27XBE3liaZZZbUn5j/ZJd6WcNUhbu/qeNBkTzRljOv4LKfDzZBpfgNz/tXO6wGaKhBN1wY7RwXU0gUtSK7tdEJT5SZoqkgCZTehzh+vg323O+2ttddG2B00VSKafG7bXqpqlxi0xu+oZLRNy0OgqTLRVKGb98NuDkm+u8YNH/hq5PS+oKkK0dQyPO3fl1vHSSbvbfnwcr+G9qCpKtF08ur5iH0/vPDduFXU4FubXqdAUzWiqWe5D++dPgf6rxriXmJkSEgb0FRdwCoD5UA0+R86fqN96ITQrB1XsiZkX98DmmoQTfHveznlrr0l3dDV26mez3g30ORINCl3LwuYd6WEeOIGl97nHGe8AU01iabh7qquX2XOgdt/a1572GX7xaCpFtE0YsrJK4PkEt9ZohsfF104PAg0ORFNe58/apWz7J+A6VOirgy9M+gFaKpNNDW3idu6Zst1ceYHh+dNt01/D5rqEE3je62Z/pNd+5AlqqrNmpfsD+1Vl2iKOXy6utuRE6Kx2092T3ab9Ag01SORP3E9LHOKyH/yl7tn9klHzgdNQvKuuZ0uLlvcUrw+xLXytDq7KjCEqpwFLEJVc/YIl/V1TA9Zu7d2pxSJ0yEehKpasLmo6jF7N+ecOC1buOHRiLO1Ry2lTl1lwxNV6mjE6Qu2BLgxcYeQPC+LlanTxoOEGDghogKggcct6A4K+WjMWTXRYMQ+uo9PHvSviJ3DSiA9buhjXAHN/NOo+IMg321020k+D11XB2ZUGJF9aGmfsjweRuV5gxCe3WsLAYpGzTvTXWUCDx+jcmLvCAXoGhjvKVoBSxyptUrs+Al4PqUKmzqR/UQo18AT1+p4ZRRawvbhtjXXSm2TjM9a8mZVzME1VPq4/nuY9PH8puI46tiQE65aPlaRyTGPOhqZybkTAy0631y6OLlOGC8fohCCBERfwpqdZx7RoUGD0B4fJdN6Pp7oESL9h8Y0JD4WwTQkW3gvaOdGdHYpynq9PLDOzmCbGwmcM3koiiT8KehAIsHa2W2pw8nx3aTTLs/smnX578GmH8HiAayGnGCBrk7En5Zs8ed/yg1FUm6gZ+hmUW4QwnKP0ODVUZs8sNZbvHGx0kDlBtuJV+XjVjn7Lx27x1GzdbMHj8GS7oFMDJYigNBUiNA01JAYDrz/WOOCZVGVG3b/MfTCxdsXQ1b3v3A3YMpDWplQMx9hgagkc6ISb5mYaADLtLAFJv6UG54KJUmxI2tLZ7YaWv7O0pfUU0eWUm6ApoviNF1va01neFZueNjq3nQP76ig2f/0PfSgZj8bCyo3wPKHmJdBHr0/4oF5GbMpN6T/3uTbzumbJOs9nr0O/lxqiIWVGyA4yZzgxPuYUbkh/afSB9Y7iqTpW2PdT955/cIKlBuw6pmcCPXW522t2PK20wvkIV/b1fAft6pumZcNRlLXKGxDQI4mjJSGGL5w4KsvhgurCZCZMJghxoBfQd6VIgTYanS4RgFwtkR/hbkXkbqNNihxoq9fop+bmUWTLYYuH7uAQSgmyuIyUiUwdxLIxcYtK2APUAAD9NH3xTHzwp8pRfvmJZ0ZpCr1iLabBO9GHFDALheWKdH9n4mZUioAaIyYYF8xOuGDpjJBktgo3rEjBhDZL1yilRrQfUE7OthOWFBVI9CcC1txvUXOK/dp96nDUkrezByW+U2FAXalf9mwqY9sg1d5LZtwr969FjwANoQTMNCjLJJE4TED/k1LAdsPUw7LlsOWdpgtObxqq5LH341adTUgIyfo0ILZF1tUwYRMgDFkwxM1Cj3tGUtqxb6RLr1cTUuAaaY9239H3cT180Rpzn/fUj6r3p4H0/bkNG2ohUyLyo9ndDYq1SofUsCfI425ccXggMZhP4gXzIk54RK3pS59ww9xqAq/yvvanTvhk7YgSSUe2BAjAqM3W2D0vVLj7rA220Ub+/Z3nNrjILWsUjVIftXBpU94klkBufUKIyrGe0rU8QBynIKLfUx0/sdgk8P8QvGQVGpQRKRv2xX+wAxzIP/KCObok/YA9N98EQXkhc1kgmvtTeWniEMKgAKXG2AZJJhtqBOELmTxc4AeLoAE/4f7NC1cjVYnK1jUS+7UG7l988LSQXv/eLOnqd8aqnpV6R4Y6YDpY4jrhfmYfSUf1g+/IZNM0rp1vnjLJZcH+tgjCLONL6Jkei9XDGZTl4QbFTC/fnUrSp2gVUQlYd0D40ShnUDdT8uXDdsWOu7LzDW/vv3pPPVERv7nMqe/lEa+XcKDZgRs/VCwZbtjsBEuoTWbSzhbocGH5q3VoRP/eBvscXmMjPJu9hEKjMMoDEtSqRC+gC1hdifvg0RYrM8qE4bJVcpovJMnK3VxQjWYpmgM9wT0XXqO52RYgdpsILqJ8PgxRNcOtfkGKRhzTR77DoEYDw+uuiq0GBEbQwwJgPaLbsuGe1PDVt5Z+n5n8Kgr1PQZ+yBm+oxfLmw401kJJg7nGQC5dRC5ZaiUwRGkDEvbs6bPBiLnpEdOQ+lqsGsh4ev7156xse3tJfPuXM19M9quL/WYO9FB0Fs61FbetQqbYD2JA62M9hZhsdt2S0lUFMShQQHOjkcwSGkVKg/4N1oP/4ABMMmNVWholDj4Y6rjdsACJDQs+AgwqU7BTY20Mj0wmTJITLSr0IMYBe9QtLlKntgoMGohzDEMwxbmCjh/l+j60UgoKsb5rHme8oN4Tok1ZQ5OqzeRtjEB3wqxMYFdLg4o5nJCkaEPVG3YApXV1Pyje0t+yh/zXPIPMqvj27OV/LsAMgeFHvK2Vg85nRvHD+RvIj+M61dylu/ePs7Htnzc6coD5Dc7cEF+sQMJeTveWJkVScjNwMpEkChJViaCREmyMhEkSpKViSBRkqxMBImSZGUiSJQkKxNBoiRZmfGjy4oPhJ/3n9G/wsAeAx9dZVDeYOdF9j46/ZIHypsPm/3rBx93v7u1nN9qm+hB115Uotq/Kr7YL1GptTBdxDZwmEl5aZbRVt9PCcsdx8H6wPgHYFNKOM8kaAiGbe/TKaeFPiIDHNQfGZqVg6niU7g/cAO1du0FBtkJ47b5nfDdNkxJQ40Vg1dDViA7L2josYoK2cBwyaY2c6KX7auxzpS9tuJdxp4BsHrsQ4TddwxJCDCtvsLc8OfCqrqeElEQKyRKew7e2TlvkXdgVnqla/PdZct4pEWM7R728dSq4X5r1ZMD0n1TjvKA0glOlHb5MBcfuPI0ty7kuMIGG4YZOeTgVI/knrFvlXS+fH7nye37AxZv/dBqXfSXbxbcz33XjOhEyA25VDANvmnkfm5T/e4hhCiqgN4njEAU34QE5/XKH9IT6t0P35N6KrXX/u+brGDXEoL0KydIJ4zc120kVeJvrl+qyu8y2MYiu4NKvj/oyELvKmEzHv8dkVTqSk/qLiL5ucxdRH1LcaCznxOdrfo93fZsgfFVj7AQG8/Pkqzl5/xywwP7MBfimZHQhgVcZ+p+rp7qlqw2SnKffsDC0L0BQ9nfwDG1gin8OV+UbpSbTFCXuQBl+jata796id+3zZesTP6garNi62rqYie2H8sS1imNhXlxuoszlQkOwGoBweqC6mNQTsMFvebEBlYFDCwFGGnsUMWsqp1241mpsF0uZ+bNzp3xL9UTycC9aKAKNJk5JYAw1eWEqRpipd20LTT6XrPFttCgp8H6CNxCEzJyRw8MGsIPdWDzQ5Im5zzbpd0PWeqX+17XrmYd+jp0vDxRiK/TINbL2VLzJvh95G4Pdi5FLkxQJMNLCo0yigiQBrkl+uEujidErZQXaDaChxcpyoOUWZS+CnBULUVGOaoK2DYUvrgLHgf5li67xp652WOMaPn1Upkbulygypb+gH0AM0XCLxc25ujn3EwccwMBPF0hPDmoMXcKJJj+IqPYJPb483CJpC/Yv6xh6GqnkA1ftL28HoSUoe7+4fczd/+I64Xhk/x4yb8ta84O3v1qjFvWyHlrecCnIyc+oPtYgmFgixE3huFAdBDQf4yrombfTa6JVei4jLZibedZazf97D9l5vkOJ7fG3qEaDb+faTTiOu9njIFVXDmtUs+qrPLuMGkVo8JXRczhJSqiCeeLNMzkqH+jO9TpJt3bt++hOWvPOlANE4rdzzQMcZ334/juhDuBy4yM+eo7EMV8RcZNyJz0GGATC5WyMDxK+Y2NGX/gffiBP5vPdpo5piRNUgj/AISkENFQHIi05ESkoYiM6x3Z4vqWWcF/9m3vEzjxz68622O3PlBtjH+j4WSYDvoZBjWAC5PjlFFxIK2EZwvlWi1Ug9SzYojwb9jkg35OG/W8zD6JXzeCJ1pCRPBEGewXAYjrHzqbugNem0g1cPEkTOAXHmHCnwT54sFX3qfWXf3U/0D/uVf/3jqkI7XzsSU2+gYzB39In/veOQ9O4BAcDSgNDDA0ymN1CCN6FF7ShHJQC/KBtPj6ACyjAP+fn1MKR4aNRi8Y0OK5ZSuquBGAOaIAg2J9ADBiMHey+o0rem/iSW2Svs3Bw87Vpc5cO1dn9Jh3ZsM8bLff+dOC45LUPjXbK18GVaYqbodShFCZjpQNaadQkA+A8KQDd6pocqoG+Um6MgXXYzGFwKnthi7cwIPUkKqZgVq4gXsUNmKE3iQZTxB6k/Cb6HqTdL1Iut5kkfUk6Tci9CTZfFMdP6UG+Bxj5G83jfqzvv+hnUGT7ret5N13diWq/K2YOTrEhYrbbZjyPLldxRTxpowB5wacPm/y0hIwpyM0pxeKvQAJOhXEeQghRzaQiiIS/LTUtrPxwQPCJo8O1Xqkv5xcBJFgOkonx/8lESprB4w9P8VrbuPMBjygZMOJ0hcRQwKQk+2C11qAiZEBANFZ79QYhn8UM4YR14tjwRvrMZ9QC02/uWFIEf5U9B/zp3Q5HzP5080iLn86X/Q/f0rY55JCcCRzaPuAhfLJi9ddChjCgz+lyzTx4Ck2irg8xXJRcfvTTnabWz+acSw8+8cpnZ+PPdWBB39KXyTgAaX5nChNL05/So+hFvenWI9h9afz9RN8sdXPCejDiR8ym3eJmu8zJYnSXR9FcVuuZEbwMCVIEHFNCWL0kPvyRmarQEJuBjIbQgOPdPUIDTySzIbQwCPJbAgNPJLMhtDAI8lsCA08ksxGz9AYjDXoFZFdjK6exwNjTcKbke3MaOSi6UgiRBVJI9P3/Bk2sWGzCV22kAebSNlskrPnQe9JTz4F7tuzc9/WIQ+p5/x+6CJPUKiYtVHYHJuLWJgI7yhQoUuYoNYpcHEhKM/NpWFL111EPIoh3s4uMkqjVqkiYMSCF/OPfL7rTPOEC1s9Oi9fEykb36l36fUdLp5m84S23bUKDRQAJ7+2kVSdNEgFuVqwig4U/olW6oh3BxkG3OV4lLqKZhKyzBFjU7SxTHCpE3Cg7SSC1EmScqFyTawyIUQRQwmAdvjlCFjvtOD1svj1burEglepXnhuSGPZxIud8ipiIHbRwHODOiX+VGXIp0INKI08OTAhGspukfCWKAsvwq2XApewXF1FlGTCJwSwiqpSrpJALagCgUinUcjj9b9jwsT6e4iuKrP6sExXAeVpqY7e/3mIyz9wLtV97UTGZT+rx5wur2q9y6P/cBL7P+iJ/f68hUl7gfnCJEI3lwyTCN1cMkwidHPJMInQzSVzodkTmq5z/OAn23dTlzdvSrXNBXIhj97Jswe/+BC6emgpz1LSXoGM4Aq9PrIj0cV4eQiuAWyWtNJy7XTRYbOUa6/URCb4LmYr1w7FfM4ypWR4Ltfe1ca5ZtdNF6TLXlde1XaCB3V33vzl2r0AJF/FbMVvL8AdP8sIZlBrTo8ePdoM5drPjGogaXVsqGxShU5j/2xYhXq63BLl2qF1XnBa5741WMcs5dr/fPvLW+/TvaRz1lxsuG99/+MWL9cOjXOV0zhnrcE4AkuWa29X1+/vFiVjg6dPz8qLPxM9y2rKtUPj/cxpvN1WJBRk8XLttwe9L3k9uEbwikXPzxy8ICtnwXLt0HIbOS233OKWgzcVW7n2t2W31Smf985/a71JDx48evHa4uXaIc0FyyGQ5dq9PDFHSOSpgWx56n+pXDu9LIYFy7Ungv7u58tWrr0LsIyXr3nKtfcce+fBtOeLg7a8rOH7qO4GEe/l2uniZqbOkwFyUl+2EuSVwDzZx7e4yrWPvpU8P3tElt+Oh2rbhgd3fuW9XDvdR/CAlRcnVo19/78q1x7E5sb+J8JfJBF+ejUhs4jww0xiMezVVVEngQa6yQQ/MX0nDyL8Ub08Px5TeoSlNtQkHCvXcyqPp8159pFdAEILIUJTUOMeapbPYvrI4hDhv1z+wlDBjqayPWOezbuULhFbVIQfopLOicpP5vWGnHMH4w7+8CfCf0K7M3HH++2hK22e/zqp/ZONViHCD02n4zTdYMuYzuwi/MG1xBE/pVQMWuH07J/O3o8sKdogdCe8DPLEPaxPDLyM2UT4J4k/33jZtGLQxr+37WirOUbtt+YX4YfgpHOC85OvGUX4/xiwvUJgpe2SWe3feQ+pVfGqFchZQIR0nAiBMU3kbcFseZtM3LTZ945XxGvu1V17afFbqgCtHXaIL1GtAhGdmbPZsuDsnb9Fosy/n9DCAIhr1EmxcSCHg1Wu1TFGaTnQKyyyPi1T9aBAo6HcvoYyQRkJwFcugYsu9PqtYHp/l32KaeDBqmr5jwWuEligk6f+H78MGH7Cf0nk1S1+v0loeiFFqd1FLzZPc4wmplAPAHo/QPTqSRC98waIOP8Yl0KVx4dvtCJWo0Dnl9ccf8zJaDA/IOfSt/kBv7tQy/6WlmI3Ik5I4dd5l/0F7//el+v9n1s8WdL3TCMSJfjISnW0MopD26a2+JRM55suzV7ZsPvSmZPzqH2V/ABmX9W3FIcx7nIa47J1pD8CY3YsPIIT1DoQvuRRcO3UxasjmLKCmUW8m7B5x6g4tSbaTdiio3aoRof9gs5Wf3E+O2jq2rCgCZN3He1V2XMBNa7BL4jUpagQ9S/zm4rDWKc5jXXYKkYO/CijstXq+QvdCUmaQVqOERTWxSZQ2uilbIZ0YbOp3s36mTJVNnXq4EU4cnjU8wJDF6q5bP3fRmaphCfnyLZ6TczqPuFeWPjC97Mfus5sXM+y014AwCtfAoAbCACgazEqEyVDGbvIhM+/bp71FmYE7kiRTX1Q2/+oRQ/7QgAucAHQ46g+0Qz5j/Fx6IW5zcbHmSjh4uNESIqbj1PxVosXfaslBs093CXN9s2Sl1bAxxkv4drdHCGxAlJBVFSUGfg4kyucG/PkXmrQjnufpv82/EOSVfBxEjmtE2MN1jELH+dY4pZTjunLpMvrvL4Y0XmXo1XwcfpxGifCGowjsCQfp27qn5+PP+8bMKdmtZ9f/R063ar4OAGcxutkGeNZJx/nzu7Zz379s6Lo4PymB0/U+fbSwnycVpyWa2pxyxUrH2fulZPfHfdGB65ptHN5uUoDU6yCj4PlEKx8HOAIiTw19P8CH6fCiethmVNE/pO/3D2zTzpyvoX5OKckXHycbcyUtlj4OJIBvUtGZLwVzZz8dnibrfEreefj0OfmPHBMTkq4OCYHJMXFx4mtOOCn0gODwxbc2vTuQsuAxrzzceg+ggestnFitca8PtfSfJwwNjc29LCymTJsnWT3oXDV8yd931J3SromwbOT/hp5YhzzhKkR2xcNpUptIjw9pt/NSXHHT5kK5VAzLxZ+A3rePbfTxWWLW4rXh7hWnlZnVwXW52Pu5BRsZPS/spHAhYUXPIqF6JX0c08G9kr9pyFEOMfD034OEviPdv4zuoksIK1znn2kQgUMpogOBH59OPlxmFlxU4azmdLhUaa0is+vklzvx4c3n0qW0lQw0AasjHt3hM0E5fAmyiErIhgwDl/xpeRBPyRfBCUPQ7ODEixWegd8xw0RUSL3iJhAvQsb6t8mbFtR1cPGd1c/x5xViaHUMII6fVmu+JE3+MQm/fQeTyc2izhuuCzi2pFuka5sFlk6MzPpddAn/7lDHbQ5U9x+pK6J+kHyjI6ZkbFOL/EbhFoQ9fF6l0lamPJitdri1KpoKMcIKYEx2N9h6bBOHqs1KAehH5EsHaKOGqKI1t+EenTmci5+3dDdauCEZkIwS6JIfVBUfWhHhPwShAjO4xDyS/AfXX4pbMK9TpF5r0Tjz+5ItX0ffoUuv5TWM3fMrcR+AdlHls5/lp3RiWwnD6MWWZ6J/sUIeSY2S9tB9QDCjEhr3Tr96WtSr61hq8e3XyjuJu9oirX43w0Ddp0O7boQlfJ0aSoTTOhokcKTdrC+4wAteIeE2HyHkf875mpGevlEjEaoRLHZqopf/mgDCZEuSYNOXBfV2JN7NP6D396b21+++fFzS06TlZHgn4TQOiYaisNoIzmNNtS8RiNdsE2IBHeo8JYx+nGP2YYco2zJXn0pUfpamaBVaDDWHfgKisNE2ur03G8REQtGSzZXS/ULvNmeMbzKhCbp5INUegELAW2zC36rFzNceRWq9VXEcMVl1FhOo/7YkaH1xVlAgejsClyfBQkeXSaFs6PbQE/HLNOBXeW7i4s8CL90RIyodC/wxLo4EdIj2EJ618f3w8uozvsv2Xuo5JhdztTqp+Ui45QxOiGsK0sN6zBesdW0dgqPiYFTEblKRZRfVcLCeVC82wMtKEIrOMj2CIh8yVCeHugZSVCYopsvqhiem0zQvYOpPDJ7rPouGJta+MDIF+3TMVPwU5JQMnV7fb/u2psH6QVekK9YOPGeVnTdxDEmAlhpIVbZYhT3A7QqOxjHGsMtqMZ6BRKX6Crp4Zu33xBlaT1+VA54OI+xpBxjGDCmjifwbgM43xz0EitYTsZ6oBF7bHZQZ4hLekpTI6rm5RlN/LacOfL7t1Plnan9Et5tLviDOeEXWwZ+BkPM1ELd+IiAbGfwJkiL0CvuFtFTmLqa70a4giMiRICB5GcwIP4f iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAtFJREFUSEu1lF1ojmEYx6/eliRHDiRJEpq1RLSDpUhrSg4IJ0os5Wus5ECxA7UMpRUnSEmjmLWEOZKcKGlpaQc7WNKOlvQerLWDtdb8/vd93c/79bzvmV/vv/f+X89139f9PPeHlXPFbJc3G7HO/zMumm33Zn0umW3pMVvuNtsmT7Fb6GN4WGIVWkRdwcFZszXkLaE7HsrnstkRFTgXB5HvkGd2O0JCiXtoAe0MDsjrUhH6nPdQLcz8sAY8bbbSQ+o4iYbdJgroK5rwdoACfWghZ0IRPaieMR2O+8yaPZRoRcuoM7hIgdxxNOq+BiUUGeyGe1HwtxhyX85P9CA2I/Q/hRZZz9UeqoSBnpKgV8+g4Bl1umC21kOJF+hzbEbo36qvoH8PVULlvUpgwBYPmRad2CyFrnoo8QRVFGAd96s/K73JQzXok8xQoM99gNgQsU9uEyPoQ2xGyBlAv93mQ8Jj9MNtAH8zp+M4ehib8TwwkTnetNdD+eibkzjvNkCshwJ/3AptZZ2Fk8EBz5+jv3UXOEFSd9Vg+kT9aNKt6EDaphtk0hlCR+UbwuAj6IvbAB2/oUG34j6ais2wvad5/tJ9ffaZNZFYsWN0NzHAkmbpITGGnqlBbjN9dIftkW8IA3UqmdO82UOKadF/0UzXQhPShRe+f9qaOeekFgZ6jTS7gO+MeWL8MjYiff92GR60qACLm11+ufiB0mBMKqItR2y2ame0IRUIh+mE2Qrvx4s3gKRDmkn5q9JpGg24TRxAKlCe9wZlb54Ls71LgWwr4ttUMOf61WKqQLZO6Yrh1Q96qBZm8Aq9dasC1+g047YczVwF9CYZ9B1FU3UPmhfQ/RJQMfTObTUqfD02I8x+PflFJvVe6+LhEjy8jdLhkR9Dj9xWo0P1PTZLkN9OgTn+J/jf7eGIH5h+t1r0YWZ1zG01+jzF2KyEflvRIH2ze+o/YvYPvDLEdqaZG+8AAAAASUVORK5CYII= fb4a3cd7-41d4-44c5-9aaf-914e96b16bad DIFERENCE CURWATURE SHAPED GRAPH DIFERENCE CURWATURE SHAPED GRAPH true 36 0ea07907-b707-47fb-aac5-b80ec6de4038 1bd632db-815a-49df-8056-d9b68aac1b2d 1c283afd-2268-4211-af8f-8cdf4d25d66c 25257494-4b0e-4bf8-8e7b-5a202abd036b 2915c280-bfa9-4e2d-a3b4-c85ad1f5779c 3035a7ed-ab59-4e3a-8745-e23e7f66fe4c 31617f0a-328e-427f-9bea-aa64226efd1f 5331dc73-40c7-45dd-9ec5-6ae050d5dace 54c2ec9f-a8b8-4bb9-bfcb-571630ac488b 59c2f307-496f-4631-b396-0b00f904f005 5d2c2b15-5cda-4ff4-b8a3-405e7b306012 66ccb4a7-cf16-40a2-9928-a3a5e5603b2f 6faf33d4-d041-482d-af65-54b263412868 70102562-363e-430a-afa5-f663fb2d93c6 71331d5b-b298-4259-a4fe-dc9adc2b0144 7e4bc6cb-be01-4aad-8929-fa0633ad5eab 80aa9ec5-4e68-4151-87f5-77dd9cb73995 844bd38b-b927-437c-8231-bd2cb384f4ce 867df14b-b84e-4903-880e-679477d08b40 8b0397d8-5f8e-4b4c-96f7-58c3d1b3ea7a 8e6bf451-05c0-4dc6-a74e-45f4a70b43bb 92b46693-4fc6-466e-b09d-6a1bdf99435e 93d932e5-f99c-4911-8200-065f7e63b31c 9c1ef8b4-e132-41e0-8db8-0eb2de24c077 a04899d6-6a10-48b7-b519-0ca4e8b4be37 b7c06fbf-48d8-4a10-8e70-95a2dfb7ae59 bc983a9a-51bc-45e0-b2f3-5dd524ebe645 c303f18c-ec2e-44f6-bcc9-c6c97dcdaea8 ca63a059-0a01-4560-a8ca-8869c5f2d87e cd9ab9ba-48a6-43fd-bf09-e50035dc093d d057826f-a473-488a-8c43-ba941c74c870 dac19e22-ff36-4a6a-bfd0-61013cc4fee0 f582ca69-21fd-4e0c-ac4c-c757f53b16e7 f5cd8ef6-3195-4c5e-93d0-7c2e0a7b3023 fb284101-9ac9-4a70-b2f4-a594ed3bc763 fed1bdd2-732c-446f-a1d2-dac5c6a1893a 3d99a0d8-87f4-42b3-ae8c-13046d610738 cb30ccba-a894-45cb-b1d5-847ad7005125 1af94696-7c3b-4341-b4bb-415b935cb441 2927bcb1-a8c7-4996-b4cf-1e0b73fe722c 36be5f7d-3d93-4e60-9b58-2ea01268c3ff 59e3ea83-51fb-46fa-8bda-938de18b7cf2 a317f3b7-85e8-46ea-bfa9-b8f70ca5c382 81fd98cd-c9a3-405d-866d-edf2fca2467f df2cb580-23c8-45cb-aac6-97ce3b2e2214 735da924-e3a7-45ca-9564-36c125627c0a 233b0ef6-f843-44d6-99fc-9ecf077d1b78 a67255eb-66a4-422d-aed0-4b64cd94d270 4a525765-a9df-4f3b-8fae-c2be3081d0b4 16c32cca-03cb-4d8e-bf89-f521eb08129b aa2a8593-f318-4546-bad9-74c7978a14af 9a110ceb-3e62-489e-8e19-61581f5671d4 daca2ebb-26cb-48f4-8885-277e43200f92 326b8016-5135-4828-b69a-a21c171e1a06 bbece122-0a0d-43f9-bd1e-b6e66ae744df b2a58353-e9c9-4e65-a900-6efa66489724 a43519fb-325e-4058-bda1-f7e34cc92c6f a7e4f8f7-1ccd-48f0-863e-6ed19022d27b 88db9398-ca86-4220-85b3-d1387046010f 9c973484-e313-4490-a780-3cac6484f2c3 ddb00df8-65f0-4650-a3c7-89c56da7f06b 7e2338e0-fce5-4964-bac7-ea6c242afeb1 20d03587-b988-43e2-924d-d6655441a5e8 53133e66-86e1-4322-bb85-7afca5c21f4f f12cf189-9dd5-4b8b-822d-2da85bac7a45 e860b9e2-e037-4c18-988a-393d0094d8e4 bae8f0e9-2af4-409d-945a-a91a08fdc45a 130433e2-dd09-4dbb-8e9f-946a284f4836 eabf9208-959a-42b3-8af1-f5ce33e4d91a 43f684c6-6920-481c-81ce-8a3096268d23 937bac2b-aa3f-4485-8435-a74b05842dda 8de15979-110c-49a4-bf71-f92c5c15659e 6980 -2691 388 384 7348 -2499 19 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 17 b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b Second item for multiplication f5cd8ef6-3195-4c5e-93d0-7c2e0a7b3023 B SIXTENTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true 659c929d-50c0-47c3-a9f8-7a31b3925ddc 1 6982 -2689 354 20 7159 -2679 Second item for multiplication 6faf33d4-d041-482d-af65-54b263412868 B FIFTENTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true 1b18947f-649b-4aa7-b635-0c8ffaba1c52 1 6982 -2669 354 20 7159 -2659 Second item for multiplication 31617f0a-328e-427f-9bea-aa64226efd1f B FOURTENTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true ae83d3bf-85ae-4eb8-9a93-d7b82f6eb1ff 1 6982 -2649 354 20 7159 -2639 Second item for multiplication 8b0397d8-5f8e-4b4c-96f7-58c3d1b3ea7a B THIRTENTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true da31bf03-7f19-4df6-83b7-e4247638b6ba 1 6982 -2629 354 20 7159 -2619 Second item for multiplication 59c2f307-496f-4631-b396-0b00f904f005 B TWELWTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true 240fa235-09b9-405d-989a-af59edf91192 1 6982 -2609 354 20 7159 -2599 Second item for multiplication fed1bdd2-732c-446f-a1d2-dac5c6a1893a B ELEWENTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true c118d3a6-21e5-404c-965f-22c44c00965b 1 6982 -2589 354 20 7159 -2579 Second item for multiplication b7c06fbf-48d8-4a10-8e70-95a2dfb7ae59 B TENTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true ef414688-663d-4a76-b64c-d9da5e08c56c 1 6982 -2569 354 20 7159 -2559 Second item for multiplication 3035a7ed-ab59-4e3a-8745-e23e7f66fe4c B NINTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true f023b241-9d43-4d09-a743-5754826ed592 1 6982 -2549 354 20 7159 -2539 Second item for multiplication 2915c280-bfa9-4e2d-a3b4-c85ad1f5779c B EIGHTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true 8c191374-3718-4371-8f0d-4782a857fbcf 1 6982 -2529 354 20 7159 -2519 Second item for multiplication 867df14b-b84e-4903-880e-679477d08b40 B SEWENTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true dd3e81a3-f392-4fff-9fba-35855c2e8144 1 6982 -2509 354 20 7159 -2499 Second item for multiplication ca63a059-0a01-4560-a8ca-8869c5f2d87e B SIXTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true cd852686-49f6-43b5-930a-504e7c0e8fa4 1 6982 -2489 354 20 7159 -2479 Second item for multiplication a04899d6-6a10-48b7-b519-0ca4e8b4be37 B FIFTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true c2a92653-9119-4312-8a0a-bfe4efc11ad1 1 6982 -2469 354 20 7159 -2459 Second item for multiplication 5d2c2b15-5cda-4ff4-b8a3-405e7b306012 B FOURTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true c6aecd68-308a-4a6a-b29f-68933f542f84 1 6982 -2449 354 20 7159 -2439 Second item for multiplication 66ccb4a7-cf16-40a2-9928-a3a5e5603b2f B THIRD DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true fae63135-516e-4bfe-ab70-dc4f2b45ab66 1 6982 -2429 354 20 7159 -2419 Second item for multiplication d057826f-a473-488a-8c43-ba941c74c870 B SECOND DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true 83a04ee0-dcaa-4764-8f51-9a5af7e9c6c8 1 6982 -2409 354 20 7159 -2399 Second item for multiplication bc983a9a-51bc-45e0-b2f3-5dd524ebe645 B FIRST DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE true 154459f8-56b4-47e3-8f74-2be68cd83b0e 1 6982 -2389 354 20 7159 -2379 Second item for multiplication 70102562-363e-430a-afa5-f663fb2d93c6 B CUWATURE SHAPED STACK GRAPH MAGNITUDE true 21840820-7b03-45cf-914e-8d05118a8772 1 6982 -2369 354 20 7159 -2359 Contains a collection of generic curves 8e6bf451-05c0-4dc6-a74e-45f4a70b43bb Curve SEGMENT NUMBER true 58b84e16-46ab-4bef-af27-b755fa42c6db 1 6982 -2349 354 20 7159 -2339 Contains a collection of generic curves true dac19e22-ff36-4a6a-bfd0-61013cc4fee0 Curve CURWE true c4fdf2ab-39ec-4f9b-947c-a8f85d40334d 1 6982 -2329 354 20 7159 -2319 2 A wire relay object 71331d5b-b298-4259-a4fe-dc9adc2b0144 Relay false 0 7360 -2689 6 22 7363 -2677.823 2 A wire relay object fb284101-9ac9-4a70-b2f4-a594ed3bc763 Relay false 0 7360 -2667 6 22 7363 -2655.47 2 A wire relay object 9c1ef8b4-e132-41e0-8db8-0eb2de24c077 Relay false 0 7360 -2645 6 23 7363 -2633.118 2 A wire relay object 5331dc73-40c7-45dd-9ec5-6ae050d5dace Relay false 0 7360 -2622 6 22 7363 -2610.765 2 A wire relay object 25257494-4b0e-4bf8-8e7b-5a202abd036b Relay false 0 7360 -2600 6 22 7363 -2588.412 2 A wire relay object 1bd632db-815a-49df-8056-d9b68aac1b2d Relay false 0 7360 -2578 6 23 7363 -2566.059 2 A wire relay object c303f18c-ec2e-44f6-bcc9-c6c97dcdaea8 Relay false 0 7360 -2555 6 22 7363 -2543.706 2 A wire relay object cd9ab9ba-48a6-43fd-bf09-e50035dc093d Relay false 0 7360 -2533 6 22 7363 -2521.353 2 A wire relay object 93d932e5-f99c-4911-8200-065f7e63b31c Relay false 0 7360 -2511 6 23 7363 -2499 2 A wire relay object 80aa9ec5-4e68-4151-87f5-77dd9cb73995 Relay false 0 7360 -2488 6 22 7363 -2476.647 2 A wire relay object 1c283afd-2268-4211-af8f-8cdf4d25d66c Relay false 0 7360 -2466 6 22 7363 -2454.294 2 A wire relay object 844bd38b-b927-437c-8231-bd2cb384f4ce Relay false 0 7360 -2444 6 23 7363 -2431.941 2 A wire relay object f582ca69-21fd-4e0c-ac4c-c757f53b16e7 Relay false 0 7360 -2421 6 22 7363 -2409.588 2 A wire relay object 0ea07907-b707-47fb-aac5-b80ec6de4038 Relay false 0 7360 -2399 6 22 7363 -2387.235 2 A wire relay object 7e4bc6cb-be01-4aad-8929-fa0633ad5eab Relay false 0 7360 -2377 6 23 7363 -2364.882 2 A wire relay object 54c2ec9f-a8b8-4bb9-bfcb-571630ac488b Relay false 0 7360 -2354 6 22 7363 -2342.53 2 A wire relay object 92b46693-4fc6-466e-b09d-6a1bdf99435e Relay false 0 7360 -2332 6 23 7363 -2320.177 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 21840820-7b03-45cf-914e-8d05118a8772 154459f8-56b4-47e3-8f74-2be68cd83b0e 83a04ee0-dcaa-4764-8f51-9a5af7e9c6c8 fae63135-516e-4bfe-ab70-dc4f2b45ab66 c6aecd68-308a-4a6a-b29f-68933f542f84 c2a92653-9119-4312-8a0a-bfe4efc11ad1 cd852686-49f6-43b5-930a-504e7c0e8fa4 dd3e81a3-f392-4fff-9fba-35855c2e8144 c4fdf2ab-39ec-4f9b-947c-a8f85d40334d fb4a3cd7-41d4-44c5-9aaf-914e96b16bad 58b84e16-46ab-4bef-af27-b755fa42c6db 11 a65c84f5-46fc-4b72-8e74-2acff1ca258b Group d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 44b95cea-3f46-4b6b-b282-cdac19364d61 2 Curve Curve false 329990e8-083a-43f7-baaa-90fed18836f2 1 6937 -2808 50 24 6970.651 -2796.283 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 71bb1397-567c-4d75-8665-b4e3269ab3e7 Digit Scroller false 0 12 3 0.190000000 6739 -2836 250 20 6739.547 -2835.202 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 21aeed4b-3362-447a-b26d-c1b13691a4d9 Digit Scroller false 0 12 3 22.300000000 6739 -2875 250 20 6739.547 -2874.766 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 8d5c2ca0-245f-4e3f-af2c-234a7c61b647 Digit Scroller false 0 12 4 2100.02000000 6739 -2915 250 20 6739.547 -2914.534 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers b7d3231e-4e24-4334-aeb6-4329747a1277 Digit Scroller false 0 12 6 99999.999999 6739 -2955 250 20 6739.547 -2954.424 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 4a308d7b-b922-454e-862c-36cb6bf9879c Digit Scroller false 0 12 7 3699999.99999 6739 -2995 250 20 6739.547 -2994.722 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 3a2cac49-3804-45c3-a1f1-9ae387f633dc Digit Scroller false 0 12 8 29999999.9999 6739 -3036 250 20 6739.547 -3035.277 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 8f4c10af-71d4-4573-9fd9-fd55b1c360a8 Digit Scroller false 0 12 6 0.000000 6739 -3075 250 20 6739.547 -3074.302 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers acd1b930-6ee9-4f99-a19b-6cb48f642842 Digit Scroller false 0 12 6 0.000000 6739 -3115 250 20 6739.547 -3114.412 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers dcd58bba-6ec5-4665-9f5e-9748abeb09fe Digit Scroller false 0 12 7 0.00000 6739 -3155 250 20 6739.547 -3154.472 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers ff698c9a-fbff-4811-a2fc-7bd7fdb14f0e Digit Scroller false 0 12 1 0.00000000000 6739 -2856 250 20 6739.547 -2855.054 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 2ed8e93d-a8b4-44c0-a86e-99d91d8d6905 Digit Scroller false 0 12 1 1.00000000000 6739 -2896 250 20 6739.547 -2895.054 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers aacf07bb-5a48-481d-b1bd-7337be133f9e Digit Scroller false 0 12 1 2.00000000000 6739 -2935 250 20 6739.547 -2934.947 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers b2df309f-5daa-4345-833e-d910c82a19a1 Digit Scroller false 0 12 1 3.00000000000 6739 -2976 250 20 6739.547 -2975.054 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 12d062ca-3afb-41be-a33a-cf0b30d40747 Digit Scroller false 0 12 1 4.00000000000 6739 -3015 250 20 6739.547 -3014.725 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers e3ee9ed7-1080-4a98-9406-a1760d620df4 Digit Scroller false 0 12 1 5.00000000000 6739 -3056 250 20 6739.547 -3055.054 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 3aed1e90-8f45-4b3e-8f50-bd809fd87c29 Digit Scroller false 0 12 1 6.00000000000 6739 -3095 250 20 6739.547 -3094.353 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers a8eb7470-ff2a-44f8-8106-541d81b0944c Digit Scroller false 0 12 1 7.00000000000 6739 -3135 250 20 6739.547 -3134.696 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 3f1d8e98-725f-4789-856a-9ff9dd88ba16 Digit Scroller false 0 12 1 8.00000000000 6739 -3175 250 20 6739.547 -3174.544 f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a DIFERENCE CURWATURE LINEAR GRAPH 7J0JIFTr+8dHZW2jkEo1JSIl7XvNWMZgLKHS3mAwYmgs0aqSXVGJUFFpQVlCdupGum1alHbt0r7r3pbfOeOMzpyZc+I6Y073d/3/t1/NO3Oc+T7v+7zv+7zP5zlyRp6Ovh4sjs8P4EeKRCJJA//18HL3dWFzlvixuN5sTw7YZA28DDaDP7LgW/ifo7OYTiwu+BZpqFmB32RqBL4sD7w04dGL+DWhGebxXzhNLkYrPstac1l+bNYKsF0BaJexdQWu4tQTetmC5e1qF+DFAps7Q7+4O9Rm6cn1YLqDLUOBV1NSUn7wP2XLcmc5+rCc+G1sNvuHshHLmc1h+wDfwprr6cXi+rBZ3vzLgv91MWL68H6PHPCPY/c9wmNCbsl1NWJ5O3LZXj7QlwdvkdTFkunB4v/rZWd7uome3oO8nY27w4A/H8RlAn/ej8u+H5fL+wvvn7mp4J8xm3l/Rt+PiW15Z028Jfj3bUHgFXaAH3mQtL/l7/e3b7u/PbblbffjDrdcrfltzRdpjDsGvr5zvcCv5n8WuiWo9bDg7e36+XvDE3hvjsT6e0JaywWhP6FXMD/F+zv0jXi/EXYDh1vuDbpP/m3/fA+vtfk7Qr+U990hVXlXgPThf1ZYyWaFIbWbfxHfEJBdoKsJmA+Sl2dZPT0Tur28DdDDwKHgzR8m4E93/quGnr7NA6gzfwgAnc0N6IxQ/+kEvSxjx+S6sHjvHAj8c5cWiTRdDehZ8z09PfgjSGn++ZnSc4DuLPCr5MFXhH6NvI2jF4MZ4OnrA3+vggnX09dL6M3dTOhUBtuBy+RCQ0AKGlnSAm8FX5Ftfl8A756hjytSvb1ZHg7uATRfd3f4UKBa+zo7s7jObG/XEeQ5zR5j+lg9ffD/RpANfd19fLms6RyWrw+X6T6CbO3r4M52NGcF2HkuY3Gmc4Cr9eRfes5PfwNeWRa6igzV18fVk8t/ubsF29GVyXInW3MDPLmdTJ34XialYZf6ktFzGJkyW9jfGxRWCoxYhZ+3KYvye5R+OgsrB9B8LTJJA390bX5NQCzwdZnm10GNOkH6dTGZ/dP3jd5vU7kg8zDt0P6eZ0+u/bhD4K6kebaSN/Tk+DDZnGY/qg1dRcbAkwu5Vr5hZAw93T19uXwPB/6vKF81kEp2Aa9L9nQmm3CZ3t6unl6A7yN7Nn+rTqZGvN4D/Pd9yZHkozMaLUIOpscr2/oaA01SUBM3V8khuH+l+QHtK04a9R9fAU2doKb+x5Yk1c9i0bMis9dl9JxmDjR1hppke6vlOysqWpac/VuB4xVkADR1gZpmXGuw7JuezEi9fj2k+GbnRqBJGmoKNzAKl481oW/f3bBtjV/YdqBJhn+HLr1flTGvW224G+d3ikJvAppkoab8xytOVspUWYY4PKgK+R7ZBWiSg5rSPRgHvyjFWBTU6z5TyEujAk3yUNPLIR/OTl8zy3iz8bWzbAWX5UCTAtSkxRocpzw3jFYQsVSWpJu1DGjqCjX59ZA7UxCjx1h/e04GXa+xBGjqBjXt3vzwplf3y8axdpPZwRpTIoGm7lCTekRolzG6t6wO1r9ec2N67A2gqQfU9CLQ5fPStFT6cZl6I1eZGCmgqSfUxDY7SXa2fE7Zun/C9+cqlNdAkyLU1EVaRUdpuB8j69Nj0yMhX6cATUpQ03HnUaf8aTPo+2b3cFkrrfABaOoFNcV+X/DS1J9pnnNyR2OvKfesgKbeUNNyjbi7Jw1OMjZtHbI2PWZ5Z6BJmX/BnQOuX0+aRg2lzley3uUyFWhSgZq2KHQ/Q8o5YnmcnbA2rqyxDGhShZpG7B8c3meFrfEB//vU+9cT/wKa+kBNtzJjrmidljHLGtZtU7bFYGmgSQ1qWjxE2aKetMIk1LJSe8w4p6NAU1+oie7tprGs5yODmB9SDkn9S/WApn5QEyl9s6P3fF9a2SfLU3PHXNIEmvpDTZcTcpa/mLPSOJIZomNtKFMONKnzb35fjxxmigZl46X5ows8R8QATQOgptuDbfqEXw6hH3tnnqN3qRw0ykCo6fSJ+M8GPXrQ8s+OtpmXVb4BaBoENf35sjz629+ypml2us+GBef0B5rIUBP1eeipJV5ZFpur+1ksLm8IkzM1WiLgQQaDntmU4+3D5DiyTHzZLc5MSV/l0z6j72YpY7e+jH51q16E25CzZDsug79MUqD6+HDZDr4+zR4ect18FyWFm4sa1IEuqrTP0iMpC0Iti85+CrXRCbCFuSjaAd1y2VcvrfJedNZuYH2pgrmoo+waebPZ/U02PLnTcw3F/APMRaVneE88aW5KC+4jzaBVT1aGuSjjtRXJlNAms82LkjgGz/N1YS7q0kJZ9eLlewzzpqp+HDNPWgPmosrnelxd8NHXNHh0X39akOYpmIvyD6lctXn4BErKyLJUOY3ZwTAXxT6wtoQ17rJpajRp8ky9iiSYi1L7MZp0wUXaJEKp79H4SZQSmIuydjI/+CLAnZJ+XCskYmzXIzAXZTdMV/3Kk1KLBDkPTsjWSzYwFzU15/3gyddqLZNLV2vUjBlyBOaiNALchofeizKLq9lZZZcyZCHMRZ0M/yP2agTXMmLNiZsH1t5YCHNRjF2yav79WFaHT7JuVH5SmwZzUQ9TJ7wd8mQgNYW7y/6lbPlKmIuy3PhusGlssWlhjMVchTOqn2AuKrHo24PDO1MN8j1kNiekvdODuaixl1mM6bPkTYLyU0M1V/fbDXNR3Btxh4p6TbZK/XDi73kjjzyCuaj56zn5IyISLeMNHBJyfryThbkoIy9Nm3wFW7PYC3UNmywna8NcFLXpG0dtro7x7muRT/S5qkOExqsa2ngdUfJgTv7ijUaZlXZ7v02trcFhvHbCbbxqdeB4FbFu4I9XEesG/ngVsW7gj1cR6wb+eF11w733812mRgVB5Xb7z2hd/W9J8d+SohVLCuSsDFtSBBl2LkjX8KSmXzFWv3QiRRG2pFgy/0v9IupQ46P2UxiBAfulYEuKEVrj1E5bqNGSWScXelyllsCWFFfmTGCT0/cbH06ITD30JWMCbEmx5BhDmr7pqeF6Hd3yKUrTLws5m0Fozga5bMfB2XTGzdmodqCzEeFR+M5GhEfhOxsRHoXvbER4FL6zEeFR+M5GLkBN81VhrmX4WY/03bWPH8CcTXpTRsyiwi+MaAPqx8lr1obAnI0IP8R3NiL8EN/ZiPBDfGcjwg/xnY0IP8R3NiL8EN/ZJN05PMXt/mdaxA7Hwc/dVn6FORvk8BLqvD3ROi9ygsCh83ZB67x6Tx0Gf+U2mW+fd7Vu1KE0ZYHf1c2I7cd2YpENfbl+LME+DBoWNJOo3qkDfYxJdgQ/SGZzfDzJrOW+THeyO4vj4uNK9ma5gPFPbxk628mJxWkJtoiUA9mF0W9RSBWBVoRCLTEnA8AoTryXNMB/1x+vJNWlVpJInwxIpEADaWu2n6cPf01P0s8HWvdXdvVicpkeS9gcL19eYEMW0laUHD15v50MaODEuxuRX/LGhr3FixIG0NIKJ9bXzg29Lmhz0d8OetmK99uaQ768EJeMLeBCHFl8F+BhHeI8uvtG8+011jenft0U3bW5WSio1Up9agB9qkF9yIA+yVSkPkCrf6qAPlKQPp1Q9Oll6evhADov55Z+IVKivd1oX4NnDjfdFW/tPvdW7ViERODXESER7+VfSYScQHGQSBtTIqAL9bAGg2zePsD3NWL6MFvGAElUwFHGgAvI4UqCDWPhN3WxZvq48r9551X6a7qY+rA8SKSfBxMyHJ7U/A+B74NbCry0DIal+th6ubN9WqxEZvqQl7E5y0Sbq/Tr6/IRA84zMgtXfCpROqAvaC5z8HPC5mp+Wchcouwhwulh2SN0P5Y9JknGHrIOnp7uLGaLAyR1a7aGp68PwrHIUB0dWd7e8MuL9DWgwwNDt2QvTzbaQPoY9K33a8ullglbY9h0b9rfApaRseZ9UMg0/Ndxt00e5E4WirLNh1yeOxGQRartsgyxY3JcAMOS/YC50JPL67lOrVCqwVThUpfPW02CR5tnrecc+kNAKTnoosJa/WwRh1ramGoBnkVArU5tV0vDGvw8ywfwyX5Md19Wq+Va9uR+U8ONKfTseZnrr2rdHos4X+BfVVgweJs4JOMNflTJgMEPLZOkSSjLpDOJTMa3yX1MNhwYKNuosapMsCMwgFUR2daIIbxEkkaR2MCQy2L6gEskd/CzkEclO4HnKywnskMAGVCX69Ms9giyD9R9mRwnaAmlt6ZVayfkGl/0fQt3YH5LKzUOLKgk6e8DNNYwFLFmCgU01t8rtGbCmmkUeTcA00Dkt0v76ndvgGWYSfL5k8dry5NzBacYW/DTwlNM88t49zIvQAEyqMADUb0sA1g11uyVyBSjYOgJ7DLZHOgUfywJ/Qe5aMMykBrPQPx+qe3E5jaf5uqINJTXo6r4Hqy+9DS5l5oJz3r9JWAoeSP+h4WMBWsSh8EC92IZTF8yBpNpnqMEjfVmJpaxfrVu68ozVrPjEGmfLT00n3/OeWdQXJ+jMXrqciPBFQGD90HhFQH0ujgsU5+CZZnoFEmvnvmH/qBlhNZsMiT0ubUbA+bvRdoCuV0TsEUX8ONClmh+FW87aOdCLi2LChgF6dRrjvFGCDRx8nvfv2biREbAxDhxFqRjTZwFaSKDDe2bOJ/UubNWDZppsqXC/MtNQ1lKeyZOxFYaublo51YadAaH0rGcgX36/++8eskg5/3bCSbmx267+DhmzN9HkHlVDtNgQI8mzLzK//k5vyLnVazB9st5dayBT6LcskzLvZTArORXz0PaN68iRprqnX73fgRuo8XmU/wSbm+dhsNIc03DMpyahAzXIdPuVKnbMx7bORpkXYmQUpUuNZfotMvzeKjTLjCAoGmX3zmFpl3L47QLZ0inDAPn953KbjRTEvg2PSx83X3YXu5sRyZ468KTL1p/728B2IrlAXzKkelO9hC4SqtmVeQJEdZtCcmNaG+lnIrHAcEOAnJGAt1aHyknHejWcgcru7fEH/i9GpSBFyI1BR2BgC15XoH3sqkTfyzOc6reLFUub1T0qo9Fd93eNfx2KZT2rla8bis0GuSaX0e/cPP98G6XRMI+dxhAY3O9fchsYDiRnT25CHuJtE/NQHnNCd0GWsR22xz7ZdECFwH7SFGFTAK8hOz+UggvhTxya6eXIgHmPASaU58qwktdBdcDBythIkn9QqSBtixHT2Bx2BaVBul9pNhd7G60cd+9KKsLRXKCKhkIq2TwS5Wicw7GB6puYcRcowQ+Hn5zCw4qyWGqVHCgEuqDLX0Jy3+q2bC8AWHAM5pWCIScmQSnveZLCU970Ot4+9OGPKjHNFHBAwCEFu55PKUgfyqH5k93NHzcNXJ2JKPwT6sTJj+ShwhGNo39vbgsb28hX4q10FM1BmOrvK0Mh8xquQDsWvx3KtGsbCyodtpDVulPsVkzZISVTqt8LfLwHO2WhYOxP9taG2IFYykxgMQTgF1MPbK71QMSK8aI8LH8Q2kRPlZKhI+N/xZYlBJjb5p/8LAl5bHurY7wob1/akH2Y3LZTAd30ee3ah9KpM6NpNKT3/Quu39qXaWg2nOgj5KthJ2DVUe70ArAWl4xkHOoQFprewHPWm1xDso/ncPPjixSpbnpCRdotz+YpJ7su5U2wjehVY5Bioy7T1h6DJKggiJCAvoxngSQT5BH8wkJBfXzQh41mRYV5BVlL7vPENxEWzM5LHdBd8C/kigNtalkL/ATvDnI0dfbx9ODzPH0Ac9egNnJh+XvA53FiNQVmQ0j4laEM0ZEqerI9XR3twE9O99/Nf+8mYnok0hLovVJudneLK4dcPv8X6tp5OkLjgRHYAZZBiZFsJzYPtB3B2ZicGfxIPAAwo58cg5pR3phJUk7AbDjHENSYIihggWT68LmMFjOAp2ia/PLNmwXV0E6qPl1O08v+KuCnSHZuLCyCzmhsidPREFETpZ/V6KStrjMFaYcJ7YjDCWSB18Etzuwl3hrWjCU9dOZ23qxHNlMd0NPp5+fBfZ+PlwW06Pl313mcplePx1Gc1dVQOuqZBeN/NCoMINtf2Qwdn4pXCXYP2xY7swAwa4qRxJ5YojWe3tTySvYXBaZC14JykIT2VGRuVkibqRV4x/RG5H9v50eMh5YIC1NhPIFApHuoQmYz8iJfPfQlfCaI6cPnDRH5r7ioLlcNJbm1Vv4mndD07zNqZhd+Zp3BEomnM3I3x6KyGbkp2KKyGbkp2IiDSuUYQgusER2CWSyIw4Zht3RbLK8nK3LtkwzPF5m5f700YLXAr+r6yxfcBoAhPNyFZ4s25CzMNSI7e0FDgQm2ZvFW4oEjOQnLwD/D9gI+A0itUBmd6Len5AiAo1Cw0Xe1pPrYwXvVSIG0T9c2rVcDTkfgku7ZGAQqRqC/wkOolqjgsokTnJldz4HDsxPLH+ByzWbsgeaKUtZB9I4384yokZUHtPn9lokGG4GsxGZIMsqHFCSQbHa1JZNkI8ri5ctyrsAaD5+8ijTBzQpOCU6s1lOZC/+JkKvVZsgJCeAcsfCAfKWptbuMoEdd5YHoPxforJGwT1o1rI2ZY0qtWSNsiCNRH7BkdlrJ+46e8nssMUsk5Xzxp3BMW8USUu008HXAQpFgwrRAYXeIB08GKZLdheZN4qmkObPNCVgd9bcW5w8PYCO90vVSHbfvKf+rcjYPEI16erLWhXBbtFyXeFu8bPpV+p17REXW5anYxalpXJjo+sbHRzUA3oQhnoVbpVtComr8BL6fkoHDLRVPmtEyhUnN6nqWM44w/WL9VZ2jrhxFrG9AK8j3MmaX8Z75xaaB/WiaaJOKc7lVpLeuAunC2Lp0KdlqEPZgVhKDA/vbEzTVaPFr7s9Y+9Rr+y2+xOxKGLtjqUI0G+EUgJbqYgjm+vojtk3vDzMjlcbvaWWl+sYzDc2XUAQRRSXYSni5cZfSoIQxu8KRiBJtw4AIwJdscCIQGf8wYiPK0s2StncYGzcHfN190JKDXEnODDLfKkrVpZ5hYtYwIiiVPOl3Z8r0UMfW5xYlbF4K45gBJLAw0EisguWREAX+reDEYGhO90dpL5bJr0daUPp8ucFCYMR9Swse1BY/0dgxLprzy19xtOoqfF7FDUmbvgqcTCC505Q89YBdyIpMMKmbrjbF/UAy4LJnCdpz+2uEAKM4HkWVLUAzyIxMAK5GSAMGMEb/KiSAYMfWiYpklCWSXtW7ah91bDM8NARnW8XLo6pFTE9i47riNJ3GPROMGDj6Onu3pyiBs5/QKdhcdmOzeum1q2OkLO7rAXTy4vNceErBX4dHBcTSIy9nTMlGVxMWFeCKTPCJ1TnC/IqveKt+MZRQjOOg3awRkKXMkqe/VC1tLM3VAW+bk8jMPPB24fr6+hDpnIdW5+DO9WGBXwFll9z1MaB6c0ie7kzOawRZC7Tie3bfGQFDHT3lv04GM/hkJlcx9ZFbZDFGDDvW8hgyDe0UvFocIHGBRQ/J2p5Gwgsbyu82rS8VQd+NxnYTho276HAZe7PGxP5vbOSZ3z1sWHTkuZsHGHxx3bB+FpnUd+V9+KvuiZyi9bOrhkIhmpAoZJFJajx1rlebQtF9Ddo6UO8rtKsW/PeU6RQlIWqxp+KN5mmDGFxZ5xrWivoT3lXswavJuxPYW14+1NyPqSLvSh/Sge8LYnbxtCETfN4apUmezc2fZTV6my076rPwbzwJycQZ+u8K4lIuml+XRxaLF2OpQWyj/wqKEGmwh2KNvAf6GyYHG8dSB6Rotg92bAp5lKlUflc8qNd/at7CTp83iWFHX7zy+KQhOyFJUmgJ9+j90Lz6KO2rgkYMOU7LWb2+AhS4rw4wY5vBYwfKz9gdWIv7Mw7o+ja29DTA5AfGHjg4AM/7N86J40si4N2K8Jj8GdbK6WzB7eNm8GUWAMR+UUkQNisqDa55q68DKDmRZzIL3fS5P4OzloN0/ScCRdV3tQIJqpKzwE/J9xvml/+lTdG1vFppzemA9oogto0iMrmudqsTdtypZtTfzDUMfxb5mZiqZ/RkfimZ/2ZT1ZINL8vOQ8SoEmUAEPzeAJA46o32rgizGE98lQdp8N6pMXwOKzfgnlYv5mvuTKa5r9hTiWyqJeYcyr1/bFyKq1X/MtzKqtkhvc/ntvFLN8jY8Mzn21FeOZU4uyFwZxKRX+snErAWuLJqdS3u7hrAXOKediKqdpyka9VW+WMxZRTyZMANacSkADyCSpoPoFAOZXIKn3iz6lEWlIyOZV1IMC3CbDjZHHlVIZdLag067yJ2DmV/GQYVbSuSpwlA6JmJE5LBmT/x2HJYB+MtWRQC+a7hz6E1xw5feCkOXIPj4PmNT5Ymlv78DVXQ9O87EDkjEPfMs3yKqbZVRd7C26hZZqPKAVFxzrTHIUa4nV29wR8JMelOY5Obj6QE+2akeXaRN2S8P4Dev1XNhhTu0N5lLEmY6fZJrksu2Ol7V0ZgPUqmFDiDnJalPucV6l2fqmkjzx/zknRFKg79EXrDm0O+POHoNgD/shStzgG95FwMA59gn4EpU/c+phXSXucwR+X/dAM0eZc5xZf2AG5zkhbCKUmg79VpBWRZVNbk5osLSqNhd+lIR37o+l4ccDzZ5+2WlgEHd0xZOTSj4K50F0sPEUl+KCdjAy3A4amtzu4A9X2AD6pA25Em9UhM909AefGhE5aWxdjQz7aQfjehKF08NVW9sM3YKy+COiHX0Wx0WBcTbGoTXG17rzwugvLE9iTcgNEfqXCvsv+2tynyLA06/3CnaZ3JwmeHJtAHxU+OW5p+dXODtn12jlWwaynLFAjiqiwLe+YrqhtWT38PsLb//I6g+hDsKtDB6fVylnG1+wbdqyxv+CZsYyFp0hGnv/6rxya3nl/Ds1G3zxQ2U66K4O0BweRFDFFqigkXtEP/s9QSpvio71bBrkTdlfXfqc/QJN13Spe3b506MzsK+3u6niESnl9mS7KTHW5vL7cphOqZi2cwUfO8fqzE2BY0Z7MLFF5seZjRlTA/bdma3t/F0wTbbmKcJrozyaxBI4x1QA6LTR7qJNQZo90vcI5gy99Ntx+xb3uzZ3GOkSMqjmh2H7e/NYzEVotFa6gdGRnrqcHeZV/wMo1wBrJw8uTAybQtG7+QD7/B+3uhOOVP9vaUD4GjFmSBhqKOD4nAVrXHBeaS/i8vcgIGHQLq/xh31vktzSlLP9hS8tjRDiV5KqofInuZcrxYXGBniIc9+000l6Q77H/eW1hvgfe+CuPeupMTey24GPmCa+WZ9V5H+zfTo+6FJASDCqSKkR1zmRgagYEJ8y24U15W2bAFssG/MqyR+6QsgNeFVHy/MimvafOSBS03Tws281rg+3s7wQEWPhHGqRTByVInZ3a3gQJ0HZkTNsBQ4EwtmtbpmuL7Vb+ynYfBvZVZZevZuxJeSKlzBkSLmi7+Vi2m49lu/aGqcFaFcexjKNPKOO0aWmiCFkHO80IufgTXFk2X0J4ZQm9jvssnAs5OjlRYJMa0EovaNuapDskAkZdtnTt5KzvclrGh658u1uY0e+NROudggqAidjoCtgf569DBpBQ1iHZSxhPFgZlm4UpLRm7SbVIsHKTjC0LfKZp6/ex/VvWIN68T4Ibfigg17qFB/LpgqJuR1jg5tfbQMSB0Anpjah8PXDzqp/XpprT/ZrrZTV/TzJIEbqyoO8v8jsqvOvDVZv9yXhX8c68FeF5HyVYfboaTJABtRgnyqkpA601ecRxam9mtqUi5lBbH5YX2Zu9ksU7x2MxHV3J3r68cD7bjwWZS6SBXo30Xfed7myyvXaDsqp/4RfB6Al4WeHoCe9VcZgnMA/LPPqENQ8/TR7NPAN/QkpQTvyvR85GU1dzttYa42Oj7PaS7C8iHt3ZLmAJ+YDSdi7lQMvV52JZLjpX0pbjA0tCKwWUwy+0eVPJFunrRRoPudH5ZV79L9y9WPb1PGcI4p9C+clgQhgw2qD5dCAJZT7V+dZH7Si5s3GewZu/WQNdBJ/H1JUBWJvcvBxofablAAsW0xuEasHRAfGevEIH7sDVWjetIp/Mi3pXwmtqWGMrdfQHH+WUBeh4UlTWpReYApYlckffhj4nzwsYgwKI7mtf0pLmLuxpnq87OmDUeh/BbLgu4FcSVZTV+9duAmf00xWQyhWUKl5U+o/6cZ5UqAibyH3WT7cKlqbkeVWGSI1UGv5+MsfWjBET99ZjP8WrH3I8SgmNxw5e3yrmQ+KIOu3iwdqAONB4HIQ2HgmUGIScYnBPDBLqrXKh2SMP3V1lme6Qd9AgSrmbZBKDCgA7+h9riZeKITEoJD+/cvHyY3gkBpGEE4NI+BZbI6N11cGdNi0YlnfNPNLhGdX1PEcwO6G7BdPbm0x1AuwglNoKCt8FrcsCawwwCk72AD/PhD7/c/5ocRStmkeQz2rHuEWhrizY3IYDItccqHaA0EkjmKdSkN3euWQQLKnfu7mWL1wrPdGRgJ270g5Nn2KSabDZIu5UNeIUnXdF4aVo88u/mmOQjhkHdt4elLCOShKuY+t0nCdhm6JFfWBFfeFKiRQK6YMkmvM/KR/SIlTUslwbnFJy2s1G92FA4wq4jg/gI8hc3pcRPSns2lww9M2gdKPSkV3mj/v26r4gsmgNXaFZDuGlsNAbxCEY0D0wBHPN5s/Bg9EcW5szTnrxBe+AjBNkqgSsuh7yFAxWXQ8Zp4JV10OutWEPOkauAGAPOkZ6VtiDjvVebg8L3xFmvuNHry89h15YAnvQ8apns96OjtQyOkQa+0q6KCQY9qBjxYEHzxSaf6Buqj+aNm3l7XGwBx1PiJ5NCVF6bbVLPnM5c2rhANiDji9l1oZtKz3PSIxT77zH4fIPofwbsPChyI7858vy6G9/y5qm2ek+Gxac0x+H0oBD0DoU0UsDIh+D3qGlAf8hodByNVGlASNQSgP2pRVUnmZH/Lo0oAaaKX/X5zyV9ll6JGVBqGXR2U+hNjoBtmJ8zpPXK6znPHm9FMNzno5f3BR8wCHdfO/wInWFk1X72hOiFv9znpa+wnr6jOKr/9/nPF2efjP6y6Rd9O2Kpxk0le5vCfKcp4qXWAYDejThUr7E9JynHaRpUwwV7Gkpvfwaa08vO4nrc54UL7h2vWKobJYxcvTOwyNlt+Ew0siYhqt5IemQthif83TQdFp0dr9ZVntZ3ZKXul3dLdHnPPE8HupznoABBE27Q0ko0+5vyNDSDuiWy756aZX3orN2A+tLlZgZWvpNLIa27sa/nKG9llg9P1b1iUVpr9gdl248+ownQ2u8tiKZEtpktnlREsfgeb4uDgztpJtYDC1gLfEwtDnWL1I69z1ET1zr9C1TNvyAJBlangSoDC0gAeQTNNF8AoFC5UfZNfJms/ubbHhyp+caivkHfEPlpy90akAytEhLSu65JPUPxPlckk1GhZWd6h4Qm6Hlh8q10LoqYXjO9AzviSfNTWnBfaQZtOrJyiJu5J/wnMj+jwPPqf0Ii+dseMh3D8MIrzly+sBJc/+QylWbh0+gpIwsS5XTmB2MB0Nbh6V5dB1fc200zYke6Lq0UFa9ePkew7ypqh/HzJPW6NBA1z9cRqAFuqyBhYL2M5RAV5F5QWWS1rNfB7p0CD98Tob/EXs1gmsZsebEzQNrbywkbqUgtRqs4VN3kT98hqNpbnC1zx2/iccoRxYsVouYUyq4olEGv6oPmApoxHZ2ZnFZgE4iUl3RsnJG8eufcfmXcfp5Gd6q5+cBK0g3tWqPUz7X4+qCj76mwaP7+tOCNE/9+oaFTCXyXW3IWqPXgjXBRGXuWAMmqbva3tNWKgMmCrheAlcgTF4dObI2lD8GVixsrooL/q2lxLC7u+cKlpPoSFeNh/qfoxqWGAYmasWt1+2SishN53kzEbnpza//qm8nUaRPXr0whX4w6tLnKvq7l+3s2wWAzJNAmbuISmwZd5wnc3sLV2vCzE92YPmsYLE4vPx+lqMvr3vwTv1Favk89Mbn4WlPrFJPyFncuZknWBik68/rOgl7dXgj3pucN3mQbAtFyaacx5MNcgm6hHfDyOVGa9ywiC0OoqciTYdH8ZVrmMVXrvElH0F4ydkH1pawxl02TY0mTZ6pV5GEj+TI+RQHyd9cwpI86xJf8pFokhP6eXbIng87cUdaCHbijpwaYSfu1k7mB18EuFPSj2uFRIzteqT1z7NT+zGadMFF2iRCqe/R+EmUEhwOrfXQbHK2h8b70RM8LYLfvTbXu7LOWDB3yoYFrMAdWWRLX3f3NgA3I/mf44CfA2dLNgdYurOdmqfXFWwwV9jHFbBDq9cgSDUx7lM4x0ugubUFboGFd/0VoMd3NRSR4wXmmOhfae+qQ9WUlwwLLDeAm/HhLc9AxUQKoGl+btm6Xvom66cmW3S75tyISO0CLyQitYv38q98BbJ/t9NXKILsNKjcXlFHMufAJ+tcQa0x0Url+rcoxxXoamDXEinfxEHltSo9bhgcuV7edVFBRbXg04WgDuIh8jEPgq245xMX8HoShlr1lzv0AIt/o3J2AV4suA4aMAeqZ87icljueuB7vPVM6EtASN2FxUWAHOBPe5eMqrylOWhY4BJkJieg2dQirYxcErdnkLSXksqFRsEbqgi7WufyRkGbSFA1ZBI91PWdREpxpmBLatrBfMs0px0PVBcUCZ6ltZFKwkEKfUwpgC4OTVSjSCgTleVx2oUzpFOGgfP7TmU3mikJfJ8evACvlzvbkSk6ERltldbfAhgGLLDchyPTnewhcJVWzUt2w3TVrzwptUiQ8+CEbL1kg3VbQnoj2lvrMcAnFjQCckaKyj6mgyu1ZyLOAflhAxHngLyMAcQ5IPI4j98uhdLeEeeEA5qZVrD3N2dEC8gn0j6pL/t4D5o53jR3sfyYuXVp6gL2kaIKx5SoHX1QSAKxu0booFBodIAlzymNlTCRpH4h0kBb8LkcTm1Sqb5kg7N21CCLGIeeC29MviyYNyZlIKySwS9Vyr6xdbtG0CaD/UP/iL29LqK9T5ABVXrzDEul5GdtOk5Vg6WL/1ogZNaKRPPFwefv8noMWCNeKHfePY+nFORP9dH8KZELxU3NeT948rVay+TS1Ro1Y4YcEb63dheKk/uAVSjO/j3eheL+iIvdvWqMnnnCp6tWX3Ot03EvFIfMBMKhBlrTe6waaIfei6VQ3HyFddv31WcZpk5eu2hkhas2roXiznW3jJr5Pco0otjD+N0fsWdxEMkeUyS598TLGuT/iKtQHPkvx/fvx+qalro9KYt5MvREu7s6Hgg1ry+jlkYD+rJ4CsXFvHlgcLgXhxL7et76xX1WZBCkUJw9phpAp4Vmj9EklNmD2IXiNALchofeizKLq9lZZZcyZCHa3eFUKE7xHVahOMW3YioUVzZg++am+zONIvY7b9xpqZIpkUJx1KZvHLW5Osa7r0U+0eeqDsGh2BjpHVY9q6y3BErnFVOhuN0WjisMi7OMg/rvrl1+NSVETIXizh8fd8nhb12zw1LfK/de3/gMB9stfYtlO0Ui2U6oLgw+heL6NibuGDr9qnFZYMli5VPqKgQqFFfxBrMC4xviGEcsheKQiz+JF4rjOTrUMmmhb3EvFPdjpepzrfv1lnu+j7b0vPTMXeKF4hTfYikQ/4a/DhlDQlmH/K6g3u57I2Z2uxVgnO8/tnxU+K2uYgT1uqlUYYB6kcpV+IN6chd9aLqnd5pFJsbNKC6mC5ZHJhyo1wUUCBUfuq1c9X8L6hVu+LZq5Pw7Zql2yS9/PFAVfECc5EC9XGUsg0VKxmCSAPW2Nqjc13e+ZbZ5yOX9j4wjZuEK6inRCjSTNhVTjnZycDvZe9ZHHEaaE6bhpknIcB0C6qWOGXDj88juBkkG9q7nmMMFK7B1NKjH83iooB4wgKBpdywJZdr9DUE9taVZB1/QWZaFb2f0c3ctlka7ZZxAPXf5KgxQb5x81b8b1KsO7/fAIJVrUZZUMOvmlpHyeIJ6NdNkI54U9LQ6ntf1WUaNySocQD0n0FqooB5gLfGAeudTY59dJU1mJCrnnogfbGIoSVCPJwEqqAdIAPmEcWg+gUCgXlq+OnUjc49xsunIb6tM0p3F/7BLpCUlB+plda8SI6jnbFJYmXOke9VvAeqNR+uqhMn9vTdsts0a6S/0DQ3aG8sG6FrjRL0g+z8Oyb/WPaowkn/1e/DdwwTCa46cPnDSfM66WxutNVYYhI/QkTp5cwgHB82z5LA0j5bjaz4RTXOig3pHD8v5PGE2mux7YFWokL/zW4eCev9wGYEG6oEVqeoUq0SDegm0gsrvVxWrfgnqTUIz5W8Hje05e3zojaEcq3Dd8sXSnKVrJACNvZCpwoDGcmWEIl/EgMaKdLTHKfULpu064ttt+NGbkxBx6vZBY/231jsc3VfD2DqC+qchY3IiDtDYI1BmVGgMkFmC0FjaYbk/5ywaZZGtUBVNG/BZ8PmbkoXGeLKhQmOAbJBLmIzmEggzoyKnPnwIJqTpcJhQfWSxJlQ7Wb7kUwgv+fPEc1FcIz3zYNmoGLM532bhI/k7ysCupgkXzHJuPvW/nTw/CwfJKdJYkpOl+ZJPRZP8dwGU3l4e84n8eTT16H39rLJAj20Y94kfoDQJ9CGogFK9dHtnuLYASupSnzVuD1AyKF6583VRuj+CWmsXoITs7TgASvqgcqjIjZzg2gCe2SEuQOnJ2pd/p9hwLFK3vI8cGV7NJRSgVC+NpVaBdIcG7n9nQAm5/JIwoMQbBahUjhxi6farDIS2AUqjTocpjHWzNM2YvPjgsdevkyUMKPG6OKoUBS0T1TQSykRFUEDJf/sYh665+YwDD6duvb84hNZBgNKk3lUYgFJ9LxHnH/+fgFLgM6u53MgjFkf6q3JvMY8Y4QAo4XxAAqI3+r2rMNAbud5VYgaUmoZ1K8oKnm11aOFdRmFdTRAOgFLne9sfpBX1Mi8c9WydwY9xL3BQCejWGCoV9GrTMVLbACXkab3EASVej0EFlAClIH86Hc2fEhlQSto4bOXwHTuogX11PG5se3ZTDIBSfJ8qDECJ0kdk2hZqbuCvAaVpj09uNFa4ycgefT366XyZzbgDSsgMCBzYm2hQI1T2xrUP6iK+PYDSoWnGWld8aYz8soTkV73NnHAFlMiTPmkv6PbB9Jj3cLlLg/9wx0EkCqZIan2Ily3F/xEXoPTRzlGN8yaNVm5xLOPdsI8NhACUeH0ZFckB+rJ4AKUDWe5VY1lFlNJLI/onFR30JAigRMFUA+i00Owxg4QyexAbUBomlzn+04t7jE0n3d6cHXPTUcyA0nbVKgxASVlVZJio/YDSMJXLvmsSFloEvbqvPa6mIFEigNIChRDb7nJv6QdsrZTe//3nJhwgl0hQTlSOwkmVQGmMYgKUPnX5Y3zoAGfqVrtOJv3+XO0tJkCporYk0N5OkVoyPq229rEUHQfbTcO0nTKBbEeiiAdQWj11lJ+Kxier43GLaO7R60YRCFB6oYJlnFMqBDKOOAAl5OJP4oASz9Gh4jnWqm1bk7QCULoRNz9YXfUhZY8MlTwm1i9e4oCSMqYCdSr8dchMEso6pM01Dwe19F7x1zxEUkiwmofIdGlYzUNkdhms5iEynw32lEFkUAr2lEFkGhDsKYPILBLYUwaRp86wpwwiz4tgTxlEHtPBnjKIjJQCTV2hJuR+H2jqBjUhl3JAU3eS6ONUoKkH1GT4V40fM4Bmtnt+5fYfRT7g4xh7Qk2dB4WN3b/DzjJS0af6Uo7HO6BJEWp69uhcWR+pbKNAPSN6SkDnYUCTEtS0b/FEsvrpG4zjlwcxxj4fsgJo6gU1lb/qXG308ZxpePcJd6QszeYCTb2hpjdb3VlNUlxK3MFBm1LqdsUCTcpQk6LtcN3pu54abymTzjp8OmYE0KQCNfX86n32lUGcVcrwOYsVZzSaA02qUNOyhpe5svN30NeX2x+62a14AdDUhyR6ISZUD1ONhFIPc2XPOHrCxDhKqE5ZwbQFR/fjUA+TgjZeCXPCj+w8OKUp4ly8ives4y5YR/zxXfg+koqm+e8KcX67Ub/8xsKZFpsWmHZfq9G0UPR94wJxRupjQZzd9MUAcYbay6eHcrmMiNC+A9aMUbhMbIgzSB8LLVuo//8LcUY9rE5ziW+wOBhf1uPCQLYgaiw5iHMcpsG6ScZgkoA4FwyZl7nz7VHz/KndyrYr1WXiCnEG9vm+qdeiSsqeHL9eKqHPHHEYaY9GYRmuZBRxNmm4Q5zslwO8K0/Np4aWHY0tdn4bKFGIk+fxUCFOYABB064BCWXa/Q0hTrlZWjF3N7lY7PO/mRvzh3upmCFOkhYWxFmt+S+HOHv32Mo6f20u7eA13Zpr/YoRz7ZsH8Q5v++FQ9ecKijbltcdvRszLQQHiLNJEwviBKwlHojz9BqHs5u8rE12j1M46Oxw6LkkIU6eBKgQJyAB5BMM0XwCgSBOZlCP1RsZGxkHdr7T3fD22RfxQ5xIS0oO4vQZLk6Ic79RYSXde/jvAXEaoXVVwuzU4wu1Q1fdTTZN7BUUvH547gOcdurI/o/DTl1ZF2un/mE43z0YE15z5PSBk+bLT1ZM6CVPNwtPmDld/rxfe4vogppHa2Jp7tXikmlomhMd4hzvvcEvpGiXWZaec9wuqbMdC3H+w2UEGsQJPm0xeSQKxHnDvKBy0J6Rv4Y4TdBM+dtBnBTmvPsH000tj3C6mH8ivd326xvGHeJ0H4oFcY4bSlCIc7+FxpeEo8qGh19cLYnb2nsnrhDnthE7h9nm7DcIa7ieo7si3RsHiNNpKBbECcgsQYgz465V/NIuc2ibLPxMXYYtFsxRkizEyZMNFeIEZINcAh3NJRBmRkVOffgQhUjT4TChfh2KNaHebpHclPCSh/fo/dz28ljzAzcUl7iMeXsDH8nfhCfmpLkdYuytK+EcSllcjkchiiGYhSiG8CU3Q5P8d4E4B4ek+Go6DTMpPpm8/2n2rMkdAnHmamBBnAs1OhLiNJuSp6UxydUyZdE269GRaYhTx3ZBnMjejgPEmaGBhSUGaXQ4xFkUnmFr+WCJQcljldr5T24LYtmShjgXYqo1TuM/iLOVECdy+SVhiJM3ClDJRWAUiBHiHC4bMn3rJaphxsSG2KTURU8kDHEuxJQC6OLQRGVOQpmoCApxDtzd5+vA/REWmUudOzlqzx2CdVs4QpwlelgQp5PefxAnZJ9O8dXjZjd+Nso9GXb9yNttPXCAOHE+IAHxxFw9LDwxUk/cEKf7ScZ6XRtr+rYXEw0LJ2oLlpP+ZxCnhabKEeb7M7Toa3m3+i99eBkHlZwwVZqmJ0aIE3laL3GIk9djUCFOQCnInzLQ/CmRIc6/7DTNK1jOViWPmZOfJbw0Fr63dkOc6mOxIM5TY/CGOP0vBVcznRYzAoeUHdBifVLFHeJEZkDgwCcqj8XiE1+MEQvE2ePSgQM2OneNEiKHfe3d9Smi8m47Ic7d347fub/hlXHRcrtduhen3MFBJKCrYIiUNIZ42VL8H3FBnLNW1b+38tlA2bd09AS/cOp9QkCcvL6Mii0CfVk8EGeWH9Oe5rKZvrXfrUB1ZSPB3iw5iJPXaVHVADotNHtYkFBmD2JDnK9XVmzLaog33L/B3Kv6AGOsmCFOtTFYEGf8aDFBnJ7lN/sve+JglWZVv2prUI88iUCcH2Z/ORESFmixvtezs/5PC/vjAAIqjsFizRpGEyiNUUwQp+1K+mqO0myzIM3GCfrXTgvmLeAHcXZiePVhfjQ2KHHRy1x9qV6kY2mj7SpGY9kunkC2kxMTxKnqmr5laYiv2ZGqymtP9h8Q9IyShTi9MI1DJ5BxxAJxIhd/Eoc4eY4OFWG8Ohp3iLMfPWiQrYqn6eZRrOXAvkrwSSuSgDjjR2MpsHA0fx1iSUJZh7QZ4hzY0nvFD3EiKSQYxIlMl4ZBnMjsMhjEicxng0GcyKAUDOJEpgHBIE5kFgkM4kSeOsMgTuR5EQziRB7TwSBOZKQUBnEi9/swiBO5lINBnMjjVBjE2TdHUSv0RZVh6JlpoRV3S71hEOfsPudyh34LMM42W7Jgb97deTCIc6ROcUz0nUGU0qVSeTNH98qAQZw733RJvPLXB8tjg95tto11U4ZBnPb6qrmFro+sdmk6JNtF2tXCIM5o+2yryrHdrEq5D1Zt83DoB4M455+W4pydlcXIGZmxePmSgf4wiHOoQ7ViUmYD5WC1uv71uh7RMIgTudoSIjVBpFPk0J/ktSLtbPczZnG1m28tC/6wCwdS0wptUBLmGB/ZQ3DKRcS5ih94jk/GPMcntZzjW6Np/ruSmg+761+3Z/mabL6Vx3w07k8NMZKaQQwsUrMLQwyk5tzsr6vDjr80Kn//pUuFUtJLYpOaqxlY/Jgd4/+X1GxY7vFu6JBFtCM6myo2XulbSRBScwSmwbpIxmCSIDUZysnxtQMKjcIWXPQfr7MlA1dSc+ych4u2zb9hGGcxMnL9ZN1sHEbabXMsw+WaE2cnhjupKV0u9/ltKNu4vFEpQY0ZOliipCbP46GSmsAAgqbdWSSUafc3JDV3esR/llKxMo870Yt0dvmBfWImNbUNsEjNN9R/OalpcfNYYcXFtUY77/zYqP50EuLhpu0jNfOPDVsqzfiDntvtS5Za9bcKHEhNsgEWqQlYSzyk5uFcnS/1M+ZZFYwc8pTiZVUtSVKTJwEqqQlIAPkEGzSfQCBSc6aZz72GA+7UXJugzfVHtw4XP6mJtKRkSE3rwkrSIZo4Sc1488LKP/bTfg9S0xatqxJmp07uHMH4PjmbEup1bcdz1cYGnHbqyP6Pw06dboK1U9c24bsHO8Jrjpw+cNL8pWPkNPlCF4vSXVutaj0/PcNBcy8qlubWLS55NprmRCc15aaGUD6nKVATRktPP7Wm0/gOJTX/4TICi9SsMUUhNc+bFVQqnzP9Nak5B82Uvx2pua2r98P7DUqGGbLOftcG3TKXAKn5YSYWqVkyk6CkZr/dmssUtDNpUZM4lv3u+SXgSmo6fOYcpS61Y6R8W2DywKWsvVm8IKn5YiYWqQnILEFSU1M5yeXolUBK0FS5imG7R7EJRGryZEMlNQHZIJcwF80lEGZGRU59+GCDSNPhMKGupmBNqAspfMntCS/5NacZy3toq1oW9x8//viwol74SP69IDh0ydDJhilds+IMs3zG47FunIG5bpzBl3wemuS/C6nZI0f6jz3xH2gpCof0Zf58uKVDSE3KTCxSs2FGR5KaJvr7P2XW7zU7di6wjFGTK/hct/aRmsjejgOpOWkmFnuoOLPDSU3teqVJTdeCzCMNEwa4377gRihSs2EGlloVM/4jNVtJaiKXXxImNXmjABVPVJwpTlIzeKvJwuCmyQaRtbuHqyzcLkjidDypyeviqFJUtExU80koExVBSc0lXLktjJJtZptnk1OvpY7CvC0cSc0PZlikZpLZf6QmZJ+AdbKkJV6VZkf2VAx7ckZrDw6kJs4HJCCD+MIMi0E8ZSZuUjNw2y39kevKLFMO1ew3TWQLPoz6n5Ga77127sqfn0fJend57o/XQ0bioFISpko+ZmIkNZGn9RInNXk9BpXUBJSC/OkCNH9KZFJTvsymcMBCT6MtTdnZj1x8P4mB1LSzwiI1v1riTWqeWh3gvmNfmGWsVG+XweGHj+JOaiIzIHCAEBlWWBDiUCuxkJouQ5x69H750SywbrXqp3vBiriSmv01bS+uDr9Mz3wz/NYrhuUoHEQCugqGSFctiZctxf8RF6n5nlRgeOX6K+OQ/rSVZWefDm93V8eDTeT1ZVQ2EejL4iE1JyUt/WaQEmFW8o5UebDLd0uCkJq8TouqBtBpodljIQll9iA2qVn4OSrJdIkCfedLWwPa7ZM9xUxqWltikZo1FmIiNd+xnxla9ltFObp1Q6d91wIGS4TUVM9ySA0zO0HdfEfeek1sxQAcaD+6JRZQRpaQR+1IUvO7bLK5XvgYejpdL8F4+6SzYiI1VW0aQ18NKTQsNyv3HrXfZQsOtmuywLIdMBQIYztFMZGaV2w7W1I83xgHJXaXG6v1qR+BSM1DmMYJJJBxxEJqIhd/Eic1eY4OlVPsZok7qWniPUf5yc1zlLKQ/vEuE0YtkjipWWOBpcB2C/46ZBEJZR1CaFITSSHBSE1kujSM1ERml8FITWQ+G4zURAalYKQmMg0IRmois0hgpCby1BlGaiLPi2CkJvKYDkZqIiOlMFITud+HkZrIpRyM1EQep8JIzSXB1YnTOg0wjvgoZfLgXMAVGKmpdTelgVk4yaJc72LU3VcT98JITd+ziVGzA99aZAzr6pSaKhsEIzXTq95rlQdPYBxoTFmaUmtSACM170g9KXIbeYsa5r955fbXE0bDSM3MzOSZtiXuZhsyFUxuFn+kwUhNm6KR1BGKZy1CKoLUo/0GPICRmtE/7vd+do5hGH7vauyZJ4XGMFITudpqPamZNXqCpvuXlfS8ly+4j+6onxUxUNpKai5GG5SEOcZH9hCcchFxLtUHnuNXTMc6x0+ezneES9A0/11JTeSDccVEamoXVZK0ewEaB4vapjXkAIsjJaFtGtaCsHWkpvtTq5TAvEXmiVSdW6tfjjjVHlKzndOtGqAAGVRgvqGIBWAW0AeblIiCYoZnHlchNZEqoi4PVlj244dIuo+/HMIHxRxxS96+/zBX+vbPaZMKvwXPIwCKCRqsRgnLYIckYzCRwcWsmYL/K4xiYhnrlyjmh0+OPT0CiwxKOq2Y+sdy+lOJrlxBywRiWsZeQpbpENZy8Krn41gl9sZpqifcUmXqzkiMtQzNgVyaSNZSv9mpQxPnUtK/bOIc8mPyjg97cumlf12U33z262MxljgoccUqcTDNVQwlDr6OSpTpOsHfcNe2sVctVKZ+JXaJg1xXLPA60pUo8yraj/jmVb9Y1dNZhY9M4qkacfMOP9hKgHkVNJgTpsGmScZgkihxkBVPujR0Od0o9rCpuuK8w7q4ljjY9ddN9QFFcqb7Cxw4U0YObm++M2g4ZUzDvXD5F0+7E/c2Td1iP4uWXVidnjjg8ViJTbtgiQOex0MtcQAMIGjaZZJQpt3fsMTBfZPtWbZnJ9Li9R89S5120knMJQ6GLsYqcfBi0b+8xEH11phPU+RqjYLrow0snk0chmeJg13db1303ffcNO1h6YojW7S0cShxoL4Yq8QBYC3xlDhYemaEptYBN4PoZ7p2EbesnCVZ4oAnAWqJA0ACyCc4oPkEApU4qI4zGvpRoRMl59hp443P1+uJv8QB0pKSK3Gw30GcJQ7KTAsrz6c4/B4lDhzRuiphQtyZk8ffzAjZbhVT5Cq1WXvtCJxC3Mj+j0OIe6kjVoib4sh3D06E1xw5feCkedHb8mvLDnOpmcOsfUeFeKzBQfPcRViab29xySw0zYle4kD6jcpg/VMRBqGkqyODewX3Q70/cZQ4+IfLiJariShxcI6FUuLgA72gctAZ1q9LHDijmfK3K3FQbDCmTmk61yCtb5zn6Wo5LQmUOHizAKvEQcECgpY42BA850PPgdX05IcNWRce9VdCZLq0r8SB54/4/RpXtM22+ldRJqTUthfsAEscNCzAKnEAyCzBEgcaD/uNzVhrR0+ep98UenbzDAKVOODJhlriAJANcgkuaC6BMDMqcurDh7dHmg6HCdV/IdaEar+QL7kr4SU3LdZJHho10XDvtu4nXgUx8/GR/M/K2jlWK+8yUqnaul71c7fhILnRfCzJh87nS85Gk/x3KXHgu3O8xdSbVNPExQZxh4PXze6QEgfTFmCVOHg0vyNLHNRTV8grKMcZH0lRtPcrGWOEY4kDZG/HocTBuAVY0H63BR1e4qBP4t3K4jFJhpkfpsbtLpxdS6gSB4/mY6lVMv+/EgetLHGAXH5JuMQBbxSgcv3dFoizxEHJ4oUqXGZfxpb6tdETZ85AFEbq8BIHvC6OKkVJy0TlRkKZqAha4mDM2nPG1jfq6bncbIPopr6bOqjEQZ0zVomDQOf/ShxA9jl0x3TDi9qX9CAptVexJd264lDiAOcDEhDer3HGgvcPOYu7xEGkxpQ+5Mhs033F/Wt72jXMwqHEgdG6jc/CvvsZpxTVOd3ow3LCQaVATJXsncVY4gB5Wi/xEge8HoNa4gBQCvKny9D8KZFLHKTkXTQPqtY1LZqyLVrh4sPVYihxQF+GVeLgjRveJQ5sQoNX1q32NThePHmAdpDOYtxLHCAzIHCg9ynLsOh9tWViKXFAMc0sG2FiZLXNJGZKSrGfB64lDv407q89NmsyrWCYT44nIzwSB5GAroIhUrUb8bKl+D/iKnEwZcO8GXSSIy2za+NG5yjNNEKUOOD1ZVSoH+jL4ilxMGjE4KqBs9NpO+wyFp57LqNOkBIHvE6LqgbQaaHZw52EMnsQu8RB1O6MVcseW5rE5L0nHz6x2VvMJQ4YblglDs6xxVTiYDw9baRuaYJ5oU1deMJ45WyJlDgIMNW+YB20xWrThR4ulA/yWThg8kZuWCS2uoQ8akeWOPBXfdN4w8DBOG/cnX6699NTxVTiICVFcdpH+QHUozK9L/fvufo6Drb7wMayHTAUCGM7ZTGVOIhVebbSZ24WbUfd3yoD6QqNBCpxsB/TOKsJZByxlDhALv4kXuKA5+hQAX85N9xLHCya7G3x6eQZSrnmo4A+Lzj6Ei9xcI6NpUA0m78O8SChrEPaXOJAvaX3ir/EAZJCgpU4QKZLw0ocILPLYCUOkPlssBIHyKAUrMQBMg0IVuIAmUUCK3GAPHWGlThAnhfBShwgj+lgJQ6QkVJYiQPkfh9W4gC5lIOVOEAep8JKHJi8MNcJ2j2Fus1XZ8WWxcfOw0ocjDxrO8Bjb7ZR8XTHgd92DFWDlThYxD5qaaU02SrF/o+01MFV4bASB3/cV013+BJiUloaZD7HcfEiWIkDDXlbOd2BEfSc61dVWL1IprASB9akxY+s9sy3SLNUujhhj4MirMQBct0kVKwALHggchBz+5L9o1+PMg/aPTet8xnlQTgUK+CgDS/CHMgjbY1TViHO1WrBE/mSeVgn8knz+C7NE03z35W5zD11UnXG648m2cmHm07ZvugvRubSYAMWc9lpgxiYy4u2Xjr5GmzLSAuDPqphDxyIzVzO2IBFgg3f8P/LXBa/s0+as1TaZP3BA5ej4vdLEYS5VMU0WCfJGEwSzOWbfazzFyvemuZQOy+98re0L67MpazRFtkbTT7GidGrqpS/L9XCYaS9Wo9luJvribOnwp25PP3SZcRbtwUGR1W/asxq7JMuUeaS5/FQmUtgAEHTrhcJZdr9DZnLfeThTRcKc6y2/X1L7duD2YFiZi4jV2Ixl3Yr/+XM5fa1J9efZk6g5lVREsglxt/xZC4nJ9eWqC/vZBSfnDhs9y5FNxyYy6CVWMwlYC3xMJcyt183Wr3PNjj4TGbWg0X7FkqSueRJgMpcAhJAPmE5mk8gEHNpcO8KOzLnjvGGifJ5Om96cUXcCs7MJdKSkmMuS9aKk7msNC2sXFi89vdgLrloXZUwO/Vu+a/mTOtsbRjby3bEzE1DYnHaqSP7Px5PZFyH+UTGdXz34E14zZHTB06a50ldvpLCuUVdP6ariay8DAcHzWsCsDTPCuBr7oOmOdGZy43jl3QJs0ywCvHbEHspTN2wQ5nLf7iMwGIu3wWiMJd/0Qsqbd4G/pq59EUz5W/HXK5mz5y0zqOItuXFPfajzs8Mf33DuDOX3fyxmMurKwjKXLpkZIw2P8syL00u8kt8kJmDK3P5fbyX/Z6k74wtk+Iawj89vIkDc9nFH4u5BGSWIHOZZ2/V5+omPcq+W9P7GlxwKCAQc8mTDZW5BGSDXIIfmksgzIyKnPrwAQCRpsNhQt3ujzWh+vjzJV9BeMk1Jo3KUa8OMy5zm0Gx7Ze+Ax/Jb/Rabzt41l6Tsq+nSyhJ0/3xqNXhh1mrw48vuT+a5L8Lc7kjp/HEue7eBvGHD4cXzHrQC+M+8WMu7VdgMZekds9wbWEuq6c8bFrjn2mSUCA79GP2YMRRa7uYS2Rvx4G5tF6BRRFqr+hw5tLuc/iOr6XfzNJSP2cVsDMFC3xLmrkkYapV5/cfc9lK5hK5/JIwc8kbBaigofYKcTKXnFsLZuT1em2xY9TgT+sHNF6RMHNJwpSirmWiCiChTFQEZS4Dm7xKr3VpMix9Myf54eHLvbBuC0fmkrsei7mkrf+PuYTsM6XwuvGAuBSz9RsCGcbFUn44MJc4H5CANCFnPRZNOH+9uJnLK7NDrn+crGMWLfdFnz7hnWDQ7p8xlzKNJ3MNRp0ySjSzN6esXIeHSjRMlcasFyNziTytlzhzyesxqMwloBTkT1ei+VNCM5fmO2NHLZE3TJKLnq4/dv0z4XtrN3OZvxGLuQzfiDdz6X718eAeIa8oYX9fyDIpmHMId+YSmQGBA06YsxELJ9y9USzMpZbnLm6M0z6jY1sPK/1NfTwGV+Zyq1/XqVZDNhol6jGM13gYPcZBpHBMkfw2Ei9biv8jLuZSLedtYYRDMK1w/fNP3t/3d213V8eDMuT1ZVTKEOjL4mEuZefX3ejZ/YTloaSM/e4yxX8RhLkMx1QD6LTQ7LGKhDJ7EJu5bJqn2dVJx9UsuNScNX32dAe0u8OJuRy3EYu5/CCcAowPc6kfQH0btUzNYOM6Gr2Lz8U6iTCXplpcyx7y/alZcd1d3IKeHMKB29PfiMlcSsijdiRzqfnn325RJ/+kRpIarBu3eL4VE3Pp+nz1+FlPelsWnHLbGPFAOQEH28lh2u6DhHKHRdlOTUzMZYoOqXrt0y+UnQetKLMPxZoTiLms34AJxBLIOGJhLpGLP4kzlzxHh0oc9mrjmqQVzOWMQsPGIU/KaQcmhPYPOF9YI3Hm8sMGLAWutWRKryahrEMI/VhpJIUEYy6R6dIw5hKZXQZjLpH5bDDmEhmUgjGXyDQgGHOJzCKBMZfIU2cYc4k8L4Ixl8hjOhhziYyUwplLxH4fxlwil3Iw5hJ5nApjLmnDV9duqrUx3n7UPsht8ekFMOZSyTu0zu36FPPydyqjD3S6ngFjLt9bbo04O3wYbX3X9Een4l9cgzGXpfcPrPkQvcGsbLJm5kIrhfcw5jJjyMRjPTW/GWWHReTphmgpwZhLs96KJ63iZlseWEc/tuLZnusw5tJPbaA86/hLy0iT4GtvV3dVgz1W+tIflw+dnxhIOTpgl+zKd2p/wR4rjVxttf6x0oell6796OJvWqLW5ciK2L1xOJCaa9AGJWGO8ZE9BKdcRJyL7oHn+HW+WOf4Bb58R7gWTfPfldT0c5RKydq31yLtkSuNuv5Bjej7xoXUdI3GIjW1o8VAapqNbpp+rXEzfXtU/Kuynq+riE1qOkVj8WPW0f+/pKZ+5ZilTt2zzXetX0Y97Np3MkFIzWmYBtOWjMEkQWqWpy95sfOqpkHu8QmVB9x1NrVvYYsYaXe3DaudUGXFyL4TMiVwaeFgPJ6OiWk4koQM1yGk5hVjlVHOyfvM1yekDlIberdaoqQmz+OhkprAAIKm3XUklGn3NyQ1NTMfmEye2WhUxJqwTUlVapqYSU3tCCxSs1vEv5zUDJi0K9P5fGej0rsBhaFHeh3Hk9RU3EN+7hUSQC0ZftN0VnHVCBxIzaERWKQmYC3xkJpq9iOfOfoampfeV3Z4p3lPXpKkJk8CVFITkADyCYFoPoFApOaMmZN6yw3PNM8Y2yOr593c4yJuBWdSE2lJyZGarlHiJDUj6IWV512ifg9Scz1aVyXMTn2gXW2iy9Egav4rpRVpI+Yswmmnjuz/eFCDUVg79YoovnvYQHjNkdMHTppXnFL+njghzjQ/f5VG2Lple3HQ/M9wLM2Lwvmab0TTnOikZqfXWoZX7r83CQot/Xo06jytQ0nNf7iMQCM16cBC4etmFFLzhElBpd/fm39NagahmfK3IzUvnfPWMT3mRNt/8Eh+w3cVv1/fMO6kplo4Fqn5NYygpCbHZ8moH1O+G4bqZcn5FXDH4UpqBsjelE38pGGy/QqlH+PScQscSE3lcCxSE5BZgqSm2v2X6n+P/mKSXVXYY3ZsCZ1ApCZPNlRSE5ANcgmb0FwCYWZU5NSHDzaINB0OE+pCzAmV0TKhBhNe8mKXm4Mdjj6i7gyT772tJmsnPpJ/uL5/a/SDg/T8g9+Ca9xex+MguUEYluRjWnp5CJrkvwupGTkw957st/tm+ctdX+249D2xQ0jNsjAsUnNru2e4tpCaSkbjn7KGbzdPrjvxeu7tU4LBjPaRmsjejgOpWRSGxR4eCOtwUtPROlHhxokRJntvkU//8NouWJ9B0qTmVky11ob9R2q2ktRELr8kTGryRgEqnnggTJykptzYc6Fbk+uM8yf2smI9v+0qYVJzK6YUa1smqlASykRFUFLT8GKTlueZ+VY7x59zUNL80KmDSM0NW7BIzTlb/iM1IftUZaklxt7faJI0+N5akzxlwafS/TNSE+cDEpBBXLsFi0F02yJuUlPHTsPJxsDbKO6OV9mi5RTBknb/jNS8uWeMsbaxB+WQht3D+VU/fHBQaQ6mSgZbxEhqIk/rJU5q8noMKqkJKAX50zA0f0pkUvN77pS0V6tP0LKXb+65/loZVQykZnUMFqmZFIM3qWm+wq7HSK2VFjlJJSNnxZ8XTFDAg9REZkDgACGeisGCELNixEJq7k2Za/v6/BXzXVZraTUhNYKJBO0lNYfExrI+1gaaJvchOT6+MfwSDiIlYYoUGkO8bCn+j7hIzU0ji6372rmZpOd4a5XV/MFpd1fHg03k9WVUNhHoy+IhNc+rqCQX+t6gbvm6w23ckk+CXlZypGYSphpAp4Vmj3ASyuxBbFIzL3m7hV/QQVrK9d09ZoXu/ypmUpMWg0VqygjPJfiQml3vRVTemXHMPCa6YrvajDvDJUJqrnQfcsTPTdu4TOHE1XlLvqjjQPsZxGABZXoS8qgdSWreMtpCeX5Sz3zHu1EOeq+j+omJ1Iyt3RH9jPTaqDzi3uoi872NONiuH6btZAhkO3UxkZqBnYtvZR7eQ4mL+/GMNKFGMAQlWVLzXTSWce4SKD9YLKQmcvEncVKT5+hQOcWhbVyTtILUHBPK3N1p9x7TsPcBC84f7RQvcVJTBlOBhpZM6QgSyjqE0KQmkkKCkZrIdGkYqYnMLoORmsh8NhipiQxKwUhNZBoQjNREZpHASE3kqTOM1ESeF8FITeQxHYzUREZKYaQmcr8PIzWRSzkYqYk8ToWRmjfucL1fx00yOuT2N7WsrHMcjNQc63D2QUH+MYMdjSMujp019jCM1DxuldzN4QzNKGvxgQNPv+Srw0hN19QhKTV+blbR8wMWvN/r+BBGaqaPvVusqE1hxFE1/Q8qdkuDkZpjVl3hXDmXQikfGdeYvKxeA0Zq1hzsbpbmv5GxLf1LN72Yc9YwUnNKj7rJYW9dTeMyjE4/oFqMgpGayNVW60nNqKLo1D3HRhsmGT+8WOu4IVbEQGkrqRmJNigJc4yP7CE45SLiXKoPPMf/Hop1jv8qlO8Io9A0l7eN8zvg62aU+bKJNZF8+J3AV+0J7a0sgD+4bKa78K5MFkXqfvxdGYds5cXimDDIHtA1WrcTy9933PVmHwYl2TW3u8wiXU/M2xKyBfINrRTUHljrxJdVApMIsCerETogAQRtKqlE7smwVn8DmmcG0OP7uDan7/l6s8iOrkwOhyX6uD7ZuKa7pfo506BelkPXlD8ZIPDFZY2aryD0hVsa8J5swfTJUFCSQ6KWf01AD5xUVimJ5Z+0IyBty5z7+fPnH23hLcmChvH2Yjn6ujO5ZFe2i6s7mIAv0jbDvRZYV1glUA9/X9xzs90xweweOVvoIsIBqpYWcVinoRTLOvGlBLAOMAP8aMumaZCxB9vbG8wgdBQwE9+FiD6KurTs1fcX+yxS76nuq8k4P1fQOM1XFBEB/tkiDuPQMY0DeBPJGwe0D9w4nX9hnIlUD/BX8mwCxhqBj7I4jgFkbX09ffJ0sqcXc7kvawR5NO9fP98hekRtmXv1LuecBy3/4aWjun9b5wtm19jBri+cXSPQKg7jHSrBMp69ZIwncttbPxNuwS6/sOD0nxb0dmVzAjjA0gkwH2AujicHNB3wN3fPFbxG8J/6YJMH07/5BdEl7vQ+7+93z9Aqvl9KqOWmoGJEZQFXURwt9LI4LCeHabmCYklbDvwQmNfQpmBFr+ZTYTbHBdsR2qgZMfVXbaZv/xJU1M13wVJBR4i6ZvrZgvuxcy60hgDXqdVCy6pcniOE1qmbSSjr1L5dVtmeLP5gVS6X+VhrwipBPKiHYTOKaM1l+bFZK4TxZjTEYhgVzPj3huGM7JWwYyqyV/MFvXuachzdfZ1YphwbFgfa/qMvXjNGZle6zPOiJA072ljS69wBrHsVzu0RbO8xB/jDy5PrQ2O7+zT/YlFbLFSs/DigbjmgfbyoI+tJwJKWXi60pOVvq0TuofinbWAOJSRPq1b0U9bpOq4/1oOWOyxqSv0gu6ftP91D7K603+kP0GRdt4pXty8dOjP7Sjt3V2qAcg2gciLPaO3BtZWgcr8K46vYwZYwZE8/FpfLdhLtTp+cpX6u+UQyjZaPGjbWzZvU/iGM0ArpI3DQio6pVVPH7hL4JK4stOUC3wQudu4k3/khx4JWfPwXDfQNfkjz5jbkrCrH3xjw3wr+bzf4skfwEy0hji1obqzNcccW6K8D4o7ITTcs7oh0aUIBJPDbiuzLei+3h4XvCDPf8aPXl55DLyzBIYAUjaYuQYMZjF2yav79WFaHT7JuVH5Sm9ZhwYymz1jBDPtP4g5mzOg2XdbA34iWP6HQeab8kBEECGY0fMbcLn8mwI7szZs3HRDM+EP1Y94tXW/Lg1F/Nz5KpTIJEcygY1qn6RMBrNMhwYxOE5yr9uw7a1ps9fbdSY3FwYQIZhz6hLkfJoJxSJIMZlyMeFw6xSLTcFP9Jusvh3bTCBXMkMM0XsFHSW+JCRTMWCRjPl9hbqZB6r1XT8O2joqTcDDD9SOW5dQkbjmxBjN8qxLzq9aOMtxH8d03S3nhPUIEM3hrCNRgBuAIoXVqDOlfEMx4mDrh7ZAnA6kp3F32L2XLV0o4mNHwBSuYMelLxwQzNhrq5k1/lWkZnjyQ5L66Zzfcgxnkvxzfvx+ra1rq9qQs5snQEzhs0Ou+YG3QQ7+IK5jxZXjjbG+1WsPdnoHMEQsLB+EezED6CBy0moSpVUPT/1UwYyuaGyN0MAO56YYFM5AurfXBDMuN7wabxhabFsZYzFU4o/oJh2DGNjR1CRrM6DwobOz+HXaWkYo+1ZdyPLBvC89gRmDfKoxgRpaaULY8zsGMxypJ23vVTzTecOqO/PsflyYSIJjhD0qCujS07iuRxFzBHVlDQ0MHBDOi19nRPjX0pER4DqmM0ewdTIhghjamdUhEsE6HBDNqFvierRzRmXHIfWUe4/JRO0IEM+rUsIwDeBPJG4ckyWDGtmNTB1BJFIvDdl1P2LjrPyFUMCMU03hLJWM8YgYz1iRHcnbNzTCOmrxmxfWzf3yTcDBjEqblFCVuObEGM7ZW3hpZZ5hGTzvy19eC73o0QgQzeGsI1GAG4Aihdep20r8gmPHs0bmyPlLZRoF6RvSUgM7DJBzMWN2vCiOYMbQfap0wXIMZN695vHi1U8PgILdf0/vPgz/iHsz4aOeoxnmTRiu3OJbxbtjHBhw26D790Oh5cIPO6NemEgNtCGZYK2S+l02eaVCoGnLaQs/WFvdgBtJH4KDVUEytvnbsOlTSwYxYNDdG6GAGctMNC2YgXVrrgxn7Fk8kq5++wTh+eRBj7PMhK3AIZuxAU5egwYy+OYpaoS+qDEPPTAutuFvq3WHBjG7jsYIZ08aJO5gx3bx6R/dFkxi7hsaHj7i38iMBghldxmMtDW+PI8COrL6+vgOCGQs+a3wsPV9Ai/njnu4eudFRhAhm5I7Dsk4kEazTIcGMYYOPyEwfn2satt9n1KhOfRiECGY4YRpnGhGMQ5JkMOPkkDHsytpBlIID3ooDi5O6ESqYoYxpvBdjJb0lJlAwo6568stHVxpMQl/etOoW8U1NwsGMU2OxLJckccuJNZjx1zHOxa0jOBapy8OzKSkRxwkRzOCtIVCDGYAjhNapcaR/QTBjdp9zuUO/BRhnmy1ZsDfv7jwJBzO6TcAKZuSO75hghnG2wyafr06GxyZvln/1VqP99RKRG/RZq+rfW/lsoOxbOnqCXzj1Pg4b9C4TsDbot8eLK5hxtYK57fDwdxZxpYNfv3jKOI97MAPpI3DQKnc8llaR4/+vghnxaG6M0MEM5KYbFsxAurTWBzNG6hTHRN8ZRCldKpU3c3SvDByCGTvR1CVoMGNJcHXitE4DjCM+Spk8OBdwpcOCGZNmYQUzXK3FHcw41cOgWxpb3Wjf0c5yBZztZgQIZujPwloays0iwI7sxo0bHRDMUMvdu+jcRyXzkimBz1dtc0ogRDCj3hrLOgXWBLBOhwQziivcXhSvemhUsMpv3gL7iHRCBDOiMY3jSgTjkCQZzHhsUFG5w/2r4fZpL5b276yjRKhgBgXTeGqSMR4xgxlmgXl07WQ5+s4wxZ4xtcPeSziY8cYKy3LVVpK2nFiDGYYzB53QMt5NKVa4rBJVPpAYmAlvDYEazAAcIbROTSD9C4IZWndTGpiFkyzK9S5G3X01ca+Egxn6NljBjLpZHRPMeHzp1pqXci6MHfEXWGO7vx+GezDjPanA8Mr1V8Yh/Wkry84+HY7DBl3bBmuDTrIRVzBjwMJ7ufsP7zUJmuanqXx9Df41M5A+Ag8kZxaWVlkdu0uQdDAjEc2NETqYgdx0w4IZSJfW+mCG79nEqNmBby0yhnV1Sk2VDcIhmJGEpi5Bgxn5SVq3R6faGG68df3sMqd+rh0WzJjmgRXMcHcXdzDDzuFBZ9stnak503o4jg2yXkqAYMY4D6ylYTcPAuzILl261AHBjLS4yesUY/oYRe486GtbIp1LiGDGI3cs65S4E8A6HRLMmOQ8l7voiAEl8smfu+TGJHIJEczYjmkcdyIYhyTJYIbc8MbpcjNJ5hFTR0UY9ta5Q6hghhGm8dQlYzxiBjPGDIxe5jZmHGWn1OrqqyovoiQczPiwDMty55ZJ2nJiDWaMOvH6ylKp3sahOyvodtl6pwgRzOCtIVCDGYAjhNapu0j/gmBGmMHXp+zBncyOudhvMxgVc0LCwYxxHKxgxm2PjglmrI+59WIj7alVWdIynZL1XqdxD2ZM2TBvBp3kSMvs2rjROUozDYcN+ggO1ga9C0dcwYxpJX9NerzA32qv0oWZmfZ1LNyDGUgfgYNWtz2wtMrt2F2CpIMZu9HcGKGDGchNNyyYgXRprQ9mmLww1wnaPYW6zVdnxZbFx87jEMzYg6YuQYMZtOGrazfV2hhvP2of5Lb49IIOC2YcDcIKZtCCxB3MGGDyfGGXmzaMjZfOZhTH7btJgGBGWhDW0nBHEAF2ZGfOnOmAYAZzuePYOz28TY9p6T1gbi6mESKYsQHTOhwiWKdDghlZtxiyTqbPTHMW2hbfWpjfiRDBjPmYxqERwTj/a+9M4KHq3jg+KFnKq12bJpUUaX2l3YxtMDNki1bbhLKTtFOIUhGhshNCyJalkCKlRdpLmzbttEqp/71jRubO3Btvd+be1//t876fT91jrnt/z3Oe85znfM8ZApbFDJ9MitbJe8FqOcFDRTcPHZyPq2LGdETjyWJjPHwWMxy3jxHxkdqrtdNhTqbVmF2OGBczJBAt93k71pbjazHD2D9hXHP+IN2DiiVBi8fcm4eLYgYzh4AtZgCBkJWnxhF6QDGjv3vArdU35+iVvR88LVn4ZgbGxQwlP6RiBsFPMMWMgYQNt9e8MdXPuHJg3N+umzRRL2bI5DQX7bLy1yryefXZ/UeSJBpkhh/SBH2QH7+KGf7kmY3zZ5fRvF8/nmb3Mncb6sUMaIxAQSsColavBTtaYl3MiIcLY7guZkAn3Z2KGdCQ1vVixgf6vl01kyZo+UimPzkT+foGCsWMBDh1cVrMgH5HssCKGaKhSMWMmH38LmacPXWIMU5fmBLmU22V+NdzHxwUM4RDkVLDt/twMCOrqKgQQDHDaMD5q0/nJVCCAy49Fh1mIYaLYsadfUjWqcKDdQRSzJg+b3TL3IfvNQNOvhFS2nZxCi6KGTmIxonBg3EIWBYzNokv9HyvuVeneMxAqVP7zh3EVTFjJ6LxPLExHj6LGX3+zrw+SaWZHhZNafYnS/2NcTHDCtFydMwtx9dixqSCTQtrDQgaSeIqP29rBAfjopjBzCFgixlAIGTlqYmEHlDMmGFV01BYkEsOf6l0ecaiGUcwLmZsC0UqZpiGCqaYcdI7RH7UABn9PLNREi1WC6JQL2b4TS4xGGa8Wjs9x12+tPa0EwoT9C2hSBP01aH8KmaoDTt0X8flrk7AERXGrtbnX1EvZkBjBApamSJqRQ79vypmJMGFMVwXM6CT7k7FDGhI63ox47h+XF+rc1oa2SuSk59/LRiJQjHjMJy65w5ZUttmD9Xelizb5+XYjaWc/YYKaEo00qByVzF6w3RZMruKQXQAP+vOsHUEvJdow1gF/NOGaLWeCLyvmwfRxdneyUOJCLy7Ldhu6WRDdGA42XrYKW/uUmzcoWNusdi/VGvno/M2Gal7+/F+bu7+zm7pYjf1BlKjuBigm45VB/4BHQwCgIHYIoZrMEAKadLMB+ikAc+3s27eJj4p5qhmwRHNnxnvguZCkkPw0zySQ+bl3x767Ns28B3dgn5wX4g9xV3r2x/GMRdAoChQoAZecSwD/AarGExyRwl1Z6D72zsBzgj+3AwC/J/ulEFkmPZju62Cjb0b0LuA9om8v1y9/kalsukt/bir7yulG62yOOworsH+MJctOzWhnVqCBvNANJgFNgYT9QTeuH2SzW2spoW8jCX8m84myTRWe1zhaZ+EXNOlDsNPaGRMkR+eZ5zJeWaDKJX5QS7jsK//rqeZ988kb90/jh6xoiB89hoXCRR6GhXRcKoYGY7X/LppYbdman2pnUYLnqZa+F1JMsx6qF6e01ODyxZHOXHFXlRe0+X2q2h3IIU8VsTLJgFGgQ4JtbnMDsQadpMJMMNueOOn6MkmQdSi8/qntH/GyXG8jYSmFzBNYCZc3PMyOF8foulp6bCWtYDA6LhBp3uxf7K/lr4hjWSsILdx6hzDzXJK+hO7NOKKCv9YSTfcqZW5sGlYnOHZGLhH5jJDp7YuSlwLuPqGA4DEKsCo+xDq6g+BKdiKA1X9DED/YgDpO9vTe7HkkdABgwOXJ/dhXtaxYffPyDbv4vgQM52ClCN0taeKdyX1ma7K9Tmx9uu/PmhuU71HqExco/jtUFo/xYG17b+P+TgEVkSCnQv+0oLoaQlMPKwceM9nrL7tbfGwjtM6/jHR4NWPdZxfziRhyvooUZ9LbSF9Lo8XggSmuZsHpaZHauqn3Fw1dsPxapU/DEzlgLU8QWtNBTpEOdRaYYVMa7HE7RAJKRgMai/bgNn3L0fmqVK/L5cZG0L6qvu0PC8sX+S8gjN+t9+GWyEi6jHBIpclQbkaDwkouUwJWDEhBS4mHCx8aL7jSYtOcWF+8bE1jziPsO5tYOnEcOCe6MCFAwUS0QX8RKc6DdHJGXgNZqrtwfDyIILxguHO+9wVityRmeLV2jmjBpzeVeVymsejcM9AeKlq7ebs4GBoCVyHDg8Qn4RaEs4nxUzcGW7GwOOzf+14Dee1YE+wdgCeB6ywMGzsPVjvbg2oBYwnDd7JEDuyJ7tcldCiSkLxIcCOpuoE7x3qEjRLN1t7JypjFYdTSLZfNgRXvTpfF2+/buzs0vkqpzNM0y6q9C46VPUXU0QDN2dgXulh3/5UfdhPxWuW6ma5TsfJxt66/UeZ3VocvAgOz50u0cB6pwNrYt4ezMG1NHtLB3Vnm1+fBXIVD2Ci5tjx716L3SxdfgWMdldNhXNVou3YgoDdgeTQ0xnUA1+LNnL6hyHDwXI9p6uy62OiJGvgDdzZ+sB570AScR2QARPdwDuxpt08HdXhzpbbxbJG1NCG/vnEm2rSPB6kS/0feqYIxP//MEJGAskZMYpVzvXmKrAD45l0FDs8HMG95tDhAyXNY25qS0vlhVECh2f1OZ96aSgKmg8/gKS5REdIToPT3LXMXtGenqZ+vFTf4fmTpe84XlVy0Vow5GgDHccOpgLFqTzceDdOw97dBRTdEsiAmcPe+sntwZloCfxHtAV/A09TRF7Pffpt0RlKgs1uCelPdlthn4/LIByNXKYRN3J289DvXD3jYbB/mEZ03I3HKhQ9GjDYEHXwf06D2WgVVk6kRVf1M2I4AAZj2ACxkOHFcbt2U6bDmZJ8beg9z1m5akeXrpDZZXqSc3QdBHqtB7h8DlIhDLBOyXDnLnrBrYlMUXd2BJKb9r7DvI3Nr9swR2CwHObONK0NkKx2Kd82UBcZNzLpMC36rwcV7lti5X//wFxG5vlTXew/1ccrCXaRgDkayTxycAPw27wiYZdBuuj4JGonUcCxGxwNwSkMkB0rtM8q3YmAesxCGfNv7TUCoFOAi1AMG95Vl7HvD7RdsrXV3tsU86Fmil9vzqzQlNmzuGf1rOu/C1N2p62/qEkvpBTorvzy91Szpj8MU4WAzDagzL3IPDLHmceZMnNNpft0T+fxncxPtGJ4rGMwnMDkyJ1hvZbpHvbAlJ53JrgpKzb8ZHEKbd+VOZZ7xq9T5Ywwv+5rwx1hOjeinXA35bNkW8ZLtkH5TNlYISEDLiTgZkSFDn1dGVF5pNsQT4WaDoUBNSMSaUCN6pD8KO4ltzozkkEwjlLzjSa7zGk224qO5Nviaj/JyASrxVjepoSFnHqLguT7IpAk3xbBljwTTvIaqbEfpqk40/zfv9NTvrqVE4nvZ8gAMg9rBpG+1sGBx4gHt8wzmf05J/BzYGS2dwJSFnub9lC+zt7DjujsYcdw6/p4t2JObNXLiWb0LNLiO1HlN0QRnpPLMpzNXVSXCCQcUqBDS6rzWOhXANRtiPjTEW4IWCx1B4c24GE8mKkAqBhPAcSFFymZimXRvQ2l196g5xVzuiTzRtyLPu2Xf+eXUG//Q7+UBnc/gcol8CpFXwB3P0XALvR3UbkRHcq5cbga6Fo85ZPakkB33iVHSftsckVH/mUyJxjHchCwvMytImcr2mMVqFZDBJJalyIEWrhnP6iY8XoXRmcdxnZa7FbWY7g5MRyUwZ9xV9amrNRx8mDYMtwgTBb450/TkyHMNBA0LHALoqXT+nZT87QyNP36k07yh3atzmP1giYSD7sa5DF7AYc27MVFOCFk6ExtwYyYmZGxXd+GpxRvHs/KtKwYTY3Wv5CSusLQk1MK5ltxS9F+mR9SMF0cVopLHQNVFgFmoKIf17p0jnBG3XvJsLn2L3U5F+OkmIUtFwd7a7CY6MQ9UsFlBCNoQDdgOAKfsrZ0IDpy3KVL41JrndmXkKlEamw9wfXmIfktSI/FjaZxtnc1YgBpfy04FQ7ihaBRgIiRFM1j/YM9ReWx/sFcKYWsf0CXMdjtQjDtglgfGaVl7wbEAtD7mYMlp7142mdM0mj9b1JKuj51hEGmz+3ucthHiMRdiiIJeoGEAJjzQjRrgYSrd1wDv9oiuqqTSEK/EUnWiAFM3my6pVLmDvHwsNzv+ofviC1517dgPqdKZG6VyL9VafnUoq9EWVu1sNV5tAALdTEUVEpCVCk4ulvLSDK/lpG6IBB0tb5LS0ns66jzv/ksj2khgck/RAuHfKZSrHiaDRdPL4969eLzPhrNNzNcbrLFpzWcK+Y0Z09G1/P9ScytAw5gbUbBEfjkRHCVuX16RbR0cHayJVqyajNd26wW82qVm/pIU/UUueUHVs57acv9bNyr+eDVrpYHAF+SiQP0+84rgBLAraKxPLEtOF/qR7Z0Z3RAzry3Htst3H+xrzXp5NpFe9ykDvn9Ma0L7W9QAuIP+9tDQKNBcXAEKhHcbBvXLVp3ANtHmIvbTGfgKZQrdbdr2TsVcpyneNmMZzqpnD2N5sxzIGVf/91Mp3LxhuGmdWPJifVBi8+JzNJAQSTAVRBEuhWLP1qK/WecWrcgnIEdndwG2dXvbA0ek9eQppnfetPmdtDENX/s6n8aL+PyWb5M4WWmW3lMX+5WKt6uBTC4Orb7M1jG4L1zwa94r6a4CT0gSH+kceJaCOLXcRduxO9XEz/UYDotrBqA07JGj2MEmNEjXbnIdMyVL+phVx1uNd17eQsCoDC9j2hmvoR7DBGFkVS+Aw1u913iKjdnR+JGr/UbNhOtnR1dnJ3A6XfXxo8QacbPevEF1Jjd15rP6L+8Cfd03DDSr7ZucHfhoJqyvBBgArgfhHssESPAx8lBrEfY6NXpvXm+5fese+Zul/rolQxUcD5/fbTGAHAO7gZ4CjfUJTzZjLM0b/br3tyl+c6Nv4uot1vWXhXLV6f7jR1oqjTo5p9+F4kFIOc+UM5yXs4ZBwzNWzCKqDwxxrLujIAdll3/O8tOH3x0985IS7VkYSPziW4XOc/ekDRHsp15N2xnIK0wk6KaoRFITewf2yoai4LtViPazhRHtiOqdWcHdYftNvzOdqPPFJ9YM91LO1LOQlfvntdbTtstQbLdEiTb/SmDBhiHjGgcZRwZp5s7OaVZ1gEXLT3c1sIs6kCTP8jCL/MWPBZ+26+jPgrnsQKdGBmsi0HsIQO0esR2LyfpxxIBAWgfsyxbRPbDXFr86odiSiu+mf4Z0I6CAqaICqh25CE5BJg8pNvbv2Q7vJf/27+gu5A6bf+C4tJAkzCBN10GNImwmqA8G9DUi8C7KAU09WY1QTEgoEmU1QSlSICmPgTewBXQJEbgvV4ENImzmqDLdECTBKsJWikFmiTZvwsy3wea+rKaoKkc0NSPwHs5FWiSYjVNkCZ/WacwUeNIbmHj27nvrwBNf7GaqqMbbuQqZqtHql80jRrCaAGapFlNDz5cGVw7QE87cohBYsTtL/VAU39W06pow0GBR4ZR9i6I+rhkS2Ec0DSA1aSau6XmCWG9+vb4uuoxOY2HgaaBrKa79+dNz7t3XyNj9M1mPf01F4CmQawmy6t61uaMweq7JR7KHpAZKwM0DWY17b14fvpTmfu0gyfoEQXbS78DTUMIvLMtrl2DQwkwuwZ179w6vuTLCH3/OfNzrj76lMCjo3R312AuXKfEzTI+1ENQYhGlY4mvXHasJ52YdEdnUUmVEgrr+HTEdfwFHcsjeXCa4/TYKWhHFNixU6bxSMdOvY3j97FTE/svcG7xV9aINPONWpM2lpNXwObYKcN4pEM8FsTj4Oyc4uJiARw7NfkUY8+7AURKbLHRuPBDopxLiVgdOzUJ0TpD8GAdgRw7VXQ7ZIHVsQ16AcOnPn/rdp+z/ovVsVPCiMYBogn2xiFgeeyU6tRqlbONo/QjdBbq0C/ocR6wiPWxU3fiEA90w8Z4+Dx2augFieTH9aPVc3PE50WNE4JkiQI/dioH0XIxmFsO/BDfjp2qvVuyVG1ykfaJbIJn1iZdzowOq2OnmDkE7LFTQCBk5an5BJg89d907BR0qojxsVN18UjHTiXHC+bYqcl6BG8h0lB62EtZV8+Z8rWoHzsFXT5E4SilS/FIRykVx/Pr2Klv0xp6G+5Q0w2c+2Djypv5t1E/dgoaI1DQKhlRq32CzUOxPnaqAC6M4frYKR7VL3bdERrSun7sFLQ4hkIB6TicuqajhdeEHZMmF8U7vJu7WYzCWTXoOMqivTDd9WJGkdCvUzCAYcINmJhYeoB/ZbiBNyCusmQW0NuJJXsPd/aZU6xfxGp3J1pbOhGtgNnmWhcXB3vw2CpnoBH4fPst1zqBHwX30TuBfIADcyRiXlQmqtuBRwMxJ0FL6cuJLmxGk7kFwNnW1oHRsQEL/BmPdc5ER3BjdteKLRtfLGqeFiSvkUqY8bZ38Q5/RNm4iy2QH+hizFAD8jSZ05XAiMJrATwVGJlkKiq7A1P1V2fKCO7VZz0Q7/0QeT/mvRlTo+4PeI7cChXOI756M+/Bg29mXv5dVFV4P3XUeMZN/ciRZifHLTx29Q+j6lRAITFQoZ28oupIIOYWcir0u6qHHIc/spIeUDOWYHAQ48gzwS5BifHamcLTMrYdfaqK6fIPqIpdBZIqgN/gZmbWtLA7hY+ZOquIxm7g9BnsxZzWsnfvHBeYs+0t4Cyb92bVMDHVghmHhtIz59oSFOXInBMyCXrHjbhJlk5t/DBd9Skk03mdwsR0faycnR0Ylp3CZHcmZqMMwI3E4JDAriXarwLDO8KC6vXBU3rrRWdpBgZ9vntr16hCyEko4P24g1D7ZdTny/msKMMT6/LOY0aZbi0oyxuzzrFjAVndESYhN5IR7pdCP/xq9KAYNxrnyf59WDfmLn+zG/ghDjPYwIojAxFH+DfiTGgfpX6N4N1Rp3/qubiQ6Sc141+eixT725eTJhfv2LnBTQX+auKHQsw+DasQ0KdZeVshASZv0yRNUvw5/xop9b7skbqYdzM42RcmnubiDBKk3DmbGIzOf/9agLL/9Xkb1oDnYQfknbZ2xI6jMdrPAuhauiQtm3KuSO8jye9hZtq8DfUzYZ+Wm9Tp1NhFfb2KAAWrAH0t1cGSFkRfaUBfhUquNKmb20kH/XosEEpt14Lnq2edc1kQ23aYsl/07zyhMS2cX3UuZgoeOsTrxIhfLb9LoaCB8Q9TKDtAPTtQvdHqPLzzNTAxlanqVgrVt7372jBs3Ri880v9gMSWknxTUvSDaaPXUIMTOZMlDeYHuZMl1nW0eyf4/tWVSO/vVYl1stThmd1IlMBHtne2sbdu78+8v4gsiuG7ZU2B3qFhhnc/eVRrc/oq+wbcvtrRwg9jKCAa49YZXKQ/hO6sBynrOTl7AMOXpTVYmVaYOh+YsoL8uRJx2nxrO2c3GyXi9Pnurm4ezH/wzlZ1Di4yLM0sInm/uXZH7pof52ZIcfAXGHmsd+DuNp2a+GGsgDNIxlLFxliQnsOsu3QnWx38axnBaa2blTtCD7rwyDjEXKVN47DvwEdXt86p+ZOp8h+aIzuXFchlgDSjlgv6y600aavsXpbKiuQI2ZZE44tv188O096u8/jL9TDDBEynvaAAkZUsAW7xEAAMLd3KRNlDmbMjkFDx/lrqq6SQiNfimkmG2ywUPN2LIEMZ84M8hrL26/wQoPwMggBphmfYiWYR4d9FO6kEm6jt6P9OP1o8y9VybtEogdFOU89XItBOwdVcmSXKtJP9INXqzfZ9dVLuvA2jzfrZHwe0ExGUBHbtuPYcJkGfE9m4f/++AGgn++Kv2o1L02lJEpS5Jd+cTHBBO3mfQ7LOVDxYRyC00yPZvb0+HzxATrjtGtqyZMZbXNBOD6uRjANEE+yNQ8CSdvK+2XYqU/UmNUA35I5q/dbZuKKd1BCN13QW62QXR7TTu7mizfExa/WjbqS7LXTd+BJj2inuLJLlDDC3HF9pp3Opt96aZtZTS4aWjVZzmtOIC9qJmUPA0k5AIGTlqcWEHkA7aYwclzVGqpdm8Rmr0Ny3G19hTDsRL1Qi0E4uNbDFUlRpp2TzzaP2zVam+DwbL3Si/zMD1Gkn6NwcBYJHGlQOluApr+EqlKJEO8k+UtlhKJSqkWEip/Z+xqso1GknaIxAQSvAjxC0ItYINOZiTTuVwIUxXNNO0El3J9oJGtK6TjtdyboeGHryIvVQxEiRWKu6nyjQTifg1P2PdvpHtNOh4raGIwcOkwscRfccTHuvLDDayfs7Eu3k/Y0ftJOnmOTa12dHa+blj/Bc3H9rLIq0E7HV+sOHGYo6J1c/Kw15Nu4UCrSTy3ckOIT4XSC0Uy8Z4fQnrlRa8oBy5z4id6owp51qvyGpAvgNbmZmWNFOyx69WtBW2KKXmZ4immZtjx/aaSqi6R624mK5j++0k2GrBs1X25W+q+kN5eTrIw8wpp2YUQYWVwGijMBop2tiG4ZPUV9DPzh6YhGl4k4IDmgnZrCBFQcINoKjnZ5sFHntVZSsEWJ6++GPYc2iOKGdpiIqBPRpVt52ktAjaKcZdQzq/EXi2r4FhwPGbxoew3faqfwnEu3k8kNwtJPHq14uq5rHqKVVaGRT7LfGoU47QQMjCrRT9k8kZsHiJ8q0082/Di+S2qVKT2yYoWhSkpCJOe0kjfj+5T+wTpb4RTtJpnm0Hh1LIIfcD9nywVDuAC5oJ6CzIhiDiI0xMKedys/Wa57Iq1IrVrV6f/7arXic0E61bUjG8m7DQ8/hJ+009oWj2qrKLaSwkoNDJhDGQb/4QNC0EzOQw9JOmj/Rpp0s9r2Mr18xUi+579hlknpzjmFOOz38gUQ7AaEFZdopQFNfIXDsFXpoxNwBls90J2JOO4khCZB2sI2daJYS/l20k9vtiNTiAbP1D3889c188tEnAqOdLgghne30ncDvs52aWyfu9W5bpuNdYqvgWjrsDQ5opzNCSCdlRAnh4ICaGzduCIB2sml61j9H/xA5zML0zrX5heK4oJ08EK1DxYN1BEI7rZ+8fvtgkySST6WJ17zqjVRc0E7jEI0DRBPsjUPAknbau5jcqkeo0U5YJjV0+sT4y7iina4RkIyXgY3x8Ek7OdSpi05+Ea1/KCrG9YmnCNa0ky+i5ZZhbjm+0k52Sz8NnqIXrF0asqLJTjH7LS5oJ2YOAUs7AYGQlaeWEXoA7bTEx6lAadcheiTZ6mDOz/d9MKadzggjne3kICyYs53cyR7rW5OUKUfmD/nWkHfxBOq0E3RujgLBc0IY6byiMGF+ne1kf89Id+ZQX1JxsMiVqHopEdRpJ2iMQEErB0StNIT/r852KocLY7imnaCT7k60EzSkdZ120nAZb1ggYaS7/9KtRj/6bAUUaKdTcOr+Rzv9I9qp7K1ItcanCzo7+6ncE6LrLhYY7XRhRBUC7UQd0a0vyusi7aRdSZ5iHfKeVDS5qGwk6cBZFGmnT8bWMk5NaVpltNyM9xM+/SlDCsIhZ0CFYOGQqBFcIxA/aCezb6cvPXvsSY6IeJGXe3hoG+a0kweiKoDf4GZmhhXt5PpArf8pGS29nBlW971iTyfihnYah2i678MxMZ3AaacC7yGjWupH6GzbdOAyafv0dIxpJ2aUgcVVgCgjMNrJYq/Yx/BN8poxo5cEFj5SmIUD2skDURwqRBy+0k73DlWcnFX9iBrglX2rzJashBPaaRyiQkCfZuVtFYQeQTs17XNgtAi5qUWkjPaLvxW9n++0k8OoKgTa6cxI2Ak86rRT0zXlhLqJ0lohn91zLg6lTUOddoIGRhRoJxtQPVhmYd6obqVQv6ed1qz+Oqu4xlJt/xu5c0qRWw5jTjsNQnz/1yOxTpb4RTutlV9f7vn+Ksn/o5GHiMTfTrignYDOimCMKGyMgTntZGoyk6p4N0rjiHyO4iZay2qc0E4eiMai4qLn8JN26mt2a3uvFfJqh84lbf1R2m8wxrQTM5DD0U7pyqO6l6X+nnY6O6O/tKh7klqO8UoPv5lfIjGnnb6PrEKgnYDQgjLtVBnYssahzZCck/JGUXTK6XWY007BSAKYmo9kJ5qnCf8u2knaaJLi/OjnmntLe2cfORuiJDDayWw0Eu0UIMtv2mnoMerJaoV3tJSzcns2BF79jAPayWA00tqxwmgcIBuXL18WAO209lRNeNJic1pGZu2X4V4r8UE7ERCtc0sWB9YRCO104eu1trdFo/RSRb6cdntmVocL2ilbFsk4AXgwDgFL2ulYPvnJNQ0PjZA1Igs2Wiym4Ip2skA0nio2xsMn7WTm3yqZuE2TfqyELN7i8LgFY9pJGtFyjaOwthxfaae+dgMmrKnfrhE9puKijuLCg7ignZg5BCztBARCVp56htADaKe/vrvXvCVH6MdPMl0hveClHsa0kwERiXZqGS0Y2mnMCuGTbkPGqR//0TdA69q6CtRpJ+jcHAWCh0JEIniIRH7RTtSSfotHWIjopn8O8gnLjXyEOu0EjREoaNUyGkmrWsHOErCmnSrhwhiuaSfopLsT7QQNaV2nndY0vsnrsySc4lNmlnqnb8lSFGinKjh1/6Od/hHtdKCp16GrrR/puaPf7zHav3qQwGgns1lItNMtFX7QTkeeejrEfKapZ/gdfpGn8WwFirTToo0PP+h7bFNLtJim4rmT9AgF2slgFhIcojBLILTTtMrTEyVlh6gHBUy1eLhe5gfmtBMBURXAb3AzM8OKdprS77LP368TSQHVuxNCv9jL4YZ2ylZBMl0ANqYTOO0kkZGVqTKzTd//wfYXuUa9lmFMOzGjDCyuAkQZgdFO2XU+WuMZLzSP5rb2u3MnKwIHtBMBURwg2AiOdmruo2oXpPdOs2SOXq1jpNlFnNBOzD4NqxDQp1l521lCj6CdzKYOySuye6IfPd4qzjjI+DrfaacWVSTayUBVcLTTDLE6U5eXfrT0g0IpTyRrGlGnnaCBEQXaqUkViVmoVkWZdjK5u1jmcOU43WiD6CPZS7dex5x2ikN8fy9VrJMlftFORq16VQpz6yhxaxgzJe1DKnFBOxkgGkMBG2NgTju9Mh9/9/HlMPpOJw+/XhMfz8AJ7URANNatWXjoOfyknfQWid0blzmGkn15otQzx3fKGNNOzEAOSzsVq6JNO4V4peUMMEjUK2me+lexf7Mj5rRTAFsAnrSTgSratFNx+cYr2+kSOoErI9s0lK4NwZx2GokkgOnTWexEs5rw76Kdgs2O6VfO6Kt/0q1hY6ij1XCB0U5P5iDRToPm8Jt2Iu5X1SoJ2UzKi4rRzz6z+QcOaKf6OUhrx3lzcIBsnD17VgC0U9Xuxy0Dlk3Rz6Y8+6S67zkFF7RTEKJ1bPBgHYHQTilXTBRNtLZqRvcOqlqm1K8eF7TTPETjDMKDcQhY0k5bD2pWuQ+M0A+VeJDb+DVnC65op9ezkYx3ZjbWyS6OaCe7Cy8mvPAN1d62aLHnqzFORhjTTlGIlvPA3HJ8pZ0Sbj7+mLHwJOWIXuYk0UFT7uKCdmLmELC0ExAIWXnqOUIPoJ2WnBVyqlmUTc2ZnLHCdaWsF8a0U/1cJNrJd65gaKeT1NS+4r0e6u+WejPkxCPz6ajTTtC5OQoEz7W5SARPxlx+0U6bRe2rffpM0c2KI01RPrvEAnXaCRojUNDKF1GrZXP/r2in83BhDNe0E3TS3flsJ0hI6zrtNM6qWjoqq1EtpXrk1Ju3pIJRoJ1q4NT9j3b6R7RTetUH+TJ/FWryy3iL+OvahQKjnVyMkGinJkN+0E6mSX+lX05JomeJuw7r18eJhCLt9IFQqH715lvNHSO0NpTWPJ+EAu1kZ4QEh6gZCYR2Kv22Wzzbr49WSXKfJTGP3F9gTjvJIKoC+A1uZmZY0U4umzZsLHIN0j7kkHLo7895gbihnaoNkUwXh43pBE47TfGKuOQeZUg5+e6URngybRzGtBMzysDiKkCUERjt9O7FwJgVy5zIB2MbZScNGKiLA9pJBlEcINgIjnYSPdE7LyZzot5x74iCigbdozihnZh9GlYhoE+z8rYLhB5BO90Tela8evJdUqDXng1h71Sm8Z12kjZBop3sjAVHOwX2URzuuzNBI1xZwX/HWjlT1GknaGBEgXYSM0FiFh4ao0w7rbV5f3KudQ1lT0XOuqwWOTfMaadCY6T3DzbGOlniF+1k8frFCucpWdqZE2YGrTj2yBMXtJMdojHUsDEG5rST4pQBxcsSbUjRUY0blHs7peCEdpJBNFaTER56Dj9ppxup48RKb9ZQsuRCT1n+eEnHmHZiBnJY2qnOGG3aKbZ3X0nVC8lqh0e3BB0YfeEE5rRTnDES7WRnjDbttKh1IyGpbjMlXPneYtnaTymY004zkQQwbTNiJ5oXCf8u2ikrK26h0QkH3W1ZEtp3Sj5pCYx2+m6KRDspmfKbdnKyOTBvwdRz5JRJDZty4ietwQHt9NEUae34gikOkI2ysjIB0E7So5embp5QTwuPWSmndsx/Gy5opyRE62zCg3UEQjv9EHpWqV61XW/vrvV9pn03jMYF7WSMaBwlPBiHgCXtZE2IHaUzPIaSulTt6qqD5lK4op16IRqv3gTrZBdHtNOGmELL6Jof2gVV5+O+JEz5jjHtlGeCZLkgzC3HV9qJcNtpUl2WHTngVabiAH9Fe1zQTswcApZ2AgIhK0+9ROgBtJNh8WSSknQNbUe578hgz1ENGNNOHxcj0U5RiwVDOw0JFV14b+Rk/VD56j6E4CwT1Gkn6NwcBYLn9WIkgufMYn7RTgqGZvvG5KXQct0uVi8RHuWCOu0EjREoaBWFqJXH4v8r2ukyXBjDNe0EnXR3op2gIa3rtFPwz0cDX1ygqu98cG3/uWdFmijQTrWoqdtXgOpusl+outWxWGvv6wf2T0ReqHdSN1+o7mq8012Sz3RJ7T7iok5AkzCraazqlJyR1YGapasXqBkNTw8HmkRYTeE5L09d6OdOjjxyZGfhooYBQFMvVtPtAT5GYxYlaJd+P3tCLWo+N5zWG85c2yadUUqQfqS5bdNpaZVVac9QMNcVOHP9B6f9Izhtco3RKMeEYxol861l28LHyQgMTvN1RoLTejnzA05zfdrPYv5hV92IPOrH1ZstX6EIp83ZZr6AQrDWypJ8uX3V7vFpKMBpm5yRWB5jZ4HAaSuHGMlufBlJLhCLychooJZgDqcpIaoC+A1uJtJYwWkl2tm5JS/DaDGzVBeu3tPWjBs4rd4JyXR5TrhYneU7nHYvsnn9lY0LtGPSaZst37/fhzGcxowysHQREGUEBqddCha/KyZiTd5vSNIjqxdyJnfYwGlKiOL0chYgnDbbRXxP7t4Ktb3eq67Vz1E2xwmcxuzTsAoBfZqVt9URegScttw+k67ff7Z+vNnptMNjqnbyHU5TckWC03xdBAenXc12rxgUGKKe6m1+4qB0HmcyjwacBg2MKMBp41yREJPvLijDaTUafUfKLQnWy8vbneXl+Woo5nDaNRek989wwTpZ4hecdnCa+fqnx7T1gqyT8xPLV3B+9zJWcJovojGWYWMMzOG0fP3alHSfeO2suOnzzsZJquIETpuJaKy+uOg5/ITT6pN/LE852KYWNyN1UtbSvJQ/mSqjgCYxAzksnPbWBW047XV+aa1I9htKVN6UmkSfwmTM4bQTLkhwmq8L2nDatM3SFyZtLSX5Sy1MJFerQub9GMBpBkgCmA5zYSeaVwn/Ljjt9KMh6VZfd2ifPOmrZ2q9YrnA4DQZdyQ4jeLGbzhti/zyrKDvd0g7HS8VfC5cuAkHcJq0O9JSf6MbDgibwsJCAcBp2268sUh9dY4W2udzxiupOM6v18IKTit3Q7JOJB6sIxA4TUfZKHSDiLJGgEr5OFW6+mlcwGkuiMah4ME4BCzhtC/XVpV5XWtUD5x54FPvFV8+4ApOIyIar8UV62QXR3DaPdE1pBuXYvTjH9PTiBJFnGfHCB5Oq3VFslwq5pbjK5z2fNlEsVRLUXLkwzEpKqJ7kv+cbEEBTmPmELBwGhAIWXnqNUIPgNPGihuJKcruouTcvDaYMYCggzGcJu2BBKcVugsGTiM/dn20WDVDr6T4Y7TdMqsc1OE06NwcBeBKzAMJuHrozi84TXJSX5L2oVua+SLZFXZqsfdRh9OgMQIFrQrdkbQKdv+/gtOuw4UxXMNp0El3J3wKGtK6DqcZEFY80Y9dQkuj97+sEmsljQLtdANO3f9op39EO518lLz5Y/A23dLZ47OW6Ut8EBjtdM0PiXYK8+MH7VQ5/PkWcRETWvy6OwvWictPQpF2kslpLtpl5a9V5PPqs/uPJEkUaKdaPyQ45ISfQGiniiFSLkdKe1EDPk7/MUzKbzDmtFMqoiqA3+BmZoYV7TRJ+NKP5a1F5ILH80oVjq+vww3t5I1oOgdsTCdw2inb1c0z+roYNedDhOT9D7o0jGknZpSBxVWAKCMw2ulHWcTTRcvv6heU+L3cdLJPDA5op1REccL8BEg7vWGs9tpikk8O8PpKSu3zdSNOaCdvRIWAPs3K224SegTtlCE3K/ev8W0axwJ35SvukO/Pd9op1R+JdjL2FxztlKA11SrwjS8llhx6uOamliLqtBM0MKJAOyX5Ix5F5Y8y7bT1td7W2ydVKamvlhYdcZqB/VFcmxDf384f62SJX7STzsfXs0SPL9c9vkTNSSNN/B4uaCdjRGOoYWMMzGmnLY4DLWouNmmnp5upjFj+1xec0E5KiMaSwUXP4SftdH9G47ZZRfG6BTr0mqLoob4Y007MQA5HO5kE+qNNOzGuKt7MFF5HTezd+7CIe44w5rSTC1sAnrSTsT/atNM182ULy1ef1z5uMMjQSuyJIua00xwkAdJk/dmJ5i3Cv4t20h0oXaEfYUJP3krJXfci9qbAaKeYHUi0k8oOftNOSwylTqtHDyMH5+yQZ7zPjccB7XRwB9Lasf8OHCAb2dnZAqCdRvrK3pL1NqXGeprFtFVEVuKCdnJDtM4KPFhHILRTrOP1Ph+sHfUSZSfaHHPULsMF7aSLaBwVPBiHgCXttHtB886k2VZaAbuq6s62jYjCFe0kh2g8KWyMh0/aaWxTYrNHlSF5/1ylmnLxE+8xpp1a/ZEs9wwX0xS+0U4OS530H5gaa6Y8nDqpfsP4l7ignZg5BCztBARCVp56m9ADaCdPGVlxxvE39CBt/xvNmyRlMKadhgcg0U5vuVNavtBO9mXnfux4tZZWumeAz6u0kU9Qp52gc3MUCJ4hAUgEj3AAv2inC0SlsqNnX6vvC30TT3mjMA512gkaI1DQ6u0OJK3uCHa0xJp2ugMXxnBNO0En3Z1oJ2hI6zrtdOV0XerFWd5qmaOi+2x4L9OKAu10F07d/2inf0Q72R2Wi6/1XK0fvGT90g8J1o8FRjvJhyHRTs9C+UE79Tt9d//roEJ6jH5CevDhTcEo0k5+k0sMhhmv1k7PcZcvrT3thALtJBeGBIdIhQmEdoo933u75+tF9OioXs3HnOQ8MaedWkORVAH8BjczM6xop+HD9BZG7zPWPrT87WXDwFMOuKGd6hBNV4qN6QROOy0RDqv+66Aw/eA7/y2h2s1UjGknZpSBxVWAKCMw2ml3YP++lA3yugGRUbr0hPNfcEA7MYMNrDhAsBEc7XT+r9efJSqLSAXFab4zJmzNwgntVIeoENCnWXlbPaFH0E7pM+6XSCuoUSNI471SpPum8Z12ag1Dop2SwwRHO5EO7HpQFLmPtF+ylTFt8sQK1GknaGBEgXb6HIbELDR0L4X6Pe30mHrdRTL1Ai0s/vNWsWXv5mBOO11CfP/iMKyTJX7RTidPkQgyux6p71zSMCz2VM55XNBOyYjG2IeNMTCnnexVqfH7/36jHVg558vb2QmrcUI7bUE01mpc9Bx+0k5W4rQtyxTuUYOnl98t01zogzHtxAzksLTT3W5mqb+nnU6VHBaaliKhd8xnDOmHWJk25rRTBVsAnrRTchjatJPJq4VnA+/b6JTtX7tYbUxZMea0UxCSAGkuYexE8x7h30U7Td941enqhXi1sskRL+PWPBwrMNqpaT8S7RSwn9+0k9Jj6zEJcb104o9ta/25WlsDB7TT6/1Ia8e39uMA2UhNTRUA7XRgj1KT1ixDtb3yezxJC0JP4oJ2OoNonWw8WEcgtFOfQ7QxSjEzdXyd5b5a71m6ARe0UxSicQLwYBwClrRTfcXS1J87bOkJG4Ofbzk77hWuaCcPRONZYGM8fNJODTGxRy1U36jFHb8eLhWh7YYx7URFtJwq5pbjK+30vbXcfqxGsGaMVL/JxgOLz+KCdmLmELC0ExAIWXnqfUIPoJ1qU/rppnltp4amf+2rHHLBAGPaySEciXZSCxcM7eQ2Xu64SbK3bkJw6WzxiT5PUaedoHNzFAgeu3Akgsc4nF+009y5FzZv7fVSK/ToBNc2ofuuqNNO0BiBglZqiFophf9f0U4P4MIYrmkn6KS7E+0EDWldp53mSN2aHdhspxORoXG2gUSbggLt9BBO3f9op39EO62KNhwUeGQYZe+CqI9LthTGCYx22pCARDvNSeAH7aQa/vCzPmkKbWfgscJlYseMUKSd7mwNHpPXkKaZ33rT5nbQxDUo0E6eCUhwiFWCQGinJv/VYr77v6jnOpRtulxuPx5z2omOqArgN7iZmWFFO2lMrL2VtXkmJc85abfbtnVrcEM7ySOabgA2phM47TR/zgqipexCndC1KxclzmDsx5h2YkYZWFwFiDICo50mjb8+YtkAIe1SskxBxWjyVxzQTnREceYkCJB2sjyUcal4zALqUV/d8V8a64g4oZ3kERUC+jQrb3tE6BG0k2rulponhPXq2+PrqsfkNB7mO+1ET0SinVq50yS+0U51e9L9lq5xou0Pay1ctk9HGnXaCRoYUaCddBORmAWVRJRppwDzvaT+ymtoh3LCRj0K/SqEOe0kh/j+UolYJ0v8op0+T6kgbh6pQU1sNG5++uCpLy5op9YEJGM8w0f6I3DaSf/HiieU3X9pputTfI6bH96IE9qpDtFYpZhPM/hNO53Zk2MkN1SNliA6xMj99VB7jGknZiCHpZ2mJKJNOy1WMI4RCSzRPNZY0eDlttQPc9ppCFsAnrRTazcz0d/TTtHP6/uYmqdRwj/kOU0m3ZiAOe30MAGJdjrTkWg2EP5dtNPd+/Om5927r5Ex+maznv6aCwKjnTSSkGin+kR+0055ay7Jnig/pB7xvWjqkvDmDTigndSSkNaOlZJwgGzEx8cLgHaiyovd+qSxTC9YbmCvNwcjSnBBO8kgWqcXHqwjENqpok7qneZlDe2oVSseJBY/9sAF7dSUiGScemxmGjiinbwa6dH3Gq5r7FbNW7k8rD8VV7RTNaLx8jCfJuKIdvK7kVtFl63XSZnvr2PgY5qAMe0Uh2i5IMwtx1faiVyyvvys8lPtPdahnk2R87JwQTsxcwhY2gkIhKw89TGhB9BOllf1rM0Zg9V3SzyUPSAzFuuzncqTkGinsCTB0E6rfmQVL194jbS9YfSTjBPbpqFOO0Hn5igQPCeSkAie1CR+0U7qFz5pazTF07abNdUfHzGhN+q0EzRGoKBVGKJW3oLNQ7GmnZ7AhTFc007QSXcn2gka0rpOO+29eH76U5n7tIMn6BEF20u/o0A7PYVTl2g7tiBgdyA59HQG9cDXIs6qaW9DhoPlek51YZaF4LrwQBJxnb0bg+gG3oklIO898C1tTjKLJ2rG3Ah6NtVtiByPB+F+6d9HuHO1+0P9c/UOvnXNvuWeMuIPe20k+EUW7yrbx2VvrkwJGBsU3lWyJH+Ge8mXSuww6ifWTEk20u//4dt5P9xKTh1chSC50mB2KvQc95J/NPl6akegN81nwIsar+dFI3Ar+YWpSJJnTGVL3oh7yUdmWx0O1D1F2nNP3GDz/vJRuJVcjIYkeSOVLfkL3Eu+XkfhkoHvXn2/S1K2ah/Fs3Er+Xc7JMnr7diSv8S95DrybnQp8RGk7Ih+tqt9n6XiVvKgbUiSb9rGlvwV7iXf4CB31HO1gmapxKlr5iu/jsSt5EnBSJKHBbMlf417yW+3rL0qlq9O9xs70FRp0M1JuJW8KQZJ8ocxbMnfwEk+I49OnqNoTinN8qbtbMq6CSmIAGK7OTsQmTSnO/caY28YoVU0vYCpmHU7LchauWfdqh3YYm4dWOPkDPwNmPuwNip0bf3RRW1R/u595RoppeMuHitvakZ6Yh4lHI72LirtDUyis82AdPwMmQf+TwS3rptW8gH/t5qft2SW3CvN8GdG8dYrGcko4v+vvW2/WKQdphwXfahhJxoi9Ie+6AIoFAwq1EQC/gFVqKVdIa6aKluiLqJ/Y9Q5fYi19kQH/WsyiPEo81RxjXZkgbP0EM2T1VKk25fKNDnJABhHYV9Hu+Jans8SisirHkMEWpsWV3KxId0UavhiBrhSylSIs9/xVmjZ+5XNRktNtJIeua3PiPUv5VzZZt2Me2Wb3cAPjQwWI2kEdSbhf6AREwVjUd+ATr/zotarDcV6V1vJkRufTSmtqfrJ2RfBm3ErxLrMD32kTZH0cTFhVwfewgX+iW1DZTKJIpr55KZvDFlbzsAvSbV394DdegZXsh9FY1i6r3Vr3/rVziq1R3cH4G5dC+7K/Ye9SywbS81XIs0ptVl2HvapuHHlTo1dxZXBnaBLAR0rAB0fQnV0Ac9NWMIV1ruJK4uTLd0ZTAF4vu9xvYkfD5w5rb2LsWDkvWGinF/J1wt8Ja4Xbb/6u/gODXp/yiYDUhFBqSKB+F7OazcMIBVsfOfJcdOZa26gg9h7MBzdwb2FVJ4auVasezqtUp4cGtuboSJm7juASYAD767p5eLG6KgXMyvNZpM5Vy8ETb5JF7B0AncYcOkUkM/UidU137G6ElfX7DXtI0nqbC0lUUXljlDW2NMiVHsrdlt8Y/TIldNMqVmie+1/NEpwQkgsSq6dz+56vyVqM9oztXZSnAimJIxu52W+6iKF6WOdSelXNUdeORUvDf9k3MBA59ZuZBxxRoDSJ3h1XtAO5YbdysmIHTmZLW85eJ8UcM2V1EZ21zwQ7Wxwgzr3jw7Z42+KZgEI5m3EStG4XLOxXbBuLXsP04D4CygaPKE7/dKqR+W0QJ0IGeNUowJlJ0w3G2Tns9SQ5tVRwTEUUIPVUZsIMGNoeOOn6MkmQdSi8/qntH/Gca4lSPwKT9yr3nAz1CG/Nm87ERkdN5DgDnW9SZPJitO61DOV5GfKnKXJaMUxKpY5XiOdgHtM7v2Vv9q6KGsqOE6sBGS9xWtRmwI62fLKfh07vNirjezoJKED9lSu1as+zMs6NuyeEdnmXRwfYqZTkHKErvZU8S67XQimXVKf6c9cPUes/fqvG5vbVO8RKhPXKH47lNZPcWBt+/MwH/d34WPgL62ADuFmb2nlwLsbtDbf36VrWKkTXa2SOfuBO2cElzBlfZRI4rKGEImrFwhBQgZ0qPzTCgNgTQJozakkHommAzjqr6jspJEQWhoNVX3rN6FvvN4ekZ29RD4nZsNoRObWiPxbjaBhCAWNAJ9G0Ii4vJLlgB2OhBRVB7XDRGA8/RUAeAfU6+GDpmiOpx7Q9RPLNs7lPOJPtP023AGVdR3tgGqQz/KVFhI4MYHocC2PqRIroDbDBdQhDbs1Bsy5rB7/9+OyrOp1nAdKCpF5r7/3b8dyeEhJkGhv4ijTsSgervIdzwV6IwYwf7ZhZqhMEskRxLxcHOyt4Q8gCM5JifQespcackPN++mkO3sh79AVl+2qLTr4NYgtiMWVBJmUSrASAw5uLNXf/yPV25MVgSs/gfUL3cEk1NnBAXh+MGoAncKWATwFezMd752fV01V7InpSZpHDgYdTv2aoSKAvUBwpigHCRsa1BQf/pEpJM0BKRxdnJ0YTh4CN8gg0/ZSycb1m389BU/1ze6tX0/zCiKnk0YfFKqZuxT2Hbjn8J0b0baEWEkl81AHQmlnS3zsyaHo2O19YWN9/chJ407vr9+6SwWjUER4CfX/Tz3Z/y8en3nF6pui7hGhH5UJN7e/wJH/uzRD/f9zT/Z/kQdhDWnFA/SKprzYSv458zVG/t84oAri/196sv+XXz/hbWYsTTrxd9r160+FKDjyf40hVRD/b+nJ/k8bP/io5YdzWsE38u+OsHhch5H/OyhD/f9rT/Z/YarLUMtPmuQTtspZm648JODI/6unQf2/tSf7/weXA9EFS/LVst/XLf75Tm4yRv6fpAv1/2892f+HGL4MeCtXpF6mW+Y+Jcl2L478n0CH+v/3nuz/Glu3vwj84akZX3zL5vZQhg1G/h+wCur/bT3Z/+Pjped9Eh9FyhQdWDfir003ceT/3+2h/v+jJ/u/6MuKPPKUMxqHdM301DZsXY2R/+v6QP3/Z0/2f7tXm/5e9GwgvfDM6u27GgYdxJH/990O9X9Qth7r/3dip2sqaDqqpY41fryk6qcHRv6/ZC/U/4X+ker/Ev/ffz08+AXhnUbZrgebivUSXuLI/2VDoP4v3JP9f/nUoq9EWVu1sNV5tAALdTGM/D81Gur/Ij3Z/w2kFWZSVDM0AqmJ/WNbRWNx5P9OsVD/7/WPLNG+4VngNhjwi5lzZ9g6MuBOPl2ZS+1N8Xuu7jNRsWxO//l1PJ6dx/oX8zLaqoNcUZx1R/3/fw== iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAJdJREFUSEvdk4EKgCAMRPfF9gn9WZ/W6sYWmZqRG0EPRorb3SFGv4P1GwLErdw5i4eZgDBh4zsDnog59Uvbm1QbIL4mWrTmRsmZjjSpG+zJIKDbIQqDU/puuieUBo7pQWbgnR7kBs7pwWEQIQ6uBm5XY4hBVHogqWGge3fkdx+4mm4wxtPU9RsweztvDR4VQqg4CBWvQLQBFW6Sxd+iMagAAAAASUVORK5CYII= fb371ae8-5b99-4464-8511-d9d8f0b30abf DIFERENCE CURWATURE LINEAR GRAPH DIFERENCE CURWATURE LINEAR GRAPH true 20 06ef9e04-bc97-4227-8e5c-0baf1b521abd 1d74ab03-d5a6-4c43-878d-a11593a776e9 24f7bdca-045b-421d-96c9-07956873e094 2eba86c1-c323-4d98-a856-bf3a7dec3965 2edbebac-85ae-4867-9c11-da446ffbc094 56b13bf3-2c10-429e-8166-e8d6dd530880 59b0f9d5-da24-461d-9293-4372ce2a132e 6da74475-a224-46e0-b568-d112ce0c308e 7cbc819b-232a-4183-913f-629dcf38d672 8a33c936-934c-44ed-b2dd-3ea79f64eeb4 8d4cc25d-16ee-4372-9b3f-f869c6b8b84f 8ee68260-160e-4c3c-8412-07c3b2899075 a480cd9d-26c8-4bdf-8aae-345290e945da b3622dfb-344f-48e2-bbc5-3c7e97b001a7 cf237ad3-6b75-42e7-ba90-9d94c0f0bdbb d4d2a496-55de-4893-aaae-2f5c47e61e5d ee03b20d-1501-42ae-a84c-4acca9a161d6 f8a7e30f-9336-45c6-897c-5deca2663077 fa4c9def-0c2a-4b57-beb3-0eb5808c5d64 fd26031c-119d-4d02-99eb-e98e506dbc09 e9837f44-fe89-4576-a1ba-d864d9176564 80bcd5c0-5458-4110-bc35-aad5d5e50148 9492d9b1-8423-4285-a424-c395dc7f8b36 88ea5216-22ee-43b9-bf4a-bf732fa4678f 693656d3-ab20-45a4-a99a-8ca5a8f9ac36 98a7b290-1680-4c8f-91d6-4080e52ada8f d134b7cd-fb62-4a2b-a901-fec5a2d783e9 45329fda-4528-406d-a823-54e35ac6ff74 9096d595-00e9-44ef-bf8b-df7cba4ba2ea 34281050-3848-44ac-894c-a3119ffa069f 7979dd58-784d-428c-ab41-1f9a01cb3b5b 357ceb68-e651-4e13-b8c4-6a838be2149a 3c10a1a1-09f5-411d-ae06-13d21b0f7cd7 f9b9305d-1e20-4067-946a-b44d88604308 17704c02-f561-4245-bc67-2eaf7cd1e000 054cb35f-8548-43e7-8129-2bbf3a113dd2 e294df03-baaa-4b12-b92f-e97f42ff34ec 9d9970f3-5ab6-40b5-b0f2-d257ffef222d b4c2ea06-2f42-44c4-9b4a-584b407a7f6a ad15254d-f361-46c9-90d6-b5db1b60e3d2 6985 -3191 366 404 7337 -2989 20 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 0 Vector {y} component 8a33c936-934c-44ed-b2dd-3ea79f64eeb4 Y component EIGHTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT true 3f1d8e98-725f-4789-856a-9ff9dd88ba16 1 6987 -3189 338 20 7156 -3179 1 1 {0} 8 Second item for multiplication b3622dfb-344f-48e2-bbc5-3c7e97b001a7 B EIGHTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE true dcd58bba-6ec5-4665-9f5e-9748abeb09fe 1 6987 -3169 338 20 7156 -3159 Vector {y} component 7cbc819b-232a-4183-913f-629dcf38d672 Y component SEWENTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT true a8eb7470-ff2a-44f8-8106-541d81b0944c 1 6987 -3149 338 20 7156 -3139 1 1 {0} 7 Second item for multiplication 6da74475-a224-46e0-b568-d112ce0c308e B SEWENTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE true acd1b930-6ee9-4f99-a19b-6cb48f642842 1 6987 -3129 338 20 7156 -3119 Vector {y} component 8ee68260-160e-4c3c-8412-07c3b2899075 Y component SIXTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT true 3aed1e90-8f45-4b3e-8f50-bd809fd87c29 1 6987 -3109 338 20 7156 -3099 1 1 {0} 6 Second item for multiplication fa4c9def-0c2a-4b57-beb3-0eb5808c5d64 B SIXTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE true 8f4c10af-71d4-4573-9fd9-fd55b1c360a8 1 6987 -3089 338 20 7156 -3079 Vector {y} component a480cd9d-26c8-4bdf-8aae-345290e945da Y component FIFTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT true e3ee9ed7-1080-4a98-9406-a1760d620df4 1 6987 -3069 338 20 7156 -3059 1 1 {0} 5 Second item for multiplication 06ef9e04-bc97-4227-8e5c-0baf1b521abd B FIFTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE true 3a2cac49-3804-45c3-a1f1-9ae387f633dc 1 6987 -3049 338 20 7156 -3039 Vector {y} component 2eba86c1-c323-4d98-a856-bf3a7dec3965 Y component FOURTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT true 12d062ca-3afb-41be-a33a-cf0b30d40747 1 6987 -3029 338 20 7156 -3019 1 1 {0} 4 Second item for multiplication f8a7e30f-9336-45c6-897c-5deca2663077 B FOURTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE true 4a308d7b-b922-454e-862c-36cb6bf9879c 1 6987 -3009 338 20 7156 -2999 Vector {y} component cf237ad3-6b75-42e7-ba90-9d94c0f0bdbb Y component THIRD DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT true b2df309f-5daa-4345-833e-d910c82a19a1 1 6987 -2989 338 20 7156 -2979 1 1 {0} 3 Second item for multiplication fd26031c-119d-4d02-99eb-e98e506dbc09 B THIRD DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE true b7d3231e-4e24-4334-aeb6-4329747a1277 1 6987 -2969 338 20 7156 -2959 Vector {y} component 1d74ab03-d5a6-4c43-878d-a11593a776e9 Y component SECOND DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT true aacf07bb-5a48-481d-b1bd-7337be133f9e 1 6987 -2949 338 20 7156 -2939 1 1 {0} 2 Second item for multiplication ee03b20d-1501-42ae-a84c-4acca9a161d6 B SECOND DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE true 8d5c2ca0-245f-4e3f-af2c-234a7c61b647 1 6987 -2929 338 20 7156 -2919 Vector {y} component 59b0f9d5-da24-461d-9293-4372ce2a132e Y component FIRST DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT true 2ed8e93d-a8b4-44c0-a86e-99d91d8d6905 1 6987 -2909 338 20 7156 -2899 1 1 {0} 1 Second item for multiplication 24f7bdca-045b-421d-96c9-07956873e094 B FIRST DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE true 21aeed4b-3362-447a-b26d-c1b13691a4d9 1 6987 -2889 338 20 7156 -2879 Vector {y} component 8d4cc25d-16ee-4372-9b3f-f869c6b8b84f Y component CUWATURE LINEAR STACK GRAPH HEIGHT true ff698c9a-fbff-4811-a2fc-7bd7fdb14f0e 1 6987 -2869 338 20 7156 -2859 1 1 {0} 0 Second item for multiplication 56b13bf3-2c10-429e-8166-e8d6dd530880 B CUWATURE LINEAR STACK GRAPH MAGNITUDE true 71bb1397-567c-4d75-8665-b4e3269ab3e7 1 6987 -2849 338 20 7156 -2839 Number of segments d4d2a496-55de-4893-aaae-2f5c47e61e5d Count SEGMENT NUMBER true f682b0f6-c58d-441c-aad3-7e78ad618eaa 1 6987 -2829 338 20 7156 -2819 1 1 {0} 10 Contains a collection of generic curves true 2edbebac-85ae-4867-9c11-da446ffbc094 Curve CURWE true 44b95cea-3f46-4b6b-b282-cdac19364d61 1 6987 -2809 338 20 7156 -2799 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true 329990e8-083a-43f7-baaa-90fed18836f2 2 Curve Curve false 3d3ed989-8005-4440-b88c-cbb6953144b9 1 2164 -1805 50 24 2197.805 -1793.825 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true 2ffb9bf8-04bb-43ad-870c-27cb8a977834 Rotate Rotate 1223 -1003 191 64 1350 -971 Base geometry 4679268b-6817-4395-a3c3-a1e4dea43f86 Geometry Geometry true 14ec1382-b570-4ef8-99b7-e60c8326e39d 1 1225 -1001 113 20 1281.5 -991 Rotation angle in radians 1d3eca4d-22e4-4954-a38d-015b21550e37 Angle Angle false 0 false 1225 -981 113 20 1281.5 -971 1 1 {0} 3.1415926535897931 Rotation plane 06872847-c633-4277-b62f-e4e890f8f0bc Plane Plane false 9a4e5cd1-079f-4046-81ea-caf4fddeeedf 1 1225 -961 113 20 1281.5 -951 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry 94d8eb89-7381-426b-b8b1-357c8092b963 Geometry Geometry false 0 1362 -1001 50 30 1387 -986 Transformation data 6c3ebb08-bb3b-4305-a5e4-82e1c0d63cd1 Transform Transform false 0 1362 -971 50 30 1387 -956 8073a420-6bec-49e3-9b18-367f6fd76ac3 Join Curves Join as many curves as possible true b281d2be-84b4-47dc-8ace-27a3ac332b9e Join Curves Join Curves 1286 -1113 116 44 1353 -1091 1 Curves to join 8e108abf-70eb-4972-8f90-5391e067fb23 Curves Curves false e4b1f6e7-170d-45df-9791-bbb815ee8035 1 1288 -1111 53 20 1314.5 -1101 Preserve direction of input curves 8c7f6020-76cb-440e-b2fa-92f2505ab7e6 Preserve Preserve false 0 1288 -1091 53 20 1314.5 -1081 1 1 {0} false 1 Joined curves and individual curves that could not be joined. acedbd1c-3467-434c-8006-a0abb17d5c5b Curves Curves false 0 1365 -1111 35 40 1382.5 -1091 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true b25143b9-9232-4aca-8ca0-a057cea222b4 Merge Merge 1296 -1067 90 64 1341 -1035 3 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 1e73bf28-e6fb-40d3-a61a-8b33553b4022 false Data 1 D1 true 14ec1382-b570-4ef8-99b7-e60c8326e39d 1 1298 -1065 31 20 1313.5 -1055 2 Data stream 2 41f58047-fef6-4899-9f0c-d87d578dbc4f false Data 2 D2 true 94d8eb89-7381-426b-b8b1-357c8092b963 1 1298 -1045 31 20 1313.5 -1035 2 Data stream 3 402d0dad-1d72-4358-93ec-b1c6cfbbe701 false Data 3 D3 true 0 1298 -1025 31 20 1313.5 -1015 2 Result of merge e4b1f6e7-170d-45df-9791-bbb815ee8035 Result Result false 0 1353 -1065 31 60 1368.5 -1035 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object c45782da-fece-45d1-903c-95142361b873 Relay false f928b4e1-c43f-4b19-8907-59137d64cd77 1 1380 -104 40 16 1400 -96 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values edd9c7a4-8615-499d-a043-ffd807b04ba3 Panel false 0 0 0.51542256311 1703 50 112 20 0 0 0 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression O/4^(OO-4) true f1deee2a-afa6-4f2d-8b08-f72bb2a1a015 Expression Expression 1712 155 157 44 1785 177 2 ba80fd98-91a1-4958-b6a7-a94e40e52bdb ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable f928ed43-d347-4844-a591-5dceb1e585ae Variable O O true 29387d88-3c9a-4bf6-bf27-d341223ee6f9 1 1714 157 19 20 1723.5 167 Expression variable 0abafe6c-cd84-4c72-8432-d40ca0cc172d Variable OO OO true 7db51a7e-d0ae-40f1-9f81-e70f2ecefa8f 1 1714 177 19 20 1723.5 187 Result of expression 7ea2aa96-2d9e-44d9-bf1b-90bc86fbf709 Result Result false 0 1836 157 31 40 1851.5 177 7ab8d289-26a2-4dd4-b4ad-df5b477999d8 Log N Return the N-base logarithm of a number. true e7b015dd-9f52-47f6-8002-08f897a09deb Log N Log N 1698 263 115 44 1768 285 Value 2400f0db-df14-44ad-8e44-4db1eb91aa4b Number Number false b05af234-ce5b-432e-8b3f-32a94a964bbf 1 1700 265 56 20 1728 275 Logarithm base 34b0f2e3-4f87-455a-8499-21bab2e5d51c Base Base false 0 1700 285 56 20 1728 295 1 1 {0} 2 Result 7db51a7e-d0ae-40f1-9f81-e70f2ecefa8f Result Result false 0 1780 265 31 40 1795.5 285 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers 58b84e16-46ab-4bef-af27-b755fa42c6db X*2 Number Number false 87a4cb63-b93f-4b2e-981a-a3a9a624f47e 1 6902 -2348 50 24 6935.181 -2336.249 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers f682b0f6-c58d-441c-aad3-7e78ad618eaa X*2+1 Number Number false 87a4cb63-b93f-4b2e-981a-a3a9a624f47e 1 6937 -2827 50 24 6970.651 -2815.816 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 Number Contains a collection of floating point numbers 87a4cb63-b93f-4b2e-981a-a3a9a624f47e Number Number false b05af234-ce5b-432e-8b3f-32a94a964bbf 1 2114 -1662 50 24 2139 -1650 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 09130dc2-bf14-48a3-b968-ca16910a4892 Digit Scroller INCREASE BEND PER SEGMENT false 0 12 INCREASE BEND PER SEGMENT 1 0.52264895353 1431 -1096 250 20 1431.372 -1095.58 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values f85cb8da-bd1b-49bb-8035-385bbb922ec2 Panel false 0 0 16 0.492221738454693386 32 0.507180224586 1722 92 194 30 0 0 0 1 255;255;255;255 false false true true false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values c85b34d5-5d2b-4638-a09d-3d68379bd5df Panel false 0 0 0.492221738454693386 1455 251 112 20 0 0 0 1455.228 251.1919 255;255;255;255 false false true false false true 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true 7f1ff041-dd6a-4f2e-9058-c73e06303a55 Deconstruct Deconstruct 749 -179 120 64 790 -147 Input point 546b7ad3-e8d4-4bbd-ad50-132350de7ad5 Point Point false 13781004-33cd-4faf-a5ff-8f57a2815ff8 1 751 -177 27 60 764.5 -147 Point {x} component 7b046e1f-a132-4964-84dd-3c63d46254fa X component X component false 0 802 -177 65 20 834.5 -167 Point {y} component 3132fa1c-9bb8-4ace-8cbf-97b0ed747357 Y component Y component false 0 802 -157 65 20 834.5 -147 Point {z} component 96f383ff-1b51-44f6-acfc-f7eedf5764e5 Z component Z component false 0 802 -137 65 20 834.5 -127 d3d195ea-2d59-4ffa-90b1-8b7ff3369f69 Unit Y Unit vector parallel to the world {y} axis. true 39a8b18d-4ef6-4367-ad26-ab4e89848a2d Unit Y Unit Y 1176 -273 114 28 1222 -259 Unit multiplication baa57436-1b77-40bd-8383-08a933dc0acf Factor Factor false 06332314-4669-466a-9627-5ee802d91f0f 1 1178 -271 32 24 1194 -259 1 1 {0} 1 World {y} vector 6cb3a800-b587-4653-acc2-5744ae0cdd07 Unit vector Unit vector false 0 1234 -271 54 24 1261 -259 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 606ca8c5-66bd-428f-8cb7-fd6eb00aa1b3 Evaluate Length Evaluate Length 1271 -941 149 64 1356 -909 Curve to evaluate 1c024430-9c34-4d16-8301-93119a108f0a Curve Curve false 14ec1382-b570-4ef8-99b7-e60c8326e39d 1 1273 -939 71 20 1308.5 -929 Length factor for curve evaluation 7500abe9-f2cc-47c8-aa3e-b65a2e09ab78 Length Length false 0 1273 -919 71 20 1308.5 -909 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) d486e061-286c-42bc-9138-3989847fb280 Normalized Normalized false 0 1273 -899 71 20 1308.5 -889 1 1 {0} true Point at the specified length 9a4e5cd1-079f-4046-81ea-caf4fddeeedf Point Point false 0 1368 -939 50 20 1393 -929 Tangent vector at the specified length 34d58739-aac2-406b-928c-b9b6d6a12ce2 Tangent Tangent false 0 1368 -919 50 20 1393 -909 Curve parameter at the specified length db69d6e6-0b87-422d-abd7-da897b9067fb Parameter Parameter false 0 1368 -899 50 20 1393 -889 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true f4e55ef7-e921-423d-a4b9-a32406e60f0f Rotate Rotate 1275 -1429 226 81 1437 -1388 Base geometry f0991e2a-9a9e-42a0-a3bd-3231d66c8297 Geometry Geometry true c480a418-7b92-41a4-8e6c-a45c5205253c 1 1277 -1427 148 20 1359 -1417 Rotation angle in degrees 2f555c56-80f7-4ed0-b440-c396bef5c3b1 Angle Angle false c03c099b-a7c6-4d23-b175-ab5fab635ab4 1 true 1277 -1407 148 20 1359 -1397 1 1 {0} 1.5707963267948966 Rotation plane e5b0498c-53e3-4a85-af16-895e00fef36c Plane Plane false 0 1277 -1387 148 37 1359 -1368.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry b58cf43f-a267-47e8-9e9a-1f80643adde8 Geometry Geometry false 0 1449 -1427 50 38 1474 -1407.75 Transformation data fb70e5fa-bedf-456b-a274-6740af642011 Transform Transform false 0 1449 -1389 50 39 1474 -1369.25 b464fccb-50e7-41bd-9789-8438db9bea9f Angle Compute the angle between two vectors. true 0f531a0c-f65f-4de1-82f9-e765c8b1ce3c Angle Angle 1290 -1341 197 81 1426 -1300 First vector 75939b2f-0f4a-4ea1-9ae5-89a2a2c178c3 Vector A Vector A false 948413de-ddd1-4364-91d2-1aff1940aa31 1 1292 -1339 122 20 1353 -1329 Second vector 7657460d-f1de-4b0f-a801-cc60487e4863 Vector B Vector B false 0 1292 -1319 122 20 1353 -1309 1 1 {0} 1 0 0 Optional plane for 2D angle 8e0214cf-5a1d-4edc-95c8-61d9944f00b5 Plane Plane true 0 1292 -1299 122 37 1353 -1280.5 Angle (in radians) between vectors c03c099b-a7c6-4d23-b175-ab5fab635ab4 -DEG(X) Angle Angle false 0 1438 -1339 47 38 1453.5 -1319.75 Reflex angle (in radians) between vectors a3ef210c-24d5-4e3c-befe-58ae1552ec11 Reflex Reflex false 0 1438 -1301 47 39 1453.5 -1281.25 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true b05ed285-f920-4459-87d9-4dcbc561ad6f Evaluate Length Evaluate Length 1328 -1257 149 64 1413 -1225 Curve to evaluate 4c4cdfb8-b781-4a19-b6bd-1eb1ae6ca26c Curve Curve false c480a418-7b92-41a4-8e6c-a45c5205253c 1 1330 -1255 71 20 1365.5 -1245 Length factor for curve evaluation d1398e04-87cd-40dc-aff8-f9277e343c0a Length Length false 0 1330 -1235 71 20 1365.5 -1225 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) c6ff7eb8-5ed0-4cfa-80b5-1e98b85fb9c7 Normalized Normalized false 0 1330 -1215 71 20 1365.5 -1205 1 1 {0} true Point at the specified length 599b7afd-dc58-401b-b9c6-a7d163a195a1 Point Point false 0 1425 -1255 50 20 1450 -1245 Tangent vector at the specified length 948413de-ddd1-4364-91d2-1aff1940aa31 Tangent Tangent false 0 1425 -1235 50 20 1450 -1225 Curve parameter at the specified length 8fb8bb53-380e-4b9f-9038-d66ea2e8d722 Parameter Parameter false 0 1425 -1215 50 20 1450 -1205 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values addfb0aa-2359-4428-8ddf-f66d8b9d07a5 Panel X false 0 5a6cef5c-7428-4a9f-b1a0-d2ef28a0e749 1 852 -379 194 40 0 0 0 852.9645 -378.7256 1 255;255;255;255 false false true true false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 0e01196e-344a-4efb-b4f6-56abfc1a0ad6 Panel Y false 0 60b392d6-8fb9-4b62-8594-808f81fe6f3b 1 1072 -60 194 40 0 0 0 1072.541 -59.86125 1 255;255;255;255 false false true true false true 797d922f-3a1d-46fe-9155-358b009b5997 One Over X Compute one over x. true 3b61006c-c85c-4ef7-91d4-73045e807f9f One Over X One Over X 1193 -142 88 28 1236 -128 Input value c89e8e1f-8b0d-4358-b121-6c8f6e23e90f Value Value false 6d3f9f9a-f57e-4854-bee7-99c12bfb0de8 1 1195 -140 29 24 1209.5 -128 Output value f928b4e1-c43f-4b19-8907-59137d64cd77 Result Result false 0 1248 -140 31 24 1263.5 -128 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true d59b6b9a-832f-4f1f-8be7-bb55b8fad88c Evaluate Length Evaluate Length 1323 -1607 149 64 1408 -1575 Curve to evaluate e70f0f2b-95f9-4040-b5f9-dd6038a76567 Curve Curve false 65dd17ea-eac5-4ec2-a76c-a6001d9921c7 1 1325 -1605 71 20 1360.5 -1595 Length factor for curve evaluation c0726cdb-cb28-444a-bcdc-c0fe2329460d Length Length false 0 1325 -1585 71 20 1360.5 -1575 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 1d0b6b42-adaf-486d-aaa4-753815696b4c Normalized Normalized false 0 1325 -1565 71 20 1360.5 -1555 1 1 {0} true Point at the specified length 13781004-33cd-4faf-a5ff-8f57a2815ff8 Point Point false 0 1420 -1605 50 20 1445 -1595 Tangent vector at the specified length 0a50b716-1ac1-44b0-aeeb-eb12b77a1395 Tangent Tangent false 0 1420 -1585 50 20 1445 -1575 Curve parameter at the specified length d6987d4f-8bdf-4475-98a4-969438058e83 Parameter Parameter false 0 1420 -1565 50 20 1445 -1555 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true 046deea4-16c1-4120-97a8-17ec891df087 Format Format 896 -288 130 64 988 -256 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format 98738ce1-2291-47b9-bc75-d1080184d438 Format Format false 0 898 -286 78 20 937 -276 1 1 {0} false {0:R} Formatting culture 80582564-9be9-4b17-94c4-196f19b00f26 Culture Culture false 0 898 -266 78 20 937 -256 1 1 {0} 127 Data to insert at {0} placeholders 4df5a87d-67b7-4aa2-94d7-13c76b1b1b1f false Data 0 0 true 7b046e1f-a132-4964-84dd-3c63d46254fa 1 898 -246 78 20 937 -236 Formatted text 5a6cef5c-7428-4a9f-b1a0-d2ef28a0e749 Text Text false 0 1000 -286 24 60 1012 -256 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true b39cf207-0be5-4356-9e3d-1ee3e6c914e4 Format Format 1026 -189 130 64 1118 -157 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format 7b43e52a-ab05-42f4-9635-af3ed47689bf Format Format false 0 1028 -187 78 20 1067 -177 1 1 {0} false {0:R} Formatting culture c2722e47-9ff7-47ed-9794-752ba29b8a94 Culture Culture false 0 1028 -167 78 20 1067 -157 1 1 {0} 127 Data to insert at {0} placeholders 6be4559e-98d6-4ee5-b041-60f58803e67b false Data 0 0 true f111daf4-75b5-457f-9376-dc544e65bd65 1 1028 -147 78 20 1067 -137 Formatted text 86d1677c-49bf-49da-8fae-553310fdb9b4 Text Text false 0 1130 -187 24 60 1142 -157 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true b839537a-ac49-4b48-8198-4108a87b9c93 Format Format 896 -96 130 64 988 -64 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format a369ea40-a139-42fc-8267-3d8c149e743a Format Format false 0 898 -94 78 20 937 -84 1 1 {0} false {0:R} Formatting culture 4f88ef81-ab66-4ab6-b541-02a886ecc7c2 Culture Culture false 0 898 -74 78 20 937 -64 1 1 {0} 127 Data to insert at {0} placeholders 7b5103ea-5b86-427e-a2a3-d8d976bf49f7 false Data 0 0 true 3132fa1c-9bb8-4ace-8cbf-97b0ed747357 1 898 -54 78 20 937 -44 Formatted text 60b392d6-8fb9-4b62-8594-808f81fe6f3b Text Text false 0 1000 -94 24 60 1012 -64 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true dcf4fd04-6bea-4087-bb14-e58892057212 Division Division 910 -179 70 44 935 -157 Item to divide (dividend) f61db63a-17ae-4265-9cd9-e7c9bc24b0c3 A A false 7b046e1f-a132-4964-84dd-3c63d46254fa 1 912 -177 11 20 917.5 -167 Item to divide with (divisor) 19e5bc8f-7ab9-4b68-9a46-07305ba27e64 B B false 3132fa1c-9bb8-4ace-8cbf-97b0ed747357 1 912 -157 11 20 917.5 -147 The result of the Division f111daf4-75b5-457f-9376-dc544e65bd65 Result Result false 0 947 -177 31 40 962.5 -157 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values edb18e5e-d55d-485a-98ff-c5c5639c5761 Panel X/Y false 0 86d1677c-49bf-49da-8fae-553310fdb9b4 1 1400 96 97 40 0 0 0 1400.306 96.41949 1 255;255;255;255 false false true true false true 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 78309d6b-b193-47b1-808d-be817299073c Digit Scroller INCREASE BEND PER SEGMENT false 0 12 INCREASE BEND PER SEGMENT 1 0.77246531995 1270 58 250 20 1270.93 58.32095 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 2ffb9bf8-04bb-43ad-870c-27cb8a977834 b281d2be-84b4-47dc-8ace-27a3ac332b9e b25143b9-9232-4aca-8ca0-a057cea222b4 606ca8c5-66bd-428f-8cb7-fd6eb00aa1b3 14ec1382-b570-4ef8-99b7-e60c8326e39d 9e6f10a3-bd36-4964-aad1-24a4ce2b7179 6 fbe0ec2d-15dc-432f-8456-cebcbccffd3e Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects f4e55ef7-e921-423d-a4b9-a32406e60f0f 0f531a0c-f65f-4de1-82f9-e765c8b1ce3c b05ed285-f920-4459-87d9-4dcbc561ad6f c480a418-7b92-41a4-8e6c-a45c5205253c 04c74da6-9a7f-43a4-9219-a0080f87dff0 5 985e3e1d-42b8-4c5b-a7de-d49ab6853df8 Group 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values f601c683-1f7c-4ae0-b011-4d536c07718c Panel false 0 0 0.87246531994281165 1178 68 112 55 0 0 0 1178.065 68.78601 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values e260ab68-7da2-413f-838e-44a5912eea1f Panel false 0 0 12 0.77246531994281165 1154 157 122 55 0 0 0 1154.766 157.1919 255;255;255;255 false false true false false true b6d7ba20-cf74-4191-a756-2216a36e30a7 Rotate Rotate a vector around an axis. true e29e6418-8c00-4d8a-a673-6b82912c1156 true Rotate Rotate -959 1598 130 64 -876 1630 Vector to rotate 1d7a5b02-7337-4f5d-8e48-61731e90f2e9 true Vector Vector false bbc158b1-5993-4244-a6ab-15cd26cd8ba5 1 -957 1600 69 20 -904.5 1610 Rotation axis ffa8554c-3cac-40a0-87ab-727954436cf7 true Axis Axis false fd189997-da6e-423b-a2f3-32bf46b50f4c 1 -957 1620 69 20 -904.5 1630 Rotation angle (in radians) e08d290e-0cc4-4895-a371-a8fdcb9894d2 -X true Angle Angle false true 9e3dcfde-ca63-4d17-81a7-8769a95d0489 1 false -957 1640 69 20 -904.5 1650 Rotated vector 8f8fd733-f8a3-4d1a-a02a-3b9b52c174ca true Vector Vector false 0 -864 1600 33 60 -847.5 1630 9103c240-a6a9-4223-9b42-dbd19bf38e2b Unit Z Unit vector parallel to the world {z} axis. true 43ddac0e-8b67-4d25-a887-8bcb29fec5b8 true Unit Z Unit Z -1357 1518 114 28 -1311 1532 Unit multiplication 8dab20e7-5608-4037-8a56-fd20812f4fc1 true Factor Factor false c45782da-fece-45d1-903c-95142361b873 1 -1355 1520 32 24 -1339 1532 1 1 {0} 1 World {z} vector fd189997-da6e-423b-a2f3-32bf46b50f4c true Unit vector Unit vector false 0 -1299 1520 54 24 -1272 1532 d3d195ea-2d59-4ffa-90b1-8b7ff3369f69 Unit Y Unit vector parallel to the world {y} axis. true 5c8fa90a-3389-424e-bf36-0a2c9a14d20d true Unit Y Unit Y -1201 1596 114 28 -1155 1610 Unit multiplication 260b1a04-4c5c-4667-a9be-c653aad301d8 true Factor Factor false 5816c66f-aeed-4e62-b892-f2c6fca3acff 1 -1199 1598 32 24 -1183 1610 1 1 {0} 1 World {y} vector bbc158b1-5993-4244-a6ab-15cd26cd8ba5 true Unit vector Unit vector false 0 -1143 1598 54 24 -1116 1610 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 491447e2-4a6b-4439-a17a-c0a2528511ae true Interpolate Interpolate -1257 1149 225 84 -1084 1191 1 Interpolation points 2ce12550-db2e-4e15-a0d3-1d3dba4942bc true Vertices Vertices false d04d5c59-a074-4422-8ecf-43916a301521 1 -1255 1151 159 20 -1175.5 1161 Curve degree 9ada358b-89bb-4753-a235-1b09833bce7b true Degree Degree false 0 -1255 1171 159 20 -1175.5 1181 1 1 {0} 5 Periodic curve dc2afda7-6e88-4302-9fac-0f570ec25bfc true Periodic Periodic false 0 -1255 1191 159 20 -1175.5 1201 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 31741437-8132-4b0a-ae6f-9e5085f4e6ee true KnotStyle KnotStyle false 0 -1255 1211 159 20 -1175.5 1221 1 1 {0} 2 Resulting nurbs curve a3efb7e5-318e-42c1-af7a-aaa9278633a7 true Curve Curve false 0 -1072 1151 38 26 -1053 1164.333 Curve length 442bf00d-f17c-4381-8496-77dab3170e5a true Length Length false 0 -1072 1177 38 27 -1053 1191 Curve domain 4ed1956c-fc24-4e90-819b-3b288354c862 true Domain Domain false 0 -1072 1204 38 27 -1053 1217.667 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object a29fb8dc-e0e5-43ed-a405-11f92ea9db21 true Relay false 9b91a053-e282-461d-bd47-a2b750c543c4 1 -1172 1390 40 16 -1152 1398 e2039b07-d3f3-40f8-af88-d74fed238727 Insert Items Insert a collection of items into a list. true 23f5268a-379b-40bf-9256-9a9464b08d97 true Insert Items Insert Items -1228 1285 116 84 -1145 1327 1 List to modify 64a80fd2-7d4d-4954-bca3-f93fa97e6db5 true List List false a29fb8dc-e0e5-43ed-a405-11f92ea9db21 1 -1226 1287 69 20 -1191.5 1297 1 Items to insert. If no items are supplied, nulls will be inserted. 4bb43bf3-e12e-4263-b939-300388bcd733 true Item Item true 0 -1226 1307 69 20 -1191.5 1317 1 1 {0} Grasshopper.Kernel.Types.GH_String false {0,0,0} 1 Insertion index for each item d132512c-df0e-4cea-adf6-64adc66785ef true Indices Indices false 0 -1226 1327 69 20 -1191.5 1337 1 1 {0} 0 If true, indices will be wrapped 19cdb848-7b1b-45ad-9cbb-9962ae417d81 true Wrap Wrap false 0 -1226 1347 69 20 -1191.5 1357 1 1 {0} false 1 List with inserted values 46348972-5a47-4f96-ac33-83a9684d9844 true List List false 0 -1133 1287 19 80 -1123.5 1327 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object d04d5c59-a074-4422-8ecf-43916a301521 true Relay ⊙☉⊙ false 46348972-5a47-4f96-ac33-83a9684d9844 1 -1174 1252 44 16 -1152 1260 f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ 7VsJdBNlHp+2aZqjh1AVUJDR4nqwFnTxKbJgk6ZHaNPGFhAEH50m03YgycRkUuSy5UFBKiBdLD0ALT6oINUqlCqHEt3isiuLZQEBRXvo4sqxsquuuKt0v2/mm7RzJC00tfCw7yWd+f+/8/c/v/9MVAba4rGTDqYD/IVgGKYAn2inzZNPOWYWki43RTsgywzIkA3/ImATvl8qSVhJF2wSjtganmU0QLIakMZcOjtytZdIqP/3oYZTmoq5EWYXWUiRcyBfA/jK7AIwijUGkU2ku2DSXCcJ2WFo4ijEy6BddsIGOSMAdePGjR18r2zSRloY0srzKIrquNFA5lEOigG7MLtoJ+liKNLNDws/CgPBsPOowM2ONntp2bJPVVoD6ba4KCeDNg+XiCkyCDvJ350Pm5qaEh/fvrPqzIvLwXd7RT34bqt4s62igb1gbxs2w++yVez36raycl/L5soMeL1mCRxhLezSvn6T77rthTVtL5T7mrVVbPWNxjXjBjlTsQPSqxYJpub7oiUh7lbh8jZ0zltazTZeEei6+lXfgOgbUQL2Yq/RjtgZuyxgq29taJ38sjvbsFxuj2hSdu8IVXYEhA/fV4okhzBCm5uIFwSSCxpNID4ELyvZ+PiU1KnqLKBh0BTcvJnAvyiemkh7OAMK400AKNssoIxIf0IRWTmJcOWTbMvbwG39zx0dC0AXxRM0bectaEb0jY+GTwHqLJhKDSmSadRZFmc6MZf2MF3balJctMcpaTyg0xQyc+HifBPEgI+Wowl6QbqSo8MBQpElKlImd1r27aEl0+/a+XHaityvdQV/dfxXYCVRJsLtxnVWKzurOpF2MATl6PQW0NfI2drdZtKVB+wct8P+BOqP03k4gdsoNwOvKIa0u5WplNVKOviNhEQaHW6GcFjIFA9l5ZeYde8QY4GCTFrvTDrqHdR6JMASVRmUZbZ/tkbHMC4q18NwPsQnVj1AzcqS4uB9zmEDlpDWhGH/0WPYaH24mSqkWVCHQ27xxwbMm9SkdRIuwj6Tcjg9LLoqhK5SZ7GQbp+PCvED0XAj7IgXEjYP6cYBWEKs4mWRaD+uO765/s7MNfUzZu2fe/BbARLh7IgSBBA5k52dc7ysoimzaY/LQrJqCHX5zImwPQ+8ZiyuLZt3TrewVsuxBfoE+/UQwhoAoXcigPCEDsNwMYTmIyyEkRyEQP0RhsoAgA3KIt0eG6s6AqRkgcoZyZiXPTw5bePDpkcpe4FHAJSSG0mCFE+XQCWHBdZzLLATCItngTrV6ERYJJwCypYqxALOGnF5+jQoHdkVGIehCBvuYjfjloUnY8DzCysOz0xtNHy07WVLcaUAnhgzGoGDwy3BSdKgTwBLCghYYhNybCH+HNv9m7L2T6/fmrxlU8yH7z/z/VqhrbAuVujQhvCA62kXyoj4JEOZSNvAjvjEBP6Xk8FtOjwfjgvFkOICSlpAO0HKgtOcuw41Gnhr2/v9yJ/+kntj8luN4y/u1Jy/AbBCEKvi2WP3LnQcNe3539jVD936kA6wQv3YKGCFIdaEphGF65406JYe/PKBhyfc/yVgKRDrnainNR+UJOpWRZfeY8kebgCscMQSe1bAUiLWV3t/GHjg9Cjdcuv3UWWmk07AikCs4bHjl6hm70wuqc2d/zMW2w5YKn7xT72+H1/vyax5Y8ePKe+9qgYsNWINxMdNyK4rz3zh3S+KJsfEXQIsDd9rfcffqFtWJ1RvemyxjigsBSwtYkVuqco4dPiCvuaH7xQjT6xsAKxIxBpf/fzYoqPbU98ZM6ShapR1GmBFIdbce8pLKuM6THsXTGEWlI35CbCiEWvI19/dd+HgtIw/ZH6DPzPkk2GAFYNYiw8NO3XAHJ/2zp4Nm1KGzhgKWDcg1ruvT45vHFOSsmr2cXvdxI7lgDUAsSz3XYiek16fVmp4Lun8ix3vqYyGmQLFHwi3IWeF8zNObVA8cbN+2xuxRUZs/lYZDZXYntiEMN6EOGsI9WcNeH5c47Mrl+vX/LEuverHXfOFc2WRNmKu0Br8hLNQP+4nVofPoVwk8DpgJKTwspsW67DMQqSb7jZ6iaXay+iFHQcOKKoJRi4Q78UOqPgk4Gp5BxR21UMu9g3BgXxpS+GjxPRLaSUt2q8ysyLWBQHy1rpAkLdu4yFX+IO8pmyl59zEiylrn7rZXV362yeFYT8ZnjwZaRbrD+CHuA64m7aTuJVgCNzjphz5uNNGWMgC2gaCBEhDHFaYvYF2DOQxRH7PklqxY5NbqjRD4eiXkcYW3wEgDU0ECIpzsFYQRotvaYoyw7yDZEgXOEgTkAsjAERYwyaOAnnCTwRLNlp5Pcgo+XxC9p/OJiz5sKFY9a/Mozyfj2eLH99Y9IlzRmqlt6bqdOWKCTyfD2rTrAdWhexTG3b/c5ApamRsszaTTYEkeqTi6P4n5tbLbodFI4BktZPIpxkkNlnpTLVhyTVYdsbuUQ9+dfD9EecuRzpBT4dgLo1BOa6XS4fgcaR4eFO0GdZ63AzpYHhBhiDkwiVYKvUusOMCrIsdSRspzARTwO8tbP7ohQojOLLxfdh9OTw220w32IMjv9NNdN6z/mX+6EeyFnaRTUg3shmY3GlNFpBeelykrIiafw7dvP3t8PTKO1LjqD175wlEFJHI9ZTIyMfoEyENCyikW35RIfHVBEV6IucgYZcin12zsoDj8lFHThZ3wFXiDI1TDjfpYnDgDMEUAgcoK5tP98dOWFG/LWPfka3MK+cWlEeYPAyRayN9YAvtiZ1ltERWIaMlUgrp+1MrNjigEG9qQg5K4Gj8ARiNlJm04gxwObJg7Vt304ppSybpq14r/fuxhTHHBNgooKeSIMNRg63COZ8jP+MFZ3anJF60sCqMQjAfNyUh+LEvWjIjbIdSXtr1bmhR4+1LBbvRZBdQeQwOj6rSMBzuB8NbM/Py3CRQPpuNKxoBbUR1pPgehVrxAcjfkiQwd+H1EEL8qAEkIQDCV/UyIbfmE8Bd2dvKURR70gdG6Yarkz/f5647P72V0r+cHodPTftMmFwoZPfKUbtL+sSFg17aWw6AKwfCNVjO3rzA3vDVArj4woi/4BHJSYxmNUYWmim1LS/FXoqduOPBjlvrXjy7S5gMs92lJTSO3B044kNiEMBpXRUIHKBL/RFRlA6PPbezQMLqaRcZhWLdJF+PuwgnKnzKiije883e+9bWJW7+YNHpcR7bY0Lthb2l2stSg+4QoXquCKiez/WLBCJyadpGEj6/h0kqqZdZPeTsBkQp6FVlhSI+7l25S+mlUPBTyGdUykUp82esWaAoxauhJEpVv906bdmXF4273965+83ZbelCL2AmHKRNGKDUART6bh3uhD3YKr7F42ZoO+6gwTbYwyGM+4G0XVz8kllKT07n2myLi7bZsghAh0Ql1vkn8lPihMOfn1JNBkkfzDT4ae800B6QxeEWG1gPjECklWLQ3i0ALWAC7cW1IjnyT5XFckxoBvnEOCDHWHA6fVmvMRGufMqRTuYJlELLkbOo/ALhkzOOPol2dqUKleFQRrNhS+64phgWROHj4wh+VXKVXRcxx+iwUhbS94QtRA2J0C67kEzgKEHZgIb4SJHZTtJCEbZE2trZF8DPuEjC7rtnnZWvD1JVPqpdzaoqLvz2vaq+UhtydF6x1/jWWMPJC+NUh/tHVXOgqm7pS1VNntVsODlvy7Whqip/qnoNld/ETyP6qPzmnRWo/ObN/bX8JiudoUWDp7+uNSYt2ZugvvRM3PB+L78lzApUFPDmX3/ltzONpxrH1x8xlTg6fmzJeu/Oq6D8lkAGFFLudVN+GxqRtnvoCKtpV5UhR7XBMqbPym9BLgewQswJKMQng15+G2z+xwL1uMakutWr1p59fltmv5bfWD/jt/wGVBiFYD7Hu5ZDsPgNgz4Kwdj6QCEYq/w1BMtKR6N+qt1gr9I3PO44+MNvmj/v9xDsXRewLl99/YVgz10tO+45U59afnzQ+ZE/jaq9GkJwVSAhAWO7XkLwaUeNeeyfv51Yfdbzu98vHjanz0JwkF/DYC1tbUBLKw96CBaf8vs1BLN+xm8IBiqMQrAGu/oLNuLX8fq+YCPOpvqvYNO6qC8LNhfpZkPL8UXXRsFG609Vb25faRj4yEeJGx/8Yl/9gTmGbl9RU6NRBiSyqij3MxsNxxKoVDSiiVWtV6+1id/5u8LX2nroMnwPv0Sq5j0GnEJ4E3QX0G0gxCP9IX6pZPum2HiFvnHG4Opap2lzt4hrriLExS/IBudFQvHriT2MYIEEkrBdLJCoKzMB9rHYL24C3T/FFj9q7s1T7CAYQMIyMd7RV2QA6BcYv7gFXNZvS8QvfPfutyUiYxD/cCUIxoBN8Qnn/w== true iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAZdJREFUSEvV1M8rBGEcx/GHJL8ixYHdcnBwcuBgExYnF6Tk4K4cXJjZuLg4uOxhy4+U5Cgl+QMUSXIQ/gMkSn4lF1La8f7uzjbraWaatRx86nWYp5nnM/PMPKP+S5px7aIWeacMa7Bc1CFQejGqacUArnCIvAr2oF98i3N0oQDFLgKlHA/QCz4RRw0qMexCls83IZziCAtIZBmzx56wAf0GRAM8E4Esw0zqyDthbMKzoBRvmg+8YBBBUo8VLGmqkVont/ZZ/ErkCV4173iEbKAgKYQ8ha4InpFv/R5tqSP/yHtwW4UW+KYfd+iGLGW2zHcuN3CCHxVI+vAM/eJdrOIGJmTTnWma4CSppsNJZUbTYo32sGQdeoG8p2VUIFiSyohZyrQEJYv2sGQeF5pjyA6fQxUmXXz/F/kUeEV2+hYuoT+h6GBSM5JUU+NpxrZTYOxnxi1ldHKyX0bgVWDEM5N64SZkl/qlBPJL0YV+q8A7fC3tlEzYdpyJjQNn3Izap+cXJsv1JeeWPy9g4h5KEoIlGrKH84hSX+x+CmKBvnCmAAAAAElFTkSuQmCC 6a9d7808-9366-4f1e-a23b-bac869ea06e7 true ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ true 4 262462a3-9bd4-4c05-8b83-46ecd6dc79fc 7d623191-84ed-4dd2-a1a2-b1e024737557 85d6359a-11fa-42c9-a75c-0e1ce9fb14fd 9b91a053-e282-461d-bd47-a2b750c543c4 2e55aebe-34b6-4785-8e6b-d76dac4aff89 0ef02d63-4c77-4baf-8a44-8b45ed9effc1 2df4e919-ccf0-4e59-924f-ef207e19da1d dc1dce83-50c8-4b2e-bdbb-9da4471c5c1c -1177 1425 49 44 -1148 1447 2 2e3ab970-8545-46bb-836c-1c11e5610bce b6236720-8d88-4289-93c3-ac4c99f9b97b 2 b6236720-8d88-4289-93c3-ac4c99f9b97b 8ec86459-bf01-4409-baee-174d0d2b13d0 Shift offset 262462a3-9bd4-4c05-8b83-46ecd6dc79fc true Shift true 0 -1175 1427 15 20 -1167.5 1437 1 1 {0} 1 2 A wire relay object 85d6359a-11fa-42c9-a75c-0e1ce9fb14fd true Relay true 8f8fd733-f8a3-4d1a-a02a-3b9b52c174ca 1 -1175 1447 15 20 -1167.5 1457 2 A wire relay object 9b91a053-e282-461d-bd47-a2b750c543c4 true Relay false 0 -1136 1427 6 20 -1133 1437 Result of mass addition 7d623191-84ed-4dd2-a1a2-b1e024737557 true Result false 0 -1136 1447 6 20 -1133 1457 e64c5fb1-845c-4ab1-8911-5f338516ba67 Series Create a series of numbers. true df08b906-e214-4329-a753-6683da349b64 true Series Series -1126 1788 106 64 -1065 1820 First number in the series 821ddc44-a3c2-45c2-b962-c25e74cd0e2d true Start Start false 0 -1124 1790 47 20 -1100.5 1800 1 1 {0} 0 Step size for each successive number 2ad3b0f3-7d93-4dde-b755-eafe469ae331 true Step Step false c3af5d23-c43f-4376-b656-adfc6959ad5f 1 -1124 1810 47 20 -1100.5 1820 1 1 {0} 1 Number of values in the series 405dd7db-8581-4869-a26c-ee66edb4381c true Count Count false 0a6c3e13-79eb-46b8-85b5-d89f6ac29e25 1 -1124 1830 47 20 -1100.5 1840 1 1 {0} 10 1 Series of numbers 9e3dcfde-ca63-4d17-81a7-8769a95d0489 true Series Series false 0 -1053 1790 31 60 -1037.5 1820 e64c5fb1-845c-4ab1-8911-5f338516ba67 Series Create a series of numbers. true a74498e1-111a-4102-95c6-efdd2cc07458 true Series Series -1177 1695 106 64 -1116 1727 First number in the series 647ff5fe-acd5-4493-875a-321427a5c75c true Start Start false 0 -1175 1697 47 20 -1151.5 1707 1 1 {0} 0 Step size for each successive number f4d2a5a6-a28e-46f7-949f-5c8d663c494a true Step Step false c3af5d23-c43f-4376-b656-adfc6959ad5f 1 -1175 1717 47 20 -1151.5 1727 1 1 {0} 1 Number of values in the series 4f091ad6-c79f-4fb6-84c5-fa7c320b7fe6 true Count Count false b5e8ba51-1f5f-453f-b4d3-f2e760598a98 1 -1175 1737 47 20 -1151.5 1747 1 1 {0} 10 1 Series of numbers 5816c66f-aeed-4e62-b892-f2c6fca3acff true Series Series false 0 -1104 1697 31 60 -1088.5 1727 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers c3af5d23-c43f-4376-b656-adfc6959ad5f true Digit Scroller SEMENT LENGTH false 0 12 SEMENT LENGTH 2 0.0737955968 -1466 1704 250 20 -1465.599 1704.75 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 0f7363db-148a-4609-a72d-c5acb1f943fe true Digit Scroller INCREASE BEND PER SEGMENT false 0 12 INCREASE BEND PER SEGMENT 2 5.0000000000 -1477 1829 250 20 -1476.037 1829.699 797d922f-3a1d-46fe-9155-358b009b5997 One Over X Compute one over x. true 011d3286-03b6-44b7-9ae4-53dfff04b332 true One Over X One Over X -1227 1646 88 28 -1184 1660 Input value 60b9c45b-e421-480f-8ba9-7deceeb66478 true Value Value false 5816c66f-aeed-4e62-b892-f2c6fca3acff 1 -1225 1648 29 24 -1210.5 1660 Output value b26ece8f-4077-4fc2-82a6-beee4ac7074a true Result Result false 0 -1172 1648 31 24 -1156.5 1660 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true 9cd5fd34-0805-4140-a0c9-c2cb98930ef7 true Point Point false 46348972-5a47-4f96-ac33-83a9684d9844 1 -1075 1272 50 24 -1050.309 1284.709 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true 10f9fcbf-f996-4afe-a932-1eeeeb7e92ba Point Point false 0bc3ce43-0665-4ef5-8cf4-236fdf0a40b3 1 1483 -396 50 24 1508.849 -384.0226 a0d62394-a118-422d-abb3-6af115c75b25 Addition Mathematical addition true 35344ecf-85c0-420e-b2f1-2273471c2264 true Addition Addition -1339 1881 70 44 -1314 1903 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for addition 2b0690ca-ce6b-476a-a3dc-a795f76a6e02 true A A true 995d2e59-4c86-49c8-8672-754d9bba0381 1 -1337 1883 11 20 -1331.5 1893 Second item for addition e12b0f1b-5353-48d2-8d27-40586d9d152c true B B true 8e2ebd88-e76e-48af-ae19-5bc8b4ff040a 1 -1337 1903 11 20 -1331.5 1913 Result of addition 0a6c3e13-79eb-46b8-85b5-d89f6ac29e25 true Result Result false 0 -1302 1883 31 40 -1286.5 1903 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 995d2e59-4c86-49c8-8672-754d9bba0381 true Relay false b5e8ba51-1f5f-453f-b4d3-f2e760598a98 1 -1538 1792 40 16 -1518 1800 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 8e2ebd88-e76e-48af-ae19-5bc8b4ff040a true Digit Scroller false 0 12 11 5.0 -1590 2012 250 20 -1589.876 2012.188 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 14ec1382-b570-4ef8-99b7-e60c8326e39d Relay false 8839b1ee-a905-40a7-ad7e-621a91f28769 1 1338 -859 40 16 1358 -851 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 9e6f10a3-bd36-4964-aad1-24a4ce2b7179 Relay false acedbd1c-3467-434c-8006-a0abb17d5c5b 1 1333 -1132 40 16 1353 -1124 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true 93f455b9-5a4d-43c3-955b-8cf8199e223c true Rotate Rotate -1200 955 191 64 -1073 987 Base geometry f237688c-e66f-4dd2-996b-f0bf1fcfc017 true Geometry Geometry true 07e4584d-bf54-436b-9e53-5c8d193069b5 1 -1198 957 113 20 -1141.5 967 Rotation angle in radians a5e0af2d-2873-4e44-ab84-1429acb4cc6c true Angle Angle false 0 false -1198 977 113 20 -1141.5 987 1 1 {0} 3.1415926535897931 Rotation plane c5705502-81ad-4254-96c4-8862886a176f true Plane Plane false cccd0e8c-ef92-4894-ae17-a7c1ca5d4de6 1 -1198 997 113 20 -1141.5 1007 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry 231863cc-a65f-4b96-b5bb-7df4c01658ea true Geometry Geometry false 0 -1061 957 50 30 -1036 972 Transformation data c83e5253-e445-4252-94c0-c0827a1ef861 true Transform Transform false 0 -1061 987 50 30 -1036 1002 8073a420-6bec-49e3-9b18-367f6fd76ac3 Join Curves Join as many curves as possible true a01bc16e-e45d-4bde-ac2e-85fe116976c2 true Join Curves Join Curves -1137 845 116 44 -1070 867 1 Curves to join b2fc37ee-72d9-458a-a827-4cd005fa9e4f true Curves Curves false bd0b7a3a-3479-442e-a24e-31364299e45f 1 -1135 847 53 20 -1108.5 857 Preserve direction of input curves aec142ef-6116-4e64-96aa-effc9b0ba3e0 true Preserve Preserve false 0 -1135 867 53 20 -1108.5 877 1 1 {0} false 1 Joined curves and individual curves that could not be joined. 10ca2987-87e1-4356-8936-f744cbe088f0 true Curves Curves false 0 -1058 847 35 40 -1040.5 867 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true 3389a26f-281f-41e0-aad7-9420e09ce80e true Merge Merge -1127 891 90 64 -1082 923 3 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 8d956783-f3d0-4531-bc78-f44cda2d1c22 true false Data 1 D1 true 07e4584d-bf54-436b-9e53-5c8d193069b5 1 -1125 893 31 20 -1109.5 903 2 Data stream 2 a37a2534-a862-4211-a4c2-13bea8745568 true false Data 2 D2 true 231863cc-a65f-4b96-b5bb-7df4c01658ea 1 -1125 913 31 20 -1109.5 923 2 Data stream 3 15493808-170d-456a-b241-01afa650776a true false Data 3 D3 true 0 -1125 933 31 20 -1109.5 943 2 Result of merge bd0b7a3a-3479-442e-a24e-31364299e45f true Result Result false 0 -1070 893 31 60 -1054.5 923 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true d5cd1560-e326-43d4-a027-3737cc7e91d9 true Evaluate Length Evaluate Length -1156 1020 149 64 -1071 1052 Curve to evaluate 308e22e3-b866-4671-a284-46e207deff05 true Curve Curve false 07e4584d-bf54-436b-9e53-5c8d193069b5 1 -1154 1022 71 20 -1118.5 1032 Length factor for curve evaluation 07c43a38-4676-477b-a734-e199179909f5 true Length Length false 0 -1154 1042 71 20 -1118.5 1052 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) fba23678-1aa6-4ff0-be4f-d38476d1fc36 true Normalized Normalized false 0 -1154 1062 71 20 -1118.5 1072 1 1 {0} true Point at the specified length cccd0e8c-ef92-4894-ae17-a7c1ca5d4de6 true Point Point false 0 -1059 1022 50 20 -1034 1032 Tangent vector at the specified length f4d6df6b-fa14-4d45-a67a-41287c44d03f true Tangent Tangent false 0 -1059 1042 50 20 -1034 1052 Curve parameter at the specified length 98977d38-82e4-4b8f-86fd-31ca3a57a4af true Parameter Parameter false 0 -1059 1062 50 20 -1034 1072 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 93f455b9-5a4d-43c3-955b-8cf8199e223c a01bc16e-e45d-4bde-ac2e-85fe116976c2 3389a26f-281f-41e0-aad7-9420e09ce80e d5cd1560-e326-43d4-a027-3737cc7e91d9 07e4584d-bf54-436b-9e53-5c8d193069b5 c6fbfaf9-9698-4664-85d0-95e0f769b52d 6 4f01a11b-b73a-4338-95ce-a49704fea478 Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 07e4584d-bf54-436b-9e53-5c8d193069b5 true Relay false a3efb7e5-318e-42c1-af7a-aaa9278633a7 1 -1087 1085 40 16 -1067 1093 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object c6fbfaf9-9698-4664-85d0-95e0f769b52d true Relay false 10ca2987-87e1-4356-8936-f744cbe088f0 1 -1090 826 40 16 -1070 834 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object c480a418-7b92-41a4-8e6c-a45c5205253c Relay false 9e6f10a3-bd36-4964-aad1-24a4ce2b7179 1 1415 -1158 40 16 1435 -1150 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 04c74da6-9a7f-43a4-9219-a0080f87dff0 Relay false b58cf43f-a267-47e8-9e9a-1f80643adde8 1 1530 -1453 40 16 1550 -1445 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 8839b1ee-a905-40a7-ad7e-621a91f28769 Relay false de4cd356-ac2d-465c-8792-ed49b1a320ab 1 1529 -830 40 16 1549 -822 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true 43d80855-3637-40f4-9fdc-746fda48a777 Deconstruct Deconstruct 1329 -1699 120 64 1370 -1667 Input point edc37744-dde3-4c81-b038-39e1fa1d2347 Point Point false 13781004-33cd-4faf-a5ff-8f57a2815ff8 1 1331 -1697 27 60 1344.5 -1667 Point {x} component 3eeee9f3-4d5d-4d38-af75-0b43cdc25b05 X component X component false 0 1382 -1697 65 20 1414.5 -1687 Point {y} component 04b421f3-5fa0-4719-ba9f-a540d38ce422 Y component Y component false 0 1382 -1677 65 20 1414.5 -1667 Point {z} component 0bdcf854-db9f-46dc-8656-341dfa324da6 Z component Z component false 0 1382 -1657 65 20 1414.5 -1647 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 65dd17ea-eac5-4ec2-a76c-a6001d9921c7 Relay false 04c74da6-9a7f-43a4-9219-a0080f87dff0 1 1366 -1518 40 16 1386 -1510 290f418a-65ee-406a-a9d0-35699815b512 Scale NU Scale an object with non-uniform factors. true fc6beaab-f021-4878-98e8-8cb7e36635ae Scale NU Scale NU 1275 -1853 226 121 1437 -1792 Base geometry 5ab60e03-c0b5-4162-9642-36f488ca4128 Geometry Geometry true 65dd17ea-eac5-4ec2-a76c-a6001d9921c7 1 1277 -1851 148 20 1359 -1841 Base plane 409f76c5-2364-4a27-8aa8-d04faeee52b5 Plane Plane false 0 1277 -1831 148 37 1359 -1812.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Scaling factor in {x} direction 32e9924d-3606-42bb-b61e-c74ae9f4f23a 1/X Scale X Scale X false 3eeee9f3-4d5d-4d38-af75-0b43cdc25b05 1 1277 -1794 148 20 1359 -1784 1 1 {0} 1 Scaling factor in {y} direction 6106007f-7f08-4242-b033-05df5fe86a6b 1/X Scale Y Scale Y false 04b421f3-5fa0-4719-ba9f-a540d38ce422 1 1277 -1774 148 20 1359 -1764 1 1 {0} 1 Scaling factor in {z} direction 810087c0-a605-4154-9858-53b8e8853b92 1/X Scale Z Scale Z false 0bdcf854-db9f-46dc-8656-341dfa324da6 1 1277 -1754 148 20 1359 -1744 1 1 {0} 1 Scaled geometry 02c0f61e-223c-4bb3-9505-292df6e48811 Geometry Geometry false 0 1449 -1851 50 58 1474 -1821.75 Transformation data 2dfd4f0a-fb4d-424a-9157-7b0a59ee21db Transform Transform false 0 1449 -1793 50 59 1474 -1763.25 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 59c3c505-15cc-45e9-933f-c8595f7093cc Relay false 02c0f61e-223c-4bb3-9505-292df6e48811 1 1369 -1886 40 16 1389 -1878 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects d59b6b9a-832f-4f1f-8be7-bb55b8fad88c 43d80855-3637-40f4-9fdc-746fda48a777 65dd17ea-eac5-4ec2-a76c-a6001d9921c7 fc6beaab-f021-4878-98e8-8cb7e36635ae 59c3c505-15cc-45e9-933f-c8595f7093cc 5 3064bf3b-431b-4788-be6f-b6c01940fdd1 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 7571d6a7-f9fb-43c5-b492-ebb1699bbe58 edd9c7a4-8615-499d-a043-ffd807b04ba3 f1deee2a-afa6-4f2d-8b08-f72bb2a1a015 e7b015dd-9f52-47f6-8002-08f897a09deb f85cb8da-bd1b-49bb-8035-385bbb922ec2 5 369d0c3d-b9de-4c16-aaec-07a459ba87fd Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 7f1ff041-dd6a-4f2e-9058-c73e06303a55 addfb0aa-2359-4428-8ddf-f66d8b9d07a5 0e01196e-344a-4efb-b4f6-56abfc1a0ad6 046deea4-16c1-4120-97a8-17ec891df087 b39cf207-0be5-4356-9e3d-1ee3e6c914e4 b839537a-ac49-4b48-8198-4108a87b9c93 dcf4fd04-6bea-4087-bb14-e58892057212 7 477360fe-ea68-469f-abe5-7f5fa5fbd55a Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects dc9dd93a-6cc9-4856-a81f-8679243afd47 db096fe4-5c8c-4baf-bf19-0c39c9a69a62 27c85e2b-78dd-4c1c-9a20-c928164cbb44 3fafe3df-2f20-4143-a557-d444450838f1 6e2d58db-c02c-4e82-bcfc-5ad11aaa6d4f 8de88415-ff31-4de1-bdb1-10fa85768dd6 2ed1099b-4e71-4b4e-83f3-6c0e2bd00d6c 8fd309ab-5857-461b-b780-749942b832a8 b883a44b-cfe6-46dc-8192-97293b781e47 d7b18b8c-16a0-47f6-90ca-ecbcf0cbeed8 b8f4b2f4-3504-46b4-a535-5d55353d495a ae80b8e3-7525-49ab-966b-b5abfe0c3986 eafc2c25-2253-4ad7-9552-ad079e117c91 98626144-c386-434c-b6b5-fa34826c1cb3 9829cf68-30ca-4eab-befe-c58a0d44a370 6bbf56be-7a74-437b-870e-fcdd88371dc3 42a8a86a-d3b2-44a1-b132-208a43112713 9e392594-9c88-466e-a19c-e833e6e9db0c 1070bd2f-76a4-4b0d-9285-8bd6e91816fc 86ff0bb1-7081-48f7-a924-3e72d64c1993 340f78f3-1fb8-489d-a0b9-dca8378f7c0d 5aa647ab-09b5-4453-b64a-d2c8747096d5 0ad09fc1-1279-4ea4-b205-9c9a89f9ebc6 9a6f91f6-0630-4830-8fd0-477d17fef0fb 143565e7-4ae8-41d7-9a06-d4bd76248b54 380e8b0d-a629-4458-919f-d5253db452f1 b96e7bfa-ed4f-4382-94f3-5b1a98b41212 f41b3bef-9cff-41c5-baf9-5225a1425419 8323abec-af76-487a-a094-87f7f9bbfdcc 926f989d-3adc-4d9d-955b-0aef18ac1dc0 00035756-ae62-4826-9139-7fcd846aa0c7 eeb347c1-708e-4973-8afe-e154fd52e0f7 ec5f2614-0df0-4917-890c-da4bd44522a5 d8d9cf70-ca1d-4a80-b178-6588262411bb a9218d1d-6e7b-4690-9057-5874c724dcb2 35 2f4ee1ec-9541-4bbc-bd9f-d19167eaa0d1 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects b883a44b-cfe6-46dc-8192-97293b781e47 d7b18b8c-16a0-47f6-90ca-ecbcf0cbeed8 b8f4b2f4-3504-46b4-a535-5d55353d495a ae80b8e3-7525-49ab-966b-b5abfe0c3986 4 dc9dd93a-6cc9-4856-a81f-8679243afd47 Group 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers db096fe4-5c8c-4baf-bf19-0c39c9a69a62 Digit Scroller SEMENT LENGTH false 0 12 SEMENT LENGTH 2 0.0023000000 3716 -355 250 20 e64c5fb1-845c-4ab1-8911-5f338516ba67 Series Create a series of numbers. true 27c85e2b-78dd-4c1c-9a20-c928164cbb44 Series Series 3708 -320 106 64 3769 -288 First number in the series 8cb575df-54d5-4c57-8efc-47b16283704d Start Start false 0 3710 -318 47 20 3733.5 -308 1 1 {0} 0 Step size for each successive number 3855fb02-b658-4132-95b0-f27bd226b330 Step Step false 87eb8849-af2f-42d1-b625-11ad905beff4 1 3710 -298 47 20 3733.5 -288 1 1 {0} 1 Number of values in the series 86985f1f-f862-468b-b2d1-b776dc747482 Count Count false 8fd309ab-5857-461b-b780-749942b832a8 1 3710 -278 47 20 3733.5 -268 1 1 {0} 10 1 Series of numbers 9a2afc6f-b4ce-4502-b366-642a8e9a3e95 Series Series false 0 3781 -318 31 60 3796.5 -288 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 3fafe3df-2f20-4143-a557-d444450838f1 Digit Scroller INCREASE BEND PER SEGMENT false 0 12 INCREASE BEND PER SEGMENT 1 0.49222173845 3716 -98 250 20 3716.187 -97.66576 b6d7ba20-cf74-4191-a756-2216a36e30a7 Rotate Rotate a vector around an axis. true 6e2d58db-c02c-4e82-bcfc-5ad11aaa6d4f Rotate Rotate 3757 -645 150 64 3860 -613 Vector to rotate 7ad44e35-1634-421c-a993-42236b49ffac Vector Vector false 1180af4e-9307-495e-960d-727614eb69d9 1 3759 -643 89 20 3831.5 -633 Rotation axis 3a26189d-1b03-453c-8eba-081eb037a13b Axis Axis false 90a2a9bf-2bbb-4418-ae07-28be1fc76902 1 3759 -623 89 20 3831.5 -613 Rotation angle (in degrees) 064be048-17d6-4295-9dd6-6c924fedd100 -X Angle Angle false true acd09b79-8c5d-4e09-a955-eb348888f844 1 true 3759 -603 89 20 3831.5 -593 Rotated vector 7aa6146c-3218-4cf5-bae0-c3348a131110 Vector Vector false 0 3872 -643 33 60 3888.5 -613 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 9829cf68-30ca-4eab-befe-c58a0d44a370 Interpolate Interpolate 3952 -955 225 84 4125 -913 1 Interpolation points a459fe42-94a7-4c68-b4e1-32ab1fb41915 Vertices Vertices false 9e392594-9c88-466e-a19c-e833e6e9db0c 1 3954 -953 159 20 4033.5 -943 Curve degree 836761a6-2eda-48f9-b525-bcb86a8fc18a Degree Degree false 0 3954 -933 159 20 4033.5 -923 1 1 {0} 3 Periodic curve d6a575ba-71ff-43f6-aab2-04db9deeb2c5 Periodic Periodic false 0 3954 -913 159 20 4033.5 -903 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 1b84b834-60f5-4e9b-a38b-a374888f6ac6 KnotStyle KnotStyle false 0 3954 -893 159 20 4033.5 -883 1 1 {0} 2 Resulting nurbs curve 2e386569-64dc-4855-9dc6-cad8052d4e8d Curve Curve false 0 4137 -953 38 26 4156 -939.6667 Curve length 18f4b7b8-c785-4c03-a312-339c5cf1b3f7 Length Length false 0 4137 -927 38 27 4156 -913 Curve domain ef0f423c-dbcb-461f-a18e-03902bf571ea Domain Domain false 0 4137 -900 38 27 4156 -886.3334 79f9fbb3-8f1d-4d9a-88a9-f7961b1012cd Unit X Unit vector parallel to the world {x} axis. true 8de88415-ff31-4de1-bdb1-10fa85768dd6 Unit X Unit X 3793 -493 114 28 3839 -479 Unit multiplication 79a73b8c-e4fe-4099-a581-6c73dc664a86 Factor Factor false 0ad09fc1-1279-4ea4-b205-9c9a89f9ebc6 1 3795 -491 32 24 3811 -479 1 1 {0} 1 World {x} vector 8c73dad7-a448-4e8e-b7cb-6c6f4d269949 Unit vector Unit vector false 0 3851 -491 54 24 3878 -479 9103c240-a6a9-4223-9b42-dbd19bf38e2b Unit Z Unit vector parallel to the world {z} axis. true 2ed1099b-4e71-4b4e-83f3-6c0e2bd00d6c Unit Z Unit Z 3591 -645 114 28 3637 -631 Unit multiplication e37d6296-cca3-49b2-ac1d-9248d749a84f Factor Factor false 0ad09fc1-1279-4ea4-b205-9c9a89f9ebc6 1 3593 -643 32 24 3609 -631 1 1 {0} 1 World {z} vector 90a2a9bf-2bbb-4418-ae07-28be1fc76902 Unit vector Unit vector false 0 3649 -643 54 24 3676 -631 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 6bbf56be-7a74-437b-870e-fcdd88371dc3 Relay false dce06aa0-d107-49e6-9ac4-a1f96241f82c 1 3832 -743 40 16 3852 -735 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 8fd309ab-5857-461b-b780-749942b832a8 Relay false d142bc30-3598-43ae-ba1c-c10d7516e5db 1 3832 -73 40 16 3852 -65 a0d62394-a118-422d-abb3-6af115c75b25 Addition Mathematical addition true b883a44b-cfe6-46dc-8192-97293b781e47 Addition Addition 3809 -38 85 44 3849 -16 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for addition 82e897f6-bb13-49f1-a9d2-f0a8cd4248d4 A A true 0 3811 -36 26 20 3824 -26 1 1 {0} Grasshopper.Kernel.Types.GH_String false 1 Second item for addition aa883421-9a43-42c1-bfc3-8a0b29812225 B B true 02b758f3-00c4-452d-90dd-3a0316fe6760 1 3811 -16 26 20 3824 -6 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 2 Result of addition d142bc30-3598-43ae-ba1c-c10d7516e5db Result Result false 0 3861 -36 31 40 3876.5 -16 a0d62394-a118-422d-abb3-6af115c75b25 Addition Mathematical addition true b8f4b2f4-3504-46b4-a535-5d55353d495a Addition Addition 3765 32 155 44 3805 54 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for addition ff784f4a-4c7e-40b8-aa3b-3384b9ff4028 A A true 0 3767 34 26 20 3780 44 1 1 {0} Grasshopper.Kernel.Types.GH_String false 1 Second item for addition 52fccfc6-d16e-4d6d-9039-65312df9d015 B B true 1e02c87b-f332-4fb0-8d48-6d02635e8746 1 3767 54 26 20 3780 64 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 1 Result of addition 02b758f3-00c4-452d-90dd-3a0316fe6760 Result NUMBER OF POINTS false 0 3817 34 101 40 3867.5 54 e2039b07-d3f3-40f8-af88-d74fed238727 Insert Items Insert a collection of items into a list. true 42a8a86a-d3b2-44a1-b132-208a43112713 Insert Items Insert Items 3794 -851 116 84 3877 -809 1 List to modify 2cc5517c-b67e-4fb4-84af-067f6f69f16e List List false 6bbf56be-7a74-437b-870e-fcdd88371dc3 1 3796 -849 69 20 3830.5 -839 1 Items to insert. If no items are supplied, nulls will be inserted. b056a52f-7901-4299-9727-6dbac79167d3 Item Item true 0 3796 -829 69 20 3830.5 -819 1 1 {0} Grasshopper.Kernel.Types.GH_String false {0,0,0} 1 Insertion index for each item a47e4d69-3eef-424d-822a-60355513532c Indices Indices false 0 3796 -809 69 20 3830.5 -799 1 1 {0} 0 If true, indices will be wrapped 4ffd3652-2927-443f-84e8-79d1c8033050 Wrap Wrap false 0 3796 -789 69 20 3830.5 -779 1 1 {0} false 1 List with inserted values 0a00ceda-7e56-4a16-968c-96ff8825cb63 List List false 0 3889 -849 19 80 3898.5 -809 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 9e392594-9c88-466e-a19c-e833e6e9db0c Relay ⊙☉⊙ false 0a00ceda-7e56-4a16-968c-96ff8825cb63 1 3831 -875 44 16 3853 -867 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects b883a44b-cfe6-46dc-8192-97293b781e47 b8f4b2f4-3504-46b4-a535-5d55353d495a 1e02c87b-f332-4fb0-8d48-6d02635e8746 3 ae80b8e3-7525-49ab-966b-b5abfe0c3986 Group f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ 7VsJdBNlHp+2aZqjh1AVUJDR4nqwFnTxKbJgk6ZHaNPGFhAEH50m03YgycRkUuSy5UFBKiBdLD0ALT6oINUqlCqHEt3isiuLZQEBRXvo4sqxsquuuKt0v2/mm7RzJC00tfCw7yWd+f+/8/c/v/9MVAba4rGTDqYD/IVgGKYAn2inzZNPOWYWki43RTsgywzIkA3/ImATvl8qSVhJF2wSjtganmU0QLIakMZcOjtytZdIqP/3oYZTmoq5EWYXWUiRcyBfA/jK7AIwijUGkU2ku2DSXCcJ2WFo4ijEy6BddsIGOSMAdePGjR18r2zSRloY0srzKIrquNFA5lEOigG7MLtoJ+liKNLNDws/CgPBsPOowM2ONntp2bJPVVoD6ba4KCeDNg+XiCkyCDvJ350Pm5qaEh/fvrPqzIvLwXd7RT34bqt4s62igb1gbxs2w++yVez36raycl/L5soMeL1mCRxhLezSvn6T77rthTVtL5T7mrVVbPWNxjXjBjlTsQPSqxYJpub7oiUh7lbh8jZ0zltazTZeEei6+lXfgOgbUQL2Yq/RjtgZuyxgq29taJ38sjvbsFxuj2hSdu8IVXYEhA/fV4okhzBCm5uIFwSSCxpNID4ELyvZ+PiU1KnqLKBh0BTcvJnAvyiemkh7OAMK400AKNssoIxIf0IRWTmJcOWTbMvbwG39zx0dC0AXxRM0bectaEb0jY+GTwHqLJhKDSmSadRZFmc6MZf2MF3balJctMcpaTyg0xQyc+HifBPEgI+Wowl6QbqSo8MBQpElKlImd1r27aEl0+/a+XHaityvdQV/dfxXYCVRJsLtxnVWKzurOpF2MATl6PQW0NfI2drdZtKVB+wct8P+BOqP03k4gdsoNwOvKIa0u5WplNVKOviNhEQaHW6GcFjIFA9l5ZeYde8QY4GCTFrvTDrqHdR6JMASVRmUZbZ/tkbHMC4q18NwPsQnVj1AzcqS4uB9zmEDlpDWhGH/0WPYaH24mSqkWVCHQ27xxwbMm9SkdRIuwj6Tcjg9LLoqhK5SZ7GQbp+PCvED0XAj7IgXEjYP6cYBWEKs4mWRaD+uO765/s7MNfUzZu2fe/BbARLh7IgSBBA5k52dc7ysoimzaY/LQrJqCHX5zImwPQ+8ZiyuLZt3TrewVsuxBfoE+/UQwhoAoXcigPCEDsNwMYTmIyyEkRyEQP0RhsoAgA3KIt0eG6s6AqRkgcoZyZiXPTw5bePDpkcpe4FHAJSSG0mCFE+XQCWHBdZzLLATCItngTrV6ERYJJwCypYqxALOGnF5+jQoHdkVGIehCBvuYjfjloUnY8DzCysOz0xtNHy07WVLcaUAnhgzGoGDwy3BSdKgTwBLCghYYhNybCH+HNv9m7L2T6/fmrxlU8yH7z/z/VqhrbAuVujQhvCA62kXyoj4JEOZSNvAjvjEBP6Xk8FtOjwfjgvFkOICSlpAO0HKgtOcuw41Gnhr2/v9yJ/+kntj8luN4y/u1Jy/AbBCEKvi2WP3LnQcNe3539jVD936kA6wQv3YKGCFIdaEphGF65406JYe/PKBhyfc/yVgKRDrnainNR+UJOpWRZfeY8kebgCscMQSe1bAUiLWV3t/GHjg9Cjdcuv3UWWmk07AikCs4bHjl6hm70wuqc2d/zMW2w5YKn7xT72+H1/vyax5Y8ePKe+9qgYsNWINxMdNyK4rz3zh3S+KJsfEXQIsDd9rfcffqFtWJ1RvemyxjigsBSwtYkVuqco4dPiCvuaH7xQjT6xsAKxIxBpf/fzYoqPbU98ZM6ShapR1GmBFIdbce8pLKuM6THsXTGEWlI35CbCiEWvI19/dd+HgtIw/ZH6DPzPkk2GAFYNYiw8NO3XAHJ/2zp4Nm1KGzhgKWDcg1ruvT45vHFOSsmr2cXvdxI7lgDUAsSz3XYiek16fVmp4Lun8ix3vqYyGmQLFHwi3IWeF8zNObVA8cbN+2xuxRUZs/lYZDZXYntiEMN6EOGsI9WcNeH5c47Mrl+vX/LEuverHXfOFc2WRNmKu0Br8hLNQP+4nVofPoVwk8DpgJKTwspsW67DMQqSb7jZ6iaXay+iFHQcOKKoJRi4Q78UOqPgk4Gp5BxR21UMu9g3BgXxpS+GjxPRLaSUt2q8ysyLWBQHy1rpAkLdu4yFX+IO8pmyl59zEiylrn7rZXV362yeFYT8ZnjwZaRbrD+CHuA64m7aTuJVgCNzjphz5uNNGWMgC2gaCBEhDHFaYvYF2DOQxRH7PklqxY5NbqjRD4eiXkcYW3wEgDU0ECIpzsFYQRotvaYoyw7yDZEgXOEgTkAsjAERYwyaOAnnCTwRLNlp5Pcgo+XxC9p/OJiz5sKFY9a/Mozyfj2eLH99Y9IlzRmqlt6bqdOWKCTyfD2rTrAdWhexTG3b/c5ApamRsszaTTYEkeqTi6P4n5tbLbodFI4BktZPIpxkkNlnpTLVhyTVYdsbuUQ9+dfD9EecuRzpBT4dgLo1BOa6XS4fgcaR4eFO0GdZ63AzpYHhBhiDkwiVYKvUusOMCrIsdSRspzARTwO8tbP7ohQojOLLxfdh9OTw220w32IMjv9NNdN6z/mX+6EeyFnaRTUg3shmY3GlNFpBeelykrIiafw7dvP3t8PTKO1LjqD175wlEFJHI9ZTIyMfoEyENCyikW35RIfHVBEV6IucgYZcin12zsoDj8lFHThZ3wFXiDI1TDjfpYnDgDMEUAgcoK5tP98dOWFG/LWPfka3MK+cWlEeYPAyRayN9YAvtiZ1ltERWIaMlUgrp+1MrNjigEG9qQg5K4Gj8ARiNlJm04gxwObJg7Vt304ppSybpq14r/fuxhTHHBNgooKeSIMNRg63COZ8jP+MFZ3anJF60sCqMQjAfNyUh+LEvWjIjbIdSXtr1bmhR4+1LBbvRZBdQeQwOj6rSMBzuB8NbM/Py3CRQPpuNKxoBbUR1pPgehVrxAcjfkiQwd+H1EEL8qAEkIQDCV/UyIbfmE8Bd2dvKURR70gdG6Yarkz/f5647P72V0r+cHodPTftMmFwoZPfKUbtL+sSFg17aWw6AKwfCNVjO3rzA3vDVArj4woi/4BHJSYxmNUYWmim1LS/FXoqduOPBjlvrXjy7S5gMs92lJTSO3B044kNiEMBpXRUIHKBL/RFRlA6PPbezQMLqaRcZhWLdJF+PuwgnKnzKiije883e+9bWJW7+YNHpcR7bY0Lthb2l2stSg+4QoXquCKiez/WLBCJyadpGEj6/h0kqqZdZPeTsBkQp6FVlhSI+7l25S+mlUPBTyGdUykUp82esWaAoxauhJEpVv906bdmXF4273965+83ZbelCL2AmHKRNGKDUART6bh3uhD3YKr7F42ZoO+6gwTbYwyGM+4G0XVz8kllKT07n2myLi7bZsghAh0Ql1vkn8lPihMOfn1JNBkkfzDT4ae800B6QxeEWG1gPjECklWLQ3i0ALWAC7cW1IjnyT5XFckxoBvnEOCDHWHA6fVmvMRGufMqRTuYJlELLkbOo/ALhkzOOPol2dqUKleFQRrNhS+64phgWROHj4wh+VXKVXRcxx+iwUhbS94QtRA2J0C67kEzgKEHZgIb4SJHZTtJCEbZE2trZF8DPuEjC7rtnnZWvD1JVPqpdzaoqLvz2vaq+UhtydF6x1/jWWMPJC+NUh/tHVXOgqm7pS1VNntVsODlvy7Whqip/qnoNld/ETyP6qPzmnRWo/ObN/bX8JiudoUWDp7+uNSYt2ZugvvRM3PB+L78lzApUFPDmX3/ltzONpxrH1x8xlTg6fmzJeu/Oq6D8lkAGFFLudVN+GxqRtnvoCKtpV5UhR7XBMqbPym9BLgewQswJKMQng15+G2z+xwL1uMakutWr1p59fltmv5bfWD/jt/wGVBiFYD7Hu5ZDsPgNgz4Kwdj6QCEYq/w1BMtKR6N+qt1gr9I3PO44+MNvmj/v9xDsXRewLl99/YVgz10tO+45U59afnzQ+ZE/jaq9GkJwVSAhAWO7XkLwaUeNeeyfv51Yfdbzu98vHjanz0JwkF/DYC1tbUBLKw96CBaf8vs1BLN+xm8IBiqMQrAGu/oLNuLX8fq+YCPOpvqvYNO6qC8LNhfpZkPL8UXXRsFG609Vb25faRj4yEeJGx/8Yl/9gTmGbl9RU6NRBiSyqij3MxsNxxKoVDSiiVWtV6+1id/5u8LX2nroMnwPv0Sq5j0GnEJ4E3QX0G0gxCP9IX6pZPum2HiFvnHG4Opap2lzt4hrriLExS/IBudFQvHriT2MYIEEkrBdLJCoKzMB9rHYL24C3T/FFj9q7s1T7CAYQMIyMd7RV2QA6BcYv7gFXNZvS8QvfPfutyUiYxD/cCUIxoBN8Qnn/w== true iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAZdJREFUSEvV1M8rBGEcx/GHJL8ixYHdcnBwcuBgExYnF6Tk4K4cXJjZuLg4uOxhy4+U5Cgl+QMUSXIQ/gMkSn4lF1La8f7uzjbraWaatRx86nWYp5nnM/PMPKP+S5px7aIWeacMa7Bc1CFQejGqacUArnCIvAr2oF98i3N0oQDFLgKlHA/QCz4RRw0qMexCls83IZziCAtIZBmzx56wAf0GRAM8E4Esw0zqyDthbMKzoBRvmg+8YBBBUo8VLGmqkVont/ZZ/ErkCV4173iEbKAgKYQ8ha4InpFv/R5tqSP/yHtwW4UW+KYfd+iGLGW2zHcuN3CCHxVI+vAM/eJdrOIGJmTTnWma4CSppsNJZUbTYo32sGQdeoG8p2VUIFiSyohZyrQEJYv2sGQeF5pjyA6fQxUmXXz/F/kUeEV2+hYuoT+h6GBSM5JUU+NpxrZTYOxnxi1ldHKyX0bgVWDEM5N64SZkl/qlBPJL0YV+q8A7fC3tlEzYdpyJjQNn3Izap+cXJsv1JeeWPy9g4h5KEoIlGrKH84hSX+x+CmKBvnCmAAAAAElFTkSuQmCC eafc2c25-2253-4ad7-9552-ad079e117c91 ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ true 4 6a4f00bc-f020-46e2-bac0-a54d7b80df5b acd09b79-8c5d-4e09-a955-eb348888f844 f59c53ec-0eaf-48a0-bae2-fcea96acda3c f6e440a5-48c8-42b5-bad5-8c356f264006 2e55aebe-34b6-4785-8e6b-d76dac4aff89 dc1dce83-50c8-4b2e-bdbb-9da4471c5c1c 0ef02d63-4c77-4baf-8a44-8b45ed9effc1 2df4e919-ccf0-4e59-924f-ef207e19da1d 3827 -562 49 44 3856 -540 2 2e3ab970-8545-46bb-836c-1c11e5610bce b6236720-8d88-4289-93c3-ac4c99f9b97b 2 b6236720-8d88-4289-93c3-ac4c99f9b97b 8ec86459-bf01-4409-baee-174d0d2b13d0 Shift offset 6a4f00bc-f020-46e2-bac0-a54d7b80df5b Shift true 0 3829 -560 15 20 3836.5 -550 1 1 {0} 1 2 A wire relay object f6e440a5-48c8-42b5-bad5-8c356f264006 Relay true 287aea96-d5dd-4ba7-b8a2-da692d6c4829 1 3829 -540 15 20 3836.5 -530 2 A wire relay object acd09b79-8c5d-4e09-a955-eb348888f844 Relay false 0 3868 -560 6 20 3871 -550 Result of mass addition f59c53ec-0eaf-48a0-bae2-fcea96acda3c Result false 0 3868 -540 6 20 3871 -530 f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ 7VsJdBNlHp+2aZqjh1AVUJDR4nqwFnTxKbJgk6ZHaNPGFhAEH50m03YgycRkUuSy5UFBKiBdLD0ALT6oINUqlCqHEt3isiuLZQEBRXvo4sqxsquuuKt0v2/mm7RzJC00tfCw7yWd+f+/8/c/v/9MVAba4rGTDqYD/IVgGKYAn2inzZNPOWYWki43RTsgywzIkA3/ImATvl8qSVhJF2wSjtganmU0QLIakMZcOjtytZdIqP/3oYZTmoq5EWYXWUiRcyBfA/jK7AIwijUGkU2ku2DSXCcJ2WFo4ijEy6BddsIGOSMAdePGjR18r2zSRloY0srzKIrquNFA5lEOigG7MLtoJ+liKNLNDws/CgPBsPOowM2ONntp2bJPVVoD6ba4KCeDNg+XiCkyCDvJ350Pm5qaEh/fvrPqzIvLwXd7RT34bqt4s62igb1gbxs2w++yVez36raycl/L5soMeL1mCRxhLezSvn6T77rthTVtL5T7mrVVbPWNxjXjBjlTsQPSqxYJpub7oiUh7lbh8jZ0zltazTZeEei6+lXfgOgbUQL2Yq/RjtgZuyxgq29taJ38sjvbsFxuj2hSdu8IVXYEhA/fV4okhzBCm5uIFwSSCxpNID4ELyvZ+PiU1KnqLKBh0BTcvJnAvyiemkh7OAMK400AKNssoIxIf0IRWTmJcOWTbMvbwG39zx0dC0AXxRM0bectaEb0jY+GTwHqLJhKDSmSadRZFmc6MZf2MF3balJctMcpaTyg0xQyc+HifBPEgI+Wowl6QbqSo8MBQpElKlImd1r27aEl0+/a+XHaityvdQV/dfxXYCVRJsLtxnVWKzurOpF2MATl6PQW0NfI2drdZtKVB+wct8P+BOqP03k4gdsoNwOvKIa0u5WplNVKOviNhEQaHW6GcFjIFA9l5ZeYde8QY4GCTFrvTDrqHdR6JMASVRmUZbZ/tkbHMC4q18NwPsQnVj1AzcqS4uB9zmEDlpDWhGH/0WPYaH24mSqkWVCHQ27xxwbMm9SkdRIuwj6Tcjg9LLoqhK5SZ7GQbp+PCvED0XAj7IgXEjYP6cYBWEKs4mWRaD+uO765/s7MNfUzZu2fe/BbARLh7IgSBBA5k52dc7ysoimzaY/LQrJqCHX5zImwPQ+8ZiyuLZt3TrewVsuxBfoE+/UQwhoAoXcigPCEDsNwMYTmIyyEkRyEQP0RhsoAgA3KIt0eG6s6AqRkgcoZyZiXPTw5bePDpkcpe4FHAJSSG0mCFE+XQCWHBdZzLLATCItngTrV6ERYJJwCypYqxALOGnF5+jQoHdkVGIehCBvuYjfjloUnY8DzCysOz0xtNHy07WVLcaUAnhgzGoGDwy3BSdKgTwBLCghYYhNybCH+HNv9m7L2T6/fmrxlU8yH7z/z/VqhrbAuVujQhvCA62kXyoj4JEOZSNvAjvjEBP6Xk8FtOjwfjgvFkOICSlpAO0HKgtOcuw41Gnhr2/v9yJ/+kntj8luN4y/u1Jy/AbBCEKvi2WP3LnQcNe3539jVD936kA6wQv3YKGCFIdaEphGF65406JYe/PKBhyfc/yVgKRDrnainNR+UJOpWRZfeY8kebgCscMQSe1bAUiLWV3t/GHjg9Cjdcuv3UWWmk07AikCs4bHjl6hm70wuqc2d/zMW2w5YKn7xT72+H1/vyax5Y8ePKe+9qgYsNWINxMdNyK4rz3zh3S+KJsfEXQIsDd9rfcffqFtWJ1RvemyxjigsBSwtYkVuqco4dPiCvuaH7xQjT6xsAKxIxBpf/fzYoqPbU98ZM6ShapR1GmBFIdbce8pLKuM6THsXTGEWlI35CbCiEWvI19/dd+HgtIw/ZH6DPzPkk2GAFYNYiw8NO3XAHJ/2zp4Nm1KGzhgKWDcg1ruvT45vHFOSsmr2cXvdxI7lgDUAsSz3XYiek16fVmp4Lun8ix3vqYyGmQLFHwi3IWeF8zNObVA8cbN+2xuxRUZs/lYZDZXYntiEMN6EOGsI9WcNeH5c47Mrl+vX/LEuverHXfOFc2WRNmKu0Br8hLNQP+4nVofPoVwk8DpgJKTwspsW67DMQqSb7jZ6iaXay+iFHQcOKKoJRi4Q78UOqPgk4Gp5BxR21UMu9g3BgXxpS+GjxPRLaSUt2q8ysyLWBQHy1rpAkLdu4yFX+IO8pmyl59zEiylrn7rZXV362yeFYT8ZnjwZaRbrD+CHuA64m7aTuJVgCNzjphz5uNNGWMgC2gaCBEhDHFaYvYF2DOQxRH7PklqxY5NbqjRD4eiXkcYW3wEgDU0ECIpzsFYQRotvaYoyw7yDZEgXOEgTkAsjAERYwyaOAnnCTwRLNlp5Pcgo+XxC9p/OJiz5sKFY9a/Mozyfj2eLH99Y9IlzRmqlt6bqdOWKCTyfD2rTrAdWhexTG3b/c5ApamRsszaTTYEkeqTi6P4n5tbLbodFI4BktZPIpxkkNlnpTLVhyTVYdsbuUQ9+dfD9EecuRzpBT4dgLo1BOa6XS4fgcaR4eFO0GdZ63AzpYHhBhiDkwiVYKvUusOMCrIsdSRspzARTwO8tbP7ohQojOLLxfdh9OTw220w32IMjv9NNdN6z/mX+6EeyFnaRTUg3shmY3GlNFpBeelykrIiafw7dvP3t8PTKO1LjqD175wlEFJHI9ZTIyMfoEyENCyikW35RIfHVBEV6IucgYZcin12zsoDj8lFHThZ3wFXiDI1TDjfpYnDgDMEUAgcoK5tP98dOWFG/LWPfka3MK+cWlEeYPAyRayN9YAvtiZ1ltERWIaMlUgrp+1MrNjigEG9qQg5K4Gj8ARiNlJm04gxwObJg7Vt304ppSybpq14r/fuxhTHHBNgooKeSIMNRg63COZ8jP+MFZ3anJF60sCqMQjAfNyUh+LEvWjIjbIdSXtr1bmhR4+1LBbvRZBdQeQwOj6rSMBzuB8NbM/Py3CRQPpuNKxoBbUR1pPgehVrxAcjfkiQwd+H1EEL8qAEkIQDCV/UyIbfmE8Bd2dvKURR70gdG6Yarkz/f5647P72V0r+cHodPTftMmFwoZPfKUbtL+sSFg17aWw6AKwfCNVjO3rzA3vDVArj4woi/4BHJSYxmNUYWmim1LS/FXoqduOPBjlvrXjy7S5gMs92lJTSO3B044kNiEMBpXRUIHKBL/RFRlA6PPbezQMLqaRcZhWLdJF+PuwgnKnzKiije883e+9bWJW7+YNHpcR7bY0Lthb2l2stSg+4QoXquCKiez/WLBCJyadpGEj6/h0kqqZdZPeTsBkQp6FVlhSI+7l25S+mlUPBTyGdUykUp82esWaAoxauhJEpVv906bdmXF4273965+83ZbelCL2AmHKRNGKDUART6bh3uhD3YKr7F42ZoO+6gwTbYwyGM+4G0XVz8kllKT07n2myLi7bZsghAh0Ql1vkn8lPihMOfn1JNBkkfzDT4ae800B6QxeEWG1gPjECklWLQ3i0ALWAC7cW1IjnyT5XFckxoBvnEOCDHWHA6fVmvMRGufMqRTuYJlELLkbOo/ALhkzOOPol2dqUKleFQRrNhS+64phgWROHj4wh+VXKVXRcxx+iwUhbS94QtRA2J0C67kEzgKEHZgIb4SJHZTtJCEbZE2trZF8DPuEjC7rtnnZWvD1JVPqpdzaoqLvz2vaq+UhtydF6x1/jWWMPJC+NUh/tHVXOgqm7pS1VNntVsODlvy7Whqip/qnoNld/ETyP6qPzmnRWo/ObN/bX8JiudoUWDp7+uNSYt2ZugvvRM3PB+L78lzApUFPDmX3/ltzONpxrH1x8xlTg6fmzJeu/Oq6D8lkAGFFLudVN+GxqRtnvoCKtpV5UhR7XBMqbPym9BLgewQswJKMQng15+G2z+xwL1uMakutWr1p59fltmv5bfWD/jt/wGVBiFYD7Hu5ZDsPgNgz4Kwdj6QCEYq/w1BMtKR6N+qt1gr9I3PO44+MNvmj/v9xDsXRewLl99/YVgz10tO+45U59afnzQ+ZE/jaq9GkJwVSAhAWO7XkLwaUeNeeyfv51Yfdbzu98vHjanz0JwkF/DYC1tbUBLKw96CBaf8vs1BLN+xm8IBiqMQrAGu/oLNuLX8fq+YCPOpvqvYNO6qC8LNhfpZkPL8UXXRsFG609Vb25faRj4yEeJGx/8Yl/9gTmGbl9RU6NRBiSyqij3MxsNxxKoVDSiiVWtV6+1id/5u8LX2nroMnwPv0Sq5j0GnEJ4E3QX0G0gxCP9IX6pZPum2HiFvnHG4Opap2lzt4hrriLExS/IBudFQvHriT2MYIEEkrBdLJCoKzMB9rHYL24C3T/FFj9q7s1T7CAYQMIyMd7RV2QA6BcYv7gFXNZvS8QvfPfutyUiYxD/cCUIxoBN8Qnn/w== true iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAZdJREFUSEvV1M8rBGEcx/GHJL8ixYHdcnBwcuBgExYnF6Tk4K4cXJjZuLg4uOxhy4+U5Cgl+QMUSXIQ/gMkSn4lF1La8f7uzjbraWaatRx86nWYp5nnM/PMPKP+S5px7aIWeacMa7Bc1CFQejGqacUArnCIvAr2oF98i3N0oQDFLgKlHA/QCz4RRw0qMexCls83IZziCAtIZBmzx56wAf0GRAM8E4Esw0zqyDthbMKzoBRvmg+8YBBBUo8VLGmqkVont/ZZ/ErkCV4173iEbKAgKYQ8ha4InpFv/R5tqSP/yHtwW4UW+KYfd+iGLGW2zHcuN3CCHxVI+vAM/eJdrOIGJmTTnWma4CSppsNJZUbTYo32sGQdeoG8p2VUIFiSyohZyrQEJYv2sGQeF5pjyA6fQxUmXXz/F/kUeEV2+hYuoT+h6GBSM5JUU+NpxrZTYOxnxi1ldHKyX0bgVWDEM5N64SZkl/qlBPJL0YV+q8A7fC3tlEzYdpyJjQNn3Izap+cXJsv1JeeWPy9g4h5KEoIlGrKH84hSX+x+CmKBvnCmAAAAAElFTkSuQmCC 98626144-c386-434c-b6b5-fa34826c1cb3 ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ true 4 1786a6ca-a831-45f1-841a-6761df4e3437 472c32b4-816e-4b88-a831-f6a3db1b3d47 54d41705-20d5-476c-8174-d6bedd6f63b8 dce06aa0-d107-49e6-9ac4-a1f96241f82c 2e55aebe-34b6-4785-8e6b-d76dac4aff89 2df4e919-ccf0-4e59-924f-ef207e19da1d 0ef02d63-4c77-4baf-8a44-8b45ed9effc1 dc1dce83-50c8-4b2e-bdbb-9da4471c5c1c 3827 -708 49 44 3856 -686 2 2e3ab970-8545-46bb-836c-1c11e5610bce b6236720-8d88-4289-93c3-ac4c99f9b97b 2 b6236720-8d88-4289-93c3-ac4c99f9b97b 8ec86459-bf01-4409-baee-174d0d2b13d0 Shift offset 1786a6ca-a831-45f1-841a-6761df4e3437 Shift true 0 3829 -706 15 20 3836.5 -696 1 1 {0} -1 2 A wire relay object 472c32b4-816e-4b88-a831-f6a3db1b3d47 Relay true 7aa6146c-3218-4cf5-bae0-c3348a131110 1 3829 -686 15 20 3836.5 -676 2 A wire relay object dce06aa0-d107-49e6-9ac4-a1f96241f82c Relay false 0 3868 -706 6 20 3871 -696 Result of mass addition 54d41705-20d5-476c-8174-d6bedd6f63b8 Result false 0 3868 -686 6 20 3871 -676 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true ce1ec062-ce13-4671-9f88-a44eb02106ee Rotate Rotate 3762 -1258 191 64 3889 -1226 Base geometry 808573a4-822a-422e-9e98-6c173b8e4079 Geometry Geometry true cfd355a8-73ed-4ac8-8ec9-98a00fe36d6e 1 3764 -1256 113 20 3820.5 -1246 Rotation angle in radians e2633928-4571-47db-8d76-fae82f10ed08 Angle Angle false 0 false 3764 -1236 113 20 3820.5 -1226 1 1 {0} 3.1415926535897931 Rotation plane cd07018e-660d-4656-bfb3-7b6a2a07cc97 Plane Plane false 572a8ce2-d9e2-4f66-a641-056986b98367 1 3764 -1216 113 20 3820.5 -1206 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry 5f2b9ace-8677-4990-9222-d07a6d2af5df Geometry Geometry false 0 3901 -1256 50 30 3926 -1241 Transformation data c3d14047-4c99-4aa3-98f8-e18d2725169f Transform Transform false 0 3901 -1226 50 30 3926 -1211 8073a420-6bec-49e3-9b18-367f6fd76ac3 Join Curves Join as many curves as possible true d8073bf9-317e-46c3-870a-95ce7aa609eb Join Curves Join Curves 3825 -1368 116 44 3892 -1346 1 Curves to join 7aaefd25-0e21-483a-8ceb-21ef508d78fa Curves Curves false 67262b53-6f7e-4d97-96f5-f1cbbd68ce83 1 3827 -1366 53 20 3853.5 -1356 Preserve direction of input curves 21fe4208-0f3e-474b-b78e-1deeb43bdfab Preserve Preserve false 0 3827 -1346 53 20 3853.5 -1336 1 1 {0} false 1 Joined curves and individual curves that could not be joined. c8d48b4d-cba1-4240-8c79-bd2bf70f48b4 Curves Curves false 0 3904 -1366 35 40 3921.5 -1346 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true a9485951-a0a3-4d49-94ea-8e98b365eb1f Merge Merge 3835 -1322 90 64 3880 -1290 3 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 d939d545-310b-4fd6-855e-d89eff118d7d false Data 1 D1 true cfd355a8-73ed-4ac8-8ec9-98a00fe36d6e 1 3837 -1320 31 20 3852.5 -1310 2 Data stream 2 6d21104c-e393-4119-b98f-1f12813982a5 false Data 2 D2 true 5f2b9ace-8677-4990-9222-d07a6d2af5df 1 3837 -1300 31 20 3852.5 -1290 2 Data stream 3 9dec4af9-1e15-4f4d-8e0f-5a844059f38a false Data 3 D3 true 0 3837 -1280 31 20 3852.5 -1270 2 Result of merge 67262b53-6f7e-4d97-96f5-f1cbbd68ce83 Result Result false 0 3892 -1320 31 60 3907.5 -1290 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 0ad09fc1-1279-4ea4-b205-9c9a89f9ebc6 Relay false 5759550e-d8e3-4555-90d8-9ffd2d30a3f2 1 3780 -419 40 16 3800 -411 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values d3c0119f-bc4d-4023-bea3-7f07de919d1a Panel false 0 0 0.51542256311 3967 -249 112 20 0 0 0 3967.912 -249 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression O/4^(OO-4) true 920386d7-a4f5-49ac-8d98-ae8582f6761e Expression Expression 3991 -144 157 44 4064 -122 2 ba80fd98-91a1-4958-b6a7-a94e40e52bdb ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 511d663a-aa32-4d79-912e-51e8980f1ed2 Variable O O true ec5f2614-0df0-4917-890c-da4bd44522a5 1 3993 -142 19 20 4002.5 -132 Expression variable 1d00cae8-9902-4fdf-aca2-0493d9f13b2b Variable OO OO true d9e00b4e-988b-46b7-83ed-23e855867e23 1 3993 -122 19 20 4002.5 -112 Result of expression 87eb8849-af2f-42d1-b625-11ad905beff4 Result Result false 0 4115 -142 31 40 4130.5 -122 7ab8d289-26a2-4dd4-b4ad-df5b477999d8 Log N Return the N-base logarithm of a number. true 53b53895-a6e0-450a-8894-4abe407a28d4 Log N Log N 3959 -38 115 44 4029 -16 Value 4462301e-7bb2-46e5-acd4-99fa1c621c66 Number Number false 1e02c87b-f332-4fb0-8d48-6d02635e8746 1 3961 -36 56 20 3989 -26 Logarithm base 3b9b4efb-53fa-4d48-94df-799620521055 Base Base false 0 3961 -16 56 20 3989 -6 1 1 {0} 2 Result d9e00b4e-988b-46b7-83ed-23e855867e23 Result Result false 0 4041 -36 31 40 4056.5 -16 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 9a6f91f6-0630-4830-8fd0-477d17fef0fb Digit Scroller INCREASE BEND PER SEGMENT false 0 12 INCREASE BEND PER SEGMENT 1 0.48635028132 3682 -190 250 20 3682.429 -189.908 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 982abbaa-3dc5-4e91-82c5-b89e6889b245 Panel false 0 0 16 0.492221738454693386 32 0.507180224586 3986 -207 194 30 0 0 0 3986.912 -207 1 255;255;255;255 false false true true false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 143565e7-4ae8-41d7-9a06-d4bd76248b54 Panel false 0 0 0.492221738454693386 3728 -122 112 20 0 0 0 3728.995 -121.1867 255;255;255;255 false false true false false true 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true fe8168de-7728-4459-9d5b-12ac139649dc Deconstruct Deconstruct 4329 -410 120 64 4370 -378 Input point cfca3bce-dac3-410d-bdb1-1a78b549fa9a Point Point false 1f5e8e09-adb1-4c11-ab78-b4c1a72b0d2f 1 4331 -408 27 60 4344.5 -378 Point {x} component 98023ec4-8abd-465a-9fc6-113bad1bb42b X component X component false 0 4382 -408 65 20 4414.5 -398 Point {y} component b1151352-39d9-4cbb-be71-3baf994d9ae1 Y component Y component false 0 4382 -388 65 20 4414.5 -378 Point {z} component 645efb83-0efd-4a49-adf5-af4c1bb37ee1 Z component Z component false 0 4382 -368 65 20 4414.5 -358 d3d195ea-2d59-4ffa-90b1-8b7ff3369f69 Unit Y Unit vector parallel to the world {y} axis. true 380e8b0d-a629-4458-919f-d5253db452f1 Unit Y Unit Y 3578 -574 114 28 3624 -560 Unit multiplication c559f25e-fc15-43c3-a956-b8c2c699772b Factor Factor false 0ad09fc1-1279-4ea4-b205-9c9a89f9ebc6 1 3580 -572 32 24 3596 -560 1 1 {0} 1 World {y} vector 1180af4e-9307-495e-960d-727614eb69d9 Unit vector Unit vector false 0 3636 -572 54 24 3663 -560 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true eef6124b-3fcd-4667-95f3-62a6f5701b13 Evaluate Length Evaluate Length 3806 -1193 149 64 3891 -1161 Curve to evaluate 5cf566a1-5b0a-4e57-a8a7-f455d4df35ca Curve Curve false cfd355a8-73ed-4ac8-8ec9-98a00fe36d6e 1 3808 -1191 71 20 3843.5 -1181 Length factor for curve evaluation a54b513f-9cca-447a-80ef-59f000b81ffb Length Length false 0 3808 -1171 71 20 3843.5 -1161 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 77d2f604-ae30-467d-9e2f-b63e4d4b5872 Normalized Normalized false 0 3808 -1151 71 20 3843.5 -1141 1 1 {0} true Point at the specified length 572a8ce2-d9e2-4f66-a641-056986b98367 Point Point false 0 3903 -1191 50 20 3928 -1181 Tangent vector at the specified length 8cd8769e-24f6-414e-8ed9-3354ee8dc7a1 Tangent Tangent false 0 3903 -1171 50 20 3928 -1161 Curve parameter at the specified length 39706695-c878-4d5c-8866-d838b917b710 Parameter Parameter false 0 3903 -1151 50 20 3928 -1141 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true 73d57946-2d79-4acc-ace4-f082f53db977 Rotate Rotate 3763 -1686 226 81 3925 -1645 Base geometry a441d4f7-d8ae-48cc-a1f9-f511f4bba37c Geometry Geometry true 83cfdb23-e108-47d2-a227-49545aed148a 1 3765 -1684 148 20 3847 -1674 Rotation angle in degrees e8b34da6-db34-4faf-8440-d7ca4eaca90e Angle Angle false 71d4dd4b-48d3-4cb8-9e35-acafdbe85ee9 1 true 3765 -1664 148 20 3847 -1654 1 1 {0} 1.5707963267948966 Rotation plane b78afd36-0bbc-478b-9736-105cbc336e8c Plane Plane false 0 3765 -1644 148 37 3847 -1625.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry 3e55012b-12e1-41f2-bc2d-a9212ea990eb Geometry Geometry false 0 3937 -1684 50 38 3962 -1664.75 Transformation data 0d35ff02-b944-4adc-bf6a-5100d2e95463 Transform Transform false 0 3937 -1646 50 39 3962 -1626.25 b464fccb-50e7-41bd-9789-8438db9bea9f Angle Compute the angle between two vectors. true 782b8411-b435-4f86-b51e-83a746dc8746 Angle Angle 3781 -1601 197 81 3917 -1560 First vector 46a989e2-6e63-4c7c-b660-bec8246c329a Vector A Vector A false d5ed76f7-d0a5-4586-bec0-352840881b20 1 3783 -1599 122 20 3844 -1589 Second vector 88a08c31-32c3-4fe9-9d57-eed807f14453 Vector B Vector B false 0 3783 -1579 122 20 3844 -1569 1 1 {0} 1 0 0 Optional plane for 2D angle 38d8667d-f5e0-433f-a2eb-02567ba63430 Plane Plane true 0 3783 -1559 122 37 3844 -1540.5 Angle (in radians) between vectors 71d4dd4b-48d3-4cb8-9e35-acafdbe85ee9 -DEG(X) Angle Angle false 0 3929 -1599 47 38 3944.5 -1579.75 Reflex angle (in radians) between vectors b2429c1c-501f-49ad-a843-ee4931788309 Reflex Reflex false 0 3929 -1561 47 39 3944.5 -1541.25 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true ca32a89c-9e1e-4608-af15-c2f8c5aebe82 Evaluate Length Evaluate Length 3833 -1508 149 64 3918 -1476 Curve to evaluate 1b8855b0-c021-4109-8d91-3be5ecf86900 Curve Curve false 83cfdb23-e108-47d2-a227-49545aed148a 1 3835 -1506 71 20 3870.5 -1496 Length factor for curve evaluation 8de410cf-0597-4038-a17d-5f483b45b0cd Length Length false 0 3835 -1486 71 20 3870.5 -1476 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 0e275a88-4e93-4e3a-9556-e902c47694b0 Normalized Normalized false 0 3835 -1466 71 20 3870.5 -1456 1 1 {0} true Point at the specified length 8a2565fe-6767-47e0-8c6e-c714ae6391d6 Point Point false 0 3930 -1506 50 20 3955 -1496 Tangent vector at the specified length d5ed76f7-d0a5-4586-bec0-352840881b20 Tangent Tangent false 0 3930 -1486 50 20 3955 -1476 Curve parameter at the specified length 40f93bbe-bbc4-408a-9de9-ee8f5a9df282 Parameter Parameter false 0 3930 -1466 50 20 3955 -1456 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 0bcd4978-57f4-4e7b-b1b6-d2f7833e3ef0 Panel X false 0 1b2ada02-6253-49ca-a21b-2fa46d01a8b6 1 4636 -506 194 40 0 0 0 1 255;255;255;255 false false true true false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values cec1ad7e-4fc8-4b70-b4ae-f9981a037932 Panel Y false 0 6e1db03e-3286-4420-89a4-bfc4cca91f93 1 4656 -288 194 40 0 0 0 1 255;255;255;255 false false true true false true 797d922f-3a1d-46fe-9155-358b009b5997 One Over X Compute one over x. true b96e7bfa-ed4f-4382-94f3-5b1a98b41212 One Over X One Over X 3662 -430 88 28 3705 -416 Input value 7ff74437-2a95-4bee-9695-786fcec1ecbe Value Value false eeb347c1-708e-4973-8afe-e154fd52e0f7 1 3664 -428 29 24 3678.5 -416 Output value 5759550e-d8e3-4555-90d8-9ffd2d30a3f2 Result Result false 0 3717 -428 31 24 3732.5 -416 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true fadad9fa-e0cd-463a-97cb-627c4001f1b1 Evaluate Length Evaluate Length 3806 -1847 149 64 3891 -1815 Curve to evaluate db9d69f5-ffd3-488d-96a0-33c00bb6bf5c Curve Curve false ef3f33aa-8e82-44fb-abca-b0f773702dc0 1 3808 -1845 71 20 3843.5 -1835 Length factor for curve evaluation fb4e2c46-be67-4dac-857d-1ed9b161de5e Length Length false 0 3808 -1825 71 20 3843.5 -1815 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) bf08ac35-3e10-41fd-8cef-3816dc364e2b Normalized Normalized false 0 3808 -1805 71 20 3843.5 -1795 1 1 {0} true Point at the specified length 1f5e8e09-adb1-4c11-ab78-b4c1a72b0d2f Point Point false 0 3903 -1845 50 20 3928 -1835 Tangent vector at the specified length e3f1b87d-bb4b-407c-9ca0-9ff6a5a6b326 Tangent Tangent false 0 3903 -1825 50 20 3928 -1815 Curve parameter at the specified length 8925cfad-84bb-45ed-b498-f88c93a91b76 Parameter Parameter false 0 3903 -1805 50 20 3928 -1795 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true 82d1a17c-31bc-4ed8-a659-15e381bdf18d Format Format 4476 -519 130 64 4568 -487 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format 8bcebdbb-aecb-4b41-9763-6a385dcab687 Format Format false 0 4478 -517 78 20 4517 -507 1 1 {0} false {0:R} Formatting culture 7601b593-13c4-44ed-ab2f-b85178c2c4ea Culture Culture false 0 4478 -497 78 20 4517 -487 1 1 {0} 127 Data to insert at {0} placeholders c4f708c0-c631-47c4-bd56-26b9be6ff247 false Data 0 0 true 98023ec4-8abd-465a-9fc6-113bad1bb42b 1 4478 -477 78 20 4517 -467 Formatted text 1b2ada02-6253-49ca-a21b-2fa46d01a8b6 Text Text false 0 4580 -517 24 60 4592 -487 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true 9e5f31de-add9-4c8d-84d7-dfccca603655 Format Format 4606 -420 130 64 4698 -388 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format f69fba51-d3a2-43f5-a91d-4fafbe5917eb Format Format false 0 4608 -418 78 20 4647 -408 1 1 {0} false {0:R} Formatting culture 7e817915-79a3-4126-9cb3-28e2f197ffef Culture Culture false 0 4608 -398 78 20 4647 -388 1 1 {0} 127 Data to insert at {0} placeholders d80427bc-2854-429a-8a06-e580cd79d2cd false Data 0 0 true 78d1fa54-2acb-47b5-b319-1ac5da0af5a8 1 4608 -378 78 20 4647 -368 Formatted text 675330af-91a9-4396-8695-cd525e6e50e2 Text Text false 0 4710 -418 24 60 4722 -388 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true 47e543cb-0490-4dc3-be9a-462020413a73 Format Format 4476 -327 130 64 4568 -295 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format 0ca71344-7912-4a8c-a2a9-d32c040ec271 Format Format false 0 4478 -325 78 20 4517 -315 1 1 {0} false {0:R} Formatting culture f3c7e9e1-b938-460b-90b1-9c4e100d369b Culture Culture false 0 4478 -305 78 20 4517 -295 1 1 {0} 127 Data to insert at {0} placeholders b6eeaea6-caba-4b56-b151-e27a82a5f2b5 false Data 0 0 true b1151352-39d9-4cbb-be71-3baf994d9ae1 1 4478 -285 78 20 4517 -275 Formatted text 6e1db03e-3286-4420-89a4-bfc4cca91f93 Text Text false 0 4580 -325 24 60 4592 -295 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true b46696fd-3559-42b4-a813-143a1171f274 Division Division 4490 -410 70 44 4515 -388 Item to divide (dividend) 04b7d620-77cc-425b-8d03-1672b9a93880 A A false 98023ec4-8abd-465a-9fc6-113bad1bb42b 1 4492 -408 11 20 4497.5 -398 Item to divide with (divisor) e4f7f740-3d52-4915-a7fc-845ff43ca470 B B false b1151352-39d9-4cbb-be71-3baf994d9ae1 1 4492 -388 11 20 4497.5 -378 The result of the Division 78d1fa54-2acb-47b5-b319-1ac5da0af5a8 Result Result false 0 4527 -408 31 40 4542.5 -388 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values f41b3bef-9cff-41c5-baf9-5225a1425419 Panel X/Y false 0 675330af-91a9-4396-8695-cd525e6e50e2 1 3822 -232 97 40 0 0 0 3822.662 -231.4982 1 255;255;255;255 false false true true false true 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 8323abec-af76-487a-a094-87f7f9bbfdcc Digit Scroller INCREASE BEND PER SEGMENT false 0 12 INCREASE BEND PER SEGMENT 1 0.77246531995 3671 -258 250 20 3671.549 -257.4567 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects ce1ec062-ce13-4671-9f88-a44eb02106ee d8073bf9-317e-46c3-870a-95ce7aa609eb a9485951-a0a3-4d49-94ea-8e98b365eb1f eef6124b-3fcd-4667-95f3-62a6f5701b13 cfd355a8-73ed-4ac8-8ec9-98a00fe36d6e 1934f7b7-8597-495a-8e31-29665ed66e6b 6 8df9fc13-813a-47d6-97e1-b7c7f9640157 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 73d57946-2d79-4acc-ace4-f082f53db977 782b8411-b435-4f86-b51e-83a746dc8746 ca32a89c-9e1e-4608-af15-c2f8c5aebe82 83cfdb23-e108-47d2-a227-49545aed148a f955a134-e1c3-41cc-a613-c147701720d6 5 5e44e181-5006-4610-a893-b56165fdc072 Group 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 926f989d-3adc-4d9d-955b-0aef18ac1dc0 Panel false 0 0 0.87246531994281165 3580 -245 112 55 0 0 0 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 00035756-ae62-4826-9139-7fcd846aa0c7 Panel false 0 0 12 0.77246531994281165 3557 -157 122 55 0 0 0 255;255;255;255 false false true false false true fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true d8d9cf70-ca1d-4a80-b178-6588262411bb Point Point false 0a00ceda-7e56-4a16-968c-96ff8825cb63 1 3577 -870 50 24 3602 -858 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object cfd355a8-73ed-4ac8-8ec9-98a00fe36d6e Relay false 1070bd2f-76a4-4b0d-9285-8bd6e91816fc 1 3875 -1107 40 16 3895 -1099 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 1934f7b7-8597-495a-8e31-29665ed66e6b Relay false c8d48b4d-cba1-4240-8c79-bd2bf70f48b4 1 3872 -1387 40 16 3892 -1379 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 83cfdb23-e108-47d2-a227-49545aed148a Relay false 1934f7b7-8597-495a-8e31-29665ed66e6b 1 3883 -1438 40 16 3903 -1430 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object f955a134-e1c3-41cc-a613-c147701720d6 Relay false 3e55012b-12e1-41f2-bc2d-a9212ea990eb 1 3858 -1701 40 16 3878 -1693 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 1070bd2f-76a4-4b0d-9285-8bd6e91816fc Relay false 2e386569-64dc-4855-9dc6-cad8052d4e8d 1 3851 -982 40 16 3871 -974 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true fa041d61-2260-4390-8bf7-5700f6f72f0e Deconstruct Deconstruct 3812 -1939 120 64 3853 -1907 Input point e1c41fd9-72f3-43c9-94dd-9a461e673da2 Point Point false 1f5e8e09-adb1-4c11-ab78-b4c1a72b0d2f 1 3814 -1937 27 60 3827.5 -1907 Point {x} component 284a6c1d-f333-4822-9cfa-898efe16a332 X component X component false 0 3865 -1937 65 20 3897.5 -1927 Point {y} component bfa1e26a-f67e-42bb-978f-c2260d736bf5 Y component Y component false 0 3865 -1917 65 20 3897.5 -1907 Point {z} component f4ebab43-c145-40c6-8072-2abfd8f55d89 Z component Z component false 0 3865 -1897 65 20 3897.5 -1887 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object ef3f33aa-8e82-44fb-abca-b0f773702dc0 Relay false f955a134-e1c3-41cc-a613-c147701720d6 1 3849 -1758 40 16 3869 -1750 290f418a-65ee-406a-a9d0-35699815b512 Scale NU Scale an object with non-uniform factors. 1735a3f4-3ca3-458b-8d07-6d3524379f45 Scale NU Scale NU 3758 -2093 226 121 3920 -2032 Base geometry 3e1ace1a-75da-4d4c-a891-4d9356d9adac Geometry Geometry true ef3f33aa-8e82-44fb-abca-b0f773702dc0 1 3760 -2091 148 20 3842 -2081 Base plane cb809d10-4e1a-4af1-af6e-ddb00c730175 Plane Plane false 0 3760 -2071 148 37 3842 -2052.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Scaling factor in {x} direction 8ecf3918-f88a-413a-b1ca-ce689fae4a5e 1/X Scale X Scale X false 284a6c1d-f333-4822-9cfa-898efe16a332 1 3760 -2034 148 20 3842 -2024 1 1 {0} 1 Scaling factor in {y} direction cca03214-3ddb-49a5-893d-c7eda1f0ad7b 1/X Scale Y Scale Y false bfa1e26a-f67e-42bb-978f-c2260d736bf5 1 3760 -2014 148 20 3842 -2004 1 1 {0} 1 Scaling factor in {z} direction 1c581bdd-8004-401e-a63f-4a934a8e58cb 1/X Scale Z Scale Z false f4ebab43-c145-40c6-8072-2abfd8f55d89 1 3760 -1994 148 20 3842 -1984 1 1 {0} 1 Scaled geometry 2c3ba2b4-d4cd-45c3-bd10-22e623dadbef Geometry Geometry false 0 3932 -2091 50 58 3957 -2061.75 Transformation data a97e786b-40ce-48b1-aec1-a7924e568e3c Transform Transform false 0 3932 -2033 50 59 3957 -2003.25 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 634a94ce-52a8-49bc-9452-6f6366b08a22 Relay false 2c3ba2b4-d4cd-45c3-bd10-22e623dadbef 1 3852 -2126 40 16 3872 -2118 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects fadad9fa-e0cd-463a-97cb-627c4001f1b1 fa041d61-2260-4390-8bf7-5700f6f72f0e ef3f33aa-8e82-44fb-abca-b0f773702dc0 1735a3f4-3ca3-458b-8d07-6d3524379f45 634a94ce-52a8-49bc-9452-6f6366b08a22 5 1ff051ba-031f-4327-ae05-2bee20ca6608 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 27c85e2b-78dd-4c1c-9a20-c928164cbb44 d7b18b8c-16a0-47f6-90ca-ecbcf0cbeed8 d3c0119f-bc4d-4023-bea3-7f07de919d1a 920386d7-a4f5-49ac-8d98-ae8582f6761e 53b53895-a6e0-450a-8894-4abe407a28d4 982abbaa-3dc5-4e91-82c5-b89e6889b245 6 86ff0bb1-7081-48f7-a924-3e72d64c1993 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects fe8168de-7728-4459-9d5b-12ac139649dc 0bcd4978-57f4-4e7b-b1b6-d2f7833e3ef0 cec1ad7e-4fc8-4b70-b4ae-f9981a037932 82d1a17c-31bc-4ed8-a659-15e381bdf18d 9e5f31de-add9-4c8d-84d7-dfccca603655 47e543cb-0490-4dc3-be9a-462020413a73 b46696fd-3559-42b4-a813-143a1171f274 7 340f78f3-1fb8-489d-a0b9-dca8378f7c0d Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 1e02c87b-f332-4fb0-8d48-6d02635e8746 Relay false b05af234-ce5b-432e-8b3f-32a94a964bbf 1 3834 112 40 16 3854 120 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object eeb347c1-708e-4973-8afe-e154fd52e0f7 Relay false 1e02c87b-f332-4fb0-8d48-6d02635e8746 1 3872 0 40 16 3892 8 310f9597-267e-4471-a7d7-048725557528 08bdcae0-d034-48dd-a145-24a9fcf3d3ff GraphMapper+ External Graph mapper You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode. true 237c228c-493b-44c1-bc8b-e664861cc7d4 GraphMapper+ GraphMapper+ true 3389 -698 114 104 3450 -646 External curve as a graph 9f085382-1a88-404f-a745-ea3125137d76 Curve Curve false bd33433c-3d5b-4bd6-a798-eb56bd4ea429 1 3391 -696 47 20 3414.5 -686 Optional Rectangle boundary. If omitted the curve's would be landed 6eeb4bb9-eb05-4d1e-add9-eeeb08a85b48 Boundary Boundary true 0f25a7e7-954a-4c6a-bb35-9c257040bcb6 1 3391 -676 47 20 3414.5 -666 1 List of input numbers 80f5f91d-d11f-47d4-9990-7d9f08f17a14 Numbers Numbers false 6de021de-e2ab-4e7c-85a7-e5888dbcd1ca 1 3391 -656 47 20 3414.5 -646 1 9 {0} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 (Optional) Input Domain if omitted, it would be 0-1 in "Normalize" mode by default or be the interval of the input list in case of selecting "AutoDomain" mode 5f770b78-a0ba-47b3-acf0-0c929a944a73 Input Input true 9f77261c-85bb-4b3b-95f1-78af58008a52 1 3391 -636 47 20 3414.5 -626 (Optional) Output Domain if omitted, it would be 0-1 in "Normalize" mode by default or be the interval of the input list in case of selecting "AutoDomain" mode 291ebab8-7ac1-4bd6-8c36-edcab3744d70 Output Output true 9f77261c-85bb-4b3b-95f1-78af58008a52 1 3391 -616 47 20 3414.5 -606 1 Output Numbers 287aea96-d5dd-4ba7-b8a2-da692d6c4829 Number Number false 0 3462 -696 39 100 3481.5 -646 11bbd48b-bb0a-4f1b-8167-fa297590390d End Points Extract the end points of a curve. true 858691e0-ab7b-410f-83d3-5f3e48bfe297 End Points End Points 3404 -410 84 44 3448 -388 Curve to evaluate 65fdd193-0704-4d0c-a064-fe14b316639d Curve Curve false bd33433c-3d5b-4bd6-a798-eb56bd4ea429 1 3406 -408 30 40 3421 -388 Curve start point a91ab5ae-913d-40b5-9de8-c289c10d0563 Start Start false 0 3460 -408 26 20 3473 -398 Curve end point 8ae72c50-a16f-4525-bfd2-d416651d7553 End End false 0 3460 -388 26 20 3473 -378 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object bd33433c-3d5b-4bd6-a798-eb56bd4ea429 Relay false 2f68ea2e-9807-4230-b9b8-8a2a4bd298d7 1 3426 -333 40 16 3446 -325 575660b1-8c79-4b8d-9222-7ab4a6ddb359 Rectangle 2Pt Create a rectangle from a base plane and two points true 6053a02f-d7f2-437d-8e78-c7779115a06c Rectangle 2Pt Rectangle 2Pt 3344 -517 198 101 3480 -466 Rectangle base plane e2c28fec-a86f-41f6-ae6d-67746fe0a8c4 Plane Plane false 0 3346 -515 122 37 3407 -496.5 1 1 {0} 0 0 0 1 0 0 0 1 0 First corner point. 196e3a18-cad5-4ac9-92ab-b2a65bb565ce Point A Point A false a91ab5ae-913d-40b5-9de8-c289c10d0563 1 3346 -478 122 20 3407 -468 1 1 {0} 0 0 0 Second corner point. 49f0afd9-2ca0-438a-aefa-c73926a52eaf Point B Point B false 8ae72c50-a16f-4525-bfd2-d416651d7553 1 3346 -458 122 20 3407 -448 1 1 {0} 10 5 0 Rectangle corner fillet radius 67f13d9a-ae4a-4c03-910d-a5e50c335b16 Radius Radius false 0 3346 -438 122 20 3407 -428 1 1 {0} 0 Rectangle defined by P, A and B 0f25a7e7-954a-4c6a-bb35-9c257040bcb6 Rectangle Rectangle false 0 3492 -515 48 48 3516 -490.75 Length of rectangle curve 9331c6b8-2aa2-4a69-bb95-6f6a26113365 Length Length false 0 3492 -467 48 49 3516 -442.25 f44b92b0-3b5b-493a-86f4-fd7408c3daf3 Bounds Create a numeric domain which encompasses a list of numbers. true 88aac4c3-bcc4-4ded-baed-4ec5f4a8ebb2 Bounds Bounds 3391 -571 110 28 3449 -557 1 Numbers to include in Bounds 3d1cb814-54d0-4393-b726-d4045679967e Numbers Numbers false 6de021de-e2ab-4e7c-85a7-e5888dbcd1ca 1 3393 -569 44 24 3415 -557 Numeric Domain between the lowest and highest numbers in {N} 9f77261c-85bb-4b3b-95f1-78af58008a52 Domain Domain false 0 3461 -569 38 24 3480 -557 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 6de021de-e2ab-4e7c-85a7-e5888dbcd1ca Relay false 9a2afc6f-b4ce-4502-b366-642a8e9a3e95 1 3426 -538 40 16 3446 -530 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 237c228c-493b-44c1-bc8b-e664861cc7d4 858691e0-ab7b-410f-83d3-5f3e48bfe297 bd33433c-3d5b-4bd6-a798-eb56bd4ea429 6053a02f-d7f2-437d-8e78-c7779115a06c 88aac4c3-bcc4-4ded-baed-4ec5f4a8ebb2 6de021de-e2ab-4e7c-85a7-e5888dbcd1ca 0f2dee87-1bc5-4015-ba00-3d771757533d 7 5aa647ab-09b5-4453-b64a-d2c8747096d5 Group 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 0477f978-75c8-4073-ae96-43a8fcca2956 Digit Scroller LOP false 0 12 LOP 11 4.0 2217 -2011 250 20 7cd2f235-466e-4d30-bd3c-3b9573ac7dda 4442bb24-c702-460c-a1e4-fcdd321eb886 Fast Loop Start Loop Start true 55c019df-0659-4876-bf58-5f79d81d5357 true Fast Loop Start Fast Loop Start 2521 -2030 112 64 2580 -1998 2 2e3ab970-8545-46bb-836c-1c11e5610bce 8ec86459-bf01-4409-baee-174d0d2b13d0 3 6cc73910-22ac-4eb4-882b-eb9d63b8f3c2 2e3ab970-8545-46bb-836c-1c11e5610bce 8ec86459-bf01-4409-baee-174d0d2b13d0 Loop iterations d0585d53-48ee-4f51-9104-036f83e859b9 true Iterations Iterations false 0477f978-75c8-4073-ae96-43a8fcca2956 1 2523 -2028 45 30 2545.5 -2013 1 1 {0} 0 2 Data to loop df3bf6a2-914a-4592-b72c-8b59b0693f22 true Data Data true 1d0bf2e0-f67d-4a2d-a256-b3237aa6cf7f 1 2523 -1998 45 30 2545.5 -1983 Connect to Loop End c9b7f208-347f-475b-885f-7a4c65588465 true > > false 0 2592 -2028 39 20 2611.5 -2018 Counter d417db9c-aec8-4bb7-8abc-3de0f5f139c7 true Counter Counter false 0 2592 -2008 39 20 2611.5 -1998 2 Data to loop 1f0a6b3f-c026-4d9a-8d9f-570c3226e235 true Data Data false 0 2592 -1988 39 20 2611.5 -1978 4e5b891f-3e8d-4b3d-b677-996c63b3ac70 4442bb24-c702-460c-a1e4-fcdd321eb886 Fast Loop End Loop End true 101ff1bf-fb74-4f79-9211-183bf9e8ab06 true Fast Loop End Fast Loop End false 0 2667 -2020 93 64 2721 -1988 3 6cc73910-22ac-4eb4-882b-eb9d63b8f3c2 cb95db89-6165-43b6-9c41-5702bc5bf137 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Connect to Loop Start bcafef25-2c23-47ec-b9ef-d641bfb93224 true < < false c9b7f208-347f-475b-885f-7a4c65588465 1 2669 -2018 40 20 2689 -2008 Set to true to exit the loop 1e8dc351-76fa-46e3-95c7-39e8374a8c53 true Exit Exit true 0 2669 -1998 40 20 2689 -1988 1 1 {0} false 2 Data to loop 12b663a4-ef2f-4a67-a753-e47c1fcc8413 true Data Data false 0 2669 -1978 40 20 2689 -1968 2 Data to loop ff2f6ed7-b1ad-4798-8a36-7aabe52934e8 true Data Data false 0 2733 -2018 25 60 2745.5 -1988 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object b05af234-ce5b-432e-8b3f-32a94a964bbf Relay false 126337dd-1af0-4677-9f3d-c9aca13780b3 1 1440 408 40 16 1460 416 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 29387d88-3c9a-4bf6-bf27-d341223ee6f9 Relay false 9a3a2565-ca9c-4cba-a8f2-71893c185078 1 1525 150 40 16 1545 158 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object ec5f2614-0df0-4917-890c-da4bd44522a5 Relay false 57882812-a11c-41f7-9da0-24f2bf7b1630 1 3933 -140 40 16 3953 -132 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 76d86607-84be-4bd2-a5fd-b914901fb804 09130dc2-bf14-48a3-b968-ca16910a4892 02bdc090-95ea-42c1-8f04-b9126740fdd6 126337dd-1af0-4677-9f3d-c9aca13780b3 39e2e112-f2a9-4f7f-b3ea-47cac2e7027d 5 d74e7daf-f3ef-4a28-b630-edd99ca81fc1 Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object a9f9c005-baca-48d6-a9b5-c90641990a40 Relay false c9cede5a-3217-4818-a755-a317d4e40aca 1 3426 -149 40 16 3446 -141 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 3d3ed989-8005-4440-b88c-cbb6953144b9 Relay false 030f2990-06f2-466d-8c0e-2a414bd0aff7 1 2320 -1833 40 16 2340 -1825 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. 7eae606a-a783-4ca0-8496-6541254db4aa Scale Scale 3342 -278 201 64 3479 -246 Base geometry c7a84905-86a7-46ab-adb6-eea4e810d0bb Geometry Geometry true a9f9c005-baca-48d6-a9b5-c90641990a40 1 3344 -276 123 20 3405.5 -266 Center of scaling a00ed075-c064-4083-abae-0e3cc3c1c89a Center Center false 0 3344 -256 123 20 3405.5 -246 1 1 {0} 0 0 0 Scaling factor 002628f5-2906-42ee-95a9-fad0a1c5f8d5 Factor Factor false 86a4e16d-a85d-4541-a0e9-6f42c3488e71 1 3344 -236 123 20 3405.5 -226 1 1 {0} 0.5 Scaled geometry 2430dfca-1aa5-4c45-8fa8-e5c60471d7c3 Geometry Geometry false 0 3491 -276 50 30 3516 -261 Transformation data 0cee081a-94a8-427a-a7a3-89f45aef875a Transform Transform false 0 3491 -246 50 30 3516 -231 78fed580-851b-46fe-af2f-6519a9d378e0 Power Raise a value to a power. 61a7655a-5951-4110-a1a7-6cc34fe35e29 Power Power 3403 -216 85 44 3443 -194 The item to be raised 434ba44f-64bd-4863-bb54-3249720e8ca1 A A false 0 3405 -214 26 20 3418 -204 1 1 {0} Grasshopper.Kernel.Types.GH_String false 2 The exponent 9acf53a2-1544-4c72-bc5e-9543a45b2282 B B false 41b6d614-494b-478a-b642-89bab1e20b7c 1 3405 -194 26 20 3418 -184 A raised to the B power 86a4e16d-a85d-4541-a0e9-6f42c3488e71 Result Result false 0 3455 -214 31 40 3470.5 -194 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 41b6d614-494b-478a-b642-89bab1e20b7c Digit Scroller SCALE POWER false 0 12 SCALE POWER 11 16.0 3321 -169 250 20 3321.278 -168.6886 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 2f68ea2e-9807-4230-b9b8-8a2a4bd298d7 Relay false 2430dfca-1aa5-4c45-8fa8-e5c60471d7c3 1 3426 -299 40 16 3446 -291 a0d62394-a118-422d-abb3-6af115c75b25 Addition Mathematical addition 63e3cd47-332f-4710-9370-2870a1156c05 Addition Addition 1947 276 70 44 1972 298 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for addition b39c8344-dd4a-413b-9cb1-bfb05d85c2c2 A A true c53b33e6-0f3c-44c2-9c20-257e6e421dd6 1 1949 278 11 20 1954.5 288 Second item for addition 957f96ec-f7db-4c20-9b40-b43daf2844f0 B B true 29387d88-3c9a-4bf6-bf27-d341223ee6f9 1 1949 298 11 20 1954.5 308 Result of addition af407afe-bc69-44de-8820-633b511719d7 Result Result false 0 1984 278 31 40 1999.5 298 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 02bdc090-95ea-42c1-8f04-b9126740fdd6 Digit Scroller ADD LOP BEND false 0 12 ADD LOP BEND 1 0.00000000000 1480 -1122 250 20 1480.784 -1121.126 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object c53b33e6-0f3c-44c2-9c20-257e6e421dd6 Relay false 02bdc090-95ea-42c1-8f04-b9126740fdd6 1 1789 -1114 40 16 1809 -1106 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 126337dd-1af0-4677-9f3d-c9aca13780b3 Relay false cb929041-b122-407f-ad06-615145a3fc97 1 1776 -911 40 16 1796 -903 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division 39e2e112-f2a9-4f7f-b3ea-47cac2e7027d Division Division 1761 -984 85 44 1801 -962 Item to divide (dividend) 5e8c1812-dc27-45f9-a30e-ceadf53d3ddd A A false 9361e405-3817-4de7-9409-cb3eb2c5b242 1 1763 -982 26 20 1776 -972 Item to divide with (divisor) 4313f75e-d27a-4da8-b83a-08d7d112bfd2 B B false 0 1763 -962 26 20 1776 -952 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 2 The result of the Division cb929041-b122-407f-ad06-615145a3fc97 Result Result false 0 1813 -982 31 40 1828.5 -962 f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a GH Python Remote 7TwJlBvFlZrxnBrLxsZAslwdOcaa9VgemytxMmCNNJc9V2bGOMY4co9Ukjru6RbdrZlRMGCICYvXmAVMwhrDcjjA8kJscxoTYod7QxJgH0tgITziQDYhCS/mijmC99fV6m61NDfZfbt6TzPqX1W/qv5V/1f96qqIGssMIMU4Ap8Sj8dTDt8ZaTmTlJToINJ0SVVwUTeAcTH+VOIqvF0rEuNIw1XKWbGXF7VFMLgaQJ9/c3BFsGFr6KrKT8pP/spLv6/s1tCghIZwuRfKK3pTgCU+k4E7kJ7qy6YRLp7GOvaxsk5VGxBlXPJFgDYJpWarXiSjmIHivOyI58z4nAhKSIpkwCy6NTWNNENCOkeLv2UR0SD9VMHDe1fOybx21QtVNRGkxzQpbbDJ4yF6yjrFAcSfjm9pjaazRkpVohoaUA0U1Q0ptj4bTKaGq3tgOJhuOqcp/vg4NKxmKLWncXrByL4JI2edlTJwRZ+oJRGpeRI8/ht8DWhSdq6qDnByn3bqbWeXnwNzt3VVjSF53VT3xNLtYlbNGNa63hZNzaTzKk9vaQ21S/2aqDF6lTA2lNuqYkglrZclY2bNjwrpOhrol7PNGVm20u3sRqQkgbtGnXAOFa6GU4OnBuuD9XVCOCMbGQ01KChjaKJcJ3Rn+mUptgJl+9T1SGlQANdMjvicnGhivJUMS0UoA0zRTKaVtsW5DDo/Nn56Kh0IPbNyktPVj9ljkuEo+NZQmI0YGF5B4R4mXbh6WcvKnCLsWVkZWu4/qX1n5f4lHze9ddE0IN6oBujrJtIm9BK5rA6riiFKClW86XiimMNhNY7alDTlMG71X2UJTR0QVF2QBtKqZghp0Uj5vATYoom6nlLToBTBZlUGJTZrrdSRRifCCnxenzcmZ3QDadGYOpAWGoRkCimDwTA8qAroerBL6ZaUJFf9QG2wawiG5/OmRQ2eo3E1FsWdQ0srovxmzZKMuskofV4pITibS7qgqIbQCZ0u9XkF+MwVWhCdmGCorL7Q0irEGU5aK44SIshXdEjV1kOH0bikwVBwq6DYr+P/AfIAcAXIHnD0W1vr8yJZz/XZLMpyvxhbT/ukfWeAbIJKhYV3KABC2iajRhOEms5+86i9pn5tLW1DCABVJR3Q0AF+U5WUgImrTvAnUwupJVpILZG/tpaNsmivo0ZWjH5mUzeLuaAlxYQ2ramDUhzpgigwCK0sxLj4zGiKS4aqtasxkaPARq+Tfb20uFf6FlEIAUBPg34Nwbe6VbIIPTFTXgzqyhhWWA2p0qZj0TLt3/Q2RTdEJYZaMpJpJ9qvvjb9y02vdd1Qf9/qJ86eu21Gmx6KD+Ja8Q7QL7PxzA5R01OiDB3h5jkrWURvqzphkbAWV9Bib8gwNKk/Y1Bjay4BjWBfKOa5BHBzCMxC2ON5p9HjeT1U3i0NqmSKJ5PSKoDODvu6RQ16AA2DpU20WmovoUGera+hpMoz7FUU3hYnqwd8V8ef3lqyvzqy7+3jOnwLjn6ONST9ceuPG7oJg58SQFBJEzdxCrpyQ7n7rNt6rv5L53V3vPnlzRfNvtRG3KNd0OSR2LVSFxkc9SMIN2t61YwWQ/mL8yg58yWgfQVwZh/8P5DHmYcIZ9jiUMLMdd7isH3v66svf+Nw27699+/bs/7X7ba5lneLCpLthr+aYXIjeCAE+g4thISqCTGwuGDywXJiJVTigoGGDWFQlDNIdyX7oVtOePWZrb1du9//5W+WPRnZ7TKUPEJ73Kga01RZ7sFKjYHcPyAkpBTnwuVktBtDiFRic9kHw+fdzouo4CcgWFYkao4R2Ao29xhQC6zLwY23O/jIfdU8PjYDD98Cbq2H/3KjF3QcHOF2lLBrDAX3SMmU3cWi8D41bYXaheG465vDG7Q/NM4kRLQ7pZVsjhVhVYbZYxB2ZM/96MiRmogmDrUpcSlm8ceqMRBbNAuoA0RdkkFCTND03jSKSaKMvYOcn1jRa2hIHDCfy1ZpYjpnw5pVSnZT4JvFAUnOcqLXAF/ANdSETjRUxs0yJerGZUzOSwvJeRKKvui7o2vP8JUHfhBt/KNNuLznYKkU2iXd4eVgB72ygLAv6s6tMDK0FFRYODWkIy7kWC5iKVXVkYCdH1eZ331H1yt3z/tO6IpfTDtlx4yfbK7GY7DJHxbfKgzlC4Hp4xWYQZ6OlBHoqK0P6azNQMS8miapaRjPzeqtev3hnra+tnCo3W8bShUHV1mDoxIb6pLiqCv9TT09XT12vOUEVgRpaXGk1f5VoZ7Ots4WO9pKBi2CeFpxxBX+ts7mLjvWMgwqgrJsJAJEmhpXOkZaTmB5SEtMpOXFkVb5O7v6epv67FgrKDB/rA7rxYM3V+t1AKzXTvjuDjE9nFZIDz+97J6dRwfLGh8473Pbb093fN82lmmwUtsV0MtwzAqT1cRFDWdCfV0FW0xX+aCX1rQtEjMYzLl4uKm1E5+r2t6gtD/16peOtN30jYdO8P71T1flzSJPCQkwTwcd69GvVn+89D8eeaPj+k2ZJwLprp8XWo9GyZoDCyLYZfN40sRBYKwpGxdrZtEwLQq0AEmD9U0fK6OaYBFNZGQe7+UQsTBGMFKIFaK4MKDGMzLYUEkRskAE5rzrE2bv5IzCVSh63n3sxa8dmt16b/qML2w74f7zRqBfnoi4VBlJYJ49bcnpN81+qunGr168dvmeS11t+hgEZlkKBCYYdghMeSGBOfbglZHZS58N33L6b/bvenooYl8GZBZX5buPxeXkzRLeUgjohla7VOhmsa4o0DhRQMMoljFE8MDqBPA0SRGLOGO0M/C5hXW0dhBqr6P1gLU40MYrtYhrxsWFMXBIMKcHJc3IiLKAFPilKpj8eDVPSMNQ2J8V1pHqSxctWicEzN9QOYoRrqsNCm0JAQ2kjWydkJCApnyoZNuDyM4QgNUhXZjXHeprnTdhQf4/QiZXTdvg3f/EloqfNz/wiPeeR+94O+oueHkKlisZbyhWdBG8HiztZqviVIxLcaZpmTHrzF0l0EgI9KuwcIkKyEKY8EsnvAQ2KHSrt47EYdTM6IKChriBqxOGUkgRjIymAB9BUPq0DAoKKyRZzsOBUcTBWeDogftIQ8AhYkJz5jMfabMo62jCgv+/aa6u0nvXkXd2Ltlzd8d9718Wqt49+9t53M93HjBwSmS2vtFh7CvHJbOVjLZjldvHS/kKi20YCaOAoe0smqJlxBYRerM1GxZjygu8WcgMSFDoS6EsGA9ZFvqRIMbjlA24Iu2VhOXDRpCemQgQ1BJyamCJRFlWh7AphNoDuFU/xg7OQJzaJRXgGrdU5vahzgeiY1tp2dk2d4GDQm+m35wg3hNBw+JAGqa0TskMpLNBCJlFOblOSImDiPVLR46G07IUkww5Sych6TTEZHUGRUnGZl2QQfC1CWvU/3NhMrjgquuvP3T2m4f6Lgvd8M5fH5xzorjZVWvy9N0smBKd3wL6/k9Wna8aV0QwA+i2HsWjrqo/cjiwspMIlClg2MCKhjAE9lXQMzEwsTr46UD6sUjRhFVhakblKhp3fri79tHWkzvvPPTh8f9y2o8/KEbcPAlxlo8UKDx1yV9WLLvGaLr7yhWffv3E/cOTEVluca4duKPJPYE8qqWVn970EEMz2kPIHSeYZkpPw9B8XvYsq8kkGBl2Huk8pORRYVZnFQxpAJmxooxQmhwRsmcr1y3wZIoaKWoaGSI7MMh8DDV3/mkxXX0qnXOPFYH16HQFAjdDDra0RnuAfzDEDpBLMYna0SAyQ9smTVO1OmGVqClkwj4vdn/lKFAgKpOKDUISQaxpaAFGlTrBLKzjlAqy/bFa3D6ZJId6vAiatxNYwG+fn9+sHdShDkYYcPQONWIpCy66NdwKHpcM+EhpsbYJnJJhGLbhNHNYwD8vQCriRatWXyrMC7Bf5ynzAgOUWLW63+wl19LEm5tBio5Jh57WrDWhYAD4YGOpMREH881QWSoHHoPP29PV1Vf0aJiJMUaakGQUsGOsxSemWjobi+pIG0Qa4ObYyGkrRl8n+GkTXEWKoWA6S/se5xm7zztX6EWGxVvG1jDc3tXbFMFnyGS5lKjbnJA0WDbBicWNiFuOkxxEWfoW2E5EvAxqz7jV9XkNLctOlFmuC8t8wZsjGShHwzGUNgRsLIigF6kMk/LTcflpJXm9aTihDAYQqKXzWSVKBj27sk2KPZHYGGkD4C5grcR6h/ld7/MOpYAnBfrGnXd1djaF+/DWM8ZRuB4MEldicyH2JrCYHYbT7hY0CIvNY3o2AgDVW07fc5Tjn2RqSTobHRAVEQtuNIqGJSMaDfw9mDmI+mNRSUmoAX7ojj+MuE3kHxDBgS8NligHGRXJC5KdFzKlhIKAvTN/OMcLGSWI4ykq8Be4ooM3hncgyI4ZESycp6EhHIZhFYRFA4uX34ERLIMGo8U1LEWWwQBtbVqRnwDCP7a8klA8brfHAWZ86/j0LH1ooqQjgdUnIhzIVSJpKKAvS01e04kVEJyu7qZO/9JRsCQniLnKNumAWgUXIgdj7Pamzl7Id1oa+A9HOZ60mjEaFtc7CvDS1YAJnYeQ2f6G3BJlr2E5am+w/K5z5TCZNLF2DtVQMDejVsksRExCdMwqXAlsoZFJJLi3KMRARGE9i6WYWUpnQfJ5f2B6eQYf1wdAEMKrMV7QEhmFiju2RCIJvOI87qH1TaQmRovBAlQ9iBxEkl3tXIwmMSdU0FQQJpozxCyNi/+6xg/4/WuhB/jPJwkSnjPRGISHiGcm8aHpRS2Ra0fQkHUDvwLwrXWwPmc38KrrqMFsVRtxeqxLgY3VY7F++DN6C4A/I1iB/Ab4Q/0z97L54JjL1Joxb45F4f4LLvRjYjOWUvUMzg9St8WFePjjABHLk2/su5rdqPe3JkSPdaIQousQeiOI/2UVbwxkFIjRybGlnJ0/2onjrLqRLCpbvEbhVeSM6VwSowyiPF8GF1oUxSLPFhLGwSEvqB48H65AFaqqtNKYxL3gkjzioo7dpTB4xrBkD4qaRPZByKFBP4qJ+ByNe6gCSYnQ2XEq2UHCwgP1gCRIwDaSeob2iBY70rnB0eiF+N1k/H6IC3ESJN8MMo0fiCdoCFcHt1ngqU9R5uC6Mo/nt6WumYN/hLj4lPLRZg56Rp85+HcbK9dvTP4wcsuivZFdc35618QyB/Pi7fyNh5ZWq08w2lS1P4c9nsMhj+dE+P9coyNVbWN1xOO5vTE/iZAc2nhckwjxoWQlpZKZK7jh6o82vXTSvR3/+OsLXl0ev+5WXl4yQnnpCOXTRigvK1DuluSIv3lJjp2XvXZW71N/WLbpmfs2Vh3qesGswEfuzII0K5QWqEApZmZJ1rBdmZkhvMnapyEUIntZphS4acSxLH1SwqhMj859M2ve9hU3PumdG97z1gX//Kr/ld9O+ESuZBbtnUwhN1i+3+nrTcE8smnUKim5LPkSx66X85yw4K4Xx5TbsjrtuFPOfOrt7q4H7tz7/LuPf3n9aAX9EAh4WSPYgkacOevMyTwCpXWNFuaUjJc5s2zMAQPqzpePl9248I0NNSvuVe756e/KOobGedY0KdxwnnuNgRvvzy9/cdf9H3RekY5+99PQvNVj4UZfUW5ssHID45nORlFhn+aYGXSMjUHcf3Vl0t5rdx1f/uKh8H3b7rnu0+2VX5ngIUERZpWMmlnOg4vPSHWuKcqs263MmjZe1TnOYddYOOnOm51Hb923cOnl4Wufq9oqK4fvtfGm2mycxx1L0ZQokzNx9DPiz76i/PmFlT9l4+XP5238GTFb//Rlh9rPePl7jZd+bfHDv19wt93E1RTL0q8plp0/KVxyprR/Rlw6WJRLHzSO5RLFGX0pxDKJiIOtUN+aZlhwt57svSEcxwk62cd3z/B35jeON21yghcnNk6P0EUaW5sypzd68zGRu+5qttGoZAQanWi/aGKPZNyl1nkgN7mnf5NBoE1FCHTkyPdtBCodgUCz7QSCcNWdKvpH4tXXRB5s3izPvvgbL81Z6HBX0lkXdwWAUzL/J9n8q1wF5HeN7NCTDMLzt792+Z8leemj+MDK73ZYiRVXj+EdA7YtAVJEMvRy+3jkke9P5GEOiuk0UuIB/wX1F+KNgxjfiZgPgPlr/Zb9KI6rlm9ry0ixwvVavOFSX6gncug2RfH6DvZ1idcfAZa2lU7BTb/E6oPL33yot3Xr3j+dqt8xfMP/oJt+y4Ig9XWwQJwVdrvpF4HSpS43/Xg+uUuQTq5qjxCkj/smoCPEnSy/nUe95q4WpaH77R1/887+JcKK3Uuu2LB62y7dxpvpViHPY429dEpc+FHnfOQ7HysvPnz5+WveC21+6wsvbCtRLxmlBB0Isvzxa9xuJL5+JpGgsTgfgn3dyLdDrmxxZsVPRSL+RO9utjBK3eNGKaGHUIqtMDWeAulZi3f2PLFm178237lz5jOPXvT+d+23hchLFuyrB3fHYTQae4EGFwLH9T/4t8qNISeFhCTGi4/srcl27AZ6aVuES1/k5ZZrszd9tXHXP/yq7JbbbngDivhu1iUbf7ghkOrs3HP5vOf/fda6MBTxfayHA5/ueGa2J/ydtq63P6kMbIIivvu29qIdSCqbG/rxhaErPi699ZWqtkjURv6yQjb3B3Pfff6Y5Ucvu/yTD75eN5D82IVO+RdLHYz0cEZSnkwvxJOV8nkXNx+uWr5j+7OvBs578lP7RhgW534wKna2+DiiRlXOXesqDYtcIPbs2B9qLz328dJwPwftzzwapqCYFXTrhmoAxa0NMciNldNDwvkZfH0V39A1717ikjkdUkxTdTVhCL2iogu9SJMSrpR1MrmizRBlKWZqifvs87cBeYnjWufToTLrrduzbLv+7AiMJXMGfd6D114jdEsQhSAhnBmUZBl+63XCkvrFZy5cUr9kyehUc8+O74XaG497/L0LHg7ffG7a4fxxTjAx8H3mYnB+e4VVDGq2bQlTUMwKOnjyJ485xACDpkoMnAo9yWKw0S4Gy3qQjER6/IfvsuAj7o62Pgi7YkjBB3xJyUhl+oPg/i1KS3JMyyyyp0uNXhDO31L5+LLtl4U9Ty9wEQRMeCYIMz5zQfjZg+8/ZhGEHx3zuQgFxawgzzlNBxyCgEFTJQhOGz3JgrDOLgjPTe/JKPTdAuwIkBwvivjmEziosFybN6GUJBCXXAnxeWHVkpKKnn/LD9q6ZvJyV1AP4hAmpCVJKlzu8DYGjrvzEhYWSmueH39XUzpLq+MsviBHMIGbXI50pPFd67IjmegdLzu2sV744q3Hd8nH3vc4bvzYEYzv/o8j1YlfBuLgcV+2cGQzjPLmxcgZOCNdw3D2O6Y7GfbGY7qgYW86ztsaecxwubqR00OeGk14Q6a4Zj69ID+/TphPLuDjH/h2P/7PcqPxT/J2AvyDv/5g/tpaR4ZMO80MFmgX7L5xgqkmSXEW2kDhWExPXplSlOlmRpc5AeubkpgtWUVB+J1QJOE8a/Zow+XI+skh9nl7SD5lztxBMMaR2+/Kg/iB3SJEsu4T58hrz/Cwyj9/gYbDJlNFyNkEsJ4BnHdoTfmgoQfgwBvV9AGmxhLgmCC7ErGbExFEAKqTm1Sj9gx+dubhx168fk5EWPhhON8zwCsx8wxmFvIMir8JAWY51hs1S4oQoIDgTPS6zDi6dPUbfpL4876PIluaHlzc/qOGi18+fbz7vo4dEOd28qS8T8G89fLf Connects the Grasshopper Python component to an external Python instance. iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAWJQAAFiUBSVIk8AAABAxJREFUSEu1lXtQVGUYxo+m5agV02XGnMzJaTIrFHC5o2uywKpclpsuYqkpxB2UKKcstZtaCkWmKxJbUo5NpUSFhYWpeAsqEy2hbAmJ7U+Lohn/eXres+fAnmWt/sh35jfnO9939nne93vP+Vb5P8KelQ0dberqxVUx8ieq3Y/w3PmJkKLahqCCnQjKdwzj3vzqS9PzHA0zCmqCtMfV8DIaoV1Hqgv+IqzsjcGM/JkIgbmObi7rYpKt93ikNh4e5lJnQOSjbw0uhhTt8msgcPkaQRPzHo++ssG6/QExa/YisuJthJfXI5TVzCyuRbCfLePjY3Q0weu0q37/n0It2VRSh5BCYzWcv5EEaMj4BnK9htwrSuKWQ7b5L35+ybqpGfHPH4DlmY8wd/0HMD+1D7OeeBfRj2vVrN6N0FKnoRr+fAJ+LYfOqabsVM7dSm4hNxNFSa5qPZ1UeRgLtrRg3uaDSHjhE8Q9+zHmbmjEnKf3Y/aT7yFmzTuIemwPIrhl8gKYSl5HcGGNGEwZMliN387nNHPuDjKRTCCKkvbaKdiqjyO56igSt34BVgPrxmbEsZpYVvPAugaY13pVwxcgfNWbMJXWYfPWFeWquLsM+KUIA65l/ZS8m9xJbldSnN8EZO78Cunbv0TqqyeQ8kor1GpeaoF100HEsxqLVLPep5qKPQjKqaz/rnW5A30lFC8ALuYAPy+TqgIHTZbSwF77LRbWfI2MHW1I23aS1RxDUtURbtkhbtlnSNj4KeKea0Lshg+1at5HaNGO3RbzpJgBV2E/evOAnhUUXwq4FotBMLmP3EUUZbHzLLLqzmDRrtPIdLQjnVuW9HJro2Xt3vlcvonIXk4iU8hUq3lyRFN9StkfXbmduJhL8eVA94PAT3bgQroYmMh0cg/xGOhINRnb2xrdHXn2y33FPUMNHGok+oqB3nxuyUot62yKLwR+TAW6ksQglMgxcr/oGwwEW+Xh+OHCRGskeh9h1g97snZlMesM4AcbxRcA5+N1gxAyQ/QVu7OjwduAU2OHifs0Et1LmPUiZp1G8WSgcx7wvQX9bVFd/L0YzCRioijZzo45PgbjB4XdqyguWeuNfEhtJC5kaluSyKwTKB6Lgfbw/n3VUyv4e+mBGMjVEHK8Xks8Bu5SLWtPIzkfRSJJBAn3IYxI5oIIy1XmDCEGo8n4f2skOq3qlvBZEdHRDXRxMTaEbjDunxrJdVUE52bJ2LcKHbmXSg0hp+YoMvaya0nPlRrJddmCMJyNlrGI6Hib6RhCDORPY0x7ozXmzzNpB/7qsv3u3Uicmw0RFtwtpiN8Vvri3Ru9AqlSGm0I9dwn0uhxRL7i28hkIp/9NCLnjLx+kp0IR2tXMRBhqU7W+aEpgX8Dlwgy+Wtmo1kAAAAASUVORK5CYII= 75ac1cb6-ddba-4be7-bc22-ce4ed6a337b3 true GH Python Remote GH Python Remote false MIT © 2017-2022 Pierre Cuvilliers, Caitlin Mueller, Massachusetts Institute of Technology pcuvil@mit.edu Pierre Cuvilliers https://github.com/pilcru/ghpythonremote 7 09648867-3bd2-4cea-83f0-76b1a57fd716 1e6bd163-b731-437b-a13c-5a6b3f78e28c 26fb2b4c-331e-4a42-ac74-de9f65f1b30e 4280c996-993d-4511-91d1-f3863d846d20 8698b942-1698-4f4d-9a58-9d7b0a9b7d89 9d7b8e46-02a5-49e7-9313-04efa45c829f ea17f802-dbae-4d5b-8564-d94bed84bc2f 29b0f9a8-48c2-4e1f-a8f1-f91b9f34bef6 a4f2ffaa-b132-4dad-b4f5-854109b01283 c74c6e9b-38dc-49ff-9e5e-b91c0afded8f baf066c1-44fa-458c-b731-4cbc3d7fd935 d6c3f352-f151-4812-b370-3621941cb55c e53fb9e0-54f1-4185-9bf2-fdb7141d618a c5bf0a7c-068c-46cd-b6bd-0ab2c2a7ee5f -854 -47 169 84 -788 -5 3 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 4 3ede854e-c753-40eb-84cb-b48008f14fd4 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 true location (str): Path to a python executable, or to a folder containing `python.exe`, or the name of a conda-created virtual environment prefixed by `conda://` (`conda://env_name`). If empty, finds python from your windows %PATH%. ea17f802-dbae-4d5b-8564-d94bed84bc2f true location location true 0 true c50f682b-1ba9-4564-af2e-d70bf4b32a2e 1 37261734-eec7-4f50-b6a8-b8d1f3c4396b -852 -45 52 26 -826 -31.66667 true run (boolean): Creates the connection, and imports new modules, when turned to True. Kills the connection,and deletes the references to the imports, when turned to False. 1e6bd163-b731-437b-a13c-5a6b3f78e28c true run run true 0 true 0 d60527f5-b5af-4ef6-8970-5f96fe412559 -852 -19 52 27 -826 -4.999998 1 1 {0} Grasshopper.Kernel.Types.GH_Boolean true 1 true modules (str list): List of module names to import in the remote python. They will be added to the scriptcontext.sticky dictionary, allowing them to be reused from other python components in the same Grasshopper document. Submodules (for example `numpy.linalg` have to be added explicitly to this list to be available later. 9d7b8e46-02a5-49e7-9313-04efa45c829f true modules modules true 1 true 70a78ddd-7690-40ce-b9c4-9546b8e34af5 1 37261734-eec7-4f50-b6a8-b8d1f3c4396b -852 8 52 27 -826 21.66667 Console output. 26fb2b4c-331e-4a42-ac74-de9f65f1b30e true out out false 0 -776 -45 89 20 -731.5 -35 Names of modules that were successfully added to the scriptcontext.sticky dictionary. 09648867-3bd2-4cea-83f0-76b1a57fd716 true linked_modules linked_modules false 0 -776 -25 89 20 -731.5 -15 The object representing the remote python instance 4280c996-993d-4511-91d1-f3863d846d20 true rpy rpy false 0 -776 -5 89 20 -731.5 5 Useful import statements to use the imported modules in your scripts. 8698b942-1698-4f4d-9a58-9d7b0a9b7d89 true import_statements import_statements false 0 -776 15 89 20 -731.5 25 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 70a78ddd-7690-40ce-b9c4-9546b8e34af5 true Panel false 0 0 numpy scipy -1032 20 160 57 0 0 0 -1031.022 20.13824 255;255;255;255 true false false false false false 410755b1-224a-4c1e-a407-bf32fb45ea7e 00000000-0000-0000-0000-000000000000 GhPython Script import rhinoscriptsyntax as rs import scriptcontext as sc import ghpythonremote from ghpythonlib.treehelpers import list_to_tree # Rhino 6 only! np = sc.sticky['numpy']; sp = sc.sticky['scipy']; a = np.diff(x); a = ghpythonremote.obtain(a.tolist()); a = list_to_tree(a, source=[0,0]); GhPython provides a Python script component 132 132 550 555 true false false 4c0c980d-47a2-4a63-962a-8fcae74b2a18 false true true GhPython Script GhPython Script -1006 -147 56 44 -983 -125 2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 2 3ede854e-c753-40eb-84cb-b48008f14fd4 8ec86459-bf01-4409-baee-174d0d2b13d0 1 true The x script variable a2b60e04-e911-43c9-8247-2e8bda5a149f true x x true 1 true 0 39fbc626-7a01-46ab-a18e-ec1c0c41685b -1004 -145 9 20 -999.5 -135 1 3 {0} Grasshopper.Kernel.Types.GH_Integer 4 Grasshopper.Kernel.Types.GH_Integer 16 Grasshopper.Kernel.Types.GH_Integer 256 1 true Script input y. aeae3f02-286a-41d4-b690-2a9cf199e7eb true y y true 1 true 5bb3fe24-8511-41f9-b837-d4cd065536eb 1 35915213-5534-4277-81b8-1bdc9e7383d2 -1004 -125 9 20 -999.5 -115 The execution information, as output and error streams 5fb368ad-087e-47d6-a13e-4dc915a8fcd1 true out out false 0 -971 -145 19 20 -961.5 -135 Script output a. 380281b2-1d3d-41a1-88a6-4a41497630b5 true a a false 0 -971 -125 19 20 -961.5 -115 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 97b3fda7-1341-4468-be84-fdbbed594296 true Panel false 0 09648867-3bd2-4cea-83f0-76b1a57fd716 1 numpy -668 -28 129 20 0 0 0 -667.8015 -27.93925 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values ed12c36c-073f-4d02-8ff7-7cc9a9ed9858 true Panel false 1 26fb2b4c-331e-4a42-ac74-de9f65f1b30e 1 numpy -716 -356 197 232 0 0 0 -715.8921 -355.9852 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 8485a14d-1518-4c55-a657-271a64d0aab2 true Panel false 0 4280c996-993d-4511-91d1-f3863d846d20 1 numpy -665 4 129 20 0 0 0 -664.5677 4.971985 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values d19037fe-4f50-417f-8eb6-b1d3044056c2 true Panel false 0 8698b942-1698-4f4d-9a58-9d7b0a9b7d89 1 numpy -663 28 129 20 0 0 0 -662.9006 28.39899 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 376b5220-e8b6-4e24-a5d7-8f85d4f53125 true Panel false 0 380281b2-1d3d-41a1-88a6-4a41497630b5 1 numpy -894 -152 160 100 0 0 0 -893.5811 -151.993 255;255;255;255 true true true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 55985064-75aa-43c2-a62f-1e936b1d63b0 true Panel false 0 5fb368ad-087e-47d6-a13e-4dc915a8fcd1 1 numpy -904 -269 160 100 0 0 0 -903.6221 -268.92 255;255;255;255 true false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 5bb3fe24-8511-41f9-b837-d4cd065536eb true Panel false 0 0 np.diff(x) -1206 -112 160 100 0 0 0 -1205.331 -111.1691 255;255;255;255 true true true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values c50f682b-1ba9-4564-af2e-d70bf4b32a2e true Panel false 0 0 C:\O\O_ERAWTFOS_O_SOFTWARE_O\O_SMARGORP_O_PROGRAMS_O\O_GNIMARGORP_O_PROGRAMING_O\O_NOHTYP_O_PYTHON_O\O_81_7_2_O_2_7_18_O\ -1033 -41 160 55 0 0 0 -1032.483 -40.34236 255;255;255;255 true true true false false true c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 75ac1cb6-ddba-4be7-bc22-ce4ed6a337b3 70a78ddd-7690-40ce-b9c4-9546b8e34af5 4c0c980d-47a2-4a63-962a-8fcae74b2a18 97b3fda7-1341-4468-be84-fdbbed594296 ed12c36c-073f-4d02-8ff7-7cc9a9ed9858 8485a14d-1518-4c55-a657-271a64d0aab2 d19037fe-4f50-417f-8eb6-b1d3044056c2 376b5220-e8b6-4e24-a5d7-8f85d4f53125 55985064-75aa-43c2-a62f-1e936b1d63b0 5bb3fe24-8511-41f9-b837-d4cd065536eb c50f682b-1ba9-4564-af2e-d70bf4b32a2e 11 4b1d4ac2-5ff0-46f8-b585-de8d51bad496 Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 1d0bf2e0-f67d-4a2d-a256-b3237aa6cf7f Relay false 59c3c505-15cc-45e9-933f-c8595f7093cc 1 1790 -1792 40 16 1810 -1784 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 6c198fe6-a7da-4910-b0f4-013e5e53246b Panel false 0 0 0.5225 1349 191 112 51 0 0 0 1349.947 191.5142 2 255;255;255;255 false false false false false true 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers c6892fb7-806c-4f25-903a-7be11de3222c Digit Scroller INCREASE BEND PER SEGMENT false 0 12 INCREASE BEND PER SEGMENT 1 0.52200000000 1229 150 250 20 1229.938 150.5098 75eb156d-d023-42f9-a85e-2f2456b8bcce Interpolate (t) Create an interpolated curve through a set of points with tangents. true fd02f19c-db64-4ebe-a5be-c9d6426c3cc4 Interpolate (t) Interpolate (t) 1508 -798 244 84 1700 -756 1 Interpolation points c67aa571-0085-4da8-add6-4c863de2d961 Vertices Vertices false 2a8e46a0-9509-4aff-8701-b3c411851f02 1 1510 -796 178 20 1599 -786 Tangent at start of curve 8c365f4f-b6a9-4653-9037-6e5e9161b633 Tangent Start Tangent Start false 0 1510 -776 178 20 1599 -766 1 1 {0} 0 0 0 Tangent at end of curve bfcb358b-5b29-44d4-80d3-01a0fc64624a Tangent End Tangent End false 0 1510 -756 178 20 1599 -746 1 1 {0} 0 0 0 Knot spacing (0=uniform, 1=chord, 2=sqrtchord) efa79891-ad36-4a87-bf24-7621ed73878b KnotStyle KnotStyle false 0 1510 -736 178 20 1599 -726 1 1 {0} 2 Resulting nurbs curve 1b25de69-3391-465f-8bb6-3e2421d1931e Curve Curve false 0 1712 -796 38 26 1731 -782.6667 Curve length fa097fae-a47f-4115-a5cb-d8b063fc55d3 Length Length false 0 1712 -770 38 27 1731 -756 Curve domain e21f6083-b154-47df-88dd-3cf3602451a2 Domain Domain false 0 1712 -743 38 27 1731 -729.3334 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true 36d664f0-be9c-49a3-913e-9df35b6d3c90 true Format Format 1748 -502 130 64 1840 -470 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format 08ced27e-543f-4845-9305-73ca37369f48 true Format Format false 0 1750 -500 78 20 1789 -490 1 1 {0} false {0:R} Formatting culture 91bbd389-e9ee-43c6-8302-c1254947bf35 true Culture Culture false 0 1750 -480 78 20 1789 -470 1 1 {0} 127 Data to insert at {0} placeholders 73533767-2d78-4099-9fa0-97a4171f8075 true false Data 0 0 true 9bfa77bb-a647-437e-ae62-842d46b2a2f1 1 1750 -460 78 20 1789 -450 Formatted text a9aa5286-08c4-4a0b-a113-39bf4309d9c6 true Text Text false 0 1852 -500 24 60 1864 -470 dde71aef-d6ed-40a6-af98-6b0673983c82 Nurbs Curve Construct a nurbs curve from control points. true d729cb35-da35-401f-884b-df9b964d0415 Nurbs Curve Nurbs Curve 1781 -806 121 64 1850 -774 1 Curve control points e1befaf1-4e96-42db-996b-96733961df81 Vertices Vertices false 2a8e46a0-9509-4aff-8701-b3c411851f02 1 1783 -804 55 20 1810.5 -794 Curve degree 9b3d8450-0061-4391-877a-401ea4f18828 Degree Degree false 0 1783 -784 55 20 1810.5 -774 1 1 {0} 2 Periodic curve 8dc49f6c-26bd-4475-8288-c87dd38a500f Periodic Periodic false 0 1783 -764 55 20 1810.5 -754 1 1 {0} false Resulting nurbs curve de4cd356-ac2d-465c-8792-ed49b1a320ab Curve Curve false 0 1862 -804 38 20 1881 -794 Curve length 13a0c64a-56d1-479a-8497-fb3a58287c09 Length Length false 0 1862 -784 38 20 1881 -774 Curve domain dbdd6ca3-8fc4-478a-8ad8-bea60772301b Domain Domain false 0 1862 -764 38 20 1881 -754 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression FORMAT("{0:R}",O) true 73b9379b-ba0f-44db-a4f1-d3f1fbde17a0 true Expression Expression 1723 -409 182 28 1817 -395 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable c99539cc-3838-4b21-9c71-526a152838f9 true Variable O O true 9bfa77bb-a647-437e-ae62-842d46b2a2f1 1 1725 -407 11 24 1730.5 -395 Result of expression 93bd0b97-ebfe-4620-96d1-2ce8f30c0ea8 true Result false 0 1897 -407 6 24 1900 -395 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers e63690dc-c7af-4f9c-ab2c-74ea0373d998 Digit Scroller false 0 12 1 0.12250000000 1890 -1328 250 20 1890.041 -1327.876 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 9a3a2565-ca9c-4cba-a8f2-71893c185078 Relay false 16ae1b43-17d1-4aa8-9af1-2c8bf4441136 1 2209 -1394 40 16 2229 -1386 a3f9f19e-3e6c-4ac7-97c3-946de32c3e8e Fit Curve Fit a curve along another curve. true 445f48dd-dadc-4acf-95bc-e792a2aa385d true Fit Curve Fit Curve 2199 -812 171 64 2326 -780 Curve to fit 2e60f70b-db67-470b-bf31-c0da56cd5db4 true Curve Curve false de4cd356-ac2d-465c-8792-ed49b1a320ab 1 2201 -810 113 20 2257.5 -800 Optional degree of curve (if omitted, input degree is used) 71aa7d68-55d2-444a-9391-3e3a8596ea02 true Degree Degree true 0 2201 -790 113 20 2257.5 -780 1 1 {0} 5 Tolerance for fitting (if omitted, document tolerance is used) e4cefec2-09c0-4d8f-895a-c4033afe8efb true Tolerance Tolerance true 0 2201 -770 113 20 2257.5 -760 1 1 {0} 1E-10 Fitted curve 85a36b3c-252a-45cf-8ae5-dede823cf763 true Curve Curve false 0 2338 -810 30 60 2353 -780 9333c5b3-11f9-423c-bbb5-7e5156430219 Rebuild Curve Rebuild a curve with a specific number of control-points. true 2bba493d-2741-466c-88ce-8d9b459b2418 Rebuild Curve Rebuild Curve 1767 -1568 118 84 1841 -1526 Curve to rebuild 29b03cc6-3bea-4ebf-9d97-7947c1f32d3d Curve Curve false 04c74da6-9a7f-43a4-9219-a0080f87dff0 1 1769 -1566 60 20 1799 -1556 Optional degree of curve (if omitted, input degree is used) 3f32f1c2-217b-4393-8d4a-14d9ef2a46ca Degree Degree true 0 1769 -1546 60 20 1799 -1536 1 1 {0} 11 Number of control points af2dc92d-6172-4ab0-b4f3-5dddc5e5cde4 Count Count false 1ee0839c-ed44-4dd6-93be-ffb7d7b7b13c 1 1769 -1526 60 20 1799 -1516 1 1 {0} 10 Preserve curve end tangents b5890865-b7a7-4b13-995d-614d97a60035 Tangents Tangents false 0 1769 -1506 60 20 1799 -1496 1 1 {0} false Rebuild curve 14a7862d-3527-40de-a247-8fe7a9af3b78 Curve Curve false 0 1853 -1566 30 80 1868 -1526 1817fd29-20ae-4503-b542-f0fb651e67d7 List Length Measure the length of a list. 7110f5fc-2c75-4e94-98ca-15f134b0439b List Length List Length 1971 -512 81 28 2004 -498 1 Base list 6dc2425f-5af5-4451-a2cb-3a787444264a List List false 216a7a8c-cbc8-459f-ba6d-1c819860a74f 1 1973 -510 19 24 1982.5 -498 Number of items in L 1ee0839c-ed44-4dd6-93be-ffb7d7b7b13c Length Length false 0 2016 -510 34 24 2033 -498 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 74d2359a-081d-4cf4-abaa-91f052eb5720 Panel X/Y false 0 86d1677c-49bf-49da-8fae-553310fdb9b4 1 1675 -1161 97 40 0 0 0 1 255;255;255;255 false false true true false true 6f0993e8-5f2f-4fc0-bd73-b84bc240e78e Kinky Curve Construct an interpolated curve through a set of points with a kink angle threshold. true 017bfd3e-5659-4033-b233-dbc31f07186c Kinky Curve Kinky Curve 1760 -624 171 64 1879 -592 1 Interpolation points ca9961de-ea22-4961-970c-11a195f48aca Vertices Vertices false 2a8e46a0-9509-4aff-8701-b3c411851f02 1 1762 -622 105 20 1814.5 -612 Curve degree b8b35f00-45d8-4339-994f-823615eb5f02 Degree Degree false 0 1762 -602 105 20 1814.5 -592 1 1 {0} 3 Kink angle threshold (in radians) 02ec224a-a443-4bc0-a338-1d4f40be45d0 Angle Angle false 0 1762 -582 105 20 1814.5 -572 1 1 {0} 3.1415926535897931 Resulting nurbs curve 769f5c7a-cc1a-4c63-9511-6207177c86cc Curve Curve false 0 1891 -622 38 20 1910 -612 Curve length b86341a0-7bf7-4758-a1a2-2428824749d7 Length Length false 0 1891 -602 38 20 1910 -592 Curve domain 30e0d212-44f3-41a4-a611-8fc2546d147c Domain Domain false 0 1891 -582 38 20 1910 -572 9333c5b3-11f9-423c-bbb5-7e5156430219 Rebuild Curve Rebuild a curve with a specific number of control-points. true a8b22a6f-742f-47e2-9963-6ad9b96e34aa Rebuild Curve Rebuild Curve 2075 -855 118 84 2149 -813 Curve to rebuild 14a4ca8a-9163-498d-b90f-80f2292697bd Curve Curve false 769f5c7a-cc1a-4c63-9511-6207177c86cc 1 2077 -853 60 20 2107 -843 Optional degree of curve (if omitted, input degree is used) 12c4fb1c-7a01-471e-abc3-92e54dbeb849 Degree Degree true 0 2077 -833 60 20 2107 -823 1 1 {0} 11 Number of control points 73ff677a-4f1e-42ed-bb20-0a6f7bd5de73 Count Count false 1ee0839c-ed44-4dd6-93be-ffb7d7b7b13c 1 2077 -813 60 20 2107 -803 1 1 {0} 10 Preserve curve end tangents 2a0024be-6843-4a99-af8b-ddec9ed4fea8 Tangents Tangents false 0 2077 -793 60 20 2107 -783 1 1 {0} false Rebuild curve 78bd0f39-342b-4624-9183-543ae151e1a1 Curve Curve false 0 2161 -853 30 80 2176 -813 78fed580-851b-46fe-af2f-6519a9d378e0 Power Raise a value to a power. 4dad5c2c-ef75-4296-a6f7-691d7a419f3a Power Power 1135 -957 85 44 1175 -935 The item to be raised 71cb0ba6-f714-4fa7-ae7d-0666e527b2d6 A A false 0 1137 -955 26 20 1150 -945 1 1 {0} Grasshopper.Kernel.Types.GH_String false 2 The exponent 71950e45-1f09-45fa-824f-f5ebcf1209ae B B false f6cf21b3-c1ee-4f8e-8709-c9e187a21900 1 1137 -935 26 20 1150 -925 A raised to the B power 5c99578e-711f-41a1-bc41-2c117a6fccc7 Result Result false 0 1187 -955 31 40 1202.5 -935 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers f6cf21b3-c1ee-4f8e-8709-c9e187a21900 Digit Scroller Digit Scroller false 0 12 Digit Scroller 11 16.0 988 -1047 250 20 988.5596 -1046.289 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true 42f1a51b-f9dd-42cd-a45c-0a262776138d Scale Scale 1289 -700 56 64 1325 -668 Base geometry e3a6cc6a-c416-4d81-98d9-7cecf6fbc78b Geometry true 0 1291 -698 22 20 1310 -688 Center of scaling 35cd3091-f679-42d2-965c-8640c88e9741 Center false 1b7ee8e2-b82b-474a-a1d4-8b7d7e3407e8 1 1291 -678 22 20 1310 -668 1 1 {0} 0 0 0 Scaling factor 21c801ff-c71d-488e-b615-56317fa52785 1/X Factor false 5c99578e-711f-41a1-bc41-2c117a6fccc7 1 1291 -658 22 20 1310 -648 1 1 {0} 0.5 Scaled geometry 8f7a15d8-691b-4654-a803-11ea0a3b343f Geometry false 0 1337 -698 6 30 1340 -683 Transformation data 80a54a27-cd01-42b5-95a4-07b1c0cdcf21 Transform false 0 1337 -668 6 30 1340 -653 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true 1b7ee8e2-b82b-474a-a1d4-8b7d7e3407e8 Point Point false 0 947 -898 99 24 1034.362 -886.1389 1 1 {0} 0 0 0 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true 8b71bd9d-d0a2-4d95-9d30-78550069a9f1 Scale Scale 1196 -688 40 64 1216 -656 Base geometry c3a1c7bb-7da2-4757-a095-7367f461b4fa Geometry true 9bfa77bb-a647-437e-ae62-842d46b2a2f1 1 1198 -686 6 20 1201 -676 Center of scaling fb3e8bfc-25ab-4d58-b536-7fa5903679a2 Center false 1b7ee8e2-b82b-474a-a1d4-8b7d7e3407e8 1 1198 -666 6 20 1201 -656 1 1 {0} 0 0 0 Scaling factor e3ffcf02-5b54-4c38-ae26-f27ab900cc9f Factor false 5c99578e-711f-41a1-bc41-2c117a6fccc7 1 1198 -646 6 20 1201 -636 1 1 {0} 0.5 Scaled geometry bdb8d245-0941-4238-a03e-54543e5d0284 Geometry false 0 1228 -686 6 30 1231 -671 Transformation data 5d811c6b-463b-4b9b-92a4-d5725246a41f Transform false 0 1228 -656 6 30 1231 -641 9333c5b3-11f9-423c-bbb5-7e5156430219 Rebuild Curve Rebuild a curve with a specific number of control-points. true 587dbe12-4b51-4486-9ca6-2ee2f89942bf Rebuild Curve Rebuild Curve 1938 -1579 118 84 2012 -1537 Curve to rebuild 3fa15e6c-aced-46b4-a177-714669d30d9f Curve Curve false 14a7862d-3527-40de-a247-8fe7a9af3b78 1 1940 -1577 60 20 1970 -1567 Optional degree of curve (if omitted, input degree is used) a23d7f91-dea9-400c-a488-1c8b12056518 Degree Degree true 0 1940 -1557 60 20 1970 -1547 1 1 {0} 11 Number of control points 16bfdfeb-5b0f-42f2-91bd-3aaf134bf4dc Count Count false 1ee0839c-ed44-4dd6-93be-ffb7d7b7b13c 1 1940 -1537 60 20 1970 -1527 1 1 {0} 10 Preserve curve end tangents d7c69a56-b989-4c71-b823-db8f85ef9881 Tangents Tangents false 0 1940 -1517 60 20 1970 -1507 1 1 {0} false Rebuild curve 12d0632b-ec30-48cc-9aa0-33df21b7db9e Curve Curve false 0 2024 -1577 30 80 2039 -1537 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true fdf0a2c7-b060-4288-86f5-5c3fe3253fa5 Format Format 1512 -162 130 64 1604 -130 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format 110726d9-7f3e-4437-900d-310f529f6c57 Format Format false 0 1514 -160 78 20 1553 -150 1 1 {0} false {0:R} Formatting culture 40e80840-38ab-4a7b-ba77-b0bbaa7dcdb3 Culture Culture false 0 1514 -140 78 20 1553 -130 1 1 {0} 127 Data to insert at {0} placeholders 45c01e9c-f5ab-401b-bae4-a26cc94c4895 false Data 0 0 true c13cd37b-e089-4f8d-883b-54203d5df027 1 1514 -120 78 20 1553 -110 Formatted text 32fdfce1-9af5-47ef-a416-64a36f93b534 Text Text false 0 1616 -160 24 60 1628 -130 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 8c191374-3718-4371-8f0d-4782a857fbcf Digit Scroller false 0 12 6 0.122500 6701 -2526 250 20 6701.182 -2525.249 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true bfc8fb88-bf90-4ae2-baf5-913e255146dc Rotate Rotate 2047 202 191 64 2174 234 Base geometry 207719d0-dd1b-4b35-928f-4e363a6ea662 Geometry Geometry true d04782ae-aee6-46ab-8ba5-c6947322bae9 1 2049 204 113 20 2105.5 214 Rotation angle in radians 12da6342-b770-45ce-902d-c3b6cc13ccc7 Angle Angle false 0 false 2049 224 113 20 2105.5 234 1 1 {0} 3.1415926535897931 Rotation plane d1d7cd92-dc5f-4510-9f03-70a6f275847f Plane Plane false b2d464ef-efef-4780-a893-e7309417e1c2 1 2049 244 113 20 2105.5 254 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry 2575e670-30cb-4e2c-8512-3de211e061c6 Geometry Geometry false 0 2186 204 50 30 2211 219 Transformation data 4a843ecf-0f9e-4c6b-8272-e336a1a285d1 Transform Transform false 0 2186 234 50 30 2211 249 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true 863a1e5a-3e57-4481-b18a-0cc94d336cb0 List Item List Item 2112 288 93 64 2185 320 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list 4bf09691-215a-48a6-97c2-6fd02c9b9057 List List false true d04782ae-aee6-46ab-8ba5-c6947322bae9 1 2114 290 59 20 2151.5 300 Item index e30c3e17-f7a3-4175-9a57-0c8d2678eaf7 Index Index false 0 2114 310 59 20 2151.5 320 1 1 {0} 0 Wrap index to list bounds 185d938c-27f2-4575-a6ef-ca6cfa93fd2e Wrap Wrap false 0 2114 330 59 20 2151.5 340 1 1 {0} false Item at {i'} b2d464ef-efef-4780-a893-e7309417e1c2 false Item i false 0 2197 290 6 60 2200 320 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true d04782ae-aee6-46ab-8ba5-c6947322bae9 Point Point false 2a8e46a0-9509-4aff-8701-b3c411851f02 1 2131 388 50 24 2156 400 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true f13365e1-fea3-4477-9b6a-58a6c6d0cd54 List Item List Item 2116 -43 93 64 2189 -11 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list fe9606c6-cac0-47a4-ad00-482222630932 List List false true 0bc3ce43-0665-4ef5-8cf4-236fdf0a40b3 1 2118 -41 59 20 2155.5 -31 Item index ccb93457-aee0-4a16-809e-3dca2d18d002 Index Index false 0 2118 -21 59 20 2155.5 -11 1 1 {0} 0 Wrap index to list bounds bb7b1b2a-8d1f-4211-915f-610f90c10cd1 Wrap Wrap false 0 2118 -1 59 20 2155.5 9 1 1 {0} false Item at {i'} 1375bcbe-2d38-4ea8-8f3e-a450e0a9c421 false Item i false 0 2201 -41 6 60 2204 -11 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true b2ff4a5d-d597-4760-8a41-19fb5dea48b7 Merge Merge 2122 138 91 44 2168 160 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 8ca703a2-65ae-4094-a782-bc36b1557f61 false Data 1 D1 true d04782ae-aee6-46ab-8ba5-c6947322bae9 1 2124 140 32 20 2148 150 2 Data stream 2 7f1adbaf-8b94-4dd0-abf3-3150f9d2b13a false Data 2 D2 true true 2575e670-30cb-4e2c-8512-3de211e061c6 1 2124 160 32 20 2148 170 2 Result of merge 5c96690b-2054-4a0f-9497-493bd0da0f59 Result Result false 0 2180 140 31 40 2195.5 160 6eaffbb2-3392-441a-8556-2dc126aa8910 Cull Duplicates 1 Cull points that are coincident within tolerance true 84c7ae41-5bcd-4b44-b399-32ce8b3594b2 Cull Duplicates Cull Duplicates 2077 37 180 64 2204 69 1 Points to operate on 1c627f88-113b-439a-a830-09f5409e5ccc Points Points false 5c96690b-2054-4a0f-9497-493bd0da0f59 1 2079 39 113 30 2135.5 54 Proximity tolerance distance 83f1b1c9-99d1-4ed6-87e4-7b8894df8ac3 Tolerance Tolerance false 0 2079 69 113 30 2135.5 84 1 1 {0} 1E-10 1 Culled points 0bc3ce43-0665-4ef5-8cf4-236fdf0a40b3 Points Points false 0 2216 39 39 20 2235.5 49 1 Index map of culled points 735110da-f9ae-43cf-8151-cd789f02c437 Indices Indices false 0 2216 59 39 20 2235.5 69 1 Number of input points represented by this output point afc72907-93a5-4c7a-a7dd-7e9af818a5c5 Valence Valence false 0 2216 79 39 20 2235.5 89 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true 336f6da2-ce88-41f3-8908-7cecbb77e5b3 Rotate Rotate 2040 -296 246 81 2222 -255 Base geometry 3c176451-b28d-4d01-8047-32b4467461a6 Geometry Geometry true 0bc3ce43-0665-4ef5-8cf4-236fdf0a40b3 1 2042 -294 168 20 2144 -284 Rotation angle in degrees 1aec86dc-a335-4ab6-bfd6-289e000792a7 -X Angle Angle false 301d5304-299d-45b2-915f-70006d8faad2 1 true 2042 -274 168 20 2144 -264 1 1 {0} 1.5707963267948966 Rotation plane 24500bd6-cb1e-4f2d-9aee-023bece30c3c Plane Plane false 0 2042 -254 168 37 2144 -235.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry de7580ab-fa25-44cb-87a3-a9e09d940a87 Geometry Geometry false 0 2234 -294 50 38 2259 -274.75 Transformation data b2a78d67-9655-420b-8bfe-eeff853c3704 Transform Transform false 0 2234 -256 50 39 2259 -236.25 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true a23b30fc-1048-4635-a93d-a0f1f7fb3fdd List Item List Item 2112 -438 93 64 2185 -406 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list 13bef6dd-3568-42ff-b9bf-5c66fd617081 List List false true de7580ab-fa25-44cb-87a3-a9e09d940a87 1 2114 -436 59 20 2151.5 -426 Item index 12d07dcf-8ba4-4ec0-b054-e26c3483be71 Index Index false 0 2114 -416 59 20 2151.5 -406 1 1 {0} 0 Wrap index to list bounds a078fd52-f4f5-4bbb-a0c7-5bfb98a84f11 Wrap Wrap false 0 2114 -396 59 20 2151.5 -386 1 1 {0} false Item at {i'} d80d3e93-5819-49a7-b55d-b77e4bc04c8c false Item i false 0 2197 -436 6 60 2200 -406 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true 65a0986c-c8e8-44da-b39b-8aac1291441b Deconstruct Deconstruct 2094 -526 120 64 2135 -494 Input point 9ea29e15-edff-4fc0-aef9-0613fe39b185 Point Point false d80d3e93-5819-49a7-b55d-b77e4bc04c8c 1 2096 -524 27 60 2109.5 -494 Point {x} component c618f45d-d87a-4bf1-be1d-906ee3937690 X component X component false 0 2147 -524 65 20 2179.5 -514 Point {y} component 0ac2b2ad-e476-4f89-b7ec-4df536469f37 Y component Y component false 0 2147 -504 65 20 2179.5 -494 Point {z} component d721c21d-68cf-4923-8f6b-605564d2de34 Z component Z component false 0 2147 -484 65 20 2179.5 -474 290f418a-65ee-406a-a9d0-35699815b512 Scale NU Scale an object with non-uniform factors. true aa335879-76b1-420c-82f4-54477f4cf8fa Scale NU Scale NU 2078 -686 226 121 2240 -625 Base geometry 206cadb3-554d-4809-a46e-86f4c0117a9a Geometry Geometry true de7580ab-fa25-44cb-87a3-a9e09d940a87 1 2080 -684 148 20 2162 -674 Base plane 9367cb6c-42ea-48bf-9e2a-912029360121 Plane Plane false 0 2080 -664 148 37 2162 -645.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Scaling factor in {x} direction 89e435ef-7cd8-407a-ae27-cca5baedd143 1/X Scale X Scale X false c618f45d-d87a-4bf1-be1d-906ee3937690 1 2080 -627 148 20 2162 -617 1 1 {0} 1 Scaling factor in {y} direction 72d0c737-f7a7-4ac2-b27b-c078356be7b6 1/X Scale Y Scale Y false 0ac2b2ad-e476-4f89-b7ec-4df536469f37 1 2080 -607 148 20 2162 -597 1 1 {0} 1 Scaling factor in {z} direction ab0d508e-c91c-40b8-95af-54d636d6a5dc 1/X Scale Z Scale Z false d721c21d-68cf-4923-8f6b-605564d2de34 1 2080 -587 148 20 2162 -577 1 1 {0} 1 Scaled geometry edad4520-fa2d-4ed2-acba-b69a086afe13 Geometry Geometry false 0 2252 -684 50 58 2277 -654.75 Transformation data e886c65b-ff87-4e0e-8983-6e13c4f2ba51 Transform Transform false 0 2252 -626 50 59 2277 -596.25 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 216a7a8c-cbc8-459f-ba6d-1c819860a74f Relay false edad4520-fa2d-4ed2-acba-b69a086afe13 1 1978 -691 40 16 1998 -683 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects f6a05b4a-b1c0-4407-8950-a956407f8238 65a0986c-c8e8-44da-b39b-8aac1291441b bcdf77a5-4a93-4597-8535-7f89da53fd43 aa335879-76b1-420c-82f4-54477f4cf8fa 216a7a8c-cbc8-459f-ba6d-1c819860a74f a23b30fc-1048-4635-a93d-a0f1f7fb3fdd 6 32cfc1ea-d9cb-4c4c-aeb6-2ee2d3811069 Group 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true 5cc5bba4-19f6-482c-a142-2dfeac8775d7 Format Format 2392 -644 130 64 2484 -612 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format 5334b48c-5517-4b1b-9d53-77ce7d5be04f Format Format false 0 2394 -642 78 20 2433 -632 1 1 {0} false {0:R} Formatting culture cda211f8-1a83-4f7e-8f64-74c256fb24ef Culture Culture false 0 2394 -622 78 20 2433 -612 1 1 {0} 127 Data to insert at {0} placeholders 220b6bae-2ed1-4b4b-92c1-943f9fbe0ddf false Data 0 0 true 4b5c17db-187f-4af8-967a-999ead56fb38 1 2394 -602 78 20 2433 -592 Formatted text 2f15086e-f4d1-464d-9acf-b055eb1af20d Text Text false 0 2496 -642 24 60 2508 -612 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 9b42a226-e738-4dae-9071-7c1c84d2e21a Division Division 2324 -526 70 44 2349 -504 Item to divide (dividend) d2cc5a5a-f5d6-4c99-b4e1-2e74252854de A A false c618f45d-d87a-4bf1-be1d-906ee3937690 1 2326 -524 11 20 2331.5 -514 Item to divide with (divisor) d99f32c8-0557-4475-8009-7950c8af187c B B false 0ac2b2ad-e476-4f89-b7ec-4df536469f37 1 2326 -504 11 20 2331.5 -494 The result of the Division 4b5c17db-187f-4af8-967a-999ead56fb38 Result Result false 0 2361 -524 31 40 2376.5 -504 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 015870b0-07b6-437e-80d6-dce84c7aef22 Panel X/Y false 0 2f15086e-f4d1-464d-9acf-b055eb1af20d 1 2098 -745 97 40 0 0 0 1 255;255;255;255 false false true true false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object db6ab01e-9fb2-4f8e-99b4-ceef5dc1505f Relay false 9bfa77bb-a647-437e-ae62-842d46b2a2f1 1 1538 -581 40 16 1558 -573 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers f023b241-9d43-4d09-a743-5754826ed592 Digit Scroller false 0 12 6 0.122500 6701 -2546 250 20 6701.182 -2545.249 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression deg(atan(x/y)) true 2bfcd1de-a972-4618-adbd-07b238b0c838 Expression Expression 2075 -185 157 44 2156 -163 2 ba80fd98-91a1-4958-b6a7-a94e40e52bdb ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable c146ad91-f1ef-4eb9-a91f-56ab41ad62e9 Variable X X true a6d2c9ad-2fce-4360-a1bd-58c63274c3fa 1 2077 -183 11 20 2082.5 -173 Expression variable e437f466-cd26-493a-9b33-95aa43fdeb70 Variable Y Y true 914ed3ed-c1c9-450b-9981-726b87dd3e28 1 2077 -163 11 20 2082.5 -153 Result of expression 301d5304-299d-45b2-915f-70006d8faad2 Result false 0 2224 -183 6 40 2227 -163 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true 0120052c-04de-4738-b710-dc5e65077f53 List Item List Item 1689 -358 77 64 1746 -326 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list b0d43ffe-1ea2-4866-a44c-980f0582bccd List List false 10f9fcbf-f996-4afe-a932-1eeeeb7e92ba 1 1691 -356 43 20 1712.5 -346 Item index 054f2d79-9267-4504-a7f3-58644d35dce9 Index Index false 0 1691 -336 43 20 1712.5 -326 1 1 {0} -1 Wrap index to list bounds 1a59304c-a645-4054-b1e6-2e4d5190765a Wrap Wrap false 0 1691 -316 43 20 1712.5 -306 1 1 {0} true Item at {i'} 1006d687-58d1-4df9-934d-72ab10813334 false Item i false 0 1758 -356 6 60 1761 -326 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true 1217a11a-1879-4861-a93b-84b3972f3c7b Deconstruct Deconstruct 2108 -131 120 64 2149 -99 Input point 21f20e70-7b9c-44b8-82a4-906fe63a7cbc Point Point false 1375bcbe-2d38-4ea8-8f3e-a450e0a9c421 1 2110 -129 27 60 2123.5 -99 Point {x} component a6d2c9ad-2fce-4360-a1bd-58c63274c3fa X component X component false 0 2161 -129 65 20 2193.5 -119 Point {y} component 914ed3ed-c1c9-450b-9981-726b87dd3e28 Y component Y component false 0 2161 -109 65 20 2193.5 -99 Point {z} component bf7ee571-fa35-4954-836c-ca6a06f4eb29 Z component Z component false 0 2161 -89 65 20 2193.5 -79 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 6d3f9f9a-f57e-4854-bee7-99c12bfb0de8 Relay false b05af234-ce5b-432e-8b3f-32a94a964bbf 1 1164 -90 40 16 1184 -82 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph 82f09685-9fec-40ef-8635-845751351416 Quick Graph Quick Graph false 0 92b46693-4fc6-466e-b09d-6a1bdf99435e 1 7468 -2343 50 50 7468.181 -2342.249 -1 e1905a16-da43-4705-bd65-41d34328c4e6 Bar Graph 255;255;0;90 9999 Bar graph representation of a set of numbers 7ea03512-0074-40d1-8807-06c5269c256c Bar Graph Bar Graph false cd9ab9ba-48a6-43fd-bf09-e50035dc093d 1 7395.181 -2543.249 50 50 ae4835db-ae71-4361-8536-1a5e50386819 1c9de8a1-315f-4c56-af06-8f69fee80a7a Smooth Curve Smooth a curve recursively by fairing, without changing its control point count. true 5c7c9dbd-3af2-493e-a165-162c94ff10eb true Smooth Curve Smooth Curve 2379 -842 236 124 2551 -780 Curve to smooth ce57f281-9a29-4398-bad8-7b9511a2ed6d true Curve Curve false 812b2004-5d23-4a36-8867-c4d7e1d7c8c3 1 2381 -840 158 20 2460 -830 Number of recursive smoothing steps 9dbe2ab5-d001-4231-b375-7b378313d09b true Steps Steps false 0 2381 -820 158 20 2460 -810 1 1 {0} 16 Determines how the start of the curve is preserved 0 = Preserve start point only 1 = Preserve first two points 2 = Preserve first three points e93ac18b-07a2-4ab0-b5e2-771df8e34c40 true Start Type Start Type false 0 2381 -800 158 20 2460 -790 1 1 {0} 0 Determines how the end of the curve is preserved 0 = Preserve end point only 1 = Preserve last two points 2 = Preserve last three points 62999c09-f409-46dc-a0f8-5c1460db5a56 true End Type End Type false 0 2381 -780 158 20 2460 -770 1 1 {0} 0 Tolerance distance the smooth curve is allowed to deviate from the curve to smooth 3a1759d1-918c-4aa5-adcf-380b1d032d23 true Deviation Tolerance Deviation Tolerance false 0 2381 -760 158 20 2460 -750 1 1 {0} 1E-10 Tolerance angle in degrees for kink smoothing a060427d-b9e2-4f18-b9c5-dc5d45a14852 true Angle Tolerance Angle Tolerance false 0 2381 -740 158 20 2460 -730 1 1 {0} 1E-10 Resulting smoothed curve 266c431b-d404-47f3-a489-81251532efe1 true Smoothed Smoothed false 0 2563 -840 50 120 2588 -780 e1905a16-da43-4705-bd65-41d34328c4e6 Bar Graph 255;255;0;90 9999 Bar graph representation of a set of numbers d6cd2b21-684d-4d55-84dc-cf67022c00fd Bar Graph Bar Graph false 93d932e5-f99c-4911-8200-065f7e63b31c 1 7395.181 -2521.249 50 50 e1905a16-da43-4705-bd65-41d34328c4e6 Bar Graph 255;255;0;90 9999 Bar graph representation of a set of numbers dfa3d6d1-68ca-4f13-b440-3d042a308f48 Bar Graph Bar Graph false 80aa9ec5-4e68-4151-87f5-77dd9cb73995 1 7395.181 -2498.249 50 50 e1905a16-da43-4705-bd65-41d34328c4e6 Bar Graph 255;255;0;90 9999 Bar graph representation of a set of numbers dbda2230-e7eb-467e-aa88-5c1e6b723f5a Bar Graph Bar Graph false 1c283afd-2268-4211-af8f-8cdf4d25d66c 1 7395.181 -2476.249 50 50 e1905a16-da43-4705-bd65-41d34328c4e6 Bar Graph 255;255;0;90 9999 Bar graph representation of a set of numbers 48b9bf60-45d3-45d4-a928-df64b25235ff Bar Graph Bar Graph false 844bd38b-b927-437c-8231-bd2cb384f4ce 1 7395.181 -2454.249 50 50 e1905a16-da43-4705-bd65-41d34328c4e6 Bar Graph 255;255;0;90 9999 Bar graph representation of a set of numbers a7828cae-f032-48ad-9499-baf0a62e9b16 Bar Graph Bar Graph false f582ca69-21fd-4e0c-ac4c-c757f53b16e7 1 7395.181 -2431.249 50 50 e1905a16-da43-4705-bd65-41d34328c4e6 Bar Graph 255;255;0;90 9999 Bar graph representation of a set of numbers 3bac0bc7-d166-4c5e-bb08-20a20985222f Bar Graph Bar Graph false 0ea07907-b707-47fb-aac5-b80ec6de4038 1 7395.181 -2409.249 50 50 e1905a16-da43-4705-bd65-41d34328c4e6 Bar Graph 255;255;0;90 9999 Bar graph representation of a set of numbers 199759e7-6c7b-4150-b4bf-9b4fdf05a03f Bar Graph Bar Graph false 7e4bc6cb-be01-4aad-8929-fa0633ad5eab 1 7395.181 -2387.249 50 50 e1905a16-da43-4705-bd65-41d34328c4e6 Bar Graph 255;255;0;90 9999 Bar graph representation of a set of numbers 65486801-6614-44c2-ba37-ac0384a48812 Bar Graph Bar Graph false 54c2ec9f-a8b8-4bb9-bfcb-571630ac488b 1 7395.181 -2364.249 50 50 e1905a16-da43-4705-bd65-41d34328c4e6 Bar Graph 255;255;0;90 9999 Bar graph representation of a set of numbers 053e6276-507a-47e0-a156-4f54d918eed9 Bar Graph Bar Graph false 92b46693-4fc6-466e-b09d-6a1bdf99435e 1 7395.181 -2342.249 50 50 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers ef414688-663d-4a76-b64c-d9da5e08c56c Digit Scroller false 0 12 6 0.122500 6701 -2566 250 20 6701.182 -2565.249 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers c118d3a6-21e5-404c-965f-22c44c00965b Digit Scroller false 0 12 6 0.122500 6701 -2586 250 20 6701.182 -2585.249 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 240fa235-09b9-405d-989a-af59edf91192 Digit Scroller false 0 12 6 0.122500 6701 -2606 250 20 6701.182 -2605.249 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers da31bf03-7f19-4df6-83b7-e4247638b6ba Digit Scroller false 0 12 6 0.122500 6701 -2626 250 20 6701.182 -2625.249 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers ae83d3bf-85ae-4eb8-9a93-d7b82f6eb1ff Digit Scroller false 0 12 6 0.122500 6701 -2646 250 20 6701.182 -2645.249 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 1b18947f-649b-4aa7-b635-0c8ffaba1c52 Digit Scroller false 0 12 6 0.122500 6701 -2666 250 20 6701.182 -2665.249 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 659c929d-50c0-47c3-a9f8-7a31b3925ddc Digit Scroller false 0 12 6 0.122500 6701 -2686 250 20 6701.182 -2685.249 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true 610cf6f6-e391-4ad8-bf2c-78c03415fe83 Point Point false d80d3e93-5819-49a7-b55d-b77e4bc04c8c 1 2371 -415 50 24 2396 -403 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 7e412465-e306-4cde-bc52-a148d592b463 Panel false 0 0bc3ce43-0665-4ef5-8cf4-236fdf0a40b3 1 Double click to edit panel content… 2387 -338 160 338 0 0 0 255;255;255;255 true true true false false true 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. 65915424-f5fa-4a08-9efd-77e9b1f75cdb Evaluate Length Evaluate Length 2219 -1355 149 64 2304 -1323 Curve to evaluate f73a0ce8-3494-4393-8849-0b2a795b1a80 Curve Curve false c4fdf2ab-39ec-4f9b-947c-a8f85d40334d 1 2221 -1353 71 20 2256.5 -1343 Length factor for curve evaluation 3d134c00-df9c-449c-8a4e-c1d23ea39163 Length Length false 0 2221 -1333 71 20 2256.5 -1323 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 0ab2dd80-cae9-4661-a9c8-3c4808d6d64a Normalized Normalized false 0 2221 -1313 71 20 2256.5 -1303 1 1 {0} true Point at the specified length 43f8c076-aedd-48cf-8879-569ca97a7c3e Point Point false 0 2316 -1353 50 20 2341 -1343 Tangent vector at the specified length db80abd4-d4ff-4e99-bfcc-940cf824e3af Tangent Tangent false 0 2316 -1333 50 20 2341 -1323 Curve parameter at the specified length c9ae47c9-abba-4e2b-a276-58a6e6df478c Parameter Parameter false 0 2316 -1313 50 20 2341 -1303 11e95a7b-1e2c-4b66-bd95-fcad51f8662a Vector Display Ex Preview vectors in the viewport 35d80b83-f25f-4b89-8cff-2273825e14ba Vector Display Ex Vector Display Ex 1942 -1428 76 84 2004 -1386 Start point of vector a61fd522-2e08-40ee-99e4-77f3c5fad3d8 Point Point true 43f8c076-aedd-48cf-8879-569ca97a7c3e 1 1944 -1426 48 20 1968 -1416 Vector to display 604e28b0-9157-4684-a04a-f6df639581f3 Vector Vector true db80abd4-d4ff-4e99-bfcc-940cf824e3af 1 1944 -1406 48 20 1968 -1396 Colour of vector ed960af1-da41-409f-998d-6dbf6cf897f3 Colour Colour true 0 1944 -1386 48 20 1968 -1376 1 1 {0} 255;0;0;0 Width of vector lines 0a3d2bb7-0ff9-478c-9bcd-db6825486b1f Width Width true 0 1944 -1366 48 20 1968 -1356 1 1 {0} 2 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression deg(atan(x/y)) true 974a883a-1cb8-4452-97b3-3cac6e6970a1 Expression Expression 1647 -1280 157 44 1728 -1258 2 ba80fd98-91a1-4958-b6a7-a94e40e52bdb ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable b74e67eb-0d6e-4b11-b4de-0ac96fbbfcdb Variable X X true 9064d6c8-e279-400f-acc2-5bd10364766e 1 1649 -1278 11 20 1654.5 -1268 Expression variable 6573d876-4847-4b12-8435-36c564be8af6 Variable Y Y true 2e289cfb-50af-447d-96a5-703ece5739cc 1 1649 -1258 11 20 1654.5 -1248 Result of expression bf698a48-a07d-491d-97c2-2628ea3e3cbb Result false 0 1796 -1278 6 40 1799 -1258 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true 7eeb441b-d73b-4ab0-846b-1221226618d8 Deconstruct Deconstruct 1675 -1226 120 64 1716 -1194 Input point d9e60103-59e5-4927-96ce-1d8d4dc02652 Point Point false 948413de-ddd1-4364-91d2-1aff1940aa31 1 1677 -1224 27 60 1690.5 -1194 Point {x} component 9064d6c8-e279-400f-acc2-5bd10364766e X component X component false 0 1728 -1224 65 20 1760.5 -1214 Point {y} component 2e289cfb-50af-447d-96a5-703ece5739cc Y component Y component false 0 1728 -1204 65 20 1760.5 -1194 Point {z} component fd1515f8-de69-4356-bc71-14c09f26cadd Z component Z component false 0 1728 -1184 65 20 1760.5 -1174 9c007a04-d0d9-48e4-9da3-9ba142bc4d46 Subtraction Mathematical subtraction 2e1fa4c5-8678-4abb-8dfe-5e230162d41d Subtraction Subtraction 1707 -1339 85 44 1747 -1317 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First operand for subtraction 480b4e47-8d11-4e5b-940f-c9fa752e909a A A true 0 1709 -1337 26 20 1722 -1327 1 1 {0} Grasshopper.Kernel.Types.GH_String false 90 Second operand for subtraction c24cab37-b808-4512-a3bc-6f4e1f49ceea B B true bf698a48-a07d-491d-97c2-2628ea3e3cbb 1 1709 -1317 26 20 1722 -1307 Result of subtraction 2f40a3cf-0b9a-47e2-aa04-fd53087ffdfc Result Result false 0 1759 -1337 31 40 1774.5 -1317 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values fc134f39-092b-446b-9f32-850887255fcd Panel false 0 0 (0.52264895353371794+ 0.52264895353371804)/2 1658 -1059 120 40 0 0 0 2 255;255;255;255 false false true true false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 16ae1b43-17d1-4aa8-9af1-2c8bf4441136 Relay false fc134f39-092b-446b-9f32-850887255fcd 1 1843 -1266 40 16 1863 -1258 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 9361e405-3817-4de7-9409-cb3eb2c5b242 Digit Scroller NUMBER OF SEGMENTS false 0 12 NUMBER OF SEGMENTS 11 1024.0 1492 -982 250 20 1492.532 -981.983 dde71aef-d6ed-40a6-af98-6b0673983c82 Nurbs Curve Construct a nurbs curve from control points. true d6845181-2485-4643-958f-5457c3222642 Nurbs Curve Nurbs Curve 3691 -969 121 64 3760 -937 1 Curve control points c5701f1c-ecc4-4e5e-82fd-5ffd16978065 Vertices Vertices false 9e392594-9c88-466e-a19c-e833e6e9db0c 1 3693 -967 55 20 3720.5 -957 Curve degree 9f1b5080-9e95-4b43-b00f-ba66f4d37ff2 Degree Degree false 0 3693 -947 55 20 3720.5 -937 1 1 {0} 2 Periodic curve b7675a09-cc79-4902-b104-d3caf999d899 Periodic Periodic false 0 3693 -927 55 20 3720.5 -917 1 1 {0} false Resulting nurbs curve acdea7eb-21ac-4670-8097-e58e7e196266 Curve Curve false 0 3772 -967 38 20 3791 -957 Curve length fa2b3ab1-4fc6-4e7a-8127-416cedfa57f8 Length Length false 0 3772 -947 38 20 3791 -937 Curve domain 1b834e6d-b6d0-48e8-8a64-dd3297dd77d3 Domain Domain false 0 3772 -927 38 20 3791 -917 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects a9f9c005-baca-48d6-a9b5-c90641990a40 7eae606a-a783-4ca0-8496-6541254db4aa 61a7655a-5951-4110-a1a7-6cc34fe35e29 41b6d614-494b-478a-b642-89bab1e20b7c 2f68ea2e-9807-4230-b9b8-8a2a4bd298d7 5 0f2dee87-1bc5-4015-ba00-3d771757533d Group 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 57882812-a11c-41f7-9da0-24f2bf7b1630 Panel false 0 0 0.4863502813211475209 3792 -168 125 40 0 0 0 3792.384 -167.2238 255;255;255;255 false false true false false true c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 81c78050-42ce-42e1-b704-c28af80d0879 16c22ddd-5c25-4c4f-acce-a3d7f0148828 3784dae5-ec06-4b36-9eb4-32475f135a17 978abbde-eb2d-4d4f-9c9f-6a4f665f7b49 e7fa1c0a-6dee-469e-bd81-b490fe80e04b 6d669f59-dcfb-404b-94b1-22bb7f83e90c d5bb524f-50cb-4f8e-84b6-4b1bb53032d7 9b896070-f198-4c28-aaf3-2300ba4b3e28 e9dc22bb-1af1-44fe-a7e9-138433e85c45 50bfb567-cca9-49e1-9cbf-228dd5d96490 48a77407-1ef5-408c-98e8-f8c22c4b8306 aacb785c-7a0d-4362-a6ab-7067ad0a24e2 eed3e60c-da42-452d-840a-628600c254ce 2b382be1-77d5-4f5a-bdd7-fe0469361e00 134d7423-6dfa-4662-87b3-965a2fbcbb41 579c985b-e3f7-44b1-a94e-ebd88c119761 0d6c0a90-7dc3-42d0-bff0-bb567ffcbe11 56233623-7b3b-4690-a754-0d9746d30ac9 d9d9590a-177b-461d-a939-038c8cfc418a 19 f61afa6c-1c6d-43a5-b086-aea72fcb5143 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 4a7806e2-f319-4974-99b5-de39b849bf17 560ab2ee-b222-47a5-b166-360b8fba9a75 138e4cfd-c4b0-4978-9726-ad0413a4ec0b 08367c48-9073-4bf6-9593-a5e2021100d0 c879fe7e-3294-4d38-be33-f7ba59030551 1be8539a-934e-4f3c-9d8d-1cf41fa5b3f9 79f5883a-82e2-40ff-9180-49cf756189f8 0ed5c6e4-d403-4cdd-bf32-7e675481932d a503a94e-e524-481c-abf8-2b53d1124543 d7b18b8c-16a0-47f6-90ca-ecbcf0cbeed8 54624d31-4e99-49ce-bafd-5071cf6504db a736fbae-7bd8-47bd-a818-924d4c6b0fd5 69ae5d2b-f8b0-45e5-b3c0-4b7f7d9c4314 56b85b52-533e-46e6-a4ef-6bfb977952bb c07e10ab-b7a2-499c-a808-bf70ce44c08f bbd32612-db4e-463d-bcce-b67bcede8c61 bca1b843-1168-41fd-b4dc-e55d87681afb d87260b8-9262-4a70-aca6-3d05ceda11ba f490919c-9fab-4539-b860-a82406a83adb ec4ce578-adbb-43a1-b906-c7b70140deb3 5f1006ab-7a4a-405d-bc12-555ef6980263 a14fb7d1-a2ca-4221-ab5c-9c06d3e86e69 a97649ee-fe8f-4128-8d41-11d1c7771844 5b2cc981-7e40-4a82-88b8-624b14091777 fea29e22-ad99-4c97-a41a-7d5ac36eb3ce 898393e5-1cbe-4939-9cd6-16052006348b db07fc6c-26cd-41c6-93d6-de33385a43f7 6999a1ac-2e35-49b0-8457-650cb70ce4ad 034bc291-6391-48e9-97a3-a0861e18b0a3 5a2fa394-e753-49b3-92bf-ce2f99b38de6 e32cafbe-23ca-4862-a5b6-6805f5fb5a02 d4e5c598-1665-4ef4-8cb9-a34cd9ede92b 04250f66-9b19-4960-81e5-c75d6a635b9a 4cfbdefd-ba72-40dc-afdb-b7bcb2839654 f61afa6c-1c6d-43a5-b086-aea72fcb5143 35 7a4ef36a-5e44-46b8-a0f4-09d46a212955 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects a503a94e-e524-481c-abf8-2b53d1124543 d7b18b8c-16a0-47f6-90ca-ecbcf0cbeed8 54624d31-4e99-49ce-bafd-5071cf6504db a736fbae-7bd8-47bd-a818-924d4c6b0fd5 4 4a7806e2-f319-4974-99b5-de39b849bf17 Group 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 560ab2ee-b222-47a5-b166-360b8fba9a75 Digit Scroller SEMENT LENGTH false 0 12 SEMENT LENGTH 2 0.0023000000 5439 -356 250 20 5439.01 -355.1965 e64c5fb1-845c-4ab1-8911-5f338516ba67 Series Create a series of numbers. true 138e4cfd-c4b0-4978-9726-ad0413a4ec0b Series Series 5431 -321 106 64 5492 -289 First number in the series 0342d8db-b236-4d8f-826d-51fffc330f49 Start Start false 0 5433 -319 47 20 5456.5 -309 1 1 {0} 0 Step size for each successive number 3faaee9f-1abd-4447-94bc-29b9b0e345a7 Step Step false 969c17c3-b421-462c-b1dc-0b89d2fdb2bd 1 5433 -299 47 20 5456.5 -289 1 1 {0} 1 Number of values in the series 4eec71c6-7f17-4c91-8be0-77b2a8a5f6a0 Count Count false 0ed5c6e4-d403-4cdd-bf32-7e675481932d 1 5433 -279 47 20 5456.5 -269 1 1 {0} 10 1 Series of numbers 71849fea-9319-49c4-81a0-4ca7c0b6374f Series Series false 0 5504 -319 31 60 5519.5 -289 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 08367c48-9073-4bf6-9593-a5e2021100d0 Digit Scroller INCREASE BEND PER SEGMENT false 0 12 INCREASE BEND PER SEGMENT 1 0.49222173845 5439 -98 250 20 5439.196 -97.86229 b6d7ba20-cf74-4191-a756-2216a36e30a7 Rotate Rotate a vector around an axis. true c879fe7e-3294-4d38-be33-f7ba59030551 Rotate Rotate 5480 -646 150 64 5583 -614 Vector to rotate c6e1b79c-2b1d-4c8e-9bc8-41e9cc6be5c2 Vector Vector false 5daa660a-905c-43f7-92a4-ea551e4af786 1 5482 -644 89 20 5554.5 -634 Rotation axis 8300e4ec-ef97-4b59-9bdd-286f760c4a0e Axis Axis false 3e50e4ba-3e50-4cae-b7c3-3c1da2baa30a 1 5482 -624 89 20 5554.5 -614 Rotation angle (in degrees) d123f974-c772-4439-8fb0-019aa9699610 -X Angle Angle false true bf962535-6875-4317-b65e-ec8249e02594 1 true 5482 -604 89 20 5554.5 -594 Rotated vector adbceb33-b653-49dc-aefa-e907e8f462ff Vector Vector false 0 5595 -644 33 60 5611.5 -614 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true c07e10ab-b7a2-499c-a808-bf70ce44c08f Interpolate Interpolate 5675 -967 197 84 5820 -925 1 Interpolation points b6f5c622-b28c-4706-a532-56f679223c9d Vertices Vertices false d87260b8-9262-4a70-aca6-3d05ceda11ba 1 5677 -965 131 20 5742.5 -955 Curve degree 94472fea-c249-4900-beab-dd93d29af82f Degree Degree false 0 5677 -945 131 20 5742.5 -935 1 1 {0} 3 Periodic curve f9b74bda-8f8e-4a63-b870-e7e40939efd5 Periodic Periodic false 0 5677 -925 131 20 5742.5 -915 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) e250f7f2-3a76-421d-8884-41a15e666af8 KnotStyle KnotStyle false 0 5677 -905 131 20 5742.5 -895 1 1 {0} 1 Resulting nurbs curve 55bd8b03-85a2-4209-b828-65ef0f73ebf3 Curve Curve false 0 5832 -965 38 26 5851 -951.6667 Curve length f9aac3d6-b066-4cd2-95aa-bb54f08a97bb Length Length false 0 5832 -939 38 27 5851 -925 Curve domain 9bfc02c9-4512-4165-badc-803ce11eb532 Domain Domain false 0 5832 -912 38 27 5851 -898.3334 79f9fbb3-8f1d-4d9a-88a9-f7961b1012cd Unit X Unit vector parallel to the world {x} axis. true 1be8539a-934e-4f3c-9d8d-1cf41fa5b3f9 Unit X Unit X 5516 -494 114 28 5562 -480 Unit multiplication d7861f50-28a2-44e3-b197-a9de61fe1282 Factor Factor false a97649ee-fe8f-4128-8d41-11d1c7771844 1 5518 -492 32 24 5534 -480 1 1 {0} 1 World {x} vector 994b319d-24d6-43c4-a089-60bbddc63663 Unit vector Unit vector false 0 5574 -492 54 24 5601 -480 9103c240-a6a9-4223-9b42-dbd19bf38e2b Unit Z Unit vector parallel to the world {z} axis. true 79f5883a-82e2-40ff-9180-49cf756189f8 Unit Z Unit Z 5314 -646 114 28 5360 -632 Unit multiplication 8a257eb2-8ae0-4de2-8cd7-20b52b4cdcdf Factor Factor false a97649ee-fe8f-4128-8d41-11d1c7771844 1 5316 -644 32 24 5332 -632 1 1 {0} 1 World {z} vector 3e50e4ba-3e50-4cae-b7c3-3c1da2baa30a Unit vector Unit vector false 0 5372 -644 54 24 5399 -632 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object bbd32612-db4e-463d-bcce-b67bcede8c61 Relay false 47f8c543-3f12-46b6-9c45-d7679aa73eda 1 5555 -744 40 16 5575 -736 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 0ed5c6e4-d403-4cdd-bf32-7e675481932d Relay false 7f2e7848-da9a-427d-b504-eee28eab0626 1 5555 -74 40 16 5575 -66 a0d62394-a118-422d-abb3-6af115c75b25 Addition Mathematical addition true a503a94e-e524-481c-abf8-2b53d1124543 Addition Addition 5532 -39 85 44 5572 -17 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for addition 9c3e189a-db08-46ea-8d0c-5953eb550c5e A A true 0 5534 -37 26 20 5547 -27 1 1 {0} Grasshopper.Kernel.Types.GH_String false 1 Second item for addition c1b29164-b1f0-40f5-a284-31e3975d7674 B B true 5a2d12fc-c904-4812-bfef-ff31cf7645e9 1 5534 -17 26 20 5547 -7 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 2 Result of addition 7f2e7848-da9a-427d-b504-eee28eab0626 Result Result false 0 5584 -37 31 40 5599.5 -17 a0d62394-a118-422d-abb3-6af115c75b25 Addition Mathematical addition true 54624d31-4e99-49ce-bafd-5071cf6504db Addition Addition 5488 31 155 44 5528 53 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for addition b75e33db-8966-4b64-8f38-154533e5f858 A A true 0 5490 33 26 20 5503 43 1 1 {0} Grasshopper.Kernel.Types.GH_String false 1 Second item for addition 56c62a7a-0de5-4cd6-90c0-48c9885acc53 B B true 5b3c723a-3f23-441f-9c84-ffbe637729f5 1 5490 53 26 20 5503 63 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 1 Result of addition 5a2d12fc-c904-4812-bfef-ff31cf7645e9 Result NUMBER OF POINTS false 0 5540 33 101 40 5590.5 53 e2039b07-d3f3-40f8-af88-d74fed238727 Insert Items Insert a collection of items into a list. true bca1b843-1168-41fd-b4dc-e55d87681afb Insert Items Insert Items 5517 -852 116 84 5600 -810 1 List to modify ed262261-3893-489d-bd38-50b99b47e5dd List List false bbd32612-db4e-463d-bcce-b67bcede8c61 1 5519 -850 69 20 5553.5 -840 1 Items to insert. If no items are supplied, nulls will be inserted. 4d57446d-97f7-4d99-ac3e-3c9482702dc2 Item Item true 0 5519 -830 69 20 5553.5 -820 1 1 {0} Grasshopper.Kernel.Types.GH_String false {0,0,0} 1 Insertion index for each item 0049ee86-d042-4539-8bc4-9f47292ab5a0 Indices Indices false 0 5519 -810 69 20 5553.5 -800 1 1 {0} 0 If true, indices will be wrapped 62e99271-8a06-48fe-9cd6-76869b392f00 Wrap Wrap false 0 5519 -790 69 20 5553.5 -780 1 1 {0} false 1 List with inserted values 640ec4ca-bfa6-445b-93b9-dd6a74030587 List List false 0 5612 -850 19 80 5621.5 -810 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object d87260b8-9262-4a70-aca6-3d05ceda11ba Relay ⊙☉⊙ false 640ec4ca-bfa6-445b-93b9-dd6a74030587 1 5554 -876 44 16 5576 -868 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects a503a94e-e524-481c-abf8-2b53d1124543 54624d31-4e99-49ce-bafd-5071cf6504db 5b3c723a-3f23-441f-9c84-ffbe637729f5 3 a736fbae-7bd8-47bd-a818-924d4c6b0fd5 Group f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ 7VsJdBNlHp+2aZqjB1AVUJDR4nqwFnTxKbJgk6ZHaNPGFhAEH50m03YgycRkUuSy5UFBKiBd6Alo8UEFqVahVDmU6haXXVksCwgo2kMXV46VXXXFXaX7fTPfpJ0jaaGphYd9L+nM//+dv//5/WeiMtAWj510MB3gLwjDMAX4RDptnlzKMSufdLkp2gFZZkCGbPgXBpvw/ZJJwkq6YJNQxNbwLKMBktWANPbyuVFrGom4un8frj+tKZ8XZnaR+RQ5F/I1gK/MzAOjWKMQ2US68ybPc5KQHYImjkC8NNplJ2yQMxJQN23a1MH3yiRtpIUhrTyPoqiOmwxkDuWgGLALs4t2ki6GIt38sPCjMBAMO48K3OxssxeXLP9UpTWQbouLcjJo83CJmCKNsJP83YWQaclJsbHtuyrPvrgCfLeX14HvtvI328rr2Qv2tn4L/C5ZzX6vaSsp9bZsrkiD12uXwhHKYJf2DZu9123r1ratK/U2ayvf5h2Na8YNcrZ8J6RXLhZMzfdFS0LcbcLlbeyct7iKbbzS33XVq94B0Tei+O3FXqMdsTN2WcA279rQOvlld7Zhudwe0aTs3hGq7AgIH76vFEkOYYQ2NxEvCCQXNJpAfAheVrKxsUnJ09QZQMOgKbh5M4F/ETw1nvZwBhTCmwBQttlAGZH+BCOycjLhyiXZlreD27qfOzoWgi6KJ2nazlvQzMibHgudCtRZMJUaUiTTqDMszlRiHu1hurbVJLloj1PSeGCnKaRnw8V5J4gCHy1HE/SCdCVHhwMEI0tUJE3ptOw7gotm3L3r45SV2V/r8v7q+K/ASiJMhNuN66xWdlZ1PO1gCMrR6S2gr5GztXvMpCsH2Dluh/0J1B+nc3ACt1FuBl5RDGl3K5Mpq5V08BsJCjc63AzhsJBJHsrKLzHjvqHGPAWZsMGZcKxxcOtRP0tUpVGWOb7ZGh3DuKhsD8P5EK9Y9QA1K0uKgfdZRwxYXEoThv1Hj2Fj9KFmKp9mQR0BuYUfG7DGhCatk3AR9lmUw+lh0VUhdJU6i4V0e31UkA+IRhhhRzyfsHlINw7AEmIVK4tE+wndiS11d6WvrZs5+8C8Q98KkAhlR5QggMjp7Oyc42UVTZlJe1wWklVDqMtnT4bsffA1Y2FNyfzzukU1Wo4t0CfYr4cQVgMIGycBCE/qMAwXQ2g+ykIYzkEI1B9hqPQD2OAM0u2xsaojQEoWqKxRjHn5I1NSNj1ieoyy53kEQCm5kSRI8XQJVHJYYD3HAjuJsHgOqFO1ToRF3GmgbMlCLOCsYVemT4NTkV2BcRiKsOEudjNuWXjSBr6wqPzIrOQGw0fbX7YUVgjgiTKjETg43BKcJA36BLAEv4DFNyHHFuTLsT2wOePAjLptiVs3R334/rPflwlthXWxQoc2lAdcT7tQRsQnGcp42gZ2xCcm8L+cDG7X4blwXCiGJBdQ0jzaCVIWnObcdbDRwFvbvu9H/fSX7JsS32qYcGmX5sIAwApCrPLnjt+3yHHMtPd/49Y8fNvDOsAK9mGjgBWCWBObRuavf8qgW3boywcfmfjAl4ClQKx3Ip7RfFAUr1sdWXyvJXOEAbBCEUvsWQFLiVhf7fth0MEzo3UrrN9HlJhOOQErDLFGRE9YqpqzK7GoJnvBz1h0O2Cp+MU//foBfIMnvfqNnT8mvfeqGrDUiDUIHz8xs7Y0fd27XxRMiYq5DFgavteGjr9Rt66Jq9r8+BIdkV8MWFrECt9amXb4yEV99Q/fKUadXFUPWOGINaHqhXEFx3YkvzN2aH3laOt0wIpArHn3lhZVxHSY9i2cyiwsGfsTYEUi1tCvv7v/4qHpaX9I/wZ/dugnwwErCrGWHB5++qA5NuWdvRs3Jw2bOQywBiDWu69PiW0YW5S0es4Je+2kjhWANRCxLPdfjJybWpdSbHg+4cKLHe+pjIZZAsUfBLchZ4UL0k5vVDx5i377G9EFRmzBNhkNldie2IQw3oQ4awj2ZQ14bkzDc6tW6Nf+sTa18sfdC4RzZZA2Yp7QGnyEs2Af7idah8+lXCTwOmAkpPCymxbrsMxCpJvuNnqJpdrL6IWdAA4ooglGLhDvxQ6o8BTgankHFHLNQy72DYGBfFlL/mPEjMspRS3ar9IzwtYHAPLWWn+Qt27nIVf4gry6ZJXn/KRLSWVP3+KuKv7tU8KwnwhPnow0i/UF8MNcB9xN20ncSjAE7nFTjlzcaSMsZB5tA0ECpCEOK8zeQDsG8hgit2dJrdixyS1VmqFw9J7mYCBRLbwTQPoGhFScg7WCMFp4a1OEGeYdJEO6wEGagFwYASDCGjZxFMgTfsJYstHK60Fa0ecTM/90Lm7ph/WFqn+lH+P5fDxb8sSmgk+cM5MrGqsrz1SsnMjz+aA23XpwddB+tWHPPwebIkZFN2vT2RRIokcqju57Ym697HZYNPxIVjuZfIZBYpOVzjQblliNZabtGf3QV4feH3n+SqQT8HSoFcgRg3IcIJcO4cA0Ckc0RZphrcfNkA6GF2QQQi5UgqVS7wI7zsO62JG0kcJMMHn83kIWjFmkMIIjG9+H3ZfDY7PNcoM9OHI73UTnPetfFox5NGNRF9kEdSObQYmd1mQB6aXHRcqKqPnn4C073g5NrbgzOYbau2++QERh8VxPiYy8jD4R0nC/Qrr1FxUSX01QpMZzDhJ2KfDaNSsLOC4fdeRkcSdcJc7QOOVwky4GB84QTCFwgLKy+fRA9MSVddvT9h/dxrxyfmFpmMnDENk20gu20J7YWcZIZBU0RiKloL49tbJCHOJXiDc3IQclcDS+AIxEykxacQa4HFmw9q+/eeX0pZP1la8V//34oqjjAmwU0FNJkOGogVbhrM+Rn2kEZ3anJF60sCqMQjAfNyUh+PEvWtLDbIeTXtr9bnBBwx3LBLvRZOZROQwOj6rSMBzqA8Pb0nNy3CRQPpuNKxoBbUR1pNgehVrxAcjXkiQwd+H1FMLjBpCEAAjL5EJu9SeAu6q3laMI9qQPjNINVyd/vs9ef2FGK6V/OTUGn5bymTC5UMjulaN2l/SJCwe9rRIBuLIgXK06GXvLAikhvkYAF18Y8RU8wjmJ0azGyEIztablpejL0ZN2PtRxW+2L53YLk2G2u7SExpG7A0d8SAwAOK2r/YEDdKk/IorS4bFndxZIWD3tIqNgrJvk6wkX4USFT1kRxXq+2Xd/WW38lg8WnxnvsT0u1F7YW6q9LDXQDpFVz5V+1fP5fpFAWDZN20jC6/cwSSX1CquHnN2AKAW9qqxQxMe9q3cpvRQKfhr5jAq5KGX+jDULFKV4NZREqaq3W6cv//KScc/bu/a8OactVegFzISDtAkDlNqPQt+jw52wB1vFt3jcDG3HHTTYBns4hHHfn7aLi18yS+nJ6VybaXHRNlsGAeiQqMQ6/0R+Spxw+PJTqikg6YOZBj/tXQbaA7I43GID64ERiLRSDNq7BaAFTKC9sEYkR/6psliOcc0gnxgP5Bgdj2Ev6zUmwpVLOVLJHIFSaDlyBpWbJ3xyxtEn086uVKEyHE5rNmzNHt8UxYIofHwcxq9KrrLrIuYaHVbKQnqfsAWpIRHaZReSCRwlKBvQEC8pPNNJWijCFk9bO/sC+BkXSdi996yz8vZBqspHtWtZVcWF375X1Vdqgo7NL2w0vjXOcOrieNWR/lHVLKiqW/tSVRNnNxtOzd96faiqypeqXkflN/HTiD4qvzXO9ld+a8z+tfwmK51hBUNmvK41JizdF6e+/GzMiH4vv8XN9lcUaMy98cpvZxtON0yoO2oqcnT82JLx3l3XQPktjvQrpOwbpvw2LCxlz7CRVtPuSkOWaqNlbJ+V3wJcDmCFmOVXiE8FvPw2xPyPherxDQm1a1aXnXthe3q/lt9YP+Oz/AZUGIVgPse7nkOw+A2DPgrB2AZ/IRir+DUEy0pHo3663WCv1Nc/4Tj0w2+aP+/3ENy43m9dvurGC8Geu1t23nu2Lrn0xOALo34aXXMthOBKf0ICxnajhOAzjmrzuD9/O6nqnOd3v18yfG6fheAAv4bBWlqZX0srDXgIFp/y+zUEs37GZwgGKoxCsAa79gs24tfx+r5gI86m+q9g07q4Lws2l+hmQ8uJxddHwUbrS1VvaV9lGPToR/GbHvpif93BuYZuX1FTo1EGxrOqKPczGw3HEqhUJKKJVa1Xr7WJ3/m7ytfaeugyvA+/RKrWeBw4hdAm6C6g20CIh/tC/HLRjs3RsQp9w8whVTVO05ZuEddcQ4iLX5ANzIuE4tcTexjB/AkkbodYIBFXZwLsY7Ff3AS6f4otftTcm6fYATCAuOVivCOvygDQLzB+cQu4ot+WiF/47t1vS0TGIP7hSgCMAZvqFc7/AQ== true iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAZdJREFUSEvV1M8rBGEcx/GHJL8ixYHdcnBwcuBgExYnF6Tk4K4cXJjZuLg4uOxhy4+U5Cgl+QMUSXIQ/gMkSn4lF1La8f7uzjbraWaatRx86nWYp5nnM/PMPKP+S5px7aIWeacMa7Bc1CFQejGqacUArnCIvAr2oF98i3N0oQDFLgKlHA/QCz4RRw0qMexCls83IZziCAtIZBmzx56wAf0GRAM8E4Esw0zqyDthbMKzoBRvmg+8YBBBUo8VLGmqkVont/ZZ/ErkCV4173iEbKAgKYQ8ha4InpFv/R5tqSP/yHtwW4UW+KYfd+iGLGW2zHcuN3CCHxVI+vAM/eJdrOIGJmTTnWma4CSppsNJZUbTYo32sGQdeoG8p2VUIFiSyohZyrQEJYv2sGQeF5pjyA6fQxUmXXz/F/kUeEV2+hYuoT+h6GBSM5JUU+NpxrZTYOxnxi1ldHKyX0bgVWDEM5N64SZkl/qlBPJL0YV+q8A7fC3tlEzYdpyJjQNn3Izap+cXJsv1JeeWPy9g4h5KEoIlGrKH84hSX+x+CmKBvnCmAAAAAElFTkSuQmCC 69ae5d2b-f8b0-45e5-b3c0-4b7f7d9c4314 ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ true 4 366990f3-4b5c-4486-8cee-28705f6abe90 bf962535-6875-4317-b65e-ec8249e02594 e5160ef4-a399-419f-9445-3e29f0a8b53d ea997ec2-dc59-48b3-be9a-cae09aa6ff28 0ef02d63-4c77-4baf-8a44-8b45ed9effc1 dc1dce83-50c8-4b2e-bdbb-9da4471c5c1c 2df4e919-ccf0-4e59-924f-ef207e19da1d 2e55aebe-34b6-4785-8e6b-d76dac4aff89 5550 -563 49 44 5579 -541 2 2e3ab970-8545-46bb-836c-1c11e5610bce b6236720-8d88-4289-93c3-ac4c99f9b97b 2 b6236720-8d88-4289-93c3-ac4c99f9b97b 8ec86459-bf01-4409-baee-174d0d2b13d0 Shift offset ea997ec2-dc59-48b3-be9a-cae09aa6ff28 Shift true 0 5552 -561 15 20 5559.5 -551 1 1 {0} 1 2 A wire relay object e5160ef4-a399-419f-9445-3e29f0a8b53d Relay true 7ae860ec-f02e-44f7-90a2-ee7b43b7a113 1 5552 -541 15 20 5559.5 -531 2 A wire relay object bf962535-6875-4317-b65e-ec8249e02594 Relay false 0 5591 -561 6 20 5594 -551 Result of mass addition 366990f3-4b5c-4486-8cee-28705f6abe90 Result false 0 5591 -541 6 20 5594 -531 f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ 7VsJdBNlHp+2aZqjB1AVUJDR4nqwFnTxKbJgk6ZHaNPGFhAEH50m03YgycRkUuSy5UFBKiBd6Alo8UEFqVahVDmU6haXXVksCwgo2kMXV46VXXXFXaX7fTPfpJ0jaaGphYd9L+nM//+dv//5/WeiMtAWj510MB3gLwjDMAX4RDptnlzKMSufdLkp2gFZZkCGbPgXBpvw/ZJJwkq6YJNQxNbwLKMBktWANPbyuVFrGom4un8frj+tKZ8XZnaR+RQ5F/I1gK/MzAOjWKMQ2US68ybPc5KQHYImjkC8NNplJ2yQMxJQN23a1MH3yiRtpIUhrTyPoqiOmwxkDuWgGLALs4t2ki6GIt38sPCjMBAMO48K3OxssxeXLP9UpTWQbouLcjJo83CJmCKNsJP83YWQaclJsbHtuyrPvrgCfLeX14HvtvI328rr2Qv2tn4L/C5ZzX6vaSsp9bZsrkiD12uXwhHKYJf2DZu9123r1ratK/U2ayvf5h2Na8YNcrZ8J6RXLhZMzfdFS0LcbcLlbeyct7iKbbzS33XVq94B0Tei+O3FXqMdsTN2WcA279rQOvlld7Zhudwe0aTs3hGq7AgIH76vFEkOYYQ2NxEvCCQXNJpAfAheVrKxsUnJ09QZQMOgKbh5M4F/ETw1nvZwBhTCmwBQttlAGZH+BCOycjLhyiXZlreD27qfOzoWgi6KJ2nazlvQzMibHgudCtRZMJUaUiTTqDMszlRiHu1hurbVJLloj1PSeGCnKaRnw8V5J4gCHy1HE/SCdCVHhwMEI0tUJE3ptOw7gotm3L3r45SV2V/r8v7q+K/ASiJMhNuN66xWdlZ1PO1gCMrR6S2gr5GztXvMpCsH2Dluh/0J1B+nc3ACt1FuBl5RDGl3K5Mpq5V08BsJCjc63AzhsJBJHsrKLzHjvqHGPAWZsMGZcKxxcOtRP0tUpVGWOb7ZGh3DuKhsD8P5EK9Y9QA1K0uKgfdZRwxYXEoThv1Hj2Fj9KFmKp9mQR0BuYUfG7DGhCatk3AR9lmUw+lh0VUhdJU6i4V0e31UkA+IRhhhRzyfsHlINw7AEmIVK4tE+wndiS11d6WvrZs5+8C8Q98KkAhlR5QggMjp7Oyc42UVTZlJe1wWklVDqMtnT4bsffA1Y2FNyfzzukU1Wo4t0CfYr4cQVgMIGycBCE/qMAwXQ2g+ykIYzkEI1B9hqPQD2OAM0u2xsaojQEoWqKxRjHn5I1NSNj1ieoyy53kEQCm5kSRI8XQJVHJYYD3HAjuJsHgOqFO1ToRF3GmgbMlCLOCsYVemT4NTkV2BcRiKsOEudjNuWXjSBr6wqPzIrOQGw0fbX7YUVgjgiTKjETg43BKcJA36BLAEv4DFNyHHFuTLsT2wOePAjLptiVs3R334/rPflwlthXWxQoc2lAdcT7tQRsQnGcp42gZ2xCcm8L+cDG7X4blwXCiGJBdQ0jzaCVIWnObcdbDRwFvbvu9H/fSX7JsS32qYcGmX5sIAwApCrPLnjt+3yHHMtPd/49Y8fNvDOsAK9mGjgBWCWBObRuavf8qgW3boywcfmfjAl4ClQKx3Ip7RfFAUr1sdWXyvJXOEAbBCEUvsWQFLiVhf7fth0MEzo3UrrN9HlJhOOQErDLFGRE9YqpqzK7GoJnvBz1h0O2Cp+MU//foBfIMnvfqNnT8mvfeqGrDUiDUIHz8xs7Y0fd27XxRMiYq5DFgavteGjr9Rt66Jq9r8+BIdkV8MWFrECt9amXb4yEV99Q/fKUadXFUPWOGINaHqhXEFx3YkvzN2aH3laOt0wIpArHn3lhZVxHSY9i2cyiwsGfsTYEUi1tCvv7v/4qHpaX9I/wZ/dugnwwErCrGWHB5++qA5NuWdvRs3Jw2bOQywBiDWu69PiW0YW5S0es4Je+2kjhWANRCxLPdfjJybWpdSbHg+4cKLHe+pjIZZAsUfBLchZ4UL0k5vVDx5i377G9EFRmzBNhkNldie2IQw3oQ4awj2ZQ14bkzDc6tW6Nf+sTa18sfdC4RzZZA2Yp7QGnyEs2Af7idah8+lXCTwOmAkpPCymxbrsMxCpJvuNnqJpdrL6IWdAA4ooglGLhDvxQ6o8BTgankHFHLNQy72DYGBfFlL/mPEjMspRS3ar9IzwtYHAPLWWn+Qt27nIVf4gry6ZJXn/KRLSWVP3+KuKv7tU8KwnwhPnow0i/UF8MNcB9xN20ncSjAE7nFTjlzcaSMsZB5tA0ECpCEOK8zeQDsG8hgit2dJrdixyS1VmqFw9J7mYCBRLbwTQPoGhFScg7WCMFp4a1OEGeYdJEO6wEGagFwYASDCGjZxFMgTfsJYstHK60Fa0ecTM/90Lm7ph/WFqn+lH+P5fDxb8sSmgk+cM5MrGqsrz1SsnMjz+aA23XpwddB+tWHPPwebIkZFN2vT2RRIokcqju57Ym697HZYNPxIVjuZfIZBYpOVzjQblliNZabtGf3QV4feH3n+SqQT8HSoFcgRg3IcIJcO4cA0Ckc0RZphrcfNkA6GF2QQQi5UgqVS7wI7zsO62JG0kcJMMHn83kIWjFmkMIIjG9+H3ZfDY7PNcoM9OHI73UTnPetfFox5NGNRF9kEdSObQYmd1mQB6aXHRcqKqPnn4C073g5NrbgzOYbau2++QERh8VxPiYy8jD4R0nC/Qrr1FxUSX01QpMZzDhJ2KfDaNSsLOC4fdeRkcSdcJc7QOOVwky4GB84QTCFwgLKy+fRA9MSVddvT9h/dxrxyfmFpmMnDENk20gu20J7YWcZIZBU0RiKloL49tbJCHOJXiDc3IQclcDS+AIxEykxacQa4HFmw9q+/eeX0pZP1la8V//34oqjjAmwU0FNJkOGogVbhrM+Rn2kEZ3anJF60sCqMQjAfNyUh+PEvWtLDbIeTXtr9bnBBwx3LBLvRZOZROQwOj6rSMBzqA8Pb0nNy3CRQPpuNKxoBbUR1pNgehVrxAcjXkiQwd+H1FMLjBpCEAAjL5EJu9SeAu6q3laMI9qQPjNINVyd/vs9ef2FGK6V/OTUGn5bymTC5UMjulaN2l/SJCwe9rRIBuLIgXK06GXvLAikhvkYAF18Y8RU8wjmJ0azGyEIztablpejL0ZN2PtRxW+2L53YLk2G2u7SExpG7A0d8SAwAOK2r/YEDdKk/IorS4bFndxZIWD3tIqNgrJvk6wkX4USFT1kRxXq+2Xd/WW38lg8WnxnvsT0u1F7YW6q9LDXQDpFVz5V+1fP5fpFAWDZN20jC6/cwSSX1CquHnN2AKAW9qqxQxMe9q3cpvRQKfhr5jAq5KGX+jDULFKV4NZREqaq3W6cv//KScc/bu/a8OactVegFzISDtAkDlNqPQt+jw52wB1vFt3jcDG3HHTTYBns4hHHfn7aLi18yS+nJ6VybaXHRNlsGAeiQqMQ6/0R+Spxw+PJTqikg6YOZBj/tXQbaA7I43GID64ERiLRSDNq7BaAFTKC9sEYkR/6psliOcc0gnxgP5Bgdj2Ev6zUmwpVLOVLJHIFSaDlyBpWbJ3xyxtEn086uVKEyHE5rNmzNHt8UxYIofHwcxq9KrrLrIuYaHVbKQnqfsAWpIRHaZReSCRwlKBvQEC8pPNNJWijCFk9bO/sC+BkXSdi996yz8vZBqspHtWtZVcWF375X1Vdqgo7NL2w0vjXOcOrieNWR/lHVLKiqW/tSVRNnNxtOzd96faiqypeqXkflN/HTiD4qvzXO9ld+a8z+tfwmK51hBUNmvK41JizdF6e+/GzMiH4vv8XN9lcUaMy98cpvZxtON0yoO2oqcnT82JLx3l3XQPktjvQrpOwbpvw2LCxlz7CRVtPuSkOWaqNlbJ+V3wJcDmCFmOVXiE8FvPw2xPyPherxDQm1a1aXnXthe3q/lt9YP+Oz/AZUGIVgPse7nkOw+A2DPgrB2AZ/IRir+DUEy0pHo3663WCv1Nc/4Tj0w2+aP+/3ENy43m9dvurGC8Geu1t23nu2Lrn0xOALo34aXXMthOBKf0ICxnajhOAzjmrzuD9/O6nqnOd3v18yfG6fheAAv4bBWlqZX0srDXgIFp/y+zUEs37GZwgGKoxCsAa79gs24tfx+r5gI86m+q9g07q4Lws2l+hmQ8uJxddHwUbrS1VvaV9lGPToR/GbHvpif93BuYZuX1FTo1EGxrOqKPczGw3HEqhUJKKJVa1Xr7WJ3/m7ytfaeugyvA+/RKrWeBw4hdAm6C6g20CIh/tC/HLRjs3RsQp9w8whVTVO05ZuEddcQ4iLX5ANzIuE4tcTexjB/AkkbodYIBFXZwLsY7Ff3AS6f4otftTcm6fYATCAuOVivCOvygDQLzB+cQu4ot+WiF/47t1vS0TGIP7hSgCMAZvqFc7/AQ== true iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAZdJREFUSEvV1M8rBGEcx/GHJL8ixYHdcnBwcuBgExYnF6Tk4K4cXJjZuLg4uOxhy4+U5Cgl+QMUSXIQ/gMkSn4lF1La8f7uzjbraWaatRx86nWYp5nnM/PMPKP+S5px7aIWeacMa7Bc1CFQejGqacUArnCIvAr2oF98i3N0oQDFLgKlHA/QCz4RRw0qMexCls83IZziCAtIZBmzx56wAf0GRAM8E4Esw0zqyDthbMKzoBRvmg+8YBBBUo8VLGmqkVont/ZZ/ErkCV4173iEbKAgKYQ8ha4InpFv/R5tqSP/yHtwW4UW+KYfd+iGLGW2zHcuN3CCHxVI+vAM/eJdrOIGJmTTnWma4CSppsNJZUbTYo32sGQdeoG8p2VUIFiSyohZyrQEJYv2sGQeF5pjyA6fQxUmXXz/F/kUeEV2+hYuoT+h6GBSM5JUU+NpxrZTYOxnxi1ldHKyX0bgVWDEM5N64SZkl/qlBPJL0YV+q8A7fC3tlEzYdpyJjQNn3Izap+cXJsv1JeeWPy9g4h5KEoIlGrKH84hSX+x+CmKBvnCmAAAAAElFTkSuQmCC 56b85b52-533e-46e6-a4ef-6bfb977952bb ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ true 4 47f8c543-3f12-46b6-9c45-d7679aa73eda 4c02a302-57af-4cef-bd41-85e89bc3be06 681d33cd-141f-4054-b4c5-cb2b1d97d8cc f72ac5a0-f0bb-4f18-a519-31a45e4cbc58 dc1dce83-50c8-4b2e-bdbb-9da4471c5c1c 2df4e919-ccf0-4e59-924f-ef207e19da1d 2e55aebe-34b6-4785-8e6b-d76dac4aff89 0ef02d63-4c77-4baf-8a44-8b45ed9effc1 5550 -709 49 44 5579 -687 2 2e3ab970-8545-46bb-836c-1c11e5610bce b6236720-8d88-4289-93c3-ac4c99f9b97b 2 b6236720-8d88-4289-93c3-ac4c99f9b97b 8ec86459-bf01-4409-baee-174d0d2b13d0 Shift offset 681d33cd-141f-4054-b4c5-cb2b1d97d8cc Shift true 0 5552 -707 15 20 5559.5 -697 1 1 {0} -1 2 A wire relay object 4c02a302-57af-4cef-bd41-85e89bc3be06 Relay true adbceb33-b653-49dc-aefa-e907e8f462ff 1 5552 -687 15 20 5559.5 -677 2 A wire relay object 47f8c543-3f12-46b6-9c45-d7679aa73eda Relay false 0 5591 -707 6 20 5594 -697 Result of mass addition f72ac5a0-f0bb-4f18-a519-31a45e4cbc58 Result false 0 5591 -687 6 20 5594 -677 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true 81c78050-42ce-42e1-b704-c28af80d0879 Rotate Rotate 5485 -1259 191 64 5612 -1227 Base geometry 00a540ab-9749-4d8c-96c9-2fc32ed39a1f Geometry Geometry true 48a77407-1ef5-408c-98e8-f8c22c4b8306 1 5487 -1257 113 20 5543.5 -1247 Rotation angle in radians 226e3dcc-2451-4e3e-a826-4e56af0fd78a Angle Angle false 0 false 5487 -1237 113 20 5543.5 -1227 1 1 {0} 3.1415926535897931 Rotation plane e5b63ff6-0729-47bf-b231-8951b2226050 Plane Plane false 3b38221c-a947-47b4-9a1a-4e8ff76e2c4f 1 5487 -1217 113 20 5543.5 -1207 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry afe51e5b-2aba-4ee7-912e-9f81a3eec6d7 Geometry Geometry false 0 5624 -1257 50 30 5649 -1242 Transformation data c66b686c-536a-465e-8728-ddae72d50ffc Transform Transform false 0 5624 -1227 50 30 5649 -1212 8073a420-6bec-49e3-9b18-367f6fd76ac3 Join Curves Join as many curves as possible true 16c22ddd-5c25-4c4f-acce-a3d7f0148828 Join Curves Join Curves 5548 -1369 116 44 5615 -1347 1 Curves to join 137167ed-b8a3-4c6a-811c-61784ff10db1 Curves Curves false 87471af4-c825-4e7a-b78e-3baf0ade13a1 1 5550 -1367 53 20 5576.5 -1357 Preserve direction of input curves f553c93a-1dde-4da3-854a-a476c1211dc8 Preserve Preserve false 0 5550 -1347 53 20 5576.5 -1337 1 1 {0} false 1 Joined curves and individual curves that could not be joined. ed45085a-8c02-44de-abcb-eeed1ed143df Curves Curves false 0 5627 -1367 35 40 5644.5 -1347 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true 3784dae5-ec06-4b36-9eb4-32475f135a17 Merge Merge 5558 -1323 90 64 5603 -1291 3 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 1992602a-efc1-4b0b-9939-37f269c5499f false Data 1 D1 true 48a77407-1ef5-408c-98e8-f8c22c4b8306 1 5560 -1321 31 20 5575.5 -1311 2 Data stream 2 1cb41ee5-37b1-453c-b111-ad53da685999 false Data 2 D2 true afe51e5b-2aba-4ee7-912e-9f81a3eec6d7 1 5560 -1301 31 20 5575.5 -1291 2 Data stream 3 57cca058-8f50-4e6b-ba12-0751532bf79f false Data 3 D3 true 0 5560 -1281 31 20 5575.5 -1271 2 Result of merge 87471af4-c825-4e7a-b78e-3baf0ade13a1 Result Result false 0 5615 -1321 31 60 5630.5 -1291 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object a97649ee-fe8f-4128-8d41-11d1c7771844 Relay false 8597afef-d390-48ff-bfdf-3c8f4a1ab9aa 1 5503 -420 40 16 5523 -412 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 94a2a565-7b38-4eac-992c-a8b833d53e1c Panel false 0 0 0.51542256311 5690 -250 112 20 0 0 0 5690.922 -249.1965 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression O/4^(OO-4) true 5bb68c64-8e55-4ede-a373-3b553f00b8f5 Expression Expression 5714 -145 157 44 5787 -123 2 ba80fd98-91a1-4958-b6a7-a94e40e52bdb ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 97d9a087-6b0c-4acf-bd43-383c56431d87 Variable O O true 04250f66-9b19-4960-81e5-c75d6a635b9a 1 5716 -143 19 20 5725.5 -133 Expression variable f7d623e1-5147-402a-9ee0-b90c3c22b0f8 Variable OO OO true ace881a5-d17e-48cc-8091-b504f097c407 1 5716 -123 19 20 5725.5 -113 Result of expression 969c17c3-b421-462c-b1dc-0b89d2fdb2bd Result Result false 0 5838 -143 31 40 5853.5 -123 7ab8d289-26a2-4dd4-b4ad-df5b477999d8 Log N Return the N-base logarithm of a number. true c9ed6af8-fb3d-4e12-b8eb-94fbb41d8973 Log N Log N 5682 -39 115 44 5752 -17 Value 6eb8c039-dcbe-48a3-9798-d0c45254fc4e Number Number false 5b3c723a-3f23-441f-9c84-ffbe637729f5 1 5684 -37 56 20 5712 -27 Logarithm base 319b7b83-1aa9-4939-b860-73d08c058601 Base Base false 0 5684 -17 56 20 5712 -7 1 1 {0} 2 Result ace881a5-d17e-48cc-8091-b504f097c407 Result Result false 0 5764 -37 31 40 5779.5 -17 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 5b2cc981-7e40-4a82-88b8-624b14091777 Digit Scroller INCREASE BEND PER SEGMENT false 0 12 INCREASE BEND PER SEGMENT 1 0.48758816891 5405 -191 250 20 5405.438 -190.1045 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 11fa940e-cfd5-4601-9b24-2fd715db1f3a Panel false 0 0 16 0.492221738454693386 32 0.507180224586 5709 -208 194 30 0 0 0 5709.922 -207.1965 1 255;255;255;255 false false true true false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values fea29e22-ad99-4c97-a41a-7d5ac36eb3ce Panel false 0 0 0.492221738454693386 5452 -122 112 20 0 0 0 5452.005 -121.3832 255;255;255;255 false false true false false true 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true 083da795-56a8-4934-b454-6e2db47c35ee Deconstruct Deconstruct 6052 -411 120 64 6093 -379 Input point 8b3f5170-858d-42d7-8649-2dd06911382c Point Point false c16cbadd-b9e5-4b4c-a7f6-d0a2af9bd438 1 6054 -409 27 60 6067.5 -379 Point {x} component 04c2b22c-6673-4905-abc8-faf33e2da54b X component X component false 0 6105 -409 65 20 6137.5 -399 Point {y} component 5c15c61b-748e-4d37-8f07-4d67dd9da867 Y component Y component false 0 6105 -389 65 20 6137.5 -379 Point {z} component 61a0a803-d15e-4c0a-bd03-e9173dc47ab1 Z component Z component false 0 6105 -369 65 20 6137.5 -359 d3d195ea-2d59-4ffa-90b1-8b7ff3369f69 Unit Y Unit vector parallel to the world {y} axis. true 898393e5-1cbe-4939-9cd6-16052006348b Unit Y Unit Y 5301 -575 114 28 5347 -561 Unit multiplication 604e846e-5334-45cc-b358-e8275259a522 Factor Factor false a97649ee-fe8f-4128-8d41-11d1c7771844 1 5303 -573 32 24 5319 -561 1 1 {0} 1 World {y} vector 5daa660a-905c-43f7-92a4-ea551e4af786 Unit vector Unit vector false 0 5359 -573 54 24 5386 -561 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 978abbde-eb2d-4d4f-9c9f-6a4f665f7b49 Evaluate Length Evaluate Length 5529 -1194 149 64 5614 -1162 Curve to evaluate 609d0e08-a115-4818-85f2-e0fddbd3c482 Curve Curve false 48a77407-1ef5-408c-98e8-f8c22c4b8306 1 5531 -1192 71 20 5566.5 -1182 Length factor for curve evaluation e9ae8d24-71ad-479c-a1cb-011009bb755e Length Length false 0 5531 -1172 71 20 5566.5 -1162 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 36427eab-9517-4ae9-8b53-5ecde7b832ff Normalized Normalized false 0 5531 -1152 71 20 5566.5 -1142 1 1 {0} true Point at the specified length 3b38221c-a947-47b4-9a1a-4e8ff76e2c4f Point Point false 0 5626 -1192 50 20 5651 -1182 Tangent vector at the specified length d80629a8-1bbd-4ecc-840b-0cecd25d1828 Tangent Tangent false 0 5626 -1172 50 20 5651 -1162 Curve parameter at the specified length bb2712ae-97d9-47a4-8a62-3b354df87e65 Parameter Parameter false 0 5626 -1152 50 20 5651 -1142 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true e7fa1c0a-6dee-469e-bd81-b490fe80e04b Rotate Rotate 5486 -1687 226 81 5648 -1646 Base geometry d859fb44-f1f1-44ad-88d4-2cec87520b1c Geometry Geometry true eed3e60c-da42-452d-840a-628600c254ce 1 5488 -1685 148 20 5570 -1675 Rotation angle in degrees 6d1a58cb-dc0e-4d96-a845-4430b1755619 Angle Angle false 073fb8d2-f971-4f1f-a5cb-c70731174f1a 1 true 5488 -1665 148 20 5570 -1655 1 1 {0} 1.5707963267948966 Rotation plane f8993e77-cb96-457b-ba55-5914f3f9a84c Plane Plane false 0 5488 -1645 148 37 5570 -1626.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry 3143d331-a6cc-487a-9d6e-98844d184687 Geometry Geometry false 0 5660 -1685 50 38 5685 -1665.75 Transformation data aa79130c-2e49-4f9f-8045-32819256da62 Transform Transform false 0 5660 -1647 50 39 5685 -1627.25 b464fccb-50e7-41bd-9789-8438db9bea9f Angle Compute the angle between two vectors. true 6d669f59-dcfb-404b-94b1-22bb7f83e90c Angle Angle 5504 -1602 197 81 5640 -1561 First vector 49c3e659-47fc-4806-a1a7-a90ae62a2118 Vector A Vector A false a9986f1c-b6a1-432b-98a1-86f37c910392 1 5506 -1600 122 20 5567 -1590 Second vector 211c037d-ad50-43ce-9e18-99e373a7fa37 Vector B Vector B false 0 5506 -1580 122 20 5567 -1570 1 1 {0} 1 0 0 Optional plane for 2D angle f549f8d8-2052-432e-9d02-6064ae210e29 Plane Plane true 0 5506 -1560 122 37 5567 -1541.5 Angle (in radians) between vectors 073fb8d2-f971-4f1f-a5cb-c70731174f1a -DEG(X) Angle Angle false 0 5652 -1600 47 38 5667.5 -1580.75 Reflex angle (in radians) between vectors adbd9356-8441-4587-beb8-1cca3d95d43c Reflex Reflex false 0 5652 -1562 47 39 5667.5 -1542.25 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true d5bb524f-50cb-4f8e-84b6-4b1bb53032d7 Evaluate Length Evaluate Length 5556 -1509 149 64 5641 -1477 Curve to evaluate 0ad0e1a4-a61f-4782-8953-56e97b11a659 Curve Curve false eed3e60c-da42-452d-840a-628600c254ce 1 5558 -1507 71 20 5593.5 -1497 Length factor for curve evaluation 5d75aa5f-cd40-4463-a606-a24969050e6c Length Length false 0 5558 -1487 71 20 5593.5 -1477 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 718e13ff-de7e-4d4e-800e-a4a89c12d060 Normalized Normalized false 0 5558 -1467 71 20 5593.5 -1457 1 1 {0} true Point at the specified length f211f2c6-f743-4471-9aee-eb2cb9de482a Point Point false 0 5653 -1507 50 20 5678 -1497 Tangent vector at the specified length a9986f1c-b6a1-432b-98a1-86f37c910392 Tangent Tangent false 0 5653 -1487 50 20 5678 -1477 Curve parameter at the specified length 8cd731f3-ea06-485a-a069-42e6719da761 Parameter Parameter false 0 5653 -1467 50 20 5678 -1457 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values d2f1a870-6ec7-451d-ba61-c993471b9a2f Panel X false 0 2e55baa2-20b1-44cf-b7ac-aa0b126535af 1 6359 -507 194 40 0 0 0 6359.01 -506.1965 1 255;255;255;255 false false true true false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 24e48d98-c61b-415c-b273-4b3dbab4fd16 Panel Y false 0 fe241549-f029-4024-a10a-e27d4d6d7874 1 6379 -289 194 40 0 0 0 6379.01 -288.1965 1 255;255;255;255 false false true true false true 797d922f-3a1d-46fe-9155-358b009b5997 One Over X Compute one over x. true db07fc6c-26cd-41c6-93d6-de33385a43f7 One Over X One Over X 5385 -431 88 28 5428 -417 Input value 4c922936-dade-42d3-8fe3-7d2e5413792e Value Value false d4e5c598-1665-4ef4-8cb9-a34cd9ede92b 1 5387 -429 29 24 5401.5 -417 Output value 8597afef-d390-48ff-bfdf-3c8f4a1ab9aa Result Result false 0 5440 -429 31 24 5455.5 -417 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 9b896070-f198-4c28-aaf3-2300ba4b3e28 Evaluate Length Evaluate Length 5529 -1848 149 64 5614 -1816 Curve to evaluate 1e5a0a89-9608-43c5-adfb-9cc8f66aeaaf Curve Curve false 579c985b-e3f7-44b1-a94e-ebd88c119761 1 5531 -1846 71 20 5566.5 -1836 Length factor for curve evaluation 9a579e77-5061-4ebd-8d6d-d2076cff2238 Length Length false 0 5531 -1826 71 20 5566.5 -1816 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 4eaeccf0-5da5-4d4f-b254-6a421ca86373 Normalized Normalized false 0 5531 -1806 71 20 5566.5 -1796 1 1 {0} true Point at the specified length c16cbadd-b9e5-4b4c-a7f6-d0a2af9bd438 Point Point false 0 5626 -1846 50 20 5651 -1836 Tangent vector at the specified length c1d4f0c0-e8e0-4f5c-be90-220d85fc293d Tangent Tangent false 0 5626 -1826 50 20 5651 -1816 Curve parameter at the specified length 966bd2b9-2deb-4d74-80b4-97aff9045b0d Parameter Parameter false 0 5626 -1806 50 20 5651 -1796 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true 45fed133-b4b8-4f87-9dfc-33879ab249e9 Format Format 6199 -520 130 64 6291 -488 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format 5e987017-e63c-4ed5-a423-7cfea5d7e90f Format Format false 0 6201 -518 78 20 6240 -508 1 1 {0} false {0:R} Formatting culture 50b4d2c3-431c-4f9d-89b7-0185ba5399f6 Culture Culture false 0 6201 -498 78 20 6240 -488 1 1 {0} 127 Data to insert at {0} placeholders 3e65133d-05bb-4f1a-ae6d-b658609266d0 false Data 0 0 true 04c2b22c-6673-4905-abc8-faf33e2da54b 1 6201 -478 78 20 6240 -468 Formatted text 2e55baa2-20b1-44cf-b7ac-aa0b126535af Text Text false 0 6303 -518 24 60 6315 -488 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true 1f17eb73-a220-462a-abd9-0e0d5cdbc9c8 Format Format 6329 -421 130 64 6421 -389 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format b9a6c942-37d4-48b0-b6e4-7671ebde333a Format Format false 0 6331 -419 78 20 6370 -409 1 1 {0} false {0:R} Formatting culture 50492468-b201-4da4-9e21-4e43bfbcc76d Culture Culture false 0 6331 -399 78 20 6370 -389 1 1 {0} 127 Data to insert at {0} placeholders 03aade20-4661-4812-9cf6-7d1b8b896575 false Data 0 0 true 639c7e81-d788-4203-b264-dc69ee35dda7 1 6331 -379 78 20 6370 -369 Formatted text df429e15-7bad-41b2-909f-90887b6242e7 Text Text false 0 6433 -419 24 60 6445 -389 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true 6d53808f-1b7d-4a5c-87bb-d4e56e8541f2 Format Format 6199 -328 130 64 6291 -296 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format dc424dcb-43a1-4500-8999-e12b2dacff89 Format Format false 0 6201 -326 78 20 6240 -316 1 1 {0} false {0:R} Formatting culture 4cfcc7cc-65f3-43b6-92e4-3f8334993581 Culture Culture false 0 6201 -306 78 20 6240 -296 1 1 {0} 127 Data to insert at {0} placeholders 7496c375-1da7-41aa-80bf-7bf497a749ce false Data 0 0 true 5c15c61b-748e-4d37-8f07-4d67dd9da867 1 6201 -286 78 20 6240 -276 Formatted text fe241549-f029-4024-a10a-e27d4d6d7874 Text Text false 0 6303 -326 24 60 6315 -296 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 73c5a74c-e00e-4bb8-9931-c5e10f367a91 Division Division 6213 -411 70 44 6238 -389 Item to divide (dividend) ba7492bd-661c-447e-b645-859ee288374b A A false 04c2b22c-6673-4905-abc8-faf33e2da54b 1 6215 -409 11 20 6220.5 -399 Item to divide with (divisor) 4c444ccb-fc0b-4d55-8b93-a5df2d8ef35a B B false 5c15c61b-748e-4d37-8f07-4d67dd9da867 1 6215 -389 11 20 6220.5 -379 The result of the Division 639c7e81-d788-4203-b264-dc69ee35dda7 Result Result false 0 6250 -409 31 40 6265.5 -389 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 6999a1ac-2e35-49b0-8457-650cb70ce4ad Panel X/Y false 0 df429e15-7bad-41b2-909f-90887b6242e7 1 5545 -232 97 40 0 0 0 5545.672 -231.6947 1 255;255;255;255 false false true true false true 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 034bc291-6391-48e9-97a3-a0861e18b0a3 Digit Scroller INCREASE BEND PER SEGMENT false 0 12 INCREASE BEND PER SEGMENT 1 0.77246531995 5394 -258 250 20 5394.559 -257.6532 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 81c78050-42ce-42e1-b704-c28af80d0879 16c22ddd-5c25-4c4f-acce-a3d7f0148828 3784dae5-ec06-4b36-9eb4-32475f135a17 978abbde-eb2d-4d4f-9c9f-6a4f665f7b49 48a77407-1ef5-408c-98e8-f8c22c4b8306 aacb785c-7a0d-4362-a6ab-7067ad0a24e2 6 e9dc22bb-1af1-44fe-a7e9-138433e85c45 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects e7fa1c0a-6dee-469e-bd81-b490fe80e04b 6d669f59-dcfb-404b-94b1-22bb7f83e90c d5bb524f-50cb-4f8e-84b6-4b1bb53032d7 eed3e60c-da42-452d-840a-628600c254ce 2b382be1-77d5-4f5a-bdd7-fe0469361e00 5 50bfb567-cca9-49e1-9cbf-228dd5d96490 Group 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 5a2fa394-e753-49b3-92bf-ce2f99b38de6 Panel false 0 0 0.87246531994281165 5303 -246 112 55 0 0 0 5303.01 -245.1965 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values e32cafbe-23ca-4862-a5b6-6805f5fb5a02 Panel false 0 0 12 0.77246531994281165 5280 -158 122 55 0 0 0 5280.01 -157.1965 255;255;255;255 false false true false false true fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true 4cfbdefd-ba72-40dc-afdb-b7bcb2839654 Point Point false 640ec4ca-bfa6-445b-93b9-dd6a74030587 1 5300 -870 50 24 5325.01 -858.1965 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 48a77407-1ef5-408c-98e8-f8c22c4b8306 Relay false f490919c-9fab-4539-b860-a82406a83adb 1 5598 -1108 40 16 5618 -1100 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object aacb785c-7a0d-4362-a6ab-7067ad0a24e2 Relay false ed45085a-8c02-44de-abcb-eeed1ed143df 1 5595 -1388 40 16 5615 -1380 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object eed3e60c-da42-452d-840a-628600c254ce Relay false aacb785c-7a0d-4362-a6ab-7067ad0a24e2 1 5606 -1439 40 16 5626 -1431 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 2b382be1-77d5-4f5a-bdd7-fe0469361e00 Relay false 3143d331-a6cc-487a-9d6e-98844d184687 1 5581 -1702 40 16 5601 -1694 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object f490919c-9fab-4539-b860-a82406a83adb Relay false 55bd8b03-85a2-4209-b828-65ef0f73ebf3 1 5574 -983 40 16 5594 -975 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true 134d7423-6dfa-4662-87b3-965a2fbcbb41 Deconstruct Deconstruct 5535 -1940 120 64 5576 -1908 Input point 1724a7b2-903f-4a96-9a58-10bd0629a290 Point Point false c16cbadd-b9e5-4b4c-a7f6-d0a2af9bd438 1 5537 -1938 27 60 5550.5 -1908 Point {x} component e2c76670-29b5-4ba2-9fc6-138d1450ba94 X component X component false 0 5588 -1938 65 20 5620.5 -1928 Point {y} component c35d6943-2549-4bc5-ab5c-546a3c0bbc02 Y component Y component false 0 5588 -1918 65 20 5620.5 -1908 Point {z} component 2066c14c-5cf5-4cf3-a8ce-66ed9c58c81c Z component Z component false 0 5588 -1898 65 20 5620.5 -1888 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 579c985b-e3f7-44b1-a94e-ebd88c119761 Relay false 2b382be1-77d5-4f5a-bdd7-fe0469361e00 1 5572 -1759 40 16 5592 -1751 290f418a-65ee-406a-a9d0-35699815b512 Scale NU Scale an object with non-uniform factors. 0d6c0a90-7dc3-42d0-bff0-bb567ffcbe11 Scale NU Scale NU 5481 -2094 226 121 5643 -2033 Base geometry 0ba8e449-2048-4690-961c-56491532a067 Geometry Geometry true 579c985b-e3f7-44b1-a94e-ebd88c119761 1 5483 -2092 148 20 5565 -2082 Base plane dfee0f2c-58a4-442a-8774-fbba69de44dc Plane Plane false 0 5483 -2072 148 37 5565 -2053.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Scaling factor in {x} direction 15950144-dd7c-4d54-99f0-e6869dda7343 1/X Scale X Scale X false e2c76670-29b5-4ba2-9fc6-138d1450ba94 1 5483 -2035 148 20 5565 -2025 1 1 {0} 1 Scaling factor in {y} direction a8c836f4-5efc-4994-b74f-f1358b180e13 1/X Scale Y Scale Y false c35d6943-2549-4bc5-ab5c-546a3c0bbc02 1 5483 -2015 148 20 5565 -2005 1 1 {0} 1 Scaling factor in {z} direction 550ba3f6-1beb-4048-a3da-af26bc7319b0 1/X Scale Z Scale Z false 2066c14c-5cf5-4cf3-a8ce-66ed9c58c81c 1 5483 -1995 148 20 5565 -1985 1 1 {0} 1 Scaled geometry c09bc9ea-a789-4a32-a859-a4d5ca5192a2 Geometry Geometry false 0 5655 -2092 50 58 5680 -2062.75 Transformation data df3757dd-7522-4bf4-9e56-1944cedb99dd Transform Transform false 0 5655 -2034 50 59 5680 -2004.25 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 56233623-7b3b-4690-a754-0d9746d30ac9 Relay false c09bc9ea-a789-4a32-a859-a4d5ca5192a2 1 5575 -2127 40 16 5595 -2119 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 9b896070-f198-4c28-aaf3-2300ba4b3e28 134d7423-6dfa-4662-87b3-965a2fbcbb41 579c985b-e3f7-44b1-a94e-ebd88c119761 0d6c0a90-7dc3-42d0-bff0-bb567ffcbe11 56233623-7b3b-4690-a754-0d9746d30ac9 5 d9d9590a-177b-461d-a939-038c8cfc418a Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 138e4cfd-c4b0-4978-9726-ad0413a4ec0b d7b18b8c-16a0-47f6-90ca-ecbcf0cbeed8 94a2a565-7b38-4eac-992c-a8b833d53e1c 5bb68c64-8e55-4ede-a373-3b553f00b8f5 c9ed6af8-fb3d-4e12-b8eb-94fbb41d8973 11fa940e-cfd5-4601-9b24-2fd715db1f3a 6 ec4ce578-adbb-43a1-b906-c7b70140deb3 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 083da795-56a8-4934-b454-6e2db47c35ee d2f1a870-6ec7-451d-ba61-c993471b9a2f 24e48d98-c61b-415c-b273-4b3dbab4fd16 45fed133-b4b8-4f87-9dfc-33879ab249e9 1f17eb73-a220-462a-abd9-0e0d5cdbc9c8 6d53808f-1b7d-4a5c-87bb-d4e56e8541f2 73c5a74c-e00e-4bb8-9931-c5e10f367a91 7 5f1006ab-7a4a-405d-bc12-555ef6980263 Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 5b3c723a-3f23-441f-9c84-ffbe637729f5 Relay false b05af234-ce5b-432e-8b3f-32a94a964bbf 1 5557 111 40 16 5577 119 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object d4e5c598-1665-4ef4-8cb9-a34cd9ede92b Relay false 5b3c723a-3f23-441f-9c84-ffbe637729f5 1 5595 -1 40 16 5615 7 310f9597-267e-4471-a7d7-048725557528 08bdcae0-d034-48dd-a145-24a9fcf3d3ff GraphMapper+ External Graph mapper You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode. true 80207157-6822-4664-8152-d267c25284cb GraphMapper+ GraphMapper+ true 5112 -699 114 104 5173 -647 External curve as a graph fbe2c5cd-3a51-4e37-8784-892a94851bc8 Curve Curve false 3f1983ed-497b-43f6-bb23-9f15a0364fad 1 5114 -697 47 20 5137.5 -687 Optional Rectangle boundary. If omitted the curve's would be landed 34a6609a-7369-46b9-a05f-47c1cf408d79 Boundary Boundary true b29fdce9-9822-4fb0-a0a7-8b47d4ab27c0 1 5114 -677 47 20 5137.5 -667 1 List of input numbers 30d53ca3-4d0d-4c94-b389-003fc727c19e Numbers Numbers false 34c5257c-bf85-4468-b97d-93f8d57280f0 1 5114 -657 47 20 5137.5 -647 1 9 {0} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 (Optional) Input Domain if omitted, it would be 0-1 in "Normalize" mode by default or be the interval of the input list in case of selecting "AutoDomain" mode 2cf70fe4-989f-417c-aa58-51181ac5555f Input Input true 688fe47c-389e-49a3-b795-8c1fe6e21597 1 5114 -637 47 20 5137.5 -627 (Optional) Output Domain if omitted, it would be 0-1 in "Normalize" mode by default or be the interval of the input list in case of selecting "AutoDomain" mode e1344d82-c8c8-4ef2-9355-33faa9d3488e Output Output true 688fe47c-389e-49a3-b795-8c1fe6e21597 1 5114 -617 47 20 5137.5 -607 1 Output Numbers 7ae860ec-f02e-44f7-90a2-ee7b43b7a113 Number Number false 0 5185 -697 39 100 5204.5 -647 11bbd48b-bb0a-4f1b-8167-fa297590390d End Points Extract the end points of a curve. true 6b881bd1-ede7-4601-bbf7-a7c20eca61f2 End Points End Points 5127 -411 84 44 5171 -389 Curve to evaluate ce9347cf-485b-4442-8f35-14bb7a4f8057 Curve Curve false 3f1983ed-497b-43f6-bb23-9f15a0364fad 1 5129 -409 30 40 5144 -389 Curve start point 26ac0036-e88d-4946-9874-f5d2f543d67b Start Start false 0 5183 -409 26 20 5196 -399 Curve end point 21c7cf4f-0512-4ab7-98b7-c0ca40a0bd8e End End false 0 5183 -389 26 20 5196 -379 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 3f1983ed-497b-43f6-bb23-9f15a0364fad Relay false 71683435-e1f1-4844-8c57-78929934dd9b 1 5149 -334 40 16 5169 -326 575660b1-8c79-4b8d-9222-7ab4a6ddb359 Rectangle 2Pt Create a rectangle from a base plane and two points true 7f7648cf-21d1-4e0b-919e-02ccad934dab Rectangle 2Pt Rectangle 2Pt 5067 -518 198 101 5203 -467 Rectangle base plane fc0037a5-03b5-4dd2-9180-ef4cffb0aa12 Plane Plane false 0 5069 -516 122 37 5130 -497.5 1 1 {0} 0 0 0 1 0 0 0 1 0 First corner point. 31333b3a-8559-431e-abff-ac10cc94b296 Point A Point A false 26ac0036-e88d-4946-9874-f5d2f543d67b 1 5069 -479 122 20 5130 -469 1 1 {0} 0 0 0 Second corner point. 6f250389-1476-4f13-a139-c28439c10a32 Point B Point B false 21c7cf4f-0512-4ab7-98b7-c0ca40a0bd8e 1 5069 -459 122 20 5130 -449 1 1 {0} 10 5 0 Rectangle corner fillet radius 0def13ce-1da8-4a6f-a803-a49868d5971d Radius Radius false 0 5069 -439 122 20 5130 -429 1 1 {0} 0 Rectangle defined by P, A and B b29fdce9-9822-4fb0-a0a7-8b47d4ab27c0 Rectangle Rectangle false 0 5215 -516 48 48 5239 -491.75 Length of rectangle curve 62e2b4e8-3bbd-4423-8070-f9c62ef8feec Length Length false 0 5215 -468 48 49 5239 -443.25 f44b92b0-3b5b-493a-86f4-fd7408c3daf3 Bounds Create a numeric domain which encompasses a list of numbers. true 38e339ce-936d-49f3-9b4e-a5574f7599e1 Bounds Bounds 5114 -572 110 28 5172 -558 1 Numbers to include in Bounds 2f4f12c8-1c05-4085-bcdd-94c34403e98c Numbers Numbers false 34c5257c-bf85-4468-b97d-93f8d57280f0 1 5116 -570 44 24 5138 -558 Numeric Domain between the lowest and highest numbers in {N} 688fe47c-389e-49a3-b795-8c1fe6e21597 Domain Domain false 0 5184 -570 38 24 5203 -558 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 34c5257c-bf85-4468-b97d-93f8d57280f0 Relay false 71849fea-9319-49c4-81a0-4ca7c0b6374f 1 5149 -539 40 16 5169 -531 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 80207157-6822-4664-8152-d267c25284cb 6b881bd1-ede7-4601-bbf7-a7c20eca61f2 3f1983ed-497b-43f6-bb23-9f15a0364fad 7f7648cf-21d1-4e0b-919e-02ccad934dab 38e339ce-936d-49f3-9b4e-a5574f7599e1 34c5257c-bf85-4468-b97d-93f8d57280f0 e1441288-7e8f-4341-9eb3-fb7e2789c35a 7 a14fb7d1-a2ca-4221-ab5c-9c06d3e86e69 Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 04250f66-9b19-4960-81e5-c75d6a635b9a Relay false 50931588-90c0-4430-9aa2-94da3f5a7e47 1 5656 -141 40 16 5676 -133 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 476a41ac-d7e0-4b69-b0ea-ff6b9cf22b4e Relay false bfcbee3a-b2cb-4f84-b04e-6d617f69140d 1 5149 -150 40 16 5169 -142 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. 61fa6c42-0784-4dc5-8ae0-f18dd585eb08 Scale Scale 5065 -279 201 64 5202 -247 Base geometry 72ed12ec-bfe0-42e3-9e49-0b11ac457146 Geometry Geometry true 476a41ac-d7e0-4b69-b0ea-ff6b9cf22b4e 1 5067 -277 123 20 5128.5 -267 Center of scaling d7ca9e28-3a02-49cc-be62-1f77aa753929 Center Center false 0 5067 -257 123 20 5128.5 -247 1 1 {0} 0 0 0 Scaling factor 39ff0785-4cca-4476-80bf-7905410cc545 Factor Factor false 96a7278e-9f39-4139-8e39-8664e709fce8 1 5067 -237 123 20 5128.5 -227 1 1 {0} 0.5 Scaled geometry a2cb0fdb-7a84-45d1-a169-ab1a983e8da9 Geometry Geometry false 0 5214 -277 50 30 5239 -262 Transformation data 0e9412a4-8c1d-4c65-a962-d03b6c3b9a6f Transform Transform false 0 5214 -247 50 30 5239 -232 78fed580-851b-46fe-af2f-6519a9d378e0 Power Raise a value to a power. fefba9a8-83c4-43b4-97f8-0639a9c34551 Power Power 5126 -217 85 44 5166 -195 The item to be raised 7c5a8b3e-a5d1-42f0-86e3-b8baf9a06c52 A A false 0 5128 -215 26 20 5141 -205 1 1 {0} Grasshopper.Kernel.Types.GH_String false 2 The exponent 85dfc02e-a3fa-4c23-83f4-f58788333f09 B B false 20912e25-1a65-4656-8a75-ef362a197274 1 5128 -195 26 20 5141 -185 A raised to the B power 96a7278e-9f39-4139-8e39-8664e709fce8 Result Result false 0 5178 -215 31 40 5193.5 -195 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 20912e25-1a65-4656-8a75-ef362a197274 Digit Scroller SCALE POWER false 0 12 SCALE POWER 11 16.0 5044 -169 250 20 5044.288 -168.8851 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 71683435-e1f1-4844-8c57-78929934dd9b Relay false a2cb0fdb-7a84-45d1-a169-ab1a983e8da9 1 5149 -300 40 16 5169 -292 dde71aef-d6ed-40a6-af98-6b0673983c82 Nurbs Curve Construct a nurbs curve from control points. true 47534ba1-a920-49a2-96f6-df6a9f8c589d Nurbs Curve Nurbs Curve 5414 -970 121 64 5483 -938 1 Curve control points 862f1ea1-eb0e-4575-8c95-d2b95b0fb6c5 Vertices Vertices false d87260b8-9262-4a70-aca6-3d05ceda11ba 1 5416 -968 55 20 5443.5 -958 Curve degree 86bde19a-e78a-4cad-8d55-692349c770ec Degree Degree false 0 5416 -948 55 20 5443.5 -938 1 1 {0} 2 Periodic curve 5921849f-e0f4-4d67-a4b7-ce1dfabe83a9 Periodic Periodic false 0 5416 -928 55 20 5443.5 -918 1 1 {0} false Resulting nurbs curve 009dae59-c1b5-4dd5-8442-ca8805d4d1dc Curve Curve false 0 5495 -968 38 20 5514 -958 Curve length 50d4883f-675e-4b1e-85bc-a057480aa3af Length Length false 0 5495 -948 38 20 5514 -938 Curve domain c4b71572-0400-46cf-a697-5c9562feab02 Domain Domain false 0 5495 -928 38 20 5514 -918 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 476a41ac-d7e0-4b69-b0ea-ff6b9cf22b4e 61fa6c42-0784-4dc5-8ae0-f18dd585eb08 fefba9a8-83c4-43b4-97f8-0639a9c34551 20912e25-1a65-4656-8a75-ef362a197274 71683435-e1f1-4844-8c57-78929934dd9b 5 e1441288-7e8f-4341-9eb3-fb7e2789c35a Group 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 50931588-90c0-4430-9aa2-94da3f5a7e47 Panel false 0 0 0.4875881689164849049 5498 -164 121 40 0 0 0 5498.579 -163.8391 255;255;255;255 false false true false false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 030f2990-06f2-466d-8c0e-2a414bd0aff7 Relay false 0447472e-5591-46af-bb0e-c7bb17204a7b 1 8923 -2222 40 16 8943 -2214 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 92160099-1a10-438c-a8eb-39a5bfdb74ee 72817673-4fa9-47a2-8619-191262972134 cba8136d-fdbb-4a88-8ac9-8566ac35864b 6cc8b961-3d16-490f-8a92-6de71388cfb0 a68f174f-f652-4ebe-9283-84d3ce1414cb c668c4d9-d991-4613-b402-cdf66b7b7cbf b3184d2b-6d05-4ad8-88fc-8731eb4712d3 e5551d65-9328-4cb1-82b6-2faf9de39787 7fe491ec-0db4-4128-8335-9cc4bc710ae4 6f1bc802-fc40-41e1-a2fb-da13054f99d4 98856ba9-ac48-4dc5-8173-4a04a125f4c3 262e2432-cf75-4946-b0ca-fff148556327 de7d3b1c-087f-4d20-b155-1466adf1be7e 1eba0942-8ed3-4598-819a-092d8157d7b5 46e9ac55-9c5e-4e2a-820d-a0f057cb1848 a201152b-09cd-4875-8f5e-65a7d1b5e6ae caec2bbc-5ae6-4081-8207-b03134d3be40 a1e0f8c4-4e32-4423-a640-6d28fa2603ad b03695a5-af3b-4879-8c6a-bb7b760d5119 19 72fc9130-bf79-472e-8944-9bc467993de7 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects f85445d6-ede0-4463-b2ae-79067124f2cc 42507fb3-79c1-42a3-8e3e-da3430ef4cc8 730c8146-4f1e-49ff-9a25-0ad360a13d92 420e1625-e39b-4b86-ac6d-1aa61552e9dd 4724d2ad-95b1-4c3c-bc2b-68a6f62acccc 52288440-728a-43ac-9f45-b604f05e9101 0732fbe9-fdb8-485c-948d-e3a04f39124b 20d55929-82e1-4798-87e2-73ae11f6cf01 cab11098-2986-47e5-b217-9ed1137c64aa d7b18b8c-16a0-47f6-90ca-ecbcf0cbeed8 a05fd376-ba50-4830-86fa-ecbae080a257 dc6e3f6c-b3b2-44ac-a61e-18f9fcde538e 7f7aa427-fe06-4787-b54a-21d0992dc312 c3a8f2ac-93c2-4497-a1bf-88879c0ff2b9 28b69dba-5fc8-4a4a-9202-6f50ae84d1cd 89d087b9-89b1-4d0e-860a-310a805b1dbc 02583296-943b-4bee-aa18-40a95d47301f acd2ff85-cc67-4ee9-90ed-98053d88dae3 ed4e0638-c6d0-4126-95f7-75935e8b71d0 0dde96ac-ef58-4d9c-b16a-67f5cb559ea7 2c29d287-fb31-40d2-9e9c-ef2e29387bb4 1ca98984-5d1f-4236-b2d3-e20c153c5940 661278b1-7115-4eef-931d-363a21259e10 d3a6959a-bba8-449a-982e-ef7604520f53 c310bdd9-cdbb-41d1-9fff-c0a3b50b9761 ca7fa2f7-8da6-406c-a0d0-1a15b937245d b326ab19-e884-4588-875b-7b9eff4591c1 52044557-936a-42d3-ba5a-430897e96bd7 c8ebd8f8-4948-43fb-8832-395b91c34f25 638bdb64-0e1d-4038-a36b-41c4d795d42a f06569ba-0f8e-421c-bfd1-06b651268985 903082e1-697f-4b4c-870e-e7756893c833 fb2a6dbf-b02f-4775-ad6e-36cf33201f14 e23e2f01-18f7-49ba-b41a-08ccfff91ebc 72fc9130-bf79-472e-8944-9bc467993de7 35 adcc41ca-6721-4f8e-8515-09f7baf4cbd8 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects cab11098-2986-47e5-b217-9ed1137c64aa d7b18b8c-16a0-47f6-90ca-ecbcf0cbeed8 a05fd376-ba50-4830-86fa-ecbae080a257 dc6e3f6c-b3b2-44ac-a61e-18f9fcde538e 4 f85445d6-ede0-4463-b2ae-79067124f2cc Group 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 42507fb3-79c1-42a3-8e3e-da3430ef4cc8 Digit Scroller SEMENT LENGTH false 0 12 SEMENT LENGTH 2 0.0023000000 7135 -332 250 20 7135.727 -331.6487 e64c5fb1-845c-4ab1-8911-5f338516ba67 Series Create a series of numbers. true 730c8146-4f1e-49ff-9a25-0ad360a13d92 Series Series 7127 -298 106 64 7188 -266 First number in the series 065c5a39-4888-4c0a-b3cc-3673da8a2597 Start Start false 0 7129 -296 47 20 7152.5 -286 1 1 {0} 0 Step size for each successive number 74c7cfb6-60ea-49d9-8a09-d9372d1879b0 Step Step false 66e0c859-9a3f-4653-87cc-c7dbc80b8137 1 7129 -276 47 20 7152.5 -266 1 1 {0} 1 Number of values in the series 834198ec-7a53-404d-a4bb-d25c0b66a5f1 Count Count false 20d55929-82e1-4798-87e2-73ae11f6cf01 1 7129 -256 47 20 7152.5 -246 1 1 {0} 10 1 Series of numbers 368a9ccd-be2a-42fd-bfe7-c97f72d95c12 Series Series false 0 7200 -296 31 60 7215.5 -266 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 420e1625-e39b-4b86-ac6d-1aa61552e9dd Digit Scroller INCREASE BEND PER SEGMENT false 0 12 INCREASE BEND PER SEGMENT 1 0.49222173845 7135 -75 250 20 7135.913 -74.31444 b6d7ba20-cf74-4191-a756-2216a36e30a7 Rotate Rotate a vector around an axis. true 4724d2ad-95b1-4c3c-bc2b-68a6f62acccc Rotate Rotate 7176 -623 150 64 7279 -591 Vector to rotate 8c0f6279-2330-41a2-bf9a-e2d85c9ec0b6 Vector Vector false a62455d0-5cb4-4f1c-9433-d173ad04b5fc 1 7178 -621 89 20 7250.5 -611 Rotation axis b4010274-e53d-464b-9b4a-c84c1a66db48 Axis Axis false 37cad7e6-de58-4d14-b427-b8c6f3d2aaf7 1 7178 -601 89 20 7250.5 -591 Rotation angle (in degrees) bac034eb-9bf8-4c5f-a2d1-c36cf4c788d8 -X Angle Angle false true a4f1e714-5f7a-4724-bd97-7b483b7746f0 1 true 7178 -581 89 20 7250.5 -571 Rotated vector 2f7ab1b7-3138-4d5d-9552-056fd3796316 Vector Vector false 0 7291 -621 33 60 7307.5 -591 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 28b69dba-5fc8-4a4a-9202-6f50ae84d1cd Interpolate Interpolate 7371 -933 225 84 7544 -891 1 Interpolation points 8edb192f-2ec8-4da5-9f77-4b3e64f89d39 Vertices Vertices false acd2ff85-cc67-4ee9-90ed-98053d88dae3 1 7373 -931 159 20 7452.5 -921 Curve degree f414fab4-6d1c-4376-aa9e-1e506ab9e956 Degree Degree false 0 7373 -911 159 20 7452.5 -901 1 1 {0} 3 Periodic curve a70503f4-2f59-4a2c-9c2f-3925463c4487 Periodic Periodic false 0 7373 -891 159 20 7452.5 -881 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 18fce8c4-ce8e-4072-b3ee-6f741d4ef4ff KnotStyle KnotStyle false 0 7373 -871 159 20 7452.5 -861 1 1 {0} 2 Resulting nurbs curve 1900dc99-f091-4392-9450-44615b7569e4 Curve Curve false 0 7556 -931 38 26 7575 -917.6667 Curve length 4fcb10f3-d7c5-411f-a18e-d4c90b6f10d8 Length Length false 0 7556 -905 38 27 7575 -891 Curve domain 6cc1ef59-d04a-4161-98ae-221e931bda6a Domain Domain false 0 7556 -878 38 27 7575 -864.3334 79f9fbb3-8f1d-4d9a-88a9-f7961b1012cd Unit X Unit vector parallel to the world {x} axis. true 52288440-728a-43ac-9f45-b604f05e9101 Unit X Unit X 7212 -471 114 28 7258 -457 Unit multiplication 89633f26-1168-4ebb-8d48-dabeee16dee8 Factor Factor false 661278b1-7115-4eef-931d-363a21259e10 1 7214 -469 32 24 7230 -457 1 1 {0} 1 World {x} vector ac95bab4-75e5-40cc-bdfd-c73adf735f14 Unit vector Unit vector false 0 7270 -469 54 24 7297 -457 9103c240-a6a9-4223-9b42-dbd19bf38e2b Unit Z Unit vector parallel to the world {z} axis. true 0732fbe9-fdb8-485c-948d-e3a04f39124b Unit Z Unit Z 7010 -623 114 28 7056 -609 Unit multiplication 5256d44b-b57f-4365-8912-87d1d9c48b84 Factor Factor false 661278b1-7115-4eef-931d-363a21259e10 1 7012 -621 32 24 7028 -609 1 1 {0} 1 World {z} vector 37cad7e6-de58-4d14-b427-b8c6f3d2aaf7 Unit vector Unit vector false 0 7068 -621 54 24 7095 -609 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 89d087b9-89b1-4d0e-860a-310a805b1dbc Relay false 85860cd9-cada-48fc-bbe1-b942bed79495 1 7251 -721 40 16 7271 -713 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 20d55929-82e1-4798-87e2-73ae11f6cf01 Relay false ffa522c5-c02b-4c03-81c7-f6af91c32362 1 7251 -51 40 16 7271 -43 a0d62394-a118-422d-abb3-6af115c75b25 Addition Mathematical addition true cab11098-2986-47e5-b217-9ed1137c64aa Addition Addition 7228 -16 85 44 7268 6 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for addition e4390d07-6416-4572-b307-fa1900347f4e A A true 0 7230 -14 26 20 7243 -4 1 1 {0} Grasshopper.Kernel.Types.GH_String false 1 Second item for addition cea1e8ef-21b4-4001-97e9-abef5ca304f6 B B true 17becc84-61de-40dd-9e66-99b8b8caa481 1 7230 6 26 20 7243 16 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 2 Result of addition ffa522c5-c02b-4c03-81c7-f6af91c32362 Result Result false 0 7280 -14 31 40 7295.5 6 a0d62394-a118-422d-abb3-6af115c75b25 Addition Mathematical addition true a05fd376-ba50-4830-86fa-ecbae080a257 Addition Addition 7184 54 155 44 7224 76 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for addition a5790900-68dc-4a14-b54b-71c9a5c3eb9f A A true 0 7186 56 26 20 7199 66 1 1 {0} Grasshopper.Kernel.Types.GH_String false 1 Second item for addition 91fd4502-f46e-40f5-bc74-873a3da398a7 B B true 3b9ee1da-2b6d-4e87-94f1-2b90b167ae40 1 7186 76 26 20 7199 86 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 1 Result of addition 17becc84-61de-40dd-9e66-99b8b8caa481 Result NUMBER OF POINTS false 0 7236 56 101 40 7286.5 76 e2039b07-d3f3-40f8-af88-d74fed238727 Insert Items Insert a collection of items into a list. true 02583296-943b-4bee-aa18-40a95d47301f Insert Items Insert Items 7213 -829 116 84 7296 -787 1 List to modify d28ba653-8b50-4e5f-8909-7dd73fb9e509 List List false 89d087b9-89b1-4d0e-860a-310a805b1dbc 1 7215 -827 69 20 7249.5 -817 1 Items to insert. If no items are supplied, nulls will be inserted. c128d391-0c0b-4242-84dd-49c9eb79755e Item Item true 0 7215 -807 69 20 7249.5 -797 1 1 {0} Grasshopper.Kernel.Types.GH_String false {0,0,0} 1 Insertion index for each item 12a89c49-8516-494d-962c-965df2b3bf29 Indices Indices false 0 7215 -787 69 20 7249.5 -777 1 1 {0} 0 If true, indices will be wrapped bbfd198c-2267-4380-bbb6-8934efa40bce Wrap Wrap false 0 7215 -767 69 20 7249.5 -757 1 1 {0} false 1 List with inserted values 8d954422-a302-472f-bf5f-7a241205bdc6 List List false 0 7308 -827 19 80 7317.5 -787 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object acd2ff85-cc67-4ee9-90ed-98053d88dae3 Relay ⊙☉⊙ false 8d954422-a302-472f-bf5f-7a241205bdc6 1 7250 -853 44 16 7272 -845 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects cab11098-2986-47e5-b217-9ed1137c64aa a05fd376-ba50-4830-86fa-ecbae080a257 3b9ee1da-2b6d-4e87-94f1-2b90b167ae40 3 dc6e3f6c-b3b2-44ac-a61e-18f9fcde538e Group f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ 7VsJdBNlHp+2aZqjB1AVUJDR4nqwFnTxKbJgk6ZHaNPGFhAEH50m03YgycRkUuSy5UFBKiBd6Alo8UEFqVahVDmU6haXXVksCwgo2kMXV46VXXXFXaX7fTPfpJ0jaaGphYd9L+nM//+dv//5/WeiMtAWj510MB3gLwjDMAX4RDptnlzKMSufdLkp2gFZZkCGbPgXBpvw/ZJJwkq6YJNQxNbwLKMBktWANPbyuVFrGom4un8frj+tKZ8XZnaR+RQ5F/I1gK/MzAOjWKMQ2US68ybPc5KQHYImjkC8NNplJ2yQMxJQN23a1MH3yiRtpIUhrTyPoqiOmwxkDuWgGLALs4t2ki6GIt38sPCjMBAMO48K3OxssxeXLP9UpTWQbouLcjJo83CJmCKNsJP83YWQaclJsbHtuyrPvrgCfLeX14HvtvI328rr2Qv2tn4L/C5ZzX6vaSsp9bZsrkiD12uXwhHKYJf2DZu9123r1ratK/U2ayvf5h2Na8YNcrZ8J6RXLhZMzfdFS0LcbcLlbeyct7iKbbzS33XVq94B0Tei+O3FXqMdsTN2WcA279rQOvlld7Zhudwe0aTs3hGq7AgIH76vFEkOYYQ2NxEvCCQXNJpAfAheVrKxsUnJ09QZQMOgKbh5M4F/ETw1nvZwBhTCmwBQttlAGZH+BCOycjLhyiXZlreD27qfOzoWgi6KJ2nazlvQzMibHgudCtRZMJUaUiTTqDMszlRiHu1hurbVJLloj1PSeGCnKaRnw8V5J4gCHy1HE/SCdCVHhwMEI0tUJE3ptOw7gotm3L3r45SV2V/r8v7q+K/ASiJMhNuN66xWdlZ1PO1gCMrR6S2gr5GztXvMpCsH2Dluh/0J1B+nc3ACt1FuBl5RDGl3K5Mpq5V08BsJCjc63AzhsJBJHsrKLzHjvqHGPAWZsMGZcKxxcOtRP0tUpVGWOb7ZGh3DuKhsD8P5EK9Y9QA1K0uKgfdZRwxYXEoThv1Hj2Fj9KFmKp9mQR0BuYUfG7DGhCatk3AR9lmUw+lh0VUhdJU6i4V0e31UkA+IRhhhRzyfsHlINw7AEmIVK4tE+wndiS11d6WvrZs5+8C8Q98KkAhlR5QggMjp7Oyc42UVTZlJe1wWklVDqMtnT4bsffA1Y2FNyfzzukU1Wo4t0CfYr4cQVgMIGycBCE/qMAwXQ2g+ykIYzkEI1B9hqPQD2OAM0u2xsaojQEoWqKxRjHn5I1NSNj1ieoyy53kEQCm5kSRI8XQJVHJYYD3HAjuJsHgOqFO1ToRF3GmgbMlCLOCsYVemT4NTkV2BcRiKsOEudjNuWXjSBr6wqPzIrOQGw0fbX7YUVgjgiTKjETg43BKcJA36BLAEv4DFNyHHFuTLsT2wOePAjLptiVs3R334/rPflwlthXWxQoc2lAdcT7tQRsQnGcp42gZ2xCcm8L+cDG7X4blwXCiGJBdQ0jzaCVIWnObcdbDRwFvbvu9H/fSX7JsS32qYcGmX5sIAwApCrPLnjt+3yHHMtPd/49Y8fNvDOsAK9mGjgBWCWBObRuavf8qgW3boywcfmfjAl4ClQKx3Ip7RfFAUr1sdWXyvJXOEAbBCEUvsWQFLiVhf7fth0MEzo3UrrN9HlJhOOQErDLFGRE9YqpqzK7GoJnvBz1h0O2Cp+MU//foBfIMnvfqNnT8mvfeqGrDUiDUIHz8xs7Y0fd27XxRMiYq5DFgavteGjr9Rt66Jq9r8+BIdkV8MWFrECt9amXb4yEV99Q/fKUadXFUPWOGINaHqhXEFx3YkvzN2aH3laOt0wIpArHn3lhZVxHSY9i2cyiwsGfsTYEUi1tCvv7v/4qHpaX9I/wZ/dugnwwErCrGWHB5++qA5NuWdvRs3Jw2bOQywBiDWu69PiW0YW5S0es4Je+2kjhWANRCxLPdfjJybWpdSbHg+4cKLHe+pjIZZAsUfBLchZ4UL0k5vVDx5i377G9EFRmzBNhkNldie2IQw3oQ4awj2ZQ14bkzDc6tW6Nf+sTa18sfdC4RzZZA2Yp7QGnyEs2Af7idah8+lXCTwOmAkpPCymxbrsMxCpJvuNnqJpdrL6IWdAA4ooglGLhDvxQ6o8BTgankHFHLNQy72DYGBfFlL/mPEjMspRS3ar9IzwtYHAPLWWn+Qt27nIVf4gry6ZJXn/KRLSWVP3+KuKv7tU8KwnwhPnow0i/UF8MNcB9xN20ncSjAE7nFTjlzcaSMsZB5tA0ECpCEOK8zeQDsG8hgit2dJrdixyS1VmqFw9J7mYCBRLbwTQPoGhFScg7WCMFp4a1OEGeYdJEO6wEGagFwYASDCGjZxFMgTfsJYstHK60Fa0ecTM/90Lm7ph/WFqn+lH+P5fDxb8sSmgk+cM5MrGqsrz1SsnMjz+aA23XpwddB+tWHPPwebIkZFN2vT2RRIokcqju57Ym697HZYNPxIVjuZfIZBYpOVzjQblliNZabtGf3QV4feH3n+SqQT8HSoFcgRg3IcIJcO4cA0Ckc0RZphrcfNkA6GF2QQQi5UgqVS7wI7zsO62JG0kcJMMHn83kIWjFmkMIIjG9+H3ZfDY7PNcoM9OHI73UTnPetfFox5NGNRF9kEdSObQYmd1mQB6aXHRcqKqPnn4C073g5NrbgzOYbau2++QERh8VxPiYy8jD4R0nC/Qrr1FxUSX01QpMZzDhJ2KfDaNSsLOC4fdeRkcSdcJc7QOOVwky4GB84QTCFwgLKy+fRA9MSVddvT9h/dxrxyfmFpmMnDENk20gu20J7YWcZIZBU0RiKloL49tbJCHOJXiDc3IQclcDS+AIxEykxacQa4HFmw9q+/eeX0pZP1la8V//34oqjjAmwU0FNJkOGogVbhrM+Rn2kEZ3anJF60sCqMQjAfNyUh+PEvWtLDbIeTXtr9bnBBwx3LBLvRZOZROQwOj6rSMBzqA8Pb0nNy3CRQPpuNKxoBbUR1pNgehVrxAcjXkiQwd+H1FMLjBpCEAAjL5EJu9SeAu6q3laMI9qQPjNINVyd/vs9ef2FGK6V/OTUGn5bymTC5UMjulaN2l/SJCwe9rRIBuLIgXK06GXvLAikhvkYAF18Y8RU8wjmJ0azGyEIztablpejL0ZN2PtRxW+2L53YLk2G2u7SExpG7A0d8SAwAOK2r/YEDdKk/IorS4bFndxZIWD3tIqNgrJvk6wkX4USFT1kRxXq+2Xd/WW38lg8WnxnvsT0u1F7YW6q9LDXQDpFVz5V+1fP5fpFAWDZN20jC6/cwSSX1CquHnN2AKAW9qqxQxMe9q3cpvRQKfhr5jAq5KGX+jDULFKV4NZREqaq3W6cv//KScc/bu/a8OactVegFzISDtAkDlNqPQt+jw52wB1vFt3jcDG3HHTTYBns4hHHfn7aLi18yS+nJ6VybaXHRNlsGAeiQqMQ6/0R+Spxw+PJTqikg6YOZBj/tXQbaA7I43GID64ERiLRSDNq7BaAFTKC9sEYkR/6psliOcc0gnxgP5Bgdj2Ev6zUmwpVLOVLJHIFSaDlyBpWbJ3xyxtEn086uVKEyHE5rNmzNHt8UxYIofHwcxq9KrrLrIuYaHVbKQnqfsAWpIRHaZReSCRwlKBvQEC8pPNNJWijCFk9bO/sC+BkXSdi996yz8vZBqspHtWtZVcWF375X1Vdqgo7NL2w0vjXOcOrieNWR/lHVLKiqW/tSVRNnNxtOzd96faiqypeqXkflN/HTiD4qvzXO9ld+a8z+tfwmK51hBUNmvK41JizdF6e+/GzMiH4vv8XN9lcUaMy98cpvZxtON0yoO2oqcnT82JLx3l3XQPktjvQrpOwbpvw2LCxlz7CRVtPuSkOWaqNlbJ+V3wJcDmCFmOVXiE8FvPw2xPyPherxDQm1a1aXnXthe3q/lt9YP+Oz/AZUGIVgPse7nkOw+A2DPgrB2AZ/IRir+DUEy0pHo3663WCv1Nc/4Tj0w2+aP+/3ENy43m9dvurGC8Geu1t23nu2Lrn0xOALo34aXXMthOBKf0ICxnajhOAzjmrzuD9/O6nqnOd3v18yfG6fheAAv4bBWlqZX0srDXgIFp/y+zUEs37GZwgGKoxCsAa79gs24tfx+r5gI86m+q9g07q4Lws2l+hmQ8uJxddHwUbrS1VvaV9lGPToR/GbHvpif93BuYZuX1FTo1EGxrOqKPczGw3HEqhUJKKJVa1Xr7WJ3/m7ytfaeugyvA+/RKrWeBw4hdAm6C6g20CIh/tC/HLRjs3RsQp9w8whVTVO05ZuEddcQ4iLX5ANzIuE4tcTexjB/AkkbodYIBFXZwLsY7Ff3AS6f4otftTcm6fYATCAuOVivCOvygDQLzB+cQu4ot+WiF/47t1vS0TGIP7hSgCMAZvqFc7/AQ== true iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAZdJREFUSEvV1M8rBGEcx/GHJL8ixYHdcnBwcuBgExYnF6Tk4K4cXJjZuLg4uOxhy4+U5Cgl+QMUSXIQ/gMkSn4lF1La8f7uzjbraWaatRx86nWYp5nnM/PMPKP+S5px7aIWeacMa7Bc1CFQejGqacUArnCIvAr2oF98i3N0oQDFLgKlHA/QCz4RRw0qMexCls83IZziCAtIZBmzx56wAf0GRAM8E4Esw0zqyDthbMKzoBRvmg+8YBBBUo8VLGmqkVont/ZZ/ErkCV4173iEbKAgKYQ8ha4InpFv/R5tqSP/yHtwW4UW+KYfd+iGLGW2zHcuN3CCHxVI+vAM/eJdrOIGJmTTnWma4CSppsNJZUbTYo32sGQdeoG8p2VUIFiSyohZyrQEJYv2sGQeF5pjyA6fQxUmXXz/F/kUeEV2+hYuoT+h6GBSM5JUU+NpxrZTYOxnxi1ldHKyX0bgVWDEM5N64SZkl/qlBPJL0YV+q8A7fC3tlEzYdpyJjQNn3Izap+cXJsv1JeeWPy9g4h5KEoIlGrKH84hSX+x+CmKBvnCmAAAAAElFTkSuQmCC 7f7aa427-fe06-4787-b54a-21d0992dc312 ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ true 4 0d2e58b9-3bab-49da-9860-007cbe5e7f70 4ec6965f-8868-4616-a02a-322a340bf3cb a4f1e714-5f7a-4724-bd97-7b483b7746f0 efd66ba5-12ae-4c50-97b7-a239f8f3c62e 2e55aebe-34b6-4785-8e6b-d76dac4aff89 2df4e919-ccf0-4e59-924f-ef207e19da1d dc1dce83-50c8-4b2e-bdbb-9da4471c5c1c 0ef02d63-4c77-4baf-8a44-8b45ed9effc1 7246 -540 49 44 7275 -518 2 2e3ab970-8545-46bb-836c-1c11e5610bce b6236720-8d88-4289-93c3-ac4c99f9b97b 2 b6236720-8d88-4289-93c3-ac4c99f9b97b 8ec86459-bf01-4409-baee-174d0d2b13d0 Shift offset 0d2e58b9-3bab-49da-9860-007cbe5e7f70 Shift true 0 7248 -538 15 20 7255.5 -528 1 1 {0} 1 2 A wire relay object 4ec6965f-8868-4616-a02a-322a340bf3cb Relay true 0c9554e2-bfa6-483c-979b-54cc19c5ff56 1 7248 -518 15 20 7255.5 -508 2 A wire relay object a4f1e714-5f7a-4724-bd97-7b483b7746f0 Relay false 0 7287 -538 6 20 7290 -528 Result of mass addition efd66ba5-12ae-4c50-97b7-a239f8f3c62e Result false 0 7287 -518 6 20 7290 -508 f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ 7VsJdBNlHp+2aZqjB1AVUJDR4nqwFnTxKbJgk6ZHaNPGFhAEH50m03YgycRkUuSy5UFBKiBd6Alo8UEFqVahVDmU6haXXVksCwgo2kMXV46VXXXFXaX7fTPfpJ0jaaGphYd9L+nM//+dv//5/WeiMtAWj510MB3gLwjDMAX4RDptnlzKMSufdLkp2gFZZkCGbPgXBpvw/ZJJwkq6YJNQxNbwLKMBktWANPbyuVFrGom4un8frj+tKZ8XZnaR+RQ5F/I1gK/MzAOjWKMQ2US68ybPc5KQHYImjkC8NNplJ2yQMxJQN23a1MH3yiRtpIUhrTyPoqiOmwxkDuWgGLALs4t2ki6GIt38sPCjMBAMO48K3OxssxeXLP9UpTWQbouLcjJo83CJmCKNsJP83YWQaclJsbHtuyrPvrgCfLeX14HvtvI328rr2Qv2tn4L/C5ZzX6vaSsp9bZsrkiD12uXwhHKYJf2DZu9123r1ratK/U2ayvf5h2Na8YNcrZ8J6RXLhZMzfdFS0LcbcLlbeyct7iKbbzS33XVq94B0Tei+O3FXqMdsTN2WcA279rQOvlld7Zhudwe0aTs3hGq7AgIH76vFEkOYYQ2NxEvCCQXNJpAfAheVrKxsUnJ09QZQMOgKbh5M4F/ETw1nvZwBhTCmwBQttlAGZH+BCOycjLhyiXZlreD27qfOzoWgi6KJ2nazlvQzMibHgudCtRZMJUaUiTTqDMszlRiHu1hurbVJLloj1PSeGCnKaRnw8V5J4gCHy1HE/SCdCVHhwMEI0tUJE3ptOw7gotm3L3r45SV2V/r8v7q+K/ASiJMhNuN66xWdlZ1PO1gCMrR6S2gr5GztXvMpCsH2Dluh/0J1B+nc3ACt1FuBl5RDGl3K5Mpq5V08BsJCjc63AzhsJBJHsrKLzHjvqHGPAWZsMGZcKxxcOtRP0tUpVGWOb7ZGh3DuKhsD8P5EK9Y9QA1K0uKgfdZRwxYXEoThv1Hj2Fj9KFmKp9mQR0BuYUfG7DGhCatk3AR9lmUw+lh0VUhdJU6i4V0e31UkA+IRhhhRzyfsHlINw7AEmIVK4tE+wndiS11d6WvrZs5+8C8Q98KkAhlR5QggMjp7Oyc42UVTZlJe1wWklVDqMtnT4bsffA1Y2FNyfzzukU1Wo4t0CfYr4cQVgMIGycBCE/qMAwXQ2g+ykIYzkEI1B9hqPQD2OAM0u2xsaojQEoWqKxRjHn5I1NSNj1ieoyy53kEQCm5kSRI8XQJVHJYYD3HAjuJsHgOqFO1ToRF3GmgbMlCLOCsYVemT4NTkV2BcRiKsOEudjNuWXjSBr6wqPzIrOQGw0fbX7YUVgjgiTKjETg43BKcJA36BLAEv4DFNyHHFuTLsT2wOePAjLptiVs3R334/rPflwlthXWxQoc2lAdcT7tQRsQnGcp42gZ2xCcm8L+cDG7X4blwXCiGJBdQ0jzaCVIWnObcdbDRwFvbvu9H/fSX7JsS32qYcGmX5sIAwApCrPLnjt+3yHHMtPd/49Y8fNvDOsAK9mGjgBWCWBObRuavf8qgW3boywcfmfjAl4ClQKx3Ip7RfFAUr1sdWXyvJXOEAbBCEUvsWQFLiVhf7fth0MEzo3UrrN9HlJhOOQErDLFGRE9YqpqzK7GoJnvBz1h0O2Cp+MU//foBfIMnvfqNnT8mvfeqGrDUiDUIHz8xs7Y0fd27XxRMiYq5DFgavteGjr9Rt66Jq9r8+BIdkV8MWFrECt9amXb4yEV99Q/fKUadXFUPWOGINaHqhXEFx3YkvzN2aH3laOt0wIpArHn3lhZVxHSY9i2cyiwsGfsTYEUi1tCvv7v/4qHpaX9I/wZ/dugnwwErCrGWHB5++qA5NuWdvRs3Jw2bOQywBiDWu69PiW0YW5S0es4Je+2kjhWANRCxLPdfjJybWpdSbHg+4cKLHe+pjIZZAsUfBLchZ4UL0k5vVDx5i377G9EFRmzBNhkNldie2IQw3oQ4awj2ZQ14bkzDc6tW6Nf+sTa18sfdC4RzZZA2Yp7QGnyEs2Af7idah8+lXCTwOmAkpPCymxbrsMxCpJvuNnqJpdrL6IWdAA4ooglGLhDvxQ6o8BTgankHFHLNQy72DYGBfFlL/mPEjMspRS3ar9IzwtYHAPLWWn+Qt27nIVf4gry6ZJXn/KRLSWVP3+KuKv7tU8KwnwhPnow0i/UF8MNcB9xN20ncSjAE7nFTjlzcaSMsZB5tA0ECpCEOK8zeQDsG8hgit2dJrdixyS1VmqFw9J7mYCBRLbwTQPoGhFScg7WCMFp4a1OEGeYdJEO6wEGagFwYASDCGjZxFMgTfsJYstHK60Fa0ecTM/90Lm7ph/WFqn+lH+P5fDxb8sSmgk+cM5MrGqsrz1SsnMjz+aA23XpwddB+tWHPPwebIkZFN2vT2RRIokcqju57Ym697HZYNPxIVjuZfIZBYpOVzjQblliNZabtGf3QV4feH3n+SqQT8HSoFcgRg3IcIJcO4cA0Ckc0RZphrcfNkA6GF2QQQi5UgqVS7wI7zsO62JG0kcJMMHn83kIWjFmkMIIjG9+H3ZfDY7PNcoM9OHI73UTnPetfFox5NGNRF9kEdSObQYmd1mQB6aXHRcqKqPnn4C073g5NrbgzOYbau2++QERh8VxPiYy8jD4R0nC/Qrr1FxUSX01QpMZzDhJ2KfDaNSsLOC4fdeRkcSdcJc7QOOVwky4GB84QTCFwgLKy+fRA9MSVddvT9h/dxrxyfmFpmMnDENk20gu20J7YWcZIZBU0RiKloL49tbJCHOJXiDc3IQclcDS+AIxEykxacQa4HFmw9q+/eeX0pZP1la8V//34oqjjAmwU0FNJkOGogVbhrM+Rn2kEZ3anJF60sCqMQjAfNyUh+PEvWtLDbIeTXtr9bnBBwx3LBLvRZOZROQwOj6rSMBzqA8Pb0nNy3CRQPpuNKxoBbUR1pNgehVrxAcjXkiQwd+H1FMLjBpCEAAjL5EJu9SeAu6q3laMI9qQPjNINVyd/vs9ef2FGK6V/OTUGn5bymTC5UMjulaN2l/SJCwe9rRIBuLIgXK06GXvLAikhvkYAF18Y8RU8wjmJ0azGyEIztablpejL0ZN2PtRxW+2L53YLk2G2u7SExpG7A0d8SAwAOK2r/YEDdKk/IorS4bFndxZIWD3tIqNgrJvk6wkX4USFT1kRxXq+2Xd/WW38lg8WnxnvsT0u1F7YW6q9LDXQDpFVz5V+1fP5fpFAWDZN20jC6/cwSSX1CquHnN2AKAW9qqxQxMe9q3cpvRQKfhr5jAq5KGX+jDULFKV4NZREqaq3W6cv//KScc/bu/a8OactVegFzISDtAkDlNqPQt+jw52wB1vFt3jcDG3HHTTYBns4hHHfn7aLi18yS+nJ6VybaXHRNlsGAeiQqMQ6/0R+Spxw+PJTqikg6YOZBj/tXQbaA7I43GID64ERiLRSDNq7BaAFTKC9sEYkR/6psliOcc0gnxgP5Bgdj2Ev6zUmwpVLOVLJHIFSaDlyBpWbJ3xyxtEn086uVKEyHE5rNmzNHt8UxYIofHwcxq9KrrLrIuYaHVbKQnqfsAWpIRHaZReSCRwlKBvQEC8pPNNJWijCFk9bO/sC+BkXSdi996yz8vZBqspHtWtZVcWF375X1Vdqgo7NL2w0vjXOcOrieNWR/lHVLKiqW/tSVRNnNxtOzd96faiqypeqXkflN/HTiD4qvzXO9ld+a8z+tfwmK51hBUNmvK41JizdF6e+/GzMiH4vv8XN9lcUaMy98cpvZxtON0yoO2oqcnT82JLx3l3XQPktjvQrpOwbpvw2LCxlz7CRVtPuSkOWaqNlbJ+V3wJcDmCFmOVXiE8FvPw2xPyPherxDQm1a1aXnXthe3q/lt9YP+Oz/AZUGIVgPse7nkOw+A2DPgrB2AZ/IRir+DUEy0pHo3663WCv1Nc/4Tj0w2+aP+/3ENy43m9dvurGC8Geu1t23nu2Lrn0xOALo34aXXMthOBKf0ICxnajhOAzjmrzuD9/O6nqnOd3v18yfG6fheAAv4bBWlqZX0srDXgIFp/y+zUEs37GZwgGKoxCsAa79gs24tfx+r5gI86m+q9g07q4Lws2l+hmQ8uJxddHwUbrS1VvaV9lGPToR/GbHvpif93BuYZuX1FTo1EGxrOqKPczGw3HEqhUJKKJVa1Xr7WJ3/m7ytfaeugyvA+/RKrWeBw4hdAm6C6g20CIh/tC/HLRjs3RsQp9w8whVTVO05ZuEddcQ4iLX5ANzIuE4tcTexjB/AkkbodYIBFXZwLsY7Ff3AS6f4otftTcm6fYATCAuOVivCOvygDQLzB+cQu4ot+WiF/47t1vS0TGIP7hSgCMAZvqFc7/AQ== true iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAZdJREFUSEvV1M8rBGEcx/GHJL8ixYHdcnBwcuBgExYnF6Tk4K4cXJjZuLg4uOxhy4+U5Cgl+QMUSXIQ/gMkSn4lF1La8f7uzjbraWaatRx86nWYp5nnM/PMPKP+S5px7aIWeacMa7Bc1CFQejGqacUArnCIvAr2oF98i3N0oQDFLgKlHA/QCz4RRw0qMexCls83IZziCAtIZBmzx56wAf0GRAM8E4Esw0zqyDthbMKzoBRvmg+8YBBBUo8VLGmqkVont/ZZ/ErkCV4173iEbKAgKYQ8ha4InpFv/R5tqSP/yHtwW4UW+KYfd+iGLGW2zHcuN3CCHxVI+vAM/eJdrOIGJmTTnWma4CSppsNJZUbTYo32sGQdeoG8p2VUIFiSyohZyrQEJYv2sGQeF5pjyA6fQxUmXXz/F/kUeEV2+hYuoT+h6GBSM5JUU+NpxrZTYOxnxi1ldHKyX0bgVWDEM5N64SZkl/qlBPJL0YV+q8A7fC3tlEzYdpyJjQNn3Izap+cXJsv1JeeWPy9g4h5KEoIlGrKH84hSX+x+CmKBvnCmAAAAAElFTkSuQmCC c3a8f2ac-93c2-4497-a1bf-88879c0ff2b9 ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ true 4 123072f6-783b-4a7b-a265-8008ec99ebf4 67035528-cb64-4636-9189-14120990c7cf 85860cd9-cada-48fc-bbe1-b942bed79495 f2004cff-51f1-449c-a788-543cb9e34646 2e55aebe-34b6-4785-8e6b-d76dac4aff89 0ef02d63-4c77-4baf-8a44-8b45ed9effc1 dc1dce83-50c8-4b2e-bdbb-9da4471c5c1c 2df4e919-ccf0-4e59-924f-ef207e19da1d 7246 -686 49 44 7275 -664 2 2e3ab970-8545-46bb-836c-1c11e5610bce b6236720-8d88-4289-93c3-ac4c99f9b97b 2 b6236720-8d88-4289-93c3-ac4c99f9b97b 8ec86459-bf01-4409-baee-174d0d2b13d0 Shift offset 123072f6-783b-4a7b-a265-8008ec99ebf4 Shift true 0 7248 -684 15 20 7255.5 -674 1 1 {0} -1 2 A wire relay object f2004cff-51f1-449c-a788-543cb9e34646 Relay true 2f7ab1b7-3138-4d5d-9552-056fd3796316 1 7248 -664 15 20 7255.5 -654 2 A wire relay object 85860cd9-cada-48fc-bbe1-b942bed79495 Relay false 0 7287 -684 6 20 7290 -674 Result of mass addition 67035528-cb64-4636-9189-14120990c7cf Result false 0 7287 -664 6 20 7290 -654 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true 92160099-1a10-438c-a8eb-39a5bfdb74ee Rotate Rotate 7181 -1236 191 64 7308 -1204 Base geometry 07c160e4-bf52-4741-ad10-eec06ab534c8 Geometry Geometry true 98856ba9-ac48-4dc5-8173-4a04a125f4c3 1 7183 -1234 113 20 7239.5 -1224 Rotation angle in radians 7c7113a4-3f05-438f-bff0-addf70abd838 Angle Angle false 0 false 7183 -1214 113 20 7239.5 -1204 1 1 {0} 3.1415926535897931 Rotation plane 47c448a4-cc1f-43c7-8e22-2b50af9e6c8c Plane Plane false cf3a8e64-db34-4748-b512-dd4b3a3cd2ea 1 7183 -1194 113 20 7239.5 -1184 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry ce762bb0-1553-44e3-a798-9a48cf2d0d98 Geometry Geometry false 0 7320 -1234 50 30 7345 -1219 Transformation data 99d37c2e-9ff8-4cb8-bd53-fe4ba0f0cf89 Transform Transform false 0 7320 -1204 50 30 7345 -1189 8073a420-6bec-49e3-9b18-367f6fd76ac3 Join Curves Join as many curves as possible true 72817673-4fa9-47a2-8619-191262972134 Join Curves Join Curves 7244 -1346 116 44 7311 -1324 1 Curves to join aa6d9674-3ffb-4385-a390-24d8fb773c7d Curves Curves false 718b7e00-4d0a-424a-a87d-be93992cc1c9 1 7246 -1344 53 20 7272.5 -1334 Preserve direction of input curves 2ab551e3-8141-4d98-90dd-0407c41856d0 Preserve Preserve false 0 7246 -1324 53 20 7272.5 -1314 1 1 {0} false 1 Joined curves and individual curves that could not be joined. c60d2465-5d77-40e9-b83a-d648f3a5982e Curves Curves false 0 7323 -1344 35 40 7340.5 -1324 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true cba8136d-fdbb-4a88-8ac9-8566ac35864b Merge Merge 7254 -1300 90 64 7299 -1268 3 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 9803b99c-80f0-465c-b165-5e393d9cac5a false Data 1 D1 true 98856ba9-ac48-4dc5-8173-4a04a125f4c3 1 7256 -1298 31 20 7271.5 -1288 2 Data stream 2 43a1b5d1-ebfd-43d6-9e3e-be988524c0dc false Data 2 D2 true ce762bb0-1553-44e3-a798-9a48cf2d0d98 1 7256 -1278 31 20 7271.5 -1268 2 Data stream 3 dbeccb43-5982-4b6f-aa64-1612c272d4b4 false Data 3 D3 true 0 7256 -1258 31 20 7271.5 -1248 2 Result of merge 718b7e00-4d0a-424a-a87d-be93992cc1c9 Result Result false 0 7311 -1298 31 60 7326.5 -1268 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 661278b1-7115-4eef-931d-363a21259e10 Relay false f8ad527b-60e4-4a4d-8227-555fab4e8c6c 1 7199 -397 40 16 7219 -389 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values a426d303-f899-404c-bd9d-48804708b6fd Panel false 0 0 0.51542256311 7387 -226 112 20 0 0 0 7387.639 -225.6487 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression O/4^(OO-4) true 73383578-2553-4fa9-9c76-a79bc56e9f1c Expression Expression 7410 -122 157 44 7483 -100 2 ba80fd98-91a1-4958-b6a7-a94e40e52bdb ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable d3b88769-9169-49b6-be88-a1e22389db36 Variable O O true fb2a6dbf-b02f-4775-ad6e-36cf33201f14 1 7412 -120 19 20 7421.5 -110 Expression variable 3ceb906c-57ef-458b-9bdd-16815fce9d6b Variable OO OO true 118d6a6e-a7b7-4f47-a11e-d176a0f5e664 1 7412 -100 19 20 7421.5 -90 Result of expression 66e0c859-9a3f-4653-87cc-c7dbc80b8137 Result Result false 0 7534 -120 31 40 7549.5 -100 7ab8d289-26a2-4dd4-b4ad-df5b477999d8 Log N Return the N-base logarithm of a number. true d6006a37-f52f-44c5-8843-4b4c76e75d91 Log N Log N 7378 -16 115 44 7448 6 Value d7045ca4-1772-4fc7-8f7d-fa1f1ec995e6 Number Number false 3b9ee1da-2b6d-4e87-94f1-2b90b167ae40 1 7380 -14 56 20 7408 -4 Logarithm base f13fbbf7-e636-4655-a355-d0a829018831 Base Base false 0 7380 6 56 20 7408 16 1 1 {0} 2 Result 118d6a6e-a7b7-4f47-a11e-d176a0f5e664 Result Result false 0 7460 -14 31 40 7475.5 6 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers d3a6959a-bba8-449a-982e-ef7604520f53 Digit Scroller INCREASE BEND PER SEGMENT false 0 12 INCREASE BEND PER SEGMENT 1 0.48627696593 7102 -167 250 20 7102.155 -166.5567 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 3bd58d69-967e-43a7-83f9-2ac9b80f78e7 Panel false 0 0 16 0.492221738454693386 32 0.507180224586 7406 -184 194 30 0 0 0 7406.639 -183.6487 1 255;255;255;255 false false true true false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values c310bdd9-cdbb-41d1-9fff-c0a3b50b9761 Panel false 0 0 0.492221738454693386 7148 -98 112 20 0 0 0 7148.722 -97.83535 255;255;255;255 false false true false false true 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true 6d028da1-0f48-408c-93e7-967fdf542a50 Deconstruct Deconstruct 7748 -388 120 64 7789 -356 Input point d52eac7f-7d31-4133-aea6-6202516efb39 Point Point false ad060237-9a0b-4008-a8a1-242e68167c1a 1 7750 -386 27 60 7763.5 -356 Point {x} component 35efd855-fd11-474b-9c35-002d2c21885d X component X component false 0 7801 -386 65 20 7833.5 -376 Point {y} component 23303988-7ecf-4a11-bc1e-35898011a20c Y component Y component false 0 7801 -366 65 20 7833.5 -356 Point {z} component c2e0a7e1-fc22-46c0-ae94-c36350dd6d24 Z component Z component false 0 7801 -346 65 20 7833.5 -336 d3d195ea-2d59-4ffa-90b1-8b7ff3369f69 Unit Y Unit vector parallel to the world {y} axis. true ca7fa2f7-8da6-406c-a0d0-1a15b937245d Unit Y Unit Y 6997 -552 114 28 7043 -538 Unit multiplication 20d7ed77-a242-4e78-bc22-a47dcbd676e2 Factor Factor false 661278b1-7115-4eef-931d-363a21259e10 1 6999 -550 32 24 7015 -538 1 1 {0} 1 World {y} vector a62455d0-5cb4-4f1c-9433-d173ad04b5fc Unit vector Unit vector false 0 7055 -550 54 24 7082 -538 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 6cc8b961-3d16-490f-8a92-6de71388cfb0 Evaluate Length Evaluate Length 7225 -1171 149 64 7310 -1139 Curve to evaluate a356b7de-1d69-4095-a4fe-4fe01dc14673 Curve Curve false 98856ba9-ac48-4dc5-8173-4a04a125f4c3 1 7227 -1169 71 20 7262.5 -1159 Length factor for curve evaluation bcbced95-3f41-4c96-a3a8-fc21211c4e84 Length Length false 0 7227 -1149 71 20 7262.5 -1139 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) a5cd143c-0497-4726-a2b5-f95cf2b3273b Normalized Normalized false 0 7227 -1129 71 20 7262.5 -1119 1 1 {0} true Point at the specified length cf3a8e64-db34-4748-b512-dd4b3a3cd2ea Point Point false 0 7322 -1169 50 20 7347 -1159 Tangent vector at the specified length d5d3bd1f-68fe-43ad-be56-c2688ee6ab17 Tangent Tangent false 0 7322 -1149 50 20 7347 -1139 Curve parameter at the specified length 33d1c087-26b5-471e-8ce4-ad22302ab4ec Parameter Parameter false 0 7322 -1129 50 20 7347 -1119 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true a68f174f-f652-4ebe-9283-84d3ce1414cb Rotate Rotate 7182 -1664 226 81 7344 -1623 Base geometry b725a6f7-d856-46ca-bd30-aece6543fc61 Geometry Geometry true de7d3b1c-087f-4d20-b155-1466adf1be7e 1 7184 -1662 148 20 7266 -1652 Rotation angle in degrees 930e65b2-5380-4c50-8dfd-d3ecc69a71a9 Angle Angle false 513db0a5-d73e-4aad-8403-b35554601c20 1 true 7184 -1642 148 20 7266 -1632 1 1 {0} 1.5707963267948966 Rotation plane 1d742bd5-8502-4a39-a1f5-0a575b8fc18d Plane Plane false 0 7184 -1622 148 37 7266 -1603.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry 58108438-d67c-4274-9c4c-74f0b6b9c064 Geometry Geometry false 0 7356 -1662 50 38 7381 -1642.75 Transformation data a1c37d4d-72e7-4ba5-a526-95f282510660 Transform Transform false 0 7356 -1624 50 39 7381 -1604.25 b464fccb-50e7-41bd-9789-8438db9bea9f Angle Compute the angle between two vectors. true c668c4d9-d991-4613-b402-cdf66b7b7cbf Angle Angle 7200 -1579 197 81 7336 -1538 First vector 2b5a8381-34eb-47f0-aeb0-41a548f31ea3 Vector A Vector A false 807f589e-fafc-4af9-83b8-518bdfe592e0 1 7202 -1577 122 20 7263 -1567 Second vector 91b24b53-c825-491d-bd85-d3f44178ef68 Vector B Vector B false 0 7202 -1557 122 20 7263 -1547 1 1 {0} 1 0 0 Optional plane for 2D angle e95fd458-2eb9-4998-867f-66daba6b9481 Plane Plane true 0 7202 -1537 122 37 7263 -1518.5 Angle (in radians) between vectors 513db0a5-d73e-4aad-8403-b35554601c20 -DEG(X) Angle Angle false 0 7348 -1577 47 38 7363.5 -1557.75 Reflex angle (in radians) between vectors 3e7c3297-7c35-479e-a350-e4707264a8e9 Reflex Reflex false 0 7348 -1539 47 39 7363.5 -1519.25 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true b3184d2b-6d05-4ad8-88fc-8731eb4712d3 Evaluate Length Evaluate Length 7252 -1486 149 64 7337 -1454 Curve to evaluate 523befda-7ca0-4494-91b2-0c4032de7dab Curve Curve false de7d3b1c-087f-4d20-b155-1466adf1be7e 1 7254 -1484 71 20 7289.5 -1474 Length factor for curve evaluation 91f420cf-ceef-4883-adac-43d6c7b7c4ed Length Length false 0 7254 -1464 71 20 7289.5 -1454 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 3e6b0135-a762-48d3-ba8c-7f8e78f89068 Normalized Normalized false 0 7254 -1444 71 20 7289.5 -1434 1 1 {0} true Point at the specified length 3c5ba13e-23de-4f08-abed-a8f2cb6d7714 Point Point false 0 7349 -1484 50 20 7374 -1474 Tangent vector at the specified length 807f589e-fafc-4af9-83b8-518bdfe592e0 Tangent Tangent false 0 7349 -1464 50 20 7374 -1454 Curve parameter at the specified length 0b7a5fad-f50c-4734-9f64-90f997d11360 Parameter Parameter false 0 7349 -1444 50 20 7374 -1434 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 072dcf19-aaed-46e8-93ac-40f0b98e06eb Panel X false 0 dc932851-6aca-48dd-bb33-2297203e1b93 1 8055 -483 194 40 0 0 0 8055.727 -482.6487 1 255;255;255;255 false false true true false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 28024223-0601-4d33-b2cd-d31a63d03970 Panel Y false 0 5c14b869-2216-4bee-ab83-a2b2af816aa8 1 8075 -265 194 40 0 0 0 8075.727 -264.6487 1 255;255;255;255 false false true true false true 797d922f-3a1d-46fe-9155-358b009b5997 One Over X Compute one over x. true b326ab19-e884-4588-875b-7b9eff4591c1 One Over X One Over X 7081 -408 88 28 7124 -394 Input value 50b0d8f3-254f-4462-8623-50b69e316ba4 Value Value false 903082e1-697f-4b4c-870e-e7756893c833 1 7083 -406 29 24 7097.5 -394 Output value f8ad527b-60e4-4a4d-8227-555fab4e8c6c Result Result false 0 7136 -406 31 24 7151.5 -394 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true e5551d65-9328-4cb1-82b6-2faf9de39787 Evaluate Length Evaluate Length 7225 -1825 149 64 7310 -1793 Curve to evaluate 22ed8ab1-c128-4c9c-953b-36384128a70e Curve Curve false a201152b-09cd-4875-8f5e-65a7d1b5e6ae 1 7227 -1823 71 20 7262.5 -1813 Length factor for curve evaluation a0d10dc6-63f5-426e-bbcc-8d305d2ce9db Length Length false 0 7227 -1803 71 20 7262.5 -1793 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) eb54a31c-fc89-4239-898f-2405142ff8f7 Normalized Normalized false 0 7227 -1783 71 20 7262.5 -1773 1 1 {0} true Point at the specified length ad060237-9a0b-4008-a8a1-242e68167c1a Point Point false 0 7322 -1823 50 20 7347 -1813 Tangent vector at the specified length 441117ec-51d8-4bcc-a408-e0d7c2081edf Tangent Tangent false 0 7322 -1803 50 20 7347 -1793 Curve parameter at the specified length 26c8c3a2-4e5e-46f5-ab42-be14af5ffd3e Parameter Parameter false 0 7322 -1783 50 20 7347 -1773 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true bfe60051-6592-4b37-861a-aa9270750ff8 Format Format 7895 -497 130 64 7987 -465 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format ab73bac1-57b5-4317-b3c3-c83146f7e4b2 Format Format false 0 7897 -495 78 20 7936 -485 1 1 {0} false {0:R} Formatting culture f2967ba9-9e82-4ccc-a3a5-0864ed4aba43 Culture Culture false 0 7897 -475 78 20 7936 -465 1 1 {0} 127 Data to insert at {0} placeholders 2982d12a-0e9f-41aa-8469-2604b73063fd false Data 0 0 true 35efd855-fd11-474b-9c35-002d2c21885d 1 7897 -455 78 20 7936 -445 Formatted text dc932851-6aca-48dd-bb33-2297203e1b93 Text Text false 0 7999 -495 24 60 8011 -465 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true ee79b022-0594-4756-831a-df7616c67767 Format Format 8025 -398 130 64 8117 -366 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format d1bd4e74-3ccc-45ce-ab97-5f66fdcb224b Format Format false 0 8027 -396 78 20 8066 -386 1 1 {0} false {0:R} Formatting culture 5e98bcb1-736d-4bcd-ab10-9c99e6ebf0e0 Culture Culture false 0 8027 -376 78 20 8066 -366 1 1 {0} 127 Data to insert at {0} placeholders 66309512-3b30-4d2c-90c6-fb284d6cedaa false Data 0 0 true 798b694f-b0a7-49a4-819e-41bb99b9f02d 1 8027 -356 78 20 8066 -346 Formatted text d2943271-0562-4004-9eb3-1c9184a2c650 Text Text false 0 8129 -396 24 60 8141 -366 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true 3962fab4-8056-471d-bbcc-c38f862b2466 Format Format 7895 -305 130 64 7987 -273 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format 090b37ec-f9fa-42ac-8fb6-2ea6d920f88e Format Format false 0 7897 -303 78 20 7936 -293 1 1 {0} false {0:R} Formatting culture c643e56e-b44d-4623-9bdb-aef3e627563a Culture Culture false 0 7897 -283 78 20 7936 -273 1 1 {0} 127 Data to insert at {0} placeholders 5030886f-edfd-46a1-a33c-b6b622c9b928 false Data 0 0 true 23303988-7ecf-4a11-bc1e-35898011a20c 1 7897 -263 78 20 7936 -253 Formatted text 5c14b869-2216-4bee-ab83-a2b2af816aa8 Text Text false 0 7999 -303 24 60 8011 -273 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 04c03a88-a5d1-4046-82df-6242ef6755f4 Division Division 7909 -388 70 44 7934 -366 Item to divide (dividend) 477a77e5-efe5-42ab-91ef-0b48c7b4f7e6 A A false 35efd855-fd11-474b-9c35-002d2c21885d 1 7911 -386 11 20 7916.5 -376 Item to divide with (divisor) 380205a7-0d19-454c-a068-886a19a774ec B B false 23303988-7ecf-4a11-bc1e-35898011a20c 1 7911 -366 11 20 7916.5 -356 The result of the Division 798b694f-b0a7-49a4-819e-41bb99b9f02d Result Result false 0 7946 -386 31 40 7961.5 -366 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 52044557-936a-42d3-ba5a-430897e96bd7 Panel X/Y false 0 d2943271-0562-4004-9eb3-1c9184a2c650 1 7242 -209 97 40 0 0 0 7242.389 -208.1469 1 255;255;255;255 false false true true false true 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers c8ebd8f8-4948-43fb-8832-395b91c34f25 Digit Scroller INCREASE BEND PER SEGMENT false 0 12 INCREASE BEND PER SEGMENT 1 0.77246531995 7091 -235 250 20 7091.276 -234.1053 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 92160099-1a10-438c-a8eb-39a5bfdb74ee 72817673-4fa9-47a2-8619-191262972134 cba8136d-fdbb-4a88-8ac9-8566ac35864b 6cc8b961-3d16-490f-8a92-6de71388cfb0 98856ba9-ac48-4dc5-8173-4a04a125f4c3 262e2432-cf75-4946-b0ca-fff148556327 6 7fe491ec-0db4-4128-8335-9cc4bc710ae4 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects a68f174f-f652-4ebe-9283-84d3ce1414cb c668c4d9-d991-4613-b402-cdf66b7b7cbf b3184d2b-6d05-4ad8-88fc-8731eb4712d3 de7d3b1c-087f-4d20-b155-1466adf1be7e 1eba0942-8ed3-4598-819a-092d8157d7b5 5 6f1bc802-fc40-41e1-a2fb-da13054f99d4 Group 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 638bdb64-0e1d-4038-a36b-41c4d795d42a Panel false 0 0 0.87246531994281165 6999 -222 112 55 0 0 0 6999.727 -221.6487 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values f06569ba-0f8e-421c-bfd1-06b651268985 Panel false 0 0 12 0.77246531994281165 6976 -134 122 55 0 0 0 6976.727 -133.6487 255;255;255;255 false false true false false true fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true e23e2f01-18f7-49ba-b41a-08ccfff91ebc Point Point false 8d954422-a302-472f-bf5f-7a241205bdc6 1 6996 -846 50 24 7021.727 -834.6486 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 98856ba9-ac48-4dc5-8173-4a04a125f4c3 Relay false ed4e0638-c6d0-4126-95f7-75935e8b71d0 1 7294 -1085 40 16 7314 -1077 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 262e2432-cf75-4946-b0ca-fff148556327 Relay false c60d2465-5d77-40e9-b83a-d648f3a5982e 1 7291 -1365 40 16 7311 -1357 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object de7d3b1c-087f-4d20-b155-1466adf1be7e Relay false 262e2432-cf75-4946-b0ca-fff148556327 1 7302 -1416 40 16 7322 -1408 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 1eba0942-8ed3-4598-819a-092d8157d7b5 Relay false 58108438-d67c-4274-9c4c-74f0b6b9c064 1 7277 -1679 40 16 7297 -1671 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object ed4e0638-c6d0-4126-95f7-75935e8b71d0 Relay false 1900dc99-f091-4392-9450-44615b7569e4 1 7270 -960 40 16 7290 -952 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true 46e9ac55-9c5e-4e2a-820d-a0f057cb1848 Deconstruct Deconstruct 7231 -1917 120 64 7272 -1885 Input point 05847d96-bd4d-4ccb-8c5f-bc6ae4702b8f Point Point false ad060237-9a0b-4008-a8a1-242e68167c1a 1 7233 -1915 27 60 7246.5 -1885 Point {x} component 65683a72-107e-4786-bd03-62d8c0618cbb X component X component false 0 7284 -1915 65 20 7316.5 -1905 Point {y} component 988c5b0f-61a8-4354-8295-19c4f4cadf64 Y component Y component false 0 7284 -1895 65 20 7316.5 -1885 Point {z} component 5d07a2e1-88da-4421-8682-dfe2bd6796df Z component Z component false 0 7284 -1875 65 20 7316.5 -1865 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object a201152b-09cd-4875-8f5e-65a7d1b5e6ae Relay false 1eba0942-8ed3-4598-819a-092d8157d7b5 1 7268 -1736 40 16 7288 -1728 290f418a-65ee-406a-a9d0-35699815b512 Scale NU Scale an object with non-uniform factors. caec2bbc-5ae6-4081-8207-b03134d3be40 Scale NU Scale NU 7177 -2071 226 121 7339 -2010 Base geometry 0b89ff93-f292-4fce-beaf-92f7a36fca9d Geometry Geometry true a201152b-09cd-4875-8f5e-65a7d1b5e6ae 1 7179 -2069 148 20 7261 -2059 Base plane dc23e541-d422-4bb7-97ed-d9cf970fb4e7 Plane Plane false 0 7179 -2049 148 37 7261 -2030.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Scaling factor in {x} direction 0a9ef10a-462d-4dc1-bee8-e6b97d6d1efe 1/X Scale X Scale X false 65683a72-107e-4786-bd03-62d8c0618cbb 1 7179 -2012 148 20 7261 -2002 1 1 {0} 1 Scaling factor in {y} direction 02067a1f-d61b-40a0-89d6-53e8477ee963 1/X Scale Y Scale Y false 988c5b0f-61a8-4354-8295-19c4f4cadf64 1 7179 -1992 148 20 7261 -1982 1 1 {0} 1 Scaling factor in {z} direction d5c2a1a7-696b-47ff-a04a-daf13e599276 1/X Scale Z Scale Z false 5d07a2e1-88da-4421-8682-dfe2bd6796df 1 7179 -1972 148 20 7261 -1962 1 1 {0} 1 Scaled geometry aa3cf507-4967-46e0-8213-89ff88b65ca4 Geometry Geometry false 0 7351 -2069 50 58 7376 -2039.75 Transformation data 65f7b0bd-e128-4bb6-8f43-33c6bec968ff Transform Transform false 0 7351 -2011 50 59 7376 -1981.25 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object a1e0f8c4-4e32-4423-a640-6d28fa2603ad Relay false aa3cf507-4967-46e0-8213-89ff88b65ca4 1 7271 -2104 40 16 7291 -2096 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects e5551d65-9328-4cb1-82b6-2faf9de39787 46e9ac55-9c5e-4e2a-820d-a0f057cb1848 a201152b-09cd-4875-8f5e-65a7d1b5e6ae caec2bbc-5ae6-4081-8207-b03134d3be40 a1e0f8c4-4e32-4423-a640-6d28fa2603ad 5 b03695a5-af3b-4879-8c6a-bb7b760d5119 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 730c8146-4f1e-49ff-9a25-0ad360a13d92 d7b18b8c-16a0-47f6-90ca-ecbcf0cbeed8 a426d303-f899-404c-bd9d-48804708b6fd 73383578-2553-4fa9-9c76-a79bc56e9f1c d6006a37-f52f-44c5-8843-4b4c76e75d91 3bd58d69-967e-43a7-83f9-2ac9b80f78e7 6 0dde96ac-ef58-4d9c-b16a-67f5cb559ea7 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 6d028da1-0f48-408c-93e7-967fdf542a50 072dcf19-aaed-46e8-93ac-40f0b98e06eb 28024223-0601-4d33-b2cd-d31a63d03970 bfe60051-6592-4b37-861a-aa9270750ff8 ee79b022-0594-4756-831a-df7616c67767 3962fab4-8056-471d-bbcc-c38f862b2466 04c03a88-a5d1-4046-82df-6242ef6755f4 7 2c29d287-fb31-40d2-9e9c-ef2e29387bb4 Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 3b9ee1da-2b6d-4e87-94f1-2b90b167ae40 Relay false b05af234-ce5b-432e-8b3f-32a94a964bbf 1 7253 134 40 16 7273 142 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 903082e1-697f-4b4c-870e-e7756893c833 Relay false 3b9ee1da-2b6d-4e87-94f1-2b90b167ae40 1 7291 22 40 16 7311 30 310f9597-267e-4471-a7d7-048725557528 08bdcae0-d034-48dd-a145-24a9fcf3d3ff GraphMapper+ External Graph mapper You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode. true 87484869-a243-49c7-8c84-3bbe1debc7de GraphMapper+ GraphMapper+ true 6808 -676 114 104 6869 -624 External curve as a graph e066749e-8f77-4ba8-8b50-c6f55c0faddc Curve Curve false ea28df8e-abb0-4112-a27f-22f1a20d122a 1 6810 -674 47 20 6833.5 -664 Optional Rectangle boundary. If omitted the curve's would be landed 96c0b08a-639d-421b-afbf-6e6cff18d23b Boundary Boundary true db6c48ec-4c19-44df-bca3-cc59da6e2311 1 6810 -654 47 20 6833.5 -644 1 List of input numbers 9be12142-0638-444f-afaa-a5ad027c1658 Numbers Numbers false cc601f46-89b7-49d3-a4b1-f80f7ec077f6 1 6810 -634 47 20 6833.5 -624 1 9 {0} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 (Optional) Input Domain if omitted, it would be 0-1 in "Normalize" mode by default or be the interval of the input list in case of selecting "AutoDomain" mode 0777257c-d519-437c-a51b-e957fcac739a Input Input true cb6d8cac-9a56-4126-ab17-4af8f9abb851 1 6810 -614 47 20 6833.5 -604 (Optional) Output Domain if omitted, it would be 0-1 in "Normalize" mode by default or be the interval of the input list in case of selecting "AutoDomain" mode bb103507-2ab7-410a-b54b-d55817dad07c Output Output true cb6d8cac-9a56-4126-ab17-4af8f9abb851 1 6810 -594 47 20 6833.5 -584 1 Output Numbers 0c9554e2-bfa6-483c-979b-54cc19c5ff56 Number Number false 0 6881 -674 39 100 6900.5 -624 11bbd48b-bb0a-4f1b-8167-fa297590390d End Points Extract the end points of a curve. true 458ad899-33cf-4d8f-bd88-a2b71add3c86 End Points End Points 6823 -388 84 44 6867 -366 Curve to evaluate 3b03b3aa-9e66-4ed0-b8d3-59571d2ae7c2 Curve Curve false ea28df8e-abb0-4112-a27f-22f1a20d122a 1 6825 -386 30 40 6840 -366 Curve start point 49670b5e-5e08-4545-8cef-4a885a820783 Start Start false 0 6879 -386 26 20 6892 -376 Curve end point 4ec5fa6c-2d34-463d-8b69-329e368b8523 End End false 0 6879 -366 26 20 6892 -356 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object ea28df8e-abb0-4112-a27f-22f1a20d122a Relay false 9b596d86-59f2-48b7-b097-c6263e44e0fe 1 6845 -311 40 16 6865 -303 575660b1-8c79-4b8d-9222-7ab4a6ddb359 Rectangle 2Pt Create a rectangle from a base plane and two points true 969c61b4-405b-479a-b31e-64e498969101 Rectangle 2Pt Rectangle 2Pt 6763 -495 198 101 6899 -444 Rectangle base plane 39aebbc1-45b1-4114-bca9-f67a664d9f93 Plane Plane false 0 6765 -493 122 37 6826 -474.5 1 1 {0} 0 0 0 1 0 0 0 1 0 First corner point. be1d5178-22b9-4a4a-abb2-0ea46d7cb766 Point A Point A false 49670b5e-5e08-4545-8cef-4a885a820783 1 6765 -456 122 20 6826 -446 1 1 {0} 0 0 0 Second corner point. 17a88c0b-1542-46a2-a082-79417dc1f68d Point B Point B false 4ec5fa6c-2d34-463d-8b69-329e368b8523 1 6765 -436 122 20 6826 -426 1 1 {0} 10 5 0 Rectangle corner fillet radius 915aaa4b-a4a5-417c-aba8-ddb583502d50 Radius Radius false 0 6765 -416 122 20 6826 -406 1 1 {0} 0 Rectangle defined by P, A and B db6c48ec-4c19-44df-bca3-cc59da6e2311 Rectangle Rectangle false 0 6911 -493 48 48 6935 -468.75 Length of rectangle curve 06b98d9d-74bf-4222-8e33-b9f865255345 Length Length false 0 6911 -445 48 49 6935 -420.25 f44b92b0-3b5b-493a-86f4-fd7408c3daf3 Bounds Create a numeric domain which encompasses a list of numbers. true 34950a60-d6e3-44aa-9ddd-919eabfc9ba0 Bounds Bounds 6810 -549 110 28 6868 -535 1 Numbers to include in Bounds 4e297919-08fb-4abd-81ad-6d55d330e758 Numbers Numbers false cc601f46-89b7-49d3-a4b1-f80f7ec077f6 1 6812 -547 44 24 6834 -535 Numeric Domain between the lowest and highest numbers in {N} cb6d8cac-9a56-4126-ab17-4af8f9abb851 Domain Domain false 0 6880 -547 38 24 6899 -535 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object cc601f46-89b7-49d3-a4b1-f80f7ec077f6 Relay false 368a9ccd-be2a-42fd-bfe7-c97f72d95c12 1 6845 -516 40 16 6865 -508 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 87484869-a243-49c7-8c84-3bbe1debc7de 458ad899-33cf-4d8f-bd88-a2b71add3c86 ea28df8e-abb0-4112-a27f-22f1a20d122a 969c61b4-405b-479a-b31e-64e498969101 34950a60-d6e3-44aa-9ddd-919eabfc9ba0 cc601f46-89b7-49d3-a4b1-f80f7ec077f6 9e1aa2a8-8526-4c1d-8e69-6204d7f179d9 7 1ca98984-5d1f-4236-b2d3-e20c153c5940 Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object fb2a6dbf-b02f-4775-ad6e-36cf33201f14 Relay false d3a6959a-bba8-449a-982e-ef7604520f53 1 7352 -118 40 16 7372 -110 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 1d3568b6-20fc-4b47-982b-0abf4d4576f9 Relay false a117194e-2f18-4d8f-9075-d69b3dd57e9c 1 6845 -127 40 16 6865 -119 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. d46598fd-8b32-46af-b289-272bb54feb80 Scale Scale 6761 -256 201 64 6898 -224 Base geometry b50a3947-ed4c-40ba-b8a0-6f5aee5d312c Geometry Geometry true 1d3568b6-20fc-4b47-982b-0abf4d4576f9 1 6763 -254 123 20 6824.5 -244 Center of scaling 8f0ab182-27a2-4cb8-9211-638a63193490 Center Center false 0 6763 -234 123 20 6824.5 -224 1 1 {0} 0 0 0 Scaling factor 4a2f7502-a488-416a-8d3e-36562db15d7f Factor Factor false 183564aa-a31e-4b29-870c-74f22fc1b815 1 6763 -214 123 20 6824.5 -204 1 1 {0} 0.5 Scaled geometry a5aca6c0-bd92-4b93-8fe6-51ff8abaa728 Geometry Geometry false 0 6910 -254 50 30 6935 -239 Transformation data d2ff5510-2d10-45bd-b419-758094e6cd81 Transform Transform false 0 6910 -224 50 30 6935 -209 78fed580-851b-46fe-af2f-6519a9d378e0 Power Raise a value to a power. d063ff62-4a20-446a-8f52-31e9847a01df Power Power 6822 -194 85 44 6862 -172 The item to be raised 3c361b8a-fa3d-42ea-8545-7921949855a0 A A false 0 6824 -192 26 20 6837 -182 1 1 {0} Grasshopper.Kernel.Types.GH_String false 2 The exponent bc11c0af-a55c-40a7-89a2-f2a56615dfa4 B B false 9cd31870-fb82-46d0-ab50-50ae0867d8e8 1 6824 -172 26 20 6837 -162 A raised to the B power 183564aa-a31e-4b29-870c-74f22fc1b815 Result Result false 0 6874 -192 31 40 6889.5 -172 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 9cd31870-fb82-46d0-ab50-50ae0867d8e8 Digit Scroller SCALE POWER false 0 12 SCALE POWER 11 16.0 6741 -146 250 20 6741.005 -145.3372 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 9b596d86-59f2-48b7-b097-c6263e44e0fe Relay false a5aca6c0-bd92-4b93-8fe6-51ff8abaa728 1 6845 -277 40 16 6865 -269 dde71aef-d6ed-40a6-af98-6b0673983c82 Nurbs Curve Construct a nurbs curve from control points. true 27759fe7-9615-40c6-be3f-3a448ad3a563 Nurbs Curve Nurbs Curve 7110 -947 121 64 7179 -915 1 Curve control points e1f72200-65f3-4bd4-83aa-f871530348fa Vertices Vertices false acd2ff85-cc67-4ee9-90ed-98053d88dae3 1 7112 -945 55 20 7139.5 -935 Curve degree 830b9280-9f3d-4287-be2f-9c1454868041 Degree Degree false 0 7112 -925 55 20 7139.5 -915 1 1 {0} 11 Periodic curve 71d6db37-bc38-43a6-9266-96ee24235123 Periodic Periodic false 0 7112 -905 55 20 7139.5 -895 1 1 {0} false Resulting nurbs curve d80b4c9c-94fb-4442-aa2f-5b22954848cc Curve Curve false 0 7191 -945 38 20 7210 -935 Curve length b2241b54-2085-4c45-b5f3-f04626705e1d Length Length false 0 7191 -925 38 20 7210 -915 Curve domain 01ab6b46-e14c-4e97-870d-8f53907b6d92 Domain Domain false 0 7191 -905 38 20 7210 -895 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 1d3568b6-20fc-4b47-982b-0abf4d4576f9 d46598fd-8b32-46af-b289-272bb54feb80 d063ff62-4a20-446a-8f52-31e9847a01df 9cd31870-fb82-46d0-ab50-50ae0867d8e8 9b596d86-59f2-48b7-b097-c6263e44e0fe 5 9e1aa2a8-8526-4c1d-8e69-6204d7f179d9 Group 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values b126fd64-555c-44ea-adc3-b6f5841cfdab Panel false 0 0 0.4875881689164849049 7195 -141 121 40 0 0 0 7195.296 -140.2912 255;255;255;255 false false true false false true ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication dbd33745-9a83-4396-bcd7-aa255f0c2791 Multiplication Multiplication 1055 -436 70 44 1080 -414 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication 693b1c62-fa94-4640-a1be-06db3a3e58fd A A true cbc189e9-b394-4a19-ac98-713bdfde1ea0 1 1057 -434 11 20 1062.5 -424 Second item for multiplication 0f514996-5705-4074-93ab-75f2daaf070b B B true f928b4e1-c43f-4b19-8907-59137d64cd77 1 1057 -414 11 20 1062.5 -404 Result of multiplication 05e6f8a5-24d2-4f5d-9043-13588ab608ea Result Result false 0 1092 -434 31 40 1107.5 -414 78fed580-851b-46fe-af2f-6519a9d378e0 Power Raise a value to a power. cf95f7f6-4831-4cf1-b745-0937f6a21d1d Power Power 1070 -494 85 44 1110 -472 The item to be raised cc8ece94-a30a-4f62-beba-87ca607f6868 A A false 0 1072 -492 26 20 1085 -482 1 1 {0} Grasshopper.Kernel.Types.GH_String false 2 The exponent a218b979-4f95-4051-a89a-1b931ad914b8 B B false b8dfc952-2e18-4600-a4f7-b22d8d2da29e 1 1072 -472 26 20 1085 -462 A raised to the B power cbc189e9-b394-4a19-ac98-713bdfde1ea0 Result Result false 0 1122 -492 31 40 1137.5 -472 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers b8dfc952-2e18-4600-a4f7-b22d8d2da29e Digit Scroller POWER false 0 12 POWER 11 64.0 1010 -594 250 20 1010.871 -593.611 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 06332314-4669-466a-9627-5ee802d91f0f Relay false f928b4e1-c43f-4b19-8907-59137d64cd77 1 1101 -289 40 16 1121 -281 75eb156d-d023-42f9-a85e-2f2456b8bcce Interpolate (t) Create an interpolated curve through a set of points with tangents. true 525b9199-51a8-408e-bcdd-b4e225aab588 Interpolate (t) Interpolate (t) 7367 -834 244 84 7559 -792 1 Interpolation points 07f501af-bd59-457e-9bc3-3c1c76e87651 Vertices Vertices false acd2ff85-cc67-4ee9-90ed-98053d88dae3 1 7369 -832 178 20 7458 -822 Tangent at start of curve 3c92bdaf-1582-431a-86ca-ad7e3327d3fb Tangent Start Tangent Start false 0 7369 -812 178 20 7458 -802 1 1 {0} 0 0 0 Tangent at end of curve e5000082-264b-4969-8e32-878fc10a5680 Tangent End Tangent End false 0 7369 -792 178 20 7458 -782 1 1 {0} 0 0 0 Knot spacing (0=uniform, 1=chord, 2=sqrtchord) e1cbf2c0-3d1a-485c-84ae-23d4f5b6a9cc KnotStyle KnotStyle false 0 7369 -772 178 20 7458 -762 1 1 {0} 2 Resulting nurbs curve 53355ff7-3f12-4c45-9950-47e93e512f32 Curve Curve false 0 7571 -832 38 26 7590 -818.6667 Curve length a17aa1d6-82c2-468f-b75d-644aeb4a7387 Length Length false 0 7571 -806 38 27 7590 -792 Curve domain 3c8acae2-2901-41d9-b296-a46bddbc38cb Domain Domain false 0 7571 -779 38 27 7590 -765.3334 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 93f58772-1bbe-4649-90b3-5c6800324636 61a32b7e-58e0-47bc-ae7b-99c96bc9bc05 9a67714e-6ef6-44c0-a794-da43da2f4460 e3bcfc34-48d9-4bd8-bc1f-b3264bc246a4 71dfb3fa-efc7-45f9-ae4c-8d994a518a7a 464f5f8a-5b70-4652-95a8-29ad2671a756 c956a0d2-a7ba-4165-8ed4-8d02ff8b0963 023de912-35f2-4457-b69e-c2a19bc0ceb3 8c636517-f873-4eaa-8b19-8a10c7d0063f a495b48d-fb5b-4cac-80de-be887aeac1bd 967b1ee0-e9d5-44f3-a2ec-c122f465def6 1b1ffffd-3591-4542-b49d-e6005771d0d7 0fc11ab8-c8af-42d4-bdea-8f2ea5a5eed5 597c8632-bd55-41f9-831a-14e8f0925b1e c6d80d08-d4b3-44b9-acaa-5afac8c56cfa 4bab40a8-1d93-412b-a75b-c6b4e84ce749 26bf7701-0ad2-43ce-b3c1-bb2572ec376f 0447472e-5591-46af-bb0e-c7bb17204a7b 18c14f8c-cad0-4aff-b28f-1b7151eb3ee0 19 fe9b3f10-53a0-4cc2-8657-7537cb28ff35 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects b7903836-9e20-4be6-8e7b-2a25f442b23a 763cab81-3b1b-4147-ae95-048972832f89 c2beef7b-6131-4575-9319-58dfaa76ac13 51639361-bcdc-48ab-859f-4598cb5849d2 8b5750cb-6432-4ac8-872a-cb8855c913f4 2b70240c-3e85-4f88-b259-6b82b0f4b8b0 20e4ce13-ef27-4c8e-8571-9be858ba4605 d768f2f2-5c6f-4708-bd05-7918dbb8706e 41b36c24-e6ae-4171-b46e-9533177b41b2 d7b18b8c-16a0-47f6-90ca-ecbcf0cbeed8 a2eb8392-3d59-492c-81a8-352a82a87875 ad9be727-0f01-441c-a877-296b14ab0f9f c168de5d-a4db-47fe-a681-e5a4331864ce 384f8515-9941-4863-8f7c-12efd7f19492 d706319a-895f-4223-b33c-988c20218ad8 0e598859-e16c-4dcb-9468-666a60fdf126 fd2ff708-8866-4fa1-80f5-56b1a2985a16 b5439c69-f9e6-4772-bfd9-4ddddfd4af21 309e4b37-957b-41b8-874c-56ebd84d12c0 3d0eb249-fbc8-4f82-a8c6-6be8c0f54b91 97f9c74b-5a9f-4be7-8b2b-76b92bed59ce 7b0f4177-d6cf-4c09-9e68-2fc85e217ce5 1d935021-9586-4892-8a03-1803d4963624 a9e1c8cf-fb7e-4409-a7ff-7d598e06055b 43abe796-6357-4c8e-95bf-a411da1995e4 a8f7bbbf-fa6d-413d-9ed1-911c210bca52 a618183a-b85f-4456-b013-679fc47f2968 61f2c450-400a-412b-8bfc-81286a183212 f8c057c5-c404-4a05-8582-62a66d6b08a1 bceebf35-dd0b-4960-ab17-129faa5d507d 2a07d436-540b-4a46-86ad-1cf5be1b55fb 36f8c5c0-0f87-497f-958b-5571daee768c 19379fed-2ec1-4c1d-a18b-aaea992f534b 3ee80f7b-a4da-4df5-b83f-62beb76ef4df fe9b3f10-53a0-4cc2-8657-7537cb28ff35 35 b0b20e35-675f-497d-8245-2e857869b548 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 41b36c24-e6ae-4171-b46e-9533177b41b2 d7b18b8c-16a0-47f6-90ca-ecbcf0cbeed8 a2eb8392-3d59-492c-81a8-352a82a87875 ad9be727-0f01-441c-a877-296b14ab0f9f 4 b7903836-9e20-4be6-8e7b-2a25f442b23a Group 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 763cab81-3b1b-4147-ae95-048972832f89 Digit Scroller SEMENT LENGTH false 0 12 SEMENT LENGTH 2 0.0023000000 8780 -356 250 20 8780.559 -355.59 e64c5fb1-845c-4ab1-8911-5f338516ba67 Series Create a series of numbers. true c2beef7b-6131-4575-9319-58dfaa76ac13 Series Series 8771 -322 106 64 8832 -290 First number in the series 89f09bf5-3e62-4822-b509-682060e997ae Start Start false 0 8773 -320 47 20 8796.5 -310 1 1 {0} 0 Step size for each successive number 2fc8de6a-75b6-4340-8d69-8382f94703f9 Step Step false 0c40b082-6a5b-435a-9ecc-89e139c9c9e2 1 8773 -300 47 20 8796.5 -290 1 1 {0} 1 Number of values in the series d0d4ccdb-3bf5-4e15-ba61-d57c2b25a0fe Count Count false d768f2f2-5c6f-4708-bd05-7918dbb8706e 1 8773 -280 47 20 8796.5 -270 1 1 {0} 10 1 Series of numbers e0fb9285-b6f9-44fa-9dad-b60c688524ac Series Series false 0 8844 -320 31 60 8859.5 -290 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 51639361-bcdc-48ab-859f-4598cb5849d2 Digit Scroller INCREASE BEND PER SEGMENT false 0 12 INCREASE BEND PER SEGMENT 1 0.49222173845 8780 -99 250 20 8780.744 -98.25572 b6d7ba20-cf74-4191-a756-2216a36e30a7 Rotate Rotate a vector around an axis. true 8b5750cb-6432-4ac8-872a-cb8855c913f4 Rotate Rotate 8820 -647 150 64 8923 -615 Vector to rotate c0b1b3cb-f96f-4dde-8e25-473439bf8e03 Vector Vector false 8f299edb-d211-4ace-ac7e-9d58c163cb49 1 8822 -645 89 20 8894.5 -635 Rotation axis 2a93dacd-1d4c-4fc4-8e36-7f9758ad16d0 Axis Axis false f20bd5ac-2a36-44fe-a7fd-36ffc6b07cd4 1 8822 -625 89 20 8894.5 -615 Rotation angle (in degrees) c0a5d860-061b-4796-9611-a5a89fa56211 -X Angle Angle false true 57f95d16-1a98-4341-bbc2-7387820b39d9 1 true 8822 -605 89 20 8894.5 -595 Rotated vector 4711cdef-e34b-4627-8251-2c73e002ea75 Vector Vector false 0 8935 -645 33 60 8951.5 -615 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true d706319a-895f-4223-b33c-988c20218ad8 Interpolate Interpolate 9015 -957 225 84 9188 -915 1 Interpolation points bf4fd7b4-b050-4a65-8573-233b7b4bf494 Vertices Vertices false b5439c69-f9e6-4772-bfd9-4ddddfd4af21 1 9017 -955 159 20 9096.5 -945 Curve degree 0a4e5fa8-8e22-4eef-8e24-5767af0157e2 Degree Degree false 0 9017 -935 159 20 9096.5 -925 1 1 {0} 3 Periodic curve 8cbccd7b-ee8b-4278-b12c-53c95ee91032 Periodic Periodic false 0 9017 -915 159 20 9096.5 -905 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 510c768e-3d82-4961-bec3-a8330617a209 KnotStyle KnotStyle false 0 9017 -895 159 20 9096.5 -885 1 1 {0} 2 Resulting nurbs curve 0a62d7ca-ee01-4395-9030-a53e0ec1a678 Curve Curve false 0 9200 -955 38 26 9219 -941.6667 Curve length f7252cfe-583b-4a39-98c8-2b35f9076347 Length Length false 0 9200 -929 38 27 9219 -915 Curve domain c1f676cb-86ea-42d5-9072-bf0dc6ff0b0f Domain Domain false 0 9200 -902 38 27 9219 -888.3334 79f9fbb3-8f1d-4d9a-88a9-f7961b1012cd Unit X Unit vector parallel to the world {x} axis. true 2b70240c-3e85-4f88-b259-6b82b0f4b8b0 Unit X Unit X 8856 -495 114 28 8902 -481 Unit multiplication 458120b5-2e67-4a2b-9a19-93a7d53ed856 Factor Factor false 1d935021-9586-4892-8a03-1803d4963624 1 8858 -493 32 24 8874 -481 1 1 {0} 1 World {x} vector 8fab27f1-5c16-4cd1-8ca1-eb99653f3ee4 Unit vector Unit vector false 0 8914 -493 54 24 8941 -481 9103c240-a6a9-4223-9b42-dbd19bf38e2b Unit Z Unit vector parallel to the world {z} axis. true 20e4ce13-ef27-4c8e-8571-9be858ba4605 Unit Z Unit Z 8654 -647 114 28 8700 -633 Unit multiplication 05fb3490-fc97-44bb-a1b1-bdf1e715f3ac Factor Factor false 1d935021-9586-4892-8a03-1803d4963624 1 8656 -645 32 24 8672 -633 1 1 {0} 1 World {z} vector f20bd5ac-2a36-44fe-a7fd-36ffc6b07cd4 Unit vector Unit vector false 0 8712 -645 54 24 8739 -633 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 0e598859-e16c-4dcb-9468-666a60fdf126 Relay false 7354caf3-1bc7-4e2b-ab1c-10cb2f889447 1 8895 -745 40 16 8915 -737 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object d768f2f2-5c6f-4708-bd05-7918dbb8706e Relay false 8190c6c0-a456-49b0-9352-92927583a941 1 8895 -75 40 16 8915 -67 a0d62394-a118-422d-abb3-6af115c75b25 Addition Mathematical addition true 41b36c24-e6ae-4171-b46e-9533177b41b2 Addition Addition 8872 -40 85 44 8912 -18 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for addition b7e45081-c66d-44fc-9c02-f381bf058ce5 A A true 0 8874 -38 26 20 8887 -28 1 1 {0} Grasshopper.Kernel.Types.GH_String false 1 Second item for addition 4149054f-186f-4d50-b633-2062240bac93 B B true cc2acd40-6edf-42c0-8a11-7edd5c54796b 1 8874 -18 26 20 8887 -8 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 2 Result of addition 8190c6c0-a456-49b0-9352-92927583a941 Result Result false 0 8924 -38 31 40 8939.5 -18 a0d62394-a118-422d-abb3-6af115c75b25 Addition Mathematical addition true a2eb8392-3d59-492c-81a8-352a82a87875 Addition Addition 8828 30 155 44 8868 52 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for addition 131e64b3-30d1-4837-8a09-a2100f51f143 A A true 0 8830 32 26 20 8843 42 1 1 {0} Grasshopper.Kernel.Types.GH_String false 1 Second item for addition d9a0e68d-e665-4d74-876c-8f48076797af B B true 3a737a17-feba-4d02-a091-4fc7fc64b6af 1 8830 52 26 20 8843 62 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 1 Result of addition cc2acd40-6edf-42c0-8a11-7edd5c54796b Result NUMBER OF POINTS false 0 8880 32 101 40 8930.5 52 e2039b07-d3f3-40f8-af88-d74fed238727 Insert Items Insert a collection of items into a list. true fd2ff708-8866-4fa1-80f5-56b1a2985a16 Insert Items Insert Items 8857 -853 116 84 8940 -811 1 List to modify e467e49e-ee21-4163-a0e0-7c8bf34ef726 List List false 0e598859-e16c-4dcb-9468-666a60fdf126 1 8859 -851 69 20 8893.5 -841 1 Items to insert. If no items are supplied, nulls will be inserted. 9c0f3f42-fce1-4c15-a857-6f11fab76f23 Item Item true 0 8859 -831 69 20 8893.5 -821 1 1 {0} Grasshopper.Kernel.Types.GH_String false {0,0,0} 1 Insertion index for each item 101f896f-c546-4976-92ea-71ab4800cf80 Indices Indices false 0 8859 -811 69 20 8893.5 -801 1 1 {0} 0 If true, indices will be wrapped b6904d67-8ce3-4ec3-a039-43ce0289a9bc Wrap Wrap false 0 8859 -791 69 20 8893.5 -781 1 1 {0} false 1 List with inserted values 1eaf7173-3a4a-4d85-89d5-18fc6cd9d580 List List false 0 8952 -851 19 80 8961.5 -811 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object b5439c69-f9e6-4772-bfd9-4ddddfd4af21 Relay ⊙☉⊙ false 1eaf7173-3a4a-4d85-89d5-18fc6cd9d580 1 8894 -877 44 16 8916 -869 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 41b36c24-e6ae-4171-b46e-9533177b41b2 a2eb8392-3d59-492c-81a8-352a82a87875 3a737a17-feba-4d02-a091-4fc7fc64b6af 3 ad9be727-0f01-441c-a877-296b14ab0f9f Group f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ 7VsJdBNlHp+2aZqjB1AVUJDR4nqwFnTxKbJgk6ZHaNPGFhAEH50m03YgycRkUuSy5UFBKiBd6Alo8UEFqVahVDmU6haXXVksCwgo2kMXV46VXXXFXaX7fTPfpJ0jaaGphYd9L+nM//+dv//5/WeiMtAWj510MB3gLwjDMAX4RDptnlzKMSufdLkp2gFZZkCGbPgXBpvw/ZJJwkq6YJNQxNbwLKMBktWANPbyuVFrGom4un8frj+tKZ8XZnaR+RQ5F/I1gK/MzAOjWKMQ2US68ybPc5KQHYImjkC8NNplJ2yQMxJQN23a1MH3yiRtpIUhrTyPoqiOmwxkDuWgGLALs4t2ki6GIt38sPCjMBAMO48K3OxssxeXLP9UpTWQbouLcjJo83CJmCKNsJP83YWQaclJsbHtuyrPvrgCfLeX14HvtvI328rr2Qv2tn4L/C5ZzX6vaSsp9bZsrkiD12uXwhHKYJf2DZu9123r1ratK/U2ayvf5h2Na8YNcrZ8J6RXLhZMzfdFS0LcbcLlbeyct7iKbbzS33XVq94B0Tei+O3FXqMdsTN2WcA279rQOvlld7Zhudwe0aTs3hGq7AgIH76vFEkOYYQ2NxEvCCQXNJpAfAheVrKxsUnJ09QZQMOgKbh5M4F/ETw1nvZwBhTCmwBQttlAGZH+BCOycjLhyiXZlreD27qfOzoWgi6KJ2nazlvQzMibHgudCtRZMJUaUiTTqDMszlRiHu1hurbVJLloj1PSeGCnKaRnw8V5J4gCHy1HE/SCdCVHhwMEI0tUJE3ptOw7gotm3L3r45SV2V/r8v7q+K/ASiJMhNuN66xWdlZ1PO1gCMrR6S2gr5GztXvMpCsH2Dluh/0J1B+nc3ACt1FuBl5RDGl3K5Mpq5V08BsJCjc63AzhsJBJHsrKLzHjvqHGPAWZsMGZcKxxcOtRP0tUpVGWOb7ZGh3DuKhsD8P5EK9Y9QA1K0uKgfdZRwxYXEoThv1Hj2Fj9KFmKp9mQR0BuYUfG7DGhCatk3AR9lmUw+lh0VUhdJU6i4V0e31UkA+IRhhhRzyfsHlINw7AEmIVK4tE+wndiS11d6WvrZs5+8C8Q98KkAhlR5QggMjp7Oyc42UVTZlJe1wWklVDqMtnT4bsffA1Y2FNyfzzukU1Wo4t0CfYr4cQVgMIGycBCE/qMAwXQ2g+ykIYzkEI1B9hqPQD2OAM0u2xsaojQEoWqKxRjHn5I1NSNj1ieoyy53kEQCm5kSRI8XQJVHJYYD3HAjuJsHgOqFO1ToRF3GmgbMlCLOCsYVemT4NTkV2BcRiKsOEudjNuWXjSBr6wqPzIrOQGw0fbX7YUVgjgiTKjETg43BKcJA36BLAEv4DFNyHHFuTLsT2wOePAjLptiVs3R334/rPflwlthXWxQoc2lAdcT7tQRsQnGcp42gZ2xCcm8L+cDG7X4blwXCiGJBdQ0jzaCVIWnObcdbDRwFvbvu9H/fSX7JsS32qYcGmX5sIAwApCrPLnjt+3yHHMtPd/49Y8fNvDOsAK9mGjgBWCWBObRuavf8qgW3boywcfmfjAl4ClQKx3Ip7RfFAUr1sdWXyvJXOEAbBCEUvsWQFLiVhf7fth0MEzo3UrrN9HlJhOOQErDLFGRE9YqpqzK7GoJnvBz1h0O2Cp+MU//foBfIMnvfqNnT8mvfeqGrDUiDUIHz8xs7Y0fd27XxRMiYq5DFgavteGjr9Rt66Jq9r8+BIdkV8MWFrECt9amXb4yEV99Q/fKUadXFUPWOGINaHqhXEFx3YkvzN2aH3laOt0wIpArHn3lhZVxHSY9i2cyiwsGfsTYEUi1tCvv7v/4qHpaX9I/wZ/dugnwwErCrGWHB5++qA5NuWdvRs3Jw2bOQywBiDWu69PiW0YW5S0es4Je+2kjhWANRCxLPdfjJybWpdSbHg+4cKLHe+pjIZZAsUfBLchZ4UL0k5vVDx5i377G9EFRmzBNhkNldie2IQw3oQ4awj2ZQ14bkzDc6tW6Nf+sTa18sfdC4RzZZA2Yp7QGnyEs2Af7idah8+lXCTwOmAkpPCymxbrsMxCpJvuNnqJpdrL6IWdAA4ooglGLhDvxQ6o8BTgankHFHLNQy72DYGBfFlL/mPEjMspRS3ar9IzwtYHAPLWWn+Qt27nIVf4gry6ZJXn/KRLSWVP3+KuKv7tU8KwnwhPnow0i/UF8MNcB9xN20ncSjAE7nFTjlzcaSMsZB5tA0ECpCEOK8zeQDsG8hgit2dJrdixyS1VmqFw9J7mYCBRLbwTQPoGhFScg7WCMFp4a1OEGeYdJEO6wEGagFwYASDCGjZxFMgTfsJYstHK60Fa0ecTM/90Lm7ph/WFqn+lH+P5fDxb8sSmgk+cM5MrGqsrz1SsnMjz+aA23XpwddB+tWHPPwebIkZFN2vT2RRIokcqju57Ym697HZYNPxIVjuZfIZBYpOVzjQblliNZabtGf3QV4feH3n+SqQT8HSoFcgRg3IcIJcO4cA0Ckc0RZphrcfNkA6GF2QQQi5UgqVS7wI7zsO62JG0kcJMMHn83kIWjFmkMIIjG9+H3ZfDY7PNcoM9OHI73UTnPetfFox5NGNRF9kEdSObQYmd1mQB6aXHRcqKqPnn4C073g5NrbgzOYbau2++QERh8VxPiYy8jD4R0nC/Qrr1FxUSX01QpMZzDhJ2KfDaNSsLOC4fdeRkcSdcJc7QOOVwky4GB84QTCFwgLKy+fRA9MSVddvT9h/dxrxyfmFpmMnDENk20gu20J7YWcZIZBU0RiKloL49tbJCHOJXiDc3IQclcDS+AIxEykxacQa4HFmw9q+/eeX0pZP1la8V//34oqjjAmwU0FNJkOGogVbhrM+Rn2kEZ3anJF60sCqMQjAfNyUh+PEvWtLDbIeTXtr9bnBBwx3LBLvRZOZROQwOj6rSMBzqA8Pb0nNy3CRQPpuNKxoBbUR1pNgehVrxAcjXkiQwd+H1FMLjBpCEAAjL5EJu9SeAu6q3laMI9qQPjNINVyd/vs9ef2FGK6V/OTUGn5bymTC5UMjulaN2l/SJCwe9rRIBuLIgXK06GXvLAikhvkYAF18Y8RU8wjmJ0azGyEIztablpejL0ZN2PtRxW+2L53YLk2G2u7SExpG7A0d8SAwAOK2r/YEDdKk/IorS4bFndxZIWD3tIqNgrJvk6wkX4USFT1kRxXq+2Xd/WW38lg8WnxnvsT0u1F7YW6q9LDXQDpFVz5V+1fP5fpFAWDZN20jC6/cwSSX1CquHnN2AKAW9qqxQxMe9q3cpvRQKfhr5jAq5KGX+jDULFKV4NZREqaq3W6cv//KScc/bu/a8OactVegFzISDtAkDlNqPQt+jw52wB1vFt3jcDG3HHTTYBns4hHHfn7aLi18yS+nJ6VybaXHRNlsGAeiQqMQ6/0R+Spxw+PJTqikg6YOZBj/tXQbaA7I43GID64ERiLRSDNq7BaAFTKC9sEYkR/6psliOcc0gnxgP5Bgdj2Ev6zUmwpVLOVLJHIFSaDlyBpWbJ3xyxtEn086uVKEyHE5rNmzNHt8UxYIofHwcxq9KrrLrIuYaHVbKQnqfsAWpIRHaZReSCRwlKBvQEC8pPNNJWijCFk9bO/sC+BkXSdi996yz8vZBqspHtWtZVcWF375X1Vdqgo7NL2w0vjXOcOrieNWR/lHVLKiqW/tSVRNnNxtOzd96faiqypeqXkflN/HTiD4qvzXO9ld+a8z+tfwmK51hBUNmvK41JizdF6e+/GzMiH4vv8XN9lcUaMy98cpvZxtON0yoO2oqcnT82JLx3l3XQPktjvQrpOwbpvw2LCxlz7CRVtPuSkOWaqNlbJ+V3wJcDmCFmOVXiE8FvPw2xPyPherxDQm1a1aXnXthe3q/lt9YP+Oz/AZUGIVgPse7nkOw+A2DPgrB2AZ/IRir+DUEy0pHo3663WCv1Nc/4Tj0w2+aP+/3ENy43m9dvurGC8Geu1t23nu2Lrn0xOALo34aXXMthOBKf0ICxnajhOAzjmrzuD9/O6nqnOd3v18yfG6fheAAv4bBWlqZX0srDXgIFp/y+zUEs37GZwgGKoxCsAa79gs24tfx+r5gI86m+q9g07q4Lws2l+hmQ8uJxddHwUbrS1VvaV9lGPToR/GbHvpif93BuYZuX1FTo1EGxrOqKPczGw3HEqhUJKKJVa1Xr7WJ3/m7ytfaeugyvA+/RKrWeBw4hdAm6C6g20CIh/tC/HLRjs3RsQp9w8whVTVO05ZuEddcQ4iLX5ANzIuE4tcTexjB/AkkbodYIBFXZwLsY7Ff3AS6f4otftTcm6fYATCAuOVivCOvygDQLzB+cQu4ot+WiF/47t1vS0TGIP7hSgCMAZvqFc7/AQ== true iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAZdJREFUSEvV1M8rBGEcx/GHJL8ixYHdcnBwcuBgExYnF6Tk4K4cXJjZuLg4uOxhy4+U5Cgl+QMUSXIQ/gMkSn4lF1La8f7uzjbraWaatRx86nWYp5nnM/PMPKP+S5px7aIWeacMa7Bc1CFQejGqacUArnCIvAr2oF98i3N0oQDFLgKlHA/QCz4RRw0qMexCls83IZziCAtIZBmzx56wAf0GRAM8E4Esw0zqyDthbMKzoBRvmg+8YBBBUo8VLGmqkVont/ZZ/ErkCV4173iEbKAgKYQ8ha4InpFv/R5tqSP/yHtwW4UW+KYfd+iGLGW2zHcuN3CCHxVI+vAM/eJdrOIGJmTTnWma4CSppsNJZUbTYo32sGQdeoG8p2VUIFiSyohZyrQEJYv2sGQeF5pjyA6fQxUmXXz/F/kUeEV2+hYuoT+h6GBSM5JUU+NpxrZTYOxnxi1ldHKyX0bgVWDEM5N64SZkl/qlBPJL0YV+q8A7fC3tlEzYdpyJjQNn3Izap+cXJsv1JeeWPy9g4h5KEoIlGrKH84hSX+x+CmKBvnCmAAAAAElFTkSuQmCC c168de5d-a4db-47fe-a681-e5a4331864ce ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ true 4 36d54472-2495-475f-8e7d-ff7101fb2664 57f95d16-1a98-4341-bbc2-7387820b39d9 d5f10084-20f5-45f4-81f2-7ec99483497d d9985a48-3b69-48d4-ad07-1eb325c64411 2e55aebe-34b6-4785-8e6b-d76dac4aff89 dc1dce83-50c8-4b2e-bdbb-9da4471c5c1c 2df4e919-ccf0-4e59-924f-ef207e19da1d 0ef02d63-4c77-4baf-8a44-8b45ed9effc1 8890 -564 49 44 8919 -542 2 2e3ab970-8545-46bb-836c-1c11e5610bce b6236720-8d88-4289-93c3-ac4c99f9b97b 2 b6236720-8d88-4289-93c3-ac4c99f9b97b 8ec86459-bf01-4409-baee-174d0d2b13d0 Shift offset 36d54472-2495-475f-8e7d-ff7101fb2664 Shift true 0 8892 -562 15 20 8899.5 -552 1 1 {0} 1 2 A wire relay object d5f10084-20f5-45f4-81f2-7ec99483497d Relay true 6334c69f-7811-450b-a45a-cdfd99606f49 1 8892 -542 15 20 8899.5 -532 2 A wire relay object 57f95d16-1a98-4341-bbc2-7387820b39d9 Relay false 0 8931 -562 6 20 8934 -552 Result of mass addition d9985a48-3b69-48d4-ad07-1eb325c64411 Result false 0 8931 -542 6 20 8934 -532 f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ 7VsJdBNlHp+2aZqjB1AVUJDR4nqwFnTxKbJgk6ZHaNPGFhAEH50m03YgycRkUuSy5UFBKiBd6Alo8UEFqVahVDmU6haXXVksCwgo2kMXV46VXXXFXaX7fTPfpJ0jaaGphYd9L+nM//+dv//5/WeiMtAWj510MB3gLwjDMAX4RDptnlzKMSufdLkp2gFZZkCGbPgXBpvw/ZJJwkq6YJNQxNbwLKMBktWANPbyuVFrGom4un8frj+tKZ8XZnaR+RQ5F/I1gK/MzAOjWKMQ2US68ybPc5KQHYImjkC8NNplJ2yQMxJQN23a1MH3yiRtpIUhrTyPoqiOmwxkDuWgGLALs4t2ki6GIt38sPCjMBAMO48K3OxssxeXLP9UpTWQbouLcjJo83CJmCKNsJP83YWQaclJsbHtuyrPvrgCfLeX14HvtvI328rr2Qv2tn4L/C5ZzX6vaSsp9bZsrkiD12uXwhHKYJf2DZu9123r1ratK/U2ayvf5h2Na8YNcrZ8J6RXLhZMzfdFS0LcbcLlbeyct7iKbbzS33XVq94B0Tei+O3FXqMdsTN2WcA279rQOvlld7Zhudwe0aTs3hGq7AgIH76vFEkOYYQ2NxEvCCQXNJpAfAheVrKxsUnJ09QZQMOgKbh5M4F/ETw1nvZwBhTCmwBQttlAGZH+BCOycjLhyiXZlreD27qfOzoWgi6KJ2nazlvQzMibHgudCtRZMJUaUiTTqDMszlRiHu1hurbVJLloj1PSeGCnKaRnw8V5J4gCHy1HE/SCdCVHhwMEI0tUJE3ptOw7gotm3L3r45SV2V/r8v7q+K/ASiJMhNuN66xWdlZ1PO1gCMrR6S2gr5GztXvMpCsH2Dluh/0J1B+nc3ACt1FuBl5RDGl3K5Mpq5V08BsJCjc63AzhsJBJHsrKLzHjvqHGPAWZsMGZcKxxcOtRP0tUpVGWOb7ZGh3DuKhsD8P5EK9Y9QA1K0uKgfdZRwxYXEoThv1Hj2Fj9KFmKp9mQR0BuYUfG7DGhCatk3AR9lmUw+lh0VUhdJU6i4V0e31UkA+IRhhhRzyfsHlINw7AEmIVK4tE+wndiS11d6WvrZs5+8C8Q98KkAhlR5QggMjp7Oyc42UVTZlJe1wWklVDqMtnT4bsffA1Y2FNyfzzukU1Wo4t0CfYr4cQVgMIGycBCE/qMAwXQ2g+ykIYzkEI1B9hqPQD2OAM0u2xsaojQEoWqKxRjHn5I1NSNj1ieoyy53kEQCm5kSRI8XQJVHJYYD3HAjuJsHgOqFO1ToRF3GmgbMlCLOCsYVemT4NTkV2BcRiKsOEudjNuWXjSBr6wqPzIrOQGw0fbX7YUVgjgiTKjETg43BKcJA36BLAEv4DFNyHHFuTLsT2wOePAjLptiVs3R334/rPflwlthXWxQoc2lAdcT7tQRsQnGcp42gZ2xCcm8L+cDG7X4blwXCiGJBdQ0jzaCVIWnObcdbDRwFvbvu9H/fSX7JsS32qYcGmX5sIAwApCrPLnjt+3yHHMtPd/49Y8fNvDOsAK9mGjgBWCWBObRuavf8qgW3boywcfmfjAl4ClQKx3Ip7RfFAUr1sdWXyvJXOEAbBCEUvsWQFLiVhf7fth0MEzo3UrrN9HlJhOOQErDLFGRE9YqpqzK7GoJnvBz1h0O2Cp+MU//foBfIMnvfqNnT8mvfeqGrDUiDUIHz8xs7Y0fd27XxRMiYq5DFgavteGjr9Rt66Jq9r8+BIdkV8MWFrECt9amXb4yEV99Q/fKUadXFUPWOGINaHqhXEFx3YkvzN2aH3laOt0wIpArHn3lhZVxHSY9i2cyiwsGfsTYEUi1tCvv7v/4qHpaX9I/wZ/dugnwwErCrGWHB5++qA5NuWdvRs3Jw2bOQywBiDWu69PiW0YW5S0es4Je+2kjhWANRCxLPdfjJybWpdSbHg+4cKLHe+pjIZZAsUfBLchZ4UL0k5vVDx5i377G9EFRmzBNhkNldie2IQw3oQ4awj2ZQ14bkzDc6tW6Nf+sTa18sfdC4RzZZA2Yp7QGnyEs2Af7idah8+lXCTwOmAkpPCymxbrsMxCpJvuNnqJpdrL6IWdAA4ooglGLhDvxQ6o8BTgankHFHLNQy72DYGBfFlL/mPEjMspRS3ar9IzwtYHAPLWWn+Qt27nIVf4gry6ZJXn/KRLSWVP3+KuKv7tU8KwnwhPnow0i/UF8MNcB9xN20ncSjAE7nFTjlzcaSMsZB5tA0ECpCEOK8zeQDsG8hgit2dJrdixyS1VmqFw9J7mYCBRLbwTQPoGhFScg7WCMFp4a1OEGeYdJEO6wEGagFwYASDCGjZxFMgTfsJYstHK60Fa0ecTM/90Lm7ph/WFqn+lH+P5fDxb8sSmgk+cM5MrGqsrz1SsnMjz+aA23XpwddB+tWHPPwebIkZFN2vT2RRIokcqju57Ym697HZYNPxIVjuZfIZBYpOVzjQblliNZabtGf3QV4feH3n+SqQT8HSoFcgRg3IcIJcO4cA0Ckc0RZphrcfNkA6GF2QQQi5UgqVS7wI7zsO62JG0kcJMMHn83kIWjFmkMIIjG9+H3ZfDY7PNcoM9OHI73UTnPetfFox5NGNRF9kEdSObQYmd1mQB6aXHRcqKqPnn4C073g5NrbgzOYbau2++QERh8VxPiYy8jD4R0nC/Qrr1FxUSX01QpMZzDhJ2KfDaNSsLOC4fdeRkcSdcJc7QOOVwky4GB84QTCFwgLKy+fRA9MSVddvT9h/dxrxyfmFpmMnDENk20gu20J7YWcZIZBU0RiKloL49tbJCHOJXiDc3IQclcDS+AIxEykxacQa4HFmw9q+/eeX0pZP1la8V//34oqjjAmwU0FNJkOGogVbhrM+Rn2kEZ3anJF60sCqMQjAfNyUh+PEvWtLDbIeTXtr9bnBBwx3LBLvRZOZROQwOj6rSMBzqA8Pb0nNy3CRQPpuNKxoBbUR1pNgehVrxAcjXkiQwd+H1FMLjBpCEAAjL5EJu9SeAu6q3laMI9qQPjNINVyd/vs9ef2FGK6V/OTUGn5bymTC5UMjulaN2l/SJCwe9rRIBuLIgXK06GXvLAikhvkYAF18Y8RU8wjmJ0azGyEIztablpejL0ZN2PtRxW+2L53YLk2G2u7SExpG7A0d8SAwAOK2r/YEDdKk/IorS4bFndxZIWD3tIqNgrJvk6wkX4USFT1kRxXq+2Xd/WW38lg8WnxnvsT0u1F7YW6q9LDXQDpFVz5V+1fP5fpFAWDZN20jC6/cwSSX1CquHnN2AKAW9qqxQxMe9q3cpvRQKfhr5jAq5KGX+jDULFKV4NZREqaq3W6cv//KScc/bu/a8OactVegFzISDtAkDlNqPQt+jw52wB1vFt3jcDG3HHTTYBns4hHHfn7aLi18yS+nJ6VybaXHRNlsGAeiQqMQ6/0R+Spxw+PJTqikg6YOZBj/tXQbaA7I43GID64ERiLRSDNq7BaAFTKC9sEYkR/6psliOcc0gnxgP5Bgdj2Ev6zUmwpVLOVLJHIFSaDlyBpWbJ3xyxtEn086uVKEyHE5rNmzNHt8UxYIofHwcxq9KrrLrIuYaHVbKQnqfsAWpIRHaZReSCRwlKBvQEC8pPNNJWijCFk9bO/sC+BkXSdi996yz8vZBqspHtWtZVcWF375X1Vdqgo7NL2w0vjXOcOrieNWR/lHVLKiqW/tSVRNnNxtOzd96faiqypeqXkflN/HTiD4qvzXO9ld+a8z+tfwmK51hBUNmvK41JizdF6e+/GzMiH4vv8XN9lcUaMy98cpvZxtON0yoO2oqcnT82JLx3l3XQPktjvQrpOwbpvw2LCxlz7CRVtPuSkOWaqNlbJ+V3wJcDmCFmOVXiE8FvPw2xPyPherxDQm1a1aXnXthe3q/lt9YP+Oz/AZUGIVgPse7nkOw+A2DPgrB2AZ/IRir+DUEy0pHo3663WCv1Nc/4Tj0w2+aP+/3ENy43m9dvurGC8Geu1t23nu2Lrn0xOALo34aXXMthOBKf0ICxnajhOAzjmrzuD9/O6nqnOd3v18yfG6fheAAv4bBWlqZX0srDXgIFp/y+zUEs37GZwgGKoxCsAa79gs24tfx+r5gI86m+q9g07q4Lws2l+hmQ8uJxddHwUbrS1VvaV9lGPToR/GbHvpif93BuYZuX1FTo1EGxrOqKPczGw3HEqhUJKKJVa1Xr7WJ3/m7ytfaeugyvA+/RKrWeBw4hdAm6C6g20CIh/tC/HLRjs3RsQp9w8whVTVO05ZuEddcQ4iLX5ANzIuE4tcTexjB/AkkbodYIBFXZwLsY7Ff3AS6f4otftTcm6fYATCAuOVivCOvygDQLzB+cQu4ot+WiF/47t1vS0TGIP7hSgCMAZvqFc7/AQ== true iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAZdJREFUSEvV1M8rBGEcx/GHJL8ixYHdcnBwcuBgExYnF6Tk4K4cXJjZuLg4uOxhy4+U5Cgl+QMUSXIQ/gMkSn4lF1La8f7uzjbraWaatRx86nWYp5nnM/PMPKP+S5px7aIWeacMa7Bc1CFQejGqacUArnCIvAr2oF98i3N0oQDFLgKlHA/QCz4RRw0qMexCls83IZziCAtIZBmzx56wAf0GRAM8E4Esw0zqyDthbMKzoBRvmg+8YBBBUo8VLGmqkVont/ZZ/ErkCV4173iEbKAgKYQ8ha4InpFv/R5tqSP/yHtwW4UW+KYfd+iGLGW2zHcuN3CCHxVI+vAM/eJdrOIGJmTTnWma4CSppsNJZUbTYo32sGQdeoG8p2VUIFiSyohZyrQEJYv2sGQeF5pjyA6fQxUmXXz/F/kUeEV2+hYuoT+h6GBSM5JUU+NpxrZTYOxnxi1ldHKyX0bgVWDEM5N64SZkl/qlBPJL0YV+q8A7fC3tlEzYdpyJjQNn3Izap+cXJsv1JeeWPy9g4h5KEoIlGrKH84hSX+x+CmKBvnCmAAAAAElFTkSuQmCC 384f8515-9941-4863-8f7c-12efd7f19492 ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉ true 4 54726b4e-7374-4c50-a5af-5b405b05516d 7354caf3-1bc7-4e2b-ab1c-10cb2f889447 a7b458e7-c3cc-468f-856d-dbc0eb364f1a ea29b681-bbe7-407a-a1f7-d20eea391a73 2e55aebe-34b6-4785-8e6b-d76dac4aff89 dc1dce83-50c8-4b2e-bdbb-9da4471c5c1c 0ef02d63-4c77-4baf-8a44-8b45ed9effc1 2df4e919-ccf0-4e59-924f-ef207e19da1d 8890 -710 49 44 8919 -688 2 2e3ab970-8545-46bb-836c-1c11e5610bce b6236720-8d88-4289-93c3-ac4c99f9b97b 2 b6236720-8d88-4289-93c3-ac4c99f9b97b 8ec86459-bf01-4409-baee-174d0d2b13d0 Shift offset 54726b4e-7374-4c50-a5af-5b405b05516d Shift true 0 8892 -708 15 20 8899.5 -698 1 1 {0} -1 2 A wire relay object ea29b681-bbe7-407a-a1f7-d20eea391a73 Relay true 4711cdef-e34b-4627-8251-2c73e002ea75 1 8892 -688 15 20 8899.5 -678 2 A wire relay object 7354caf3-1bc7-4e2b-ab1c-10cb2f889447 Relay false 0 8931 -708 6 20 8934 -698 Result of mass addition a7b458e7-c3cc-468f-856d-dbc0eb364f1a Result false 0 8931 -688 6 20 8934 -678 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true 93f58772-1bbe-4649-90b3-5c6800324636 Rotate Rotate 8825 -1260 191 64 8952 -1228 Base geometry a704e2e4-9a87-4371-9a9f-7ecadf370dab Geometry Geometry true 967b1ee0-e9d5-44f3-a2ec-c122f465def6 1 8827 -1258 113 20 8883.5 -1248 Rotation angle in radians 9b82ba1e-200c-4837-856a-e86a259187ed Angle Angle false 0 false 8827 -1238 113 20 8883.5 -1228 1 1 {0} 3.1415926535897931 Rotation plane ae477ebf-0b79-4935-a39e-1e29c4d82bbf Plane Plane false d81410c4-b934-4141-9991-0d26f53a82c1 1 8827 -1218 113 20 8883.5 -1208 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry 8aa8539f-88f4-4bce-adff-a4e10d3837d2 Geometry Geometry false 0 8964 -1258 50 30 8989 -1243 Transformation data 99b2ba96-922d-48ec-94f8-6f1052ef2d3d Transform Transform false 0 8964 -1228 50 30 8989 -1213 8073a420-6bec-49e3-9b18-367f6fd76ac3 Join Curves Join as many curves as possible true 61a32b7e-58e0-47bc-ae7b-99c96bc9bc05 Join Curves Join Curves 8888 -1370 116 44 8955 -1348 1 Curves to join fce5ef05-f968-4bae-9042-7c64b1b6495e Curves Curves false b63126d8-335d-47d4-aa3f-f194ab382527 1 8890 -1368 53 20 8916.5 -1358 Preserve direction of input curves 7363666b-4908-4073-a33c-8648a8b3fe90 Preserve Preserve false 0 8890 -1348 53 20 8916.5 -1338 1 1 {0} false 1 Joined curves and individual curves that could not be joined. e43f0b4f-282d-4b09-aab1-505a4b54704c Curves Curves false 0 8967 -1368 35 40 8984.5 -1348 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true 9a67714e-6ef6-44c0-a794-da43da2f4460 Merge Merge 8898 -1324 90 64 8943 -1292 3 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 ba33ca53-3131-43f7-922b-9eaa129b40bc false Data 1 D1 true 967b1ee0-e9d5-44f3-a2ec-c122f465def6 1 8900 -1322 31 20 8915.5 -1312 2 Data stream 2 b6af2eb6-aa8d-4211-9bb7-dfe65cb8e8ff false Data 2 D2 true 8aa8539f-88f4-4bce-adff-a4e10d3837d2 1 8900 -1302 31 20 8915.5 -1292 2 Data stream 3 5e794d87-faa6-48aa-9b2f-ddd19b13d509 false Data 3 D3 true 0 8900 -1282 31 20 8915.5 -1272 2 Result of merge b63126d8-335d-47d4-aa3f-f194ab382527 Result Result false 0 8955 -1322 31 60 8970.5 -1292 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 1d935021-9586-4892-8a03-1803d4963624 Relay false e4069cf6-715a-492e-8d3b-7d4b26110d1a 1 8843 -421 40 16 8863 -413 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 4508e32b-85af-4b57-bbbe-86405b8561e3 Panel false 0 0 0.51542256311 9032 -250 112 20 0 0 0 9032.471 -249.59 255;255;255;255 false false true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression O/4^(OO-4) true c633783c-54f2-434b-89ac-12664f0f9778 Expression Expression 9054 -146 157 44 9127 -124 2 ba80fd98-91a1-4958-b6a7-a94e40e52bdb ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 843571c6-96ef-4c4d-8a48-c303d18f40c3 Variable O O true 19379fed-2ec1-4c1d-a18b-aaea992f534b 1 9056 -144 19 20 9065.5 -134 Expression variable 815f35ac-36b2-448c-8b4b-22d8caebb3f1 Variable OO OO true 8114a16f-5e14-43a3-8080-171aaf99ee45 1 9056 -124 19 20 9065.5 -114 Result of expression 0c40b082-6a5b-435a-9ecc-89e139c9c9e2 Result Result false 0 9178 -144 31 40 9193.5 -124 7ab8d289-26a2-4dd4-b4ad-df5b477999d8 Log N Return the N-base logarithm of a number. true b422c589-f017-4039-910c-20cdcf68a57b Log N Log N 9022 -40 115 44 9092 -18 Value 24eca3f2-6db2-4ce6-8600-2020b80385b1 Number Number false 3a737a17-feba-4d02-a091-4fc7fc64b6af 1 9024 -38 56 20 9052 -28 Logarithm base 002694ba-5eac-457e-864c-3cbe214b62c6 Base Base false 0 9024 -18 56 20 9052 -8 1 1 {0} 2 Result 8114a16f-5e14-43a3-8080-171aaf99ee45 Result Result false 0 9104 -38 31 40 9119.5 -18 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers a9e1c8cf-fb7e-4409-a7ff-7d598e06055b Digit Scroller INCREASE BEND PER SEGMENT false 0 12 INCREASE BEND PER SEGMENT 1 0.48627696593 8746 -191 250 20 8746.986 -190.498 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values fee44d27-800e-4e41-9853-68ab8851421b Panel false 0 0 16 0.492221738454693386 32 0.507180224586 9051 -208 194 30 0 0 0 9051.471 -207.59 1 255;255;255;255 false false true true false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 43abe796-6357-4c8e-95bf-a411da1995e4 Panel false 0 0 0.492221738454693386 8793 -122 112 20 0 0 0 8793.553 -121.7766 255;255;255;255 false false true false false true 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true a1cd4cc6-f6e2-4882-9400-15b27dd6a700 Deconstruct Deconstruct 9392 -412 120 64 9433 -380 Input point cb321f7c-9e2d-48d7-96d6-5adbd90d6fbf Point Point false debc2dec-4e90-40f5-a5aa-76bc7ab566f3 1 9394 -410 27 60 9407.5 -380 Point {x} component 62c154a7-1c1d-49db-b57e-d57ee010ecfd X component X component false 0 9445 -410 65 20 9477.5 -400 Point {y} component b9b67b2e-4b53-4c8a-b2e7-d13eb5f5de45 Y component Y component false 0 9445 -390 65 20 9477.5 -380 Point {z} component b9ab7f29-ed1e-4459-9bf6-d86177b9e99b Z component Z component false 0 9445 -370 65 20 9477.5 -360 d3d195ea-2d59-4ffa-90b1-8b7ff3369f69 Unit Y Unit vector parallel to the world {y} axis. true a8f7bbbf-fa6d-413d-9ed1-911c210bca52 Unit Y Unit Y 8641 -576 114 28 8687 -562 Unit multiplication f3f77601-39af-4c99-9bf6-59b7fa885f75 Factor Factor false 1d935021-9586-4892-8a03-1803d4963624 1 8643 -574 32 24 8659 -562 1 1 {0} 1 World {y} vector 8f299edb-d211-4ace-ac7e-9d58c163cb49 Unit vector Unit vector false 0 8699 -574 54 24 8726 -562 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true e3bcfc34-48d9-4bd8-bc1f-b3264bc246a4 Evaluate Length Evaluate Length 8869 -1195 149 64 8954 -1163 Curve to evaluate 4c851d4a-ffdc-4416-b7f8-fe5098d2576e Curve Curve false 967b1ee0-e9d5-44f3-a2ec-c122f465def6 1 8871 -1193 71 20 8906.5 -1183 Length factor for curve evaluation 119fa336-021f-481b-98b3-fb41d8fcccba Length Length false 0 8871 -1173 71 20 8906.5 -1163 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 97cd4a31-4220-4753-8b0b-e32839d19ee7 Normalized Normalized false 0 8871 -1153 71 20 8906.5 -1143 1 1 {0} true Point at the specified length d81410c4-b934-4141-9991-0d26f53a82c1 Point Point false 0 8966 -1193 50 20 8991 -1183 Tangent vector at the specified length 0aa282ab-ab9f-43e1-b53b-45cfbf60ab08 Tangent Tangent false 0 8966 -1173 50 20 8991 -1163 Curve parameter at the specified length e6cab960-e43b-4a10-bae4-3bd38b460f62 Parameter Parameter false 0 8966 -1153 50 20 8991 -1143 b7798b74-037e-4f0c-8ac7-dc1043d093e0 Rotate Rotate an object in a plane. true 71dfb3fa-efc7-45f9-ae4c-8d994a518a7a Rotate Rotate 8826 -1688 226 81 8988 -1647 Base geometry e7c10108-f60b-445c-a99b-1421de9723f4 Geometry Geometry true 0fc11ab8-c8af-42d4-bdea-8f2ea5a5eed5 1 8828 -1686 148 20 8910 -1676 Rotation angle in degrees 7ca4306b-cd89-49d1-b978-4be70407a040 Angle Angle false a20f616d-9958-4f6b-b86a-618b82c4cb96 1 true 8828 -1666 148 20 8910 -1656 1 1 {0} 1.5707963267948966 Rotation plane 5422fcc3-782c-4f39-b670-e7877be5041f Plane Plane false 0 8828 -1646 148 37 8910 -1627.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Rotated geometry 4d28c858-4bc8-4dc6-ae64-0d5007c9ca49 Geometry Geometry false 0 9000 -1686 50 38 9025 -1666.75 Transformation data a8dde2b6-84d4-4032-9485-5e187619af76 Transform Transform false 0 9000 -1648 50 39 9025 -1628.25 b464fccb-50e7-41bd-9789-8438db9bea9f Angle Compute the angle between two vectors. true 464f5f8a-5b70-4652-95a8-29ad2671a756 Angle Angle 8844 -1603 197 81 8980 -1562 First vector ff2f1ac3-d318-48fd-8ac2-723b964af401 Vector A Vector A false 90092d57-7611-4e56-9ed0-32d8dea8d7af 1 8846 -1601 122 20 8907 -1591 Second vector 03cac984-e6c3-433f-8ee2-9d50c493d682 Vector B Vector B false 0 8846 -1581 122 20 8907 -1571 1 1 {0} 1 0 0 Optional plane for 2D angle a35a52fc-1bfa-460c-848e-340eb8397975 Plane Plane true 0 8846 -1561 122 37 8907 -1542.5 Angle (in radians) between vectors a20f616d-9958-4f6b-b86a-618b82c4cb96 -DEG(X) Angle Angle false 0 8992 -1601 47 38 9007.5 -1581.75 Reflex angle (in radians) between vectors 9636c37d-2809-4db4-b180-f9cb29ba3e18 Reflex Reflex false 0 8992 -1563 47 39 9007.5 -1543.25 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true c956a0d2-a7ba-4165-8ed4-8d02ff8b0963 Evaluate Length Evaluate Length 8896 -1510 149 64 8981 -1478 Curve to evaluate 0a3a9d62-f9f0-4f9c-814a-8c14734e0a0d Curve Curve false 0fc11ab8-c8af-42d4-bdea-8f2ea5a5eed5 1 8898 -1508 71 20 8933.5 -1498 Length factor for curve evaluation 78c679df-ecc3-42ac-ad37-4e814c6d7d21 Length Length false 0 8898 -1488 71 20 8933.5 -1478 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 515cb896-8ff7-4286-8e2c-90a3bfdd49e3 Normalized Normalized false 0 8898 -1468 71 20 8933.5 -1458 1 1 {0} true Point at the specified length cbebc0a2-bc4f-4f18-9209-6d190c8ddcea Point Point false 0 8993 -1508 50 20 9018 -1498 Tangent vector at the specified length 90092d57-7611-4e56-9ed0-32d8dea8d7af Tangent Tangent false 0 8993 -1488 50 20 9018 -1478 Curve parameter at the specified length 5d37cf6e-d544-4711-9a70-fe46c1ee1044 Parameter Parameter false 0 8993 -1468 50 20 9018 -1458 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 863b2299-6c9b-455a-a776-e8f7593acd4e Panel X false 0 e7032e03-fb69-4e0a-8f00-c322c1ac6f6c 1 9700 -507 194 40 0 0 0 9700.559 -506.59 1 255;255;255;255 false false true true false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 9d23d1ae-22d7-425b-87b9-94319dfc2a83 Panel Y false 0 ad8b3156-b8a7-4bab-a35e-1e1cd86be6bc 1 9720 -289 194 40 0 0 0 9720.559 -288.59 1 255;255;255;255 false false true true false true 797d922f-3a1d-46fe-9155-358b009b5997 One Over X Compute one over x. true a618183a-b85f-4456-b013-679fc47f2968 One Over X One Over X 8725 -432 88 28 8768 -418 Input value 94a09bc3-37d5-4bb1-8ddf-529c764033c3 Value Value false 36f8c5c0-0f87-497f-958b-5571daee768c 1 8727 -430 29 24 8741.5 -418 Output value e4069cf6-715a-492e-8d3b-7d4b26110d1a Result Result false 0 8780 -430 31 24 8795.5 -418 6b021f56-b194-4210-b9a1-6cef3b7d0848 Evaluate Length Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes. true 023de912-35f2-4457-b69e-c2a19bc0ceb3 Evaluate Length Evaluate Length 8869 -1849 149 64 8954 -1817 Curve to evaluate a2a53b3c-d86b-4304-9860-16f8682523fc Curve Curve false 4bab40a8-1d93-412b-a75b-c6b4e84ce749 1 8871 -1847 71 20 8906.5 -1837 Length factor for curve evaluation db110c95-56de-4890-9573-25516634ed70 Length Length false 0 8871 -1827 71 20 8906.5 -1817 1 1 {0} 1 If True, the Length factor is normalized (0.0 ~ 1.0) 265af9b0-8be7-4f45-b9cd-d93ee52d78fa Normalized Normalized false 0 8871 -1807 71 20 8906.5 -1797 1 1 {0} true Point at the specified length debc2dec-4e90-40f5-a5aa-76bc7ab566f3 Point Point false 0 8966 -1847 50 20 8991 -1837 Tangent vector at the specified length 334572fe-7aec-4b33-9741-180783b39007 Tangent Tangent false 0 8966 -1827 50 20 8991 -1817 Curve parameter at the specified length efbe33a7-ab31-434e-b3d1-fbd98f3bc25c Parameter Parameter false 0 8966 -1807 50 20 8991 -1797 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true a0d0d610-33cd-4602-8274-045cccffcea7 Format Format 9539 -521 130 64 9631 -489 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format fa9f2870-3351-4619-a252-de40fae528e2 Format Format false 0 9541 -519 78 20 9580 -509 1 1 {0} false {0:R} Formatting culture cce30867-b52d-4a63-b322-fd32c2d188a2 Culture Culture false 0 9541 -499 78 20 9580 -489 1 1 {0} 127 Data to insert at {0} placeholders c5087d46-fea7-43ed-b9b6-45636068a9d1 false Data 0 0 true 62c154a7-1c1d-49db-b57e-d57ee010ecfd 1 9541 -479 78 20 9580 -469 Formatted text e7032e03-fb69-4e0a-8f00-c322c1ac6f6c Text Text false 0 9643 -519 24 60 9655 -489 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true 387550bf-eb68-43dd-b325-32bc7940ee48 Format Format 9669 -422 130 64 9761 -390 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format 12ef807c-c301-47f6-8b2c-b64e170e3581 Format Format false 0 9671 -420 78 20 9710 -410 1 1 {0} false {0:R} Formatting culture 28a35ebc-33ed-4bdd-8d25-85617edbf44e Culture Culture false 0 9671 -400 78 20 9710 -390 1 1 {0} 127 Data to insert at {0} placeholders 870be492-2a82-4657-93e6-612ddb085801 false Data 0 0 true 88508d5c-be39-48a1-91eb-d2cd8c007312 1 9671 -380 78 20 9710 -370 Formatted text 0fbdc445-f277-4509-b58a-73ec93c06a13 Text Text false 0 9773 -420 24 60 9785 -390 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true f14069e4-1c7d-4672-bcdf-3613372f2a1d Format Format 9539 -329 130 64 9631 -297 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format 332dd968-654e-41dc-8597-efa47c10ea41 Format Format false 0 9541 -327 78 20 9580 -317 1 1 {0} false {0:R} Formatting culture c1149a85-b158-473d-a2de-a908724996ab Culture Culture false 0 9541 -307 78 20 9580 -297 1 1 {0} 127 Data to insert at {0} placeholders 86081f60-cf59-44ab-bdf2-9dee224c6750 false Data 0 0 true b9b67b2e-4b53-4c8a-b2e7-d13eb5f5de45 1 9541 -287 78 20 9580 -277 Formatted text ad8b3156-b8a7-4bab-a35e-1e1cd86be6bc Text Text false 0 9643 -327 24 60 9655 -297 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true f86eeb20-0cc1-43b4-b13b-36d7d0a4bfd7 Division Division 9553 -412 70 44 9578 -390 Item to divide (dividend) e378b4ef-90cd-48df-a357-d77c03d81542 A A false 62c154a7-1c1d-49db-b57e-d57ee010ecfd 1 9555 -410 11 20 9560.5 -400 Item to divide with (divisor) 0681e710-f76f-4f49-88e5-0f3633451752 B B false b9b67b2e-4b53-4c8a-b2e7-d13eb5f5de45 1 9555 -390 11 20 9560.5 -380 The result of the Division 88508d5c-be39-48a1-91eb-d2cd8c007312 Result Result false 0 9590 -410 31 40 9605.5 -390 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 61f2c450-400a-412b-8bfc-81286a183212 Panel X/Y false 0 0fbdc445-f277-4509-b58a-73ec93c06a13 1 8887 -233 97 40 0 0 0 8887.221 -232.0882 1 255;255;255;255 false false true true false true 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers f8c057c5-c404-4a05-8582-62a66d6b08a1 Digit Scroller INCREASE BEND PER SEGMENT false 0 12 INCREASE BEND PER SEGMENT 1 0.77246531995 8736 -259 250 20 8736.107 -258.0466 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 93f58772-1bbe-4649-90b3-5c6800324636 61a32b7e-58e0-47bc-ae7b-99c96bc9bc05 9a67714e-6ef6-44c0-a794-da43da2f4460 e3bcfc34-48d9-4bd8-bc1f-b3264bc246a4 967b1ee0-e9d5-44f3-a2ec-c122f465def6 1b1ffffd-3591-4542-b49d-e6005771d0d7 6 8c636517-f873-4eaa-8b19-8a10c7d0063f Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 71dfb3fa-efc7-45f9-ae4c-8d994a518a7a 464f5f8a-5b70-4652-95a8-29ad2671a756 c956a0d2-a7ba-4165-8ed4-8d02ff8b0963 0fc11ab8-c8af-42d4-bdea-8f2ea5a5eed5 597c8632-bd55-41f9-831a-14e8f0925b1e 5 a495b48d-fb5b-4cac-80de-be887aeac1bd Group 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values bceebf35-dd0b-4960-ab17-129faa5d507d Panel false 0 0 0.87246531994281165 8644 -246 112 55 0 0 0 8644.559 -245.59 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 2a07d436-540b-4a46-86ad-1cf5be1b55fb Panel false 0 0 12 0.77246531994281165 8621 -158 122 55 0 0 0 8621.559 -157.59 255;255;255;255 false false true false false true fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true 3ee80f7b-a4da-4df5-b83f-62beb76ef4df Point Point false 1eaf7173-3a4a-4d85-89d5-18fc6cd9d580 1 8641 -870 50 24 8666.559 -858.5899 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 967b1ee0-e9d5-44f3-a2ec-c122f465def6 Relay false 309e4b37-957b-41b8-874c-56ebd84d12c0 1 8938 -1109 40 16 8958 -1101 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 1b1ffffd-3591-4542-b49d-e6005771d0d7 Relay false e43f0b4f-282d-4b09-aab1-505a4b54704c 1 8935 -1389 40 16 8955 -1381 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 0fc11ab8-c8af-42d4-bdea-8f2ea5a5eed5 Relay false 1b1ffffd-3591-4542-b49d-e6005771d0d7 1 8946 -1440 40 16 8966 -1432 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 597c8632-bd55-41f9-831a-14e8f0925b1e Relay false 4d28c858-4bc8-4dc6-ae64-0d5007c9ca49 1 8921 -1703 40 16 8941 -1695 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 309e4b37-957b-41b8-874c-56ebd84d12c0 Relay false 0a62d7ca-ee01-4395-9030-a53e0ec1a678 1 8914 -984 40 16 8934 -976 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true c6d80d08-d4b3-44b9-acaa-5afac8c56cfa Deconstruct Deconstruct 8875 -1941 120 64 8916 -1909 Input point 7497b566-c667-4746-a4fd-58750e392561 Point Point false debc2dec-4e90-40f5-a5aa-76bc7ab566f3 1 8877 -1939 27 60 8890.5 -1909 Point {x} component 8b505339-5163-4c26-be4d-1fa4baeae003 X component X component false 0 8928 -1939 65 20 8960.5 -1929 Point {y} component 2535eccf-193f-4da3-a6fc-51725ace7af5 Y component Y component false 0 8928 -1919 65 20 8960.5 -1909 Point {z} component e09a19e9-908d-4707-aa0c-2ba7dc0aa1d5 Z component Z component false 0 8928 -1899 65 20 8960.5 -1889 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 4bab40a8-1d93-412b-a75b-c6b4e84ce749 Relay false 597c8632-bd55-41f9-831a-14e8f0925b1e 1 8912 -1760 40 16 8932 -1752 290f418a-65ee-406a-a9d0-35699815b512 Scale NU Scale an object with non-uniform factors. 26bf7701-0ad2-43ce-b3c1-bb2572ec376f Scale NU Scale NU 8821 -2095 226 121 8983 -2034 Base geometry 3db2c58d-8b53-462b-a51f-5e4aec164518 Geometry Geometry true 4bab40a8-1d93-412b-a75b-c6b4e84ce749 1 8823 -2093 148 20 8905 -2083 Base plane d57aa366-38d9-4ce1-b551-adcc3844e55f Plane Plane false 0 8823 -2073 148 37 8905 -2054.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Scaling factor in {x} direction 53c0bb83-d8bf-4de1-959d-e81d0e1665a8 1/X Scale X Scale X false 8b505339-5163-4c26-be4d-1fa4baeae003 1 8823 -2036 148 20 8905 -2026 1 1 {0} 1 Scaling factor in {y} direction 0d09d649-dbbe-4790-b60e-bf568f122124 1/X Scale Y Scale Y false 2535eccf-193f-4da3-a6fc-51725ace7af5 1 8823 -2016 148 20 8905 -2006 1 1 {0} 1 Scaling factor in {z} direction 59d03a89-4995-4940-badb-82e2e9a73449 1/X Scale Z Scale Z false e09a19e9-908d-4707-aa0c-2ba7dc0aa1d5 1 8823 -1996 148 20 8905 -1986 1 1 {0} 1 Scaled geometry 12a40a9b-a3ab-4a0f-80de-94ff5fb5804d Geometry Geometry false 0 8995 -2093 50 58 9020 -2063.75 Transformation data a620d83f-a1d5-4177-81bd-3b2b7334ffcd Transform Transform false 0 8995 -2035 50 59 9020 -2005.25 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 0447472e-5591-46af-bb0e-c7bb17204a7b Relay false 12a40a9b-a3ab-4a0f-80de-94ff5fb5804d 1 8915 -2128 40 16 8935 -2120 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 023de912-35f2-4457-b69e-c2a19bc0ceb3 c6d80d08-d4b3-44b9-acaa-5afac8c56cfa 4bab40a8-1d93-412b-a75b-c6b4e84ce749 26bf7701-0ad2-43ce-b3c1-bb2572ec376f 0447472e-5591-46af-bb0e-c7bb17204a7b 5 18c14f8c-cad0-4aff-b28f-1b7151eb3ee0 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects c2beef7b-6131-4575-9319-58dfaa76ac13 d7b18b8c-16a0-47f6-90ca-ecbcf0cbeed8 4508e32b-85af-4b57-bbbe-86405b8561e3 c633783c-54f2-434b-89ac-12664f0f9778 b422c589-f017-4039-910c-20cdcf68a57b fee44d27-800e-4e41-9853-68ab8851421b 6 3d0eb249-fbc8-4f82-a8c6-6be8c0f54b91 Group c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects a1cd4cc6-f6e2-4882-9400-15b27dd6a700 863b2299-6c9b-455a-a776-e8f7593acd4e 9d23d1ae-22d7-425b-87b9-94319dfc2a83 a0d0d610-33cd-4602-8274-045cccffcea7 387550bf-eb68-43dd-b325-32bc7940ee48 f14069e4-1c7d-4672-bcdf-3613372f2a1d f86eeb20-0cc1-43b4-b13b-36d7d0a4bfd7 7 97f9c74b-5a9f-4be7-8b2b-76b92bed59ce Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 3a737a17-feba-4d02-a091-4fc7fc64b6af Relay false b05af234-ce5b-432e-8b3f-32a94a964bbf 1 8897 110 40 16 8917 118 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 36f8c5c0-0f87-497f-958b-5571daee768c Relay false 3a737a17-feba-4d02-a091-4fc7fc64b6af 1 8935 -2 40 16 8955 6 310f9597-267e-4471-a7d7-048725557528 08bdcae0-d034-48dd-a145-24a9fcf3d3ff GraphMapper+ External Graph mapper You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode. true 3a5689a2-656a-411c-94ae-d25352a16bac GraphMapper+ GraphMapper+ true 8452 -700 114 104 8513 -648 External curve as a graph 7acfa000-d584-4960-9a5b-59f423beed5c Curve Curve false 5ab38aae-5244-4c9e-ba29-66ca546cfbc6 1 8454 -698 47 20 8477.5 -688 Optional Rectangle boundary. If omitted the curve's would be landed a9ddcad1-b1cf-48b3-96b6-5feff9ff0997 Boundary Boundary true d420c98d-2fd8-433a-ad0b-6a1223aaae72 1 8454 -678 47 20 8477.5 -668 1 List of input numbers 1c5d7b04-d4f5-41f4-9af1-effb3f129c89 Numbers Numbers false 95e41ba6-c812-4626-a179-c3dd2c2f2c04 1 8454 -658 47 20 8477.5 -648 1 9 {0} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 (Optional) Input Domain if omitted, it would be 0-1 in "Normalize" mode by default or be the interval of the input list in case of selecting "AutoDomain" mode e0a04cdb-d94e-42a9-a5b7-f1f6bc290289 Input Input true f8dcff9d-48cb-410a-a2b1-0bb712191a99 1 8454 -638 47 20 8477.5 -628 (Optional) Output Domain if omitted, it would be 0-1 in "Normalize" mode by default or be the interval of the input list in case of selecting "AutoDomain" mode d3c32a6e-dfab-448b-80c8-423cdb54a2f4 Output Output true f8dcff9d-48cb-410a-a2b1-0bb712191a99 1 8454 -618 47 20 8477.5 -608 1 Output Numbers 6334c69f-7811-450b-a45a-cdfd99606f49 Number Number false 0 8525 -698 39 100 8544.5 -648 11bbd48b-bb0a-4f1b-8167-fa297590390d End Points Extract the end points of a curve. true e7b4a974-c91e-48a3-a00b-2f0d0fbdf5a8 End Points End Points 8467 -412 84 44 8511 -390 Curve to evaluate 5f8c676e-559f-4777-b0bf-7925114c6446 Curve Curve false 5ab38aae-5244-4c9e-ba29-66ca546cfbc6 1 8469 -410 30 40 8484 -390 Curve start point 02ca70d6-4b4e-4423-bfe1-db3d217994ad Start Start false 0 8523 -410 26 20 8536 -400 Curve end point 1de69f7a-2c7f-4d4b-8add-802c37ca7ff8 End End false 0 8523 -390 26 20 8536 -380 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 5ab38aae-5244-4c9e-ba29-66ca546cfbc6 Relay false 76643b90-6cd9-4be3-b22c-0a59c511bca6 1 8489 -335 40 16 8509 -327 575660b1-8c79-4b8d-9222-7ab4a6ddb359 Rectangle 2Pt Create a rectangle from a base plane and two points true 59029ff1-b86c-4d03-ae75-f68caee71636 Rectangle 2Pt Rectangle 2Pt 8407 -519 198 101 8543 -468 Rectangle base plane 5d90e0a9-ea00-42d9-b369-5e320bbfcd20 Plane Plane false 0 8409 -517 122 37 8470 -498.5 1 1 {0} 0 0 0 1 0 0 0 1 0 First corner point. a73d8113-48fe-4e72-9cb4-a71797f7c667 Point A Point A false 02ca70d6-4b4e-4423-bfe1-db3d217994ad 1 8409 -480 122 20 8470 -470 1 1 {0} 0 0 0 Second corner point. 1c98320d-a294-407e-b50a-3296886b72aa Point B Point B false 1de69f7a-2c7f-4d4b-8add-802c37ca7ff8 1 8409 -460 122 20 8470 -450 1 1 {0} 10 5 0 Rectangle corner fillet radius ab426d9a-c7e6-4382-abff-412cb13fa678 Radius Radius false 0 8409 -440 122 20 8470 -430 1 1 {0} 0 Rectangle defined by P, A and B d420c98d-2fd8-433a-ad0b-6a1223aaae72 Rectangle Rectangle false 0 8555 -517 48 48 8579 -492.75 Length of rectangle curve 8dee813d-fdbf-40b3-83af-1fa21457cb3f Length Length false 0 8555 -469 48 49 8579 -444.25 f44b92b0-3b5b-493a-86f4-fd7408c3daf3 Bounds Create a numeric domain which encompasses a list of numbers. true 45e2f32e-b74c-41bf-8dc5-52eeaafd43c7 Bounds Bounds 8454 -573 110 28 8512 -559 1 Numbers to include in Bounds c2fc4964-8df8-47fa-b2e4-a76b10ff47d5 Numbers Numbers false 95e41ba6-c812-4626-a179-c3dd2c2f2c04 1 8456 -571 44 24 8478 -559 Numeric Domain between the lowest and highest numbers in {N} f8dcff9d-48cb-410a-a2b1-0bb712191a99 Domain Domain false 0 8524 -571 38 24 8543 -559 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 95e41ba6-c812-4626-a179-c3dd2c2f2c04 Relay false e0fb9285-b6f9-44fa-9dad-b60c688524ac 1 8489 -540 40 16 8509 -532 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 3a5689a2-656a-411c-94ae-d25352a16bac e7b4a974-c91e-48a3-a00b-2f0d0fbdf5a8 5ab38aae-5244-4c9e-ba29-66ca546cfbc6 59029ff1-b86c-4d03-ae75-f68caee71636 45e2f32e-b74c-41bf-8dc5-52eeaafd43c7 95e41ba6-c812-4626-a179-c3dd2c2f2c04 1d861991-184c-47e3-b666-96be95d60e24 7 7b0f4177-d6cf-4c09-9e68-2fc85e217ce5 Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 19379fed-2ec1-4c1d-a18b-aaea992f534b Relay false a9e1c8cf-fb7e-4409-a7ff-7d598e06055b 1 8996 -142 40 16 9016 -134 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object fab98bf5-57b3-4a38-9509-b35d73140a5d Relay false a62538ff-8f98-4562-99a8-d56a712bf392 1 8489 -151 40 16 8509 -143 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. 5d9cf34d-667c-45d2-8566-1ab34036be51 Scale Scale 8405 -280 201 64 8542 -248 Base geometry 53e82416-57dc-40b0-bb82-98fc6195316b Geometry Geometry true fab98bf5-57b3-4a38-9509-b35d73140a5d 1 8407 -278 123 20 8468.5 -268 Center of scaling 34539307-4839-4923-8576-ab94c47b119f Center Center false 0 8407 -258 123 20 8468.5 -248 1 1 {0} 0 0 0 Scaling factor 7fb766d4-7af0-40b3-81e1-83f3a478a349 Factor Factor false aac1bb5e-b1c8-4f9b-a47e-04ede16b71b5 1 8407 -238 123 20 8468.5 -228 1 1 {0} 0.5 Scaled geometry 367b85c6-29aa-436d-bd8c-dc06756dc477 Geometry Geometry false 0 8554 -278 50 30 8579 -263 Transformation data 8bb5adc2-8641-46ba-91f3-11ac9d7938c5 Transform Transform false 0 8554 -248 50 30 8579 -233 78fed580-851b-46fe-af2f-6519a9d378e0 Power Raise a value to a power. 73d5896c-e7ba-4678-b50b-f6b92d9c7386 Power Power 8466 -218 85 44 8506 -196 The item to be raised aad034d7-44ae-48d5-a563-920303788130 A A false 0 8468 -216 26 20 8481 -206 1 1 {0} Grasshopper.Kernel.Types.GH_String false 2 The exponent 64209a67-45a3-4c61-8a7b-1ccb36809166 B B false 14a42f49-20f8-4e5c-9a43-559b5ab9b49b 1 8468 -196 26 20 8481 -186 A raised to the B power aac1bb5e-b1c8-4f9b-a47e-04ede16b71b5 Result Result false 0 8518 -216 31 40 8533.5 -196 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 14a42f49-20f8-4e5c-9a43-559b5ab9b49b Digit Scroller SCALE POWER false 0 12 SCALE POWER 11 16.0 8385 -170 250 20 8385.836 -169.2785 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 76643b90-6cd9-4be3-b22c-0a59c511bca6 Relay false 367b85c6-29aa-436d-bd8c-dc06756dc477 1 8489 -301 40 16 8509 -293 dde71aef-d6ed-40a6-af98-6b0673983c82 Nurbs Curve Construct a nurbs curve from control points. true 674feb55-23d5-4d45-8aa2-f28599445b93 Nurbs Curve Nurbs Curve 8754 -971 121 64 8823 -939 1 Curve control points 28250d89-ebc9-420e-b997-131d9855ad8b Vertices Vertices false b5439c69-f9e6-4772-bfd9-4ddddfd4af21 1 8756 -969 55 20 8783.5 -959 Curve degree 81557209-9496-4cd3-b69f-83e15a1783bb Degree Degree false 0 8756 -949 55 20 8783.5 -939 1 1 {0} 11 Periodic curve 2200a0e3-bd96-4734-8e17-53d2926941dd Periodic Periodic false 0 8756 -929 55 20 8783.5 -919 1 1 {0} false Resulting nurbs curve 87f2c5bb-894b-40e5-b9f0-c5920356c59b Curve Curve false 0 8835 -969 38 20 8854 -959 Curve length c3d36912-a02f-477c-a804-a2af3ca01099 Length Length false 0 8835 -949 38 20 8854 -939 Curve domain 5f5922ee-ea58-471e-abdb-b6cd5548f2a5 Domain Domain false 0 8835 -929 38 20 8854 -919 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects fab98bf5-57b3-4a38-9509-b35d73140a5d 5d9cf34d-667c-45d2-8566-1ab34036be51 73d5896c-e7ba-4678-b50b-f6b92d9c7386 14a42f49-20f8-4e5c-9a43-559b5ab9b49b 76643b90-6cd9-4be3-b22c-0a59c511bca6 5 1d861991-184c-47e3-b666-96be95d60e24 Group 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values e8bf22d8-59fc-440f-b046-5f153608bb6e Panel false 0 0 0.4875881689164849049 8840 -165 121 40 0 0 0 8840.127 -164.2325 255;255;255;255 false false true false false true 75eb156d-d023-42f9-a85e-2f2456b8bcce Interpolate (t) Create an interpolated curve through a set of points with tangents. true 3a7b6207-8fe4-4fe3-9bdd-9d57eb883b46 Interpolate (t) Interpolate (t) 9011 -858 244 84 9203 -816 1 Interpolation points 2cf30449-16c0-4f11-ac07-fe57f6171530 Vertices Vertices false b5439c69-f9e6-4772-bfd9-4ddddfd4af21 1 9013 -856 178 20 9102 -846 Tangent at start of curve d428915c-3abb-4dd2-9c85-8eb0b119f3f4 Tangent Start Tangent Start false 0 9013 -836 178 20 9102 -826 1 1 {0} 0 0 0 Tangent at end of curve 89b8ee74-7e0a-479d-b56f-bd44120085da Tangent End Tangent End false 0 9013 -816 178 20 9102 -806 1 1 {0} 0 0 0 Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 62dffc2f-c615-4738-8018-484f75f4e949 KnotStyle KnotStyle false 0 9013 -796 178 20 9102 -786 1 1 {0} 2 Resulting nurbs curve d9a049b0-690f-4a9d-9624-ffab8cf29b1e Curve Curve false 0 9215 -856 38 26 9234 -842.6667 Curve length f1cc8940-d3a9-4a35-99fe-801242041856 Length Length false 0 9215 -830 38 27 9234 -816 Curve domain 229a1ddb-a0aa-46d0-b205-15e5d312296d Domain Domain false 0 9215 -803 38 27 9234 -789.3334 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression EXP(-1/X)/(EXP(-1/X)+EXP(-1/(1-X))) a4584a82-42a1-485c-b294-3ec4c8a0e4ac Expression Expression 8067 485 355 28 8235 499 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable ad33712d-926a-4129-a471-f6ebfb5f1955 Variable X X true 12856f7b-6a1c-43e9-9d71-655f09f41c1e 1 8069 487 11 24 8074.5 499 Result of expression 037bc6cc-d43c-4dbb-ac6b-d3d5905cc4a9 Result Result false 0 8389 487 31 24 8404.5 499 9445ca40-cc73-4861-a455-146308676855 Range Create a range of numbers. e5e94c43-a776-4d77-a75a-3fff41f8a4d5 Range Range 8104 534 208 44 8266 556 Domain of numeric range 6d44e681-ea33-484b-bfb1-3b52a5b86139 Domain Domain false 0 8106 536 148 20 8188 546 1 1 {0} 0 0.9999999999 Number of steps 2a6193ac-185d-433f-9d06-456994b0f05f X*2 Steps Steps false 1e02c87b-f332-4fb0-8d48-6d02635e8746 1 8106 556 148 20 8188 566 1 1 {0} 10 1 Range of numbers 12856f7b-6a1c-43e9-9d71-655f09f41c1e Range Range false 0 8278 536 32 40 8294 556 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true 7a47a64a-773c-4a85-938e-dca1036ab014 Format Format 8156 376 130 64 8248 408 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format 4c76a9fa-4313-47ea-9028-10a87647625e Format Format false 0 8158 378 78 20 8197 388 1 1 {0} false {0:R} Formatting culture 80ef257d-f140-479c-b9e9-0381c89d234a Culture Culture false 0 8158 398 78 20 8197 408 1 1 {0} 127 Data to insert at {0} placeholders 3b82633b-ef6a-4e79-83ef-fbb109876120 false Data 0 0 true 56cd0377-78b5-455a-a884-9852b0c5ac73 1 8158 418 78 20 8197 428 Formatted text 6873c74f-e85b-462d-abc7-f459641bbc83 Text Text false 0 8260 378 24 60 8272 408 f3230ecb-3631-4d6f-86f2-ef4b2ed37f45 Replace Nulls Replace nulls or invalid data with other data true 83d60269-e8b5-4d1e-ba15-3d15c384651d Replace Nulls Replace Nulls 8157 440 139 44 8252 462 1 Items to test for null f00805f2-8a4e-4b09-bec8-4bbe7e037bd6 Items Items false 037bc6cc-d43c-4dbb-ac6b-d3d5905cc4a9 1 8159 442 81 20 8199.5 452 1 Items to replace nulls with 1318a7a4-13fe-4d1d-95ff-09acfc917d4a Replacements Replacements false 0 8159 462 81 20 8199.5 472 1 1 {0} Grasshopper.Kernel.Types.GH_String false 0 1 List without any nulls 56cd0377-78b5-455a-a884-9852b0c5ac73 Items Items false 0 8264 442 30 20 8279 452 Number of items replaced 9ccbc3fb-5657-421d-b6c5-b46df1691833 Count Count false 0 8264 462 30 20 8279 472 3581f42a-9592-4549-bd6b-1c0fc39d067b Construct Point Construct a point from {xyz} coordinates. true b6e694ee-4bdf-4f38-9cfa-530276c83f1c Construct Point Construct Point 8153 308 134 64 8246 340 {x} coordinate 9747f83f-623e-412f-8987-773e11e87c99 X coordinate X coordinate false 12856f7b-6a1c-43e9-9d71-655f09f41c1e 1 8155 310 79 20 8194.5 320 1 1 {0} 0 {y} coordinate a760e99c-8007-431e-af14-9ed7e76f1315 Y coordinate Y coordinate false 56cd0377-78b5-455a-a884-9852b0c5ac73 1 8155 330 79 20 8194.5 340 1 1 {0} 0 {z} coordinate fa57eb62-91f8-476b-a6bf-c282726e40fa Z coordinate Z coordinate false 0 8155 350 79 20 8194.5 360 1 1 {0} 0 Point coordinate 75f38e11-421a-49b0-a795-44bc7bf8361c Point Point false 0 8258 310 27 60 8271.5 340 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 201dbf1e-d6f7-459e-9c74-cb66a19b8401 Interpolate Interpolate 8094 220 225 84 8267 262 1 Interpolation points 4eee2d6b-bc26-4c7d-91fc-370e9f18185c Vertices Vertices false 75f38e11-421a-49b0-a795-44bc7bf8361c 1 8096 222 159 20 8175.5 232 Curve degree 0f7b04ae-c0b9-429c-abdf-12d116469ee5 Degree Degree false 0 8096 242 159 20 8175.5 252 1 1 {0} 3 Periodic curve 865b3cea-b94d-4440-ba0f-581a32c3eb26 Periodic Periodic false 0 8096 262 159 20 8175.5 272 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 14df08cd-7e65-4f95-aac7-12ea5d81702b KnotStyle KnotStyle false 0 8096 282 159 20 8175.5 292 1 1 {0} 2 Resulting nurbs curve 720c155d-1f7d-402b-a043-8bee89a52787 Curve Curve false 0 8279 222 38 26 8298 235.3333 Curve length 4503a2e2-2370-4f63-9b87-8fb27e7fa0fe Length Length false 0 8279 248 38 27 8298 262 Curve domain 0a0dc0e0-6219-4000-99e6-81f67833e624 Domain Domain false 0 8279 275 38 27 8298 288.6667 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object c9cede5a-3217-4818-a755-a317d4e40aca Relay false 1d0bf2e0-f67d-4a2d-a256-b3237aa6cf7f 1 3206 -118 40 16 3226 -110 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object bfcbee3a-b2cb-4f84-b04e-6d617f69140d Relay false 634a94ce-52a8-49bc-9452-6f6366b08a22 1 4935 -140 40 16 4955 -132 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects a4584a82-42a1-485c-b294-3ec4c8a0e4ac e5e94c43-a776-4d77-a75a-3fff41f8a4d5 7a47a64a-773c-4a85-938e-dca1036ab014 83d60269-e8b5-4d1e-ba15-3d15c384651d b6e694ee-4bdf-4f38-9cfa-530276c83f1c 201dbf1e-d6f7-459e-9c74-cb66a19b8401 6 e41feca8-44ec-48ae-9122-b25a23260a47 Group b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object a117194e-2f18-4d8f-9075-d69b3dd57e9c Relay false 56233623-7b3b-4690-a754-0d9746d30ac9 1 6628 -97 40 16 6648 -89 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object a62538ff-8f98-4562-99a8-d56a712bf392 Relay false a1e0f8c4-4e32-4423-a640-6d28fa2603ad 1 8309 -131 40 16 8329 -123 iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA+BSURBVHhe7dpLc1VVGsZxP2SPetwTilJRsaq/gFTZSk+6bKvs8jLqQQ+6ipuggsjFABoEwiXcVJAEAoQ73YqC9O/sZ2exc85JdZWenGSH/QxOrb32u27vf73vWjuVFzqtBT3t1Fo9Q/jF79Dhw4cnJycPHjxYP3cal0aDcP/+/YcOHXrjjTc2bdq0r1L9otPyazQIMYNw/fr1L774YodwzBoNQpqYmNi4cePrr7/eIRyzRonwlVde2bBhg6TaIRynRobQRUYIvvrqq10UjlmjQYiZ4MOvQzh+jRKhu8zLL7/cJdIxa2QI/b722mvddWb8GhlCeumll7ooHL9GidB11KU05fpFp+XXKBGuW7fO133K9YtOy6+RIfT7zjvvvPvuux2/MWs0CKOjR48eO3asfug0Lo0SYZVBuxAct0aJsNOKqEPYenUIW68OYevVIWy9OoStV4ew9eoQtl4dwtarQ9h6dQh72rug+rlVet4R1ugaql+0R88vQrQOHDhw4sSJb7755urVq/crXbly5fPPP68tWqLnGuHBgwdPnz6NIniWT7dv396zZ09t0RKZ9nON8NSpU8ePH793715F8OmtW7c6hC1Q78SrNDExAeHU1BRyP1eam5tTL8HWpm3Qc4EwwEh5//79gg+8w4cP79u3z8m3e/duBfXIKWzfvn3btm0e03b1a80irKHt3YtKmB1a0JdffomWhImfLOo6Iwr/W+nBgwf/eO+9v7z5JsB1R6teawdhTWwh1HCC4auvvjpy5IiCxwRWbbR3r+BTc+bMmZMnT/7444+WT0+ePHn//fc3v/020lWvLZBptxVhjaJiVkINMNioYKuNGh98efz000+9PXv2rEvpL7/8UhHs6aMPP9y0aVMXhaMXSHVpQQk14RJsfpWBZImQJEmhRezVk1aBTZOTk9PT0xKpWLxw4cLFixfPnz//182bN7/11qElEJbeKB1SHldKqxchT33W0K5du/wGjJMMACRyAVEjK/plILY++eQTv+nE25jFUqtEJymrZLlz584tDe3YsaMa8DOHZaRz0lszpomNWekh9k2p1DBzWG6tPEK+qEuV4h1Svn79+vz8/I0bN2ZnZ6W7byt5vHv3rnuHz/C8Zfbdd9+x94Vw9erVmZmZa9euaaKgXg2b1Li2aHvz5k1NRC2Egi/xJxCF8tGjRxWuXLmSVqWhrrw6ceKEL0g90KVLl/JB4pWZDOrrr78O+OXWsiMEw34UIvXzgtTzoJjgyl5Sm5gQGerFSi9kqlc//fSTb7VHjx49fPiQUzz6VaPgAvKfSq6RHrEUItzqVGNPLL29f/8+dz9+/PjXX3+1QL8pkPyJWcqkCWOdG6uuWiy7B7P64elTe8jQhjB6XbVY6ArHLHZZZaxlRIgTJCDxrwIlvMqB5PSCiuxZcjhFnJu7PgA2/p07d2x2391+uYy7e9/hDUFoo4g5CMnFUpNEJF9XLu2XUYxePzx9igdjTbCvqxZLsLq71g9Pn5oYYwG6VP9Cdi0gtAYXBD4VH+CJM16jEmeEFm9KUxW7SSBVhq5QE0B4gPTDDz9cvnzZr7JKfVbsfg4wfvdJLlAq7/UEP3tQFeqqxTKWIeqHCqGciQrVVYvVh9CI+peBy99X+7RGEDoMLNuGdXd3wqOYy4h6vzyIlhgNM3GZYNWQmQJUZoWQsLMV3B4FCq7Iqez5aUFibhAh+3PnznFx+ulTH0IpUZ40W8dkX+dRH0L9W5RZLZV4104U8otFuoy4KKJy/PjxY8eOWTlsBVjQUkmzAIMqMhJqkqcs6lHi6iXKxmdcNIhQlICnXo6FpByBRYMIDaGJK0xCv36xoD6Eek6G139dtVhrBCEqfq0ctoCxcz3KPwj1Lux79qCYozEXfb8JR8YFFZ+6JXJx87TLq2hoFGoigWvl0T5IfdFgIrU/8JOrPQ7aD02k33//vaitqxZr7SRSFzOJ1O52yCEKD8fxNag84gafFAoYbJoIxASlxyZC1DXhtYSU1JpX0VCEEgA/um6wh6QvEAcRShUqnYgsB3fJIML0b2mDIU5rJ5G6p0ikHOSGyQtIYKkSM4uEkFmwpUnksYlQIR9zHJeDDZKmiwcR2jeM3U0k4STGvsAaRCgEBW45O/t2SR9CZvoXuLlz1bUNtQYhXycB5lRryitXGFuVHyUc/nIQ8kKyZfKn38GGNIiQs/QjtsCgvkAcGoXsIUEu8Ng3w6UPoX2WG2lBqJWB8pYGo9CUJGpbpMyzqRYg5GVXEjlQtnSkeaxfVAIgnxCc4vIiAfKmEMSy/DEzTZilSVN9CLk+SFw6kuVUcnHZ/oMIBYeoFVjsg5BxClEfQq8gNEmkh+6SPoR9/futXyyoHQh530Qtm3N93gGZ+hQwEHZc785mz8qEFuyrgCWKMfMrCgvOIo8itIQAfwkOuU6sKOQe33RxH0IAHIHMIPfrrRr1zUDsQ2gIloYQVVoFtt80pB7CqamUdaJ/ypQk7cFAbEcidelww6wm3Pt7knBUAwnXOO3cPpx/ABOWiTyOy7e8LzaHohNRZVJrk6Ky2gfz89fPnI5zbQLisngtJDgugRiEly5fvnnu7IPrc5yLtB2joDkkcXEzEM3BN6lPzscMqp1hq5E9Z7d5ZNPcJRCemZ6+ef5c+ifGLM1KOJpVzIragVAYuY9UE+7N2KOPPznTo8VzFkdkh/qNayQrHwaIEmzlKyKfiU2KE24927e+98c/PKz+N4mP9FAN1SOX4CguhvDjjz8+d/7CP9f96cBHH7i9qORiIdVr0LiblEDs/T1oauqLv//t33/e+KjKhCapif1BCMW+BKIQPz419a8N6/d/8I/0bz4WaAhzs1Eq82dqRyLldLeVasL9CHnK2izSmW+fWqpyDg9XACGLpRoRqQfBKnyxbFJ0Fbo6Ozt/fc6HGs/6jvYb7wumBF+RONuxY4ewvnf79rXZ2ZnZWSMaq3i2IEwP1HPx7t0zFy98e3Lq2tycHsyz/CtbCVbKWHaenGFLzjkyZ2ZYWk7pv2kfOThbEIVypm+pasLPEEqbHi3bIkGySL/KtrayD+38XcqW9zg9PS2hicWQQ7FcUK2f8Y0qcAk/SDIWDMJOt5xui8gERpdIpe5bd+4wMwcGTujiYvspSU8rc5YDjGik23fvqp2p/m6goVnFPvMnW8ErXYlaqcKQzOyq9F/ypy2S/smi9G8h9mXWsqwy+nCEhseDRANxqDXH0UWYmW61hBohS2cGN1mem4tCWZvVWry1iTyBCIl6zdMq5PyimM5Vsgfer+Y65M2MRXrmRD3wpmPV6Fu3buVlozBWT6KkBIdCCKlkLytai8Nbn4HkVRMJsVSplT2nZ/a2mj2RcUmrEtxye7N/F29rsbSsZVll9CEI8XM+2eBUXUeuiBvOpSZFZdNNaipRKCYY804ayj9WG4R6g8RblvnrjNTkS0OTbFgdyqWGVt61axdH6EErPSjABjwJDr886BWX2SsyM4RuTOLV/uBNrxhoQpqHE2OcCHhzIGU9q8+rRB5IZquVUVSavGkn2+vfSaEr9cpD++8ljWvXVhihmLPv1JDJcVBOLNMqCBUAEEY57YOQ31mC6jrgdOFKi7E2nYgDvmDJZfqxbAu2J2xkLoO82a36LVu2QMsjNgFIBhIE2pK25ULIADmvjG4D6RP4fIaq10N2ITBG7/GfnxdV7I24bds2LHWeP6WauVWYsCZhozePNpmJWVr6Z5z+HQFmpXmzf1OyrTOf4qtlFZcOQWh467c8M+NBEWOihGvZWebH0WqaCC0S72Q/67F4rfhCWY2tzZiDNJdvuVInTp0mQkrPMPMp6YGP2PNXNgQ/GrEp28XoHOec0y2b3jfAmTPczad6KIdiEUfL1frUhIFlygpkTyCUQ9FsszoybUOYj/5NQCrW1naxLs2bGThiqf96ScspYw1HaIvxAopWhZMVmqv4aB7RzJDuS6QQ5rSwwp07d6q3+GxnLG1VXHXCgwo6NISCtnWnlVCUTov7tOJW/tKV3ZBoborHhRSDPGqIup61Mm0qXxdFFnXkyBG5QRpgj1zCC36TD8KmeKPc3SxZ/+yNaGn6H9wi/LCSN1IeFAQYcLFrmMu6O4hyM1bIo+tJNeFnCC3MCnu798kTwcHpXlmP1McvHu0GCGGzfqNYZ+Fn3CKvclnQW5I52e9CnN8zhAjO173N4UaqT5VqNHTisrf/zEETlUXsyaIsLZMnOwMkG8skhVT2ZZFHby3E0HaD/kVhlSNOMab02ZTUtZIIiRPlAb7m36L63YJAtTF5TduC0Ea24Gzt5GFbgUOtEwmeQk5b9dZvEwSYGszcZfRJEqlfLpYMBLqIdBT5eGcgdFQajhQEU8o2WaSVJpqbjJ7ZoBUppwn/xrjKnSetAu9q5ANmpcbBH2OtdOitVs3PVou1aQxhbqSht00109WyakmE/1cWY+oWpiFxIh4kUFITCTv7l+xu/HId0CrhyNf8yE1q4jKFUo6XiQGf8nsqUYw4lxRio6xDvx5ZBkMqHZPZFpxrr5i/X0vInAkSj82ayNbR3OTJjixmekhXUA1V5aRxiJN/I0KyEsvgWeIjRFXaxblYO7EU7F8ulm/dAsgVQ5m706og8Vt8HfF4tb+fbXD+ijJ6FIfGa4NlBuy17cVX9fdY0nNRappDNLslqcjulIotR07WcwxWj34XQrLIJFiO4IKs2To5hTscBmQvs1Ev7fhVw6zyc0995aWU4X6z6l4qpaa3FxboBmRNtSGVLO2zfGn4Lc1Xj34vQuu3VL/xjjUnqoKTATfFMi6jPK4eZeZFqTTPXlRWgJWTrq3OPlttS1gSocUkvIbKW8vLPlW2MEu1SArO2q79shbiCrLMunY1aThCk87WkwOV69pKeVWlmd4fMz1imRtEcFIsO41HwxHabuLJpw8qJRbDRg14KHoEzwWEZcFZGXYaq5aMQqhcyhNYqWweexC6NILnN/ax6TR+DUdIAYaNiCzHnvpkUZkTvMRi7DutlJZEmAyJUzKnGsCU8/UGagdvlWg4Qnhg8wGeUAs85Eh0xiCWnVZcwxHmkknKmAGZcMSyg7faNAQhSIDhJwonJydz4ezgrVr1I8Qplxfwws8HX26hadBptWkRQpzAS9ilkFzaaTWrPwqFoCyaP7XkuyJ2nVat+hHCRvgpC8ouf65+9SMET+R1n30tUj/CLvJap36EnVqnDmHr1SFsvTqErVeHsPXqELZeHcLWq0PYenUIW68OYevVIWy9OoStV4ew9eoQtl4dwtarQ9h6dQhbr0UIO7VUNcJOLdYLL/wPyQKMX2anMTYAAAAASUVORK5CYII=