-
0
2
2
-
1
0
7
- a61aec93-d774-48cf-8598-6718e7650341
- Shaded
- 1
-
127;201;201;201
-
127;176;176;176
- 633740217794324378
- XHG.⠀⠀⠀⠀◯⠀옷ߦᗩᴥᕤᕦ⠀◯⠀ᗝᗱᗴߦᗩᙏ⠀◯⠀ᗱᗴᙁ✤ᴥᑎ✤⠀◯⠀ᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕ⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀ᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴ⠀◯⠀✤ᑎᴥ✤ᙁᗱᗴ⠀◯⠀ᙏᗩߦᗱᗴᗝ⠀◯⠀ᕤᕦᴥᗩߦ옷⠀◯⠀⠀⠀⠀.GHX
- 0
-
-848
473
- 0.847141445
- 0
- 0
- 2
- Pufferfish, Version=3.0.0.0, Culture=neutral, PublicKeyToken=null
- 3.0.0.0
- Michael Pryor
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Pufferfish
- 3.0.0.0
- CurvePlus, Version=1.2.0.0, Culture=neutral, PublicKeyToken=null
- 1.2.0.0
- David Mans
- ab81fea9-8d16-4caf-af89-2736c660f36d
- CurvePlus
- 1.2.0.0
- 48
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
- A VB.NET scriptable component
- f8463a6a-537d-44ae-a102-2cbf6773c33a
- DotNET VB Script (LEGACY)
- Turtle
- 0
- Dim i As Integer
Dim dir As New On3dVector(1, 0, 0)
Dim pos As New On3dVector(0, 0, 0)
Dim axis As New On3dVector(0, 0, 1)
Dim pnts As New List(Of On3dVector)
pnts.Add(pos)
For i = 0 To Forward.Count() - 1
Dim P As New On3dVector
dir.Rotate(Left(i), axis)
P = dir * Forward(i) + pnts(i)
pnts.Add(P)
Next
Points = pnts
-
988
154
115
44
-
1049
176
- 1
- 1
- 2
- Script Variable Forward
- Script Variable Left
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- true
- true
- Forward
- Left
- true
- true
- 2
- Print, Reflect and Error streams
- Output parameter Points
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- true
- Output
- Points
- false
- false
- 1
- false
- Script Variable Forward
- ce1f978e-a982-441e-8781-42beeed9349f
- Forward
- Forward
- true
- 1
- true
- 11d6ae9c-db85-41da-a72e-197fbac37970
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
990
156
44
20
-
1013.5
166
- 1
- false
- Script Variable Left
- 57e2c9a0-b37d-4c4b-9e2b-b0e17a521d43
- Left
- Left
- true
- 1
- true
- 34b6e5a6-a1ba-4214-b996-0fa3a932cd38
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
990
176
44
20
-
1013.5
186
- Print, Reflect and Error streams
- 33dd288d-3d90-4a29-8ab3-866accaf2be0
- Output
- out
- false
- 0
-
1064
156
37
20
-
1082.5
166
- Output parameter Points
- a7101779-445c-4899-9b31-ce0a4803f08d
- Points
- Points
- false
- 0
-
1064
176
37
20
-
1082.5
186
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- 3091dae8-d5dc-4fac-a891-c5a5c7118bd1
- Series
- Series
-
356
212
64
64
-
387
244
- First number in the series
- bfe8e6e2-eddc-4584-8ce4-005a112f16fc
- Start
- S
- false
- 0
-
358
214
14
20
-
366.5
224
- 1
- 1
- {0}
- 0
- Step size for each successive number
- 3ef6124c-d6dc-426b-a979-0ad9d65d59da
- Step
- N
- false
- ff0daf69-230f-4e05-8c98-bf9c091a451d
- 1
-
358
234
14
20
-
366.5
244
- 1
- 1
- {0}
- 1
- Number of values in the series
- 41382c6d-efca-4f46-89a4-f4a83cdfe7f4
- Count
- C
- false
- de137ce1-c93e-4980-bb21-a8ca5601e20d
- 1
-
358
254
14
20
-
366.5
264
- 1
- 1
- {0}
- 500
- 1
- Series of numbers
- 4a521433-15f9-4232-bbd6-a4193c7aaecc
- Series
- S
- false
- 0
-
402
214
16
60
-
410
244
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
- Duplicate data a predefined number of times.
- b15849e1-cdad-4c2e-becd-859af856d608
- Duplicate Data
- Dup
-
358
134
65
64
-
389
166
- 1
- Data to duplicate
- 907f9087-e15f-4411-b460-551d6e02779d
- Data
- D
- false
- 04e916a1-e753-499e-a557-73ec31b3076e
- 1
-
360
136
14
20
-
368.5
146
- Number of duplicates
- 4af8efc9-5fa2-429a-bc4a-bc67bfcdce44
- Number
- N
- false
- de137ce1-c93e-4980-bb21-a8ca5601e20d
- 1
-
360
156
14
20
-
368.5
166
- 1
- 1
- {0}
- 500
- Retain list order
- 96c94299-014f-4d47-a2bf-e758b61acfb5
- Order
- O
- false
- 0
-
360
176
14
20
-
368.5
186
- 1
- 1
- {0}
- true
- 1
- Duplicated data
- 11d6ae9c-db85-41da-a72e-197fbac37970
- Data
- D
- false
- 0
-
404
136
17
60
-
412.5
166
- f5ea9d41-f062-487e-8dbf-7666ca53fbcd
- Interpolate
- Create an interpolated curve through a set of points.
- 6264624f-4741-4ad5-b390-ffeaf96b650b
- Interpolate
- IntCrv
-
1124
151
65
64
-
1155
183
- 1
- Interpolation points
- 9fa61b9f-3d6a-4de9-b3cf-891575df3642
- Vertices
- V
- false
- a7101779-445c-4899-9b31-ce0a4803f08d
- 1
-
1126
153
14
20
-
1134.5
163
- Curve degree
- 45884fa8-c111-46db-9464-f554212d0881
- Degree
- D
- false
- 0
-
1126
173
14
20
-
1134.5
183
- 1
- 1
- {0}
- 3
- Periodic curve
- 39a08521-0941-45d2-b08b-e760b22d1cfd
- Periodic
- P
- false
- 0
-
1126
193
14
20
-
1134.5
203
- 1
- 1
- {0}
- false
- Resulting nurbs curve
- fbac77a5-b15a-4a25-8bf0-69012470613a
- Curve
- C
- false
- 0
-
1170
153
17
20
-
1178.5
163
- Curve length
- 9e8512d8-16fc-432e-836f-b8d89a934da4
- Length
- L
- false
- 0
-
1170
173
17
20
-
1178.5
183
- Curve domain
- 0b6cb763-0a93-4ae2-96a2-fdcd7eb5bc57
- Domain
- D
- false
- 0
-
1170
193
17
20
-
1178.5
203
- bc984576-7aa6-491f-a91d-e444c33675a7
- Graph Mapper
- Represents a numeric mapping function
Sine wave distribution
Sine wave distribution
Sine wave distribution
Sine wave distribution
- 12324cf9-85ea-4ccf-8d27-ca279182d95e
- Graph Mapper
- Graph
- false
- 4a521433-15f9-4232-bbd6-a4193c7aaecc
- 1
-
498
-150
325
279
-
498.8449
-149.1109
- false
- 0
- 0.0176
- 0
- 0.0625
- 7d54f77a-a866-49ed-95eb-b1f9fb25a1f1
- Sine
- 0
- 1
- 0
- 1
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- (O_EZIS_O_SIZE_O^O_REWOP_O_POWER_O-abs(X-1)^O_REWOP_O_POWER_O)^(1/O_REWOP_TOOR_O_ROOT_POWER_O)
- 8763ca8a-5eda-4215-b1b6-6bf027e56362
- Expression
- Expression
-
347
388
1010
84
-
938
430
- 4
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 6f4478b4-8c39-4912-b676-863469bfc82c
- Variable X
- X
- true
- 4a521433-15f9-4232-bbd6-a4193c7aaecc
- 1
-
349
390
188
20
-
444.5
400
- Expression variable
- c0769443-461d-4126-a64c-6247b39f222a
- Variable O_EZIS_O_SIZE_O
- O_EZIS_O_SIZE_O
- true
- ecdc8107-f664-40c6-8a7c-3ba81b6844d6
- 1
-
349
410
188
20
-
444.5
420
- Expression variable
- 2148e6a1-a572-410c-b12c-b29e37906877
- Variable O_REWOP_TOOR_O_ROOT_POWER_O
- O_REWOP_TOOR_O_ROOT_POWER_O
- true
- 7ea2aa6e-1723-4ee7-bc68-38b1f5deba9c
- 1
-
349
430
188
20
-
444.5
440
- Expression variable
- 37614104-e34b-4a95-b9e4-2f987743f51d
- Variable O_REWOP_O_POWER_O
- O_REWOP_O_POWER_O
- true
- ede642c9-e41e-43f5-a264-51551af1dc77
- 1
-
349
450
188
20
-
444.5
460
- Result of expression
- 660e66b2-db6b-4f9a-8b80-838ce371dd29
- Result
- R
- false
- 0
-
1339
390
16
80
-
1347
430
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
- Filters a collection of input streams
- f485a3d6-fb5f-4a4e-8821-7994b356eb8e
- Stream Filter
- Stream Filter
-
870
178
92
124
-
915
240
- 6
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Index of Gate stream
- 847151af-072a-4900-879d-0fe8241f89ca
- Gate
- Gate
- false
- b20871fa-e78c-47ec-a58d-208c8959ba69
- 1
-
872
180
28
20
-
887.5
190
- 1
- 1
- {0}
- 0
- 2
- Input stream at index 0
- 883bcf08-8a23-46f2-949b-114847055ec4
- false
- Stream 0
- 0
- true
- 476fd755-34c1-41fd-94b7-5d27abb8249b
- 1
-
872
200
28
20
-
887.5
210
- 2
- Input stream at index 1
- da7a30e8-0b2e-44d7-b1f2-d66b32e249dd
- false
- Stream 1
- 1
- true
- 12324cf9-85ea-4ccf-8d27-ca279182d95e
- 1
-
872
220
28
20
-
887.5
230
- 2
- Input stream at index 2
- fb5094ba-00a6-4552-bcba-3fe5f92e662f
- false
- Stream 2
- 2
- true
- 660e66b2-db6b-4f9a-8b80-838ce371dd29
- 1
-
872
240
28
20
-
887.5
250
- 2
- Input stream at index 3
- bf5e7ea2-18bd-4125-bb52-89c062cb16fa
- false
- Stream 3
- 3
- true
- 373c6a08-8824-4c99-a557-ae06da3113d5
- 1
-
872
260
28
20
-
887.5
270
- 2
- Input stream at index 4
- 1de74f01-6982-4452-8d86-433912ae2f98
- false
- Stream 4
- 4
- true
- 0
-
872
280
28
20
-
887.5
290
- 2
- Filtered stream
- 34b6e5a6-a1ba-4214-b996-0fa3a932cd38
- false
- Stream
- S(1)
- false
- 0
-
930
180
30
120
-
945
240
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 7ea2aa6e-1723-4ee7-bc68-38b1f5deba9c
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 10
- 2.00
-
88
430
250
20
-
88.89829
430.9977
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- ede642c9-e41e-43f5-a264-51551af1dc77
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 10
- 2.00
-
89
450
250
20
-
89.28435
450.8743
- 7376fe41-74ec-497e-b367-1ffe5072608b
- Curvature Graph
- Draws Rhino Curvature Graphs.
- 5cbda035-78a6-49e1-bc63-6d8b78998d5b
- Curvature Graph
- Curvature Graph
-
1731
230
71
64
-
1788
262
- Curve for Curvature graph display
- true
- a0ca1a0e-cbeb-422d-97ac-6bb51c73d82b
- Curve
- Curve
- false
- 3733e2e8-4bd3-44f1-8b68-31f8853c8921
- 38cf4e17-ca6a-4dad-8a9a-b880812ed23a
- 2
-
1733
232
40
20
-
1754.5
242
- Sampling density of the Graph
- 82986a14-b7f4-46a2-923a-d5796d52aa6c
- Density
- Density
- false
- e5a2bf12-6574-4c19-848d-8871fc76cafe
- 1
-
1733
252
40
20
-
1754.5
262
- 1
- 1
- {0}
- 5
- Scale of graph
- 059120bb-9495-4b12-b0f3-464a2d863378
- Scale
- Scale
- false
- 83a16af3-1073-4b04-bad1-a89ab18700fb
- 1
-
1733
272
40
20
-
1754.5
282
- 1
- 1
- {0}
- 105
- bc984576-7aa6-491f-a91d-e444c33675a7
- Graph Mapper
- Represents a numeric mapping function
Sine wave distribution
Sine wave distribution
Linear distribution
Linear distribution
- 476fd755-34c1-41fd-94b7-5d27abb8249b
- Graph Mapper
- Graph
- false
- 4a521433-15f9-4232-bbd6-a4193c7aaecc
- 1
-
496
175
100
100
-
496.2162
175.8607
- false
- 0
- 1
- 0
- 1
- 1
- 0
- 71629651-0343-46d7-ac9e-d6041f9fe66b
- Linear
- 0.25
- 0.75
- 0.25
- 0.75
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- asin((x-.5)*2)/(2*atan(1))/2+.5
- 82eb3cd4-0390-4f09-a917-57e17ff721ba
- Expression
- Expression
-
426
483
490
84
-
757
525
- 4
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 995b6377-1efc-4d78-89de-fceed0c461b6
- Variable X
- X
- true
- 4a521433-15f9-4232-bbd6-a4193c7aaecc
- 1
-
428
485
188
20
-
523.5
495
- Expression variable
- 7d6761e4-0d16-4147-b712-3a37c9a0e5cf
- Variable O_EZIS_O_SIZE_O
- O_EZIS_O_SIZE_O
- true
- 0
-
428
505
188
20
-
523.5
515
- Expression variable
- f823d676-a5d4-4ecc-9c6f-db91da944fb4
- Variable O_REWOP_TOOR_O_ROOT_POWER_O
- O_REWOP_TOOR_O_ROOT_POWER_O
- true
- 0
-
428
525
188
20
-
523.5
535
- Expression variable
- c2796797-c80c-4619-b81c-a427bea8133c
- Variable O_REWOP_O_POWER_O
- O_REWOP_O_POWER_O
- true
- 0
-
428
545
188
20
-
523.5
555
- Result of expression
- 373c6a08-8824-4c99-a557-ae06da3113d5
- Result
- R
- false
- 0
-
898
485
16
80
-
906
525
- aaa665bd-fd6e-4ccb-8d2c-c5b33072125d
- Curvature
- Evaluate the curvature of a curve at a specified parameter.
- true
- 87ff8105-2e9a-4775-93c9-e06b14dd7f83
- Curvature
- Curvature
-
1004
501
140
64
-
1074
533
- Curve to evaluate
- 23e95288-b807-41de-8f49-8399b01a42d3
- Curve
- Curve
- false
- fbac77a5-b15a-4a25-8bf0-69012470613a
- 1
-
1006
503
53
30
-
1034
518
- Parameter on curve domain to evaluate
- 8b12d188-950f-4335-b199-9062498f2aab
- Parameter
- Parameter
- false
- de137ce1-c93e-4980-bb21-a8ca5601e20d
- 1
-
1006
533
53
30
-
1034
548
- 1
- 1
- {0}
- 0.5
- Point on curve at {t}
- 18dbee9f-1506-455b-b657-289702f7e0c4
- Point
- Point
- false
- 0
-
1089
503
53
20
-
1115.5
513
- Curvature vector at {t}
- 32eded9f-30ee-4e0f-ada7-49db7fa1257d
- Curvature
- Curvature
- false
- 0
-
1089
523
53
20
-
1115.5
533
- Curvature circle at {t}
- 8b5d83b7-ae43-4de7-a467-9924c3742f73
- Curvature
- Curvature
- false
- 0
-
1089
543
53
20
-
1115.5
553
- 23862862-049a-40be-b558-2418aacbd916
- Deconstruct Arc
- Retrieve the base plane, radius and angle domain of an arc.
- true
- 6db8ba10-69cd-44aa-b46c-8f9438ba262b
- Deconstruct Arc
- DArc
-
1165
497
65
64
-
1196
529
- Arc or Circle to deconstruct
- 51317f3f-3050-425a-a722-3a7261c4c518
- Arc
- A
- false
- 8b5d83b7-ae43-4de7-a467-9924c3742f73
- 1
-
1167
499
14
60
-
1175.5
529
- Base plane of arc or circle
- 6af7723e-ae31-443d-a80c-93de3ed8f828
- Base Plane
- B
- false
- 0
-
1211
499
17
20
-
1219.5
509
- Radius of arc or circle
- a2df70b3-1dd6-4e6c-ac4d-cb6dbd83e362
- Radius
- R
- false
- 0
-
1211
519
17
20
-
1219.5
529
- Angle domain (in radians) of arc
- c9cf1cf1-9b72-4b32-a69a-c4430a4e8787
- Angle
- A
- false
- 0
-
1211
539
17
20
-
1219.5
549
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- a235a197-60ae-480c-90e3-7cda396883f0
- Panel
- false
- 0
- a2df70b3-1dd6-4e6c-ac4d-cb6dbd83e362
- 1
- Double click to edit panel content…
-
1260
508
96
42
- 0
- 0
- 0
-
1260.479
508.6545
-
255;255;250;90
- true
- true
- true
- false
- false
- true
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- ff0daf69-230f-4e05-8c98-bf9c091a451d
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 1
- 0.00070038828
-
81
234
250
20
-
81.07772
234.3882
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 83a16af3-1073-4b04-bad1-a89ab18700fb
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 11
- 115.0
-
1464
278
250
20
-
1464.332
278.3159
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- e5a2bf12-6574-4c19-848d-8871fc76cafe
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 11
- 1.0
-
1464
257
250
20
-
1464.49
257.9594
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- ecdc8107-f664-40c6-8a7c-3ba81b6844d6
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 1
- 1.00000000000
-
89
410
250
20
-
89.30597
410.6705
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- de137ce1-c93e-4980-bb21-a8ca5601e20d
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 11
- 50.2
-
81
194
250
20
-
81.42269
194.2125
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 04e916a1-e753-499e-a557-73ec31b3076e
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 1
- 1.00000000000
-
81
136
250
20
-
81.06453
136.4197
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- b20871fa-e78c-47ec-a58d-208c8959ba69
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 11
- 1.0
-
602
190
250
20
-
602.5042
190.6908
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- 10b2c371-b2e2-4e03-b6ca-9b4d20921a41
- Rotate
- Rotate
-
1079
75
141
64
-
1147
107
- Base geometry
- f763f4fc-474e-46a6-8f76-2b1b73f348b0
- Geometry
- Geometry
- true
- fbac77a5-b15a-4a25-8bf0-69012470613a
- 1
-
1081
77
51
20
-
1108
87
- Rotation angle in radians
- 607acd44-9b26-464f-b5be-b81a71d429aa
- Angle
- Angle
- false
- 0
- false
-
1081
97
51
20
-
1108
107
- 1
- 1
- {0}
- 3.1415926535897931
- Rotation plane
- aebd7f4b-0bbb-44aa-afa9-7e952af27373
- Plane
- Plane
- false
- 0
-
1081
117
51
20
-
1108
127
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 34a9b59d-4627-4182-bb4e-188bdc9cfb0b
- Geometry
- Geometry
- false
- 0
-
1162
77
56
30
-
1190
92
- Transformation data
- 54266759-a77b-4f34-a0a1-b77642adfc8a
- Transform
- Transform
- false
- 0
-
1162
107
56
30
-
1190
122
- cae9fe53-6d63-44ed-9d6d-13180fbf6f89
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Curve Graph Mapper
- Remap values with a custom graph using input curves.
- 84de47dd-743d-44ec-bafe-1f40762588a7
- Curve Graph Mapper
- Curve Graph Mapper
-
1405
-302
163
224
-
1473
-190
- 1
- One or multiple graph curves to graph map values with
- e8a8681e-a373-4d35-946c-c6a96598a6eb
- Curves
- Curves
- false
- 3733e2e8-4bd3-44f1-8b68-31f8853c8921
- 1
-
1407
-300
51
27
-
1434
-286.25
- Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
- 2882ef64-bb55-4120-bb06-5baf0b599da3
- Rectangle
- Rectangle
- false
- 84afdc9e-4d24-423c-82c8-17155e3afd53
- 1
-
1407
-273
51
28
-
1434
-258.75
- 1
- Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
- 30b25754-20c8-4ed0-8174-e1a35eed58d7
- Values
- Values
- false
- 102b1139-a452-4fbb-bfd8-adb85f89960b
- 1
-
1407
-245
51
27
-
1434
-231.25
- Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
- a0e0127d-d6f8-4ec7-9107-707b515c4441
- X Axis
- X Axis
- true
- dc040710-6476-4601-a4ac-a91e86071f0c
- 1
-
1407
-218
51
28
-
1434
-203.75
- 1
- 1
- {0}
-
0
0.0176
- Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
- 7866ba6f-91cf-426d-b8f7-10c972f624b9
- Y Axis
- Y Axis
- true
- b94d34e6-5bb8-451d-b47b-0aaf8569ad88
- 1
-
1407
-190
51
27
-
1434
-176.25
- 1
- 1
- {0}
-
0
0.0625
- Flip the graphs X Axis from the bottom of the graph to the top of the graph
- 6a141eaf-7571-483f-89cc-a1d4a7f9f2e5
- Flip
- Flip
- false
- 0
-
1407
-163
51
28
-
1434
-148.75
- 1
- 1
- {0}
- false
- Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
- beb8e8b8-46f7-45da-a42a-390b6873ef76
- Snap
- Snap
- false
- 0
-
1407
-135
51
27
-
1434
-121.25
- 1
- 1
- {0}
- false
- Size of the graph labels
- 2134b815-a446-4b10-8db6-6a45a492747c
- Text Size
- Text Size
- false
- 0
-
1407
-108
51
28
-
1434
-93.75
- 1
- 1
- {0}
- 1
- 1
- Resulting graph mapped values, mapped on the Y Axis
- 805f2edb-cc3f-4a58-b59f-743b168199fd
- Mapped
- Mapped
- false
- 0
-
1488
-300
78
20
-
1527
-290
- 1
- The graph curves inside the boundary of the graph
- 27d339de-5f5a-4cea-bc49-6784c09e157e
- Graph Curves
- Graph Curves
- false
- 0
-
1488
-280
78
20
-
1527
-270
- 1
- The points on the graph curves where the X Axis input values intersected
- true
- 3f7eed88-2037-47a0-befb-dcaee7db036f
- Graph Points
- Graph Points
- false
- 0
-
1488
-260
78
20
-
1527
-250
- 1
- The lines from the X Axis input values to the graph curves
- true
- 5c724fee-3b94-449a-a4bd-4f114c89e3bb
- Value Lines
- Value Lines
- false
- 0
-
1488
-240
78
20
-
1527
-230
- 1
- The points plotted on the X Axis which represent the input values
- true
- 2b5fcc20-04cc-4c81-aff0-546d1bd70016
- Value Points
- Value Points
- false
- 0
-
1488
-220
78
20
-
1527
-210
- 1
- The lines from the graph curves to the Y Axis graph mapped values
- true
- 17475dde-3ce1-4bda-9b7e-bf0de4f30249
- Mapped Lines
- Mapped Lines
- false
- 0
-
1488
-200
78
20
-
1527
-190
- 1
- The points mapped on the Y Axis which represent the graph mapped values
- true
- 8f345dd4-6e1a-454d-b922-7e33f01fee1c
- Mapped Points
- Mapped Points
- false
- 0
-
1488
-180
78
20
-
1527
-170
- The graph boundary background as a surface
- e51b5694-6190-43e8-bd55-3997886b30c9
- Boundary
- Boundary
- false
- 0
-
1488
-160
78
20
-
1527
-150
- 1
- The graph labels as curve outlines
- 7882903a-cab6-42ee-9455-59c8a7ac3f51
- Labels
- Labels
- false
- 0
-
1488
-140
78
20
-
1527
-130
- 1
- True for input values outside of the X Axis domain bounds
False for input values inside of the X Axis domain bounds
- 9420d3cd-2bca-4698-b668-8394f1278ae6
- Out Of Bounds
- Out Of Bounds
- false
- 0
-
1488
-120
78
20
-
1527
-110
- 1
- True for input values on the X Axis which intersect a graph curve
False for input values on the X Axis which do not intersect a graph curve
- b332d9f5-5ec6-47d7-a2f2-f27c835511c1
- Intersected
- Intersected
- false
- 0
-
1488
-100
78
20
-
1527
-90
- 5edaea74-32cb-4586-bd72-66694eb73160
- Rotate Direction
- Rotate an object from one direction to another.
- f2c8bf1b-434d-40d9-b17f-dde7b0954fdc
- Rotate Direction
- Rotate Direction
-
1304
61
141
84
-
1372
103
- Base geometry
- 784f2777-4992-47e7-a14c-4c19068c5088
- Geometry
- Geometry
- true
- fbac77a5-b15a-4a25-8bf0-69012470613a
- 1
-
1306
63
51
20
-
1333
73
- Rotation center point
- 2aedc9bc-1ff6-4e49-ab6a-fda36e07f03b
- Center
- Center
- false
- d555e23e-9e4a-4b65-a9a5-ed4f528321e8
- 1
-
1306
83
51
20
-
1333
93
- 1
- 1
- {0}
-
0
0
0
- Initial direction
- c9021d34-0ab3-4a1b-9bea-46be287ebc4c
- From
- From
- false
- 0
-
1306
103
51
20
-
1333
113
- 1
- 1
- {0}
-
0
-1
0
- Final direction
- 56437f98-e7c5-41e8-adff-d94d15912ea9
- To
- To
- false
- 0
-
1306
123
51
20
-
1333
133
- 1
- 1
- {0}
-
0
1
0
- Rotated geometry
- 14b4e050-ea18-47db-ba6d-e5b4d260bbc3
- Geometry
- Geometry
- false
- 0
-
1387
63
56
40
-
1415
83
- Transformation data
- 2bb13c3b-3ce2-4fce-8e40-39dfbed3620c
- Transform
- Transform
- false
- 0
-
1387
103
56
40
-
1415
123
- 7f6a9d34-0470-4bb7-aadd-07496bcbe572
- Point On Curve
- Evaluates a curve at a specific location
- d555e23e-9e4a-4b65-a9a5-ed4f528321e8
- Point On Curve
- Point On Curve
- false
- fbac77a5-b15a-4a25-8bf0-69012470613a
- 1
- 1
-
1362.535
161.5368
80
20
- 2625b22f-bb17-4451-958b-d4a057c47ef8
- ab81fea9-8d16-4caf-af89-2736c660f36d
- Bounding Rectangle
- Solve oriented geometry bounding rectangle
- 7d0c7537-ce07-4d82-abce-9a3168080568
- Bounding Rectangle
- Bounding Rectangle
- true
-
1229
-84
139
44
-
1297
-62
- 1
- Geometry to Contain
- ab2c2819-ada9-43ef-80eb-cac34d2c6577
- Geometry
- Geometry
- false
- 3733e2e8-4bd3-44f1-8b68-31f8853c8921
- 1
-
1231
-82
51
20
-
1258
-72
- Orientation Plane
- 261f826f-be1e-4fd5-9ed5-96e27c7902c9
- Plane
- Plane
- true
- 0
-
1231
-62
51
20
-
1258
-52
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- 1
- The bounding rectangle
- 84afdc9e-4d24-423c-82c8-17155e3afd53
- Rectangle
- Rectangle
- false
- 0
-
1312
-82
54
40
-
1339
-62
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- a5e9aa2e-5826-4032-bd58-99b201fb8f42
- Join Curves
- Join Curves
-
1476
65
121
44
-
1539
87
- 1
- Curves to join
- 7da64321-d468-4a45-a949-1cc715ba600f
- Curves
- Curves
- false
- 14b4e050-ea18-47db-ba6d-e5b4d260bbc3
- fbac77a5-b15a-4a25-8bf0-69012470613a
- 2
-
1478
67
46
20
-
1502.5
77
- Preserve direction of input curves
- c10ca07b-1ee6-4cd3-92c6-ef2c53b4c024
- Preserve
- Preserve
- false
- 0
-
1478
87
46
20
-
1502.5
97
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- 3733e2e8-4bd3-44f1-8b68-31f8853c8921
- Curves
- Curves
- false
- 0
-
1554
67
41
40
-
1574.5
87
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 23de244f-bf52-43f7-802d-5ec15eb4453f
- Quick Graph
- Quick Graph
- false
- 0
- 8f345dd4-6e1a-454d-b922-7e33f01fee1c
- 1
-
1673
-142
50
50
-
1673.302
-141.6778
- -1
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 0c500c4b-1420-4ebb-99a0-41e3849d151a
- Panel
- Panel
- false
- 1
- 805f2edb-cc3f-4a58-b59f-743b168199fd
- 1
- Double click to edit panel content…
-
1675
-89
87
100
- 0
- 0
- 0
-
1675.588
-88.60313
-
255;255;250;90
- true
- true
- true
- false
- false
- true
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
- A VB.NET scriptable component
- ed8c365e-1c52-4bc0-86ec-29ba5d9b1caa
- DotNET VB Script (LEGACY)
- Turtle
- 0
- Dim i As Integer
Dim dir As New On3dVector(1, 0, 0)
Dim pos As New On3dVector(0, 0, 0)
Dim axis As New On3dVector(0, 0, 1)
Dim pnts As New List(Of On3dVector)
pnts.Add(pos)
For i = 0 To Forward.Count() - 1
Dim P As New On3dVector
dir.Rotate(Left(i), axis)
P = dir * Forward(i) + pnts(i)
pnts.Add(P)
Next
Points = pnts
-
1637
-503
115
44
-
1698
-481
- 1
- 1
- 2
- Script Variable Forward
- Script Variable Left
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- true
- true
- Forward
- Left
- true
- true
- 2
- Print, Reflect and Error streams
- Output parameter Points
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- true
- Output
- Points
- false
- false
- 1
- false
- Script Variable Forward
- 96f18e61-32b6-4978-bb73-342a344d899f
- Forward
- Forward
- true
- 1
- true
- 32d56380-25c9-4a6a-ab1e-4680580d80d4
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
1639
-501
44
20
-
1662.5
-491
- 1
- false
- Script Variable Left
- d581249e-acb0-43fc-93d2-e7d3c3cddfca
- Left
- Left
- true
- 1
- true
- 805f2edb-cc3f-4a58-b59f-743b168199fd
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
1639
-481
44
20
-
1662.5
-471
- Print, Reflect and Error streams
- ee27267c-1c16-45b9-8af6-4b14fad70ab5
- Output
- out
- false
- 0
-
1713
-501
37
20
-
1731.5
-491
- Output parameter Points
- 3c226f4c-dbc1-4ed0-85b3-d312596e2e17
- Points
- Points
- false
- 0
-
1713
-481
37
20
-
1731.5
-471
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- a481ac28-d9d7-4e6a-870a-188d20517392
- Series
- Series
-
1335
-422
64
64
-
1366
-390
- First number in the series
- 2db415e6-4717-4b58-a15d-0edd4790e563
- Start
- S
- false
- 0
-
1337
-420
14
20
-
1345.5
-410
- 1
- 1
- {0}
- 0
- Step size for each successive number
- c57564c4-07ee-4f14-9720-43cbfa16783e
- Step
- N
- false
- 21f67352-2275-44ca-8a96-3595d0453de1
- 1
-
1337
-400
14
20
-
1345.5
-390
- 1
- 1
- {0}
- 1
- Number of values in the series
- d8b0013f-6e9f-416d-ade9-3ec261500c59
- Count
- C
- false
- e6c6998b-7bbe-478c-bf22-fe333baae900
- 1
-
1337
-380
14
20
-
1345.5
-370
- 1
- 1
- {0}
- 500
- 1
- Series of numbers
- 102b1139-a452-4fbb-bfd8-adb85f89960b
- Series
- S
- false
- 0
-
1381
-420
16
60
-
1389
-390
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
- Duplicate data a predefined number of times.
- 366fcabf-44d4-4602-80e7-59d2c464cab8
- Duplicate Data
- Dup
-
1337
-500
65
64
-
1368
-468
- 1
- Data to duplicate
- 26b9a5bb-a5b3-4c42-8ec7-f14b99b5eb5f
- Data
- D
- false
- d06a9085-35c6-4c58-a62b-cdccdee066ed
- 1
-
1339
-498
14
20
-
1347.5
-488
- Number of duplicates
- 1135bcaa-a32f-474c-8a88-9685539ce711
- Number
- N
- false
- e6c6998b-7bbe-478c-bf22-fe333baae900
- 1
-
1339
-478
14
20
-
1347.5
-468
- 1
- 1
- {0}
- 500
- Retain list order
- f110e97f-6307-4816-9059-6b7448686d97
- Order
- O
- false
- 0
-
1339
-458
14
20
-
1347.5
-448
- 1
- 1
- {0}
- true
- 1
- Duplicated data
- 32d56380-25c9-4a6a-ab1e-4680580d80d4
- Data
- D
- false
- 0
-
1383
-498
17
60
-
1391.5
-468
- f5ea9d41-f062-487e-8dbf-7666ca53fbcd
- Interpolate
- Create an interpolated curve through a set of points.
- 83435610-396b-45c8-ac61-afe214859efc
- Interpolate
- IntCrv
-
1776
-502
65
64
-
1807
-470
- 1
- Interpolation points
- b005b9bb-1f1f-46a4-96d7-539c901886a2
- Vertices
- V
- false
- 3c226f4c-dbc1-4ed0-85b3-d312596e2e17
- 1
-
1778
-500
14
20
-
1786.5
-490
- Curve degree
- 848af7ee-736b-417c-a5cb-245f4205dceb
- Degree
- D
- false
- 0
-
1778
-480
14
20
-
1786.5
-470
- 1
- 1
- {0}
- 3
- Periodic curve
- 4ad08714-117c-472c-98f1-d373bdf86810
- Periodic
- P
- false
- 0
-
1778
-460
14
20
-
1786.5
-450
- 1
- 1
- {0}
- false
- Resulting nurbs curve
- 38cf4e17-ca6a-4dad-8a9a-b880812ed23a
- Curve
- C
- false
- 0
-
1822
-500
17
20
-
1830.5
-490
- Curve length
- 708bf809-e627-4372-b750-e832971359be
- Length
- L
- false
- 0
-
1822
-480
17
20
-
1830.5
-470
- Curve domain
- c44c79d5-855a-4389-82c7-dc385c6ec362
- Domain
- D
- false
- 0
-
1822
-460
17
20
-
1830.5
-450
- bc984576-7aa6-491f-a91d-e444c33675a7
- Graph Mapper
- Represents a numeric mapping function
Sine wave distribution
Sine wave distribution
Linear distribution
Linear distribution
Linear distribution
Linear distribution
- db82b695-c28d-498a-8d90-3227c158ad9a
- Graph Mapper
- Graph
- false
- 102b1139-a452-4fbb-bfd8-adb85f89960b
- 1
-
1449
-452
100
100
-
1449.388
-451.5771
- false
- 0
- 1
- 0
- 1
- 1
- 0
- 71629651-0343-46d7-ac9e-d6041f9fe66b
- Linear
- 0.25
- 0.75
- 0.25
- 0.75
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 21f67352-2275-44ca-8a96-3595d0453de1
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 1
- 0.00150038828
-
1060
-399
250
20
-
1060.219
-398.9518
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- e6c6998b-7bbe-478c-bf22-fe333baae900
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 11
- 99.2
-
1060
-440
250
20
-
1060.564
-439.1275
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- d06a9085-35c6-4c58-a62b-cdccdee066ed
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 1
- 1.00000000000
-
1060
-497
250
20
-
1060.206
-496.9203
- d1a28e95-cf96-4936-bf34-8bf142d731bf
- Construct Domain
- Create a numeric domain from two numeric extremes.
- aee65bfc-17c2-4339-b138-309a4e179191
- Construct Domain
- Construct Domain
-
1140
-331
143
44
-
1222
-309
- Start value of numeric domain
- 90af7879-9530-41ce-baf2-ad65a39a15c1
- Domain start
- Domain start
- false
- 0
-
1142
-329
65
20
-
1176
-319
- 1
- 1
- {0}
- 0
- End value of numeric domain
- 367fca02-9788-4182-bc68-2ec64f5f62d9
- Domain end
- Domain end
- false
- 7b31b4af-f791-41e1-b265-aeac6abb8237
- 1
-
1142
-309
65
20
-
1176
-299
- 1
- 1
- {0}
- 1
- Numeric domain between {A} and {B}
- dc040710-6476-4601-a4ac-a91e86071f0c
- Domain
- Domain
- false
- 0
-
1237
-329
44
40
-
1259
-309
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 7b31b4af-f791-41e1-b265-aeac6abb8237
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 8
- 0.1525
-
1022
-251
250
20
-
1022.388
-250.8098
- d1a28e95-cf96-4936-bf34-8bf142d731bf
- Construct Domain
- Create a numeric domain from two numeric extremes.
- 6697d1f5-126d-465b-9e49-f27e0a355acf
- Construct Domain
- Construct Domain
-
1142
-199
143
44
-
1224
-177
- Start value of numeric domain
- e3f095a5-e167-4e65-a69a-010eb1736806
- Domain start
- Domain start
- false
- 0
-
1144
-197
65
20
-
1178
-187
- 1
- 1
- {0}
- 0
- End value of numeric domain
- c1c6d7ef-8bc1-42af-bdca-780eee0fb64d
- Domain end
- Domain end
- false
- a4bde5d6-e053-421d-8330-18c99a954b18
- 1
-
1144
-177
65
20
-
1178
-167
- 1
- 1
- {0}
- 1
- Numeric domain between {A} and {B}
- b94d34e6-5bb8-451d-b47b-0aaf8569ad88
- Domain
- Domain
- false
- 0
-
1239
-197
44
40
-
1261
-177
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- a4bde5d6-e053-421d-8330-18c99a954b18
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 8
- 0.0625
-
1022
-130
250
20
-
1022.945
-129.8485
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 5071b8ad-8171-4016-94c9-f1d679f7ac79
- Quick Graph
- Quick Graph
- false
- 0
- 17475dde-3ce1-4bda-9b7e-bf0de4f30249
- 1
-
1673
-192
50
50
-
1673.858
-191.8802
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- b651f598-73d9-4b11-986d-f6efc831d0bd
- Quick Graph
- Quick Graph
- false
- 0
- 2b5fcc20-04cc-4c81-aff0-546d1bd70016
- 1
-
1673
-244
50
50
-
1673.234
-243.2632
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 792d8190-32f0-478d-9252-dc81e374ab16
- Quick Graph
- Quick Graph
- false
- 0
- 5c724fee-3b94-449a-a4bd-4f114c89e3bb
- 1
-
1672
-294
50
50
-
1672.61
-293.4656
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 48fea71a-fb74-4c7a-81c2-281ce4299a43
- Quick Graph
- Quick Graph
- false
- 0
- 3f7eed88-2037-47a0-befb-dcaee7db036f
- 1
-
1671
-344
50
50
-
1671.987
-343.6681
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- aef6f2d6-444e-4ec0-b611-2af9be278e74
- Quick Graph
- Quick Graph
- false
- 0
- 27d339de-5f5a-4cea-bc49-6784c09e157e
- 1
-
1671
-397
50
50
-
1671.363
-396.2314
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 6550d345-2259-4fb3-a8d0-21de828e7c83
- Quick Graph
- Quick Graph
- false
- 0
- 805f2edb-cc3f-4a58-b59f-743b168199fd
- 1
-
1671
-450
50
50
-
1671.919
-449.9753
- -1
-
iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAADKJSURBVHhe7Z1ncBVnuudnb+3n++l+nVA7NbtTd7dqb9XUzsz19bXHNuMBjMHkYA8mgwEBEpIA5ZxzzjrKOQcUkIQBkyQRREbYJudgYxvMjMfe3zl/u/cEhaOEx7N+q6vVp/vt7ref/5PfoJ/85MfyD0CBb34sP1gKfMt+tH/vj+UHSAGA+xHCHyBuVk3+EcIfNn60/kcIf4TwB0+BH/wH/CiFP0LoHAXeH60495hJrrVvAsVoCl82wmP279/P1Ulut+3jbKSQ91mXAwcO2J1x8ucHH3xg3W4+sqOjo6WlpXWowvnOzk7qTOl3Oj6cFra1tdXX1zc2NrI3SkNDg/VPx+O6ujrabHxgT08PtzjepZNU5i1TiqINhBXflUpLKSsrq6qq4kB742DIn5w0KpeUlHR0dMIBEA7Uu7q69uzZ09fXd/jw4YMOhZMA3N7ePokoSjJ4NW2An4x3HrIUfrKnVU1NTdeuXbty5crd78qdO3c4c/v2rYcPH7DdunXr5s2bt2/fvnfvno4pDx48oMHNzc28hYeD06lTp3jIRw5lcHCQp/Fp3d3dei/1JRg0b7K+1wbCS9+VCxcunDx5EuIeO3aM9p04cWJgYIAzHFj/5AzndZJjCgdUzM4ujIiIBReajoQlJCScOXPm+PHjUOHzzz9/bFu+/PJL7oIQ42ZVaAFRDKigEZIB4RAvuKqoqCgnJyc9PT05OTk+Pj42NjYyMjIuLm7Lli3l5eX9/f21tbVgibTxs7q6evfu1g8//Li7Bw744O5tALvPw6mze/du8Lt+/ToQ0tqAgACYkoPg4GDw4+qNGzfu378vZnj48OHp06eB7enTp4Dt6+tbXFxcWFgIcyMmNTU1vJEW0k5aK8biYHyg2kDIi1Xgu48//hgmOnv27OXLl0H0ww8/BN+LFy/y8/z58zAcP6lANX6qMoWrg4MXi4urt271dHXdBslCQkI2bNgAK/CRQHX16lUqX712jY2HcAxRYE/I7TyEkjAw48vZQwg0GwBkZmaCEG/08/ODav7+/kFBQeHh4dHR0bBRSkpKWlpaVlYWiObn5wOkyWSC+rAgYEhJsKeRlPnveE+bvTE5q+z4iYHTp07xIlhQ38gngHRqairNcHV19fT0hDjcyJ7Ph3RIHgdwLV/NT+DfuXNnXl4ebMRdSUlJkCUmJiYqKoo20LbExESaxDNhd2kI50lhHxcaZhkCwRGwMNQxThp2WwfWe+ufqIrQ0Bhf3+D29jbq0CBYj5ahowDs2tWrd+7dOwU9jh69DP2uXIEiXIVV1W5rv8dOGUoX0TbUMuyPeEGO0NBQ0PLx8QEt6AKKpaWlXBWPG9Kpe0WgI0eOHD16lD2iACQwKKxJgaUgPUhcuXwpPLbwpZlbpy8NTMkovHnjGi0X16rwcJoKi4AKLUfgUDDUgeMhGm/ho3iU5fuuYAupDH9I2lTkLqDMuR0LlZubC5NFRESAKMfcQn0a74x/YCOFEMW6wKrIvt1JZ35mZ+fs3t1GK9V0vormomb5qrLKSt/Nm1e98EJNQcHHV65ASk6ib/kMPkysw13SwFAKKqN2YAL4FMBg28DAQABDzgAP/i0oKEAHAir3CiTeO6SxoQ1icJwqvAzuhVjgh8yBQW9vL69DlHkjJ8+cPhEZk77wbY/6hubdra2IiBwWtAVg06SNGzciRrQWyeYrUANAy6u9vb137drFi2RcwJJPg4zyDOyKxMDQpfzkLRkZGWgO1AnHUG9U7WoDIS2wLiLHOIrAQAi4l49/7733OAPD8lU7vL3/2z//8yv/8i+tlZWnz50TEam8atUqhAkdiI2hwOBShuzBLCwsDPbEmKGOoAgY6OGSLWesCNXgCcjNw+EAXrR+/XqaJKuPRUcT0lQ8OICULj179nRf7xGMuyjLJZDDkp07dw5Bd3Nzg76cATAMKmzKeZrKQ+AqCicBDAixgnwFlZ0RKUgh+YOZ+GpULndJGIYrUxjaw1/YP/Qb4sIxtgE+hRD/5Z/+6b/+5CcxO3Z8dOUK1gJVhoMHQnw8FEE+oBeiwL2cRxy5V2gZTp2EdVT2NL4Z/CC9h4cHcgMHSGR5Mgwh+CUNUrO8yzijq+x1ydiDEM3jPHfxECSYT4MboDt6AgeH5yOsgMpJ0OWjnNSKRpvlncHi8Bwsy/H3ACHfnI1vWlgoxYjXY/FXBzDvdfX1cl7RYNgP5APtL3kyglEZwu7uLoB0vjiGlzwQnsDvgL7YPyNm5eHYIVjKCKU4UGjkWKqrzWGVavIcNKosNw9HyGg5P7HvACY3no8CV94FirCmdRzpjCwadWgw70JtgOKQqtjenRnT00etLOXJF8KYaCfsGRwNZnwncKK++GYKUCoAsONTKoMr+YDm5lbEUhvHjY3NjY1NdhuXWlp2d3X1cN6uYdARtYmbg8Wyu6TA0chXcAylaAylrc287+jZ29ndvbutDa0go2XcIvxQG3ibQIhcoopxbo3Qi8bDwXwpfi8KFmqMSrEhK3AjTI8yGy6UtFGkSMNECgqKwhP27sUVNPsO2B7cHwybzsNT+kLrAqh8LYJiByE/Gxoam5pa8SHAprsbUe6prKxub+/s6EA0rbc96NrS0vKYmPi2NrMTZOhYPpufXl5e7Ef21LmKrHB7TU1DRUV1ZWVNVW1DQWRMfnxSR2v74SN9jmEPt6AecCMN58X4Lj4TRPleQQiWI9uzkdHlOUQjhEND8oENhLTSKMivfDBjP+pPND56hiekpmagk9CZWDg9EC2kYMCRReSOotMcIUSkiIahwsOHjz755NPPPvsMz+Pu3fsPH35ibA8ePHry5Mtr126kpqbl5pqqq+s6OzsMCBEUPgFzMqrtFIT19U2hoRFlZZU1ze3ZLlvTlr6dFBmTEJd08FDvkJErwNByvBsEBYVpXRBQnURXj9UQ2iFK26Ab3s2Q5t8Gwk++KyQgSDGQVVKuwThwPMklYnMF+xgArDrhU1FRlbd34I4dngRqMA4vho580pBF/rojG0oKMzNzgeH8eVz/0wMDp4gbb968Y7199tmTwcGPwsMjBwc/7OzsKSoqtc64ci+MhRYaAULFjr29R/FQiorID+TuP3DkcP+p2pVrPujc29LRk5Wdv2fP+01NjUPKsRQ+9w5Z0MwEf857XsOJI2QkowQBHbnBBkLAoJBcwBVW0K3g1FIuGz8Vtxp1AA8IAQ+ViCYhaZObW+LqusPFZTOMI88N1Tpc4dKQhhq7gwpIS8veu3cfHj5ZvGPHBs6fH7xxg/THLct28969R9XVtR4enlR4/PiLmppGk6kEUTdIxgdjxvDpkXVHOipjiRjhc6WlpeLy5OUVJyVldHTu6+rcV7ViTVfH3qrqxuTkTFLxw0EI0a3TEUMej88KWt8FhChSvF9H19QGQkT+u1LOAa6X5af2/++nzhtXObB4apU4LPgvpMT9/UNTUjJIlqJhSDp0dXWjEnEOmptb8EfsNtwTpM2RwSFvVVVNeHh8f//A5cs3Ll26+uGHV0nhIfAXLsA0ZLNukMF9553l2dl5N2/e++ija/n5pSkpWTixBlocoL2JL1GS1vzLeYiCAkBACcaVJSDCi49PCwmJrqxursovK172bk1DR05OcXBwdFlZbXMzHo1T6ZKJA+b4BLjNwmdpjubQBkK+c4IFvQFTW7pXiLT2I4JhYaHp6ZkHDvQ3N+/p7z/b13fGbjt69HRpaYVjMACE+BS7doUQ7J46dfHEiXMnT55jb9nOkpc9eLDX2zuAEB9QuXTu3EcpKbkxMcmItbXAIWcEajCTtUMBL8NtpDfxNVB0FkXaiwYGTZetuxIyy5K9w9LeWpyUXREamrB5847Y2AykeYImbSLQ0kJ8e9o8CoSGez3xA0XEGLnt2928vPxyc6u9vMKKihoLCxsKCxuLivBTdNyQn1+Xm1uAB2t8oUJpPLqCgqKdO4OA8PTpi4CkTfh98MFRX1+clIMk3nUeINPS8oKDo+jaspZpvpkEN2kO4+MVAxDp46YSxqkynwz7evuEL5v/ttuqjTv/z797LnnXwzt0/fqtK1duio3NdAx7JgLJWO+lzWhRPNsxSCHyhAwZfbTDddg6duJaunA7kEKoQ7qvoMCEg2oy1YEf6UxBCKL5+bWcYcvLq8nLI4VoTrgougd4wrjAwIAtW7YFBESR2iSYBDm248fPIm3g6+PjT0fNhQsfHz9+RpdQrRkZJje3XXFxsdbZLB6IwsQcGrl4xA6dibtoTQ5LhNAeFBS9cc3WjctWb1q+YeNWr00bPTZscHN19QsIiHb0mccKw0Tq01TiCkyVY3Bio0gV1aqAH/6P4WUZTpe196Vj9iqqDCFSUzMJBvr7+3CiEC98/fT0sqysciDMz69PSsrBU0XpZWdXZWVV5ObWYDiPHDHnc7GomCWMEzdaUAz28iI5R8r4AuCB1rlzH6LzEOu9ew8ii5yxnDdDyKW0tHwPDx+Yxvo7eSyeFAkOvGLJN+l73uLoF4BiUVFxvqkov7DEvOUXshUUFNM3lZ6eMaRDNBFUxnQvX0TiWxkGuxttICTwonzxxRf0barzhUwKDippTPq9OMmB9mYP9fJl+a7UZE8fDT9xaPFICZN27vQLCgp0d3fHFnp44CbkYlEALCQkJiMjPSEhLiEhKzQ02ccnori4eedOn0WLFv75z3+mZ1F5S5jOkjuudXf3QzgHBs6BFq/dt++wt7dZ/gDs2LHTx48b25mzZwcTEzMjIuIRaLuPlEeOOlWek0wpuUc7jQRpkDNyCA0NzaRpySfU1TEgg07jWrTs8eMDY+rRHBM8o1aWU0aSa/S4kB4viqXb1tzZi4UnN610LXBykuDByN5yTAFjruqkrl68eAH16e7uTVyIH1FcXITRQgpTUgoBMj4+jpOoR7RCWhoefEFWVqWvLx2z5qw8QQhhOClKdY/g5gAhAmeB8Gx9fYuPT8CePfvAr7+fGMOMH3ttZ84MJiRkhIbG2rkzEIhH8UzpUgqvQMHYRTKcxyjU1jaGhUVWVqJlG0nTgGJWVm5iYuqBA4e/RwgtpCjFZx49O2P0BeL8UGBbHFkOUMG6pPPWhZNcNc7ws7S0JCgozGQq4pvpHqITn+OEhPzMzPLk5EKMTXBwHIimp5datrKEBFNmZt6xY/2kkRARwhUcDQQC1UrOzM3NF58TCa+vb50xY0ZFRS2yCH79/afZoz9PnjxvsYVmdyYhIZOQwBFCMS+6FCuLUiXGsB6SJM+L0N4SIJZmZOTiQGFu8ZjYNzW10TxC++8RQkw7WgQrM2QAPawtxBziZGtg0lgLkZlFm72P7CN2jH+Iisrw84tOS0PyStmnpBQZW3x8PvG7of1IRtNcTDceaUlJuaur96FDfQcOHMV/AT8LeN9uqFZoXV/f3NrawdbZ2R0UFMmAAUcIwQ/+JULlsWgkxJG9YnDO493ANzh727Zty8tjJEB6R8feri7Sgfu6uwlsGgj2cdG+LwhpJCgMl13j02wgHDXL4HwFHi2tFR0d5eLiGheXGxQUjxQmJdlvsbG5KSmZRIEyCdAU2UVp4A0VFyOR/q2tnYGBId3d+5FFi1OKC2PeiDTIqJEdQ39fuMCQlus5OYX+/iQSbeJCPVZ+KT0GeAQoUkURFHxmXBvGA6BvIBNhJXxQVlZfWdlEupfcbVZWYWBgZElJtSW0n9oRoUMaRUQQz264HLc9hKPa1bFWAPK+vt64uCRf35jQ0JTg4CTHjUtJSWkMENDD0fvQ1NJ304siXbfOdfXqtVhBAvmuLsSCHsRvN9wcOlPpLzp79jw9j4ODl8jm+/qGojUdzb7OAB6ODH1P6jQGM+QS1QqZkH5Ek9B+82bP+PjsxMS8hITcpCQCzbhNm0j2pn8vob3cabwHqY0h6T+FvfZ6H5xL31teHmmQApOp0HHjktEjCmUJSwjaUN2II90dGzd6rlmzzd3df8uWXXbb1q1ekNvNzQdJZaOOi8uuyMgEy8isIb6WByJtZNToHgIz/FK8X5BTZYX2Pj5hS5as3LJlp6ur17Ztu9ivXetCaE+M872E9rQTDQ+fjTBuY8ohFIrfjR/TACWbwiUjNUNDUaF0Ual/AwZEEInMFKI5bjhKnMzLKzC2EfrH5Zdu3ryZAAvjx1twoAy+ppHkx4l5tmzxsuWVne7ugf7+EfirzznBZi2CI+jw5wGhk+oXAuEo4o4aKWlLvoZRM4xbcXYbgcoWkPYQemowlSMkiC/Z++LiUrxs81bIvrSspq6opDwnJ3dS+oycJIWqwdAj9PQaj7KBUA7I+Iqsy5iaaFcZyWPwHX7juMcojPx2mocg4nYyftBRNfHVWLs9exgYUMNWU11X29hSW9+Utt29ubTi5KlzjY3jH28+DrLIpoww3mJoCAlozWOT6up0wKHV/rtzQ/2lg5q70HvjaKtuQbfSaUXXgYasjfs5I9+I5SNhNHv2bD7CLsHGSy05xYbIyFgClZa2roby6ty35sUvX5EQk7D/A8YNN05dwxybLWtNRD/C2DXdZSOFxMvHjtEZNKDYmcHpZD16e09yTAStVCRnLGG1zTYwcAHXn3Ea47MWkAb4d+zY4UyLJ4Iuxo9+3QULFljrDN6uziaSqCZTMaE9abxDJ87WbdjUmZLZuu9wZlZ+RwcDq54fhOghSEFU7YxCsoEQB9rPL8LTMzAlxRQTk+HjE06WmUHujPZn6HNOTmVOTkVJSVNlZXtVVQd7q42u0TI6NsYHIQ3FODnZ4nFDqEB+3rx5TIghb8BzjNCeoBAfZ926dYT2iYnp7R3vM/6mcvmqrp6DlZXk5Rl13/HcIBRDE//gGThDTxsIyXiRU2MjH52RwTE5FPMxPUQuLjvDQpN9fSOpExubFR2dmZhoSkoykfYkfjKZ6nG7s7IyoRFlTKO1xHFTrUIBjBchZ7/73e/o+0YcoRTxPi47MQyRKAcREZGREQn+/uFF9R0lO/wK/ry6rJ4B4Pm+vmGFheYBWs9HkSqdRsDjjAjaK1KQYLN0CdXSB8QBP+nP48B1m09UeJrL5h0JCXkhIYkeHgE7djBkIZzgDApkZ1cmJeWuWrUyIiKcbDUpU3X+jSoxcBmeHl4og9ggKIZwsooSSUYDeDikQYu+/vrrBJ1qG8iRbANXfmImaQldvpv4xrdXp0ybmRCdnpBkCgqK3bjRg9D++fQXAhs+AW6dk/jZQ+jvH0Mmk+51Hx9m4OUgc2yczMmsXL3V9dXCLdN8VoX5J9K3kJFRRtra2JDUsLAkOuoAgNiLCJqEAk0ZdSIBDSXQRolBPuuuR6MP0u5Ao/SpbDe+27G+AkRYBHiwcxwg6K+99hrJbn6CLuChuoFWOuPb0D4getm//XbLCy+7uPls3ua1xWXH6tWb1GuPO+OMWhuVa0eoQIP5NFQoX+f8u2wUqbd3hL9/rIdHkK9vVExMFj/BMjAwjtx0fGJ+RHJWVGI23UOpqcVsKSnmTQdUiIxMa2lptgyoP4CagqY4xEMOFDC+AYAJsaEpZ9D+T548+fTTTzV/lGMK8yt10ijMMGUmJl1g9F8yH1NTMjnDLdbVnj17BjnQz7AUqVGgWrhw4cqVK+mjgLGAkNCQkxpIr/YAKuQLCoz02hHsExyHH+DjHebjF+kXEB0UkhAQQGhvM4BqIlANdy8MTavQYc6LoL0URkdnIXzsw8PT6I9lz0YeMTg4MTQkOSwkJSw0JSRkiDxnSAhmMsI6i6jBmVCKxJp1gzgvYwlmqCaFaGRkILempgIPzdKUbkVyIGQUMINF0NWkOnkyePDB8CzDWa2rMQ6Wan/84x9///vfY/xeeuklwkHYBXFnwgODiBBBWmJn25hOzrDHnr0HEPX2ts6Onn2tDc31RaVduzsOHx56KPAkAsknMwEPKziq6rJ7qY0Ubtq0mbmxqanpJCkYAMjgQlIVdBeOutGryIx8u0crRaDOAQgq949jOgeIeKDm6tWrmbdGu6EvPiF0Z0gA/cYQl34u7kUZAo8GA7BX4Ri01CnN4FWNaLWuQB0QJRED0sBGdyZIkzGYM2cO8x94L/4L0mmnqWieRZN3kpTPyMguqajOQRP9aUbsLp9Qv8C+/pPGVJhJhM14FJyqyd989VgzJDYQQi9IydcygignJ5uH0gfEAAg0j2XIAtOlhtvMMxEdvw1Jon8cr4HbaZz65ZEeTaKAoJCSh7MHWkRQYGiFAgoTgzXv2bpQRyAhkcytpb6mR3Osu7jKjSIEcxvwU0g78F6MNLJOvzEcA4sYDaamdAaKobq6PiMjh+xC35nBpu2e3bmm9/tOpqZn00kChNbD7CYRSCkDZp6glsbkzKsN9gk2C1QHITFYQnFlvFBW8uK46ryZ1Quwiwx2khzQ76WoA13Bk5XlgnDqW4b64AFCRtHYHOsCTgg0TyNKw8iBDRyG9FjmIpnnH1FAFAPJM3F0eYVmP6v96E/N3yRHw11qDBAi7rAaIQWj8RlM3Nq6Z9+R4zUbNneW17a298THpxAXWiCckqHA8ung7LGq0CEgNDhLIQGPRj7o72cEhgiB0lOfi2aiOsOJSl4TTcMQmh7GGdgNbYb7wHMovIUzGrODktTAKi0nYjsp4Aon0Z+ylDwWw8bgHfY0lb16QBj+gxSCGVKO5HGgCbfMb1IClmagzPkinoAZBldcKlQF834TE9OiopIqqxqbW7vLlq9qrGyorGpmJABTCuvqpgRCWJzGQJzx4TeEFNrluOWU883wPgxOvIlI4TXxViRAzueoWJIKgZoQSxDyQFgBmwRxkXUcEyY9Y7R4FLyiWb6MwWFPNRhIKIIrBXjAGIQo6FIJrvQtBeFDCVONvaZwCF2CTrJ3hDpykTgD9yxduhRnipPInwZ0M4Y4JDh66zavhOS89BRT5uwF6ZkldP+6uOyIjk4nDzzk0BVn+HgEF5S24brLVxjfo4adnGY9UY1j8KN3BnUH58LajI2AeQEGD4qrI2dkuAoY4ITZo5XsEQj67WA9zSFFvnE6wIbpopo0CukRHfiJGW4CTwUp5DyuipasoAITcWgYXAI8MBPeEJCjb+EPZI4hoxAIideqG9IfsAViB36wI08T+SgM+cFu/HnpKo9tu/zfnO//+iyfkDgPD7933llL1FtVVT25EPI0iAkZxxQFOsJsA6GRGYErrbMk/NRaSdgPLeUkjxzaIUOsTxIYGIT0DJd/slCn+5133gFsSA9ZFy9ejF2UiEgyeLK1IZQV1BkNjVThPBjQz4DooBKwYWCA2cNQ0Tx4C1ypgxRykoGpuL5YPsRROpYWgis2EjvKLZoUL6JY+le7wsLjV729YeXct9f+6a01q7esWbtt5crNa9e6EiIz72ccvsZwgmW46459JmOVRRsIcetx89hbHxCuoaAwOVrpB+pwjMTg0N+8eaO//xjrUCxfvoIc8QjcBHJ4zAzThrKKXomyZQuhC+RDaEBLr5AhNKygNYRU4LxCQIRSGHNMffbyTqlDI3kgMCPxgKq3ADDSD2y0gfbATziBoGtoMODMzzcVFlUWldYUlNUWFFYUmMoKi6sqalqY9TG5QQW8C3vBzeM2gQbSNhBqFrz2RtFgXwpvheXNa7KcYej0WWYT4n2QwyJT6ucXoDXJRmA6BJGVSdAbSAAUxAihh9nj6JPEwRaCAWgxlFjqDhlFi1KslzbT8jw0gGZoOR8OtDgVxajJo+AnFANNomGGOkUiwZLnU5BaILQeZo926ejYw4RFFohiFQXGfJRX1xbkmaI3bjpz9mJDY+O4zZUdWTTxGn0wcfzs3Rk53NbFPGjJUvAvcGHQfjggFM5oVSHOhIZG8fGj5oRoN1C98sorUE2ZSa3fg1AuX74crYjogAEQgjE/kVRIj+gIHhVkDhXEc1DgVNCIXpgAU0dlGU6qIY5AuGLFCkDC7BEUGupU1ARCTeCWCv0uJ07CaHdyMlMk67oZLbcPr2df4aIlgavWdr1/kEmQkwIhsEE6HGCpn7GqzVFsoWzecEU+nt1VCx7OLrmJYJGoxLnAZ6EpmjtB0SJWwKPlsaQ5JVVa+826IPooAC3fh0RKH1CI4oFf9YEQO42rJeMNsWRxKepjQsGiZolNIaj652gPiWyGUaWn5zQ27D5w5Dgdv7VL326OS07NK2LRO4KKiXc20QwYF1UkNpo4fvZSOClPHOEhEkTyI7iC+JCGgwcfQGtjLT5HzLR+nQpXFS+CEwda2U8pG36qDgcoBlqixfHkNMkZQXDxIJBaOAnFjg7AZUVYsZErVrwbE5PAtOzK2hZ6fSvmL2qMims/cJRF+KqrWUdsWH/NSbrxvVhotAIfO4me0XMdwaYh1cQSa9aswbXBn1Q3HtyNIEqLUow1FhUI6qQKP6EXChzbqfUveQjKVkN+tECaFitECnmFBmFidYhb1DsIBdGf8BDpWX5yr7xTy3Mq6fja5ROWkpxjmjkn2827sLY9N7fM09OftQpZL2UicqPkJ7zC60Y1Ok7yhKrZQCg7P+4yqmanAmpN6S7CMigInFhThldjdKVIUY98JPKKqVPCTKoVDcm6l4gb69ZotSgtiEQQCXX4qUSdZlchhVwlJQR4eEx00xOYInlApQVo4BsMJMAra0Hhq5HV5NScNSs2Bf/uxfh1W2PSi+npjYxMWbduK71vJSVlxqyBMZFY5tYYpT4pLox1A2wghJHHVzSqzZmRlnwALgyWz9w5FxTEAW/ENYXE0opAAjVxfdWLi1eiBWebd7dVxMV2VFWiQHE4lTiVU2oE/jxBa6FxkntBVAl6Q5EClfqBuYqM8nBr84acxCdnr/rTW6umzdzo7r9xo/umTR7r17stW7Y6KCiR3phxQ8hXk43SgI+xwj9qfRsIWUBCW18fo9YYxzbAeDWOjx49bjnJcoEne3tPOG5cYsQ2OmnUXD7kAw/8CEBC7yGIGnsPB0B9hTRau1a+DDghXmEs7hgenuK1q6W25khvL9oPMJSg0UxEbB57oYWDA7Q8HLbAynK7/CYqCDAOEHGMn122BXOZm5O/zc3H1dOfofjG5u7ht2WLZ0mJzYILo1LWqEAjSUKhuidd/oZQpHFx5Fszw8Iw6XkFBTUREfT6JsbHZ9XW7ikpYVkrFqDczXFjI84b6zsyLo85sez3snGVWMoZPlVUCwyICCZQkSJAGvNMrcNTvBezBa0oN7m7llVXd9G/392NeiTCoRBIULQ8j6Y58hPmQC45uWzZMq0NjKJWrzLVeDvvRSYgq+PonqamZjoN8Vxqa+vNGwszNjY3tezuNs/+HU9QAWzEMzRgskKIUYIKyyzc3MhIlrE2j65g7EVUlPmYQVDbtnkzAiMgIJZhbQycoXPfGEHDZF2WP2DWYHIyq6KY1zsY2ZryVdgkTWmgQFaSJsR5iB0JBKIFxEtpUkJ4zhzp64vd4lLo4VaYmlLb0CDNibwSSHBVy/pqZV+OxQfIMVIIolo/GHRJoNP5jPLE+vJ2jvFf7CBkTgXdVsys50NwmBiQX1rbkBEWsWPGzP4TZ8gTj2rs7eirDDs8pC5J5wV3TDVtFGlBQQMbK1IwZC0vr9ayQIVlmYqiRg/3gNigtJ2ugfEJZphdXZlPFLhzZzDQWmZz5TLobeNGF7heC0+PXJAJZWqoDHFJzrEXhCAH9flmLIfSCAB58PARuvUO9XQftyz/ihhpdrgyR+AN6sSFHAt1sES+lf6GS6Rg1dmCg7p161ZGAyMc6viVpRTnNTa2EBeycs7BD3oPnTizt6ahfN6COP/gzh7W4WjEWDpPXJ7J63CAecvk5sft2mADYVhYMtMl2QcGxloG0ZB5SUL4MtJK17q4/Sl72zSvlYHe0YxX0wgoy7jTIg6QS4aVhoaGMxrYWPpiuGXJNAqNblutkMgx4gJBFbODAQWcCP+BSvP9Nauf9VkRL83xBGACBtQme631xxPI6WhmOehSbe3atfSoSBbBSY4MLAK70PeEMkcoUXG4rDwHcWGgQnp6Nt5rfV3L/r6BPeW1VbPntlXUJWXlN9TvHlNoD2Z8F/jBSY7q2nk+cKamDYQI1q5dYdu3Y8x96FRnOQrGi7q7ByQmmCJjMz3TE7wSELEcdKYgtNpKGDTFbCCtPWLX6ej4kzoIB9kTgFSQBMVxQ7RMtooysTppFC3zJr8AGvEcjTGkgpZwRRw5g3QCKh4vSOO24PFa1hHrUmcFHID3RANgJq3RToBPWbduLWN6EuJTS+tam0ylJTNmNRVXNe/ZHxHOZLY6+gtHddZEcelMGBR7P7kh4JCI2kAYFcU/CWCBhwI2IImKYtR2Nvvw8PSoyMzY8KyYiOyISBb/No9ss94iIhgTFstaaM5zHN+JNSLclpJBeYKZARVSqCU07CDkvBbhUAZHuRjZP0OCJbVav1suK6IAQowjBTmAR/gU/wCnFKnc2p6e7qioBNedwXHeIdkvT8uITM4urktPK3Bz846MTMVZc1wOxZGmSuDBN+iDKXJBR1Kk0dFxzItfv34TC8FERxN0Y+GKSBuyBB+DghjXZdkPuaGCsljBd0xZRMWI+BqkK3FnoLu6JoQT8SJcTHONk8IVPFCYqGsNeNG/NAAtJU5VkEKlgZTHUg6ImvhNKDfEbkjhAKGktNwVc9/2+p//O8TDPyg6LTgolvVV3n13PaE9g/lG9bdhC/nb5CueD3722RnsOk47E5Ty8phmTjjB6iJpLHvI2CIusX4B899Rlco42m2cHBN+vJv6yAT+PcNYsE9arN74rzOABFQUreit80BLqAcYoKvVTTF1SrYhr8btWhEb38o6FQlN0ZyzZs1C9PkSR/cSPZmQnLVi1uK35yxduWE7nb0rV7q8++7GZcvWeHnxf0mKRoWQV6Cx4cvnhp89hEoFGYEwrhRGHobCvYTK+qcQaDyqyYsbK2aOaodPJbxDLKA48BgYYPBkEfXfHqzPq7NQ7ih7ZFfuj3U14KSddgtY0lr0J+qUmRW8lFfboQhC9K3lFVQUldYWmJggXl5U0VBUXlde0ZCamsOo2pEdSw1kQgQhzljDD2fcluHqDD3wQqMu0E6yFkqxA6eaSHYRTwQvDjKp82/cTjOfirso/0Kuior6khwL5zV8DTCwpuzxMB3X+wZC6VjrhvEh2Cd4ke+imwKOVCxhkIaWWBZN3U06tBohb2g2BQTlBgTmp6afO39p5NCeVpHmVQg/cc4eE6I2EDouvKxRKhQcdwQFzNS3R2qD5hKew7bYSPTYuFmPj0eL8iikCsy0bL6cTPUF6qTg5Ce6l7cjuKgHYgbwoKYd2MglmhaBs1aktBB1AheiRUELj5EAH9VKAwASZrKMhdzNP3cirm/r3lcVl5S3cElteXVoUBhLhgy57q1ozRNwrbUC+NSF8E5JoYby2RWG+GmcPCSGWOQtUV+c0SgjaB0dnbZ48ZJdu8xDs8fBgEoBI9YYMOGHYGlpfWI+TJ1OGoWrFIGq8FH46aSKILT+Nzvq7wU2rb6m/BEcwFAoXq0cvWUwO2uK5bJo16GT55u9/dsT0/YfO52cbF79abi4EFGGv7G7sMW4tdGYxG4kj1QzE7RCt7FOt7oFgE1OPxBq3Ao+vWU82RFSqS4u5m4d66FEzrcJQcEdRTiQMMFDwQxDEZxS4kWBahQiPyMDh2BxDBPoP54ZiPIoyGq90JpiGMIJHis+k/fISY0GRobWrFkdF5eYmppdVdXQffh4jYtrS3pOew+rSCbV1rbQI+kYF9J45Fj/CmQSe3Gdp569OyO1abceglZPgJQYP2RC/1XT6GJFVtzdfeij0IjpcRQNeuC9SBIPUZF5k5NinNR5TazBsQIhdCnuKMfoVYITDhBfrnIj2h5UDLJyQE3H3glLN6HZ+8DY84F0+fr5haenm0pr2wqWvVuclFVYUuftTYrAZOmHsclzInPILvIHiZwPiMdBopFvGUN/IcgN2Zs48TV10MDwBJiBkCFtMoH81D8XVAFFKK5/qsYBN8ox1hq4Ok/hORgnLJ8BIZWBFo09ZESoMJ8RGsnJWWvXuQaFJcXHZiZPm5EQkxETm8nCwMycJXixDiqUcoJLnJkJO+mwWT9wcnrtJ9JECIFgIUCagiTPQkMxEFAY3xyNWhVwNcY7GSGHwg/DFgIhHhYiYthmkCPSH3KFeaPx5i7fhIzlS1avnv/21hf+sOVPb252Y9C3+5IlKwID41nn2GAIGgjr4JkjuFPRizsmeo557Iz8ggkW6yZCAnqAoS9ih1+Ot0k4j0jhptKrQLet4JMJRCg1I0DTmjReBg5AD2u4hmoCIREFtxtEh+L6744jaDy8nOwck4d7hNuWILetwW47ot3cyBiHe3pGeXpG5+VXvv8+S+0d3NN1sLvncEQE0xCzSHSMidxTUXlsEIKc/o3BRApPsI58kTOoj/Op/3MEABI7DqyFT8fIGXoSkwzMGD8NcwVRfoIZFXQvj8LykU6zhpA0KUIzAoRMMmxursvJfq/AtMGUv9GU/555y3uvrGRTUcH6uhr3mmrPmiqP2mrP8tJtCfGLm5pKCJunApUxPdMpCCVzkENjh+S+WzvxiuQMXx950kh4iY514TyYWS8AIncGFOUs6F3GgWOaQ9kGDSrUnhvllxpfzkn8LOv/GogiJXjAHI7QdYBnU1mR23voj2dOvnb6+B/Pnny999Cr+Tm/qSz9bUPNv5cU/ObwgZcHjr12ou/Vk/2vnjnxh+rKYGLCMZF7KiqPAiEUhExQGfUFRVB39JhDLPWvqm8IF4M98y64JJtESM5MDFZqN5Yw4J9B6ZiTRJM4L4aV4gDR0dKuAIl3MI6CwKF4cbh0LxKJarUOUvkKBF1rLA5HRyCsrso7emjGqePTB47NPHV85rGj0/f1TGuoeam18Q/N9S+f6OPSTC6Zr/a/VlcT9vcOIfgBnpJqeHd4X0yOJTrE9mjkGUEVYEA4fkIjTBoncdzpUMU51IBdIshv/+fTdwPN8PhRfcCmXh6YAy8D14CITRmvsRbuwnbCAShYjTBW5G4NlaVHvlGz7IfLP9CfUVaaU1zwHzUVL1SWvlhR+mJV+YvVFf8JhPXVL9VV/Wd1+YtVZS9WlnHpP0qLflNgYmr85I9IG6ukjiSFctaBDe9ONgbu5kAjdDXJiOhe0xiAlggXdNFpyAHyhO9AfWCGssgExokwDpVLZoCa8ATBHGIB8MjHBFNT8mOxdjxzuCwl5+kEhiOH8yH3HzhcXZXb3v5qa/vLBz94fW/PtPffn9Z/dEZr+yudXa9yvHfvtI49r7Z3vnKsd/rpE9OqfhCKFNIgZ3w53h2ChYFBi6p/FW0pp19ddKhT5IDKCMT27dvBDLDhACqwpyZngFMBO4kuFpvWf0g1guuxcp9dfRgOsZZA8zrHXInGztA2+a5DWdlDDXV59+7Mv3t/7uePFz1+tPDRo4VPPl/84P6Ce/fm3707/+HDBZ88Wnj9xty/frnkm28Wtu+OYETcBJs98dtHd2egBV+LL4e9YXw0UCkaY4+0kZ0iDAAPmsLEXYY4aHwRQConp850Qa60NQ/U/DRoOo6c6sjfDIfp/5bCHI5mD5VLm9ErNFgJNoms4Ny3/3Bdbd6juwu+/suSv36x5Mmni/725dKvnpg3HXz95bK/PlnCMfu/PJnbBoTdf/fujOilr+VA/1JSI6YpDHowRjwoD250Mqg/z7FwLxIAHacuIwyKaH7yXkzIdux61cAy+ihQ5qS5tZ4Cn2buJT3cX1mePjAwvf/k6zevvTV48c1Ll968c3PesYHpp8/OPH9x1tlzb5y7MKvvxPR7t+d9+fituhq/HwyEApKPxONAU6FX6WmioDnRWiocU/BluAqB9L/QVc26SCfbdcZOXJnYPQGcUPv4X8SLjl27fAjCh2InNU8dsERqae3Onb47PNc+uLP40f35D+7Mv397/oO73253bs27eX3u/TvzH95bcO/2/E8fLPjq6cKE+HczM4uewwCnkekzuiK1vh+PhrjiZz/72a9+9av/bls4M3369EWLFjGygWV3X3jhhV/+8pd2dfj505/+FBdGy4FOaZGWpoNXC104amwNTpDLhlNtyQ8UR0R4PLy78PGnC59+tvizRwu//GIxavPThwu/eLzo2RdLvvxiCQby00cL//p0ydd/W5SdtaGsrHHq1ImT9BkbhBgwpPAXv/gFYPwP28KZF198kUm8r776Kouf/fa3v/1flvLrX//auuLPf/5zaAorONm+iVQDHsDjdQDpGGYYT6aawpjDh4+3NJsufzzrzODMB/fm37w59/rNuY8/WXjh0puDH7155dpbl6/OYRs4N/OzTxd+8/X8zjbiwl6lJr7HMjYI+U6iK2bmMUGQIdh2hQHaTOJVmT9//ssvv/zGG29wjJtDYWl67mJ5Hv0TuufzzVhxFClBCwpc82NGeC99FTU1WZ8/nP/N18v+gsPy+ZKvn+G5LP3mL8uQRc5882wZx2xfP1v2t2dz21qDWfDh+XzICG8ZG4SKIoyks2P+TGc0Kldr/8hlxbPQQj5EFM/feGi2IgbPeuk1R6JYPNKsC+dnXL0yGyt45fKcmzfmfnJ/wcXBN69cmXPz+ltXr8zhJD8t7syc1uagH5g7MyZ2U05VrgTBolI8hN7AiR8BnHLoHYOzMb3F+cq0RP9LlGhnuEy3BcLM8+emX782B+SufDzn8uXZt27MHRx88+LgrAsXZ1368M3LH5shvHtr3ldP32pr/YeG0Jq4Ct5RYvRR0LFAulmr8xHAkV0DSK4+h1FDvEWDXBznNKm1KFKk8OGdOX97tuTp48XEhV89NQeIRIFszz5f8hfz8dKvni7969Olt65OJ6jo7vn7TrA5z+NO1pR/ASnpjCWtqtX5kE4CbYgruzWlosnbseVEEUOiyH86qChPuHx5xtlLMx89WHDnzrw7d+c9/XzxxY9mXb46++atuR9fnf3Vs6XffPPON18tKzL9W2KCG2tnOPntU1dtbLZwstoBWhYP0LycIoE22VSSBogm3iOpVCyWkJ703A3t57GgiCzaDVjijdU1TV671ty+PvPWrVn3bxPUz7p7+837d2bfuTXr5vU3blx/g5+PH8z54vHczz95qzDvX5MSt///C6E1Kyi3CQUZA0haHBTBEkTBFXQNJTxZVlNmWOkbY+Yfb+HtAQEsYNzQ2JDZ2JDaUJ9aX5eqA/ZNDWlsHHCyvo5erdTKisTWFpbcmKqJn85Ly/cjhUO2z9oDotMK7YqORdOSzUHr0kkkpCdFNHkUzySLxNPAD5VAXokzZv9rHy4YSXAOLPthtv0HjhJPMgXFeVpPUU0bCPnxY/khUuAnP5Z/AAr8X1+ife8aGXTOAAAAAElFTkSuQmCC