-
0
2
2
-
1
0
7
- 9c289971-7752-4ad3-8a4a-deedfe2bc3d8
- Shaded
- 0
-
255;191;191;191
-
255;191;191;191
- 638440181684034983
- XHG..Ω..GHX
- 0
-
-1756
-5861
- 1.17283463
- 0
- 0
- 2
- Heteroptera, Version=0.7.3.0, Culture=neutral, PublicKeyToken=null
- 0.7.3.0
- Amin Bahrami [Studio Helioripple]
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
- Heteroptera
- 0.7.3.4
- Pufferfish, Version=3.0.0.0, Culture=neutral, PublicKeyToken=null
- 3.0.0.0
- Michael Pryor
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Pufferfish
- 3.0.0.0
- 285
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
- A VB.NET scriptable component
- true
- 3d61b0e4-4de6-412e-930f-fc95867b87c2
- DotNET VB Script (LEGACY)
- Turtle
- 0
- Dim i As Integer
Dim dir As New On3dVector(1, 0, 0)
Dim pos As New On3dVector(0, 0, 0)
Dim axis As New On3dVector(0, 0, 1)
Dim pnts As New List(Of On3dVector)
pnts.Add(pos)
For i = 0 To Forward.Count() - 1
Dim P As New On3dVector
dir.Rotate(Left(i), axis)
P = dir * Forward(i) + pnts(i)
pnts.Add(P)
Next
Points = pnts
-
860
84
104
44
-
915
106
- 1
- 1
- 2
- Script Variable Forward
- Script Variable Left
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- true
- true
- Forward
- Left
- true
- true
- 2
- Print, Reflect and Error streams
- Output parameter Points
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- true
- Output
- Points
- false
- false
- 1
- false
- Script Variable Forward
- ce317ead-faeb-4407-80c1-d99efd640ebc
- Forward
- Forward
- true
- 1
- true
- d5996e27-1db2-4cfd-81c0-ba62a76266d3
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
862
86
41
20
-
882.5
96
- 1
- false
- Script Variable Left
- ee93da26-6275-4bd5-8137-86f21f15ac46
- Left
- Left
- true
- 1
- true
- bcb37e0b-3c8a-405f-aa6f-dcd2e5bb07ca
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
862
106
41
20
-
882.5
116
- Print, Reflect and Error streams
- ffa7a548-a363-4ed3-b06f-1f56c34b92d9
- Output
- Output
- false
- 0
-
927
86
35
20
-
944.5
96
- Output parameter Points
- 78c464d7-84e4-4bf0-aadc-869f9b4fda82
- Points
- Points
- false
- 0
-
927
106
35
20
-
944.5
116
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- 2ca7e1d3-965f-482b-aadc-124aff6b6aea
- Series
- Series
-
359
214
89
64
-
403
246
- First number in the series
- fadaf414-149e-4983-b3fa-5803240091b4
- Start
- Start
- false
- c0501684-bc40-4a82-a718-a4182ddcafd0
- 1
-
361
216
30
20
-
376
226
- 1
- 1
- {0}
- 0
- Step size for each successive number
- 7b0495e3-bd4a-4b58-987a-df7e75e23d99
- Step
- Step
- false
- c0501684-bc40-4a82-a718-a4182ddcafd0
- 1
-
361
236
30
20
-
376
246
- 1
- 1
- {0}
- 1
- Number of values in the series
- c2336e9e-62db-4e7c-b386-10dbce7ec153
- Count
- Count
- false
- 262c30fe-27e2-4d85-ab9e-97c61e273cba
- 1
-
361
256
30
20
-
376
266
- 1
- 1
- {0}
- 500
- 1
- Series of numbers
- e19fe4db-d765-4b53-a8f1-aad962d839f5
- Series
- Series
- false
- 0
-
415
216
31
60
-
430.5
246
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
- Duplicate data a predefined number of times.
- true
- ecdd9484-1dc5-4373-813b-a0843dff0f24
- Duplicate Data
- Duplicate Data
-
350
57
102
64
-
413
89
- 1
- Data to duplicate
- fac6ec86-8adb-4f3b-adb3-49e59eac8176
- Data
- Data
- false
- 845d88dc-f057-493a-b7e5-8c521e783992
- 1
-
352
59
49
20
-
376.5
69
- Number of duplicates
- a205ae38-8b3f-4825-ab5c-32284131d818
- Number
- Number
- false
- 262c30fe-27e2-4d85-ab9e-97c61e273cba
- 1
-
352
79
49
20
-
376.5
89
- 1
- 1
- {0}
- 500
- Retain list order
- 1f01019d-89a2-486c-88ba-d6fb26bd72a9
- Order
- Order
- false
- 0
-
352
99
49
20
-
376.5
109
- 1
- 1
- {0}
- true
- 1
- Duplicated data
- be464ca1-422c-476c-b2a6-f6710f1fc6f5
- Data
- Data
- false
- 0
-
425
59
25
60
-
437.5
89
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- f1fbb0e1-fe5e-40d2-841e-732012e40657
- Digit Scroller
- .
- false
- 0
- 12
- .
- 11
- 1024.0
-
-178
205
250
20
-
-177.0572
205.4425
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 7fbc35ee-c93d-4288-b414-b6d63a02edf6
- Digit Scroller
- ЯR
- false
- 0
- 12
- ЯR
- 1
- 0.11963403409
-
-173
107
250
20
-
-172.3578
107.1254
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 2fc63193-0d11-4984-80d9-de58980f5096
- Digit Scroller
- °
- false
- 0
- 12
- °
- 2
- 0.0005104413
-
-175
150
250
20
-
-174.4397
150.3848
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
- Convert an angle specified in degrees to radians
- true
- b8e372a5-0ec1-405a-8c3e-4d4db388b39d
- Radians
- Radians
-
214
268
108
28
-
269
282
- Angle in degrees
- 70416b1f-5eb7-4580-afa9-2c0961044fb4
- Degrees
- Degrees
- false
- f18af49f-2c36-475e-9666-3bd16c62f28a
- 1
-
216
270
41
24
-
236.5
282
- Angle in radians
- c0501684-bc40-4a82-a718-a4182ddcafd0
- Radians
- Radians
- false
- 0
-
281
270
39
24
-
300.5
282
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- c88c0b93-14b6-40b3-a27f-00ff79f7b13c
- Point
- Point
- false
- 78c464d7-84e4-4bf0-aadc-869f9b4fda82
- 1
-
767
290
50
24
-
792.0005
302.1751
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 262c30fe-27e2-4d85-ab9e-97c61e273cba
- Relay
- false
- f9f71a55-f522-4a2a-a443-1fc9358ef7f9
- 1
-
215
177
40
16
-
235
185
- be52336f-a2e1-43b1-b5f5-178ba489508a
- Circle Fit
- Fit a circle to a collection of points.
- true
- b4af4abe-d4a8-4b3c-bee6-4c3f34202ce9
- Circle Fit
- Circle Fit
-
332
475
104
64
-
377
507
- 1
- Points to fit
- db0a3289-864c-4f55-99cb-5e0f98a661e3
- Points
- Points
- false
- c88c0b93-14b6-40b3-a27f-00ff79f7b13c
- 1
-
334
477
31
60
-
349.5
507
- Resulting circle
- 05372bd4-17e2-415c-9486-b313b5739964
- Circle
- Circle
- false
- 0
-
389
477
45
20
-
411.5
487
- Circle radius
- 0623a205-c072-466d-92db-0da0f552f93b
- Radius
- Radius
- false
- 0
-
389
497
45
20
-
411.5
507
- Maximum distance between circle and points
- 833b7ba2-ecb4-4e06-bc96-ae20ee32797a
- Deviation
- Deviation
- false
- 0
-
389
517
45
20
-
411.5
527
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- cos((4*atan(1))/N)
- true
- 4367604e-a116-40f7-8d8d-988b5d3de819
- Expression
- Expression
-
413
396
215
28
-
511
410
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 7ecdea7f-0f93-40d6-8931-a086334ae2d1
- Variable N
- N
- true
- 262c30fe-27e2-4d85-ab9e-97c61e273cba
- 1
-
415
398
11
24
-
420.5
410
- Result of expression
- c7cec9be-11ae-4598-8068-2121d1ade51b
- Result
- Result
- false
- 0
-
595
398
31
24
-
610.5
410
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 03e5b781-f7eb-42f3-abd8-cc10f3b05609
- Scale
- Scale
-
506
582
126
64
-
568
614
- Base geometry
- 6907e204-b264-49bd-a5f1-2db17048b9df
- Geometry
- Geometry
- true
- 05372bd4-17e2-415c-9486-b313b5739964
- 1
-
508
584
48
20
-
532
594
- Center of scaling
- be76ebca-fa99-4f87-8033-b15b1fe639df
- Center
- Center
- false
- 0cd7c1cb-6524-4abc-b02f-8000b02c2e4a
- 1
-
508
604
48
20
-
532
614
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- b0afd88c-aeb5-40db-842c-94af85a4a1a5
- Factor
- Factor
- false
- c7cec9be-11ae-4598-8068-2121d1ade51b
- 1
-
508
624
48
20
-
532
634
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- 345752d3-26cb-450b-bbc5-24b071eecb78
- Geometry
- Geometry
- false
- 0
-
580
584
50
30
-
605
599
- Transformation data
- 1fcd789f-dea0-49e3-a218-f22153dc209a
- Transform
- Transform
- false
- 0
-
580
614
50
30
-
605
629
- 2e205f24-9279-47b2-b414-d06dcd0b21a7
- Area
- Solve area properties for breps, meshes and planar closed curves.
- true
- 85df7bc1-c6a1-40db-8c89-352a1e7599c4
- Area
- Area
-
320
592
118
44
-
382
614
- Brep, mesh or planar closed curve for area computation
- bf640742-a279-4f17-bb07-9d1b84caaab4
- Geometry
- Geometry
- false
- 05372bd4-17e2-415c-9486-b313b5739964
- 1
-
322
594
48
40
-
346
614
- Area of geometry
- 3c2545f6-aac8-42fc-aefd-5e99034a2bac
- Area
- Area
- false
- 0
-
394
594
42
20
-
415
604
- Area centroid of geometry
- 0cd7c1cb-6524-4abc-b02f-8000b02c2e4a
- Centroid
- Centroid
- false
- 0
-
394
614
42
20
-
415
624
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 7f713906-b4f7-457d-b43d-f57d3d074da3
- Multiplication
- Multiplication
-
631
494
70
44
-
656
516
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 0a2032cc-6c9a-4eca-a40f-88736807e6ee
- A
- A
- true
- c7cec9be-11ae-4598-8068-2121d1ade51b
- 1
-
633
496
11
20
-
638.5
506
- Second item for multiplication
- 608f7e5e-b2e4-4880-9963-416c99f1afb4
- B
- B
- true
- 0623a205-c072-466d-92db-0da0f552f93b
- 1
-
633
516
11
20
-
638.5
526
- Result of multiplication
- b74f0585-4293-489c-9893-889377fac93a
- Result
- Result
- false
- 0
-
668
496
31
40
-
683.5
516
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- .5*L*(1/SIN(π/N))
- true
- f501d46e-90e6-461c-bb9e-83beabda9ca6
- Expression
- Expression
-
479
314
207
44
-
573
336
- 2
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 4172d6f8-0262-47fa-b2fa-b487930372f8
- Variable L
- L
- true
- 7fbc35ee-c93d-4288-b414-b6d63a02edf6
- 1
-
481
316
11
20
-
486.5
326
- Expression variable
- 893d2f38-c3ff-432d-9562-99fe91034cc4
- Variable N
- N
- true
- 262c30fe-27e2-4d85-ab9e-97c61e273cba
- 1
-
481
336
11
20
-
486.5
346
- Result of expression
- 871baec3-457c-4734-ae89-c9dc38a72254
- Result
- Result
- false
- 0
-
653
316
31
40
-
668.5
336
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- e186075d-d2c2-449d-87c8-80fdeafbef90
- Panel
- false
- 0
- 871baec3-457c-4734-ae89-c9dc38a72254
- 1
- Double click to edit panel content…
-
856
337
160
100
- 0
- 0
- 0
-
856.2946
337.3611
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- R/(.5*(1/SIN(π/N)))
- true
- cd4acd9d-cbdc-4d38-97c4-be071e6d8e96
- Expression
- Expression
-
234
-17
224
44
-
336
5
- 2
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 47b5aec6-b919-47fa-aa50-c4074fdd094f
- Variable R
- R
- true
- 23d9f3a2-1454-4364-a19c-8801a4aa8e4a
- 1
-
236
-15
11
20
-
241.5
-5
- Expression variable
- e620dac2-b443-461d-8820-8f57e0929fbd
- Variable N
- N
- true
- 262c30fe-27e2-4d85-ab9e-97c61e273cba
- 1
-
236
5
11
20
-
241.5
15
- Result of expression
- 845d88dc-f057-493a-b7e5-8c521e783992
- Result
- Result
- false
- 0
-
425
-15
31
40
-
440.5
5
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 79214b28-9042-4fce-9bff-aefa3c8afdce
- Division
- Division
-
21
274
90
44
-
66
296
- Item to divide (dividend)
- cd12f72c-b624-4a1d-b4e0-3e7090b7a7ef
- A
- A
- false
- 0
-
23
276
31
20
-
38.5
286
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 360
- Item to divide with (divisor)
- 39527ecc-cc31-4e87-a0f0-71398918b3ef
- B
- B
- false
- f1fbb0e1-fe5e-40d2-841e-732012e40657
- 1
-
23
296
31
20
-
38.5
306
- The result of the Division
- c60648d6-21f7-4608-9114-2716dc67c91f
- Result
- Result
- false
- 0
-
78
276
31
40
-
93.5
296
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- bc8d16e7-6518-4d54-9e28-8feae351da64
- Panel
- false
- 0
- 0623a205-c072-466d-92db-0da0f552f93b
- 1
- Double click to edit panel content…
-
526
-153
160
100
- 0
- 0
- 0
-
526.2639
-152.3152
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4
- Reverse List
- Reverse the order of a list.
- true
- 7f113fc2-d918-4a84-a319-cc5320e0abe4
- Reverse List
- Reverse List
-
434
152
66
28
-
467
166
- 1
- Base list
- ac476c41-08df-4926-99e5-227c0b7793d9
- List
- List
- false
- e19fe4db-d765-4b53-a8f1-aad962d839f5
- 1
-
436
154
19
24
-
445.5
166
- 1
- Reversed list
- a706ad0d-f779-4309-8a67-f57c406db026
- List
- List
- false
- 0
-
479
154
19
24
-
488.5
166
- a3371040-e552-4bc8-b0ff-10a840258e88
- Negative
- Compute the negative of a value.
- true
- 8bcc8ae8-e318-42a5-9758-a25fe9ea46a2
- Negative
- Negative
-
633
248
88
28
-
676
262
- Input value
- 79828215-32cc-45c1-a351-78dceaf8a991
- Value
- Value
- false
- e19fe4db-d765-4b53-a8f1-aad962d839f5
- 1
-
635
250
29
24
-
649.5
262
- Output value
- f8ca467e-c13d-4d81-8b30-5bc5193e7bbb
- Result
- Result
- false
- 0
-
688
250
31
24
-
703.5
262
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- 9a46c0d6-1b86-4536-84b4-88cc87aa997c
- Merge
- Merge
-
578
117
122
84
-
639
159
- 4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- b5578463-fe15-4eb8-ac35-f137bf5743f4
- 1
- false
- Data 1
- D1
- true
- a706ad0d-f779-4309-8a67-f57c406db026
- 1
-
580
119
47
20
-
611.5
129
- 2
- Data stream 2
- ae7d37b7-f367-48cc-8f9a-45ba6583d329
- 1
- false
- Data 2
- D2
- true
- 0
-
580
139
47
20
-
611.5
149
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 0
- 2
- Data stream 3
- d1b0650a-6115-4b34-95b2-d759d434da03
- 1
- false
- Data 3
- D3
- true
- f8ca467e-c13d-4d81-8b30-5bc5193e7bbb
- 1
-
580
159
47
20
-
611.5
169
- 2
- Data stream 4
- d9d34c99-475c-4a79-b95a-a25471df3fb7
- false
- Data 4
- D4
- true
- 0
-
580
179
47
20
-
611.5
189
- 2
- Result of merge
- bcb37e0b-3c8a-405f-aa6f-dcd2e5bb07ca
- 1
- Result
- Result
- false
- 0
-
651
119
47
80
-
666.5
159
- 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4
- Reverse List
- Reverse the order of a list.
- true
- 66885faa-16ff-4dcc-883a-2cc9528f684e
- Reverse List
- Reverse List
-
511
-21
66
28
-
544
-7
- 1
- Base list
- 4b0852c3-fa4d-4bc2-ae8d-7e187a5a9b96
- List
- List
- false
- be464ca1-422c-476c-b2a6-f6710f1fc6f5
- 1
-
513
-19
19
24
-
522.5
-7
- 1
- Reversed list
- a79dc447-c143-4e69-af36-d93bb673c4f4
- List
- List
- false
- 0
-
556
-19
19
24
-
565.5
-7
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- 7e129286-32cc-4d60-9d6d-04c9446f6282
- Merge
- Merge
-
675
-29
122
84
-
736
13
- 4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 40957671-acb8-405a-9dda-8d9bd7232911
- 1
- false
- Data 1
- D1
- true
- a79dc447-c143-4e69-af36-d93bb673c4f4
- 1
-
677
-27
47
20
-
708.5
-17
- 2
- Data stream 2
- b530795a-c051-456a-86c1-7a0b4ece28be
- 1
- false
- Data 2
- D2
- true
- 0
-
677
-7
47
20
-
708.5
3
- 2
- Data stream 3
- 5ef29980-07e3-443d-8b13-3534b6d2daa8
- 1
- false
- Data 3
- D3
- true
- be464ca1-422c-476c-b2a6-f6710f1fc6f5
- 1
-
677
13
47
20
-
708.5
23
- 2
- Data stream 4
- 08749507-1829-4296-8479-604964a24385
- false
- Data 4
- D4
- true
- 0
-
677
33
47
20
-
708.5
43
- 2
- Result of merge
- d5996e27-1db2-4cfd-81c0-ba62a76266d3
- 1
- Result
- Result
- false
- 0
-
748
-27
47
80
-
763.5
13
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 21c33c2f-9fca-4a36-986e-1011355096ea
- Panel
- false
- 0
- bcb37e0b-3c8a-405f-aa6f-dcd2e5bb07ca
- 1
- Double click to edit panel content…
-
1020
-57
160
479
- 0
- 0
- 0
-
1020.859
-56.40537
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 20d638e5-5eab-4294-9eb2-e332f163c51f
- List Item
- List Item
-
752
493
77
64
-
809
525
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- dca67d8b-109c-4519-8679-2f289d90be84
- List
- List
- false
- c88c0b93-14b6-40b3-a27f-00ff79f7b13c
- 1
-
754
495
43
20
-
775.5
505
- Item index
- 2873bc33-81bd-45b7-9091-864600654a23
- Index
- Index
- false
- 0
-
754
515
43
20
-
775.5
525
- 1
- 1
- {0}
- -1
- Wrap index to list bounds
- 2b291a54-118f-4855-9d9b-c247bbb61a58
- Wrap
- Wrap
- false
- 0
-
754
535
43
20
-
775.5
545
- 1
- 1
- {0}
- true
- Item at {i'}
- 733e62a8-108b-451e-a02f-fefecafbcf4e
- false
- Item
- i
- false
- 0
-
821
495
6
60
-
824
525
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- 1c65cddb-9bca-4abc-a88b-4eebe341e2b8
- Deconstruct
- Deconstruct
-
865
499
120
64
-
906
531
- Input point
- e43ffa74-15cc-4939-91c8-a9bbfb57563e
- Point
- Point
- false
- 733e62a8-108b-451e-a02f-fefecafbcf4e
- 1
-
867
501
27
60
-
880.5
531
- Point {x} component
- c48f2a86-4388-4b9b-a155-5f9d30e70ed5
- X component
- X component
- false
- 0
-
918
501
65
20
-
950.5
511
- Point {y} component
- c2694786-f0d6-43b4-a7b8-e3a0d5b6af9f
- Y component
- Y component
- false
- 0
-
918
521
65
20
-
950.5
531
- Point {z} component
- 20ab697b-7ea5-45b0-9a27-0c47130264ef
- Z component
- Z component
- false
- 0
-
918
541
65
20
-
950.5
551
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- e4a3a123-a46a-4ffe-9866-096c857bfd95
- Panel
- false
- 0
- fe9b2349-403b-4c80-bf8e-3415f7e9017a
- 1
- Double click to edit panel content…
-
-110
-81
116
20
- 0
- 0
- 0
-
-109.6386
-80.95573
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 1706b589-82a3-484e-8bb3-c9784fb4ea88
- Panel
- false
- 0
- 12a00da0-f03d-412c-99e3-24174bf36562
- 1
- Double click to edit panel content…
-
-109
0
118
20
- 0
- 0
- 0
-
-108.8092
0.6788788
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- b241a6a3-6e71-4ff3-95dd-95c013252b2b
- Division
- Division
-
1117
499
70
44
-
1142
521
- Item to divide (dividend)
- 93b650fe-9575-4d53-a3ea-1bb3acc7ac2f
- A
- A
- false
- c48f2a86-4388-4b9b-a155-5f9d30e70ed5
- 1
-
1119
501
11
20
-
1124.5
511
- Item to divide with (divisor)
- b5d9a2c7-a217-4fe1-86b3-eb50e420e921
- B
- B
- false
- c2694786-f0d6-43b4-a7b8-e3a0d5b6af9f
- 1
-
1119
521
11
20
-
1124.5
531
- The result of the Division
- 118e674e-db63-4847-b023-71a1ecd9c236
- Result
- Result
- false
- 0
-
1154
501
31
40
-
1169.5
521
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- eefae472-b11a-4e30-a3af-f2edf06a8f62
- Panel
- false
- 0
- 07b602e6-3f30-4265-8f7b-014173103908
- 1
- Double click to edit panel content…
-
-110
-40
116
20
- 0
- 0
- 0
-
-109.8456
-39.18073
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
- A VB.NET scriptable component
- true
- ef7b22da-b20f-421c-87e5-2e9f24448f61
- true
- DotNET VB Script (LEGACY)
- Turtle
- 0
- Dim i As Integer
Dim dir As New On3dVector(1, 0, 0)
Dim pos As New On3dVector(0, 0, 0)
Dim axis As New On3dVector(0, 0, 1)
Dim pnts As New List(Of On3dVector)
pnts.Add(pos)
For i = 0 To Forward.Count() - 1
Dim P As New On3dVector
dir.Rotate(Left(i), axis)
P = dir * Forward(i) + pnts(i)
pnts.Add(P)
Next
Points = pnts
-
1751
8294
104
44
-
1806
8316
- 1
- 1
- 2
- Script Variable Forward
- Script Variable Left
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- true
- true
- Forward
- Left
- true
- true
- 2
- Print, Reflect and Error streams
- Output parameter Points
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- true
- Output
- Points
- false
- false
- 1
- false
- Script Variable Forward
- fd045b5b-1058-41aa-b97b-59bfbe37a445
- true
- Forward
- Forward
- true
- 1
- true
- 7e67df61-227f-4e08-8fea-e7dad9589772
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
1753
8296
41
20
-
1773.5
8306
- 1
- false
- Script Variable Left
- e27890c1-ddf5-43e8-aa7c-855130530b9f
- true
- Left
- Left
- true
- 1
- true
- 23600005-afd8-49b3-9cdc-f94db3ed139f
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
1753
8316
41
20
-
1773.5
8326
- Print, Reflect and Error streams
- 59490336-0317-48ab-8fa9-f2f20609911c
- true
- Output
- Output
- false
- 0
-
1818
8296
35
20
-
1835.5
8306
- Output parameter Points
- 6840a0ad-a870-47ab-bde6-1fa3333a7543
- true
- Points
- Points
- false
- 0
-
1818
8316
35
20
-
1835.5
8326
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- 5c241406-61cd-4678-b6c8-910e404014a9
- Point
- Point
- false
- 6840a0ad-a870-47ab-bde6-1fa3333a7543
- 1
-
1848
8214
50
24
-
1873.7
8226.781
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 63398084-0450-4259-9328-14f137aafbf6
- Interpolate
- Interpolate
-
1439
7976
197
84
-
1584
8018
- 1
- Interpolation points
- 0079b3b3-5e0d-4669-8059-717b19e83522
- Vertices
- Vertices
- false
- 5c241406-61cd-4678-b6c8-910e404014a9
- 1
-
1441
7978
131
20
-
1506.5
7988
- Curve degree
- f131594d-f681-40b3-ae43-d4d2fb1d04c5
- Degree
- Degree
- false
- 0
-
1441
7998
131
20
-
1506.5
8008
- 1
- 1
- {0}
- 1
- Periodic curve
- 167576c0-ddfd-4da2-a2b8-bc93ee9de310
- Periodic
- Periodic
- false
- 0
-
1441
8018
131
20
-
1506.5
8028
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- abb2709c-5d24-446c-be6b-d0277ec8791d
- KnotStyle
- KnotStyle
- false
- 0
-
1441
8038
131
20
-
1506.5
8048
- 1
- 1
- {0}
- 1
- Resulting nurbs curve
- 1f58aef3-68df-4afa-abcb-766ccf636dd2
- Curve
- Curve
- false
- 0
-
1596
7978
38
26
-
1615
7991.333
- Curve length
- 95a44c5f-50e2-48d0-a7c6-c7c016870137
- Length
- Length
- false
- 0
-
1596
8004
38
27
-
1615
8018
- Curve domain
- e0a12ce0-d875-401f-91ce-0007c6b27dc0
- Domain
- Domain
- false
- 0
-
1596
8031
38
27
-
1615
8044.667
- 0d2ccfb3-9d41-4759-9452-da6a522c3eaa
- Pi
- Returns a factor of Pi.
- true
- effc9ff2-741c-4863-855b-3a155ab1d9a1
- Pi
- Pi
-
1034
8181
112
28
-
1097
8195
- Factor to be multiplied by Pi
- d17006a4-ce99-41fe-8ecd-7966c23c3d7a
- Factor
- Factor
- false
- 0
-
1036
8183
49
24
-
1060.5
8195
- 1
- 1
- {0}
- 2
- Output value
- b5428967-7bc3-4973-a90b-95ea5e112e93
- Output
- Output
- false
- 0
-
1109
8183
35
24
-
1126.5
8195
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 19e600ed-4d93-474e-9270-60871e3ea572
- Division
- Division
-
1241
8202
70
44
-
1266
8224
- Item to divide (dividend)
- 09773635-d7f3-4dee-bcc5-d34fb2031ac1
- A
- A
- false
- b5428967-7bc3-4973-a90b-95ea5e112e93
- 1
-
1243
8204
11
20
-
1248.5
8214
- Item to divide with (divisor)
- e52a2212-3eda-4183-af6c-93c16d4cb773
- B
- B
- false
- 2d3182bc-0ec5-416a-a889-562bebb78f4d
- 1
-
1243
8224
11
20
-
1248.5
8234
- The result of the Division
- f5876fb4-0209-47b9-89c8-779610d79b15
- Result
- Result
- false
- 0
-
1278
8204
31
40
-
1293.5
8224
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- feacff2e-50e3-4537-ac1b-4450d7a3cae4
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 11
- 63.0
-
506
8513
250
20
-
506.2305
8513.215
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
- Duplicate data a predefined number of times.
- true
- 95efbcb9-4866-4cc7-8946-58ac406c0650
- Duplicate Data
- Duplicate Data
-
1595
8256
102
64
-
1658
8288
- 1
- Data to duplicate
- 3714f2eb-dd48-4a34-a0aa-888903093857
- Data
- Data
- false
- f5876fb4-0209-47b9-89c8-779610d79b15
- 1
-
1597
8258
49
20
-
1621.5
8268
- Number of duplicates
- 7e939ba2-797c-4137-b8a8-d430da27e930
- Number
- Number
- false
- 2d3182bc-0ec5-416a-a889-562bebb78f4d
- 1
-
1597
8278
49
20
-
1621.5
8288
- 1
- 1
- {0}
- 2
- Retain list order
- 95b2b7dd-614a-42ae-bf10-1aff9572036e
- Order
- Order
- false
- 0
-
1597
8298
49
20
-
1621.5
8308
- 1
- 1
- {0}
- true
- 1
- Duplicated data
- 7e67df61-227f-4e08-8fea-e7dad9589772
- Data
- Data
- false
- 0
-
1670
8258
25
60
-
1682.5
8288
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- b37d3ce8-3c7b-462a-ad59-ec77ca864ff9
- Quick Graph
- Quick Graph
- false
- 0
- 23600005-afd8-49b3-9cdc-f94db3ed139f
- 1
-
2104
8257
150
150
-
2104.25
8257.683
- -1
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- a159a761-225a-47bc-bd40-22ea126c629b
- Series
- Series
-
1579
8345
122
64
-
1656
8377
- First number in the series
- bd1dd0f1-5f6e-4438-9280-e9898072b190
- Start
- Start
- false
- 0
-
1581
8347
63
20
-
1620.5
8357
- 1
- 1
- {0}
- 0
- Step size for each successive number
- f00e9eae-ae27-417b-8d69-e7ba1904dc47
- Step
- Step
- false
- 422f40c8-6c25-44c9-bedb-da6dc0b54fd9
- 1
-
1581
8367
63
20
-
1620.5
8377
- 1
- 1
- {0}
- 1
- Number of values in the series
- 9f5b0947-9738-43af-8617-f16229f943ba
- X+1
- Count
- Count
- false
- 2d3182bc-0ec5-416a-a889-562bebb78f4d
- 1
-
1581
8387
63
20
-
1620.5
8397
- 1
- 1
- {0}
- 10
- 1
- Series of numbers
- a3febab5-0271-4176-b12a-837fcb0b83d6
- Series
- Series
- false
- 0
-
1668
8347
31
60
-
1683.5
8377
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- d3b99e99-94b2-4d3b-a5b9-6791f7fbcf1f
- Division
- Division
-
1055
8433
70
44
-
1080
8455
- Item to divide (dividend)
- 437989cf-f5bc-4a29-8bf3-2053b6564069
- A
- A
- false
- 087687ee-5b85-4a79-9b21-7b21c6a77520
- 1
-
1057
8435
11
20
-
1062.5
8445
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- Pi
- Item to divide with (divisor)
- 6702514d-d709-4347-b6df-b5df7b7df591
- B
- B
- false
- 2d3182bc-0ec5-416a-a889-562bebb78f4d
- 1
-
1057
8455
11
20
-
1062.5
8465
- The result of the Division
- 30e03bf5-47ab-4743-8ca6-661654fa103d
- Result
- Result
- false
- 0
-
1092
8435
31
40
-
1107.5
8455
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- b02bc189-98fc-45be-8330-ec7401fd8524
- Series
- Series
-
1109
8603
106
64
-
1170
8635
- First number in the series
- f92f6d5f-73bb-41d2-8dc8-3a376687a5a9
- Start
- Start
- false
- 0
-
1111
8605
47
20
-
1134.5
8615
- 1
- 1
- {0}
- 0
- Step size for each successive number
- 13e63881-4ca1-4f87-83da-29e52a136cb6
- Step
- Step
- false
- 30e03bf5-47ab-4743-8ca6-661654fa103d
- 1
-
1111
8625
47
20
-
1134.5
8635
- 1
- 1
- {0}
- 1
- Number of values in the series
- 9c323bdd-446a-4b22-8a2f-aca538e02cef
- Count
- Count
- false
- 2d3182bc-0ec5-416a-a889-562bebb78f4d
- 1
-
1111
8645
47
20
-
1134.5
8655
- 1
- 1
- {0}
- 16
- 1
- Series of numbers
- 9ba20636-1b4f-4f30-88d1-ccd070ba1f32
- Series
- Series
- false
- 0
-
1182
8605
31
60
-
1197.5
8635
- 78fed580-851b-46fe-af2f-6519a9d378e0
- Power
- Raise a value to a power.
- true
- 7f12f249-7659-48dc-8774-d8dcb4014948
- Power
- Power
-
1195
8375
85
44
-
1235
8397
- The item to be raised
- 05c526ea-ba6f-4b1f-b463-e5886b50b151
- A
- A
- false
- 9ba20636-1b4f-4f30-88d1-ccd070ba1f32
- 1
-
1197
8377
26
20
-
1210
8387
- The exponent
- 0da0f993-8b6b-4b81-85c8-6b46088bc636
- B
- B
- false
- 0
-
1197
8397
26
20
-
1210
8407
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 2
- A raised to the B power
- 3cd244e7-2aba-4f95-8566-03dc0fea7a2d
- Result
- Result
- false
- 0
-
1247
8377
31
40
-
1262.5
8397
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
- Compute relative differences for a list of data
- true
- 29bec5af-d71f-4b18-b185-c780701e9c65
- Relative Differences
- Relative Differences
-
1306
8356
116
28
-
1353
8370
- 1
- List of data to operate on (numbers or points or vectors allowed)
- 8a3e4a46-60b5-4cd7-b23c-80e2d63b0311
- Values
- Values
- false
- 3cd244e7-2aba-4f95-8566-03dc0fea7a2d
- 1
-
1308
8358
33
24
-
1324.5
8370
- 1
- Differences between consecutive items
- 6ecfdbf0-d6ed-416d-ae60-dc1cd2f30b14
- Differenced
- Differenced
- false
- 0
-
1365
8358
55
24
-
1392.5
8370
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- d496411c-0e08-4f19-8c68-12df038a1cec
- List Item
- List Item
-
1464
8354
77
64
-
1521
8386
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 2bc8b542-a3b1-49f2-8e63-0ddfd4da1235
- List
- List
- false
- 6ecfdbf0-d6ed-416d-ae60-dc1cd2f30b14
- 1
-
1466
8356
43
20
-
1487.5
8366
- Item index
- 80fd802f-ac9a-453e-8304-f69ee4cc0bad
- Index
- Index
- false
- 0
-
1466
8376
43
20
-
1487.5
8386
- 1
- 1
- {0}
- 1
- Wrap index to list bounds
- 132fbf1d-fa65-4a75-b78b-358d4a9f1143
- Wrap
- Wrap
- false
- 0
-
1466
8396
43
20
-
1487.5
8406
- 1
- 1
- {0}
- true
- Item at {i'}
- 422f40c8-6c25-44c9-bedb-da6dc0b54fd9
- false
- Item
- i
- false
- 0
-
1533
8356
6
60
-
1536
8386
- 0d2ccfb3-9d41-4759-9452-da6a522c3eaa
- Pi
- Returns a factor of Pi.
- true
- f8fd5bf9-b1ba-477c-ac09-f12dbb0d08b7
- Pi
- Pi
-
885
8396
95
28
-
931
8410
- Factor to be multiplied by Pi
- 754ee990-be8c-4cb0-a171-80cebfb39821
- Factor
- Factor
- false
- 5ce031d5-550e-4710-ac8a-f97d9d9ec811
- 1
-
887
8398
32
24
-
903
8410
- 1
- 1
- {0}
- 2
- Output value
- 087687ee-5b85-4a79-9b21-7b21c6a77520
- Output
- Output
- false
- 0
-
943
8398
35
24
-
960.5
8410
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 6227facb-1359-4bc9-8a73-12332e396c9c
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 11
- 8.0
-
454
8377
250
20
-
454.3884
8377.877
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- fa6f6ed3-8022-4333-9e94-6c5db08fe4eb
- Bounds
- Bounds
-
1472
8569
110
28
-
1530
8583
- 1
- Numbers to include in Bounds
- 6fee80bf-b69e-4deb-8ded-13a85bc7ece7
- Numbers
- Numbers
- false
- a3febab5-0271-4176-b12a-837fcb0b83d6
- 1
-
1474
8571
44
24
-
1496
8583
- Numeric Domain between the lowest and highest numbers in {N}
- 6f69003f-1e11-417d-8dce-8be904a546f9
- Domain
- Domain
- false
- 0
-
1542
8571
38
24
-
1561
8583
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
- Deconstruct a numeric domain into its component parts.
- true
- 41f87425-df39-4e1f-bc61-a8f5c18e33a3
- Deconstruct Domain
- Deconstruct Domain
-
1625
8541
92
44
-
1677
8563
- Base domain
- 21c2532b-843d-4f8b-ad74-ecdefdba10c2
- Domain
- Domain
- false
- 6f69003f-1e11-417d-8dce-8be904a546f9
- 1
-
1627
8543
38
40
-
1646
8563
- Start of domain
- 65ed304d-edc4-4a09-945e-c299554c1818
- Start
- Start
- false
- 0
-
1689
8543
26
20
-
1702
8553
- End of domain
- 089c5e76-4804-4fcf-8f98-119c1fd40e7b
- End
- End
- false
- 0
-
1689
8563
26
20
-
1702
8573
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- 2/M-acos(cos(x*M/(4)^N))/pi/M*2
- true
- c19c7708-89b4-4d41-a5f6-2a51bc0d8618
- Expression
- Expression
-
1766
8422
299
64
-
1919
8454
- 3
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 4f73ab90-d9c2-4189-96c3-f7ceb3560707
- Variable X
- X
- true
- a3febab5-0271-4176-b12a-837fcb0b83d6
- 1
-
1768
8424
13
20
-
1774.5
8434
- Expression variable
- 65f88199-8270-4b57-b0a1-ab7b5996f9f3
- Variable M
- M
- true
- 089c5e76-4804-4fcf-8f98-119c1fd40e7b
- 1
-
1768
8444
13
20
-
1774.5
8454
- Expression variable
- bc07ff13-3e3a-4bd7-af78-bb649c9e89ee
- Variable N
- N
- true
- e7e40e74-e4a9-4cfa-8865-866414e101d5
- 1
-
1768
8464
13
20
-
1774.5
8474
- Result of expression
- 23600005-afd8-49b3-9cdc-f94db3ed139f
- Result
- false
- 0
-
2057
8424
6
60
-
2060
8454
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- a87d0fb1-539b-41ce-a26a-b4dcf5b1b5fd
- Panel
- false
- 1
- 23600005-afd8-49b3-9cdc-f94db3ed139f
- 1
- Double click to edit panel content…
-
2109
8442
160
427
- 0
- 0
- 0
-
2109.659
8442.332
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 97020dcf-606f-47a4-ab0d-e1e8f271fb8d
- Panel
- false
- 0
- a3febab5-0271-4176-b12a-837fcb0b83d6
- 1
- Double click to edit panel content…
-
1798
8514
160
427
- 0
- 0
- 0
-
1798.659
8514.332
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 1c950b7d-6e97-42a7-be91-b200f898b18f
- Panel
- false
- 0
- 0
- acos(cos(x*M/(4)/1))/pi/M*2
1/M-cos(x*M/4)/M*1
1/M-cos(x*M/(4)^N)/M
acos(cos(x*M/(4)^N))/pi/M*2
2/M-acos(cos(x*M/(4)^N))/pi/M*2
-
2285
8562
160
100
- 0
- 0
- 0
-
2285.659
8562.332
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- e7e40e74-e4a9-4cfa-8865-866414e101d5
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 11
- 3.0
-
509
8636
250
20
-
509.7244
8636.291
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 7589060f-5d73-4d28-9ae2-cdee4613db19
- Multiplication
- Multiplication
-
818
8479
70
44
-
843
8501
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- f1e2ab25-8f12-4966-beaf-aabe3350f631
- A
- A
- true
- feacff2e-50e3-4537-ac1b-4450d7a3cae4
- 1
-
820
8481
11
20
-
825.5
8491
- Second item for multiplication
- 5457775d-df24-4b87-9fa0-0f9070a5b613
- B
- B
- true
- 1fc3214e-bc6b-438b-a612-257a7963060a
- 1
-
820
8501
11
20
-
825.5
8511
- Result of multiplication
- d0fd4455-ef6a-40ab-bf66-a1a06d0f359b
- Result
- Result
- false
- 0
-
855
8481
31
40
-
870.5
8501
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 2d3182bc-0ec5-416a-a889-562bebb78f4d
- Relay
- false
- d0fd4455-ef6a-40ab-bf66-a1a06d0f359b
- 1
-
907
8499
40
16
-
927
8507
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 3739f329-0285-4b2e-ac4c-a8d100233f51
- Multiplication
- Multiplication
-
773
8335
70
44
-
798
8357
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- b748839d-75e4-4877-b212-7eddb6662943
- A
- A
- true
- 6227facb-1359-4bc9-8a73-12332e396c9c
- 1
-
775
8337
11
20
-
780.5
8347
- Second item for multiplication
- 3541e88a-f4fd-4d36-87a1-cc0f6cdb1331
- B
- B
- true
- 1fc3214e-bc6b-438b-a612-257a7963060a
- 1
-
775
8357
11
20
-
780.5
8367
- Result of multiplication
- 5ce031d5-550e-4710-ac8a-f97d9d9ec811
- Result
- Result
- false
- 0
-
810
8337
31
40
-
825.5
8357
- 78fed580-851b-46fe-af2f-6519a9d378e0
- Power
- Raise a value to a power.
- true
- f775f8ef-72f5-4450-9f33-f67c7addf15e
- Power
- Power
-
684
8432
85
44
-
724
8454
- The item to be raised
- 6ff9cadb-ce5e-4bbe-a18e-4c62289ec994
- A
- A
- false
- 0
-
686
8434
26
20
-
699
8444
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 2
- The exponent
- 6241507d-85d7-495b-8812-bb17ccd1f133
- B
- B
- false
- 390d4b65-0f4c-4379-bea3-25ff8980556d
- 1
-
686
8454
26
20
-
699
8464
- A raised to the B power
- 1fc3214e-bc6b-438b-a612-257a7963060a
- Result
- Result
- false
- 0
-
736
8434
31
40
-
751.5
8454
- 9c007a04-d0d9-48e4-9da3-9ba142bc4d46
- Subtraction
- Mathematical subtraction
- true
- ac482cf8-8042-478c-a153-b403db159440
- Subtraction
- Subtraction
-
593
8555
85
44
-
633
8577
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First operand for subtraction
- 16deb2d3-84bc-41f7-a6a0-152e9348f5f1
- A
- A
- true
- e7e40e74-e4a9-4cfa-8865-866414e101d5
- 1
-
595
8557
26
20
-
608
8567
- Second operand for subtraction
- 9ea16d4f-3008-444c-b245-36c78633a93b
- B
- B
- true
- 0
-
595
8577
26
20
-
608
8587
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 1
- Result of subtraction
- 390d4b65-0f4c-4379-bea3-25ff8980556d
- Result
- Result
- false
- 0
-
645
8557
31
40
-
660.5
8577
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- e4a3a123-a46a-4ffe-9866-096c857bfd95
- 1706b589-82a3-484e-8bb3-c9784fb4ea88
- eefae472-b11a-4e30-a3af-f2edf06a8f62
- 3
- a7e16223-7e7f-47a9-a6a4-1798355eced1
- Group
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 08f95884-61d8-41f8-9981-a49261f89170
- Division
- Division
-
134
220
49
44
-
163
242
- Item to divide (dividend)
- 15f59732-d55b-4064-bfcf-d92a0d4a7554
- A
- false
- f1fbb0e1-fe5e-40d2-841e-732012e40657
- 1
-
136
222
15
20
-
143.5
232
- Item to divide with (divisor)
- 13d0d6f9-cb1f-40ca-910c-0316229f403f
- B
- false
- 0
-
136
242
15
20
-
143.5
252
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- The result of the Division
- f9f71a55-f522-4a2a-a443-1fc9358ef7f9
- Result
- false
- 0
-
175
222
6
40
-
178
242
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 8efc9f10-8cb0-403b-8685-a3d111daf33a
- Interpolate
- Interpolate
-
546
-273
225
84
-
719
-231
- 1
- Interpolation points
- 8a719936-af83-4cbf-b0ed-2084e2c21b39
- Vertices
- Vertices
- false
- 7f737f09-6227-4105-9ed2-0609a54e83ce
- 1
-
548
-271
159
20
-
627.5
-261
- Curve degree
- 83765e12-d3f7-43b5-8493-73ab54796ff6
- Degree
- Degree
- false
- 0
-
548
-251
159
20
-
627.5
-241
- 1
- 1
- {0}
- 3
- Periodic curve
- 099b5b20-3e92-4e05-8202-860af9f51fd3
- Periodic
- Periodic
- false
- 0
-
548
-231
159
20
-
627.5
-221
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 96546139-2197-41d8-a62f-50f7801e11f7
- KnotStyle
- KnotStyle
- false
- 0
-
548
-211
159
20
-
627.5
-201
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- fe2c7fd3-a20d-49fe-8b1d-09361e90e45d
- Curve
- Curve
- false
- 0
-
731
-271
38
26
-
750
-257.6667
- Curve length
- a2c92f41-aee7-4cf7-a313-7c3e8badc964
- Length
- Length
- false
- 0
-
731
-245
38
27
-
750
-231
- Curve domain
- a05c8f68-8b87-484d-9af1-b77025d32b4f
- Domain
- Domain
- false
- 0
-
731
-218
38
27
-
750
-204.3333
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- DIFERENCE CURWATURE SHAPED GRAPH
-
7H0HXBNZ13dQpEpRUVAUgxXp2FFZCSEUCUVBxU4gAaIhiUlQsC0q9oaKitiwd8GOvWFby9p7X1exrdjLqnz3TmZCZjIzJA8B8nzv4/50YU7mZuZ/zj3l3nPPMQuUJKSmCMSKUvDHiMFg1AJ/raWi1CSheMgIgUwulIghKQpchmT4xxR+BLsvRMDjC2TwI7VQsgVGCg2El83Bpb7B959FD1oROeWuInKzLHWVaZRMMEIoGAnpFoBuEp0MRuHboJfDBfLkmHSpAJJrol9shdIiJLIUnghSWoCrK1euLMXuihaIBAkKAR+jCYXCUrtAQaJQLFSAt4iSSaQCmUIokGPDwr/GgTwF8j1m4Jedj1Omz51y18wyUCBPkAmlCvTl4SMyjCN4KQLstzc1Y0OCPT2f7F78cvk08O+TRfng38eLtj9etAv5Afl111r479zZyL9Zj+cuUH3yUk4E/Hl+JhxhIbzlydI1qp8fZ89/nL1A9bHHizaqRlN+TDnIy0U74fXF43Ffjd2LPhJK3Yh/vGVl3zs9F/nwTLqfczepBkT/Ra/Q3oX8jL4R8o1qD7BR9Wzoc2KPXfYZhKp8R/RLkXdHUUVGQPHB7tVEUokwirbyizBGoHxBR8OxD4UX4aynZ3BIrHkvIGFwKsixaQL/WGFX2ZJU5QSqiU0BIGxDgTCi8lMDvWwSw5MlCZBPOsGp9rW0dEAdIFn9JZIUbAZNaBzXvVYfIM64rzKHVzS+xrxXgpTLS5ekKtQ/axEsk6RKNT5cOziExRXGy3gydAoYoTOrFu6j8Iqp8nPpyDOjt9uy5HJBSrwoPShVJFKfCqyo1MREgSxRKE92Z/ZRagy/dp7e8D93JjtVpEiVCfzEglSFjCdyZ0alxouECWGC9BjJMIHYTwxGs8GG7lOmb+DIpugoJqxURbJEhl22ChcmJPMEImaULF0iqxHKx7TMyuJljYf49OHmm8wR/iq2GIWbsRZlj2lK8T11ypRFZDxknwqmPoCDlsprOLDgdRPldYhRDRQ/4+DeZbrPZ02vkwPyNwZtWGNz7vi4TwtxT1UL4ZU5WyJW8IRipR51QUcxCZDIUNWKMcaELRFJUmWYhoP/J9NVTixmEhyXKUlkBst4cnmyRAp0H1OifKsaoYGI9IC/83u9HNPvY1LEdK9Xnt9fpC4EJCOUVBp35/rD+y3CsntuH5Jz/g8LQKqBkmSjf7kXe1sG5v+R/9qxIKw+INVESU+cu/COes7gbl612eeNwMYFkIxR0vbTrBHfHR1Cjjx7NKezrfMDQKqFkj5cf1K4ql4xN+/Z80GZsZtfAJIJSlpxsJ3d9Z+1gw8Z1Sgc55TzHZBMUZI0n7t8s00XTkaD2azQluNGApIZSprw+SDD+rBxZMHBzkaX9wavASRzlDT1xMneR/6y4m7JfDK384uvboBkgZLEezxennqxjbPp0eY4X5d93wDJEiXVPDDsei3fX/55b+Y92uHV7zog1UZJ08e1/PHmRnzQAquoNx+jHPsDkhVKSvvUwNlNmhO2etwM0yVfp/UFJGuU9ONJiy4X3nTosdc32mP4yriPgGSDkn7uZy3rv2B1YK556eXVtzPNAMkWJTVtuuzcrPaPQ+YuP1O0I/j7fECqg5IWh73iHt3cmTtvj1vj5f17ugNSXZT0ZnXtxgUPbCN3xPXk33dsVgRI9VCSs/kxN++wd6zCmB9H59Zq0BmQ7FBSo4HSZXU7vQ1dYLzPcrh16CJAqo+SHrz8uH5WZoOQbceGPbXdsmQjIDVAScWtOaf+zerOPrCE5ZUw9vNjQLJHSb/PyjE78/Zn0FT3q/l/rB2fDEgOKCmxfvQ3o8ljgqYY7ZWJncOmAlJDlBSZUzghrWYEa9WQpLqvzDL/BaRGKOl0arv278dlhB98sPb2dbP08YDkiJIudpw/ct7xSz0K6q4/wDw13hWQGqOknEnX9n5flsLa+s7Zmi/OhRLVBJsORcLJde1zOFnvOW2Pc/1eAZITSup2pem1+cuPsNaO2TIhZdjoTYDUFHuvBxv6rZ/UIXJ84vN7DEZ2PCAxUdJyYUr2rtWenLW1cm8d/NVnj1lo4BCcBnGGmjlULFfwxAmC4FShSplNlP1Z6/aRGiFH9oTPenSUZ0yiNswihAnD1C8zLFgKhUwYn6pQanhUdWMqykhvKuq3KlRR7WIKF/0Ivcne0P1FJ9beKwo1FSXd1STfxDSFk3/TvcO0CS8HqqmozfkXt0148zBsR7xt3Bur7rZqKmp874hPZ9alBW2UTAuZGpB+XE1FPX29b8W74NCAaW5t5jBCmE/VVNTO/GO/Qnb3485ymlFybtFRGzUV1Tum8WmnvqWsxSfa55nH/PyopqJiujVMmdziVeSMCKOPE63CvqupqLHBCsnQtT7BB2pczXxY+8gHNRW1xC3CKejfwRHb5UuWrHcdv11NRX3PSQvcFMoI3tFght/zib3fq6mo+VM57S85jg5a1WU151nRzuZqKqrk9zp1/pwcHrIkpOmuGI82n9VUlEV4x8+XlzULye9xq/vgFtcuqKmoS1HvCzyeh3M2Nl/lZOUj91RTUdPdVqc7RnGDs9JzHXdc6bVfTUXtXVxk6mgq467re8PJ9HpRPzUV1WbXnTPvPr0Km7nynVd0X/tsNRVVw2/HvFH7xkUu/NLVr+3U0mtqKur466j3jWxcwxa7L1tmsT5oq5qK+pTfJ8gi3z9sX3OvOkm9um9VU1F3hzCF+6/3ClnqfLXXjSEHVqipqOlDWV9nnl8Ruj39Q728p+FpaiqK8VdSp6jdJQFZLd69HTSz2001FcWI7vf86LXVPXZcbbiv1ow7ddVUVK+Ofjn1ot1YuwZO6+Ey502mmoqa0nCkY+7O82EzRvPsi14PZaqpqD6pQ9jtitLDdpr6Fdh9lDVXU1Hciw6nlhXWCVp+9PfE+jvblqqpqI8+8zm+70pCdrLz9l8b1CJFTUXV+mdaKqvf9JCpPVkDLkhC/NVU1JYPkes6fW0RuNti+/tj4+fL1FRU889/vPZ3Pha81GQLc1KscT1AckZJvq4HuV7sTkHbT4d2ZA3bMQeQmqGkYUE+vU12rggYbzVp5rj7Z6EL0Bx7+JjMgZuXGgctjv+8zv7AqO6A1AIlHXJ+uzBuigNr8unsW37bDh0BpJYoKcMla1Nzp7kBB9rsj1nU/7EDILVCSeO4u/ufTtkQtDel05LZfZvaA1JrlORxl7mY/9WPM6PTMvsufeXwu1ywJ+x7xXrJiDY9ctfbtnpR1H06ILVBSQvqlEZ05I8JX/aq2Ye78vCegOSKklZ7FMy/5TnNfxYzZnJU0Zw7gOSGkpxW+/1xLiU5aNfqbbeXMTqwAckdJW006tniDDeaPflK7hDTbpZnAckDJZ2aZ2vy27uH4evWLHsUceHQIUDyxKbe5FWnalu97bGup6dtbI9mjoDkhZL+bdhhzeC2sf6HVn75i3vWXQJI3ijpy9en6y80LgmZ/Jv4clazK6MByQcl/eF+osG5mrPDj0z75PzKrO4SQGqLktZO6uS+fMDtgB1OCts/nK5BA9sOJT0btXfC/QvyHlu49qFn+KMCAKk9SlraRfqo4530oF0is71znu3wAqQOmGa71qrZ4BMDg2fX2XEu7PO8IEDqiJLkNVLtI5rY9pi3/eP2oR/2dtMwep0YFEZv0vrnsaxWZ0PGvzg908JmrLUejB40CKRG7/C6mb9t+JnfY/fRbjFnDsjr4r7LJCI1JV4gw1s9U3QoMnvmhX5SzuQxEyQikTL4g9YtUSThKYTiJKZUIhQrmGJkYDnp6xNNHdkjabw/dj0SeR7l0ggSCppEAzucIGCgXFn/eHHDsbc7R+z7c1xyuNulSZZKskbwR4BTFbsGgA/ykUtwojMyXDmMqHYnGYyQAAbjKKtWlHCEBBkHqhyGrTtn9PS2J62jYKQlVwjEikCegkcfdZoEyAAgyQw1hml+yDiKp0jGXr3maO+xxqEKQQqDUbY6ZaJEGH4Gi10ZjCx/VBxqUonDIcG6TeKf57iz3E/u9JbVHYTD3pydKhvBg4EsXiKgc2BCIRFdOSN4olSeQsBUJAuYCdgAUCR4yK8CJk8BfpRLBQnCRKGAz5TyZOA7FQKZp0mIkM8XiFV4kUoL0fuheGINgSkjaclqpgsHAAhY/R2wOiOAwGqmO6D+dtISefohQrE0FYmFTVGQyaCpw0ZeXyFhClCMSF9wzNsXrq+zV4XOHGDZtveqj+Px2gAZQ+Pl0MvlTQaiD1jByeAPEJL6o5OhhDgZLrXhMDK64xAyKgehllGYLDCBFlFKC1+SAgSvXNTmpTXP9wvrFrb1+o399jlNZHixUI2rKRZlpPLQ+9V3rqi4dm7QlJoZnt36TNmlB/SABNGgl+d3srYSPUmqAhUwExr46kchulYFHZhooxVjSeFyHDD/3kKfKP/dNo8bBV3vF40XMmQcTSFTXtaAiQwHhvY4PHJHpagbwCGPiEOsJ4dxqTseB6NycLBXTXXmCKD8JDI6JPhPzEy47BnclaG/dV7z7tIr3fVJpSDi3Z0OESA3OERqaI9IglCWIKKVjXN9b5aGrDsWvokn+qfI7om/gSBS4keHSJTfSdTWwaiW1NZ5Po93/iH7Gpbd79otrw2b7HDvVTtQOELIFzARRapp7kwpgG2D3obZNjBBgKIansoTMUUCcZIimSkXJMFdIblWxo0Yv1M/ogb6OKqWsHoDFeTdFcD6mczEZbkBqq9OJs5GZeL4yNOQvmT3ZalTbj+rHZI55fCm2aFFvwzXwEUBfGwhPkwyscsCKlrahdTAUfnLdZVeK/SGMLkghehSWp24Vg0VEcssnl3oMmrKegJE8HVIIEIulwcRMcbSA0SXfOkgAiJUzQ4xvIkJOaLGKUxjUnHKPloqEipUXIL6cphQPIwigvmjnfHy0U1DD8z6/rzB8On98OwKg/dpskt5Wd+aEvIjqzMdP0o6VQs/TOMlEpGAp1KADA3XBlMsJqyEBIFcrj48qa6BCg9uaClDTHLOLLvHM9lw8wFrVbtaf3P4PQ7jY0vEodFkDXZd77xxR9XJQDLemHki6kTD09ERlmYxPHESYCzq+iCSy9cCqd2NBRuWh81gTQy/OXXB/h6PcUiZoYNqYlVGqQy0EM1CiRbQLBpekI5oNS+LOGB0IdAaLmIwQNh1xUbVBEydVhmQIZOfEjIw+VE3qRaDwk1aMXrh9X+Kh7E3bG3z8+Kfba+TmGe8f2ROg29rygUiIDQCmTBB6Tdp5x0RrbtpOE8qFYqTMKTg6+jRmXjSzrie+f0D4bNXZA91iQzpWEFLCSM6pjlgznSSpaP+ue6cDv3NMOaYUDEn3mVy81zjw/67Y1s4bDp3uwHudW0CBQkSgJssNUHBZMkSNN3YWhRs6tpLAF5BMEK5ahPPkwuYUhFPLHBnynh8YSrgnpgP/iaJVPE4XM8RM3myBO1WbYhbTLTPrcEw4ge0jRqALTzKAYifJ3NvGcC9PcrWyb1tDL6bCcJJtjKGgm5u2YORvveDPRkvHd/1D9o3tG0WJ7LoHu69a5K9K3KxPNEkhmgVFE0GXGyAQOWxGAwpEai8NghQOi1FOAaoZAgRFSVuytiTFKjVfxptuOudFrS/aff6reVLmuD1KTJaFBxNU5+q0fStT4+6objEkulTqQeHweDouDTRSzmftMIkcPfB44dn3A+cnn2j7biRll/wzotyJE3nBb1eGVjEBdJhQZSR8hYlmCx1heIC/kJlwxPL26DwkIJiVniqnvHHfPa2t8sUL0s+P8IrfGRITYWvvFwZkDDZdJBkBGAaHYsKNTS617yx6U26/Aqa27vDDMaSfovwgh8J5k/kCOCdxGoq85oUuNZjS1IA/GDiwckHb07TTkkTN/upHkVzDpbRtPVUgE7JGgqgKwDQPSJCxwB+TIFQJ9VsGQo/pXTiSF9uyfM6v05u6x25yf5025vRPMKKZx94n6bcKC+Xp42JO9AV1MZSuK4AsSlmkewxxboi2OikjWtHIh+jQecVf1jD2v3rR+72H3Gn3dVHuQRVI5CnijRXHLDrep9X7igAX8kAKPRAAEDnlRnVvBp+ROgmjNjE3ns4UvT86YC3uDey7JkK3gWm4EiTyZ1ZLeOHFoFCObBy6XBHS6CAeivdAwskoM+bBL+BFHFi+gzl82nAjiNqYG8eLZEpItXzk0gklpj+oqXEqkYjMCyuNVB1IwDDGrDhX4JrO7Q1J2XsiJNWWKZ6qJgvSMOGg/9HWWlOxcpXfSK4xl7f2AtWnw9aGRnaHweVMRewTlM5GlMwzJktE8DdSR5TBD7OjBcoRgoEYqZipASN9rRTlcQMJ81H0mAbclUHzzUrEfVcvTU8VzADvAU6qUdb+OVM8B4yhfI9Sd+qTcOlT4xeruTMGjhh8y+rnQ54mYxG7ibfG8IRy9OXxM0nPXivUghWFJkZzgP68pJAp21IawQsAQh5qKF6uvu39rs8ngZsvNyH16vAdyZ+k4QD7iUHSo1UHkxEl1gPMAGpoYEpi6+jWVEKlXKJlBSl5JT0kF73d7O3HnGvMWn4lObaThP9mxQPVEYKWHBplOiqeSLQoHrIgkoPnV3C4/70tQ+esM7J9GXz0fjFRDMEjOhArvZRdwBeF6FAgpgyEfzKZ8anq09Yd6YCXdiDsbhyc8lzrFbKiphzSf7cmkt7GEVLjPOA0jJbBTC+RxZu+wMOmK2sBKUV0+DC1pjuQziTkizHeN20CMI7dohe0nTslJerWFEdBQB9XXkShtgkM5AJookNK3XaTnJAAMLkwoUvlCnX19qQAvV7sj1vA/c9Z8bikHq72kRZ4lVWIHazpsoqI5UHWNyRQx8cDwwMynyyoZ91Sad1egAslhYwIFHVsrmkXFyHn2nHoPpT0p244YQ5q6QBDMJL5bwmT42/wjt9NL2Qs9805NtU5922dUPFCoEMMIOTJpUBV1VtrBoesXgHnosMq+nAo9fLYysx01cPbC3Mo2Nrcl517xmWJdGVdNezUYzdP/75+xbFETPvf+3UcGGfhdVmFBmeqD4qIFv2K/BEphdqFC0ZFEaxT9Maw7K32wbsWyl623WsWQh+ZVeVDaiUNO0TK/YZqW7F5Q0mCGRwAGYiT5nYI5KIk5hChRyziOgXoXQ5M4EnBk4+U54qlYpgtmG8BBCFWIZUqhjeCg2qGDlgKxwFPoJc9GSyk6FeRRbEB0QMKktThMu+CkkSXLpSRQ/gMzCCSJHwBVoGEMTDDrSwaS6IEz6gJcNhnCbdBBhen01ioQtg2L2xMlIaHQ9+SE31suFOeLF9c/qB68v0uElDnEwVze8FCMVBhGaTqaZC4ELbbtIw0XR5BM1w8shMhCu+CGYoYOCjpJBZm0TN7rt3F2eucdAfR6ZPiKuYPq+gooCoHN1IhwqQGwNS2LokerQPTWTGyFIF7sgsxnNLKFfXCy7ent7McUwfT29y/8p0syBv45JWoZlbD9mtdGn/Fb98GqEaSHP5VI1WGaxj0rLu0gaDyAcx0snKNlGmugKTALlWlkxO4z/Nuz++Zpbj4R5bsi8e7sV7hd86rdqUV7g1gGiZEDKmMLwQLaPTvlIrfNaHTsB4+17rYNfalr38lnnRrRWX8Mv+pujAGtCoCJUBDqJsKMEBykanjabWSitVZsF1QYeftii7Zof93A0Fx+8Ht8mYrY/Ecj0gxKRFCMxp1G+rzaDw2zgsV7dSv2usDQ+cNl5Z/rYdfq0PiS2kEhGw6Jo+mxkFzh2w9QwxzIPF7uejBk+RLJOkJiWXrZTrst5KPABK+bSaK5NqRG394pYcRt5WgC8PuEkbiG7SJYBv1BYNN8kMU4/abRzYlT1WOZlGce8uN4zZlBY02zj1ROiemzPwqzd9YHEX8IWaqzcqSnkuFFExVtCFYgL0siB6Tdkk0ungymH4b9XJhaqtnL58QZJMQO5fXsizbmU2cj5nxunl2X//+uCKd5YCkRs1nSX0ur5nJ3z/ki1075+3pbqdJZVk6uAowUcWSvhYyhYpI7bM2+55qEshZ8/QvzL2x734Gy+r2ACasqqiVAYzomiZwageZmikw6qzomY5rPAME0sUwHzxEuAJSxdvPxCygsgixZ3p45eQLJHx3Zlt/eTDZQrkF3JvdaqTxdQxy/sHTj7n8zg5q/QU3q7BL4hWpJPkUqiRKoNZBZvpmBW32RBmDhxKt4NZyo1yyCxxqixeTjODsr7YZXb7raTHxCeO4hcTne5UJFSuIDuyvFFF7gDcjEtEdhz14fRuuVU3LxXV5DTeVuf8jt6Hh1wMn9PrbLi9965e1Rr2QgCObkEBuEUCAFQtOnmimClDUp5IARi53TK1Y0QrztrFdfp9tXxYQjBlyI0kpkx5vTIAKN5MA8CmUZsxR9OKQeFo/mcnzqkQ1MuJc2LNEL2eOCceZ9fHifMCihPn/Ru5c9Jf52M8sKbigc453WY0LNBrTjexRoselwaJqlQPjHi0jY4RY7ZhjLChYgQzqfmeqbOmBcw/sYW7+Nu+0fjX7SUQ8dLJGUEIK6g8g3os5kihTMCUwZHQskKkuBMzgEgeRAN3I2a5mBPzyCqaMw8wPzoMPc2UQVJugeE/DMPclgpz8+hFI9alDg3Mf/NV0Im5ER872qAxazj4RybkibTfoWhUFu1GSgXiYC4zBR1Du5CWWGeI9rE0dwAIH9A277I1CE7WQo0OXKxLGnkQHkDXrNEIbelc0SbKwldw9sMlFb4wMTFVLmAmJPPEYoGI9MVve3R4cuJejv/BDYMvjmoVdBa/3hSoHEFzvQkj6H01BUDyCEKygWw1xRbmxaytFq+zFlCuElVJsS9fvpTqEjUz8YyBa12pIp6MmSxMShaBv+Rq4dyQn39OPT4+fP2Pnwscp/w6gQ/gotFBNAM4FaUyuONPy52SNQbAndJSRqkuwXRTTopQLhcCXzABxyZMhZAyR7Jmy/IbW1aG7ao9/pVT5rODeOYoRyTJ3yijVAZz8tbQMSfKEJgD+aNLeN2JlQK/EuEJeBwQZ8sE4oR05QaQH1Mi5Q2H+0U+yG9lnyCfUT1z78qauDhy50z7/ad0e9dk/JH+GLXxNY/046iVwTwGLfMKVld3tF22qfcIt6lnXA4H/co4KE8WitPFwHUC7APsEkvgqTYf8JNIMhIhwl+9ISmFl6a8QL60FX5z6c3nXwJmbXX+slhWmkRIM0smS9tAL1cG5+JW03HOtto5B2/iM3RcJ6lbtk5CqwiXczk9g5xNAgt37Xl3dfiaWnhFSOkzlVH0zRFvT9SHgH7qGQ23ygtRhKifWodB4ac2NB4dffzAx8gjZvl/t+o42h33VtbsVLlCksJEq77j3VSIKdVpoNYsEZB0OZp5AMdANrOTBJIUgUKWzpQqB5TbhIoTRKl8Qai4l0CMnh6gdl6JlTDpnlWDDwS6NazyLZXIFEFCkUKgKnitLfYFcA97PcA+hyxXPgvula2n3K0hjaGCMWwUEgwerTx6sxq/559+0Sp4cr5oc9167ebhxRIbVVMsVZQqTnaBJ5KPQuT8yfRIlBuHIV2vUz5q/Rg1FwY5eiajKgLTxDe386MG70L3rQ0Y1LY5Ifr5j6YwASuijtDH6W1arC6tq1Kdi/WdMEVDLvgh6Ozcz7tfaiZAPT7sYoB3QGktxLYRraoZFhhgH4X/r63u9uDvYGAVJutSqTEDDbeJBXqrLNz2bk4Xbpc0rexwe/X6RvJHM+qGLJ618m+Ll4cWG0C4bducznmRNjOAmKGgoKAKwu3ipZwj9+KaBi34+3GhQOH20iDC7UvOdNzxdjYA7lRJuH3jyypb3tM37AlmK5b9PvZ+lEGE21lM2rWQpgbAHEZ1htvF05/brGY+Y2//fubliKFtpxtUuB3VlDbcdqruoM2Awu2cUN9TN5t1CNje2ybS++jgYdUcbts60VqsJtXNuUoNt2deaPm6ww1z9up3bWub2VgXGES4jfgQlOE2UISon1qP8f9BuE1sIVHN4XZeG7pw29+lasLtfnxLr26D/EInNrnbr2XD7Tv1Hm7ruZooUhC7DV0I+cilssLtvZd8J4ouPw3eKGon4br+M1jv4TZRR+gBKyBHNFjltf4/FW7bUakxAw23iZ1tqizcTt5NF26f2VnZ4bbF1PXXsvr1ZWdHzv/VbIzRSgMIt2N30zkvZrsNIGZ48OBBFYTbbXNc1nbu2TpyTlLbmmc7vN5vEOF24S467iTvMgDuVEm4fTOH67g9f0Vo9qu76U9inC0NItx2oGUO0CbVzxxGdYbbFqE7ml3ra8HKzmj2oODmrx4GFW6n7aRjnkv1MM8ww+27nVfb/jrQij3ee9aOFjZNNldzuH1rBx3npu6obs5Varht49bc2bdFbNiM6QfmdkuXbzSIcBvxISjDbaAIUT+1PuP/g3Cb2HuxmsPtuL104XbBnqoJtwPc2IuG9krvMXtJ3NUjDxu+0Xu4TUwF10MIGbWXLoRk7K2scPv5vPv1FIqYHjtvTv3XZs9v9/UebhN1hB6wAnJEg1Xcnv9T4XYDKjXG+jVC/loxLnRnUtNfUbK4GYS4VtVmiaS0KPwaqrKUTQJlPKDGeoGXkDAJo2h5RJrYFdaEK0kYJuCrbqJ9UpIIHP8BbU8MwSKDPrCSeABZhRlYuNJLQ13RNRBwVp6Ygvq97ImQqqogGkdKr2oFzi+vhnOHFwjZef1dItIZ7drTgmNQPYigAbD1oSrbiCTpeOukxppE81KkIuiFANTkQkU6Fp0FU9aqLfzt7V/FHWoHzq8r+9XwZfYftOiZBiqHJVnjQAn69k+QDDAvOoiA0BmAx4jIuA4l4ayjE3gipH4+dRnhlnaTE5udmxO2sce0kL5FLW3pBRsZkMSRRy6XJ9jE3tJ6EOwsTzqulXgYAteEDJVVsGdQWIXUbwfb7ciLCVv8M3bgtK7Lp+IdxkBhklDBjE6QwcNyOnTXbR6RmoKcp5OjtyJqUC5EyubTnW8kcopWKAiPp9WpL6oJa4aNAi9iNtwE+QLV0TVYkcQEOMeJwrSyr6gFuxaoikJbIsKXmqj2EbQWOwZZIvaNDCXntO252YLDOOoGZG4UW1Pm+vdowemw3w2LZByomM1ufd7Ld+JDbl7QyncK34b4VhVWvQQpPClTeVZUrn3f3NbK+1CuKvsI8phiwUh4CREC5aFhrawdsdU7zRNqsBtP1qGwXMEcqsJyUTBKma1TYTlrhNswRJHBxyFvlrhPlhLc/3zwxnGPVk/LOfFAjxX9iV3v9VBVLg/Cs4pM1ZnBczJzdLLhVsrnoTtIbtGsg/hMsDR4x+ewu3yWlxn+jLPyfs0zzuj18vCJOnD1pe35C9w1I1ZE9fx2uJ4e8GHQ4gPEpzpMgRlSpWeEEohuDOIf3SrNWcXwZEkCBR3TPg/quW1fL7uwfX05g2bP+YAvpmmivF+Taej1yigdFzebjiu2BsoVnZblbBCFJxXwUeVLypiwniU9zn26w80WhfXe5roQf/rHJBy5X5Mx6HV9M8bWE1UncD1Oo3N0lBeH4TJHt8IcjioMYC3UBJGwPDy+jzWyjDh7kjvr56ckTpcr7/ARAFs5gGYEgBEqA5GC2XSIdJ6N2fWGDAq7XjAv7OOArl1CJ3/8qTA7cQdfJh39Ru278HRTFXfHG3DmyGRhQjJTIE6QpEh5cjnsFMIUgRkE/XzU/GsX8DP+SuoUtbskIKvFu7eDZna7Sfa8mjKpvK5DSXfmLLSku0abHn/YpmdmRSuhNUZdDWjshcpVWligV/kkpC8uernHwrl3TOQKxciCSNcRh/DCR+XYqAhVbPxhtWtbiKF3AEk3G6YrgqFOGqsbFhcoy77gyhCLJCMFcmWPALgXDn8u8ymZoyPIW34T7Xm1Vp2B7U0QwBzIAIObEQAwdDI3oprMBlNogyhNeiq08R928KFcAAZiuGEGXaGN5BkY5o4GjzmxXr2eMLcy/r5sT0Qwa9HnFb/bj0z/q4KYl8DM4eVUmHsDzL2XY5g3psI8Ym/QxbOMInZG/4ZdhS971MGH9uFwv1EqEiYgVSY1jRcV0o7hwAcDLoEC3ClipuBG0co2TWk40jF35/mwGaN59kWvhzLpHktzBw1P11ZtwEodywCcM0l3ymB65dKTVqqqrJi3itlwC6SBHI6X8JtMkcuhfEwG+vHPzDY6Yh64/x/7cCu3epcwuhEF3VLZek1DRsyU16kHVj4P8rjwI3TBcpMgoQzoeSFwk5EVIjy/SPnjaZopGLdnQVDuvPp/txkxCN9g3oilOTtYGrPDiDA7mrw9dm9Rq3mhS4clD9s2fOOqipYRBezMgOz0ZpFEH2nwJNKyk2ogGZUDklM0bNXK1wmllCUuY+Y9fBG5ftbr6W+PiPHFqYwCNFEKKBelP9xPNDhXc3b4kWmfnF+Z1V2iB5SAWNOglLX0JCqDKlmi8y0clEkK0BnVAiCiRqzWtoGw+zUiMbBtoEaPpxAPBClUnzah0qe5hY/6TXn6NXR/4e7924c95hKqhPPEApFmw0AqNerCYkrhHWrpCUyxRCFQtpxQCNLQlozkbi73osOpZYV1gpYf/T2x/s62pSSPooEtgwxVZE22F+QivKheKJ8gnKztya0sHBpzJw5JWRd7nU+5wm/WWy6QxYDHx762ZaAkNV4kgJFjwjCkHQRfqEDfHcw6uDrwJGMdgY+q9WHiIm0rDqMkDvDRl83ImMK2COfJkoRiriARJxSWysu9YLKn+nVz5fUYiVT9KnGltxUn5U3cSRsExCiZRAprJSufyhR7KmWGKbyEbRxbwk3aUDEfVlVWzW9zeBEuWahdQuyXCN2PVhpJmEIq5InYsEOIijUm0QoQJKaofjfuK+NJyzSHUlSdqETVYNytjz7zOb7vSkJ2svP2XxvUIkVP7hZR/vXg4l6Kp3Nxo+Ix9dDU4DEn9pzVE+bEltN6wDwrmA5z22AMcyYV5j5rep0ckL8xaMMam3PHx33C90uqFSyTpErxmNfGMA+QqPdBNaKa1STOAouZBMeFZjBYxpPLkyVSoCNQhshrhAZigPVJHcJuV5QettPUr8Duo6w5IGGuIFF+AakGSiLOGECqySBvJgxIxiiptGvru++u27M2130+ucbTC3ZmoYFDcJyBGpW8eNGHyHWdvrYI3G2x/f2x8fNlJBBqmhICjxkYj5XscqZilwFZUF/Xg1wvdqeg7adDO7KG7ZijdwuqMX+Kut4btIi3LqBAOuxR73/+9KgeC3qpJYdROBWWKq00C3qnJWfijqn/HRa0GZWoGow2Hxbk09tk54qA8VaTZo67f7a+nrQ5Uf71oM39p9Npc8Z0TJs3N3jMuTGZAzcvNQ5aHP95nf2BUd0Nd2EuKo0O80sjMcxbUGH+PX7A6XYW68PXHqr5k5H8cz5ZVXXtdzacwgU8OUzDQ9ablQ2zgJ1E2/Rpt3dxyPntwrgpDqzJp7Nv+W07dESXOu/aZq3DtmSOALlCsr2LEjfgmTTSrR2tqtldihIA0jc7MXkBJ3bknsjp7f4OHpbPJzjDhpRZGAUTpCFAJSySdXZ/VwQg3Xpfllvfv4NRw3ez2NLAPZ/8kwuuzare+v6w4SECgBnZRgNsGQ0AQOdWS6q5ZaALsBkuWZuaO80NONBmf8yi/o8dqmABFkpM51yqBdhLYMJNXfy/BViUP9uGtdgwb8R4zoYBgQde7k3tpYcF2AV1SiM68seEL3vV7MNdeXjPCqqHOHhGLpdqabEQUG8truwF2BmODyN9f9vB2bxuQv2UgXIHPSzAEjM59IASEGsalDovrsQFWOKie7UuwGa5oxJDugA71QNBCtWnraj0qcH4h+O4u/ufTtkQtDel05LZfZvaa+MfkgSPle8eTt1O5x6GbMcgb23wkA/re8V6yYg2PXLX27Z6UdR9un4gT05JD+l1fzd76xH3GpOGT2mujzWtJNo1rSQMcheDh5xoNPQDOdHNqyDkUngYYBEV5NCNK1iEQd6GCvL6ifvyc0+e5Szd8mTUucZj8vBZQ5w0qUjCJ2l2WYsC4VboHVjco0zZlqfwkER9tP+7lplc83u9HNPvY1LEdK9Xnt9fpC4kfTTNhCaUoCWIj2Cfi0Mn4boMiXsGN8+8D/2H8ZBA+SCk7/aXXZB95K7LQXum9Pv8vRNniR7jIT0fGGW4gGAaAsQny3c9A6s3HdKpcWWHXgIgGkgdDL4ApvtJ5EJIZ4LnE4qYQFJUcsLkyWCDe0mKMIEUxT9N3tWwWRUWlDtt0sl6HZPwEmKu+h7Nbn1lJL2nabkgEkMD16ODBtFaUbOzNCbVWmYoeqATjV/GLkUyT8FM4Q0TMFOlyDpIPA/WBaJs67eh5pCWyzfLwxbbrk+aMWOLLaHyDDosSeUZjKL3jFkPVNgDybiX44kIu0YOsY7AOWM9aLEjhgIikKRgLXE/mJA5q1dY7nNZrNO2mfjdiv+o460ewPKmBQuIOmp/XBkU9qdP0xrDsrfbBuxbKXrbdawZPrffhgO3MWC+MNVqHFWhrn1GqlsxSwREE/wIwIDJoWgre55IIk4CsZccXZ3xxLe6lzMTeDCRlClPlYKIA3AoXgKI4H7lkKlieCvccxGretUrL3oy2cmwEzjC3wERg9TabAPLoJAkwcNq6hmqipESZgpcxNfONpbG3bn+8H6LsOye24fknP/DghY2zWPMhA/ocJ4p7SjVeSbocKQd0clW1imzlegDkb7s0LYcm6AbS0O2ch1H3txWVEePxpKogfRwZCcZIjSbbEoUAu3vcFQnY9kMJ4/ofh/EDAWMKgL2U/z4PGzslfDt1yP3x3bzi6nWFUWIypkjdKgAuTHQqkPlHV9qH5rIjJHB0lBwFuO5JZSr6wWkktQ4WEGKvPVwn3kzR00p7M3dt6Hzj9WfL13FscwiQjWQBtvUaZXBOhda1t06bKDuDN1yUpMopBsqMAlYnTxhIlTvNGv0qWcv+5gs/xA6/p54X/zRqYSNMWQ8TSWkvKz3WlAeqJYJIWMKwwvRMjqddGoVA40VQGSEQGkXdQCmYWnNS56uf3A2Zo9jZM94RYgg0YE1wzSMUBngIMqGEhygbHRqT9xaaaXKLLgu6PSYszP/hE1K6KwaD2amtbNdgA9RVMv+miFKGakyEHKhRQjMadRvc2NQ+G1nl/C4P33tgyesczJ92Xz0Ybw3ygU+GjM6kKv9wkGA6mAYzG/APGEQISaCX4Hflc4E2MoUyjbGQNmi8gp9L9R1G6uV4yQb/cu92NsyMP+P/NeOBWH1yZ9b04vGKDocEfP+jB4R03CV/KHn/Em3ZQXkAdQwIK92s6Obb5d6gSGb5v/Tm3do8kVCnQt4N0mdC+RyeZ4SUf/p4fwXEwIkJRNCJuwc9Emnw98OCECYXLjwhTJlB2ZyY3tz09KnM63GB2XU4/UvLHmyCz8tA7GbNadlGak8wHy8P7pG/r2kx/KlRluNfp1L1ANgGZ/oAAMSVS1OlNJmwM+0Y1D90TwTTlfixRLhJY1WlWXuV7SKfxc8rb64waiJJyzqImefATM4aVKZQFUGC3FqWQHRLrFtKuYAE1ibUjDtSNpJx6BM62FLLJorxuuBtY8+0rE266Ph+MdZuh0kr81V0+ekzLQzN3VvndsqcEHDKdt6tz6Ib2phzCUrsqm8qve1O09UJxWwIC+I8a0nMsVQw+jOoDCMAdfs74/otNN/64DBDjP6HMInetrBrQMFXPqEla0FsNaaQIfT015sSQqAXLmBgQzDLxsGCQ7LDk3zgZBoZRGfOHfhHfWcwd28arPPG4GNS/kPrMEO0k9p641AS3kOgF5MlpAUB4T/6B8VPUzN4qqBApcbYGIm9DYkYqYLdhAYoIcYVuQnpU6Tw9VoyUgBn9yIXEudZnfDmxe+d1HX1vtyfVzxOgapqUJy1By9Xp6OyQ5ydQ2L/i1kwfNIn3MDfdtVUMdkQXsLYTYmy+rJaYPAXNEl4ZZq7FetbiVIxHJBQioiHjDLgXx1c+R9F8bPHm4Byw9Fhw7MWNQNh6Vl2bia4S+OqG+VwHRHYRtIBtstDwQ2VCV4UKmEc9bNP/h0lIRPfv82zPPq7xxi4SGpiJcgYEakikQkuoDKYfbA7hPD+6DMCsUjeCIhXynkI4Uw/xCEKTLtNcH206wR3x0dQo48ezSns63zA5rnJCuQpEbWNtWsNYchPQvQtSTbfMuD6J6p6NxvAI0aUkZBAY/9QyUJESNPrLl44s8tV3oELZh5fE2/j89D8e4zMpCm+6y8XN50nvD5IMP6sHFkwcHORpf3Bq+p6HY7rEJzlqoKTSysQnOW0n3WEjlHFXIynKhB0SLPrjv1eEo6gxu087Rpm2vdZ3zHlz1HBYR8SwdP1fcshmgBSaJBS3qmSh0s7EHNYtKlAnUcmqudq/EMAy6tQOQJPyP3DA4ZAp3cJIGMUIkP/qmo4m6AGEjIWDAECKrTlawm5TLRMFVkklSQr3Ge6CwoIUszgwVuwCzQaSHMQVkOBfoKiK3CRJ9PXiAkPKzV1S1ZPbaljl95I/EroaIC8lYkGxPI5cqAAhFxSiiAiKOGypNh6Pk3RG2pn/wbYu6aHlKe0k7TpTx1Po1B7mXwkE89cbL3kb+suFsyn8zt/OKrm34gH/2jVYTPvTHhB/saHYzaZF+sB8hvXaGDPOcKBrk3FeQ6n5y0wSCvgpOTxGhM7eQk0T1TOzn54fqTwlX1irl5z54Pyozd/ELt5OSKg+3srv+sHXzIqEbhOKec72onJ6X53OWbbbpwMhrMZoW2HDcSkGoxyN0VQDJBSURBASRTlJTTROz9YGJyyBSHLR5GT6890DiKCYWXVPrEezxennqxjbPp0eY4X5d93/RwFNOHiv/Nwoo87m+3CFpvzI+/8cIWz/96ysV+tkgih+4isoGjfb3SZkFCeAAzGZ5YVA6AhJQwztTpIFDNA8Ou1/L95Z/3Zt6jHV79rpf7iBrgkH1IW68chIqdT4BJdots7RpmHXY+rtPataNytw3prCBBDjVLYFYgdV6Q69Q/Tz0WiiMLFlvVNm9U7/eK7LVV7jL2JYCVywnU7GqU2DsKGwgcJ/XDqbCqr0qJUMeKvPoiv4tNSdvWofMX9R3sm1jrnuGeqYIoAZmhQenoMd3OVLlHYfMKmWwIZtiUg6EelntGvVWSMtKspCFzX+SeIVl9E/s0tq/G/VxY1AoRItINOXji6tZx3dxYV9XuIYRICQ9aaBFYIJxuIq9gMzS2wb/yf0NX2SluXrgSmmIAu5YQpKnH6UDqfFy3fd2WgULlm6uWqspERlnxk1JBbTrBvPF9iWP4fpsF9X3HLmyB30XExtXcRVRRKgOd4mN06OQcwxyjtgwKw/iqTwTX2Osbe8Hq80ErI0P7ay7Ea1pCqtYdzvj9XFWq20gJusqqnSGcPq7ljzc34oMWWEW9+RjlSPJI5HsD2mZ/A8VUcBLAdp7scB4sucg4WQnbtBtNRVcapcwK2LBpaYtzD4ZOwC92IvuxFGYdRyx3m4qg4iqaCQ57HJ+kak2QB49kn9TJ1lkjYAnATKOGKrdm2Lpdvr2DFs77VOdDzDExXhNxwL3kQKmRqtglgDAxaGEqKNLxAHG5W2jEveZq20KDmgaREbiFpnHYTeqJQIPqoXZUesjwWwmkfWrg7CbNCVs9bobpkq/T+lZ6KwF/uIL5+iTsQEzik2fAlfJXem8l8PbTY8tmv1303/F1Q12bwDqN9dhK4Od+1rL+C1YH5pqXXl59O9OsoudNYacFCM8WsjkHuyPGvdZ3K4Emko5MWS1ej/H1bvfuEn9ni15bCdxo3vozl9Weta1J+6J9L2T39ICPLS0+QHwMsmi9nlsJtPKYNrp0xrrAOfuNjJ3rTWpZra0EIFekr+i4wjQorpQcwbii/1YCMQeO3Q8wfcyaaeYrSOns8rhaWwn4e6LqhLRwfgYsnP+6klsJdPRjn9rQczxnztrJc+VbGxIOP1Z5KwGIyNFXdIiEvMLsensGhV3/b2sl8ONJiy4X3nTosdc32mP4yriPldRKwPslXSuBoy+qvpXA+YH+lyXhfTgH2m3ayD929oueWwno2fgjqaQv6VoJAAyruZUA0Z5XeysBBDDKVgIAMHQyd6CazAazcUWUJj1VLCNuc+hh56qwmG7nKq0Yw7wjFeYGWlWpadNl52a1fxwyd/mZoh3B3+fTPZaeqio9AkH21/dUVZXgHkXI+/9VVUL5cym9qPOd/ZeCJ/m1tTYReT/XQ1WlG0vOzH7k3CJy6Y8a9/LjbCq8ZgJmR/F7qnpBMEEn531lV1WaL1p5ZfWFdRHbRmzxdG2fGKiHqkpTOlxiTt33hD0v/IYghrW2orvfEKUQWpS+vqvEqkrErPdqraqELHi/p6qq5OKBIIXq007/Zfp0cdgr7tHNnbnz9rg1Xt6/p3sV6dO8t3T6tOSf/+lTlD+PS9t+/vPe9KD1i3wytj/ev1EP+vTN6tqNCx7YRu6I68m/79isSA+aIustnabwf1vZ+rTP8DmhIwJSA6d3cKqxqovHaD3oU+IigR5QAmJNg1LeP5WoT4k2tNr1KSIxlPoUIIXq085U+tRgYgLidDLI+l0wJMh5QxcSxL7BIPelglznZDZrDPIqSGYjbpOoJbMR11bUktmIAZ1aMhsx0lBLZiMaTbVkNqI0qCWzET00jYw1qBVJRczZ/Jibd9g7VmHMj6NzazXorIeMtS56Y7JlFTKZWKZNjcnEKjVqTCZmuKkxmbjnr8ETYyqeNBooXVa309vQBcb7LIdbhy7SA0+6UvHEgBo6FLfmnPo3qzv7wBKWV8LYz49JHkXPLZFWOadM5t+Zzlrg/zSj88r0bdXXEinq8clKbol0kPv4v6OhQzcqUTUYs/z7rByzM29/Bk11v5r/x9rxyXpaqiPKvz6aCzyhLWX6BLPLfgaPeWL96G9Gk8cETTHaKxM7h0013OXR4qt0mG+4imH+GxXmOptJK0bVmckHLz+un5XZIGTbsWFPbbcs2ahmJonyq2YmiTNGzUwSGavmC2Xsdn94pvk5zqZTiy529Wxmp+YL7dwYMD0/4gF3W/KXNkvWtZ+hYVyh1icVpMicwglpNSNYq4Yk1X1llvmvHoxrdypOmkcvGrEudWhg/puvgk7Mje/x5e3Qjb9w8I8MqErtqwI2wrYMxcxIqUAczGWmoGNotyF4OrVd+/fjMsIPPlh7+7pZ+njax9Ksukf4gLYNKVpzGMzvcLeGDeaJxtIMiMwyvmpsEdKlSTRRijZWfRKWEEiFZTqTeWJg5EhfXC4cEt2/Ez9g5vDAwSmKFk/wG4KByhE0NwQxgt4rGMF0FgjJBsp0lm/VkjhRKwFAq1IaJSUlpboU+2PiGQPrS6WKeDJkn1EE3RdS3uSc2JYzcnnX8CM59f/t8H7zTkIRVXQQkiKqGKUyuCP9RscdpiFwB2ijUl2yi5pyUoRypGxxAo5NmAohZc6u3tK9JQNmRI4/4R3oeGLzGDxzlCOSLOKWUSqDOZe+0jEHaJPqZw7kjzpzMMtExZxOrBT4lQhPwOPIwa0CcUK6suiiH1Mi5Q2HNRp9kN/KPkE+o96dW9NvZ9qPgLWd/mn9aGcHfB2E2jFq42ueY8dRK4N53rTMe/TFcAoF4QtpGpfDQb8yDsqTheJ0MXCCAfsAu8QSMWQd+EkkGYkQ4a/ekJTCS1NeIOWjcEHTLj3X/hUx48S9FZI+QZcI1dCSydKi0cuVwbmsL3Sc8692zsGb4I6KTqkydZXr0UJxEr0i9LybcHip0DN0avLoFi/Oun3CK0JKn6mMovcFb0/Uh4ARxxkNt8oLUYSon+rPoPBTGxqPjj5+4GPkEbP8v1t1HE3YqWMrF3KiZIIRQsFIvJsKMaXKbGvNglWH5GqLQUgB2SSBJEWgkKUzpcoB5TahymyuUHEvgRiNX6id14sd54+cd/xSj4K66w8wT413pXtWzV1FPN26D/hHKpEpgoQihfKLydx9yhOmbTiM2B8A+xyy3cYs4NJu+Jcy6400Gg7GsEEOTiLPqJVH776pzrK9GY0jM69fnv77y2n4c8dm2KiaYqmilBcnE4ubVTROBsiFQOT8yfRIlBuH8fVfnRLd68eouTBMyQiBTCak6Flhbxk2uLbzTc7a2rXOTDyxrV7FpzABK6KO0ANWQI5osIr9t0p1LraOaYqGXPBD0Nm5n3e/1EyAenzYxQDvgNJaiG0jWlUzLDDAPgr/X1vd7cHfoQq3WVRq7H9F+P+jIvw5k67t/b4shbX1nbM1X5z7nRY2fRbhdyilK8Lv8KsyivDvZ+cMnXD/eI/9NSPbrGA0earH0+Z61pGwZrlZKV3N8sJfVVKEv0mdHXsO3F3CnjjUfvv0fSlh1V6EP/kXbWuCX9XtgarvOFVPEf7xyd3rrZ5VJ2Sz9zLWix5bBhlMEf4zP2n7J/z8v1GEv9aziRvPHLYLXFxyrvGfx950I+x0VnURfkTLUFZRB1qmyorwTx585se9xhnBWwP2+y6dNQ2fjVA9RfgRZUPdoeBXFRbhP3Td+/jhTacCNtRaGr750/XbBlDOAmlT8JO2TcFPLPwMYFD4bRyWq1up3zXWhgdOG68sf4svxWeJHOKTSkTAomv6bGYUOHco2yIRlt2P1sIAiMskqUnJwIeTC5ClGl1qOcwvEk6ua5/DyXrPaXuc6/eK8mk1qx6oEbXN7WvJYXgbnWIweGy46EJsuwzwnco4VcGDVXZljwWuoliQvrqpq+v6x+OiQxfIQyeuPeVVXPHeXQQXiqgYK+hCMQF6LhC9pmwS6XRw5YDRTuniQqE90PmCJJmA3L+0mmw5Pzf2Y4/MizdqW+6/1pRwQgq5keSElPK63sv+gve/xaB7/wLGKQNYrkMkUwdHCT6yUMIXJtDUtokZE2/p8WNP2HiH8dmPO/rWwssqNoCmrKoolcGMqbTMiKseZhDdH4YuOxaeYWKJApgvXgJcO3Xx9gMhK4gsUtyZPn4JyRIZ353Z1k8+XKZAfiH3Vi93em5dMPNxwOyz0ssZrJCJeLsGvyBakS4i6X9ZRqoMZnWmZZatQcwcOJRO3mr9soVucaosXk4zg9zOdixk9vFmzy1auG945s0vFQmVK9p83BtV5PCo5yWNulA+nM3vGad08lJRTU7jbYXH1uWaNJsduX3gw91/SK/tqNawFwJwlIECcIsEAKhadPJEMVNGXWQi/YdxcNxnT+7GP7v+69ig+8xqPewLAYhh0EhAnyaMU6ijyWb8d+XjdLvS9Nr85UdYa8dsmZAybPSmKsvHca95iiYfZ2ANDc9Sz/k4I5/Vqf9n/Db/XZ/fz106MivMAPJxWkBIKHc3f9SoFqWPTyq4ceNGFeTj/L7mDcvq1tbwFU/C+e1Kh3UxiHycazXouLPFELhTJfk4t4qMWp+xkHOzx5W27Nv66QGDyMfJpGXOQENgDqM683G2m3YymvdXHGunowPrL8fuzQ0qH6c9LfNqVw/zDDMfR5K1o8+HxK6RhbOiEgffGuBYzfk4T43oOHfQqLo5V6n5OItSwnPZL3xC5wjHXQnwPltsEPk4iA9BmY8DFCHqpwYy/j/Ix/n9wYZ+6yd1iByf+Pweg5EdX835OO2NT9Hk49yrSblYqtd8nMQm4fMV9gP8M9/l3AyYG5+l93wcYmyuhxwTd4gcZY6JsbHGQqme8nG4v+dwR9ik+u9bHB7eslntmnrPxyHqCD1gda8mHVa7alapzq3ufBwOlRobfkToJozYxN57OFL0/OmAt/idkp6p8OxksIwnTdY8YarD9kWLQKFcCk+PqXZz0j2Up0yZPFgzLwl+A6nkLRemZO9a7clZWyv31sFfffZQPp/mTo46UUP+zKOBCotUP4pFIpXEc09aSqVqNLLSsc9PMhgN2PAv4fzn0Nacg1uen7SKFogAwwT8UKDX07DhELYqWRlExUqdz6S5qGS78s+k2cxM75LZoU7A4SKbvZ0jasxQO5M288OHxhm3bwdnJj8b0KS5aaTambQ5Pu94AZuCIzZ7/tva1th5kdqZtHOx+8PuuC8M2H0pcZbLBa8ZamfS5tiGt1kUnBW0qsXtIbltD5WqnUm7OCjuHqfF58hN38ZNqxt4x0vtfH6XiCunF7YqCsnq21O2qMmUfLVmM3Me807F3JFy8kUNuuyP3ugDSGYoaXGTx46JU7oFbEqX3F+W5wLP2pmjpLZ/rv61PjGMs95uxoCV5ncmA5IFSjoiv/og1eJa+LTll8b5nK63A5AsUdI839S/549+GDqXN69zvVbyIECqjZLq1m3Wsr0Rs0f+pOdXQxMHTwMkK5Q02SJmWPcwfvCmB0WN5IG+lwHJGiUNGcJc/3d0u6C5s/PGvRzx5zxAskFJvufDDk4Ji4qY6ia1HzT62HBAskVJbbYmJt5ud6FHfg2THitif4UDUh2U5Hny0aEWPif8Z46Kib+6dMkFQKqLki41cZ26Z9i9oIm/fW10ZabFGECqh5JC9oekLS5JCsl/nNokp8adfYBkh5KkTdtaRVzexco5UnJlYL8GSYBUHyX9HX2k9O5Vc9YBJ6HPtx6HBwNSA5SUcOGGeZtVuZxDTd+0mfSP70RAssce/urTxNDJP7nTf+vECBx0sg8gOWDCFms3/fBiU9be7RefneqZ+DcgNURJ7XtHWg475B+x8/dfq5aNz+UBUiOUZJWw2u78uPjgwxO2nZtn3GYSIDmipJftSr7FvXoUsXL8g72no2Z3BqTGKClA0v7r8lfJgeOzmu96+21HPCA1wbh8R/Dt8pyjActNx70ad/TMdEByQkk+V6wbpL3dH7n6lMfYRrWf/wNITVHSlrb2r05crxWQ1ay92P7TOfheTJRUzC6yKz65MGBLl6HPatQ/JNM4bOnMoDhsubhuhybFDs/ZU/ztGr3tf2GwHg5bBlOpqPqJ+/JzT57lLN3yZNS5xmPy8IuJnDSpSMInySCgakzaCr1DlfOJlFqXp/BEIqCE0Cr2WqYMEBUU6aNprnOiBG1rXwELEGJ+CupXEu83yp3DKDHT8H5pm0CUZVQqH4T03drWqr3H3bGYO+PD+QSLnsN/6TGhUs9OLsOFw/CHAPHJHLczMHXQXKdsgA69gMMkQ9bu+AJYplciFyIpFOD5hCLYdFklJ0zgQTF5MORKIEXx74TGF3/rt4g90dmqzS3f35vht0BV36O5BVpG0nt5VRdEYmjgOmNmEPvVmul6OrYN9UAnGr+MXYpkngLEL8METOCAqNowUe+V/nrqJCm8sTYs+9OXx87dT6YRVsvRYUlWyzGKvrln64EKeyAZ93I8EWHX2DHVEThnLLEHW7QWEIEkBatX/d17PuVeCZjZ5OiolaO/Jlc8jUgPYCGiTgkWEHXU/oQw/nf6QJ+nD4geepWdPsi2OEVz+sDOQidbqeXpg4eZaevSrk8N2VOrlVPTlg7j9GgsiRpID6cPZkKEKJO1+RY6Gcv/9PTByjlC1xWrhRG7J/vEPqnfdkW1nz7oRosKkBsD3SmputMHk+7ku+99mt5jzups6xUXopcZzOmD1+Z0rCsyN1B3Rs+nD543OCVetLkVe3ro8VoLVh+/XM2nDxAtQ5k+DrRMlZ0+OD0xd3P4D7PA+Xc+tvB+HtvKAE4fdKMFx85Ct5yvCp0+GNpnXZu+6d8DlqeZPKjd9TW+Bkj1nT5A5jQlQmBOo35bKIPCbzu7hMf96WsfPGGdk+nL5qMP471RpGdddCBX+4WDAHzLSNQTBhFiIvgV+F3p6n0VgbJF5RX6XqjrNlYrx4m4fkn+3JpeNEbRobWLouUpZWsXDVfJH3DgYwvdlhW06i0pmTSllaOfJGBt4V9N1zDXtyZsssO7STbZkcvleUpE/aeHvi0iCJCUTAiZbhxGYEud9s4cEIAwuXDhC2VAfAGd3Nie6795vMUYT07WgKL4ey2P4WsEmwdiN2tOyzJSeYD902f2yX39soLGX20qutE6rKIH2iFgjWkBAxJVLU6U0mbAz7RjUP3RPNJpRsNLS4SXNFo1YMb211kd0jgHnJOObdyV+KUuchgHMIOTJpUJVFt3iFPLCoh2iW1TMQeYwFqZzZxZzxpOC5/d7tmgKz0LDuiBtedb0LF2TTWxlsw/ztKtAVz5/UuDva1u1nrmHjDVplbI17Z9M6qtfynDE9VJsH+pVCO+9USmGGoYezAoDGPANfv7Izrt9N86YLDDjD6H8KWB7WDJTQVc+oTZuAK4PyzQoeuZF1uSAiBXFv5EhuGXDYMEh2XNzvhASLSyiMRtu/IfWIMdpJ/S1huBC6Y2APTiAJImaHFA+AttKnpWj8VVAwUuN8BSvtDbkIiZLlgDL4Ce8hAf/Emp0+RwNVoyUkBxAudqkItju9gFQbOb5k8X7Q63wesYpBcqSYs49Hq5+RfWfew7mHVjb+/i/nONrH3bCuqYLABzMYTZOICk7VdOGwTmii4Jt1Rjv2p1K0EilgsSUhHxgC0kyFc3a25KSes1+ERw/nV277m8Cwn4rIKycTXDXxxR7yea3FHYBpLBdssDgQ1VCWFUKuGcdfMPPh0l4ZPfvw3zvPo7h9gwWCriJQiYEakiEYkuoHKYPbD7xPA+KLNC8QieSMhXCvlIoSKZKQFhikx7TUDcpad5TrLGxmpkbVPPYClPiK4l2eZbHkTXuqJzvwE0akj7QwVs1weVJESMFIAdx9eMSCq+GjHvzajgM09MjuLdZ2QgTfdZebm86UzMSqhoOhUscwKRW0XmMsDuJY+sKd1nLZFzVCEnw4kaFC1S+BYErUx9dOFi6EE7T+7IY29e4lO1UQEh39LBU/U9iyFaQJJo0MqyrlIHC3tQs5h0qUAdh+ZqOTueYcClFYg84WfknsEhQ6CTmySQEbKE4Z+KKu4GiIGEjAVDgKA6Xclq8uRhgmGqyCSpaA9lT3QWlLDIkgq9kFmg00KYg7KNKfQVEFuFiT6fFIoJgW0t7lkEsQsP7pIlLRprTNiYgG9FsjGBXK4MKBARp4QCiDhqqLgMCkNlMHXridpSPy18KqFsvZ01mrROWrb+oxUGebjBQ07MjdMP5A4HPFpfK00MW3Frml3bb+ef6gHyonp0kK+ph0EeQQW5zlmZNhjkVZCVSZJEiWVlkiRRYlmZJEmUWFYmSRKlKitTM4kSy8okSaLEsjJJkiixrMzBIc1e1j/wzH8dn8vrazd7ikbKGxReUukjpl/qIeUtkor/zcKKPO5vtwhab8yPv/HCFs//esrFfrZIIofuIrKBo+mUm1DMtmZBQtiyJxn2uFEOgISUMM5E0xC0294nppyW+4ga4JB9SFuvHISKHy3BJLtFtnYN20EqLHVau3ZU7rYhp0EkkDUAD/ALdV7Qw4DfrzhnT/OfspAXd/r4+XUV2Wur3GXsSwCr15ao2S3ROGAPwuoCS1I/nAqr+qqUCHWsSFG6bZ4/6eG9ZpxJ3NF/p7zbztBjWsT43hGfzqxLC9oomRYyNSD9uB5QUtCi1NlSc/GBzk9zj8LmFTLZEMywKQdDPSz3jHqrZPKP/V15goecJc4pp22XK25X434ubL+ICBHphtxREAYXWermxrqqdg8hRAlqNSugBcLpJvLEStbLk38u3RIyiXfsis3YkrkGsGsJQVpKC5LCUrd93ZaBQuWbq5aqykQG2VikVlCWv04fuj7iz9DFi4L/uspcja+4Z4aNq7mLqKJUBjpcWnRaWGKOURSDwjC+6hPBNfb6xl6w+nzQysjQ/poL8ZqW0JgCXGf8fq4q1W2kRKeyccQDFtruDWib/Q0Uk7cVgO082dlHBoDtVu1K2KZNb9u3nkn6zoADM413XXWdcxy/2Insx1KYdRyxPC1OVHEVzQQHetoFghVFJmN5sC6clU62zhoBSwBmGjVUPxueu5ZtX+C/8Fm98CXdRfjG7OYccC85UGqkKnYJIExAamhgKqitm7ErfwuNuNdcbVtoUNMgMgK30DQ6CUs9EWhQPdSTSg+xW5/38p34kJsXtPKdwrdhE+I6dApPylSu05Csl1O55q2V92G7Pci5FB5TLBgJLwlkwgTUQGqlloiHu2iekGylXI2sJa7+rTmMg8xTsGoSiU+eAXOemDopKmtkG0q5uAseh/QtR7nln75yamto3trW5xat7+SNd5GQATRdJOXl8uYc8ZxbBecczEzeBeHZQlXRYSZTp2wSK+Xz0BX6Grtk8vbL5xawDmRwTl2MrdkPv/unvF9z9w+9Xh4+1zacHSdYNC3oUJMXHac+FYv0gA+fFh8gPtWRYWCGJG6MUALRjUH8o1slcKsYnixJoKBjWodlDXO791wdvte+zqqRnAOEtBDl/ZpMQ6/rfc0WcMWOliuvmxoSV0qOYFzRyXzZIApPKuCjypeUMa4X/e7u/rY0ZJZD1HLHzB5L8YwJR+7XZAx6Xd+M8fdE1QlcZtSIVzNgfWambgGZowoDJLAQCcvD48yJpv0j340OnOBgLpU+qzkCn1XLVg6gmVWLESoDkW60iDCYmF3vxaCw6wXzwj4O6NoldPLHnwqzE3c+4Hms/Ebtk2G6qSIMvAFnjkwWJiQDtxKeLeTJ5bCigSorBjX/2gUfxHPaZM+rKZPK67rkiTZF80Q1sl/8QVTXrWlFd8Abo64GNPZCZZEaeIRJ+STk3V6XBVlO+qc0MK+f1/lDm6bjDb8plWOjIlSx8UdSSSGG3mQ5GkxXBEOdNFa3CFSilGU5cQe1YD6QXLk+AEsBwp/LfErm6IixpIgS7Xm1VgWFcS0CmAMZYLAWEwAMnczRVJPZYDauiNKkpx7XxG0OPexcFTrR7VzlOGGYx1BhHrE36OJZRhE7o3/DrsKXPergq0Yh/eSlImECcixMU5FSIe0YDvwBYJ4U4E4RMwU3ilZ6kliZgu6xNItZ4enaLtzAILs5gHMm2cIN3KPIaH7KSrUaiXlOmD2xCIW6FMdL+E2myOVQPiYD/fhnZhsdMQ/c/499uJVbvUsY3YiCbhmJqBcNGTFTXqceWPk8yOPCj9AFbk2ChDKgc2B2ApLMhOcXKX+e5gy6Gv3paOik5aHxw579jm/+Z8TSnB0sjdlhRJgdnWvHdjvh3SV0Y5eh85KetVJUdM0EzI5LkJ3eZNkLMEFnQ/NTaiCVt7LkFC1IkAANrQtK/VymH/7+OTVwU8j3D3mbF1/BoxSgiVJAuSi9KCne/9F1mX92/42NzH4W9dcDShm0KMU2P4XKoEqWaLNdlPUCoWOkBUDErHe8DVMOpWnD0OuVseCNSMxXsoUmFw8EKVSf9v4v06fEcj5VpE/dm9Hp02vO/9OnKH/qmh3fN73JtIhVn3t2W3YjqVgP+pRYpkkPmqJFMzpN8cO5svXpSu66iQ2vvWKt+DtnYeGRfkv1oE+JiwR6QAmINQ1KW5wrUZ8SbWi161NEYij1KUAK1ad9qPSpwcQExOmkn2S2DkYN381iSwP3fPJPLrg2q5ceQgIXZ7qQwEwFeV8qyHVOZrPGIK+CZDaSGniYqiepgYcls5HUwMOS2Uhq4GHJbCQ18LBkNpIaeFgyG9FD08hYg1qRVMSI1fP0kLEWqzcmW1Yhk/+zOpIkRRUxJhP3/DV4YkzFE2LZQj3wpB8VT3ILH/Wb8vRr6P7C3fu3D3uMP+dXK4onFog0C7RSKTYXFlMK71CrMs0USxQCZXEhhSBNwVQWZyV9bWLdRZJH0UbbWUYnyCQiUS9oseBF9YasBE245+6EG7x+QwOO/HHSt/ePGt+pNKFZb7lAFgMeH/valoGS1HgRzNWClWBh4R++UIG+O/Aw4C7Hk4x1BJZgpXo1FqVbcRgljYAC9WUzMqawLcJ5siShmCtIxBlAS+XlXrBnh/p1c+X1GIlU/SqhBGyPVpzMfxqdskFAjJLBc4MKofKpTLGnIptQMt7IUDEflt3C4DUyhxfh1ovaJcRXF6FlhZUBAewEIuSJ2LAWlJohUsgEvBTV78Z9ZTyp6h5UVPtTiarBmGViFVA9LdUR5V8PdjnTkc4u8x0xuzzA4DEnllc13OXRODs6zP3tMMwHUmGus5m0YlSdmSSpm4uZSZK6uZiZJKmbi5lJkrq5mC/0qnad3PjflofMbsiLbdpn+DU1X4i7MDunWUyzkNVfBvRmL3Lx1TCuUOuTChKxGK8ejOsgKk4aaMsxYtHhKms5JmpN13JsaavKbjkW7XZy6vGnbuG5I+q33r03E19otXpajvFb0zVw6dbaAPomFRcXV0HLsRdvdsbPzW8UvKjz3CGHS3ZsN4iWY3a03HndygC4UyUtx6RXYn5r+sOdlWuSy/Ny+nneIFqOFbWiY85SQ2AOozpbju37MPtFpvwVu3DocIfP2efxOcfV3XJMQcs8bvUwzzBbjh3r3a7Vg3OL2dsabjuYFDoDv6NX9S3HWtBy7kfL6uYcvKnSWo5139PweaPTo9gH1x+1a9FhK74yXXW1HEN8CMqWY0ARon7qYAaFn/rf1HKM2BajmluOTXWhaznm7VJFLcc+Lejmdftb6GpOhsUps6mf9d5yjFjcTA9ttDJc6NpoxbpUVsuxMe/2BsxrODw8c1nq3biFTZ/rveUYUUfoAStvWqzMXP5PtRwbQqXG/leE/z8qwk/sJlRlRfiL29AV4U9uUxlF+PfUkTfusmlK2PSkls2uTaoboMfT5nrWkbBm+aM2dDXLC9tUSRF+8/kzA1dseNBjE2PCtTsjkjyrvQh/Fi0qQG4MJnbQ7eCP/orw//OjyaGGTn+Fz7jq57HA8uxpgynC70/LOofqYV2VF+G3vyesKz+0K3h2/C+nJle736zmIvyIlqGsog60TJUV4Q92tM69e6xn8BbRuH3XrL/htXP1FOHPogUnuU0VFuE3sr5faicJDZvZLD/tvNOA3QZQzgIi5E+LEJjTqN8Wx6Dw2zgsV7dSv2usDQ+cNl5Z/rYdvo4AcohPKhEBi67ps5lR4NyhbItEWHY/WgsDIC6TpCYlM1VNY3Wp5UDssEj5tJpVD9SI2ub2teQwZroBfHlsuOhCwPcSwPepa0UPVtmVPRa4imJB+uq1L18IGxp4KKhg0ErehaUL7Cveu4vgQhEVYwVdKCZALxOi15RNIp0OrhzGQDedXKjayunLFyTJBOT+5a1//1z06bsoPH/Otp1Tl3YVE05IITeSnJBSXtd72V/w/u1p37+2W3U7SyrJ1MFRgo8slPCFCTS1bUbvWDzR5blV+KLMD9eH7i8W4GUVG0BTVlWUymAGmKw0zDjoahDuD0OXHQvPMLFEAcwXLwGunbp4+4GQFUQWKe5MH7+EZImM785s6ycfLlMgv5B7q7n5my4t93oRub5d0b6WSW6b8XYNfkG0Il1E0v+yjFQZzMqmZZaoephFmDlwKJ281fplC93iVFm8nGYG3WEsNrF+ZhRx+M0R9z1fXaZXJFSuIDuyvFFFDo96XtKoC+XD2RzhppuXimpyGm/rDPeAqEHXVcHr1tUafVscPbpaw14IQGMMgFskAEDVopMnipky6iIT2+52tb9yxys4++eg8NwxitYEU1a1h30hAAWuNAD0SXfFHE0e478rH4fYmLvK8nGmetDl4xS6V3Y+zpdn8YP/Le4esddmhBH38OyeBpCPk+FBt7sZ62EASQV//vlnFeTjZN3ctXhAUELouqh+HezOn480iHwcb1rumBkCd6okH6fFlwV9xUuN/OfneZ0OskrcbhD5OI/c6ZgDtEn1M4dRnfk4dSS7eyaZW4dsPBuSbHz+t0EGlY+TRcu85OphnmHm4zxc0MvN6cjBoDlbd/y2YNS1TtWcj+NPyzmHaudcpebjTOvEP5DW7Ql3g6VX0uTJ0zYaRD4O4kNQ5uMARYj6qfGM/w/ycba0tX914nqtgKxm7cX2n871qeZ8nCxPunyczp5Vk49Tb7PZ9dgH4WFL/F7bb3jYYq7e83GIsbkeckymetLlmMR5VlY+jvfiSTdj5+QErtiRu2zADof3es/HIeoIPWDVmRYrW8//U/k4CVRqbPgRoZswYhN77+FI0fOnA97id0p6psKzk8EynjRZ84SpDtsXLQKFcik8PabazUn3UJ4yZfJgzbwk+A2kklfMLrIrPrkwYEuXoc9q1D8ko3w+zZ0cdaKG/JlHAxUWqX4Ui0QqieeetJRK1Wgk+TTGsDBXAzb8Szj/ObQ1Z1INp1NW0QIRYJiAHwr0eho2HMJWJSv5VKzU+Uyai0q2K/9MWoMsp8stP/3NnXCnVZT71wnv1c6kNZ0TMaSNl1WPjfXa27zZ0PKX2pm0G6U/3/m33cFZLzNKWBKddVjtTJq8D+9iHdOisAM9I+OXF48cpXYmbeeNEEn//e3Dlw+9ncTuHMFTO5P2cN2s4K/ubyInPgxmpq94/FrtfP4IhmTvZ+v+3F0zajjU+mPlTrVmM10WnG3594bJ/lv/NtlYPy07DJDMUFJ25G+3k6++CFqw71JhQuTxWYBkjpKu1VvEWTEwkLN032CrnsMvvwQkC5QUfnD++6EPIiPWfZbdX3MuyhmQLFFSiEWpjOfN48xaLXPzHfZ+JSDVRkkWdQdl/1sQF7breOCEopTb6wHJCiVljr07bljP7ICNOxoUjc58Ao/hWWNPmDDLJLbO3sDVojq1337PsAIkG5TkOrXfwKTmO8LWpJ2cHbKi7WhAssUUcj/F/TD5vMgZfzv1sj7jCTGsg5LuLukyPHFT/7C19gM9piyxyAGkuijp+JmhB1oV9gtdJ09j+opuQy7XQ0l9R3Zo/oPbOCSjfrDx7GDb5oBkh92153H0yp99glbejxmw4YoCIl8fJd33jDO9sZgROH911+n/tlyQCUgNUNKcOYse+HxpGLbN2nuaqHjYSECyR0l7v06b/uRMt+CV+2PCJwzYPAWQHFDSZbdpTWWNjrP3P3nJjTh3JguQGqKk0X4Z9icFnQMORrY5u0Z+vzsgNUJJk19GuXQc+iFwep5X1632/9wDJEeUdCFQ0uvOr/1BC20d1+XtC2oJSI1RUn6fVUuvTH/tv3Scc0zxwgtQ2JpgEmUimvPkntw/s0HPH51/uaYBkhNKWlW8zK9DZvPQrXW/BIwelykFpKYo6dnK28lpnG8Re10T/OaumgCrSzBRkpXvxjHu965z9qc3SDo8+MVbjcOWzgyKw5abpi95c885LWLCoMVzHj7OfqiHw5YCKhVVP3Fffu7Js5ylW56MOtd4TB5+MZGTJhVJ+CQZBFSNSVuhd6hyPpFS6/IUnkgElBBaxV7LlAGigiJ9NM11TpSgbe0reKrG5xTUryTeb5Q7h9HYR7cmEGUZlcoHIX03E78X+z2Xu7NXX9za1tnpgD4TKvXs5DJggVUIEJ/McTsD3LpAH52yATr0Ag6TDFm74wtgmV6JXIikUIDnE4pg02WVnDCBB8XkwZArgRRFl74F/R+ceBhQuDC5yehWNT/it0BV36O5BVpG0nt5VRdEYmjg+uhtEPvVmul6OrYN9UAnGr+MXYpkngLEL8METOCAqNowUe+VjmlwoXjSh27hBZNb1Hs2INCOsFqODkuyWo5R9M09Ww9U2APJuJfjiQi7xo6pjsA5Y4k92KK1gAgkKVgbf33tvy32D+6MHec5ZwubF1Q8jUgPYDWmBQuIOmp/EhkU9ud/pw/+o9MHRA+9yk4fHG1Ld/rAv21lnD7wSK//NEAxN7Tweuu6Lh+DQvVoLIkaSA+nDwrb0iVrZ7WtktMHDvOCuhxsnOm/b0LsP6HZP6Oq/fRBMi0qQG4MdKfk/7F3HVBNZF8/uqgogg0QxBI7IsXeCyGEGoqAvUYSIBoIhiioqIgNBRU7Iir2hl0RUcG1YFd2bdh7XxXbrq7te28yEzKVZBmS7PdfzvEcmctMJr/73n33vfu79+ov+2DqA4evO1sfcMtWNGixsEH/3kaTfWDDqLritkbqzrCcfSD2zWpTLeGy9yzF012tXoqnGjj7ALEytPRxYGX0ln1weeAEn/S/G/pkFux/dqJD0yNGkH0QwQiOazs9Zh84D6jWXnxprueWuYP2fHUqxvc2Nlz2gQ0jQmBOo35bOIfGbzuzQiT83rWuZ+LGhlVeNp2Yh/dGkZ51we5C7Q8O3PAtI1FPGOwQw8CvwO8ar9lXERhbdLxC3wt13SZp5TgRzy+p35vsRWMSHVq7PA9AW7uQXCVXOEYDyqG35Ka1M05+S33uPz2hy415uRffEoLs8G6KIDtyuTRPiWj/WOjbch8CFE01CLmtgYUL0Cl2ZoMAhI0Le7FUAYYvkFMvtiHDehcfaN/BZ379v5r+Nb5+On5aumM3k6dliag0wHZf/DwhflFTj6S7L5M+5jewZQGwVEbAwIgyiBOlWjPg37Tn0P2QUzpNGXRphuiSwaoKC+NHvXO4FbD8TeHZKZmPXtRGknGAMgRx0QqJOnSHOLU8t2D7Aa3K5gATVLvuVv7slccO+yX+kWU96WfIbhZU68qoWhsDqZbKP07VrQFc6f1LX6RW9Nxu9cHj4LaB3V+9UFgYrH8pxxm1SbB/aTRpf+uMTDF0YYzg0CyMblfq3hnXea/r9sHDbJL7HcGXBraEJTeV8OgTsnElMD4s0aHrmQtfHgkgVxX+RB4jLnkMsjksaXYmBoNEqxWRGLYr/YVJ6qD8K229EXhg2gWA/tyNognaCDD4H3cua64eT6gBCjxugKV8obchj+LaYw28AHqqJD74P5VNi4Gn0fJYCU0GzoPJM9aN7pQjyE2oPursbylFeBuD9EKlaBGHXi/NxjSr8an18G+d3dbfmNvw8IF1NmW0MakAZksIs4kbRduvtFYIzGU9Em6uoX716VaoPCpGEjoWGR6whQT16ebWPotrHX1Uw3O2Sea8vi84+IrqZiXPJW9/cULWM5ocUdiGUMFW5ITAhpoEKZ1JOGfR9EPbTnK/me/f+jpfniIgNgyOlolCJVz/sTIZhS2gc5idsPui4H1wzEqjxolkUrFqkMdKlRFcOdimKLS3BMQoPcN7UjU21hBrSz1rKeD06AzQNaMKvmVCdDuVde5bw0UNaX+ohO36oJGEiNH0fLwQ2PF2Vd6MRv4jO6/yf413n5EHkd1n1eXSpjORlVBWOhVArgNEbi2VywC7l1TvTOs+a4mcnRo5BW6owaFFCV/idadqSUG/+2+9Y9s/tm77RXiqNjpAqEM6eCnbsxiiBUYSA1qHO+nVwcJe1DRkfLREE4emGpwdZ1/g0kpkzvBvYpw9vYZDJzdcoiCwhOFPWQ23NbJAQsWCR4BN9XiVqqmzKAgLU1kmSVl7KDujs6CYR0UqdEFmgU4HYTaqNqbQV0DWKmzoiymhMDVfGvPD/4XwkGRv4C3LFw8IgQn4rSgCE8jl8oACGeK0UIAhji5Uozg0C5XR1K0nWkt2WviUQ9l6105MZeu5ashHGz3kRG4cO5A3Oz/lS1TtH/yp96ZmPngY34gFyIu7M0Fe2B2DXEYHuc6szBoY5HpgZVKQKDFWJgWJEmNlUpAoMVYmBYkSY2VSkCgxViYFiRJjZVKQKDFW5qxfZnmKtl51z9tRWMvq8cWhJMobHLyUo49Iv2SB8hZJp/8mviec7uyu5rHJRDzy2ouaeP3XUR3282XyGOguIgEcslNemWa2NfGQwpY9EbDHjeoByJYS7jNRGoJ24X0i5bTUVySBQ/VH2nrlYKvI7QAmWRHV2TVsB5nZXqezaztVtA3JBpFD1QA8wC/0vCBbRb+tyUNiXPc8PzHZerBLj7LE2sr3GLsQYGXTAV12i0kJ9mBbfbs9pR9Oh5WVmhKhiRUlSmaXvgaa9BvAX5Rde/6qSun1WaRFTO3r/+n0xjiPLfLZXklu44+xgBIYMwwoidvr1qTdMRCbV8hkQzDDphzc6mHcM4ZQybcO434k5nlnu7dPnMWVnjBgPBe2X0QGEWVA7ijYBhe3182NdVBHDyFEoRo1K+AKhLNNlODMn9ytefqr9byFUssmXLs6w40gaglBOt2eCaTM9rrFdZu7S1XfXH1UVTJkkMAivYGKrfe03wqz28Kk0AG/zft1+UV8FBF7LjmKqJaUBzpxjOgEtsccoygOzcL4qp+/0MTlC3/JuvMeawK8B5EP4skroQkNuI3x8Vw11S1WrlPZOGKChbaxAW3Z38AwDekIYDtPlfvIAbCZdCyHMO3FrjMC8pz7+y+7+qR2d5PmhNJ9SDyWZlnHCUuz4kQTV1YmOLDTIRCsQKoxlglcc8eOOq11FghYEjDT6KFyrbokcpDXKeF64aVxuc5r++ItkQDcSw2UhkjPLgGEyYQRptsddFvsSg+hEWPNBguhQUuDjBEYQiN1Eo52RqBB7ZCczg7xW5536TrtnjDTY807ZVfbBsRz6EhRNFd1TkNxXk7nmrdU3YdFe5C8FBE3ShILL0kU0lB0gdTKLBGTuxjekOqkXEOsJa6usIyLbwGsmkThkycA1Hf56GSoLJAwlOpwF7wOdZmAnlaLTb5348+qFb7Pq9dg/LeshDyA7CKpLpc254h5bmWcc5CZbA/hyaKr6MDx1YlNYq56H6ZCXw79fmY9e9GQt7hwdN/mfdeuxEf/VPeTo3/o9dLwqVOvrmnPxxeEG3K/Da4xq1cbFvAp8mHCBwwfQzAMTBHixjgVED04xB/dKoGbh4gU4RIlk9Jkrie3dyv66Zpj8uH75sqtCNXZVPeTlYZeZ/3MFhYTY9TKCKPSSnE+phWdlq8aiMGLlohR40upGOUSq/wJlnO8j3x7sOZa5kg7vGL8kPvJikGvs60YV2fUnMBjRtJ+NcFFwPnDR7cNmZ0aA2RjIZOWhodFRNjFMUvP87I4opOvBfPH41m1fNUDyKxaTFAeiOzyYUJE6YOt69EcmnV910Lfj4O7d/Oe+fG70vT4zQ94Has+UXsyTA/1DgO/gHNjI6ShEcCthLmFopgYWNFAzYpBl3/tNh/EPG2q9yWPSdV1XXii3ihPlMR+cQW7ul3eZY2A10ddDbjYS1VFamAKk+pNKL/4ZM9JCT7e3p6bbB/cHHzLBh/IrULn2KgFel78ESopxLANFUeD64BgqJPF6uGPjihVWU5cohbkA8WozgdgKUD4/xKfkjvRfxJ1aRvCem7QqqBwX4sAZkMFGKzFBABDJ/MYuslsNIEr4mhiqcc1MczBQuTK0ZspclVdjbmCDnP/Ax4Xz3BO8BMG2XaXvvSpha8ahfSTj5ZJQ5G0MLIhpUPazg/4A2B5UoI7ZdxI3FO0spPEyhRMr0UuZoWXa3twAzbZQn8AZwrVwQ2MUXz0KzBXn0ZinhO2nlTzhrYUp0v4SVWQy95ibAwMFJ+eVyG/qnvum7p+5q3rFGLyCjRyswDEvJDGiKnqOv2DVe+DvC78E6aNWwMPqQLYHMhOQMhMeH1R6ufIySYXjn8I8tioWLjaxmYinpJagUeeHTzS7KhAmB2dsq37pPp09ZtTv8lMr6Od4st6ZgJmhztUZxsq9gIk6NT3L9AAqbSTpYbBklA5sNC6oNRm+/pMs27Wbll5M3y7X9raC4+SGxklt1JRetVXsXF9mJPbjkJf8YXFv0ezgBIY1gwonfcrQMegeiwxsl1U9QKhY6QFQETWO34NUz2KvIah18vjwBsZMZ+pDprsnRCkUHsa8y+zp8RyPvqyp0JGe+r7nz1F9dP2QNUXue0u8LamD1w7u6h+YxbsKbFMExv2VMhoT4XlbU/T6jyevm3PQq8DCtvKozZXaMWCPSUeErBhT30Z7alvOdpT4hpqeHsqZLSnvpg9VdLZU6PZExCnEztkto4VbN/N5Ue7Z39yjdh1ZW4QC1uCDF+mLUG8GvKxdJDrTGazwCDXA5mNogYeZuopauBhZDaKGngYmY2iBh5GZqOogYeR2Shq4GFkNqKHRmKsQatIOcSI1fNYYKyNY03JZnpU8j+rI0lRVBFTMjHmT9KJCZ1OiGULWdBJLJ1O0nPuD5z1+LN3bs7+3N2jH+A3VZUCRVESGblAK51hs+dxo+EdGlWmuVFypURVXEgpiVNyVcVZqdk6hLqLFK+ijbUzCw5VyGWyILhiwYuaDVkJltDxasME+9tdPJOS3k7z7b+aNrfZtG+MRBECXh/72Obu8rEjZZCrBSvBwsI/YqkS/e7Aw4BRjocJGwkqwUr1kg6lWwg4AwTAgHblcxJm8av5iRTh0iihJAy3AJqpLgfBnh2a16uqrofIozWvEkrA+rQQePUXFNRAQAxUwLxBpVT1VlWwt6KaUApRrHeUGJbdwuCtUBVehKEXjUuIry5DywqrNgSwE4hUJOPDWlAaC5FSIRFFqn836a8QRavvQYdqHN1QNZplmVgFlKWjOuL4Z2Fd/ixgWpeLBNi6PN7oMSeWVzXe49GUHkyYy3pgmE+gw1znZdKco79lkqJuLrZMUtTNxZZJirq52DJJUTcX84WKMpf3/Dhrr9uOlDomkaIqXTR8oQ7FilpmZlvcDxXvHJ1jd70iaXGFVp+6NSShGC8Li+tEOk0aacsxYtFhvbUcu9+HqeVYzT7l3XLsw0qLj53P7AtI6TDk69bEQWuNoOVYUR+mBi67+hhB36T79+/roeXYisV+Q0/MT+NleL4am/sk7qtRtBxLYtTOCGPQjl5ajh38u07C27Adfvuqv7zWp1crPH3VUC3HujAqp6YxKIdjyJZjV3sJju47UJGXPmPuz53hXvuMquXY80Am5R0NNJ5CQQZvOfYtL/JSkysz/TbtCWybeTEs0cAtx9IYNRdtcM3Bm8qt5djOoU2W/3rhT++9Ixo82/9hl4lRtBxDfAjalmPAEKJ+ajyHxk/9N7UcI7bFMHDLsW9BTC3H1gfpp+VY2yVng+TVAwS503O6zbsSdZP1lmPE4mYstNH6GMTURut8UHm1HBu0Itu8z8Y6AbNMHYdZbVi7kfWWY0QbwQJW6xmxig/6n2o5NonOjP1XhP8fFeEndhPSWxH+ISFMRfhvB5dHEf6CBa3uuVWO9Djwx+jPa0Lm49utly3bnGUbCWuWh4Qw1Sx3DNFLEf5+sx3OWG+o7TW7j7ha7eQeNQxehN+EERUwboxm76Bb4g97Rfhrm83d3MfbR5AVudV29PoI/LG9IYvw7wtmUl2KYVSn9yL87UPqC8IHB/olVl31sfaRkXwDF+FHrAxtFXVgZfRWhH9ButAu/nG6V+6gyl+W1rqCL5hlmCL8JozgAGOjvyL8ljObfKnZd4X/3MDfPrVXPMeX0zFcEX5kTtMiBOY06rdN5tD4bQKeQ+ufPa/wNt9tuOX3VW8JdQSQJL5ouQys6GSfzZQG544lIRJpyf1oLQyAuEI+NjyCq24aq0stB2KHRdq3JVc90BBqy+1rLgALMMBXxIeHLgR8CwG+A/qWNbHKsuS1wFUUC8qv/mXd6jo1pN29l7yIOHSlsC+e0fuPencRXCiiYSyjC8UF6H3uC9BrxKcYnTYOAk5hX51cqOqq6SuWhCsk1P7lmcRux94VPeGvTbLKu7mu2JOQIYXcSJEhpbrOetlf8P03M37/hL6GdpbUI1MHRwm+slQuloYy1Lbptdl72mz/YJ/Flkq/hG2Lk/FjFXsAeayqJeWhjAGMymhjGGUQ3R+OLhELZ98ouRIsX6JQeHZq36Yn2LKCnUWkI7dtz9AIuULsyG3XM2aMQon8Qu2tBk+7WlRwpqlgwcBnL4pvnJHj1zX4AcHK8TKK/pclovJQlimjsu6HGMPMgY/SyVu1KjnojhqrGBnDMIMS75hZuYwM4E8/lLko8H2n5mXZKpdRHaltUEMOUz0LSXWh2gq2Heurm5eKWnIGb+uY9WyxadWHvAMpM7K7e32eYdBtLwQgFQOgiAIAaFp08kSxpYy+yIR7/uOaMw8FuCfvvTFoT4M+9Qya7AsBaMYEQL/XIZijOYXz7+LjEBtz642P860/Ex/HsX9583G422In7s8vclv35Nc/3hZNOm4EfJyP/Zmim+f7GwGp4NSpU3rg49wcXiGnU99h7ttvKfdWD38TZxR8nPWM2ok3Bu3ohY+TH8AZ0SLA3Cu5UcKuxsuHDjIKPk4Io3IcjUE5HEPycfr8lvrk6Cm+b0Jm++SDu3aYGhUfx4RRebf7GdrZNSI+jkt1u6c1sgqE0x49aTzncNduBubj7OvHpLkUg2uuXPk4jhvF1/jXV3ku2TpvZerQvRlGwcdBfAhaPg4whKifmsD5f8DHebrmRkSc4Iv/AYfQngvWJsYbmI9jMpCJj5M1QD98nIRLGZMXn8r0TIlbPFB2oN0W1vk4xL05CxyTbwOYOCZXBpQXH2feCd8VD8cO8cheH97yxy9HN7POxyHaCBawymLEavqA/yk+zlQ6MzYmX9pa6r+VfyAvQPbs8WB8G1+zPmNh7qSnQhQdQc4w1SF80cxdGhMNs8fU0ZzxTqosU64I1swLh59AOfLMu26Jd7x9VZA73jo8b9gL+vcjR3I0haTxVzUYmLAAzVQsilFJzHvSclSqn0bBp4nwAqPSmg//EfI/R7UUeIV7FZgHS2RAYRKxN7DrcdjjELWqVJlIp0qdc9Ls1WO7/HPSFo35O/aXBv38V6Ss6jV1yqneGjlppzsuPHyviidveyert527b3mjkZNWI2y2henZ87zZ3VxSX7RvlqCRk+bR7eevf/y93W9l7QPz7kztHaORk3a/7rkRkfsceFt/bWb/efniPRo5ac3l3d9VnDaFl7kgRxqa/+ilRn5+s51PTS7/edZz7qy8b4VXuq3TaDZjlX45YOrV4T6zDvn+2Jr3pR0QmaKiQ9XHFef0PCPY1/uRvTB2fAcgqoqKXk2xdFnUoJNr0qy/pvI+bVsPRNVQ0ddpn795dVrMX3TQ6enBv7xCgcgMFdU+2bB4avYmYbLJVc/efW/sAKLqqOhs+qIqX9uLveZJqhx5ndnhFyAyR0VffG779J+y1Wd3ld1bzp7adw6ILFBRaubzopOKq15rk8T3/zDffg+IaqCiqtL1qxLzvgWs3rf3yd7Ld+Br1ERFb+p5bJx3NNEnc9jtyo+WO8LPqoWKWj4zzaqRt9VnUfvpkmWpdyOAqDYqOhlscb24w1nXLbVkzwcVLo8EojqoaHjKhjmcnk5uh/Pfzr0bZH8diCxRkcLz/N3t/jPcdvvWWBr0pU5NILJCRWfOH8tQnm3unfowv/Wr1ZkjgcgaFVWK7J5fnLrLc7NNw9xxed3DgKguKhpiP3vFsKUrAtYsuxlV9+TH00Bkg4o+LVvX5/P7TwGrsrycggbXfw5EtqjI837/Y75XN3vPvNf51Keu+7oDUT1UtKnYZeru2es9p678sbxNq1B4lx0qmp9jZtou65L/tCejugwbctoCiOqjonfSg29fdT8rSJzTvt2G77M9gagBKnpkZ9Hw5tVit5mtG+/t/ar2USBqiH2vttO6fTqRyNvnMt3KYUD4UiBqhIo6t7nT3y7Wxn/BxO6vbt65uQyIuKjI7UlkgmLF+YAZU7Y5HLrV6AIp2bIxhybZMqO43T2rufd5C0IbtXu+5IMjhdnQNdlyGp2Jsgo7uDP95BlBRtbDCefqx2fiDxMFcdEyuZiCQUDXmLQFeoea84mUWo+JFMlkwAihVey1pAwQDRTlq5HPOVGBtrWvwAoQN6wA2lcK7zcQ9nEbplsTiBJGpepFqPn4qUuqbcjt6r/j0qXI9LUvs1kkVLLs5HLsBZxoCJCYynE7Ddw6r2E6sQE6BgGHSYGc3YklsEyvPEaKUCjA+0llsOmyepxwgQfFFcEtVyglitt4XTestFP453aokpt2I/4WPgSq/hxyCLRExHp5VXtkxDDA9XmoUcSryXQ9HduGOqETTVyiLmWESAn2L6MlXOCAqNsw0cdKC2YIz/xqv5a386lb5js392WE03L0sRSn5ZiEbe3VdEIHuzuV9tKckcFOipjqCFxjjNiDHVpLiEBSglVxQU3HW5Uq+y0P4ORcuyCqVHYaEQtgcRnBAkMdXX+mc2jWn/+yD/5R9gHRQ9db9sGJ4UzZB+7DyyP74MKTYptbVZv4rfq7R+cG1c9ZsLhYEi0QC9kHh4czkbUXD9dL9kFR/Yvjn3eQea5wkPU/9jrymMGzD2SMqIBxY6SREv1lHyzdsODPj58GeSx+lH5U/jUWf65iyOyD+oyq+zjMSN0ZlrMPBqVbx8g8KwlnNx1ULTnrWRcDZx8gVoaWPg6sjN6yD5o3FNZKiRG6Hhl362f1fqYyI8g+kDGC4z5cj9kH1rEubSfdvu25oMP+82YLTI4YSfZBfUaEwJxG/bYZHBq/7cwKkfB717qeiRsbVnnZdGIe3htFetYFuwu1Pzhww7eMRD1hsEMMA78Cv2u8Zl9FYGzR8Qp9L9R1m6SV40Q8v6R+b7IXjUl0aO2SNhFt7UJylVyBBmwmlkNvyYduU2RXx2zzn1Hp9Iphue9tCEF2eDdFkB25XJqnRLR/LPRtSYUARVMNQm5rASdiok6xMxsEIGxc2IulCjB8gZx6sd16SpA9ddIk/oxffX9bd+vmJPy0dMduJk/LElFpgB25FHz7ayW+78quDfcMb+NgyQJgroyAgRFlECdKtWbAv2nPofshp3SaMujSDNElg1WNsVIOT3rq7LZzjV3Rt9+evq2NJOMAZQjiohUSdegOcWp5bsH2A1qVzQEmqDbYawtnaI9c373XPByiZvq5sqDa4glMqj09wXj841TdGsCV3r/0Q5XgxRlm7p7TXV2aLK9+IMBg/Us5zqhNgv1Lo0n7W2dkiqEL40wOzcLodqXunXGd97puHzzMJrnfEXxpYEtYclMJjz4hG1cC48MSHbqeufDlkQByVeFP5DHikscgm8OSZmdiMEi0WhGJYbvSX5ikDsq/0tYbgQemEgD6czeKJmgjwOB/Li5rrh5PqAEKPG6ApXyhtyGP4tpjDbwAeqokPvg/lU2LgafR8lgJTQbO2eMb4rlnUnxW/CZZ3dp3+BO8jUF6oVK0iEOvl2Zjqnz7YSL5e5D7fN67Hg8fCMrKv0gFMNtAmE3cKNp+pbVCYC7rkXBzDfWrT7dC5VExktCxyPCALSSoTzd967w4bsVf77O6pljgnDSkDp5VUPJc8vYXJ2Q9o8kRhW0IFWxFTghsqEmYRWcSzlk0/dC2k9xv5vu3vs6XpwiIDYOjZaJQCdd/rExGYQvoHGYn7L4oeB8cs9KocSKZVKwa5LFSZQRXDrYpCu0tATFKz/CeVI2NNcTaUs9aAp9GDNA1owq+ZUJ0Q8s6963hooa0P1TCdn3QSELEqElVAStd/1g3kLe0ws+jXxtKn+LdZ+RBZPdZdbm06UxkJZSVTgUrOULk1lK5DLB7SU0xrfusJXJ2auQUuKEGhxZ1n8Npjx4+uTrNc+Ht4E+8n7l/46na6AChDungpWzPYogWGEkMaB0N1auDhb2oacj4aIkmDk01ODvOvsCllcic4d/EOHt6DYdObrhEQWAJw5+yGm5rZIGEigWPAJvq8SpVU2qZuDCVZZKUtYeyMzoLinlUpEIXZBbodBBmo2pjCn0FZK3Chr6YEopWmSaRG+QzvJdn5wRPiVu9kxCYgN+KIjCBXC4PKJAhTgsFGOLoQpXEoVmojKZuPdFastPCpxzK1ruHMpWtb6aGfLbRQ07kxrED+VvZ4lVVTQfy9z38e0RLl8EfWYD8YwQT5FciMMjn0EGuMyuzBga5HliZFCRKjJVJQaLEWJkUJEqMlUlBosRYmRQkSoyVSUGiVHdNIpMoMVam8/3ePeeOKfLYNXhmgm0fPx6J8gYHL+XoI9IvWaC8JdPpv4nvCac7u6t5bDIRj7z2oiZe/3VUh/18mTwGuotIAIfslFemmW1NPKSwZU8E7HGjegCypYT7TJSGoF14n0g5LfUVSeBQ/ZG2XjnYKjYTgUlWRHV2DdtBrh+h09m1nSrahmSDyKFqAB7gF3pe0JR9Dc4OP2Hhn+i1s9Hew9sWlyXWVr7H2IUAq/oidNktJiXYg231/RGUfjgdVlZqSoQmVtQckLW7s1v7bvKYc3rCO+9uVaewSIuY2tf/0+mNcR5b5LO9ktzGH2MBJTBmGFCKGKFbk3bHQGxeIZMNwQybcnCrh3HP6EMl/VLPrrrQcr7n9rtjvO1ePHhrwHgubL+IDCLKgNxR2H5xhG5urIM6egghCtWoWQFXIJxtogRnZWfh9ffdj/qnXU2YK1jdZZYRRC0hSOdHMIG0foRucd3m7lLVN1cfVZUMGSSwSG+gji6XPshpE+md8+dhy5SLFyfjo4jYc8lRRLWkPNCJZ0QnZATmGKVwaBbGV/38hSYuX/hL1p33WBPgPYh8EE9eCU1owG2Mj+eqqW6xcp3KxhETLLSNDWjL/gaGacRIANt5qtxHDoDNdGQ5hGmTO/lsPD9aLFxzKfBKV3fuKvxhJxKPpVnWccLSrDjRxJWVCQ7s9AAIViDVGMuEpbhG6rTWWSBgScBMo4dqQHrjHnMD+rkn3h+xP7VpZzzrtaoA3EsNlIZIzy4BhMmUEab7It0Wu9JDaMRYs8FCaNDSIGMEhtBInYSjnRFoUDs0l84O8Vued+k67Z4w02PNO2VX2wbEc+hIUTRXdU5DcV5O55q3VN2HRXuQvBQRN0oSCy9JFNJQdIHUyiwRk7sY3pDqpFxDrCWurrAP2LgCWDWJwidPAKiPGKeTobJAwlCqw13wOtSFhj5POh++/E+3dRbnZEvW96yNd5GQB5BdJNXl0uYcMc+tjHMOMpOLIDxZdBUddo3TiU1irnofpkJfzg8+ztzU6oH7phX7TEZn1b6Ej/6p7idH/9DrpeGzd/g77+Iuv3klCMcPm7VI8hcL+CQx4gOGjyEYBqYIcWOcCogeHOKPbpXAzUNEinCJkklpnlWlMX4TrvHy70W7dLywoBCvNNX9ZKWh11k/s4VBHEat1DQqrRTnY1rRafmqgRi8aIkYNb7U27HG+RWbja7KWz3i2u2Fyyrj47+V/ZD7yYpBr7OtGFdn1JzAY0bSfjXBRcDJGKfbhsxOjQGysZBJS8PjacEI+cE/agmTLF5VbdG5Cz61rQpf9QAyqxYTlAciIxgRaTYOW9fncWjW9V0LfT8O7t7Ne+bH70rT4zc/4HWs+kTtyTA91DsM/ALOjY2QhkYAtxLmFopiYmBFAzUrBl3+tdt8EPO0qd6XPCZV13XhiY5FeaIk9osr2NWNGFvWCHh91NWAi71UVaQGpjCp3oTyi9vNvtHswIY1wqSf0Z+zq6/Dc92r0Dk2aoGeF3+ESgoxbEPF0eA6IBjqZLF6+KMjSlWWE5eoBflAMarzAVgKEP6/xKfkTvSfRIkocT03aFVQuK9FALOhAgzWYgKAoZN5Pt1kNprAFXE0sdTjmhjmYCFydVvJFLk6rMQwT6XD3P+Ax8UznBP8hEG23aUvfWrhq0Yh/eSjZdJQJC2MbEjpkLbzA/4AWJ6U4E4ZNxL3FK3sJLEyBdNrkYtZ4eXaHtzA0kvjAZwpVAc3SIxifIG5+jQS85yw9aSaN7SlOF3CT6qCXPYWY2NgoPj0vAr5Vd1z39T1M29dpxCTV6CRmwUg5oU0RkxV1+kfrHof5HXhnzBt3Bp4SBXA5kB2AkJmwuuLUj8bRdU2VVv11GP/psKqU51lnXD6qcAjzw4eaXZUIMyOk95/Pak+z8Qtb+8c092tClLKemYC47pQnW2o2AuQoHN+fIEGSKWdLDUMloTKgYXWBaW2G1wTZ05Z5r191K4lGaIZI/EouZFRcisVpT8tujflf77mvvzbqktVJtnFsYDSekaU4scXoGNQPZYY2S6qeoHQMdICICLrHb+GqR5FXsPQ6+Vx4I2MmM9UB032TghSqD1d8C+zp8RyPnqyp4FxTPb0c+x/9hTVz5yj3quLL/b13rXazsPq09XmbNhTQpkmFiyFVxyTpeDGlbc9nS5d97pH2ymeSx7ZWll5te3Kgj0lHhKwgBIY1gwoFcaWoz0lrqEGt6fIiKG1pwAp1J4upLOnRrMnIE4ndshsHSvYvpvLj3bP/uQasevK3CAWtgTCWKYtgaMa8kV0kOtMZrPAINcDmY2iBh5m6ilq4GFkNooaeBiZjaIGHkZmo6iBh5HZKGrgYWQ2oodGYqxBq0g5xIjV81hgrC1mTclmelTyP6sjSVFUEVMyMeZP0okJnU6IZQtZ0MkSOp2k59wfOOvxZ+/cnP25u0c/wOf5VQoURUlk5AKtdIbNnseNhndoVJnmRsmVElVxIaUkTslVFWel/NrEuosUr6KNtTMLDlXIZbIguGLBi5oNWQmW8M2ZOueb3fd1X7zg929tzjrSMqlN+8ZIFCHg9bGPbe4uHztSBrlasBIsLPwjlirR7w48DBjleJiwkaASrFQvqRlLCwHHZAwwoF35nIRZ/Gp+IkW4NEooCcMtgGaqy0GwZ4fm9aqq6yHyaM2reCtsEtRCsKPimIIaCIiBCpg3qJSq3qoK9lZUE0ohivWOEsOyWxi8FarCizD0onEJ8dVlaFlh1YYAdgKRimR8WAtKYyFSKiSiSPXvJv0Vomj1PehQXUo3VI1mWSZWAWXpqI44/llYlzePYVqXk8Zg6/Iyo8ecWF7VeI9HM6RMmMdLMczT6DDXeZk05+hvmaSom4stkxR1c7FlkqJuLrZMUtTNxXwh04X5L9OX7HWb8+7TxfaPb9TT8IUcRiVn/1rwxifncVCfqMK3zUiLK7T61KFzQjFeFhbX5XSaNNKWY8Siw3prOZY6ianl2NH48m45ltbiqumgTTO89nQKHj3vcaOVRtByLGkSUwOXEZOMoG/SjRs39NByLCA26Hpj2fuA6b+unD1BPtPMKFqOdWHUTk1j0I5eWo4tqZgz4LfJF33zvnW8FBF8c7RRtBx7Hs+kHGBNDK8cjiFbjkVWKM4IFuf65b9YOCFi0cFpRtVyLI1RedGGUZ5xthy7fOeh17evXgHZspt/Xlo3cbWBW455MWqOa3DNwZvKreUYLzTTLKS10jPpZ7fWlrb9+EbRcgzxIWhbjgFDiPqp6RwaP/Xf1HKM2BbDwC3HsiYztRwLmayflmPcWkFj/oo7KNj5N8cjSDh8Oestx4jFzVhoo7V+MlMbrfjJ5dVyLP/HvWaeL5t7LC/eNKTQq+8K1luOEW0EC1iFMGLlOPl/quXYCjoz9l8R/n9UhJ/YTUhvRfgrJzAV4U+ZUh5F+MfY/zz4zSrEb07r6ydfhG3Bk8jKlm3Oso2ENcsrJjDVLL89RS9F+B9+bxWW7Wjpt9d82lS/GhtbGrwI/74pTKiAcWM0ewfdEn/YK8I/+NFqW06vCJ/sQXv2NKnk2NpoivCLGVXXwzCq03sR/qi0mHpV5lZ3XTD41sFVHQ6lGbgIP2JlaKuoAyujtyL8LgWrW97/fYDbwsVTNiwcl13ZCIrwI8aGFpyUKXoswv+mmuWQBdIi17zYnnmbJl3ebgTlLCBCYkaEwJxG/bYMDo3fJuA5tP7Z8wpv892GW35f9bY9vo4AksQXLZeBFZ3ss5nS4NyxJEQiLbkfrYUBEFfIx4ZHcNVNY3Wp5UDssEj7tuSqBxpCbbl9zQWcIjg9RXx46ELAtxDgOz2hrIlVliWvBa6iWFB+9V/bf67c+tQj/sJRF/3aVtmG77L4j3p3EVwoomEsowvFBehdgeg14lOMTht4SpygkwtVXTV9xZJwhYTav7Ryunn/qSDTbZbZxl9znyWvJWRIITdSZEiprrNe9hd8/yzG75+WYGhnST0ydXCU4CtL5WJpKENtm2VbnwhzEz77ZUh8HzZ6368xfqxiDyCPVbWkPJQxnVEZ0YZRBtH94egSsXD2jZIrwfIlCoVnp/ZteoItK9hZRDpy2/YMjZArxI7cdj1jxiiUyC/U3mrV7dk3fMbNcZ0+vPUskwneffDrGvyAYOV4GUX/yxJReShrCKOyvIxi5sBH6eStWpUcdEeNVYyMYZhBY380aj1s5hr/QxWqvvz1etf7Zdkql1EdqW1QQw5TPQtJdaHaCvoeTNDNS0UtOYO3dURqMmFDi43eR6xuNGqckdDPoNteCEAmBkARBQDQtOjkiWJLGX2RiSZRy6eEW1dyTW5T+4RY6PDYoMm+EIBRTABs9U/AHM2VnH8XH4fYmFtvfJxrU5n4OFFTy5uPc+NVwcjtN4O8Ml832G+9a0JtI+Dj/D6VKbqZN9UISAX5+fl64OOMbnIkfcnEUGHuSw6n9avMAqPg42xl1M5SY9COXvg4ifWT6twIOO2+10O6eq/woKlR8HESGZUTZQzK4RiSj8N5/FfE9c/D/Fa9ul1BWmPIfKPi4wxiVJ6HYZRnnHycfm26JM44pPTMzjeP+97d+aWB+TjtGDXX0OCaK1c+jlVkhx5jCnJdVw8Y1+uSpIfIKPg4iA9By8cBhhD1U1dx/h/wcTq3udPfLtbGf8HE7q9u3rm5zMB8nEGJTHwc50T98HEuWe+4675ht3dSfm7K7P6K86zzcYh7cxY4Jv0SmTgmbonlxccZdPhaXceNc7xX1b9xvfP9T2dY5+MQbQQLWDkzYlUv8X+Kj7OazoyNyZe2lvpv5R/IC5A9ezwYX5verM9YmDvpqRBFR5AzTHUIXzRzl8ZEw+wxdTRnvJMqy5QrgjXzwuEnUI48tyeRCYoV5wNmTNnmcOhWowu070eO5GgKSeOvajAwYQGaqVgUo5KY96TlqFQ/jYJP4woLc1nz4T/8qBw0qqXAsoeywDxYIgMKk4i9gV2Pwx6HqFWlykw6Veqck2avHtvln5M2JLRWj2dhJwUL7n84t67dOpFGThr36+XAux9re662bbvV++u8Axo5aeZmU2Ov/VDyVg8Z1cliej2lRk7ajuNWt39kFHktWrur4eRjA4I0ctJshx/qMqZHhuesbvGHpLIm+Ro5abwB0c/vrBH4zH3ovH9y55Phmvn5jtGbEsbGuy9u2LnSqIXjBBrNZvpbvHqd1e6lz/L+A3JuLJx4DYhMUZHpzm/n91WQ+ubaJjTYlDfgKxBVRUWVB/b9i78mT7Dv6amkUSE7o4CoGipqdcd/1ZPZsQEbMn98G/ym9SkgMkNFDVr9/eH9u5Ee01e6Dje3ePsaiKqjorsP32+I+StUsCzYbNjuu+1gcQFzVCR88mzIlvXT/bPObVha8XzELSCyQEWzAiza3PIs4OUuMYla8bHSZSCqgYomVD65NLHDUY+MBRe4+wfvdQCimqio84uC8aOCQ/037nn+d6uuLj5AVAsVVaghyLpTb7vnVM+6RVcebikAotqoqLnXwIc1PeYEpEe19PHPrXUDiOqgoludxue37xfLnzkiKNmx6cqzQGSJip4cTJ9xcr6599TXjY+/W1VpPxBZoaLdl/bPrJfUQbB86avEHpWfw69sjYr6nNn6fLqysc/+uPWvTsYLnYCoLip61Glcd9frfoI9drMsq7baPwWIbFDRq0shXiN/6eOWu7rlD9fzcjjYbFFR9fj3L9L6TPGbc9Rh1PnsmRuAqB4q2rW09piYS5t8pw83WfMh0RqK7FBRo4jb3XqZt/Nf03bpjGNXT8LPqo+KPKcfbLH3ppffPDurvVUrrTUBogaoyGZn+Jttx9b5bt31+Uw9q+5pQNQQFfEfzY7bMD2Lv8HGqeeBWr13A1EjVLRRaV3r07J5PqnK5U3qVNwMX4OLirbseXn7h2CAcO3cZPtea7udICVbNubQJFuKLW3M21y657dwxNAtF/q5RFCYDV2TLdfQmSirsIM700+eEWRkPZxwrn48PjhdRRAXLZOLKRgEdI1JW6B3qDmfSKn1mEiRTAaMEFrFXkvKANFAUb4a+ZwTFWhb+wqsAN2mF0D7SuH9BjoKOBbTdWsCUcKoVL0I5Xcb5iYMqiuuyFt/z61Oy57NX7FIqGTZyeXYCzidIEBiKsftNHDrmkzXiQ3QMQg4TArk7E4sgWV65TFShEIB3k8qg02X1eOECzworghuuUIpUQx99Ml110lT/7SCoc9db38LxIdA1Z9DDoGWiFgvr2qPjBgGuP6eZhTxajJdT8e2oU7oRBOXqEsZIVKC/ctoCRc4IOo2TPSx0uBW6459syrw3VF4dcCih8d6EU7L0cdSnJZjEra1V9MJHezuVNpLc0YGOyliqiNwjTFiD3ZoLSECSV1zqGb8wsob/+JlX0znDOj3NLXsNCIWwLJgBAsMdXT9Wcv5L/uAzewDooeut+yD+9OZsg8ydVsrtcw+KL6rHLXi53uvQ3aba1eJGRzB4mJJtEAsZB/cns5E1j6t22L5T7MPvB++X9Bn5XX3fXMnNj8+QbzMoDQMJPuAERUwbow0UqK/7IOZ0x9v7WOzxy+h78feeyLfHzOa7IMURtXFGUZ1es8+aBnw5cOkDFuP3PYr7Arfrh5q4OwDxMrQ0sdPU3gp5ZV9sO57ZJOPm3bw5zawyKh/Nx5/Hmig7ANGcDKn6zH7oF29L3PPdF7veWiqjWVl/9E/jCT7IIURITCnUb9tHYfGbzuzQiT83rWuZ+LGhlVeNp2Yh/dGkZ51we5C7Q8O3PAtI1FPGOwQw8CvwO8ar9lXERhbdLxC3wt13SZp5TgRzy+p35vsRWMSHVq7PF6ItnYhuUqusEL5wnLoLfki1P7njo5Lvab5/NFxfrW/zxKC7PBuiiA7crk0T4lo/1jo23IfAhRNNQi5rQWc8wt1ip3ZIABh48JeLFWA4Qvk1Ivtfbcb1/Z9vC7cLBRNqzw94g1+WrpjN5OnZYmoNMAOHL+W1v5yst+MCgfbvDlaT8YCYDmMgIERZRAnSrVmwL9pz6H7Iad0mjLo0gzRJYNVPb3y1GTh9OMBe6ddWTS7ujy/NpKMA5QhiItWSNShO8Sp5bkF2w9oVTYHmKDa/tPv1Kkf9kyQ4X6s97Snzz+z0cOIUbXxBlItlX+cqlsDuNL7l76c0iKtZYeb3rOHKoN2zo1MMFj/Uo4zapNg/9Jo0v7WGZli6MK4nkOzMLpdqXtnXOe9rtsHD7NJ7ncEXxrYEpbcVMKjT8jGlcD4sESHrmcufHkkgFxV+BN5jLjkMcjmsKTZmRgMEq1WRGLYrvQXJqmD8q+09UbA4J83C4D+3I2iCdoIMPgVs8qaq8cTaoACjxtgKV/obcijuPZYAy+AniqJD/5PZdNi4Gm0PFZCk4FjF+NydHfbw26Lq+V/H2HST4q3MUgvVIoWcej10mxMsvDGx2/j2vHWPnp3Z9m2XoPLaGNSAcxzIMwmbhRtv9JaITCX9Ui4uYb61adbofKoGEnoWGR4wBYS1Kebmcd/MX9TONtjy6FDcwunD++IZxWUPJe8/cUJWc9ockRhG0IFW5ETAhtqEjbQmYRzFk0/tO0k95v5/q2v8+UpAmLD4GiZKFTC9R8rk1HYAjqH2Qm7LwreB8esNGqcSCYVqwZ5rFQZwZWDbYpCe0tAjNIzvCdVY2MNsbbUs5YCTkOIrhlV8C0ToPt+ZlnnvjVc1JD2h0rYrg8aSYgYNdfY7fT6tB8dhEvufD51v00vHt59Rh5Edp9Vl0ubzkRWQlnpVAC5ehC5tVQuA+xeUnkWrfusJXJ2auQUuKEGhxYlfAOn2bWp92BPQPLIlDXxM1vE4qna6AChDungpWzPYogWGEkMaN2dqVcHC3tR05Dx0RJNHJpqcHacfYFLK5E5w7+Jcfb0Gg6d3HCJgsAShj9lNdzWyAIJFQseATbV41WqptQycWEqyyQpaw9lZ3QWFPOoSIUuyCzQ6SDMRtXGFPoKyFqFDX0x9aL1JPt9wvZrHqlmGxqeuP8kmRCYgN+KIjCBXC4PKJAhTgsFGOLoQrWRQ7NQGU3deqK1ZKeFTzmUrc+cyVS2PlUN+Sajh5zIjWMHcknFYfvq/F3smWhSWNAmu+IeFiCPm80EecRsDPLNdJDrzMqsgUGuB1YmBYkSY2VSkCgxViYFiRJjZVKQKDFWJgWJEmNlUpAoMVYmBYkSY2Uuyjh3NU041HPHhM9+suAxtUiUNzh4KUcfkX7JAuVtC53+m/iecLqzu5rHJhPxyGsvauL1X0d12M+XyWOgu4gEcMhOeWWa2dbEQwpb9kTAHjeqByBbSrjPRGkI2oX3iZTTUl+RBA7VH2nrlcPjqBlgkhVRnV3DdpCBM3Q6u7ZTRduQbBA5VA3AA/xCzwvqX6t4cpCbm9+2WwejAjL/LCpLrK18j7ELAVYpM9Blt5iUYA+21VEzKP1wOqys1JQITawoUTphIpt6z3lhwNbv22qGtXtYn0VaxNS+/p9Ob4zz2CKf7ZXkNv4YCygFMqLUboZuTdodA7F5hUw2BDNsysGtHsY9ow+VJEcecVjiwxcm3h4riY+a7mzAeC5sv4gMIsqA3FGwDY6boZsb66COHkKIQjVqVsAVCGebKMGpMf1Mt14JP/kbM+/WXVHXx8wIopYQJDEjSIEzdIvrNneXqr65+qiqZMgggUV6A+UYvqZnYFFvz/W1+q/c5SAwwUcRseeSo4hqSXmg04MRHfsZmGO0lUOzML7q5y80cfnCX7LuvMeaAO9B5IN48kpoQgNuY3w8V011i5XrVDaOmGChbWxAW/Y3MEzO0IU/T5X7yIFVHskHUGUP094RnehTwUPmsTfuD+Xw7KQ6+MNOJB5Ls6zjhKUeIRNMXFmZ4MBOO0CwAqnGWCZwza1n6rTWWSBgScBMo4cqzreiV/zz1YL8lpta1Ww1cTjeEgnAvdRAaYj07BJAmCoywvRGx8Wu9BAaMdZssBAatDTIGIEhNFIn4WhnBBrUDm2js0P8ludduk67J8z0WPNO2dW2AfEcOlIUzVWd01Ccl9O55i1V92HRHiQvRcSNksTCSxKFNBRdILUyS8TkLoY3pDop1xBriasrbHqVWgCrJlH45AkAda9UnQyVBRKGUh3ugteh/JZ/v+iatMk2xnPpAue293b/IHRsRB5AdpFUl0ubc8Q8tzLOOchMng7hyaKr6BCdqhObxFz1PkyFvkZnjJm6OXm9z+JLUaZ5ya3H4KN/qvvJ0T/0emn4zPrp/GzD5h/ui248Xup/s99GFvAZwogPGD6GYBiYIsSNcSogenCIP7pVAjcPESnCJUompd2q/2akw4MMv8WbXA7wXzfdjFea6n6y0tDrrJ/ZAq10YNQK16i0UpyPaUWn5asGYvCiJWLU+FIqZsHU+9ebhQ8XbluybOjmefXG4hXjh9xPVgx6nW3FuDqj5gQeM5L2qwkuAk5Yqm4bMjs1BsjGQiYtDY/nYY87e7zOd5tR4FbkMvZ3Vzyrlq96AJlViwnKAxEvRkQcUrF1PYtDs67vWuj7cXD3bt4zP35Xmh6/+QGvY9Unak+G6aHeYeAXcG5shDQ0AriVMLdQFBMDKxqoWTHo8q/d5oOYp031vuQxqbquC090PsoTJbFfXMGu7vT8skbA66OuBlzspaoiNTCFSfUm1N2iHjS3HfvD3CN9yuNFG3ZZHsEPPjrHRi3Q8+KPUEkhhm2oOBpcBwRDnSxWD390RKnKcuIStSAfKEZ1PgBLAcL/l/iU3In+k6iHEmE9N2hVULivRQCzoQIM1mICgKGTeTvdZDaawBVxNLHU45oY5mAhcjVzPlPkapwa8x10mPsf8Lh4hnOCnzDItrv0pU8tfNUopJ98tEwaiqSFkQ0pHdJ2fsAfAMuTEtwp40binqKVnSRWpmB6LXIxK7xc24MbsMm2hlTNFKqDGxijeLmgwFx9Gol5Tth6Us0b2lKcLuEnVUEue4uxMTBQfHpehfyq7rlv6vqZt65TiMkr0MjNAhDzQhojpqrr9A9WvQ/yuvBPmDZuDTykCmBzIDsBITPh9UWpn5CF7puXVljhO/3AidMTw+zww6YCjzw7eKTZUYEwO1bNe2J7+KxDQO7gKw0Hmowoa9cmDpgdtaE621CxFyBB58eCAg2QSjtZahgsCZUDC60LSg9bjvqUZ7fdfd6KRdkvC1+a41FyI6PkVipKn8133SmWBHqsOzX7ZOSm4tEsoASGNQNK1xYUoGNQPZYY2S6qeoHQMdICICLrHb+GqR5FXsPQ6+Vx4I2MmM9UB032TghSqD3d+S+zp8RyPnqyp64LmOyp5X/2FNNP/Ib+O7w/7PFdcnv4xG8O8Y9ZsKfEMk0sWIoejJbCvtztaeSYphlN83q5Lb0WHVXU02kHC/aUeEjAAkqWjChxytOeEtdQg9tTZMTQ2lNLtT3dRWdPjWZPQJxO7JDZOlawfTeXH+2e/ck1YteVuUEsbAnyUpm2BDvUZyq76SDXmcxmgUGuBzIbRQ08zNRT1MDDyGwUNfAwMhtFDTyMzEZRAw8js1HUwMPIbEQPjcRYg1aR+iSZUD2PBcbaHtaUbKZHJf+zOpIURRUxJRNj/iSdmNDphFi2kAWd7KXTydLnn1Y69U0RHjwb8Kvnz8wm+HIdJXmoeMUwxZysS0oWRcGaUOgDqpFzWmt5BAT58ULsm0xs0y1oUhPHgFZa+ZXE0o2VhfLQ0RKx+ia6r0CuOFIi0zbU0ULASUwGtq4Tn+acMyyZwr80QeGi8C8Rl4XgX6Z9T8hds2CAd/amLf6uT1rfYst/ZKx2XYIFd5xIIRWNlFFzhvpEdzy7bGGua/YqvlnHZ2dymdHvhz6KG0B2lAJKdZSINTXLWtYIaG9yMuookbPgWiDaIzpKTP6kZYmjVDLQKVG7Otq2yYexHPc9k1rcvrb7z/eMqNE5TVTHfWUNiLRFITnqSgFJdFsEEtSG7KOzIek59wfOevzZOzdnf+7u0Q/wucKVAkVREhm5yDOd+bDncaPhHRqV6rlRcqVEVaBMKYlTclUFnqlHJ6F2K8WraOMxmQWHKuQyWRD0euHFkrTx4t6EMervYvWb7d5Q110L1rp1nbhvL90YNe0bI1GEgNfHPra5u3wsnBmhMlhNGhYPE0uV6HcHuxQYKX2YsJGgR6zcN0mPYPCmzgV67MrnJMziV/MTKcKlUUJJGG5QmKkuB8G+P5rXq6quh8ijNa8Sykj7tBBcnz+3oAYCYqAC5h4rpaq3qoK9FdWirBDFekeJYek+9WivCi/C8K3GJWS/L0NLk6uMP+wmJBXJ+LCenFo1lYOVCokoUv27SX+FKLrEgKiG6n66oWo0rj2xkjBLx/3E8c+Cb//HXCbf/vZczDxkGz3mxOXEeEMs5xmTgw6rk4MO0GGus6ttztGfq01RextztSlqb2OuNkXtbczVpqi9je2nrBNGt+vYx94rO31t/boN61XW2E9N+PJy68N104SH7nf47cwm7y0kBx1afcqBRCzozYKDnkOnSSNtW0gsXK63toX3FzG1LYxbVN5tC8XNbTpMO/U2IKtdlZDbHX+RGEHbwtuLmJpAnV5kBL3XfvvtNz20LWw5aEW2eHodvwzLAe/r26TPMoq2hfsYtZNpDNrRS9vC6h+f9Pzl3nHBjN+T7x1cboJv9GyotoUpjMqJMwblcAzZtjDxbOMO34dy/PNOOq+tlbEBXx/R0G0LxYzKCzSM8oyzbaH88oU1xYU1+Hl1JZ8Cm9m0NHDbwh6MmrM3uObgTeXWtvDx9eRzH+Y/8NvvkzJ18rhRV4yibSHiQ9C2LQSGEPVTD3Jo/NR/U9tCYmsdA7ctjFrM1LbQbbF+2ha2thLyW/t8FWxODrXpmMnF9+Nmo20hsUAiC634Ri1masXXb3F5tS08sH/t/dAbC90Pn+pSbNpQblL2KUzAimgjWMDKjREr58X/U20Lc+nM2H+NPP5RIw9iRzK9NfJouISpkcddsu1koZHHqwdHz7z/u4tvdljvlLPvVj1ksWIFyzYS9j2ot4Sp70HlJXpp5CHweRPw9x/zXY+8zrqRV7sZvn68IRp5vF/MhMpd/VpDxr2DbsmD7DXyyPiccnbuuQr+KVPjvxyqN3iC0TTyOMuoumzDqE7vjTwmnqrd1vzrJWFig2HRZrPiLQzcyAOxMrSdGICV0Vsjj6mpNS7vPDDVe6PJc4dqF3i3jaCRB2JsaMEBxkZ/jTw4o/q8+TJ7i/vqXtleqRPrZhtBSRyI0FlGhMCcRv22Qxwav03Ac2j9s+cV3ua7Dbf8vupte3wtEiQROFouAys62WczpcG5Y0mIRFpyP1pPByCukI8Nj+CqG0/rUg+G2KWV9m3JlVM0hNryg5sLOMVweor48NCFgG8hwDdjSVmTMy1LXgsyiFRYUH717kfCnFYm3uPnrY0taif/FV9s9B/1/yO4UETDWEYXigvQ+wOi14hPMTptHAScIt1cqOqq6SuWhCsk1P5l4LO2SQ//+EWQ8bV4UA/nNycJWZbIjRRZlqrrrJcOB9//BOP337XE0M6SemTq4CjBV5bKxdJQhvpYh50ubMtrkxQwzWvd+/Hjh9rixyr2APJYVUvKQxkZjMpIMowyiO4PR5eIhbNvlFwJli9RKDw7tW/TE2xZwc4i0pHbtmdohFwhduS26xkzRqFEfqH2Vu+k9Ap/PHK/YPvA5LE+26sfwq9r8AOCleNlFD10S0TloSwlo7JGGMXMgY/SyVu1KjnojhqrGBnDMINeZL97NjR+oc/U3ut2vkzec6QsW+UyqiO1DWrIYbp4Iam2XFtB39909FJRS87gbRVzfT2P2WcFzDk7SbDpQfAMg257IQA5GABFFABA06KTJ4otZfSFarJ2flt7qfFuQXr9iDeFLd7UISxl+i0YAAFIZAJga9gSzNE8zPl38XH4j2bHbZiexd9g49TzQK3eu/XGx3mzlImPM3NpefNxNv3we+llUcl3oY9zu3c1P4QaAR/n5VKm6Oa1pUZAKsjJydEDH+dhvy+KQcuL/FfG9X2W8cWvhlHwcY4xameHMWhHL3yc9sX8lMA3h303LDlWFPnn3vFGwcdJZ1TOTGNQDseQfJz1wRe37fCP917QYG2aa+TaB0bFx1EwKm+YYZRnnHyc1zmH5JWGtXJNfHjsdVann5kG5uP4MGquk8E1V658HG6KPPHJaKHbylqN84f52KYZBR8H8SFo+TjAEKJ+6hHO/wM+zkalda1Py+b5pCqXN6lTcfMGA/NxFMuY+Dgey/TDx+lzt9qvi3vfEWweU9C7X09hf9b5OMS9OQsck6hlTByTQcvKi4/ziddwinX/s35zl7xdHPotYyvrfByijWABKw9GrNot+5/i4+TRmbEx+dLWUv+t/AN5AbJnjwe/xUdK+oyFuZOeClF0BDnDVIfwRTN3aUw0zB5TR3PGO6myTLkiWHczHH4C5cjbsufl7R+CAcK1c5Pte63tdoL2/ciRHE0hafxVDQYmLEAzFYtiVP7D/Gj10yj4NDawuJ81H/4j5H+Oaim4Xnd+gXmwRAYUJhF7A7sehz0OUatKlfl0qtQ5J81ePbbLPydtk6CDnaXzFf6S6EmhByq4Z2jkpF1Ly94d/7tCsG+/W9xDcdJDjZy0qzXnyubYvnY//E6i6JVxoqdGTppf20fBmQ6LBcsPTN8+6GFOA42ctKTxq6YMnMb1SzntPLz9xx5fNXLSGrw4uVRaYCfIP1T11tSXWYUaNT46LVnCETbd673lyIC5he893TQaVs3NGzSBe9bTf/vEZeETDt38CESm2APD1nVpumWt5676jd8nVvvlHhBVxUTyFbn1G05zXZB+tTbvSCMZEFXDXt52WGHkkyi/TW1Ctihn3aoJRGaoaEfwHx6ffh3vn7Rh+Ndefw9OBqLqqKj/MPm8z9mxvLUiYZcN8n2wGIY5KlqzstntKev6uU9b2rqlX73aEUBkgYpu+6XGHuh5RDhjxLW7NTvO7wVENVBR3b2nryQE3vBKHpx1t93RzXWAqCYqkldPP3K8Zxfe+lbhTT/trm8NRLVQ0buonjVXjh3ksW7vG5/aNW9sA6LaqIiTZu9XFFLZY8PxE8kB/WcOBaI6qGhbhcUTo6t8DNht18JrZ/aTZkBkiYq6ra51cr5Div/c22EX/57k9wiIrLDXeNCbG/u6ofu+pCqht3oe2gVE1qjoZ5j92+ajNvNmzoz3eT1M5gVEdVHRERFn2dpzHb3mBDV66t814TMQ2aCi0VPiR+88ONZ31q6UofefXO0GRLaoqOOT1zsTfPL95gya2W7NsecvgKgeKkoeo/QfMq2WcMagsVkLE9MCgMgOFf1a+eWlKgmWwj0dvppWyxlTBET1UZHlCJ8m7btu9Tj8/b6isdR9MRA1QEWT8yfnLE2V+Sw6fsL27P2zEPmGmL6k9dc3XX/d+/Avp37y7vvCAdAIFV3wCjwu+/iXf1KTMbbykKRlQMRFRY+mvYib/LIqb+Xp83lNkm96kJItG3Noki0zLq4wc0qc6rPt5tchl36av6cwG7omWx6lM1FWYQd3pp88I8jIejjhXP14/LasiiAuWiYXUzAI6Jobt0DvUHM+kXYNMZEimQwYIbQThpaUAaKBonw18jknKtC2fh5YAb6lFUD7SuH9BjoKOIVpujWSKWFUql6E2v93WDTsu6i234w07nDugeu9WCRUsuzkcuwFnM8QIDGV43YauHWP03RiA3QMAg6TAjm7E0tgqW95jBShUID3k8pg43b1OOECD4orgluuUEoURRkvjgm2fOKnye7KK92svxwfAlV/DjkEWiJivUSzPTJiGOA6nGYU8WoyXU/H1sNO6EQTl6hLGSFSgv3LaAkXOCDqVm4M3bgOWgb1/3rL/UiHvq07P74tIJyWo4+lOC3HJGxrr6YTOtjdqbSX5owMdlLEVEfgGmPEHuzQWkIEkrpncb+GnKxOq/xT7tW4163xS17ZaUQsgFXICBYY6uj68yvnv+wDNrMPiB663rIPNi5nyj4IW14e2Qcf/hwR9+HKVf8FVy97Hmpa+zmLiyXRArGQfbB2ORNZe95yvWQfKPjVvZOf+gvm36oStihwdlODZx9MYEQFjBsjjZToL/vgx5qxC0f1tuBnW9zZ/2DF/GZGk30QxKi6XoZRnd6zDy73rT/QNGac1+FUF4dt5+ZNN3D2AWJlaOnjwMroLftg3jK+ycqBs9zyuINlHZeuwhdMMEz2wQRGcMKW6zH7oEfDcf7JV/d4zDEZWOVNv7ghRpJ9EMSIEJjTqN92jEPjt51ZIRJ+71rXM3Fjwyovm07Ea90U6XsZ7C7U/uDADd92FvWEwQ4xDPwK/K7xmr1ZgbFFxyv0vVDXbZJWjhPx/JL6vcleNCbRoT3U7U1oeyiSq+QKNJCxqRz609au4nhOGrXLbd3p1UtyKwXWIgTZ4d0UQXbkcmmeEtH+sdD7qQgCFE01CLmtBZwTm3SKndkgAGHjwl4sVYDhC+TUi633ySO9XqzfxVvZ/nn+WfeMY/hp6Y7dTJ6WJaLSANv7a4u6kSHdAxaY7jpr3im/rDXvIWC7GAEDI8ogTpRqzYB/055D90NO6TRl0KUZoksGq8p7eitgSL8Tnmnejgsbxj/8WBtJxgHKIJdcrsxzC7Yf0KpsDjBBtfu+/Vj95inPIz2vV8LVCc0usKDaJEbVKg2kWir/OFW3JpKl90BWNnk0alATW8/VpkEbm7jm5husBzLHGbVJsAdyNGl/64xMMXRhPM6hWRjdrtS9M67zXtftg4fZJPc7gi8NbAlLbirh0Sdk40pgfFiiQ+dEF748EkCuKvyJPEZc8hhkc1jSMFEMBolWKyIxbFf6C5PUQflX2nojYPCHZADQn7tRFBgfAQZ/l4yy5urxhBqgwOMGWMoXehvyKK491gQQoKdK4oP/U9m0GHgaLY+V0GTgePtcF7SOjOMttY1Tfmj/Ft9muTLST5mizSR6vTQb8+f4Ixciv83kL+7ZZmTLb8s/lNHGpAKYAyHMJm4UZa/TWiEwl/VIuLmG+tWnW6HyqBhJ6FhkeMA2NNSnm2E9unZuZPl3wMrVKyaZFeThW9GZlTyXvP3FCVnPaHJEYRtCBVuREwIbahJO0JmEcxZNP7TtJPeb+f6tr/PlKfhjbvMgSbRMFCrh+o+VyShsAZ3D7ITdFwXvg2NWGjVOJJOKVYM8VqqM4MrBNkWhvSUgRukZ3pOqObqGWFvqWUsB5/EKgK4ZVfAtE6Cbs6Ksc98aLmpIC1UlbPkJjSREjDqlxMzm7OOPFYUHP98ImykZ1w7vPiMPIrvPqsulTWciK6GsdCpYFxYit5bKZYAdkM6voHWftUTOTo2cAjfU4NCihG9pbc9M69RKvsu2HgzpOWjrUDxVGx0g1CEdvJTtWQzRymFEa/0KvTpY2IuahoyPlmji0FSDs+PsC1xaicwZ/k2Ms6fXcOjkhksUBJYw/Cmr4bZGFkioWPAIsKker1I1pZaJC1NZJklZ+7A7o7OgmEdFKnRBZoFOB2E2qlbI0FdA1ips6IspoXibN3NJlN8brwPv7r+oX/O3RoTABPxWFIEJ5HJ5QJHDCAUY4uhCdZJDs1AZTd16orVkpw1YOZStD1vBVLa+nxryAuOHnMCNYwfyDu9GZkw8WNtn5ereH8/WkJT11AhC3msVE+TOqzDIT9FBrjMrswYGuR5YmRQkSoyVSUGixFiZFCRKjJVJQaLEWJkUJEo1K5NMosRYmRQkSoyVKQs8XVi1Wj3+Gp+omfU+Cz+SKG9w8FJvQgn0SxYob6fp9N/E94TTnd3VPDaZiEdee1ETr/86qsN+vkweA91FJIBDdsor08y2Jh5S2LInAva4UT0A2VLCfSZKQ9AuvE+knJb6iiRwqP5IW68cbBX7pYNJVkR1dg1bylqn63R2baeKtiHZIHKoGoAH+IWeF/R3WOXjq+XN3HMOj+xyLKp4UFlibeV7jF0IsApKR5fdYlKCPdhWd0in9MPpsLJSUyI0saJEafDHCfmXKih4uY8yWgQcOFSRRVrE1L7+n05vjPPYIp/tleQ2/hgLKFkzovR5OfnwgclPcwzE5hUy2RDMsCkHt3oY94w+VBL+vWXvvIyWgsRLHVeY+TarYcB4LmzhigwiyoDcUbAN7pWumxvroI4eQohCNWpWwBUIZ5uokzX9XTp//X2PT06LbasrCMfNN4KoJQTJgREk63Td4rrN3aWqb64+qioZMkhgkd5AjavTZ/TA3xf5bWt3IPmbwAnfzM4Uey45iqiWlAc6FRnReaOO6Z7h0CyMr/r5C01cvvCXrDvvsSbAexD5IJ68EprQgNsYH89VU91i5TqVjSMmWGgbG9CW/Q0M00cI23mq3EcOgO20bkuddmHavOTBl6/deOqx17lvjM1ix+r4w04kHkuzrOOEpVlxookrKxMc2OliCFYg1RjLBK75bd3WOgsELAmYafRQ3Ru1b0QVywLvVSeHP9rxZ0Eq3hIJwL3UQGmI9OwSQJhOM8K0L123xa70EBox1mywEBq0NMgYgSE0UjfyaGcEGtQOnaWzQ/yW5126TrsnzPRY807Z1bYB8Rw6UhTNVZ3TUJyX07nmLVX3YdEeJC9FxI2SxMJLEoU0FF0gtTJLxOQuhjekOinXEGvbtbSlgJOwoQBWTaLwyRMA6q4bdDJUFkgYSnW4C16H8ltOuORi7VG0znXumAorc7fvHIN3kZAHkF0k1eXS5hwxz62Mcw4yk+MhPFl0FR0iNujEJjFXvQ9ToS/BpEBR4aI1wrzQcRKPJkm/4KN/qvvJ0T/0emn4dPUb8/B7xie/gz1vn0s79uodC/iEMOIDho8hGAamCHFjnAqIHhzij26VwM1DRIpwiZJJaX+PXxSwM8fDb0HQZ/OMtOd4Knll1f1kpaHXWT+zBVpxZNSKjVFppTgf04pOy1cNxOBFS8So8aUuSZI2fkCnSB+3aWsrDzDvwDmMV4wfcj9ZMeh11ntEO6PmBB4zkvarCS4CzrANum3I7NQYIBsLmbQ0PL586mQ+gGfhm/Tjk1NDlw6N8axavuoBZFYtJigPRFwZEWmyAVvXz3Fo1vVdC30/Du7ezXvmx+9K0+M38ZEj9BO1J8P0UO8w8As4NzZCGhoB3EqYWyiKiYEVDdSsGHT5127zQczTpnpf8phUXdeFJ7oe5YmS2C+uYFd3dH1ZI+D1UVcDLvZSVZEamMKkehPq7e2TL5Wc31T33BrM+3x7+Xr8aWwVOsdGLdDz4o9QSSGGbag4GlwHBEOdLFYPf3REqcpy4hK1IB8oRnU+AEsBwv+X+JTcif6TKBElrucGrQoK97UIYDZUgMFaTAAwdDKfp5vMRhO4Io4mlnpcE8McLESuJq9nilxFqTG/QIe5/wGPi2c4J/gJg2y7S1/64OndFkg/+WiZNBRJCyMbUjqk7fyAPwCWJyW4U8aNxD1FKztJrEzB9FrkYlZ4ubYHN2CTbQGpmilUBzcwRvFwY4G5+jQS85yw9aSaN7SlOF3CT6qCXPYWY2NgoPj0vAr5Vd1z39T1M29dpxCTV6CRmwUg5oU0RkxV1+kfrHof5HXhnzBt3Bp4SBXA5kB2AkJmwuuLUj+jO9UtqPTbU2Fq31u2T/dnTMXppwKPPDt4pNlRgTA7WlZb85bTaIzfqju9Q/MvFR8v65kJmB3VoDrbULEXIEHnz40FGiCVdrLUMFgSKgcWWheUQtY5WnYK+NN//uJrme1jfnPHo+RGRsmtVJRmv3N8d3Vlsm+ik9PmwVkTyppdClECw5oBpYsbC9AxqB5LjGwXVb1A6BhpARCR9Y5fw1SPIq9h6PXyOPBGRsxnqoMmeycEKdSeXvyX2VNiOR892dMuG5nsafX/7Cmmn74eJ0bNaNjF44DHuJqXhg9UsGBPiWWaWLAUHRgtBbfc7Wk3s5VOqdcn+aZHDN7cfZVJFAv2lHhIwAJK1RlR+ryhHO0pcQ01uD1FRgytPa2utqeX6Oyp0ewJiNOJHTJbxwq27+byo92zP7lG7LoyN4iFLUH2BqYtwUb1mUohHeQ6k9ksMMj1QGajqIGHmXqKGngYmY2iBh5GZqOogYeR2Shq4GFkNooaeBiZjeihkRhr0CpSDjFi9TwWGGu/saZkMz0q+Z/VkaQoqogpmRjzJ+nEhE4nxLKFLOjkdzqdpOfcHzjr8Wfv3Jz9ubtHP8Dn+VUKFEVJZOQCrXSGzZ7HjYZ3aFSZ5kbJlRJVcSGlJE7JVRVnpfzaxLqLFK+ijbUzCw5VyGWyILhiwYuaDVkJlnB6q6X+D5od909ZOHfhkfvvntFZQtO+MRJFCHh97GObu8vHjpRBrhasBAsL/4ilSvS7Aw8DRjkeJmwkqAQr1Us6lG4BdjxrgQHtyuckzOJX8xMpwqVRQkkYbgE0U10Ogj07NK9XVV0PkUdrXsVb4cq+LQTjzq8tqIGAGKiAeYNKqeqtqmBvRTWhFKJY7ygxLLuFwVuhKrwIQy8alxBfXYaWFVZtCGAnEKlIxoe1oDQWIqVCIopU/27SXyGKVt+DDtXLdEPVaJZlYhVQlo7qiOOfhXX58VqmdfnKWmxdvmL0mBPLqxrv8ehCRmJ/oprYf5UOc52XSXOO/pZJirq52DJJUTcXWyYp6uZiyyRF3VzMF1rq8aVe93gef98h3uBFQ/bxNHyh3p6u3sWDkj1yrzysm746fB1pcYVWn3IgEYvxsrC4XqPTpJG2HCMWHdZby7GizUwtx6I3l3fLsf0tU48Uxvt7LQo6rZT3T+EaQcuxK5uZGrgc3WwEfZPOnDmjh5ZjL/7gV6ux/g+f3DN90g5MamdvFC3Hshi1k2YM2tFLy7FvT/Z6u5yw8Nhdo7i3JC0XT2U0VMux6YzKiTYG5XAM2XJs7bmr8UGr+/gtr3h5acRfSW2NquXYEEbleRlGecbZcmzKi+SUygPvCab9GPis6coCjoFbjnVg1BzX4JqDN5Vby7GjJz2b2dlV8M7PHLOikfCPrkbRcgzxIWhbjgFDiPqp1zk0fuq/qeUYsS2GgVuOhW1hajnWbYt+Wo6ZuFg/nrPpOC/ResuBdVlP8XxgNlqOEYubsdBGa+QWpjZa/lvKq+XYy5r9kms8kvtsumnxcMGWPbNYbzlGtBEsYNWNEasWW/6nWo4V0Zmx/4rw/6Mi/MRuQnorwm+9lakI/zWy7WShCH90L+/WZ1te8s0+0Fq+K997D4vZ5izbSFizvPZWpprlP8g2sjyK8B/5XD+vGq+579YanRyWH8zGF5k1RBH+l1uYULmmX2vIuHfQLfGHvSL8Y+9NeD1U5ihc/du0wW2b9scX3jBkEf5jjKrbYRjV6b0If/sVb+r0rzbbY1G+KDwsqZuNgYvwI1aGtoo6sDJ6K8KfvKnKTesKNYSrr6Xer5rT08oIivAjxoYWnGtb9FiEf6p8/YPFFRt4Jhzcub53zZhTRlDOAiJ0jBEhMKdRv+0Gh8ZvE/AcWv/seYW3+W7DLb+vetseX0cASeKLlsvAik722UxpcO5YEiKRltyP1sIAiCvkY8MjuOqmsbrUciB2WKR9W3LVAw2htty+5gLOczg9RXx46ELAtxDgu3hrWROrLEteC1xFsaD86oXvwjqE+2wO2H/qTLPY07/hG9X9o95dBBeKaBjL6EJxAXqPIXqN+BSj08ZBwCncqpMLVV01fcWScIWE2r+MqdexW+Wwe6655+4dHL2xCv4opbI7ciNFhpTqOutlf8H3P8z4/TdvNbSzpB6ZOjhK8JWlcrE0lKG2jemxYbGOUZ/911n+9sfZic3u4Mcq9gDyWFVLykMZixmVkWAYZRDdH44uEQtn3yi5EixfolB4dmrfpifYsoKdRaQjt23P0Ai5QuzIbdczZoxCifxC7a1WfJVbs/K4TV47lb/cVDw5wseva/ADgpXjZRT9L0tE5aEsGaOyBhjFzIGP0slbtSo56I4aqxgZwzCDks02/8j5UNH3QMeajivdjjcpy1a5jOpIbYMacpjqWUiqC9VW0PfMVt28VNSSM3hbF5xfPaud4xuQEjoo+phlo6oG3fZCAHZhABRRAABNi06eKLaU0ReZuJB/qH3jm2d8cqZV/trkU95ywlKm32RfCMAEJgC2DtuKOZo3Of8uPg6xMbfe+DhPtzHxcSZvK28+zl2TCxfrze/qsWnz241t9o0LMwI+zsNtTNHNi9uMgFSwa9cuPfBxavzZ7MbbGt38Nn1J8ggNG/XUKPg4uYza2WgM2tELHydm4luX9SfWBGRs7Di4x1+mDkbBx1nIqJzJxqAcjiH5OLm3VuWMcH7jOquOWc3i57sSjYqPM4pRef0Mozzj5OP8YRLwNcGstvuMDOtv5zZU/WhgPo4bo+acDa65cuXjvPYZHHEy7qxPsuXBh2kfe7Y3Cj4O4kPQ8nGAIUT91Fuc/wd8nAtegcdlH//yT2oyxlYekrTMwHycUVlMfJxeWfrh47RYXhDsOGW4YOm11o9P7Pklm3U+DnFvzgLHJCyLiWMSlFVefJw+Zi1eD3zTzSfPNqnrgaq8j6zzcYg2ggWsejFi5ZD1P8XHuU1nxsbkS1tL/bfyD+QFyJ49HvwWHynpMxbmTnoqRNER5AxTHcIXzdylMdEwe0wdzRnvpMoy5Ypgzbxw+AmUI+/RtBdxk19W5a08fT6vSfJND9r3I0dyNIWk8Vc1GJiwAM1ULIpRScx70nJUqp9GwaepDgtzWfPhP/yoHDSqpWBGtfUF5sESGVCYROwN7Hoc9jhErSpV3qFTpc45afbqsV3+OWnZl+0bf7862WON89Lzn94uGa2Rk7a61wnHuqm/uB0SNcl6VN/XRiMnbfK4RG7nyt28Z7u125ErDJFp5KS9fGZ20GHxV8+9r8Q+Ez+2KNbISRuyukVNru0W3znff3nof+EPqUZOmuePU8ulE4oDUopqb/WzfDRKIz//RueligUvqwiTBwVlZfDHpms0m9n6aPYa/117eDv7x7VpERNwBIhMUVHPyM3TJr9/6bk2/veTzWuapAFRVVS0ZFzmyZDGFm75igzHb0MCNgJRNVTkUXfTFpfMrx5pM5N/y7q7JACIzFBRA6VNh3fXFbykO79Y7fPtBBPZq6OiLnUvV6jzu0K4p06vaKunqZZAZI6K+sz1KB4WfUKQ03/Z35t+9kkCIgvsezX8fbmX913/LWcrNrN8ad0eiGqgori79hsEk+vych4s/vp0wf4TQFQTFf2+YtJP8wNJHknmopA6A9vMBKJaqKhmUY+JktSKAfn7w8Yqq594BES1UdHbt08tnq835S/oWGz9blWj70BUBxX5+0RkTtkW47/mauTz+ZcPXwQiS1Tk2kIQ8LTtMt7OoUM7mYSF3AAiK1T0qtaT+e1rz/fe/Ndlvyt/1v0JRNaoqHbh1JcpL34NWNj/znTpYd9fgKguKlq8qdvJg10dhGustlccZl5hNRDZoCLn6SnrRh7/6TXnbY5bl++/bwAiW1Q0sPfrdsom7T2WpNz+PveIFdRyPVQ0LciiXe09ll5bBy+zv1xN+QWI7FCR1yLF6dNPV3vOfG0663b9s2eAqD4qCmlWw0L+wYd34PrBw9YcG4hhA1S0zKKgV5eZHTxzPs0/JAuvFw5EDVGRd2a3P5bldQhYUJwXNG7YjgVA1AgVPaxcY7JlhDcvXVlxcMvDkROAiIuKLvw+fEmfSo/9tvEOee5dtkVMSrZszKFJtmwmufZsm/MF/4ShRy4PzH89h4Vky7t0Jsoq7ODO9JNnBBlZDyecqx+fiT9MFMRFy+RiCgYBXWPSFugdas4nUmo9JlIkkwEjhFax15IyQDRQlK9GPudEBdrWvoLFw7cXQPtK4f0Gwg6w23VrAlHCqFS9COV3Wzn+zTBFhVGuSyMXxbeYaFOzLFGi8nVyOfYCThwESEzluJ0Gbp14u05sgI5BwGFSIGd3Ygks0yuPkSIUCvB+UhlsuqweJ1zgQXFFcMsVSp3jsyH66HnhG7eVk38VNe0x+iY+BKr+HHIItETEenlVe2TEMMDVY7tRxKvJdD0d24Y6oRNNXKIuZYRICfYvoyVc4ICo2zDRx0rPVr4xdoywtfeeV82s6/V14RJOy9HHUpyWYxK2tVfTCR3s7lTaS3NGBjspYqojcI0xYg92aC0hAkndevX+vrp1phxwPzLg/9i7DrgmkrcdFBXFgmCvsYIKiL0rSQi9KYi9RAgQDQkmYC9YDrti7wp20BO7goqcCtZTzt4r9oaKZ9dvZrMb2N3ZJZElyef//P28kx12s3nemfd5Z+ad5126yXxr33WFTyPiACx/VrBAV8f55y6PgX/+O33wS6cPqBG6wU4f1N/OdvrggX5cqePpA7Ppk66M25Mg2LPaO7WX3cadHJIl1QNxcPqgzna2ZO0y2w1y+iB9qU2jAe+qiKcEbe7S88fsUUY/ffDvn2yoPDAOJ+qwU2K40wdZ+8TDL4XP9Dp069vKF/Ou7zCZ0wfnWE2XaqrhDMenDzb3Cs1NmTRanDzh0cLpS+Mo9ZAMfvoA8zKM6ePAyxjs9EEnnmzIvskdvCfl7Ilp1eAMeVfdOKcPMGfDCM6DPw14+mBhhTf8UGGY156KFcae961kbiKnD86xIpSqjdvu8RjitlMrJd7fO1R1m7ypTqnnDcamkaNRrGZdgIu37gsHQnLJSDwSBjPEUPAjiLtG56+rCJwt3l9h7IWHbuN1O4dAWb9Evzc9iiZa9CjtUuYQXtqFFio5AwucPlgEtSVPPe1e16bZDeeZZiUuNJZUbUfZZId3IzbZscsFRUpU/8dB3ZaSEKBIVCfkNxPz3h3Ua++sGgYQ0S/sQmQq0H1BO5psnURdz1Z6H+15aEHdF/5de8wlD0sX4mb6sMxrKggw/zHXpJMHZwiTytdcXl34biEHgN05yAYY6FFGCaI0nAF/pxWP6Q/9SKcFiy0tMVuyeNVLfhfqZP1s6DJftS76Y906T6yxwzjAGOJRkSqpdusOC2oFwgC73k0KFwBTTCsYbtVqeN/a4riPa2dHDXnky4Fp97Gadp2RTIuKj+P0KwBXcP3S9wNOjowdlSPe1rLpvBL+Di2NVr+U54j7JFi/NJI2v3XEhhhOjPd5DMQovFT19oh2u53/7Dew2qygw2Rp4EpQcjMKLn3CbFwp3B+W6lH1rLlIGQEg1wh/Yo8JyXsMNjnMK3YWAjqJToxI3bYr+IVp5kD+lq7RCOj8WTsA6E+FiCJog0Hn37OjsGf1BN75QIHLDVDKF0YbSgXfjijgBdDTHOKD/9L4NDVcjVaOlDKcwOn7pdHCz9UTBfOLfcvode7GLbKPwWqhIkrE4dcL9DFX/nj0aste560HbpWdVGdUUiF9TByA+SyE2VyIKPu1rAkGc2GXhBvlM792dStYqVBLg6Ox7gFLSDBUnWt8JaBYu/Y+WzKldx/cHdqGnFWQ91z69JfUyPmJJnsctv4o2K45YLDhLuEBk0s4U77B+xZtlT6x7954OV6cKKYWDI6US4KlfN9ouRzhC5gCZgfiPgW8D/ZZmWKERC4L0XTykbKocL4STFNUunsC6i49y3uiChvna9Y19cxWzBsM0bVEbb7FA3RbF3rsV4GkhpU/jILl+qCThIghAWh/3a1X6a4LBEkVrfb6lq/TgBw+Yw+ih8+aywUNZ2pWQmHTqaAYIERuHSpkgNVL3Hcwhs86IldTi5yK1NVg10LvWye9HXZ/Nd83ttiooY65/hPJqdp4B0Fv6ZBbuR7FEK3WrGjxdxg0wCJe1CJwdKQ0Pw4N8uXsOHqBkFYqd4S/o3Z0cx8Eg9wwqYqSJQz/FNZxV8EIEhoWPAJMqkdrTI20MpWYCjNICltD2REfBTkCVFJhc2wU6LUQVk1TxhTGChhXEV0/BAnF+Wrly0+8qRIsmHbNpefJEj8oGxPwWyE2JrDLRQFFa1Yo+FqieshjICqT0a2nektuSvgUgWz9g2Q22foLyQTk2SYPOTU3jhvIJfV++tQdNtFtq3vJajVbOF/mAPLUXWyQJ+0iIH/EBLneWZkVCMgNkJWJSKIksjIRSZREViYiiZLIykQkURJZmYgkSiIrE5FESWRlIpIoiazMByvrfm25q6nPhn5hZ2bu9XGkpbzBzovsfdT0Sw5S3h4z2b++13GH2zvLuG42Dxly5ZkV2f42msV+kVyphuEitoFDD8pLMoy2+q4yWLInHNa40TwAm1LCeSaehqDb9j415bTAV6SBg/olXaNyMFW8ALeXrqHWrmE5yAXb9Vq7rqnZbcNOgyihaQAe4AfmvKAvp9SevbdUc990z2nsI8+MAYXZayvaZewsgNW57Tjt5tAO2INp9Q76hj8bVpW1KRH5sUKiFHHQ/fmrbX+KDti42bTvnliPw7SIST19P5zcNMo1UTnDfbpw9FEOUFrAilLUdv2KtNv7E+MKG2wYZsSQg1M9IveMeask8OLx5S5vh7ovGxga2/vlrbFG3M+F5RfPMe7npoNpcKqe+7lNtbuHEKLgfJoVkIFIvgm9a+kV4HLnj9Lek5q4zDvXKfGHCexaQpA2sYK0YLt++7qNXGSab65dqsrrMtjGIrODetT9S9Nhj5r6JNu4//NtzZoY8i4i8Vz6LqK2pSjQmcCKztDtRGD0hMdAjC+CfL3Nm38WLV5/1jXBz6MvfSGezoTmDODWI+/nalPdRir1ko2jHrDQdW9A1+xv4JgiYQh/FnX2kQdgc0kugm3aJcdzomLbTnFbs6Jvde+LV+6QFzux/VgGWic1FuTFqS6usJngwE/LIVj+qD4WD9WdkvXiuvIYWFIw0pih6pmxvOKhNb1dD0dtc+efsiOTXGkxuBcNVL4mA4cEECYXVpickvUju4K30Kh7zUbbQoOeBusjcAuNVkk40hGDBvdDT5n8kMj2bPMOU+56x7smvI3qUL02dR06QhLJ16zTINbLmUJzW819xG4Pdi5FwldIR8JLUpUsGCdIndwS9XAXyxuiVsrzNeuIq7OtmLc9JROqJiFi8hiAuiJFL0dVHtuG0izugtdBfss6ddf2X+jw0SM24Kjy6uCbq8ghEvYAeoikuVzQmKOecyvkmIOZyUkQnm1Mig5LUvTKJimneR82oa/ZxWcErXs2wWt3j+ctXO+PMSPv/mnup+/+4dcLwiey25h/1rTe7zLLxnPl3nr3IzjAZzIrPqD7GCPDwAJL3BihAaIzj/pHPyXwcoESVZg0is1oHY+Osr15rKRP4oVo1eqeE1+Rjaa5n240/Drna7bAKn1ZreJqUlbJOUJYRS/6qoA5vEhpCO58kYZpO3PrI3HxBcL9lqmb76UPlZAN44PdTzcMfp1rwzg74u4ELjPS5qsxzcW82Sn6TchqajHAJhZyWUF4nDp498sSl+euhz9nDLdu8qM5OatWpHkAPauWaCgKRBSsiPinELz+jMfA6zsWeOX269TRIzb3e5TFsRvvyTbWfKLuyTCdtTMMMoHzR4bLgsNBWAnPFkrUaqhooM2Kwelft8kH9Zw26n3pfVJzXZ880RQ8T5SW/eIMZnWvDxR2B7wWHmpAspdpRGrgESbNmyC/uPjWw1tDQ146x72ucbVE1RRyKfVSTIGNtsHA5I+lkkIMnVA5GvymGIZ6eazOvniP0shykg5qwXwgtWZ9AEoBwn/nxZT8sb7j0QVUKHxuVFVQOK/FAKuGAgxqMQHA8MH8nGkwm8zGFbU3cVTjmrrNwcHO1bYDbDtXq7SYv2DC3He/67lTvOOimL7VO8mee1Ykq0Zh9eQj5bJg7FgY3ZEyIV3TB8QDgJ6iwJ1yfgTpKTr5SaoyBdtr0cWsyO26LtzAg9QwZXY2auEG7lFYHcwsp12NJCIngk/KeEBfSrIl/KRS2GWPEKIP9Ak5OdfsSGmX1NdVfco1s8ki2s0Y2i39MPdC6yMWmuvMD9a8D/a68FfYJm61XWUq4HNgdgKWzES2F9I+wV+c42tWaueT4N39Yab/jhkk+5gJ6KNDQBsdZpTR0WdqsVbb51p47a8UHeQxYOarwq6ZgNHRHprTCZW9ABN0Gh7MzAdSQStLdQKkwUrgofVB6dDCNbvqvfvpHDel4bjzonhyBqKZkI6SsECU6t9/ebBcmc+iw3X2PR76xOUuByhZsaL0LTUT74PavsSa7aLRC4SBkQ4AUbPeyRymeRSdw/DrRbHgjfWYT6iFJjsHDCncn778f+ZPqXI+BvKnoals/rRj6n/+FLfPxhEN57ey43vPPNO5kVL2cigH/pQq08SBpxiSyuYpfFOL2p8+WyGWzR0/3XtByykjq2ckzeDAn1IXCThAqSMrSo2L0p9SOdTo/hTrMYz+FCCF+9NXTP7UZOYE1OHETTJbG7Pqb+eIIl32fXAO33FpTg8OpgTZKWxTgkvaNZXXTJDrncxWnoDcAMlsCA08wtUjNPCIZDaEBh6RzIbQwCOS2RAaeEQyG0IDj0hmo0ZotIw16BWRXYyqnsdBxtobzoxsaUAj/5qOJEJUkTAydc+fZhNzJptQZQs5sEkOk01WHLjXZ1r2J4/UA3tTdw67Tz7nV8JfopDK6QKtTI7NTsCPhHfkU5nmK5RRUo24UJR0VBRfI86K/NpU3UXEq+ji7SwDglVKubwHZCx4MX9BVoon9Lrm7GBRarJw3rbRD446dbdh8oQWPdVSVSB4feJjG7koo4fIYa4WVIKFwj8hsij8u4MIA+5yPIjZRDEJIdVLW5RuDFzkPuBAO4h4MdNEZXwkqjCZwlsaSiJAS83lHrBmR/7rpTXXA5WR+a9SJGA9G4uPXdiXWQED0V8Fzw1GyTRvVYp4K9SAUklGeihCoOwWAa9ZaXgRbr3ku4TF6nJcVlgzIYCVQGQSuQhqQeUjoiiVVBKh/dm8l0oSqb0H76pvmbqqydAyVQWUo6U6av/ngJet97PxcrH9BC+/M3nMqfKqprs8+oM1sf+1NrH/PRPmetNkOZ7haBKhm0vQJEI3l6BJhG4uQZMI3VwiFjroePrGmca57tP/sJ0g4ldYkC8W2rCkbnP1aqFrSnBZf4v54Tk0coVeHz1doYjxckCuuUyWNNGSY1TRYYOVHCt5mK3k2JpDRV1yzPPHM5v7WUGCNatnO9ZzWBttAiXHih1mK+Dy+pAJ1E06evSoAUqOuW2tfnTZJ2vhthNJmV2Hu1GKuRip5NiNQ2zWyTQF6xik5NiESMcde3OvuG5zGpec8SMlxCRKju1iNc4aUzAOz5glxyrPXX7i21/7XNM2HDp9seW3QSZVcmwmq/FGGMd4pllyrMO0jCsWL90E87Ku2ueqL6cbueTYEFbL+RrdcvCmIis5NqZV55k513r5bpg37kndR2GlTKLkGBZDMJYcA44Qj1M/8Bji1P9PJceoZTGMXHJs0WG2kmPhhw1TcqxN689rhcdCfBfPW7p1/esL5D1tLkqOUcXNOCijFXeYrYzWuMNFVXIso0oj74a5sa4bIoqV+Kv4to2FH8IUrKg+ggOswlmxCjz8P1Vy7F8mN/afCP8vifBTqwkZTITfJY1NhN88rShE+HcdPTl6WmA750l/u92bODljMYenzTn2kVCz3DmNTbPcPs0gIvw37R0CJ43ycE6pPXTNj5njyMqKxhDhr8aKCug3JjN30O/gD3ci/LWjD6/p77beZ4ZqWROvyRdHmowIf85hNtPdMiyREaYzuAj/owrZ9SeN7SucfbTk6nW7enQ1sgg/5mUYVdSBlzGYCP+Pl+r+4wI+uy1+YF/9aNbVIyYgwl+NFRzzNAOK8Bd3rbfs1UBXv4QF3eIrzlekmICcBUQIG9OMCIExjcdtH3kMcZtY0LTZzy6XBFvu1Em8sOYNeenXEjvEF6mUA0anx2wWDDi3ydsikeXdj2thAMRVyuiwcL62aKw+Wg7UCouMb0tXPcjXqGtuXyMxr8oRgK9EBBddKPhmAXyP0sMkPQ9WVcp7LXAVxwL51WfsqvZ3hb9fC2PPWiSbPS/9uvC1uyghFNUxFjKE4gP0rCF6dUWI3lkNbtbqF0KV1QzfEGmYSoqOL39szjDzshN4re+ojl/50ekM5YQUdiPihJTmOueyv+D7P09j+/5XjB4saXumHoESfGWZMkQWzKJtcy2Af3RjppnPYc9px+0ONO9P7qvEA+h9VdtSFMY4ymqM7cYxBjX84emzY+HopVBGAfqSBMO1UzunLmDKCmYWEfb8Fl2Cw5WqEHt+yy7q4aoo7Ad0tCpZunTQ2/ZlfJdN9HtY9+S1ADKvwQ8IiBotR9S/zGsqCmOtYDVWrEmMHPgovaLVynkL3Ypo1RA1ywjanzHducSb827JL9fVOnb/3/KFmSoX0hxxTrgjh0c9s2i6UC3EPT/qGaXinpwl2losrfrmtFOC8EjKIf/u7bvcNOq0FwJwJw0H4BoCAOha9IpECSpjFpnwvnwx+cLYZb57k0pkn3x0Icioh30hAFvYAEianUYEmp94/7/ycaiFuQ2Wj1MpnS0fZ9uRos7HWXT+SsYZawePPU5uw/w8htU1gXwcq3S23c1vR0wgqWDLli0GyMdZu9RqZUD3Hu4HL6/y2XS/yzGTyMd5eoTNOpdMwToGycfxGzu6ZfKo2x67+3+cmf6u016TyMdJZzXONlMwDs+Y+Tg3jqbUXc5LdZ+Rmf4g2i8xyKTycZaxGm+qcYxnmvk4Lv/O+5i2Ksh5/5Derpm3Zi42cj5OJKvl+hvdckWajxMw7dUDWa/lzksa1Tg40KrvD5PIx8FiCMZ8HOAI8Tj1M+83yMd5ULLChErhHoIVUcX62R6KGGPkfJxl6Wz5OPJ0w+TjNOuXE9RxUrL3qv6pNuOqFxvNeT4OdW7OQY7JonS2HJOY9KLKx5mRkHXrwPXFgrgLGwYc/jj/KOf5OFQfwQFWclaseqf/T+XjfGFyY8OPyJrJfJNE+9P85E+y+70h75R0j4ZnJ91Ukshw+glTPbYvGrrI1JHw9Jh2N2e0g+aUKV8CNfPC4Ccge97fFwYt7l4i22er4KDb7qWJIYzvR9/Jyd9I63+lA4AL88t/FAvRK6nnnnTsldqnIfJp2kNhrioi+Jdy/nOordin7YHMcgFSOTCYNMQD+PVRxOMws2pM+ZXJlK32+Ao7NuvjnpYc4zMzJ/kqxcsD86mUco1QtR7F/9qKR4H+FazZAsWXI/FH4TUsYT7UMIUSVrMM5etVe2S9w46F1xxnOM/hB8b6H593g+2NEbxEatdDMjumYgaPd1yIyGlKh160QkYR5DQFXt5U5+E6uehg0g/FEF6PMA5zmjiuoMEHCA2GCMEKGrTStDBeBQgVtgpcPRG5D+ETal/Yvxzg3oQjEsVa48Z+qmr7Wrjnxf47TxdXJhcdL8nQUYjrnOfK2ONA8VEkA+XJ060yaAveegJVo5cULv9gCJHHHRqhH1U3HM5scc9jvvhInLjk9Gvk5Tr8YfTlOqKhKDDiW7FhRO1MxX4BI2x/C09lATgV2Ismd1ucvOqmS+Ly1xPK+mz5Rh6L8GGIsoKay0WBz73ybPg4l8/AHf83Jsff5HvVatv5xcV7hTlfpXXCyI7fEqu3yJRPyzQPqe0jlaijVZp8Vs0GjMa7Q3Vb3Zx7nfVdTp+JCHfds3779dW8NiLGt6Izd75Gfdx6JYDjUSFC3NYKuPV4G5pb1zMHo7QQ1myBACC/76x6gUemLzzju1F92GOdupkLtTCCmp4UpblakH+nOj0u/DuEapkAIckKU/wAVIz+HZmcQq1kKVPwvZEYHZ40Jf7rOBfPGSlPdy1pGL7LGktrAd9dPApM3bRBMBY+93ZoYdTtvKxmOE4wbYqG0z17DCd8aH7HhxJtaJq3yBWUP5Hlvr5t2xtmyQ2OFfeWDSHaEp6urjWoRZB3csl5sh9Py5Bn5fjWnybpRPdxy3eTaiI1TfqLRspF77gs0ax7w5PeAaLYCysGlepseYr5zeiroPlb9eiRzmUB0odQg/cetIOlXjEZXxuThaHhQOugt7sz5thYB/HGvbm17HJ4NqYbojkDwPhl8RCNrqrcFANMr7W86i6U/qKtdYYumlr6740nvW8Lksa49z+76K8wyrazYTOo4u1xNKxQAxVyKEADH6g/eAwcuuTph9UOPWd7p5z2+8vtZ3x9cjZ2nnuiL+UxLa9UyTuRouBLtQ8oQ3d1JQQOwmYtdBqZZWLXZZYt98ZzU3dHq96e9WsyvSY9aTyvTY/ajDHVMjS1GZE6nfyqGYXW6Vz2PSY1YX5vj32bE32dHzW7SdXppLYbQqfTJg8rMCBUMskQOXoYXHoy2ffbGLHP3PmO5xuWerWNbI0g/Fb+L8l0UqmSg7qIg6E1kQKUdsChpFfN0EOmU2eMeM1LLh/wwd0zdkrSP4ruwvYMGP2SSCfVDXGAEejTLBjFVMnQR6SzUp5IZ54DQKK0+f7y6uOvt/dNOT8h3KdZ1h9GFegc7ID3FaRAZ29HDCXcof5kcqhVHsxxse54XpTQ5uGR5JMjXRBsil5SrKjZb0DAySujaSLJ/uDbEzQ5IHRmv+YD4ZJjsFIO19lg/wXmCZMqsCoMGOWhE6sftDK3KX37oM/ctYuG2vm5tzVAqp12p466gQUYfkeJDLg8AxkPNwVET39TmAkNboZfkfg9bX+sypnic32OzPhQ74WF9cpfkPgtLOqDAerOK6mom/3OqE9rk8WfnvJAtMDnijRQsPGpEVCHff1TDhX1Yr8z6s9ynqbmNl3tvKhvYg2L78f7Ggn1e/UzKagX/51Rf9FTtWlDqINwe5ZXyN+LLkQaCfXOPlTUzX9n1P8t36mB6NMVl+Xf1pwvNb7mKCOhzh9NRb3E74z6p3I7budI/V3Xn5iREbE5Z5iRUI+fT0W95O+M+oy39m8vr57lNdnBYUu/bWPERkI9bhMV9VK/M+pU3XUjoX4glYq6xS+hrsk6MTjy1nlr/Hh1aPQs6Wv1NhsGtuztfDjh40PvU/ZKxLsjZknY5SLx622pkWNpJtR//LFrg42juXBf/2orNkX6oNSLyaiXKXrUdZZe/vgpe/PftXLcY7sq/omrfwGlAf0r0stlfNr++8/q+u7Jnte6DWx46W8dF1jYLOIfQbVImd/SIjF77e+ebHBGnJS59Fwnx/qVOLJIaOWAz2ax41ynme1XKep5TefAIjGXqRax/C0t8qJsxRVDuq5xn1td0rtu0PBLHFlkdu9KM9OWlxLs33nucWb30EccWIRfmcoVZX9Li1yLX94ld9pu4fbZNuYRklLtObLIP81m1FXVOCpKffDc2/fMyTgOLNK7C9Ui5X5Li1gsOPJ8xeLdwplvP5xrlX29BkcW+bB0ffdP7z74rdnm7tCjX62nHFgkfCjVIuV/S4tUiRnWsk13O/d9K9bVqlqnRkmOLPLifKD7kOLdhalrbX84n1Xu58AibWdSLVLht7TIEtfPNTqNE4j2HBT0W9h/j4AjiwybOG5Yckq017Qdswfce3S5IwcWyV1DtYjVb2kRahEKjizyi+nfbBbpu5tqkYpMFun+8K5fKfk5t7UpacUm7qtHlnwsExAuC43iw/wxslngWTumVO6afqGhMP1eIpfnJWrhKX1IXJfVVjjdmRLuPq3aNgez7Et3mF4BAa6uW40Ak5PnQfwZiErHjrQHrecKm7dXDksnjFLC44Kh6A5kc2ly920zInz2nP/LouvBGuTEM3Tung79Z+RtO953z2bCNYcDPPrHLO1cWLFJuIpwHk/co+udNAOceD5DL6UkjQWVWK9A4rItuvyCjsODRZuqJFs2fzn2Cu0YZahuwBQ2SxZ882qs3xz0EhM4Qon1QD3OlVvC2lps5daafuz0cbNVV/d1kw90sG1+jrwngVXmMhT8o86xwW9nHPhpqkiFPZagGRFQ4Y8py3fst8a+LW6N8znUy+yQf1LVp7/oKQp7gtUBdwXpzogzGjB/AwwInGCsTZhgBrrXf1754GPnTSHekl6V5k4rGoJpaJ3JQjAbKhZWnE8HgimxeolNjZ+eonltLv456p8a9bghmOJJEaN6DDzmlnxZ1HO+5O9gDgimFsSKcZznVtRPiq9AgpnRL8xzWJDKM7lEz0VpTxYcMCLBnK3I9s1BL/kdCcbt1fUSq+5U9Zk9SKQ8vrBUU+MRzDhW+AONA78RCKbaQQfbSz9DvdZem1Gp5eez2cYjGMwVMBIMGBA4wdiYMMFMKz7NTZJ02SVte1bFytnnBhQNwczuyEYwZTsagGD2Nq5d7sHeNs5zWo52Kr4+4io3BJPUfVHF9IcV3GaYx8/t+YyXwgHBTO3INs77d+SYYF7/7NZpWt+vgp2e5058TAl9bUSCac36zUEv+R0Jpowk1v6+63TfFCfFkAqtEo1IMNkd2OA/1OF/hWAanp34WWH9QzTp7qT4+w/G1TUewWCugJFgwIDACaYSE8HEz58T/dLzk9uS4VXUK2bak717SVdYJiFK9wM77TQ38NXKCCk/BPQAfrQaihtFyiXB0nClPAR0D0zsIBT7PUz4KEoSptbp4M7PTrY3316uKthq/SS2WPbflUp6K4OHSUO0N6FenZ7wr7mu65lYOzHPyQdMEouJUFIHAGInL8QBHggR5GDEAR74l3qAx/ePO10DTrxwnnpmT4zFW79L1AM8U3olTLwR2d99WXr88sfLZncl2ovx0Od0dD7gQ/1gxAEfRq8F68TjZkRvFR8oF+HdvItL2r+LG75qtnZ4YazFve4xsKsVtOsq1JnxOODqIr0NuhxDvKilIlouH6QG30ERpv2yJfN+xih3rFPHHuMRB42YbGXtmjfagqPlUdEq9DmjQ347c87tnusWGzPz4mK/SwmsJisl0jyJLoRANBSF0bK82IwGBqMxGMjcW6RxqPCWidpxj9mGGKNMZFMfviWMS2UKtVSF1VcBH0FymEhbjesd8IJ3Nk28+M9BXpcqVGtJtVUpn+goeCpMCz7lfCn8VCc6SzkVeGCsxOsZ0YI+M92ndxf0+1vp7lzYo/TAqHGebEbN8aAdGGM7VVce7+yAv6OAi0KCJ9gZ3rhMtVreUwZFbOp9OWQta0c3h56OrjuAXeU8yHLE/VK6AEHpzs2xLo5TeuXfgNI3/tHOfk2/68JddaKsTte5NN1AlM6fwEbp/HH/UTr6hGWNjWPm75/sEls33S2j676uJkfpvAlsjmTw+P89So8RZC+eMobvve5EsbijG297myClp49jMxoYjP8rlF7yZVRd5/b2okkOY2Yu27f2ksEo3Ttwav+tq8xdlw/5d1PVg2O6cUDpMWPZjHpvDOeUfrzTrQFLJZuEOyKH3ev5+ryDSVE65pcYKR10cZzSq/wGlL47UTgz2feO9/bwj01Wbmo9y0CUbnGNjdItrv5H6eiaHF9+ikV9pH4bJRfTTi7ZM9/kKP3TVTZHsuXq/x6l9x+1aWLFWuNdt14okT6nv3dFE6T03qxGszCs0YxJ6WNn9F2TmtHCa/oLvxdNeZb9DUbpv3jGhc2oB66wGTX8CueUvq5eRGzIjZmCxc7ZMe0TRm83KUrH/BIjpYMujlN61d+A0r2XLFpWP7C++/qP/XqKltp1MBClO1fJZKH09MqZ/1E6ylqx6nIPr02x8V3f7UncxchB3UyO0ttDuzI6EqsqBt1FNAlKv9EyYeg5m8nCdZ/Np/mIrzcyQUp/WpnNaGAw/q9QevDIDwr7ksW8py6+1uxaRNxlg1H6Lx6SZDPqMlajRlbO5JrS992cfEXSZ6jwyOmMDj2/FftiUpSO+SVGSgddHKf0ar8BpbfOUVW0tEx0OZiTPOxAzavFDETp37qyUfq4rv9ROtJaOVsOHx5674TXsh5e4zLGt7U2OUrP7crmSM52/d+j9Cuz1S7i9JKu8894qpbfOfPBBCl9A6vRxhnWaMak9KqNjiUnH7juHisZ0utf+arrBqP0Xzxlz2bUQFaj2nflnNLtL9eJsbvV3m369DdTvHqtrW5SlI75JUZKB10cp/TqvwGlNx06a99fma89D2T36K7IetPQQJReVs5G6bOH/UfpSGtVaKTcMTrH1nteiwOVQ6tcWGlylG4uZ3Mkt4b971G61aSWnS32NRJOk94ZXq6bfwMTpPQ9w9iMNtuwRjMmpbdLXzyp3jOl3847sk87/+hXw2CU/osyLWxGDWE1audhnFP661M2Zxve83JZNP/CN6fT9s9NitIxv8RI6aCL45Re4zeg9DGfnyc9WD/F++C91v+c2uyRaCBKfz2TjdK3z/yP0tEB2PLBt77M3yhcaFPFpfgJFTs/GIPSn89kcyRXZv7vUbrjNf/6P75Mdd/Qz37gV5fn3U2Q0o+yGm27YY1mTEoffitxwg/eA5/YdorNBxZ3rW8wSv9FnS82o65gNWrsTM4p3bd55X+q7w523jF/nbDD2D27TYrSMb/ESOmgi+OUXvM3oPRubs4eOX1nuaZeelB1xdqw9Qai9Dtr2Sh9zdr/KB1prf0Hj7/L7tjW+Y+hdv07jb55yOQo/cZaNkeSufZ/j9IlLc49nyxxEc4aN26+4Ghj9lOixqH0XaxGW2NYoxmT0le2HHN7w7utvqmegjqXglNnGIzSf1Eoks2oM1mNOmIt55Q+tckS3/sNj/nOXjBnweF7b5+YFKVjfomR0kEXxym91m9A6RuW1G2uXi10TQku628xPzzHQJTedA8bpT/f/R+lI60lldcJ3Jy1zz3N7a8Wb2qnzDE5Sm+8h82RWO/536P0KHn3Nna9/nLZPdOx5HeH/v1MkNJ/7GYzGhiM/yuU/k/aC5vDT+I9Zh2++vp074flDEbpv6g0zGbUK6xGPbqbc0r3uubsYFFqsnDettEPjjp1tzEpSsf8EiOlgy6OU3ptJkpvsaFHRr/kRNctGyqcOTrhwxKyjpSbShkdSWZ0O+1wUKpCyAJLJUVKOfhG8FJD8CP8P7LYkYAfBp8La+64qSRqdbgyMhKW4MHeVF3Mw4XoPrYpE7cPy+jjMmV+FfODTW4NBE0Eze1qNSFmyYWD3vtayz1qZv5wB03E6Nmt6Jjt/aiRaN3CMhOXJHxpBpqK401PT31+b/E+zH3qwSz7tn/nykGTOd60ruGATuLYty4JL98PG/v1RF3QVAJvejzWb/rBlk084zo+tNnQsV48aCqJN82vPrlT4t7iXjvVnqUCux07AppK4U39/6rZ4sZdB8/49WlVHskGNAdNFnjTsaE3hu/Z+1V4+JPVk7POw/4BTaXxpkk1Ol/ofPSLaGezYor78eL+oKkM3pRyofmi8Rl9XafdU8bUWjsDomGJNx2o/Hz+E8l+5zjrCmfnNbpuAZrK4k0ds1S7BIdUoqVBnyxThpw6BZrK4U13hx5/d8t9lPOGEovu/LG20RjQVB5vEp24bV/8T0vf9QmbZ7U/Zl0VNFXAmzbP3fr5cfVvfgmnFpyXxC/fD5qs8CbXFcUyGx/y8En5tmvjnwkj4VeuiDed3DL7zWr5Sec98jZ/t1/T8yVossabzvzlu+TZsEt+0/o12vxI1LwnaLLBmzzm1Kye6trPbVFum7t3/n18ATRVwpv+Fk9LvlrM1nvmW/nBOrZHbEFTZbzpRcVH81pZz/PY8vGiz6V/q/4ETVXwJrc/Du+e9NRNsKh1ibq773yCpqyKNy2oJbv3sccY8ay+QQfkjfzPg6ZqeNPaeY9GpNbc47xzWo0fpZMsA0BTdbyp7oWbI2LKevnO6d/l9uj+5yeDphp40+JOj4d0rPKv964BszolVb90GjTVxJsuPFzrPPBIkufcMNHrU9nb4QNr4U2vkuJrfB9VwiV13pEOFZ1OTQFNtfGmTfe7j9zzp69w36USk/kuXWDvrYM3jT8zWLrybm/hFGGTKstkW9+Bprp40/vHPzdV75wo2FK249mXSzMSQBMfb3p2Zkn3i3vFgsWXkg72SQuysPBwGUTyRvXAX6RTrNXy3G5pG3ev2UsqeYclH6yAcBs0L0j1azzCr2lcVB0mF1U5NCV5RcYp8aptD8acqTUunhxZiEdFypUhlJrLcOQyaS02xu/gSzRVkQGZQgXCCIlcDpwQUQTMUadZBtVBIV+NHvTgDTr6+Xu2Yp7T0UzoXxEF6/3txTzzozQlRjbWs8KqN8M4Qqp5EeR3O2KzOKjK4K4+S7wOf82oerVQdaEpYcH+jOnOJd6cd0t+ua7Wsfv/li9kWAAnXvYQoBBUWHCyiZhX7ahe8ottekhB11DLAEgh0mBlRKRSLYPtfPB+Mjmm0kn0E75EBXpSlDJCFoxEcVjW2mfyvkd8t9neOe88aDBZCLi09nNoSOZr4jpugHCZs8KV85dJiAaaFVY00AEfaCF55ooKB0FzhGSYlA8CkKhwKX+IRC3VOAKk/VI25lrUiL0hXrWx3Pxbwr86kexnEYA/lma+vBaurWflgHd2F5T1ljlinZ0EnJn+wNULAtMLGfhNGKNBlKRUIJFgvV/7Mndjn+2i2e0Xx06U/tWQDBbxTDpY2paiAMucFSzQ1XH+qcvEP0F1iw1btNNKmJIgf9NpvIU76VtVEEORUEmUlO8tVYRFhdN5qBQDxilm2lsJJgJdE/wTgAEewA+VBEcpVcDZKMFMXAa6rhz7AEf8g/B2NT9YouAPkfLV0ZGRchmw0BAlaAT3ax4ZrYC3wlU0BZzqyGVjwK9gFx35onCJIkyK2bef7wB+JLEyBZkhShkWJgejQxo1UipVYL8TNVLJjwCdQEdupEborLDR+gT1F3RVLQZceQUavDJqDW4H4Mol+nFlxTyuxF8IXTvpeOaqiFpTXA+vS1hj1rx4AodkSfVAhdUqBghdgAjNRQ2JA8D7p+lHlvVJ/RGrXqvpejhgMob6tcJNxYQua5MEMZ8Ot0w1W8QnrzkwdAviOudzaYBKEisqoN8YWce4JI/4c6+bPlrGrT1C+YGqaKk9NorJ1pKp8/sFOydHJ/4EfgtHpyZIk2WG17i9/ly4x6qt84ZPGNigMVl13Ff7IJrZ8rcVhekms5pOYRzTFRzOlGRxPLX9lWBiAikBWk0dKQ2WhUL3rmEBpHlGNV4VerPFCrfDf5awXjv+aBmyE8KeR3dCmstcGyXSAfcy7iij8JpjXoYWpbDh0TgQkhVAZIRUw4t6AHN8SsnXRxfd9EtpNfL70hk3VpGnafiD6dM0oqEowEliBWcJBZxiBYBjq2GpPAbXB52G1mVyd8lOuse0/Ox7s/PPueQpina/ij5FyWsqCoQmsyIExjQet/GZ4rZTKyXe3ztUdZu8qU6p5w3GppGjUW8Qo/EDXLx1XzgQilRSTbQmh/fikTCYIYaCH0HcNZoPsFVF8SPhiALOFu+vMPbCQ7fxuol1UdYv0e9Nj6KJFh0xjgfTwLQsgPEtISJUcgYWmJCl37IC9gL5MEB+u3mt/5lzLbm/e0xgn6XzTtwkl0YqEQDvpjspzeWCIiWq/ytkpJQOAErNwusa0johv5mYtymLFimxba1VwwAi+oVdiEwFui9oR5Nt+F7V0ucRk303z27bdGPY5VDysHQhbqYPy7ymAussVTtwadfR98LVudWLB7VcV1j1AgjYAlbAQI8yShCl4Qz4O614TH9yaEGVBYstLTFbsnjVS2V3W34/6OCR2vPNuPN/BF629lAATwmMIR4VqQJT8HzPKikQBtj1blK4AJhi2s0Z40YvXPlWuDfVOnBUreaPOTDtUFbTBhnJtKj4OK6bXqFWWe98/hxpzFczcybGpbn7xKSvdzsnuZ5FrS2hoM/uNFc5X7tzxH3SDtSe3w5HbIjhxFiPiRiFl6reHtFut/Of/QZWmxV02Jv0bSrBsrJRcOnTRRYaKlVJARRqOkkWZ8CyuUgZASDXFLfFHhOS9xhscqgpawQXlmDOj06MSN22K/iFaeZA/pau0Qjo/FMzAOhPQee/R+38g2GB0ozClkISeOcDBS43KCOlKhhtKBV8O00fV/MBehixYv/S+DQ1XI1WjpSGoElk++IBVYMtcnwPhdZOSJy4vgHZxwRh9W3oPga/XpCPafriTfEKh767T3VtOPj1X7MvF9LHxEGJWgizuRDuaVMX65pgMBd2SbhRPvNrV7eClQq1NDga6x5Y+S0klgujtyY7HfVzXXh8eM0DT9xukbC0zHsuffpLauQ808Ueh60/CrZrDhhsuEuoz+QSzpRv8L5FW6VP7Ls3Xo4XJ4pJ361cDymWYsL3jZbLEb6AKWB2IO6DeUpYn5UpRkjkshBNJx8piwrnK8E0RaW7J6Du0rO8J80K5GYd0d1hK+ZVguhaojbf4gG6T48XduxX8cBKvsFVV6kay5PDEEMCsHP3t+9jNu7xjInwuxv4WkHOPimBPYgePmsuFzScqVkJhRzOWQA5K4jcOlTI0LupmPftOGP4rCNyNbXIqUhdDXYtJHzmf5vv6XXtkfhgzWIlUpQb00nwlcU7CHpLh9zK9SiGaIGexILWpeNGSTK0CBwdKc2PQ4N8OTuOXiCklcod4e+oHd3cB8EgN0yqolRfg38K67irYAQJDQseASbVozWmRh/6pBBTYQZJIe062BEfBTkChF39m2OjQK+FsGq+GLYwVtCUisS7fgi6PESFfkuOrdztsaXBhM11HRsOoWxMwG+F2JjALhcFFFgXZ4QCdHGcqBowERU/rMG+6XNmCBce2+a9/HPKWPL3gUHeaDJBMfhipnmdjQD0MZUmfB2Np6QhgaV6S8SL0DNgCvTBi0fEZwTWKy88olpl/62/36bC+mDgN5ZAyPlwjYcKuRWIHGK1kDc0ecipuXHcQO5hvvFH1/HxgnVHgz4sLbX4LgeQK06wQT7wBAF5I86yMisQkBsgKxORRElkZSKSKImsTEQSJZGViUiiJLIyEUmURFYmIomSyMpEJFESWZnXS9VyTN0hcZlyvcvD7SUONKOlvMHOi84EoaRfcpDy1pjJ/vW9jjvc3lnGdbN5yJArz6zI9rfRLPaL5Eo1DBexDRx6UF6SYbTVd5UpQrDNgWD8AdiUEs4z8TQE3bb3qSmnBb4iDRzUL+kalYOpYuwxMMiuodauI8GM3PWYXmvXNTW7bSCQjFQpsV0FJcwKZM4LaretXr/wR6UEaQ1f368hid1RmL22ol3GzgJYTT6G024O1SGlg2l1yDFkHM6EVWVtSkR+rJAoZb8tU6zVEz+/1TOuewSfOJvIYVrEpJ6+H05uGuWaqJzhPl04+igHKLmyomR3jL74wBan2fsT4wobbBhmxJCDUz0i94x5q6Tbm5Z2H4q/dF6ctXX8eatjdkbcz3WyxzsRckMOnm1THNMvjG2q3T2EEGngCVFGwMwnwEAk34QOBl7v/+dqheGea0+fqLjx3bhvJrBrCUHqywqS6zH99nUbucg031y7VJXXZbCNRWYHJTjZcvvgT9vddh1bsstV8JW8u2BBPJe+i6htKQp0WrKiU+cYERjZMhHjiyBfb/Pmn0WL1591TfDz6EtfiKczoTkDuPXI+7naVLeRSnyVVTcipB6w0HVvQNfsb+CYGsIQ/qwQsQDFA7B90o/qdNumfbUs1ubUxZ4ei/sMvOm/7OxM8mInth/LQOukxoK8ONXFFTYTHPhpPgTLH9XH4kFoXha95sQEVnkMLCkYacxQnY//5jvnwCv3DeOXjuzXL5o8EywtBveigcrXZOCQAML06RgbTNl6kl3BW2jUvWajbaFh1USP41tofFrs6IhBg/shOyY/JLI927zDlLve8a4Jb6M6VK9NXYeOkETyNes0iPVyptDcVnMfsduDnUuR8BXSkfCSVCULxglSJ7dEPdzF8oaolfJ8zTri6mwr5g05B3CtgUq9jQGo1z+nl6Mqj21DaRZ3wesgv2W5XerviyXdffck9a7t+TXSnBwiYQ+gh0iaywXuoFPOuRVyzMHM5IEQnm2oMWcFxpznOb2yScpp3gfvE0h0/rBsOGBaWiO/FMm721NHxm0h7/5p7qfv/uHXC8LnSuUGrfeku/mlVdvf6sK90ML6JIhPW1Z8QPcxRoaBBZa4MUIDRGce9Q89bYQtF7dcoEQVJo1iM5q1Inl/qeWDfOI6l2l14X0C+dxVSc39dKPh1zlfswVWKc9qlS9/m5JVco4QVtGLvipgDi9SGoI7X6RhBp+yvTOqfnWfPTPfn+l7oF8K2TA+2P10w+DXuTaMsyPuTuAyI22+GtNczHM+p9+ErKYWA2xiIZcVhEfCibjlrXvbeG/cUulHn04ralIUHzQPQCg+4A1FgUh9VkTMzxG83oSJ13cs8Mrt16mjR2zu9yiLYzfek22s+UTdk2E6a2cYZALnjwyXBYeDsBKeLZSowUw3X1YMTv+6TT6o57RR70vvk5rr+uSJ/o3nidKyX5zBrG7d34XdAa+FhxoabYtgeXQIPJbL17wJ8ot/HGk/wdbjtPPU6efvbrvxLpPc+ZgCG22DgckfSyWFGDqhcjT4TTEM9fJYnX3xHuWi6VH5D2rBfCC1Zn0gXBYWDv+dF1Pyx/qORxdHofA5RQME+xh6V8Kvc57n5oADVg0FmJMjBhg+mJua/MYVtTfpsnFlxi94CZSyzcHBztXgv9l2rvy1mDdjwtx3v+u5U7zjopi+1TvJnntWJH3V8j7R8ihZpFwWjB0LoztSJqRr+oB4ANBTFLhTzo8gPUUnP0lVpmB7LZopKO26LtzAg9TnAZyzUQs3cI/i+HmEHBjBJwg5MPhJVDkwqpwXVQ7sl+W+qDci5L6YfFNtV5kK+ByYnYAlM5HthbTPqsZ/nvxxfKzHjg4pzTa1tx5Mso+ZgD46BAVqD60LPXBk8ZuqwtQbtVOHdvzbrbBrJmB0vITmdEJlL8AEnWvnMxE6W0wg1QmQBiuBh9YHpStVWpUPbjFZuCjyeeTISgPJYgJmQjpKwgJRGj8ore3CLoN9V/Z2jLcOP/aTA5SOs6K04zxNoYk126WHVA2AgYGRDgBRs97JHKZ5FJ3D8OtFseCN9ZhPqIUmOwcMKdyf2v8/86dUOR8D+dMarP709bn//Clun6eHvPcErdrvOm1wB8m1h3XncuBPqTJNHHiKKqyeoliR+9NWNYqVa7iyn9vyzYlLD306X4YDf0pdJOAApdfn2FC6ca4I/SmVQ43uT6uw+tPX2gm+g8nPCajDiZtktjZm1d/OEUW67PvgHL7j0pweHEwJlp1jmxJM10LuyFkyW3kCcgMksyE08AhXj9DAI5LZEBp4RDIbQgOPSGZDaOARyWwIDTwimY0aodEy1qBXRHYxqnoeBxlrzTkzsqUBjfxrOpIIUUXCyNQ9f5pNzJlsQpUt5MAmTkw2WXHgXp9p2Z88Ug/sTd057D75nF8Jf4lCKifbpDSLY7MT8CPhHbjAizpKGcFXKKOkGnEhqJ7KH4EdG0N+baruIuJVdPF2lgHBKqVc3gMyFryYd+QzpxvFEyZ+cDmauGSb+5Kk4G9JXS9nM3lCi55qqQrqsxIf28hFGT1EDnO1wPtgwj8hsij8u4MIA+5yPIjZRDFJCQYH6t9YzIs5AxxoBxEvZpqojI9EFSZTeEtDSQRoqbncQxYWTrpeWnM9UBmZ/yrZC5/o3licOPFMZgUMRH8VPDcYJdO8VSnirVADSiUZ6aEIgbJbBLxmpeFFuPWS7xIWq8MEGe2lsgFQVUIiF0EtqHxEFKWSSiK0P5v3UkkitffgXbWFydMyVQWUo6U6av/ngJczz7Dx8r4zBC+3NHnMqfKqprs8uos1sX+dNrG/FWc0WY5nOJpE6OYSNInQzSVoEqGbS9AkQjeXiIWWLbw5PfY0X/jH7n/aR7qaVcgXC32fGPRhko296xaraZbZgyMu0sgVen1kR6KK8XJArq2ZLFk6YOmITdFDXZJffZK24ye+I8vb4Rt/PuA/KuAqdVcFrEFsGSr4fpFShZs3PwJ/hm4bglTRYdbXoqvuUX5Bx6Hhbyvmpf4Dd2tEYJzQlmbAzKzHP7QtQrY0idqark2oT0IJgWgo0xkuUQCSQ37xuV2ONCnWb4Rwcb8rT5a1mj6cvCHoonkCfUOQaOBcwQhAsg9CsoUpcWLdP0ZJnCgRDKDVOo3U1NSf+oj98cmGgfpS0XKJCttnlMPwBZ05Ydu2jdewwe6rey0Z0PPAU/IygkUA/hCEiCrRUhTWmctqnTGmYB3gjX7qk11UVxwhU2OyxcEkMxEuBGmcStNX9JZ3bOqVutPjxb7pL13IxtE8EbGIm9dSFMYJZTVOD1MwDrRPfuMQzMRknHaCCPiRmE3A66jBrVJF8GiN6GIXvjJSMhxqNLbAfsr7DfSIamf/ZWtihauClDaP5uyedXUn+Rx7YL7n08+xk1qLwnhdWY3X1DjG00FI07wAC3bJs6A6XKYYrQBBMDAfMJdCqYCmA/+SK0dijfBHJ9gUIRmluYC04/NztVSRvsWF+08GnVk57Z+rFDW0cFRaNH65KCxXhdVyxYxuOXgT3FHRK1XGWrMeDQsasTrC8cECu13P1nmsf3YqZGVa0h6yI2SMmfJaOF/wdsRjCDjjOEkLq5pjjhCPU9swxanVzccGHD2Y63fEIvlR47Zj7ck7dSLNQo6/SjpCJh1Jr93GlNlmK4CqQ+p8i0GYgGyYVBkhjVKN5kdqHqiu4KHJ5vJQ9JAq8PkLc/BKLYvB9q70XUVye/kg8J9IpSrKVSaP0nwwKtxnPGHaRMxzvwCwX4babYwDIW2tC4xZb8jZsBuBDXZwEntHnSL6pCXPLljta+0RF1XZ7uAw61xytySeSu+W2paC5slUcbPCzpMBci4QOWeUH/FvJuY5XdAr0b1yYL4Qhq8cIVWpZAw1Ky67VVvZxPe+MDF78tmPM5xuFH4IU9MlKD6CA6xqsWJlccGgPpdYxyyFT7ngL8Fg53b87Z8WUjziIy4KnYQ/S2DcRmVVC2JiQPwq/H/Z/GEP+Q7tdLstkxv7T4T/l0T4qdWEDCbC/+kCmwj/Abrv5ECE/22V7OVHvg91/tOjwp6xzyeSj7sU7rQ5xz4SapbnXmDTLL9H95FFIcJv1/XdWYcEO58Vz6s2MMuWOBtdhP8sKyoHDOsNWecO+h384U6EPz3WukOpld3cDp2YO6tJqfXkHQpjivBvYDVdnHFMZ3AR/nqSyzv/npMljnt4dtZIxyvzjCzCj3kZRhV14GUMJsJ/4q3HFdHLUn4z4qZatHuWu9IERPjPsoJz4IIBRfi9x/b/UzncXHiglGV5UfJmsp6M8UT4N7AiBMY0Hre1Y4rbxIKmzX52uSTYcqdO4oU1b1qRdQSwQ3yRSjlgdHrMZsGAc5u8LRJZ3v24FgZAXKWMDgsHMZxaii3V6KPlQK2wyPi2dNWDfI265vY1EvNOXwT4SkRw0YWCbxbAd8TFwh6sqpT3WuAqjgXyq5eIm/7+Up/HbnODmg45ZhWuLnztLkoIRXWMha0FDNDLhOjVFSF6ZzW4WXtRrxCqrGb4hkjDVFJ0fGk7N65nw8m1xVOzT9woXS/Tg3JCCrsRcUJKc51z2V/w/dewfv+ZF40dLGl7ph6BEnxlmTJEFsyibfMo522FF/GbxLHlnGd12rKenH1uQTyA3le1LUVhjBGsxhhiHGNQwx+ePjsWjl4KZRSgL0kwXDu1c+oCpqxgZhFhz2/RJThcqQqx57fsoh6uisJ+QEerozo7vPnrdar3yrbX3o7ceXoDmdfgBwREjZYj6l/mNRWFsXxZjdXRJEYOfJRe0WrlvIVuRbRqiJplBNW8HTBHcnebx5Qzizyen7jRtDBT5UKaI84Jd+TwqGcWTReqhbjn1ov6Ram4J2eJtkJtWvWs+Km+cEvq+F7B38fXNOq0FwKwgADgGgIA6Fr0ikQJKmMWmVi1YLxiW6kXbn9uftr5mjTFhUJlhj3sCwHozwZAkvNFItBs//8sH4damNtg+TgnL7Hl4wy+VNT5OJVXuB3cW9XRb1HPOo5relwrbwL5OMcvse1u7rhkAkkFCQkJBsjHab9ylcfswefEexZaqdun8v1NIh9nFat1ppuCdQySj5PVqUST4sceuy8sN6Z4wrw1rUwiHyeK1TiDTcE4PGPm4xy/lLDZLsTVc1+WJChxwY6DJpWP481qvPbGMZ5p5uPcjdwaVvxlB989kz/739zaZZGR83EaslrOyuiWK9J8nH/iHTzOvm/iPPdioOIBL7OPSeTjYDEEYz4OcIR4nNrhd8jHef/456bqnRMFW8p2PPtyaUaCkfNxvC+z5ePwLxsmH4dfYvSyx172wj+ffSsbkfFKzXk+DnVuzkGOiftlthyT1peLKh/nYYiA92xOVZ+5nSpfXWP+6AHn+ThUH8EBVnxWrMpe/p/Kx+nI5MaGH5E1k/kmifan+cmfZPd7Q94p6R4Nz066qSSR4fQTpnpsXzR0kakj4ekx7W7OaAfNKVO+BGrmhcFPQPa8Z2eWdL+4VyxYfCnpYJ+0IAvG96Pv5ORvpPW/0gHAhfnlP4qF6JXUc0869krt0xD5NNlnQa+sIoJ/Kec/JbbiVg/PZpYLkMqBwaQhHsCvjyIeh5lVY8pOTKas8mCOi3XH86KENg+PJJ8cSV4LMhOiDVhR490RNuOV0TSRDlnhZEA7fMWVkgf1kPwvKHnoGh2YMVjJCURkcihPAUvkpgtw1Dszof7jj10bbBzNhfv6V1uxKdJnY4GnL8sUPfI6n9iknt7j6MTmL44bNouUP0m1SBcmi8TPnxP90vOT25LhVdQrZtoPIK+JusLkmSh6RMY4vdTcwFcD1tfUu4xWw5AXq9UWrpSHQDlGmBIYiv0eFg5HScLUOsUg1COSJb2VwcOkIdqbUK9OX87VXNd1t9pOzLsDwSyGSuqDouprTiLklyBEcB6HkF+Cf6nyS75/3OkacOKF89Qze2Is3vpdosovTemVMPFGZH/3Zenxyx8vm92VaCcOo/6yPBP1gxHyTEyWtoTqAbgZkdaatftYh+FbQ71jfMdmlckMdCiMtbjfDQN2vQHtugoV8sTBg+YnjVJ40hLWdxykBt9BEZbnMPJ+xlzNWKeOPcYjVKKYbGXtmjfaQEAUFa1iCFwfjGrUaNQI39SyWwXNBmStYTVZKZHmSQitY7yhKIy2i9VoawxrNMIFm3uLNA4V3jJRO+4x2xBjlCnYq++Cl76WKdRSFZZ1Bz6C5DCRtlrRveWrAbYXPRfmWDx7/jJkFtVWpXyioyRD5FoBCx5lswt+qhOdrpwK1Pr6RbpiM+pMVqOOOEnT+mItoIB3dqlGnwUJHlUmhbWjm0NPRy/TgV3lPKPUEfdL6QJEpXvn5lgXxym9KxOld39416+U/Jzb2pS0YhP31Ysl58oGhMtCo/iwriyZ1iFfMdW0rukXGgqnIhK5HC+/KoOF86B4tyMSYMd73brMGX7NdUe/2Jjq3X0ETK+AiJd0TbcHPaN/GEAqUIgqhmcv5t0KLWweWTms+i4Ym2r4wmjxhameB3oUb+obc6H60utfq9WjFnhBfsUCQ0Ivm2fHKos2eK61ChE7Tu9vU9jEe4BVIMRqmQCV+wEm+PZh+mWNaSyoxHoFEhcvdatGPuXu+eyUbT+6ObPhXdqScqhuwBR2PIFvbs76zUEvMYHlZKwH6rHHZgl1htikp446ShxFH4U+s1b37/Oz2J0X5H4J7zYU/HtC2eCfbRz4aRlihS3UrRkRMNsZfBOkRd7IF60pbdFHtOfBl8G2zfvl/qKnKOxqvgPuCtKdEQQz2AEbEDjBdDNhglm46szlZd4D3LaP+eQjDxhesWgIZsV0NoLpO90ABHP+uDrE/OQj9ylTSz6ase+rIzcEE3+seLnXWTNcEw8enJM1dVAbDghmyXS2cT55OscEM2dFlbU/vwa5zfDxOjNu0CAvIxKMgvWbg17yOxJMjRUfSvz770236U6dbnc9cX+g8QjGlRX+lsaB3wgEIy02cI/Nlxy3yeZZmU77iu0yHsFgroCRYMCAwAnG2YQJRu5/Mqt0mRqiBE9FbI1P3rlFQzCxq9kIxnW1AQjGek/rI3Z19ngmnQ8c9s3BO4Ebggnt3KFd3Upf/FavXTneMjPNkwOCmbyabZwrVnNMMDMqtRbdu7jdbenavltL+l5YYUSC6cv6zUEv+R0JZrGk6pA16a88tnTf3Wh+TunnxiOYlqzw1zEO/EYgmNZvh6wam2LtuXptt9zTFaRTjUcwmCtgJBgwIHCCEZgwwTxYWfdry11NfTb0Czszc6+PY9EQTO5ONoLZs9MABJPqkxFQZ4y9x+KRxec03fl0DzcEM6LxlYBi7dr7bMmU3n1wdygXM5icnawLRTs5Jpiuw4KOd+5w1ndFiTGv1/r1zzUiwZxk/eagl/yOBNN9U5PZq65Zio+06NZxa6VZ/Y1HMPGs8M82DvxGIBhJvZ8+dYdNdNvqXrJazRbOl41HMJgrYCQYMCBwghGaMMFcL1XLMXWHxGXK9S4Pt5c40KxoCGZTJhvBhGYagGC2jrcPPDlhqteCNa93fnmx7DY3BLMwemuy01E/14XHh9c88MTtFgcEsy6TbZzPzeSYYAZHfuz1r9cfzttq5d63vrPAxYgEM4b1m4Ne8jsSzJh3DRuZfTojXn979ZPrP1e5GY9gerDC39U48BuBYDzMN/7oOj5esO5o0IelpRbfNR7BYK6AkWDAgMAJRsREMHrXVLDTWq/oayrUvFPn7V+jJnkv+fbu49LotLR8NRUcjyU/FFep5z1L4FBnbkvBzHw1FaZN2F3rijrIc0nQ9p7Vk2/OzldT4U54i2cDVt7zSuUVj8+sGLIgX02FJm73Q17wrF3mPl4fXUkW9ClfTYXHY/2mH2zZxDOu40ObDR3rxeerLzW/+uROiXuLe+1Ue5YK7HbsCGgqhTf1/6tmixt3HTzj16dVeSQbAGtZWeBNLn3sFvZrPsRj/YHUyOBba2EFrNJ4U6snSZPir/k4p2ap5jvluvmCpjJ406fZRw8OGNBC+OekATWDts2CtSIs8SZ+n58NxU0veyzdPXHilWdTt4GmsniTvTwx5c6CEx5JWx/uWXjYJxM0lcObpi5fszFjQXFR3JaKLdztXbNBU3m8KWteywXFnq72m755i4N/7a5tQVMFvOn2xua+38xOue39ZN7n6/nNPNBkhTcFdXk798b7Vj4xfq2syn3p+hdoqog3LbL+N+mu5J3bevuKzT5nFR8CmqwJeIOKLau4X+23ZGbinS1OrSDyNsQD40onj5m/3DPxisfzbweTG4CmSnjTgiZVZ329X1G8rFf2rMYn65UGTZV5jKU4qhAPnDAx8riPnTD50vc6JRrnTARNVfEmpffnlesW3fRc8c/PR40sSkwCTdUIo9h96j5o8XW/Jb2fm/XZfbkDaKqON4VWW1im1TR795mu8ZtGzAosA5pq4E2v6r8pF1F9neuO9hueJD1aMQI01cSbqqrvpbdvs8krZogkef23kpVBUy28Kcki6+sFv2Euu32/5Nr2CQsCTbXxph7lzCKjLTeL1/5r38L8mmg0aKqDN23/GpjQxOmM8/YOZ/a9LP73LNBUF29aM97RN/d2qPfGf1+cCvvYdBRo4uNNG+qeTTv9b7xgZfmFkiXJK9/SioXU4zEUCzkszZxd4dxa0QbztFU1e1zfiXAb+hYLcWFyUZVDU5JXZJwSr9r2YMyZWuPI5a9KiUdFypUhCAUspgC4MX4Hn9AslSlgWBgBAmLghNTSsAipzpJXVAeFfDV6ZiPeoGvtVlsx7861TOhfEae3/EF4vOuaXoqgVnmKoJoXQX63mFOZ30bwu/tN2msmeCJ4u5BDQVCOD2nB7OobEKAQVO7fySZiXuY1vWLiNj2koGtgZ89DpMHKiEilWoZJgIH3k8mxqRPRT/gSFVS9VUbIgtE95MGqn522+Hrt/Tnvr9Hy8YFkCR/t59AlfPKauI4bIFy7WOFac80kIjm63KSekZwDPtBC8swVFS6J4kdIhkn5IACBcgJDJFCLg1Hrp9mTazd6Hn0n3NzVYuTpFZ3+oag94I9FqD0QLVxbz8oB7+wuKOstc8Q6O03xR0/g6hHCdITogpQKJLokcKkKx+52sBbtfDo4qH6viU8LL4PHAVi7WMECXR3nHzET//ynnv1L6tnUCN1g6tlTr7OpZ7tcLwr17BOfm52TO1sJd1UMvbutV3owh2RJ9UAcqGfHXGcTG5ZfN4h6dsq1ex992wW47ZuygNc716uv0dWze7OiAvqNiSp9FLTAxJ169oLrztZD+XddD14aeuT6znX7TEY924nVdLWMYzqDq2c3kiUdE1z44jYnPe1R9O15fCOrZ2NehlH+GHgZg6lnf1xnV0Ua6yVYO0We3vFvc/IWhnHUs3uzguNy3YDq2eVzvy1tE//KL3HeuR4uq32Gmoh6thMrQmBM43GbK1PcdmqlxPt7h6pukzfVKfW8wVjy5NzCG8Ro/AAXb90XDoSEmiEfVnQmImEwQwwFP4K4azQfYKuK0uhEA2eL91cYe+Gh23idAifq+iX6velRNNGiI8bxYBoofwIwvoXadXMGFrB/ot+yAvYC+TBAR0otKz4o3k/gsj95ZaBs4OxWlN0keDdCJAq7XFCkRPV/hYyU0gFA4U/wE/C0TshvJuYFPtFL+6UaBhDRL+xCZCrQfUE7mmwjFJXrBa1s7rk4/cm3iDsnZeRh6ULcTB+WeU0FFmS6csP7lfVSt8Wv4p/MP3ntPQeAObMCBnqUUYIoDWfA32nFY/pDL0liwWJLS8yWLF71eYJ7z5gHSo9dfabX3+CWWccaE5MHxhCPilRJtdIzWFArEAbY9W5SuACYYtryS2dsnOB2Wrh86KW0jpejfDgwbTVW05obybSo+Dium16hVlnvfP4cacyKHvNvh14t6bXKbfrpEVMahVA3/BDCdpqrnK/dOeI+aYcAsee3wxEbYjgxujERo/BS1dsj2u12/rPfwGqzgg57k75NJShAEgWXPqGarBTqG0nVdJIszoBlc5EyAkCukUHBHhOS9xhscqjJNYELS1DYQydGpG7bFfzCNHMgf0vXaAR0/pa3AOhPQee/R+38g0Hnr3KrsPkpAu98oMDlBmWkVAWjDaWCb6fp42o+QE9ThAL+S+PT1HA1WjlSyqAgX3ZlhoPAra9rXFDpnqIhPS3JPiYISzqg+xj8ekE+5kaldP8FLx95bYzxEyzz3RBVSB8TB2B2hDCbC+HBdepiXRMM5sIuCTfKZ37t6lawUqGWBkdj3QPLiULPIj51Ge57Y5Z46oChgsRRdmR5S8u859Knv6RGzuUs7HHY+qNgu+aAwYa7BHcml3CmfIP3LdoqfWLfvfFyvDhRTPpu5XpIMR0Jvm+0XI7wBUwBswNxHxQjwfqsTDFCIpeFaDr5SFlUOF8Jpikq3T0BdZee5T1pViA36yqdaCvmHb0J0LVEbb7Fw1NKNws79qt4YHl4cNVVqsbEcDDEkAD4lqhv5lOymefcL0Ne/Zw7pQs5fMYeRA+fNZcLGs7UrITCygEC5NIgcutQIUPvpmJe0k3G8FlH5GpqkVORuhrsWkj4rnZe4FkiONvtjwoPdr76+IZS+hvvIOgtHXIr16MYorWEFa3JN42iJGQRODpSmh+HBvlydhy9QEgrlTvC31E7urkPgkFumFRFSYmDfwrruKtgBAkNCx4BJtWjNaZGWplKTIUZJIW062BHfBTkoNLm/Jtjo0CvhbBqvhi2MFbQ5O/iXT8ECUXtid9KXG/0Rbg/MEVxwb5XW8rGBPxWiI0J7HJRQLGEFQrQxXGi8mAiKn5Yg33T58wQLjy2zXv555SxBSr/Mfhipnmdzip+VG+pi4ofr0AfPKlG5wudj34R7WxWTHE/Xty/sD4Y+A2Xm7jocgxNBhtEDq21kHuaPOTU3DhuIM/cFhvV48Upl7jvtXLHVJ93hQPIa91hg7zsHQJyL86yMisQkBsgKxORRElkZSKSKImsTEQSJZGViUiiJLIyEUmURFYmIomSyMpEJFESWZlty9+PeXdlqevKTItXD70aWdJS3mDnRfY+avolBylv3kz2r+913OH2zjKum81Dhlx5ZkW2v41msV8kV6phuIht4NCD8pIMo62+q0wRgm0OBOMPwKaUcJ6JpyHotr1PTTkt8BVp4KB+SdeoHEwVW98Ag+wa8sQImJHn6rfNX1Oz24apmSuhaQAe4AfmvKCmgYoUUa2ZngmqjIebg5d1LMxeW9EuY2cBrJxu4LSbQysQBabV1jeQcTgTVpW1KRH5sUKiVEea1Lp2486+B69UuvK91vvzHKZFTOrp++HkplGuicoZ7tOFo49ygFLudTaUrlynLz6wxWn2/sS4wgYbhhkx5OBUj8g9Y94q+SN3Y+4AuaMwzsFfXmfUNG8j7uc62eOdCLkhBwVsa93QL4xtqt09hBAF56u5BhmI5JuQ4PxckPhh6r6awn0rrcJDQreKTGDXEoJkwQpSrp77uo1cZJpvrl2qyusy2MYis4NSf+ieeOfBU5+l+/dkf3J3OETeRSSeS99F1LYUBTr3GPd0ITpntXu6PkzE+CLI19u8+WfR4vVnXRP8PPrSF+LpTGjOAG498n6uNtVtpFKvssfUAxa67g3omv0NHNMF2KnOChELUDwA26YbRbBNK34+aqN0zRbnVXzesNNeXckV6Cyx/VgGWic1FuTFqS6usJngwE+fg2D5o/pYPAjNU/XjuvIYWFIw0pihathV2nLw6kDRhhpjHi+sU6YN2ROJwb1ooPI1GTgkgDBtYoVpwQ39yK7gLTTqXrPRttCgp8H6CNxC49NiR0cMGtwP+TL5IZHt2eYdptz1jndNeBvVoXpt6jp0hCSSr1mnQayXM4Xmtpr7iN0e7FyKhK+QjoSXpCpZME6QOrkl6uEuljdErZTna9YRV2dbMc/qUSas+omIyWMA6lnZejmq8tg2lGZxF7wO8lt6/+j2+WzV2YK0uj+k+w8PppxDwh5AD5E0lwsac9RzboUcczAzuSyEZxtqzMGKZJ+y9comKad5H7ZCteu7Rjv5THovWHz9YJsNGXOTybt/mvvpu3/49YLwOX+i7s6IUw4uC4btTlsor9iNA3yys9nwAd3HGBkGFljixggNEJ151D/0tBG2XNxygRJVmDSKzWhvru+t4eq1zn3ysKGhi9qfakg2muZ+utHw65yv2QKrHGK1yhaTskrOEcIqetFXBczhRUpDcOeLNMzobiNqJ9rO8Ni0Z9bzvR7ri5EN44PdTzcMfp1rwzg74u4ELjPS5qsxzcW819n6TchqajHAJhZyWUF4TLFbUrv5DCv3IynDWlWr8Kw5payD5gGIsg54Q1EgkpXNhsiubILX/Zh4fccCr9x+nTp6xOZ+j7I4doMcpeCfqHsyTGftDINM4PyR4bLgcBBWwrOFErUaVuTSZsXg9K/b5IN6Thv1vvQ+qbmuT55oNp4nSst+cQazOn86r+u5A14LDzU0BSywIovwCJPmTZBffNfBF9Nu7zzsm/jqltfEiddXkjsfU2CjbTAw+WOppBBDJ1SOBr8phqFeHquzL96jNGXlSQe1YD6QWrM+AEtZw3/nxZT8sb7j0QrRFD43alV7OK/FAKuGAgzWEvXXDmZ/k9+4ovYmjip+Ubc5ONi5Kp/NtnP14yGBeXcmzH33u547xTsuiulbvZPsuSdZUL28D6kYHd2RMiFd0wfEA4CeosCdckpJO538JFWZgu216MVYye26LtzAg9SPAZyzUQs3cI9C9RhR84vgE0TNL/hJ1Jpf1Jpd1Jpfv1zTi3ojoqYXk2+q7SpTAZ+jTwnCBc03D6731Mp3seTIxq1LLSeQSxAK6KNDUGCBoW+HVk7vMKGz54KHxU5sLiN7V9g1E6jjD83phMpegAk6sY8zEcW0mED6lUKNqxrHHoqyLe58xFHy/EdpCXmpUbdCjVSUpjx/2Odr9y+us24snHN/1jguUFKxojTwMa0ME2u2i6beNQyMdACImvVO5jDNo+gchl8vigVvrMd8Qi002TlgSOH+tMf/M39KlfMxkD89+YjNn6569J8/xe3TZKvI0WH9Tt+EG7NC/3qZeo4Df0qVaeLAUxx/xOYpdjwqan/aobLnovFNGzjHbrbeNLbt+gwO/Cl1kYADlFaxojT9URH6UyqHGt2fYj2G0Z8CpHB/GmDycwLqcOImma2NWfW3c0SRLvs+OIfvuDSnBwdTAtdHbFOCtlrIAzlLZitPQG6AZDaEBh7h6hEaeEQyG0IDj0hmQ2jgEclsCA08rcQgXQOPSGajRmi0jDXoFdGTHop6HgcZaz05M7KlAY38azqSCFFFwsjUPX+aTcyZbEKVLeTAJkFMNllx4F6fadmfPFIP7E3dOew+NX9IopDK6fXpmRybnYAfCe/ABV5gWXS+Qhkl1YgLwRKpbBq2VN1FxKvo4u0sA4JVSrm8B2QseDHvyGdON4onXG/5+naNyCYuqa5S9cZi81RMntCip1qqgkVYiY9t5KKMHiKHuVrgfTDhnxBZFP7dQYQBdzkexGyimKQEgwP1byzmNX0AHGgHES9mmqiMj0QVJlN4S0NJBGipudxDFhZOul5acz1QGZn/KtkL1wtsLP7a5EFmBQxEfxU8Nxgl07xVKeKtUANKJRnpoQiBslsEvGal4UW49ZLvEharwwQZ7aWyAVBVQiIXQS2ofEQUpZJKIrQ/Y8LE2nvwrtrL5GmZqgLK0VIdtf9zwMtRD9h4OeQBwcu9TR5zqryq6S6PDmZN7PfXJvb34Ywmy/EMR5MI3VyCJhG6uQRNInRzCZpE6OYSsdCDlMFP292r5r1sZocuvEXXsvPFQoMW/HUu0SvDc//Qh7aNvMeH0MgVen1kR6KK8XJArn2ZLFk6YOmITdFDXZJffZK24yeSp0YV8I0/H/AfFXCVuqsC1iC2DBV8v0ipws2bH4E/Q7cNQaroMOtr0VX3KL+g49DwtxXzwp/C3RoRGCe0pRkwM+M9pW0RsqVJ1NZ0bUJ9EkoIREOZznCJApAc8otn1ojet/6Kg2DNgi5ntj61KU7eEHTRPIG+IUg0cK5gBCAJgZBsYUqc8H9qlMSJEsEAWq3T2LVr1099xP74ZMNAfalouUSF7TPKYfiCtE3AG8+HB7zG+ixeVMXi0wbJLYqIKv4QhIgq0VIU1unMah07U7AO8EY/9ckuqiuOkKkx2eJgkpkIF4JOpD8iut5s32nPHQ9l63J3ridvjVlonohYxM1rKQrjVGI1Ds8UjAOhy28cgpmYjNNOEAE/ErMJeB01uFWqCB6tEV3swldGSoZDjcYW2E95v8GQnn1V0tl7W1fBn8s/J9nMXxxBPscemO/59HPspNaiMN7LJ2zGu2ZCQkFkIU3zAizYJc+C6nCZYrQCBMHAfMBcCqUCmg78S64ciTXCH51gU4RklOYCWlMkS2277VVpj3V/mO2omb5+JK22DiItGr9cFJY7zmq5HUa3HLwJ7qjolSpjrVmPlinC2B3hnZCPTvtPtvHbUnbgGLOUSeTo0YIxZspr4XzB2xGPIeCM4yQtrGqOOUI8Tu3HFKdWNx8bcPRgrt8Ri+RHjduOtSfv1Ik0Czn+KukImXQkOUyFmDJlttkKoOqQOt9iECYgGyZVRkijVKP5kZoHqit4aLK5PBQ9pAp8/sIcvFLLYrC9K31XkdxePgj8J1KpinKVyaM0H4wK9xlPmDYR8/6F2C9D7TbGgZD2ND2kJSbIyNmwG4ENdnASe0edIvoKnXc1a1C7o8fm+k6ZI0+ZkbXHLIin0rultqWgeTJV3Kyw82SA3DuInDPKj/g3E/PuPNUr0b1yYL4Qhq8cIVWpZAw1K3h7PUYrpWPcFsYN+rfirPctCj+EKVhRfQQHWJ1mxWqfYUMdYh2zFD7lgr8Eg53b8bd/WkjxiI+4KHQS/iyBcRuVVS2IiQHxq/D/ZfOHPeQ7tNPt/kxu7D8R/l8S4adWEzKYCP+mZ2wi/KHPikKEf1J8j6eVFCPc97VYmubfe8tGDk+bc+wjoWb5umdsmuVznxlEhH/+qyD/Xu+2iBfwsx69XT7ulNFF+MewogL6jcnMHfQ7+MOdCH+5quq3K8bwnNe3Hrqtf6jjMpMR4e/BarquxjGdwUX4l10NvT9vbU+/rQGb43I9Z3wzsgg/5mUYVdSBlzGYCH/p9QnltncLd5s62yu07VXviyYgwj+GFZzQZwYU4V9dfUqpWndruE6zeV1vZWy40gTkLCBCPVgRAmMaj9sGMMVtYkHTZj+7XBJsuVMn8cKaN2S5d0vsEF+kUg4YnR6zWTDg3CZvi0SWdz+uhQEQVymjw8JBDAerXCtD9dJyoFZYZHxbuupBvkZdc/saiXmjngN8JSK46ELBNwvg2/B5YQ9WVcp7LXAVxwL51U+OGiBdOFngvvSk3/ZP7lnmha/dRQmhqI6xkCEUH6AXBdGrK0LVI4abtc/1K4StGb4h0jCVFB1ferZ2KZvwcL9PzLpKJw7Z/lhKOSGF3Yg4IaW5zrnsL/j+3qzfv/1zYwdL2p6pR6AEX1mmDJEFs2jbLL7PS7fiLfTao3zQr/nOfyl15ogH0PuqtqUojNGQ1RhWxjEGrTi2PjsWjl4KZRSgL0kwXDu1c+oCpqxgZhFhz2/RJThcqQqx57fsoh6uisJ+QEerj7tX873qeV+8efrtXUc6Rn0l8xr8gICo0XJE/cu8pqIw1rdnbMZ6avRpBpFXo1e0WjlvoVsRrRqiZhlBSR/8e+6ZHe+Z5h8yU53bt2thpsqFNEecE+7I4VHPLJouVAtxzz7P9YtScU/OEm1Fv5y/+OWcWL+FFb6GW6Y6eRt12gsBcCYAuIYAALoWvSJRgsqYRSb+uD03qaTDN/G6pNNNpgS9aUGhMsMe9oUAlGEDIOm1NtAc+P8sH4damNtg+TgjXrDl45R/UdT5ODturh56v1yO14GF/QZmZedkmEA+juoF2+7mwBcmkFSwfPlyA+TjPOq3WW3e0sVzw+1/2tVb8CTbJPJxPFmt09YUrGOQfJxZfnW83u+299g5IfvD6kequSaRj1Of1TjlTcE4PGPm45SPsIqt/c8b52Vlc6ZstrCOMal8nC/P2Yz32OjTRBPKxwlrYsazmdDQZ1123By7iGm3jJyPc4HVcmlGt1yR5uM4f2/3ZmqDjm6Jd2we2379P/a+A6yJ5P0/eihNRFERRTFWsIDYFcsBIfQmWO7skQSJBoJJEBEL9or1VCyn2FBUFLtiw947p553NixnO3uv/5ktgd2dXRJYknx//+N5fB7Zl91sPu/MO+/MfObz7r1mEnwcLIdg5eOAQEjkqf3/L/Bxlo1yC317Mzp4zfunpwZ9aDLcyHycz0+5+DjnmSltqfBx9krsrp2sUsVv888Hcp9MWCvnnY9Dn5vzwDF5/5SLY5L/tLT4OJrr/4RXGRPqudBsUKcvHx/H8s7HoccIHrA6z4lVjmFTHWPzcQawhbGhB+VN5aHrRbsOhCn+ud/7BXWnpGsCPDvpp5LExzBPmOqxfdHAR66Oh6fHtLs5Sa74KVOhBGrmDYKfgGx5q+ucPXD6fbrXkorzJAs2L3nF+n7MnZzCRkb7s4wEISys8FEsRKukn3vSsVVqn4bg08y8B1qlvQj+o53/lDqLJ6beO24TKVMAh8mkASCuDycfh7kVd6WEzZX2+ak+dh4XRCva3Du4+WSiD00FA+3Aynh0R/hMYIWbKIesiMGAcfiKLyUP+iH5Yih56JodlGHxkjvIyGpCuR9YIjfXi0B9IBvq3yduXV3Fzcx7Zx+HxRnxITSyEuL0pVXpI6/ziU366T2+TmwWr99weWTfLbpHotg8kj4nNeFZ4Ee/BUPt1YunNetLXRP1heQZDTMjY51e4jcI1WDUx+tdJqhhyovVaotRKqRQjhFSAqOxv8PSYY1kkFqnHIR+RLJ8sDJqiEyqvQn16szlXPy6rrvVLmLBjNsAzLIoUh8UVQ++jZBfghDBeRxCfgn+o8svhU681SXyxFPPCWe2p1i8Csujyy+N77lizI34Pv5puemLHqbN6ELaycOoxZZnon8wQp6JzdPWUD2AcCN6D8zyw+oOc5cE7lB6tb+1+0C7kniL/90w4Ncp0K9LUSnPbHjQ/LZRCk9aw/qO/dXgO8QNKggYBb9joSbZ3SNiFEIlis1Xdr4FvQ0kRJoEFTpxfeJ3qnW3Cmc8p8RMOOxWq8s1TpeZi/AnIbSOCUNpOG0Ap9OCDes0MgSbBYvwgApvGaPt95hvyD7KluzV8yFKX8vj1DIVxroDH0EJmEhfDem6vd/IR8u89tXe3zIwqPoauq/MQxI0koEKrYCFgLbZBT/VnTlcuRep9VXM4YrLqe05ndrgNkPri7OAAtHYZbg+C7pEAE0mhbOhm8FIxyzTgV3lnVHqRsSlXC9EpXvP5lgTJ4Z0KduQ3vXe7TBzxXm/5XsOlB2zs+4kKlc2MkYerRHCurLUYR2OV2w1rR3DoqPhVESiUBDlV+WwcB4U73ZDAkwvOMj2Coh8SVe6PWgZ3W4CpLp5o4rhNRMLqt4sKY/MBqu+C/qmGr4wWh6/7uatXw7nBs4Zk/nkH/OXWfQCL8ivWGRKSC+6XlLiPTx4D7FK80JxP8AEv9NN/VhjuAeVWKtA4tLbP6397cmbRal/h0dNnLWhMWNJOVo3YEran+Chds5vDlqJCSwnYy1Qjz02a6gzxCU91T1sS0rNnyaIxvdV1jy540Y2tV3Cuw0Fv4AT/md/mwZDrKSFuvEeAdnO4JugpTpoFXeLGSlKuprvSoSCXE/EADPAFesQxAAjYxtg9NbzcdF6r/T1fDRzckcPPNnea3+t1KRFiXWTC+n5tFhyzvO3pTVC0o5OePTv9il2hfR8TrlN/uVE9JqwOW1mDjnT3zqkkJ7P0Ur7Ggx1kIetKyOa/Pq2eEkhPZ89juX84mvle+3avGJKXN8/ZhXWNmRW/iW1DRGVf8lCvYjKvxaEaVH1fn365aR7p3T/K+DhHx+gMKMlYSq/v+Iau7huwb/XO/vmQ2hQRWCyIkz1KvhufL5/XtCeMbHjJLY144DJmjD5dD0WOcr5pNfsWus/e0/e8A2YKhCm7DsjGtt3uuybGfnzXcX8vp2ByYYw3c2bWD3F+l3A8ua/nZ5Q46k/MFUkTC19le+b7/vd+/cRibl+R/y2AZMtYVobM7pm6onqQavs1o5pMLtXJWCqRJh+it1xrLbtM/GyL/3Sex8y9wamyoTp9d/bL6+LHiz6/d/YF2XXbd8ATHaE6f2zid12Onb23yWJGDIx2lIFTFUIU50uz3esPZkmWv1+dovkvPRUYKpKfq9hC2qPmKQJW2GZ12rR9MdRwFRNwCoDZU+YNnweEdNwdqBofeWfT/0lmeoATNUJ052E/V2i+/j6zn7sMPbggK+1gMmBMI29k1vmTpO2nst7NGp7otqwocBUgzB9W7Khyfpmwz33Djz+540vr9YDU03CdP+1JuOux5TAiQtqvuk14o/fgcmRMLVyOLz73otXwUumDp4XmXUEAlWLMMXc+b5swsiDXpkLOzX4s9mzxsBUmzDJ2tWf96a7d8iW5F52q5rubwhMTqS/dnQwv37zi/eaS1Gv69WKh6KddQjTPbFz4IiHKvGS5TlZnd4vmgFMQrI7RL5ZkhTpH7LLvfb4jb1GOzOEquoKWISq7it+ldQ5X8F//qe/XTxmWV3kQagqmi1EVYves3nxsVPipRvzR5ypNTKdOnUVD49XKKWI0xdsCXAj4g4heV4WK1OnjgUJMQhCRAVAHY9b0AMU8tWYs2rCoKtuuDOYVj0/DuMrYucwHBZkf65fAc2C06j4iyC/2z+1Fnd8/CDGf8XFz0fshtfZxONhVJ43COHKXmsIkBQ17zzZWCwQPtcrJ24TIQNNA+M9SWWwxJFSLceOn4D3kyuwqRPZToQSFTxxrYyVR6GZaiOSm5SpOypw7dL2d2S5O1dQ6ePaz2HSxwtMvJemccFaDAdcH/81iUyOedRRz0zOleho0gJ3aWIkGmGsZIhMCBIQbQlrdp65Rbby0Kg6W/w27zc7FhWiqENjGhKPRTANSQvf3qvkSjR2H5T30tywxs5gm+sJXF3yUBRJ+JPRgUSC5d62r1jl2Cx4WhOfkye7zaFG6mIdweIBrAqcYIGmTow/g9jGn/+UG4ql3EDP0A2m3HDrOZdywzL9xkodlRtedP7lL9vcKgE586Ujarw/d4/HwZIegXhQbrjxnOug+3H9BsviKjd0d1rfdOelwSETPtU1a2q/NsHoyg1bOVEB7cZEWaaGU27wvl+uzdy4e54rXcsFS+97DDIZ5YZpnK4bZhzXGVy5QVgmY6NyWm/RZodvUcrDU58bWbkBizKsR++PI7KU0lJuODFcaDts/s7QiTtr+q+amb/eBJQbtnKCs+y5AZUbGk20vOOySho44/2bqFsfDlGLshlPuWEaJ0KgTxN5Wwxb3nZqiST4W4fqfuMynMyf1E8+QM1Gg0GOJoz0CdZ94cBbWwwXVhMgM2EwQ4wGv4K8K0kIsFVpcI0CEGyJ9gpzLyJ1G6VT4kRfv0S/NzOLJi16lMU9/pUoi8tIlTyBByZ91W9ZAXuBQhggv12G4Eq/Q2dv+k76d77H9hFvBtJ2k+DdiAMK2OWiMiV6/OOh5u3hrwT7itEIhU3Fgk1f9eIdO2AAke3CRSpXgeYL7OjB1qK5tXDbqkchq6s/U1k5jqTKGlv6kDczu2WBqSjAxtmeW365wlPxtuz35ge7tWvIA2CLOQEDLcooSRQ+ZsC/aSVg+2HKYVlw+NIa8yVHVG1ufmb+E0nZgE1pW1an3Lz2ww4TMgHOEA+PV8m0tGcsqfXyjnT5pXHJEmCaa/eGp9UXD4kI2tz+1dvxa7NdeHCtitO1/YzkWlR+PPtnvVKtCsGF4jnSmaPv9Ljlf2q4Z1qdCxHJmdf30Tf8EIeq8Ku8r925ETEpG0UqyXbDuhgxMMrZBkbvvOo3h7Xb5pnVu5/D9B77qeIBVSH5VQOXPuFJZhnk1sv0qBjfXKSMBZDjFFzsMdKCx2CTw4JC8ZBUqtOISN+2K/qFGe5A/pWu2Qhkjr4CoD/yRhSQHwAaf/yrkvJTvIILgQKXG2AZJJhtKOOELmTxc4AeLoAE/4fHNDVcjVYmyljUS/7I7J7atslT0bJjdn/Xcl9KHW3L98BIB8wYQ1wvKsbU/HirceIH39Dtiz0aWbfovqWEMWY2JHJCmM28ESXT0xpjMJd0SbhhIfdrV7eilHFqWVQC1jwwThRaW0t45++dl4/47x5v7xnw/i614KF1wXOZ01+KkXcqZTMCtj4o2K67YrARIWEwW0g4U7H+mxZtlSGTXr8IcrsyRkz5bjYRMozDKAxNUCgQsYAtYXYl74NEWKzNyuOGSRRyKd7IE+WaGKESTFNUukcC+i49x3syvEA163psz1ksqAXRtUZtvqUDdF++LGnftw/AeHhw1VWmxojYGGJIAIa7Tfrm0W1s2IwdT8rUO3m9FzV9xh7ETJ/xy0V1ZzoroaRH0QByDhC5laiUAVZ+NXvFmj7riJyjFjkVpanBpoWE7/3mYbbz1lTxHt/++S+ffTyoSXUFooGgt3SoVr57MUQLtCQOtP5+aRQWu0W3pHhZYRzqF+LsuAWBlFamcIN/o3bz8+8Pk9xBMhWNEgd/Shq47bEBEjoWPAJMqpNwVyO9TB+YStJJSujXAW5EL3iJos2FN8d6gV4LYQ6hGLYwV8D5u0TTlyKhaDJ6yYg1N9aHjW9nVf7gsLAbtI0J+K0QGxPY5dKAAmvirFCAJk4MVEPYBiqTqflHj5b8lD8uhZJ/y15ylfybqYVcYfKQ07lx/EA+1qx8q7ke0QFLNB1X7nvq+DMPkA97wwV59BsS8ljeWJm2JOQGYGUiSJQkKxNBoiRZmQgSJcnKRJAoSVYmgkRJsjIRJEqSlYkgUZKszM6psvdmS0W+C2Yc0hyxtvidQXmDjRfZ+uj0Sx4ob3Fs/q8XdNT15hYr37Vm0oFXH1ei+r8KvtgvUijVMF3ENnCYSXl5lt5Wz1cOyx3HwPrA+AOwKSWcZxI0BN229+mU0yJfkQEO6o90zcrBVHHmC9DJriNPjIAZeegLvdauHfHdNkxJQwldA/AAv7DzgrrN/D7iYddnwWmxLhl1puRvL8leW+kuY18EWE17QQy7LxnihGBarXiBzMPZsKqmpUQUxgqJ0ryFPaL/uersub7xm/nrB03w55EWMbZ76LuTGcN9M5VT/ad4Jx3mAaVQTpTcXzAXH7jytGbhZL/COhuGGdnl4FSP5J6xb5U0mf6xzKYu/waPsz5bW9XP5rUR93PdmxGNCLkhBw9PD3uhXxrbRLt7CCGKKqT3CUcgSmxCgnMs2Sdn4JNq/nPCt81JuTq+twnsWkKQBnKCFPpCv33dhj5y/Jtrl6oKmgy2scgeoF70W9/GxTcrcK2n9WqX0O404iL5XOYuotZSGuh4cKLT6AWZGCnZBsanPUKDzZp/Es1fddZ3RVhAL+ZCPHMkNGMBty51P1dLdUtU6iW5Tz9goevegK7sbxCYmsEU/qw3YgFKAEsTMxegSr5N29rRtvefAxZ7TWgSXTmw5TNqGWZrbD+WZVinGIuK4vQQV1ImOIjTLhCscFQbSwepedWXeo11FTGwZKCnsUOl+bXB2nI71X4z/my3tadtvbPUSCQG96KBKmQycEoAYRJwwvRMz8Gu6C00+l6z0bbQYKTB2gjcQhMyckc3DBoiDsWzxSGR89nmHcbfDk73XfFK06FGbfo6dKwkXoiv0yDWy9lSc2f8PnK3BzuXIhHGyRLhJZlKHkUMkDqFJfrhLo43RK2UFzLriKuns1gw+PNxqDiNyMlTAOpNPusVqCpi21D44i54HfRy+I9RKeu83nnvfuXhJPa4RS15Wg57ADNFwi8X1efo59xK2OcgMzkawrMR1eegGmbEZ73YJDb4+3CJpP/8/MYEV4f2ASmNjv0VuKhSJnX3D7+fuftHXC8Knxp5+U+GtdocMtaviUXvfr0H84BPF058QPMxBsPAAiNuDMOB6CSg/+hXRc2mm0Q1SKbhctqTrdJ6n9dmhmV3GZLnpOwVQXUafj/TacR13tdsgVfsOb1S1qS88vIg6RW9hi9bLODFy6RE8EU65mbi0qn72m0SLXNoOSyo3ZgLVMeEYPczHUNc59sxnm5EOIHLjIz5akpzscD/s34TMkctBtjEQiEvCo/wdXVOug6dHpy5I2TrPjO7vTRJIfwBCEkhwlAaiDThRKTCZ3JcH8o2rmfPDXrbu6NHwKS33zQWR268ofoY/0TdyTCdtDMM6gAuTIyRR8WAtBKeLZSo1VANUsuKIYZ/3SYf9HPaqPdltkn8uj480U8ET5TBfvEEs7r1n0q6A16LSDVw8SRM4BceYcLfBPnF3Z7NDo9V3g2Z77TxnZ95tzbUxseW2GgNBh78MSopxNAdxdEQNsEw1CtidQolWhRe0oRyUAvygdT4+gAsowD/X5BTCpNDRyERpY/nRq2oAue1GGAOKMCgjjUAjOjMKpPfuKK3Jp7UJunbHDzsXMV84tq5+kWLuZoN89BdvudPCY6KUnrV6Ch/EliZqrgdQhFCZQZSNqQdQ0A+AIYnDbhTQZNT1SlO0pUpuF6LKQROteu6cAMPUn8BcM5ALdzAPYqzXxB6k+R4gtCbhJ9E15uk60XS9SaLrSdJvxGhJ8kWm2r7ylUg5ugjf/us8jenRpZuXjP7NT7WOafhn1T5Wy9m7/AqUtzuc5eYck3aPQtb+nJk/t1cp+UlXTMBveMtdKc7ir0ACTp3vhxHCDmygVQckeBvp25nda5XO2TGbZuVQdPrUc9X6yYSTEfpTvv6ox98lQbknHiiaNDke0k5nBCls5wo7f7CkADkZLvgtRZgYqQDQHTWO3UMwx/FHMOI66Wx4I21mI+ohSYXVwwpIp5q/sfiKV3Ox0DxtB5nPH3/+b94SvhH5i2pNlHzLHDuhujMxuXdlvEQT+kyTTxECifOSGFV6vH0uc1c8aJXwUHLW3R9UzHz8mge4il9kYAHlN5/5kIp/3MpxlP6GGr0eOrEGU/fayf4CSY/J6B3J37IbG3K1HiVKor32fnOMyY7LzWChylB+meuKcFsLeTDeCOzVSQhNwCZDaGBR4Z6hAYeSWZDaOCRZDaEBh5JZkNo4JFkNoQGHklmo2doDMYajIrIJkZXz+OBsZbIm5OtDejk4ulIIkQVSSfT9/wZPjFj8wldtpAHnwxn88ni3Xd+nXz/Y0DO7h05W4bcpZ7zKxcuiZMpmLVR2AKbi5cwHt5RqEKXME6pkeHiQlCem0vDlq67iHgVXaKddWSUSqlQRMARC14sOPL58mdaJNzR+/ur25nlw+aoTw99PrkGK5PaortapoIC4OTHNvRRJgxUQK4WrKIDhX+kcg3x3UGGAXc58lMyaC4hyxwxCtk2EgvGfQABtINIkDJZZBUiUQ2SxwXLoikDoDV+OQLWOy183RK/3k0ZX/gqNQpX7dFIfHnsh+O2GIjhKnhuUCPH38qcfCtUh1JJEgPipFB2i4S3jCW8CLdeCl3CcnUFUZIJnxDAKqpyiUIEtaAKDUQalUwSq/0dEybW3kM01SSTH5bpKqA8LdXR2z8P4/L5D1zj8oEP5Lg8wuQxp8urmu7yaA4nsX+9ltifzNswaSMw3DCJ0M0lh0mEbi45TCJ0c8lhEqGbS+ZC0V2qRN6dVE+0d+KIr2sO1wkrlAsdHp908PrO8V4Te53vZzvy0S3G4AqjPnp9jCbGy8PgOpLNkyZarp0uOmywcu2Hv3GVa+/1rbTLtR8fsvhdWodQ3zlHzJscH/hrtAmUaz/wjav47fpvJlBzesOGDQYo1x5wzsnj2a9pYcv2318Z2WEJreKokcq1L+D0zjhT8I5ByrX/FH4pX701xvN3Qez0HYkZS02iXHscp3N6mYJzBMYs13427HxezuneXruiH5aPGHKMWpfW2OXafTmd19I4zjPNcu0HKmTVc3Bf6jVt3zrZn5ctqNWqDF+u3YnTc1ZG9xy8qdTKtXeQfai20s0xeMe8VeO7hG+makMYq1w7lkOwlmsHgZDIU0ex5an/S+Xa6WUxjFyuPfw7V7n2Bt8NU669yvuQFYfmhATse+8X67y63BDey7XTxc14KEEe/J2rBHn776VVrr3S+Ozq8yctDl3dtX2rJKfBu3kv106PETxg1YATq0rf/78q1z6aLYz9J8JfLBF+ejUhg4nwC35wifDnMmMnDyL8f3Txcp9Tr73vitGO8bI1aVR58pKdNuc5RkLN8q/fuTTLHzFjZGmI8K96eTbz+vWm/qvcnnZwWyXuYHQR/jxOVHINGw055w76HfzhT4Q/2ibv5zf7W4RMrL90T6PtTtTS9cYU4d/I6bo047jO4CL8XeYO/eVTrao+GxMnPYuocJW2q2JwEX4syrCqqIMoYzAR/uyTV09LOouCsms1/nrxQiPqzppxRPjzOMHJ/W5AEX6PYz8O7v9jjs/Gj8t622S6U6dpxhPh38iJEOjTRN42hi1vE3s1afqjc57XultOmZeXvWhF1RHADvHFKxVgRGfmbBYsOLcp2CKRF9xPaGEAxFXKhEExIIeDVa6V0XppOdArLLK+LVP1oJBRV25fQ7HgMkyTJCK46ELD9yLAd/SPkh6sqlrwWuAqgQXyqy9V966Xlv1StOywbfNq/eKpEtfFqt1FS6HogbGkxeYBeuchenVEqHrEcLP2h36FsPHuK5UNUsnQ+WXDtYsFXqMqB8+4vtFhy5FoIe2EFHYj4oQUfp132V/w/TM4v//cH8ZOlrQtU49ECb6yXCmVR3Fo24S3MVuUdHG7z/bLle9psi60o7ZV8gHMtqq1lIYzRnM6Y7BxnMEojq3PjoVbUJxSA4YvSRRcO3Vx7wymrGBmEdtM2KJzVIxSJW0mbNlZPVSlwX5BZ6s3oi4+qREa5r/k0e7AWbmtVlPHNfgBkZokBaL+ZYGpNJzVg9NZ3ibRc+Cj9MpWqxUsdMclqAaqOXrQ+KmazID8hYG7m9wakf6h8v6STJVL6I7Z7kQgh0c9LzJ0oVqIu2/7oV+WSkRyjmxrbbs7GSeOKUSrVp4+EfCsy0KjTnshAItJAK4jAIChRa9MlBzK2EUmGrb0P2rZZoPnXsu+w2aM0eyjDWWGPewLAZByAbDe/weZaKb8j/Fx6IW5DcbHiRGc4ODjtBacKGU+zsot4XU/T34UOnnsnG1r2qSsNQE+TjSEhHV3s4/ghPFJBXPmzDEAH+d62sstdk0zvSfXKNPyW4XUZSbBx4ng9I6/KXjHIHycjnVmnH6XJwzbtfuPUx0+db1oEnycLpzOaW0KzhEYk48TE3M1o4PfqtB5WwOnnukcet6k+DhNOJ0nNI7zTJOPs2i7W/uVjd/5bow+tHTYlzYNjczHsef0XAWje65U+Tgr5/VsccpOGLJg185jHr+tvGoSfBwsh2Dl44BASOSpY/8v8HHuiZ0DRzxUiZcsz8nq9H7RDCPzcdZD7Fn5OL8xU9pS4eN8SR1/qooqICTj4qaTr6qfFfHOx6HPzXngmKyDyLFyTJZRkeORj/Oumvq9v9my0O3dFrUo3+j3JN75OPQYwQNWv3FiNc2wMdfYfJxxbGFs6EF5U3noetGuA2GKf+73fkHdKemaAM9O+qkk8THME6Z6bF808JGr4+HpMe1uTpIrfspUKIGaeYPgJ6BLRka+WZIU6R+yy732+I29Rjuzvh9zJ6ewkdH+LCNBCAsrfBQL0Srp5550bJXapyH4NA8/HhcI7EXwH+38Z7SzuM+Dj8dtImUK4DCZNADE9eHk4zC34q4cz+ZK+/xUHzuPC6IVbe4d3Hwy0YemgoF2YGU8uiN8JrDCTZRDVsRgwDh8xZeSB/2QfDGUPHTNDsqweMkdZGSaL0SJ3FwvAvUJbKh/n7h1dRU3M++dfRwWZ8SHrCny9KVV6SOv84lN+uk9nk5sFrPfcHnE/i3dIxPZPJI+JzXhWeBHvwVD7dWLpzXrS10T9YXkGQ0zI2OdXuI3CNVg1MfrXSaoYcqL1WqLUSqkUI4RUgKjsb/D0mGNZJBapxyEfkSyfLAyaohMqr0J9erM5Vz8uq671S4gCEEwy6JIfVBUPeMtQn4JQgTncQj5JfiPLr8UOvFWl8gTTz0nnNmeYvEqLI8uvzS+54oxN+L7+Kflpi96mDajC2knD6MWW56J/sEIeSY2T1tD9QDCjUhvWT3tlPp3ZvPQ/TEvE/OGVM4vibf43w0Dfs2Hfl2KSnlmw4Pmb41SeNIa1nfsrwbfIW5QQcAo+B0LNcnuHhGjECpRbL6y8y3obSAh0iSo0Ilru8sN2p7rlBK0Lq9G9Qqyl/c5XWYuwp+E0DomDKXhtBxOp2UY1mlkCDYLFuEBFd4yRtvvMd+QfZQt2avnQ5S+lsepZSqMdQc+ghIwkb5aHiZz7TpqcVBG7DPzwUtuDaD7yjwkQSMZqNAKWAhom13wU92Zw5V7kVpfxRyuuJw6l9Opo98ytL44CygQjV2G67MgwaPLpHA2dDMY6ZhlOrCrvDNK3Yi4lOuFqHTv2Rxr4sSQPoltSO9673aYueK83/I9B8qO2Vl3EpUrGxkjj9YIYV1Z6rAOxyu2mtaOYdHRcCoiUSiI8qtyWDgPine7IQGmFxxkewVEvqQr3R60jE2vAVLdvFHF8JqJBXGvS8ojs8Gq74K+qYYvjPyi3rZ2z5fcehI4c8a+oXbHP4fTC7wgv2KRKSG96HpJiffw4D3EKs0Lxf0AE/wFr/VjjeEeVGKtAomLvcvbpyN72gbtHbRS2uTXr98ZS8rRugFT0v4ED7VzfnPQSkxgORlrgXrssVlDnSEu6al2it1pnnlzRfP8Z//Y0S6kD7VdwrsNBX8vTvh9jQM/gyFW0kLdeI+AbGfwTdB6P7SKu8WMFCVdzXclQkGuJ2KAGeCKdQhigJnMNsDorefjovVe6ev59HTq1jTp8B6vFf+O6Vrtzc/BhfR88r5e/euLy1BxjrRxhR0BVg8L6fmMzr66YNn6XwJnaypPfd7i5dBCej5RTQX9H3//22tZXp58e/8+Vwrp+czNauo8O/5S4MKz/hUP3W30qpCeD6LyL6ltiKj8SxbqRVT+tSBMt4/WbGHbY0bw2E8b/q1x+sERYLIkTBbJ5Va8lz8LyVwzQJ65SwHRsCJMdzscqtHppxueqRU1/pFDHrcBJmvCdGXI09//7pEvSh0a2Hf/NafzwFSBMN3cMu90s+UXAjf4tRa0+ivvNjDZEKas5B8LPMPk3mObtTrzY55/EjBVJEz+4e2k7ufVogPSJ5nTrnVZC0y2hCm5uYUi8fZM/5xOX++lZcvnAFMlwtRum/TKP282BqfciVt059iZ2sBUmTBNe3XO6bGsfHD6qTN/5w+8bgNMdoTpbOcdF7/kVAtNa9XmYtyLAa2BqQoJb8PRZVYduxR44MyCBu+2PzoKTFUJU/kXdx60yRwi2lH9+paPV1v2AqZqAlYZKHvCNGXdgxdbIqYFbO57pN91ae0BwFSdMPnOyRv88515AZNclic7Lup4CpgcCNOEVPXRNXe6eE255D9AdeTEXmCqQZjcpm2JDk0f7LPGtezGvr2drwJTTcIk3rrj3DvF4+DJdT0qiKb2gApRjoQpoorZ+vN/XxLNPtP4zI22jZ4AUy3CVNWpvbtGecp7efOZ1XZ9fQzbRm3C9HnZyC6v+n31Tt31SLjTLHslMDkRpg7Z8og7jUf4TJeOrragvX0uMNUhTBXKNhZvrjjCd9L0uBu5i6rAzxISpk9OHmfmzmnou3ZWBf/POy+EM4Sq6gpYhKqsljc817NHc88V/TWzFuzPUfIgVDWFLURVi96zefGxU+KlG/NHnKk1kioaby4eHq9QShGnL9gS4EbEHULyvCxWpk4dCxJiEISICoA6HregByjkqzFn1YRBV91wZ7HgZZkTML4idg7DQXp8owxj55CzgGbBaVT8RZDfrcwbP/XCnm6ida+6De26ZFI5Hg+j8rxBCFf2nkOApKh558nGYsH9MowNQq6UrE2EDDQNjPcklcESR0q1HDt+At5PrsCmTmQ7EUpU8MS1MlYeha5g57Dz8LQ1+WETj4bdG7xUQi1Daqn9HCZ9vMDEe2kaF6zFcMB1sYxReBlFH3XUM5NzJTqatMBdmhiJRhgrGSITggREW8KanWfe4V7sq8pLP4RsfH46Z7GZkFrMziKSeCyCaUha+PZeJVeisfugvJfmhjV2BttcT+DqkoeiSMKfjA4kEqwZK6f8bPdcFDq3zIOJ232aUk9IFusIFg9g3eAECzR1YvyZyjb+/KfcUCzlBnqGbjDlBlHZExzKDfXL6jVW6qjc4Pgu5dsA1zOinDVnek0/ZOHC42BJj0A8KDd4QYRYD7q3K6vXYFlc5QZB/eTt80ff9Fx1qOm4zP4rrxhducGVExXQbkyUZWo45YZK//Z6d/T6u7CNWQtcBe+7Ubf8jancUIPTdbbGcZ3BlRuq98tybR6f5bXolvnVVv1ox3sNr9yARRnWo/cgyhhMueFCxsHsOYPahWV9fxB0fY2QqqtjHOUGV05w6tPAKVXlhji3T773Uw+HLfPY/aXa+DLvTUS5oQYnQqBPE3nbNLa87dQSSfC3DtX9xmU4mT+pn3yAmo0GgxxNGOkTrPvCgbe2GC6sJkBmwmCGGA1+BXlXkhBgq9LgGgUg2BLtFeZeROo2SqfEib5+iX5vZhZNWvQoi9vO8gReFpeRKnkCD1S31G9ZAXuBQhggv92/9oPape7tEpYesWjrpK9mA2i7SfBuxAEF7HJRmRI9/vFQ87YNBCge1QiFTcWCppZ68Y4dMIDIduEilatA8wV29GA79d2OF/e/HvPcVkVetck2P6oOj6UPeTOzWxaYigIsx/na7L8G9PHJvvvTlPanjuTyAFhdTsBAizJKEoWPGfBvWgnYfphyWBYcvrTGfMkRVW2f399a+5SH//oJ3du82vkwyw4TMgHOEA+PV8m0tGcsqfXyjnT5pXHJEmCaa09tSjl9d8hfITmnXV2aDbHx5sG1Npyu/clIrkXlx7N/1ivVqhBcKJ4jnbnA502ixbMOfr9LNt57HbrLm77hhzhUhV/lfe3OjYhJ2ShSSbYb1sWIgXE628DonVf95rB22zyzevdzmN5jP3XVuiokv2rg0ic8ySyD3HqZHhXjm4uUsQBynIKLPUZa8BhsclhQKB6SSnUaEenbdkW/MMMdyL/SNRsBjX/xTwD0R96IAvIDQOOf8RPr0R0dV9y8gguBApcbYBkkmG0o44QuZPFzgB4ugAT/h8c0NVyNVibKWNRLqtfO+v5Z80Q8TXn1090Z76h7J+V7YKQDZowhrhcVY2r73bQdvGmTaE3cs+fSJrOWlTDGzAYwp0GYzbwRJdPTGmMwl3RJuGEh92tXt6KUcWpZVALWPDBOFBLLFm9z86Y/3+63paKgTq+Lba9RT2QUPJc5/aUYeadSNiNg64OC7borBhsREmawhYQzFeu/adFWGTLp9YsgtytjxJTvZhMhwziMwtAEhQIRC9gSZlfyPkiExdqsPG6YRCGX4o08Ua6JESrBNEWleySg79JzvCfDC1Szrsf2nMWCgRBda9TmWzpAN7jEfd8+AOPhwVVXmRojYmOIoRuhJLyzKKO27/y8SQl+i2fWpqbP2IOY6TN+uajuTGcllPQoGkBuAERuJSplgJVfe/zEmj7riJyjFjkVpanBpoWE7830VTm1G23y3z3v5aCq38v/Sj3mTjQQ9JYO1cp3L4ZoBXOi5f2TQRMs8kUtuiXFywrjUL8QZ8ctCKS0MoUb/Bu1m59/f5jkDpKpaJQ4+FPSwG2PDZDQseARYFKdhLsa6WX6wFSSTlJCvw5wI3rBSxRtLrw51gv0WghzCMWwhbkCzt8lmr4ULcuZazm1/Zvm3nMq3frz24dqF2gbE/BbITYmsMulAUUwJxTe2oEqlW2gMpmaf/RoyU/541Io+Vf/J+LAP7Lkn6MW8pkmDzmdG8cP5NG/OfaUT9vnmdrlw8NH5uIPPEA+y4wL8slmJOSzeGNl2pKQG4CViSBRkqxMBImSZGUiSJQkKxNBoiRZmQgSJcnKRJAoSVYmgkRJsjIn7w+ubzu1me/cBX+2DP+0exmD8gYbL7L10emXPFDeZrP5v17QUdebW6x815pJB159XInq/yr4Yr9IoVTDdBHbwGEm5eVZels9XzksdxwD6wPjD8CmlHCeSdAQdNvep1NOi3xFBjioP9I1KwdTxSVwf+A68sQImJEn67fN74jvtmFKGkroGoAH+IWdF3Q0sJt9/Oy5oTOeNe7cfELH0yXZayvdZeyLAKtFZYlh9yVDnBBMq6cxN/y5sKqmpUQUxgqJUtoRl6n7ct6F7Ci7oFXNa+PO8EiLGNs99N3JjOG+mcqp/lO8kw7zgFIyJ0qKsszFB648rVk42a+wzoZhRnY5ONUjuWfsWyU/7NJrLNw8IHiPi/rquWwPjRH3c92bEY0IuSEHD0/P0nM/t4l29xBCFFVI7xOOQJTYhARn45tZuaEff/LLKdds0dVh49xNYNcSgjSRE6RkPfd1G/rI8W+uXaoqaDLYxiJ7gPqY5fybIj7fPyPzqWeg7980Lh75XOYuotZSGugM5URnkHZPdw7bwPi0R2iwWfNPovmrzvquCAvoxVyIZ46EZizg1qXu52qpbolKvST36QcsdN0b0JX9DQLTEwjbWW/EApQAFoHQb6jTbZt2zo1djx+VXxU6/tuvkS2GH9xFXezE9mNZhnWKsagoTg9xJWWCw8JDEKxwVBtLB6n5Lf3GuooYWDLQ09ihepLwMLh6mp//hBavkyedH0EVc7cUg3vRQBUyGTglgDDlccJ0Ws/BrugtNPpes9G20GCkwdoI3EITMnJHNwwaIg7NZYtDIuezzTuMvx2c7rvilaZDjdr0dehYSbwQX6dBrJezpebO+H3kbg92LkUijJMlwksylTyKGCB1Ckv0w10cb4haKS9k1hFXT2exwNLiBFScRuTkKQD1x+Z6BaqK2DYUvrgLXgf5LQPLzjox/ceWgEnb6u16E5PVhJoiYQ9gpkj45aL6HP2cWwn7HGQmm0N4NqL6HFTD/GauF5vEBn8fLpH0zUPyhZkNrL03brl0pOyUE/eou3/4/czdP+J6Ufg8PNGycXiVqZ57kzN9LP5tVdJ1E4jPG3MufEDzMQbDwAIjbgzDgegkoP/oV0XNpptENUim4XLavl7lphz7bbPf2rAl2UPbfA2iOg2/n+k04jrva7bAK7c5vfKHSXnl5UHSK3oNX7ZYwIuXSYngi6658DhLsKXzCu+ZOadmtK0W5kR1TAh2P9MxxHW+HePpRoQTuMzImK+mNBcLPprrNyFz1GKATSwU8qLwWJYs3tc+rXXAjOe96o3MXyilSQrhD0BIChGG0kDksTkXIjfMyXF9Htu4nj036G3vjh4Bk95+01gcufGG6mP8E3Unw3TSzjCoA7gwMUYeFQPSSni2UKJWQzVILSuGGP51m3zQz2mj3pfZJvHrevBEd5kTPFEG+8UTzOoymeO6njvgtYhUAxdPwgR+4REm/E2QX9xyozpy8tvGXntjY1vWlQ+gDm3mbImN1mDgwR/S53ZADN1RHA1hEwxDvSJWp1CiReElTSgHtSAfSI2vD8AyCvD/BTmlMDl0FBJR+nhu1IoqcF6LAeaAAgzqWGdqO/NvJr9xRW9NPKlN0rc5eNi5mmLOtXOVosV8Phvmobt8z58SHBWl9KrRUf4ksDJVcTuEIoTKDKRsSDuGgHwADE8acKeCJqeqU5ykK1NwvRZTCJxq13XhBh6khiP0DNTCDdyjyLE4wdSbJMcThN4k/CS63iRdL5KuN1lsPUn6jQg9SbbYVNtXrgIxRx/5226TD+XcPH5YtDjmzd6jP22sRpW/9WL2Dq8ixe1eqp1Gm4UMDlv2r/m3sGMPTpR0zQQKSUJ3uqPYC5Cgc9TiBELIkQ2k4ogE3ww+Lhs4N8R/juXpiGZO7dcXQySYjlLSr3dTK1ReHXBw6KdmfarJSsrhhCjlcKKUbXGCLgHIyXbBay3AxEgHgOisd+oYhj+KOYYR10tjwRtrMR9RC00urhhSRDxd8D8WT+lyPgaKpzLOeBr2Xzwl/TN994agFq3+9V4xq5KZ+s97N3iIp3SZJh4iRRRnpPi11ONp8uw+XV5NdQ1e4XcvZ/TqvQ15iKf0RQIeUArjRElcmvGUPoYaPZ5GccbTMG08XWjycwJ6d+KHzNamTI1XqaJ4n53vPGOy81JLKhYBpwQNLLimBLW0kKfxRmarSEJuADIbQgOPDPUIDTySzIbQwCPJbAgNPJLMhtDAI8lsCA08ksxGz9AYjDUYFdF7uDT1PB4Ya4t4c7K1AZ1cPB1JhKgi6WT6nj/DJ2ZsPqHLFvLgk8VsPlm8+86vk+9/DMjZvSNny5C71HN+5cIlcTIFszYKW2Bz8RLGwzsKVegSxik1MlxcCMpzc2nY0nUXEa+iS7SzjoxSKRWKCDhiwYsFRz5f/kyLhB2b1zhZc0pdz9n1YgSPaiaw6i5bdFfLVFAAnPzYhj7KhIEKyNWCVXSg8I9UriG+O8gw4C5HfkoGzSVkmSPGonQjsWBeeRBAO4gEKZNFViES1SB5XLAsmjIAWuOXI2C908LXLfHr3ZTxha9So3DFgEZim7nlT9hiIIar4LlBjRx/K3PyrVAdSiVJDIiTQtktEt4ylvAi3HopdAnL1RVESSZ8QgCrqMolChHUgio0EGlUMkms9ndMmFh7D9FUl5j8sExXAeVpqY7e/nkYl/eW5xqXt5Unx+WlJo85XV7VdJdHt3AS+zO1xP7feRsmbQSGGyYRurnkMInQzSWHSYRuLjlMInRzyVwo56z7md/WnRFv+WPCiGuCrg0L5UJL/ty+yOtx+4A5FeNarQkaNZoxuMKoj2xIdDFeHgbXZWyeNNFy7XTRYYOVa99hyVWufSxTSobncu0PelUqWzZlVEhaUvPU+bv6dTGBcu3bLLmK32YaRzCDWnN61apVBijX3t+1YWT0tNPixZMn9hxWW7zQJMq1L+f0znxT8I5ByrVfOl5r/WLNNM+p36LNIl5bPDCJcu3TOZ0z1hScIzBmufZVFjcVe3fleG6TXT98W1HJ1qTKtSdyOi/WhISCjF6u3f5GL2G5obdE82//dPpQ4DhHI5drj+L03K9G9xy8qdTKtQtlv1Zqst/Vd3GneLO1Fe9dMoly7VgOwVqufaxW7Gk5W576v1SunV4Ww8jl2r9acpVrf8hMaUulXLvS50KfaUv+8JleLzroX8u1O3kv104XN+OhBPlnS64S5C/1k03Uo1z7X5VblV3Rf5vP1g5pZRq3kU0qeRemYUWPETxg9ZATq78NG3ONXa49nS2M/SfCXywRfno1IYOJ8Hez4hLhb21VGiL8HYVjGh0WrhHNP3T3206zrrd4PG3Oc4yEmuURVlya5f5WBhHh/+foDY/B2V/D1pb7mnDkSL8Ao4vwd+FEBbQbk5k76Hfwhz8R/sDTZ24me57zPDjfwtGt7uezJiPC34TTdULjuM7gIvw1O/6uyNn/LmBqy777h167+p6202loEX4syrCqqIMoYzAR/uGKFX9+epQbtvJHlNXYsKgpJiDC34UTnNZWBhTh/7t5b8vtrb8HLrlYPv3zoSTq1Md4IvxNOBECfZrI21aw5W1iryZNf3TO81p3yynz8rIXrag6AtghvnilAozozJzNggXnNgVbJPKC+wktDIC4SpkwKAbkcLDKtTJaLy0HeoVF1rdlqh4UMurK7WsoFuyH+EpEcNGFhu9FgO88Zpqk58GqqgWvBa4SWKDJQv3mf7jUsmrQ+iM3uyWftqAVOitO7S5aCkUPjCUtNg/Q2wvRqyNC1SOGm7X6pVAV8O4rlQ1SydD5pXSUm+rrl7reO38/8jRhU04c7YQUdiPihBR+nXfZX/D913J+/9+NnixpW6YeiRJ8ZblSKo/i0LYZXbve+k1XBL5To3Ltl3Ub1YDaVskHMNuq1lIazpjH6YypppH+CPTZsXALilNqwPAliYJrpy7uncGUFcwsYpsJW3SOilGqpM2ELTurh6o02C/obHXch9GCldELglYMSfP9bUX/5dRxDX5ApCZJgah/WWAqDWeN4XRWgkn0HPgovbLVagUL3XEJqoFqjh7kOHP2lJH2fwfsXTD093lVJyaWZKpcQnfMdicCOTzqeZGhC9VCvCFLzyyViOQc2dYOdXh8EycHv5Tle/18WlY6ZdRpLwRgBQnAdQQAMLTolYmSQxm7yMSxF3fSUqVm/nP/qH+336w7SbShzLCHfSEAk7gA6DFcm2iu/B/j49ALcxuMj9PJmouPY2Fd2nycv553Ew/t9S14nmxj35i+zioT4ON4WHPtbrpbmwCpYNq0aQbg41jN2DvFu9MN7+WTnBP+riM5ZxJ8nEac3qllCt4xCB/nwGBxbL97PQKm9n8rqvteHWsSfBw7TudYmIJzBMbk4yyLiXRaWy8+OHXGtLONbZ0+mBQf57sVl/PeGj3ZNSE+Tv6VNe7JXjO9t0zziht6vEZTI/NxnnB67o7RPVeqfJwfHw74NW7UzmueXfukadK8zSbBx8FyCFY+DgiERJ666v8CH6dC2cbizRVH+E6aHncjd1EVY/NxRltz8XFimCltqfBxxo05FPPhRbJo71zPFhNsnV/zzsehz8154JiMtObimKisS4uPU3nHa6VZa5n34jXnPWw7Ro7lnY9DjxE8YBXDiVU/w6Y6xubjrGYLY0MPypvKQ9eLdh0IU/xzv/cL6k5J1wR4dtJPJYmPYZ4w1WP7ooGPXB0PT49pd3OSXPFTpkIJ1MwbBD8B2fI+OXmcmTunoe/aWRX8P++8EM76fsydnMJGRvuzjAQhLKzwUSxEq6Sfe9KxVWqfhuDT+EBhLnsR/Ec7/yl3Fl8WmZ+wiZQpgMNk0gAQ14eTj8PcirtyDZsr7fNTfew8LohWtLl3cPPJRB+aCgbagZXx6I7wmcAKN1EOWRGDAePwFV9KHvRD8sVQ8tA1OyjD4iV3kJHNtCBK5OZ6EahnsKH+feLW1VXczLx39nFYnBEfsqbI05dWpY+8zic26af3eDqxWcx+w+WR22Z0j6xl80j6nNSEZ4Ef/RYMtVcvntasL3VN1BeSZzTMjIx1eonfIFSDUR+vd5mghikvVqstRqmQQjlGSAmMxv4OS4c1kkFqnXIQ+hHJ8sHKqCEyqfYm1Kszl3Px67ruVruIBX7lAJhlUaQ+KKruXA4hvwQhgvM4hPwS/EeXXwqdeKtL5ImnnhPObE+xeBWWR5dfGt9zxZgb8X3803LTFz1Mm9GFtJOHUYstz0T/YIQ8E5unraF6AOFGtPjg5ycjnF9uFs9/k3vuc/e9u0riLf53w4BfxdCvS1Epz2zQhTqWM0rhSWtY37G/GnyHuEEFAaPgdyzUJLt7RIxCqESx+crOt6C3gYRIk6BCJ64nm4iXrLxXOST79R+KIe0z/+V0mbkIfxJC65gwlIbTWnA6zdmwTiNDsFmwCA+o8JYx2n6P+Ybso2zJXj0fovS1PE4tU2GsO/ARlICJ9FXiq0/Px699Hzq9dYOM7KWjBXRfmYckaCQDFVoBCwFtswt+qjtzuHIvUuurmMMVl1Nrczq1SjmG1hdnAQWisctwfRY0Z5omk8LZ0M1gpGOW6cCu8s4odSPiUq4XotK9Z3OsiRND+jq2Ib3rvdth5orzfsv3HCg7Zmdd6nkQq8gYebRGCOvKUod1OF6x1bR2DIuOhlMRiUJBlF+Vw8J5ULzbDQkwveAg2ysg8iVd6fagZTSFaU43b1QxvGZigbVZSXlkNlj1XdA31fCFkV80yH3fooylB0Mnds1pMLH7BKrakBnLVywyJaQXXS8p8R5g1RhileaF4n6ACX4dM/1YY7gHlVirQOKS7d70TmOns96Tqmxssz7/sy1jSTlaN2BK2p/AN6/G+c1BKzGB5WSsBeqxx2YNdYa4pKdyd/QbXmWKzH9uK+Gw29s7HaO2S3i3oeAvwwn/B8PW9ybhZzDESlqoG+8RkO0MvgnSI/SKu8WMFCVdzXclQkGuJ2KAGeCKdQhigMlkG2D01vNx0Xqv9PV8RKnbenm6fAvc1dB/bM/z5dWF9HxcnzcUJKWuC111wfZvzQL7zEJ6Pm0bdRodu+Kg57aLjo9y1zmXK6TncyokeXrmw8qBc5++WCnZGf53IT2f1edWPnIcPTto3Y4W4+9VOd62kJ4PovIvqW2IqPxLFupFVP61IEwtF1YN2LDtu2ha7e+HPO+mrAYmS8K00Nw3ob23PGCmz2/1T384Pw+YrAiT1cw1oeH9vUIWTth3L3zMNE9gsiZM+cNDlyd8WBKyyzatb6cX76H6YgXCNHvtyoPJYTY+B2ZMix/Yq2UAMNkQJo+frvlWfv8saGq5cxcyWg44AUwVyQeuuXdxStyN0PVrqrV/IW1nCUy2hCmm2a/dXVUtAhddLfsmtvfkEcBUiTA1jreq1l94wC9L/M1i9O24KcBUmTCpWniGC1wv+x0oe85vtPedVGCyI0ztvo4d61NeHDRuebDn53FtFwJTFcL0eL3CRhrfOyR96sdzZv/2eAtMVQlT9NHH5nuHfPaZEH/r7fW+c/4BpmoCVhkoe8J0pXeTbxVe/eaZvXpl1IJ1D7YBU3XC9Orp0SNBVmOCFg70XmrbYh4UUnQgTCN3zogJtunqt+VwnLSnh9QCmGoQpu0O5R42vJUQsjDraq3RFxceAqaahMl69F/dhiy6FrTFudHeVr5TVcDkSJjsHzxufGbOi7B5aqvKEZ6VZgNTLcI0uZdF8MSkn8XzU4e+ihv9yQyYahOmepGup/Y+Ge69vO/73fMc2kOTE2H6RTTz15Euf4ZsHyGsVCnHYREw1SFM/o01v90dXtP7tyGXWmVVSXoMTEKyE+05ePRKxsiQrHZ53rEeDmcYQlV1BSxCVTGvlPva1Dwbtkw2reHGyfVPIcKGvkJV69lCVLXoPZsXHzslXroxf8SZWiPTqVNX8fB4hVKKOH3BlgA3Iu4QkudlsTJ16liQEIMgRFQA1PG4BT1AIV+NOasmDLrqhsMSVhVOwPiK2DkMB+nxqQr6FdAsOI2Kvwi6WH2Fu1Ovtw73XTq29Yfmp+5RpehLdhiV5w1CuLJ3EwIkRc07TzYWC65U0CsnbhMhA00D4z1JZbDEkVItx46fgPeTK7CpE9lOhBIVPHGtjJVHIVHs9/jlxkkhwoAlDX5/3Tky/iGVPq79HCZ9vMDEe2kaF6zFcMB1sIJJZHLMo456ZnKuREeTFrhLEyPRCGMlQ2RCkIBoS1iz88ytruw4PN/3vCgt5tXm1629qtOYhsRjEUxD0sK39yq5Eo3dB+W9NDessTPY5noCV5c8FEUS/mR0IJFgLQ2tOXj/i6U+83+3vH/y521UHcxiHcHiAaxTnGCBpk6MPxvYxp//lBuKpdxAz9ANptzQ0oZLucHOpjSUGxwsLi4/fiw2dPnSLXXfLMttxeNgSY9APCg3uNtwHXRvZGMQ5YZl5pfXTTxpL8rJanSnajPLtkZXbqjFiQpoNybKMjWccsOFoAoBbb/EBa6rsitl1cTpvU1GucGC03XfTTWd4Vm5wWrUml6nLeaHpX8/+vn3227UGnGGV27Aogzr0XsQZQym3NDWcV7K829fxAvnS8z/zRz7wwSUG2pxgmNnY0DlhiW/VMwfvbyJ3+8OGfvqR6x/ZiLKDRacCH3X5m0b2fK2U0skwd86VPcbl+Fk/qR+8gFqNhoMcjRhpE+w7gsH3tpiuLCaAJkJgxliNPgV5F1JQoCtSoNrFIBgS7RXmHsRqdsonRIn+vol+r2ZWTRp0aMsbqOqRFlcRqrkCTxQvqp+ywrYCxTCAE2K/23b37dlY/y2L6mR02lwzCvabhK8G3FAAbtcZKZEi3881LxtUJVgXzEaobCpWFCzql68YwcMILJduEjlKtB8gR092B6J3JPZ6NQvwSsTek/JTH74ndotfcibmd2ywFQUYI9O3GlQN35O6LSHwqd7uu5owgNglTgBAy3KKEkUPmbAv2klYPthymFZcPjSGvMlR1Sd8OztxUoT/UL2V+v+MmPl1t52mJAJcIZ4eLxKpqU9Y0mtl3ekyy+NS5YA01w7UJXU4Nvsd/7bnk6tcVtlH8yDa79W4XLt6yqmkx/P/lmvVKtCcKF4jpYsW2lhN9VznueOiUtH/rns/R76hh/iUBV+lfe1OzciJmWjSCXZblgXIwbGLLaB0Tuv+s1h7bZ5ZvXu5zC9x34q0aEqJL9q4NInPMksg9x6mR4V45uLlLEAcpyCiz1GWvAYbHJYUCgekkp1GhHp23ZFvzDDHci/0jUbAY1/akUA+iNvRAH5AaDxJ1csKT/FK7gQKHC5AZZBgtmGMk7oQhY/B+jhAkjwf3hMU8PVaGWijEW9ZOAG98NVJuzxzp54aGHY8TrUssTle2CkA2aMIa4XFWNGBf95IvWcp/+0YZuCWgpu7SlhjJkNYJ4MYTbzRpRMT2uMwVzSJeGGhdyvXd2KUsapZVEJWPPAOFFILPf8tfIP7zGfPGd4Xnx6eeP4mtQTGQXPZU5/KUbeqZTNCNj6oGC77orBRoSETWwh4UzF+m9atFWGTHr9Isjtyhgx5bvZRMgwDqMwNEGhQMQCtoTZlbwPEmGxNiuPGyZRyKV4I0+Ua2KESjBNUekeCei79BzvyfAC1azrsT1nsaArRNcatfmWDtDtWOK+bx+A8fDgqqtMjRGxMcSQADQc827KWfFA39//nWIxJaY/jYyFPYiZPuOXi+rOdFZCSY+iAeTCIHIrUSkDVvm1Imv6rCNyjlrkVJSmBpsWupCL84gFoT5DA9Y8rTn5s3JJf+oxd6KBoLd0qFa+ezFEqyMnWi0qGoXFbtEtKV5WGIf6hTg7bkEgpZUp3ODfqN38/PvDJHeQTEWjxMGfkgZue2yAhI4FjwCT6iTc1Ugv0wemknSSEvp1gBvRC16iaHPhzbFeoNdCmEMohi3MFXD+LtH0pUgoBuVPcOp36ZLn+uYtN4d/TT9P25iA3wqxMYFdLg0oOnJC0UI7UG1mG6hMpuYfPVryU/64FEr+2VXkKvlnpYU82+Qhp3Pj+IH8q/zKY6tGXX3WPVQu9BeOyuUB8tG2XJAPsyUh38IbK9OWhNwArEwEiZJkZSJIlCQrE0GiJFmZCBIlycpEkChJViaCREmyMhEkSpKVueB4Vm1nxSffne0UWebZ2ZsZlDfYeNG7KzT6JQ+Ut61s/q8XdNT15hYr37Vm0oFXH1ei+r8KvtgvUijVMF3ENnCYSXl5lt5Wz1cOyx3HwPrA+AOwKSWcZxI0BN229+mU0yJfkQEO6o90zcrBVHEa3B+4jjwxAmbkg/Xb5nfEd9swJQ0ldA3AA/zCzgsav+jql5nmqaLMn/46+bL52skl2Wsr3WXsiwCrKTbEsPuSIU4IptVJzA1/LqyqaSkRhbFCb2XctXWfEvDVc3x7x6xrDy4s4JEWMbZ76LuTGcN9M5VT/ad4Jx3mAaXBnCj1tmEuPnDlac3CyX6FdTYMM7LLwakeyT1j3yoJPHXzry5tHoTtHfPP+nsZ1f4x4n6uezOiESE35ODh6dF67uc20e4eQoiiCul9whGIEpuQ4GQ1DG/Q2mlPcOoUdYZqfLrSBHYtIUgaTpAG67mv29BHjn9z7VJVQZPBNhbZA1TbZ6lW/2z+03dmapOjbarvaU/dRSSfy9xF1FpKA50BnOj0sCETo21sA+PTHqHBZs0/ieavOuu7IiygF3MhnjkSmrGAW5e6n6uluiUq9ZLcpx+w0HVvQFf2NwhMf0LYznojFqAEALYj+g11um3Tzmh73npD6l++Oy5teHDpo98A6mInth/LMqxTjEVFcXqIKykTHMTpaxCscFQbSwep+Tn9xrqKGFgy0NPYoRo99Oq4G1a3/NbbHe6a1svJgxqJxOBeNFCFTAZOCSBMRzhh2qPnYFf0Fhp9r9loW2gw0mBtBG6hCRm5oxsGDRGHtrPFIZHz2eYdxt8OTvdd8UrToUZt+jp0rCReiK/TINbL2VJzZ/w+crcHO5ciEcbJEuElmUoeRQyQOoUl+uEujjdErZQXMuuIq6ezWPDR7gRUnEbk5CkA9et2egWqitg2FL64C14H+S2vPet/vcHh4QFZA9of+3IhfxQ1RcIewEyR8MtF9Tn6ObcS9jnITH4P4dmI6nNQDfOZnV5sEhv8fbhE0rM2pO49Mr2WaJNj5tnvccFUlSPi6zJ3/4jrReEzZNtn+cVLtr6pNy4k5NuYC3nAJ58TH9B8jMEwsMCIG8NwIDoJ6D/6VVGz6SZRDZJpuJz2cXKr/a3++dUvZYD9nciqN1tSnYbfz3QacZ33NVvglfOcXjlqUl55eZD0il7Dly0W8OJlUiL4opXw/Q9V8H3jFLZgyMaDIzKHlqc6JgS7n+kY4jrfjvF0I8IJXGZkzFdTmosF/9jpNyFz1GKATSwU8qLwGFb2+tlxc2/5bPx50aHqnzv2pEkK4Q9ASAoRhtJA5DonIqfsyHF9B9u4nj036G3vjh4Bk95+01gcufGG6mP8E3Unw3TSzjCoA7gwMUYeFQPSSni2UKJWQzVILSuGGP51XIWjndNGvS+zTeLX9eCJZtgRPFEG+8UTzOrSmOO6njvgtYhUAxdPwgR+4REm/E2QX/yniTWmBC74HjS2/NOVPmU71qI2PrbERmsw8OAP6XOrIYbuKI6GsAmGoV4Rq1Mo0aLwkiaUg1qQD6TG1wdgGQX4/4KcUpgcOgqJKH08N2pFFTivxQBzQAEGdazTtJ15p8lvXNFbE09qk/RtDh52rhLtuHaulFrMd7FhHrrL9/wpwVFRSq8aHeVPAitTFbdDKEKozEDKhrRjCMgHwPCkAXcqaHKqOsVJujIF12sxhcCpdl0XbuBBakiZnYFauIF7FJlVEHqT5HiC0JuEn0TXm6TrRdL1JoutJ0m/EaEnyRabavvKVSDm6CN/6+WWl791hNRvbJ37sz9s//SYKn/rxewdXkWK24U3Cbo++OFZrxy/lId1L7VpXtI1E9A79kN3uqPYC5Cgs63KCYSQIxtIxREJdu2rHLPMwzkg/UDq6hkL644shkgwHaUGmX3Va++dFs+Xtj3UcOBIKx5QyuREaXkVhgQgJ9sFr7UAEyMdAKKz3qljGP4o5hhGXC+NBW+sxXxELTS5uGJIEfF09/9YPKXL+RgonnbjjKdd/ounpH8y341Pr3rtZuj+fSf61khUneQhntJlmniIFBGckcK/1ONp7ajD7Resu+27Rv7038BfN7XhIZ7SFwl4QKkLJ0qtSzOe0sdQo8fTCM542kUbT/eY/JyA3p34IbO1KVPjVaoo3mfnO8+Y7LzUCB6mBFWqcE0JrLWQ5/BGZqtIQm4AMhtCA48M9QgNPJLMhtDAI8lsCA08ksyG0MAjyWwIDTySzEbP0BiMNRgVkU2Mrp7HA2NtL29Otjagk4unI4kQVSSdTN/zZ/jEjM0ndNlCHnyyj80ni3ff+XXy/Y8BObt35GwZcpeaDZcLl8TJFMzaKGyBzcVLGA/vKFShSxin1MhwcSEoz82lYUvXXUS8ii7RzjoySqVUKCLgiAUvFhz5fPkzLRJW7H4hUNr8dVjWlzr118xsV5ktElp0V8tUUACc/NiGPsqEgQrI1YJVdKDwj1SuIb47yDDgLkd+SgbNJWSZI8aidCOxIKUyCKAdRIKUySKrEIlqkDwuWBZNGQCt8csRsN5p4euW+PVuyvjCV6lReJZ/I/GbMZVP2GIghqvguUGNHH8rc/KtUB1KJUkMiJNC2S0S3jKW8CLceil0CcvVFURJJnxCAKuoyiUKEdSCKjQQaVQySaz2d0yYWHsP0VT3m/ywTFcB5Wmpjt7+eRiX11fmGpdXVibH5QMmjzldXtV0l0fTOYn9aVpi/0HehkkbgeGGSYRuLjlMInRzyWESoZtLDpMI3VwyF9qyz7nxiXULArZfcLJWf1c1K5QLXT5y/XDDWS+CUxPDr8YeVBxiDK4w6iMbEl2Ml4fBNZfNkyZarp0uOmywcu2rq3KVa49nSsnwXK7d1mHnb8fkz0JWXf5jXKuMw6ZQrn1lVa7it2nG0UKh1pxeunSpAcq1T5s3xDIwJTZ4sXvElUl/nEo0iXLtMzm9M8EUvGOQcu2fFY0i7RquFG9X1b7XuUY4dSfdWOXaR3A6J94UnCMwZrn2udbZ8ZrNEv/FL/9yTv5wnCpLbOxy7dGczutjJA0okyzXfsS+e0pvj7nBaUGTdrgeTMgwcrn2CE7P+Rvdc/CmUivXnlzTvF5KvbiQub42Z5PsplELmxurXDuWQ7CWa4/Xij0dYstT/5fKtdPLYhi5XPvTqlzl2v9gprSlUq5dMP7PjutO3/Db1W/hX7UUUzfzXq6dLm7GQwnyx1W5SpDf1k82UY9y7R+XJ2ert1cN2zwmf0qtv/pX4L1cOz1G8IDVH5xYnTFszDV2ufbDbGHsPxH+Yonw06sJGUyEX1SNS4S/frXSEOHvOa225vnE1r4b1w2+fPic5z0eT5vzHCOhZrlXNS7N8nbVDCLCn3XpUezZi7V85wcdst03Vr3D6CL8rpyogHZjMnMH/Q7+8CfCX35S1Hb7sDz/7HOrR0YNcuhjMiL8NThdZ2sc1xlchP/qwy45Qe9CAhcMvZjxaFDaTiOL8GNRhlVFHUQZg4nwP5SmrLzS2NdrSs/4cLOG1WeZgAi/Kyc49asZUIR/5xOLzrm53fy3Hdp9vFX9P1+YgJwFRKgGJ0KgTxN52xG2vE3s1aTpj855XutuOWVeXvaCWhjHGjvEF69UgBGdmbNZsODcpmCLRF5wP6GFARBXKRMGxYAcDla5VkbrpeVAr7DI+rZM1YNCRl25fQ3Fgo0QX4kILrrQ8L0I8B3HTJP0PFhVteC1wFUCC/TUaYzUe+OOtX5ZFl3G36mylFrTtli1u2gpFD0wlrTYPEBvPUSvjghVjxhu1uqXQlXAu69UNkglQ+eXG+/MyP5+dr7fhhoBzf/ulEHVUizvg92IOCGFX+dd9hd8/wWc33+G0ZMlbcvUI1GCryxXSuVRHNo2TT7Osc+SVfLJbBIe33H9WlpbJR/AbKtaS2k4YxynM4abRvoj0GfHwi0oTqkBw5ckCq6durh3BlNWMLOIbSZs0TkqRqmSNhO27KweqtJgv6Cz1Qed7Hd3Gd/TK+P1ns2dYytTl/Qs4QdEapIUiPqXBabScFYcp7OkJtFz4KP0ylarFSx0xyWoBqo5etDxOW5n+nU76j9+c9WtvSzNnpRkqlxCd8x2JwI5POp5kaEL1UK8YameWSoRyTmyrYTHs7x2vXbxz/Q5s1yQ+3mCUae9EIDZJADXEQDA0KJXJkoOZewiEx3Kfd/4d8om35zurZ3al+s11qiHfSEACVwA9BikTTSP/o/xceiFuQ3Gx2lqz8XH+cDMLHnm4/i2DZvyzKJr0IbesoEXV5//wwT4OI3tuXY369ibAKlg3LhxBuDjjOow5sf8OauDlu/xvpIuzn9iEnycapzesTYF7xiEj7PEYf4zRd4y7x1b+33zTDhRxST4OGU4nfPBOPmSCfFxok533nU0uJFnlveDCrWyyj4xKT7Ov9W4nHfP6MmuCfFxnHJW93qW19Mv5cyXWjt8zjUwMh/nT07PXTC650qVj1Otw8EdK5TjAyY/XbOobdmpk02Cj4PlEKx8nA/aPPXY/wU+jn9jzW93h9f0/m3IpVZZVZIeG5mPE2vPxcfpaW8YPk7lO+Nk6munvFa9HO4ya5/rMt75OPS5OQ8ckyH2XBwTiX1p8XHOpS7u6e62JWTTi3YPzl2/eo53Pg49RvCAVU9OrEIMm4cam49znC2MDT0obyoPXS/adSBM8c/93tT9KuuuCfDspJ9KEh/DPGGqx/ZFAx+5Oh6eHtPu5iS54qdMhRKomTcIfgJaKmfPwaNXMkaGZLXL8471cDjD+n7MnZzCRkb7s4wEISys8FEsRKukn3vSsVVqn4bg07SEwlz2IviPdv4zxlm8s4XdCZtImQI4TCYNAHF9OPk4zK24K0+wudI+P9XHzuOCaEWbewc3n0z0oalgoB1YGY/uCJ8JrHAT5ZAVMRgwDl/xpeRBPyRfDCUPXbODMixecgcZ2SiyRG6uF4H6STbUv0/curqKm5n3zj4OizPiQ9YUefrSqvSR1/nEJv30Hk8nNovZb7g8ct6W7pFTbB5Jn5Oa8Czwo9+CofbqxdOa9aWuifpC8oyGmZGxTi/xG4RqMOrj9S4T1DDlxWq1xSgVUijHCCmB0djfYemwRjJIrVMOQj8iWT5YGTVEJtXehHp15nIufl3X3WoXsaBtJQBmWRSpD4qq21dCyC9BiOA8DiG/BP/R5ZdCJ97qEnniqeeEM9tTLF6F5dHll8b3XDHmRnwf/7Tc9EUP02Z0Ie3kYdRiyzPRPxghz8TmaWuoHkC4EV0goLXT1hVl8v1+88gYvHby8TYl8Rb/u2HAr62hX5eiUp7ZoAs1qWSUwpPWsL5jfzX4DnGDCgJGwe9YqEl294gYhVCJYvOVnW9BbwMJkSZBhU5czX8X/nj762nR8uibhxKc7NI5XWYuwp+E0DomDKXhNCGn0+wN6zQyBJsFi/CACm8Zo+33mG/IPsqW7NXzIUpfy+PUMhXGugMfQQmYSF/dGD7izDx5tnhbhU3fR/3T14XuK/OQBI1koEIrYCGgbXbBT3VnDlfuRWp9FXO44nJqBU6nlq3E0PriLKBANHYZrs+CBI8uk8LZ0M1gpGOW6cCu8s4odSPiUq4XotK9Z3OsiRND+mm2Ib3rvdth5orzfsv3HCg7ZmfdSVSubGSMPFojhHVlqcM6HK/Yalo7hkVHw6mIRKEgyq/KYeE8KN7thgSYXnCQ7RUQ+ZKudHvQMmrCNKebN6oYXjOx4HOJS1TbYNV3Qd9UwxdGftGhv797/Gfsz+LZ/1TtOihrK1U5xYzlKxaZEtKLrpeUeA+wcoBYpXmhuB9ggl/RVj/WGO5BJdYqkLh0HFDtJ7uFcaEbY8o/bWF99jxjSTlaN2BK2p/ANzfj/OafDVtgmmU5GWuBeuyxWUOdIS7pqQPrq9ZUTLLynVzu9r/PFD2oa1CYSpGh4H9ZkQv+h8aBn8EQK2mhbrxHQLYz+CZIj9Ar7hYzUpR0Nd+VCAW5nogBZoAr1iGIAeYM2wCjt56Pi9Z7pa/ns/+lyqzDyIv+2/OnhY1Y0EBYSM/HrqeFV9djWwNWVFpoP2Gt4l4hPZ8jiZtunO5wISBdfv1pWlRAi0J6PkfuDZ7Td4kqaM/id5b1RrS6VUjP5/3dtat3qYZ6zg+0ia42wO54IT0fROVfUtsQUfmXLNSLqPxrQZgmWbYP3DO6dmj62APJ9zo9tgYmS8L0fM+fyfE+fwRumx6829WlzThgsiJM1+cuyNj1MsJz8eqVC/uMbPszMFkTJosGd3seudo7aOfIuZqE5N0iYKpAmDqOrdBMuu8Xn5QLZ2SNN9/fC0w2hOlRmfC1XyMeBW5veHXh0K1VvYCpIonGz5bdB4cN81z8vU+PiL+2/gZMtoTJ9WgP+w+TrnivuHW1x5w9Ej9gqkSYyow0DykrFPgsy2+Q/3D2sZXAVJkwlW3vF330H3fP/X/UtJkwotkkYLIjTDtHVuiQef6O1/ajYSuXPWg1AJiqEKaxbqH7I375GpCVcuttt0p75wJTVcKUGFhLXmbn8aCDV3s8sv34VwVgqiZglYGyJ0zbN//ZTKACD3y0y3Hak+hrwFSdMA0e8bRs0uv8gFl31n8coXq6G5gcCNO4hBq/Ln4ywX9TmShNxqckd2CqQZhmjz9Soeu7vLBllxb/NMu56ShgqkmYfHacE5i96Bg22f214+G83AbA5EiYfFOfXZ/yZVPgWE8fdfvcpdDLtQiTx9UF+bUffg3ZKV6eFPhTeagrVZswVW+w8Z6ojNp3p6+qyl672lHA5ESYnJ33vl6y+R/Rby8ez/9lSkU5MNUhTJ1TLisTfRt5bh/1dOzNXguhQKiQMNUbt6PPpx8OYQd/vfVhqmvgYoZQVV0Bi1BVh0crh7Vau9Zzz8wN15bvfZ/Og1DVWbYQVS16z+bFx06Jl27MH3Gm1kjqZ5mLh8crlFLE6Qu2BLgRcYeQPC+LlalTx4KEGAQhogKgjsct6AEK+WrMWTVh0FU33FksOF39BIyviJ3DcJAeb6+uXwHNgtOo+Iug6+9Vjgo906FL0LqTT6/N95syg8fDqDxvEMKVvZMQIClq3nmysVhwoLpeOXGbCBloGhjvSSqDJY6Uajl2/AS8n1yBTZ3IdiKUqOCJa2WsPAqJ4unHcTU6WC4MnBNwYuPC0RXnU+nj2s9h0scLTLyXpnHBWgwHXOurm0QmxzzqqGcm50p0NGmBuzQxEo0wVjJEJgQJiLaENTvPXNBo0tXJnYd6r734245Lj7r3pjENiccimIakhW/vVXIlGrsPyntpblhjZ7DN9QSuLnkoiiT8yehAIsFanBhUp22lg0FTLfZaB/r3pc4Ui3UEiwewtnOCBZo6Mf6cYxt//lNuKJZyAz1DN5hyQ20HLuWGb/qNlToqN2hetJk39cF1z3W3Bl345dms6TwOlvQIxINyg6MD10H3yg4GUW6oF2G3O7PxatGS23+1N7vffrnRlRvMOVH5ZpwxUQeWqeGUG9zO3b94Lf2MeIGy8eqyR1ZtMhnlhjfVuVz32FTTGZ6VG8Ysi7vzdvEAvzWrO/ed8fjaWSMrN2BRhvXoPYgyBlNumNPs1k/W7sdDMltUvug5pyGVFG0c5QZzTnC+VTegcsOP7jk/en/b7jPff/lgy2X/UCUcjafcgPVpVoQea/O282x526klkuBvHar7jctwMn9SP/kANRsNBjmaMNInWPeFA29tMVxYTYDMhMEMMRr8CvKuJCHAVqXBNQpAsCXaK8y9iNRtlE6JE339Ev3ezCyatOhRFrdyHaIsLiNV8gQeeOWk37IC9gKFMEAfUHgeP9dnoJvncqeAGp2vBF2h7SbBuxEHFLDLRWVK9PjHQ81b2zoE+4rRCIVNxYJydfTiHTtgAJHtwkUqV4HmC+zowVbdYv7Ek5deh06fO1r575jGnand0oe8mdktC0xFARag8H/cP79N0CzFqcCeY85U4wGwL05cgIEWZZQkCh8z4N+0ErD9MOWwLDh8aY35kmvMObbofnqX957ZbRs+/SfBtrIdJmQCnCEeHq+SaWnPWFLr5R3p8kvjkiXANNcee/0j36dfV98DzjfnfBrT1oMH1/7D6dqbRnItKj+e/bNeqVaF4ELxHOnMTjPWr+0w8+fALM2TrNEDhZ70DT/EoSr8Ku9rd25ETMpGkUqy3bAuRgyMF9gGRu+86jeHtdvmmdW7n8P0HvupZZWqQvKrBi59wpPMMsitl+lRMb65SBkLIMcpuNhjpAWPwSaHBYXiIalUtxGRtm1X9Asz3IH8K12zEdD4NTUA6I+8EQXkB4DGH12jpPwUr+BCoMDlBlgGCWYbyjihC1n8HKCHCyDB/+ExTQ1Xo5WJMhb1krW9lRXrCTNCtq5t9YdEPJ56iL18D4x0wIwxxPWiYoz3ovPxG49YeW512DZryC9L65QwxswGMKsgzGbeiJLpaY0xmEu6JNywkPu1q1tRyji1LCoBax4YJwpN01v74Oacz37BS8b2mPfs/qQl1BMZBc9lTn8pRt6plM0I2PqgYLvuisFGhISLbCHhTMX6b1q0VYZMev0iyO3KGDHlu9lEyDAOozA0QaFAxAK2hNmVvA8SYbE2K48bJlHIpXgjT5RrYoRKME1R6R4J6Lv0HO/J8ALVrOuxPWexoBNE1xq1+ZYO0G1U4r5vH4Dx8OCqq0yNEbExxJAAXFh/Zs7z/HI+27p07r/73Mld1PQZexAzfcYvF9Wd6ayEkh5FA8h5QORWolIGWPnVvQZr+qwjco5a5FSUpgabFhK+1xsbT1nwaVLI+lt7ag9bL7GhHnMnGgh6S4dq5bsXQ7QacaJVq4ZRWOwW3ZLiZYVxqF+Is+MWBFJamcIN/o3azc+/P0xyB8lUNEoc/Clp4LbHBkjoWPAIMKlOwl2N9DJ9YCpJJymhXwe4Eb3gJYo2F94c6wV6LYQ5hGLYwlwB5+8STV+KhMJRPqzmtfRnPjnzb92bG7mlHW1jAn4rxMYEdrk0oGjECUUt7UB1iW2gMpmaf/RoyU/541Io+ffNgavk3zsHEvLLJg85nRvHD+RWg97nNdwcF7RwR6i4ztvsVzxALq/JBbmkJgn5Fd5YmbYk5AZgZSJIlCQrE0GiJFmZCBIlycpEkChJViaCREmyMhEkSpKViSBRkqzMod5BI/vX6xo4e/ewC8le+acZlDfYeJGtj06/5IHylsfm/3pBR11vbrHyXWsmHXj1cSWq/6vgi/0ihVIN00VsA4eZlJdn6W31fOWw3HEMrA+MPwCbUsJ5JkFD0G17n045LfIVGeCg/kjXrBxMFRNgXLuOPDECZuTdHfRau3bEd9swJQ0ldA3AA/zCzgu6fGtSskWnCj6T41/td13hNrEke22lu4x9EWCldiCG3ZcMcUIwrZYyN/y5sKqmpUQUxgqJ0sKfbj8I2hnp9fuX0c+3mX+pxyMtYmz30HcnM4b7Ziqn+k/xTjrMA0rdOVHydWAuPnDlac3CyX6FdTYMM7LLwakeyT1j3yqJ6bDljMuv30PHrk3/o07faYONuJ/r3oxoRMgNOXh4Wq7nfm4T7e4hhCiqkN4nHIEosQkJzjDP27fqBDwVZwZE/xp8oXqACexaQpD6c4LU3UG/fd2GPnL8m2uXqgqaDLaxyB6goq7/SDhxr4HPxNYeG5ocs5hK3UUkn8vcRdRaSgOdIE50vLS56B9sA+PTHqHBZs0/ieavOuu7IiygF3MhnjkSmrGAW5e6n6uluiUq9ZLcpx+w0HVvQFf2NwhMRyFsZ70RC1ACANsm/YY63bZpa2T7nsoTpgcvGHYnufnqMdTNKWtsP5ZlWKcYi4ri9BBXUiY4iNOHIVjhqDaWDlLz3fqNdRUxsGSgp7FD9dJxmvTlinr+m1JqXHrWa9Y2aiQSg3vRQBUyGTglgDBt4oRptZ6DXdFbaPS9ZqNtocFIg7URuIUmZOSObhg0RBy6yhaHRM5nm3cYfzs43XfFK02HGrXp69Cxknghvk6DWC9nS82d8fvI3R7sXIpEGCdLhJdkKnkUMUDqFJboh7s43hC1Ul7IrCOuns5iwb3aJ6DiNCInTwGoH6mtV6CqiG1D4Yu74HWQ33LN9BmzW43c679D/NOe20kRrakpEvYAZoqEXy6qz9HPuZWwz0Fm8l0Iz0ZUn4NqmNdq68UmscHfh0sk/XCZB7077OnmueKL+RbrH6Ig6u4ffj9z94+4XhQ+luu6XXph7R+8s0n9s5LAdfY84HOOEx/QfIzBMLDAiBvDcCA6Ceg/+lVRs+kmUQ2Sabicdv/zywFlTmwLntE2slPm8ZttqU7D72c6jbjO+5ot8MoeTq9sNimvvDxIekWv4csWC3jxMikRfJGOGTe9XcTwo7dDsu+5Palr1YK6KFM+BLuf6RjiOt+O8XQjwglcZmTMV1OaiwWXa+s3IXPUYoBNLBTyovC4U6bsq10f9vgd9CrTrGFUMnU51lyEPwAhKUQYSgORI5yIbK9NjuvX2Mb17LlBb3t39AiY9PabxuLIjTdUH+OfqDsZppN2hkEdwP9fe98B1kTy/h+VUxSxiygqwQpKs2DBlpCEXhQsZzk1QoBoIJgEEcuJYlfsKGLF3nvvZ2/n2XsD29n1PO/UO/U/syWwu7NLQpYk9/t/eR6fR3bYZPfzzrzvOzOf+bzClHhldDxIK+HZQrlWC9Ug9awYIvwbNvmgn9NGPS+zT+LXjeCJzqxD8EQZ7BcRmNWlM+O6kTvgtYlUAxdPwgR+4REm/EnQ9V+qTg3o0Px8yHZ5nwnuh07LqZ2PLbHRN5g5+EP63HSIoTeKoyFsgmFolMdqH070KLykCeWgFuQDafH1AVhGAf4/P6cUDg8fiUSUHs8tWlEFzmsxwBxRgEEd63T9YL5p9RtX9N7Ek9okfZuDh52rAXW4dq566TG/xYZ5+G7/C2cExyVpvWq2U74IrkxV3A6jCKEyHSkb0k5hIB8A4UkH7lTR5FQN8pN0ZQqux2IKgVPbDV24gQepIWV2KmrhBu5RzKmL0Jsk4wlCbxJ+E11vkq4XSdebLLKeJP1GhJ4km2+q46/UAJ9jjPytPHCt95kBqsB9tZoEhMnbZVDlb8XM0SEuVNxu4G93Pv5Ywls0s8TceW0H925h6poJGB1roDm9UewFSNBZXPcUQsiRDaSiiASf7bNjQ6XL+2RZN1K7Jg15FlkEkWA6SlHpK7edea4IXytI/BIbOK8BDyjN4URpcl2GBCAn2wWvtQATIwMAorPeqTEM/yhmDCOuF8eCN9ZjPqEWmlw9MKQIf3r7P+ZP6XI+ZvKnnTj9qdv//Clpn1bpR/eV+DlEunXfsb+7v+gu58Gf0mWaePAUHTg9RYti96dXf57a5lj/xJDdNVq2PfzoXhQP/pS+SMADSm6cKDkXpz+lx1CL+9MOnP7UTe9P71j9nIA+nPghs/mUqPk+Q5Ik3fVRFL/lakYkD1OCb5xTgr/0U4K7vJHZKpCQm4HMhtDA05PZmBp4JJkNoYFHktkQGngkmQ2hgUeS2RAaeCSZjZ6hMRhr0CsiuxhdPY8Hxto93oxsZ0YjF01HEiGqSBqZvufPsIkNm03osoU82OQ+m02y9zzsOeHxp6B9e3bu2zool3rO74fO8kSFilkbhc2xuYqFSfCOAhW6hIlqnQIXF4Ly3FwatnTdRcSjGOLt7KKiNWqVKhJGLHgx/8jnu040T7h8WFju+LeHwvZ2XyBLldoPZfOEtt20Cg0UACe/tqFUnTxABblasIoOFP6JUeqIdwcZBtzlyEtbRTMJWeaIsSjdSCZQ1gYOtK1EkDZBUi5MrolTJoYqYikB0A6/HAnrnRa8Xha/3lWdVPAq1QsvDmskWxtf+1RFDMTOGnhuUKfEn6oM+VSoAaWRpwQlxkDZLRLeEmXhRbj1UuASlquriJJM+IQAVlFVylUSqAVVIBDpNAp5gv53TJhYfw/RVR9YfVimq4DytFRH7/88xOXM2lxxOaM2GZcfWj3mdHlV610encJJ7E/XE/tzeQuT9gLzhUmEbi4ZJhG6uWSYROjmkmESoZtL5kK/Zn0dvfzMT6LxCa//+HeZ/6gCuVDnp+8rLcko55++afzJ3l0eJzOCK/T6yI5EF+PlIbjmsVnSSsu100WHzVaufbozV7n23s7FXa79nG532Joy0bIVwff2B835hTqfsky59gxnruK36c5WUHN6zpw5ZijXPvB0ZpO+v1YJ2Lph9Za0H//Osopy7amc1lFbg3XMUq797JvfSs6r4yTK+PZLsvxgTaq2iaXKtSs4jdPbGowjsGS59iZrXs+J3isNPtxljm3N0IPXrapcexdO4wVYxnjWWa69077fv+cELg5aUlbVsNSCtz9YuFx7B07LtbC45eBNxVaufXEF3yDh4RVBa55uH1PmTcd/rKJcO5ZDsJZrB46QyFMfseWp/6Vy7fSyGBYu137dmatc+xFmSlss5dodorbZKN3dAtb/nbvo4ve+w3gv104XN+OhBPlVZ64S5GeNk000oly7LvT4uLUp+yTbo5d3k49aV930IUzDiu4jeMDqCCdWu8zrcy1drv0xmxv7nwh/kUT46dWEzCbC7ynkEuGvICwOEf6d++5Ne/BlhDTnxgH/PudbleHxtDnPPhJqlrsLuTTL6wnNIsLfYnJYx0M7q0Ws8pk7YsSEClKLi/A7cqIC+o3VzB2MO/jDnwj/XM3TKmV2tgmY2r9Osq5mdaoYpiVF+G04TffFMpMHs4vwV+6oq1n2gE6yut/0DzO+PzplYRF+zMuwqqgDL2M2Ef57yxYNsq2+OOjgma4r25953cMKRPgdOcGpIDSjCP+sD83np5brELawWUhD59F/jbYCOQuIkA0nQl/0088nbHmbTNyk6fcOV8Vr7tdde3nxWyqDzA47xJekVoGIzszZbFlw9snfIlHm309oYQDENerkuHiQw8Eq1+pYo7Qc6BUWWZ+WqXpQoNFQbl9DmWAexFcugYsuNHwvAnwTmGmSkQerquU/FrhKYIGWm3f3bbXmVE7oRPm5RgsWLVhteu0uWgpFd4ymFpsH6GVC9JwlqHrEcLPWuBSqPD58YxRxGgU6v7w4s/49+wPPxbPm1hZPdT+8mHZCCrsRcUIKv8677C94/9Gc759i8WRJ3zONSJTgIyvVMcpoDm2bXhu+fI9vFSHO3Hzm0eGPoRWpfZX8AGZf1bcUhzESOI0RbRljMIpjG7Nj4RmSqNaB8CWPhmunrt4dwJQVzCwS3IXNOkTHqzUx7sLmHbSDNTrsF3S2WuZIQoy7/LN0Q7/Fu6r45FK35MvCL4jSpaoQ9S/zm4rDWD05jRVhFSMHfpRR2Wr1/IXuxGTNAC3HCPotq/JhB3X1wJXOA8dc3p9215SpsonmmOFNOHJ41PMiQxeqmWz9BCOzVMKTc2RbF0SKT5ouW0P21/QJe/Bszx6LTnshAMNJAG4iAICuxahMlAxl7CITlR+dDLXP7h4yp261nZXkj79Y9LAvBKA/FwDdI4Vkovn0P8bHoRfmNhsfx8GFi4+Tx8wseebj/PBO7NpLmBWU2eSXDfceOP1kBXycai5cu5vlXKyAVDBs2DAz8HEeLh4Z9zUlQTRvVau+1Za9eWoVfBwBp3X+skxItgAfZ/RxF0l8i/r++6tM+rWW98sAq+DjvBJyGSfPGowjsCQfJz1QO7/PwjOhCw43mvNg6JlNVsXHuclpvAsWT3atiI9jP29kXc+jN4KnlHo80Tdh8WsL83GOc1pun8UtV6x8nG07xHUXLfKK2LG918PMa8GJVsHHwXIIVj5Onj5PffZ/gY/TIe2yOsW/kWjHyJej7/Wad8rCfJwfXbj4OH4u5uHjtHNL/VAi8UZYWky3lv90WLGKdz4OfW7OA8ekuwsXxyTUpbj4OKd7v7syzv20NCvU47FdvWsJvPNx6D6CB6z8OLFqY95ZgqX5OL+zubHBh5VNleHrJLsPRaiePe79lrpT0iUZnp0M0MiT4pknTI3YvmggVWqT4Okx/W5Oqgd+ylQoh5p5cfAbkD2v3pidfT5/d4w43PP+35M8grNZn4+5k1OwkdH/ykYBFxZR8CgWolfSzz0Z2Cv1n4bg0zjBU/gOEviPdv4zobFMVavOKfsohQoYTBETBPz6UPLjMLPipnzOZkqHvAxpFd/fJDk+jw5vPp1C5YCU8EMbsDLu3RE2E5TDmyiHrIhgwDh8xZeSB/2QfBGUPAzNDkqwWMkbZGTxZIncI2IC9RdsqH8bt21FVU8bv119HLNXJYWtLPT0ZbniR97gE5v003s8ndgs4rjhssjeWnSLvGSzyNKZGcmvgj8FzB3soM2e7E5dsSrtD8kzOmZGxjq9xG8QakHUx+tdJmthyovVaotXq2KgHCOkBMZif4elwzp5nNagHIR+RLJ0qDp6kCJGfxPq0ZnLufh1Q3erXWUCFycAZkkUqQ+KqpdwQsgvQYjgPA4hvwT/0eWXwsfd7xh16qVo7LkdabbvI67S5ZfSe+SMup3UJzDryNL5T7OmdiTbycOoRZZnon8xQp6JzdJ2UD2AMCO6Ck6O84ySKTclm1zjP+69H93QFGvxvxsG7OoM7boQlfLMAEOoupNFCk/awfqO/bTgHRLj8h1G/u+Yqxnu7Rs5EqESxWarKv75ow0kRLpkDTpx3exeLm7BrXV++0fevlQ9obKQ02RlJPgnIbSOiYbiMJodp9FKmNdopAu2CZXgDhXeMko/7jHbkGOULdmrJyVKXysTtQoNxroDX0FxmEhbdX/0qXTptekhY7dsH7wiZ+A5uq3KhCXr5ANUegELAW2zC36rNzNceReu9VW0cMVl1L9rcRn1dS2G1hdnAQWisytwfRYkeHSZFM6ObgM9HbNMB3aVd0apJ+GXjogRle5FXlgXJ0L6K7aQ3uXRg4gyqgsBS/YeKjlqlwtVprBcVLwyVieEdWWpYR3GK7aa1k4RsbFwKiJXqYjyq0pYOA+Kd3siAaYXHGR7BES+ZCjdHvSMH2C/6eqHKobnLhM8MblEtT1WfReMTS18YDS/89SwF8syT4myh//mEOUZTi2IasPyioWmhPSi66YS7wFWpSBWWWIU9wNM8D8zi1JzssZwC6qxXoEuG39meYths/+Q7FixsOFy5S9yxpJyrGHAmDqewJu/rcn15k/MW2CaZTkZ64FG7LHZQZ0hLump+fUdRl94PdF/TvqbOqczWoRT+yW821zw3+GE/5Jl4GcwxEwt1I2PCMh2Bm+CtAi94m4RPYWpq/kehCs4IkIEmP4e2IAgAsxrtgBjtJ6Pq956xa/nU/2il9uS366LN94+1eDIm8xTBfR82vw1v38V8QDxQtVnyd/R3s8L6Pn4/nrl8sHaS8XTZ/f89PeJ3dcK6PloHl5dFHN0lXRfqdvn5+ZO/6GAns+Rr7Y3cvcdDDwc/XtY2K34twX0fBCVf0ltQ0TlX7JQL6Lyry3RtG55w1vl20cGTLZL2ORZzeF30FSWaGr7ceqwR8+PitN7Hf9y02ZhKdBUjmia0fmZy5UpL4O39Qz/+r7ThxOgyY5oqhvcaMeT2d/8M9o30X5daf8UNJUnmu5lja2yuE2ngJzggcdr1xZoQJM9CVR0u1HtW63yT98y+Kdrv64YDJoqEE3CvBVHl04qJ9u4o7Oy+S5pKmiqSDRNFtUr59ba2X/XtuvPSrin+oCmSkRT58yjx2r+czdwaxff0T1ajHQGTZWJpoP2n7KOKiaJpg63OV3RaT9UUqpCNMXFPxkoDKwUlPblacXAst3jQFNVomlNldy/mjaeLEqrlZs7/kwA/MBqRNP6LJ9FS3vcCt09JMd/x2PNMNBUXcAqA+VANH0+6TDizJG10uVZMxpm+h5tBZpqEE3yl227uvuG+GfVu1f18rywi6DJkWj6npR+3MXTV7pRUrbygQZxItBUk2hyr+p3qqNkld9Ue9syX39++hI01SKaLkyqsvN2tWi/KcuTfu00p3l30ORENJVq2jpCcHtk2HbvUi2rzNdAPcfaRFPmmi/nm/iWCjnUdtikXle3LgJNdcgO8Mvsb6ebO4ZvfbTnXu0bTiGgqS7RlHE6pEOlR+v9py8Kmlyt5asjoMmZaOryvnzjEBeNaLrX0chmHyR1QJOQaGq1fc+6slFBQYtWnSh9LLeMLUOoykXAIlTVrvbV6k+X2YeuzHK68aTXwWiE2zBWqOoNm4uqHrt3c/aJM7KFG/KGnas9Yil16iobmqRSxyBOX7AlwI2IO4TkeVmsTJ02ASTEwAkRFQANPG5Bd1DIR2POqokGQ3XDIbeo/inoXxE7h51BevyinnEFNPNPo+IPgny3/vemt9e9HhK+/kRNl5mS4BweD6PyvEEIV/a+1QMAxaDmnafdZII/6xmVE/tEKkDXwHhPMQpY4kitVWLHT8DzKVXY1InsJ0K5Bp64Vicoo9EK3RsdSw2uZRex73r5Rd0PjO9GpY/rv4dJH89v4r00jSvWYzjgeljPKjI55lFHIzM5D2KgxeSbSxcv1wkT5IMUQpCA6EtYs/PMvx0aNKR27QjJHMGVE107rOhIYxoSH4tgGpItfFuvkgfR2aUo62V5Yp2dwTY3EjgX8lAUSfhT0IFEgqWp0X1t1IOx0plTxT3eCPw7mH4EiwewXnCCBbo6EX/essWf/yk3FEm5gZ6hm025Iao+l3JDi/rFodzgseNEUvPXEwPXNanWfdTMeat5DJZ0D8SDckOX+lwH3QPqm0W5YcKoWcmbI3YHzG2T1n1/17sXLK7c0IETFdBvrJRlaj7lhjPrdCW2fejoN3vgpmvldxy4ZjXKDW6cpnO2jOnMrtzwolrNFxUm3Q9b43/y+alKs1wtrNyAeRnWo/fAy5hNuUHjO6T1+Eqp/pOUq5b/8rgGbQZpEeWGDpzgtKhvRuWG5D2zbwapzwaPWXds84UevR5aiXKDGydCYEwTeds7trztzAJ56Ne2NQLGrKpb5kX94Yeo2WgoyNGEUdJQwxcO/PTFcGE1ATITBjPEWPAryLtShQBbjQ7XKADOluivMPciUreRhkle0dYv0c/NzKLJFiPK4gY0IcriMlIlEbBA4ybGLStgD1AAA+TbtZZEB8/4+q80/UKNq//+2ZKWKUXBuxEHFLDLhWVKdP/HQ81bWROCfcXohMKmMkG7Jkbxjh0xgMh+4Rqj1IDuC9rRwbbzlchSB6+VFk3cu8S/yxolteJnWSl5M3NY5jcVBtjAWpva1H3oJF3tIJQ36X1DyQNgzTgBAz3KIkkUHjPg37QQsP0w5bBsOWxph9mSw6tOPX785KxLw6Xb4q73O6p9nV0FEzIBxpANTdIo9LRnLKkV+0W5/uhmWgJML4vZuXXl/qd+D5yYPtHtwsPJP/Jg2jqcpq1qIdOi8uMZnYxKtcqHFvDnaHbui6nlBkR89N88r96H2Y+6OdM3/BCHqvCrvK/deRI+aQuKVLLFExtiRGB8zxYY/a7WuDek9XbRxt59Had0P0gtq1QNkl91cOkTnmRWQG69woiK8V4SdQKAHKfgYh8Tk/8x2OQwv1A8JJUaFBHp23aFPzDDHMi/MjQbAZ1/XQMA+u9+iALy/UHnX9jAVH6KOLQAKHC5AZZBgtmGOlHoShY/B+jhAkjwf7hP08LVaHWKgkW9ZMBdr1tPMtdJt3f3KjtQuUdB9THdMdIB08cQ1wvzMT9J+i/wyGsomqvL6Tq+f49dJvqYGQDmNRBmGz9EyfQsNwxmU5eEGxYwv351K1qdqFVEJ2PdA+NEIbFMHKC7VG/QVP9Vn5ruvvXymyP1REb+5zKnv5RG3qmU7gRsfVCw3fTAYCNcwh9sLuFchfofmrVSh43/422I55VRMsq72UcqMA6jMDxZpUL4AraE2YO8DxJhsT6rTBwiVylj8E6eotTFC9VgmqIx3BPQd+k5npNhBWqzocf2GssEGoiuHWrzbSlAt4/JY98hCOPhwVVXhRYjYmOIIQHIuzdy08vKt8VpvW+s+D664TFq+ox9EDN9xi8XNpzprARTj6IB5JIgcstQKQOs/BrbgDV9NhA5Jz1yGkpXg10LCd+ic2MG/23zJHDNoDqKxC61N1CPuRMdBL2lQ23lexRDtPpwohXZwCIsdtuuqUmKgjjUL8DZ8QwBKa1C5Qn/RusZENgPJrlxCg2NEgd/THXcDliAhIYFHwEm1am4qZFWpgcmUwaJiXbt70mMgnco2lxnL2wUGLUQ5hiOYQtzBZy/S3T9GCQUpUY3uTD89OGAdQcrTQuaOYrmL7C3QmxMYJeLA4o+nFBE6gPVB7ZAZTU1/+jekp/yx8VQ8q9FA66Sf031kP9p9ZDTuXH8QC7s+E9Y5eYzpRkOm90r7I9cxgPkSxpyQT6vIQn5R95YmRVJyM3AykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZn2yqfWgz4lTAin41Ssg7P/uVQXmDnRddm5FGv+SB8vYXm/3rhRz3uLe1nP9qm5gB159Xotq/Kr7YL1GptTBdxDZwmEl5aZbRVs9fCcsdx8P6wPgHYFNKOM8kaAiGbe/TKaeFPiIDHNQfGZqVg6nierg/cBN5YgTMyKcYt83vhO+2YUoaamgagAf4hZ0X1KT3mzt37lcO3Lxw6Pda4+/4m7LXVrzL2BcBVmvrE2H3HUOcEEyrs5kb/lxYVddTIgpihT5S4+q++fGnhsEzex7Jq/VSq+ORFjG6W/jH06uG+q9VTwqc6Jd6lAeUpnCiNKI+c/GBK09z70yOK2ywYZiRQw5O9UjuGftWiX/v6BVl/gmULbT1mTxGMTrVgvu53u5EJ0JuyMHD00uM3M9tot89hBBFF9D7hBGI4pvQKwFDmkScLhkh23ArcVLjs6/PWMGuJQQpkxOkKUbu6zaUKvE31y9V5XcZbGOR3UE5Dlba2jV4ErqgkuM/OQP+rkXdRSQ/l7mLqG8pDnRGc6KTot/T/ZstML7sHh5q4/VZkrn8vH9ORFAv5kI8MxLasIDrQt3P1VPdUtRGSe7TD1gYujdgKPsbOKYvELbzfogFKAGA7bFxoc6wbdpX5Wrtm5i9JHjn2vIpT9++aE1d7MT2Y1nCOqWxMC9Od3GmMsGBn/4EweqM6mNLQWr+xrhYVwEDSwFGGjtUO0ecv/4sdUHguvEJO373+Zta9K+sDNyLBqpAk5lTAgjTY06YbhsZ7ArfQqPvNVtsCw16GqyPwC00ISN39MSgIfzQJzY/JGl83qtt+oPQpf4573Vta9ahr0MnyJOE+DoNYr2cLTVvjN9H7vZg51LkwkRFCryk0CijiQBpGIuEdriL4wlRK+UFmg3EVdRYJqjpdgoqTiNy8jSA+mdXoxxVBWwbCl/cBY+DfMtmB174qsqOD9j8wXlo0LZrjakpEvYBzBQJv1zYmKOfczNxzEFmcg0IzwbUmINqmPZuRrFJ7PHn4RJJD0/t1/Zblw7B65//OKb1q5vUSQrxuszdP+J6oQfb23496ZZaJ3TT5ujX/46r3oMHfEpx4gO6jyUYBrYYcWMIDkR7Af3HuCpq9l3lmjiFjstop0seHt3yl17i2SeHf2/48Rfq0brS+P1MoxHXeV+zBVZ568pllSdWZZV3h0mrGBW+KmIOL0kRQzhfdM2FwVFBCv/+QaPDxfN71Fpwj2qYMOx+pmGI63wbRuRJuBO4zMiYr6Z5yQS2bsZNyJz0GGATC5WyMDzm9e3yjzS0Q/gy4fLay/4a258mKYR/AEJSiGgoDkQ+u3Ih8sKVjOuf2eL6llkhf/Zu5xs0/s+vOttjtz9QbYx/o+FkmPb6GQY1gAtT4pXR8SCthGcL5VotVIPUs2KI8G/Y5IN+Thv1vMw+iV83gid6ypXgiTLYLyIwq9vLjOtG7oDXJlINXDwJE/iFR5jwJ0G++F9zPqTk/fs1eM38x665fzenkufKsCU2+gYzB39InzsBMfRGcTSETTAMjfJY7cOJHoWXNKEc1IJ8IC2+PgDLKMD/5+eUwuHhI9EyL7R4btGKKnBeiwHmiAIM6ljv1Q/mL1a/cUXvTTypTdK3OXjYucpy5dq5mqHH/B82zMN3+184IzguSetVs53yRXBlquJ2GEUIlelI2ZB2CgP5AAhPOnCniianapjeJE2ZguuxmELg1HZDF27gQWoYoaeiFm7gHsVZN4TeJBlPEHqT8JvoepN0vUi63mSR9STpNyL0JNl8Ux1/pQb4HGPkb9fJfr0wesvzwFmvt/2j2R4zmyp/K2aODnGh4nYzzkRVKvlkSeCm2ydlzdNnmHpuUgBGx31oTm8UewESdK66nUIIObKBVBSR4OSJY0R5G53F8w7PmjPcdm2rIogE01Ha/aHG8t/HvfA/vHbP3+VXHjOVcABROsuJ0hE3hgQgJ9sFr7UAEyNDVJRprHdqDMM/ihnDiOvFseCN9ZhPqIUmVw8MKcKf/vsf86d0OR8z+dNkTn/a73/+lLTP/N6KyEc2G0Qr7vZ7c77rkp08+FO6TBMPnkLL6SmUxe5PD+546ruvVvfg2aF5G9OWDnzFgz+lLxLwgFI/TpS6Fac/pcdQi/tTLac/7af3p1+tfk5AH078kNl8StR8nyFJku76KIrfcjUjkocpQUs3rimBux7yb7yR2SqQkJuBzIbQwCNdPUIDjySzITTwSDIbQgOPJLMhNPBIMhtCA48ks9EzNAZjDXpFZBejq+fxwFj7zpuR7cxo5KLpSCJEFUkj0/f8GTaxYbMJXbaQB5tAgyBtkr3nYc8Jjz8F7duzc9/WQbnUc34/dJYnKlTM2ihsjs1VLEyCdxSo0CVMVOsUuLgQlOfm0rCl6y4iHsUQb2cXFa1Rq1SRMGLBi/lHPt91onnChU7zM6v1HhmQWXJ8taBZrmfYPKFtN61CAwXAya9tKFUnD1BBrhasogOFf2KUOuLdQYYBdzny0lbRTEKWOWIsSjeSCRY2Bg60rUSQNkFSLkyuiVMmhipiKQHQDr8cCeudFrxeFr/eVZ1U8CrVC3cPbiRrsaDxqYoYiJ018NygTok/VRnyqVADSiNPCUqMgbJbJLwlysKLcOulwCUsV1cRJZnwCQGsoqqUqyRQC6pAINJpFPIE/e+YMLH+HqKrlmDrqlYTlukqoDwt1dH7Pw9x+Vxjrrh8rDEZl0taPeZ0eVXrXR79hZPYv1dP7C/FhrnRYdJeYL4widDNJcMkQjeXDJMI3VwyTCJ0c8lcaGzLeQurPpohXZ3WfkPM2D+OFciFbqzvfnDAb/XCl6elyLpcTVnDCK7Q6yM7El2Ml4fgasNmSSst104XHTZbufYTTbjKtc9kSsnwXK79qm7f4I/SPMnhKXOnPHvq8s4KyrUfa8JV/HavZQQzqDWnp06daoZy7U/+yKhcLny63+64oC07dKnU1UJLlWvfzGmdldZgHbOUa4+uXOd7h5B2kunX2wQfaxNKXWG2VLn2BZzGmWkNxhFYslx75WulXva8Pyh4XkTrdpUPdy9jVeXaJ3Aab6QVCQVZvFz7tHoTPcZIK/rvr3Llz/67FCMsXK5dy2k5pcUtB28qtnLtZT7vnhN7Xy1ePir7k3DZ549WUa4dyyFYy7XP1Is9/cCWp/6XyrXTy2JYuFx7+aZc5dr/Yqa0xVKufWDU3UHh85cGLFb+9HzZT7tocpA8lGuni5vxUIK8XFOuEuSCpsVVrv3lAXHJf/0uhW240G9El6lvTvJerp3uI3jA6q8mXFi9Mq/PtXS59tJsbux/IvxFEuGnVxMymwh/TFMuEX5p0+IQ4X/5Z+Keg68dgxa82fltlnudejyeNufZR0LN8gFNuTTLf2T6yOIQ4a8wdnNa0M6W4Ztqlb/w5VFAlsVF+MM5UQH9xmrmDsYd/OFPhL/qHMdNQbGlJHs6Vu7Vq9aXilYjwu/LaTpvy5jO7CL8v9548G/i1jai6aO7Rm5fV74ibafT3CL8mJdhVVEHXsZsIvwZBxw/J/8yVzxDlPUt1/1ODSsQ4Q/nBEfa1Iwi/Hc3eF4YW3+53/LyOz4eW1N3uhXIWUCEfDkRAmOayNvKsOVtMnGTpt87XBWvuV937eXFb1tQdQSwQ3xJahWI6MyczZYFZ5/8LRJl/v2EFgZAXKNOjosHORyscq2ONUrLgV5hkfVpmaoHBRoN5fY1lAl+hfjKJXDRhYbvRYDvcmaaZOTBqmr5jwWuElggX33o+8vSytW6S+dOa79glX8vqp5KkWp30VIoumM0tdg8QO8cRM9ZgqpHDDdrjUuhyuPDN0YRp1Gg88ugKqX9yvq2C8u6n91i0/X1j2knpLAbESek8Ou8y/6C99/N+f4bLZ4s6XumEYkSfGSlOkYZzaFtE97ucbnzvzz0m/+1qSb330gVta+SH8Dsq/qW4jDGck5jzLeO9EdgzI6FZ0iiWgfClzwarp26encAU1Yws0hwFzbrEB2v1sS4C5t30A7W6LBf0NmqqNPSq38JjwWMdeyy8+v6mVRuR1n4BVG6VBWi/mV+U3EYazqnscZZxciBH2VUtlo9f6E7MVkzQMsxgtbtFPWcOrFM6Mz71aoHXR/z2JSpsonmmOFNOHJ41PMiQxeqmWz9QSOzVMKTc2RbpZRf6+95Pjxwvaq0eFMj560WnfZCALaSANxEAABdi1GZKBnK2EUmbuZ+Dm2gbi8+MGnStmYvg8dZ9LAvBGAuFwDdJ+oTTdv/GB+HXpjbbHycUHcuPo6je3HzcUbEDYr+2T43bN6OzInXq6b3twI+TrA71+6myN0KSAVakNIXPx/nXo9fp63uMiw4c2+6yz3bm2Wtgo/TitM67tZgHbPwcZLSN9famnbef96dng9XfUk/aRV8nHqcxnG0BuMILMnHya1179v95XbhK3Mj1n3ZM+WIVfFxKnAaz8YyxrNOPs7EUktdA0v8LJm39Kp72vWHfhbm43xpymW5d1YxTSk2Ps6EDz1vzLk2V7x2we5Hr8o2k1oFHwfLIVj5OMAREnlq2f8LfJwu78s3DnHRiKZ7HY1s9kFSx8J8nGnuXHycocyUtlj4OM1edd4zaOLLwC1Rn52bbrsVwDsfhz4354FjMtWdi2Myxr24+Dj28V6Jg1Z/kqRnB7e1qZl4hHc+Dt1H8IDVUE6sEs0bLS3NxynH5sYGH1Y2VYavk+w+FKF69rg3tRCbXZdkeHYyQCNPimeeMDVi+6KBVKlNgqfH9Ls5qR74KVOhHGrmxcFvQPa8Vtv3rCsbFRS0aNWJ0sdyy9iyPh9zJ6dgI6P/lY0CLiyi4FEsRK+kn3sysFfqPw3BpwmDwlwOEviPdv5zYGPZX6Gup+yjFCpgMEVMEPDrQ8mPw8yKm9KOzZQOeRnSKr6/SXJ8Hh3efDqFGmdL+KENWBn37gibCcrhTZRDVkQwYBy+4kvJg35IvghKHoZmByVYrOQNMrLFbkSJ3CNiAvXybKh/G7dtRVVPG79dfRyzVyWFrSz09GW54kfe4BOb9NN7PJ3YLOK44bLI24Z0i9izWWTpzIzkV8GfAuYOdtBmT3b/ibom6g/JMzpmRsY6vcRvEGpB1MfrXSZrYcqL1WqLV6tioBwjpATGYn+HpcM6eZzWoByEfkSydKg6epAiRn8T6tGZy7n4dUN3q11lgh6NAJglUaQ+KKreuhFCfglCBOdxCPkl+I8uvxQ+7n7HqFMvRWPP7UizfR9xlS6/lN4jZ9TtpD6BWUeWzn+aNbUj2U4eRi2yPBP9ixHyTGyWtoPqAYQZ0ZoP7rsPqKpqQuc8HfIlqeKF86ZYi//dMGDXbtCuC1EpzwwwhEIaWaTwpB2s79hPC94hMS7fYeT/jrma4d6+kSMRKlFstqrinz/aQEKkS9agE9fBcYc+LOy8OTAr9ajgxrqEJZwmKyPBPwmhdUw0FIfRxJxGa21eo5Eu2CZUgjtUeMso/bjHbEOOUbZkr56UKH2tTNQqNBjrDnwFxWGiBdN3594YevOteNv+lK01W92dQLdVmbBknXyASi9gIaBtdsFv9WaGK+9Ctb6KGK64jOrBadT6jRhaX5wFFIjOrsD1WZDg0WVSODu6DfR0zDId2FXeGaWehF86IkZUuhd5YV2cCOkV2EJ6l0cPIsqoLgQs2Xuo5KhdLuOpXNmoeGWsTgjrylLDOoxXbDWtnSJiY+FURK5SEeVXlbBwHhTv9kQCTC84yPYIiHzJULo96BntYJrT1Q9VDM9dJnBqaCqPzB6rvgvGphY+MPJFI17eH7OlcaZkedbF8muGxR+kF3hBvmKhKSG96LqpxHuAVVuIVZYYxf0AE3yvhsaxxnALqrFegcTFbmhEiex1iyI2i1XdO/4kL81YUo41DBhTxxN484acbw56iRUsJ2M90Ig9NjuoM8QlPdUjWuYydJpENL1svxr3s+evo/ZLeLe54K/MCX8Zy8DPYIiZWqgbHxGQ7QzeBF20gFZxt4iewtTVfA/CFRwRIQJMfw9sQBABpiJbgDFaz8dVb73i1/OJdxoffn9m68CJBzJrpqxuVVDb8FPmufPvI5TS6Vf2TTjyRbClgJ5PH1mD3BJ9B4q2xB9uHHu3pWMBPZ+xSW9nNz1dPXzW9UlfAk4OaVVAz6dExJOV1eL2Sw5UuzxE2FDct4CeD6LyL6ltiKj8SxbqRVT+tSWaSi21n3lxVU7EgQP7xH65ufVAU1miaWlyyvA5G677zVgy/GsLxchaoKkc0bR9bUVRr4GDpYdfjzr/yfsb/EA7omnIEM/hSx6rRFkfBtdM+5peAzSVJ5o6/7z2uOM/ZaUZecMn/OKfkwya7Ikmz7cOl6dFHY2YdebOsqdxfjNAUwWiqZ/XsbDbNU+Hbty93rFZ0AMxaKpIGuXLipnbf7kVeKB56NpjuwfCx6hENJWv5z/Cc4+TdFOLMlu75fRzA02ViaYzS4SPvmVr/NNSNmf8PkL0E2iqQjTZ3vvzQC+72oFbI/w7uiV16wSaqhJNDh0+9tw/rmHIHP++I34dp9gMmqoRTSvTYl81O3hFdLhNv9ZBgaeqgqbqAlYZKAei6cHxbHHN+UtFB0v16PteF+0LmmoQTfapZfdXmFNZlu2x7Ilb7bOwAzgSTSEfFmhSms0KyOx2oPelN4nwu2qSVu65JySwVrJofKvwVZOz4rqBplpE08XsXoerSOeI9pQKudWu7rTpoMmJaNof0LBJ9XIrAhZnXs9cGe8hB021iabffr309H7N8MCcHy+Pi7dfshM01SGatg3KdBJOOSlbdjekp/LbuTzQVJdosrHr4l11/QjZjMu3BonfV7gDmpyJJv+WO7ydb8SE5axM7xp1wucmaBISTXkXPOT/vpkjHn334rF3FW+dYQhVuQhYhKriNj/xLd/zr4gDD5LPV477bM+DUFUlNhdVPXbv5uwTZ2QLN+QNO1d7xFLq1FU2NEmljkGcvmBLgBsRdwjJ87JYmTptAkiIgRMiKgAaeNyC7qCQj8acVRMNhuqGN5YJFnuegv4VsXPYGaTHEz2NK6CZfxoVfxDku/VMCOwRs7qi/7ijqw//NFl1g8fDqDxvEMKVvYUQoBjUvPO0m0wwy9OonNgnUgG6BsZ7ilHAEkdqrRI7fgKeT6nCpk5kPxHKNfDEtTpBGY1EsfebSuVr1XMImbWi+YOmU7fPpNLH9d/DpI/nN/FemsYV6zEccP3saRWZHPOoo5GZnAcx0GLyzaWLl+uECfJBCiFIQPQlrNl55mvqdg5wz+4k2Tb3nz5Tl1W8SWMaEh+LYBqSLXxbr5IH0dmlKOtleWKdncE2NxI4F/JQFEn4U9CBRIL1zq7jv+Nm+Ug2ry03IutS+RjTj2DxANZETrBAVyfiT2W2+PM/5YYiKTfQM3SzKTe89+RSbrhkXKw0ULkheXJJjeTgUfGEe67yq74fHvAYLOkeiAflhreeXAfdnxgXLIuq3FBtXKl6u+a0DTq8Kv7wuKNzqf3DEsoNdzhRuWSZmGgAy7SwBSb+lBvOfn1Wpf/4x2ErWxyZ6eF3tJ3VKDec4jTdQWtNZ3hWbki2r+r9surysEnrP2adrFzyi4WVGzAvw3r0/gkiSyku5YY6J7M2VtsiiNiTUfZj5TqfqAQhyyg33OEE55KnGZUbJpZxmrI+o3NEWtzwklJp55ZWotxwihOhg/q8rQpb3nZmgTz0a9saAWNW1S3zov7wQ9RsNBTkaMIoaajhCwd++mK4sJoAmQmDGWIs+BXkXalCgK1Gh2sUAGdL9FeYexGp20iDEif6+iX6uZlZNNliRFncJz5EWVxGqiSC9Ut9jFtWwB6gAAbIt2sQV2pi0vTL4ftGeoVW8p1GO7gbBe9GHFDALheWKdH9Hw81bx/5EOwrRicUNpUJbvkYxTt2xAAi+4VrjFIDui9oRwfbXj1sW0+63li05+7jx9OGCyZQh6WUvJk5LPObCgPs2bWYpuOy/pJkKGqnbq+nOsADYL9xAgZ6lEWSKDxmwL9pIWD7Ycph2XLY0g6zJYdXDVvpnhbWbn/Q3skz3/QoPcWzCiZkAowhG5qkUehpz1hSK/aLcv3RzbQEmGbas3U+/N5+2jBJZo7bm5dzckzVe4Om3c9p2q0WMi0qP57RyahUq3xoAX+OPtLo/PvOuNEPpYvPOw2M9vG7St/wQxyqwq/yvnbnSfikLShSyRZPbIgRgbEqW2D0u1rj3pDW20Ube/d1nNL9ILWsUjVIftXBpU94klkBufUKIyrGe0nUCQBynIKLfUxM/sdgk8P8QvGQVGpQRKRv2xX+wAxzIP/K0GwEdP5AbwD6736IAvL9Qef39TaVnyIOLQAKXG6AZZBgtqFOFLqSxc8BergAEvwf7tO0cDVanaJgUS/J05as+HmWd0T2wGM5iyWtqEX6SnfHSAdMH0NcL8zHKHKv5fQRrfAfl+SqGf81Mt1EHzMDwOwPYbbxQ5RMz3LDYDZ1SbhhAfPrV7ei1YlaRXQy1j0wThQSy3kTPb9JckTSXem5g+JnBt2hnsjI/1zm9JfSyDuV0p2ArQ8KtpseGGyES6jG5hLOVaj/oVkrddj4P96GeF4ZJaO8m32kAuMwCsOTVSqEL2BLmD3I+yARFuuzysQhcpUyBu/kKUpdvFANpikawz0BfZee4zkZVqA2G3psr7FMUAmia4fafFsK0P3iZerYdwjCeHhw1VWhxYjYGGJIAM713b45NU8QmPPwvTDd/1xbavqMfRAzfcYvFzac6awEU4+iwYPbELllqJQBVn618WZNnw1EzkmPnIbS1WDXQsIn6zxlW5W7ZUOmOL872jyjP1V4qzzRQdBbOtRWvkcxRAv0JA603nlZhMVu2zU1SVEQh/oFODueISClVag84d9oPQMC+8EkN06hoVHi4I+pjtsBC5DQsOAjwKQ6FTc10sr0wGTKIDHRrv09iVHwDkWb6+yFjQKjFsIcwzFsYa6A83eJrh+DhEI7LeLotWVdg8Y+63Ppw1sVjd+FvRViYwK7XBxQYF2cFQrQxYlAVZ0tUFlNzT+6t+Sn/HExlPy75MVV8u+MHnIHq4eczo3jB/JjJ+7KG453CFkx8NLDeUc+xvIAeYdmXJD7NCMhr8EbK7MiCbkZWJkIEiXJykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrs+wFn65vKm6RZDUqnTlm6t5kBuUNdl5k76PTL3mgvDmy2b9eyHGPe1vL+a+2iRlw/Xklqv2r4ov9EpVaC9NFbAOHmZSXZhlt9fyVsNxxPKwPjH8ANqWE80yChmDY9j6dclroIzLAQf2RoVk5mCoGQb92E3liBMzI3ZhZOdfatRO+24YpaaihaQAe4Bd2XlDd5rXGPpkzI2jaD4vCAprUSTRlr614l7EvAqwCyLD7jiFOCKbVbbyQeTgbVtX1lIiCWCFR+vefw32qd7sim7ti4IwDujFPeKRFjO4W/vH0qqH+a9WTAif6pR7lASU3TpRqeTEXH7jyNPfO5LjCBhuGGTnk4FSP5J6xb5UMOHIqt8WR7sGzRE/CBGtGKyy4n+vtTnQi5IYcPDzdwcu4NLaJfvcQQhRdQO8TRiCKb0LXiRWutn20MFc84cadFW/LxU+2gl1LCFILTpDcvIzb120oVeJvrl+qyu8y2MYih4M6PeLJ+4PHw8bOf/5Tqe+nN1F3EcnPZe4i6luKAx1nTnSq63PRmmyB8WX38FAbr8+SzOXn/XMignoxF+KZkdCGBVwX6n6unuqWojZKcp9+wMLQvQFD2d/AMWVB2M77IRagBAC2McaFOsO2aeOcBv7ldbeULE2U+nHr2ydnqYud2H4sS1inNBbmxekuzlQmOPDTcyFYnVF9bClIzacaF+sqYGApwEhjh2rmqNf7p3qVlU2KbuD2YsPe9lRPJAP3ooEq0GTmlADCNIYTpqFGBrvCt9Doe80W20KDngbrI3ALTcjIHT0xaAg/VIvND0kan/dqm/4gdKl/zntd25p16OvQCfIkIb5Og1gvZ0vNG+P3kbs92LkUuTBRkQIvKTTKaCJAGuSW6Ie7OJ4QtVJeoNlAXEWNZYLdLU9BxWlETp4GUJ/X0ihHVQHbhsIXd8HjIN/yQa9Dp+pdmChblzr8364n2zhQUyTsA5gpEn65sDFHP+dm4piDzOSdEJ4NqDEH1TDXtzSKTWKPPw+XSHrt5Ffyq/36SrI89kSsEi3fQN39w+9n7v4R1wvD58j0XbUTrs0LXzEw536z7A0XecAnhxMf0H0swTCwxYgbQ3Ag2gvoP8ZVUbPvKtfEKXRcRju49UralMhBkkUnB/lf2hAbTDUafj/TaMR13tdsgVUyOK2SblVWeXeYtIpR4asi5vCSFDGE80UapnXpbO2I+KsB03M23nnWaQ/1sF/pMOx+pmGI63wbRuRJuBO4zMiYr6Z5yQSrWho3IXPSY4BNLFTKwvBY3lu5Y9Cr22GLMmpMSsw6702TFMI/ACEpRDQUByLzOBGZ2JKM605scX3LrJA/e7fzDRr/51ed7bHbH6g2xr/RcDJMe/0MgxrAhSnxyuh4kFbCs4VyrRaqQepZMUT4N2zyQT+njXpeZp/ErxvBE1W0JHiiDPaLCMzqejDjupE74LWJVAMXT8IEfuERJvxJkC/+ouGIE/4DW/ovv7Nsblj3lbTOx5bY6BvMHPwhfS4aYuiN4mgIm2AYGuWx2ocTPQovaUI5qAX5QFp8fQCWUYD/z88phcPDRyIRpcdzi1ZUgfNaDDBHFGBQx7qHfjDXtvqNK3pv4kltkr7NwcPOVauWXDtXnnrM67BhHr7b/8IZwXFJWq+a7ZQvgitTFbfDKEKoTEfKhrRTGMgHQHjSgTtVNDlVg/wkXZmC67GYQuDUdkMXbuBBakjVnIpauIF7FPE+CL1JMp4g9CbhN9H1Jul6kXS9ySLrSdJvROhJsvmmOv5KDfA5xsjftnaM+nRRKvHbc/75Mt3Oa2qq/K2YOTrEhYrbDavsNaVi+SvSXUGqDUM1LQeYumYCRscIaE5vFHsBEnQ0PqcQQo5sIBVFJHjL0B3v784f7zd/yuNd51wOXimCSDAdJUWPyOAHa9tFTN909JD36Is7eEApnhOlvj4MCUBOtgteawEmRgYARGe9U2MY/lHMGEZcL44Fb6zHfEItNLl6YEgR/rTuf8yf0uV8zORPq3L6068t/+dPCfu8LLk+pvbIn6RZBz0/KQNsyvHgT+kyTTx4isqcnqJMsfvTM5JDW2p5TgpbPPFATM3F4qKIrtNRoi8S8IDS15ZcKH1oWYz+lB5DLe5PK3P606/6/NTZ6ucE9OHED5nNp0TN9xmSJOmuj6L4LVczInmYElzmnBKc1UMu5I3MVoGE3AxkNoQGHunqERp4JJkNoYFHktkQGngkmQ2hgUeS2RAaeCSZjZ6hMRhr0CsiuxhdPY8HxpoLb0a2M6ORi6YjiRBVJI1M3/Nn2MSGzSZ02UIebFKPzSbZex72nPD4U9C+PTv3bR2USz3n90NneaJCxayNwubYXMXCJHhHgQpdwkS1ToGLC0F5bi4NW7ruIuJRDPF2dlHRGrVKFQkjFryYf+TzXSeaJ/ytWcCWG4kjw2Y33vrQv/NDDzZPaNtNq9BAAXDyaxtK1ckDVJCrBavoQOGfGKWOeHeQYcBdjry0VTSTkGWOGIvSjWSCti2AA20rEaRNkJQLk2vilImhilhKALTDL0fCeqcFr5fFr3dVJxW8SvXC7yIayezbtDhVEQOxswaeG9Qp8acqQz4VakBp5ClBiTFQdouEt0RZeBFuvRS4hOXqKqIkEz4hgFVUlXKVBGpBFQhEOo1CnqD/HRMm1t9DdNX6Vh+W6SqgPC3V0fs/D3FZ2YIrLstbkHG5gdVjTpdXtd7l0X6cxP4eemJ/Q97CpL3AfGESoZtLhkmEbi4ZJhG6uWSYROjmkrlQ0w3DZ3daN0461md1yA9jPW4XyIVU92d1PFkhN3inyz13cfYaMSO4Qq+PVk6hifHyEFwbsVnSSsu100WHzVauPboVV7l2r1bFXa79WE3hyM3aM7K1s/zayBfWpp7stEy5dnkrruK3PVpZQc3pcePGmaFc+5oWM3T7l2aGb7uZPPpBVAx198VS5drDOK0jsQbrmKVce632mfYu4g9+E57N2V/iZsddVlGuvS2ncbyswTgCS5ZrPxp6VjmoVoh475R+fetXGkNV2rV0ufaGnMZzsozxrLNcu2TB6BpdquhkizP7nDxZPXSvhcu1V+a0XBmLWw7eVGzl2su973XcvuUg0WK7zNpnS26QWEW5diyHYC3XDhwhkac2ZstT/0vl2ullMSxcrn1dK65y7XOYKW2xlGv/O63Zo1H9vgVsnpX8e5/N2VTBRD7KtdPFzXgoQb6mFVcJ8sWtiqtc+z2HK6H+K/sEjO5wSChSXMrlvVw73UfwgNUcTqwmm9fnWrpcuyubG/ufCH+RRPjp1YTMJsJfsjWXCH8e03fyIMJf+pe/xjhX6hg0+9HE/TvvH3vK42lznn0k1CwXtObSLP+L6SOLQ4Tfy6fXvdfTe/ktlIRv3+i9l1oH3RIi/K9acaGSZ/EMtOCOk2VE+GvUTlDZRu6TLqhRI33ryn4LrEaE/yan6S5YxnRmF+Ev89Ft1KPAbL8VW2Yln/Zq+8bCIvyYl2FVUQdexmwi/I8vvkh3+fQgKNPNu7EsQtbUCkT4MWfDCk5eKzOK8A9dtn1eepMnklmN1m4u2WDnPSuQs4AI3eRE6IJ++unGlrfJxE2afu9wVbzmft21lxe/bUHVEcAO8SWpVSCiM3M2WxacffK3SJT59xNaGABxjTo5Lh7kcLDKtTrWKC0HeoVF1qdlqh4UaDSU29dQJhgEh6dcAhddaPheBPiKW5t6sKpa/mOBqwQWyFdvU75ryNHk+RF7dk6dfaBW6nHTa3fRUii6YzS12DxATwnRc5ag6hHDzdrWxhXCxodvjCJOo0Dnl4Pnda7afP7biM0OzTSjkmtTCzGXlmI3Ik5I4dd5l/0F79+N8/1DWls6WdL3TCMSJfjISnWMMppD2+b3vUfXrq011W9M90NvBOmfqXrgtuQHMPuqvqU4jCHmNEZryxiDURzbmB0Lz5BEtQ6EL3k0XDt19e4ApqxgZpHgLmzWITperYlxFzbvoB2s0WG/oLPV+g9HKrd/niRaGPTIb1vQUGo6VBZ+QZQuVYWof5nfVBzG8uA0Vn2rGDnwo4zKVqvnL3QnJmsGaDlGUI7P0PITE1767Y0KHZZhl/vWlKmyieaY4U04cnjU8yJDF6qZbH3v1sZlqYQn58i2xk91GfRmbKWw+Y0TRzrUy7pi0WkvBCCCBOAmAgDoWozKRMlQxi4y0SqtxvoN9Z6ErbkbWWXYttA6tFBm3sO+EICWXAB0b9SaTDSb/Mf4OPTC3Gbj47xozcXH2cXMLHnm49geHTJ6W/jY0PlDV/88SPtmjBXwcX5vzbW7ed8yTp9KKhg0aJAZ+DgpNWaualyrkmRb3V7Nf415ILQKPs5VTuuctQbrmIWP0+vb6xqxzyJDDq8ecD9j/IaPVsHHOcJpnF3WYByBJfk4JUdNim+fnuI31/tT0pHvXyOsio+zgdN4yyye7FoRH+dT8siMVkmxkvRas6d+6LW+loX5OFmclptmccsVKx/H41enRXNT1oZvXHnup5m/qN5aBR8HyyFY+Ti79Hlq0/8LfBz/lju8nW/EhOWsTO8adcLnpoX5OO5tuPg4Dm3Mw8eppfy+/LBfL+mm05ubTRNcrsM7H4c+N+eBY9KkDRfHRNimuPg4LjHVHIPfLg2bfOTqsjxp5RW883HoPoIHrBw4sSrf5v8rPo47mxsbfFjZVBm+TrL7UITq2ePeVOds1yUZnp0M0MiT4pknTI3YvmggVWqT4Okx/W5Oqgd+ylQoh5p5cfAb0IUPL3jI/30zRzz67sVj7yreOsP6fMydnIKNjP5XNgq4sIiCR7EQvZJ+7snAXqn/NASf5gU87ecggf9o5z/VjWW/PW9xyj5KoQIGU8QEAb8+lPw4zKy4KT3YTOmQlyGt4vubJMfn0eHNp1Oo1dFL+KENWBn37gibCcrhTZRDVkQwYBy+4kvJg35IvghKHoZmByVYrOQNMrL2ZIncI2ICdU821L+N27aiqqeN364+jtmrksJWFnr6slzxI2/wiU366T2eTmwWcdxwWSSjGd0iXmwWWTozI/lV8KeAuYMdtNmT3amaRqX9IXlGx8zIWKeX+A1CLYj6eL3LZC1MebFabfFqVQyUY4SUwFjs77B0WCeP0xqUg9CPSJYOVUcPUsTob0I9OnM5F79u6G61q0zwEYJZEkXqg6Lq15oh5JcgRHAeh5Bfgv/o8kvh4+53jDr1UjT23I402/cRV+nyS+k9ckbdTuoTmHVk6fynWVM7ku3kYdQiyzPRvxghz8RmaTuoHkCYEWmt/po/N26o7x02O/PQ8YfOe8NMsRb/u2HArh+gXReiUp4ZYAg9b2aRwpN2sL5jPy14h8S4fIeR/zvmaoZ7+0aORKhEsdmqin/+aAMJkS5Zg05cLzg+71QvtFforHVdzjx9Vrk+p8nKSPBPQmgdEw3FYbQHnEa7Zl6jkS7YJlSCO1R4yyj9uMdsQ45RtmSvnpQofa1M1Co0GOsOfAXFYaKPPHtFO3ttLBmye0bJPJcl4xvRbVUmLFknH6DSC1gIaJtd8Fu9meHKu1CtryKGKy6jnuM06i/NGFpfnAUUiM6uwPVZ0ARxmkwKZ0e3gZ6OWaYDu8o7o9ST8EtHxIhK9yIvrIsTId2bLaR3efQgoozqQsCSvYdKjtrlMp7KlY2KV8bqhLCuLDWsw3jFVtPaKSI2Fk5F5CoVUX5VCQvnQfFuTyTA9IKDbI+AyJcMpduDnnELlpjt6ocqhucuE+w1uTy9PVZ9F4xNLXxg5It2319/w5ojC8L3zqnQf+yy5Up6gRfkKxaaEtKLrptKvAdY3YBYZYlR3A8wwf+VWZSakzWGW1CN9QokLlPHTfxyPOcH2fZhPj4bPFxKM5aUYw0DxtTxBN78GOebg15iBcvJWA80Yo/NDuoMcUlPBXm+e3nwbrXg/avu32nx/sJEar+Ed5sL/s2c8K+0DPwMhpiphbrxEQHZzuBN0FIdtIq7RfQUpq7mexCu4IgIEWD6e2ADgggwzdgCjNF6Pq566xW/ns9tYbXdq7U20oNtn9iUan8ppICez4en5cIOZw8MXbirVxkH2X51AT2fcF34rZCwZSGr/xQlBwRnrCmg59O9anTeYNdzfjOjptyxOVsnrICez/322R/tOw+QHWr1ya6S12JFAT0fROVfUtsQUfmXLNSLqPxrSzQ1amnXrI9DTtCiH17nqLbH/AWayhJNz0vmNjixPUk258fo6x2P1vUDTeWIpsa1Xq2NapkasSQzZE6bwN9agiY7ounOxrXxtz0GinPkNy8NvXynJmgqTzTNKqs9Mf/xLvG2xGsO8XtXJ4Ame6Jp6pgOT7Pb3wqd5t8/+1/tvO6gqQLRdH2gS3RgLV3wgpTaTic0VW6BpookUHbj6vzxKsRvu9PeWntthN1AUyWiyfeO7eWqdknBa/yPSkbatDgEmioTTRW6+uR2dUj22zVmaP+Xw6f3Bk1ViKYWEen/vtg6RjJpb4vcK30a2IOmqkTTyWsXIvf98Nxv41ZR/W+tfzwNmqoRTT3KfXjv9DkoYNUgjxLDQ0Nbg6bqAlYZKAeiKeDQ8ZvtwsaFZe64mjku68Ye0FSDaEp4/6NTztrb0g1dfJycfce6gyZHokm5e1ngvKslxOM3uPY87zjjDWiqSTQN9VB1+SpzCdr+e7PaQ67YLwZNtYimYZNPXh0gl/jNEt38uOji4QGgyYlo2vssr2X2sn8Cp0+Ovjr47oDnoKk20dTMJn7rmi03xBkfHJ412Tb9PWiqQzSN/XHN9J/t2oUuUVVt2qxkX2ivukRT7OEz1d2PnBCN3n6yW4r7hDzQ5Ewif+JGeMZkUcCkL/fO7pMOnw+ahORdczteWra4hXh9qFvlaXV2VWAIVbkIWISq5uwRLuvtODF07d7aHVMlTod4EKpqzuaiqsfu3Zx94oxs4Ya8Yedqj1hKnbrKhiap1DGI0xdsCXAj4g4heV4WK1OnTQAJMXBCRAVAA49b0B0U8tGYs2qiwVDd8MYyga/vKehfETuHnUF63MDXuAKa+adR8QdBvtvINhN8c91WB02tMCzr0NJeZXk8jMrzBiFc2WsDAYpBzTtPu8kEnr5G5cQ+kQrQNTDeU4wCljhSa5XY8RPwfEoVNnUi+4lQroEnrtUJymi0hG3utjXXS22TjM1c8mZV7ME1VPq4/nuY9PH8Jt5L07hiPYYDrlq+VpHJMY86GpnJeRADLSbfXLp4uU6YIB+kEIIERF/Cmp1nHtm+fv2w7h8l03o8Gu8ZKv2HxjQkPhbBNCRb+LZeJQ+is0tR1svyxDo7g21uJHAu5KEokvCnoAOJBGtn16UOJ8d2lU67MrNL5pW/B5p+BIsHsBpwggW6OhF/WrDFn/8pNxRJuYGeoZtNuSHDl0u5IcG4WGmgcoPt+GvyMatcApaO3uOo2brZk8dgSfdAPCg3TPHlOug+2rhgWVTlht1/DL546c6l0NV9L94LnJxLKxNqAeWGFE5UEiwTEw1gmRa2wMSfcsMToSQ5bnht6cyWg8vfXfqCeurIksoN0Zym62mt6QzPyg25Le9P9/SJDp79T+9DD2v2sbGwcgPmZViP3o9GZCnFpdww8XXjbzunb5Ks93z6KuRzqUFWoNyQwglOgq8ZlRsm/lz6wHpHkXTi1jiPk3dfPbcS5YZoToR66vO2lmx525kF8tCvbWsEjFlVt8yL+sOpaxS2oSBHE0ZJQw1fOPDTF8OF1QTITBjMEGPBryDvShUCbDU6XKMAOFuiv8Lci0jdRhqUONHXL9HPzcyiyRYjyuKOFhNlcRmpkghYQC42blkBe4ACGKCPvi+OnRfxVCnaNy/57ABVqTzabhK8G3FAAbtcWKZE93881LwdJSbYV4xOKGwqEySLjeIdO2IAkf3CNUapAd0XtKOD7bgFVTUCzfnwFTeaZ7/0mPaAOiyl5M3MYZnfVBhgV/uWDZ+SZxuyynvZuPvO95vzANggTsBAj7JIEoXHDPg3LQRsP0w5LFsOW9phtuTwqi1LHn83YtW1wKnZwYcWzL7UvAomZAKMIRuapFHoac9YUiv2i3L90c20BJhm2nN9d9RNWj9PlO7y923l0+rteDBtD07ThlnItKj8eEYno1Kt8qEF/DnSmBtXDAxsFP6DeMGc2BOu8Vvq0jf8EIeq8Ku8r915Ej5pC4pUssUTG2JEYPRhC4x+V2vcG9J6u2hj776OU7ofpJZVqgbJrzq49AlPMisgt15hRMV4L4k6AUCOU3Cxj4nJ/xhscphfKB6SSg2KiPRtu8IfmGEO5F8Zmo2Azv+4HQD9dz9EAfn+oPNfb2cqP0UcWgAUuNwAyyDBbEOdKHQli58D9HABJPg/3Kdp4Wq0OkXBol5y13n49s0LSwfv/ePNnib+a6jqVaW7Y6QDpo8hrhfmY/aVzK0XcVMmmaB173TptmuOiT5mBoA5D8Js44comZ7lhsFs6pJwwwLm169uRasTtYroZKx7YJwotBOo+2n5siHbwsZ8mbnmt7c/X6CeyMj/XOb0l9LIO5XSnYCtDwq2mx4YbIRLaMXmEs5VqP+hWSt12Pg/3oZ4Xhklo7ybfaQC4zAKw5NVKoQvYEuYPcj7IBEW67PKxCFylTIG7+QpSl28UA2mKRrDPQF9l57jORlWoDYbemwPHj+G6NqhNt+WAnTnmjz2HYIwHh5cdVVoMSI2hhgSAO0X3ZYN96eEr7y79P3OkBFXqekz9kHM9Bm/XNhwprMSTD2KBpBbB5FbhkoZYOXXpe1Y02cDkXPSI6ehdDXYtZDw9f5rz+i4dvaSeXev5bwZadebesyd6CDoLR1qK9+jGKI1lxOtqe0swmK37ZqapCiIQ/0CnB3PEJDSKlSe8G+0ngGB/WCSG6fQ0Chx8MdUx+2ABUhoWPARYFKdipsaaWV6YDJlkJho1/6exCh4h6LNdfbCRoFRC2GO4Ri2MFfA+btE149BQlEx3nfNs9QfxHNKrClzcJrzeNrGBHwrxMYEdrk4oJjLCcVUfaBqzRaorKbmH91b8lP+uBhK/iW04yr5p9BD3sbqIadz4/iB/E3UhzF9Ss7y29vL5diWjzvdeID8VnsuyC+1JyFvyxsrsyIJuRlYmQgSJcnKRJAoSVYmgkRJsjIRJEqSlYkgUZKsTASJkmRlIkiUJCszYWRZ8YGICwEz+lbo371/3jUG5Q12XmTvo9MveaC8+bLZv17IcY97W8v5r7aJGXD9eSWq/avii/0SlVoL00VsA4eZlJdmGW31/JWw3HE8rA+MfwA2pYTzTIKGYNj2Pp1yWugjMsBB/ZGhWTmYKj6B+wM3kSdGwIz8hHHb/E74bhumpKHGisGrISuQnRc0+FhFhax/hGRT6zkxy/bVWGfKXlvxLmNfBFg98iXC7juGOCGYVl9lbvhzYVVdT4koiBUSpT0H7+6ct8gnKHNipevzPWTLeKRFjO4W/vH0qqH+a9WTAif6pR7lAaUTnCjt8mUuPnDlae6dyXGFDTYMM3LIwakeyT1j3yrpdOXCzpPb9wcu3vqh5bqYL98suJ/r7U50IuSGHDw8fcvI/dwm+t1DCFF0Ab1PGIEovgkJzquVP0xMdH4QsSftdNqP+79vsoJdSwjSb5wgnTByX7ehVIm/uX6pKr/LYBuL7A4q5cGAIwt9qoTPePR3ZHKpqz2ou4jk5zJ3EfUtxYHOfk50tur3dNuxBcaX3cNDbbw+SzKXn/fPiQjqxVyIZ0ZCGxZwXaj7uXqqW4raKMl9+gELQ/cGDGV/A8fUEqbw5/0QC1ACAFtd5gKU6du0bn2ck75vmy9ZmfJB1XrF1tXUxU5sP5YlrFMaC/PidBdnKhMc+OnmEKzOqD62FKTmrug1JzawKmBgKcBIY4cqdlXt9JtPS4Xvcj07b3bOjH+pnkgG7kUDVaDJzCkBhKkuJ0zVECvtpm2h0feaLbaFBj0N1kfgFpqQkTt6YtAQfqg9mx+SND7v1Tb9QehS/5z3urY169DXoRPkSUJ8nQaxXs6WmjfG7yN3e7BzKXJhoiIFXlJolNFEgDTILdEPd3E8IWqlvECzgbiKGssEUaJTUHEakZOnAdRbiIxyVBWwbSh8cRc8DvItXXeNPnur+yjR8hulMjZ0vkiVLf0B+wBmioRfLmzM0c+5mTjmIDO5C4RnA2rMQTXMAJFRbBJ7/Hm4RNIX7F/WIGy1U+iGL9ofvR+GlqHu/uH3M3f/iOuF4ZPyaMm/LWrODtn9cpR75vB5a3nApwMnPqD7WIJhYIsRN4bgQLQX0H+Mq6Jm31WuiVPouIy2Ym2nWWs3/RIweeaF9ie3xt2lGg2/n2k04jrva7bAKm6cVnG2Kqu8O0xaxajwVRFzeEmKGML5Ig0zKfrfmPZ1ukr39u59aM7acw5Uw4Rh9zMNQ1zn2zAiT8KdwGVGxnw1zUsm8BMZNyFz0mOATSxUysLwKOU/OnbsgfcRB/5sNttp5qiSNEkh/AMQkkJEQ3Eg0oITkQYiMq53YIvrW2aF/Nm7nW/Q+D+/6myP3f5AtTH+jYaTYdrrZxjUAC5MiVdGx4O0Ep4tlGu1UA1Sz4ohwr9hkw/6OW3U8zL7JH7dCJ5oCRHBE2WwX0RgVvehk6k74LWJVAMXT8IEfuERJvxJkC8ecvV9Wt3VTwIO9J177e+tgzpQOx9bYqNvMHPwh/S5751OwQkcgqMhbIJhaJTHah9O9Ci8pAnloBbkA2nx9QFYRgH+Pz+nFA4PH4leMKDFc4tWVIHzWgwwRxRgUMcaAEYM5o5Wv3FF7008qU3Stzl42Lm63Ilr5+qsHvNObJiH7/a/cEZwXJLWq2Y75YvgylTF7TCKECrTkbIh7RQG8gEQnnTgThVNTtUgP0lXpuB6LKYQOLXd0IUbeJAaUjWnohZu4B6FjRihN0nGE4TeJPwmut4kXS+SrjdZZD1J+o0IPUk231THX6kBPscY+dtNI/6sF3BoZ/CEB20q+fSeXYkqfytmjg5xoeJ2GyY/S2lbMVW8aWq/8/3OXDB5aQmMDkdoTm8UewESdCqITyGEHNlAKopI8JNS284lhPQLnzQyTOs58cWkIogE01E6OfYviVBZO3D0hcnecxtl1OcBJRtOlL6IGBKAnGwXvNYCTIwMAIjOeqfGMPyjmDGMuF4cC95Yj/mEWmhy9cCQIvyp6D/mT+lyPmbyp5tFXP50vuh//pSwz2WF4EjG4HaBC+WTFq+7HDiIB39Kl2niwVNsFHF5iuWi4vanHe02t8qbcSwi66fJnZ6NPt2eB39KXyTgAaX5nChNL05/So+hFvenWI9h9afz9RN8sdXPCejDiR8ym0+Jmu8zJEnSXR9F8VuuZkTyMCVIFHFNCWL1kPvxRmarQEJuBjIbQgOPdPUIDTySzIbQwCPJbAgNPJLMhtDAI8lsCA08ksxGz9AYjDXoFZFdjK6exwNjTcKbke3MaOSi6UgiRBVJI9P3/Bk2sWGzCV22kAebSNlskr3nYc8Jjz8F7duzc9/WQbnUc34/dJYnKlTM2ihsjs1VLEyCdxSo0CVMVOsUuLgQlOfm0rCl6y4iHsUQb2cXFa1Rq1SRMGLBi/lHPt91onnChS3zLsjXRMnGduxZen37S2fYPKFtN61CAwXAya9tKFUnD1BBrhasogOFf2KUOuLdQYYBdzny0lbRTEKWOWIUsm0kE1zuCBxoW4kgbYKkXJhcE6dMDFXEUgKgHX45EtY7LXi9LH69qzqp4FWqF87q2kg27lLHUxUxEDtr4LlBnRJ/qjLkU6EGlEaeEpQYA2W3SHhLlIUX4dZLgUtYrq4iSjLhEwJYRVUpV0mgFlSBQKTTKOQJ+t8xYWL9PURXlVl9WKargPK0VEfv/zzE5R84l+q+diTjsr/VY06XV7Xe5dF/OIn9H/TE/gDewqS9wHxhEqGbS4ZJhG4uGSYRurlkmETo5pK50OxxTdY5fvCX7bulOzVvcrXNBXIhz54pswc+/xC2enApr1LSH4MYwRV6fWRHoovx8hBcA9ksaaXl2umiw2Yr1/5dzFWu/RxTSobncu1dbFxqdtl0UbrsVeVVbcZ5UnfnLVOu/auYq/jtB8sIZlBrTo8cOdIM5drPjqgvaXlssGxChY6j/2xQhXq63FLl2p9zWueBNVjHLOXa/3z761ufMz9K56y51GDf+r7HraJc+zVO45yzBuMILFmuvW1d/7+bl4wLmT4981TC2ZhZVlWu/RdO4+22IqEgi5drvzPgfckbITVCVix6dvbgRVk5C5dr38hpueUWtxy8qdjKtb8tu61O+VPvArY6T3j4MO/5K6so147lEKzl2s/pNxCD2PLU/1K5dnpZDAuXa/f34yrX7u1nnnLtPUbffTjt2eLgLS9q+OXV3SDivVw7XdyMhxLkUj+uEuS+fsVVrn3k7ZT5WcMy/Xfkqm0bHNz5lfdy7XQfwQNW3pxYNfL7/6pcezCbG/ufCH+RRPjp1YTMJsK/2I9LhP9npu/kQYQ/+kevj8eUnuFpDTSJx8r1mMLjaXOefSTULF/ox6VZPovpI4tDhP9K+YuDBTuayPaMejrv8kSJ2OIi/BM5UfnZvN6Qc+5g3MEf/kT4T2h3Ju14vz1spc2z3ya0e7zRakT4dZymG2gZ05ldhD+kljjy59SKwSucnv7TySfPkqINcOEV8zKsKurAy5hNhH+C+PPNF00qBm/8e9uONppj1H5rGRH+iZzg/OxnRhH+P/ptrxBUabtkVrt3PoNqVbxmBXIWECEdJ0JgTBN5Wwhb3iYTN2n6vcNV8Zr7dddeXvyWKkBrhx3iS1KrQERn5my2LDj75G+RKPPvJ7QwAOIadXJcPMjhYJVrdaxRWg70CousT8tUPSjQaCi3r6FMUEYC8JVL4KILDd+LAN977FNMAw9WVct/LHCVwAKdPPX9+KXf0BMBS6KubfH/XULTCylK7S56sXmaYzS12DxA7weInrMEVY8YbtYal0KVx4dvjCJOo0Dnl9cdf8qeWn9+YPblb/MDX7tSy/6WlmI3Ik5I4dd5l/0F7//ej+v9n1k8WdL3TCMSJfjISnWMMppD26a2+LRM5zdRmrWyQbelMyedovZV8gOYfVXfUhzGuMdpjCvWkf4IjNmx8AxJVOtA+JJHw7VTV+8OYMoKZhYJ7sJmHaLj1ZoYd2HzDtrBGh32Czpb/dXl3IApa8ODx03adfTHyl4LqHENfkGULlWFqH+Z31QcxjrDaazDVjFy4EcZla1Wz1/oTkzWDNByjKDwzjZB0oYvZDOkC5tO8Wnax5SpsonmmOFNOHJ41PMiQxeqmWz930ZmqYQn58i2fhyf2W3c/fCIhe9n57rNbORs0WkvBOClHwHATQQA0LUYlYmSoYxdZML3X3cv54VTg3akyqY8rB1w1KKHfSEAF7kA6H5Un2iG/sf4OPTC3Gbj44yXcPFxIiXFzcepeLv5897VkoLnHu6cbvtmyQsr4OOMlXDtbg6TWAGpIDo62gx8nEkVzo96fD8teMf9T9N/H/oh2Sr4OEmc1om1BuuYhY9zLGnLaceJy6TL67y6FNlpl6NV8HH6cBon0hqMI7AkH6du2p+fjz/rHTinZrVfXv4dNt2q+DiBnMbraBnjWScf5+7u2U9/+7Oi6OD8JgdP1Pn2wsJ8nJaclmticcsVKx9n7tWT3x33xgStabhzeblK/VOtgo+D5RCsfBzgCIk8Nez/Ah+nwokb4RmTRQGTvtw7u086fL6F+TinJVx8nG3MlLZY+DiSfj1LRk59K5o56e3Q1lsTVvLOx6HPzXngmJyUcHFMDkiKi48TV7Hfz6X7h4QvuL3p3cUWgY145+PQfQQPWG3jxGqNeX2upfk44WxubPBhZVNl+DrJ7kMRqmePe7+l7pR0SYZnJwM08qR45glTI7YvGkiV2iR4eky/m5PqgZ8yFcqhZl4c/Ab0vHtux0vLFrcQrw91qzytzq4KrM/H3Mkp2Mjof2WjgAuLKHgUC9Er6eeeDOyV+k9D8GnGwtN+DhL4j3b+M6axLDC90yn7KIUKGEwREwT8+lDy4zCz4qaMYDOlQ16GtIrvb5Icn0eHN59OkdJUMNAGrIx7d4TNBOXwJsohKyIYMA5f8aXkQT8kXwQlD0OzgxIsVvIGGdlNEVEi94iYQL0zG+rfxm1bUdXTxm9XH8fsVUlh1DCCOn1ZrviRN/jEJv30Hk8nNos4brgs4taBbpEubBZZOjMj+VXwp4C5gx202ZPdf6KuifpD8oyOmZGxTi/xG4RaEPXxepfJWpjyYrXa4tWqGCjHCCmBsdjfYemwTh6nNSgHoR+RLB2qjh6kiNHfhHp05nIuft3Q3WpXmWAmBLMkitQHRdUHd0DIL0GI4DwOIb8E/9Hll8LH3e8YdeqlaOy5HWm27yOu0uWX0nvkjLqd1Ccw68jS+U+zpnYk28nDqEWWZ6J/MUKeic3SdlA9gDAj0lq3z3z6mvzj1vDVY9stFHeVdzDFWvzvhgG7Tod2XYhKeWaAITSug0UKT9rB+o79tOAdEuPyHUb+75irGe7tGzkSoRLFZqsq/vmjDSREumQNOnFdVGNPztGED/57b21/8eanzy04TVZGgn8SQuuYaCgOow3nNNpg8xqNdME2oRLcocJbRunHPWYbcoyyJXv1pETpa2WiVqHBWHfgKygOE2mrM3O/RUYuGCnZXC3NP+hWO8bwKhOWrJMPUOkFLAS0zS74rd7McOVdqNZXEcMVl1HjOI36UweG1hdnAQWisytwfRYkeHSZFM6ObgM9HbNMB3aVd0apJ+GXjogRle5FXlgXJ0J6JFtI7/LoQUQZ1YWAJXsPlRy1y4Va/bRcVLwyVieEdWWpYR3GK7aa1k4RsbFwKiJXqYjyq0pYOA+Kd3uiBUVoBQfZHgGRLxlKtwc9IxkKU3T1QxXDc5cJurU3lUdmj1XfBWNTCx8Y+aK9OmQIfk4WSqZsr+ffTXvrIL3AC/IVCyfe04qum0q8B1hpIVZZYhT3A0zwle2NY43hFlRjvQKJS0yViRGbt98UZWo9f1L2y53HWFKONQwYU8cTePN+nG8OeokVLCdjPdCIPTY7qDPEJT2lqRFd88qMxv5bzh55/e10eRdqv4R3mwv+EE74xZaBn8EQM7VQNz4iINsZvAnSIvSKu0X0FKau5nsQruCICBFg+ntgA4IIMFFsAebMAnno17Y1AsasqlvmRf3hVF1xW6woVpQ0lEk3YQsvftSadERBLWGMIhb8GiMckFqwcJs7mDDidHw4jyROpo00aAK50DfpYavbqf47VLa7pz/d5oV+bubCLNliIMbvQEojmnVCIPgdFZreAYxFM0/wX7zOadriW58W1AnY2GPq9XLdP02iuVx4N2IXD7tcWDxadFdees2N++JlLX54IosJPmRiPKoED4BCgMaicj4hcAsPqQAVNsFxxAAi+4VrjFIDui9oR7MzxRW/dx/pnCs5VOF6n49DP1JrGpeVkjcz2Zn5TYUBtrO2Ys3ikCni9LAbEzP3BefyANiMmVyAgR5lkTCGH4mBf9NCwPZj3JkxO8yWHDTGY98yR8lPlgzJ/Jry6cW1kSctSmOElnk3g8syS2dYxjLI03uHea5v2GfrsAOH/DqKsgIbdvt7yf5wi9U33OJJuJQtqIlTfy9shBBxrStbXBPuu7FL99tM8eru9RyWJ3pTy3+WjlTrGCd2uCZNzvgNIKqR58Y08JkhqVI+VKlFT5y6Xm1Ur++xPgHTKm87F/LXLH/UIyC0p7Hrhs64oTOZewIvbcQIT5VAeJqRaVx46o6/H6xZiD0I8s2e7hn3pY78n6DRfaMej3+d24X6ZvhHMN+MuF6Yv43Jsy0dKpkSmhPUsc2K9xdfmuhvRQCiNAiRFDWqA8Go9p6LDFCsM0nMQvAwEjQ9Ep8d/Tquqb54nHT00ScbfvPPopYttBGD25hDCbtaGDb0McoDNg8zubChdR/4QbYCjrIM+dgkwoP/rspE4jySFh2//9lQt9P7LyND9r1vPHqO8+x+1ERHDD+EmejglwvDSlsyuUZ4nUrBs7b+uXXgh93tWbHqplXgR5zyRWONwE/Eid+7OdYTMYxkOVXAPVEM4fKQ5ut/+OAHp/19/MfmrelZ4V3rVaY5AhPjxkUPYqTb+CHixk1PrDcTcaNbkfaS8Z5n9v1ko0cVveubMqpM3FSGhJQ9s0+QW5j/Dw==
- true
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwQAADsEBuJFr7QAAAtpJREFUSEu1lF9ojXEYx59OS5IrF5IkiTVriWgXS5HWlFwQbpRYyr+xkgvFLpQMpRU3SEmjmLWEuZLcKGlpaRe7WNKulnQu1trFWms+39/ved9zzvu+59z5dr6d3/d5n3+/v1aNy2Y7fdgI6/w/xQWzbT6sj4tmW3rNlnvMmqUpdvOS2cfwsYJVcBF2BwXOmK0hZgn/O24qBskOq8DZmES6U5rutgeHCu7BBbgjKIBft4oQc85NeeBwSAlPma10kwIn4bDLBCX4FU74OIAZ3CLHQkFDEfqQ7ZigY95Zi5sStMFl2BVURAm/cWJGXedQIlkZp+uuhZLPYsh1NX7CB3EYQfKT5FhkP1e7qRYkeoqDpp6CgqcVdN5srZsSvICf4zCC+Datgv7dVAsq75EDnbS6ybTp2GYpdMVNCZ7AmgI0sk/x7PQmN+WgJZnRhrkOwDaE7ZPLBCPwQxxG4DNAkd8ui4HTY/jDZQD6RkHgOHwYh/E+0MgcM+1zUzG05jjOuwzA1kuRPy4FHWXdhRNBAXyew791NzgBiXoyybRE/XDSpdAJdUw3SDC7cIfgEemGIPkI/OIygMBvcNClcB9OxWE43tN8f+m6PvaaNeFYc2IIboZL6tJNwhh8pgG+LcToDdst3RB03iVnbvNmN4VNJ8kvhsmz0AT14IX1J3E4mgX3JA+SvYbqLsBPxjw2fik2Qq1/hwQfWlWAzU0fv0L4hVIymoqg8z5ss5mT0Q5VIFym42YrPI6JNwBOB9VJ9VSpNE3ggMsE+6EKpH74vIHpzAtBt3cpkB5FdLsKFjy/2kwVSPcpeWJo6ICb8iDhK7p461L6KkEzLquhzlVAM0lB7CicqnvRvIDelwAVg+9cZqHC1+Iwgu7XwzJNvde+uLkCkt1WBy6lx+Ajl1noUn2Pwwrw76DAHIUm+N/l5ghmoAvT71KbPozjUZdZaHnKcVgL4rbCQWLTd+o/wuwf9N7EUShQvi8AAAAASUVORK5CYII=
- 69d1541f-422f-4fd8-ae5b-1cebcb7501b6
- true
- DIFERENCE CURWATURE SHAPED GRAPH
- DIFERENCE CURWATURE SHAPED GRAPH
- false
- 37
- 0f29d6b5-557d-476d-9fcd-1e35aafe35d6
- 1327e01f-51fb-4c31-b529-4416006b1a3e
- 162f3737-68e0-43d9-9000-edca353ab239
- 2a5be90d-6a4d-49c0-913c-d70e26179b8b
- 2e2b4494-018b-4b3d-9bbb-fc30e0fbb0b7
- 2f8549e0-84db-49b3-9fd7-857b8fbfa7c7
- 3eb6dcf6-830f-4fec-9aa7-1b584e652d50
- 4ec05b12-4c8a-486f-8714-ddc1a05d9a38
- 53d8da27-6143-4850-b0c3-4f1386b53720
- 5782dff4-9e08-4705-8226-1768e292ab2e
- 599673ec-baa6-4810-ab0d-b293bbd9bb44
- 6c12a62b-5fa4-4cb8-880b-d3fa7400b8e5
- 6e52f4cc-ea4e-4f66-b842-f541e2736850
- 806c65ee-b8de-4133-87d0-9b4c6414ae56
- 84ab60b5-0405-4c03-8a94-29477c44ce75
- 95251c39-6e20-4161-97ad-92420e60dcc4
- 971a627c-1390-4c0a-853b-fb1abcf48166
- 9ef3de6a-acfc-4d39-ab7d-19ba384fa423
- a15a1581-bcad-4009-b8f8-bed52caa28d9
- ab6c7f05-12aa-4d56-b76d-a62f99dc474e
- b2bd482a-2fe6-41d1-8580-03fe3bbce4c3
- b6a15caf-2993-4a1f-b467-f63b1154d573
- bb37e36f-b619-47cd-acf1-af337ee168cb
- bb3d4e0b-5b1f-4e69-b754-6fe5a8bc47a8
- befb5a7c-a7ef-40cf-b5c7-cf2bb32a8ea5
- c40aa5fa-e68d-4bb2-abe6-a2e720c42943
- c8dc7fba-2802-414c-937c-0ee49475db9a
- ceed626a-062d-410b-b4f0-75cd654a34e3
- d965eb26-5b84-469b-934f-8d2e6540c7d1
- df6b3153-980c-4183-bc57-d1b62bfa6f4a
- e284a31c-8ac1-4f31-8a46-c0be553a3b44
- e3c3b7f6-afca-405a-b0d9-09d8922ada04
- f08a4db8-220e-46bf-93e7-68d63cc48dda
- f6a14f25-35ed-44f6-8764-6a7f6d50d3d1
- f6ee1b2e-83fe-4987-9449-6c078a80bfaa
- f8dd3c7e-c3df-45d9-8cb9-a5f3d4eaa8f6
- fe56a2bc-596d-45fb-9cb3-e28b207d7009
- 53133e66-86e1-4322-bb85-7afca5c21f4f
- a7e4f8f7-1ccd-48f0-863e-6ed19022d27b
- e860b9e2-e037-4c18-988a-393d0094d8e4
- a43519fb-325e-4058-bda1-f7e34cc92c6f
- 130433e2-dd09-4dbb-8e9f-946a284f4836
- b2a58353-e9c9-4e65-a900-6efa66489724
- 2927bcb1-a8c7-4996-b4cf-1e0b73fe722c
- 3d99a0d8-87f4-42b3-ae8c-13046d610738
- 81fd98cd-c9a3-405d-866d-edf2fca2467f
- ddb00df8-65f0-4650-a3c7-89c56da7f06b
- 4a525765-a9df-4f3b-8fae-c2be3081d0b4
- 1af94696-7c3b-4341-b4bb-415b935cb441
- 17750273-1d4e-4a10-92b1-f4b16af3b73c
- 43f684c6-6920-481c-81ce-8a3096268d23
- 9a110ceb-3e62-489e-8e19-61581f5671d4
- a67255eb-66a4-422d-aed0-4b64cd94d270
- 88db9398-ca86-4220-85b3-d1387046010f
- 937bac2b-aa3f-4485-8435-a74b05842dda
- bae8f0e9-2af4-409d-945a-a91a08fdc45a
- 8de15979-110c-49a4-bf71-f92c5c15659e
- 16c32cca-03cb-4d8e-bf89-f521eb08129b
- bbece122-0a0d-43f9-bd1e-b6e66ae744df
- 9c973484-e313-4490-a780-3cac6484f2c3
- cb30ccba-a894-45cb-b1d5-847ad7005125
- 20d03587-b988-43e2-924d-d6655441a5e8
- daca2ebb-26cb-48f4-8885-277e43200f92
- f12cf189-9dd5-4b8b-822d-2da85bac7a45
- 7e2338e0-fce5-4964-bac7-ea6c242afeb1
- 233b0ef6-f843-44d6-99fc-9ecf077d1b78
- 59e3ea83-51fb-46fa-8bda-938de18b7cf2
- 36be5f7d-3d93-4e60-9b58-2ea01268c3ff
- aa2a8593-f318-4546-bad9-74c7978a14af
- eabf9208-959a-42b3-8af1-f5ce33e4d91a
- df2cb580-23c8-45cb-aac6-97ce3b2e2214
- 735da924-e3a7-45ca-9564-36c125627c0a
- 326b8016-5135-4828-b69a-a21c171e1a06
- a317f3b7-85e8-46ea-bfa9-b8f70ca5c382
-
1276
-87
103
404
-
1337
115
- 20
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 17
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Second item for multiplication
- 806c65ee-b8de-4133-87d0-9b4c6414ae56
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
-
1278
-85
47
20
-
1301.5
-75
- Second item for multiplication
- 599673ec-baa6-4810-ab0d-b293bbd9bb44
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
-
1278
-65
47
20
-
1301.5
-55
- Second item for multiplication
- fe56a2bc-596d-45fb-9cb3-e28b207d7009
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
-
1278
-45
47
20
-
1301.5
-35
- Second item for multiplication
- 2f8549e0-84db-49b3-9fd7-857b8fbfa7c7
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
-
1278
-25
47
20
-
1301.5
-15
- Second item for multiplication
- f6ee1b2e-83fe-4987-9449-6c078a80bfaa
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
-
1278
-5
47
20
-
1301.5
5
- Second item for multiplication
- ab6c7f05-12aa-4d56-b76d-a62f99dc474e
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
-
1278
15
47
20
-
1301.5
25
- Second item for multiplication
- ceed626a-062d-410b-b4f0-75cd654a34e3
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
-
1278
35
47
20
-
1301.5
45
- Second item for multiplication
- df6b3153-980c-4183-bc57-d1b62bfa6f4a
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
-
1278
55
47
20
-
1301.5
65
- Second item for multiplication
- e284a31c-8ac1-4f31-8a46-c0be553a3b44
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
-
1278
75
47
20
-
1301.5
85
- Second item for multiplication
- b6a15caf-2993-4a1f-b467-f63b1154d573
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
-
1278
95
47
20
-
1301.5
105
- Second item for multiplication
- c8dc7fba-2802-414c-937c-0ee49475db9a
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
-
1278
115
47
20
-
1301.5
125
- Second item for multiplication
- 5782dff4-9e08-4705-8226-1768e292ab2e
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
-
1278
135
47
20
-
1301.5
145
- Second item for multiplication
- d965eb26-5b84-469b-934f-8d2e6540c7d1
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
-
1278
155
47
20
-
1301.5
165
- Second item for multiplication
- 95251c39-6e20-4161-97ad-92420e60dcc4
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
-
1278
175
47
20
-
1301.5
185
- Second item for multiplication
- a15a1581-bcad-4009-b8f8-bed52caa28d9
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
-
1278
195
47
20
-
1301.5
205
- Second item for multiplication
- befb5a7c-a7ef-40cf-b5c7-cf2bb32a8ea5
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
-
1278
215
47
20
-
1301.5
225
- Second item for multiplication
- b2bd482a-2fe6-41d1-8580-03fe3bbce4c3
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
-
1278
235
47
20
-
1301.5
245
- Rotation angle (in degrees)
- 6e52f4cc-ea4e-4f66-b842-f541e2736850
- true
- Angle
- Angle
- true
- 0
-
1278
255
47
20
-
1301.5
265
- 1
- 1
- {0}
- 0
- Contains a collection of generic curves
- 2a5be90d-6a4d-49c0-913c-d70e26179b8b
- true
- Curve
- Curve
- true
- 3537ed18-f4f1-428c-82e7-541bd20996ee
- 1
-
1278
275
47
20
-
1301.5
285
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 256
- Contains a collection of generic curves
- true
- 2e2b4494-018b-4b3d-9bbb-fc30e0fbb0b7
- true
- Curve
- Curve
- true
- 7428efec-7c04-44c5-9681-0bb0a240649a
- 1
-
1278
295
47
20
-
1301.5
305
- 2
- A wire relay object
- e3c3b7f6-afca-405a-b0d9-09d8922ada04
- true
- Relay
- Relay
- false
- 0
-
1349
-85
28
23
-
1363
-73.23529
- 2
- A wire relay object
- 9ef3de6a-acfc-4d39-ab7d-19ba384fa423
- true
- Relay
- Relay
- false
- 0
-
1349
-62
28
24
-
1363
-49.70588
- 2
- A wire relay object
- bb37e36f-b619-47cd-acf1-af337ee168cb
- true
- Relay
- Relay
- false
- 0
-
1349
-38
28
23
-
1363
-26.17647
- 2
- A wire relay object
- 53d8da27-6143-4850-b0c3-4f1386b53720
- true
- Relay
- Relay
- false
- 0
-
1349
-15
28
24
-
1363
-2.647052
- 2
- A wire relay object
- 3eb6dcf6-830f-4fec-9aa7-1b584e652d50
- true
- Relay
- Relay
- false
- 0
-
1349
9
28
23
-
1363
20.88236
- 2
- A wire relay object
- bb3d4e0b-5b1f-4e69-b754-6fe5a8bc47a8
- true
- Relay
- Relay
- false
- 0
-
1349
32
28
24
-
1363
44.41177
- 2
- A wire relay object
- 0f29d6b5-557d-476d-9fcd-1e35aafe35d6
- true
- Relay
- Relay
- false
- 0
-
1349
56
28
23
-
1363
67.94119
- 2
- A wire relay object
- 162f3737-68e0-43d9-9000-edca353ab239
- true
- Relay
- Relay
- false
- 0
-
1349
79
28
24
-
1363
91.47061
- 2
- A wire relay object
- 971a627c-1390-4c0a-853b-fb1abcf48166
- true
- Relay
- Relay
- false
- 0
-
1349
103
28
23
-
1363
115
- 2
- A wire relay object
- c40aa5fa-e68d-4bb2-abe6-a2e720c42943
- true
- Relay
- Relay
- false
- 0
-
1349
126
28
24
-
1363
138.5294
- 2
- A wire relay object
- 6c12a62b-5fa4-4cb8-880b-d3fa7400b8e5
- true
- Relay
- Relay
- false
- 0
-
1349
150
28
23
-
1363
162.0589
- 2
- A wire relay object
- f8dd3c7e-c3df-45d9-8cb9-a5f3d4eaa8f6
- true
- Relay
- Relay
- false
- 0
-
1349
173
28
24
-
1363
185.5883
- 2
- A wire relay object
- f08a4db8-220e-46bf-93e7-68d63cc48dda
- true
- Relay
- Relay
- false
- 0
-
1349
197
28
23
-
1363
209.1177
- 2
- A wire relay object
- 4ec05b12-4c8a-486f-8714-ddc1a05d9a38
- true
- Relay
- Relay
- false
- 0
-
1349
220
28
24
-
1363
232.6471
- 2
- A wire relay object
- 84ab60b5-0405-4c03-8a94-29477c44ce75
- true
- Relay
- Relay
- false
- 0
-
1349
244
28
23
-
1363
256.1765
- 2
- A wire relay object
- f6a14f25-35ed-44f6-8764-6a7f6d50d3d1
- true
- Relay
- Relay
- false
- 0
-
1349
267
28
24
-
1363
279.706
- 2
- A wire relay object
- 1327e01f-51fb-4c31-b529-4416006b1a3e
- true
- Relay
- Relay
- false
- 0
-
1349
291
28
24
-
1363
303.2354
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 2
- 0.5000000000
-
976
-140
250
20
-
976.9166
-139.8604
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- DIFERENCE CURWATURE LINEAR GRAPH
-
7J0JIFTd+8dHZW2jkEo1JSIl7XvNWMZgLKHS3mAwYmgs0aqSXVGJUFFpobKE7LSQ3jYtSrt2ad/1tv3uHXd0587cG6875vb+Xv//26/mzFx3vs85zznnOc/nuXJGno6+HiyOz0/gR4pEIkkD/3Xzcvd1YXMW+bG43mxPDthkDbwMNoM/suBb+J+js5hOLC74FmmoWYHfZGoEviwPvDTu0Yv4VaGHzOO/cBpdjJZ9lrXmsvzYrGVguwLQLmPrClzFqTv0sgXL29UuwIsFNneEfnFXqM3Sk+vBdAdbBgOvpqSk/OR/ypblznL0YTnx29hs9k9lI5Yzm8P2Ab6FNdfTi8X1YbO8+ZcF/+tkxPTh/R454B9H73uEx4TckutsxPJ25LK9fKAvD94iqZMl04PF/9fLjvZ0Ez29B7nbG3aGAX8+iMsA/rwfl3U/Lof3F94/c1LBP2M28v6Mvh8T2/zO6nhL8O9bgsArbAM/8iBpb/Pf72/dcn9rbPPb7scdbL5a09uaLtIQdxR8fftagV/N/yx0S1DrQcHb2/Hr94Yn8N4cifX3hLTmC0J/Qq9gfor3d+gb8X4j7AYONt8bdJ/82/71Hl5r03eEfinvu0Oq8q4A6cP/rLCSTQpDajf9Ir4hILtAVxMwHyQvz7J6eiZ0e3kboIeBQ8GbP0zAn678Vw09fZsGUEf+EAA6mxvQGaH+0wF6WcaOyXVh8d7ZH/jnDi0Saaoa0LPmenp68EeQ0tzz06VnAd1Z4FfJg68I/Rp5G0cvBjPA09cH/l4FE66nr5fQm7uY0KkMtgOXyYWGgBQ0sqQF3gq+Itv0vgDePUMfV6R6e7M8HNwDaL7u7vChQLX2dXZmcZ3Z3q7DyLOaPMbU0Xr64P8NIxv6uvv4cllTOSxfHy7TfRjZ2tfBne1ozgqw81zC4kzlAFfrzr/0rF/+BryyLHQVGaqvj6snl/9yVwu2oyuT5U625gZ4cjuYOvG9TEr9DvVFI2cxMmQ2sX/UKywXGLEKv25TFuX3KP1yFlYOoPmaZZIG/ujc9JqAWODrMk2vgxp1gPTrZDLzl+8budemYl7GQdqBvd3Pnlj9cZvAXUnzbCVv6MnxYbI5TX5UG7qKjIEnF3KtfMPIGHq6e/py+R4O/F9Rvqo/lewCXpfs6Uw24TK9vV09vQDfR/Zs+lYdTI14vQf478eiw8lHpjVYhOxPj1e29TUGmqSgJm6OkkNw3wrzfdpXnDTqPr4CmjpATX2PLkqqm8GiZ0ZmrTnUfYo50NQRapLtqZbnrKhoWXz2qwLHK8gAaOoENU27Vm/ZOz2ZkXr9ekjRzY4NQJM01BRuYBQuH2tC37qzfssqv7CtQJMM/w5der4qZV63Wnc3zu8Uhd4INMlCTXmPl52okKm0DHF4UBnyI7IT0CQHNaV7MPZ/UYqxyK/TfaaQm0YFmuShppeDPpydumqG8Ubja2fZCi5LgSYFqEmLNTBOeXYYLT9isSxJN3MJ0NQZavLrJncmP0aPsfb2rEN0vYZioKkL1LRz48ObXl0vG8faTWQHa0yKBJq6Qk3qEaGdRunestpf93rVjamxN4CmblDTi0CXz4vTUunHZOqMXGVipICm7lAT2+wE2dnyOWXz3nE/nqtQXgNNilBTJ2kVHaWhfozMT49ND4d8mwQ0KUFNx5xHnPKnTaPvmdnNZbW0wgegqQfUFPtj3ktTf6Z59oltDT0m3bMCmnpCTUs14u6eMDjB2LB50Or0mKUdgSZl/gW397t+PWkKNZQ6V8l6h8tkoEkFatqk0PUMKfuw5TF2wuq40oZSoEkVahq2d2B4r2W2xvv871PvX0/8G2jqBTXdyoi5onVaxixzSJcNWRYDpYEmNahp4SBlizrSMpNQywrtUWOcjgBNvaEmurebxpLujwxifko5JPUt0QOa+kBNpPSNjt5zfWmlnyxPzR51SRNo6gs1XU7IXvpi1nLjSGaIjrWhTBnQpM6/+T3dspkpGpT1l+aOzPccFgM09YOabg+06RV+OYR+9J15tt6lMtAo/aGm08fjPxt060bLOzvSZk5m2TqgaQDU9NfLsujvX2VN0+x0nw0Jzu4LNJGhJurz0FOLvDItNlb1sVhYVh8mZ2q0SMCDDAQ9synH24fJcWSZ+LKbnZmSvsqnPUY/zFJGb34Z/epWnQi3IWfJdlwCf5mkQPXx4bIdfH2aPDzkuvkuSgo3FzWgHV1USa/Fh1PmhVoWnv0UaqMTYAtzUbR9umWyr15a5b7oqF3P+lIJc1FH2NXyZjP7mqx7cqf7Kor5B5iLSj/kPf6EuSktuJc0g1Y1URnmooxXlydTQhvNNi5I4hg8z9OFuahL82XVi5buMsydrPpx1BxpDZiLKpvtcXXeR1/T4JG9/WlBmqdgLso/pGLFxqHjKCnDS1PlNGYGw1wUe9/qYtaYy6ap0aSJ0/XKk2AuSu3nSNIFF2mTCKXeR+InUIphLsrayXz/iwB3SvoxrZCI0Z0Pw1yU3RBd9StPSiwS5Dw4IZsv2cBc1OTs9wMnXquxTC5ZqVE9atBhmIvSCHAbGnovyiyuenulXcqg+TAXdSL8ZOzVCK5lxKrjN/etvjEf5qIYO2TV/PuwrA6eYN2o+KQ2BeaiHqaOezvoSX9qCneH/UvZsuUwF2W5/t1A09gi04IYi9kKZ1Q/wVxUYuH3Bwe3pxrkechsTEh7pwdzUaMvsxhTZ8ibBOWlhmqu7LMT5qK4N+IOFPaYaJX64fjXOcMPP4K5qLlrOXnDIhIt4w0cErJ/vpOFuSgjL02bPAVbs9gLtfUbLCdqw1wUtfE7R222jvHOa5FP9Lmqg4TGqxraeB1W/GBW3sL1RhkVdru/T66pxmG8dsBtvGq143gVsW7gj1cR6wb+eBWxbuCPVxHrBv54XXHDvefzHaZG+UFldnvPaF39b0nx35KiBUsK5KwMW1IEGXbMT9fwpKZfMVa/dDxFEbakWDT3S90C6mDjI/aTGIEBe6VgS4phWmPUTluo0ZJZJ+Z7XKUWw5YUV2aNY5PT9xofTIhMPfDl0DjYkmLRUYY0fcNTw7U6umWTlKZeFnI2A9CcDXLZjoOz6Yibs1FtR2cjwqPwnY0Ij8J3NiI8Ct/ZiPAofGcjwqPwnY1cgJrmq4Icy/CzHuk7ax4/gDmb9MZDMQsKvjCiDagfJ65aHQJzNiL8EN/ZiPBDfGcjwg/xnY0IP8R3NiL8EN/ZiPBDfGeTdOfgJLf7n2kR2xwHPndb/g3mbJDDS6jzdkfrvMgJAofO2wmt8+o9dRj4jdtovnXO1doRB9KUBX5XFyO2H9uJRTb05fqxBPswaFjQTKJ6pw70MSbZEfwgmc3x8SSzlvoy3cnuLI6LjyvZm+UCxj+9ZehsJycWpznYIlIOZBdGv0UhVQRaEQo1x5wMAKM48V7SAP9dd6yCVJtaQSJ9MiCRAg2krdl+nj78NT1JPw9o3VvR2YvJZXosYnO8fHmBDVlIW1FydOf9djKggRPvbkR+yRvrdhctSOhHSysYX1czO/S6oM1FfzvoZSveb2sK+fJCXDK2gAtxZPFdgId1iPPIruvNt1Zb35z8bUN056ZmoaBWC/WpBvSpAvUhA/okU5H6AK3+qQL6SEH6dEDRp4elr4cD6Lycm/uFSIl2d6F9C54+1HRHvLX77Fs1oxESgV9HhES8l38nEXICxUEibUyJgC7UzRoMsnn7AN/XiOnDbB4DJFEBRxkDLiCHKwk2jIXf1Mma6ePK/+YdV+iv6mTqw/IgkX4dTMhweFLzPwS+D24p8NIyGJbqZevlzvZpthKZ6UNewuYsEW2ukm+vy4b1O8/IKFj2qVhpn76guczBzwmbq+llIXOJsocIp4dlj9C9WPaYIBl7yDp4erqzmM0OkNSlyRqevj4IxyJDdXRkeXvDLy/S14AODwzdkr082WgD6WPQ956vLRdbJmyOYdO9aV8FLCNjzfugkGn4r+Num1zIncwXZZsPOTx3IiCLVOtlGWTH5LgAhiX7AXOhJ5fXc51aoFS9qcKlTp83mwSPNM9cyzlwUkApOeiiwlr9ahGHWtqYagGeRUCtDq1XS8Ma/DzLB/DJfkx3X1aL5Vry5H5j/Y1J9Kw5GWuvat0ejThf4F9VWDB4mzgk4w1+VMmAwQ8tk6RJKMukM4lMxveJvUzW7esv26CxolSwIzCAVRHZ1oghvESSRpHYwJDLYvqASyR38LOQRyU7gecrLCeyQwAZUJfr0yT2MLIP1H2ZHCdoCaW3qkVrJ+QaX/R9C3dgfksLNc7MryDp7wE01jEUsWYKBTTW3y20ZsKaaRR5NwDTQOS3S/vmd6+fZZhJ8vkTx2rKknMEpxhb8NPCU0zTy3j3smRAATKowCtRvewUsGqs3i2RKUbB0BPYZbI50Cn+aBL6D3LRhmUgNZ6B+P1S24nNbTrN1RFpKK9HlfHdWL3paXIvNROe9fhbwFDyRvwPCxkL1iQOgwXuxjKYvmQMJtM0Rwka6810LGP9bt3WmWesJsch0j6bumk+/5z9zqCoLltj5OSlRoIrAgbvg8IrAuh1cVimLgXLMtEpkl498w/9QcsIrdlkSOhzaxcGzN+LtAVyuyZgi07gx4Us0fQq3nbQzoFcWiYVGMFIp159lDdCoImT3/v+NRMnMgImxokzPx1r4sxPExlsaNvE+aTWnbViwHSTTeXmX24aylLaMnEittLIzUUbt9KgMziQjuUM7NP/f+fVSwbZ79+OMzE/etvFx/HQ3D0EmVflMA0G9GjCzKv8n1/zK3JexRpsv51XRxv4JMotybDcTQnMTH71PKRt8ypipKne6XPvZ+AWWmwexS/h9uYpOIw01zQsw6lJyHDtMu1Olro97bGdo0HmlQgpVekSc4lOuzyPhzrtAgMImnb5nVNo2rU8RrtwhnTKMHBu78nsBjMlgW/TzcLX3Yft5c52ZIK3Ljz5ovX3vhaArVgewKccme5kD4GrtGhWRZ4QYd2WkNyI9hbKqXgMEGw/IGck0K31kXLSgW4tt7+ia3P8gd+rQRl4IVJT0BEI2JLnFXgvmzrxx+Icp6qNUmXyRoWvell01e1ZzW+XQmnvbMXrtkKjQa7pdfQLN90P73ZJJOxzh340Ntfbh8wGhhPZ2ZOLsJdI+1T3l9cc16W/RWyXjbFfFsxzEbCPFFXIJMBLyO4vhfBSyCO3NnopEmDOA6A59akivNRVcD2wvwImktRvROpvy3L0BBaHrVFpgN5Hit3Frkbr99yLsrpQKCeokoGwSga/VSk6e398oOomRsw1SuDjoTc34aCSHKZK+fsqoD7Y3Jew/KeaDcsbEAY8o2mBQMiZSXDaa7qU8LQHvY63P63PhXpMIxU8AEBo4Z7LUwryp3Jo/nRb/ccdw2dGMgr+sjpu8jN5kGBk09jfi8vy9hbypVgLPVVjMLbK28pwyKzmC8CuxX+nEs3KxoJqpz1ohf4km1WDhlnptMjXIg/P0W5ZOBj7q62lIVYwlhIDSDwO2MXUIbtbHSCxYowIH8s/lBbhY6VE+Nj474GFKTH2pnn7D1pSHuveag8f2vOXFmQ/JpfNdHAXfX6r9qFY6txwKj35Tc/S+6fWVAiqPQv6KNlK2DlYtbcLLQes5RUDOYdypLW25vOs1RrnoPzLOfzqyCJVmp2ecIF2+4NJ6onem2nDfBNa5BikyLj7hMVHIQnKKSIkoB/lSQD5BHk0n5CQXzcn5FGjaWF+bmHWkvsMwU20NZPDchd0B/wridJQm0r2Aj/Bm4Mcfb19PD3IHE8f8OwFmJ18WP4+0FmMSF2R2TAibkU4Y0SUqo5cT3d3G9Cz8/1X08+b6Yg+ibQkWp+Um+nN4toBt8//tZpGnr7gSHAEZpAlYFIEy4ntA313YCYGdxYPAvch7Mgn55B2pBdUkLQTADvOMiQFhhgqWDC5LmwOg+Us0Ck6N71sw3ZxFaSDml638/SCvyrYGZKNCyo6kRMquvNEFETkZPl3JSppi8tcZspxYjvCUCJ58EVwuwN7ibemBUNZv5y5rRfLkc10N/R0+vVZYO/nw2UxPZr/3Wk2l+n1y2E0dVUFtK5KdtHIC40KM9hy8hBj+5eCFYL9w4blzgwQ7KpyJJEnhmi9tyeVvIzNZZG54JWgLDSRHRWZmyXiRlo0/hG9Edn/2+gh44EF0uJEKF8gEOkeGoH5jJzIdw+dCa85cvrASXNk7isOmstFY2letYmveRc0zVuditmZr3l7oGTC2Yz87aGIbEZ+KqaIbEZ+KibSsEIZhuACS2SXQCY74pBh2BXNJkvL2LpsyzTDY6VW7k8fzXst8Ls6z/AFpwFAOC9X4cmyFTkLg43Y3l7gQGCSvVm8pUjAcH7yAvD/gI2A3yBSC2R2J+r9CSki0Cg0XORtPbk+VvBeJWIQ/cOlXfPVkPMhuLRLBgaRqiH4n+AgqjHKr0jiJFd05XPgwPzE8he4XJMpu6GZsoS1L43z/SwjaljFUX1ujwWC4WYwG5EJsqzCASUZFKtNbt4E+biyeNmivAuA5uMnjzJ9QJOCU6Izm+VE9uJvIvRatAlCcgIodywcIG9uaukuE9hxZ3oAyv8tKmsU3INmLmlV1qhSc9YoC9JI5BccnrV6/I6zl8wOWswwWT5nzBkc80aRtEQbHXwtoFA0qBAdUOgN0sGDYbpkd5F5o2gKaf5KUwJ2Z029xcnTA+h4v1WNZPfde/JXRcbGYapJV1/WqAh2i+brCneLX02/U69zt7jY0lwdsygtlRvrXd/o4KAe0IMw1Ct3q2hVSFyFl9D3SzpgoK3wWSVSrji5CZVHs8cYrl2ot7xjxI2ziO0FeB3hTtb0Mt47t9BcqBdNEXVKcS6ngvTGXThdEEuHXs1DHcoOxFJiaHhHY5quGi1+ze1pu494ZbXen4hFEWt3LEWAfiOUEthCRRzZXEd3zL7h5WF2rMroLbWsTMdgrrHpPIIoorgESxEvN/5SEoQw/lQwAkm6tQMYEeiKBUYEOuMPRnxcXrxeyuYGY/3OmG8751OqiTvBgVnmi12xsszLXcQCRhSmmi/u+lyJHvrY4viKQws34whGIAk8HCQiu2BJBHShfzsYERi63d1B6odl0tvhNpROf12QMBhRx8KyB4X1fwRGrLn23NJnLI2aGr9LUWP8um8SByN47gQ1bx1wJ5ICI2xqh7p9UQ+wzJ/IeZL23O4KIcAInmdBVQvwLBIDI5CbAcKAEbzBjyoZMPihZZIiCWWZtGvFtppX9UsMDxzW+X7h4qgaEdOz6LiOKH2HQO8EAzaOnu7uTSlq4PwHdBoWl+3YtG5q2eoIObvLWjC9vNgcF75S4NfBcTGBxNjbOFOSwcWEdQWYMiN8QnU+P7fCK96KbxwlNOM4aAdrJHQqpeTaD1ZLO3tDVeDrdjcCMx+8fbi+jj5kKtex5Tm4k21YwFdg+TVFbRyY3iyylzuTwxpG5jKd2L5NR1bAQHdv3o+D8RwOmcl1bFnUBlmMAfO+hQyGfEMLFY8GF2hcQPFzopa3gcDyttyrVctbdeB3k4HtpGHTHgpc5v66MZHfOzN52jcfGzYtadb6YRYntwrG1zqK+q68F3/XNZFbtDZ2zUAwVAMKlSwqQY23zvVqXSiir0FzH+J1lSbdmvaeIoWizFc1/lS0wTRlEIs77VzjakF/yruaNXg1YX8Ka8Pbn5LzIF3sRflTOuBtSdxWhiZsmsZTizTZvb7xo6xWR6M9V33254Y/OY44W+ddSUTSTdPr4tBi8VIsLZB95HdBCTIV7lC0gf9AZ8PkeOtA8ogUxe7Jug0xlyqMymaTH+3oW9VD0OHzLins8JteFockZC8sSQI9+R69B5pHH7F5VUC/ST9oMTPHRpAS58QJdnwrYPxY+QGrE3thZ94RRdeehp4egPzAwAMHH/hh/5Y5aWRZHLRbER6Dv9paKJ09uG3cCKbEGojILyIBwmZGtco1d+ZlADUt4kR+uRMm97dxVmuYpmePu6jyplowUVV6Fvg54X7T9PLvvDGyjk8bvTEd0EYR1KZeVDbP1SZtWpcr3ZT6g6GO4VeZm4klfkaH4xuf9WU+WSbR/L7kXEiARlECDM7lCQCNq55o44owh/XIU3WcDuuRFsPjsH4T5mH9Rr7mymia/4E5lciiXmLOqdT3x8qptF72L8+prJQZ2vdYTiezPI9D6575bCnEM6cSZy8M5lQq+mPlVALWEk9Opb7dxR3zmJPMw5ZN1paLfK3aImcsppxKngSoOZWABJBPUEHzCQTKqURW6RN/TiXSkpLJqawFAb4NgB0niiunMuxqfoVZxw3EzqnkJ8OoonVV4iwZEDUjcVoyIPs/DksG+2CsJYNaMN899CK85sjpAyfNkXt4HDSv9sHS3NqHr7kamual+yKnHfieYZZbPsWuqshbcAst03REKSg61pnmCNQQr7O7J+AjOS5NcXRy04GcaNeMLNcm6paE9x/Q67+zwaiabcojjDUZ2802yGXaHS1p68oArFfBhBJ3kNOi3OfcCrXziyV95PlrToqmQN2hN1p3aHXAnz8ExR7wR5a6xTG4j4SDcegT9MMofeLWx9wK2uND/HHZB80Qrc51bvaF7ZDrjLSFUGoy+FtFWhFZNrUlqcnSotJY+F0a0rEvmo4X+z1/9mmzhUXQkW2Dhi/+KJgL3cnCU1SCD9rJyFA7YGh6u4M7UG0P4JM64Ea0SR0y090TcG5M6KS1ZTE25KMdhO9NGEoHX21hP3wDxuoLgX74TRQbDcbVFAtbFVfryguvu7A8gT0pN0DkVyroveTvjb0KDUsy38/fbnp3guDJsQn0UeGT4+aW3+3skF2vjWMVzHrKBDWiiArb8o7pCluX1cPvI7z9L68ziD4Euzp4YFqNnGV89Z4hRxv6Cp4Zy1h4imTk+a//zqHpnffn0Gz0zQOV7aQ7M0i7cBBJEVOk8gLiFf3g/wymtCo+2rN5kDthd3Xtd/r9NFnXreLV7UsGT8+60uaujkeolNeX6aLMVJvD68utOqFq0sIZfOQcrz87AYYV7cnMEpUXaj5mRAXcf2u2uucPwTTR5qsIp4n+ahJL4BhTDaDTQrOHOgll9kjXK5g18NJnw61X3Gvf3GmoRcSomhKK7efMbTkTodVc4QpKR3bmenqQV/gHLF8FrJE8vDw5YAJNy+YP5PN/0O5OOF75q62lp8L5FbyYJYlsKOL4nARoXX1MaC7h8/YiI2DQLazwh31vkd/SlLL0py0tlxHhVJyjovIluocpx4fFBXqKcNy3w3B7Qb7H/te1hfkeeOPvPOqpM9WxW4KPmie8WppZ672/bxs9qhcgJRhUJJ0S1TkPAFMz8A7CbBvelLVmBmy2bMDvLHv4Dikr4FUhJdePbNpz8rREQdvNwbLdnFbYzv5OQICFf6RBOnVAgtTZyW1NkABtR8a0HTAUCGO71mW6Nttu+e9s96F/b1V22UrGrpQnUsqcQeGCtpuLZbu5WLZro9cHjQNmsKAbR59QxmnV0kQRsg52mhFy8Se4smy6hPDKEnod91k4B3J0cqLAJjWglZ7fujVJV0gEjLps6drJmT/ktIwPXPl+t+BQnzeSrXeaw3MIGArYH+OvQ/qRUNYhWYsYT+YHZZmFKS0avUG1ULByk4wtC3ymacv3sX2b1yDevE+CG34oINeyhQfy6YKibkdY4KbXW0FcgtAJ6YOofD1w86qf26qa032a6mU1fU8ySBG6sqDvL/I7KrzrxVWb+cl4R9H23GXhuR8lWH0apAPB/CLRxJM60FqdSxyn9mZ6aypiDrb1YXmRvdnLWbxzPBbT0ZXs7csL57P9WJC5RBro1XDfNT/oziZba9Ypq/oXfBGMnoCXFY6e8F4Vh3kCc7HMo09Y8/DT5NHM0/8XpATlxP9+5Kw3dTVna60yPjrCbjfJ/iLi0Z1tApaQDyjFAbuty8GyXHSOpC3HB5aEVgooh19o86aSLdLXizQecqPz27z637h7sezrm52hUH4ymBAGjDZoPu1PQplPdb73UjtC7mica/DmK6u/i+DzmDozAGuTm5YDLc+07GfBYnqDUC04OiDek1fowB24WsumVeSTeVHvSnhNDWtsoY7+4KOcMgEdT4jKuvQCU8AyRe7oW9Hn5HkBY1AA0X3tS1rS7PndzfN0RwaMWOsjmA3XCfxKooqyev/eTeCMfroCUrmCUsWLSv8B3QQgFSrCJnKf9cutgqUpeV6VIVIjlfqvT2bZmjFi4t567KV49UGORymh8djO61vFPEgcUaddPFgbEAcajwPQxiOBEoOQUwzuiUFCvVUuNGv4gbsrLNMdcvcbRCl3kUxiUD5gR/+jzfFSMSQGheTlVSxcehSPxCCScGIQCd9ia2S0rjqww4Z5Q3KvmUc6PKO6nucIZid0tWB6e5OpToAdhFJbQeE7oXVZYI0BRsHJHuDnmdDnf80fzY6iRfMI8lntGLco1JUFm1txQOSaDdUOEDppBPNU8rPaOpcMgCX1ezfV8oVrpSc6ErB9R9qBqZNMMgw2WsSdqkKcovOuKLwUbXr5d3MM0jHjwM7bgxLWUknCdWydjvEkbFW0qBesqC9cKZFCIX2QRHP+J+RBWoSKWpZrg1NKdpvZ6F4MaFwB1/EBfASZy/syoieFHRvzB78ZkG5UMrzT3DHfX90XRBatoSs0ySG8FBZ6gzgEA7oHhmCuWfw5eCCaY2t1xkkPvuDtkHGCTJWAVddDnoLBqush41Sw6nrItTbsQcfIFQDsQcdIzwp70LHey61h4dvCzLf97PGl++ALi2APOl7xbMbbkZFaRgdIo19JF4YEwx50rNh//5kC8w/UDXVH0qYsvz0G9qDjcdEzKSFKr612yGcsZU4u6Ad70PGljJqwLSXnGYlx6h13OVz+KZR/AxY+FNmR/3pZFv39q6xpmp3usyHB2X1xKA04CK1DEb00IPIx6O1aGvAfEgrNVxNVGjACpTRgb1p+xWl2xO9LA2qgmfJPfc5TSa/Fh1PmhVoWnv0UaqMTYCvG5zx5vcJ6zpPXSzE85+nYxQ3B+xzSzXcPLVRXOFG5py0havE/52nxK6ynzyi++v99ztPlqTejv0zYQd+qeJpBU+n6liDPeSp/iWUwoEcTLuVLTM952kaaMslQwZ6W0sOvoeb0khO4PudJ8YJr5yuGymaHho/cfnC47BYcRhoZ03DVLyQd0hbjc572m06Jzuozw2o3q0vyYrerOyX6nCeex0N9zhMwgKBpdzAJZdr9Axla2j7dMtlXL61yX3TUrmd9qRQzQ0u/icXQ1t74lzO01xKr5saqPrEo6RG77dKNR5/xZGiNV5cnU0IbzTYuSOIYPM/TxYGhnXATi6EFrCUehjbb+kVKx94H6Imrnb5nyIbvkyRDy5MAlaEFJIB8giaaTyBQqPwIu1rebGZfk3VP7nRfRTH/gG+o/PSFDvVIhhZpSck9l6TugTifS7LBqKCiQ+0DYjO0/FC5FlpXJQzPmX7Ie/wJc1NacC9pBq1qorKIG/knPCey/+PAc2o/wuI56x/y3cMQwmuOnD5w0tw/pGLFxqHjKCnDS1PlNGYG48HQ1mJpHl3L11wbTXOiB7ouzZdVL1q6yzB3surHUXOkNdo10PUPlxFogS5rYKGg/Qwl0FVonl+RpPXs94EuHcIPnxPhJ2OvRnAtI1Ydv7lv9Y35xK0UpFaNNXxqL/KHz1A0zQ2u9rrjN/4o5fC8hWoRs0oEVzTK4Ff1AVMBjdjOziwuC9BJRKorWlbOCH79My7/Mk6/LsNb9fw6YAXpphbtccpme1yd99HXNHhkb39akOap39+wkKlEvquFolcdA/Y9NWBNMFGZO9aASWqvtvW0lcqAiQKul8AVCJNXR46sDeWPgRULm6rign9rLjHs7u65jOUkOtJV7aH+14j6RYaBiVpxa3U7pSJy03neTERuetPrv+vbSRTpE1cvTKLvj7r0uZL+7mUb+3Y+IPMEUOZOohJbxhzjydzWwtWaMPOTHVg+y1gsDi+/n+Xoy+sevFN/kVo+D73xeWjaE6vU43IWd27mChYG6fzruk7CXh3eiPcm500uJNt8UbIp5/Jkg1yCLuHdMHK50RI3LGKLg+ipSNPhUXzlGmbxlWt8yYcRXnL2vtXFrDGXTVOjSROn65Un4SM5cj7FQfI3l7Akz7zEl3w4muSEfp4dsufDTtyRFoKduCOnRtiJu7WT+f4XAe6U9GNaIRGjOx9u+fPs1H6OJF1wkTaJUOp9JH4CpRiHQ2s9NJuc7abxfuQ4T4vgd6/N9a6sMRbMnbJhAStwRxbZ0tfdvRXAzXD+5zjg58DZks0Blu5sp6bpdRkbzBX2cQXs0OI1CFJNjPsUzvESaG5pgVtg4V13BejxnQ1F5HiBOSb6V9q66lA15SXDAssN4GZ8eMszUDGRAmian1uypoe+ydrJyRZdrjk3IFK7wAuJSO3ivfw7X4Hs3230FYogOw0qt1vUkcw58Mk6V1BrTLRQub7NynEFuhrYtUTKN35AWY1KtxsGh6+XdV6QX14l+HQhqIN4iHzMg2Ar7vnE+byehKFW3eV2PcDi36icXYAXC66DBsyB6pmzuByWux74Hm89E/oiEFJ3YXERIAf409YloypvaQ4aFrgEmckJaDK1SCsjl8RtGSRttGtVDjQK3lBF2NU6hzcKWkWCqiGT6KGu7yRSijP5m1LT9udZpjlte6A6r1DwLK2VVBIOUuhjSgF0cWiiGkFCmagsj9EunCGdMgyc23syu8FMSeD7dOMFeL3c2Y5M0YnIaKu0vhbAMGCB5T4cme5kD4GrtGheshuiq37lSYlFgpwHJ2TzJRus2xLSG9HeUo8BPrGgAZAzUlT2MR1cqT0TcQ7IDxuIOAfkZQwgzgGRx3n8dimU9vY4J+zXxLSCvb8pI1pAPpH2SX3Zy3vA9LGmOQvlR82uTVMXsI8UVTimRG3vg0ISiN01QAeFQqMDLHlOaaiAiST1G5H624LP5XBqlUp1xeuctaMGWMQ4dJ9/Y+JlwbwxKQNhlQx+q1LWjc1bNYI2GOwdfDL29pqItj5BBlTpzTMslZKfteo4VQ2WLv57gZBZKxLNFwefv8vrMWCNeKHcefdcnlKQP9VH86dELhQ3Ofv9wInXaiyTS1ZqVI8adFj43tpcKE7uA1ahOPv3eBeKOxkXu3PFKD3zhE9Xrb7lWKfjXigOmQmEQw20xvdYNdAOvBdLobi5Cmu27qnLNEyduHrB8HJXbVwLxZ3rahk1/UeUaUSRh/G7k7FncRDJHlMkuffEyxrk/4irUBz5b8f370frmpa4PSmNeTL4eJu7Oh4INa8vo5ZGA/qyeArFxbx5YHCwB4cS+3rO2oW9lh0iSKE4e0w1gE4LzR4jSSizB7ELxWkEuA0NvRdlFle9vdIuZdB8tLvDqVCc4jusQnGKb8VUKK6039aNjfenG0XsdV6/3VIlQyKF4qiN3zlqs3WMd16LfKLPVR2EQ7Ex0juselaZbwmUziumQnE7LRyXGRZlGgf13Vmz9GpKiJgKxZ0/NuaSw1dds4NSPyp2X1//DAfbLX6LZTtFItlOqC4MPoXiejckbhs89apxaWDxQuVT6ioEKhRX/gazAuMb4hhHLIXikIs/iReK4zk61DJpoW9xLxT3c7nqc637dZa7foy09Lz0zF3iheIU32IpEP+Gvw4ZRUJZh/ypoN7Oe8Omd7kVYJznP7psRPitzmIE9bqoVGKAepHKlfiDenIXfWi6p7ebRSbGTSsqoguWRyYcqNcJFAgVH7qtXPl/C+oVrPu+YvjcO2apdskvfz5QFXxAnORAvRxlLINFSsZgkgD1Nter3Nd3vmW2cdDlvY+MI2bgCuop0fI1kzYUUY50cHA70XPGRxxGmhOm4aZIyHDtAuqljup34/PwrgZJBvau55hDBSuwtTeox/N4qKAeMICgaXc0CWXa/QNBPbXFmftf0FmWBW+n9XF3LZJGu2WcQD13+UoMUG+MfOW/G9SrCu/zwCCVa1GalD/j5qbh8niCetVTZCOe5He3Opbb+dmhapMVOIB6TqC1UEE9wFriAfXOp8Y+u0qayEhUzjkeP9DEUJKgHk8CVFAPkADyCWPQfAKBQL20PHXqeuYu42TT4d9XmKQ7i/9hl0hLSg7Uy+xaKUZQz9mkoCL7cNfKPwLUG4vWVQmT+3tvyEybVdJf6OvqtdeX9tO1xol6QfZ/HJJ/rbtVYiT/6nfju4dxhNccOX3gpPmsNbfWW2ssMwgfpiN14uYgDg6aZ8phaR4tx9d8PJrmRAf1jhyU83nCbDDZ88CqQCFv+/d2BfX+4TICDdQDK1LVKlaKBvUSaPkVP64qVv4W1JuAZso/DhrbdfbY4BuDOVbhumULpTmLV0kAGnshU4kBjeXICEW+iAGNFepoj1HqE0zbcdi3y9AjNycg4tRtg8b6bq5zOLKnmrF5GPUvQ8bERBygsUegzKjQGCCzBKGxtINyf81aMMIiS6Eymtbvs+DzNyULjfFkQ4XGANkglzARzSUQZkZFTn34EExI0+EwofrIYk2odrJ8yScRXvLnieeiuEZ65sGyUTFms77PwEfyd5T+nU0TLphl33zqfzt5biYOklOksSQnS/Mln4wm+Z8CKL29POoT+fNI6pH7+pmlgR5bMO4TP0BpAuhDUAGlOum2znCtAZTUpT5r3O6nZFC0fPvrwnR/BLXWJkAJ2dtxAJT0QeVQkRs5wbUBPLNDXIDSk9Uvv6bYcCxSN72PHB5exSUUoFQnjaVWvnS7Bu7/ZEAJufySMKDEGwWoVI4cYun2uwyE1gFKI06HKYx2szQ9NHHh/qOvXydLGFDidXFUKfKbJ6opJJSJiqCAkv/WUQ6dc/IY+x5O3nx/YQitnQClCT0rMQCluh4izj/+PwGlwGdWs7mRhy0O91Xl3mIeNsIBUML5gAREb/R7VmKgN3I9K8UMKDUO6VKYGTzT6sD8u4yC2uogHACljve2Pkgr7GFeMOLZGoOfY17goBLQrTFUyu/RqmOk1gFKyNN6iQNKvB6DCigBSkH+dCqaPyUyoJS0fsjyodu2UQN763jc2PLsphgApfhelRiAEqWXyLQt1NzA3wNKUx6fWG+scJORNfJ69NO5MhtxB5SQGRA4sDfRoEao7I1rL9RFfFsApQNTjLWu+NIYeaUJya96mjnhCiiRJ3zSntflg+lR76FylwaedMdBJAqmSGq9iJctxf8RF6D00c5RjfMmjVZmcfTQuyEf6wkBKPH6MiqSA/Rl8QBK+zLdK0ezCikll4b1TSrc70kQQImCqQbQaaHZYxoJZfYgNqA0RC5j7KcX9xgbTri9OTvqpqOYAaWtqpUYgJKyqsgwUdsBpSEql31XJcy3CHp1X3tMdX6iRACleQohtl3l3tL32Vopvf/61wYcIJdIUE5UjsJJlUBpjGIClD51Ojk2tJ8zdbNdB5M+f630FhOgVF5THGhvp0gtHptWU/NYio6D7aZg2k6ZQLYjUcQDKK2cPMJPReOT1bG4BTT36DUjCAQovVDBMs4pFQIZRxyAEnLxJ3FAiefoUPEca9XWrUlaACjdiJsbrK76kLJLhkoeFesXL3FASRlTgVoV/jpkOgllHdLqmocDmnuv+GseIikkWM1DZLo0rOYhMrsMVvMQmc8Ge8ogMigFe8ogMg0I9pRBZBYJ7CmDyFNn2FMGkedFsKcMIo/pYE8ZREZKgabOUBNyvw80dYGakEs5oKkrSfRxKtDUDWoy/LvajxlAM9s5t2Lrz0If8HGM3aGmjgPCRu/dZmcZqehTdSnb4x3QpAg1PXt0rrSXVJZRoJ4RPSWg4xCgSQlq2rNwPFn99A3GscsDGKOfD1oGNPWAmspedawy+njONLzruDtSlmazgaaeUNObze6sRikuJW7/gA0ptTtigSZlqEnRdqju1B1PjTeVSmcePB0zDGhSgZq6f/M++8ogzipl6KyFitMazIEmVahpSf3LHNm52+hry+wP3OxSNA9o6kUSvRATqoepRkKph7m8exw9YXwcJVSnNH/KvCN7caiHSUEbr4Q54Ud2HpzSFHEuXsV71nEnrCP++E58H0lF0/xPhTi/36hbemP+dIsN80y7rtZonC/6vnGBOCP1sSDOLvpigDhD7eXTQ7lcRkRo736rRilcJjbEGaSPhZbN1///hTijHlalucTXW+yPL+12oT9bEDWWHMQ5BtNgXSRjMElAnPMGzcnY/vaIed7kLqVblWozcIU4A3v92NBjQQVlV7ZfD5XQZ444jLRHI7AMVzyCOJs03CFO9st+3hWn5lJDS4/EFjm/DZQoxMnzeKgQJzCAoGnXgIQy7f6BEKfcDK2YuxtcLPb438yJOeleImaIk6SFBXFWaf7LIc6e3Tazzl+bTdt/Tbf6Wp8ixLMt2wZxzu194cA1p3LKlqW1R+7GTAnBAeJs1MSCOAFriQfiPL3K4ewGL2uTnWMU9js7HHguSYiTJwEqxAlIAPkEQzSfQCCIkxnUbeV6xnrGvu3vdNe9ffZF/BAn0pKSgzh9hooT4txrVFBB9x76Z0CcRmhdlTA79fgC7dAVd5NNE3sEBa8dmvMAp506sv/jsFNX1sXaqX8YyncPxoTXHDl94KT50hPl43rI083CE6ZPlT/v19YiuqDm0ZpYmns1u2QamuZEhzjHeq/zCyncYZap5xy3Q+ps+0Kc/3AZgQZxgk9bTB6OAnHeMM+vGLBr+O8hThM0U/5xECeFOef+/nRTy8OcTuafSG+3/P6GcYc43QdjQZxjBhMU4txrofEl4Yiy4cEXV4vjNvfcjivEuWXY9iG22XsNwuqvZ+suS/fGAeJ0GowFcQIySxDiPHTXKn5xp1m0DRZ+pi5DFgrmKEkW4uTJhgpxArJBLoGO5hIIM6Mipz58iEKk6XCYUL8NxppQbzdLbkp4ycO79Xxue3m0+b4biotcRr29gY/kb8ITs9PcDjB21xZzDqQsLMOjEMUgzEIUg/iSm6FJ/qdAnANDUnw1nYaYFJ1I3vs0a8bEdoE4czSwIM75Gu0JcZpNytXSmOBqmbJgi/XIyDTEqWObIE5kb8cB4jykgYUlBmm0O8RZGH7I1vLBIoPixyo1c5/cFsSyJQ1xzsdUa4zGfxBnCyFO5PJLwhAnbxSgkovAKBAjxDlUNmTq5ktUw0Pj62OTUhc8kTDEOR9TCqCLQxOVOQlloiIoxNl/Z69v/fdGWGQsdu7gqD17ENZt4QhxFuthQZxOev9BnJB9OsRXjZnZ8Nko50TY9cNvt3TDAeLE+YAExBNz9LDwxEg9cUOc7icYa3VtrOlbXow3LBivLVhO+p9BnBaaKoeZ78/Qoq/l3uq7+OFlHFRywlRpip4YIU7kab3EIU5ej0GFOAGlIH/KQPOnRIY4/7bTNC9nOVsVP2ZOfJbw0lj43toMcaqPxoI4T43CG+L0vxRcxXRayAgcVLpPi/VJFXeIE5kBgQOfqDwai098MUosEGe3S/v22ejcNUqIHPKtZ+eniMq7bYQ4d34/duf+ulfGhUvtduhenHQHB5GAroIhUtIo4mVL8X/EBXHOWFH33spnHWXP4pHj/MKp9wkBcfL6Miq2CPRl8UCcmX5Me5rLRvrmPrcC1ZWNBHuz5CBOXqdFVQPotNDsYUFCmT2IDXG+Xl6+JbM+3nDvOnOvqn2M0WKGONVGYUGc8SPFBHF6lt3su+SJg1WaVd2KzUHdciUCcX6Y+eV4SFigxdoez876Py3oiwMIqDgKizWrH0mgNEYxQZy2y+krOUozzYI0G8bpXzstmLeAH8TZgeHVi/nR2KDYRS9j5aU6kY6llbYrH4llu3gC2U5OTBCnqmv6psUhvmaHKyuuPdm7T9AzShbi9MI0Dp1AxhELxIlc/Ekc4uQ5OlSE8epI3CHOPvSgAbYqnqYbR7CWAvsqwSetSALijB+JpcD8kfx1iCUJZR3Saoizf3PvFT/EiaSQYBAnMl0aBnEis8tgECcynw0GcSKDUjCIE5kGBIM4kVkkMIgTeeoMgziR50UwiBN5TAeDOJGRUhjEidzvwyBO5FIOBnEij1NhEGfvbEWt0BeVhqFnpoSW3y3xhkGcM3udyxn8PcA4y2zRvN25d+fAIM7hOkUx0XcGUEoWS+VOH9njEAzi3P6mU+KVvz9YHh3wbqNtrJsyDOK011fNKXB9ZLVD0yHZLtKuBgZxRttnWVWM7mJVwn2wYouHQx8YxDn3tBTn7IxMRvbwQwuXLurvD4M4BztUKSZl1FP2V6nrX6/tFg2DOJGrLSFSE0Q6RQ79CV7L0s52PWMWV7Px1pLgDztwIDWt0AYlYY7xkT0Ep1xEnKv4gef4ZMxzfFLzOb41muZ/Kqn5sKv+dXuWr8nGW7nMR2P+0hAjqRnEwCI1OzHEQGrOzvq2MuzYS6Oy9186lSslvSQ2qbmSgcWP2TH+f0nN+qUe7wYPWkA7rLOhfP2V3hUEITWHYRqsk2QMJglSk6GcHF/Tr8AobN5F/7E6mw7hSmqOnvVwwZa5NwzjLIZHrp2om4XDSLttjmW4HHPi7MRwJzWly+Q+vw1lG5c1KCWoMUMHSpTU5Hk8VFITGEDQtDuDhDLt/oGk5naP+M9SKlbmccd7kM4u3bdHzKSmtgEWqfmG+i8nNS1uHi0ov7jaaPudn+vVn05APNy0baRm3tEhi6UZJ+k5Xb5kqlV9L8eB1CQbYJGagLXEQ2oezNH5UjdtjlX+8EFPKV5WVZIkNXkSoJKagASQT7BB8wkEIjWnm/ncq9/nTs2xCdpYd2TzUPGTmkhLSobUtC6oIB2giZPUjDcvqDi5l/ZnkJq2aF2VMDt1cscIxo+JWZRQr2vbnqs21OO0U0f2fxx26nQTrJ26tgnfPdgRXnPk9IGT5i8dI6fIF7hYlOzYbFXj+ekZDpp7UbE0t252yTPRNCc6qSk3OYTyOU2BmjBSeuqpVR3Gtiup+Q+XEVikZrUpCql53iy/Qvmc6e9JzVlopvzjSM0tnb0f3q9XMjwk6+x3bcAtcwmQmh+mY5GaxdMJSmr22am5REE7gxY1gWPZ555fAq6kpsNnzhHqYjtGyvd5Jg9cStuaxQuSmi+mY5GagMwSJDU1lZNcjlwJpARNlisfsnMEm0CkJk82VFITkA1yCbPRXAJhZlTk1IcPNog0HQ4T6koK1oQ6n8KX3J7wkl9zmra0m7aqZVHfsWOPDSnsgY/kP/KDQxcNnmiY0jkzzjDTZywe68ZpmOvGaXzJ56BJ/qeQmt2ypU/uiv9AS1E4oC/z18NN7UJqUqZjkZr109qT1DTR3/spo2632dFzgaWM6hzB57q1jdRE9nYcSM0J07HYQ8Xp7U5qatcpTWi8FmQeaZjQz/32BTdCkZr107DUKp/2H6nZQlITufySMKnJGwWoeKLidHGSmsGbTeYHN040iKzZOVRl/lZBEqf9SU1eF0eVorx5oppLQpmoCEpqLuLKbWIUbzHbOJOcei11BOZt4UhqfjDDIjWTzP4jNSH7BKyRJS3yqjA7vKt8yJMzWrtwIDVxPiABGcQXZlgM4ikzcZOagVtu6Q9fU2qZcqB6r2kiW/Bh1P+M1HzvtX1H3txcSua7y7N/vh40HAeVkjBV8jETI6mJPK2XOKnJ6zGopCagFORP56H5UyKTmvKlNgX95nsabWrMynrk4vtJDKSmnRUWqfnNEm9S89TKAPdte8IsY6V6ugwMP3gEd1ITmQGBA4TIsMKCEAdbiYXUdBnk1K3ny49mgbUrVT/dC1bEldTsq2l7cWX4ZXrGm6G3XjEsR+AgEtBVMES6akm8bCn+j7hIzfekfMMr118Zh/SlLS89+3Rom7s6Hmwiry+jsolAXxYPqTkhafF3g5QIs+J3pIr9nX5YEoTU5HVaVDWATgvNHvNJKLMHsUnNgs9RSaaLFOjbX9oa0G6f6C5mUtPaEovUrLYQE6n5jv3M0LLPCsqRzes67LkWMFAipKZ6pkNqmNlx6sY78tarYsv74UD70S2xgDKyhDxqe5KaP2STzfXCR9HT6XoJxlsnnBUTqalq0xD6alCBYZlZmfeIvS6bcLBdowWW7YChQBjbKYqJ1Lxi29GS4vnGOCixq9xorU99CERqHsA0TiCBjCMWUhO5+JM4qclzdKicYhdL3ElNE+9Zyk9unqOUhvSNdxk3YoHESc1qCywFtlrw1yELSCjrEEKTmkgKCUZqItOlYaQmMrsMRmoi89lgpCYyKAUjNZFpQDBSE5lFAiM1kafOMFITeV4EIzWRx3QwUhMZKYWRmsj9PozURC7lYKQm8jgVRmouCq5KnNKhn3HERymTB+cCrsBITa27KfXMggkWZXoXo+6+Gr8bRmr6nk2Mmhn41uLQkM5OqamyQTBSM73yvVZZ8DjGvoaUxSk1JvkwUvOO1JNCt+G3qGH+G5dvfT1uJIzUzMhInm5b7G62LkPB5GbRRxqM1LQpHE4dpnjWIqQ8SD3ar98DGKkZ/fN+z2fnGIbh967GnnlSYAwjNZGrrZaTmpkjx2m6f1lOz335gvvojvpZEQOltaTmQrRBSZhjfGQPwSkXEedSfeA5fvlUrHP85Kl8R7gITfM/ldREPhhXTKTmhMIKknYPQOMQUdu0+mxgcaQktE3DWhC2jNR0f2qVEpi7wDyRqnNr5cthp9pCarYVTAIUIIMKzDcUsQDMB/pgoxJRUMzwjGMqpEZSedTlgQpLfv4USffxl0P4oJjDbsnb9x3iSt/6OW1CwffgOQRAMUGDVSthGeyAZAwmMriYOV3wf4VRTCxj/RbF/PDJsbtHYKFBcYdlk08upT+V6MoVtEwgpmXsJWSZdmEtB654PoZVbG+cpnrcLVWm9ozEWMvQbMiliWQt9ZucOjRxLib9yybOQT8nbvuwK4de8vdF+Y1nvz0WY4mDYlesEgdTXMVQ4uDbiESZzuP8DXdsGX3VQmXyN2KXOMhxxQKvI12JMq+i/YhvXvWLVT2dWfDIJJ6qETfn4IPNBJhXQYM5YRpsimQMJokSB5nxpEuDl9KNYg+aqivOOaiLa4mDHX/fVO9XKGe6N9+BM2n4wLbmO4OGU8Y03AuXf/G0O3534+RN9jNoWQVV6Yn9Ho+W2LQLljjgeTzUEgfAAIKmXSYJZdr9A0sc3DfZmml7djwtXv/Rs9QpJ5zEXOJg8EKsEgcvFvzLSxxUbY75NEmuxii4LtrA4tn4IXiWONjR9dZF3z3PTdMeliw7vElLG4cSB+oLsUocANYST4mDxWeGaWrtczOIfqZrF3HLylmSJQ54EqCWOAAkgHyCA5pPIFCJg6o4o8EfFTpQso+eNl7/fK2e+EscIC0puRIHex3EWeKg1LSg4nyKw59R4sARrasSJsSdMXHszUMhW61iCl2lNmqvHoZTiBvZ/3EIcS92xApxUxz57sGJ8Jojpw+cNC98W3ZtyUEuNWOIte+IEI9VOGieswBL863NLpmFpjnRSxxIv1EZqH8qwiCUdHV4cI/gPqj3J44SB/9wGdF8NRElDs6xUEocfKDnVww4w/p9iQNnNFP+cSUOigxG1SpN5Rqk9Y7zPF0lpyWBEgdv5mGVOMifR9ASB+uCZ33o3r+KnvywPvPCo75KiEyXtpU48PwZv1fjirbZZv9KyriUmraCHWCJg/p5WCUOAJklWOJA42Gf0YdW29GT5+g3hp7dOI1AJQ54sqGWOABkg1yCC5pLIMyMipz68OHtkabDYUL1n481odrP50vuSnjJTYt0kgdHjTfcvaXr8VdBzDx8JP+romaW1fK7jFSqtq5X3ewtOEhuNBdL8sFz+ZKz0ST/U0oc+G4fazH5JtU0caFB3MHgNTPbpcTBlHlYJQ4ezW3PEgd11GXyCspxxodTFO39ikcZ4VjiANnbcShxMGYeFrTfZV67lzjolXi3omhUkmHGh8lxOwtm1hCqxMGjuVhqFc/9r8RBC0scIJdfEi5xwBsFqFx/l3niLHFQvHC+CpfZm7GpbnX0+OnTEIWR2r3EAa+Lo0pR3DxRuZFQJiqCljgYtfqcsfWNOnoON8sgurH3hnYqcVDrjFXiIND5vxIHkH0O3DFd96LmJT1ISu1VbHGXzjiUOMD5gASE96udseD9A87iLnEQqTGpFzkyy3RPUd+a7nb1M3AocWC0Zv2zsB9+ximFtU43erGccFApEFMle2cxljhAntZLvMQBr8egljgAlIL86RI0f0rkEgcpuRfNg6p0TQsnbYlWuPhwpRhKHNCXYJU4eOOGd4kDm9Dg5bUrfQ2OFU3spx2ksxD3EgfIDAgc6H3KEix6X22JWEocUEwzSoeZGFltMYmZlFLk54FriYO/jPtqj86cSMsf4pPtyQiPxEEkoKtgiFTlRrxsKf6PuEocTFo3Zxqd5EjL6Nyw3jlKM40QJQ54fRkV6gf6snhKHAwYNrCy/8x02ja7Q/PPPZdRJ0iJA16nRVUD6LTQ7OFOQpk9iF3iIGrnoRVLHluaxOS+Jx88vtFbzCUOGG5YJQ7OscVU4mAsPW24bkmCeYFNbXjCWOUsiZQ4CDDVvmAdtMlqw4VuLpQP8pk4YPJGblgktrqEPGp7ljjwV33TcMPAwTh3zJ0+uvfTU8VU4iAlRXHKR/l+1CMyPS/37b7yOg62+8DGsh0wFAhjO2UxlTiIVXm23Gd2Jm1b7VeV/nSFBgKVONiLaZyVBDKOWEocIBd/Ei9xwHN0qIC/nBvuJQ4WTPS2+HTiDKVM81FArxccfYmXODjHxlIgms1fh3iQUNYhrS5xoN7ce8Vf4gBJIcFKHCDTpWElDpDZZbASB8h8NliJA2RQClbiAJkGBCtxgMwigZU4QJ46w0ocIM+LYCUOkMd0sBIHyEgprMQBcr8PK3GAXMrBShwgj1NhJQ5MXpjrBO2cRN3iq7Ns08Kj52ElDoafte3nsTvLqGiqY//v2warwUocLGAfsbRSmmiVYn8yLXVgZTisxMHJ+6rpDl9CTEpKgsxnOS5cACtxoCFvK6fbP4Keff2qCqsHyRRW4sCatPCR1a65FmmWShfH7XJQhJU4QK6bhIoVgAUPRA5ibm+yf/TrEeZBO2endTyjPACHYgUctOFFmAN5pK1xyirEuVoteCJfPAfrRD5pDt+leaJp/qcylzmnTqhOe/3RJCv5YOMp2xd9xchcGqzDYi47rBMDc3nR1ksnT4NtGWlh0Es17IEDsZnLaeuwSLCh6/5/mcuid/ZJsxZLm6zdv+9yVPxeKYIwl6qYBusgGYNJgrl8s4d1/mL5W9NsasfFV75K++LKXMoabZK90ehjnBi9olL5x2ItHEbaq7VYhru5ljh7KtyZy9MvXYa9dZtncET1m8aMhl7pEmUueR4PlbkEBhA07XqRUKbdP5C53EMe2nihINtqy9dbat8fzAwUM3MZuRyLubRb/i9nLreuPrH2NHMcNbeSkkAuNv6BJ3M5MbmmWH1pB6P45MQhO3couuHAXAYtx2IuAWuJh7mUuf26wep9lsH+ZzIzHizYM1+SzCVPAlTmEpAA8glL0XwCgZhLg3tX2JHZd4zXjZfP1XnTgyviVnBmLpGWlBxzWbxanMxlhWlBxfyi1X8Gc8lF66qE2al3yXs1a0pHa8PYHrbDpm8YFIvTTh3Z//F4IuMazCcyruG7B2/Ca46cPnDSPFfq8pUUzi3q2lGdTWTlZTg4aF4dgKV5ZgBfcx80zYnOXK4fu6hTmGWCVYjfuthLYeqG7cpc/sNlBBZz+S4Qhbn8m55fYfM28PfMpS+aKf845nIle/qENR6FtE0v7rEfdXxm+Psbxp257OKPxVxeXUZQ5tLl0KGR5mdZ5iXJhX6JDzKycWUuf4z1st+V9IOxaUJcffinhzdxYC47+WMxl4DMEmQuc+2tel3doEfZc2tqb4MLDvkEYi55sqEyl4BskEvwQ3MJhJlRkVMfPgAg0nQ4TKhb/bEmVB9/vuTLCC+5xoQR2epVYcalbtMotn3St+Ej+Y0ea20HzthtUvrtdDElaao/HrU6/DBrdfjxJfdHk/xPYS63ZTccP9fV2yD+4MHw/BkPemDcJ37Mpf0yLOaS1OYZrjXMZdWkh42r/DNMEvJlB3/MGog4am0Tc4ns7Tgwl9bLsChC7WXtzlzafQ7f9q3ku1la6ufMfHaGYIFvSTOXJEy1av3+Yy5byFwil18SZi55owAVNNReJk7mknNr3rTcHq8tto0Y+Gltv4YrEmYuSZhS1DZPVAEklImKoMxlYKNXybVOjYYlb2YlPzx4uQfWbeHIXHLXYjGXtLX/MZeQfSYVXDfuF5ditnZdIMO4SMoPB+YS5wMSkCbkrMWiCeeuFTdzeWVmyPWPE3XMouW+6NPHvRMM2v0z5lKm4USOwYhTRolm9uaU5WvwUImGqdKotWJkLpGn9RJnLnk9BpW5BJSC/OlyNH9KaObSfHvsiEXyhkly0VP1R699JnxvbWYu89ZjMZfh6/FmLt2vPh7YLeQVJezrhUyT/FkHcGcukRkQOOCE2euxcMKd68XCXGp57uDGOO0xOrr5oNJX6uNRuDKXm/06T7YatN4oUY9hvMrD6DEOIoVjiuS3nnjZUvwfcTGXatlvCyIcgmkFa59/8v6xt3ObuzoelCGvL6NShkBfFg9zKTu39kb3rsctDyQd2usuU/Q3QZjLcEw1gE4LzR4rSCizB7GZy8Y5mp2ddFzNgkvMWVNnTnVAuzucmMsx67GYyw/CKcD4MJf6AdS3UUvUDNavodE7+VyslQhzaarFtewm35eaGdfVxS3oyQEcuD399ZjMpYQ8ansyl5p/fXWLOvEXNZJUb92wyfOtmJhL1+crx8540tMy/5Tb+ogHygk42E4O03YfJJQ7LMp2amJiLlN0SFWrn36hbN9vRZl5INacQMxl3TpMIJZAxhELc4lc/EmcueQ5OlTisEcr1yQtYC6nFRg2DHpSRts3LrRvwPmCaokzlx/WYSlwrTlTeiUJZR1C6MdKIykkGHOJTJeGMZfI7DIYc4nMZ4Mxl8igFIy5RKYBwZhLZBYJjLlEnjrDmEvkeRGMuUQe08GYS2SkFM5cIvb7MOYSuZSDMZfI41QYc0kburJmQ42N8dYj9kFuC0/PgzGXSt6htW7XJ5mXvVMZua/D9UMw5vK95eaIs0OH0NZ2Tn90Kv7FNRhzWXJ/36oP0evMSidqZsy3UngPYy4PDRp/tLvmd6OssIhc3RAtJRhzadZT8YRV3EzLfWvoR5c923Udxlz6qfWXZx17aRlpEnzt7crOarDHSl86efnA+fGBlCP9dsguf6f2N+yx0sjVVssfK31QevHqjy7+psVqnQ4vi90dhwOpuQptUBLmGB/ZQ3DKRcS56B54jl/ri3WOn+/Ld4Sr0TT/U0lNP0eplMw9uy3SHrnSqGsfVIu+b1xITddoLFJTO1oMpKbZyMap1xo20rdGxb8q7f66ktikplM0Fj9mHf3/S2rqV4xa7NQ1y3zH2iXUg669JxKE1JyCaTBtyRhMEqRmWfqiF9uvahrkHBtXsc9dZ0PbFraIkXZ3y5CacZVWjKw7IZMCFxcMxOPpmJiGI0nIcO1Cal4xVhnhnLzHfG1C6gC1wXerJEpq8jweKqkJDCBo2l1DQpl2/0BSUzPjgcnE6Q1GhaxxW5RUpaaImdTUjsAiNbtE/MtJzYAJOzKcz3c0KrkbUBB6uMcxPElNxV3k514hAdTioTdNZxRVDsOB1BwcgUVqAtYSD6mpZj/8maOvoXnJfWWHd5r35CVJavIkQCU1AQkgnxCI5hMIRGpOmz6hp9zQDPNDo7tldr+bc0zEreBMaiItKTlS0zVKnKRmBL2g4rxL1J9Baq5F66qE2an3t6tJdDkSRM17pbQsbdisBTjt1JH9Hw9qMAprp14exXcP6wivOXL6wEnz8lPKPxLHxZnm5a3QCFuzZDcOmv8VjqV5YThf8/VomhOd1OzwWsvwyv33JkGhJd+ORJ2ntSup+Q+XEWikJh1YKHzbiEJqHjfJr/D7uvH3pGYQmin/OFLz0jlvHdOjTrS9+w/n1f9Q8fv9DeNOaqqFY5Ga38IISmpyfBaN+Dnph2GoXqacXz53DK6kZoDsTdnETxomW69Q+jAuHbPAgdRUDsciNQGZJUhqqt1/qf515BeTrMqCbjNji+kEIjV5sqGSmoBskEvYgOYSCDOjIqc+fLBBpOlwmFDnY06ojOYJNZjwkhe53BzocOQRdXuYfM8t1Znb8ZH8w/W9m6Mf7Kfn7f8eXO32Oh4HyQ3CsCQf1dzLQ9Ak/1NIzcj+Ofdkv983y1vq+mrbpR+J7UJqloZhkZqb2zzDtYbUVDIa+5Q1dKt5cu3x17NvnxIMZrSN1ET2dhxIzcIwLPZwX1i7k5qO1okKN44PM9l9i3z6p9dWwfoMkiY1N2OqtTrsP1KzhaQmcvklYVKTNwpQ8cR9YeIkNeVGnwvdnFxrnDe+hxXr+W1XCZOamzGlWN08UYWSUCYqgpKahhcbtTzPzLXaPvacg5Lmhw7tRGqu24RFas7a9B+pCdmnMlMtMfb+epOkgfdWm+QqCz6V7p+RmjgfkIAM4upNWAyi2yZxk5o6dhpONgbeRnF3vEoXLKUIlrT7Z6TmzV2jjLWNPSgHNOwezq386YODSrMwVTLYJEZSE3laL3FSk9djUElNQCnIn4ah+VMik5o/cialvVp5nJa1dGP3tddKqWIgNatisEjNpBi8SU3zZXbdhmstt8hOKh4+I/68YIICHqQmMgMCBwjxVAwWhJgZIxZSc3fKbNvX56+Y77BaTasOqRZMJGgrqTkoNpb1sSbQNLkXyfHxjaGXcBApCVOk0BjiZUvxf8RFam4YXmTd287NJD3bW6u0+iSnzV0dDzaR15dR2USgL4uH1DyvopJc4HuDuunbNrcxiz4JelnJkZpJmGoAnRaaPcJJKLMHsUnN3OStFn5B+2kp13d2mxG695uYSU1aDBapKSM8l+BDana+F1FxZ9pR85jo8q1q0+4MlQipudx90GE/N23jUoXjV+cs+qKOA+1nEIMFlOlJyKO2J6l5y2gT5fkJPfNt70Y46L2O6iMmUjO2Zlv0M9Jro7KIeysLzXc34GC7Ppi2kyGQ7dTFRGoGdiy6lXFwFyUu7ucz0rhqwRCUZEnNd9FYxrlLoPxgsZCayMWfxElNnqND5RQHt3JN0gJSc1Qoc2eHnbtMw94HzDt/pEO8xElNGUwF6pszpSNIKOsQQpOaSAoJRmoi06VhpCYyuwxGaiLz2WCkJjIoBSM1kWlAMFITmUUCIzWRp84wUhN5XgQjNZHHdDBSExkphZGayP0+jNRELuVgpCbyOBVGat64w/V+HTfB6IDbV2ppacc4GKk52uHsg/y8owbbGoZdHD1j9EEYqXnMKrmLwxmaUebCffuefslTh5GarqmDUqr93Kyi5wbMe7/b8SGM1EwffbdIUZvCiKNq+u9X7JIGIzVHrbjCuXIuhVI2PK4heUmdBozUrN7f1SzNfz1jS/qXLnox56xhpOakbrUTw966msYdMjr9gGoxAkZqIldbLSc1owqjU3cdHWmYZPzwYo3julgRA6W1pGYk2qAkzDE+sofglIuIc6k+8Bz/RyjWOf6rUL4jjELTXN42zm+fr5tRxstG1njywXcCX7U7tLeyAP7gspnuwrsyWRSp+/B3ZRyylReLY8Ige0DXaNlOLG/PMdebvRiUZNecrjILdD0xb0vIFsg3tFBQe2CtE19aAUwiwJ6sWuiABBC0sbgCuSfDWv31a5oZQI/v49qUvufrzSI7ujI5HJbo4/pk4+qulurnTIN6WA5eVfakn8AXlzVquoLQF25uwHuyBdMnQ0FJDoha/jUCPXBCaYUkln/SjoC0zXPu58+ff7aGtyQLGsbbi+Xo687kkl3ZLq7uYAK+SNsM9ZpnXW6VQD34Y2H3jXZHBbN75GyhiwgHqJpbxGGd+hIs68SXEMA6wAzwszWbpgHGHmxvbzCD0FHATHwXIvoo6tKSVz9e7LFIvae6p/rQ+dmCxmm6oogI8K8WcRiHjmkcwJtI3jigfeDG6fgb44yneoC/kmcTMNYIfJTFcQwga+vr6ZOnkj29mEt9WcPII3n/+vUO0SNq0+yrdznnPGh5Dy8d0f1qnSeYXWMHu75wdo1AqziMd6AYy3j2kjGeyG1v3XS4BTv9xoJTf1nQ25XNCeAASyfAfIC5OJ4c0HTA39w9l/EawX/qg00eTP+mF0SXuNP7vLfPPUOr+D4poZYbgooQlQVcRXG00MvisJwcpuXyiyRtOfBDYF5Dq4IVPZpOhdkcF2xHaKNmxNRfsZG+9UtQYRffeYsFHSHqmulXC+7HzjnQGgJcp1YJLatyeI4QWqduJKGsU3t3WmF7ouiDVZlcxmOtcSsE8aBuhk0oojWX5cdmLRPGm9EQiyFUMOPfG4YzspfDjqnIXk0X9O5uynF093VimXJsWBxo+4++eD00PKvCZY4XJWnIkYbiHuf2Yd2rcG6PYHu3WcAfXp5cHxrb3afpF4vaYqFi5ccAdcsA7eNFHVlPAJa09DKhJS1/WyVyD8U/bQNzKCF5WrSin7RG13Ht0W60nCFRk+oG2D1t++keYnel/U6/nybrulW8un3J4OlZV9q4u1IDlKsHlRN5RmsPrq0ElftdGF/FDraEIXv6sbhctpNod/rkLPVz9SeSabR81JDRbt6ktg9hhFZIH4GDVnRMrRrbd5fAJ3FloS0X+CZwsXMn+c5PORa04uO/aKBv8FOaN7chZ1U5/saA/1bwf7vAlz2Cn2gOcWxCc2Otjjs2Q3/tEHdEbrphcUekSxMKIIHfVmRf1nu5NSx8W5j5tp89vnQffGERDgGkaDR1CRrMYOyQVfPvw7I6eIJ1o+KT2pR2C2Y0fsYKZth/EncwY1qXqbIG/ka0vHEFztPlBw0jQDCj/jPmdvkzAXZkb968aYdgxknVj7m3dL0t90d9bXiUSmUSIphBx7RO4ycCWKddghkdxjlX7tpz1rTI6u27ExoLgwkRzDjwCXM/TATjkCQZzLgY8bhkkkWG4Ya6DdZfDuykESqYIYdpvPyPkt4SEyiYsUDGfK7C7AyD1HuvnoZtHhEn4WCG60csy6lJ3HJiDWb4VibmVa4eYbiH4rtnhvL8e4QIZvDWEKjBDMARQuvUGNK/IJjxMHXc20FP+lNTuDvsX8qWLZdwMKP+C1YwY8KX9glmrDfUzZ36KsMyPLk/yX1l9y64BzPIfzu+fz9a17TE7UlpzJPBx3HYoNd+wdqgh34RVzDjy9CGmd5qNYY7PQOZw+YXDMA9mIH0EThoNQFTq/rG/6tgxmY0N0boYAZy0w0LZiBdWsuDGZbr3w00jS0yLYixmK1wRvUTDsGMLWjqEjSY0XFA2Oi92+wsIxV9qi5le2DfFp7BjMDelRjBjEw1oWx5nIMZj1WStvaoG2+87tQd+fc/L40nQDDDH5QEdWlo3VsiibmCO7L6+vp2CGZEr7GjfarvTonwHFQRo9kzmBDBDG1M65CIYJ12CWZUz/M9WzGsI+OA+/JcxuUjdoQIZtSqYRkH8CaSNw5JksGMLUcn96OSKBYH7Toft3HXf0KoYEYopvEWS8Z4xAxmrEqO5OyYfcg4auKqZdfPnvwu4WDGBEzLKUrccmINZmyuuDW81jCNnnb472/5P/RohAhm8NYQqMEMwBFC69StpH9BMOPZo3OlvaSyjAL1jOgpAR2HSDiYsbJPJUYwY3Af1DphuAYzbl7zePFqu4bBfm6fxvefB37EPZjx0c5RjfMmjVZmcfTQuyEf63HYoPv0QaPnwQ06o0+rSgy0IphhrZDxXjZ5ukGBashpCz1bW9yDGUgfgYNWgzG1+ta+61BJBzNi0dwYoYMZyE03LJiBdGktD2bsWTierH76BuPY5QGM0c8HLcMhmLENTV2CBjN6Zytqhb6oNAw9MyW0/G6Jd7sFM7qMxQpmTBkj7mDGVPOqbV0XTGDsGBwfPuze8o8ECGZ0Gou1NLw9hgA7srq6unYIZsz7rPGx5Hw+LebkPd1dciOjCBHMyBmDZZ1IIlinXYIZQwYelpk6Nsc0bK/PiBEdejEIEcxwwjTOFCIYhyTJYMaJQaPYFTUDKPn7vBX7FyV1IVQwQxnTeC9GS3pLTKBgRm3VxJePrtSbhL68adUl4ruahIMZp0ZjWS5J4pYTazDj76Oci5uHcSxSl4ZnUVIijhEimMFbQ6AGMwBHCK1T40j/gmDGzF7ncgZ/DzDOMls0b3fu3TkSDmZ0GYcVzMgZ2z7BDOMshw0+35wMj07cKP/qrUbb6yUiN+gzVtS9t/JZR9mzeOQ4v3DqfRw26J3GYW3Qb48VVzDjajlzy8Gh7yziSga+fvGUcR73YAbSR+CgVc5YLK0ix/5fBTPi0dwYoYMZyE03LJiBdGktD2YM1ymKib4zgFKyWCp3+sgeh3AIZmxHU5egwYxFwVWJUzr0M474KGXy4FzAlXYLZkyYgRXMcLUWdzDjVDeDLmlsdaM9RzrK5XO2mhEgmKE/A2tpKDeDADuyGzdutEMwQy1n94JzH5XMiycFPl+xxSmBEMGMOmss6+RbE8A67RLMKCp3e1G04qFR/gq/OfPsI9IJEcyIxjSOKxGMQ5JkMOOxQXnFNvdvhlunvFjct6OOEqGCGRRM46lJxnjEDGaYBebStZPl6NvDFLvH1Ax5L+FgxhsrLMtVWUnacmINZhhOH3Bcy3gnpUjhskpUWX9iYCa8NQRqMANwhNA6NYH0LwhmaN1NqWcWTLAo07sYdffV+N0SDmbo22AFM2pntE8w4/GlW6teyrkwtsVfYI3u+n4I7sGM96R8wyvXXxmH9KUtLz37dCgOG3RtG6wNOslGXMGMfvPv5ew9uNskaIqfpvL1VfjXzED6CDyQnBlYWmW27y5B0sGMRDQ3RuhgBnLTDQtmIF1ay4MZvmcTo2YGvrU4NKSzU2qqbBAOwYwkNHUJGszIS9K6PTLVxnD9retnlzj1cW23YMYUD6xghru7uIMZdg4POtpu6kjNntLNcXSQ9WICBDPGeGAtDbt4EGBHdunSpXYIZqTFTVyjGNPLKHL7fl/bYukcQgQzHrljWafYnQDWaZdgxgTn2dwFhw0okU/+2iE3KpFLiGDGVkzjuBPBOCRJBjPkhjZMlZtOMo+YPCLCsKfOHUIFM4wwjacuGeMRM5gxqn/0ErdRYyjbpVZWXVV5ESXhYMaHJViWO7dE0pYTazBjxPHXVxZL9TQO3V5Ot8vSO0WIYAZvDYEazAAcIbRO3UH6FwQzwgy+PWUP7GB21MV+i8GImOMSDmaM4WAFM257tE8wY23MrRfraU+tSpOW6BSv9TqNezBj0ro50+gkR1pG54b1zlGaaThs0IdxsDbonTjiCmZMKf57wuN5/la7lS5Mz7CvZeEezED6CBy0uu2BpVVO++4SJB3M2InmxggdzEBuumHBDKRLa3kww+SFuU7QzknULb46yzYtPHoeh2DGLjR1CRrMoA1dWbOhxsZ46xH7ILeFp+e1WzDjSBBWMIMWJO5gRj+T5/M73bRhrL909lBR3J6bBAhmpAVhLQ23BRFgR3bmzJl2CGYwlzqOvtPN2/Solt4D5sYiGiGCGeswrcMhgnXaJZiReYsh62T6zDR7vm3Rrfl5HQgRzJiLaRwaEYxD+l97ZwIPVffG8UEJlVe7SpokKdL6SrsZ22BmyBattgllJ2mnEKUiQmUnhJAtSyFFSqv20r5JG61S6n/vmJG5M/fG25259/V/+7zv51P3mOve3/Oc5zznOd9zBstihm8WRfvEvRD13JBhopuGDSnAVTFjGqLxZLExHj6LGU7bxoj4Su7R3uE4O8t6zE4njIsZEoiW+7wNa8vxtZhhEpAo31wwWO+AUmnwojH35uKimMHMIWCLGUAgZOWp8YQeUMwY4BF4a9XN2frl74dMTRG+mYlxMUPZH6mYQfAXTDFjEGH97dVvzAwyr+yX/9ttoxbqxQzp3ObindYB2sW+rz57/EjuiwaZ4Y80QR/sz69iRgB5RsO8WeU0n9dPpto35m1FvZgBjREoaEVA1Oq1YEdLrIsZCXBhDNfFDOiku1MxAxrSul7M+EDfu7N24nht374ZT09Hvb6BQjEjEU5dnBYzoN+RLLBihmgYUjEjdi+/ixlnTh5kyBsIU8J9a6yT/nrhi4NihnAYUmr4di8OZmSVlZUCKGYYDzx39dncREpI4MUnosMtxXBRzLizF8k61XiwjkCKGdPmjm6Z8/C9VuCJN0LKWy9MxkUxIxfROLF4MA4By2LGRvEFXu+19uiWjBkkeXLv2QO4KmbsQDSeFzbGw2cxo8/fWdcnqjbTw2MozQFkyb8xLmZYI1qOjrnl+FrMmFi4ccFlQ4Jmsrjqz9uaISG4KGYwcwjYYgYQCFl5ahKhBxQzplvXPi4qzCNHNCpfmr5w+mGMixlbw5CKGWZhgilmnPAJVRg1UNog33yURIv1/GjUixn+k0oNh5us0snI9VAou3zKGYUJ+uYwpAn6qjB+FTPUhx+8r+t6VzfwsCpjZ+uLr6gXM6AxAgWtzBC1Iof9XxUzkuHCGK6LGdBJd6diBjSkdb2Yccwgvp/1WW3NnOUpKS++FsqgUMw4BKfu2YNW1LZZw3S2psj2aRy7oYyz31ABTYnGmlTuKkZvmC5LZlcxiI7gZz0Ydk6A9xJtGSuBf9oSrdcRgfd19yS6ujg4eyoTgXe3A9utnG2JjgxnO097lU1dio3bdS0sFwWUae94dM42M21Pf97Pzd3f2S1d7KY5QGoUHwt00wkaBIIPdDAIBAZiy1iuwQAppEkxH6CTBjzfzqZ5q/jE2CNahYe1fma+C54DSQ7BT/NIDpmXf3vos1/boHd0S/qBvaEOFA/tb38Yx+IBgaJBgd7yimOnwW+wisUkd5TQcAG6v4Mz4Izgz00nwP/pThlEmmk/ttsq2jq4A70LaJ/A+8vV629UqZjdMoi/+r5KqsE6m8OO4prsD3PZslMT2qklaDBPRINZYmMwUS/gjdsn2dzGalrAy1jCv+lsfZnGao8rPO2TmGe2xHHEcc3MyQoj8k2yOM9sEKUyP8hlHPb13/U0iwFZ5C375OmRywsjZq12lUChp1ERDaeGkeF4za+bFnRrptaP2mm04GmqBd+V+4bbDNPPd35meMnyCCeu2IvKa7rcfhXtDqSYz4p4OSQCwRU6JFzOY3Yg1rCbQoAZdiMaPsVMMg2mFp8zOKnzM16O420ktLyBaQIz4eKel8H5+lAtLyvHNawFBEbHDTrdi/2TA7QNjGgkE0W5DVNmG22SUzaY0KURV1T4xwq60Q7trAVNw+ONzsTCPTKXGTq1dVHiy4Crr98PSKwKjLoPoa7+EJiCLd9f3d8Q9C8GkL6zPb0XSx4JXTA4cHlyH+ZlXVt2/4xq8ylJCDXXLUw9TFd/pnS3rwHTVbk+J9Z+/dcHLWxrdguVi2uWvB1G66806HL772M+DoEVkWDngr+0IHpZARMPa0fe8xnrb3taPG3itY99TDJ89WMt55czSZixPko04FJbyIDL44UggWnOpsFpGVFaBqk3V45df6xG9Q8DUwVgLS/QWlOADlEBtVZ4EdNaLHE7REIKBoPbyzZg9v3LkXmq1P/LJcb60H4avi0viioWuiznjN/tt+FWiIh6TLDMY0lQoc5DAkoeUwJWTEiFiwkHih5abH/aoltSVFBydPUjziOsextaOTMcuSc6cOFAkUR0BT/RqU5DdHYBXoOZansyvD2JYLxgePA+d4Uid3iGeI1O7qiBp3ZWu57i8SjcMxBeqtq4uzg6GlkB16HDA8QnoZaE80kxUw+Guwnw+OxfO07TZQ3YE2wcgecBKywMWwdP1rvbAGoB48ljnxSIHdmTXa5KaHEVoeQgYEczDYLPdg0JmpW7nYMzlbGSwyn6tl82Ale9Ol8Xb79u4uLa+SqnM0zVKa7yKT5Y/RdTREN3F2Be6enQ/lR92E/Fa5bqbrVW19nWwab9R5ndWhy8CA7PnS7RwHqnI2ti3h7MwbU0BytHDRfbX58FchVPYKLm1PHvXovcrVx/BYx2V02Dc1Wi3djCwF1B5LBTmdT9X4s3cPqHEcPRah2nq7LrY6IkG+ANPNj6wHnvIBJxLZABE93BO7Gm3Twd1fHO5tslssbUsMcDCog31aV4PEiX+j/0TBGI//9hhIwCkjNiNKuc68NVYAfGM6lodng4jHvNocMHSprH3tSRkswPpwSNyO5zLu3iMBQ0H7EfSXOJjpCcDqe5W7mDkgM9XeNYmYHji6dL3nG8at+Fa8CQowN0HHuYChSn8nDjnbymg4crKLoVkAEzh711k9qDM9EK+I9oB/4GnqaIup737NvC05RE210SUp/st8A+H5dBOBq5TCNu7OLuadC5esbDYP8wjei4G49VKHoMYLChGuD/nAaz1S6qmkCLqe5vzHAEDMawBWIhw5vjdu2mzIAzJfnasHteM/PUjyxZLr3T7ATn6DoY9FpPcPkcpEIYYJ2S4cFd9IJbE5ms4eIEJDftfYd5G9tft2GOwGA5zINpWlsgWe1Svm2oISIvk3yIFvPXg0qPzXEKv39gLiPz/Kku9p+aY1UE+yjAHA1kHjm4IfhtXlGwyyBddHwStZMo4NgNjobgFAbIjhXbZ5UeREA9ZqGM+bf2GgHQKcBFKIYt76rL2Pf72y7a2ensaYr9UDvZvzdnVmjG7Fncs3rW9d+FKftTNl/UpRZQCvVWfPl7innTH4apIkBmW1DmXmQemeOMY0yZuabSfbqn87hO5idaMzzXMhjOYHLkwbBZw3QPB2BKzzsT3JgdF3GiJJW298psq93j1qpxRphf97XljjCdG9FOuJsKWLIt5SXb4AKmbKyQkAkXEnAzokKHvq6MqDzSbYinQk2HwoCaGYU0oEZ3SH4E95Jbn5ZhEEyi1f1iyK6zm823oCP51vjLn6SlQ9RjrW5TwkNPvkVB8r2RSJJvjWRLngUnea3k2A9TVV1oAe/f6atc3cKJxPc3YgCZhw2DSF/j6MhjxINb5pnE/pwz+DkwMjs4AymLg217KF/r4GlPdPG0Z7h3fbxbPjuuunGCOT2btOhOdMUNUYTn5LIMZ3MX1SUCCYck6NB9NXgs9CsC6j6O/NMRbihYLPUAhzbgYTyZqQCoGE8BxIUXKpuJZdN9jKTW3KDnl3C6JPNG3Is+7Zd/55dQb/9Dv5QCdz+ByiXyKkWfB3c/RcIu9HdRuZEdyrlzuBroWjzlk9ycSHfZKUdJ/2x6RVehMYUTjGM5CFhe5laRsxXtsQpU63EkkloXIwVauGc/qJjJOldGZx3GdlrsVtFnuDszHFXAn/FQ0aGs0HX2ZNgx3CFMFvjnT9OTocw0EDQscAuilfO6dlPztDI0/fqTTvKHdq3JZ/WCJhIPuxrmM3sBhzbsxUU4IaTpTG3BjJiZkbFd35anFG+ezMyyqhxNjTE4n5q23MiLUwrmW3FL0X6ZH1IwXRxWiosdA1U2AWagoh/TvniWcFrDZ/HwOQ6NepyLcZLMwparo4MNWEx05h6p4DKCkTSgGzCcgE/ZWDkSnTju0qVxqbXO/EvoFCI1rp7gdvOgwmakx+JG0zjbuxoxgLT/MjgVDuaFoFGAiJEcw2P9gz1F5bH+wVwphax/QJcx2O1CMO2CWB8Zpe3gDsQC0PuZgyWnvXjaZ0zyaINvksp6vnWEwWYv7O9y2EeIxF2KIgl6gYQAmPN8DGuBhKt3XAO/2iKmupNIQr8RSdaYAUzebLulUtZ28YjwvO8Gh+6ILX7Xr3Aep0pkbpXIv1Vp2ZTir0RZO/XwVfm0QEsNMRRUSkZUKSSmW8tI0r+WkbogEHS1vktLSezrqPO/BSyPaSGByT9EC8cCplKseJoDF08vjXr18vNeGs0vK0JukuWn1Zwr5jQXL0bX8/2JzK0DjmBtRtEJ+OQEcJW5fXpFtHJ0cbYjWrFqM13brBb7aqW7hoyZRqrcsv0r5jbacT8b92o+eLWr5QHAl6TjAf2+8wqgBHCraBxPbAvOl/qTrTwYHZAz763H9gv2XehnQzqxZuFud8mD/n9M60L7G5SA+MP+9hDQaHA8HIFKBDfbxneL1h3I9hHm4jbTGXgK5Ubd5Vb+TpUc7yVePv25bhpnT6O58BxI2dd/N9OpWrR+hFndWHJSffCisyIzNVEQCXAVBJFuxeGPlmL/kVfvFoQzqKOT2yK7+p0tIWPyH6drFbTetL0dPGH1H7v6H0NtBSxfpvAy0618pi93KxVv1wIYXJ3a/RksY/DeueBfskdL3JQeGGwgY5K0BoL4ddyFG/H71cQPNZhOC6sG4LSs0eMoAWb0yFApNhtz5YtG+FXHW033Gm9BABSm9xHNLRZzjyGiMJIqdKDB7b5LXOnu4kTc4L1u/SaijYuTq4szOP3u2vgRKsX4WS8+nxq761rzaYPGm3BPxw0j/Wrropo+wPQ9AlSTyAsBJoD7QbjHEjECfJwczHqEDd6d3pvnW37PvmfhfrGPfukgRZdz10drDgTn4O6Ap3BDXcKTzDlL8+a/7s1dmu/c+LuIertlzVWxAg26/9hBZsqDb/7pd5G4AnLuBeU8zcs504CheTNGEZUnxljenRGww7LrfmfZaUOO7NoRZaWeImxsMcH9AufZG30tkGxn0Q3bGUopzqCoZWoGUZMGxLWKxqFgu1WItjPDke2I6t3ZQd1hu/W/s93o0yXHV0/z1omSs9TTv+f9ltN2i5FstxjJdn8Y9UHjkBGNo4Ij43RzJ6cUyzrgoqWn+xqYRR1o8gdZ+GXegsfCb/t11EfhfFagEyODdTGIPaSBVs+47uUk/VkiIADtY5bmiMh+mENLWPVQTHn5N7M/A9pRUMAMUQG1jjwklwCTh3R7+5dsh/fyf/sXdBdSp+1fUFwaaBIm8KbLgCYRVhOUZwOaehF4F6WApt6sJigGBDSJspqgFAnQ1IfAG7gCmsQIvNeLgCZxVhN0mQ5okmA1QSulQFNf9u+CzPeBpn6sJmgqBzT1J/BeTgWaJFlN46XIX9YqTtA8nFfU8HbO+ytA01+sppqYxzfylHI0ojQumEUPZbQATVKspgcfrgy5PFBfJ2qoYVLk7S/1QNMAVtPKGKPBQYeHU/bMj/64eHNRPNA0kNWklre59ilhnca2hLqaMbkNh4CmQaymu/fnTsu/d18zc/TNZn2D1eeBpsGsJqur+jYWjCEauyQeyu6XHisNNA1hNe25cG7aM+n7tAPH6ZGF28q+A01DCbyzLa5dg8MIMLsG9e7cOrb4y0iDgNnzcq8++pTIo6N0d9dgHlynxM0yPtRDUGIRpeKIr1y3ryMdn3hHd2FptTIK6/h0xHX8+R3LI/lwmuP02CloRxTYsVNmCUjHTr2N5/exUxMGzHdpCVDRjDL3i16dPpaTV8Dm2CmjBKRDPOYn4ODsnJKSEgEcOzXpJGP3u4FESlyJsXzEQVHOpUSsjp2aiGidoXiwjkCOnSq+HTrf+uh6/cARU168db/PWf/F6tgpYUTjANEEe+MQsDx2Sm1KjeqZhlEGkboLdOnn9TkPWMT62Kk78YgHumFjPHweOzXsvETKk/rRGnm54nOj5YUgWaLAj53KRbRcLOaWAz/Et2OnLt8tXaI+qVjneA7BK3ujHmdGh9WxU8wcAvbYKSAQsvLUAgJMnvpvOnYKOlXE+NipugSkY6dSEgRz7NQkfYKPEGkYPbxR1s1rhsJl1I+dgi4fonCU0sUEpKOUShL4dezUt6mPexttV9cLmvNgw4qbBbdRP3YKGiNQ0CoFUau9gs1DsT52qhAujOH62Cke1S923REa0rp+7BS0OIZCAekYnLpmo4VXhx+VIhcnOL6bs0mMwlk16DjKor0w3fViRrHQr1MwgGHCHZiYWHmCf2W4gzcgrrRiFtDbiSUHTw/2mVOsX8Rq9yDaWDkTrYHZ5hpXV0cH8NgqF6AR+Hz7Ldc4gx8F99E7g3yAI3MkYl5UIWrYg0cDMSdBS+jLiK5sRpO5BcDFzs6R0bEBC/wZz7UuRCdwY3bXii0bXi5snhqsoJlGmP62d8n2AETZuIstkB/oYswwBPI06VNVQFzktQCeBoxM0pVV3YGpBmgwZQT36rMeiPd+iPwfc9+MqdUIADxHbrkq5xFfvZn34ME3My//Lqoqvp8yahzjpkGUjPkJ+QVHr/5hVFUHFBIDFdrNK6rKAzG3iFOh31U95Dj8kZX0gJqxBIODGGVOh7gGJyXoZAlPzdx65Jkapss/oCr2lUiqAH6Dm5lZ04LuFD5m6K4kmriD02ewF3Nay8Gjc1xgzrY3g7Ns3ptVw8XUCqcfHEbPmmNHUJIjc07IJOgdN+ImWTq18cN0NSeRTOd9EhPT9bF2cXFkWHUKk92ZmI0yBDcSg0MCu5bosBIM7wgLqteHTO6tH5OtFRT8+e6tnaOKICehgPfjDkLtl1GfLxewogxPrMsnnxllurWgrGDCOseOBWR1R5jEvChGhH8q/dCr0YNj3WmcJ/v3Yd2Yu/zNbuCHOMxgAyuONEQc4d+IM759lPo1gndHnQFpZ+NDp53QSmg8GyX2tx8nTS7esXODmwr81cQPhZh9GlYhoE+z8rYiAkzepkWaqPRz3jVS2n3Zw3Wx76Zzsi9MPM3VBSRIuXM2MRid//61AOXw6/O2rAHP0x7IO+3siR1HY7SfBdC1dElKNvVssf5Hkv/DrPS56+tnwD4tN6nTqbGL+noXAwpWA/paaYAlLYi+UoC+ilVcaVI3t5MO/vVYIJTargXPV88+6zo/ru0QZZ/o3/lCY1o4v+pczAw8dIjXiRG/Wn6XQkED4x+mUPaAevageqM1eHjna2BiKl3drRSqX3v3tWXYuTN455cGgUktpQVmpJgHU0evpoYkcSZLmswPcidLrOto907w/WuqkN7fuwrrZKnDM7uRKIGP7OBi62DT3p95fxFZNMNv8+pC/YPDje5+8qzR4fRV9g24fbWjhR/GUEQ0xq3TuEh/CN1ZD1LRd3bxBIYvKxuwMq04ZR4wZQX5c2Xi1Hk29i7utsrEafM83Nw9mf/gna3qHlhoVJZVTPJ5c+2O3DV/zs2Q4uAvMPZc58jdbTo18cNYgaeRjKWGjbEgPYdZd+lOtjrk1zKC8xp3aw+EHnT+kUmohWqb5iG/QY+ubpld+ydT5T80R04eK5BLA2nGZS7oL6/KtK2qe1kqK5IjZFsSDS+/XT8zXGeb7pMv18ONEjGd9oICRFWxBLjFQwAwtHQrE2UPZS5OQELF+2upr5JCI1+LayUbbbVU9PIohgxlzA/yGMrar/NDgIrTCAKkG51mJ5rFhH8X7aQaYqq+fcA7gxjxbDerOcWjBEY7TTlXhUA7hdRwZZYo004Og9VqNjn000298zacNvPnABzQTkRQEti148tnMQn6nMjG/fv3BUA7OZR81WlYkkFLlqDMKf3mbIoL2snnLJJ1puDBOgKhnR7J7un1+cB+cuJtt7CWxdPf4oJ2eliDZBwgmmBvHAKWtJPPzbaTWWo3qYF6oXfU6rfMwhXtpI5ovKYzWCe7OKKd3s0RbU6IXWMQfSPDfYHbhkaMaaf4M0iWM8Tccnylnc6m3XprllVPLR1WPlrdeXYDLmgnZg4BSzsBgZCVp5YQegDtpCkjnz1GspdWyWnrsLy3G15hTDsRz1ch0E6utbDFUlRppxSLTaP2zlKh+D4fJ3R8wHND1Gkn6NwcBYJHClQOluCpqOUqlKJEO8k+Ut1uJJSmmWkqp/5++qto1GknaIxAQSvAjxC0ItYKNOZiTTuVwoUxXNNO0El3J9oJGtK6Tjtdyb4eFHbiAvVgpIxInHXdTxRop+Nw6v5HO/0j2ulgSdvjw/sPkQudRHcfSH+vIjDayec7Eu3k840ftJOXWN81r8+M1sovGOm1aMCWOBRpJ2KrzYcP05V0T6x6Xhb6XP4kCrST63ckOIT4XSC0Uy9p4YynblRaysAKlz4id6oxp50uf0NSBfAb3MzMsKKdlj56Nb+tqEU/KyNVNN3GAT+00xRE0z1sxcVyH99pJ6NWTZqfjht9Z9MbyonXhx9gTDsxowwsrgJEGYHRTtfE1o+YrLGafmD0hGJK5Z1QHNBOzGADKw4QbARHOz3dIPLauzhFM9Ts9sMfw5tFcUI7TUFUCOjTrLztBKFH0E7T6xjUeQvFdfwKDwWO2zgilu+0U8VPJNrJ9YfgaCfPV71cVzaPUU+v1MyhOGyJR512ggZGFGinnJ9IzILlT5Rpp5t/HVoouVONnvR4upJpaWIW5rSTFOL7V/zAOlniF+3UN92z9chYAjn0fujmD0Zy+3FBOwGdFcEYRGyMgTntVHGmXut4frV6iZr1+3PXbiXghHa63IZkLJ82PPQcftJOY186qa+s2kwKLz0wdDxBHvrFB4KmnZiBHJZ20vqJNu1kubcxoX65jH5Kv7FL++rPPoo57fTwBxLtBIQWlGmnQC0DxaCxV+hhkXMGWj3Xm4A57SSGJED6gTZ2ollG+HfRTu63I9NKBs4yOPTx5DeLSUeeCox2Oi+EdLbTdwK/z3Zqbp2wx6dtqa5PqZ2iW9nwNzignU4LIZ2UES2EgwNqbty4IQDaybbp+YBcg4PkcEuzO9fmFYnjgnbyRLQOFQ/WEQjttG7Sum1DTJNJvlWm3nNrNlBxQTvJIxoHiCbYG4eAJe20ZxG5VZ9Qq5O4VHLYtAkJl3BFO10jIBkvExvj4ZN2cqzTEJ30MsbgYHSs21MvEaxpJz9Eyy3F3HJ8pZ3sl3waMlk/RKcsdHmTvVLOW1zQTswcApZ2AgIhK08tJ/QA2mmxr3Oh8s6D9Ciy9YHcn+/7YEw7nRZGOtvJUVgwZzt5kD3XtSarUA7PG/rtcf6F46jTTtC5OQoEz3FhpPOKwoX5dbaTwz1jvRnD/EglISJXouslRVCnnaAxAgWtHBG10hT+vzrbqQIujOGadoJOujvRTtCQ1nXaSdN1nFGhhLHevou3GvzpsxRRoJ1Owqn7H+30j2in8rciNZqfzuvu6K96T4iut0hgtNP5kdUItBN1ZLe+KK+LtJNOFXmyTeh7UvGk4nIZ0v4zKNJOn0xspJ2b0rXLaXmZ78d/+lOGFIRDToMKwcIh0SO5RiB+0E7m305dfP7EixwZ+TI/79CwNsxpJ09EVQC/wc3MDCvaye2B+oCT0tr6udOt73vHnUrCDe0kj2i67yMwMZ3AaadCn6GjWupH6m7duP8Sadu0DIxpJ2aUgcVVgCgjMNrJco/Yx4iNClqxoxcHFT1SnIkD2skTURwqRBy+0k73DlaemFnziBronXOr3I6sjBPaSR5RIaBPs/K2SkKPoJ2a9joyWoTc1SNTR/sn3IrZx3fayXFUNQLtdFoGdgKPOu3UdE0lsW6ClHboZ4/cC8NoU1GnnaCBEQXayRZUD5ZZmDuqWynU72mn1au+ziyptVLf90burHLU5kOY006DEd//tQzWyRK/aKc1CusqvN5fJQV8NPYUkfjbGRe0E9BZEYwRjY0xMKedzExnUJXuRmseVshV2khrWYUT2skT0VhUXPQcftJO/cxvbeu1XEH94NnkLT/K+g/BmHZiBnI42ilDZVT3stTf005npg+QEvVIVs81WeHpP+NLFOa003eZagTaCQgtKNNOVUEtqx3bjMi5qW+URCefWos57RSCJICZhQw70TxF+HfRTlLGE5XmxbzQ2lPWO+fwmVBlgdFO5qORaKdAWX7TTsOOUk/UKL6jpZ6R270+6OpnHNBOhqOR1o4VR+MA2bh06ZIAaKc1J2sjkhdZ0DKzLn8Z4b0CH7QTAdE6t2RxYB2B0E7nv15re1s8Sj9N5Msp9+fmdbignXJkkYwTiAfjELCknY4WkJ9e0/TUDF0tMn+D5SIKrmgnS0TjqWFjPHzSTuYBrX2TtmrRj5aSxVscn7RgTDtJIVquYRTWluMr7dTPfuD41fXbNGPGVF7QVVpwABe0EzOHgKWdgEDIylNPE3oA7fTXd4/at+RIg4SJZsul5jfqY0w7GRKRaKeW0YKhncYsFz7hPlRe49iPfoHa19ZWok47QefmKBA8FCISwUMk8ot2opb2XzTSUkQv43Owb3he1CPUaSdojEBBq5bRSFpdFuwsAWvaqQoujOGadoJOujvRTtCQ1nXaaXXDm/w+iyMovuXmaXf6lS5BgXaqhlP3P9rpH9FO+5t6Hbza+pGeN/r9buN9qwYLjHYyn4lEO91S5QftdPiZl2PsZ5pGpv+hl/maz5ejSDst3PDwg4HnVvUky6mqXjtIj1CgnQxnIsEhijMFQjtNrTo1oa/sUI3gwCmWD9dJ/8CcdiIgqgL4DW5mZljRTpP7X/L9+3USKbBmV2LYFwc53NBOOapIpgvExnQCp50kMrOzVGe0GQQ82PYyz7jXUoxpJ2aUgcVVgCgjMNopp85XexzjpdaRvNb+d+5kR+KAdiIgigMEG8HRTs191OyD9d9plc7Wv+wUZX4BJ7QTs0/DKgT0aVbedobQI2gn8ylD84vtnxrEjLOONwk2uc532qlFDYl2MlQTHO00XazOzLXRn5ZxQCj1ad/aBtRpJ2hgRIF2alJDYhZq1FCmnUzvLpI+VCWvF2MYczhnyZbrmNNO8Yjv762GdbLEL9rJuFW/WnFOHSV+NWNGX4fQKlzQToaIxlDExhiY006vLMbdfXIpnL7D2dO/14Qn03FCOxEQjXVrJh56Dj9pJ/2FYvfks8ZQci5NkHzu9E4FY9qJGchhaacSNbRpp1Dv9NyBhkn6pc1T/ioJaHbCnHYKZAvAk3YyVEObdiqp2HBlG11CN2hFVJum8rWhmNNOMkgCmD2byU40awj/LtopxPyoQdX0fgYn3B9vCHOyHiEw2unpbCTaafBsftNOxH1q2qWhm0j50bEGOac3/cAB7VQ/G2ntOH82DpCNM2fOCIB2qt71pGXg0skGOZTnn9T2vqDggnYKRrSOLR6sIxDaKfWKqZKp9hatmN7B1UuV+9fjgnaai2icwXgwDgFL2mnLAa1qj0GRBmESD/IavuZuxhXt9HoWkvFOz8I62cUR7WR//uX4l35hOlsXLvJ6NcbZGGPaKRrRcp6YW46vtFPizScfMxecoBzWz5ooOnjyXVzQTswcApZ2AgIhK089S+gBtNPiM0LOtQtzqLmTMpe7rZD1xph2qp+DRDv5zREM7XSCmtZPvNdDg12Sb4Yef2QxDXXaCTo3R4HguTYHieDJnMMv2mmTqEONb5/JetnxpMkqZxZbok47QWMEClr5IWq1dM7/Fe10Di6M4Zp2gk66O5/tBAlpXaed5K1rpKKzG9RTa2Sm3LwlGYIC7VQLp+5/tNM/op0yqj8olAeoUlMaEywTrusUCYx2cjVGop2ajPhBO5kl/5VxKTWZni3uNrx/H2cSirTTB0KRxtWbb7W2j9ReX1b7YiIKtJO9MRIcom4sENqp7Nsu8Rz/PtqlKX0Wxz7yeIk57SSNqArgN7iZmWFFO7luXL+h2C1Y56Bj6sG/P+cH4YZ2qjFCMl08NqYTOO002Tvyoke0EeXEu5OaESk0eYxpJ2aUgcVVgCgjMNrp3ctBscuXOpMPxDXIThw4SA8HtJM0ojhAsBEc7SR6vHd+bNYE/WM+kYWVj/WO4IR2YvZpWIWAPs3K284TegTtdE/oecmqSXdJQd6714e/U53Kd9pJyhSJdrI3ERztFNRHaYTfjkTNCBXFgO1r5MxQp52ggREF2knMFIlZeGiCMu20xvb9iTk2tZTdlblrs1vk3DGnnYpMkN4/xATrZIlftJPl65fLXSZn62SNnxG8/OgjL1zQTvaIxlDHxhiY005KkweWLE2yJcVEN6xX6e2cihPaSRrRWE3GeOg5/KSdbqTJi5XdrKVky4WdtPrRSMeYdmIGcljaqc4Ebdoprne/vmrnU9QPjW4J3j/6/HHMaad4EyTayd4EbdppYesGQnLdJkqEyr1Fspc/pWJOO81AEsCszZidaF4g/Ltop+zs+AXGxx31tmZL6Nwp/aQtMNrpuxkS7aRsxm/aydl2/9z5U86SUyc+3pibMHE1Dminj2ZIa8fnzXCAbJSXlwuAdpIavSRt0/h6WkTsCjn1owFbcUE7JSNaZyMerCMQ2umH0PMqjept+nt2rusz9btRDC5oJxNE4yjjwTgELGknG0LcKN0RsZS0JepXVx6wkMQV7dQL0Xj1plgnuziindbHFlnF1P7QKaw+F/8lcfJ3jGmnfFMkywVjbjm+0k6E284T67LtyYGvspQGBig54IJ2YuYQsLQTEAhZeepFQg+gnYxKJpGUpWpp2yv8ZEK8Rj3GmHb6uAiJdopeJBjaaWiY6IJ7MpMMwhRq+hBCsk1Rp52gc3MUCJ7Xi5AIntOL+EU7KRqZ7x2Tn0rLc79Qs1h4lCvqtBM0RqCgVTSiVp6L/q9op0twYQzXtBN00t2JdoKGtK7TTiE/Hw16eZ6qsePBtX1nnxdroUA7XUZN3X4CVHejwwK1LU4l2nteP3B4KvJSo5O6BUJ1VxOc75J8p/XV6SMu6gw0CbOaxqpNzpWpCdIqWzVf3XhERgTQJMJqishtPHm+vwc56vDhHUULHw8Emnqxmm4P9DUeszBRp+z7mePq0fO44bTecObaOvG0cqLUI62tG09Jqa5Mf46Cua7Ames/OO0fwWmTao1HOSUe1SydZyPbFiEvLTA4zc8FCU7r5cIPOM3tWX/LeYfc9CLzqR9XbbJ6hSKcNnurxXwKwUY7u2/jtpW7xqWjAKdtdEFieUxcBAKnrRhqLLuhMYpcKBabmfmYWoo5nKaMqArgN7iZSGMFp5Xq5OSVNobTYmeqLVi1u60ZN3BavTOS6fKdcbE6y3c47V5U87orG+brxGbQNlm9f78XYziNGWVg6SIgyggMTrsYIn5XTMSGvM+IpE/WKOJM7rCB05QRxenlIkA4bZar+O68PZXqe3xWXqufrWKBEziN2adhFQL6NCtvqyP0CDhtmUMW3WDALIME81Pph8ZU7+A7nKbshgSn+bkKDk67muNROTgoVCPNx+L4Aal8zmQeDTgNGhhRgNPk3ZAQk++uKMNptZr9ZOQWh+jn5+/K9vZ6NQxzOO2aK9L7Z7pinSzxC047MNVi3bOjOvrBNikFSRXLOb97GSs4zQ/RGEuxMQbmcFqBweXUDN8Enez4aXPPxPdVwwmcNgPRWP1w0XP4CafVp/xYlnqgTT1+etrE7CX5qX8yVUYBTWIGclg47a0r2nDa64KyyyI5byjR+ZNrk3yLUjCH0467IsFpfq5ow2lTN0mdn7iljBQguSCJXKMGmfdjAKcZIglgNtyVnWheJfy74LRTj4ZmWH/drnPihJ++mc3yZQKD06Q9kOA0iju/4bTNCsuyg7/fIe1wulj4uWjBRhzAaVIeSEv9De44IGyKiooEAKdtvfHGMu3VWVpYn8+ZryTjOb9eCys4rcIdyTpReLCOQOA0XRXjsPUiKpqBqhXyanSNU7iA01wRjUPBg3EIWMJpX66tLPe+1qARNGP/p97Lv3zAFZxGRDReixvWyS6O4LR7oqtJNy7GGiQ8oacTJYo5z44RPJx22Q3JcmmYW46vcNqLpRPE0qxEyVEPx6Sqiu5O+XOyBQU4jZlDwMJpQCBk5anXCD0AThsrbiymJLuTknvz2hDGQIIuxnCalCcSnFbkIRg4jfzE7dEitUz90pKPMfZLrXNRh9Ogc3MUgCsxTyTg6qEHv+C0vhP7kXQO3tIqEMmptFePu486nAaNEShoVeSBpFWIx/8VnHYdLozhGk6DTro74VPQkNZ1OM2QsPypQdxiWjp9wCXVOGspFGinG3Dq/kc7/SPa6cSjlE0fQ7bqlc0al73UQOKDwGina/5ItFO4Pz9op6oRLzaLi5jSEtbemb9WXGEiirSTdG5z8U7rAO1i31efPX4k90WBdrrsjwSHHPcXCO1UOVTS9XBZL2rgx2k/hkv6D8GcdkpDVAXwG9zMzLCinSYKX/yxrLWYXPhkbpnisXV1uKGdfBBN54iN6QROO+W4uXvFXBej5n6I7Hv/gx4NY9qJGWVgcRUgygiMdvpRHvls4bK7BoWl/o0bT/SJxQHtlIYoTri/AGmnN4xV3ptNC8iB3l9JaX2+bsAJ7eSDqBDQp1l5201Cj6CdMuVm5v01rk3zaNDOAqXtCgP4TjulBSDRTiYBgqOdErWnWAe98aPEkcMO1d7UVkKddoIGRhRop+QAxKOoAlCmnba81t9y+4QaJe3VkuLDztOxP4prI+L72wdgnSzxi3bS/fh6puixZXrHFqs7a6aL38MF7WSCaAx1bIyBOe202WmQZe2FJp2MDHPVkcv++oIT2kkZ0VjSuOg5/KSd7k9v2DqzOEGvUJdeWxwzzA9j2okZyOFoJ9OgALRpJ8ZVpZtZwmupSb17HxLxyBXGnHZyZQvAk3YyCUCbdrpmsXRBxapzOscMBxtZiz1Vwpx2mo0kQLpsADvRvEX4d9FOeoOkKg0iTekpWyh5a1/G3RQY7RS7HYl2Ut3Ob9ppsZHkKY2Y4eSQ3O0KjPd5CTignQ5sR1o7DtiOA2QjJydHALSTjJ/sLVkfM2qcl3lsW2VUFS5oJ3dE6yzHg3UEQjvFOV3v88HGST9JdoLtUSedclzQTnqIxlHFg3EIWNJOu+Y370ieZa0duLO67kzbyGhc0U5yiMaTxMZ4+KSdxjYlNXtWG5H3zVGurRA//h5j2qk1AMlyz3ExTeEb7eS4xNnggZmJVurDKRPr149rxAXtxMwhYGknIBCy8tTbhB5AO3lJy4ozjr2hB+sE3Gje2FcaY9ppRCAS7fSWO6XlC+3kUH72x/ZXa2hluwf6vkqXeYo67QSdm6NA8AwNRCJ4hAP5RTudJyqXHznzWmNv2JsEyhtFedRpJ2iMQEGrt9uRtLoj2NESa9rpDlwYwzXtBJ10d6KdoCGt67TTlVN1aRdm+qhnjYrps/69dCsKtNNdOHX/o53+Ee1kf0gu4bLXKoOQxeuWfEi0eSIw2kkhHIl2eh7GD9qp/6m7+14HF9FjDRIzQg5tDEGRdvKfVGo43GSVTkauh0LZ5VPOKNBOcuFIcIhkuEBop7hzvbd5vV5Ij4nu1XzUWc4Lc9qpNQxJFcBvcDMzw4p2GjFcf0HMXhOdg8veXjIKOumIG9qpDtF0ZdiYTuC002Lh8Jq/DgjTD7wL2Bym00zFmHZiRhlYXAWIMgKjnXYFDehHWa+gFxgVrUdPPPcFB7QTM9jAigMEG8HRTuf+ev1ZoqqYVFiS7jd9/JZsnNBOdYgKAX2albfVE3oE7ZQx/X6plKI6NZI0zjtVql8632mn1nAk2iklXHC0E2n/zgfFUXtJ+/q2MqZOmlCJOu0EDYwo0E6fw5GYhcfdS6F+Tzs9oV537Zt2nhae8HmL2NJ3szGnnS4ivn9JONbJEr9opxMnSQTpnY80dix+PDzuZO45XNBOKYjG2IuNMTCnnRzUqAn7/n6jE1Q1+8vbWYmrcEI7bUY01ipc9Bx+0k7W4rTNSxXvUUOmVdwt11rgizHtxAzksLTT3W5mqb+nnU6WHhKamiqhf9R3DOmHWLkO5rRTJVsAnrRTSjjatJPpqwVngu7b6pbvW7NIfUx5Cea0UzCSAOmu4exE8x7h30U7Tdtw1fnq+QT18kmRjfGrH44VGO3UtA+Jdgrcx2/aSfmJzZjE+F66CUe3tv5cpaOJA9rp9T6kteNb+3CAbKSlpQmAdtq/W7lJe6aR+h6F3V6k+WEncEE7nUa0Tg4erCMQ2qnPQdoY5dgZun4ucl9tdi9ZjwvaKRrROIF4MA4BS9qpvnJJ2s/tdvTEDSEvNp+Rf4Ur2skT0XiW2BgPn7TT49i4I5Zqb9Tjj12PkIzUcceYdqIiWk4Nc8vxlXb63lrhMFYzRCtWsv8kk0ElZ3BBOzFzCFjaCQiErDz1PqEH0E6XU/vrpXtvo4ZlfO2nEnreEGPayTECiXZSjxAM7eQ+Tu6YaYqPXmJI2SzxCb7PUKedoHNzFAge+wgkgsckgl+005w55zdt6dWoHXZkvFub0H031GknaIxAQSt1RK2UI/6vaKcHcGEM17QTdNLdiXaChrSu006zJW/NCmq2143M1DzzmESbjALt9BBO3f9op39EO62MMRocdHg4Zc/86I+LNxfFC4x2Wp+IRDvNTuQH7aQW8fCzAWkybUfQ0aKlYkeNUaSd7mwJGZP/OF2roPWm7e3gCatRoJ28EpHgEOtEgdBOTQGrxPz2fdHIcyzfeKnCYRzmtBMdURXAb3AzM8OKdtKccPlW9qYZlHyX5F3uW9euxg3tpIBouoHYmE7gtNO82cuJVrILdMPWrFiYNJ2xD2PaiRllYHEVIMoIjHaaOO76yKUDhXTKyNKFlaPJX3FAO9ERxZmdKEDayepg5sWSMfOpR/z0xn1pqCPihHZSQFQI6NOsvO0RoUfQTmp5m2ufEtZpbEuoqxmT23CI77QTPQmJdmrlTpP4RjvV7c7wX7LambYvvLVo6V5dKdRpJ2hgRIF20ktCYhZUk1CmnQIt9pAGqKymHcwNH/Uo7KsQ5rSTHOL7SyZhnSzxi3b6PLmSuElGk5rUYNL87MEzP1zQTq2JSMZ4jo/0R+C0k8GP5U8pu/7SyjCg+B6zOLQBJ7RTHaKxyjCfZvCbdjq9O9dYbpg6LVF0qLHH62EOGNNOzEAOSztNTkKbdlqkaBIrElSqdbSh8rG3+xJ/zGmnoWwBeNJOrd3MRH9PO8W8qO9jZpFOifiQ7zyJdGM85rTTw0Qk2ul0R6L5mPDvop3u3p87Lf/efc3M0Teb9Q1WnxcY7aSZjEQ71Sfxm3bKX31R9njFQY3I78VTFkc0r8cB7aSejLR2rJyMA2QjISFBALQTVUHs1ifNpfohcoN6vTkQWYoL2kka0Tq98GAdgdBOlXWS77QuaepEr1z+IKnkiScuaKemJCTj1GMz08AR7eTdQI+59/i65i61/BXLwgdQcUU71SAaLx/zaSKOaCf/G3nVdNl63dR5AbqGvmaJGNNO8YiWC8bccnylncil6yrOqDzT2W0T5tUUNTcbF7QTM4eApZ2AQMjKU58QegDtZHVV38aCMURjl8RD2f3SY7E+26kiGYl2Ck8WDO208kd2ybIF10jbHo9+mnl861TUaSfo3BwFgud4MhLBk5bML9pJ4/wnHc2mBNo286b6YyPH90addoLGCBS0CkfUykeweSjWtNNTuDCGa9oJOunuRDtBQ1rXaac9F85NeyZ9n3bgOD2ycFvZdxRop2dw6hLtxhYG7goih53KpO7/WsxZNe1txHC0WsepLsyyEFwXHkQirnVwZxDdwTuxBOS9B76lzVl60QSt2BvBz6e4D5Xj8SDcL/37CHf28r6wgDz9A2/dcm55pI78w14bBX6Rxbuq9nHZhytTAsYGxXdVLMmf417yJRLbjfuLNVNSjA0GfPh2zh+3klOHVCNIrjyEnQq9wL3kH02/ntwe5EPzHfiy1vtF8UjcSn5+CpLkmVPYkjfgXnKZHOtDQXonSbvviRtu2lcxCreSi9GQJG+gsiV/iXvJ1+kqXjT022Pgf1HSTv2jeA5uJf9ujyR5vT1b8kbcS66r4E6XFB9Jyonsb7fK73kabiUP3ook+catbMlf4V7y9Y5yR7xWKWqVSZy8ZrHiqwxuJU8OQZI8PIQt+WvcS367Zc1VsQINuv/YQWbKg29OxK3kTbFIkj+MZUv+Bk7y6fl08mwlC0pZtg9tR1P2TUhBBBDb3cWRyKQ5PbjXGHvDCK2q5Q1MxWzaaUHWyj3rVu3AFnPrwGpnF+BvwNyHtVGha+uPruoLC3btrdBMLZO/cLSiqRnpiXmUcDjau6i0DzCJzjEH0vHTZB74PxHcum5WxQf833pe/uKZcq+0Ip4bJ9isYKSgiP+/9rH7Ypl+iHJM9KGmvWio0B/6oiugUAioUBMJ+AdUoZZ2hbhqqmyJuoj+jdHg9CHW2hMd9K9JIMajwlPF1TpRhS5SQ7VO1EiSbl8s1+IkA2AchX0d7YprRQFLKCKvegwRaG1aVMXFhnRTqBGLGOBKKVMhzn7HW6Gl71c0Gy8x1U5+5L4uMy6gjHNlm3Uz7pVtdgM/NDJchKQR1JmE/4FGTBSMRX0DOv3Oi1qvPi7Rv9pKjtrwfHJZbfVPzr4I3oxbIdZlfugjZYakj6spuzrwFi7wT2gbJp1FFNEqIDd9Y8jacQb+vlQHD0/YrWdwJftRNIaVxxr39q1f7axSe3R3BO7WteCuMmD4u6TysdQCZdLsMtul52CfihtX7tTYVVwZ3Am6BNCxEtDxIVRHV/DchMVcYb2buLI42cqDwRSA5/se05/wcf/pUzo7GfNl7g0X5fxKvl7gK3G9aPvV38V3aND7UzYZkIoIShUFxPcKqFQyx5hSwcZ3nhw3nbnmBjqIgyfDyQPcW0jlqZFb5dpnU6sUyGFxvRmqYhZ+A5kEOPDuWt6u7oyOejGz0mw+iXP1QtDkm1QhSydwhwGXToEFTJ1YXfMdqytxdc1eUz+SJM9cpiSpqt4Ryh57SoTqYM1uS2iIkVkx1YyaLbrH4UeDBCeExKLk2vnsrvdbog6jPVNrJ8WJYErC6HZe5qchUpQx1oWUcVVL5srJBCn4J+MGBjq3diPjiDcGlD7Oq/OCdqgw6lZORuzIyex4y8H7pIBrbqQ2sofW/hgXwxvUOX90yB5/UzRLQDAfY1aKxuWaDe2CdWvZe7gmxF9A0eAJ3WkXVz6qoAXpRkqbpBkXqjhjutkgp4ClhhSvjgqOoYAarI7aRIAZQyMaPsVMMg2mFp8zOKnzM55zLUHiV3jiXvWGm6EO/bV525nI6LiBBHeo602aRFaa2qWeqawwQ/oMTVo7nlG51Oka6TjcY3Lvr/zV1kVZ08BxYgUg6y1ei9oU0MmWVfXv2OHFXm1kRycJXbCncq1e9WFe1rVl94yoNp+ShFBz3cLUw3T1Z0p32e1CMO19DZj+zNVzxNqv/7qxhW3NbqFycc2St8No/ZUGXW5/Hubj/i58DPqlFdAh3B2srB15d4PW5vs79YyqdGNqVLNmPfDgjOASZqyPEklc1hAicfUCIUjIgA6Vf1phAKxJAK05hcQj0XQER/3lVZ00EkJLo2Fqb/3H90vQ3y2yo5fI56QcGI3I3BqRf6sRNAyhoBHg0wgaEZdVsRyww5GQourgdpgIjKe/AgDvgHo9YvBkrXHU/Xr+YjkmeZxH/Im234Y7oLKuox1QDQtYvtJCAicmEB2u5TNVYgXUZriAOvTxLs2Bsy9pJPz9pDy7Zi3ngZJCZN7r7wPasRweUhIk2ps4ynQsioerfMdzgd6YAcyfbZkZKpNEcgIxL1dHBxv4AwhCclOjfIbuoYbeUPd5NvHOHsg7dMVlu2qLDn4NYgtiSRVBOrUKrMSAgxtL9ff/SPX2ZEXgyo9n/UIPMAl1cXQEnh+MGkCnsGMAT8HeTMd75+dVM1UHYkay1uEDwYfSvmaqCmAvEJwpKkDChgY1xYd/ZIq+FoAUTq4uzgxnT4EbZLBZe6lkw7pNv56Cp/rm99ato3kHkzNIow8I1c5ZAvsO3HP4zo1oW0KstIowpQiwRFlnS3zsyaHo6O294WP9/MnJ8qf21W/ZqYpRKCI0Qv3/U0/2/wvHZlyx/qakd1joR1XizW0vceT/rs1Q///ck/1f5EH44/SSgfrFk19uIf+c8Roj/28YWA3x/y892f8rrh/3MTeRIh3/O/369WdCFBz5v+bQaoj/t/Rk/6eNG3LE6sNZ7ZAbBXdHWj6pw8j/HVWg/v+1J/u/MNV1mNUnLfJxO5XsjVceEnDk/zVTof7f2pP9/4Pr/pjCxQXqOe/rFv18JzcJI/9P1oP6/7ee7P9DjRoD38oVa5TrlXtMTrbbgyP/J9Ch/v+9J/u/5pZtL4N+eGkllNyyvT2MYYuR/weuhPp/W0/2/4QEqbmfxEeRskQH1Y38a+NNHPn/dweo///oyf4v2liZT558WvOgnrm++votqzDyfz1fqP//7Mn+b/9q498Lnw+iF51etW3n48EHcOT//bZB/R+Urcf6/524aVqKWk7qaWNNniyu/umJkf8v3gP1f6F/pPq/xP/3XY8IeUl4p1m+88HGEv3ERhz5v2wo1P+Fe7L/L5tS/JUoa6ceviqfFmipIYaR/6fFQP1fpCf7v6GU4gyKWqZmEDVpQFyraByO/N85Dur/vf6RJdo3PAvcBgN/MXMeDDsnBtzJpyvyqL0p/i80fCcolc8eMK+Ox7PzWP9iXkZbdZArirfpqP//Dw==
- true
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwQAADsEBuJFr7QAAAJhJREFUSEvdk4EKgCAMRPfF9gn9WX9Wq5MtEmdKbQQ9GClud4cY/Q6WbwgQ13LnKh5mAsKEle8MeCLm1C9pb2I2QHxNtKC2RLNVeiYjTWyDIxkEZPuKykDTj6QboTZwTA8KA+/0oDRwTg9OgwhxUBh4Xo2SDaLSg5waBrJ3J//uL66mG4zxNGX9BMzezmuDR4UQKg5CxQ2IduVGkrvn0vkHAAAAAElFTkSuQmCC
- 888bc43d-bf25-48c3-aa36-9d17285125d3
- true
- DIFERENCE CURWATURE LINEAR GRAPH
- DIFERENCE CURWATURE LINEAR GRAPH
- false
- 20
- 05f34f0f-4f8e-4462-82aa-5e30fb909cb5
- 0bdbe3fa-89dd-406d-8c80-6cf3cb28ec67
- 19201f27-e961-4cd6-a1da-dbd604d23fd7
- 19a6753b-a9d0-4f37-861b-7022988355e1
- 240848bf-eb4d-46d2-8106-6ebbac5ab881
- 2410d7ff-a8b9-400f-890a-b069943f1167
- 2cdfbce2-6ecc-4836-aa8e-0f85b8a74976
- 47a31173-f0f1-44a2-a201-5dd8d33b6071
- 4cc97740-caa8-4b16-a424-4ec69e765379
- 51f9a605-042d-48b5-a72d-840602c3318e
- 5feab2b9-bbc8-4117-abda-c735008c5e50
- 6c1cd4cb-f26d-4baf-a9d0-c412a73f153e
- 827a1037-9bab-4f09-a804-99da30648e96
- 876ffa66-c4c5-4e61-8635-2e6563eb9e15
- aeb0c3ab-df35-499c-a9ea-aaefe2199a0a
- c5b9232a-b0ce-47aa-8983-9a32708608c6
- cf57d458-4d9e-44c4-85c3-316fb4603137
- d0af14ea-590d-4f8b-80a0-c1bfc02e22c3
- d364e931-f072-4723-9456-b543274ed03f
- f24ce9b2-701f-48ec-9ed2-cb2f2bd4896c
- 9492d9b1-8423-4285-a424-c395dc7f8b36
- 17704c02-f561-4245-bc67-2eaf7cd1e000
- f9b9305d-1e20-4067-946a-b44d88604308
- 45329fda-4528-406d-a823-54e35ac6ff74
- 34281050-3848-44ac-894c-a3119ffa069f
- 88ea5216-22ee-43b9-bf4a-bf732fa4678f
- e294df03-baaa-4b12-b92f-e97f42ff34ec
- 357ceb68-e651-4e13-b8c4-6a838be2149a
- 98a7b290-1680-4c8f-91d6-4080e52ada8f
- b4c2ea06-2f42-44c4-9b4a-584b407a7f6a
- ad15254d-f361-46c9-90d6-b5db1b60e3d2
- 80bcd5c0-5458-4110-bc35-aad5d5e50148
- 9096d595-00e9-44ef-bf8b-df7cba4ba2ea
- 9d9970f3-5ab6-40b5-b0f2-d257ffef222d
- 054cb35f-8548-43e7-8129-2bbf3a113dd2
- e9837f44-fe89-4576-a1ba-d864d9176564
- 7979dd58-784d-428c-ab41-1f9a01cb3b5b
- d134b7cd-fb62-4a2b-a901-fec5a2d783e9
- 693656d3-ab20-45a4-a99a-8ca5a8f9ac36
- 3c10a1a1-09f5-411d-ae06-13d21b0f7cd7
-
1495
-116
110
404
-
1591
86
- 20
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 0
- Vector {y} component
- 240848bf-eb4d-46d2-8106-6ebbac5ab881
- true
- Y component
- Y component
- true
- 0
-
1497
-114
82
20
-
1538
-104
- 1
- 1
- {0}
- 8
- Second item for multiplication
- 19201f27-e961-4cd6-a1da-dbd604d23fd7
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
-
1497
-94
82
20
-
1538
-84
- Vector {y} component
- 827a1037-9bab-4f09-a804-99da30648e96
- true
- Y component
- Y component
- true
- 0
-
1497
-74
82
20
-
1538
-64
- 1
- 1
- {0}
- 7
- Second item for multiplication
- 19a6753b-a9d0-4f37-861b-7022988355e1
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
-
1497
-54
82
20
-
1538
-44
- Vector {y} component
- 47a31173-f0f1-44a2-a201-5dd8d33b6071
- true
- Y component
- Y component
- true
- 0
-
1497
-34
82
20
-
1538
-24
- 1
- 1
- {0}
- 6
- Second item for multiplication
- 51f9a605-042d-48b5-a72d-840602c3318e
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
-
1497
-14
82
20
-
1538
-4
- Vector {y} component
- f24ce9b2-701f-48ec-9ed2-cb2f2bd4896c
- true
- Y component
- Y component
- true
- 0
-
1497
6
82
20
-
1538
16
- 1
- 1
- {0}
- 5
- Second item for multiplication
- c5b9232a-b0ce-47aa-8983-9a32708608c6
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
-
1497
26
82
20
-
1538
36
- Vector {y} component
- 2410d7ff-a8b9-400f-890a-b069943f1167
- true
- Y component
- Y component
- true
- 0
-
1497
46
82
20
-
1538
56
- 1
- 1
- {0}
- 4
- Second item for multiplication
- 876ffa66-c4c5-4e61-8635-2e6563eb9e15
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
-
1497
66
82
20
-
1538
76
- Vector {y} component
- 0bdbe3fa-89dd-406d-8c80-6cf3cb28ec67
- true
- Y component
- Y component
- true
- 0
-
1497
86
82
20
-
1538
96
- 1
- 1
- {0}
- 3
- Second item for multiplication
- 5feab2b9-bbc8-4117-abda-c735008c5e50
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
-
1497
106
82
20
-
1538
116
- Vector {y} component
- 6c1cd4cb-f26d-4baf-a9d0-c412a73f153e
- true
- Y component
- Y component
- true
- 0
-
1497
126
82
20
-
1538
136
- 1
- 1
- {0}
- 2
- Second item for multiplication
- 2cdfbce2-6ecc-4836-aa8e-0f85b8a74976
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
-
1497
146
82
20
-
1538
156
- Vector {y} component
- d0af14ea-590d-4f8b-80a0-c1bfc02e22c3
- true
- Y component
- Y component
- true
- 0
-
1497
166
82
20
-
1538
176
- 1
- 1
- {0}
- 1
- Second item for multiplication
- 05f34f0f-4f8e-4462-82aa-5e30fb909cb5
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
-
1497
186
82
20
-
1538
196
- Vector {y} component
- cf57d458-4d9e-44c4-85c3-316fb4603137
- true
- Y component
- Y component
- true
- 0
-
1497
206
82
20
-
1538
216
- 1
- 1
- {0}
- 0
- Second item for multiplication
- 4cc97740-caa8-4b16-a424-4ec69e765379
- true
- B
- B
- true
- 4cc7e1dc-1b86-4199-baab-1a972e890666
- 1
-
1497
226
82
20
-
1538
236
- Number of segments
- aeb0c3ab-df35-499c-a9ea-aaefe2199a0a
- true
- Count
- Count
- true
- 3537ed18-f4f1-428c-82e7-541bd20996ee
- 1
-
1497
246
82
20
-
1538
256
- 1
- 1
- {0}
- 10
- Contains a collection of generic curves
- true
- d364e931-f072-4723-9456-b543274ed03f
- true
- Curve
- Curve
- true
- 7428efec-7c04-44c5-9681-0bb0a240649a
- 1
-
1497
266
82
20
-
1538
276
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 7428efec-7c04-44c5-9681-0bb0a240649a
- Relay
- false
- fe2c7fd3-a20d-49fe-8b1d-09361e90e45d
- 1
-
1201
307
40
16
-
1221
315
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 877d17fb-a865-4477-84eb-510ff1f13db3
- Relay
- false
- f1fbb0e1-fe5e-40d2-841e-732012e40657
- 1
-
1188
261
40
16
-
1208
269
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- f18af49f-2c36-475e-9666-3bd16c62f28a
- Panel
- false
- 0
- 0
- 0.000510441291375068915
-
-347
121
160
84
- 0
- 0
- 0
-
-346.612
121.1601
- 2
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 74e72892-1a4b-4eae-af9f-1aa7c27d779a
- Relay
- false
- c48f2a86-4388-4b9b-a155-5f9d30e70ed5
- 1
-
-385
-117
40
16
-
-365
-109
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 1b67eee0-1eda-4d33-a2d9-8cf379c87ae7
- Relay
- false
- 118e674e-db63-4847-b023-71a1ecd9c236
- 1
-
-387
-15
40
16
-
-367
-7
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 1e05010e-b50b-4830-b2e7-d7ec43b1b1bc
- Relay
- false
- c2694786-f0d6-43b4-a7b8-e3a0d5b6af9f
- 1
-
-389
35
40
16
-
-369
43
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- 0dc3cf42-8c57-4e88-9c7f-ebfcdb8df114
- Format
- Format
-
-331
-153
130
64
-
-239
-121
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- 029c7b0e-8214-4576-bbd2-fe0901352c09
- Format
- Format
- false
- 0
-
-329
-151
78
20
-
-290
-141
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- c10e2589-2e0e-44f2-8c2f-494f97d8cd98
- Culture
- Culture
- false
- 0
-
-329
-131
78
20
-
-290
-121
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- db915e2c-2049-44b0-86a7-8e0a05caa8bd
- false
- Data 0
- 0
- true
- 74e72892-1a4b-4eae-af9f-1aa7c27d779a
- 1
-
-329
-111
78
20
-
-290
-101
- Formatted text
- fe9b2349-403b-4c80-bf8e-3415f7e9017a
- Text
- Text
- false
- 0
-
-227
-151
24
60
-
-215
-121
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- 83c699a3-3a60-468e-8e09-9fc0126b99bc
- Format
- Format
-
-331
-69
130
64
-
-239
-37
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- 4410e18b-8b01-4918-9a82-49048c3b2a4b
- Format
- Format
- false
- 0
-
-329
-67
78
20
-
-290
-57
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 98b62a3d-1fb9-4cc6-9c2d-503672ff8b96
- Culture
- Culture
- false
- 0
-
-329
-47
78
20
-
-290
-37
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- ec3f478e-2b31-42f3-88b4-9cffd1577e1a
- false
- Data 0
- 0
- true
- 1b67eee0-1eda-4d33-a2d9-8cf379c87ae7
- 1
-
-329
-27
78
20
-
-290
-17
- Formatted text
- 07b602e6-3f30-4265-8f7b-014173103908
- Text
- Text
- false
- 0
-
-227
-67
24
60
-
-215
-37
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- 19a54d3c-b7b7-4d53-b8d0-f7fa93338ec6
- Format
- Format
-
-330
14
130
64
-
-238
46
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- 8f443e65-05a0-4035-8bc2-c3635e897552
- Format
- Format
- false
- 0
-
-328
16
78
20
-
-289
26
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 9bb27c66-c1cf-4073-9393-c8ac657e997a
- Culture
- Culture
- false
- 0
-
-328
36
78
20
-
-289
46
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- 8dc78f70-6c2b-4abe-80fc-fec3aea4db06
- false
- Data 0
- 0
- true
- 1e05010e-b50b-4830-b2e7-d7ec43b1b1bc
- 1
-
-328
56
78
20
-
-289
66
- Formatted text
- 12a00da0-f03d-412c-99e3-24174bf36562
- Text
- Text
- false
- 0
-
-226
16
24
60
-
-214
46
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 23d9f3a2-1454-4364-a19c-8801a4aa8e4a
- Relay
- false
- 7fbc35ee-c93d-4288-b414-b6d63a02edf6
- 1
-
57
55
40
16
-
77
63
- 290f418a-65ee-406a-a9d0-35699815b512
- Scale NU
- Scale an object with non-uniform factors.
- true
- 8d1f6b3d-13f3-465f-b3c7-56564b00752c
- Scale NU
- Scale NU
-
153
-193
226
121
-
315
-132
- Base geometry
- f948e3b2-cfd7-4eef-86a5-50f9dad72123
- Geometry
- Geometry
- true
- c88c0b93-14b6-40b3-a27f-00ff79f7b13c
- 1
-
155
-191
148
20
-
237
-181
- Base plane
- 432aecca-5eaa-44b6-b0f2-18b882cfca7b
- Plane
- Plane
- false
- 0
-
155
-171
148
37
-
237
-152.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Scaling factor in {x} direction
- 5f5ed2c5-b1d2-4d06-b26c-f3b52b48dfce
- 1/X
- Scale X
- Scale X
- false
- c48f2a86-4388-4b9b-a155-5f9d30e70ed5
- 1
-
155
-134
148
20
-
237
-124
- 1
- 1
- {0}
- 1
- Scaling factor in {y} direction
- 511a0238-63d0-430f-a55c-66dc2b094d0c
- 1/X
- Scale Y
- Scale Y
- false
- c2694786-f0d6-43b4-a7b8-e3a0d5b6af9f
- 1
-
155
-114
148
20
-
237
-104
- 1
- 1
- {0}
- 1
- Scaling factor in {z} direction
- d91b01d3-f368-46c1-aeaf-e0c7339bfdc7
- Scale Z
- Scale Z
- false
- 0
-
155
-94
148
20
-
237
-84
- 1
- 1
- {0}
- 1
- Scaled geometry
- 7f737f09-6227-4105-9ed2-0609a54e83ce
- Geometry
- Geometry
- false
- 0
-
327
-191
50
58
-
352
-161.75
- Transformation data
- 67e926b8-0b7a-485b-9f8b-0577bd48e6c3
- Transform
- Transform
- false
- 0
-
327
-133
50
59
-
352
-103.25
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
- A VB.NET scriptable component
- true
- 193810d5-127a-4ef2-93a2-2df5119cf6ec
- DotNET VB Script (LEGACY)
- Turtle
- 0
- Dim i As Integer
Dim dir As New On3dVector(1, 0, 0)
Dim pos As New On3dVector(0, 0, 0)
Dim axis As New On3dVector(0, 0, 1)
Dim pnts As New List(Of On3dVector)
pnts.Add(pos)
For i = 0 To Forward.Count() - 1
Dim P As New On3dVector
dir.Rotate(Left(i), axis)
P = dir * Forward(i) + pnts(i)
pnts.Add(P)
Next
Points = pnts
-
960
1569
104
44
-
1015
1591
- 1
- 1
- 2
- Script Variable Forward
- Script Variable Left
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- true
- true
- Forward
- Left
- true
- true
- 2
- Print, Reflect and Error streams
- Output parameter Points
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- true
- Output
- Points
- false
- false
- 1
- false
- Script Variable Forward
- 23d5f74b-2615-4df2-98d7-e702968086f3
- Forward
- Forward
- true
- 1
- true
- 147ceb0a-e550-4da4-96ca-8ca546338041
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
962
1571
41
20
-
982.5
1581
- 1
- false
- Script Variable Left
- cd494ec9-299f-4eff-af9f-62e91ff30a17
- Left
- Left
- true
- 1
- true
- 3e0631e2-acee-4952-b380-ca85b2802769
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
962
1591
41
20
-
982.5
1601
- Print, Reflect and Error streams
- f1122156-86f9-4e0a-96ef-9a9fde4cd825
- Output
- Output
- false
- 0
-
1027
1571
35
20
-
1044.5
1581
- Output parameter Points
- 35165a66-0f4a-41c4-96bb-4865345e7d7e
- Points
- Points
- false
- 0
-
1027
1591
35
20
-
1044.5
1601
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- 3ccd8fbe-c80d-419d-bf32-d57c2bb4d8e6
- Series
- Series
-
409
1732
89
64
-
453
1764
- First number in the series
- 977bf3e7-0d24-45a9-a6b8-e3d9f6e04438
- Start
- Start
- false
- 073ee4e1-f1c0-4fe9-b5fa-b550be09f47e
- 1
-
411
1734
30
20
-
426
1744
- 1
- 1
- {0}
- 0
- Step size for each successive number
- 254feffa-5877-4f43-9c51-74b6cb770fe8
- Step
- Step
- false
- 073ee4e1-f1c0-4fe9-b5fa-b550be09f47e
- 1
-
411
1754
30
20
-
426
1764
- 1
- 1
- {0}
- 1
- Number of values in the series
- 16a91bf3-6653-476a-a5ad-6b5eea6b39c7
- Count
- Count
- false
- b62d6a8f-bc00-44f0-b8d4-dcc23bcad9a7
- 1
-
411
1774
30
20
-
426
1784
- 1
- 1
- {0}
- 500
- 1
- Series of numbers
- 13c1bcbb-6f8e-4b2c-aa4f-73a4dccf97a7
- Series
- Series
- false
- 0
-
465
1734
31
60
-
480.5
1764
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
- Duplicate data a predefined number of times.
- true
- 6c965c03-c748-47af-9b8c-55ba80a7c206
- Duplicate Data
- Duplicate Data
-
384
1573
102
64
-
447
1605
- 1
- Data to duplicate
- 371f3cbb-f7cb-4b93-85fa-2553b97d0873
- Data
- Data
- false
- ff15de5e-5cfc-4151-a598-a645878d2f45
- 1
-
386
1575
49
20
-
410.5
1585
- Number of duplicates
- c21c1053-7352-4746-afd1-3a086e340bbc
- Number
- Number
- false
- b62d6a8f-bc00-44f0-b8d4-dcc23bcad9a7
- 1
-
386
1595
49
20
-
410.5
1605
- 1
- 1
- {0}
- 500
- Retain list order
- d4b874be-26df-49b4-b504-a68703706422
- Order
- Order
- false
- 0
-
386
1615
49
20
-
410.5
1625
- 1
- 1
- {0}
- true
- 1
- Duplicated data
- a8d4b2ce-0382-4b07-ad56-e45e8d6691c4
- Data
- Data
- false
- 0
-
459
1575
25
60
-
471.5
1605
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- ce7a6538-1307-4799-aa09-c6d0b388aa6b
- Digit Scroller
- .
- false
- 0
- 12
- .
- 11
- 1024.0
-
-143
1722
250
20
-
-142.1696
1722.402
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- db90c791-fd03-47f7-9d9f-fce64245413a
- Digit Scroller
- ЯR
- false
- 0
- 12
- ЯR
- 1
- 0.12177142743
-
-138
1624
250
20
-
-137.4702
1624.085
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 80528f19-96fa-43a4-9544-823f9ed395d3
- Digit Scroller
- °
- false
- 0
- 12
- °
- 2
- 0.0003959052
-
-140
1667
250
20
-
-139.5521
1667.344
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
- Convert an angle specified in degrees to radians
- true
- 9393d860-fd26-4ce8-8516-240665f8d209
- Radians
- Radians
-
238
1631
108
28
-
293
1645
- Angle in degrees
- 23aa7fad-d7c7-468b-8fe7-cb92d958d0af
- Degrees
- Degrees
- false
- 256fa74d-8451-4366-b97f-fb31ceb7790f
- 1
-
240
1633
41
24
-
260.5
1645
- Angle in radians
- 073ee4e1-f1c0-4fe9-b5fa-b550be09f47e
- Radians
- Radians
- false
- 0
-
305
1633
39
24
-
324.5
1645
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- 4be4d01e-f1cd-4466-afb7-4c701c8415b6
- Point
- Point
- false
- 35165a66-0f4a-41c4-96bb-4865345e7d7e
- 1
-
888
1718
50
24
-
913.2098
1730.519
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- b62d6a8f-bc00-44f0-b8d4-dcc23bcad9a7
- Relay
- false
- 5078d0e9-110e-4e9f-a4a7-8a5d53101b3e
- 1
-
249
1693
40
16
-
269
1701
- be52336f-a2e1-43b1-b5f5-178ba489508a
- Circle Fit
- Fit a circle to a collection of points.
- true
- 1e1c32a1-ce8d-4957-8d6b-20e1e7f00d58
- Circle Fit
- Circle Fit
-
366
1991
104
64
-
411
2023
- 1
- Points to fit
- f1050762-10a2-43ca-8bff-809dcce2a36f
- Points
- Points
- false
- 4be4d01e-f1cd-4466-afb7-4c701c8415b6
- 1
-
368
1993
31
60
-
383.5
2023
- Resulting circle
- 0e3da8fe-67d3-42b3-ba8d-a7dfea586d42
- Circle
- Circle
- false
- 0
-
423
1993
45
20
-
445.5
2003
- Circle radius
- 1bfdc1a4-f5f2-4440-8ac4-89a785d20c79
- Radius
- Radius
- false
- 0
-
423
2013
45
20
-
445.5
2023
- Maximum distance between circle and points
- 27b55d9b-ea60-4f36-964a-16c736644482
- Deviation
- Deviation
- false
- 0
-
423
2033
45
20
-
445.5
2043
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- cos((4*atan(1))/N)
- true
- 74efbc8f-3410-4e24-aada-2bcab8a679bf
- Expression
- Expression
-
517
1953
215
28
-
615
1967
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 4f02194f-7531-4362-9ec9-d41464997f0f
- Variable N
- N
- true
- b62d6a8f-bc00-44f0-b8d4-dcc23bcad9a7
- 1
-
519
1955
11
24
-
524.5
1967
- Result of expression
- e71a1b21-deda-4ee0-8783-f40fbe34bf91
- Result
- Result
- false
- 0
-
699
1955
31
24
-
714.5
1967
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 0868edf0-bef8-44ba-bfff-f419e7d67d07
- Scale
- Scale
-
540
2098
126
64
-
602
2130
- Base geometry
- 2eb8844c-6be8-465d-9f45-fe8cda686713
- Geometry
- Geometry
- true
- 0e3da8fe-67d3-42b3-ba8d-a7dfea586d42
- 1
-
542
2100
48
20
-
566
2110
- Center of scaling
- 460a9868-24fc-4fc4-b670-679bab81e8e1
- Center
- Center
- false
- e7ec9ac1-1a14-4f10-af2d-92b279404e69
- 1
-
542
2120
48
20
-
566
2130
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 875d2dba-b4e5-42c5-b511-4c5d1b9a78c8
- Factor
- Factor
- false
- e71a1b21-deda-4ee0-8783-f40fbe34bf91
- 1
-
542
2140
48
20
-
566
2150
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- ab3f2f73-b91a-4c6d-8374-0389102171db
- Geometry
- Geometry
- false
- 0
-
614
2100
50
30
-
639
2115
- Transformation data
- b2e95054-06fc-4de7-a108-3a97edfda004
- Transform
- Transform
- false
- 0
-
614
2130
50
30
-
639
2145
- 2e205f24-9279-47b2-b414-d06dcd0b21a7
- Area
- Solve area properties for breps, meshes and planar closed curves.
- true
- e0c086dd-125a-4893-b52d-269284ba8332
- Area
- Area
-
354
2108
118
44
-
416
2130
- Brep, mesh or planar closed curve for area computation
- f782124a-d5de-4023-a7a5-af4b9cf9feb9
- Geometry
- Geometry
- false
- 0e3da8fe-67d3-42b3-ba8d-a7dfea586d42
- 1
-
356
2110
48
40
-
380
2130
- Area of geometry
- 0c7ff78f-224e-4115-9e24-ae9d1967091c
- Area
- Area
- false
- 0
-
428
2110
42
20
-
449
2120
- Area centroid of geometry
- e7ec9ac1-1a14-4f10-af2d-92b279404e69
- Centroid
- Centroid
- false
- 0
-
428
2130
42
20
-
449
2140
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 461fc3ce-2791-4cc9-8c3e-25389656f03d
- Multiplication
- Multiplication
-
665
2010
70
44
-
690
2032
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- a247e566-2790-42d7-8a97-f5d9300932cc
- A
- A
- true
- e71a1b21-deda-4ee0-8783-f40fbe34bf91
- 1
-
667
2012
11
20
-
672.5
2022
- Second item for multiplication
- 8c992c09-9162-4193-ada2-ca180f2bff01
- B
- B
- true
- 1bfdc1a4-f5f2-4440-8ac4-89a785d20c79
- 1
-
667
2032
11
20
-
672.5
2042
- Result of multiplication
- 5e47cae8-ad95-4b4c-a1af-feec999bc560
- Result
- Result
- false
- 0
-
702
2012
31
40
-
717.5
2032
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- .5*L*(1/SIN(π/N))
- true
- eea9f1d0-8fd2-4314-9989-8302e677101f
- Expression
- Expression
-
605
1852
207
44
-
699
1874
- 2
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 37cc8cad-4cf7-4da7-ae8b-baaa7447ca62
- Variable L
- L
- true
- db90c791-fd03-47f7-9d9f-fce64245413a
- 1
-
607
1854
11
20
-
612.5
1864
- Expression variable
- 1bea666f-7b30-4858-b2fb-d70e9f75df7a
- Variable N
- N
- true
- b62d6a8f-bc00-44f0-b8d4-dcc23bcad9a7
- 1
-
607
1874
11
20
-
612.5
1884
- Result of expression
- 3c9661e6-e5b9-4a08-afce-8c2037330161
- Result
- Result
- false
- 0
-
779
1854
31
40
-
794.5
1874
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 646f35d6-4eb6-4dd5-8cac-4f8f0c9b5977
- Panel
- false
- 0
- 3c9661e6-e5b9-4a08-afce-8c2037330161
- 1
- Double click to edit panel content…
-
891
1854
160
100
- 0
- 0
- 0
-
891.1822
1854.321
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- R/(.5*(1/SIN(π/N)))
- true
- 215d4120-1cff-48de-94bd-f7b73ce01e75
- Expression
- Expression
-
284
1493
224
44
-
386
1515
- 2
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 8039b10c-7cc8-4915-bdb9-ff99c2f805d2
- Variable R
- R
- true
- 375085a7-85bd-47e7-800b-36aa5972104d
- 1
-
286
1495
11
20
-
291.5
1505
- Expression variable
- fb427817-9f0f-447d-860a-e480261c5a5f
- Variable N
- N
- true
- b62d6a8f-bc00-44f0-b8d4-dcc23bcad9a7
- 1
-
286
1515
11
20
-
291.5
1525
- Result of expression
- ff15de5e-5cfc-4151-a598-a645878d2f45
- Result
- Result
- false
- 0
-
475
1495
31
40
-
490.5
1515
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 7de561f6-268d-461f-a4c8-eda519d78324
- Division
- Division
-
55
1790
90
44
-
100
1812
- Item to divide (dividend)
- 4b3622ac-b6f6-4c84-aaa1-2e40b4eb5e9a
- A
- A
- false
- 0
-
57
1792
31
20
-
72.5
1802
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 360
- Item to divide with (divisor)
- 164f2f15-bca1-48ba-aacd-831d6c5118cf
- B
- B
- false
- ce7a6538-1307-4799-aa09-c6d0b388aa6b
- 1
-
57
1812
31
20
-
72.5
1822
- The result of the Division
- b62c1df8-8506-432d-a6e8-a67f16f863f9
- Result
- Result
- false
- 0
-
112
1792
31
40
-
127.5
1812
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 755afd66-a8b6-4eda-b11d-813843840b3a
- Panel
- false
- 0
- 1bfdc1a4-f5f2-4440-8ac4-89a785d20c79
- 1
- Double click to edit panel content…
-
556
1393
160
20
- 0
- 0
- 0
-
556.2406
1393.461
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4
- Reverse List
- Reverse the order of a list.
- true
- b2fe30d5-a712-4905-b391-821ae44f7d1f
- Reverse List
- Reverse List
-
505
1635
66
28
-
538
1649
- 1
- Base list
- fb6b39e9-a6af-4a51-9455-a92fd1fa3dfd
- List
- List
- false
- 13c1bcbb-6f8e-4b2c-aa4f-73a4dccf97a7
- 1
-
507
1637
19
24
-
516.5
1649
- 1
- Reversed list
- 8646f974-91ff-408b-aa4d-7fb4f8df1cf2
- List
- List
- false
- 0
-
550
1637
19
24
-
559.5
1649
- a3371040-e552-4bc8-b0ff-10a840258e88
- Negative
- Compute the negative of a value.
- true
- 85d22e58-6d1c-4fc5-a0e6-db45a35dbf06
- Negative
- Negative
-
589
1695
88
28
-
632
1709
- Input value
- b9f327a5-f681-4bab-906c-b34f3e2c24e1
- Value
- Value
- false
- f90883e5-3fb0-4e4e-927c-2fdab122cf8c
- 1
-
591
1697
29
24
-
605.5
1709
- Output value
- 3ebf92f1-2275-4471-867c-81168d14be25
- Result
- Result
- false
- 0
-
644
1697
31
24
-
659.5
1709
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- 0e44c07d-1872-4e2f-ab76-00ed6aed824c
- Merge
- Merge
-
707
1639
122
84
-
768
1681
- 4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 8054d771-018f-4a32-b4e5-5bd79d5d438e
- 1
- false
- Data 1
- D1
- true
- 2e337179-3366-41e1-91ce-b34ea88fe906
- 1
-
709
1641
47
20
-
740.5
1651
- 2
- Data stream 2
- 05fec144-1dbd-44c0-997c-ab726c498b6d
- 1
- false
- Data 2
- D2
- true
- 0
-
709
1661
47
20
-
740.5
1671
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 0
- 2
- Data stream 3
- 38e4e3db-338c-43c8-9e0d-578f9c881434
- 1
- false
- Data 3
- D3
- true
- 3ebf92f1-2275-4471-867c-81168d14be25
- 1
-
709
1681
47
20
-
740.5
1691
- 2
- Data stream 4
- b01c5f53-5323-449b-9e7d-3debe1530274
- false
- Data 4
- D4
- true
- 0
-
709
1701
47
20
-
740.5
1711
- 2
- Result of merge
- e6883f83-7321-4869-ba03-b28db7c15488
- 1
- Result
- Result
- false
- 0
-
780
1641
47
80
-
795.5
1681
- 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4
- Reverse List
- Reverse the order of a list.
- true
- 927c4f5f-09d0-4e2a-86de-669a0fb6834f
- Reverse List
- Reverse List
-
550
1447
66
28
-
583
1461
- 1
- Base list
- 2b065ff5-2682-48cb-9eed-eb80e4d5eea3
- List
- List
- false
- a8d4b2ce-0382-4b07-ad56-e45e8d6691c4
- 1
-
552
1449
19
24
-
561.5
1461
- 1
- Reversed list
- 80f75b67-ab0d-49db-88ed-3c55aff68d37
- List
- List
- false
- 0
-
595
1449
19
24
-
604.5
1461
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- b2031a4b-8015-4f12-8f56-d042d761e9b2
- Merge
- Merge
-
699
1449
122
84
-
760
1491
- 4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- f150b0c2-a9d8-48af-85e6-4a08fc493011
- 1
- false
- Data 1
- D1
- true
- 80f75b67-ab0d-49db-88ed-3c55aff68d37
- 1
-
701
1451
47
20
-
732.5
1461
- 2
- Data stream 2
- 311df633-43a1-4c6d-9575-509e524f8766
- 1
- false
- Data 2
- D2
- true
- 0
-
701
1471
47
20
-
732.5
1481
- 2
- Data stream 3
- e88f8a6d-a05a-49e3-a7f7-a253f1d7e828
- 1
- false
- Data 3
- D3
- true
- a8d4b2ce-0382-4b07-ad56-e45e8d6691c4
- 1
-
701
1491
47
20
-
732.5
1501
- 2
- Data stream 4
- 3dcf6632-4c2c-4051-a3e9-ff6ef825e6a7
- false
- Data 4
- D4
- true
- 0
-
701
1511
47
20
-
732.5
1521
- 2
- Result of merge
- 147ceb0a-e550-4da4-96ca-8ca546338041
- 1
- Result
- Result
- false
- 0
-
772
1451
47
80
-
787.5
1491
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- e7210d73-6cfe-4de7-8448-9777503ce93c
- Panel
- false
- 0
- e6883f83-7321-4869-ba03-b28db7c15488
- 1
- Double click to edit panel content…
-
1159
1460
160
479
- 0
- 0
- 0
-
1159.163
1460.554
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 30cfd029-92c7-4238-a408-6929948027aa
- List Item
- List Item
-
786
2009
77
64
-
843
2041
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- b6d36df5-0130-4255-b205-5c8692927ee7
- List
- List
- false
- 4be4d01e-f1cd-4466-afb7-4c701c8415b6
- 1
-
788
2011
43
20
-
809.5
2021
- Item index
- a40829e0-25d6-4fd6-b645-d96b8a696078
- Index
- Index
- false
- 0
-
788
2031
43
20
-
809.5
2041
- 1
- 1
- {0}
- -1
- Wrap index to list bounds
- a032919e-88c9-48f0-b24a-51aa539e52cc
- Wrap
- Wrap
- false
- 0
-
788
2051
43
20
-
809.5
2061
- 1
- 1
- {0}
- true
- Item at {i'}
- 231ec3f5-b0c1-43a7-a9fc-ec5669fc1001
- false
- Item
- i
- false
- 0
-
855
2011
6
60
-
858
2041
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- b9c21b7f-29c8-4753-b2b5-0e8b3c9b4034
- Deconstruct
- Deconstruct
-
899
2015
120
64
-
940
2047
- Input point
- 4a29e212-b848-4130-bf63-69e5f1c898ca
- Point
- Point
- false
- 231ec3f5-b0c1-43a7-a9fc-ec5669fc1001
- 1
-
901
2017
27
60
-
914.5
2047
- Point {x} component
- 9f667c48-eb1e-47a4-8db2-61666d1ea383
- X component
- X component
- false
- 0
-
952
2017
65
20
-
984.5
2027
- Point {y} component
- 79b1faa2-503e-498d-9a62-75f1113025b9
- Y component
- Y component
- false
- 0
-
952
2037
65
20
-
984.5
2047
- Point {z} component
- af4c6c2a-e29e-4d24-8c7f-4df53b899191
- Z component
- Z component
- false
- 0
-
952
2057
65
20
-
984.5
2067
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- fe052eae-c14b-40dd-a64e-a9605baa3660
- Panel
- false
- 0
- b0ca4533-8708-49c9-abb0-994600403593
- 1
- Double click to edit panel content…
-
-75
1436
116
20
- 0
- 0
- 0
-
-74.75103
1436.004
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 15a9d74b-afeb-4d95-a1bb-fa7477735b92
- Panel
- false
- 0
- a6d6d315-6584-4d1c-9c7a-258d37fd4a9a
- 1
- Double click to edit panel content…
-
-74
1517
118
20
- 0
- 0
- 0
-
-73.92162
1517.638
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 5cc4f794-4ed4-4a4c-8c41-7786c46d0031
- Division
- Division
-
1151
2015
70
44
-
1176
2037
- Item to divide (dividend)
- 5a96fddc-d35b-496a-8a2b-dc4281e0294f
- A
- A
- false
- 9f667c48-eb1e-47a4-8db2-61666d1ea383
- 1
-
1153
2017
11
20
-
1158.5
2027
- Item to divide with (divisor)
- 81aba054-a3f4-41cb-bf02-15a2fcc92ee7
- B
- B
- false
- 79b1faa2-503e-498d-9a62-75f1113025b9
- 1
-
1153
2037
11
20
-
1158.5
2047
- The result of the Division
- 3e1b6d63-9b79-46a8-8d27-80596e7d8b16
- Result
- Result
- false
- 0
-
1188
2017
31
40
-
1203.5
2037
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 9a773977-be13-458b-81ce-8e026fc440d3
- Panel
- false
- 0
- 413475f9-4f88-4628-8645-62eae4dd9722
- 1
- Double click to edit panel content…
-
-75
1477
116
20
- 0
- 0
- 0
-
-74.95802
1477.779
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- fe052eae-c14b-40dd-a64e-a9605baa3660
- 15a9d74b-afeb-4d95-a1bb-fa7477735b92
- 9a773977-be13-458b-81ce-8e026fc440d3
- 3
- 084c7217-4011-493b-8830-63953c7ba928
- Group
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 3c066c4e-f82e-4ce0-8965-2fc103a164f1
- Division
- Division
-
168
1736
49
44
-
197
1758
- Item to divide (dividend)
- 48454173-6e78-4a1a-90f9-71b265a676a7
- A
- false
- ce7a6538-1307-4799-aa09-c6d0b388aa6b
- 1
-
170
1738
15
20
-
177.5
1748
- Item to divide with (divisor)
- bd85d2d7-9186-4c60-8c8e-c3db7225fed6
- B
- false
- 0
-
170
1758
15
20
-
177.5
1768
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- The result of the Division
- 5078d0e9-110e-4e9f-a4a7-8a5d53101b3e
- Result
- false
- 0
-
209
1738
6
40
-
212
1758
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 5bd76574-5d5a-44cd-ba49-5798321dd60e
- Interpolate
- Interpolate
-
783
1332
225
84
-
956
1374
- 1
- Interpolation points
- 1309ce84-0810-4236-b802-033306a3ffa7
- Vertices
- Vertices
- false
- a35486f2-4dac-4ca8-ba16-9b13976474ec
- 1
-
785
1334
159
20
-
864.5
1344
- Curve degree
- ff1b1037-4bac-4f05-b1d6-ed7e744d8455
- Degree
- Degree
- false
- 0
-
785
1354
159
20
-
864.5
1364
- 1
- 1
- {0}
- 3
- Periodic curve
- c55a5646-4ba9-4464-af9b-8c798d388029
- Periodic
- Periodic
- false
- 0
-
785
1374
159
20
-
864.5
1384
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 33a680a9-7b32-4f98-99cc-5298b63afb44
- KnotStyle
- KnotStyle
- false
- 0
-
785
1394
159
20
-
864.5
1404
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- ffc7114c-425e-4e46-9780-4f5439b2a045
- Curve
- Curve
- false
- 0
-
968
1334
38
26
-
987
1347.333
- Curve length
- 2b05c6b7-328d-44fa-bf99-ff7ef38fd7f7
- Length
- Length
- false
- 0
-
968
1360
38
27
-
987
1374
- Curve domain
- f5a94324-cae2-422a-9504-bc1edac874d6
- Domain
- Domain
- false
- 0
-
968
1387
38
27
-
987
1400.667
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- DIFERENCE CURWATURE SHAPED GRAPH
-
7H0HXBNZ13dQpEpRUVAUgxXp2FFZCSEUCUVBxU4gAaIhiUlQsC0q9oaKitiwd8GOvWFby9p7X1exrdjLqnz3TmZCZjIzJA8B8nzv4/50YU7mZuZ/zj3l3nPPMQuUJKSmCMSKUvDHiMFg1AJ/raWi1CSheMgIgUwulIghKQpchmT4xxR+BLsvRMDjC2TwI7VQsgVGCg2El83Bpb7B959FD1oROeWuInKzLHWVaZRMMEIoGAnpFoBuEp0MRuHboJfDBfLkmHSpAJJrol9shdIiJLIUnghSWoCrK1euLMXuihaIBAkKAR+jCYXCUrtAQaJQLFSAt4iSSaQCmUIokGPDwr/GgTwF8j1m4Jedj1Omz51y18wyUCBPkAmlCvTl4SMyjCN4KQLstzc1Y0OCPT2f7F78cvk08O+TRfng38eLtj9etAv5Afl111r479zZyL9Zj+cuUH3yUk4E/Hl+JhxhIbzlydI1qp8fZ89/nL1A9bHHizaqRlN+TDnIy0U74fXF43Ffjd2LPhJK3Yh/vGVl3zs9F/nwTLqfczepBkT/Ra/Q3oX8jL4R8o1qD7BR9Wzoc2KPXfYZhKp8R/RLkXdHUUVGQPHB7tVEUokwirbyizBGoHxBR8OxD4UX4aynZ3BIrHkvIGFwKsixaQL/WGFX2ZJU5QSqiU0BIGxDgTCi8lMDvWwSw5MlCZBPOsGp9rW0dEAdIFn9JZIUbAZNaBzXvVYfIM64rzKHVzS+xrxXgpTLS5ekKtQ/axEsk6RKNT5cOziExRXGy3gydAoYoTOrFu6j8Iqp8nPpyDOjt9uy5HJBSrwoPShVJFKfCqyo1MREgSxRKE92Z/ZRagy/dp7e8D93JjtVpEiVCfzEglSFjCdyZ0alxouECWGC9BjJMIHYTwxGs8GG7lOmb+DIpugoJqxURbJEhl22ChcmJPMEImaULF0iqxHKx7TMyuJljYf49OHmm8wR/iq2GIWbsRZlj2lK8T11ypRFZDxknwqmPoCDlsprOLDgdRPldYhRDRQ/4+DeZbrPZ02vkwPyNwZtWGNz7vi4TwtxT1UL4ZU5WyJW8IRipR51QUcxCZDIUNWKMcaELRFJUmWYhoP/J9NVTixmEhyXKUlkBst4cnmyRAp0H1OifKsaoYGI9IC/83u9HNPvY1LEdK9Xnt9fpC4EJCOUVBp35/rD+y3CsntuH5Jz/g8LQKqBkmSjf7kXe1sG5v+R/9qxIKw+INVESU+cu/COes7gbl612eeNwMYFkIxR0vbTrBHfHR1Cjjx7NKezrfMDQKqFkj5cf1K4ql4xN+/Z80GZsZtfAJIJSlpxsJ3d9Z+1gw8Z1Sgc55TzHZBMUZI0n7t8s00XTkaD2azQluNGApIZSprw+SDD+rBxZMHBzkaX9wavASRzlDT1xMneR/6y4m7JfDK384uvboBkgZLEezxennqxjbPp0eY4X5d93wDJEiXVPDDsei3fX/55b+Y92uHV7zog1UZJ08e1/PHmRnzQAquoNx+jHPsDkhVKSvvUwNlNmhO2etwM0yVfp/UFJGuU9ONJiy4X3nTosdc32mP4yriPgGSDkn7uZy3rv2B1YK556eXVtzPNAMkWJTVtuuzcrPaPQ+YuP1O0I/j7fECqg5IWh73iHt3cmTtvj1vj5f17ugNSXZT0ZnXtxgUPbCN3xPXk33dsVgRI9VCSs/kxN++wd6zCmB9H59Zq0BmQ7FBSo4HSZXU7vQ1dYLzPcrh16CJAqo+SHrz8uH5WZoOQbceGPbXdsmQjIDVAScWtOaf+zerOPrCE5ZUw9vNjQLJHSb/PyjE78/Zn0FT3q/l/rB2fDEgOKCmxfvQ3o8ljgqYY7ZWJncOmAlJDlBSZUzghrWYEa9WQpLqvzDL/BaRGKOl0arv278dlhB98sPb2dbP08YDkiJIudpw/ct7xSz0K6q4/wDw13hWQGqOknEnX9n5flsLa+s7Zmi/OhRLVBJsORcLJde1zOFnvOW2Pc/1eAZITSup2pem1+cuPsNaO2TIhZdjoTYDUFHuvBxv6rZ/UIXJ84vN7DEZ2PCAxUdJyYUr2rtWenLW1cm8d/NVnj1lo4BCcBnGGmjlULFfwxAmC4FShSplNlP1Z6/aRGiFH9oTPenSUZ0yiNswihAnD1C8zLFgKhUwYn6pQanhUdWMqykhvKuq3KlRR7WIKF/0Ivcne0P1FJ9beKwo1FSXd1STfxDSFk3/TvcO0CS8HqqmozfkXt0148zBsR7xt3Bur7rZqKmp874hPZ9alBW2UTAuZGpB+XE1FPX29b8W74NCAaW5t5jBCmE/VVNTO/GO/Qnb3485ymlFybtFRGzUV1Tum8WmnvqWsxSfa55nH/PyopqJiujVMmdziVeSMCKOPE63CvqupqLHBCsnQtT7BB2pczXxY+8gHNRW1xC3CKejfwRHb5UuWrHcdv11NRX3PSQvcFMoI3tFght/zib3fq6mo+VM57S85jg5a1WU151nRzuZqKqrk9zp1/pwcHrIkpOmuGI82n9VUlEV4x8+XlzULye9xq/vgFtcuqKmoS1HvCzyeh3M2Nl/lZOUj91RTUdPdVqc7RnGDs9JzHXdc6bVfTUXtXVxk6mgq467re8PJ9HpRPzUV1WbXnTPvPr0Km7nynVd0X/tsNRVVw2/HvFH7xkUu/NLVr+3U0mtqKur466j3jWxcwxa7L1tmsT5oq5qK+pTfJ8gi3z9sX3OvOkm9um9VU1F3hzCF+6/3ClnqfLXXjSEHVqipqOlDWV9nnl8Ruj39Q728p+FpaiqK8VdSp6jdJQFZLd69HTSz2001FcWI7vf86LXVPXZcbbiv1ow7ddVUVK+Ofjn1ot1YuwZO6+Ey502mmoqa0nCkY+7O82EzRvPsi14PZaqpqD6pQ9jtitLDdpr6Fdh9lDVXU1Hciw6nlhXWCVp+9PfE+jvblqqpqI8+8zm+70pCdrLz9l8b1CJFTUXV+mdaKqvf9JCpPVkDLkhC/NVU1JYPkes6fW0RuNti+/tj4+fL1FRU889/vPZ3Pha81GQLc1KscT1AckZJvq4HuV7sTkHbT4d2ZA3bMQeQmqGkYUE+vU12rggYbzVp5rj7Z6EL0Bx7+JjMgZuXGgctjv+8zv7AqO6A1AIlHXJ+uzBuigNr8unsW37bDh0BpJYoKcMla1Nzp7kBB9rsj1nU/7EDILVCSeO4u/ufTtkQtDel05LZfZvaA1JrlORxl7mY/9WPM6PTMvsufeXwu1ywJ+x7xXrJiDY9ctfbtnpR1H06ILVBSQvqlEZ05I8JX/aq2Ye78vCegOSKklZ7FMy/5TnNfxYzZnJU0Zw7gOSGkpxW+/1xLiU5aNfqbbeXMTqwAckdJW006tniDDeaPflK7hDTbpZnAckDJZ2aZ2vy27uH4evWLHsUceHQIUDyxKbe5FWnalu97bGup6dtbI9mjoDkhZL+bdhhzeC2sf6HVn75i3vWXQJI3ijpy9en6y80LgmZ/Jv4clazK6MByQcl/eF+osG5mrPDj0z75PzKrO4SQGqLktZO6uS+fMDtgB1OCts/nK5BA9sOJT0btXfC/QvyHlu49qFn+KMCAKk9SlraRfqo4530oF0is71znu3wAqQOmGa71qrZ4BMDg2fX2XEu7PO8IEDqiJLkNVLtI5rY9pi3/eP2oR/2dtMwep0YFEZv0vrnsaxWZ0PGvzg908JmrLUejB40CKRG7/C6mb9t+JnfY/fRbjFnDsjr4r7LJCI1JV4gw1s9U3QoMnvmhX5SzuQxEyQikTL4g9YtUSThKYTiJKZUIhQrmGJkYDnp6xNNHdkjabw/dj0SeR7l0ggSCppEAzucIGCgXFn/eHHDsbc7R+z7c1xyuNulSZZKskbwR4BTFbsGgA/ykUtwojMyXDmMqHYnGYyQAAbjKKtWlHCEBBkHqhyGrTtn9PS2J62jYKQlVwjEikCegkcfdZoEyAAgyQw1hml+yDiKp0jGXr3maO+xxqEKQQqDUbY6ZaJEGH4Gi10ZjCx/VBxqUonDIcG6TeKf57iz3E/u9JbVHYTD3pydKhvBg4EsXiKgc2BCIRFdOSN4olSeQsBUJAuYCdgAUCR4yK8CJk8BfpRLBQnCRKGAz5TyZOA7FQKZp0mIkM8XiFV4kUoL0fuheGINgSkjaclqpgsHAAhY/R2wOiOAwGqmO6D+dtISefohQrE0FYmFTVGQyaCpw0ZeXyFhClCMSF9wzNsXrq+zV4XOHGDZtveqj+Px2gAZQ+Pl0MvlTQaiD1jByeAPEJL6o5OhhDgZLrXhMDK64xAyKgehllGYLDCBFlFKC1+SAgSvXNTmpTXP9wvrFrb1+o399jlNZHixUI2rKRZlpPLQ+9V3rqi4dm7QlJoZnt36TNmlB/SABNGgl+d3srYSPUmqAhUwExr46kchulYFHZhooxVjSeFyHDD/3kKfKP/dNo8bBV3vF40XMmQcTSFTXtaAiQwHhvY4PHJHpagbwCGPiEOsJ4dxqTseB6NycLBXTXXmCKD8JDI6JPhPzEy47BnclaG/dV7z7tIr3fVJpSDi3Z0OESA3OERqaI9IglCWIKKVjXN9b5aGrDsWvokn+qfI7om/gSBS4keHSJTfSdTWwaiW1NZ5Po93/iH7Gpbd79otrw2b7HDvVTtQOELIFzARRapp7kwpgG2D3obZNjBBgKIansoTMUUCcZIimSkXJMFdIblWxo0Yv1M/ogb6OKqWsHoDFeTdFcD6mczEZbkBqq9OJs5GZeL4yNOQvmT3ZalTbj+rHZI55fCm2aFFvwzXwEUBfGwhPkwyscsCKlrahdTAUfnLdZVeK/SGMLkghehSWp24Vg0VEcssnl3oMmrKegJE8HVIIEIulwcRMcbSA0SXfOkgAiJUzQ4xvIkJOaLGKUxjUnHKPloqEipUXIL6cphQPIwigvmjnfHy0U1DD8z6/rzB8On98OwKg/dpskt5Wd+aEvIjqzMdP0o6VQs/TOMlEpGAp1KADA3XBlMsJqyEBIFcrj48qa6BCg9uaClDTHLOLLvHM9lw8wFrVbtaf3P4PQ7jY0vEodFkDXZd77xxR9XJQDLemHki6kTD09ERlmYxPHESYCzq+iCSy9cCqd2NBRuWh81gTQy/OXXB/h6PcUiZoYNqYlVGqQy0EM1CiRbQLBpekI5oNS+LOGB0IdAaLmIwQNh1xUbVBEydVhmQIZOfEjIw+VE3qRaDwk1aMXrh9X+Kh7E3bG3z8+Kfba+TmGe8f2ROg29rygUiIDQCmTBB6Tdp5x0RrbtpOE8qFYqTMKTg6+jRmXjSzrie+f0D4bNXZA91iQzpWEFLCSM6pjlgznSSpaP+ue6cDv3NMOaYUDEn3mVy81zjw/67Y1s4bDp3uwHudW0CBQkSgJssNUHBZMkSNN3YWhRs6tpLAF5BMEK5ahPPkwuYUhFPLHBnynh8YSrgnpgP/iaJVPE4XM8RM3myBO1WbYhbTLTPrcEw4ge0jRqALTzKAYifJ3NvGcC9PcrWyb1tDL6bCcJJtjKGgm5u2YORvveDPRkvHd/1D9o3tG0WJ7LoHu69a5K9K3KxPNEkhmgVFE0GXGyAQOWxGAwpEai8NghQOi1FOAaoZAgRFSVuytiTFKjVfxptuOudFrS/aff6reVLmuD1KTJaFBxNU5+q0fStT4+6objEkulTqQeHweDouDTRSzmftMIkcPfB44dn3A+cnn2j7biRll/wzotyJE3nBb1eGVjEBdJhQZSR8hYlmCx1heIC/kJlwxPL26DwkIJiVniqnvHHfPa2t8sUL0s+P8IrfGRITYWvvFwZkDDZdJBkBGAaHYsKNTS617yx6U26/Aqa27vDDMaSfovwgh8J5k/kCOCdxGoq85oUuNZjS1IA/GDiwckHb07TTkkTN/upHkVzDpbRtPVUgE7JGgqgKwDQPSJCxwB+TIFQJ9VsGQo/pXTiSF9uyfM6v05u6x25yf5025vRPMKKZx94n6bcKC+Xp42JO9AV1MZSuK4AsSlmkewxxboi2OikjWtHIh+jQecVf1jD2v3rR+72H3Gn3dVHuQRVI5CnijRXHLDrep9X7igAX8kAKPRAAEDnlRnVvBp+ROgmjNjE3ns4UvT86YC3uDey7JkK3gWm4EiTyZ1ZLeOHFoFCObBy6XBHS6CAeivdAwskoM+bBL+BFHFi+gzl82nAjiNqYG8eLZEpItXzk0gklpj+oqXEqkYjMCyuNVB1IwDDGrDhX4JrO7Q1J2XsiJNWWKZ6qJgvSMOGg/9HWWlOxcpXfSK4xl7f2AtWnw9aGRnaHweVMRewTlM5GlMwzJktE8DdSR5TBD7OjBcoRgoEYqZipASN9rRTlcQMJ81H0mAbclUHzzUrEfVcvTU8VzADvAU6qUdb+OVM8B4yhfI9Sd+qTcOlT4xeruTMGjhh8y+rnQ54mYxG7ibfG8IRy9OXxM0nPXivUghWFJkZzgP68pJAp21IawQsAQh5qKF6uvu39rs8ngZsvNyH16vAdyZ+k4QD7iUHSo1UHkxEl1gPMAGpoYEpi6+jWVEKlXKJlBSl5JT0kF73d7O3HnGvMWn4lObaThP9mxQPVEYKWHBplOiqeSLQoHrIgkoPnV3C4/70tQ+esM7J9GXz0fjFRDMEjOhArvZRdwBeF6FAgpgyEfzKZ8anq09Yd6YCXdiDsbhyc8lzrFbKiphzSf7cmkt7GEVLjPOA0jJbBTC+RxZu+wMOmK2sBKUV0+DC1pjuQziTkizHeN20CMI7dohe0nTslJerWFEdBQB9XXkShtgkM5AJookNK3XaTnJAAMLkwoUvlCnX19qQAvV7sj1vA/c9Z8bikHq72kRZ4lVWIHazpsoqI5UHWNyRQx8cDwwMynyyoZ91Sad1egAslhYwIFHVsrmkXFyHn2nHoPpT0p244YQ5q6QBDMJL5bwmT42/wjt9NL2Qs9805NtU5922dUPFCoEMMIOTJpUBV1VtrBoesXgHnosMq+nAo9fLYysx01cPbC3Mo2Nrcl517xmWJdGVdNezUYzdP/75+xbFETPvf+3UcGGfhdVmFBmeqD4qIFv2K/BEphdqFC0ZFEaxT9Maw7K32wbsWyl623WsWQh+ZVeVDaiUNO0TK/YZqW7F5Q0mCGRwAGYiT5nYI5KIk5hChRyziOgXoXQ5M4EnBk4+U54qlYpgtmG8BBCFWIZUqhjeCg2qGDlgKxwFPoJc9GSyk6FeRRbEB0QMKktThMu+CkkSXLpSRQ/gMzCCSJHwBVoGEMTDDrSwaS6IEz6gJcNhnCbdBBhen01ioQtg2L2xMlIaHQ9+SE31suFOeLF9c/qB68v0uElDnEwVze8FCMVBhGaTqaZC4ELbbtIw0XR5BM1w8shMhCu+CGYoYOCjpJBZm0TN7rt3F2eucdAfR6ZPiKuYPq+gooCoHN1IhwqQGwNS2LokerQPTWTGyFIF7sgsxnNLKFfXCy7ent7McUwfT29y/8p0syBv45JWoZlbD9mtdGn/Fb98GqEaSHP5VI1WGaxj0rLu0gaDyAcx0snKNlGmugKTALlWlkxO4z/Nuz++Zpbj4R5bsi8e7sV7hd86rdqUV7g1gGiZEDKmMLwQLaPTvlIrfNaHTsB4+17rYNfalr38lnnRrRWX8Mv+pujAGtCoCJUBDqJsKMEBykanjabWSitVZsF1QYeftii7Zof93A0Fx+8Ht8mYrY/Ecj0gxKRFCMxp1G+rzaDw2zgsV7dSv2usDQ+cNl5Z/rYdfq0PiS2kEhGw6Jo+mxkFzh2w9QwxzIPF7uejBk+RLJOkJiWXrZTrst5KPABK+bSaK5NqRG394pYcRt5WgC8PuEkbiG7SJYBv1BYNN8kMU4/abRzYlT1WOZlGce8uN4zZlBY02zj1ROiemzPwqzd9YHEX8IWaqzcqSnkuFFExVtCFYgL0siB6Tdkk0ungymH4b9XJhaqtnL58QZJMQO5fXsizbmU2cj5nxunl2X//+uCKd5YCkRs1nSX0ur5nJ3z/ki1075+3pbqdJZVk6uAowUcWSvhYyhYpI7bM2+55qEshZ8/QvzL2x734Gy+r2ACasqqiVAYzomiZwageZmikw6qzomY5rPAME0sUwHzxEuAJSxdvPxCygsgixZ3p45eQLJHx3Zlt/eTDZQrkF3JvdaqTxdQxy/sHTj7n8zg5q/QU3q7BL4hWpJPkUqiRKoNZBZvpmBW32RBmDhxKt4NZyo1yyCxxqixeTjODsr7YZXb7raTHxCeO4hcTne5UJFSuIDuyvFFF7gDcjEtEdhz14fRuuVU3LxXV5DTeVuf8jt6Hh1wMn9PrbLi9965e1Rr2QgCObkEBuEUCAFQtOnmimClDUp5IARi53TK1Y0QrztrFdfp9tXxYQjBlyI0kpkx5vTIAKN5MA8CmUZsxR9OKQeFo/mcnzqkQ1MuJc2LNEL2eOCceZ9fHifMCihPn/Ru5c9Jf52M8sKbigc453WY0LNBrTjexRoselwaJqlQPjHi0jY4RY7ZhjLChYgQzqfmeqbOmBcw/sYW7+Nu+0fjX7SUQ8dLJGUEIK6g8g3os5kihTMCUwZHQskKkuBMzgEgeRAN3I2a5mBPzyCqaMw8wPzoMPc2UQVJugeE/DMPclgpz8+hFI9alDg3Mf/NV0Im5ER872qAxazj4RybkibTfoWhUFu1GSgXiYC4zBR1Du5CWWGeI9rE0dwAIH9A277I1CE7WQo0OXKxLGnkQHkDXrNEIbelc0SbKwldw9sMlFb4wMTFVLmAmJPPEYoGI9MVve3R4cuJejv/BDYMvjmoVdBa/3hSoHEFzvQkj6H01BUDyCEKygWw1xRbmxaytFq+zFlCuElVJsS9fvpTqEjUz8YyBa12pIp6MmSxMShaBv+Rq4dyQn39OPT4+fP2Pnwscp/w6gQ/gotFBNAM4FaUyuONPy52SNQbAndJSRqkuwXRTTopQLhcCXzABxyZMhZAyR7Jmy/IbW1aG7ao9/pVT5rODeOYoRyTJ3yijVAZz8tbQMSfKEJgD+aNLeN2JlQK/EuEJeBwQZ8sE4oR05QaQH1Mi5Q2H+0U+yG9lnyCfUT1z78qauDhy50z7/ad0e9dk/JH+GLXxNY/046iVwTwGLfMKVld3tF22qfcIt6lnXA4H/co4KE8WitPFwHUC7APsEkvgqTYf8JNIMhIhwl+9ISmFl6a8QL60FX5z6c3nXwJmbXX+slhWmkRIM0smS9tAL1cG5+JW03HOtto5B2/iM3RcJ6lbtk5CqwiXczk9g5xNAgt37Xl3dfiaWnhFSOkzlVH0zRFvT9SHgH7qGQ23ygtRhKifWodB4ac2NB4dffzAx8gjZvl/t+o42h33VtbsVLlCksJEq77j3VSIKdVpoNYsEZB0OZp5AMdANrOTBJIUgUKWzpQqB5TbhIoTRKl8Qai4l0CMnh6gdl6JlTDpnlWDDwS6NazyLZXIFEFCkUKgKnitLfYFcA97PcA+hyxXPgvula2n3K0hjaGCMWwUEgwerTx6sxq/559+0Sp4cr5oc9167ebhxRIbVVMsVZQqTnaBJ5KPQuT8yfRIlBuHIV2vUz5q/Rg1FwY5eiajKgLTxDe386MG70L3rQ0Y1LY5Ifr5j6YwASuijtDH6W1arC6tq1Kdi/WdMEVDLvgh6Ozcz7tfaiZAPT7sYoB3QGktxLYRraoZFhhgH4X/r63u9uDvYGAVJutSqTEDDbeJBXqrLNz2bk4Xbpc0rexwe/X6RvJHM+qGLJ618m+Ll4cWG0C4bducznmRNjOAmKGgoKAKwu3ipZwj9+KaBi34+3GhQOH20iDC7UvOdNzxdjYA7lRJuH3jyypb3tM37AlmK5b9PvZ+lEGE21lM2rWQpgbAHEZ1htvF05/brGY+Y2//fubliKFtpxtUuB3VlDbcdqruoM2Awu2cUN9TN5t1CNje2ybS++jgYdUcbts60VqsJtXNuUoNt2deaPm6ww1z9up3bWub2VgXGES4jfgQlOE2UISon1qP8f9BuE1sIVHN4XZeG7pw29+lasLtfnxLr26D/EInNrnbr2XD7Tv1Hm7ruZooUhC7DV0I+cilssLtvZd8J4ouPw3eKGon4br+M1jv4TZRR+gBKyBHNFjltf4/FW7bUakxAw23iZ1tqizcTt5NF26f2VnZ4bbF1PXXsvr1ZWdHzv/VbIzRSgMIt2N30zkvZrsNIGZ48OBBFYTbbXNc1nbu2TpyTlLbmmc7vN5vEOF24S467iTvMgDuVEm4fTOH67g9f0Vo9qu76U9inC0NItx2oGUO0CbVzxxGdYbbFqE7ml3ra8HKzmj2oODmrx4GFW6n7aRjnkv1MM8ww+27nVfb/jrQij3ee9aOFjZNNldzuH1rBx3npu6obs5Varht49bc2bdFbNiM6QfmdkuXbzSIcBvxISjDbaAIUT+1PuP/g3Cb2HuxmsPtuL104XbBnqoJtwPc2IuG9krvMXtJ3NUjDxu+0Xu4TUwF10MIGbWXLoRk7K2scPv5vPv1FIqYHjtvTv3XZs9v9/UebhN1hB6wAnJEg1Xcnv9T4XYDKjXG+jVC/loxLnRnUtNfUbK4GYS4VtVmiaS0KPwaqrKUTQJlPKDGeoGXkDAJo2h5RJrYFdaEK0kYJuCrbqJ9UpIIHP8BbU8MwSKDPrCSeABZhRlYuNJLQ13RNRBwVp6Ygvq97ImQqqogGkdKr2oFzi+vhnOHFwjZef1dItIZ7drTgmNQPYigAbD1oSrbiCTpeOukxppE81KkIuiFANTkQkU6Fp0FU9aqLfzt7V/FHWoHzq8r+9XwZfYftOiZBiqHJVnjQAn69k+QDDAvOoiA0BmAx4jIuA4l4ayjE3gipH4+dRnhlnaTE5udmxO2sce0kL5FLW3pBRsZkMSRRy6XJ9jE3tJ6EOwsTzqulXgYAteEDJVVsGdQWIXUbwfb7ciLCVv8M3bgtK7Lp+IdxkBhklDBjE6QwcNyOnTXbR6RmoKcp5OjtyJqUC5EyubTnW8kcopWKAiPp9WpL6oJa4aNAi9iNtwE+QLV0TVYkcQEOMeJwrSyr6gFuxaoikJbIsKXmqj2EbQWOwZZIvaNDCXntO252YLDOOoGZG4UW1Pm+vdowemw3w2LZByomM1ufd7Ld+JDbl7QyncK34b4VhVWvQQpPClTeVZUrn3f3NbK+1CuKvsI8phiwUh4CREC5aFhrawdsdU7zRNqsBtP1qGwXMEcqsJyUTBKma1TYTlrhNswRJHBxyFvlrhPlhLc/3zwxnGPVk/LOfFAjxX9iV3v9VBVLg/Cs4pM1ZnBczJzdLLhVsrnoTtIbtGsg/hMsDR4x+ewu3yWlxn+jLPyfs0zzuj18vCJOnD1pe35C9w1I1ZE9fx2uJ4e8GHQ4gPEpzpMgRlSpWeEEohuDOIf3SrNWcXwZEkCBR3TPg/quW1fL7uwfX05g2bP+YAvpmmivF+Taej1yigdFzebjiu2BsoVnZblbBCFJxXwUeVLypiwniU9zn26w80WhfXe5roQf/rHJBy5X5Mx6HV9M8bWE1UncD1Oo3N0lBeH4TJHt8IcjioMYC3UBJGwPDy+jzWyjDh7kjvr56ckTpcr7/ARAFs5gGYEgBEqA5GC2XSIdJ6N2fWGDAq7XjAv7OOArl1CJ3/8qTA7cQdfJh39Ru278HRTFXfHG3DmyGRhQjJTIE6QpEh5cjnsFMIUgRkE/XzU/GsX8DP+SuoUtbskIKvFu7eDZna7Sfa8mjKpvK5DSXfmLLSku0abHn/YpmdmRSuhNUZdDWjshcpVWligV/kkpC8uernHwrl3TOQKxciCSNcRh/DCR+XYqAhVbPxhtWtbiKF3AEk3G6YrgqFOGqsbFhcoy77gyhCLJCMFcmWPALgXDn8u8ymZoyPIW34T7Xm1Vp2B7U0QwBzIAIObEQAwdDI3oprMBlNogyhNeiq08R928KFcAAZiuGEGXaGN5BkY5o4GjzmxXr2eMLcy/r5sT0Qwa9HnFb/bj0z/q4KYl8DM4eVUmHsDzL2XY5g3psI8Ym/QxbOMInZG/4ZdhS971MGH9uFwv1EqEiYgVSY1jRcV0o7hwAcDLoEC3ClipuBG0co2TWk40jF35/mwGaN59kWvhzLpHktzBw1P11ZtwEodywCcM0l3ymB65dKTVqqqrJi3itlwC6SBHI6X8JtMkcuhfEwG+vHPzDY6Yh64/x/7cCu3epcwuhEF3VLZek1DRsyU16kHVj4P8rjwI3TBcpMgoQzoeSFwk5EVIjy/SPnjaZopGLdnQVDuvPp/txkxCN9g3oilOTtYGrPDiDA7mrw9dm9Rq3mhS4clD9s2fOOqipYRBezMgOz0ZpFEH2nwJNKyk2ogGZUDklM0bNXK1wmllCUuY+Y9fBG5ftbr6W+PiPHFqYwCNFEKKBelP9xPNDhXc3b4kWmfnF+Z1V2iB5SAWNOglLX0JCqDKlmi8y0clEkK0BnVAiCiRqzWtoGw+zUiMbBtoEaPpxAPBClUnzah0qe5hY/6TXn6NXR/4e7924c95hKqhPPEApFmw0AqNerCYkrhHWrpCUyxRCFQtpxQCNLQlozkbi73osOpZYV1gpYf/T2x/s62pSSPooEtgwxVZE22F+QivKheKJ8gnKztya0sHBpzJw5JWRd7nU+5wm/WWy6QxYDHx762ZaAkNV4kgJFjwjCkHQRfqEDfHcw6uDrwJGMdgY+q9WHiIm0rDqMkDvDRl83ImMK2COfJkoRiriARJxSWysu9YLKn+nVz5fUYiVT9KnGltxUn5U3cSRsExCiZRAprJSufyhR7KmWGKbyEbRxbwk3aUDEfVlVWzW9zeBEuWahdQuyXCN2PVhpJmEIq5InYsEOIijUm0QoQJKaofjfuK+NJyzSHUlSdqETVYNytjz7zOb7vSkJ2svP2XxvUIkVP7hZR/vXg4l6Kp3Nxo+Ix9dDU4DEn9pzVE+bEltN6wDwrmA5z22AMcyYV5j5rep0ckL8xaMMam3PHx33C90uqFSyTpErxmNfGMA+QqPdBNaKa1STOAouZBMeFZjBYxpPLkyVSoCNQhshrhAZigPVJHcJuV5QettPUr8Duo6w5IGGuIFF+AakGSiLOGECqySBvJgxIxiiptGvru++u27M2130+ucbTC3ZmoYFDcJyBGpW8eNGHyHWdvrYI3G2x/f2x8fNlJBBqmhICjxkYj5XscqZilwFZUF/Xg1wvdqeg7adDO7KG7ZijdwuqMX+Kut4btIi3LqBAOuxR73/+9KgeC3qpJYdROBWWKq00C3qnJWfijqn/HRa0GZWoGow2Hxbk09tk54qA8VaTZo67f7a+nrQ5Uf71oM39p9Npc8Z0TJs3N3jMuTGZAzcvNQ5aHP95nf2BUd0Nd2EuKo0O80sjMcxbUGH+PX7A6XYW68PXHqr5k5H8cz5ZVXXtdzacwgU8OUzDQ9ablQ2zgJ1E2/Rpt3dxyPntwrgpDqzJp7Nv+W07dESXOu/aZq3DtmSOALlCsr2LEjfgmTTSrR2tqtldihIA0jc7MXkBJ3bknsjp7f4OHpbPJzjDhpRZGAUTpCFAJSySdXZ/VwQg3Xpfllvfv4NRw3ez2NLAPZ/8kwuuzare+v6w4SECgBnZRgNsGQ0AQOdWS6q5ZaALsBkuWZuaO80NONBmf8yi/o8dqmABFkpM51yqBdhLYMJNXfy/BViUP9uGtdgwb8R4zoYBgQde7k3tpYcF2AV1SiM68seEL3vV7MNdeXjPCqqHOHhGLpdqabEQUG8truwF2BmODyN9f9vB2bxuQv2UgXIHPSzAEjM59IASEGsalDovrsQFWOKie7UuwGa5oxJDugA71QNBCtWnraj0qcH4h+O4u/ufTtkQtDel05LZfZvaa+MfkgSPle8eTt1O5x6GbMcgb23wkA/re8V6yYg2PXLX27Z6UdR9un4gT05JD+l1fzd76xH3GpOGT2mujzWtJNo1rSQMcheDh5xoNPQDOdHNqyDkUngYYBEV5NCNK1iEQd6GCvL6ifvyc0+e5Szd8mTUucZj8vBZQ5w0qUjCJ2l2WYsC4VboHVjco0zZlqfwkER9tP+7lplc83u9HNPvY1LEdK9Xnt9fpC4kfTTNhCaUoCWIj2Cfi0Mn4boMiXsGN8+8D/2H8ZBA+SCk7/aXXZB95K7LQXum9Pv8vRNniR7jIT0fGGW4gGAaAsQny3c9A6s3HdKpcWWHXgIgGkgdDL4ApvtJ5EJIZ4LnE4qYQFJUcsLkyWCDe0mKMIEUxT9N3tWwWRUWlDtt0sl6HZPwEmKu+h7Nbn1lJL2nabkgEkMD16ODBtFaUbOzNCbVWmYoeqATjV/GLkUyT8FM4Q0TMFOlyDpIPA/WBaJs67eh5pCWyzfLwxbbrk+aMWOLLaHyDDosSeUZjKL3jFkPVNgDybiX44kIu0YOsY7AOWM9aLEjhgIikKRgLXE/mJA5q1dY7nNZrNO2mfjdiv+o460ewPKmBQuIOmp/XBkU9qdP0xrDsrfbBuxbKXrbdawZPrffhgO3MWC+MNVqHFWhrn1GqlsxSwREE/wIwIDJoWgre55IIk4CsZccXZ3xxLe6lzMTeDCRlClPlYKIA3AoXgKI4H7lkKlieCvccxGretUrL3oy2cmwEzjC3wERg9TabAPLoJAkwcNq6hmqipESZgpcxNfONpbG3bn+8H6LsOye24fknP/DghY2zWPMhA/ocJ4p7SjVeSbocKQd0clW1imzlegDkb7s0LYcm6AbS0O2ch1H3txWVEePxpKogfRwZCcZIjSbbEoUAu3vcFQnY9kMJ4/ofh/EDAWMKgL2U/z4PGzslfDt1yP3x3bzi6nWFUWIypkjdKgAuTHQqkPlHV9qH5rIjJHB0lBwFuO5JZSr6wWkktQ4WEGKvPVwn3kzR00p7M3dt6Hzj9WfL13FscwiQjWQBtvUaZXBOhda1t06bKDuDN1yUpMopBsqMAlYnTxhIlTvNGv0qWcv+5gs/xA6/p54X/zRqYSNMWQ8TSWkvKz3WlAeqJYJIWMKwwvRMjqddGoVA40VQGSEQGkXdQCmYWnNS56uf3A2Zo9jZM94RYgg0YE1wzSMUBngIMqGEhygbHRqT9xaaaXKLLgu6PSYszP/hE1K6KwaD2amtbNdgA9RVMv+miFKGakyEHKhRQjMadRvc2NQ+G1nl/C4P33tgyesczJ92Xz0Ybw3ygU+GjM6kKv9wkGA6mAYzG/APGEQISaCX4Hflc4E2MoUyjbGQNmi8gp9L9R1G6uV4yQb/cu92NsyMP+P/NeOBWH1yZ9b04vGKDocEfP+jB4R03CV/KHn/Em3ZQXkAdQwIK92s6Obb5d6gSGb5v/Tm3do8kVCnQt4N0mdC+RyeZ4SUf/p4fwXEwIkJRNCJuwc9Emnw98OCECYXLjwhTJlB2ZyY3tz09KnM63GB2XU4/UvLHmyCz8tA7GbNadlGak8wHy8P7pG/r2kx/KlRluNfp1L1ANgGZ/oAAMSVS1OlNJmwM+0Y1D90TwTTlfixRLhJY1WlWXuV7SKfxc8rb64waiJJyzqImefATM4aVKZQFUGC3FqWQHRLrFtKuYAE1ibUjDtSNpJx6BM62FLLJorxuuBtY8+0rE266Ph+MdZuh0kr81V0+ekzLQzN3VvndsqcEHDKdt6tz6Ib2phzCUrsqm8qve1O09UJxWwIC+I8a0nMsVQw+jOoDCMAdfs74/otNN/64DBDjP6HMInetrBrQMFXPqEla0FsNaaQIfT015sSQqAXLmBgQzDLxsGCQ7LDk3zgZBoZRGfOHfhHfWcwd28arPPG4GNS/kPrMEO0k9p641AS3kOgF5MlpAUB4T/6B8VPUzN4qqBApcbYGIm9DYkYqYLdhAYoIcYVuQnpU6Tw9VoyUgBn9yIXEudZnfDmxe+d1HX1vtyfVzxOgapqUJy1By9Xp6OyQ5ydQ2L/i1kwfNIn3MDfdtVUMdkQXsLYTYmy+rJaYPAXNEl4ZZq7FetbiVIxHJBQioiHjDLgXx1c+R9F8bPHm4Byw9Fhw7MWNQNh6Vl2bia4S+OqG+VwHRHYRtIBtstDwQ2VCV4UKmEc9bNP/h0lIRPfv82zPPq7xxi4SGpiJcgYEakikQkuoDKYfbA7hPD+6DMCsUjeCIhXynkI4Uw/xCEKTLtNcH206wR3x0dQo48ezSns63zA5rnJCuQpEbWNtWsNYchPQvQtSTbfMuD6J6p6NxvAI0aUkZBAY/9QyUJESNPrLl44s8tV3oELZh5fE2/j89D8e4zMpCm+6y8XN50nvD5IMP6sHFkwcHORpf3Bq+p6HY7rEJzlqoKTSysQnOW0n3WEjlHFXIynKhB0SLPrjv1eEo6gxu087Rpm2vdZ3zHlz1HBYR8SwdP1fcshmgBSaJBS3qmSh0s7EHNYtKlAnUcmqudq/EMAy6tQOQJPyP3DA4ZAp3cJIGMUIkP/qmo4m6AGEjIWDAECKrTlawm5TLRMFVkklSQr3Ge6CwoIUszgwVuwCzQaSHMQVkOBfoKiK3CRJ9PXiAkPKzV1S1ZPbaljl95I/EroaIC8lYkGxPI5cqAAhFxSiiAiKOGypNh6Pk3RG2pn/wbYu6aHlKe0k7TpTx1Po1B7mXwkE89cbL3kb+suFsyn8zt/OKrm34gH/2jVYTPvTHhB/saHYzaZF+sB8hvXaGDPOcKBrk3FeQ6n5y0wSCvgpOTxGhM7eQk0T1TOzn54fqTwlX1irl5z54Pyozd/ELt5OSKg+3srv+sHXzIqEbhOKec72onJ6X53OWbbbpwMhrMZoW2HDcSkGoxyN0VQDJBSURBASRTlJTTROz9YGJyyBSHLR5GT6890DiKCYWXVPrEezxennqxjbPp0eY4X5d93/RwFNOHiv/Nwoo87m+3CFpvzI+/8cIWz/96ysV+tkgih+4isoGjfb3SZkFCeAAzGZ5YVA6AhJQwztTpIFDNA8Ou1/L95Z/3Zt6jHV79rpf7iBrgkH1IW68chIqdT4BJdots7RpmHXY+rtPataNytw3prCBBDjVLYFYgdV6Q69Q/Tz0WiiMLFlvVNm9U7/eK7LVV7jL2JYCVywnU7GqU2DsKGwgcJ/XDqbCqr0qJUMeKvPoiv4tNSdvWofMX9R3sm1jrnuGeqYIoAZmhQenoMd3OVLlHYfMKmWwIZtiUg6EelntGvVWSMtKspCFzX+SeIVl9E/s0tq/G/VxY1AoRItINOXji6tZx3dxYV9XuIYRICQ9aaBFYIJxuIq9gMzS2wb/yf0NX2SluXrgSmmIAu5YQpKnH6UDqfFy3fd2WgULlm6uWqspERlnxk1JBbTrBvPF9iWP4fpsF9X3HLmyB30XExtXcRVRRKgOd4mN06OQcwxyjtgwKw/iqTwTX2Osbe8Hq80ErI0P7ay7Ea1pCqtYdzvj9XFWq20gJusqqnSGcPq7ljzc34oMWWEW9+RjlSPJI5HsD2mZ/A8VUcBLAdp7scB4sucg4WQnbtBtNRVcapcwK2LBpaYtzD4ZOwC92IvuxFGYdRyx3m4qg4iqaCQ57HJ+kak2QB49kn9TJ1lkjYAnATKOGKrdm2Lpdvr2DFs77VOdDzDExXhNxwL3kQKmRqtglgDAxaGEqKNLxAHG5W2jEveZq20KDmgaREbiFpnHYTeqJQIPqoXZUesjwWwmkfWrg7CbNCVs9bobpkq/T+lZ6KwF/uIL5+iTsQEzik2fAlfJXem8l8PbTY8tmv1303/F1Q12bwDqN9dhK4Od+1rL+C1YH5pqXXl59O9OsoudNYacFCM8WsjkHuyPGvdZ3K4Emko5MWS1ej/H1bvfuEn9ni15bCdxo3vozl9Weta1J+6J9L2T39ICPLS0+QHwMsmi9nlsJtPKYNrp0xrrAOfuNjJ3rTWpZra0EIFekr+i4wjQorpQcwbii/1YCMQeO3Q8wfcyaaeYrSOns8rhaWwn4e6LqhLRwfgYsnP+6klsJdPRjn9rQczxnztrJc+VbGxIOP1Z5KwGIyNFXdIiEvMLsensGhV3/b2sl8ONJiy4X3nTosdc32mP4yriPldRKwPslXSuBoy+qvpXA+YH+lyXhfTgH2m3ayD929oueWwno2fgjqaQv6VoJAAyruZUA0Z5XeysBBDDKVgIAMHQyd6CazAazcUWUJj1VLCNuc+hh56qwmG7nKq0Yw7wjFeYGWlWpadNl52a1fxwyd/mZoh3B3+fTPZaeqio9AkH21/dUVZXgHkXI+/9VVUL5cym9qPOd/ZeCJ/m1tTYReT/XQ1WlG0vOzH7k3CJy6Y8a9/LjbCq8ZgJmR/F7qnpBMEEn531lV1WaL1p5ZfWFdRHbRmzxdG2fGKiHqkpTOlxiTt33hD0v/IYghrW2orvfEKUQWpS+vqvEqkrErPdqraqELHi/p6qq5OKBIIXq007/Zfp0cdgr7tHNnbnz9rg1Xt6/p3sV6dO8t3T6tOSf/+lTlD+PS9t+/vPe9KD1i3wytj/ev1EP+vTN6tqNCx7YRu6I68m/79isSA+aIustnabwf1vZ+rTP8DmhIwJSA6d3cKqxqovHaD3oU+IigR5QAmJNg1LeP5WoT4k2tNr1KSIxlPoUIIXq085U+tRgYgLidDLI+l0wJMh5QxcSxL7BIPelglznZDZrDPIqSGYjbpOoJbMR11bUktmIAZ1aMhsx0lBLZiMaTbVkNqI0qCWzET00jYw1qBVJRczZ/Jibd9g7VmHMj6NzazXorIeMtS56Y7JlFTKZWKZNjcnEKjVqTCZmuKkxmbjnr8ETYyqeNBooXVa309vQBcb7LIdbhy7SA0+6UvHEgBo6FLfmnPo3qzv7wBKWV8LYz49JHkXPLZFWOadM5t+Zzlrg/zSj88r0bdXXEinq8clKbol0kPv4v6OhQzcqUTUYs/z7rByzM29/Bk11v5r/x9rxyXpaqiPKvz6aCzyhLWX6BLPLfgaPeWL96G9Gk8cETTHaKxM7h0013OXR4qt0mG+4imH+GxXmOptJK0bVmckHLz+un5XZIGTbsWFPbbcs2ahmJonyq2YmiTNGzUwSGavmC2Xsdn94pvk5zqZTiy529Wxmp+YL7dwYMD0/4gF3W/KXNkvWtZ+hYVyh1icVpMicwglpNSNYq4Yk1X1llvmvHoxrdypOmkcvGrEudWhg/puvgk7Mje/x5e3Qjb9w8I8MqErtqwI2wrYMxcxIqUAczGWmoGNotyF4OrVd+/fjMsIPPlh7+7pZ+njax9Ksukf4gLYNKVpzGMzvcLeGDeaJxtIMiMwyvmpsEdKlSTRRijZWfRKWEEiFZTqTeWJg5EhfXC4cEt2/Ez9g5vDAwSmKFk/wG4KByhE0NwQxgt4rGMF0FgjJBsp0lm/VkjhRKwFAq1IaJSUlpboU+2PiGQPrS6WKeDJkn1EE3RdS3uSc2JYzcnnX8CM59f/t8H7zTkIRVXQQkiKqGKUyuCP9RscdpiFwB2ijUl2yi5pyUoRypGxxAo5NmAohZc6u3tK9JQNmRI4/4R3oeGLzGDxzlCOSLOKWUSqDOZe+0jEHaJPqZw7kjzpzMMtExZxOrBT4lQhPwOPIwa0CcUK6suiiH1Mi5Q2HNRp9kN/KPkE+o96dW9NvZ9qPgLWd/mn9aGcHfB2E2jFq42ueY8dRK4N53rTMe/TFcAoF4QtpGpfDQb8yDsqTheJ0MXCCAfsAu8QSMWQd+EkkGYkQ4a/ekJTCS1NeIOWjcEHTLj3X/hUx48S9FZI+QZcI1dCSydKi0cuVwbmsL3Sc8692zsGb4I6KTqkydZXr0UJxEr0i9LybcHip0DN0avLoFi/Oun3CK0JKn6mMovcFb0/Uh4ARxxkNt8oLUYSon+rPoPBTGxqPjj5+4GPkEbP8v1t1HE3YqWMrF3KiZIIRQsFIvJsKMaXKbGvNglWH5GqLQUgB2SSBJEWgkKUzpcoB5TahymyuUHEvgRiNX6id14sd54+cd/xSj4K66w8wT413pXtWzV1FPN26D/hHKpEpgoQihfKLydx9yhOmbTiM2B8A+xyy3cYs4NJu+Jcy6400Gg7GsEEOTiLPqJVH776pzrK9GY0jM69fnv77y2n4c8dm2KiaYqmilBcnE4ubVTROBsiFQOT8yfRIlBuH8fVfnRLd68eouTBMyQiBTCak6Flhbxk2uLbzTc7a2rXOTDyxrV7FpzABK6KO0ANWQI5osIr9t0p1LraOaYqGXPBD0Nm5n3e/1EyAenzYxQDvgNJaiG0jWlUzLDDAPgr/X1vd7cHfoQq3WVRq7H9F+P+jIvw5k67t/b4shbX1nbM1X5z7nRY2fRbhdyilK8Lv8KsyivDvZ+cMnXD/eI/9NSPbrGA0earH0+Z61pGwZrlZKV3N8sJfVVKEv0mdHXsO3F3CnjjUfvv0fSlh1V6EP/kXbWuCX9XtgarvOFVPEf7xyd3rrZ5VJ2Sz9zLWix5bBhlMEf4zP2n7J/z8v1GEv9aziRvPHLYLXFxyrvGfx950I+x0VnURfkTLUFZRB1qmyorwTx585se9xhnBWwP2+y6dNQ2fjVA9RfgRZUPdoeBXFRbhP3Td+/jhTacCNtRaGr750/XbBlDOAmlT8JO2TcFPLPwMYFD4bRyWq1up3zXWhgdOG68sf4svxWeJHOKTSkTAomv6bGYUOHco2yIRlt2P1sIAiMskqUnJwIeTC5ClGl1qOcwvEk6ua5/DyXrPaXuc6/eK8mk1qx6oEbXN7WvJYXgbnWIweGy46EJsuwzwnco4VcGDVXZljwWuoliQvrqpq+v6x+OiQxfIQyeuPeVVXPHeXQQXiqgYK+hCMQF6LhC9pmwS6XRw5YDRTuniQqE90PmCJJmA3L+0mmw5Pzf2Y4/MizdqW+6/1pRwQgq5keSElPK63sv+gve/xaB7/wLGKQNYrkMkUwdHCT6yUMIXJtDUtokZE2/p8WNP2HiH8dmPO/rWwssqNoCmrKoolcGMqbTMiKseZhDdH4YuOxaeYWKJApgvXgJcO3Xx9gMhK4gsUtyZPn4JyRIZ353Z1k8+XKZAfiH3Vi93em5dMPNxwOyz0ssZrJCJeLsGvyBakS4i6X9ZRqoMZnWmZZatQcwcOJRO3mr9soVucaosXk4zg9zOdixk9vFmzy1auG945s0vFQmVK9p83BtV5PCo5yWNulA+nM3vGad08lJRTU7jbYXH1uWaNJsduX3gw91/SK/tqNawFwJwlIECcIsEAKhadPJEMVNGXWQi/YdxcNxnT+7GP7v+69ig+8xqPewLAYhh0EhAnyaMU6ijyWb8d+XjdLvS9Nr85UdYa8dsmZAybPSmKsvHca95iiYfZ2ANDc9Sz/k4I5/Vqf9n/Db/XZ/fz106MivMAPJxWkBIKHc3f9SoFqWPTyq4ceNGFeTj/L7mDcvq1tbwFU/C+e1Kh3UxiHycazXouLPFELhTJfk4t4qMWp+xkHOzx5W27Nv66QGDyMfJpGXOQENgDqM683G2m3YymvdXHGunowPrL8fuzQ0qH6c9LfNqVw/zDDMfR5K1o8+HxK6RhbOiEgffGuBYzfk4T43oOHfQqLo5V6n5OItSwnPZL3xC5wjHXQnwPltsEPk4iA9BmY8DFCHqpwYy/j/Ix/n9wYZ+6yd1iByf+Pweg5EdX835OO2NT9Hk49yrSblYqtd8nMQm4fMV9gP8M9/l3AyYG5+l93wcYmyuhxwTd4gcZY6JsbHGQqme8nG4v+dwR9ik+u9bHB7eslntmnrPxyHqCD1gda8mHVa7alapzq3ufBwOlRobfkToJozYxN57OFL0/OmAt/idkp6p8OxksIwnTdY8YarD9kWLQKFcCk+PqXZz0j2Up0yZPFgzLwl+A6nkLRemZO9a7clZWyv31sFfffZQPp/mTo46UUP+zKOBCotUP4pFIpXEc09aSqVqNLLSsc9PMhgN2PAv4fzn0Nacg1uen7SKFogAwwT8UKDX07DhELYqWRlExUqdz6S5qGS78s+k2cxM75LZoU7A4SKbvZ0jasxQO5M288OHxhm3bwdnJj8b0KS5aaTambQ5Pu94AZuCIzZ7/tva1th5kdqZtHOx+8PuuC8M2H0pcZbLBa8ZamfS5tiGt1kUnBW0qsXtIbltD5WqnUm7OCjuHqfF58hN38ZNqxt4x0vtfH6XiCunF7YqCsnq21O2qMmUfLVmM3Me807F3JFy8kUNuuyP3ugDSGYoaXGTx46JU7oFbEqX3F+W5wLP2pmjpLZ/rv61PjGMs95uxoCV5ncmA5IFSjoiv/og1eJa+LTll8b5nK63A5AsUdI839S/549+GDqXN69zvVbyIECqjZLq1m3Wsr0Rs0f+pOdXQxMHTwMkK5Q02SJmWPcwfvCmB0WN5IG+lwHJGiUNGcJc/3d0u6C5s/PGvRzx5zxAskFJvufDDk4Ji4qY6ia1HzT62HBAskVJbbYmJt5ud6FHfg2THitif4UDUh2U5Hny0aEWPif8Z46Kib+6dMkFQKqLki41cZ26Z9i9oIm/fW10ZabFGECqh5JC9oekLS5JCsl/nNokp8adfYBkh5KkTdtaRVzexco5UnJlYL8GSYBUHyX9HX2k9O5Vc9YBJ6HPtx6HBwNSA5SUcOGGeZtVuZxDTd+0mfSP70RAssce/urTxNDJP7nTf+vECBx0sg8gOWDCFms3/fBiU9be7RefneqZ+DcgNURJ7XtHWg475B+x8/dfq5aNz+UBUiOUZJWw2u78uPjgwxO2nZtn3GYSIDmipJftSr7FvXoUsXL8g72no2Z3BqTGKClA0v7r8lfJgeOzmu96+21HPCA1wbh8R/Dt8pyjActNx70ad/TMdEByQkk+V6wbpL3dH7n6lMfYRrWf/wNITVHSlrb2r05crxWQ1ay92P7TOfheTJRUzC6yKz65MGBLl6HPatQ/JNM4bOnMoDhsubhuhybFDs/ZU/ztGr3tf2GwHg5bBlOpqPqJ+/JzT57lLN3yZNS5xmPy8IuJnDSpSMInySCgakzaCr1DlfOJlFqXp/BEIqCE0Cr2WqYMEBUU6aNprnOiBG1rXwELEGJ+CupXEu83yp3DKDHT8H5pm0CUZVQqH4T03drWqr3H3bGYO+PD+QSLnsN/6TGhUs9OLsOFw/CHAPHJHLczMHXQXKdsgA69gMMkQ9bu+AJYplciFyIpFOD5hCLYdFklJ0zgQTF5MORKIEXx74TGF3/rt4g90dmqzS3f35vht0BV36O5BVpG0nt5VRdEYmjgOmNmEPvVmul6OrYN9UAnGr+MXYpkngLEL8METOCAqNowUe+V/nrqJCm8sTYs+9OXx87dT6YRVsvRYUlWyzGKvrln64EKeyAZ93I8EWHX2DHVEThnLLEHW7QWEIEkBatX/d17PuVeCZjZ5OiolaO/Jlc8jUgPYCGiTgkWEHXU/oQw/nf6QJ+nD4geepWdPsi2OEVz+sDOQidbqeXpg4eZaevSrk8N2VOrlVPTlg7j9GgsiRpID6cPZkKEKJO1+RY6Gcv/9PTByjlC1xWrhRG7J/vEPqnfdkW1nz7oRosKkBsD3SmputMHk+7ku+99mt5jzups6xUXopcZzOmD1+Z0rCsyN1B3Rs+nD543OCVetLkVe3ro8VoLVh+/XM2nDxAtQ5k+DrRMlZ0+OD0xd3P4D7PA+Xc+tvB+HtvKAE4fdKMFx85Ct5yvCp0+GNpnXZu+6d8DlqeZPKjd9TW+Bkj1nT5A5jQlQmBOo35bKIPCbzu7hMf96WsfPGGdk+nL5qMP471RpGdddCBX+4WDAHzLSNQTBhFiIvgV+F3p6n0VgbJF5RX6XqjrNlYrx4m4fkn+3JpeNEbRobWLouUpZWsXDVfJH3DgYwvdlhW06i0pmTSllaOfJGBt4V9N1zDXtyZsssO7STbZkcvleUpE/aeHvi0iCJCUTAiZbhxGYEud9s4cEIAwuXDhC2VAfAGd3Nie6795vMUYT07WgKL4ey2P4WsEmwdiN2tOyzJSeYD902f2yX39soLGX20qutE6rKIH2iFgjWkBAxJVLU6U0mbAz7RjUP3RPNJpRsNLS4SXNFo1YMb211kd0jgHnJOObdyV+KUuchgHMIOTJpUJVFt3iFPLCoh2iW1TMQeYwFqZzZxZzxpOC5/d7tmgKz0LDuiBtedb0LF2TTWxlsw/ztKtAVz5/UuDva1u1nrmHjDVplbI17Z9M6qtfynDE9VJsH+pVCO+9USmGGoYezAoDGPANfv7Izrt9N86YLDDjD6H8KWB7WDJTQVc+oTZuAK4PyzQoeuZF1uSAiBXFv5EhuGXDYMEh2XNzvhASLSyiMRtu/IfWIMdpJ/S1huBC6Y2APTiAJImaHFA+AttKnpWj8VVAwUuN8BSvtDbkIiZLlgDL4Ce8hAf/Emp0+RwNVoyUkBxAudqkItju9gFQbOb5k8X7Q63wesYpBcqSYs49Hq5+RfWfew7mHVjb+/i/nONrH3bCuqYLABzMYTZOICk7VdOGwTmii4Jt1Rjv2p1K0EilgsSUhHxgC0kyFc3a25KSes1+ERw/nV277m8Cwn4rIKycTXDXxxR7yea3FHYBpLBdssDgQ1VCWFUKuGcdfMPPh0l4ZPfvw3zvPo7h9gwWCriJQiYEakiEYkuoHKYPbD7xPA+KLNC8QieSMhXCvlIoSKZKQFhikx7TUDcpad5TrLGxmpkbVPPYClPiK4l2eZbHkTXuqJzvwE0akj7QwVs1weVJESMFIAdx9eMSCq+GjHvzajgM09MjuLdZ2QgTfdZebm86UzMSqhoOhUscwKRW0XmMsDuJY+sKd1nLZFzVCEnw4kaFC1S+BYErUx9dOFi6EE7T+7IY29e4lO1UQEh39LBU/U9iyFaQJJo0MqyrlIHC3tQs5h0qUAdh+ZqOTueYcClFYg84WfknsEhQ6CTmySQEbKE4Z+KKu4GiIGEjAVDgKA6Xclq8uRhgmGqyCSpaA9lT3QWlLDIkgq9kFmg00KYg7KNKfQVEFuFiT6fFIoJgW0t7lkEsQsP7pIlLRprTNiYgG9FsjGBXK4MKBARp4QCiDhqqLgMCkNlMHXridpSPy18KqFsvZ01mrROWrb+oxUGebjBQ07MjdMP5A4HPFpfK00MW3Frml3bb+ef6gHyonp0kK+ph0EeQQW5zlmZNhjkVZCVSZJEiWVlkiRRYlmZJEmUWFYmSRKlKitTM4kSy8okSaLEsjJJkiixrMzBIc1e1j/wzH8dn8vrazd7ikbKGxReUukjpl/qIeUtkor/zcKKPO5vtwhab8yPv/HCFs//esrFfrZIIofuIrKBo+mUm1DMtmZBQtiyJxn2uFEOgISUMM5E0xC0294nppyW+4ga4JB9SFuvHISKHy3BJLtFtnYN20EqLHVau3ZU7rYhp0EkkDUAD/ALdV7Qw4DfrzhnT/OfspAXd/r4+XUV2Wur3GXsSwCr15ao2S3ROGAPwuoCS1I/nAqr+qqUCHWsSFG6bZ4/6eG9ZpxJ3NF/p7zbztBjWsT43hGfzqxLC9oomRYyNSD9uB5QUtCi1NlSc/GBzk9zj8LmFTLZEMywKQdDPSz3jHqrZPKP/V15goecJc4pp22XK25X434ubL+ICBHphtxREAYXWermxrqqdg8hRAlqNSugBcLpJvLEStbLk38u3RIyiXfsis3YkrkGsGsJQVpKC5LCUrd93ZaBQuWbq5aqykQG2VikVlCWv04fuj7iz9DFi4L/uspcja+4Z4aNq7mLqKJUBjpcWnRaWGKOURSDwjC+6hPBNfb6xl6w+nzQysjQ/poL8ZqW0JgCXGf8fq4q1W2kRKeyccQDFtruDWib/Q0Uk7cVgO082dlHBoDtVu1K2KZNb9u3nkn6zoADM413XXWdcxy/2Insx1KYdRyxPC1OVHEVzQQHetoFghVFJmN5sC6clU62zhoBSwBmGjVUPxueu5ZtX+C/8Fm98CXdRfjG7OYccC85UGqkKnYJIExAamhgKqitm7ErfwuNuNdcbVtoUNMgMgK30DQ6CUs9EWhQPdSTSg+xW5/38p34kJsXtPKdwrdhE+I6dApPylSu05Csl1O55q2V92G7Pci5FB5TLBgJLwlkwgTUQGqlloiHu2iekGylXI2sJa7+rTmMg8xTsGoSiU+eAXOemDopKmtkG0q5uAseh/QtR7nln75yamto3trW5xat7+SNd5GQATRdJOXl8uYc8ZxbBecczEzeBeHZQlXRYSZTp2wSK+Xz0BX6Grtk8vbL5xawDmRwTl2MrdkPv/unvF9z9w+9Xh4+1zacHSdYNC3oUJMXHac+FYv0gA+fFh8gPtWRYWCGJG6MUALRjUH8o1slcKsYnixJoKBjWodlDXO791wdvte+zqqRnAOEtBDl/ZpMQ6/rfc0WcMWOliuvmxoSV0qOYFzRyXzZIApPKuCjypeUMa4X/e7u/rY0ZJZD1HLHzB5L8YwJR+7XZAx6Xd+M8fdE1QlcZtSIVzNgfWambgGZowoDJLAQCcvD48yJpv0j340OnOBgLpU+qzkCn1XLVg6gmVWLESoDkW60iDCYmF3vxaCw6wXzwj4O6NoldPLHnwqzE3c+4Hms/Ebtk2G6qSIMvAFnjkwWJiQDtxKeLeTJ5bCigSorBjX/2gUfxHPaZM+rKZPK67rkiTZF80Q1sl/8QVTXrWlFd8Abo64GNPZCZZEaeIRJ+STk3V6XBVlO+qc0MK+f1/lDm6bjDb8plWOjIlSx8UdSSSGG3mQ5GkxXBEOdNFa3CFSilGU5cQe1YD6QXLk+AEsBwp/LfErm6IixpIgS7Xm1VgWFcS0CmAMZYLAWEwAMnczRVJPZYDauiNKkpx7XxG0OPexcFTrR7VzlOGGYx1BhHrE36OJZRhE7o3/DrsKXPergq0Yh/eSlImECcixMU5FSIe0YDvwBYJ4U4E4RMwU3ilZ6kliZgu6xNItZ4enaLtzAILs5gHMm2cIN3KPIaH7KSrUaiXlOmD2xCIW6FMdL+E2myOVQPiYD/fhnZhsdMQ/c/499uJVbvUsY3YiCbhmJqBcNGTFTXqceWPk8yOPCj9AFbk2ChDKgc2B2ApLMhOcXKX+e5gy6Gv3paOik5aHxw579jm/+Z8TSnB0sjdlhRJgdnWvHdjvh3SV0Y5eh85KetVJUdM0EzI5LkJ3eZNkLMEFnQ/NTaiCVt7LkFC1IkAANrQtK/VymH/7+OTVwU8j3D3mbF1/BoxSgiVJAuSi9KCne/9F1mX92/42NzH4W9dcDShm0KMU2P4XKoEqWaLNdlPUCoWOkBUDErHe8DVMOpWnD0OuVseCNSMxXsoUmFw8EKVSf9v4v06fEcj5VpE/dm9Hp02vO/9OnKH/qmh3fN73JtIhVn3t2W3YjqVgP+pRYpkkPmqJFMzpN8cO5svXpSu66iQ2vvWKt+DtnYeGRfkv1oE+JiwR6QAmINQ1KW5wrUZ8SbWi161NEYij1KUAK1ad9qPSpwcQExOmkn2S2DkYN381iSwP3fPJPLrg2q5ceQgIXZ7qQwEwFeV8qyHVOZrPGIK+CZDaSGniYqiepgYcls5HUwMOS2Uhq4GHJbCQ18LBkNpIaeFgyG9FD08hYg1qRVMSI1fP0kLEWqzcmW1Yhk/+zOpIkRRUxJhP3/DV4YkzFE2LZQj3wpB8VT3ILH/Wb8vRr6P7C3fu3D3uMP+dXK4onFog0C7RSKTYXFlMK71CrMs0USxQCZXEhhSBNwVQWZyV9bWLdRZJH0UbbWUYnyCQiUS9oseBF9YasBE245+6EG7x+QwOO/HHSt/ePGt+pNKFZb7lAFgMeH/valoGS1HgRzNWClWBh4R++UIG+O/Aw4C7Hk4x1BJZgpXo1FqVbcRgljYAC9WUzMqawLcJ5siShmCtIxBlAS+XlXrBnh/p1c+X1GIlU/SqhBGyPVpzMfxqdskFAjJLBc4MKofKpTLGnIptQMt7IUDEflt3C4DUyhxfh1ovaJcRXF6FlhZUBAewEIuSJ2LAWlJohUsgEvBTV78Z9ZTyp6h5UVPtTiarBmGViFVA9LdUR5V8PdjnTkc4u8x0xuzzA4DEnllc13OXRODs6zP3tMMwHUmGus5m0YlSdmSSpm4uZSZK6uZiZJKmbi5lJkrq5mC/0qnad3PjflofMbsiLbdpn+DU1X4i7MDunWUyzkNVfBvRmL3Lx1TCuUOuTChKxGK8ejOsgKk4aaMsxYtHhKms5JmpN13JsaavKbjkW7XZy6vGnbuG5I+q33r03E19otXpajvFb0zVw6dbaAPomFRcXV0HLsRdvdsbPzW8UvKjz3CGHS3ZsN4iWY3a03HndygC4UyUtx6RXYn5r+sOdlWuSy/Ny+nneIFqOFbWiY85SQ2AOozpbju37MPtFpvwVu3DocIfP2efxOcfV3XJMQcs8bvUwzzBbjh3r3a7Vg3OL2dsabjuYFDoDv6NX9S3HWtBy7kfL6uYcvKnSWo5139PweaPTo9gH1x+1a9FhK74yXXW1HEN8CMqWY0ARon7qYAaFn/rf1HKM2BajmluOTXWhaznm7VJFLcc+Lejmdftb6GpOhsUps6mf9d5yjFjcTA9ttDJc6NpoxbpUVsuxMe/2BsxrODw8c1nq3biFTZ/rveUYUUfoAStvWqzMXP5PtRwbQqXG/leE/z8qwk/sJlRlRfiL29AV4U9uUxlF+PfUkTfusmlK2PSkls2uTaoboMfT5nrWkbBm+aM2dDXLC9tUSRF+8/kzA1dseNBjE2PCtTsjkjyrvQh/Fi0qQG4MJnbQ7eCP/orw//OjyaGGTn+Fz7jq57HA8uxpgynC70/LOofqYV2VF+G3vyesKz+0K3h2/C+nJle736zmIvyIlqGsog60TJUV4Q92tM69e6xn8BbRuH3XrL/htXP1FOHPogUnuU0VFuE3sr5faicJDZvZLD/tvNOA3QZQzgIi5E+LEJjTqN8Wx6Dw2zgsV7dSv2usDQ+cNl5Z/rYdvo4AcohPKhEBi67ps5lR4NyhbItEWHY/WgsDIC6TpCYlM1VNY3Wp5UDssEj5tJpVD9SI2ub2teQwZroBfHlsuOhCwPcSwPepa0UPVtmVPRa4imJB+uq1L18IGxp4KKhg0ErehaUL7Cveu4vgQhEVYwVdKCZALxOi15RNIp0OrhzGQDedXKjayunLFyTJBOT+5a1//1z06bsoPH/Otp1Tl3YVE05IITeSnJBSXtd72V/w/u1p37+2W3U7SyrJ1MFRgo8slPCFCTS1bUbvWDzR5blV+KLMD9eH7i8W4GUVG0BTVlWUymAGmKw0zDjoahDuD0OXHQvPMLFEAcwXLwGunbp4+4GQFUQWKe5MH7+EZImM785s6ycfLlMgv5B7q7n5my4t93oRub5d0b6WSW6b8XYNfkG0Il1E0v+yjFQZzMqmZZaoephFmDlwKJ281fplC93iVFm8nGYG3WEsNrF+ZhRx+M0R9z1fXaZXJFSuIDuyvFFFDo96XtKoC+XD2RzhppuXimpyGm/rDPeAqEHXVcHr1tUafVscPbpaw14IQGMMgFskAEDVopMnipky6iIT2+52tb9yxys4++eg8NwxitYEU1a1h30hAAWuNAD0SXfFHE0e478rH4fYmLvK8nGmetDl4xS6V3Y+zpdn8YP/Le4esddmhBH38OyeBpCPk+FBt7sZ62EASQV//vlnFeTjZN3ctXhAUELouqh+HezOn480iHwcb1rumBkCd6okH6fFlwV9xUuN/OfneZ0OskrcbhD5OI/c6ZgDtEn1M4dRnfk4dSS7eyaZW4dsPBuSbHz+t0EGlY+TRcu85OphnmHm4zxc0MvN6cjBoDlbd/y2YNS1TtWcj+NPyzmHaudcpebjTOvEP5DW7Ql3g6VX0uTJ0zYaRD4O4kNQ5uMARYj6qfGM/w/ycba0tX914nqtgKxm7cX2n871qeZ8nCxPunyczp5Vk49Tb7PZ9dgH4WFL/F7bb3jYYq7e83GIsbkeckymetLlmMR5VlY+jvfiSTdj5+QErtiRu2zADof3es/HIeoIPWDVmRYrW8//U/k4CVRqbPgRoZswYhN77+FI0fOnA97id0p6psKzk8EynjRZ84SpDtsXLQKFcik8PabazUn3UJ4yZfJgzbwk+A2kklfMLrIrPrkwYEuXoc9q1D8ko3w+zZ0cdaKG/JlHAxUWqX4Ui0QqieeetJRK1Wgk+TTGsDBXAzb8Szj/ObQ1Z1INp1NW0QIRYJiAHwr0eho2HMJWJSv5VKzU+Uyai0q2K/9MWoMsp8stP/3NnXCnVZT71wnv1c6kNZ0TMaSNl1WPjfXa27zZ0PKX2pm0G6U/3/m33cFZLzNKWBKddVjtTJq8D+9iHdOisAM9I+OXF48cpXYmbeeNEEn//e3Dlw+9ncTuHMFTO5P2cN2s4K/ubyInPgxmpq94/FrtfP4IhmTvZ+v+3F0zajjU+mPlTrVmM10WnG3594bJ/lv/NtlYPy07DJDMUFJ25G+3k6++CFqw71JhQuTxWYBkjpKu1VvEWTEwkLN032CrnsMvvwQkC5QUfnD++6EPIiPWfZbdX3MuyhmQLFFSiEWpjOfN48xaLXPzHfZ+JSDVRkkWdQdl/1sQF7breOCEopTb6wHJCiVljr07bljP7ICNOxoUjc58Ao/hWWNPmDDLJLbO3sDVojq1337PsAIkG5TkOrXfwKTmO8LWpJ2cHbKi7WhAssUUcj/F/TD5vMgZfzv1sj7jCTGsg5LuLukyPHFT/7C19gM9piyxyAGkuijp+JmhB1oV9gtdJ09j+opuQy7XQ0l9R3Zo/oPbOCSjfrDx7GDb5oBkh92153H0yp99glbejxmw4YoCIl8fJd33jDO9sZgROH911+n/tlyQCUgNUNKcOYse+HxpGLbN2nuaqHjYSECyR0l7v06b/uRMt+CV+2PCJwzYPAWQHFDSZbdpTWWNjrP3P3nJjTh3JguQGqKk0X4Z9icFnQMORrY5u0Z+vzsgNUJJk19GuXQc+iFwep5X1632/9wDJEeUdCFQ0uvOr/1BC20d1+XtC2oJSI1RUn6fVUuvTH/tv3Scc0zxwgtQ2JpgEmUimvPkntw/s0HPH51/uaYBkhNKWlW8zK9DZvPQrXW/BIwelykFpKYo6dnK28lpnG8Re10T/OaumgCrSzBRkpXvxjHu965z9qc3SDo8+MVbjcOWzgyKw5abpi95c885LWLCoMVzHj7OfqiHw5YCKhVVP3Fffu7Js5ylW56MOtd4TB5+MZGTJhVJ+CQZBFSNSVuhd6hyPpFS6/IUnkgElBBaxV7LlAGigiJ9NM11TpSgbe0reKrG5xTUryTeb5Q7h9HYR7cmEGUZlcoHIX03E78X+z2Xu7NXX9za1tnpgD4TKvXs5DJggVUIEJ/McTsD3LpAH52yATr0Ag6TDFm74wtgmV6JXIikUIDnE4pg02WVnDCBB8XkwZArgRRFl74F/R+ceBhQuDC5yehWNT/it0BV36O5BVpG0nt5VRdEYmjg+uhtEPvVmul6OrYN9UAnGr+MXYpkngLEL8METOCAqNowUe+VjmlwoXjSh27hBZNb1Hs2INCOsFqODkuyWo5R9M09Ww9U2APJuJfjiQi7xo6pjsA5Y4k92KK1gAgkKVgbf33tvy32D+6MHec5ZwubF1Q8jUgPYDWmBQuIOmp/EhkU9ud/pw/+o9MHRA+9yk4fHG1Ld/rAv21lnD7wSK//NEAxN7Tweuu6Lh+DQvVoLIkaSA+nDwrb0iVrZ7WtktMHDvOCuhxsnOm/b0LsP6HZP6Oq/fRBMi0qQG4MdKfk/7F3HVBNZF8/uqgogg0QxBI7IsXeCyGEGoqAvUYSIBoIhiioqIgNBRU7Iir2hl0RUcG1YFd2bdh7XxXbrq7te28yEzKVZBmS7PdfzvEcmctMJr/73n33vfu79+ov+2DqA4evO1sfcMtWNGixsEH/3kaTfWDDqLritkbqzrCcfSD2zWpTLeGy9yzF012tXoqnGjj7ALEytPRxYGX0ln1weeAEn/S/G/pkFux/dqJD0yNGkH0QwQiOazs9Zh84D6jWXnxprueWuYP2fHUqxvc2Nlz2gQ0jQmBOo35bOIfGbzuzQiT83rWuZ+LGhlVeNp2Yh/dGkZ51we5C7Q8O3PAtI1FPGOwQw8CvwO8ar9lXERhbdLxC3wt13SZp5TgRzy+p35vsRWMSHVq7PA9AW7uQXCVXOEYDyqG35Ka1M05+S33uPz2hy415uRffEoLs8G6KIDtyuTRPiWj/WOjbch8CFE01CLmtgYUL0Cl2ZoMAhI0Le7FUAYYvkFMvtiHDehcfaN/BZ379v5r+Nb5+On5aumM3k6dliag0wHZf/DwhflFTj6S7L5M+5jewZQGwVEbAwIgyiBOlWjPg37Tn0P2QUzpNGXRphuiSwaoKC+NHvXO4FbD8TeHZKZmPXtRGknGAMgRx0QqJOnSHOLU8t2D7Aa3K5gATVLvuVv7slccO+yX+kWU96WfIbhZU68qoWhsDqZbKP07VrQFc6f1LX6RW9Nxu9cHj4LaB3V+9UFgYrH8pxxm1SbB/aTRpf+uMTDF0YYzg0CyMblfq3hnXea/r9sHDbJL7HcGXBraEJTeV8OgTsnElMD4s0aHrmQtfHgkgVxX+RB4jLnkMsjksaXYmBoNEqxWRGLYr/YVJ6qD8K229EXhg2gWA/tyNognaCDD4H3cua64eT6gBCjxugKV8obchj+LaYw28AHqqJD74P5VNi4Gn0fJYCU0GzoPJM9aN7pQjyE2oPursbylFeBuD9EKlaBGHXi/NxjSr8an18G+d3dbfmNvw8IF1NmW0MakAZksIs4kbRduvtFYIzGU9Em6uoX716VaoPCpGEjoWGR6whQT16ebWPotrHX1Uw3O2Sea8vi84+IrqZiXPJW9/cULWM5ocUdiGUMFW5ITAhpoEKZ1JOGfR9EPbTnK/me/f+jpfniIgNgyOlolCJVz/sTIZhS2gc5idsPui4H1wzEqjxolkUrFqkMdKlRFcOdimKLS3BMQoPcN7UjU21hBrSz1rKeD06AzQNaMKvmVCdDuVde5bw0UNaX+ohO36oJGEiNH0fLwQ2PF2Vd6MRv4jO6/yf413n5EHkd1n1eXSpjORlVBWOhVArgNEbi2VywC7l1TvTOs+a4mcnRo5BW6owaFFCV/idadqSUG/+2+9Y9s/tm77RXiqNjpAqEM6eCnbsxiiBUYSA1qHO+nVwcJe1DRkfLREE4emGpwdZ1/g0kpkzvBvYpw9vYZDJzdcoiCwhOFPWQ23NbJAQsWCR4BN9XiVqqmzKAgLU1kmSVl7KDujs6CYR0UqdEFmgU4HYTaqNqbQV0DWKmzoiymhMDVfGvPD/4XwkGRv4C3LFw8IgQn4rSgCE8jl8oACGeK0UIAhji5Uozg0C5XR1K0nWkt2WviUQ9l6105MZeu5ashHGz3kRG4cO5A3Oz/lS1TtH/yp96ZmPngY34gFyIu7M0Fe2B2DXEYHuc6szBoY5HpgZVKQKDFWJgWJEmNlUpAoMVYmBYkSY2VSkCgxViYFiRJjZVKQKDFW5qxfZnmKtl51z9tRWMvq8cWhJMobHLyUo49Iv2SB8hZJp/8mviec7uyu5rHJRDzy2ouaeP3XUR3282XyGOguIgEcslNemWa2NfGQwpY9EbDHjeoByJYS7jNRGoJ24X0i5bTUVySBQ/VH2nrlYKvI7QAmWRHV2TVsB5nZXqezaztVtA3JBpFD1QA8wC/0vCBbRb+tyUNiXPc8PzHZerBLj7LE2sr3GLsQYGXTAV12i0kJ9mBbfbs9pR9Oh5WVmhKhiRUlSmaXvgaa9BvAX5Rde/6qSun1WaRFTO3r/+n0xjiPLfLZXklu44+xgBIYMwwoidvr1qTdMRCbV8hkQzDDphzc6mHcM4ZQybcO434k5nlnu7dPnMWVnjBgPBe2X0QGEWVA7ijYBhe3182NdVBHDyFEoRo1K+AKhLNNlODMn9ytefqr9byFUssmXLs6w40gaglBOt2eCaTM9rrFdZu7S1XfXH1UVTJkkMAivYGKrfe03wqz28Kk0AG/zft1+UV8FBF7LjmKqJaUBzpxjOgEtsccoygOzcL4qp+/0MTlC3/JuvMeawK8B5EP4skroQkNuI3x8Vw11S1WrlPZOGKChbaxAW3Z38AwDekIYDtPlfvIAbCZdCyHMO3FrjMC8pz7+y+7+qR2d5PmhNJ9SDyWZlnHCUuz4kQTV1YmOLDTIRCsQKoxlglcc8eOOq11FghYEjDT6KFyrbokcpDXKeF64aVxuc5r++ItkQDcSw2UhkjPLgGEyYQRptsddFvsSg+hEWPNBguhQUuDjBEYQiN1Eo52RqBB7ZCczg7xW5536TrtnjDTY807ZVfbBsRz6EhRNFd1TkNxXk7nmrdU3YdFe5C8FBE3ShILL0kU0lB0gdTKLBGTuxjekOqkXEOsJa6usIyLbwGsmkThkycA1Hf56GSoLJAwlOpwF7wOdZmAnlaLTb5348+qFb7Pq9dg/LeshDyA7CKpLpc254h5bmWcc5CZbA/hyaKr6MDx1YlNYq56H6ZCXw79fmY9e9GQt7hwdN/mfdeuxEf/VPeTo3/o9dLwqVOvrmnPxxeEG3K/Da4xq1cbFvAp8mHCBwwfQzAMTBHixjgVED04xB/dKoGbh4gU4RIlk9Jkrie3dyv66Zpj8uH75sqtCNXZVPeTlYZeZ/3MFhYTY9TKCKPSSnE+phWdlq8aiMGLlohR40upGOUSq/wJlnO8j3x7sOZa5kg7vGL8kPvJikGvs60YV2fUnMBjRtJ+NcFFwPnDR7cNmZ0aA2RjIZOWhodFRNjFMUvP87I4opOvBfPH41m1fNUDyKxaTFAeiOzyYUJE6YOt69EcmnV910Lfj4O7d/Oe+fG70vT4zQ94Has+UXsyTA/1DgO/gHNjI6ShEcCthLmFopgYWNFAzYpBl3/tNh/EPG2q9yWPSdV1XXii3ihPlMR+cQW7ul3eZY2A10ddDbjYS1VFamAKk+pNKL/4ZM9JCT7e3p6bbB/cHHzLBh/IrULn2KgFel78ESopxLANFUeD64BgqJPF6uGPjihVWU5cohbkA8WozgdgKUD4/xKfkjvRfxJ1aRvCem7QqqBwX4sAZkMFGKzFBABDJ/MYuslsNIEr4mhiqcc1MczBQuTK0ZspclVdjbmCDnP/Ax4Xz3BO8BMG2XaXvvSpha8ahfSTj5ZJQ5G0MLIhpUPazg/4A2B5UoI7ZdxI3FO0spPEyhRMr0UuZoWXa3twAzbZQn8AZwrVwQ2MUXz0KzBXn0ZinhO2nlTzhrYUp0v4SVWQy95ibAwMFJ+eVyG/qnvum7p+5q3rFGLyCjRyswDEvJDGiKnqOv2DVe+DvC78E6aNWwMPqQLYHMhOQMhMeH1R6ufIySYXjn8I8tioWLjaxmYinpJagUeeHTzS7KhAmB2dsq37pPp09ZtTv8lMr6Od4st6ZgJmhztUZxsq9gIk6NT3L9AAqbSTpYbBklA5sNC6oNRm+/pMs27Wbll5M3y7X9raC4+SGxklt1JRetVXsXF9mJPbjkJf8YXFv0ezgBIY1gwonfcrQMegeiwxsl1U9QKhY6QFQETWO34NUz2KvIah18vjwBsZMZ+pDprsnRCkUHsa8y+zp8RyPvqyp0JGe+r7nz1F9dP2QNUXue0u8LamD1w7u6h+YxbsKbFMExv2VMhoT4XlbU/T6jyevm3PQq8DCtvKozZXaMWCPSUeErBhT30Z7alvOdpT4hpqeHsqZLSnvpg9VdLZU6PZExCnEztkto4VbN/N5Ue7Z39yjdh1ZW4QC1uCDF+mLUG8GvKxdJDrTGazwCDXA5mNogYeZuopauBhZDaKGngYmY2iBh5GZqOogYeR2Shq4GFkNqKHRmKsQatIOcSI1fNYYKyNY03JZnpU8j+rI0lRVBFTMjHmT9KJCZ1OiGULWdBJLJ1O0nPuD5z1+LN3bs7+3N2jH+A3VZUCRVESGblAK51hs+dxo+EdGlWmuVFypURVXEgpiVNyVcVZqdk6hLqLFK+ijbUzCw5VyGWyILhiwYuaDVkJltDxasME+9tdPJOS3k7z7b+aNrfZtG+MRBECXh/72Obu8rEjZZCrBSvBwsI/YqkS/e7Aw4BRjocJGwkqwUr1kg6lWwg4AwTAgHblcxJm8av5iRTh0iihJAy3AJqpLgfBnh2a16uqrofIozWvEkrA+rQQePUXFNRAQAxUwLxBpVT1VlWwt6KaUApRrHeUGJbdwuCtUBVehKEXjUuIry5DywqrNgSwE4hUJOPDWlAaC5FSIRFFqn836a8QRavvQYdqHN1QNZplmVgFlKWjOuL4Z2Fd/ixgWpeLBNi6PN7oMSeWVzXe49GUHkyYy3pgmE+gw1znZdKco79lkqJuLrZMUtTNxZZJirq52DJJUTcX84WKMpf3/Dhrr9uOlDomkaIqXTR8oQ7FilpmZlvcDxXvHJ1jd70iaXGFVp+6NSShGC8Li+tEOk0aacsxYtFhvbUcu9+HqeVYzT7l3XLsw0qLj53P7AtI6TDk69bEQWuNoOVYUR+mBi67+hhB36T79+/roeXYisV+Q0/MT+NleL4am/sk7qtRtBxLYtTOCGPQjl5ajh38u07C27Adfvuqv7zWp1crPH3VUC3HujAqp6YxKIdjyJZjV3sJju47UJGXPmPuz53hXvuMquXY80Am5R0NNJ5CQQZvOfYtL/JSkysz/TbtCWybeTEs0cAtx9IYNRdtcM3Bm8qt5djOoU2W/3rhT++9Ixo82/9hl4lRtBxDfAjalmPAEKJ+ajyHxk/9N7UcI7bFMHDLsW9BTC3H1gfpp+VY2yVng+TVAwS503O6zbsSdZP1lmPE4mYstNH6GMTURut8UHm1HBu0Itu8z8Y6AbNMHYdZbVi7kfWWY0QbwQJW6xmxig/6n2o5NonOjP1XhP8fFeEndhPSWxH+ISFMRfhvB5dHEf6CBa3uuVWO9Djwx+jPa0Lm49utly3bnGUbCWuWh4Qw1Sx3DNFLEf5+sx3OWG+o7TW7j7ha7eQeNQxehN+EERUwboxm76Bb4g97Rfhrm83d3MfbR5AVudV29PoI/LG9IYvw7wtmUl2KYVSn9yL87UPqC8IHB/olVl31sfaRkXwDF+FHrAxtFXVgZfRWhH9ButAu/nG6V+6gyl+W1rqCL5hlmCL8JozgAGOjvyL8ljObfKnZd4X/3MDfPrVXPMeX0zFcEX5kTtMiBOY06rdN5tD4bQKeQ+ufPa/wNt9tuOX3VW8JdQSQJL5ouQys6GSfzZQG544lIRJpyf1oLQyAuEI+NjyCq24aq0stB2KHRdq3JVc90BBqy+1rLgALMMBXxIeHLgR8CwG+A/qWNbHKsuS1wFUUC8qv/mXd6jo1pN29l7yIOHSlsC+e0fuPencRXCiiYSyjC8UF6H3uC9BrxKcYnTYOAk5hX51cqOqq6SuWhCsk1P7lmcRux94VPeGvTbLKu7mu2JOQIYXcSJEhpbrOetlf8P03M37/hL6GdpbUI1MHRwm+slQuloYy1Lbptdl72mz/YJ/Flkq/hG2Lk/FjFXsAeayqJeWhjAGMymhjGGUQ3R+OLhELZ98ouRIsX6JQeHZq36Yn2LKCnUWkI7dtz9AIuULsyG3XM2aMQon8Qu2tBk+7WlRwpqlgwcBnL4pvnJHj1zX4AcHK8TKK/pclovJQlimjsu6HGMPMgY/SyVu1KjnojhqrGBnDMIMS75hZuYwM4E8/lLko8H2n5mXZKpdRHaltUEMOUz0LSXWh2gq2Heurm5eKWnIGb+uY9WyxadWHvAMpM7K7e32eYdBtLwQgFQOgiAIAaFp08kSxpYy+yIR7/uOaMw8FuCfvvTFoT4M+9Qya7AsBaMYEQL/XIZijOYXz7+LjEBtz642P860/Ex/HsX9583G422In7s8vclv35Nc/3hZNOm4EfJyP/Zmim+f7GwGp4NSpU3rg49wcXiGnU99h7ttvKfdWD38TZxR8nPWM2ok3Bu3ohY+TH8AZ0SLA3Cu5UcKuxsuHDjIKPk4Io3IcjUE5HEPycfr8lvrk6Cm+b0Jm++SDu3aYGhUfx4RRebf7GdrZNSI+jkt1u6c1sgqE0x49aTzncNduBubj7OvHpLkUg2uuXPk4jhvF1/jXV3ku2TpvZerQvRlGwcdBfAhaPg4whKifmsD5f8DHebrmRkSc4Iv/AYfQngvWJsYbmI9jMpCJj5M1QD98nIRLGZMXn8r0TIlbPFB2oN0W1vk4xL05CxyTbwOYOCZXBpQXH2feCd8VD8cO8cheH97yxy9HN7POxyHaCBawymLEavqA/yk+zlQ6MzYmX9pa6r+VfyAvQPbs8WB8G1+zPmNh7qSnQhQdQc4w1SF80cxdGhMNs8fU0ZzxTqosU64I1swLh59AOfLMu26Jd7x9VZA73jo8b9gL+vcjR3I0haTxVzUYmLAAzVQsilFJzHvSclSqn0bBp4nwAqPSmg//EfI/R7UUeIV7FZgHS2RAYRKxN7DrcdjjELWqVJlIp0qdc9Ls1WO7/HPSFo35O/aXBv38V6Ss6jV1yqneGjlppzsuPHyviidveyert527b3mjkZNWI2y2henZ87zZ3VxSX7RvlqCRk+bR7eevf/y93W9l7QPz7kztHaORk3a/7rkRkfsceFt/bWb/efniPRo5ac3l3d9VnDaFl7kgRxqa/+ilRn5+s51PTS7/edZz7qy8b4VXuq3TaDZjlX45YOrV4T6zDvn+2Jr3pR0QmaKiQ9XHFef0PCPY1/uRvTB2fAcgqoqKXk2xdFnUoJNr0qy/pvI+bVsPRNVQ0ddpn795dVrMX3TQ6enBv7xCgcgMFdU+2bB4avYmYbLJVc/efW/sAKLqqOhs+qIqX9uLveZJqhx5ndnhFyAyR0VffG779J+y1Wd3ld1bzp7adw6ILFBRaubzopOKq15rk8T3/zDffg+IaqCiqtL1qxLzvgWs3rf3yd7Ld+Br1ERFb+p5bJx3NNEnc9jtyo+WO8LPqoWKWj4zzaqRt9VnUfvpkmWpdyOAqDYqOhlscb24w1nXLbVkzwcVLo8EojqoaHjKhjmcnk5uh/Pfzr0bZH8diCxRkcLz/N3t/jPcdvvWWBr0pU5NILJCRWfOH8tQnm3unfowv/Wr1ZkjgcgaFVWK7J5fnLrLc7NNw9xxed3DgKguKhpiP3vFsKUrAtYsuxlV9+TH00Bkg4o+LVvX5/P7TwGrsrycggbXfw5EtqjI837/Y75XN3vPvNf51Keu+7oDUT1UtKnYZeru2es9p678sbxNq1B4lx0qmp9jZtou65L/tCejugwbctoCiOqjonfSg29fdT8rSJzTvt2G77M9gagBKnpkZ9Hw5tVit5mtG+/t/ar2USBqiH2vttO6fTqRyNvnMt3KYUD4UiBqhIo6t7nT3y7Wxn/BxO6vbt65uQyIuKjI7UlkgmLF+YAZU7Y5HLrV6AIp2bIxhybZMqO43T2rufd5C0IbtXu+5IMjhdnQNdlyGp2Jsgo7uDP95BlBRtbDCefqx2fiDxMFcdEyuZiCQUDXmLQFeoea84mUWo+JFMlkwAihVey1pAwQDRTlq5HPOVGBtrWvwAoQN6wA2lcK7zcQ9nEbplsTiBJGpepFqPn4qUuqbcjt6r/j0qXI9LUvs1kkVLLs5HLsBZxoCJCYynE7Ddw6r2E6sQE6BgGHSYGc3YklsEyvPEaKUCjA+0llsOmyepxwgQfFFcEtVyglitt4XTestFP453aokpt2I/4WPgSq/hxyCLRExHp5VXtkxDDA9XmoUcSryXQ9HduGOqETTVyiLmWESAn2L6MlXOCAqNsw0cdKC2YIz/xqv5a386lb5js392WE03L0sRSn5ZiEbe3VdEIHuzuV9tKckcFOipjqCFxjjNiDHVpLiEBSglVxQU3HW5Uq+y0P4ORcuyCqVHYaEQtgcRnBAkMdXX+mc2jWn/+yD/5R9gHRQ9db9sGJ4UzZB+7DyyP74MKTYptbVZv4rfq7R+cG1c9ZsLhYEi0QC9kHh4czkbUXD9dL9kFR/Yvjn3eQea5wkPU/9jrymMGzD2SMqIBxY6SREv1lHyzdsODPj58GeSx+lH5U/jUWf65iyOyD+oyq+zjMSN0ZlrMPBqVbx8g8KwlnNx1ULTnrWRcDZx8gVoaWPg6sjN6yD5o3FNZKiRG6Hhl362f1fqYyI8g+kDGC4z5cj9kH1rEubSfdvu25oMP+82YLTI4YSfZBfUaEwJxG/bYZHBq/7cwKkfB717qeiRsbVnnZdGIe3htFetYFuwu1Pzhww7eMRD1hsEMMA78Cv2u8Zl9FYGzR8Qp9L9R1m6SV40Q8v6R+b7IXjUl0aO2SNhFt7UJylVyBBmwmlkNvyYduU2RXx2zzn1Hp9Iphue9tCEF2eDdFkB25XJqnRLR/LPRtSYUARVMNQm5rASdiok6xMxsEIGxc2IulCjB8gZx6sd16SpA9ddIk/oxffX9bd+vmJPy0dMduJk/LElFpgB25FHz7ayW+78quDfcMb+NgyQJgroyAgRFlECdKtWbAv2nPofshp3SaMujSDNElg1WNsVIOT3rq7LZzjV3Rt9+evq2NJOMAZQjiohUSdegOcWp5bsH2A1qVzQEmqDbYawtnaI9c373XPByiZvq5sqDa4glMqj09wXj841TdGsCV3r/0Q5XgxRlm7p7TXV2aLK9+IMBg/Us5zqhNgv1Lo0n7W2dkiqEL40wOzcLodqXunXGd97puHzzMJrnfEXxpYEtYclMJjz4hG1cC48MSHbqeufDlkQByVeFP5DHikscgm8OSZmdiMEi0WhGJYbvSX5ikDsq/0tYbgQemEgD6czeKJmgjwOB/Li5rrh5PqAEKPG6ApXyhtyGP4tpjDbwAeqokPvg/lU2LgafR8lgJTQbO2eMb4rlnUnxW/CZZ3dp3+BO8jUF6oVK0iEOvl2Zjqnz7YSL5e5D7fN67Hg8fCMrKv0gFMNtAmE3cKNp+pbVCYC7rkXBzDfWrT7dC5VExktCxyPCALSSoTzd967w4bsVf77O6pljgnDSkDp5VUPJc8vYXJ2Q9o8kRhW0IFWxFTghsqEmYRWcSzlk0/dC2k9xv5vu3vs6XpwiIDYOjZaJQCdd/rExGYQvoHGYn7L4oeB8cs9KocSKZVKwa5LFSZQRXDrYpCu0tATFKz/CeVI2NNcTaUs9aAp9GDNA1owq+ZUJ0Q8s6963hooa0P1TCdn3QSELEqElVAStd/1g3kLe0ws+jXxtKn+LdZ+RBZPdZdbm06UxkJZSVTgUrOULk1lK5DLB7SU0xrfusJXJ2auQUuKEGhxZ1n8Npjx4+uTrNc+Ht4E+8n7l/46na6AChDungpWzPYogWGEkMaB0N1auDhb2oacj4aIkmDk01ODvOvsCllcic4d/EOHt6DYdObrhEQWAJw5+yGm5rZIGEigWPAJvq8SpVU2qZuDCVZZKUtYeyMzoLinlUpEIXZBbodBBmo2pjCn0FZK3Chr6YEopWmSaRG+QzvJdn5wRPiVu9kxCYgN+KIjCBXC4PKJAhTgsFGOLoQpXEoVmojKZuPdFastPCpxzK1ruHMpWtb6aGfLbRQ07kxrED+VvZ4lVVTQfy9z38e0RLl8EfWYD8YwQT5FciMMjn0EGuMyuzBga5HliZFCRKjJVJQaLEWJkUJEqMlUlBosRYmRQkSoyVSUGiVHdNIpMoMVam8/3ePeeOKfLYNXhmgm0fPx6J8gYHL+XoI9IvWaC8JdPpv4nvCac7u6t5bDIRj7z2oiZe/3VUh/18mTwGuotIAIfslFemmW1NPKSwZU8E7HGjegCypYT7TJSGoF14n0g5LfUVSeBQ/ZG2XjnYKjYTgUlWRHV2DdtBrh+h09m1nSrahmSDyKFqAB7gF3pe0JR9Dc4OP2Hhn+i1s9Hew9sWlyXWVr7H2IUAq/oidNktJiXYg231/RGUfjgdVlZqSoQmVtQckLW7s1v7bvKYc3rCO+9uVaewSIuY2tf/0+mNcR5b5LO9ktzGH2MBJTBmGFCKGKFbk3bHQGxeIZMNwQybcnCrh3HP6EMl/VLPrrrQcr7n9rtjvO1ePHhrwHgubL+IDCLKgNxR2H5xhG5urIM6egghCtWoWQFXIJxtogRnZWfh9ffdj/qnXU2YK1jdZZYRRC0hSOdHMIG0foRucd3m7lLVN1cfVZUMGSSwSG+gji6XPshpE+md8+dhy5SLFyfjo4jYc8lRRLWkPNCJZ0QnZATmGKVwaBbGV/38hSYuX/hL1p33WBPgPYh8EE9eCU1owG2Mj+eqqW6xcp3KxhETLLSNDWjL/gaGacRIANt5qtxHDoDNdGQ5hGmTO/lsPD9aLFxzKfBKV3fuKvxhJxKPpVnWccLSrDjRxJWVCQ7s9AAIViDVGMuEpbhG6rTWWSBgScBMo4dqQHrjHnMD+rkn3h+xP7VpZzzrtaoA3EsNlIZIzy4BhMmUEab7It0Wu9JDaMRYs8FCaNDSIGMEhtBInYSjnRFoUDs0l84O8Vued+k67Z4w02PNO2VX2wbEc+hIUTRXdU5DcV5O55q3VN2HRXuQvBQRN0oSCy9JFNJQdIHUyiwRk7sY3pDqpFxDrCWurrAP2LgCWDWJwidPAKiPGKeTobJAwlCqw13wOtSFhj5POh++/E+3dRbnZEvW96yNd5GQB5BdJNXl0uYcMc+tjHMOMpOLIDxZdBUddo3TiU1irnofpkJfzg8+ztzU6oH7phX7TEZn1b6Ej/6p7idH/9DrpeGzd/g77+Iuv3klCMcPm7VI8hcL+CQx4gOGjyEYBqYIcWOcCogeHOKPbpXAzUNEinCJkklpnlWlMX4TrvHy70W7dLywoBCvNNX9ZKWh11k/s4VBHEat1DQqrRTnY1rRafmqgRi8aIkYNb7U27HG+RWbja7KWz3i2u2Fyyrj47+V/ZD7yYpBr7OtGFdn1JzAY0bSfjXBRcDJGKfbhsxOjQGysZBJS8PjacEI+cE/agmTLF5VbdG5Cz61rQpf9QAyqxYTlAciIxgRaTYOW9fncWjW9V0LfT8O7t7Ne+bH70rT4zc/4HWs+kTtyTA91DsM/ALOjY2QhkYAtxLmFopiYmBFAzUrBl3+tdt8EPO0qd6XPCZV13XhiY5FeaIk9osr2NWNGFvWCHh91NWAi71UVaQGpjCp3oTyi9vNvtHswIY1wqSf0Z+zq6/Dc92r0Dk2aoGeF3+ESgoxbEPF0eA6IBjqZLF6+KMjSlWWE5eoBflAMarzAVgKEP6/xKfkTvSfRIkocT03aFVQuK9FALOhAgzWYgKAoZN5Pt1kNprAFXE0sdTjmhjmYCFydVvJFLk6rMQwT6XD3P+Ax8UznBP8hEG23aUvfWrhq0Yh/eSjZdJQJC2MbEjpkLbzA/4AWJ6U4E4ZNxL3FK3sJLEyBdNrkYtZ4eXaHtzA0kvjAZwpVAc3SIxifIG5+jQS85yw9aSaN7SlOF3CT6qCXPYWY2NgoPj0vAr5Vd1z39T1M29dpxCTV6CRmwUg5oU0RkxV1+kfrHof5HXhnzBt3Bp4SBXA5kB2AkJmwuuLUj8bRdU2VVv11GP/psKqU51lnXD6qcAjzw4eaXZUIMyOk95/Pak+z8Qtb+8c092tClLKemYC47pQnW2o2AuQoHN+fIEGSKWdLDUMloTKgYXWBaW2G1wTZ05Z5r191K4lGaIZI/EouZFRcisVpT8tujflf77mvvzbqktVJtnFsYDSekaU4scXoGNQPZYY2S6qeoHQMdICICLrHb+GqR5FXsPQ6+Vx4I2MmM9UB032TghSqD1d8C+zp8RyPnqyp4FxTPb0c+x/9hTVz5yj3quLL/b13rXazsPq09XmbNhTQpkmFiyFVxyTpeDGlbc9nS5d97pH2ymeSx7ZWll5te3Kgj0lHhKwgBIY1gwoFcaWoz0lrqEGt6fIiKG1pwAp1J4upLOnRrMnIE4ndshsHSvYvpvLj3bP/uQasevK3CAWtgTCWKYtgaMa8kV0kOtMZrPAINcDmY2iBh5m6ilq4GFkNooaeBiZjaIGHkZmo6iBh5HZKGrgYWQ2oodGYqxBq0g5xIjV81hgrC1mTclmelTyP6sjSVFUEVMyMeZP0okJnU6IZQtZ0MkSOp2k59wfOOvxZ+/cnP25u0c/wOf5VQoURUlk5AKtdIbNnseNhndoVJnmRsmVElVxIaUkTslVFWel/NrEuosUr6KNtTMLDlXIZbIguGLBi5oNWQmW8M2ZOueb3fd1X7zg929tzjrSMqlN+8ZIFCHg9bGPbe4uHztSBrlasBIsLPwjlirR7w48DBjleJiwkaASrFQvqRlLCwHHZAwwoF35nIRZ/Gp+IkW4NEooCcMtgGaqy0GwZ4fm9aqq6yHyaM2reCtsEtRCsKPimIIaCIiBCpg3qJSq3qoK9lZUE0ohivWOEsOyWxi8FarCizD0onEJ8dVlaFlh1YYAdgKRimR8WAtKYyFSKiSiSPXvJv0Vomj1PehQXUo3VI1mWSZWAWXpqI44/llYlzePYVqXk8Zg6/Iyo8ecWF7VeI9HM6RMmMdLMczT6DDXeZk05+hvmaSom4stkxR1c7FlkqJuLrZMUtTNxXwh04X5L9OX7HWb8+7TxfaPb9TT8IUcRiVn/1rwxifncVCfqMK3zUiLK7T61KFzQjFeFhbX5XSaNNKWY8Siw3prOZY6ianl2NH48m45ltbiqumgTTO89nQKHj3vcaOVRtByLGkSUwOXEZOMoG/SjRs39NByLCA26Hpj2fuA6b+unD1BPtPMKFqOdWHUTk1j0I5eWo4tqZgz4LfJF33zvnW8FBF8c7RRtBx7Hs+kHGBNDK8cjiFbjkVWKM4IFuf65b9YOCFi0cFpRtVyLI1RedGGUZ5xthy7fOeh17evXgHZspt/Xlo3cbWBW455MWqOa3DNwZvKreUYLzTTLKS10jPpZ7fWlrb9+EbRcgzxIWhbjgFDiPqp6RwaP/Xf1HKM2BbDwC3HsiYztRwLmayflmPcWkFj/oo7KNj5N8cjSDh8Oestx4jFzVhoo7V+MlMbrfjJ5dVyLP/HvWaeL5t7LC/eNKTQq+8K1luOEW0EC1iFMGLlOPl/quXYCjoz9l8R/n9UhJ/YTUhvRfgrJzAV4U+ZUh5F+MfY/zz4zSrEb07r6ydfhG3Bk8jKlm3Oso2ENcsrJjDVLL89RS9F+B9+bxWW7Wjpt9d82lS/GhtbGrwI/74pTKiAcWM0ewfdEn/YK8I/+NFqW06vCJ/sQXv2NKnk2NpoivCLGVXXwzCq03sR/qi0mHpV5lZ3XTD41sFVHQ6lGbgIP2JlaKuoAyujtyL8LgWrW97/fYDbwsVTNiwcl13ZCIrwI8aGFpyUKXoswv+mmuWQBdIi17zYnnmbJl3ebgTlLCBCYkaEwJxG/bYMDo3fJuA5tP7Z8wpv892GW35f9bY9vo4AksQXLZeBFZ3ss5nS4NyxJEQiLbkfrYUBEFfIx4ZHcNVNY3Wp5UDssEj7tuSqBxpCbbl9zQWcIjg9RXx46ELAtxDgOz2hrIlVliWvBa6iWFB+9V/bf67c+tQj/sJRF/3aVtmG77L4j3p3EVwoomEsowvFBehdgeg14lOMTht4SpygkwtVXTV9xZJwhYTav7Ryunn/qSDTbZbZxl9znyWvJWRIITdSZEiprrNe9hd8/yzG75+WYGhnST0ydXCU4CtL5WJpKENtm2VbnwhzEz77ZUh8HzZ6368xfqxiDyCPVbWkPJQxnVEZ0YZRBtH94egSsXD2jZIrwfIlCoVnp/ZteoItK9hZRDpy2/YMjZArxI7cdj1jxiiUyC/U3mrV7dk3fMbNcZ0+vPUskwneffDrGvyAYOV4GUX/yxJReShrCKOyvIxi5sBH6eStWpUcdEeNVYyMYZhBY380aj1s5hr/QxWqvvz1etf7Zdkql1EdqW1QQw5TPQtJdaHaCvoeTNDNS0UtOYO3dURqMmFDi43eR6xuNGqckdDPoNteCEAmBkARBQDQtOjkiWJLGX2RiSZRy6eEW1dyTW5T+4RY6PDYoMm+EIBRTABs9U/AHM2VnH8XH4fYmFtvfJxrU5n4OFFTy5uPc+NVwcjtN4O8Ml832G+9a0JtI+Dj/D6VKbqZN9UISAX5+fl64OOMbnIkfcnEUGHuSw6n9avMAqPg42xl1M5SY9COXvg4ifWT6twIOO2+10O6eq/woKlR8HESGZUTZQzK4RiSj8N5/FfE9c/D/Fa9ul1BWmPIfKPi4wxiVJ6HYZRnnHycfm26JM44pPTMzjeP+97d+aWB+TjtGDXX0OCaK1c+jlVkhx5jCnJdVw8Y1+uSpIfIKPg4iA9By8cBhhD1U1dx/h/wcTq3udPfLtbGf8HE7q9u3rm5zMB8nEGJTHwc50T98HEuWe+4675ht3dSfm7K7P6K86zzcYh7cxY4Jv0SmTgmbonlxccZdPhaXceNc7xX1b9xvfP9T2dY5+MQbQQLWDkzYlUv8X+Kj7OazoyNyZe2lvpv5R/IC5A9ezwYX5verM9YmDvpqRBFR5AzTHUIXzRzl8ZEw+wxdTRnvJMqy5QrgjXzwuEnUI48tyeRCYoV5wNmTNnmcOhWowu070eO5GgKSeOvajAwYQGaqVgUo5KY96TlqFQ/jYJP4woLc1nz4T/8qBw0qqXAsoeywDxYIgMKk4i9gV2Pwx6HqFWlykw6Veqck2avHtvln5M2JLRWj2dhJwUL7n84t67dOpFGThr36+XAux9re662bbvV++u8Axo5aeZmU2Ov/VDyVg8Z1cliej2lRk7ajuNWt39kFHktWrur4eRjA4I0ctJshx/qMqZHhuesbvGHpLIm+Ro5abwB0c/vrBH4zH3ovH9y55Phmvn5jtGbEsbGuy9u2LnSqIXjBBrNZvpbvHqd1e6lz/L+A3JuLJx4DYhMUZHpzm/n91WQ+ubaJjTYlDfgKxBVRUWVB/b9i78mT7Dv6amkUSE7o4CoGipqdcd/1ZPZsQEbMn98G/ym9SkgMkNFDVr9/eH9u5Ee01e6Dje3ePsaiKqjorsP32+I+StUsCzYbNjuu+1gcQFzVCR88mzIlvXT/bPObVha8XzELSCyQEWzAiza3PIs4OUuMYla8bHSZSCqgYomVD65NLHDUY+MBRe4+wfvdQCimqio84uC8aOCQ/037nn+d6uuLj5AVAsVVaghyLpTb7vnVM+6RVcebikAotqoqLnXwIc1PeYEpEe19PHPrXUDiOqgoludxue37xfLnzkiKNmx6cqzQGSJip4cTJ9xcr6599TXjY+/W1VpPxBZoaLdl/bPrJfUQbB86avEHpWfw69sjYr6nNn6fLqysc/+uPWvTsYLnYCoLip61Glcd9frfoI9drMsq7baPwWIbFDRq0shXiN/6eOWu7rlD9fzcjjYbFFR9fj3L9L6TPGbc9Rh1PnsmRuAqB4q2rW09piYS5t8pw83WfMh0RqK7FBRo4jb3XqZt/Nf03bpjGNXT8LPqo+KPKcfbLH3ppffPDurvVUrrTUBogaoyGZn+Jttx9b5bt31+Uw9q+5pQNQQFfEfzY7bMD2Lv8HGqeeBWr13A1EjVLRRaV3r07J5PqnK5U3qVNwMX4OLirbseXn7h2CAcO3cZPtea7udICVbNubQJFuKLW3M21y657dwxNAtF/q5RFCYDV2TLdfQmSirsIM700+eEWRkPZxwrn48PjhdRRAXLZOLKRgEdI1JW6B3qDmfSKn1mEiRTAaMEFrFXkvKANFAUb4a+ZwTFWhb+wqsAN2mF0D7SuH9BjoKOBbTdWsCUcKoVL0I5Xcb5iYMqiuuyFt/z61Oy57NX7FIqGTZyeXYCzidIEBiKsftNHDrmkzXiQ3QMQg4TArk7E4sgWV65TFShEIB3k8qg02X1eOECzworghuuUIpUQx99Ml110lT/7SCoc9db38LxIdA1Z9DDoGWiFgvr2qPjBgGuP6eZhTxajJdT8e2oU7oRBOXqEsZIVKC/ctoCRc4IOo2TPSx0uBW6459syrw3VF4dcCih8d6EU7L0cdSnJZjEra1V9MJHezuVNpLc0YGOyliqiNwjTFiD3ZoLSECSV1zqGb8wsob/+JlX0znDOj3NLXsNCIWwLJgBAsMdXT9Wcv5L/uAzewDooeut+yD+9OZsg8ydVsrtcw+KL6rHLXi53uvQ3aba1eJGRzB4mJJtEAsZB/cns5E1j6t22L5T7MPvB++X9Bn5XX3fXMnNj8+QbzMoDQMJPuAERUwbow0UqK/7IOZ0x9v7WOzxy+h78feeyLfHzOa7IMURtXFGUZ1es8+aBnw5cOkDFuP3PYr7Arfrh5q4OwDxMrQ0sdPU3gp5ZV9sO57ZJOPm3bw5zawyKh/Nx5/Hmig7ANGcDKn6zH7oF29L3PPdF7veWiqjWVl/9E/jCT7IIURITCnUb9tHYfGbzuzQiT83rWuZ+LGhlVeNp2Yh/dGkZ51we5C7Q8O3PAtI1FPGOwQw8CvwO8ar9lXERhbdLxC3wt13SZp5TgRzy+p35vsRWMSHVq7PF6ItnYhuUqusEL5wnLoLfki1P7njo5Lvab5/NFxfrW/zxKC7PBuiiA7crk0T4lo/1jo23IfAhRNNQi5rQWc8wt1ip3ZIABh48JeLFWA4Qvk1Ivtfbcb1/Z9vC7cLBRNqzw94g1+WrpjN5OnZYmoNMAOHL+W1v5yst+MCgfbvDlaT8YCYDmMgIERZRAnSrVmwL9pz6H7Iad0mjLo0gzRJYNVPb3y1GTh9OMBe6ddWTS7ujy/NpKMA5QhiItWSNShO8Sp5bkF2w9oVTYHmKDa/tPv1Kkf9kyQ4X6s97Snzz+z0cOIUbXxBlItlX+cqlsDuNL7l76c0iKtZYeb3rOHKoN2zo1MMFj/Uo4zapNg/9Jo0v7WGZli6MK4nkOzMLpdqXtnXOe9rtsHD7NJ7ncEXxrYEpbcVMKjT8jGlcD4sESHrmcufHkkgFxV+BN5jLjkMcjmsKTZmRgMEq1WRGLYrvQXJqmD8q+09UbA4J83C4D+3I2iCdoIMPgVs8qaq8cTaoACjxtgKV/obcijuPZYAy+AniqJD/5PZdNi4Gm0PFZCk4FjF+NydHfbw26Lq+V/H2HST4q3MUgvVIoWcej10mxMsvDGx2/j2vHWPnp3Z9m2XoPLaGNSAcxzIMwmbhRtv9JaITCX9Ui4uYb61adbofKoGEnoWGR4wBYS1Kebmcd/MX9TONtjy6FDcwunD++IZxWUPJe8/cUJWc9ockRhG0IFW5ETAhtqEjbQmYRzFk0/tO0k95v5/q2v8+UpAmLD4GiZKFTC9R8rk1HYAjqH2Qm7LwreB8esNGqcSCYVqwZ5rFQZwZWDbYpCe0tAjNIzvCdVY2MNsbbUs5YCTkOIrhlV8C0ToPt+ZlnnvjVc1JD2h0rYrg8aSYgYNdfY7fT6tB8dhEvufD51v00vHt59Rh5Edp9Vl0ubzkRWQlnpVAC5ehC5tVQuA+xeUnkWrfusJXJ2auQUuKEGhxYlfAOn2bWp92BPQPLIlDXxM1vE4qna6AChDungpWzPYogWGEkMaN2dqVcHC3tR05Dx0RJNHJpqcHacfYFLK5E5w7+Jcfb0Gg6d3HCJgsAShj9lNdzWyAIJFQseATbV41WqptQycWEqyyQpaw9lZ3QWFPOoSIUuyCzQ6SDMRtXGFPoKyFqFDX0x9aL1JPt9wvZrHqlmGxqeuP8kmRCYgN+KIjCBXC4PKJAhTgsFGOLoQrWRQ7NQGU3deqK1ZKeFTzmUrc+cyVS2PlUN+Sajh5zIjWMHcknFYfvq/F3smWhSWNAmu+IeFiCPm80EecRsDPLNdJDrzMqsgUGuB1YmBYkSY2VSkCgxViYFiRJjZVKQKDFWJgWJEmNlUpAoMVYmBYkSY2Uuyjh3NU041HPHhM9+suAxtUiUNzh4KUcfkX7JAuVtC53+m/iecLqzu5rHJhPxyGsvauL1X0d12M+XyWOgu4gEcMhOeWWa2dbEQwpb9kTAHjeqByBbSrjPRGkI2oX3iZTTUl+RBA7VH2nrlcPjqBlgkhVRnV3DdpCBM3Q6u7ZTRduQbBA5VA3AA/xCzwvqX6t4cpCbm9+2WwejAjL/LCpLrK18j7ELAVYpM9Blt5iUYA+21VEzKP1wOqys1JQITawoUTphIpt6z3lhwNbv22qGtXtYn0VaxNS+/p9Ob4zz2CKf7ZXkNv4YCygFMqLUboZuTdodA7F5hUw2BDNsysGtHsY9ow+VJEcecVjiwxcm3h4riY+a7mzAeC5sv4gMIsqA3FGwDY6boZsb66COHkKIQjVqVsAVCGebKMGpMf1Mt14JP/kbM+/WXVHXx8wIopYQJDEjSIEzdIvrNneXqr65+qiqZMgggUV6A+UYvqZnYFFvz/W1+q/c5SAwwUcRseeSo4hqSXmg04MRHfsZmGO0lUOzML7q5y80cfnCX7LuvMeaAO9B5IN48kpoQgNuY3w8V011i5XrVDaOmGChbWxAW/Y3MEzO0IU/T5X7yIFVHskHUGUP094RnehTwUPmsTfuD+Xw7KQ6+MNOJB5Ls6zjhKUeIRNMXFmZ4MBOO0CwAqnGWCZwza1n6rTWWSBgScBMo4cqzreiV/zz1YL8lpta1Ww1cTjeEgnAvdRAaYj07BJAmCoywvRGx8Wu9BAaMdZssBAatDTIGIEhNFIn4WhnBBrUDm2js0P8ludduk67J8z0WPNO2dW2AfEcOlIUzVWd01Ccl9O55i1V92HRHiQvRcSNksTCSxKFNBRdILUyS8TkLoY3pDop1xBriasrbHqVWgCrJlH45AkAda9UnQyVBRKGUh3ugteh/JZ/v+iatMk2xnPpAue293b/IHRsRB5AdpFUl0ubc8Q8tzLOOchMng7hyaKr6BCdqhObxFz1PkyFvkZnjJm6OXm9z+JLUaZ5ya3H4KN/qvvJ0T/0emn4zPrp/GzD5h/ui248Xup/s99GFvAZwogPGD6GYBiYIsSNcSogenCIP7pVAjcPESnCJUompd2q/2akw4MMv8WbXA7wXzfdjFea6n6y0tDrrJ/ZAq10YNQK16i0UpyPaUWn5asGYvCiJWLU+FIqZsHU+9ebhQ8XbluybOjmefXG4hXjh9xPVgx6nW3FuDqj5gQeM5L2qwkuAk5Yqm4bMjs1BsjGQiYtDY/nYY87e7zOd5tR4FbkMvZ3Vzyrlq96AJlViwnKAxEvRkQcUrF1PYtDs67vWuj7cXD3bt4zP35Xmh6/+QGvY9Unak+G6aHeYeAXcG5shDQ0AriVMLdQFBMDKxqoWTHo8q/d5oOYp031vuQxqbquC090PsoTJbFfXMGu7vT8skbA66OuBlzspaoiNTCFSfUm1N2iHjS3HfvD3CN9yuNFG3ZZHsEPPjrHRi3Q8+KPUEkhhm2oOBpcBwRDnSxWD390RKnKcuIStSAfKEZ1PgBLAcL/l/iU3In+k6iHEmE9N2hVULivRQCzoQIM1mICgKGTeTvdZDaawBVxNLHU45oY5mAhcjVzPlPkapwa8x10mPsf8Lh4hnOCnzDItrv0pU8tfNUopJ98tEwaiqSFkQ0pHdJ2fsAfAMuTEtwp40binqKVnSRWpmB6LXIxK7xc24MbsMm2hlTNFKqDGxijeLmgwFx9Gol5Tth6Us0b2lKcLuEnVUEue4uxMTBQfHpehfyq7rlv6vqZt65TiMkr0MjNAhDzQhojpqrr9A9WvQ/yuvBPmDZuDTykCmBzIDsBITPh9UWpn5CF7puXVljhO/3AidMTw+zww6YCjzw7eKTZUYEwO1bNe2J7+KxDQO7gKw0Hmowoa9cmDpgdtaE621CxFyBB58eCAg2QSjtZahgsCZUDC60LSg9bjvqUZ7fdfd6KRdkvC1+a41FyI6PkVipKn8133SmWBHqsOzX7ZOSm4tEsoASGNQNK1xYUoGNQPZYY2S6qeoHQMdICICLrHb+GqR5FXsPQ6+Vx4I2MmM9UB032TghSqD3d+S+zp8RyPnqyp64LmOyp5X/2FNNP/Ib+O7w/7PFdcnv4xG8O8Y9ZsKfEMk0sWIoejJbCvtztaeSYphlN83q5Lb0WHVXU02kHC/aUeEjAAkqWjChxytOeEtdQg9tTZMTQ2lNLtT3dRWdPjWZPQJxO7JDZOlawfTeXH+2e/ck1YteVuUEsbAnyUpm2BDvUZyq76SDXmcxmgUGuBzIbRQ08zNRT1MDDyGwUNfAwMhtFDTyMzEZRAw8js1HUwMPIbEQPjcRYg1aR+iSZUD2PBcbaHtaUbKZHJf+zOpIURRUxJRNj/iSdmNDphFi2kAWd7KXTydLnn1Y69U0RHjwb8Kvnz8wm+HIdJXmoeMUwxZysS0oWRcGaUOgDqpFzWmt5BAT58ULsm0xs0y1oUhPHgFZa+ZXE0o2VhfLQ0RKx+ia6r0CuOFIi0zbU0ULASUwGtq4Tn+acMyyZwr80QeGi8C8Rl4XgX6Z9T8hds2CAd/amLf6uT1rfYst/ZKx2XYIFd5xIIRWNlFFzhvpEdzy7bGGua/YqvlnHZ2dymdHvhz6KG0B2lAJKdZSINTXLWtYIaG9yMuookbPgWiDaIzpKTP6kZYmjVDLQKVG7Otq2yYexHPc9k1rcvrb7z/eMqNE5TVTHfWUNiLRFITnqSgFJdFsEEtSG7KOzIek59wfOevzZOzdnf+7u0Q/wucKVAkVREhm5yDOd+bDncaPhHRqV6rlRcqVEVaBMKYlTclUFnqlHJ6F2K8WraOMxmQWHKuQyWRD0euHFkrTx4t6EMervYvWb7d5Q110L1rp1nbhvL90YNe0bI1GEgNfHPra5u3wsnBmhMlhNGhYPE0uV6HcHuxQYKX2YsJGgR6zcN0mPYPCmzgV67MrnJMziV/MTKcKlUUJJGG5QmKkuB8G+P5rXq6quh8ijNa8Sykj7tBBcnz+3oAYCYqAC5h4rpaq3qoK9FdWirBDFekeJYek+9WivCi/C8K3GJWS/L0NLk6uMP+wmJBXJ+LCenFo1lYOVCokoUv27SX+FKLrEgKiG6n66oWo0rj2xkjBLx/3E8c+Cb//HXCbf/vZczDxkGz3mxOXEeEMs5xmTgw6rk4MO0GGus6ttztGfq01RextztSlqb2OuNkXtbczVpqi9je2nrBNGt+vYx94rO31t/boN61XW2E9N+PJy68N104SH7nf47cwm7y0kBx1afcqBRCzozYKDnkOnSSNtW0gsXK63toX3FzG1LYxbVN5tC8XNbTpMO/U2IKtdlZDbHX+RGEHbwtuLmJpAnV5kBL3XfvvtNz20LWw5aEW2eHodvwzLAe/r26TPMoq2hfsYtZNpDNrRS9vC6h+f9Pzl3nHBjN+T7x1cboJv9GyotoUpjMqJMwblcAzZtjDxbOMO34dy/PNOOq+tlbEBXx/R0G0LxYzKCzSM8oyzbaH88oU1xYU1+Hl1JZ8Cm9m0NHDbwh6MmrM3uObgTeXWtvDx9eRzH+Y/8NvvkzJ18rhRV4yibSHiQ9C2LQSGEPVTD3Jo/NR/U9tCYmsdA7ctjFrM1LbQbbF+2ha2thLyW/t8FWxODrXpmMnF9+Nmo20hsUAiC634Ri1masXXb3F5tS08sH/t/dAbC90Pn+pSbNpQblL2KUzAimgjWMDKjREr58X/U20Lc+nM2H+NPP5RIw9iRzK9NfJouISpkcddsu1koZHHqwdHz7z/u4tvdljvlLPvVj1ksWIFyzYS9j2ot4Sp70HlJXpp5CHweRPw9x/zXY+8zrqRV7sZvn68IRp5vF/MhMpd/VpDxr2DbsmD7DXyyPiccnbuuQr+KVPjvxyqN3iC0TTyOMuoumzDqE7vjTwmnqrd1vzrJWFig2HRZrPiLQzcyAOxMrSdGICV0Vsjj6mpNS7vPDDVe6PJc4dqF3i3jaCRB2JsaMEBxkZ/jTw4o/q8+TJ7i/vqXtleqRPrZhtBSRyI0FlGhMCcRv22Qxwav03Ac2j9s+cV3ua7Dbf8vupte3wtEiQROFouAys62WczpcG5Y0mIRFpyP1pPByCukI8Nj+CqG0/rUg+G2KWV9m3JlVM0hNryg5sLOMVweor48NCFgG8hwDdjSVmTMy1LXgsyiFRYUH717kfCnFYm3uPnrY0taif/FV9s9B/1/yO4UETDWEYXigvQ+wOi14hPMTptHAScIt1cqOqq6SuWhCsk1P5l4LO2SQ//+EWQ8bV4UA/nNycJWZbIjRRZlqrrrJcOB9//BOP337XE0M6SemTq4CjBV5bKxdJQhvpYh50ubMtrkxQwzWvd+/Hjh9rixyr2APJYVUvKQxkZjMpIMowyiO4PR5eIhbNvlFwJli9RKDw7tW/TE2xZwc4i0pHbtmdohFwhduS26xkzRqFEfqH2Vu+k9Ap/PHK/YPvA5LE+26sfwq9r8AOCleNlFD10S0TloSwlo7JGGMXMgY/SyVu1KjnojhqrGBnDMINeZL97NjR+oc/U3ut2vkzec6QsW+UyqiO1DWrIYbp4Iam2XFtB39909FJRS87gbRVzfT2P2WcFzDk7SbDpQfAMg257IQA5GABFFABA06KTJ4otZfSFarJ2flt7qfFuQXr9iDeFLd7UISxl+i0YAAFIZAJga9gSzNE8zPl38XH4j2bHbZiexd9g49TzQK3eu/XGx3mzlImPM3NpefNxNv3we+llUcl3oY9zu3c1P4QaAR/n5VKm6Oa1pUZAKsjJydEDH+dhvy+KQcuL/FfG9X2W8cWvhlHwcY4xameHMWhHL3yc9sX8lMA3h303LDlWFPnn3vFGwcdJZ1TOTGNQDseQfJz1wRe37fCP917QYG2aa+TaB0bFx1EwKm+YYZRnnHyc1zmH5JWGtXJNfHjsdVann5kG5uP4MGquk8E1V658HG6KPPHJaKHbylqN84f52KYZBR8H8SFo+TjAEKJ+6hHO/wM+zkalda1Py+b5pCqXN6lTcfMGA/NxFMuY+Dgey/TDx+lzt9qvi3vfEWweU9C7X09hf9b5OMS9OQsck6hlTByTQcvKi4/ziddwinX/s35zl7xdHPotYyvrfByijWABKw9GrNot+5/i4+TRmbEx+dLWUv+t/AN5AbJnjwe/xUdK+oyFuZOeClF0BDnDVIfwRTN3aUw0zB5TR3PGO6myTLkiWHczHH4C5cjbsufl7R+CAcK1c5Pte63tdoL2/ciRHE0hafxVDQYmLEAzFYtiVP7D/Gj10yj4NDawuJ81H/4j5H+Oaim4Xnd+gXmwRAYUJhF7A7sehz0OUatKlfl0qtQ5J81ePbbLPydtk6CDnaXzFf6S6EmhByq4Z2jkpF1Ly94d/7tCsG+/W9xDcdJDjZy0qzXnyubYvnY//E6i6JVxoqdGTppf20fBmQ6LBcsPTN8+6GFOA42ctKTxq6YMnMb1SzntPLz9xx5fNXLSGrw4uVRaYCfIP1T11tSXWYUaNT46LVnCETbd673lyIC5he893TQaVs3NGzSBe9bTf/vEZeETDt38CESm2APD1nVpumWt5676jd8nVvvlHhBVxUTyFbn1G05zXZB+tTbvSCMZEFXDXt52WGHkkyi/TW1Ctihn3aoJRGaoaEfwHx6ffh3vn7Rh+Ndefw9OBqLqqKj/MPm8z9mxvLUiYZcN8n2wGIY5KlqzstntKev6uU9b2rqlX73aEUBkgYpu+6XGHuh5RDhjxLW7NTvO7wVENVBR3b2nryQE3vBKHpx1t93RzXWAqCYqkldPP3K8Zxfe+lbhTT/trm8NRLVQ0buonjVXjh3ksW7vG5/aNW9sA6LaqIiTZu9XFFLZY8PxE8kB/WcOBaI6qGhbhcUTo6t8DNht18JrZ/aTZkBkiYq6ra51cr5Div/c22EX/57k9wiIrLDXeNCbG/u6ofu+pCqht3oe2gVE1qjoZ5j92+ajNvNmzoz3eT1M5gVEdVHRERFn2dpzHb3mBDV66t814TMQ2aCi0VPiR+88ONZ31q6UofefXO0GRLaoqOOT1zsTfPL95gya2W7NsecvgKgeKkoeo/QfMq2WcMagsVkLE9MCgMgOFf1a+eWlKgmWwj0dvppWyxlTBET1UZHlCJ8m7btu9Tj8/b6isdR9MRA1QEWT8yfnLE2V+Sw6fsL27P2zEPmGmL6k9dc3XX/d+/Avp37y7vvCAdAIFV3wCjwu+/iXf1KTMbbykKRlQMRFRY+mvYib/LIqb+Xp83lNkm96kJItG3Noki0zLq4wc0qc6rPt5tchl36av6cwG7omWx6lM1FWYQd3pp88I8jIejjhXP14/LasiiAuWiYXUzAI6Jobt0DvUHM+kXYNMZEimQwYIbQThpaUAaKBonw18jknKtC2fh5YAb6lFUD7SuH9BjoKOIVpujWSKWFUql6E2v93WDTsu6i234w07nDugeu9WCRUsuzkcuwFnM8QIDGV43YauHWP03RiA3QMAg6TAjm7E0tgqW95jBShUID3k8pg43b1OOECD4orgluuUEoURRkvjgm2fOKnye7KK92svxwfAlV/DjkEWiJivUSzPTJiGOA6nGYU8WoyXU/H1sNO6EQTl6hLGSFSgv3LaAkXOCDqVm4M3bgOWgb1/3rL/UiHvq07P74tIJyWo4+lOC3HJGxrr6YTOtjdqbSX5owMdlLEVEfgGmPEHuzQWkIEkrpncb+GnKxOq/xT7tW4163xS17ZaUQsgFXICBYY6uj68yvnv+wDNrMPiB663rIPNi5nyj4IW14e2Qcf/hwR9+HKVf8FVy97Hmpa+zmLiyXRArGQfbB2ORNZe95yvWQfKPjVvZOf+gvm36oStihwdlODZx9MYEQFjBsjjZToL/vgx5qxC0f1tuBnW9zZ/2DF/GZGk30QxKi6XoZRnd6zDy73rT/QNGac1+FUF4dt5+ZNN3D2AWJlaOnjwMroLftg3jK+ycqBs9zyuINlHZeuwhdMMEz2wQRGcMKW6zH7oEfDcf7JV/d4zDEZWOVNv7ghRpJ9EMSIEJjTqN92jEPjt51ZIRJ+71rXM3Fjwyovm07Ea90U6XsZ7C7U/uDADd92FvWEwQ4xDPwK/K7xmr1ZgbFFxyv0vVDXbZJWjhPx/JL6vcleNCbRoT3U7U1oeyiSq+QKNJCxqRz609au4nhOGrXLbd3p1UtyKwXWIgTZ4d0UQXbkcmmeEtH+sdD7qQgCFE01CLmtBZwTm3SKndkgAGHjwl4sVYDhC+TUi633ySO9XqzfxVvZ/nn+WfeMY/hp6Y7dTJ6WJaLSANv7a4u6kSHdAxaY7jpr3im/rDXvIWC7GAEDI8ogTpRqzYB/055D90NO6TRl0KUZoksGq8p7eitgSL8Tnmnejgsbxj/8WBtJxgHKIJdcrsxzC7Yf0KpsDjBBtfu+/Vj95inPIz2vV8LVCc0usKDaJEbVKg2kWir/OFW3JpKl90BWNnk0alATW8/VpkEbm7jm5husBzLHGbVJsAdyNGl/64xMMXRhPM6hWRjdrtS9M67zXtftg4fZJPc7gi8NbAlLbirh0Sdk40pgfFiiQ+dEF748EkCuKvyJPEZc8hhkc1jSMFEMBolWKyIxbFf6C5PUQflX2nojYPCHZADQn7tRFBgfAQZ/l4yy5urxhBqgwOMGWMoXehvyKK491gQQoKdK4oP/U9m0GHgaLY+V0GTgePtcF7SOjOMttY1Tfmj/Ft9muTLST5mizSR6vTQb8+f4Ixciv83kL+7ZZmTLb8s/lNHGpAKYAyHMJm4UZa/TWiEwl/VIuLmG+tWnW6HyqBhJ6FhkeMA2NNSnm2E9unZuZPl3wMrVKyaZFeThW9GZlTyXvP3FCVnPaHJEYRtCBVuREwIbahJO0JmEcxZNP7TtJPeb+f6tr/PlKfhjbvMgSbRMFCrh+o+VyShsAZ3D7ITdFwXvg2NWGjVOJJOKVYM8VqqM4MrBNkWhvSUgRukZ3pOqObqGWFvqWUsB5/EKgK4ZVfAtE6Cbs6Ksc98aLmpIC1UlbPkJjSREjDqlxMzm7OOPFYUHP98ImykZ1w7vPiMPIrvPqsulTWciK6GsdCpYFxYit5bKZYAdkM6voHWftUTOTo2cAjfU4NCihG9pbc9M69RKvsu2HgzpOWjrUDxVGx0g1CEdvJTtWQzRymFEa/0KvTpY2IuahoyPlmji0FSDs+PsC1xaicwZ/k2Ms6fXcOjkhksUBJYw/Cmr4bZGFkioWPAIsKker1I1pZaJC1NZJklZ+7A7o7OgmEdFKnRBZoFOB2E2qlbI0FdA1ips6IspoXibN3NJlN8brwPv7r+oX/O3RoTABPxWFIEJ5HJ5QJHDCAUY4uhCdZJDs1AZTd16orVkpw1YOZStD1vBVLa+nxryAuOHnMCNYwfyDu9GZkw8WNtn5ereH8/WkJT11AhC3msVE+TOqzDIT9FBrjMrswYGuR5YmRQkSoyVSUGixFiZFCRKjJVJQaLEWJkUJEo1K5NMosRYmRQkSoyVKQs8XVi1Wj3+Gp+omfU+Cz+SKG9w8FJvQgn0SxYob6fp9N/E94TTnd3VPDaZiEdee1ETr/86qsN+vkweA91FJIBDdsor08y2Jh5S2LInAva4UT0A2VLCfSZKQ9AuvE+knJb6iiRwqP5IW68cbBX7pYNJVkR1dg1bylqn63R2baeKtiHZIHKoGoAH+IWeF/R3WOXjq+XN3HMOj+xyLKp4UFlibeV7jF0IsApKR5fdYlKCPdhWd0in9MPpsLJSUyI0saJEafDHCfmXKih4uY8yWgQcOFSRRVrE1L7+n05vjPPYIp/tleQ2/hgLKFkzovR5OfnwgclPcwzE5hUy2RDMsCkHt3oY94w+VBL+vWXvvIyWgsRLHVeY+TarYcB4LmzhigwiyoDcUbAN7pWumxvroI4eQohCNWpWwBUIZ5uokzX9XTp//X2PT06LbasrCMfNN4KoJQTJgREk63Td4rrN3aWqb64+qioZMkhgkd5AjavTZ/TA3xf5bWt3IPmbwAnfzM4Uey45iqiWlAc6FRnReaOO6Z7h0CyMr/r5C01cvvCXrDvvsSbAexD5IJ68EprQgNsYH89VU91i5TqVjSMmWGgbG9CW/Q0M00cI23mq3EcOgO20bkuddmHavOTBl6/deOqx17lvjM1ix+r4w04kHkuzrOOEpVlxookrKxMc2OliCFYg1RjLBK75bd3WOgsELAmYafRQ3Ru1b0QVywLvVSeHP9rxZ0Eq3hIJwL3UQGmI9OwSQJhOM8K0L123xa70EBox1mywEBq0NMgYgSE0UjfyaGcEGtQOnaWzQ/yW5126TrsnzPRY807Z1bYB8Rw6UhTNVZ3TUJyX07nmLVX3YdEeJC9FxI2SxMJLEoU0FF0gtTJLxOQuhjekOinXEGvbtbSlgJOwoQBWTaLwyRMA6q4bdDJUFkgYSnW4C16H8ltOuORi7VG0znXumAorc7fvHIN3kZAHkF0k1eXS5hwxz62Mcw4yk+MhPFl0FR0iNujEJjFXvQ9ToS/BpEBR4aI1wrzQcRKPJkm/4KN/qvvJ0T/0emn4dPUb8/B7xie/gz1vn0s79uodC/iEMOIDho8hGAamCHFjnAqIHhzij26VwM1DRIpwiZJJaX+PXxSwM8fDb0HQZ/OMtOd4Knll1f1kpaHXWT+zBVpxZNSKjVFppTgf04pOy1cNxOBFS8So8aUuSZI2fkCnSB+3aWsrDzDvwDmMV4wfcj9ZMeh11ntEO6PmBB4zkvarCS4CzrANum3I7NQYIBsLmbQ0PL586mQ+gGfhm/Tjk1NDlw6N8axavuoBZFYtJigPRFwZEWmyAVvXz3Fo1vVdC30/Du7ezXvmx+9K0+M38ZEj9BO1J8P0UO8w8As4NzZCGhoB3EqYWyiKiYEVDdSsGHT5127zQczTpnpf8phUXdeFJ7oe5YmS2C+uYFd3dH1ZI+D1UVcDLvZSVZEamMKkehPq7e2TL5Wc31T33BrM+3x7+Xr8aWwVOsdGLdDz4o9QSSGGbag4GlwHBEOdLFYPf3REqcpy4hK1IB8oRnU+AEsBwv+X+JTcif6TKBElrucGrQoK97UIYDZUgMFaTAAwdDKfp5vMRhO4Io4mlnpcE8McLESuJq9nilxFqTG/QIe5/wGPi2c4J/gJg2y7S1/64OndFkg/+WiZNBRJCyMbUjqk7fyAPwCWJyW4U8aNxD1FKztJrEzB9FrkYlZ4ubYHN2CTbQGpmilUBzcwRvFwY4G5+jQS85yw9aSaN7SlOF3CT6qCXPYWY2NgoPj0vAr5Vd1z39T1M29dpxCTV6CRmwUg5oU0RkxV1+kfrHof5HXhnzBt3Bp4SBXA5kB2AkJmwuuLUj+jO9UtqPTbU2Fq31u2T/dnTMXppwKPPDt4pNlRgTA7WlZb85bTaIzfqju9Q/MvFR8v65kJmB3VoDrbULEXIEHnz40FGiCVdrLUMFgSKgcWWheUQtY5WnYK+NN//uJrme1jfnPHo+RGRsmtVJRmv3N8d3Vlsm+ik9PmwVkTyppdClECw5oBpYsbC9AxqB5LjGwXVb1A6BhpARCR9Y5fw1SPIq9h6PXyOPBGRsxnqoMmeycEKdSeXvyX2VNiOR892dMuG5nsafX/7Cmmn74eJ0bNaNjF44DHuJqXhg9UsGBPiWWaWLAUHRgtBbfc7Wk3s5VOqdcn+aZHDN7cfZVJFAv2lHhIwAJK1RlR+ryhHO0pcQ01uD1FRgytPa2utqeX6Oyp0ewJiNOJHTJbxwq27+byo92zP7lG7LoyN4iFLUH2BqYtwUb1mUohHeQ6k9ksMMj1QGajqIGHmXqKGngYmY2iBh5GZqOogYeR2Shq4GFkNooaeBiZjeihkRhr0CpSDjFi9TwWGGu/saZkMz0q+Z/VkaQoqogpmRjzJ+nEhE4nxLKFLOjkdzqdpOfcHzjr8Wfv3Jz9ubtHP8Dn+VUKFEVJZOQCrXSGzZ7HjYZ3aFSZ5kbJlRJVcSGlJE7JVRVnpfzaxLqLFK+ijbUzCw5VyGWyILhiwYuaDVkJlnB6q6X+D5od909ZOHfhkfvvntFZQtO+MRJFCHh97GObu8vHjpRBrhasBAsL/4ilSvS7Aw8DRjkeJmwkqAQr1Us6lG4BdjxrgQHtyuckzOJX8xMpwqVRQkkYbgE0U10Ogj07NK9XVV0PkUdrXsVb4cq+LQTjzq8tqIGAGKiAeYNKqeqtqmBvRTWhFKJY7ygxLLuFwVuhKrwIQy8alxBfXYaWFVZtCGAnEKlIxoe1oDQWIqVCIopU/27SXyGKVt+DDtXLdEPVaJZlYhVQlo7qiOOfhXX58VqmdfnKWmxdvmL0mBPLqxrv8ehCRmJ/oprYf5UOc52XSXOO/pZJirq52DJJUTcXWyYp6uZiyyRF3VzMF1rq8aVe93gef98h3uBFQ/bxNHyh3p6u3sWDkj1yrzysm746fB1pcYVWn3IgEYvxsrC4XqPTpJG2HCMWHdZby7GizUwtx6I3l3fLsf0tU48Uxvt7LQo6rZT3T+EaQcuxK5uZGrgc3WwEfZPOnDmjh5ZjL/7gV6ux/g+f3DN90g5MamdvFC3Hshi1k2YM2tFLy7FvT/Z6u5yw8Nhdo7i3JC0XT2U0VMux6YzKiTYG5XAM2XJs7bmr8UGr+/gtr3h5acRfSW2NquXYEEbleRlGecbZcmzKi+SUygPvCab9GPis6coCjoFbjnVg1BzX4JqDN5Vby7GjJz2b2dlV8M7PHLOikfCPrkbRcgzxIWhbjgFDiPqp1zk0fuq/qeUYsS2GgVuOhW1hajnWbYt+Wo6ZuFg/nrPpOC/ResuBdVlP8XxgNlqOEYubsdBGa+QWpjZa/lvKq+XYy5r9kms8kvtsumnxcMGWPbNYbzlGtBEsYNWNEasWW/6nWo4V0Zmx/4rw/6Mi/MRuQnorwm+9lakI/zWy7WShCH90L+/WZ1te8s0+0Fq+K997D4vZ5izbSFizvPZWpprlP8g2sjyK8B/5XD+vGq+579YanRyWH8zGF5k1RBH+l1uYULmmX2vIuHfQLfGHvSL8Y+9NeD1U5ihc/du0wW2b9scX3jBkEf5jjKrbYRjV6b0If/sVb+r0rzbbY1G+KDwsqZuNgYvwI1aGtoo6sDJ6K8KfvKnKTesKNYSrr6Xer5rT08oIivAjxoYWnGtb9FiEf6p8/YPFFRt4Jhzcub53zZhTRlDOAiJ0jBEhMKdRv+0Gh8ZvE/AcWv/seYW3+W7DLb+vetseX0cASeKLlsvAik722UxpcO5YEiKRltyP1sIAiCvkY8MjuOqmsbrUciB2WKR9W3LVAw2htty+5gLOczg9RXx46ELAtxDgu3hrWROrLEteC1xFsaD86oXvwjqE+2wO2H/qTLPY07/hG9X9o95dBBeKaBjL6EJxAXqPIXqN+BSj08ZBwCncqpMLVV01fcWScIWE2r+MqdexW+Wwe6655+4dHL2xCv4opbI7ciNFhpTqOutlf8H3P8z4/TdvNbSzpB6ZOjhK8JWlcrE0lKG2jemxYbGOUZ/911n+9sfZic3u4Mcq9gDyWFVLykMZixmVkWAYZRDdH44uEQtn3yi5EixfolB4dmrfpifYsoKdRaQjt23P0Ai5QuzIbdczZoxCifxC7a1WfJVbs/K4TV47lb/cVDw5wseva/ADgpXjZRT9L0tE5aEsGaOyBhjFzIGP0slbtSo56I4aqxgZwzCDks02/8j5UNH3QMeajivdjjcpy1a5jOpIbYMacpjqWUiqC9VW0PfMVt28VNSSM3hbF5xfPaud4xuQEjoo+phlo6oG3fZCAHZhABRRAABNi06eKLaU0ReZuJB/qH3jm2d8cqZV/trkU95ywlKm32RfCMAEJgC2DtuKOZo3Of8uPg6xMbfe+DhPtzHxcSZvK28+zl2TCxfrze/qsWnz241t9o0LMwI+zsNtTNHNi9uMgFSwa9cuPfBxavzZ7MbbGt38Nn1J8ggNG/XUKPg4uYza2WgM2tELHydm4luX9SfWBGRs7Di4x1+mDkbBx1nIqJzJxqAcjiH5OLm3VuWMcH7jOquOWc3i57sSjYqPM4pRef0Mozzj5OP8YRLwNcGstvuMDOtv5zZU/WhgPo4bo+acDa65cuXjvPYZHHEy7qxPsuXBh2kfe7Y3Cj4O4kPQ8nGAIUT91Fuc/wd8nAtegcdlH//yT2oyxlYekrTMwHycUVlMfJxeWfrh47RYXhDsOGW4YOm11o9P7Pklm3U+DnFvzgLHJCyLiWMSlFVefJw+Zi1eD3zTzSfPNqnrgaq8j6zzcYg2ggWsejFi5ZD1P8XHuU1nxsbkS1tL/bfyD+QFyJ49HvwWHynpMxbmTnoqRNER5AxTHcIXzdylMdEwe0wdzRnvpMoy5Ypgzbxw+AmUI+/RtBdxk19W5a08fT6vSfJND9r3I0dyNIWk8Vc1GJiwAM1ULIpRScx70nJUqp9GwaepDgtzWfPhP/yoHDSqpWBGtfUF5sESGVCYROwN7Hoc9jhErSpV3qFTpc45afbqsV3+OWnZl+0bf7862WON89Lzn94uGa2Rk7a61wnHuqm/uB0SNcl6VN/XRiMnbfK4RG7nyt28Z7u125ErDJFp5KS9fGZ20GHxV8+9r8Q+Ez+2KNbISRuyukVNru0W3znff3nof+EPqUZOmuePU8ulE4oDUopqb/WzfDRKIz//RueligUvqwiTBwVlZfDHpms0m9n6aPYa/117eDv7x7VpERNwBIhMUVHPyM3TJr9/6bk2/veTzWuapAFRVVS0ZFzmyZDGFm75igzHb0MCNgJRNVTkUXfTFpfMrx5pM5N/y7q7JACIzFBRA6VNh3fXFbykO79Y7fPtBBPZq6OiLnUvV6jzu0K4p06vaKunqZZAZI6K+sz1KB4WfUKQ03/Z35t+9kkCIgvsezX8fbmX913/LWcrNrN8ad0eiGqgori79hsEk+vych4s/vp0wf4TQFQTFf2+YtJP8wNJHknmopA6A9vMBKJaqKhmUY+JktSKAfn7w8Yqq594BES1UdHbt08tnq835S/oWGz9blWj70BUBxX5+0RkTtkW47/mauTz+ZcPXwQiS1Tk2kIQ8LTtMt7OoUM7mYSF3AAiK1T0qtaT+e1rz/fe/Ndlvyt/1v0JRNaoqHbh1JcpL34NWNj/znTpYd9fgKguKlq8qdvJg10dhGustlccZl5hNRDZoCLn6SnrRh7/6TXnbY5bl++/bwAiW1Q0sPfrdsom7T2WpNz+PveIFdRyPVQ0LciiXe09ll5bBy+zv1xN+QWI7FCR1yLF6dNPV3vOfG0663b9s2eAqD4qCmlWw0L+wYd34PrBw9YcG4hhA1S0zKKgV5eZHTxzPs0/JAuvFw5EDVGRd2a3P5bldQhYUJwXNG7YjgVA1AgVPaxcY7JlhDcvXVlxcMvDkROAiIuKLvw+fEmfSo/9tvEOee5dtkVMSrZszKFJtmwmufZsm/MF/4ShRy4PzH89h4Vky7t0Jsoq7ODO9JNnBBlZDyecqx+fiT9MFMRFy+RiCgYBXWPSFugdas4nUmo9JlIkkwEjhFax15IyQDRQlK9GPudEBdrWvoLFw7cXQPtK4f0Gwg6w23VrAlHCqFS9COV3Wzn+zTBFhVGuSyMXxbeYaFOzLFGi8nVyOfYCThwESEzluJ0Gbp14u05sgI5BwGFSIGd3Ygks0yuPkSIUCvB+UhlsuqweJ1zgQXFFcMsVSp3jsyH66HnhG7eVk38VNe0x+iY+BKr+HHIItETEenlVe2TEMMDVY7tRxKvJdD0d24Y6oRNNXKIuZYRICfYvoyVc4ICo2zDRx0rPVr4xdoywtfeeV82s6/V14RJOy9HHUpyWYxK2tVfTCR3s7lTaS3NGBjspYqojcI0xYg92aC0hAkndevX+vrp1phxwPzLg/9i7DrgmkrcdFBXFgmCvsYIKiL0rSQi9KYi9RAgQDQkmYC9YDrti7wp20BO7goqcCtZTzt4r9oaKZ9dvZrMb2N3ZJZElyef//P28kx12s3nemfd5Z+ad5126yXxr33WFTyPiACx/VrBAV8f55y6PgX/+O33wS6cPqBG6wU4f1N/OdvrggX5cqePpA7Ppk66M25Mg2LPaO7WX3cadHJIl1QNxcPqgzna2ZO0y2w1y+iB9qU2jAe+qiKcEbe7S88fsUUY/ffDvn2yoPDAOJ+qwU2K40wdZ+8TDL4XP9Dp069vKF/Ou7zCZ0wfnWE2XaqrhDMenDzb3Cs1NmTRanDzh0cLpS+Mo9ZAMfvoA8zKM6ePAyxjs9EEnnmzIvskdvCfl7Ilp1eAMeVfdOKcPMGfDCM6DPw14+mBhhTf8UGGY156KFcae961kbiKnD86xIpSqjdvu8RjitlMrJd7fO1R1m7ypTqnnDcamkaNRrGZdgIu37gsHQnLJSDwSBjPEUPAjiLtG56+rCJwt3l9h7IWHbuN1O4dAWb9Evzc9iiZa9CjtUuYQXtqFFio5AwucPlgEtSVPPe1e16bZDeeZZiUuNJZUbUfZZId3IzbZscsFRUpU/8dB3ZaSEKBIVCfkNxPz3h3Ua++sGgYQ0S/sQmQq0H1BO5psnURdz1Z6H+15aEHdF/5de8wlD0sX4mb6sMxrKggw/zHXpJMHZwiTytdcXl34biEHgN05yAYY6FFGCaI0nAF/pxWP6Q/9SKcFiy0tMVuyeNVLfhfqZP1s6DJftS76Y906T6yxwzjAGOJRkSqpdusOC2oFwgC73k0KFwBTTCsYbtVqeN/a4riPa2dHDXnky4Fp97Gadp2RTIuKj+P0KwBXcP3S9wNOjowdlSPe1rLpvBL+Di2NVr+U54j7JFi/NJI2v3XEhhhOjPd5DMQovFT19oh2u53/7Dew2qygw2Rp4EpQcjMKLn3CbFwp3B+W6lH1rLlIGQEg1wh/Yo8JyXsMNjnMK3YWAjqJToxI3bYr+IVp5kD+lq7RCOj8WTsA6E+FiCJog0Hn37OjsGf1BN75QIHLDVDKF0YbSgXfjijgBdDTHOKD/9L4NDVcjVaOlDKcwOn7pdHCz9UTBfOLfcvode7GLbKPwWqhIkrE4dcL9DFX/nj0aste560HbpWdVGdUUiF9TByA+SyE2VyIKPu1rAkGc2GXhBvlM792dStYqVBLg6Ox7gFLSDBUnWt8JaBYu/Y+WzKldx/cHdqGnFWQ91z69JfUyPmJJnsctv4o2K45YLDhLuEBk0s4U77B+xZtlT6x7954OV6cKKYWDI6US4KlfN9ouRzhC5gCZgfiPgW8D/ZZmWKERC4L0XTykbKocL4STFNUunsC6i49y3uiChvna9Y19cxWzBsM0bVEbb7FA3RbF3rsV4GkhpU/jILl+qCThIghAWh/3a1X6a4LBEkVrfb6lq/TgBw+Yw+ih8+aywUNZ2pWQmHTqaAYIERuHSpkgNVL3Hcwhs86IldTi5yK1NVg10LvWye9HXZ/Nd83ttiooY65/hPJqdp4B0Fv6ZBbuR7FEK3WrGjxdxg0wCJe1CJwdKQ0Pw4N8uXsOHqBkFYqd4S/o3Z0cx8Eg9wwqYqSJQz/FNZxV8EIEhoWPAJMqkdrTI20MpWYCjNICltD2REfBTkCVFJhc2wU6LUQVk1TxhTGChhXEV0/BAnF+Wrly0+8qRIsmHbNpefJEj8oGxPwWyE2JrDLRQFFa1Yo+FqieshjICqT0a2nektuSvgUgWz9g2Q22foLyQTk2SYPOTU3jhvIJfV++tQdNtFtq3vJajVbOF/mAPLUXWyQJ+0iIH/EBLneWZkVCMgNkJWJSKIksjIRSZREViYiiZLIykQkURJZmYgkSiIrE5FESWRlIpIoiazMByvrfm25q6nPhn5hZ2bu9XGkpbzBzovsfdT0Sw5S3h4z2b++13GH2zvLuG42Dxly5ZkV2f42msV+kVyphuEitoFDD8pLMoy2+q4yWLInHNa40TwAm1LCeSaehqDb9j415bTAV6SBg/olXaNyMFW8ALeXrqHWrmE5yAXb9Vq7rqnZbcNOgyihaQAe4AfmvKAvp9SevbdUc990z2nsI8+MAYXZayvaZewsgNW57Tjt5tAO2INp9Q76hj8bVpW1KRH5sUKiFHHQ/fmrbX+KDti42bTvnliPw7SIST19P5zcNMo1UTnDfbpw9FEOUFrAilLUdv2KtNv7E+MKG2wYZsSQg1M9IveMeask8OLx5S5vh7ovGxga2/vlrbFG3M+F5RfPMe7npoNpcKqe+7lNtbuHEKLgfJoVkIFIvgm9a+kV4HLnj9Lek5q4zDvXKfGHCexaQpA2sYK0YLt++7qNXGSab65dqsrrMtjGIrODetT9S9Nhj5r6JNu4//NtzZoY8i4i8Vz6LqK2pSjQmcCKztDtRGD0hMdAjC+CfL3Nm38WLV5/1jXBz6MvfSGezoTmDODWI+/nalPdRir1ko2jHrDQdW9A1+xv4JgiYQh/FnX2kQdgc0kugm3aJcdzomLbTnFbs6Jvde+LV+6QFzux/VgGWic1FuTFqS6usJngwE/LIVj+qD4WD9WdkvXiuvIYWFIw0pih6pmxvOKhNb1dD0dtc+efsiOTXGkxuBcNVL4mA4cEECYXVpickvUju4K30Kh7zUbbQoOeBusjcAuNVkk40hGDBvdDT5n8kMj2bPMOU+56x7smvI3qUL02dR06QhLJ16zTINbLmUJzW819xG4Pdi5FwldIR8JLUpUsGCdIndwS9XAXyxuiVsrzNeuIq7OtmLc9JROqJiFi8hiAuiJFL0dVHtuG0izugtdBfss6ddf2X+jw0SM24Kjy6uCbq8ghEvYAeoikuVzQmKOecyvkmIOZyUkQnm1Mig5LUvTKJimneR82oa/ZxWcErXs2wWt3j+ctXO+PMSPv/mnup+/+4dcLwiey25h/1rTe7zLLxnPl3nr3IzjAZzIrPqD7GCPDwAJL3BihAaIzj/pHPyXwcoESVZg0is1oHY+Osr15rKRP4oVo1eqeE1+Rjaa5n240/Drna7bAKn1ZreJqUlbJOUJYRS/6qoA5vEhpCO58kYZpO3PrI3HxBcL9lqmb76UPlZAN44PdTzcMfp1rwzg74u4ELjPS5qsxzcW82Sn6TchqajHAJhZyWUF4nDp498sSl+euhz9nDLdu8qM5OatWpHkAPauWaCgKRBSsiPinELz+jMfA6zsWeOX269TRIzb3e5TFsRvvyTbWfKLuyTCdtTMMMoHzR4bLgsNBWAnPFkrUaqhooM2Kwelft8kH9Zw26n3pfVJzXZ880RQ8T5SW/eIMZnWvDxR2B7wWHmpAspdpRGrgESbNmyC/uPjWw1tDQ146x72ucbVE1RRyKfVSTIGNtsHA5I+lkkIMnVA5GvymGIZ6eazOvniP0shykg5qwXwgtWZ9AEoBwn/nxZT8sb7j0QVUKHxuVFVQOK/FAKuGAgxqMQHA8MH8nGkwm8zGFbU3cVTjmrrNwcHO1bYDbDtXq7SYv2DC3He/67lTvOOimL7VO8mee1Ykq0Zh9eQj5bJg7FgY3ZEyIV3TB8QDgJ6iwJ1yfgTpKTr5SaoyBdtr0cWsyO26LtzAg9QwZXY2auEG7lFYHcwsp12NJCIngk/KeEBfSrIl/KRS2GWPEKIP9Ak5OdfsSGmX1NdVfco1s8ki2s0Y2i39MPdC6yMWmuvMD9a8D/a68FfYJm61XWUq4HNgdgKWzES2F9I+wV+c42tWaueT4N39Yab/jhkk+5gJ6KNDQBsdZpTR0WdqsVbb51p47a8UHeQxYOarwq6ZgNHRHprTCZW9ABN0Gh7MzAdSQStLdQKkwUrgofVB6dDCNbvqvfvpHDel4bjzonhyBqKZkI6SsECU6t9/ebBcmc+iw3X2PR76xOUuByhZsaL0LTUT74PavsSa7aLRC4SBkQ4AUbPeyRymeRSdw/DrRbHgjfWYT6iFJjsHDCncn778f+ZPqXI+BvKnoals/rRj6n/+FLfPxhEN57ey43vPPNO5kVL2cigH/pQq08SBpxiSyuYpfFOL2p8+WyGWzR0/3XtByykjq2ckzeDAn1IXCThAqSMrSo2L0p9SOdTo/hTrMYz+FCCF+9NXTP7UZOYE1OHETTJbG7Pqb+eIIl32fXAO33FpTg8OpgTZKWxTgkvaNZXXTJDrncxWnoDcAMlsCA08wtUjNPCIZDaEBh6RzIbQwCOS2RAaeEQyG0IDj0hmo0ZotIw16BWRXYyqnsdBxtobzoxsaUAj/5qOJEJUkTAydc+fZhNzJptQZQs5sEkOk01WHLjXZ1r2J4/UA3tTdw67Tz7nV8JfopDK6QKtTI7NTsCPhHfkU5nmK5RRUo24UJR0VBRfI86K/NpU3UXEq+ji7SwDglVKubwHZCx4MX9BVoon9Lrm7GBRarJw3rbRD446dbdh8oQWPdVSVSB4feJjG7koo4fIYa4WVIKFwj8hsij8u4MIA+5yPIjZRDEJIdVLW5RuDFzkPuBAO4h4MdNEZXwkqjCZwlsaSiJAS83lHrBmR/7rpTXXA5WR+a9SJGA9G4uPXdiXWQED0V8Fzw1GyTRvVYp4K9SAUklGeihCoOwWAa9ZaXgRbr3ku4TF6nJcVlgzIYCVQGQSuQhqQeUjoiiVVBKh/dm8l0oSqb0H76pvmbqqydAyVQWUo6U6av/ngJet97PxcrH9BC+/M3nMqfKqprs8+oM1sf+1NrH/PRPmetNkOZ7haBKhm0vQJEI3l6BJhG4uQZMI3VwiFjroePrGmca57tP/sJ0g4ldYkC8W2rCkbnP1aqFrSnBZf4v54Tk0coVeHz1doYjxckCuuUyWNNGSY1TRYYOVHCt5mK3k2JpDRV1yzPPHM5v7WUGCNatnO9ZzWBttAiXHih1mK+Dy+pAJ1E06evSoAUqOuW2tfnTZJ2vhthNJmV2Hu1GKuRip5NiNQ2zWyTQF6xik5NiESMcde3OvuG5zGpec8SMlxCRKju1iNc4aUzAOz5glxyrPXX7i21/7XNM2HDp9seW3QSZVcmwmq/FGGMd4pllyrMO0jCsWL90E87Ku2ueqL6cbueTYEFbL+RrdcvCmIis5NqZV55k513r5bpg37kndR2GlTKLkGBZDMJYcA44Qj1M/8Bji1P9PJceoZTGMXHJs0WG2kmPhhw1TcqxN689rhcdCfBfPW7p1/esL5D1tLkqOUcXNOCijFXeYrYzWuMNFVXIso0oj74a5sa4bIoqV+Kv4to2FH8IUrKg+ggOswlmxCjz8P1Vy7F8mN/afCP8vifBTqwkZTITfJY1NhN88rShE+HcdPTl6WmA750l/u92bODljMYenzTn2kVCz3DmNTbPcPs0gIvw37R0CJ43ycE6pPXTNj5njyMqKxhDhr8aKCug3JjN30O/gD3ci/LWjD6/p77beZ4ZqWROvyRdHmowIf85hNtPdMiyREaYzuAj/owrZ9SeN7SucfbTk6nW7enQ1sgg/5mUYVdSBlzGYCP+Pl+r+4wI+uy1+YF/9aNbVIyYgwl+NFRzzNAOK8Bd3rbfs1UBXv4QF3eIrzlekmICcBUQIG9OMCIExjcdtH3kMcZtY0LTZzy6XBFvu1Em8sOYNeenXEjvEF6mUA0anx2wWDDi3ydsikeXdj2thAMRVyuiwcL62aKw+Wg7UCouMb0tXPcjXqGtuXyMxr8oRgK9EBBddKPhmAXyP0sMkPQ9WVcp7LXAVxwL51WfsqvZ3hb9fC2PPWiSbPS/9uvC1uyghFNUxFjKE4gP0rCF6dUWI3lkNbtbqF0KV1QzfEGmYSoqOL39szjDzshN4re+ojl/50ekM5YQUdiPihJTmOueyv+D7P09j+/5XjB4saXumHoESfGWZMkQWzKJtcy2Af3RjppnPYc9px+0ONO9P7qvEA+h9VdtSFMY4ymqM7cYxBjX84emzY+HopVBGAfqSBMO1UzunLmDKCmYWEfb8Fl2Cw5WqEHt+yy7q4aoo7Ad0tCpZunTQ2/ZlfJdN9HtY9+S1ADKvwQ8IiBotR9S/zGsqCmOtYDVWrEmMHPgovaLVynkL3Ypo1RA1ywjanzHducSb827JL9fVOnb/3/KFmSoX0hxxTrgjh0c9s2i6UC3EPT/qGaXinpwl2losrfrmtFOC8EjKIf/u7bvcNOq0FwJwJw0H4BoCAOha9IpECSpjFpnwvnwx+cLYZb57k0pkn3x0Icioh30hAFvYAEianUYEmp94/7/ycaiFuQ2Wj1MpnS0fZ9uRos7HWXT+SsYZawePPU5uw/w8htU1gXwcq3S23c1vR0wgqWDLli0GyMdZu9RqZUD3Hu4HL6/y2XS/yzGTyMd5eoTNOpdMwToGycfxGzu6ZfKo2x67+3+cmf6u016TyMdJZzXONlMwDs+Y+Tg3jqbUXc5LdZ+Rmf4g2i8xyKTycZaxGm+qcYxnmvk4Lv/O+5i2Ksh5/5Derpm3Zi42cj5OJKvl+hvdckWajxMw7dUDWa/lzksa1Tg40KrvD5PIx8FiCMZ8HOAI8Tj1M+83yMd5ULLChErhHoIVUcX62R6KGGPkfJxl6Wz5OPJ0w+TjNOuXE9RxUrL3qv6pNuOqFxvNeT4OdW7OQY7JonS2HJOY9KLKx5mRkHXrwPXFgrgLGwYc/jj/KOf5OFQfwQFWclaseqf/T+XjfGFyY8OPyJrJfJNE+9P85E+y+70h75R0j4ZnJ91Ukshw+glTPbYvGrrI1JHw9Jh2N2e0g+aUKV8CNfPC4Ccge97fFwYt7l4i22er4KDb7qWJIYzvR9/Jyd9I63+lA4AL88t/FAvRK6nnnnTsldqnIfJp2kNhrioi+Jdy/nOordin7YHMcgFSOTCYNMQD+PVRxOMws2pM+ZXJlK32+Ao7NuvjnpYc4zMzJ/kqxcsD86mUco1QtR7F/9qKR4H+FazZAsWXI/FH4TUsYT7UMIUSVrMM5etVe2S9w46F1xxnOM/hB8b6H593g+2NEbxEatdDMjumYgaPd1yIyGlKh160QkYR5DQFXt5U5+E6uehg0g/FEF6PMA5zmjiuoMEHCA2GCMEKGrTStDBeBQgVtgpcPRG5D+ETal/Yvxzg3oQjEsVa48Z+qmr7Wrjnxf47TxdXJhcdL8nQUYjrnOfK2ONA8VEkA+XJ060yaAveegJVo5cULv9gCJHHHRqhH1U3HM5scc9jvvhInLjk9Gvk5Tr8YfTlOqKhKDDiW7FhRO1MxX4BI2x/C09lATgV2Ismd1ucvOqmS+Ly1xPK+mz5Rh6L8GGIsoKay0WBz73ybPg4l8/AHf83Jsff5HvVatv5xcV7hTlfpXXCyI7fEqu3yJRPyzQPqe0jlaijVZp8Vs0GjMa7Q3Vb3Zx7nfVdTp+JCHfds3779dW8NiLGt6Izd75Gfdx6JYDjUSFC3NYKuPV4G5pb1zMHo7QQ1myBACC/76x6gUemLzzju1F92GOdupkLtTCCmp4UpblakH+nOj0u/DuEapkAIckKU/wAVIz+HZmcQq1kKVPwvZEYHZ40Jf7rOBfPGSlPdy1pGL7LGktrAd9dPApM3bRBMBY+93ZoYdTtvKxmOE4wbYqG0z17DCd8aH7HhxJtaJq3yBWUP5Hlvr5t2xtmyQ2OFfeWDSHaEp6urjWoRZB3csl5sh9Py5Bn5fjWnybpRPdxy3eTaiI1TfqLRspF77gs0ax7w5PeAaLYCysGlepseYr5zeiroPlb9eiRzmUB0odQg/cetIOlXjEZXxuThaHhQOugt7sz5thYB/HGvbm17HJ4NqYbojkDwPhl8RCNrqrcFANMr7W86i6U/qKtdYYumlr6740nvW8Lksa49z+76K8wyrazYTOo4u1xNKxQAxVyKEADH6g/eAwcuuTph9UOPWd7p5z2+8vtZ3x9cjZ2nnuiL+UxLa9UyTuRouBLtQ8oQ3d1JQQOwmYtdBqZZWLXZZYt98ZzU3dHq96e9WsyvSY9aTyvTY/ajDHVMjS1GZE6nfyqGYXW6Vz2PSY1YX5vj32bE32dHzW7SdXppLYbQqfTJg8rMCBUMskQOXoYXHoy2ffbGLHP3PmO5xuWerWNbI0g/Fb+L8l0UqmSg7qIg6E1kQKUdsChpFfN0EOmU2eMeM1LLh/wwd0zdkrSP4ruwvYMGP2SSCfVDXGAEejTLBjFVMnQR6SzUp5IZ54DQKK0+f7y6uOvt/dNOT8h3KdZ1h9GFegc7ID3FaRAZ29HDCXcof5kcqhVHsxxse54XpTQ5uGR5JMjXRBsil5SrKjZb0DAySujaSLJ/uDbEzQ5IHRmv+YD4ZJjsFIO19lg/wXmCZMqsCoMGOWhE6sftDK3KX37oM/ctYuG2vm5tzVAqp12p466gQUYfkeJDLg8AxkPNwVET39TmAkNboZfkfg9bX+sypnic32OzPhQ74WF9cpfkPgtLOqDAerOK6mom/3OqE9rk8WfnvJAtMDnijRQsPGpEVCHff1TDhX1Yr8z6s9ynqbmNl3tvKhvYg2L78f7Ggn1e/UzKagX/51Rf9FTtWlDqINwe5ZXyN+LLkQaCfXOPlTUzX9n1P8t36mB6NMVl+Xf1pwvNb7mKCOhzh9NRb3E74z6p3I7budI/V3Xn5iREbE5Z5iRUI+fT0W95O+M+oy39m8vr57lNdnBYUu/bWPERkI9bhMV9VK/M+pU3XUjoX4glYq6xS+hrsk6MTjy1nlr/Hh1aPQs6Wv1NhsGtuztfDjh40PvU/ZKxLsjZknY5SLx622pkWNpJtR//LFrg42juXBf/2orNkX6oNSLyaiXKXrUdZZe/vgpe/PftXLcY7sq/omrfwGlAf0r0stlfNr++8/q+u7Jnte6DWx46W8dF1jYLOIfQbVImd/SIjF77e+ebHBGnJS59Fwnx/qVOLJIaOWAz2ax41ynme1XKep5TefAIjGXqRax/C0t8qJsxRVDuq5xn1td0rtu0PBLHFlkdu9KM9OWlxLs33nucWb30EccWIRfmcoVZX9Li1yLX94ld9pu4fbZNuYRklLtObLIP81m1FXVOCpKffDc2/fMyTgOLNK7C9Ui5X5Li1gsOPJ8xeLdwplvP5xrlX29BkcW+bB0ffdP7z74rdnm7tCjX62nHFgkfCjVIuV/S4tUiRnWsk13O/d9K9bVqlqnRkmOLPLifKD7kOLdhalrbX84n1Xu58AibWdSLVLht7TIEtfPNTqNE4j2HBT0W9h/j4AjiwybOG5Yckq017Qdswfce3S5IwcWyV1DtYjVb2kRahEKjizyi+nfbBbpu5tqkYpMFun+8K5fKfk5t7UpacUm7qtHlnwsExAuC43iw/wxslngWTumVO6afqGhMP1eIpfnJWrhKX1IXJfVVjjdmRLuPq3aNgez7Et3mF4BAa6uW40Ak5PnQfwZiErHjrQHrecKm7dXDksnjFLC44Kh6A5kc2ly920zInz2nP/LouvBGuTEM3Tung79Z+RtO953z2bCNYcDPPrHLO1cWLFJuIpwHk/co+udNAOceD5DL6UkjQWVWK9A4rItuvyCjsODRZuqJFs2fzn2Cu0YZahuwBQ2SxZ882qs3xz0EhM4Qon1QD3OlVvC2lps5daafuz0cbNVV/d1kw90sG1+jrwngVXmMhT8o86xwW9nHPhpqkiFPZagGRFQ4Y8py3fst8a+LW6N8znUy+yQf1LVp7/oKQp7gtUBdwXpzogzGjB/AwwInGCsTZhgBrrXf1754GPnTSHekl6V5k4rGoJpaJ3JQjAbKhZWnE8HgimxeolNjZ+eonltLv456p8a9bghmOJJEaN6DDzmlnxZ1HO+5O9gDgimFsSKcZznVtRPiq9AgpnRL8xzWJDKM7lEz0VpTxYcMCLBnK3I9s1BL/kdCcbt1fUSq+5U9Zk9SKQ8vrBUU+MRzDhW+AONA78RCKbaQQfbSz9DvdZem1Gp5eez2cYjGMwVMBIMGBA4wdiYMMFMKz7NTZJ02SVte1bFytnnBhQNwczuyEYwZTsagGD2Nq5d7sHeNs5zWo52Kr4+4io3BJPUfVHF9IcV3GaYx8/t+YyXwgHBTO3INs77d+SYYF7/7NZpWt+vgp2e5058TAl9bUSCac36zUEv+R0Jpowk1v6+63TfFCfFkAqtEo1IMNkd2OA/1OF/hWAanp34WWH9QzTp7qT4+w/G1TUewWCugJFgwIDACaYSE8HEz58T/dLzk9uS4VXUK2bak717SVdYJiFK9wM77TQ38NXKCCk/BPQAfrQaihtFyiXB0nClPAR0D0zsIBT7PUz4KEoSptbp4M7PTrY3316uKthq/SS2WPbflUp6K4OHSUO0N6FenZ7wr7mu65lYOzHPyQdMEouJUFIHAGInL8QBHggR5GDEAR74l3qAx/ePO10DTrxwnnpmT4zFW79L1AM8U3olTLwR2d99WXr88sfLZncl2ovx0Od0dD7gQ/1gxAEfRq8F68TjZkRvFR8oF+HdvItL2r+LG75qtnZ4YazFve4xsKsVtOsq1JnxOODqIr0NuhxDvKilIlouH6QG30ERpv2yJfN+xih3rFPHHuMRB42YbGXtmjfagqPlUdEq9DmjQ347c87tnusWGzPz4mK/SwmsJisl0jyJLoRANBSF0bK82IwGBqMxGMjcW6RxqPCWidpxj9mGGKNMZFMfviWMS2UKtVSF1VcBH0FymEhbjesd8IJ3Nk28+M9BXpcqVGtJtVUpn+goeCpMCz7lfCn8VCc6SzkVeGCsxOsZ0YI+M92ndxf0+1vp7lzYo/TAqHGebEbN8aAdGGM7VVce7+yAv6OAi0KCJ9gZ3rhMtVreUwZFbOp9OWQta0c3h56OrjuAXeU8yHLE/VK6AEHpzs2xLo5TeuXfgNI3/tHOfk2/68JddaKsTte5NN1AlM6fwEbp/HH/UTr6hGWNjWPm75/sEls33S2j676uJkfpvAlsjmTw+P89So8RZC+eMobvve5EsbijG297myClp49jMxoYjP8rlF7yZVRd5/b2okkOY2Yu27f2ksEo3Ttwav+tq8xdlw/5d1PVg2O6cUDpMWPZjHpvDOeUfrzTrQFLJZuEOyKH3ev5+ryDSVE65pcYKR10cZzSq/wGlL47UTgz2feO9/bwj01Wbmo9y0CUbnGNjdItrv5H6eiaHF9+ikV9pH4bJRfTTi7ZM9/kKP3TVTZHsuXq/x6l9x+1aWLFWuNdt14okT6nv3dFE6T03qxGszCs0YxJ6WNn9F2TmtHCa/oLvxdNeZb9DUbpv3jGhc2oB66wGTX8CueUvq5eRGzIjZmCxc7ZMe0TRm83KUrH/BIjpYMujlN61d+A0r2XLFpWP7C++/qP/XqKltp1MBClO1fJZKH09MqZ/1E6ylqx6nIPr02x8V3f7UncxchB3UyO0ttDuzI6EqsqBt1FNAlKv9EyYeg5m8nCdZ/Np/mIrzcyQUp/WpnNaGAw/q9QevDIDwr7ksW8py6+1uxaRNxlg1H6Lx6SZDPqMlajRlbO5JrS992cfEXSZ6jwyOmMDj2/FftiUpSO+SVGSgddHKf0ar8BpbfOUVW0tEx0OZiTPOxAzavFDETp37qyUfq4rv9ROtJaOVsOHx5674TXsh5e4zLGt7U2OUrP7crmSM52/d+j9Cuz1S7i9JKu8894qpbfOfPBBCl9A6vRxhnWaMak9KqNjiUnH7juHisZ0utf+arrBqP0Xzxlz2bUQFaj2nflnNLtL9eJsbvV3m369DdTvHqtrW5SlI75JUZKB10cp/TqvwGlNx06a99fma89D2T36K7IetPQQJReVs5G6bOH/UfpSGtVaKTcMTrH1nteiwOVQ6tcWGlylG4uZ3Mkt4b971G61aSWnS32NRJOk94ZXq6bfwMTpPQ9w9iMNtuwRjMmpbdLXzyp3jOl3847sk87/+hXw2CU/osyLWxGDWE1audhnFP661M2Zxve83JZNP/CN6fT9s9NitIxv8RI6aCL45Re4zeg9DGfnyc9WD/F++C91v+c2uyRaCBKfz2TjdK3z/yP0tEB2PLBt77M3yhcaFPFpfgJFTs/GIPSn89kcyRXZv7vUbrjNf/6P75Mdd/Qz37gV5fn3U2Q0o+yGm27YY1mTEoffitxwg/eA5/YdorNBxZ3rW8wSv9FnS82o65gNWrsTM4p3bd55X+q7w523jF/nbDD2D27TYrSMb/ESOmgi+OUXvM3oPRubs4eOX1nuaZeelB1xdqw9Qai9Dtr2Sh9zdr/KB1prf0Hj7/L7tjW+Y+hdv07jb55yOQo/cZaNkeSufZ/j9IlLc49nyxxEc4aN26+4Ghj9lOixqH0XaxGW2NYoxmT0le2HHN7w7utvqmegjqXglNnGIzSf1Eoks2oM1mNOmIt55Q+tckS3/sNj/nOXjBnweF7b5+YFKVjfomR0kEXxym91m9A6RuW1G2uXi10TQku628xPzzHQJTedA8bpT/f/R+lI60lldcJ3Jy1zz3N7a8Wb2qnzDE5Sm+8h82RWO/536P0KHn3Nna9/nLZPdOx5HeH/v1MkNJ/7GYzGhiM/yuU/k/aC5vDT+I9Zh2++vp074flDEbpv6g0zGbUK6xGPbqbc0r3uubsYFFqsnDettEPjjp1tzEpSsf8EiOlgy6OU3ptJkpvsaFHRr/kRNctGyqcOTrhwxKyjpSbShkdSWZ0O+1wUKpCyAJLJUVKOfhG8FJD8CP8P7LYkYAfBp8La+64qSRqdbgyMhKW4MHeVF3Mw4XoPrYpE7cPy+jjMmV+FfODTW4NBE0Eze1qNSFmyYWD3vtayz1qZv5wB03E6Nmt6Jjt/aiRaN3CMhOXJHxpBpqK401PT31+b/E+zH3qwSz7tn/nykGTOd60ruGATuLYty4JL98PG/v1RF3QVAJvejzWb/rBlk084zo+tNnQsV48aCqJN82vPrlT4t7iXjvVnqUCux07AppK4U39/6rZ4sZdB8/49WlVHskGNAdNFnjTsaE3hu/Z+1V4+JPVk7POw/4BTaXxpkk1Ol/ofPSLaGezYor78eL+oKkM3pRyofmi8Rl9XafdU8bUWjsDomGJNx2o/Hz+E8l+5zjrCmfnNbpuAZrK4k0ds1S7BIdUoqVBnyxThpw6BZrK4U13hx5/d8t9lPOGEovu/LG20RjQVB5vEp24bV/8T0vf9QmbZ7U/Zl0VNFXAmzbP3fr5cfVvfgmnFpyXxC/fD5qs8CbXFcUyGx/y8En5tmvjnwkj4VeuiDed3DL7zWr5Sec98jZ/t1/T8yVossabzvzlu+TZsEt+0/o12vxI1LwnaLLBmzzm1Kye6trPbVFum7t3/n18ATRVwpv+Fk9LvlrM1nvmW/nBOrZHbEFTZbzpRcVH81pZz/PY8vGiz6V/q/4ETVXwJrc/Du+e9NRNsKh1ibq773yCpqyKNy2oJbv3sccY8ay+QQfkjfzPg6ZqeNPaeY9GpNbc47xzWo0fpZMsA0BTdbyp7oWbI2LKevnO6d/l9uj+5yeDphp40+JOj4d0rPKv964BszolVb90GjTVxJsuPFzrPPBIkufcMNHrU9nb4QNr4U2vkuJrfB9VwiV13pEOFZ1OTQFNtfGmTfe7j9zzp69w36USk/kuXWDvrYM3jT8zWLrybm/hFGGTKstkW9+Bprp40/vHPzdV75wo2FK249mXSzMSQBMfb3p2Zkn3i3vFgsWXkg72SQuysPBwGUTyRvXAX6RTrNXy3G5pG3ev2UsqeYclH6yAcBs0L0j1azzCr2lcVB0mF1U5NCV5RcYp8aptD8acqTUunhxZiEdFypUhlJrLcOQyaS02xu/gSzRVkQGZQgXCCIlcDpwQUQTMUadZBtVBIV+NHvTgDTr6+Xu2Yp7T0UzoXxEF6/3txTzzozQlRjbWs8KqN8M4Qqp5EeR3O2KzOKjK4K4+S7wOf82oerVQdaEpYcH+jOnOJd6cd0t+ua7Wsfv/li9kWAAnXvYQoBBUWHCyiZhX7ahe8ottekhB11DLAEgh0mBlRKRSLYPtfPB+Mjmm0kn0E75EBXpSlDJCFoxEcVjW2mfyvkd8t9neOe88aDBZCLi09nNoSOZr4jpugHCZs8KV85dJiAaaFVY00AEfaCF55ooKB0FzhGSYlA8CkKhwKX+IRC3VOAKk/VI25lrUiL0hXrWx3Pxbwr86kexnEYA/lma+vBaurWflgHd2F5T1ljlinZ0EnJn+wNULAtMLGfhNGKNBlKRUIJFgvV/7Mndjn+2i2e0Xx06U/tWQDBbxTDpY2paiAMucFSzQ1XH+qcvEP0F1iw1btNNKmJIgf9NpvIU76VtVEEORUEmUlO8tVYRFhdN5qBQDxilm2lsJJgJdE/wTgAEewA+VBEcpVcDZKMFMXAa6rhz7AEf8g/B2NT9YouAPkfLV0ZGRchmw0BAlaAT3ax4ZrYC3wlU0BZzqyGVjwK9gFx35onCJIkyK2bef7wB+JLEyBZkhShkWJgejQxo1UipVYL8TNVLJjwCdQEdupEborLDR+gT1F3RVLQZceQUavDJqDW4H4Mol+nFlxTyuxF8IXTvpeOaqiFpTXA+vS1hj1rx4AodkSfVAhdUqBghdgAjNRQ2JA8D7p+lHlvVJ/RGrXqvpejhgMob6tcJNxYQua5MEMZ8Ot0w1W8QnrzkwdAviOudzaYBKEisqoN8YWce4JI/4c6+bPlrGrT1C+YGqaKk9NorJ1pKp8/sFOydHJ/4EfgtHpyZIk2WG17i9/ly4x6qt84ZPGNigMVl13Ff7IJrZ8rcVhekms5pOYRzTFRzOlGRxPLX9lWBiAikBWk0dKQ2WhUL3rmEBpHlGNV4VerPFCrfDf5awXjv+aBmyE8KeR3dCmstcGyXSAfcy7iij8JpjXoYWpbDh0TgQkhVAZIRUw4t6AHN8SsnXRxfd9EtpNfL70hk3VpGnafiD6dM0oqEowEliBWcJBZxiBYBjq2GpPAbXB52G1mVyd8lOuse0/Ox7s/PPueQpina/ij5FyWsqCoQmsyIExjQet/GZ4rZTKyXe3ztUdZu8qU6p5w3GppGjUW8Qo/EDXLx1XzgQilRSTbQmh/fikTCYIYaCH0HcNZoPsFVF8SPhiALOFu+vMPbCQ7fxuol1UdYv0e9Nj6KJFh0xjgfTwLQsgPEtISJUcgYWmJCl37IC9gL5MEB+u3mt/5lzLbm/e0xgn6XzTtwkl0YqEQDvpjspzeWCIiWq/ytkpJQOAErNwusa0johv5mYtymLFimxba1VwwAi+oVdiEwFui9oR5Nt+F7V0ucRk303z27bdGPY5VDysHQhbqYPy7ymAussVTtwadfR98LVudWLB7VcV1j1AgjYAlbAQI8yShCl4Qz4O614TH9yaEGVBYstLTFbsnjVS2V3W34/6OCR2vPNuPN/BF629lAATwmMIR4VqQJT8HzPKikQBtj1blK4AJhi2s0Z40YvXPlWuDfVOnBUreaPOTDtUFbTBhnJtKj4OK6bXqFWWe98/hxpzFczcybGpbn7xKSvdzsnuZ5FrS2hoM/uNFc5X7tzxH3SDtSe3w5HbIjhxFiPiRiFl6reHtFut/Of/QZWmxV02Jv0bSrBsrJRcOnTRRYaKlVJARRqOkkWZ8CyuUgZASDXFLfFHhOS9xhscqgpawQXlmDOj06MSN22K/iFaeZA/pau0Qjo/FMzAOhPQee/R+38g2GB0ozClkISeOcDBS43KCOlKhhtKBV8O00fV/MBehixYv/S+DQ1XI1WjpSGoElk++IBVYMtcnwPhdZOSJy4vgHZxwRh9W3oPga/XpCPafriTfEKh767T3VtOPj1X7MvF9LHxEGJWgizuRDuaVMX65pgMBd2SbhRPvNrV7eClQq1NDga6x5Y+S0klgujtyY7HfVzXXh8eM0DT9xukbC0zHsuffpLauQ808Ueh60/CrZrDhhsuEuoz+QSzpRv8L5FW6VP7Ls3Xo4XJ4pJ361cDymWYsL3jZbLEb6AKWB2IO6DeUpYn5UpRkjkshBNJx8piwrnK8E0RaW7J6Du0rO8J80K5GYd0d1hK+ZVguhaojbf4gG6T48XduxX8cBKvsFVV6kay5PDEEMCsHP3t+9jNu7xjInwuxv4WkHOPimBPYgePmsuFzScqVkJhRzOWQA5K4jcOlTI0LupmPftOGP4rCNyNbXIqUhdDXYtJHzmf5vv6XXtkfhgzWIlUpQb00nwlcU7CHpLh9zK9SiGaIGexILWpeNGSTK0CBwdKc2PQ4N8OTuOXiCklcod4e+oHd3cB8EgN0yqolRfg38K67irYAQJDQseASbVozWmRh/6pBBTYQZJIe062BEfBTkChF39m2OjQK+FsGq+GLYwVtCUisS7fgi6PESFfkuOrdztsaXBhM11HRsOoWxMwG+F2JjALhcFFFgXZ4QCdHGcqBowERU/rMG+6XNmCBce2+a9/HPKWPL3gUHeaDJBMfhipnmdjQD0MZUmfB2Np6QhgaV6S8SL0DNgCvTBi0fEZwTWKy88olpl/62/36bC+mDgN5ZAyPlwjYcKuRWIHGK1kDc0ecipuXHcQO5hvvFH1/HxgnVHgz4sLbX4LgeQK06wQT7wBAF5I86yMisQkBsgKxORRElkZSKSKImsTEQSJZGViUiiJLIyEUmURFYmIomSyMpEJFESWZnXS9VyTN0hcZlyvcvD7SUONKOlvMHOi84EoaRfcpDy1pjJ/vW9jjvc3lnGdbN5yJArz6zI9rfRLPaL5Eo1DBexDRx6UF6SYbTVd5UpQrDNgWD8AdiUEs4z8TQE3bb3qSmnBb4iDRzUL+kalYOpYuwxMMiuodauI8GM3PWYXmvXNTW7bSCQjFQpsV0FJcwKZM4LaretXr/wR6UEaQ1f368hid1RmL22ol3GzgJYTT6G024O1SGlg2l1yDFkHM6EVWVtSkR+rJAoZb8tU6zVEz+/1TOuewSfOJvIYVrEpJ6+H05uGuWaqJzhPl04+igHKLmyomR3jL74wBan2fsT4wobbBhmxJCDUz0i94x5q6Tbm5Z2H4q/dF6ctXX8eatjdkbcz3WyxzsRckMOnm1THNMvjG2q3T2EEGngCVFGwMwnwEAk34QOBl7v/+dqheGea0+fqLjx3bhvJrBrCUHqywqS6zH99nUbucg031y7VJXXZbCNRWYHJTjZcvvgT9vddh1bsstV8JW8u2BBPJe+i6htKQp0WrKiU+cYERjZMhHjiyBfb/Pmn0WL1591TfDz6EtfiKczoTkDuPXI+7naVLeRSnyVVTcipB6w0HVvQNfsb+CYGsIQ/qwQsQDFA7B90o/qdNumfbUs1ubUxZ4ei/sMvOm/7OxM8mInth/LQOukxoK8ONXFFTYTHPhpPgTLH9XH4kFoXha95sQEVnkMLCkYacxQnY//5jvnwCv3DeOXjuzXL5o8EywtBveigcrXZOCQAML06RgbTNl6kl3BW2jUvWajbaFh1USP41tofFrs6IhBg/shOyY/JLI927zDlLve8a4Jb6M6VK9NXYeOkETyNes0iPVyptDcVnMfsduDnUuR8BXSkfCSVCULxglSJ7dEPdzF8oaolfJ8zTri6mwr5g05B3CtgUq9jQGo1z+nl6Mqj21DaRZ3wesgv2W5XerviyXdffck9a7t+TXSnBwiYQ+gh0iaywXuoFPOuRVyzMHM5IEQnm2oMWcFxpznOb2yScpp3gfvE0h0/rBsOGBaWiO/FMm721NHxm0h7/5p7qfv/uHXC8LnSuUGrfeku/mlVdvf6sK90ML6JIhPW1Z8QPcxRoaBBZa4MUIDRGce9Q89bYQtF7dcoEQVJo1iM5q1Inl/qeWDfOI6l2l14X0C+dxVSc39dKPh1zlfswVWKc9qlS9/m5JVco4QVtGLvipgDi9SGoI7X6RhBp+yvTOqfnWfPTPfn+l7oF8K2TA+2P10w+DXuTaMsyPuTuAyI22+GtNczHM+p9+ErKYWA2xiIZcVhEfCibjlrXvbeG/cUulHn04ralIUHzQPQCg+4A1FgUh9VkTMzxG83oSJ13cs8Mrt16mjR2zu9yiLYzfek22s+UTdk2E6a2cYZALnjwyXBYeDsBKeLZSowUw3X1YMTv+6TT6o57RR70vvk5rr+uSJ/o3nidKyX5zBrG7d34XdAa+FhxoabYtgeXQIPJbL17wJ8ot/HGk/wdbjtPPU6efvbrvxLpPc+ZgCG22DgckfSyWFGDqhcjT4TTEM9fJYnX3xHuWi6VH5D2rBfCC1Zn0gXBYWDv+dF1Pyx/qORxdHofA5RQME+xh6V8Kvc57n5oADVg0FmJMjBhg+mJua/MYVtTfpsnFlxi94CZSyzcHBztXgv9l2rvy1mDdjwtx3v+u5U7zjopi+1TvJnntWJH3V8j7R8ihZpFwWjB0LoztSJqRr+oB4ANBTFLhTzo8gPUUnP0lVpmB7LZopKO26LtzAg9TnAZyzUQs3cI/i+HmEHBjBJwg5MPhJVDkwqpwXVQ7sl+W+qDci5L6YfFNtV5kK+ByYnYAlM5HthbTPqsZ/nvxxfKzHjg4pzTa1tx5Mso+ZgD46BAVqD60LPXBk8ZuqwtQbtVOHdvzbrbBrJmB0vITmdEJlL8AEnWvnMxE6W0wg1QmQBiuBh9YHpStVWpUPbjFZuCjyeeTISgPJYgJmQjpKwgJRGj8ore3CLoN9V/Z2jLcOP/aTA5SOs6K04zxNoYk126WHVA2AgYGRDgBRs97JHKZ5FJ3D8OtFseCN9ZhPqIUmOwcMKdyf2v8/86dUOR8D+dMarP709bn//Clun6eHvPcErdrvOm1wB8m1h3XncuBPqTJNHHiKKqyeoliR+9NWNYqVa7iyn9vyzYlLD306X4YDf0pdJOAApdfn2FC6ca4I/SmVQ43uT6uw+tPX2gm+g8nPCajDiZtktjZm1d/OEUW67PvgHL7j0pweHEwJlp1jmxJM10LuyFkyW3kCcgMksyE08AhXj9DAI5LZEBp4RDIbQgOPSGZDaOARyWwIDTwimY0aodEy1qBXRHYxqnoeBxlrzTkzsqUBjfxrOpIIUUXCyNQ9f5pNzJlsQpUt5MAmTkw2WXHgXp9p2Z88Ug/sTd057D75nF8Jf4lCKifbpDSLY7MT8CPhHbjAizpKGcFXKKOkGnEhqJ7KH4EdG0N+baruIuJVdPF2lgHBKqVc3gMyFryYd+QzpxvFEyZ+cDmauGSb+5Kk4G9JXS9nM3lCi55qqQrqsxIf28hFGT1EDnO1wPtgwj8hsij8u4MIA+5yPIjZRDFJCQYH6t9YzIs5AxxoBxEvZpqojI9EFSZTeEtDSQRoqbncQxYWTrpeWnM9UBmZ/yrZC5/o3licOPFMZgUMRH8VPDcYJdO8VSnirVADSiUZ6aEIgbJbBLxmpeFFuPWS7xIWq8MEGe2lsgFQVUIiF0EtqHxEFKWSSiK0P5v3UkkitffgXbWFydMyVQWUo6U6av/ngJczz7Dx8r4zBC+3NHnMqfKqprs8uos1sX+dNrG/FWc0WY5nOJpE6OYSNInQzSVoEqGbS9AkQjeXiIWWLbw5PfY0X/jH7n/aR7qaVcgXC32fGPRhko296xaraZbZgyMu0sgVen1kR6KK8XJArq2ZLFk6YOmITdFDXZJffZK24ye+I8vb4Rt/PuA/KuAqdVcFrEFsGSr4fpFShZs3PwJ/hm4bglTRYdbXoqvuUX5Bx6Hhbyvmpf4Dd2tEYJzQlmbAzKzHP7QtQrY0idqark2oT0IJgWgo0xkuUQCSQ37xuV2ONCnWb4Rwcb8rT5a1mj6cvCHoonkCfUOQaOBcwQhAsg9CsoUpcWLdP0ZJnCgRDKDVOo3U1NSf+oj98cmGgfpS0XKJCttnlMPwBZ05Ydu2jdewwe6rey0Z0PPAU/IygkUA/hCEiCrRUhTWmctqnTGmYB3gjX7qk11UVxwhU2OyxcEkMxEuBGmcStNX9JZ3bOqVutPjxb7pL13IxtE8EbGIm9dSFMYJZTVOD1MwDrRPfuMQzMRknHaCCPiRmE3A66jBrVJF8GiN6GIXvjJSMhxqNLbAfsr7DfSIamf/ZWtihauClDaP5uyedXUn+Rx7YL7n08+xk1qLwnhdWY3X1DjG00FI07wAC3bJs6A6XKYYrQBBMDAfMJdCqYCmA/+SK0dijfBHJ9gUIRmluYC04/NztVSRvsWF+08GnVk57Z+rFDW0cFRaNH65KCxXhdVyxYxuOXgT3FHRK1XGWrMeDQsasTrC8cECu13P1nmsf3YqZGVa0h6yI2SMmfJaOF/wdsRjCDjjOEkLq5pjjhCPU9swxanVzccGHD2Y63fEIvlR47Zj7ck7dSLNQo6/SjpCJh1Jr93GlNlmK4CqQ+p8i0GYgGyYVBkhjVKN5kdqHqiu4KHJ5vJQ9JAq8PkLc/BKLYvB9q70XUVye/kg8J9IpSrKVSaP0nwwKtxnPGHaRMxzvwCwX4babYwDIW2tC4xZb8jZsBuBDXZwEntHnSL6pCXPLljta+0RF1XZ7uAw61xytySeSu+W2paC5slUcbPCzpMBci4QOWeUH/FvJuY5XdAr0b1yYL4Qhq8cIVWpZAw1Ky67VVvZxPe+MDF78tmPM5xuFH4IU9MlKD6CA6xqsWJlccGgPpdYxyyFT7ngL8Fg53b87Z8WUjziIy4KnYQ/S2DcRmVVC2JiQPwq/H/Z/GEP+Q7tdLstkxv7T4T/l0T4qdWEDCbC/+kCmwj/Abrv5ECE/22V7OVHvg91/tOjwp6xzyeSj7sU7rQ5xz4SapbnXmDTLL9H95FFIcJv1/XdWYcEO58Vz6s2MMuWOBtdhP8sKyoHDOsNWecO+h384U6EPz3WukOpld3cDp2YO6tJqfXkHQpjivBvYDVdnHFMZ3AR/nqSyzv/npMljnt4dtZIxyvzjCzCj3kZRhV14GUMJsJ/4q3HFdHLUn4z4qZatHuWu9IERPjPsoJz4IIBRfi9x/b/UzncXHiglGV5UfJmsp6M8UT4N7AiBMY0Hre1Y4rbxIKmzX52uSTYcqdO4oU1b1qRdQSwQ3yRSjlgdHrMZsGAc5u8LRJZ3v24FgZAXKWMDgsHMZxaii3V6KPlQK2wyPi2dNWDfI265vY1EvNOXwT4SkRw0YWCbxbAd8TFwh6sqpT3WuAqjgXyq5eIm/7+Up/HbnODmg45ZhWuLnztLkoIRXWMha0FDNDLhOjVFSF6ZzW4WXtRrxCqrGb4hkjDVFJ0fGk7N65nw8m1xVOzT9woXS/Tg3JCCrsRcUJKc51z2V/w/dewfv+ZF40dLGl7ph6BEnxlmTJEFsyibfMo522FF/GbxLHlnGd12rKenH1uQTyA3le1LUVhjBGsxhhiHGNQwx+ePjsWjl4KZRSgL0kwXDu1c+oCpqxgZhFhz2/RJThcqQqx57fsoh6uisJ+QEerozo7vPnrdar3yrbX3o7ceXoDmdfgBwREjZYj6l/mNRWFsXxZjdXRJEYOfJRe0WrlvIVuRbRqiJplBNW8HTBHcnebx5Qzizyen7jRtDBT5UKaI84Jd+TwqGcWTReqhbjn1ov6Ram4J2eJtkJtWvWs+Km+cEvq+F7B38fXNOq0FwKwgADgGgIA6Fr0ikQJKmMWmVi1YLxiW6kXbn9uftr5mjTFhUJlhj3sCwHozwZAkvNFItBs//8sH4damNtg+TgnL7Hl4wy+VNT5OJVXuB3cW9XRb1HPOo5relwrbwL5OMcvse1u7rhkAkkFCQkJBsjHab9ylcfswefEexZaqdun8v1NIh9nFat1ppuCdQySj5PVqUST4sceuy8sN6Z4wrw1rUwiHyeK1TiDTcE4PGPm4xy/lLDZLsTVc1+WJChxwY6DJpWP481qvPbGMZ5p5uPcjdwaVvxlB989kz/739zaZZGR83EaslrOyuiWK9J8nH/iHTzOvm/iPPdioOIBL7OPSeTjYDEEYz4OcIR4nNrhd8jHef/456bqnRMFW8p2PPtyaUaCkfNxvC+z5ePwLxsmH4dfYvSyx172wj+ffSsbkfFKzXk+DnVuzkGOiftlthyT1peLKh/nYYiA92xOVZ+5nSpfXWP+6AHn+ThUH8EBVnxWrMpe/p/Kx+nI5MaGH5E1k/kmifan+cmfZPd7Q94p6R4Nz066qSSR4fQTpnpsXzR0kakj4ekx7W7OaAfNKVO+BGrmhcFPQPa8Z2eWdL+4VyxYfCnpYJ+0IAvG96Pv5ORvpPW/0gHAhfnlP4qF6JXUc0869krt0xD5NNlnQa+sIoJ/Kec/JbbiVg/PZpYLkMqBwaQhHsCvjyIeh5lVY8pOTKas8mCOi3XH86KENg+PJJ8cSV4LMhOiDVhR490RNuOV0TSRDlnhZEA7fMWVkgf1kPwvKHnoGh2YMVjJCURkcihPAUvkpgtw1Dszof7jj10bbBzNhfv6V1uxKdJnY4GnL8sUPfI6n9iknt7j6MTmL44bNouUP0m1SBcmi8TPnxP90vOT25LhVdQrZtoPIK+JusLkmSh6RMY4vdTcwFcD1tfUu4xWw5AXq9UWrpSHQDlGmBIYiv0eFg5HScLUOsUg1COSJb2VwcOkIdqbUK9OX87VXNd1t9pOzLsDwSyGSuqDouprTiLklyBEcB6HkF+Cf6nyS75/3OkacOKF89Qze2Is3vpdosovTemVMPFGZH/3Zenxyx8vm92VaCcOo/6yPBP1gxHyTEyWtoTqAbgZkdaatftYh+FbQ71jfMdmlckMdCiMtbjfDQN2vQHtugoV8sTBg+YnjVJ40hLWdxykBt9BEZbnMPJ+xlzNWKeOPcYjVKKYbGXtmjfaQEAUFa1iCFwfjGrUaNQI39SyWwXNBmStYTVZKZHmSQitY7yhKIy2i9VoawxrNMIFm3uLNA4V3jJRO+4x2xBjlCnYq++Cl76WKdRSFZZ1Bz6C5DCRtlrRveWrAbYXPRfmWDx7/jJkFtVWpXyioyRD5FoBCx5lswt+qhOdrpwK1Pr6RbpiM+pMVqOOOEnT+mItoIB3dqlGnwUJHlUmhbWjm0NPRy/TgV3lPKPUEfdL6QJEpXvn5lgXxym9KxOld39416+U/Jzb2pS0YhP31Ysl58oGhMtCo/iwriyZ1iFfMdW0rukXGgqnIhK5HC+/KoOF86B4tyMSYMd73brMGX7NdUe/2Jjq3X0ETK+AiJd0TbcHPaN/GEAqUIgqhmcv5t0KLWweWTms+i4Ym2r4wmjxhameB3oUb+obc6H60utfq9WjFnhBfsUCQ0Ivm2fHKos2eK61ChE7Tu9vU9jEe4BVIMRqmQCV+wEm+PZh+mWNaSyoxHoFEhcvdatGPuXu+eyUbT+6ObPhXdqScqhuwBR2PIFvbs76zUEvMYHlZKwH6rHHZgl1htikp446ShxFH4U+s1b37/Oz2J0X5H4J7zYU/HtC2eCfbRz4aRlihS3UrRkRMNsZfBOkRd7IF60pbdFHtOfBl8G2zfvl/qKnKOxqvgPuCtKdEQQz2AEbEDjBdDNhglm46szlZd4D3LaP+eQjDxhesWgIZsV0NoLpO90ABHP+uDrE/OQj9ylTSz6ase+rIzcEE3+seLnXWTNcEw8enJM1dVAbDghmyXS2cT55OscEM2dFlbU/vwa5zfDxOjNu0CAvIxKMgvWbg17yOxJMjRUfSvz770236U6dbnc9cX+g8QjGlRX+lsaB3wgEIy02cI/Nlxy3yeZZmU77iu0yHsFgroCRYMCAwAnG2YQJRu5/Mqt0mRqiBE9FbI1P3rlFQzCxq9kIxnW1AQjGek/rI3Z19ngmnQ8c9s3BO4Ebggnt3KFd3Upf/FavXTneMjPNkwOCmbyabZwrVnNMMDMqtRbdu7jdbenavltL+l5YYUSC6cv6zUEv+R0JZrGk6pA16a88tnTf3Wh+TunnxiOYlqzw1zEO/EYgmNZvh6wam2LtuXptt9zTFaRTjUcwmCtgJBgwIHCCEZgwwTxYWfdry11NfTb0Czszc6+PY9EQTO5ONoLZs9MABJPqkxFQZ4y9x+KRxec03fl0DzcEM6LxlYBi7dr7bMmU3n1wdygXM5icnawLRTs5Jpiuw4KOd+5w1ndFiTGv1/r1zzUiwZxk/eagl/yOBNN9U5PZq65Zio+06NZxa6VZ/Y1HMPGs8M82DvxGIBhJvZ8+dYdNdNvqXrJazRbOl41HMJgrYCQYMCBwghGaMMFcL1XLMXWHxGXK9S4Pt5c40KxoCGZTJhvBhGYagGC2jrcPPDlhqteCNa93fnmx7DY3BLMwemuy01E/14XHh9c88MTtFgcEsy6TbZzPzeSYYAZHfuz1r9cfzttq5d63vrPAxYgEM4b1m4Ne8jsSzJh3DRuZfTojXn979ZPrP1e5GY9gerDC39U48BuBYDzMN/7oOj5esO5o0IelpRbfNR7BYK6AkWDAgMAJRsREMHrXVLDTWq/oayrUvFPn7V+jJnkv+fbu49LotLR8NRUcjyU/FFep5z1L4FBnbkvBzHw1FaZN2F3rijrIc0nQ9p7Vk2/OzldT4U54i2cDVt7zSuUVj8+sGLIgX02FJm73Q17wrF3mPl4fXUkW9ClfTYXHY/2mH2zZxDOu40ObDR3rxeerLzW/+uROiXuLe+1Ue5YK7HbsCGgqhTf1/6tmixt3HTzj16dVeSQbAGtZWeBNLn3sFvZrPsRj/YHUyOBba2EFrNJ4U6snSZPir/k4p2ap5jvluvmCpjJ406fZRw8OGNBC+OekATWDts2CtSIs8SZ+n58NxU0veyzdPXHilWdTt4GmsniTvTwx5c6CEx5JWx/uWXjYJxM0lcObpi5fszFjQXFR3JaKLdztXbNBU3m8KWteywXFnq72m755i4N/7a5tQVMFvOn2xua+38xOue39ZN7n6/nNPNBkhTcFdXk798b7Vj4xfq2syn3p+hdoqog3LbL+N+mu5J3bevuKzT5nFR8CmqwJeIOKLau4X+23ZGbinS1OrSDyNsQD40onj5m/3DPxisfzbweTG4CmSnjTgiZVZ329X1G8rFf2rMYn65UGTZV5jKU4qhAPnDAx8riPnTD50vc6JRrnTARNVfEmpffnlesW3fRc8c/PR40sSkwCTdUIo9h96j5o8XW/Jb2fm/XZfbkDaKqON4VWW1im1TR795mu8ZtGzAosA5pq4E2v6r8pF1F9neuO9hueJD1aMQI01cSbqqrvpbdvs8krZogkef23kpVBUy28Kcki6+sFv2Euu32/5Nr2CQsCTbXxph7lzCKjLTeL1/5r38L8mmg0aKqDN23/GpjQxOmM8/YOZ/a9LP73LNBUF29aM97RN/d2qPfGf1+cCvvYdBRo4uNNG+qeTTv9b7xgZfmFkiXJK9/SioXU4zEUCzkszZxd4dxa0QbztFU1e1zfiXAb+hYLcWFyUZVDU5JXZJwSr9r2YMyZWuPI5a9KiUdFypUhCAUspgC4MX4Hn9AslSlgWBgBAmLghNTSsAipzpJXVAeFfDV6ZiPeoGvtVlsx7861TOhfEae3/EF4vOuaXoqgVnmKoJoXQX63mFOZ30bwu/tN2msmeCJ4u5BDQVCOD2nB7OobEKAQVO7fySZiXuY1vWLiNj2koGtgZ89DpMHKiEilWoZJgIH3k8mxqRPRT/gSFVS9VUbIgtE95MGqn522+Hrt/Tnvr9Hy8YFkCR/t59AlfPKauI4bIFy7WOFac80kIjm63KSekZwDPtBC8swVFS6J4kdIhkn5IACBcgJDJFCLg1Hrp9mTazd6Hn0n3NzVYuTpFZ3+oag94I9FqD0QLVxbz8oB7+wuKOstc8Q6O03xR0/g6hHCdITogpQKJLokcKkKx+52sBbtfDo4qH6viU8LL4PHAVi7WMECXR3nHzET//ynnv1L6tnUCN1g6tlTr7OpZ7tcLwr17BOfm52TO1sJd1UMvbutV3owh2RJ9UAcqGfHXGcTG5ZfN4h6dsq1ex992wW47ZuygNc716uv0dWze7OiAvqNiSp9FLTAxJ169oLrztZD+XddD14aeuT6znX7TEY924nVdLWMYzqDq2c3kiUdE1z44jYnPe1R9O15fCOrZ2NehlH+GHgZg6lnf1xnV0Ua6yVYO0We3vFvc/IWhnHUs3uzguNy3YDq2eVzvy1tE//KL3HeuR4uq32Gmoh6thMrQmBM43GbK1PcdmqlxPt7h6pukzfVKfW8wVjy5NzCG8Ro/AAXb90XDoSEmiEfVnQmImEwQwwFP4K4azQfYKuK0uhEA2eL91cYe+Gh23idAifq+iX6velRNNGiI8bxYBoofwIwvoXadXMGFrB/ot+yAvYC+TBAR0otKz4o3k/gsj95ZaBs4OxWlN0keDdCJAq7XFCkRPV/hYyU0gFA4U/wE/C0TshvJuYFPtFL+6UaBhDRL+xCZCrQfUE7mmwjFJXrBa1s7rk4/cm3iDsnZeRh6ULcTB+WeU0FFmS6csP7lfVSt8Wv4p/MP3ntPQeAObMCBnqUUYIoDWfA32nFY/pDL0liwWJLS8yWLF71eYJ7z5gHSo9dfabX3+CWWccaE5MHxhCPilRJtdIzWFArEAbY9W5SuACYYtryS2dsnOB2Wrh86KW0jpejfDgwbTVW05obybSo+Dium16hVlnvfP4cacyKHvNvh14t6bXKbfrpEVMahVA3/BDCdpqrnK/dOeI+aYcAsee3wxEbYjgxujERo/BS1dsj2u12/rPfwGqzgg57k75NJShAEgWXPqGarBTqG0nVdJIszoBlc5EyAkCukUHBHhOS9xhscqjJNYELS1DYQydGpG7bFfzCNHMgf0vXaAR0/pa3AOhPQee/R+38g0Hnr3KrsPkpAu98oMDlBmWkVAWjDaWCb6fp42o+QE9ThAL+S+PT1HA1WjlSyqAgX3ZlhoPAra9rXFDpnqIhPS3JPiYISzqg+xj8ekE+5kaldP8FLx95bYzxEyzz3RBVSB8TB2B2hDCbC+HBdepiXRMM5sIuCTfKZ37t6lawUqGWBkdj3QPLiULPIj51Ge57Y5Z46oChgsRRdmR5S8u859Knv6RGzuUs7HHY+qNgu+aAwYa7BHcml3CmfIP3LdoqfWLfvfFyvDhRTPpu5XpIMR0Jvm+0XI7wBUwBswNxHxQjwfqsTDFCIpeFaDr5SFlUOF8Jpikq3T0BdZee5T1pViA36yqdaCvmHb0J0LVEbb7Fw1NKNws79qt4YHl4cNVVqsbEcDDEkAD4lqhv5lOymefcL0Ne/Zw7pQs5fMYeRA+fNZcLGs7UrITCygEC5NIgcutQIUPvpmJe0k3G8FlH5GpqkVORuhrsWkj4rnZe4FkiONvtjwoPdr76+IZS+hvvIOgtHXIr16MYorWEFa3JN42iJGQRODpSmh+HBvlydhy9QEgrlTvC31E7urkPgkFumFRFSYmDfwrruKtgBAkNCx4BJtWjNaZGWplKTIUZJIW062BHfBTkoNLm/Jtjo0CvhbBqvhi2MFbQ5O/iXT8ECUXtid9KXG/0Rbg/MEVxwb5XW8rGBPxWiI0J7HJRQLGEFQrQxXGi8mAiKn5Yg33T58wQLjy2zXv555SxBSr/Mfhipnmdzip+VG+pi4ofr0AfPKlG5wudj34R7WxWTHE/Xty/sD4Y+A2Xm7jocgxNBhtEDq21kHuaPOTU3DhuIM/cFhvV48Upl7jvtXLHVJ93hQPIa91hg7zsHQJyL86yMisQkBsgKxORRElkZSKSKImsTEQSJZGViUiiJLIyEUmURFYmIomSyMpEJFESWZlty9+PeXdlqevKTItXD70aWdJS3mDnRfY+avolBylv3kz2r+913OH2zjKum81Dhlx5ZkW2v41msV8kV6phuIht4NCD8pIMo62+q0wRgm0OBOMPwKaUcJ6JpyHotr1PTTkt8BVp4KB+SdeoHEwVW98Ag+wa8sQImJHn6rfNX1Oz24apmSuhaQAe4AfmvKCmgYoUUa2ZngmqjIebg5d1LMxeW9EuY2cBrJxu4LSbQysQBabV1jeQcTgTVpW1KRH5sUKiVEea1Lp2486+B69UuvK91vvzHKZFTOrp++HkplGuicoZ7tOFo49ygFLudTaUrlynLz6wxWn2/sS4wgYbhhkx5OBUj8g9Y94q+SN3Y+4AuaMwzsFfXmfUNG8j7uc62eOdCLkhBwVsa93QL4xtqt09hBAF56u5BhmI5JuQ4PxckPhh6r6awn0rrcJDQreKTGDXEoJkwQpSrp77uo1cZJpvrl2qyusy2MYis4NSf+ieeOfBU5+l+/dkf3J3OETeRSSeS99F1LYUBTr3GPd0ITpntXu6PkzE+CLI19u8+WfR4vVnXRP8PPrSF+LpTGjOAG498n6uNtVtpFKvssfUAxa67g3omv0NHNMF2KnOChELUDwA26YbRbBNK34+aqN0zRbnVXzesNNeXckV6Cyx/VgGWic1FuTFqS6usJngwE+fg2D5o/pYPAjNU/XjuvIYWFIw0pihathV2nLw6kDRhhpjHi+sU6YN2ROJwb1ooPI1GTgkgDBtYoVpwQ39yK7gLTTqXrPRttCgp8H6CNxC49NiR0cMGtwP+TL5IZHt2eYdptz1jndNeBvVoXpt6jp0hCSSr1mnQayXM4Xmtpr7iN0e7FyKhK+QjoSXpCpZME6QOrkl6uEuljdErZTna9YRV2dbMc/qUSas+omIyWMA6lnZejmq8tg2lGZxF7wO8lt6/+j2+WzV2YK0uj+k+w8PppxDwh5AD5E0lwsac9RzboUcczAzuSyEZxtqzMGKZJ+y9comKad5H7ZCteu7Rjv5THovWHz9YJsNGXOTybt/mvvpu3/49YLwOX+i7s6IUw4uC4btTlsor9iNA3yys9nwAd3HGBkGFljixggNEJ151D/0tBG2XNxygRJVmDSKzWhvru+t4eq1zn3ysKGhi9qfakg2muZ+utHw65yv2QKrHGK1yhaTskrOEcIqetFXBczhRUpDcOeLNMzobiNqJ9rO8Ni0Z9bzvR7ri5EN44PdTzcMfp1rwzg74u4ELjPS5qsxzcW819n6TchqajHAJhZyWUF4TLFbUrv5DCv3IynDWlWr8Kw5payD5gGIsg54Q1EgkpXNhsiubILX/Zh4fccCr9x+nTp6xOZ+j7I4doMcpeCfqHsyTGftDINM4PyR4bLgcBBWwrOFErUaVuTSZsXg9K/b5IN6Thv1vvQ+qbmuT55oNp4nSst+cQazOn86r+u5A14LDzU0BSywIovwCJPmTZBffNfBF9Nu7zzsm/jqltfEiddXkjsfU2CjbTAw+WOppBBDJ1SOBr8phqFeHquzL96jNGXlSQe1YD6QWrM+AEtZw3/nxZT8sb7j0QrRFD43alV7OK/FAKuGAgzWEvXXDmZ/k9+4ovYmjip+Ubc5ONi5Kp/NtnP14yGBeXcmzH33u547xTsuiulbvZPsuSdZUL28D6kYHd2RMiFd0wfEA4CeosCdckpJO538JFWZgu216MVYye26LtzAg9SPAZyzUQs3cI9C9RhR84vgE0TNL/hJ1Jpf1Jpd1Jpfv1zTi3ojoqYXk2+q7SpTAZ+jTwnCBc03D6731Mp3seTIxq1LLSeQSxAK6KNDUGCBoW+HVk7vMKGz54KHxU5sLiN7V9g1E6jjD83phMpegAk6sY8zEcW0mED6lUKNqxrHHoqyLe58xFHy/EdpCXmpUbdCjVSUpjx/2Odr9y+us24snHN/1jguUFKxojTwMa0ME2u2i6beNQyMdACImvVO5jDNo+gchl8vigVvrMd8Qi002TlgSOH+tMf/M39KlfMxkD89+YjNn6569J8/xe3TZKvI0WH9Tt+EG7NC/3qZeo4Df0qVaeLAUxx/xOYpdjwqan/aobLnovFNGzjHbrbeNLbt+gwO/Cl1kYADlFaxojT9URH6UyqHGt2fYj2G0Z8CpHB/GmDycwLqcOImma2NWfW3c0SRLvs+OIfvuDSnBwdTAtdHbFOCtlrIAzlLZitPQG6AZDaEBh7h6hEaeEQyG0IDj0hmQ2jgEclsCA08rcQgXQOPSGajRmi0jDXoFdGTHop6HgcZaz05M7KlAY38azqSCFFFwsjUPX+aTcyZbEKVLeTAJkFMNllx4F6fadmfPFIP7E3dOew+NX9IopDK6fXpmRybnYAfCe/ABV5gWXS+Qhkl1YgLwRKpbBq2VN1FxKvo4u0sA4JVSrm8B2QseDHvyGdON4onXG/5+naNyCYuqa5S9cZi81RMntCip1qqgkVYiY9t5KKMHiKHuVrgfTDhnxBZFP7dQYQBdzkexGyimKQEgwP1byzmNX0AHGgHES9mmqiMj0QVJlN4S0NJBGipudxDFhZOul5acz1QGZn/KtkL1wtsLP7a5EFmBQxEfxU8Nxgl07xVKeKtUANKJRnpoQiBslsEvGal4UW49ZLvEharwwQZ7aWyAVBVQiIXQS2ofEQUpZJKIrQ/Y8LE2nvwrtrL5GmZqgLK0VIdtf9zwMtRD9h4OeQBwcu9TR5zqryq6S6PDmZN7PfXJvb34Ywmy/EMR5MI3VyCJhG6uQRNInRzCZpE6OYSsdCDlMFP292r5r1sZocuvEXXsvPFQoMW/HUu0SvDc//Qh7aNvMeH0MgVen1kR6KK8XJArn2ZLFk6YOmITdFDXZJffZK24yeSp0YV8I0/H/AfFXCVuqsC1iC2DBV8v0ipws2bH4E/Q7cNQaroMOtr0VX3KL+g49DwtxXzwp/C3RoRGCe0pRkwM+M9pW0RsqVJ1NZ0bUJ9EkoIREOZznCJApAc8otn1ojet/6Kg2DNgi5ntj61KU7eEHTRPIG+IUg0cK5gBCAJgZBsYUqc8H9qlMSJEsEAWq3T2LVr1099xP74ZMNAfalouUSF7TPKYfiCtE3AG8+HB7zG+ixeVMXi0wbJLYqIKv4QhIgq0VIU1unMah07U7AO8EY/9ckuqiuOkKkx2eJgkpkIF4JOpD8iut5s32nPHQ9l63J3ridvjVlonohYxM1rKQrjVGI1Ds8UjAOhy28cgpmYjNNOEAE/ErMJeB01uFWqCB6tEV3swldGSoZDjcYW2E95v8GQnn1V0tl7W1fBn8s/J9nMXxxBPscemO/59HPspNaiMN7LJ2zGu2ZCQkFkIU3zAizYJc+C6nCZYrQCBMHAfMBcCqUCmg78S64ciTXCH51gU4RklOYCWlMkS2277VVpj3V/mO2omb5+JK22DiItGr9cFJY7zmq5HUa3HLwJ7qjolSpjrVmPlinC2B3hnZCPTvtPtvHbUnbgGLOUSeTo0YIxZspr4XzB2xGPIeCM4yQtrGqOOUI8Tu3HFKdWNx8bcPRgrt8Ri+RHjduOtSfv1Ik0Czn+KukImXQkOUyFmDJlttkKoOqQOt9iECYgGyZVRkijVKP5kZoHqit4aLK5PBQ9pAp8/sIcvFLLYrC9K31XkdxePgj8J1KpinKVyaM0H4wK9xlPmDYR8/6F2C9D7TbGgZD2ND2kJSbIyNmwG4ENdnASe0edIvoKnXc1a1C7o8fm+k6ZI0+ZkbXHLIin0rultqWgeTJV3Kyw82SA3DuInDPKj/g3E/PuPNUr0b1yYL4Qhq8cIVWpZAw1K3h7PUYrpWPcFsYN+rfirPctCj+EKVhRfQQHWJ1mxWqfYUMdYh2zFD7lgr8Eg53b8bd/WkjxiI+4KHQS/iyBcRuVVS2IiQHxq/D/ZfOHPeQ7tNPt/kxu7D8R/l8S4adWEzKYCP+mZ2wi/KHPikKEf1J8j6eVFCPc97VYmubfe8tGDk+bc+wjoWb5umdsmuVznxlEhH/+qyD/Xu+2iBfwsx69XT7ulNFF+MewogL6jcnMHfQ7+MOdCH+5quq3K8bwnNe3Hrqtf6jjMpMR4e/BarquxjGdwUX4l10NvT9vbU+/rQGb43I9Z3wzsgg/5mUYVdSBlzGYCH/p9QnltncLd5s62yu07VXviyYgwj+GFZzQZwYU4V9dfUqpWndruE6zeV1vZWy40gTkLCBCPVgRAmMaj9sGMMVtYkHTZj+7XBJsuVMn8cKaN2S5d0vsEF+kUg4YnR6zWTDg3CZvi0SWdz+uhQEQVymjw8JBDAerXCtD9dJyoFZYZHxbuupBvkZdc/saiXmjngN8JSK46ELBNwvg2/B5YQ9WVcp7LXAVxwL51U+OGiBdOFngvvSk3/ZP7lnmha/dRQmhqI6xkCEUH6AXBdGrK0LVI4abtc/1K4StGb4h0jCVFB1ferZ2KZvwcL9PzLpKJw7Z/lhKOSGF3Yg4IaW5zrnsL/j+3qzfv/1zYwdL2p6pR6AEX1mmDJEFs2jbLL7PS7fiLfTao3zQr/nOfyl15ogH0PuqtqUojNGQ1RhWxjEGrTi2PjsWjl4KZRSgL0kwXDu1c+oCpqxgZhFhz2/RJThcqQqx57fsoh6uisJ+QEerj7tX873qeV+8efrtXUc6Rn0l8xr8gICo0XJE/cu8pqIw1rdnbMZ6avRpBpFXo1e0WjlvoVsRrRqiZhlBSR/8e+6ZHe+Z5h8yU53bt2thpsqFNEecE+7I4VHPLJouVAtxzz7P9YtScU/OEm1Fv5y/+OWcWL+FFb6GW6Y6eRt12gsBcCYAuIYAALoWvSJRgsqYRSb+uD03qaTDN/G6pNNNpgS9aUGhMsMe9oUAlGEDIOm1NtAc+P8sH4damNtg+TgjXrDl45R/UdT5ODturh56v1yO14GF/QZmZedkmEA+juoF2+7mwBcmkFSwfPlyA+TjPOq3WW3e0sVzw+1/2tVb8CTbJPJxPFmt09YUrGOQfJxZfnW83u+299g5IfvD6kequSaRj1Of1TjlTcE4PGPm45SPsIqt/c8b52Vlc6ZstrCOMal8nC/P2Yz32OjTRBPKxwlrYsazmdDQZ1123By7iGm3jJyPc4HVcmlGt1yR5uM4f2/3ZmqDjm6Jd2we2379P/a+A6yJ5P0/eihNRFERRTFWsIDYFcsBIfQmWO7skQSJBoJJEBEL9or1VCyn2FBUFLtiw947p553NixnO3uv/5ktgd2dXRJYknx//+N5fB7Zl91sPu/MO+/MfObz7r1mEnwcLIdg5eOAQEjkqf3/L/Bxlo1yC317Mzp4zfunpwZ9aDLcyHycz0+5+DjnmSltqfBx9krsrp2sUsVv888Hcp9MWCvnnY9Dn5vzwDF5/5SLY5L/tLT4OJrr/4RXGRPqudBsUKcvHx/H8s7HoccIHrA6z4lVjmFTHWPzcQawhbGhB+VN5aHrRbsOhCn+ud/7BXWnpGsCPDvpp5LExzBPmOqxfdHAR66Oh6fHtLs5Sa74KVOhBGrmDYKfgGx5q+ucPXD6fbrXkorzJAs2L3nF+n7MnZzCRkb7s4wEISys8FEsRKukn3vSsVVqn4bg08y8B1qlvQj+o53/lDqLJ6beO24TKVMAh8mkASCuDycfh7kVd6WEzZX2+ak+dh4XRCva3Du4+WSiD00FA+3Aynh0R/hMYIWbKIesiMGAcfiKLyUP+iH5Yih56JodlGHxkjvIyGpCuR9YIjfXi0B9IBvq3yduXV3Fzcx7Zx+HxRnxITSyEuL0pVXpI6/ziU366T2+TmwWr99weWTfLbpHotg8kj4nNeFZ4Ee/BUPt1YunNetLXRP1heQZDTMjY51e4jcI1WDUx+tdJqhhyovVaotRKqRQjhFSAqOxv8PSYY1kkFqnHIR+RLJ8sDJqiEyqvQn16szlXPy6rrvVLmLBjNsAzLIoUh8UVQ++jZBfghDBeRxCfgn+o8svhU681SXyxFPPCWe2p1i8Csujyy+N77lizI34Pv5puemLHqbN6ELaycOoxZZnon8wQp6JzdPWUD2AcCN6D8zyw+oOc5cE7lB6tb+1+0C7kniL/90w4Ncp0K9LUSnPbHjQ/LZRCk9aw/qO/dXgO8QNKggYBb9joSbZ3SNiFEIlis1Xdr4FvQ0kRJoEFTpxfeJ3qnW3Cmc8p8RMOOxWq8s1TpeZi/AnIbSOCUNpOG0Ap9OCDes0MgSbBYvwgApvGaPt95hvyD7KluzV8yFKX8vj1DIVxroDH0EJmEhfDem6vd/IR8u89tXe3zIwqPoauq/MQxI0koEKrYCFgLbZBT/VnTlcuRep9VXM4YrLqe05ndrgNkPri7OAAtHYZbg+C7pEAE0mhbOhm8FIxyzTgV3lnVHqRsSlXC9EpXvP5lgTJ4Z0KduQ3vXe7TBzxXm/5XsOlB2zs+4kKlc2MkYerRHCurLUYR2OV2w1rR3DoqPhVESiUBDlV+WwcB4U73ZDAkwvOMj2Coh8SVe6PWgZ3W4CpLp5o4rhNRMLqt4sKY/MBqu+C/qmGr4wWh6/7uatXw7nBs4Zk/nkH/OXWfQCL8ivWGRKSC+6XlLiPTx4D7FK80JxP8AEv9NN/VhjuAeVWKtA4tLbP6397cmbRal/h0dNnLWhMWNJOVo3YEran+Chds5vDlqJCSwnYy1Qjz02a6gzxCU91T1sS0rNnyaIxvdV1jy540Y2tV3Cuw0Fv4AT/md/mwZDrKSFuvEeAdnO4JugpTpoFXeLGSlKuprvSoSCXE/EADPAFesQxAAjYxtg9NbzcdF6r/T1fDRzckcPPNnea3+t1KRFiXWTC+n5tFhyzvO3pTVC0o5OePTv9il2hfR8TrlN/uVE9JqwOW1mDjnT3zqkkJ7P0Ur7Ggx1kIetKyOa/Pq2eEkhPZ89juX84mvle+3avGJKXN8/ZhXWNmRW/iW1DRGVf8lCvYjKvxaEaVH1fn365aR7p3T/K+DhHx+gMKMlYSq/v+Iau7huwb/XO/vmQ2hQRWCyIkz1KvhufL5/XtCeMbHjJLY144DJmjD5dD0WOcr5pNfsWus/e0/e8A2YKhCm7DsjGtt3uuybGfnzXcX8vp2ByYYw3c2bWD3F+l3A8ua/nZ5Q46k/MFUkTC19le+b7/vd+/cRibl+R/y2AZMtYVobM7pm6onqQavs1o5pMLtXJWCqRJh+it1xrLbtM/GyL/3Sex8y9wamyoTp9d/bL6+LHiz6/d/YF2XXbd8ATHaE6f2zid12Onb23yWJGDIx2lIFTFUIU50uz3esPZkmWv1+dovkvPRUYKpKfq9hC2qPmKQJW2GZ12rR9MdRwFRNwCoDZU+YNnweEdNwdqBofeWfT/0lmeoATNUJ052E/V2i+/j6zn7sMPbggK+1gMmBMI29k1vmTpO2nst7NGp7otqwocBUgzB9W7Khyfpmwz33Djz+540vr9YDU03CdP+1JuOux5TAiQtqvuk14o/fgcmRMLVyOLz73otXwUumDp4XmXUEAlWLMMXc+b5swsiDXpkLOzX4s9mzxsBUmzDJ2tWf96a7d8iW5F52q5rubwhMTqS/dnQwv37zi/eaS1Gv69WKh6KddQjTPbFz4IiHKvGS5TlZnd4vmgFMQrI7RL5ZkhTpH7LLvfb4jb1GOzOEquoKWISq7it+ldQ5X8F//qe/XTxmWV3kQagqmi1EVYves3nxsVPipRvzR5ypNTKdOnUVD49XKKWI0xdsCXAj4g4heV4WK1OnjgUJMQhCRAVAHY9b0AMU8tWYs2rCoKtuuDOYVj0/DuMrYucwHBZkf65fAc2C06j4iyC/2z+1Fnd8/CDGf8XFz0fshtfZxONhVJ43COHKXmsIkBQ17zzZWCwQPtcrJ24TIQNNA+M9SWWwxJFSLceOn4D3kyuwqRPZToQSFTxxrYyVR6GZaiOSm5SpOypw7dL2d2S5O1dQ6ePaz2HSxwtMvJemccFaDAdcH/81iUyOedRRz0zOleho0gJ3aWIkGmGsZIhMCBIQbQlrdp65Rbby0Kg6W/w27zc7FhWiqENjGhKPRTANSQvf3qvkSjR2H5T30tywxs5gm+sJXF3yUBRJ+JPRgUSC5d62r1jl2Cx4WhOfkye7zaFG6mIdweIBrAqcYIGmTow/g9jGn/+UG4ql3EDP0A2m3HDrOZdywzL9xkodlRtedP7lL9vcKgE586Ujarw/d4/HwZIegXhQbrjxnOug+3H9BsviKjd0d1rfdOelwSETPtU1a2q/NsHoyg1bOVEB7cZEWaaGU27wvl+uzdy4e54rXcsFS+97DDIZ5YZpnK4bZhzXGVy5QVgmY6NyWm/RZodvUcrDU58bWbkBizKsR++PI7KU0lJuODFcaDts/s7QiTtr+q+amb/eBJQbtnKCs+y5AZUbGk20vOOySho44/2bqFsfDlGLshlPuWEaJ0KgTxN5Wwxb3nZqiST4W4fqfuMynMyf1E8+QM1Gg0GOJoz0CdZ94cBbWwwXVhMgM2EwQ4wGv4K8K0kIsFVpcI0CEGyJ9gpzLyJ1G6VT4kRfv0S/NzOLJi16lMU9/pUoi8tIlTyBByZ91W9ZAXuBQhggv12G4Eq/Q2dv+k76d77H9hFvBtJ2k+DdiAMK2OWiMiV6/OOh5u3hrwT7itEIhU3Fgk1f9eIdO2AAke3CRSpXgeYL7OjB1qK5tXDbqkchq6s/U1k5jqTKGlv6kDczu2WBqSjAxtmeW365wlPxtuz35ge7tWvIA2CLOQEDLcooSRQ+ZsC/aSVg+2HKYVlw+NIa8yVHVG1ufmb+E0nZgE1pW1an3Lz2ww4TMgHOEA+PV8m0tGcsqfXyjnT5pXHJEmCaa/eGp9UXD4kI2tz+1dvxa7NdeHCtitO1/YzkWlR+PPtnvVKtCsGF4jnSmaPv9Ljlf2q4Z1qdCxHJmdf30Tf8EIeq8Ku8r925ETEpG0UqyXbDuhgxMMrZBkbvvOo3h7Xb5pnVu5/D9B77qeIBVSH5VQOXPuFJZhnk1sv0qBjfXKSMBZDjFFzsMdKCx2CTw4JC8ZBUqtOISN+2K/qFGe5A/pWu2Qhkjr4CoD/yRhSQHwAaf/yrkvJTvIILgQKXG2AZJJhtKOOELmTxc4AeLoAE/4fHNDVcjVYmyljUS/7I7J7atslT0bJjdn/Xcl9KHW3L98BIB8wYQ1wvKsbU/HirceIH39Dtiz0aWbfovqWEMWY2JHJCmM28ESXT0xpjMJd0SbhhIfdrV7eilHFqWVQC1jwwThRaW0t45++dl4/47x5v7xnw/i614KF1wXOZ01+KkXcqZTMCtj4o2K67YrARIWEwW0g4U7H+mxZtlSGTXr8IcrsyRkz5bjYRMozDKAxNUCgQsYAtYXYl74NEWKzNyuOGSRRyKd7IE+WaGKESTFNUukcC+i49x3syvEA163psz1ksqAXRtUZtvqUDdF++LGnftw/AeHhw1VWmxojYGGJIAIa7Tfrm0W1s2IwdT8rUO3m9FzV9xh7ETJ/xy0V1ZzoroaRH0QByDhC5laiUAVZ+NXvFmj7riJyjFjkVpanBpoWE7/3mYbbz1lTxHt/++S+ffTyoSXUFooGgt3SoVr57MUQLtCQOtP5+aRQWu0W3pHhZYRzqF+LsuAWBlFamcIN/o3bz8+8Pk9xBMhWNEgd/Shq47bEBEjoWPAJMqpNwVyO9TB+YStJJSujXAW5EL3iJos2FN8d6gV4LYQ6hGLYwV8D5u0TTlyKhaDJ6yYg1N9aHjW9nVf7gsLAbtI0J+K0QGxPY5dKAAmvirFCAJk4MVEPYBiqTqflHj5b8lD8uhZJ/y15ylfybqYVcYfKQ07lx/EA+1qx8q7ke0QFLNB1X7nvq+DMPkA97wwV59BsS8ljeWJm2JOQGYGUiSJQkKxNBoiRZmQgSJcnKRJAoSVYmgkRJsjIRJEqSlYkgUZKszM6psvdmS0W+C2Yc0hyxtvidQXmDjRfZ+uj0Sx4ob3Fs/q8XdNT15hYr37Vm0oFXH1ei+r8KvtgvUijVMF3ENnCYSXl5lt5Wz1cOyx3HwPrA+AOwKSWcZxI0BN229+mU0yJfkQEO6o90zcrBVHHmC9DJriNPjIAZeegLvdauHfHdNkxJQwldA/AAv7DzgrrN/D7iYddnwWmxLhl1puRvL8leW+kuY18EWE17QQy7LxnihGBarXiBzMPZsKqmpUQUxgqJ0ryFPaL/uersub7xm/nrB03w55EWMbZ76LuTGcN9M5VT/ad4Jx3mAaVQTpTcXzAXH7jytGbhZL/COhuGGdnl4FSP5J6xb5U0mf6xzKYu/waPsz5bW9XP5rUR93PdmxGNCLkhBw9PD3uhXxrbRLt7CCGKKqT3CUcgSmxCgnMs2Sdn4JNq/nPCt81JuTq+twnsWkKQBnKCFPpCv33dhj5y/Jtrl6oKmgy2scgeoF70W9/GxTcrcK2n9WqX0O404iL5XOYuotZSGuh4cKLT6AWZGCnZBsanPUKDzZp/Es1fddZ3RVhAL+ZCPHMkNGMBty51P1dLdUtU6iW5Tz9goevegK7sbxCYmsEU/qw3YgFKAEsTMxegSr5N29rRtvefAxZ7TWgSXTmw5TNqGWZrbD+WZVinGIuK4vQQV1ImOIjTLhCscFQbSwepedWXeo11FTGwZKCnsUOl+bXB2nI71X4z/my3tadtvbPUSCQG96KBKmQycEoAYRJwwvRMz8Gu6C00+l6z0bbQYKTB2gjcQhMyckc3DBoiDsWzxSGR89nmHcbfDk73XfFK06FGbfo6dKwkXoiv0yDWy9lSc2f8PnK3BzuXIhHGyRLhJZlKHkUMkDqFJfrhLo43RK2UFzLriKuns1gw+PNxqDiNyMlTAOpNPusVqCpi21D44i54HfRy+I9RKeu83nnvfuXhJPa4RS15Wg57ADNFwi8X1efo59xK2OcgMzkawrMR1eegGmbEZ73YJDb4+3CJpP/8/MYEV4f2ASmNjv0VuKhSJnX3D7+fuftHXC8Knxp5+U+GtdocMtaviUXvfr0H84BPF058QPMxBsPAAiNuDMOB6CSg/+hXRc2mm0Q1SKbhctqTrdJ6n9dmhmV3GZLnpOwVQXUafj/TacR13tdsgVfsOb1S1qS88vIg6RW9hi9bLODFy6RE8EU65mbi0qn72m0SLXNoOSyo3ZgLVMeEYPczHUNc59sxnm5EOIHLjIz5akpzscD/s34TMkctBtjEQiEvCo/wdXVOug6dHpy5I2TrPjO7vTRJIfwBCEkhwlAaiDThRKTCZ3JcH8o2rmfPDXrbu6NHwKS33zQWR268ofoY/0TdyTCdtDMM6gAuTIyRR8WAtBKeLZSo1VANUsuKIYZ/3SYf9HPaqPdltkn8uj480U8ET5TBfvEEs7r1n0q6A16LSDVw8SRM4BceYcLfBPnF3Z7NDo9V3g2Z77TxnZ95tzbUxseW2GgNBh78MSopxNAdxdEQNsEw1CtidQolWhRe0oRyUAvygdT4+gAsowD/X5BTCpNDRyERpY/nRq2oAue1GGAOKMCgjjUAjOjMKpPfuKK3Jp7UJunbHDzsXMV84tq5+kWLuZoN89BdvudPCY6KUnrV6Ch/EliZqrgdQhFCZQZSNqQdQ0A+AIYnDbhTQZNT1SlO0pUpuF6LKQROteu6cAMPUn8BcM5ALdzAPYqzXxB6k+R4gtCbhJ9E15uk60XS9SaLrSdJvxGhJ8kWm2r7ylUg5ugjf/us8jenRpZuXjP7NT7WOafhn1T5Wy9m7/AqUtzuc5eYck3aPQtb+nJk/t1cp+UlXTMBveMtdKc7ir0ACTp3vhxHCDmygVQckeBvp25nda5XO2TGbZuVQdPrUc9X6yYSTEfpTvv6ox98lQbknHiiaNDke0k5nBCls5wo7f7CkADkZLvgtRZgYqQDQHTWO3UMwx/FHMOI66Wx4I21mI+ohSYXVwwpIp5q/sfiKV3Ox0DxtB5nPH3/+b94SvhH5i2pNlHzLHDuhujMxuXdlvEQT+kyTTxECifOSGFV6vH0uc1c8aJXwUHLW3R9UzHz8mge4il9kYAHlN5/5kIp/3MpxlP6GGr0eOrEGU/fayf4CSY/J6B3J37IbG3K1HiVKor32fnOMyY7LzWChylB+meuKcFsLeTDeCOzVSQhNwCZDaGBR4Z6hAYeSWZDaOCRZDaEBh5JZkNo4JFkNoQGHklmo2doDMYajIrIJkZXz+OBsZbIm5OtDejk4ulIIkQVSSfT9/wZPjFj8wldtpAHnwxn88ni3Xd+nXz/Y0DO7h05W4bcpZ7zKxcuiZMpmLVR2AKbi5cwHt5RqEKXME6pkeHiQlCem0vDlq67iHgVXaKddWSUSqlQRMARC14sOPL58mdaJNzR+/ur25nlw+aoTw99PrkGK5PaortapoIC4OTHNvRRJgxUQK4WrKIDhX+kcg3x3UGGAXc58lMyaC4hyxwxCtk2EgvGfQABtINIkDJZZBUiUQ2SxwXLoikDoDV+OQLWOy183RK/3k0ZX/gqNQpX7dFIfHnsh+O2GIjhKnhuUCPH38qcfCtUh1JJEgPipFB2i4S3jCW8CLdeCl3CcnUFUZIJnxDAKqpyiUIEtaAKDUQalUwSq/0dEybW3kM01SSTH5bpKqA8LdXR2z8P4/L5D1zj8oEP5Lg8wuQxp8urmu7yaA4nsX+9ltifzNswaSMw3DCJ0M0lh0mEbi45TCJ0c8lhEqGbS+ZC0V2qRN6dVE+0d+KIr2sO1wkrlAsdHp908PrO8V4Te53vZzvy0S3G4AqjPnp9jCbGy8PgOpLNkyZarp0uOmywcu2Hv3GVa+/1rbTLtR8fsvhdWodQ3zlHzJscH/hrtAmUaz/wjav47fpvJlBzesOGDQYo1x5wzsnj2a9pYcv2318Z2WEJreKokcq1L+D0zjhT8I5ByrX/FH4pX701xvN3Qez0HYkZS02iXHscp3N6mYJzBMYs13427HxezuneXruiH5aPGHKMWpfW2OXafTmd19I4zjPNcu0HKmTVc3Bf6jVt3zrZn5ctqNWqDF+u3YnTc1ZG9xy8qdTKtXeQfai20s0xeMe8VeO7hG+makMYq1w7lkOwlmsHgZDIU0ex5an/S+Xa6WUxjFyuPfw7V7n2Bt8NU669yvuQFYfmhATse+8X67y63BDey7XTxc14KEEe/J2rBHn776VVrr3S+Ozq8yctDl3dtX2rJKfBu3kv106PETxg1YATq0rf/78q1z6aLYz9J8JfLBF+ejUhg4nwC35wifDnMmMnDyL8f3Txcp9Tr73vitGO8bI1aVR58pKdNuc5RkLN8q/fuTTLHzFjZGmI8K96eTbz+vWm/qvcnnZwWyXuYHQR/jxOVHINGw055w76HfzhT4Q/2ibv5zf7W4RMrL90T6PtTtTS9cYU4d/I6bo047jO4CL8XeYO/eVTrao+GxMnPYuocJW2q2JwEX4syrCqqIMoYzAR/uyTV09LOouCsms1/nrxQiPqzppxRPjzOMHJ/W5AEX6PYz8O7v9jjs/Gj8t622S6U6dpxhPh38iJEOjTRN42hi1vE3s1afqjc57XultOmZeXvWhF1RHADvHFKxVgRGfmbBYsOLcp2CKRF9xPaGEAxFXKhEExIIeDVa6V0XppOdArLLK+LVP1oJBRV25fQ7HgMkyTJCK46ELD9yLAd/SPkh6sqlrwWuAqgQXyqy9V966Xlv1StOywbfNq/eKpEtfFqt1FS6HogbGkxeYBeuchenVEqHrEcLP2h36FsPHuK5UNUsnQ+WXDtYsFXqMqB8+4vtFhy5FoIe2EFHYj4oQUfp132V/w/TM4v//cH8ZOlrQtU49ECb6yXCmVR3Fo24S3MVuUdHG7z/bLle9psi60o7ZV8gHMtqq1lIYzRnM6Y7BxnMEojq3PjoVbUJxSA4YvSRRcO3Vx7wymrGBmEdtM2KJzVIxSJW0mbNlZPVSlwX5BZ6s3oi4+qREa5r/k0e7AWbmtVlPHNfgBkZokBaL+ZYGpNJzVg9NZ3ibRc+Cj9MpWqxUsdMclqAaqOXrQ+KmazID8hYG7m9wakf6h8v6STJVL6I7Z7kQgh0c9LzJ0oVqIu2/7oV+WSkRyjmxrbbs7GSeOKUSrVp4+EfCsy0KjTnshAItJAK4jAIChRa9MlBzK2EUmGrb0P2rZZoPnXsu+w2aM0eyjDWWGPewLAZByAbDe/weZaKb8j/Fx6IW5DcbHiRGc4ODjtBacKGU+zsot4XU/T34UOnnsnG1r2qSsNQE+TjSEhHV3s4/ghPFJBXPmzDEAH+d62sstdk0zvSfXKNPyW4XUZSbBx4ng9I6/KXjHIHycjnVmnH6XJwzbtfuPUx0+db1oEnycLpzOaW0KzhEYk48TE3M1o4PfqtB5WwOnnukcet6k+DhNOJ0nNI7zTJOPs2i7W/uVjd/5bow+tHTYlzYNjczHsef0XAWje65U+Tgr5/VsccpOGLJg185jHr+tvGoSfBwsh2Dl44BASOSpY/8v8HHuiZ0DRzxUiZcsz8nq9H7RDCPzcdZD7Fn5OL8xU9pS4eN8SR1/qooqICTj4qaTr6qfFfHOx6HPzXngmKyDyLFyTJZRkeORj/Oumvq9v9my0O3dFrUo3+j3JN75OPQYwQNWv3FiNc2wMdfYfJxxbGFs6EF5U3noetGuA2GKf+73fkHdKemaAM9O+qkk8THME6Z6bF808JGr4+HpMe1uTpIrfspUKIGaeYPgJ6BLRka+WZIU6R+yy732+I29Rjuzvh9zJ6ewkdH+LCNBCAsrfBQL0Srp5550bJXapyH4NA8/HhcI7EXwH+38Z7SzuM+Dj8dtImUK4DCZNADE9eHk4zC34q4cz+ZK+/xUHzuPC6IVbe4d3Hwy0YemgoF2YGU8uiN8JrDCTZRDVsRgwDh8xZeSB/2QfDGUPHTNDsqweMkdZGSaL0SJ3FwvAvUJbKh/n7h1dRU3M++dfRwWZ8SHrCny9KVV6SOv84lN+uk9nk5sFrPfcHnE/i3dIxPZPJI+JzXhWeBHvwVD7dWLpzXrS10T9YXkGQ0zI2OdXuI3CNVg1MfrXSaoYcqL1WqLUSqkUI4RUgKjsb/D0mGNZJBapxyEfkSyfLAyaohMqr0J9erM5Vz8uq671S4gCEEwy6JIfVBUPeMtQn4JQgTncQj5JfiPLr8UOvFWl8gTTz0nnNmeYvEqLI8uvzS+54oxN+L7+Kflpi96mDajC2knD6MWW56J/sEIeSY2T1tD9QDCjUhvWT3tlPp3ZvPQ/TEvE/OGVM4vibf43w0Dfs2Hfl2KSnlmw4Pmb41SeNIa1nfsrwbfIW5QQcAo+B0LNcnuHhGjECpRbL6y8y3obSAh0iSo0Ilru8sN2p7rlBK0Lq9G9Qqyl/c5XWYuwp+E0DomDKXhtBxOp2UY1mlkCDYLFuEBFd4yRtvvMd+QfZQt2avnQ5S+lsepZSqMdQc+ghIwkb5aHiZz7TpqcVBG7DPzwUtuDaD7yjwkQSMZqNAKWAhom13wU92Zw5V7kVpfxRyuuJw6l9Opo98ytL44CygQjV2G67MgwaPLpHA2dDMY6ZhlOrCrvDNK3Yi4lOuFqHTv2Rxr4sSQPoltSO9673aYueK83/I9B8qO2Vl3EpUrGxkjj9YIYV1Z6rAOxyu2mtaOYdHRcCoiUSiI8qtyWDgPine7IQGmFxxkewVEvqQr3R60jE2vAVLdvFHF8JqJBXGvS8ojs8Gq74K+qYYvjPyi3rZ2z5fcehI4c8a+oXbHP4fTC7wgv2KRKSG96HpJiffw4D3EKs0Lxf0AE/wFr/VjjeEeVGKtAomLvcvbpyN72gbtHbRS2uTXr98ZS8rRugFT0v4ED7VzfnPQSkxgORlrgXrssVlDnSEu6al2it1pnnlzRfP8Z//Y0S6kD7VdwrsNBX8vTvh9jQM/gyFW0kLdeI+AbGfwTdB6P7SKu8WMFCVdzXclQkGuJ2KAGeCKdQhigJnMNsDorefjovVe6ev59HTq1jTp8B6vFf+O6Vrtzc/BhfR88r5e/euLy1BxjrRxhR0BVg8L6fmMzr66YNn6XwJnaypPfd7i5dBCej5RTQX9H3//22tZXp58e/8+Vwrp+czNauo8O/5S4MKz/hUP3W30qpCeD6LyL6ltiKj8SxbqRVT+tSBMt4/WbGHbY0bw2E8b/q1x+sERYLIkTBbJ5Va8lz8LyVwzQJ65SwHRsCJMdzscqtHppxueqRU1/pFDHrcBJmvCdGXI09//7pEvSh0a2Hf/NafzwFSBMN3cMu90s+UXAjf4tRa0+ivvNjDZEKas5B8LPMPk3mObtTrzY55/EjBVJEz+4e2k7ufVogPSJ5nTrnVZC0y2hCm5uYUi8fZM/5xOX++lZcvnAFMlwtRum/TKP282BqfciVt059iZ2sBUmTBNe3XO6bGsfHD6qTN/5w+8bgNMdoTpbOcdF7/kVAtNa9XmYtyLAa2BqQoJb8PRZVYduxR44MyCBu+2PzoKTFUJU/kXdx60yRwi2lH9+paPV1v2AqZqAlYZKHvCNGXdgxdbIqYFbO57pN91ae0BwFSdMPnOyRv88515AZNclic7Lup4CpgcCNOEVPXRNXe6eE255D9AdeTEXmCqQZjcpm2JDk0f7LPGtezGvr2drwJTTcIk3rrj3DvF4+DJdT0qiKb2gApRjoQpoorZ+vN/XxLNPtP4zI22jZ4AUy3CVNWpvbtGecp7efOZ1XZ9fQzbRm3C9HnZyC6v+n31Tt31SLjTLHslMDkRpg7Z8og7jUf4TJeOrragvX0uMNUhTBXKNhZvrjjCd9L0uBu5i6rAzxISpk9OHmfmzmnou3ZWBf/POy+EM4Sq6gpYhKqsljc817NHc88V/TWzFuzPUfIgVDWFLURVi96zefGxU+KlG/NHnKk1kioaby4eHq9QShGnL9gS4EbEHULyvCxWpk4dCxJiEISICoA6HregByjkqzFn1YRBV91wZ7HgZZkTML4idg7DQXp8owxj55CzgGbBaVT8RZDfrcwbP/XCnm6ida+6De26ZFI5Hg+j8rxBCFf2nkOApKh558nGYsH9MowNQq6UrE2EDDQNjPcklcESR0q1HDt+At5PrsCmTmQ7EUpU8MS1MlYeha5g57Dz8LQ1+WETj4bdG7xUQi1Daqn9HCZ9vMDEe2kaF6zFcMB1sYxReBlFH3XUM5NzJTqatMBdmhiJRhgrGSITggREW8KanWfe4V7sq8pLP4RsfH46Z7GZkFrMziKSeCyCaUha+PZeJVeisfugvJfmhjV2BttcT+DqkoeiSMKfjA4kEqwZK6f8bPdcFDq3zIOJ232aUk9IFusIFg9g3eAECzR1YvyZyjb+/KfcUCzlBnqGbjDlBlHZExzKDfXL6jVW6qjc4Pgu5dsA1zOinDVnek0/ZOHC42BJj0A8KDd4QYRYD7q3K6vXYFlc5QZB/eTt80ff9Fx1qOm4zP4rrxhducGVExXQbkyUZWo45YZK//Z6d/T6u7CNWQtcBe+7Ubf8jancUIPTdbbGcZ3BlRuq98tybR6f5bXolvnVVv1ox3sNr9yARRnWo/cgyhhMueFCxsHsOYPahWV9fxB0fY2QqqtjHOUGV05w6tPAKVXlhji3T773Uw+HLfPY/aXa+DLvTUS5oQYnQqBPE3nbNLa87dQSSfC3DtX9xmU4mT+pn3yAmo0GgxxNGOkTrPvCgbe2GC6sJkBmwmCGGA1+BXlXkhBgq9LgGgUg2BLtFeZeROo2SqfEib5+iX5vZhZNWvQoi9vO8gReFpeRKnkCD1S31G9ZAXuBQhggv92/9oPape7tEpYesWjrpK9mA2i7SfBuxAEF7HJRmRI9/vFQ87YNBCge1QiFTcWCppZ68Y4dMIDIduEilatA8wV29GA79d2OF/e/HvPcVkVetck2P6oOj6UPeTOzWxaYigIsx/na7L8G9PHJvvvTlPanjuTyAFhdTsBAizJKEoWPGfBvWgnYfphyWBYcvrTGfMkRVW2f399a+5SH//oJ3du82vkwyw4TMgHOEA+PV8m0tGcsqfXyjnT5pXHJEmCaa09tSjl9d8hfITmnXV2aDbHx5sG1Npyu/clIrkXlx7N/1ivVqhBcKJ4jnbnA502ixbMOfr9LNt57HbrLm77hhzhUhV/lfe3OjYhJ2ShSSbYb1sWIgXE628DonVf95rB22zyzevdzmN5jP3XVuiokv2rg0ic8ySyD3HqZHhXjm4uUsQBynIKLPUZa8BhsclhQKB6SSnUaEenbdkW/MMMdyL/SNRsBjX/xTwD0R96IAvIDQOOf8RPr0R0dV9y8gguBApcbYBkkmG0o44QuZPFzgB4ugAT/h8c0NVyNVibKWNRLqtfO+v5Z80Q8TXn1090Z76h7J+V7YKQDZowhrhcVY2r73bQdvGmTaE3cs+fSJrOWlTDGzAYwp0GYzbwRJdPTGmMwl3RJuGEh92tXt6KUcWpZVALWPDBOFBLLFm9z86Y/3+63paKgTq+Lba9RT2QUPJc5/aUYeadSNiNg64OC7borBhsREmawhYQzFeu/adFWGTLp9YsgtytjxJTvZhMhwziMwtAEhQIRC9gSZlfyPkiExdqsPG6YRCGX4o08Ua6JESrBNEWleySg79JzvCfDC1Szrsf2nMWCgRBda9TmWzpAN7jEfd8+AOPhwVVXmRojYmOIoRuhJLyzKKO27/y8SQl+i2fWpqbP2IOY6TN+uajuTGcllPQoGkBuAERuJSplgJVfe/zEmj7riJyjFjkVpanBpoWE7830VTm1G23y3z3v5aCq38v/Sj3mTjQQ9JYO1cp3L4ZoBXOi5f2TQRMs8kUtuiXFywrjUL8QZ8ctCKS0MoUb/Bu1m59/f5jkDpKpaJQ4+FPSwG2PDZDQseARYFKdhLsa6WX6wFSSTlJCvw5wI3rBSxRtLrw51gv0WghzCMWwhbkCzt8lmr4ULcuZazm1/Zvm3nMq3frz24dqF2gbE/BbITYmsMulAUUwJxTe2oEqlW2gMpmaf/RoyU/541Io+Vf/J+LAP7Lkn6MW8pkmDzmdG8cP5NG/OfaUT9vnmdrlw8NH5uIPPEA+y4wL8slmJOSzeGNl2pKQG4CViSBRkqxMBImSZGUiSJQkKxNBoiRZmQgSJcnKRJAoSVYmgkRJsjIn7w+ubzu1me/cBX+2DP+0exmD8gYbL7L10emXPFDeZrP5v17QUdebW6x815pJB159XInq/yr4Yr9IoVTDdBHbwGEm5eVZels9XzksdxwD6wPjD8CmlHCeSdAQdNvep1NOi3xFBjioP9I1KwdTxSVwf+A68sQImJEn67fN74jvtmFKGkroGoAH+IWdF3Q0sJt9/Oy5oTOeNe7cfELH0yXZayvdZeyLAKtFZYlh9yVDnBBMq6cxN/y5sKqmpUQUxgqJUtoRl6n7ct6F7Ci7oFXNa+PO8EiLGNs99N3JjOG+mcqp/lO8kw7zgFIyJ0qKsszFB648rVk42a+wzoZhRnY5ONUjuWfsWyU/7NJrLNw8IHiPi/rquWwPjRH3c92bEY0IuSEHD0/P0nM/t4l29xBCFFVI7xOOQJTYhARn45tZuaEff/LLKdds0dVh49xNYNcSgjSRE6RkPfd1G/rI8W+uXaoqaDLYxiJ7gPqY5fybIj7fPyPzqWeg7980Lh75XOYuotZSGugM5URnkHZPdw7bwPi0R2iwWfNPovmrzvquCAvoxVyIZ46EZizg1qXu52qpbolKvST36QcsdN0b0JX9DQLTEwjbWW/EApQAFoHQb6jTbZt2zo1djx+VXxU6/tuvkS2GH9xFXezE9mNZhnWKsagoTg9xJWWCw8JDEKxwVBtLB6n5Lf3GuooYWDLQ09ihepLwMLh6mp//hBavkyedH0EVc7cUg3vRQBUyGTglgDDlccJ0Ws/BrugtNPpes9G20GCkwdoI3EITMnJHNwwaIg7NZYtDIuezzTuMvx2c7rvilaZDjdr0dehYSbwQX6dBrJezpebO+H3kbg92LkUijJMlwksylTyKGCB1Ckv0w10cb4haKS9k1hFXT2exwNLiBFScRuTkKQD1x+Z6BaqK2DYUvrgLXgf5LQPLzjox/ceWgEnb6u16E5PVhJoiYQ9gpkj45aL6HP2cWwn7HGQmm0N4NqL6HFTD/GauF5vEBn8fLpH0zUPyhZkNrL03brl0pOyUE/eou3/4/czdP+J6Ufg8PNGycXiVqZ57kzN9LP5tVdJ1E4jPG3MufEDzMQbDwAIjbgzDgegkoP/oV0XNpptENUim4XLavl7lphz7bbPf2rAl2UPbfA2iOg2/n+k04jrva7bAK7c5vfKHSXnl5UHSK3oNX7ZYwIuXSYngi6658DhLsKXzCu+ZOadmtK0W5kR1TAh2P9MxxHW+HePpRoQTuMzImK+mNBcLPprrNyFz1GKATSwU8qLwWJYs3tc+rXXAjOe96o3MXyilSQrhD0BIChGG0kDksTkXIjfMyXF9Htu4nj036G3vjh4Bk95+01gcufGG6mP8E3Unw3TSzjCoA7gwMUYeFQPSSni2UKJWQzVILSuGGP51m3zQz2mj3pfZJvHrevBEd5kTPFEG+8UTzOoymeO6njvgtYhUAxdPwgR+4REm/E2QX9xyozpy8tvGXntjY1vWlQ+gDm3mbImN1mDgwR/S53ZADN1RHA1hEwxDvSJWp1CiReElTSgHtSAfSI2vD8AyCvD/BTmlMDl0FBJR+nhu1IoqcF6LAeaAAgzqWGdqO/NvJr9xRW9NPKlN0rc5eNi5mmLOtXOVosV8Phvmobt8z58SHBWl9KrRUf4ksDJVcTuEIoTKDKRsSDuGgHwADE8acKeCJqeqU5ykK1NwvRZTCJxq13XhBh6khiP0DNTCDdyjyLE4wdSbJMcThN4k/CS63iRdL5KuN1lsPUn6jQg9SbbYVNtXrgIxRx/5226TD+XcPH5YtDjmzd6jP22sRpW/9WL2Dq8ixe1eqp1Gm4UMDlv2r/m3sGMPTpR0zQQKSUJ3uqPYC5Cgc9TiBELIkQ2k4ogE3ww+Lhs4N8R/juXpiGZO7dcXQySYjlLSr3dTK1ReHXBw6KdmfarJSsrhhCjlcKKUbXGCLgHIyXbBay3AxEgHgOisd+oYhj+KOYYR10tjwRtrMR9RC00urhhSRDxd8D8WT+lyPgaKpzLOeBr2Xzwl/TN994agFq3+9V4xq5KZ+s97N3iIp3SZJh4iRRRnpPi11ONp8uw+XV5NdQ1e4XcvZ/TqvQ15iKf0RQIeUArjRElcmvGUPoYaPZ5GccbTMG08XWjycwJ6d+KHzNamTI1XqaJ4n53vPGOy81JLKhYBpwQNLLimBLW0kKfxRmarSEJuADIbQgOPDPUIDTySzIbQwCPJbAgNPJLMhtDAI8lsCA08ksxGz9AYjDUYFdF7uDT1PB4Ya4t4c7K1AZ1cPB1JhKgi6WT6nj/DJ2ZsPqHLFvLgk8VsPlm8+86vk+9/DMjZvSNny5C71HN+5cIlcTIFszYKW2Bz8RLGwzsKVegSxik1MlxcCMpzc2nY0nUXEa+iS7SzjoxSKRWKCDhiwYsFRz5f/kyLhB2b1zhZc0pdz9n1YgSPaiaw6i5bdFfLVFAAnPzYhj7KhIEKyNWCVXSg8I9UriG+O8gw4C5HfkoGzSVkmSPGonQjsWBeeRBAO4gEKZNFViES1SB5XLAsmjIAWuOXI2C908LXLfHr3ZTxha9So3DFgEZim7nlT9hiIIar4LlBjRx/K3PyrVAdSiVJDIiTQtktEt4ylvAi3HopdAnL1RVESSZ8QgCrqMolChHUgio0EGlUMkms9ndMmFh7D9FUl5j8sExXAeVpqY7e/nkYl/eW5xqXt5Unx+WlJo85XV7VdJdHt3AS+zO1xP7feRsmbQSGGyYRurnkMInQzSWHSYRuLjlMInRzyVwo56z7md/WnRFv+WPCiGuCrg0L5UJL/ty+yOtx+4A5FeNarQkaNZoxuMKoj2xIdDFeHgbXZWyeNNFy7XTRYYOVa99hyVWufSxTSobncu0PelUqWzZlVEhaUvPU+bv6dTGBcu3bLLmK32YaRzCDWnN61apVBijX3t+1YWT0tNPixZMn9hxWW7zQJMq1L+f0znxT8I5ByrVfOl5r/WLNNM+p36LNIl5bPDCJcu3TOZ0z1hScIzBmufZVFjcVe3fleG6TXT98W1HJ1qTKtSdyOi/WhISCjF6u3f5GL2G5obdE82//dPpQ4DhHI5drj+L03K9G9xy8qdTKtQtlv1Zqst/Vd3GneLO1Fe9dMoly7VgOwVqufaxW7Gk5W576v1SunV4Ww8jl2r9acpVrf8hMaUulXLvS50KfaUv+8JleLzroX8u1O3kv104XN+OhBPlnS64S5C/1k03Uo1z7X5VblV3Rf5vP1g5pZRq3kU0qeRemYUWPETxg9ZATq78NG3ONXa49nS2M/SfCXywRfno1IYOJ8Hez4hLhb21VGiL8HYVjGh0WrhHNP3T3206zrrd4PG3Oc4yEmuURVlya5f5WBhHh/+foDY/B2V/D1pb7mnDkSL8Ao4vwd+FEBbQbk5k76Hfwhz8R/sDTZ24me57zPDjfwtGt7uezJiPC34TTdULjuM7gIvw1O/6uyNn/LmBqy777h167+p6202loEX4syrCqqIMoYzAR/uGKFX9+epQbtvJHlNXYsKgpJiDC34UTnNZWBhTh/7t5b8vtrb8HLrlYPv3zoSTq1Md4IvxNOBECfZrI21aw5W1iryZNf3TO81p3yynz8rIXrag6AtghvnilAozozJzNggXnNgVbJPKC+wktDIC4SpkwKAbkcLDKtTJaLy0HeoVF1rdlqh4UMurK7WsoFuyH+EpEcNGFhu9FgO88Zpqk58GqqgWvBa4SWKDJQv3mf7jUsmrQ+iM3uyWftqAVOitO7S5aCkUPjCUtNg/Q2wvRqyNC1SOGm7X6pVAV8O4rlQ1SydD5pXSUm+rrl7reO38/8jRhU04c7YQUdiPihBR+nXfZX/D913J+/9+NnixpW6YeiRJ8ZblSKo/i0LYZXbve+k1XBL5To3Ltl3Ub1YDaVskHMNuq1lIazpjH6YypppH+CPTZsXALilNqwPAliYJrpy7uncGUFcwsYpsJW3SOilGqpM2ELTurh6o02C/obHXch9GCldELglYMSfP9bUX/5dRxDX5ApCZJgah/WWAqDWeN4XRWgkn0HPgovbLVagUL3XEJqoFqjh7kOHP2lJH2fwfsXTD093lVJyaWZKpcQnfMdicCOTzqeZGhC9VCvCFLzyyViOQc2dYOdXh8EycHv5Tle/18WlY6ZdRpLwRgBQnAdQQAMLTolYmSQxm7yMSxF3fSUqVm/nP/qH+336w7SbShzLCHfSEAk7gA6DFcm2iu/B/j49ALcxuMj9PJmouPY2Fd2nycv553Ew/t9S14nmxj35i+zioT4ON4WHPtbrpbmwCpYNq0aQbg41jN2DvFu9MN7+WTnBP+riM5ZxJ8nEac3qllCt4xCB/nwGBxbL97PQKm9n8rqvteHWsSfBw7TudYmIJzBMbk4yyLiXRaWy8+OHXGtLONbZ0+mBQf57sVl/PeGj3ZNSE+Tv6VNe7JXjO9t0zziht6vEZTI/NxnnB67o7RPVeqfJwfHw74NW7UzmueXfukadK8zSbBx8FyCFY+DgiERJ666v8CH6dC2cbizRVH+E6aHncjd1EVY/NxRltz8XFimCltqfBxxo05FPPhRbJo71zPFhNsnV/zzsehz8154JiMtObimKisS4uPU3nHa6VZa5n34jXnPWw7Ro7lnY9DjxE8YBXDiVU/w6Y6xubjrGYLY0MPypvKQ9eLdh0IU/xzv/cL6k5J1wR4dtJPJYmPYZ4w1WP7ooGPXB0PT49pd3OSXPFTpkIJ1MwbBD8B2fI+OXmcmTunoe/aWRX8P++8EM76fsydnMJGRvuzjAQhLKzwUSxEq6Sfe9KxVWqfhuDT+EBhLnsR/Ec7/yl3Fl8WmZ+wiZQpgMNk0gAQ14eTj8PcirtyDZsr7fNTfew8LohWtLl3cPPJRB+aCgbagZXx6I7wmcAKN1EOWRGDAePwFV9KHvRD8sVQ8tA1OyjD4iV3kJHNtCBK5OZ6EahnsKH+feLW1VXczLx39nFYnBEfsqbI05dWpY+8zic26af3eDqxWcx+w+WR22Z0j6xl80j6nNSEZ4Ef/RYMtVcvntasL3VN1BeSZzTMjIx1eonfIFSDUR+vd5mghikvVqstRqmQQjlGSAmMxv4OS4c1kkFqnXIQ+hHJ8sHKqCEyqfYm1Kszl3Px67ruVruIBX7lAJhlUaQ+KKruXA4hvwQhgvM4hPwS/EeXXwqdeKtL5ImnnhPObE+xeBWWR5dfGt9zxZgb8X3803LTFz1Mm9GFtJOHUYstz0T/YIQ8E5unraF6AOFGtPjg5ycjnF9uFs9/k3vuc/e9u0riLf53w4BfxdCvS1Epz2zQhTqWM0rhSWtY37G/GnyHuEEFAaPgdyzUJLt7RIxCqESx+crOt6C3gYRIk6BCJ64nm4iXrLxXOST79R+KIe0z/+V0mbkIfxJC65gwlIbTWnA6zdmwTiNDsFmwCA+o8JYx2n6P+Ybso2zJXj0fovS1PE4tU2GsO/ARlICJ9FXiq0/Px699Hzq9dYOM7KWjBXRfmYckaCQDFVoBCwFtswt+qjtzuHIvUuurmMMVl1Nrczq1SjmG1hdnAQWisctwfRY0Z5omk8LZ0M1gpGOW6cCu8s4odSPiUq4XotK9Z3OsiRND+jq2Ib3rvdth5orzfsv3HCg7Zmdd6nkQq8gYebRGCOvKUod1OF6x1bR2DIuOhlMRiUJBlF+Vw8J5ULzbDQkwveAg2ysg8iVd6fagZTSFaU43b1QxvGZigbVZSXlkNlj1XdA31fCFkV80yH3fooylB0Mnds1pMLH7BKrakBnLVywyJaQXXS8p8R5g1RhileaF4n6ACX4dM/1YY7gHlVirQOKS7d70TmOns96Tqmxssz7/sy1jSTlaN2BK2p/AN6/G+c1BKzGB5WSsBeqxx2YNdYa4pKdyd/QbXmWKzH9uK+Gw29s7HaO2S3i3oeAvwwn/B8PW9ybhZzDESlqoG+8RkO0MvgnSI/SKu8WMFCVdzXclQkGuJ2KAGeCKdQhigMlkG2D01vNx0Xqv9PV8RKnbenm6fAvc1dB/bM/z5dWF9HxcnzcUJKWuC111wfZvzQL7zEJ6Pm0bdRodu+Kg57aLjo9y1zmXK6TncyokeXrmw8qBc5++WCnZGf53IT2f1edWPnIcPTto3Y4W4+9VOd62kJ4PovIvqW2IqPxLFupFVP61IEwtF1YN2LDtu2ha7e+HPO+mrAYmS8K00Nw3ob23PGCmz2/1T384Pw+YrAiT1cw1oeH9vUIWTth3L3zMNE9gsiZM+cNDlyd8WBKyyzatb6cX76H6YgXCNHvtyoPJYTY+B2ZMix/Yq2UAMNkQJo+frvlWfv8saGq5cxcyWg44AUwVyQeuuXdxStyN0PVrqrV/IW1nCUy2hCmm2a/dXVUtAhddLfsmtvfkEcBUiTA1jreq1l94wC9L/M1i9O24KcBUmTCpWniGC1wv+x0oe85vtPedVGCyI0ztvo4d61NeHDRuebDn53FtFwJTFcL0eL3CRhrfOyR96sdzZv/2eAtMVQlT9NHH5nuHfPaZEH/r7fW+c/4BpmoCVhkoe8J0pXeTbxVe/eaZvXpl1IJ1D7YBU3XC9Orp0SNBVmOCFg70XmrbYh4UUnQgTCN3zogJtunqt+VwnLSnh9QCmGoQpu0O5R42vJUQsjDraq3RFxceAqaahMl69F/dhiy6FrTFudHeVr5TVcDkSJjsHzxufGbOi7B5aqvKEZ6VZgNTLcI0uZdF8MSkn8XzU4e+ihv9yQyYahOmepGup/Y+Ge69vO/73fMc2kOTE2H6RTTz15Euf4ZsHyGsVCnHYREw1SFM/o01v90dXtP7tyGXWmVVSXoMTEKyE+05ePRKxsiQrHZ53rEeDmcYQlV1BSxCVTGvlPva1Dwbtkw2reHGyfVPIcKGvkJV69lCVLXoPZsXHzslXroxf8SZWiPTqVNX8fB4hVKKOH3BlgA3Iu4QkudlsTJ16liQEIMgRFQA1PG4BT1AIV+NOasmDLrqhsMSVhVOwPiK2DkMB+nxqQr6FdAsOI2Kvwi6WH2Fu1Ovtw73XTq29Yfmp+5RpehLdhiV5w1CuLJ3EwIkRc07TzYWC65U0CsnbhMhA00D4z1JZbDEkVItx46fgPeTK7CpE9lOhBIVPHGtjJVHIVHs9/jlxkkhwoAlDX5/3Tky/iGVPq79HCZ9vMDEe2kaF6zFcMB1sIJJZHLMo456ZnKuREeTFrhLEyPRCGMlQ2RCkIBoS1iz88ytruw4PN/3vCgt5tXm1629qtOYhsRjEUxD0sK39yq5Eo3dB+W9NDessTPY5noCV5c8FEUS/mR0IJFgLQ2tOXj/i6U+83+3vH/y521UHcxiHcHiAaxTnGCBpk6MPxvYxp//lBuKpdxAz9ANptzQ0oZLucHOpjSUGxwsLi4/fiw2dPnSLXXfLMttxeNgSY9APCg3uNtwHXRvZGMQ5YZl5pfXTTxpL8rJanSnajPLtkZXbqjFiQpoNybKMjWccsOFoAoBbb/EBa6rsitl1cTpvU1GucGC03XfTTWd4Vm5wWrUml6nLeaHpX8/+vn3227UGnGGV27Aogzr0XsQZQym3NDWcV7K829fxAvnS8z/zRz7wwSUG2pxgmNnY0DlhiW/VMwfvbyJ3+8OGfvqR6x/ZiLKDRacCH3X5m0b2fK2U0skwd86VPcbl+Fk/qR+8gFqNhoMcjRhpE+w7gsH3tpiuLCaAJkJgxliNPgV5F1JQoCtSoNrFIBgS7RXmHsRqdsonRIn+vol+r2ZWTRp0aMsbqOqRFlcRqrkCTxQvqp+ywrYCxTCAE2K/23b37dlY/y2L6mR02lwzCvabhK8G3FAAbtcZKZEi3881LxtUJVgXzEaobCpWFCzql68YwcMILJduEjlKtB8gR092B6J3JPZ6NQvwSsTek/JTH74ndotfcibmd2ywFQUYI9O3GlQN35O6LSHwqd7uu5owgNglTgBAy3KKEkUPmbAv2klYPthymFZcPjSGvMlR1Sd8OztxUoT/UL2V+v+MmPl1t52mJAJcIZ4eLxKpqU9Y0mtl3ekyy+NS5YA01w7UJXU4Nvsd/7bnk6tcVtlH8yDa79W4XLt6yqmkx/P/lmvVKtCcKF4jpYsW2lhN9VznueOiUtH/rns/R76hh/iUBV+lfe1OzciJmWjSCXZblgXIwbGLLaB0Tuv+s1h7bZ5ZvXu5zC9x34q0aEqJL9q4NInPMksg9x6mR4V45uLlLEAcpyCiz1GWvAYbHJYUCgekkp1GhHp23ZFvzDDHci/0jUbAY1/akUA+iNvRAH5AaDxJ1csKT/FK7gQKHC5AZZBgtmGMk7oQhY/B+jhAkjwf3hMU8PVaGWijEW9ZOAG98NVJuzxzp54aGHY8TrUssTle2CkA2aMIa4XFWNGBf95IvWcp/+0YZuCWgpu7SlhjJkNYJ4MYTbzRpRMT2uMwVzSJeGGhdyvXd2KUsapZVEJWPPAOFFILPf8tfIP7zGfPGd4Xnx6eeP4mtQTGQXPZU5/KUbeqZTNCNj6oGC77orBRoSETWwh4UzF+m9atFWGTHr9Isjtyhgx5bvZRMgwDqMwNEGhQMQCtoTZlbwPEmGxNiuPGyZRyKV4I0+Ua2KESjBNUekeCei79BzvyfAC1azrsT1nsaArRNcatfmWDtDtWOK+bx+A8fDgqqtMjRGxMcSQADQc827KWfFA39//nWIxJaY/jYyFPYiZPuOXi+rOdFZCSY+iAeTCIHIrUSkDVvm1Imv6rCNyjlrkVJSmBpsWupCL84gFoT5DA9Y8rTn5s3JJf+oxd6KBoLd0qFa+ezFEqyMnWi0qGoXFbtEtKV5WGIf6hTg7bkEgpZUp3ODfqN38/PvDJHeQTEWjxMGfkgZue2yAhI4FjwCT6iTc1Ugv0wemknSSEvp1gBvRC16iaHPhzbFeoNdCmEMohi3MFXD+LtH0pUgoBuVPcOp36ZLn+uYtN4d/TT9P25iA3wqxMYFdLg0oOnJC0UI7UG1mG6hMpuYfPVryU/64FEr+2VXkKvlnpYU82+Qhp3Pj+IH8q/zKY6tGXX3WPVQu9BeOyuUB8tG2XJAPsyUh38IbK9OWhNwArEwEiZJkZSJIlCQrE0GiJFmZCBIlycpEkChJViaCREmyMhEkSpKVueB4Vm1nxSffne0UWebZ2ZsZlDfYeNG7KzT6JQ+Ut61s/q8XdNT15hYr37Vm0oFXH1ei+r8KvtgvUijVMF3ENnCYSXl5lt5Wz1cOyx3HwPrA+AOwKSWcZxI0BN229+mU0yJfkQEO6o90zcrBVHEa3B+4jjwxAmbkg/Xb5nfEd9swJQ0ldA3AA/zCzgsav+jql5nmqaLMn/46+bL52skl2Wsr3WXsiwCrKTbEsPuSIU4IptVJzA1/LqyqaSkRhbFCb2XctXWfEvDVc3x7x6xrDy4s4JEWMbZ76LuTGcN9M5VT/ad4Jx3mAaXBnCj1tmEuPnDlac3CyX6FdTYMM7LLwakeyT1j3yoJPHXzry5tHoTtHfPP+nsZ1f4x4n6uezOiESE35ODh6dF67uc20e4eQoiiCul9whGIEpuQ4GQ1DG/Q2mlPcOoUdYZqfLrSBHYtIUgaTpAG67mv29BHjn9z7VJVQZPBNhbZA1TbZ6lW/2z+03dmapOjbarvaU/dRSSfy9xF1FpKA50BnOj0sCETo21sA+PTHqHBZs0/ieavOuu7IiygF3MhnjkSmrGAW5e6n6uluiUq9ZLcpx+w0HVvQFf2NwhMf0LYznojFqAEALYj+g11um3Tzmh73npD6l++Oy5teHDpo98A6mInth/LMqxTjEVFcXqIKykTHMTpaxCscFQbSwep+Tn9xrqKGFgy0NPYoRo99Oq4G1a3/NbbHe6a1svJgxqJxOBeNFCFTAZOCSBMRzhh2qPnYFf0Fhp9r9loW2gw0mBtBG6hCRm5oxsGDRGHtrPFIZHz2eYdxt8OTvdd8UrToUZt+jp0rCReiK/TINbL2VJzZ/w+crcHO5ciEcbJEuElmUoeRQyQOoUl+uEujjdErZQXMuuIq6ezWPDR7gRUnEbk5CkA9et2egWqitg2FL64C14H+S2vPet/vcHh4QFZA9of+3IhfxQ1RcIewEyR8MtF9Tn6ObcS9jnITH4P4dmI6nNQDfOZnV5sEhv8fbhE0rM2pO49Mr2WaJNj5tnvccFUlSPi6zJ3/4jrReEzZNtn+cVLtr6pNy4k5NuYC3nAJ58TH9B8jMEwsMCIG8NwIDoJ6D/6VVGz6SZRDZJpuJz2cXKr/a3++dUvZYD9nciqN1tSnYbfz3QacZ33NVvglfOcXjlqUl55eZD0il7Dly0W8OJlUiL4opXw/Q9V8H3jFLZgyMaDIzKHlqc6JgS7n+kY4jrfjvF0I8IJXGZkzFdTmosF/9jpNyFz1GKATSwU8qLwGFb2+tlxc2/5bPx50aHqnzv2pEkK4Q9ASAoRhtJA5DonIqfsyHF9B9u4nj036G3vjh4Bk95+01gcufGG6mP8E3Unw3TSzjCoA7gwMUYeFQPSSni2UKJWQzVILSuGGP51XIWjndNGvS+zTeLX9eCJZtgRPFEG+8UTzOrSmOO6njvgtYhUAxdPwgR+4REm/E2QX/yniTWmBC74HjS2/NOVPmU71qI2PrbERmsw8OAP6XOrIYbuKI6GsAmGoV4Rq1Mo0aLwkiaUg1qQD6TG1wdgGQX4/4KcUpgcOgqJKH08N2pFFTivxQBzQAEGdazTtJ15p8lvXNFbE09qk/RtDh52rhLtuHaulFrMd7FhHrrL9/wpwVFRSq8aHeVPAitTFbdDKEKozEDKhrRjCMgHwPCkAXcqaHKqOsVJujIF12sxhcCpdl0XbuBBakiZnYFauIF7FJlVEHqT5HiC0JuEn0TXm6TrRdL1JoutJ0m/EaEnyRabavvKVSDm6CN/6+WWl791hNRvbJ37sz9s//SYKn/rxewdXkWK24U3Cbo++OFZrxy/lId1L7VpXtI1E9A79kN3uqPYC5Cgs63KCYSQIxtIxREJdu2rHLPMwzkg/UDq6hkL644shkgwHaUGmX3Va++dFs+Xtj3UcOBIKx5QyuREaXkVhgQgJ9sFr7UAEyMdAKKz3qljGP4o5hhGXC+NBW+sxXxELTS5uGJIEfF09/9YPKXL+RgonnbjjKdd/ounpH8y341Pr3rtZuj+fSf61khUneQhntJlmniIFBGckcK/1ONp7ajD7Resu+27Rv7038BfN7XhIZ7SFwl4QKkLJ0qtSzOe0sdQo8fTCM542kUbT/eY/JyA3p34IbO1KVPjVaoo3mfnO8+Y7LzUCB6mBFWqcE0JrLWQ5/BGZqtIQm4AMhtCA48M9QgNPJLMhtDAI8lsCA08ksyG0MAjyWwIDTySzEbP0BiMNRgVkU2Mrp7HA2NtL29Otjagk4unI4kQVSSdTN/zZ/jEjM0ndNlCHnyyj80ni3ff+XXy/Y8BObt35GwZcpeaDZcLl8TJFMzaKGyBzcVLGA/vKFShSxin1MhwcSEoz82lYUvXXUS8ii7RzjoySqVUKCLgiAUvFhz5fPkzLRJW7H4hUNr8dVjWlzr118xsV5ktElp0V8tUUACc/NiGPsqEgQrI1YJVdKDwj1SuIb47yDDgLkd+SgbNJWSZI8aidCOxIKUyCKAdRIKUySKrEIlqkDwuWBZNGQCt8csRsN5p4euW+PVuyvjCV6lReJZ/I/GbMZVP2GIghqvguUGNHH8rc/KtUB1KJUkMiJNC2S0S3jKW8CLceil0CcvVFURJJnxCAKuoyiUKEdSCKjQQaVQySaz2d0yYWHsP0VT3m/ywTFcB5Wmpjt7+eRiX11fmGpdXVibH5QMmjzldXtV0l0fTOYn9aVpi/0HehkkbgeGGSYRuLjlMInRzyWESoZtLDpMI3VwyF9qyz7nxiXULArZfcLJWf1c1K5QLXT5y/XDDWS+CUxPDr8YeVBxiDK4w6iMbEl2Ml4fBNZfNkyZarp0uOmywcu2rq3KVa49nSsnwXK7d1mHnb8fkz0JWXf5jXKuMw6ZQrn1lVa7it2nG0UKh1pxeunSpAcq1T5s3xDIwJTZ4sXvElUl/nEo0iXLtMzm9M8EUvGOQcu2fFY0i7RquFG9X1b7XuUY4dSfdWOXaR3A6J94UnCMwZrn2udbZ8ZrNEv/FL/9yTv5wnCpLbOxy7dGczutjJA0okyzXfsS+e0pvj7nBaUGTdrgeTMgwcrn2CE7P+Rvdc/CmUivXnlzTvF5KvbiQub42Z5PsplELmxurXDuWQ7CWa4/Xij0dYstT/5fKtdPLYhi5XPvTqlzl2v9gprSlUq5dMP7PjutO3/Db1W/hX7UUUzfzXq6dLm7GQwnyx1W5SpDf1k82UY9y7R+XJ2ert1cN2zwmf0qtv/pX4L1cOz1G8IDVH5xYnTFszDV2ufbDbGHsPxH+Yonw06sJGUyEX1SNS4S/frXSEOHvOa225vnE1r4b1w2+fPic5z0eT5vzHCOhZrlXNS7N8nbVDCLCn3XpUezZi7V85wcdst03Vr3D6CL8rpyogHZjMnMH/Q7+8CfCX35S1Hb7sDz/7HOrR0YNcuhjMiL8NThdZ2sc1xlchP/qwy45Qe9CAhcMvZjxaFDaTiOL8GNRhlVFHUQZg4nwP5SmrLzS2NdrSs/4cLOG1WeZgAi/Kyc49asZUIR/5xOLzrm53fy3Hdp9vFX9P1+YgJwFRKgGJ0KgTxN52xG2vE3s1aTpj855XutuOWVeXvaCWhjHGjvEF69UgBGdmbNZsODcpmCLRF5wP6GFARBXKRMGxYAcDla5VkbrpeVAr7DI+rZM1YNCRl25fQ3Fgo0QX4kILrrQ8L0I8B3HTJP0PFhVteC1wFUCC/TUaYzUe+OOtX5ZFl3G36mylFrTtli1u2gpFD0wlrTYPEBvPUSvjghVjxhu1uqXQlXAu69UNkglQ+eXG+/MyP5+dr7fhhoBzf/ulEHVUizvg92IOCGFX+dd9hd8/wWc33+G0ZMlbcvUI1GCryxXSuVRHNo2TT7Osc+SVfLJbBIe33H9WlpbJR/AbKtaS2k4YxynM4abRvoj0GfHwi0oTqkBw5ckCq6durh3BlNWMLOIbSZs0TkqRqmSNhO27KweqtJgv6Cz1Qed7Hd3Gd/TK+P1ns2dYytTl/Qs4QdEapIUiPqXBabScFYcp7OkJtFz4KP0ylarFSx0xyWoBqo5etDxOW5n+nU76j9+c9WtvSzNnpRkqlxCd8x2JwI5POp5kaEL1UK8YameWSoRyTmyrYTHs7x2vXbxz/Q5s1yQ+3mCUae9EIDZJADXEQDA0KJXJkoOZewiEx3Kfd/4d8om35zurZ3al+s11qiHfSEACVwA9BikTTSP/o/xceiFuQ3Gx2lqz8XH+cDMLHnm4/i2DZvyzKJr0IbesoEXV5//wwT4OI3tuXY369ibAKlg3LhxBuDjjOow5sf8OauDlu/xvpIuzn9iEnycapzesTYF7xiEj7PEYf4zRd4y7x1b+33zTDhRxST4OGU4nfPBOPmSCfFxok533nU0uJFnlveDCrWyyj4xKT7Ov9W4nHfP6MmuCfFxnHJW93qW19Mv5cyXWjt8zjUwMh/nT07PXTC650qVj1Otw8EdK5TjAyY/XbOobdmpk02Cj4PlEKx8nA/aPPXY/wU+jn9jzW93h9f0/m3IpVZZVZIeG5mPE2vPxcfpaW8YPk7lO+Nk6munvFa9HO4ya5/rMt75OPS5OQ8ckyH2XBwTiX1p8XHOpS7u6e62JWTTi3YPzl2/eo53Pg49RvCAVU9OrEIMm4cam49znC2MDT0obyoPXS/adSBM8c/93tT9KuuuCfDspJ9KEh/DPGGqx/ZFAx+5Oh6eHtPu5iS54qdMhRKomTcIfgJaKmfPwaNXMkaGZLXL8471cDjD+n7MnZzCRkb7s4wEISys8FEsRKukn3vSsVVqn4bg07SEwlz2IviPdv4zxlm8s4XdCZtImQI4TCYNAHF9OPk4zK24K0+wudI+P9XHzuOCaEWbewc3n0z0oalgoB1YGY/uCJ8JrHAT5ZAVMRgwDl/xpeRBPyRfDCUPXbODMixecgcZ2SiyRG6uF4H6STbUv0/curqKm5n3zj4OizPiQ9YUefrSqvSR1/nEJv30Hk8nNovZb7g8ct6W7pFTbB5Jn5Oa8Czwo9+CofbqxdOa9aWuifpC8oyGmZGxTi/xG4RqMOrj9S4T1DDlxWq1xSgVUijHCCmB0djfYemwRjJIrVMOQj8iWT5YGTVEJtXehHp15nIufl3X3WoXsaBtJQBmWRSpD4qq21dCyC9BiOA8DiG/BP/R5ZdCJ97qEnniqeeEM9tTLF6F5dHll8b3XDHmRnwf/7Tc9EUP02Z0Ie3kYdRiyzPRPxghz8TmaWuoHkC4EV0goLXT1hVl8v1+88gYvHby8TYl8Rb/u2HAr62hX5eiUp7ZoAs1qWSUwpPWsL5jfzX4DnGDCgJGwe9YqEl294gYhVCJYvOVnW9BbwMJkSZBhU5czX8X/nj762nR8uibhxKc7NI5XWYuwp+E0DomDKXhNCGn0+wN6zQyBJsFi/CACm8Zo+33mG/IPsqW7NXzIUpfy+PUMhXGugMfQQmYSF/dGD7izDx5tnhbhU3fR/3T14XuK/OQBI1koEIrYCGgbXbBT3VnDlfuRWp9FXO44nJqBU6nlq3E0PriLKBANHYZrs+CBI8uk8LZ0M1gpGOW6cCu8s4odSPiUq4XotK9Z3OsiRND+mm2Ib3rvdth5orzfsv3HCg7ZmfdSVSubGSMPFojhHVlqcM6HK/Yalo7hkVHw6mIRKEgyq/KYeE8KN7thgSYXnCQ7RUQ+ZKudHvQMmrCNKebN6oYXjOx4HOJS1TbYNV3Qd9UwxdGftGhv797/Gfsz+LZ/1TtOihrK1U5xYzlKxaZEtKLrpeUeA+wcoBYpXmhuB9ggl/RVj/WGO5BJdYqkLh0HFDtJ7uFcaEbY8o/bWF99jxjSTlaN2BK2p/ANzfj/OafDVtgmmU5GWuBeuyxWUOdIS7pqQPrq9ZUTLLynVzu9r/PFD2oa1CYSpGh4H9ZkQv+h8aBn8EQK2mhbrxHQLYz+CZIj9Ar7hYzUpR0Nd+VCAW5nogBZoAr1iGIAeYM2wCjt56Pi9Z7pa/ns/+lyqzDyIv+2/OnhY1Y0EBYSM/HrqeFV9djWwNWVFpoP2Gt4l4hPZ8jiZtunO5wISBdfv1pWlRAi0J6PkfuDZ7Td4kqaM/id5b1RrS6VUjP5/3dtat3qYZ6zg+0ia42wO54IT0fROVfUtsQUfmXLNSLqPxrQZgmWbYP3DO6dmj62APJ9zo9tgYmS8L0fM+fyfE+fwRumx6829WlzThgsiJM1+cuyNj1MsJz8eqVC/uMbPszMFkTJosGd3seudo7aOfIuZqE5N0iYKpAmDqOrdBMuu8Xn5QLZ2SNN9/fC0w2hOlRmfC1XyMeBW5veHXh0K1VvYCpIonGz5bdB4cN81z8vU+PiL+2/gZMtoTJ9WgP+w+TrnivuHW1x5w9Ej9gqkSYyow0DykrFPgsy2+Q/3D2sZXAVJkwlW3vF330H3fP/X/UtJkwotkkYLIjTDtHVuiQef6O1/ajYSuXPWg1AJiqEKaxbqH7I375GpCVcuttt0p75wJTVcKUGFhLXmbn8aCDV3s8sv34VwVgqiZglYGyJ0zbN//ZTKACD3y0y3Hak+hrwFSdMA0e8bRs0uv8gFl31n8coXq6G5gcCNO4hBq/Ln4ywX9TmShNxqckd2CqQZhmjz9Soeu7vLBllxb/NMu56ShgqkmYfHacE5i96Bg22f214+G83AbA5EiYfFOfXZ/yZVPgWE8fdfvcpdDLtQiTx9UF+bUffg3ZKV6eFPhTeagrVZswVW+w8Z6ojNp3p6+qyl672lHA5ESYnJ33vl6y+R/Rby8ez/9lSkU5MNUhTJ1TLisTfRt5bh/1dOzNXguhQKiQMNUbt6PPpx8OYQd/vfVhqmvgYoZQVV0Bi1BVh0crh7Vau9Zzz8wN15bvfZ/Og1DVWbYQVS16z+bFx06Jl27MH3Gm1kjqZ5mLh8crlFLE6Qu2BLgRcYeQPC+LlalTx4KEGAQhogKgjsct6AEK+WrMWTVh0FU33FksOF39BIyviJ3DcJAeb6+uXwHNgtOo+Iug6+9Vjgo906FL0LqTT6/N95syg8fDqDxvEMKVvZMQIClq3nmysVhwoLpeOXGbCBloGhjvSSqDJY6Uajl2/AS8n1yBTZ3IdiKUqOCJa2WsPAqJ4unHcTU6WC4MnBNwYuPC0RXnU+nj2s9h0scLTLyXpnHBWgwHXOurm0QmxzzqqGcm50p0NGmBuzQxEo0wVjJEJgQJiLaENTvPXNBo0tXJnYd6r734245Lj7r3pjENiccimIakhW/vVXIlGrsPyntpblhjZ7DN9QSuLnkoiiT8yehAIsFanBhUp22lg0FTLfZaB/r3pc4Ui3UEiwewtnOCBZo6Mf6cYxt//lNuKJZyAz1DN5hyQ20HLuWGb/qNlToqN2hetJk39cF1z3W3Bl345dms6TwOlvQIxINyg6MD10H3yg4GUW6oF2G3O7PxatGS23+1N7vffrnRlRvMOVH5ZpwxUQeWqeGUG9zO3b94Lf2MeIGy8eqyR1ZtMhnlhjfVuVz32FTTGZ6VG8Ysi7vzdvEAvzWrO/ed8fjaWSMrN2BRhvXoPYgyBlNumNPs1k/W7sdDMltUvug5pyGVFG0c5QZzTnC+VTegcsOP7jk/en/b7jPff/lgy2X/UCUcjafcgPVpVoQea/O282x526klkuBvHar7jctwMn9SP/kANRsNBjmaMNInWPeFA29tMVxYTYDMhMEMMRr8CvKuJCHAVqXBNQpAsCXaK8y9iNRtlE6JE339Ev3ezCyatOhRFrdyHaIsLiNV8gQeeOWk37IC9gKFMEAfUHgeP9dnoJvncqeAGp2vBF2h7SbBuxEHFLDLRWVK9PjHQ81b2zoE+4rRCIVNxYJydfTiHTtgAJHtwkUqV4HmC+zowVbdYv7Ek5deh06fO1r575jGnand0oe8mdktC0xFARag8H/cP79N0CzFqcCeY85U4wGwL05cgIEWZZQkCh8z4N+0ErD9MOWwLDh8aY35kmvMObbofnqX957ZbRs+/SfBtrIdJmQCnCEeHq+SaWnPWFLr5R3p8kvjkiXANNcee/0j36dfV98DzjfnfBrT1oMH1/7D6dqbRnItKj+e/bNeqVaF4ELxHOnMTjPWr+0w8+fALM2TrNEDhZ70DT/EoSr8Ku9rd25ETMpGkUqy3bAuRgyMF9gGRu+86jeHtdvmmdW7n8P0HvupZZWqQvKrBi59wpPMMsitl+lRMb65SBkLIMcpuNhjpAWPwSaHBYXiIalUtxGRtm1X9Asz3IH8K12zEdD4NTUA6I+8EQXkB4DGH12jpPwUr+BCoMDlBlgGCWYbyjihC1n8HKCHCyDB/+ExTQ1Xo5WJMhb1krW9lRXrCTNCtq5t9YdEPJ56iL18D4x0wIwxxPWiYoz3ovPxG49YeW512DZryC9L65QwxswGMKsgzGbeiJLpaY0xmEu6JNywkPu1q1tRyji1LCoBax4YJwpN01v74Oacz37BS8b2mPfs/qQl1BMZBc9lTn8pRt6plM0I2PqgYLvuisFGhISLbCHhTMX6b1q0VYZMev0iyO3KGDHlu9lEyDAOozA0QaFAxAK2hNmVvA8SYbE2K48bJlHIpXgjT5RrYoRKME1R6R4J6Lv0HO/J8ALVrOuxPWexoBNE1xq1+ZYO0G1U4r5vH4Dx8OCqq0yNEbExxJAAXFh/Zs7z/HI+27p07r/73Mld1PQZexAzfcYvF9Wd6ayEkh5FA8h5QORWolIGWPnVvQZr+qwjco5a5FSUpgabFhK+1xsbT1nwaVLI+lt7ag9bL7GhHnMnGgh6S4dq5bsXQ7QacaJVq4ZRWOwW3ZLiZYVxqF+Is+MWBFJamcIN/o3azc+/P0xyB8lUNEoc/Clp4LbHBkjoWPAIMKlOwl2N9DJ9YCpJJymhXwe4Eb3gJYo2F94c6wV6LYQ5hGLYwlwB5+8STV+KhMJRPqzmtfRnPjnzb92bG7mlHW1jAn4rxMYEdrk0oGjECUUt7UB1iW2gMpmaf/RoyU/541Io+ffNgavk3zsHEvLLJg85nRvHD+RWg97nNdwcF7RwR6i4ztvsVzxALq/JBbmkJgn5Fd5YmbYk5AZgZSJIlCQrE0GiJFmZCBIlycpEkChJViaCREmyMhEkSpKViSBRkqzMod5BI/vX6xo4e/ewC8le+acZlDfYeJGtj06/5IHylsfm/3pBR11vbrHyXWsmHXj1cSWq/6vgi/0ihVIN00VsA4eZlJdn6W31fOWw3HEMrA+MPwCbUsJ5JkFD0G17n045LfIVGeCg/kjXrBxMFRNgXLuOPDECZuTdHfRau3bEd9swJQ0ldA3AA/zCzgu6fGtSskWnCj6T41/td13hNrEke22lu4x9EWCldiCG3ZcMcUIwrZYyN/y5sKqmpUQUxgqJ0sKfbj8I2hnp9fuX0c+3mX+pxyMtYmz30HcnM4b7Ziqn+k/xTjrMA0rdOVHydWAuPnDlac3CyX6FdTYMM7LLwakeyT1j3yqJ6bDljMuv30PHrk3/o07faYONuJ/r3oxoRMgNOXh4Wq7nfm4T7e4hhCiqkN4nHIEosQkJzjDP27fqBDwVZwZE/xp8oXqACexaQpD6c4LU3UG/fd2GPnL8m2uXqgqaDLaxyB6goq7/SDhxr4HPxNYeG5ocs5hK3UUkn8vcRdRaSgOdIE50vLS56B9sA+PTHqHBZs0/ieavOuu7IiygF3MhnjkSmrGAW5e6n6uluiUq9ZLcpx+w0HVvQFf2NwhMRyFsZ70RC1ACANsm/YY63bZpa2T7nsoTpgcvGHYnufnqMdTNKWtsP5ZlWKcYi4ri9BBXUiY4iNOHIVjhqDaWDlLz3fqNdRUxsGSgp7FD9dJxmvTlinr+m1JqXHrWa9Y2aiQSg3vRQBUyGTglgDBt4oRptZ6DXdFbaPS9ZqNtocFIg7URuIUmZOSObhg0RBy6yhaHRM5nm3cYfzs43XfFK02HGrXp69Cxknghvk6DWC9nS82d8fvI3R7sXIpEGCdLhJdkKnkUMUDqFJboh7s43hC1Ul7IrCOuns5iwb3aJ6DiNCInTwGoH6mtV6CqiG1D4Yu74HWQ33LN9BmzW43c679D/NOe20kRrakpEvYAZoqEXy6qz9HPuZWwz0Fm8l0Iz0ZUn4NqmNdq68UmscHfh0sk/XCZB7077OnmueKL+RbrH6Ig6u4ffj9z94+4XhQ+luu6XXph7R+8s0n9s5LAdfY84HOOEx/QfIzBMLDAiBvDcCA6Ceg/+lVRs+kmUQ2Sabicdv/zywFlTmwLntE2slPm8ZttqU7D72c6jbjO+5ot8MoeTq9sNimvvDxIekWv4csWC3jxMikRfJGOGTe9XcTwo7dDsu+5Palr1YK6KFM+BLuf6RjiOt+O8XQjwglcZmTMV1OaiwWXa+s3IXPUYoBNLBTyovC4U6bsq10f9vgd9CrTrGFUMnU51lyEPwAhKUQYSgORI5yIbK9NjuvX2Mb17LlBb3t39AiY9PabxuLIjTdUH+OfqDsZppN2hkEdwP9fe98B1kTy/h+VUxSxiygqwQpKs2DBlpCEXhQsZzk1QoBoIJgEEcuJYlfsKGLF3nvvZ2/n2XsD29n1PO/UO/U/syWwu7NLQpYk9/t/eR6fR3bYZPfzzrzvOzOf+bzClHhldDxIK+HZQrlWC9Ug9awYIvwbNvmgn9NGPS+zT+LXjeCJzqxD8EQZ7BcRmNWlM+O6kTvgtYlUAxdPwgR+4REm/EnQ9V+qTg3o0Px8yHZ5nwnuh07LqZ2PLbHRN5g5+EP63HSIoTeKoyFsgmFolMdqH070KLykCeWgFuQDafH1AVhGAf4/P6cUDg8fiUSUHs8tWlEFzmsxwBxRgEEd63T9YL5p9RtX9N7Ek9okfZuDh52rAXW4dq566TG/xYZ5+G7/C2cExyVpvWq2U74IrkxV3A6jCKEyHSkb0k5hIB8A4UkH7lTR5FQN8pN0ZQqux2IKgVPbDV24gQepIWV2KmrhBu5RzKmL0Jsk4wlCbxJ+E11vkq4XSdebLLKeJP1GhJ4km2+q46/UAJ9jjPytPHCt95kBqsB9tZoEhMnbZVDlb8XM0SEuVNxu4G93Pv5Ywls0s8TceW0H925h6poJGB1roDm9UewFSNBZXPcUQsiRDaSiiASf7bNjQ6XL+2RZN1K7Jg15FlkEkWA6SlHpK7edea4IXytI/BIbOK8BDyjN4URpcl2GBCAn2wWvtQATIwMAorPeqTEM/yhmDCOuF8eCN9ZjPqEWmlw9MKQIf3r7P+ZP6XI+ZvKnnTj9qdv//Clpn1bpR/eV+DlEunXfsb+7v+gu58Gf0mWaePAUHTg9RYti96dXf57a5lj/xJDdNVq2PfzoXhQP/pS+SMADSm6cKDkXpz+lx1CL+9MOnP7UTe9P71j9nIA+nPghs/mUqPk+Q5Ik3fVRFL/lakYkD1OCb5xTgr/0U4K7vJHZKpCQm4HMhtDA05PZmBp4JJkNoYFHktkQGngkmQ2hgUeS2RAaeCSZjZ6hMRhr0CsiuxhdPY8Hxto93oxsZ0YjF01HEiGqSBqZvufPsIkNm03osoU82OQ+m02y9zzsOeHxp6B9e3bu2zool3rO74fO8kSFilkbhc2xuYqFSfCOAhW6hIlqnQIXF4Ly3FwatnTdRcSjGOLt7KKiNWqVKhJGLHgx/8jnu040T7h8WFju+LeHwvZ2XyBLldoPZfOEtt20Cg0UACe/tqFUnTxABblasIoOFP6JUeqIdwcZBtzlyEtbRTMJWeaIsSjdSCZQ1gYOtK1EkDZBUi5MrolTJoYqYikB0A6/HAnrnRa8Xha/3lWdVPAq1QsvDmskWxtf+1RFDMTOGnhuUKfEn6oM+VSoAaWRpwQlxkDZLRLeEmXhRbj1UuASlquriJJM+IQAVlFVylUSqAVVIBDpNAp5gv53TJhYfw/RVR9YfVimq4DytFRH7/88xOXM2lxxOaM2GZcfWj3mdHlV610encJJ7E/XE/tzeQuT9gLzhUmEbi4ZJhG6uWSYROjmkmESoZtL5kK/Zn0dvfzMT6LxCa//+HeZ/6gCuVDnp+8rLcko55++afzJ3l0eJzOCK/T6yI5EF+PlIbjmsVnSSsu100WHzVaufbozV7n23s7FXa79nG532Joy0bIVwff2B835hTqfsky59gxnruK36c5WUHN6zpw5ZijXPvB0ZpO+v1YJ2Lph9Za0H//Osopy7amc1lFbg3XMUq797JvfSs6r4yTK+PZLsvxgTaq2iaXKtSs4jdPbGowjsGS59iZrXs+J3isNPtxljm3N0IPXrapcexdO4wVYxnjWWa69077fv+cELg5aUlbVsNSCtz9YuFx7B07LtbC45eBNxVaufXEF3yDh4RVBa55uH1PmTcd/rKJcO5ZDsJZrB46QyFMfseWp/6Vy7fSyGBYu137dmatc+xFmSlss5dodorbZKN3dAtb/nbvo4ve+w3gv104XN+OhBPlVZ64S5GeNk000oly7LvT4uLUp+yTbo5d3k49aV930IUzDiu4jeMDqCCdWu8zrcy1drv0xmxv7nwh/kUT46dWEzCbC7ynkEuGvICwOEf6d++5Ne/BlhDTnxgH/PudbleHxtDnPPhJqlrsLuTTL6wnNIsLfYnJYx0M7q0Ws8pk7YsSEClKLi/A7cqIC+o3VzB2MO/jDnwj/XM3TKmV2tgmY2r9Osq5mdaoYpiVF+G04TffFMpMHs4vwV+6oq1n2gE6yut/0DzO+PzplYRF+zMuwqqgDL2M2Ef57yxYNsq2+OOjgma4r25953cMKRPgdOcGpIDSjCP+sD83np5brELawWUhD59F/jbYCOQuIkA0nQl/0088nbHmbTNyk6fcOV8Vr7tdde3nxWyqDzA47xJekVoGIzszZbFlw9snfIlHm309oYQDENerkuHiQw8Eq1+pYo7Qc6BUWWZ+WqXpQoNFQbl9DmWAexFcugYsuNHwvAnwTmGmSkQerquU/FrhKYIGWm3f3bbXmVE7oRPm5RgsWLVhteu0uWgpFd4ymFpsH6GVC9JwlqHrEcLPWuBSqPD58YxRxGgU6v7w4s/49+wPPxbPm1hZPdT+8mHZCCrsRcUIKv8677C94/9Gc759i8WRJ3zONSJTgIyvVMcpoDm2bXhu+fI9vFSHO3Hzm0eGPoRWpfZX8AGZf1bcUhzESOI0RbRljMIpjG7Nj4RmSqNaB8CWPhmunrt4dwJQVzCwS3IXNOkTHqzUx7sLmHbSDNTrsF3S2WuZIQoy7/LN0Q7/Fu6r45FK35MvCL4jSpaoQ9S/zm4rDWD05jRVhFSMHfpRR2Wr1/IXuxGTNAC3HCPotq/JhB3X1wJXOA8dc3p9215SpsonmmOFNOHJ41PMiQxeqmWz9BCOzVMKTc2RbF0SKT5ouW0P21/QJe/Bszx6LTnshAMNJAG4iAICuxahMlAxl7CITlR+dDLXP7h4yp261nZXkj79Y9LAvBKA/FwDdI4Vkovn0P8bHoRfmNhsfx8GFi4+Tx8wseebj/PBO7NpLmBWU2eSXDfceOP1kBXycai5cu5vlXKyAVDBs2DAz8HEeLh4Z9zUlQTRvVau+1Za9eWoVfBwBp3X+skxItgAfZ/RxF0l8i/r++6tM+rWW98sAq+DjvBJyGSfPGowjsCQfJz1QO7/PwjOhCw43mvNg6JlNVsXHuclpvAsWT3atiI9jP29kXc+jN4KnlHo80Tdh8WsL83GOc1pun8UtV6x8nG07xHUXLfKK2LG918PMa8GJVsHHwXIIVj5Onj5PffZ/gY/TIe2yOsW/kWjHyJej7/Wad8rCfJwfXbj4OH4u5uHjtHNL/VAi8UZYWky3lv90WLGKdz4OfW7OA8ekuwsXxyTUpbj4OKd7v7syzv20NCvU47FdvWsJvPNx6D6CB6z8OLFqY95ZgqX5OL+zubHBh5VNleHrJLsPRaiePe79lrpT0iUZnp0M0MiT4pknTI3YvmggVWqT4Okx/W5Oqgd+ylQoh5p5cfAbkD2v3pidfT5/d4w43PP+35M8grNZn4+5k1OwkdH/ykYBFxZR8CgWolfSzz0Z2Cv1n4bg0zjBU/gOEviPdv4zobFMVavOKfsohQoYTBETBPz6UPLjMLPipnzOZkqHvAxpFd/fJDk+jw5vPp1C5YCU8EMbsDLu3RE2E5TDmyiHrIhgwDh8xZeSB/2QfBGUPAzNDkqwWMkbZGTxZIncI2IC9RdsqH8bt21FVU8bv119HLNXJYWtLPT0ZbniR97gE5v003s8ndgs4rjhssjeWnSLvGSzyNKZGcmvgj8FzB3soM2e7E5dsSrtD8kzOmZGxjq9xG8QakHUx+tdJmthyovVaotXq2KgHCOkBMZif4elwzp5nNagHIR+RLJ0qDp6kCJGfxPq0ZnLufh1Q3erXWUCFycAZkkUqQ+KqpdwQsgvQYjgPA4hvwT/0eWXwsfd7xh16qVo7LkdabbvI67S5ZfSe+SMup3UJzDryNL5T7OmdiTbycOoRZZnon8xQp6JzdJ2UD2AMCO6Ck6O84ySKTclm1zjP+69H93QFGvxvxsG7OoM7boQlfLMAEOoupNFCk/awfqO/bTgHRLj8h1G/u+Yqxnu7Rs5EqESxWarKv75ow0kRLpkDTpx3exeLm7BrXV++0fevlQ9obKQ02RlJPgnIbSOiYbiMJodp9FKmNdopAu2CZXgDhXeMko/7jHbkGOULdmrJyVKXysTtQoNxroDX0FxmEhbdX/0qXTptekhY7dsH7wiZ+A5uq3KhCXr5ANUegELAW2zC36rNzNceReu9VW0cMVl1L9rcRn1dS2G1hdnAQWisytwfRYkeHSZFM6ObgM9HbNMB3aVd0apJ+GXjogRle5FXlgXJ0L6K7aQ3uXRg4gyqgsBS/YeKjlqlwtVprBcVLwyVieEdWWpYR3GK7aa1k4RsbFwKiJXqYjyq0pYOA+Kd3siAaYXHGR7BES+ZCjdHvSMH2C/6eqHKobnLhM8MblEtT1WfReMTS18YDS/89SwF8syT4myh//mEOUZTi2IasPyioWmhPSi66YS7wFWpSBWWWIU9wNM8D8zi1JzssZwC6qxXoEuG39meYths/+Q7FixsOFy5S9yxpJyrGHAmDqewJu/rcn15k/MW2CaZTkZ64FG7LHZQZ0hLump+fUdRl94PdF/TvqbOqczWoRT+yW821zw3+GE/5Jl4GcwxEwt1I2PCMh2Bm+CtAi94m4RPYWpq/kehCs4IkIEmP4e2IAgAsxrtgBjtJ6Pq956xa/nU/2il9uS366LN94+1eDIm8xTBfR82vw1v38V8QDxQtVnyd/R3s8L6Pn4/nrl8sHaS8XTZ/f89PeJ3dcK6PloHl5dFHN0lXRfqdvn5+ZO/6GAns+Rr7Y3cvcdDDwc/XtY2K34twX0fBCVf0ltQ0TlX7JQL6Lyry3RtG55w1vl20cGTLZL2ORZzeF30FSWaGr7ceqwR8+PitN7Hf9y02ZhKdBUjmia0fmZy5UpL4O39Qz/+r7ThxOgyY5oqhvcaMeT2d/8M9o30X5daf8UNJUnmu5lja2yuE2ngJzggcdr1xZoQJM9CVR0u1HtW63yT98y+Kdrv64YDJoqEE3CvBVHl04qJ9u4o7Oy+S5pKmiqSDRNFtUr59ba2X/XtuvPSrin+oCmSkRT58yjx2r+czdwaxff0T1ajHQGTZWJpoP2n7KOKiaJpg63OV3RaT9UUqpCNMXFPxkoDKwUlPblacXAst3jQFNVomlNldy/mjaeLEqrlZs7/kwA/MBqRNP6LJ9FS3vcCt09JMd/x2PNMNBUXcAqA+VANH0+6TDizJG10uVZMxpm+h5tBZpqEE3yl227uvuG+GfVu1f18rywi6DJkWj6npR+3MXTV7pRUrbygQZxItBUk2hyr+p3qqNkld9Ue9syX39++hI01SKaLkyqsvN2tWi/KcuTfu00p3l30ORENJVq2jpCcHtk2HbvUi2rzNdAPcfaRFPmmi/nm/iWCjnUdtikXle3LgJNdcgO8Mvsb6ebO4ZvfbTnXu0bTiGgqS7RlHE6pEOlR+v9py8Kmlyt5asjoMmZaOryvnzjEBeNaLrX0chmHyR1QJOQaGq1fc+6slFBQYtWnSh9LLeMLUOoykXAIlTVrvbV6k+X2YeuzHK68aTXwWiE2zBWqOoNm4uqHrt3c/aJM7KFG/KGnas9Yil16iobmqRSxyBOX7AlwI2IO4TkeVmsTJ02ASTEwAkRFQANPG5Bd1DIR2POqokGQ3XDIbeo/inoXxE7h51BevyinnEFNPNPo+IPgny3/vemt9e9HhK+/kRNl5mS4BweD6PyvEEIV/a+1QMAxaDmnafdZII/6xmVE/tEKkDXwHhPMQpY4kitVWLHT8DzKVXY1InsJ0K5Bp64Vicoo9EK3RsdSw2uZRex73r5Rd0PjO9GpY/rv4dJH89v4r00jSvWYzjgeljPKjI55lFHIzM5D2KgxeSbSxcv1wkT5IMUQpCA6EtYs/PMvx0aNKR27QjJHMGVE107rOhIYxoSH4tgGpItfFuvkgfR2aUo62V5Yp2dwTY3EjgX8lAUSfhT0IFEgqWp0X1t1IOx0plTxT3eCPw7mH4EiwewXnCCBbo6EX/essWf/yk3FEm5gZ6hm025Iao+l3JDi/rFodzgseNEUvPXEwPXNanWfdTMeat5DJZ0D8SDckOX+lwH3QPqm0W5YcKoWcmbI3YHzG2T1n1/17sXLK7c0IETFdBvrJRlaj7lhjPrdCW2fejoN3vgpmvldxy4ZjXKDW6cpnO2jOnMrtzwolrNFxUm3Q9b43/y+alKs1wtrNyAeRnWo/fAy5hNuUHjO6T1+Eqp/pOUq5b/8rgGbQZpEeWGDpzgtKhvRuWG5D2zbwapzwaPWXds84UevR5aiXKDGydCYEwTeds7trztzAJ56Ne2NQLGrKpb5kX94Yeo2WgoyNGEUdJQwxcO/PTFcGE1ATITBjPEWPAryLtShQBbjQ7XKADOluivMPciUreRhkle0dYv0c/NzKLJFiPK4gY0IcriMlIlEbBA4ybGLStgD1AAA+TbtZZEB8/4+q80/UKNq//+2ZKWKUXBuxEHFLDLhWVKdP/HQ81bWROCfcXohMKmMkG7Jkbxjh0xgMh+4Rqj1IDuC9rRwbbzlchSB6+VFk3cu8S/yxolteJnWSl5M3NY5jcVBtjAWpva1H3oJF3tIJQ36X1DyQNgzTgBAz3KIkkUHjPg37QQsP0w5bBsOWxph9mSw6tOPX785KxLw6Xb4q73O6p9nV0FEzIBxpANTdIo9LRnLKkV+0W5/uhmWgJML4vZuXXl/qd+D5yYPtHtwsPJP/Jg2jqcpq1qIdOi8uMZnYxKtcqHFvDnaHbui6nlBkR89N88r96H2Y+6OdM3/BCHqvCrvK/deRI+aQuKVLLFExtiRGB8zxYY/a7WuDek9XbRxt59Had0P0gtq1QNkl91cOkTnmRWQG69woiK8V4SdQKAHKfgYh8Tk/8x2OQwv1A8JJUaFBHp23aFPzDDHMi/MjQbAZ1/XQMA+u9+iALy/UHnX9jAVH6KOLQAKHC5AZZBgtmGOlHoShY/B+jhAkjwf7hP08LVaHWKgkW9ZMBdr1tPMtdJt3f3KjtQuUdB9THdMdIB08cQ1wvzMT9J+i/wyGsomqvL6Tq+f49dJvqYGQDmNRBmGz9EyfQsNwxmU5eEGxYwv351K1qdqFVEJ2PdA+NEIbFMHKC7VG/QVP9Vn5ruvvXymyP1REb+5zKnv5RG3qmU7gRsfVCw3fTAYCNcwh9sLuFchfofmrVSh43/422I55VRMsq72UcqMA6jMDxZpUL4AraE2YO8DxJhsT6rTBwiVylj8E6eotTFC9VgmqIx3BPQd+k5npNhBWqzocf2GssEGoiuHWrzbSlAt4/JY98hCOPhwVVXhRYjYmOIIQHIuzdy08vKt8VpvW+s+D664TFq+ox9EDN9xi8XNpzprARTj6IB5JIgcstQKQOs/BrbgDV9NhA5Jz1yGkpXg10LCd+ic2MG/23zJHDNoDqKxC61N1CPuRMdBL2lQ23lexRDtPpwohXZwCIsdtuuqUmKgjjUL8DZ8QwBKa1C5Qn/RusZENgPJrlxCg2NEgd/THXcDliAhIYFHwEm1am4qZFWpgcmUwaJiXbt70mMgnco2lxnL2wUGLUQ5hiOYQtzBZy/S3T9GCQUpUY3uTD89OGAdQcrTQuaOYrmL7C3QmxMYJeLA4o+nFBE6gPVB7ZAZTU1/+jekp/yx8VQ8q9FA66Sf031kP9p9ZDTuXH8QC7s+E9Y5eYzpRkOm90r7I9cxgPkSxpyQT6vIQn5R95YmRVJyM3AykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZn2yqfWgz4lTAin41Ssg7P/uVQXmDnRddm5FGv+SB8vYXm/3rhRz3uLe1nP9qm5gB159Xotq/Kr7YL1GptTBdxDZwmEl5aZbRVs9fCcsdx8P6wPgHYFNKOM8kaAiGbe/TKaeFPiIDHNQfGZqVg6nierg/cBN5YgTMyKcYt83vhO+2YUoaamgagAf4hZ0X1KT3mzt37lcO3Lxw6Pda4+/4m7LXVrzL2BcBVmvrE2H3HUOcEEyrs5kb/lxYVddTIgpihT5S4+q++fGnhsEzex7Jq/VSq+ORFjG6W/jH06uG+q9VTwqc6Jd6lAeUpnCiNKI+c/GBK09z70yOK2ywYZiRQw5O9UjuGftWiX/v6BVl/gmULbT1mTxGMTrVgvu53u5EJ0JuyMHD00uM3M9tot89hBBFF9D7hBGI4pvQKwFDmkScLhkh23ArcVLjs6/PWMGuJQQpkxOkKUbu6zaUKvE31y9V5XcZbGOR3UE5Dlba2jV4ErqgkuM/OQP+rkXdRSQ/l7mLqG8pDnRGc6KTot/T/ZstML7sHh5q4/VZkrn8vH9ORFAv5kI8MxLasIDrQt3P1VPdUtRGSe7TD1gYujdgKPsbOKYvELbzfogFKAGA7bFxoc6wbdpX5Wrtm5i9JHjn2vIpT9++aE1d7MT2Y1nCOqWxMC9Od3GmMsGBn/4EweqM6mNLQWr+xrhYVwEDSwFGGjtUO0ecv/4sdUHguvEJO373+Zta9K+sDNyLBqpAk5lTAgjTY06YbhsZ7ArfQqPvNVtsCw16GqyPwC00ISN39MSgIfzQJzY/JGl83qtt+oPQpf4573Vta9ahr0MnyJOE+DoNYr2cLTVvjN9H7vZg51LkwkRFCryk0CijiQBpGIuEdriL4wlRK+UFmg3EVdRYJqjpdgoqTiNy8jSA+mdXoxxVBWwbCl/cBY+DfMtmB174qsqOD9j8wXlo0LZrjakpEvYBzBQJv1zYmKOfczNxzEFmcg0IzwbUmINqmPZuRrFJ7PHn4RJJD0/t1/Zblw7B65//OKb1q5vUSQrxuszdP+J6oQfb23496ZZaJ3TT5ujX/46r3oMHfEpx4gO6jyUYBrYYcWMIDkR7Af3HuCpq9l3lmjiFjstop0seHt3yl17i2SeHf2/48Rfq0brS+P1MoxHXeV+zBVZ568pllSdWZZV3h0mrGBW+KmIOL0kRQzhfdM2FwVFBCv/+QaPDxfN71Fpwj2qYMOx+pmGI63wbRuRJuBO4zMiYr6Z5yQS2bsZNyJz0GGATC5WyMDzm9e3yjzS0Q/gy4fLay/4a258mKYR/AEJSiGgoDkQ+u3Ih8sKVjOuf2eL6llkhf/Zu5xs0/s+vOttjtz9QbYx/o+FkmPb6GQY1gAtT4pXR8SCthGcL5VotVIPUs2KI8G/Y5IN+Thv1vMw+iV83gid6ypXgiTLYLyIwq9vLjOtG7oDXJlINXDwJE/iFR5jwJ0G++F9zPqTk/fs1eM38x665fzenkufKsCU2+gYzB39InzsBMfRGcTSETTAMjfJY7cOJHoWXNKEc1IJ8IC2+PgDLKMD/5+eUwuHhI9EyL7R4btGKKnBeiwHmiAIM6ljv1Q/mL1a/cUXvTTypTdK3OXjYucpy5dq5mqHH/B82zMN3+184IzguSetVs53yRXBlquJ2GEUIlelI2ZB2CgP5AAhPOnCniianapjeJE2ZguuxmELg1HZDF27gQWoYoaeiFm7gHsVZN4TeJBlPEHqT8JvoepN0vUi63mSR9STpNyL0JNl8Ux1/pQb4HGPkb9fJfr0wesvzwFmvt/2j2R4zmyp/K2aODnGh4nYzzkRVKvlkSeCm2ydlzdNnmHpuUgBGx31oTm8UewESdK66nUIIObKBVBSR4OSJY0R5G53F8w7PmjPcdm2rIogE01Ha/aHG8t/HvfA/vHbP3+VXHjOVcABROsuJ0hE3hgQgJ9sFr7UAEyNDVJRprHdqDMM/ihnDiOvFseCN9ZhPqIUmVw8MKcKf/vsf86d0OR8z+dNkTn/a73/+lLTP/N6KyEc2G0Qr7vZ7c77rkp08+FO6TBMPnkLL6SmUxe5PD+546ruvVvfg2aF5G9OWDnzFgz+lLxLwgFI/TpS6Fac/pcdQi/tTLac/7af3p1+tfk5AH078kNl8StR8nyFJku76KIrfcjUjkocpQUs3rimBux7yb7yR2SqQkJuBzIbQwCNdPUIDjySzITTwSDIbQgOPJLMhNPBIMhtCA48ks9EzNAZjDXpFZBejq+fxwFj7zpuR7cxo5KLpSCJEFUkj0/f8GTaxYbMJXbaQB5tAgyBtkr3nYc8Jjz8F7duzc9/WQbnUc34/dJYnKlTM2ihsjs1VLEyCdxSo0CVMVOsUuLgQlOfm0rCl6y4iHsUQb2cXFa1Rq1SRMGLBi/lHPt91onnChU7zM6v1HhmQWXJ8taBZrmfYPKFtN61CAwXAya9tKFUnD1BBrhasogOFf2KUOuLdQYYBdzny0lbRTEKWOWIsSjeSCRY2Bg60rUSQNkFSLkyuiVMmhipiKQHQDr8cCeudFrxeFr/eVZ1U8CrVC3cPbiRrsaDxqYoYiJ018NygTok/VRnyqVADSiNPCUqMgbJbJLwlysKLcOulwCUsV1cRJZnwCQGsoqqUqyRQC6pAINJpFPIE/e+YMLH+HqKrlmDrqlYTlukqoDwt1dH7Pw9x+Vxjrrh8rDEZl0taPeZ0eVXrXR79hZPYv1dP7C/FhrnRYdJeYL4widDNJcMkQjeXDJMI3VwyTCJ0c8lcaGzLeQurPpohXZ3WfkPM2D+OFciFbqzvfnDAb/XCl6elyLpcTVnDCK7Q6yM7El2Ml4fgasNmSSst104XHTZbufYTTbjKtc9kSsnwXK79qm7f4I/SPMnhKXOnPHvq8s4KyrUfa8JV/HavZQQzqDWnp06daoZy7U/+yKhcLny63+64oC07dKnU1UJLlWvfzGmdldZgHbOUa4+uXOd7h5B2kunX2wQfaxNKXWG2VLn2BZzGmWkNxhFYslx75WulXva8Pyh4XkTrdpUPdy9jVeXaJ3Aab6QVCQVZvFz7tHoTPcZIK/rvr3Llz/67FCMsXK5dy2k5pcUtB28qtnLtZT7vnhN7Xy1ePir7k3DZ549WUa4dyyFYy7XP1Is9/cCWp/6XyrXTy2JYuFx7+aZc5dr/Yqa0xVKufWDU3UHh85cGLFb+9HzZT7tocpA8lGuni5vxUIK8XFOuEuSCpsVVrv3lAXHJf/0uhW240G9El6lvTvJerp3uI3jA6q8mXFi9Mq/PtXS59tJsbux/IvxFEuGnVxMymwh/TFMuEX5p0+IQ4X/5Z+Keg68dgxa82fltlnudejyeNufZR0LN8gFNuTTLf2T6yOIQ4a8wdnNa0M6W4Ztqlb/w5VFAlsVF+MM5UQH9xmrmDsYd/OFPhL/qHMdNQbGlJHs6Vu7Vq9aXilYjwu/LaTpvy5jO7CL8v9548G/i1jai6aO7Rm5fV74ibafT3CL8mJdhVVEHXsZsIvwZBxw/J/8yVzxDlPUt1/1ODSsQ4Q/nBEfa1Iwi/Hc3eF4YW3+53/LyOz4eW1N3uhXIWUCEfDkRAmOayNvKsOVtMnGTpt87XBWvuV937eXFb1tQdQSwQ3xJahWI6MyczZYFZ5/8LRJl/v2EFgZAXKNOjosHORyscq2ONUrLgV5hkfVpmaoHBRoN5fY1lAl+hfjKJXDRhYbvRYDvcmaaZOTBqmr5jwWuElggX33o+8vSytW6S+dOa79glX8vqp5KkWp30VIoumM0tdg8QO8cRM9ZgqpHDDdrjUuhyuPDN0YRp1Gg88ugKqX9yvq2C8u6n91i0/X1j2knpLAbESek8Ou8y/6C99/N+f4bLZ4s6XumEYkSfGSlOkYZzaFtE97ucbnzvzz0m/+1qSb330gVta+SH8Dsq/qW4jDGck5jzLeO9EdgzI6FZ0iiWgfClzwarp26encAU1Yws0hwFzbrEB2v1sS4C5t30A7W6LBf0NmqqNPSq38JjwWMdeyy8+v6mVRuR1n4BVG6VBWi/mV+U3EYazqnscZZxciBH2VUtlo9f6E7MVkzQMsxgtbtFPWcOrFM6Mz71aoHXR/z2JSpsonmmOFNOHJ41PMiQxeqmWz9QSOzVMKTc2RbpZRf6+95Pjxwvaq0eFMj560WnfZCALaSANxEAABdi1GZKBnK2EUmbuZ+Dm2gbi8+MGnStmYvg8dZ9LAvBGAuFwDdJ+oTTdv/GB+HXpjbbHycUHcuPo6je3HzcUbEDYr+2T43bN6OzInXq6b3twI+TrA71+6myN0KSAVakNIXPx/nXo9fp63uMiw4c2+6yz3bm2Wtgo/TitM67tZgHbPwcZLSN9famnbef96dng9XfUk/aRV8nHqcxnG0BuMILMnHya1179v95XbhK3Mj1n3ZM+WIVfFxKnAaz8YyxrNOPs7EUktdA0v8LJm39Kp72vWHfhbm43xpymW5d1YxTSk2Ps6EDz1vzLk2V7x2we5Hr8o2k1oFHwfLIVj5OMAREnlq2f8LfJwu78s3DnHRiKZ7HY1s9kFSx8J8nGnuXHycocyUtlj4OM1edd4zaOLLwC1Rn52bbrsVwDsfhz4354FjMtWdi2Myxr24+Dj28V6Jg1Z/kqRnB7e1qZl4hHc+Dt1H8IDVUE6sEs0bLS3NxynH5sYGH1Y2VYavk+w+FKF69rg3tRCbXZdkeHYyQCNPimeeMDVi+6KBVKlNgqfH9Ls5qR74KVOhHGrmxcFvQPa8Vtv3rCsbFRS0aNWJ0sdyy9iyPh9zJ6dgI6P/lY0CLiyi4FEsRK+kn3sysFfqPw3BpwmDwlwOEviPdv5zYGPZX6Gup+yjFCpgMEVMEPDrQ8mPw8yKm9KOzZQOeRnSKr6/SXJ8Hh3efDqFGmdL+KENWBn37gibCcrhTZRDVkQwYBy+4kvJg35IvghKHoZmByVYrOQNMrLFbkSJ3CNiAvXybKh/G7dtRVVPG79dfRyzVyWFrSz09GW54kfe4BOb9NN7PJ3YLOK44bLI24Z0i9izWWTpzIzkV8GfAuYOdtBmT3b/ibom6g/JMzpmRsY6vcRvEGpB1MfrXSZrYcqL1WqLV6tioBwjpATGYn+HpcM6eZzWoByEfkSydKg6epAiRn8T6tGZy7n4dUN3q11lgh6NAJglUaQ+KKreuhFCfglCBOdxCPkl+I8uvxQ+7n7HqFMvRWPP7UizfR9xlS6/lN4jZ9TtpD6BWUeWzn+aNbUj2U4eRi2yPBP9ixHyTGyWtoPqAYQZ0ZoP7rsPqKpqQuc8HfIlqeKF86ZYi//dMGDXbtCuC1EpzwwwhEIaWaTwpB2s79hPC94hMS7fYeT/jrma4d6+kSMRKlFstqrinz/aQEKkS9agE9fBcYc+LOy8OTAr9ajgxrqEJZwmKyPBPwmhdUw0FIfRxJxGa21eo5Eu2CZUgjtUeMso/bjHbEOOUbZkr56UKH2tTNQqNBjrDnwFxWGiBdN3594YevOteNv+lK01W92dQLdVmbBknXyASi9gIaBtdsFv9WaGK+9Ctb6KGK64jOrBadT6jRhaX5wFFIjOrsD1WZDg0WVSODu6DfR0zDId2FXeGaWehF86IkZUuhd5YV2cCOkV2EJ6l0cPIsqoLgQs2Xuo5KhdLuOpXNmoeGWsTgjrylLDOoxXbDWtnSJiY+FURK5SEeVXlbBwHhTv9kQCTC84yPYIiHzJULo96BntYJrT1Q9VDM9dJnBqaCqPzB6rvgvGphY+MPJFI17eH7OlcaZkedbF8muGxR+kF3hBvmKhKSG96LqpxHuAVVuIVZYYxf0AE3yvhsaxxnALqrFegcTFbmhEiex1iyI2i1XdO/4kL81YUo41DBhTxxN484acbw56iRUsJ2M90Ig9NjuoM8QlPdUjWuYydJpENL1svxr3s+evo/ZLeLe54K/MCX8Zy8DPYIiZWqgbHxGQ7QzeBF20gFZxt4iewtTVfA/CFRwRIQJMfw9sQBABpiJbgDFaz8dVb73i1/OJdxoffn9m68CJBzJrpqxuVVDb8FPmufPvI5TS6Vf2TTjyRbClgJ5PH1mD3BJ9B4q2xB9uHHu3pWMBPZ+xSW9nNz1dPXzW9UlfAk4OaVVAz6dExJOV1eL2Sw5UuzxE2FDct4CeD6LyL6ltiKj8SxbqRVT+tSWaSi21n3lxVU7EgQP7xH65ufVAU1miaWlyyvA5G677zVgy/GsLxchaoKkc0bR9bUVRr4GDpYdfjzr/yfsb/EA7omnIEM/hSx6rRFkfBtdM+5peAzSVJ5o6/7z2uOM/ZaUZecMn/OKfkwya7Ikmz7cOl6dFHY2YdebOsqdxfjNAUwWiqZ/XsbDbNU+Hbty93rFZ0AMxaKpIGuXLipnbf7kVeKB56NpjuwfCx6hENJWv5z/Cc4+TdFOLMlu75fRzA02ViaYzS4SPvmVr/NNSNmf8PkL0E2iqQjTZ3vvzQC+72oFbI/w7uiV16wSaqhJNDh0+9tw/rmHIHP++I34dp9gMmqoRTSvTYl81O3hFdLhNv9ZBgaeqgqbqAlYZKAei6cHxbHHN+UtFB0v16PteF+0LmmoQTfapZfdXmFNZlu2x7Ilb7bOwAzgSTSEfFmhSms0KyOx2oPelN4nwu2qSVu65JySwVrJofKvwVZOz4rqBplpE08XsXoerSOeI9pQKudWu7rTpoMmJaNof0LBJ9XIrAhZnXs9cGe8hB021iabffr309H7N8MCcHy+Pi7dfshM01SGatg3KdBJOOSlbdjekp/LbuTzQVJdosrHr4l11/QjZjMu3BonfV7gDmpyJJv+WO7ydb8SE5axM7xp1wucmaBISTXkXPOT/vpkjHn334rF3FW+dYQhVuQhYhKriNj/xLd/zr4gDD5LPV477bM+DUFUlNhdVPXbv5uwTZ2QLN+QNO1d7xFLq1FU2NEmljkGcvmBLgBsRdwjJ87JYmTptAkiIgRMiKgAaeNyC7qCQj8acVRMNhuqGN5YJFnuegv4VsXPYGaTHEz2NK6CZfxoVfxDku/VMCOwRs7qi/7ijqw//NFl1g8fDqDxvEMKVvYUQoBjUvPO0m0wwy9OonNgnUgG6BsZ7ilHAEkdqrRI7fgKeT6nCpk5kPxHKNfDEtTpBGY1EsfebSuVr1XMImbWi+YOmU7fPpNLH9d/DpI/nN/FemsYV6zEccP3saRWZHPOoo5GZnAcx0GLyzaWLl+uECfJBCiFIQPQlrNl55mvqdg5wz+4k2Tb3nz5Tl1W8SWMaEh+LYBqSLXxbr5IH0dmlKOtleWKdncE2NxI4F/JQFEn4U9CBRIL1zq7jv+Nm+Ug2ry03IutS+RjTj2DxANZETrBAVyfiT2W2+PM/5YYiKTfQM3SzKTe89+RSbrhkXKw0ULkheXJJjeTgUfGEe67yq74fHvAYLOkeiAflhreeXAfdnxgXLIuq3FBtXKl6u+a0DTq8Kv7wuKNzqf3DEsoNdzhRuWSZmGgAy7SwBSb+lBvOfn1Wpf/4x2ErWxyZ6eF3tJ3VKDec4jTdQWtNZ3hWbki2r+r9surysEnrP2adrFzyi4WVGzAvw3r0/gkiSyku5YY6J7M2VtsiiNiTUfZj5TqfqAQhyyg33OEE55KnGZUbJpZxmrI+o3NEWtzwklJp55ZWotxwihOhg/q8rQpb3nZmgTz0a9saAWNW1S3zov7wQ9RsNBTkaMIoaajhCwd++mK4sJoAmQmDGWIs+BXkXalCgK1Gh2sUAGdL9FeYexGp20iDEif6+iX6uZlZNNliRFncJz5EWVxGqiSC9Ut9jFtWwB6gAAbIt2sQV2pi0vTL4ftGeoVW8p1GO7gbBe9GHFDALheWKdH9Hw81bx/5EOwrRicUNpUJbvkYxTt2xAAi+4VrjFIDui9oRwfbXj1sW0+63li05+7jx9OGCyZQh6WUvJk5LPObCgPs2bWYpuOy/pJkKGqnbq+nOsADYL9xAgZ6lEWSKDxmwL9pIWD7Ycph2XLY0g6zJYdXDVvpnhbWbn/Q3skz3/QoPcWzCiZkAowhG5qkUehpz1hSK/aLcv3RzbQEmGbas3U+/N5+2jBJZo7bm5dzckzVe4Om3c9p2q0WMi0qP57RyahUq3xoAX+OPtLo/PvOuNEPpYvPOw2M9vG7St/wQxyqwq/yvnbnSfikLShSyRZPbIgRgbEqW2D0u1rj3pDW20Ube/d1nNL9ILWsUjVIftXBpU94klkBufUKIyrGe0nUCQBynIKLfUxM/sdgk8P8QvGQVGpQRKRv2xX+wAxzIP/K0GwEdP5AbwD6736IAvL9Qef39TaVnyIOLQAKXG6AZZBgtqFOFLqSxc8BergAEvwf7tO0cDVanaJgUS/J05as+HmWd0T2wGM5iyWtqEX6SnfHSAdMH0NcL8zHKHKv5fQRrfAfl+SqGf81Mt1EHzMDwOwPYbbxQ5RMz3LDYDZ1SbhhAfPrV7ei1YlaRXQy1j0wThQSy3kTPb9JckTSXem5g+JnBt2hnsjI/1zm9JfSyDuV0p2ArQ8KtpseGGyES6jG5hLOVaj/oVkrddj4P96GeF4ZJaO8m32kAuMwCsOTVSqEL2BLmD3I+yARFuuzysQhcpUyBu/kKUpdvFANpikawz0BfZee4zkZVqA2G3psr7FMUAmia4fafFsK0P3iZerYdwjCeHhw1VWhxYjYGGJIAM713b45NU8QmPPwvTDd/1xbavqMfRAzfcYvFzac6awEU4+iwYPbELllqJQBVn618WZNnw1EzkmPnIbS1WDXQsIn6zxlW5W7ZUOmOL872jyjP1V4qzzRQdBbOtRWvkcxRAv0JA603nlZhMVu2zU1SVEQh/oFODueISClVag84d9oPQMC+8EkN06hoVHi4I+pjtsBC5DQsOAjwKQ6FTc10sr0wGTKIDHRrv09iVHwDkWb6+yFjQKjFsIcwzFsYa6A83eJrh+DhEI7LeLotWVdg8Y+63Ppw1sVjd+FvRViYwK7XBxQYF2cFQrQxYlAVZ0tUFlNzT+6t+Sn/HExlPy75MVV8u+MHnIHq4eczo3jB/JjJ+7KG453CFkx8NLDeUc+xvIAeYdmXJD7NCMhr8EbK7MiCbkZWJkIEiXJykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrs+wFn65vKm6RZDUqnTlm6t5kBuUNdl5k76PTL3mgvDmy2b9eyHGPe1vL+a+2iRlw/Xklqv2r4ov9EpVaC9NFbAOHmZSXZhlt9fyVsNxxPKwPjH8ANqWE80yChmDY9j6dclroIzLAQf2RoVk5mCoGQb92E3liBMzI3ZhZOdfatRO+24YpaaihaQAe4Bd2XlDd5rXGPpkzI2jaD4vCAprUSTRlr614l7EvAqwCyLD7jiFOCKbVbbyQeTgbVtX1lIiCWCFR+vefw32qd7sim7ti4IwDujFPeKRFjO4W/vH0qqH+a9WTAif6pR7lASU3TpRqeTEXH7jyNPfO5LjCBhuGGTnk4FSP5J6xb5UMOHIqt8WR7sGzRE/CBGtGKyy4n+vtTnQi5IYcPDzdwcu4NLaJfvcQQhRdQO8TRiCKb0LXiRWutn20MFc84cadFW/LxU+2gl1LCFILTpDcvIzb120oVeJvrl+qyu8y2MYih4M6PeLJ+4PHw8bOf/5Tqe+nN1F3EcnPZe4i6luKAx1nTnSq63PRmmyB8WX38FAbr8+SzOXn/XMignoxF+KZkdCGBVwX6n6unuqWojZKcp9+wMLQvQFD2d/AMWVB2M77IRagBAC2McaFOsO2aeOcBv7ldbeULE2U+nHr2ydnqYud2H4sS1inNBbmxekuzlQmOPDTcyFYnVF9bClIzacaF+sqYGApwEhjh2rmqNf7p3qVlU2KbuD2YsPe9lRPJAP3ooEq0GTmlADCNIYTpqFGBrvCt9Doe80W20KDngbrI3ALTcjIHT0xaAg/VIvND0kan/dqm/4gdKl/zntd25p16OvQCfIkIb5Og1gvZ0vNG+P3kbs92LkUuTBRkQIvKTTKaCJAGuSW6Ie7OJ4QtVJeoNlAXEWNZYLdLU9BxWlETp4GUJ/X0ihHVQHbhsIXd8HjIN/yQa9Dp+pdmChblzr8364n2zhQUyTsA5gpEn65sDFHP+dm4piDzOSdEJ4NqDEH1TDXtzSKTWKPPw+XSHrt5Ffyq/36SrI89kSsEi3fQN39w+9n7v4R1wvD58j0XbUTrs0LXzEw536z7A0XecAnhxMf0H0swTCwxYgbQ3Ag2gvoP8ZVUbPvKtfEKXRcRju49UralMhBkkUnB/lf2hAbTDUafj/TaMR13tdsgVUyOK2SblVWeXeYtIpR4asi5vCSFDGE80UapnXpbO2I+KsB03M23nnWaQ/1sF/pMOx+pmGI63wbRuRJuBO4zMiYr6Z5yQSrWho3IXPSY4BNLFTKwvBY3lu5Y9Cr22GLMmpMSsw6702TFMI/ACEpRDQUByLzOBGZ2JKM605scX3LrJA/e7fzDRr/51ed7bHbH6g2xr/RcDJMe/0MgxrAhSnxyuh4kFbCs4VyrRaqQepZMUT4N2zyQT+njXpeZp/ErxvBE1W0JHiiDPaLCMzqejDjupE74LWJVAMXT8IEfuERJvxJkC/+ouGIE/4DW/ovv7Nsblj3lbTOx5bY6BvMHPwhfS4aYuiN4mgIm2AYGuWx2ocTPQovaUI5qAX5QFp8fQCWUYD/z88phcPDRyIRpcdzi1ZUgfNaDDBHFGBQx7qHfjDXtvqNK3pv4kltkr7NwcPOVauWXDtXnnrM67BhHr7b/8IZwXFJWq+a7ZQvgitTFbfDKEKoTEfKhrRTGMgHQHjSgTtVNDlVg/wkXZmC67GYQuDUdkMXbuBBakjVnIpauIF7FPE+CL1JMp4g9CbhN9H1Jul6kXS9ySLrSdJvROhJsvmmOv5KDfA5xsjftnaM+nRRKvHbc/75Mt3Oa2qq/K2YOTrEhYrbDavsNaVi+SvSXUGqDUM1LQeYumYCRscIaE5vFHsBEnQ0PqcQQo5sIBVFJHjL0B3v784f7zd/yuNd51wOXimCSDAdJUWPyOAHa9tFTN909JD36Is7eEApnhOlvj4MCUBOtgteawEmRgYARGe9U2MY/lHMGEZcL44Fb6zHfEItNLl6YEgR/rTuf8yf0uV8zORPq3L6068t/+dPCfu8LLk+pvbIn6RZBz0/KQNsyvHgT+kyTTx4isqcnqJMsfvTM5JDW2p5TgpbPPFATM3F4qKIrtNRoi8S8IDS15ZcKH1oWYz+lB5DLe5PK3P606/6/NTZ6ucE9OHED5nNp0TN9xmSJOmuj6L4LVczInmYElzmnBKc1UMu5I3MVoGE3AxkNoQGHunqERp4JJkNoYFHktkQGngkmQ2hgUeS2RAaeCSZjZ6hMRhr0CsiuxhdPY8HxpoLb0a2M6ORi6YjiRBVJI1M3/Nn2MSGzSZ02UIebFKPzSbZex72nPD4U9C+PTv3bR2USz3n90NneaJCxayNwubYXMXCJHhHgQpdwkS1ToGLC0F5bi4NW7ruIuJRDPF2dlHRGrVKFQkjFryYf+TzXSeaJ/ytWcCWG4kjw2Y33vrQv/NDDzZPaNtNq9BAAXDyaxtK1ckDVJCrBavoQOGfGKWOeHeQYcBdjry0VTSTkGWOGIvSjWSCti2AA20rEaRNkJQLk2vilImhilhKALTDL0fCeqcFr5fFr3dVJxW8SvXC7yIayezbtDhVEQOxswaeG9Qp8acqQz4VakBp5ClBiTFQdouEt0RZeBFuvRS4hOXqKqIkEz4hgFVUlXKVBGpBFQhEOo1CnqD/HRMm1t9DdNX6Vh+W6SqgPC3V0fs/D3FZ2YIrLstbkHG5gdVjTpdXtd7l0X6cxP4eemJ/Q97CpL3AfGESoZtLhkmEbi4ZJhG6uWSYROjmkrlQ0w3DZ3daN0461md1yA9jPW4XyIVU92d1PFkhN3inyz13cfYaMSO4Qq+PVk6hifHyEFwbsVnSSsu100WHzVauPboVV7l2r1bFXa79WE3hyM3aM7K1s/zayBfWpp7stEy5dnkrruK3PVpZQc3pcePGmaFc+5oWM3T7l2aGb7uZPPpBVAx198VS5drDOK0jsQbrmKVce632mfYu4g9+E57N2V/iZsddVlGuvS2ncbyswTgCS5ZrPxp6VjmoVoh475R+fetXGkNV2rV0ufaGnMZzsozxrLNcu2TB6BpdquhkizP7nDxZPXSvhcu1V+a0XBmLWw7eVGzl2su973XcvuUg0WK7zNpnS26QWEW5diyHYC3XDhwhkac2ZstT/0vl2ullMSxcrn1dK65y7XOYKW2xlGv/O63Zo1H9vgVsnpX8e5/N2VTBRD7KtdPFzXgoQb6mFVcJ8sWtiqtc+z2HK6H+K/sEjO5wSChSXMrlvVw73UfwgNUcTqwmm9fnWrpcuyubG/ufCH+RRPjp1YTMJsJfsjWXCH8e03fyIMJf+pe/xjhX6hg0+9HE/TvvH3vK42lznn0k1CwXtObSLP+L6SOLQ4Tfy6fXvdfTe/ktlIRv3+i9l1oH3RIi/K9acaGSZ/EMtOCOk2VE+GvUTlDZRu6TLqhRI33ryn4LrEaE/yan6S5YxnRmF+Ev89Ft1KPAbL8VW2Yln/Zq+8bCIvyYl2FVUQdexmwi/I8vvkh3+fQgKNPNu7EsQtbUCkT4MWfDCk5eKzOK8A9dtn1eepMnklmN1m4u2WDnPSuQs4AI3eRE6IJ++unGlrfJxE2afu9wVbzmft21lxe/bUHVEcAO8SWpVSCiM3M2WxacffK3SJT59xNaGABxjTo5Lh7kcLDKtTrWKC0HeoVF1qdlqh4UaDSU29dQJhgEh6dcAhddaPheBPiKW5t6sKpa/mOBqwQWyFdvU75ryNHk+RF7dk6dfaBW6nHTa3fRUii6YzS12DxATwnRc5ag6hHDzdrWxhXCxodvjCJOo0Dnl4Pnda7afP7biM0OzTSjkmtTCzGXlmI3Ik5I4dd5l/0F79+N8/1DWls6WdL3TCMSJfjISnWMMppD2+b3vUfXrq011W9M90NvBOmfqXrgtuQHMPuqvqU4jCHmNEZryxiDURzbmB0Lz5BEtQ6EL3k0XDt19e4ApqxgZpHgLmzWITperYlxFzbvoB2s0WG/oLPV+g9HKrd/niRaGPTIb1vQUGo6VBZ+QZQuVYWof5nfVBzG8uA0Vn2rGDnwo4zKVqvnL3QnJmsGaDlGUI7P0PITE1767Y0KHZZhl/vWlKmyieaY4U04cnjU8yJDF6qZbH3v1sZlqYQn58i2xk91GfRmbKWw+Y0TRzrUy7pi0WkvBCCCBOAmAgDoWozKRMlQxi4y0SqtxvoN9Z6ErbkbWWXYttA6tFBm3sO+EICWXAB0b9SaTDSb/Mf4OPTC3Gbj47xozcXH2cXMLHnm49geHTJ6W/jY0PlDV/88SPtmjBXwcX5vzbW7ed8yTp9KKhg0aJAZ+DgpNWaualyrkmRb3V7Nf415ILQKPs5VTuuctQbrmIWP0+vb6xqxzyJDDq8ecD9j/IaPVsHHOcJpnF3WYByBJfk4JUdNim+fnuI31/tT0pHvXyOsio+zgdN4yyye7FoRH+dT8siMVkmxkvRas6d+6LW+loX5OFmclptmccsVKx/H41enRXNT1oZvXHnup5m/qN5aBR8HyyFY+Ti79Hlq0/8LfBz/lju8nW/EhOWsTO8adcLnpoX5OO5tuPg4Dm3Mw8eppfy+/LBfL+mm05ubTRNcrsM7H4c+N+eBY9KkDRfHRNimuPg4LjHVHIPfLg2bfOTqsjxp5RW883HoPoIHrBw4sSrf5v8rPo47mxsbfFjZVBm+TrL7UITq2ePeVOds1yUZnp0M0MiT4pknTI3YvmggVWqT4Okx/W5Oqgd+ylQoh5p5cfAb0IUPL3jI/30zRzz67sVj7yreOsP6fMydnIKNjP5XNgq4sIiCR7EQvZJ+7snAXqn/NASf5gU87ecggf9o5z/VjWW/PW9xyj5KoQIGU8QEAb8+lPw4zKy4KT3YTOmQlyGt4vubJMfn0eHNp1Oo1dFL+KENWBn37gibCcrhTZRDVkQwYBy+4kvJg35IvghKHoZmByVYrOQNMrL2ZIncI2ICdU821L+N27aiqqeN364+jtmrksJWFnr6slzxI2/wiU366T2eTmwWcdxwWSSjGd0iXmwWWTozI/lV8KeAuYMdtNmT3amaRqX9IXlGx8zIWKeX+A1CLYj6eL3LZC1MebFabfFqVQyUY4SUwFjs77B0WCeP0xqUg9CPSJYOVUcPUsTob0I9OnM5F79u6G61q0zwEYJZEkXqg6Lq15oh5JcgRHAeh5Bfgv/o8kvh4+53jDr1UjT23I402/cRV+nyS+k9ckbdTuoTmHVk6fynWVM7ku3kYdQiyzPRvxghz8RmaTuoHkCYEWmt/po/N26o7x02O/PQ8YfOe8NMsRb/u2HArh+gXReiUp4ZYAg9b2aRwpN2sL5jPy14h8S4fIeR/zvmaoZ7+0aORKhEsdmqin/+aAMJkS5Zg05cLzg+71QvtFforHVdzjx9Vrk+p8nKSPBPQmgdEw3FYbQHnEa7Zl6jkS7YJlSCO1R4yyj9uMdsQ45RtmSvnpQofa1M1Co0GOsOfAXFYaKPPHtFO3ttLBmye0bJPJcl4xvRbVUmLFknH6DSC1gIaJtd8Fu9meHKu1CtryKGKy6jnuM06i/NGFpfnAUUiM6uwPVZ0ARxmkwKZ0e3gZ6OWaYDu8o7o9ST8EtHxIhK9yIvrIsTId2bLaR3efQgoozqQsCSvYdKjtrlMp7KlY2KV8bqhLCuLDWsw3jFVtPaKSI2Fk5F5CoVUX5VCQvnQfFuTyTA9IKDbI+AyJcMpduDnnELlpjt6ocqhucuE+w1uTy9PVZ9F4xNLXxg5It2319/w5ojC8L3zqnQf+yy5Up6gRfkKxaaEtKLrptKvAdY3YBYZYlR3A8wwf+VWZSakzWGW1CN9QokLlPHTfxyPOcH2fZhPj4bPFxKM5aUYw0DxtTxBN78GOebg15iBcvJWA80Yo/NDuoMcUlPBXm+e3nwbrXg/avu32nx/sJEar+Ed5sL/s2c8K+0DPwMhpiphbrxEQHZzuBN0FIdtIq7RfQUpq7mexCu4IgIEWD6e2ADgggwzdgCjNF6Pq566xW/ns9tYbXdq7U20oNtn9iUan8ppICez4en5cIOZw8MXbirVxkH2X51AT2fcF34rZCwZSGr/xQlBwRnrCmg59O9anTeYNdzfjOjptyxOVsnrICez/322R/tOw+QHWr1ya6S12JFAT0fROVfUtsQUfmXLNSLqPxrSzQ1amnXrI9DTtCiH17nqLbH/AWayhJNz0vmNjixPUk258fo6x2P1vUDTeWIpsa1Xq2NapkasSQzZE6bwN9agiY7ounOxrXxtz0GinPkNy8NvXynJmgqTzTNKqs9Mf/xLvG2xGsO8XtXJ4Ame6Jp6pgOT7Pb3wqd5t8/+1/tvO6gqQLRdH2gS3RgLV3wgpTaTic0VW6BpookUHbj6vzxKsRvu9PeWntthN1AUyWiyfeO7eWqdknBa/yPSkbatDgEmioTTRW6+uR2dUj22zVmaP+Xw6f3Bk1ViKYWEen/vtg6RjJpb4vcK30a2IOmqkTTyWsXIvf98Nxv41ZR/W+tfzwNmqoRTT3KfXjv9DkoYNUgjxLDQ0Nbg6bqAlYZKAeiKeDQ8ZvtwsaFZe64mjku68Ye0FSDaEp4/6NTztrb0g1dfJycfce6gyZHokm5e1ngvKslxOM3uPY87zjjDWiqSTQN9VB1+SpzCdr+e7PaQ67YLwZNtYimYZNPXh0gl/jNEt38uOji4QGgyYlo2vssr2X2sn8Cp0+Ovjr47oDnoKk20dTMJn7rmi03xBkfHJ412Tb9PWiqQzSN/XHN9J/t2oUuUVVt2qxkX2ivukRT7OEz1d2PnBCN3n6yW4r7hDzQ5Ewif+JGeMZkUcCkL/fO7pMOnw+ahORdczteWra4hXh9qFvlaXV2VWAIVbkIWISq5uwRLuvtODF07d7aHVMlTod4EKpqzuaiqsfu3Zx94oxs4Ya8Yedqj1hKnbrKhiap1DGI0xdsCXAj4g4heV4WK1OnTQAJMXBCRAVAA49b0B0U8tGYs2qiwVDd8MYyga/vKehfETuHnUF63MDXuAKa+adR8QdBvtvINhN8c91WB02tMCzr0NJeZXk8jMrzBiFc2WsDAYpBzTtPu8kEnr5G5cQ+kQrQNTDeU4wCljhSa5XY8RPwfEoVNnUi+4lQroEnrtUJymi0hG3utjXXS22TjM1c8mZV7ME1VPq4/nuY9PH8Jt5L07hiPYYDrlq+VpHJMY86GpnJeRADLSbfXLp4uU6YIB+kEIIERF/Cmp1nHtm+fv2w7h8l03o8Gu8ZKv2HxjQkPhbBNCRb+LZeJQ+is0tR1svyxDo7g21uJHAu5KEokvCnoAOJBGtn16UOJ8d2lU67MrNL5pW/B5p+BIsHsBpwggW6OhF/WrDFn/8pNxRJuYGeoZtNuSHDl0u5IcG4WGmgcoPt+GvyMatcApaO3uOo2brZk8dgSfdAPCg3TPHlOug+2rhgWVTlht1/DL546c6l0NV9L94LnJxLKxNqAeWGFE5UEiwTEw1gmRa2wMSfcsMToSQ5bnht6cyWg8vfXfqCeurIksoN0Zym62mt6QzPyg25Le9P9/SJDp79T+9DD2v2sbGwcgPmZViP3o9GZCnFpdww8XXjbzunb5Ks93z6KuRzqUFWoNyQwglOgq8ZlRsm/lz6wHpHkXTi1jiPk3dfPbcS5YZoToR66vO2lmx525kF8tCvbWsEjFlVt8yL+sOpaxS2oSBHE0ZJQw1fOPDTF8OF1QTITBjMEGPBryDvShUCbDU6XKMAOFuiv8Lci0jdRhqUONHXL9HPzcyiyRYjyuKOFhNlcRmpkghYQC42blkBe4ACGKCPvi+OnRfxVCnaNy/57ABVqTzabhK8G3FAAbtcWKZE93881LwdJSbYV4xOKGwqEySLjeIdO2IAkf3CNUapAd0XtKOD7bgFVTUCzfnwFTeaZ7/0mPaAOiyl5M3MYZnfVBhgV/uWDZ+SZxuyynvZuPvO95vzANggTsBAj7JIEoXHDPg3LQRsP0w5LFsOW9phtuTwqi1LHn83YtW1wKnZwYcWzL7UvAomZAKMIRuapFHoac9YUiv2i3L90c20BJhm2nN9d9RNWj9PlO7y923l0+rteDBtD07ThlnItKj8eEYno1Kt8qEF/DnSmBtXDAxsFP6DeMGc2BOu8Vvq0jf8EIeq8Ku8r915Ej5pC4pUssUTG2JEYPRhC4x+V2vcG9J6u2hj776OU7ofpJZVqgbJrzq49AlPMisgt15hRMV4L4k6AUCOU3Cxj4nJ/xhscphfKB6SSg2KiPRtu8IfmGEO5F8Zmo2Azv+4HQD9dz9EAfn+oPNfb2cqP0UcWgAUuNwAyyDBbEOdKHQli58D9HABJPg/3Kdp4Wq0OkXBol5y13n49s0LSwfv/ePNnib+a6jqVaW7Y6QDpo8hrhfmY/aVzK0XcVMmmaB173TptmuOiT5mBoA5D8Js44comZ7lhsFs6pJwwwLm169uRasTtYroZKx7YJwotBOo+2n5siHbwsZ8mbnmt7c/X6CeyMj/XOb0l9LIO5XSnYCtDwq2mx4YbIRLaMXmEs5VqP+hWSt12Pg/3oZ4Xhklo7ybfaQC4zAKw5NVKoQvYEuYPcj7IBEW67PKxCFylTIG7+QpSl28UA2mKRrDPQF9l57jORlWoDYbemwPHj+G6NqhNt+WAnTnmjz2HYIwHh5cdVVoMSI2hhgSAO0X3ZYN96eEr7y79P3OkBFXqekz9kHM9Bm/XNhwprMSTD2KBpBbB5FbhkoZYOXXpe1Y02cDkXPSI6ehdDXYtZDw9f5rz+i4dvaSeXev5bwZadebesyd6CDoLR1qK9+jGKI1lxOtqe0swmK37ZqapCiIQ/0CnB3PEJDSKlSe8G+0ngGB/WCSG6fQ0Chx8MdUx+2ABUhoWPARYFKdipsaaWV6YDJlkJho1/6exCh4h6LNdfbCRoFRC2GO4Ri2MFfA+btE149BQlEx3nfNs9QfxHNKrClzcJrzeNrGBHwrxMYEdrk4oJjLCcVUfaBqzRaorKbmH91b8lP+uBhK/iW04yr5p9BD3sbqIadz4/iB/E3UhzF9Ss7y29vL5diWjzvdeID8VnsuyC+1JyFvyxsrsyIJuRlYmQgSJcnKRJAoSVYmgkRJsjIRJEqSlYkgUZKsTASJkmRlIkiUJCszYWRZ8YGICwEz+lbo371/3jUG5Q12XmTvo9MveaC8+bLZv17IcY97W8v5r7aJGXD9eSWq/avii/0SlVoL00VsA4eZlJdmGW31/JWw3HE8rA+MfwA2pYTzTIKGYNj2Pp1yWugjMsBB/ZGhWTmYKj6B+wM3kSdGwIz8hHHb/E74bhumpKHGisGrISuQnRc0+FhFhax/hGRT6zkxy/bVWGfKXlvxLmNfBFg98iXC7juGOCGYVl9lbvhzYVVdT4koiBUSpT0H7+6ct8gnKHNipevzPWTLeKRFjO4W/vH0qqH+a9WTAif6pR7lAaUTnCjt8mUuPnDlae6dyXGFDTYMM3LIwakeyT1j3yrpdOXCzpPb9wcu3vqh5bqYL98suJ/r7U50IuSGHDw8fcvI/dwm+t1DCFF0Ab1PGIEovgkJzquVP0xMdH4QsSftdNqP+79vsoJdSwjSb5wgnTByX7ehVIm/uX6pKr/LYBuL7A4q5cGAIwt9qoTPePR3ZHKpqz2ou4jk5zJ3EfUtxYHOfk50tur3dNuxBcaX3cNDbbw+SzKXn/fPiQjqxVyIZ0ZCGxZwXaj7uXqqW4raKMl9+gELQ/cGDGV/A8fUEqbw5/0QC1ACAFtd5gKU6du0bn2ck75vmy9ZmfJB1XrF1tXUxU5sP5YlrFMaC/PidBdnKhMc+OnmEKzOqD62FKTmrug1JzawKmBgKcBIY4cqdlXt9JtPS4Xvcj07b3bOjH+pnkgG7kUDVaDJzCkBhKkuJ0zVECvtpm2h0feaLbaFBj0N1kfgFpqQkTt6YtAQfqg9mx+SND7v1Tb9QehS/5z3urY169DXoRPkSUJ8nQaxXs6WmjfG7yN3e7BzKXJhoiIFXlJolNFEgDTILdEPd3E8IWqlvECzgbiKGssEUaJTUHEakZOnAdRbiIxyVBWwbSh8cRc8DvItXXeNPnur+yjR8hulMjZ0vkiVLf0B+wBmioRfLmzM0c+5mTjmIDO5C4RnA2rMQTXMAJFRbBJ7/Hm4RNIX7F/WIGy1U+iGL9ofvR+GlqHu/uH3M3f/iOuF4ZPyaMm/LWrODtn9cpR75vB5a3nApwMnPqD7WIJhYIsRN4bgQLQX0H+Mq6Jm31WuiVPouIy2Ym2nWWs3/RIweeaF9ie3xt2lGg2/n2k04jrva7bAKm6cVnG2Kqu8O0xaxajwVRFzeEmKGML5Ig0zKfrfmPZ1ukr39u59aM7acw5Uw4Rh9zMNQ1zn2zAiT8KdwGVGxnw1zUsm8BMZNyFz0mOATSxUysLwKOU/OnbsgfcRB/5sNttp5qiSNEkh/AMQkkJEQ3Eg0oITkQYiMq53YIvrW2aF/Nm7nW/Q+D+/6myP3f5AtTH+jYaTYdrrZxjUAC5MiVdGx4O0Ep4tlGu1UA1Sz4ohwr9hkw/6OW3U8zL7JH7dCJ5oCRHBE2WwX0RgVvehk6k74LWJVAMXT8IEfuERJvxJkC8ecvV9Wt3VTwIO9J177e+tgzpQOx9bYqNvMHPwh/S5751OwQkcgqMhbIJhaJTHah9O9Ci8pAnloBbkA2nx9QFYRgH+Pz+nFA4PH4leMKDFc4tWVIHzWgwwRxRgUMcaAEYM5o5Wv3FF7008qU3Stzl42Lm63Ilr5+qsHvNObJiH7/a/cEZwXJLWq2Y75YvgylTF7TCKECrTkbIh7RQG8gEQnnTgThVNTtUgP0lXpuB6LKYQOLXd0IUbeJAaUjWnohZu4B6FjRihN0nGE4TeJPwmut4kXS+SrjdZZD1J+o0IPUk231THX6kBPscY+dtNI/6sF3BoZ/CEB20q+fSeXYkqfytmjg5xoeJ2GyY/S2lbMVW8aWq/8/3OXDB5aQmMDkdoTm8UewESdCqITyGEHNlAKopI8JNS284lhPQLnzQyTOs58cWkIogE01E6OfYviVBZO3D0hcnecxtl1OcBJRtOlL6IGBKAnGwXvNYCTIwMAIjOeqfGMPyjmDGMuF4cC95Yj/mEWmhy9cCQIvyp6D/mT+lyPmbyp5tFXP50vuh//pSwz2WF4EjG4HaBC+WTFq+7HDiIB39Kl2niwVNsFHF5iuWi4vanHe02t8qbcSwi66fJnZ6NPt2eB39KXyTgAaX5nChNL05/So+hFvenWI9h9afz9RN8sdXPCejDiR8ym0+Jmu8zJEnSXR9F8VuuZkTyMCVIFHFNCWL1kPvxRmarQEJuBjIbQgOPdPUIDTySzIbQwCPJbAgNPJLMhtDAI8lsCA08ksxGz9AYjDXoFZFdjK6exwNjTcKbke3MaOSi6UgiRBVJI9P3/Bk2sWGzCV22kAebSNlskr3nYc8Jjz8F7duzc9/WQbnUc34/dJYnKlTM2ihsjs1VLEyCdxSo0CVMVOsUuLgQlOfm0rCl6y4iHsUQb2cXFa1Rq1SRMGLBi/lHPt91onnChS3zLsjXRMnGduxZen37S2fYPKFtN61CAwXAya9tKFUnD1BBrhasogOFf2KUOuLdQYYBdzny0lbRTEKWOWIUsm0kE1zuCBxoW4kgbYKkXJhcE6dMDFXEUgKgHX45EtY7LXi9LH69qzqp4FWqF87q2kg27lLHUxUxEDtr4LlBnRJ/qjLkU6EGlEaeEpQYA2W3SHhLlIUX4dZLgUtYrq4iSjLhEwJYRVUpV0mgFlSBQKTTKOQJ+t8xYWL9PURXlVl9WKargPK0VEfv/zzE5R84l+q+diTjsr/VY06XV7Xe5dF/OIn9H/TE/gDewqS9wHxhEqGbS4ZJhG4uGSYRurlkmETo5pK50OxxTdY5fvCX7bulOzVvcrXNBXIhz54pswc+/xC2enApr1LSH4MYwRV6fWRHoovx8hBcA9ksaaXl2umiw2Yr1/5dzFWu/RxTSobncu1dbFxqdtl0UbrsVeVVbcZ5UnfnLVOu/auYq/jtB8sIZlBrTo8cOdIM5drPjqgvaXlssGxChY6j/2xQhXq63FLl2p9zWueBNVjHLOXa/3z761ufMz9K56y51GDf+r7HraJc+zVO45yzBuMILFmuvW1d/7+bl4wLmT4981TC2ZhZVlWu/RdO4+22IqEgi5drvzPgfckbITVCVix6dvbgRVk5C5dr38hpueUWtxy8qdjKtb8tu61O+VPvArY6T3j4MO/5K6so147lEKzl2s/pNxCD2PLU/1K5dnpZDAuXa/f34yrX7u1nnnLtPUbffTjt2eLgLS9q+OXV3SDivVw7XdyMhxLkUj+uEuS+fsVVrn3k7ZT5WcMy/Xfkqm0bHNz5lfdy7XQfwQNW3pxYNfL7/6pcezCbG/ufCH+RRPjp1YTMJsK/2I9LhP9npu/kQYQ/+kevj8eUnuFpDTSJx8r1mMLjaXOefSTULF/ox6VZPovpI4tDhP9K+YuDBTuayPaMejrv8kSJ2OIi/BM5UfnZvN6Qc+5g3MEf/kT4T2h3Ju14vz1spc2z3ya0e7zRakT4dZymG2gZ05ldhD+kljjy59SKwSucnv7TySfPkqINcOEV8zKsKurAy5hNhH+C+PPNF00qBm/8e9uONppj1H5rGRH+iZzg/OxnRhH+P/ptrxBUabtkVrt3PoNqVbxmBXIWECEdJ0JgTBN5Wwhb3iYTN2n6vcNV8Zr7dddeXvyWKkBrhx3iS1KrQERn5my2LDj75G+RKPPvJ7QwAOIadXJcPMjhYJVrdaxRWg70CousT8tUPSjQaCi3r6FMUEYC8JVL4KILDd+LAN977FNMAw9WVct/LHCVwAKdPPX9+KXf0BMBS6KubfH/XULTCylK7S56sXmaYzS12DxA7weInrMEVY8YbtYal0KVx4dvjCJOo0Dnl9cdf8qeWn9+YPblb/MDX7tSy/6WlmI3Ik5I4dd5l/0F7//ej+v9n1k8WdL3TCMSJfjISnWMMppD26a2+LRM5zdRmrWyQbelMyedovZV8gOYfVXfUhzGuMdpjCvWkf4IjNmx8AxJVOtA+JJHw7VTV+8OYMoKZhYJ7sJmHaLj1ZoYd2HzDtrBGh32Czpb/dXl3IApa8ODx03adfTHyl4LqHENfkGULlWFqH+Z31QcxjrDaazDVjFy4EcZla1Wz1/oTkzWDNByjKDwzjZB0oYvZDOkC5tO8Wnax5SpsonmmOFNOHJ41PMiQxeqmWz930ZmqYQn58i2fhyf2W3c/fCIhe9n57rNbORs0WkvBOClHwHATQQA0LUYlYmSoYxdZML3X3cv54VTg3akyqY8rB1w1KKHfSEAF7kA6H5Un2iG/sf4OPTC3Gbj44yXcPFxIiXFzcepeLv5897VkoLnHu6cbvtmyQsr4OOMlXDtbg6TWAGpIDo62gx8nEkVzo96fD8teMf9T9N/H/oh2Sr4OEmc1om1BuuYhY9zLGnLaceJy6TL67y6FNlpl6NV8HH6cBon0hqMI7AkH6du2p+fjz/rHTinZrVfXv4dNt2q+DiBnMbraBnjWScf5+7u2U9/+7Oi6OD8JgdP1Pn2wsJ8nJaclmticcsVKx9n7tWT3x33xgStabhzeblK/VOtgo+D5RCsfBzgCIk8Nez/Ah+nwokb4RmTRQGTvtw7u086fL6F+TinJVx8nG3MlLZY+DiSfj1LRk59K5o56e3Q1lsTVvLOx6HPzXngmJyUcHFMDkiKi48TV7Hfz6X7h4QvuL3p3cUWgY145+PQfQQPWG3jxGqNeX2upfk44WxubPBhZVNl+DrJ7kMRqmePe7+l7pR0SYZnJwM08qR45glTI7YvGkiV2iR4eky/m5PqgZ8yFcqhZl4c/Ab0vHtux0vLFrcQrw91qzytzq4KrM/H3Mkp2Mjof2WjgAuLKHgUC9Er6eeeDOyV+k9D8GnGwtN+DhL4j3b+M6axLDC90yn7KIUKGEwREwT8+lDy4zCz4qaMYDOlQ16GtIrvb5Icn0eHN59OkdJUMNAGrIx7d4TNBOXwJsohKyIYMA5f8aXkQT8kXwQlD0OzgxIsVvIGGdlNEVEi94iYQL0zG+rfxm1bUdXTxm9XH8fsVUlh1DCCOn1ZrviRN/jEJv30Hk8nNos4brgs4taBbpEubBZZOjMj+VXwp4C5gx202ZPdf6KuifpD8oyOmZGxTi/xG4RaEPXxepfJWpjyYrXa4tWqGCjHCCmBsdjfYemwTh6nNSgHoR+RLB2qjh6kiNHfhHp05nIuft3Q3WpXmWAmBLMkitQHRdUHd0DIL0GI4DwOIb8E/9Hll8LH3e8YdeqlaOy5HWm27yOu0uWX0nvkjLqd1Ccw68jS+U+zpnYk28nDqEWWZ6J/MUKeic3SdlA9gDAj0lq3z3z6mvzj1vDVY9stFHeVdzDFWvzvhgG7Tod2XYhKeWaAITSug0UKT9rB+o79tOAdEuPyHUb+75irGe7tGzkSoRLFZqsq/vmjDSREumQNOnFdVGNPztGED/57b21/8eanzy04TVZGgn8SQuuYaCgOow3nNNpg8xqNdME2oRLcocJbRunHPWYbcoyyJXv1pETpa2WiVqHBWHfgKygOE2mrM3O/RUYuGCnZXC3NP+hWO8bwKhOWrJMPUOkFLAS0zS74rd7McOVdqNZXEcMVl1HjOI36UweG1hdnAQWisytwfRYkeHSZFM6ObgM9HbNMB3aVd0apJ+GXjogRle5FXlgXJ0J6JFtI7/LoQUQZ1YWAJXsPlRy1y4Va/bRcVLwyVieEdWWpYR3GK7aa1k4RsbFwKiJXqYjyq0pYOA+Kd3uiBUVoBQfZHgGRLxlKtwc9IxkKU3T1QxXDc5cJurU3lUdmj1XfBWNTCx8Y+aK9OmQIfk4WSqZsr+ffTXvrIL3AC/IVCyfe04qum0q8B1hpIVZZYhT3A0zwle2NY43hFlRjvQKJS0yViRGbt98UZWo9f1L2y53HWFKONQwYU8cTePN+nG8OeokVLCdjPdCIPTY7qDPEJT2lqRFd88qMxv5bzh55/e10eRdqv4R3mwv+EE74xZaBn8EQM7VQNz4iINsZvAnSIvSKu0X0FKau5nsQruCICBFg+ntgA4IIMFFsAebMAnno17Y1AsasqlvmRf3hVF1xW6woVpQ0lEk3YQsvftSadERBLWGMIhb8GiMckFqwcJs7mDDidHw4jyROpo00aAK50DfpYavbqf47VLa7pz/d5oV+bubCLNliIMbvQEojmnVCIPgdFZreAYxFM0/wX7zOadriW58W1AnY2GPq9XLdP02iuVx4N2IXD7tcWDxadFdees2N++JlLX54IosJPmRiPKoED4BCgMaicj4hcAsPqQAVNsFxxAAi+4VrjFIDui9oR7MzxRW/dx/pnCs5VOF6n49DP1JrGpeVkjcz2Zn5TYUBtrO2Ys3ikCni9LAbEzP3BefyANiMmVyAgR5lkTCGH4mBf9NCwPZj3JkxO8yWHDTGY98yR8lPlgzJ/Jry6cW1kSctSmOElnk3g8syS2dYxjLI03uHea5v2GfrsAOH/DqKsgIbdvt7yf5wi9U33OJJuJQtqIlTfy9shBBxrStbXBPuu7FL99tM8eru9RyWJ3pTy3+WjlTrGCd2uCZNzvgNIKqR58Y08JkhqVI+VKlFT5y6Xm1Ur++xPgHTKm87F/LXLH/UIyC0p7Hrhs64oTOZewIvbcQIT5VAeJqRaVx46o6/H6xZiD0I8s2e7hn3pY78n6DRfaMej3+d24X6ZvhHMN+MuF6Yv43Jsy0dKpkSmhPUsc2K9xdfmuhvRQCiNAiRFDWqA8Go9p6LDFCsM0nMQvAwEjQ9Ep8d/Tquqb54nHT00ScbfvPPopYttBGD25hDCbtaGDb0McoDNg8zubChdR/4QbYCjrIM+dgkwoP/rspE4jySFh2//9lQt9P7LyND9r1vPHqO8+x+1ERHDD+EmejglwvDSlsyuUZ4nUrBs7b+uXXgh93tWbHqplXgR5zyRWONwE/Eid+7OdYTMYxkOVXAPVEM4fKQ5ut/+OAHp/19/MfmrelZ4V3rVaY5AhPjxkUPYqTb+CHixk1PrDcTcaNbkfaS8Z5n9v1ko0cVveubMqpM3FSGhJQ9s0+QW5j/Dw==
- true
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwAAADsABataJCQAAAtpJREFUSEu1lF9ojXEYx59OS5IrF5IkiTVriWgXS5HWlFwQbpRYyr+xkgvFLpQMpRU3SEmjmLWEuZLcKGlpaRe7WNKulnQu1trFWms+39/ved9zzvu+59z5dr6d3/d5n3+/v1aNy2Y7fdgI6/w/xQWzbT6sj4tmW3rNlnvMmqUpdvOS2cfwsYJVcBF2BwXOmK0hZgn/O24qBskOq8DZmES6U5rutgeHCu7BBbgjKIBft4oQc85NeeBwSAlPma10kwIn4bDLBCX4FU74OIAZ3CLHQkFDEfqQ7ZigY95Zi5sStMFl2BVURAm/cWJGXedQIlkZp+uuhZLPYsh1NX7CB3EYQfKT5FhkP1e7qRYkeoqDpp6CgqcVdN5srZsSvICf4zCC+Datgv7dVAsq75EDnbS6ybTp2GYpdMVNCZ7AmgI0sk/x7PQmN+WgJZnRhrkOwDaE7ZPLBCPwQxxG4DNAkd8ui4HTY/jDZQD6RkHgOHwYh/E+0MgcM+1zUzG05jjOuwzA1kuRPy4FHWXdhRNBAXyew791NzgBiXoyybRE/XDSpdAJdUw3SDC7cIfgEemGIPkI/OIygMBvcNClcB9OxWE43tN8f+m6PvaaNeFYc2IIboZL6tJNwhh8pgG+LcToDdst3RB03iVnbvNmN4VNJ8kvhsmz0AT14IX1J3E4mgX3JA+SvYbqLsBPxjw2fik2Qq1/hwQfWlWAzU0fv0L4hVIymoqg8z5ss5mT0Q5VIFym42YrPI6JNwBOB9VJ9VSpNE3ggMsE+6EKpH74vIHpzAtBt3cpkB5FdLsKFjy/2kwVSPcpeWJo6ICb8iDhK7p461L6KkEzLquhzlVAM0lB7CicqnvRvIDelwAVg+9cZqHC1+Iwgu7XwzJNvde+uLkCkt1WBy6lx+Ajl1noUn2Pwwrw76DAHIUm+N/l5ghmoAvT71KbPozjUZdZaHnKcVgL4rbCQWLTd+o/wuwf9N7EUShQvi8AAAAASUVORK5CYII=
- 1d3929f4-53e5-4579-ad62-84b2dcfe9025
- true
- DIFERENCE CURWATURE SHAPED GRAPH
- DIFERENCE CURWATURE SHAPED GRAPH
- false
- 37
- 0f8c31d7-f100-4fc9-b99e-8708b1064c87
- 11426add-2dad-4504-a229-f384e437c631
- 12645ff0-d3ae-4dc0-b2a5-8da9d45fab94
- 13fa3828-fd39-410e-8b31-5743271817f9
- 1b9b32b3-e98d-400a-b04a-b8a3506fe77a
- 2c104d71-3268-4080-991f-2140f3080675
- 3a85fc51-6d5e-4555-965e-c47db2a072c7
- 54161844-030f-441b-ae36-6c8e6fd9361b
- 5524a6eb-ec21-4259-9620-fa93f7ba2dd1
- 5cea064f-6531-45db-86c9-02cf6ea8c994
- 61c94a5f-b514-47c9-92a0-139978a51dd4
- 7546bc4b-23bd-446d-b103-122a40b7decd
- 79063066-5dc0-4aad-b30f-37377464d8ad
- 7a04a069-f807-4718-8d13-7f0f8da45782
- 7fbcf0ef-f454-4ef9-86b0-8101eea0d23c
- 83120356-2358-4a65-bce7-37c29ead52a8
- 8659f01b-c78f-46b8-9eaf-29709ed0a33b
- 881d4b81-c60b-4b8b-8dce-2c40a6a7de3c
- 88326248-5e84-49e9-991f-f69c5ce76ffa
- 8d481224-cbdc-4fa9-90a5-b7c7d290f9ca
- 9e655fb0-3ebd-45f4-821b-a4410c510d1a
- 9eb3a9f5-048d-48f2-ad5a-3c4fe73de0e4
- a24fbf38-b1b9-4511-9bc8-bfe921f44089
- a6730e96-7e8d-4fc3-b6c7-7e677cc49cb1
- a90416e9-5e32-4045-9607-50c791a8677a
- b79fc36c-baff-4074-ba1c-7c3e26c598a5
- bd991454-448e-439e-be40-a2e9bda8dc8e
- c974d321-6663-4f14-b910-114ab3f151d2
- c9aec53c-3f22-480e-b045-ec9e1c2f1461
- d15cd278-895a-4f56-ab56-168db09bd1eb
- d3b685ff-4a01-4f1c-8451-d6c384158081
- d4a86874-2cf0-4b31-b7bb-8c7a64ae5e7b
- d822a4a3-62e1-41b6-bd94-a583fc00c4c0
- e693c8d5-0cfb-4d7b-8c03-ffef28614bbf
- f1bca0d8-e2a3-4ef1-b20f-8d05e83df880
- f80e638e-6497-41ea-ac05-21b35434865c
- fa22da94-54ab-4228-8fec-9daf748619da
- daca2ebb-26cb-48f4-8885-277e43200f92
- b2a58353-e9c9-4e65-a900-6efa66489724
- bae8f0e9-2af4-409d-945a-a91a08fdc45a
- cb30ccba-a894-45cb-b1d5-847ad7005125
- aa2a8593-f318-4546-bad9-74c7978a14af
- bbece122-0a0d-43f9-bd1e-b6e66ae744df
- 233b0ef6-f843-44d6-99fc-9ecf077d1b78
- 1af94696-7c3b-4341-b4bb-415b935cb441
- ddb00df8-65f0-4650-a3c7-89c56da7f06b
- a317f3b7-85e8-46ea-bfa9-b8f70ca5c382
- 43f684c6-6920-481c-81ce-8a3096268d23
- 326b8016-5135-4828-b69a-a21c171e1a06
- 2927bcb1-a8c7-4996-b4cf-1e0b73fe722c
- 8de15979-110c-49a4-bf71-f92c5c15659e
- a67255eb-66a4-422d-aed0-4b64cd94d270
- f12cf189-9dd5-4b8b-822d-2da85bac7a45
- 17750273-1d4e-4a10-92b1-f4b16af3b73c
- e860b9e2-e037-4c18-988a-393d0094d8e4
- 937bac2b-aa3f-4485-8435-a74b05842dda
- 88db9398-ca86-4220-85b3-d1387046010f
- 81fd98cd-c9a3-405d-866d-edf2fca2467f
- a7e4f8f7-1ccd-48f0-863e-6ed19022d27b
- 3d99a0d8-87f4-42b3-ae8c-13046d610738
- 9a110ceb-3e62-489e-8e19-61581f5671d4
- 4a525765-a9df-4f3b-8fae-c2be3081d0b4
- 7e2338e0-fce5-4964-bac7-ea6c242afeb1
- eabf9208-959a-42b3-8af1-f5ce33e4d91a
- 9c973484-e313-4490-a780-3cac6484f2c3
- 130433e2-dd09-4dbb-8e9f-946a284f4836
- df2cb580-23c8-45cb-aac6-97ce3b2e2214
- a43519fb-325e-4058-bda1-f7e34cc92c6f
- 16c32cca-03cb-4d8e-bf89-f521eb08129b
- 36be5f7d-3d93-4e60-9b58-2ea01268c3ff
- 59e3ea83-51fb-46fa-8bda-938de18b7cf2
- 20d03587-b988-43e2-924d-d6655441a5e8
- 735da924-e3a7-45ca-9564-36c125627c0a
- 53133e66-86e1-4322-bb85-7afca5c21f4f
-
1444
1406
103
404
-
1505
1608
- 20
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 17
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Second item for multiplication
- 61c94a5f-b514-47c9-92a0-139978a51dd4
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
-
1446
1408
47
20
-
1469.5
1418
- Second item for multiplication
- a90416e9-5e32-4045-9607-50c791a8677a
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
-
1446
1428
47
20
-
1469.5
1438
- Second item for multiplication
- 5cea064f-6531-45db-86c9-02cf6ea8c994
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
-
1446
1448
47
20
-
1469.5
1458
- Second item for multiplication
- 11426add-2dad-4504-a229-f384e437c631
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
-
1446
1468
47
20
-
1469.5
1478
- Second item for multiplication
- f80e638e-6497-41ea-ac05-21b35434865c
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
-
1446
1488
47
20
-
1469.5
1498
- Second item for multiplication
- 7a04a069-f807-4718-8d13-7f0f8da45782
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
-
1446
1508
47
20
-
1469.5
1518
- Second item for multiplication
- b79fc36c-baff-4074-ba1c-7c3e26c598a5
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
-
1446
1528
47
20
-
1469.5
1538
- Second item for multiplication
- e693c8d5-0cfb-4d7b-8c03-ffef28614bbf
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
-
1446
1548
47
20
-
1469.5
1558
- Second item for multiplication
- d822a4a3-62e1-41b6-bd94-a583fc00c4c0
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
-
1446
1568
47
20
-
1469.5
1578
- Second item for multiplication
- 2c104d71-3268-4080-991f-2140f3080675
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
-
1446
1588
47
20
-
1469.5
1598
- Second item for multiplication
- 83120356-2358-4a65-bce7-37c29ead52a8
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
-
1446
1608
47
20
-
1469.5
1618
- Second item for multiplication
- 5524a6eb-ec21-4259-9620-fa93f7ba2dd1
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
-
1446
1628
47
20
-
1469.5
1638
- Second item for multiplication
- 3a85fc51-6d5e-4555-965e-c47db2a072c7
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
-
1446
1648
47
20
-
1469.5
1658
- Second item for multiplication
- 7fbcf0ef-f454-4ef9-86b0-8101eea0d23c
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
-
1446
1668
47
20
-
1469.5
1678
- Second item for multiplication
- 12645ff0-d3ae-4dc0-b2a5-8da9d45fab94
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
-
1446
1688
47
20
-
1469.5
1698
- Second item for multiplication
- f1bca0d8-e2a3-4ef1-b20f-8d05e83df880
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
-
1446
1708
47
20
-
1469.5
1718
- Second item for multiplication
- d4a86874-2cf0-4b31-b7bb-8c7a64ae5e7b
- true
- B
- B
- true
- f6f14880-afdd-423b-afa5-2122f025986b
- 1
-
1446
1728
47
20
-
1469.5
1738
- Rotation angle (in degrees)
- 8659f01b-c78f-46b8-9eaf-29709ed0a33b
- true
- Angle
- Angle
- true
- 0
-
1446
1748
47
20
-
1469.5
1758
- 1
- 1
- {0}
- 0
- Contains a collection of generic curves
- d3b685ff-4a01-4f1c-8451-d6c384158081
- true
- Curve
- Curve
- true
- 88cf909b-1dfc-4acd-9ac8-315b06ce095d
- 1
-
1446
1768
47
20
-
1469.5
1778
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 256
- Contains a collection of generic curves
- true
- c9aec53c-3f22-480e-b045-ec9e1c2f1461
- true
- Curve
- Curve
- true
- 5d1cff17-fdb4-4fdc-8366-b759fcf7a3ba
- 1
-
1446
1788
47
20
-
1469.5
1798
- 2
- A wire relay object
- 1b9b32b3-e98d-400a-b04a-b8a3506fe77a
- true
- Relay
- Relay
- false
- 0
-
1517
1408
28
23
-
1531
1419.765
- 2
- A wire relay object
- 88326248-5e84-49e9-991f-f69c5ce76ffa
- true
- Relay
- Relay
- false
- 0
-
1517
1431
28
24
-
1531
1443.294
- 2
- A wire relay object
- c974d321-6663-4f14-b910-114ab3f151d2
- true
- Relay
- Relay
- false
- 0
-
1517
1455
28
23
-
1531
1466.823
- 2
- A wire relay object
- 9e655fb0-3ebd-45f4-821b-a4410c510d1a
- true
- Relay
- Relay
- false
- 0
-
1517
1478
28
24
-
1531
1490.353
- 2
- A wire relay object
- 79063066-5dc0-4aad-b30f-37377464d8ad
- true
- Relay
- Relay
- false
- 0
-
1517
1502
28
23
-
1531
1513.882
- 2
- A wire relay object
- 13fa3828-fd39-410e-8b31-5743271817f9
- true
- Relay
- Relay
- false
- 0
-
1517
1525
28
24
-
1531
1537.412
- 2
- A wire relay object
- fa22da94-54ab-4228-8fec-9daf748619da
- true
- Relay
- Relay
- false
- 0
-
1517
1549
28
23
-
1531
1560.941
- 2
- A wire relay object
- 881d4b81-c60b-4b8b-8dce-2c40a6a7de3c
- true
- Relay
- Relay
- false
- 0
-
1517
1572
28
24
-
1531
1584.471
- 2
- A wire relay object
- 8d481224-cbdc-4fa9-90a5-b7c7d290f9ca
- true
- Relay
- Relay
- false
- 0
-
1517
1596
28
23
-
1531
1608
- 2
- A wire relay object
- 0f8c31d7-f100-4fc9-b99e-8708b1064c87
- true
- Relay
- Relay
- false
- 0
-
1517
1619
28
24
-
1531
1631.529
- 2
- A wire relay object
- 54161844-030f-441b-ae36-6c8e6fd9361b
- true
- Relay
- Relay
- false
- 0
-
1517
1643
28
23
-
1531
1655.059
- 2
- A wire relay object
- 7546bc4b-23bd-446d-b103-122a40b7decd
- true
- Relay
- Relay
- false
- 0
-
1517
1666
28
24
-
1531
1678.588
- 2
- A wire relay object
- bd991454-448e-439e-be40-a2e9bda8dc8e
- true
- Relay
- Relay
- false
- 0
-
1517
1690
28
23
-
1531
1702.118
- 2
- A wire relay object
- a24fbf38-b1b9-4511-9bc8-bfe921f44089
- true
- Relay
- Relay
- false
- 0
-
1517
1713
28
24
-
1531
1725.647
- 2
- A wire relay object
- a6730e96-7e8d-4fc3-b6c7-7e677cc49cb1
- true
- Relay
- Relay
- false
- 0
-
1517
1737
28
23
-
1531
1749.177
- 2
- A wire relay object
- d15cd278-895a-4f56-ab56-168db09bd1eb
- true
- Relay
- Relay
- false
- 0
-
1517
1760
28
24
-
1531
1772.706
- 2
- A wire relay object
- 9eb3a9f5-048d-48f2-ad5a-3c4fe73de0e4
- true
- Relay
- Relay
- false
- 0
-
1517
1784
28
24
-
1531
1796.235
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- f6f14880-afdd-423b-afa5-2122f025986b
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 2
- 0.0625000000
-
1035
1399
250
20
-
1035.916
1399.719
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- DIFERENCE CURWATURE LINEAR GRAPH
-
7J0JIFTd+8dHZW2jkEo1JSIl7XvNWMZgLKHS3mAwYmgs0aqSXVGJUFFpobKE7LSQ3jYtSrt2ad/1tv3uHXd0587cG6875vb+Xv//26/mzFx3vs85zznnOc/nuXJGno6+HiyOz0/gR4pEIkkD/3Xzcvd1YXMW+bG43mxPDthkDbwMNoM/suBb+J+js5hOLC74FmmoWYHfZGoEviwPvDTu0Yv4VaGHzOO/cBpdjJZ9lrXmsvzYrGVguwLQLmPrClzFqTv0sgXL29UuwIsFNneEfnFXqM3Sk+vBdAdbBgOvpqSk/OR/ypblznL0YTnx29hs9k9lI5Yzm8P2Ab6FNdfTi8X1YbO8+ZcF/+tkxPTh/R454B9H73uEx4TckutsxPJ25LK9fKAvD94iqZMl04PF/9fLjvZ0Ez29B7nbG3aGAX8+iMsA/rwfl3U/Lof3F94/c1LBP2M28v6Mvh8T2/zO6nhL8O9bgsArbAM/8iBpb/Pf72/dcn9rbPPb7scdbL5a09uaLtIQdxR8fftagV/N/yx0S1DrQcHb2/Hr94Yn8N4cifX3hLTmC0J/Qq9gfor3d+gb8X4j7AYONt8bdJ/82/71Hl5r03eEfinvu0Oq8q4A6cP/rLCSTQpDajf9Ir4hILtAVxMwHyQvz7J6eiZ0e3kboIeBQ8GbP0zAn678Vw09fZsGUEf+EAA6mxvQGaH+0wF6WcaOyXVh8d7ZH/jnDi0Saaoa0LPmenp68EeQ0tzz06VnAd1Z4FfJg68I/Rp5G0cvBjPA09cH/l4FE66nr5fQm7uY0KkMtgOXyYWGgBQ0sqQF3gq+Itv0vgDePUMfV6R6e7M8HNwDaL7u7vChQLX2dXZmcZ3Z3q7DyLOaPMbU0Xr64P8NIxv6uvv4cllTOSxfHy7TfRjZ2tfBne1ozgqw81zC4kzlAFfrzr/0rF/+BryyLHQVGaqvj6snl/9yVwu2oyuT5U625gZ4cjuYOvG9TEr9DvVFI2cxMmQ2sX/UKywXGLEKv25TFuX3KP1yFlYOoPmaZZIG/ujc9JqAWODrMk2vgxp1gPTrZDLzl+8budemYl7GQdqBvd3Pnlj9cZvAXUnzbCVv6MnxYbI5TX5UG7qKjIEnF3KtfMPIGHq6e/py+R4O/F9Rvqo/lewCXpfs6Uw24TK9vV09vQDfR/Zs+lYdTI14vQf478eiw8lHpjVYhOxPj1e29TUGmqSgJm6OkkNw3wrzfdpXnDTqPr4CmjpATX2PLkqqm8GiZ0ZmrTnUfYo50NQRapLtqZbnrKhoWXz2qwLHK8gAaOoENU27Vm/ZOz2ZkXr9ekjRzY4NQJM01BRuYBQuH2tC37qzfssqv7CtQJMM/w5der4qZV63Wnc3zu8Uhd4INMlCTXmPl52okKm0DHF4UBnyI7IT0CQHNaV7MPZ/UYqxyK/TfaaQm0YFmuShppeDPpydumqG8Ubja2fZCi5LgSYFqEmLNTBOeXYYLT9isSxJN3MJ0NQZavLrJncmP0aPsfb2rEN0vYZioKkL1LRz48ObXl0vG8faTWQHa0yKBJq6Qk3qEaGdRunestpf93rVjamxN4CmblDTi0CXz4vTUunHZOqMXGVipICm7lAT2+wE2dnyOWXz3nE/nqtQXgNNilBTJ2kVHaWhfozMT49ND4d8mwQ0KUFNx5xHnPKnTaPvmdnNZbW0wgegqQfUFPtj3ktTf6Z59oltDT0m3bMCmnpCTUs14u6eMDjB2LB50Or0mKUdgSZl/gW397t+PWkKNZQ6V8l6h8tkoEkFatqk0PUMKfuw5TF2wuq40oZSoEkVahq2d2B4r2W2xvv871PvX0/8G2jqBTXdyoi5onVaxixzSJcNWRYDpYEmNahp4SBlizrSMpNQywrtUWOcjgBNvaEmurebxpLujwxifko5JPUt0QOa+kBNpPSNjt5zfWmlnyxPzR51SRNo6gs1XU7IXvpi1nLjSGaIjrWhTBnQpM6/+T3dspkpGpT1l+aOzPccFgM09YOabg+06RV+OYR+9J15tt6lMtAo/aGm08fjPxt060bLOzvSZk5m2TqgaQDU9NfLsujvX2VN0+x0nw0Jzu4LNJGhJurz0FOLvDItNlb1sVhYVh8mZ2q0SMCDDAQ9synH24fJcWSZ+LKbnZmSvsqnPUY/zFJGb34Z/epWnQi3IWfJdlwCf5mkQPXx4bIdfH2aPDzkuvkuSgo3FzWgHV1USa/Fh1PmhVoWnv0UaqMTYAtzUbR9umWyr15a5b7oqF3P+lIJc1FH2NXyZjP7mqx7cqf7Kor5B5iLSj/kPf6EuSktuJc0g1Y1URnmooxXlydTQhvNNi5I4hg8z9OFuahL82XVi5buMsydrPpx1BxpDZiLKpvtcXXeR1/T4JG9/WlBmqdgLso/pGLFxqHjKCnDS1PlNGYGw1wUe9/qYtaYy6ap0aSJ0/XKk2AuSu3nSNIFF2mTCKXeR+InUIphLsrayXz/iwB3SvoxrZCI0Z0Pw1yU3RBd9StPSiwS5Dw4IZsv2cBc1OTs9wMnXquxTC5ZqVE9atBhmIvSCHAbGnovyiyuenulXcqg+TAXdSL8ZOzVCK5lxKrjN/etvjEf5qIYO2TV/PuwrA6eYN2o+KQ2BeaiHqaOezvoSX9qCneH/UvZsuUwF2W5/t1A09gi04IYi9kKZ1Q/wVxUYuH3Bwe3pxrkechsTEh7pwdzUaMvsxhTZ8ibBOWlhmqu7LMT5qK4N+IOFPaYaJX64fjXOcMPP4K5qLlrOXnDIhIt4w0cErJ/vpOFuSgjL02bPAVbs9gLtfUbLCdqw1wUtfE7R222jvHOa5FP9Lmqg4TGqxraeB1W/GBW3sL1RhkVdru/T66pxmG8dsBtvGq143gVsW7gj1cR6wb+eBWxbuCPVxHrBv54XXHDvefzHaZG+UFldnvPaF39b0nx35KiBUsK5KwMW1IEGXbMT9fwpKZfMVa/dDxFEbakWDT3S90C6mDjI/aTGIEBe6VgS4phWmPUTluo0ZJZJ+Z7XKUWw5YUV2aNY5PT9xofTIhMPfDl0DjYkmLRUYY0fcNTw7U6umWTlKZeFnI2A9CcDXLZjoOz6Yibs1FtR2cjwqPwnY0Ij8J3NiI8Ct/ZiPAofGcjwqPwnY1cgJrmq4Icy/CzHuk7ax4/gDmb9MZDMQsKvjCiDagfJ65aHQJzNiL8EN/ZiPBDfGcjwg/xnY0IP8R3NiL8EN/ZiPBDfGeTdOfgJLf7n2kR2xwHPndb/g3mbJDDS6jzdkfrvMgJAofO2wmt8+o9dRj4jdtovnXO1doRB9KUBX5XFyO2H9uJRTb05fqxBPswaFjQTKJ6pw70MSbZEfwgmc3x8SSzlvoy3cnuLI6LjyvZm+UCxj+9ZehsJycWpznYIlIOZBdGv0UhVQRaEQo1x5wMAKM48V7SAP9dd6yCVJtaQSJ9MiCRAg2krdl+nj78NT1JPw9o3VvR2YvJZXosYnO8fHmBDVlIW1FydOf9djKggRPvbkR+yRvrdhctSOhHSysYX1czO/S6oM1FfzvoZSveb2sK+fJCXDK2gAtxZPFdgId1iPPIruvNt1Zb35z8bUN056ZmoaBWC/WpBvSpAvUhA/okU5H6AK3+qQL6SEH6dEDRp4elr4cD6Lycm/uFSIl2d6F9C54+1HRHvLX77Fs1oxESgV9HhES8l38nEXICxUEibUyJgC7UzRoMsnn7AN/XiOnDbB4DJFEBRxkDLiCHKwk2jIXf1Mma6ePK/+YdV+iv6mTqw/IgkX4dTMhweFLzPwS+D24p8NIyGJbqZevlzvZpthKZ6UNewuYsEW2ukm+vy4b1O8/IKFj2qVhpn76guczBzwmbq+llIXOJsocIp4dlj9C9WPaYIBl7yDp4erqzmM0OkNSlyRqevj4IxyJDdXRkeXvDLy/S14AODwzdkr082WgD6WPQ956vLRdbJmyOYdO9aV8FLCNjzfugkGn4r+Num1zIncwXZZsPOTx3IiCLVOtlGWTH5LgAhiX7AXOhJ5fXc51aoFS9qcKlTp83mwSPNM9cyzlwUkApOeiiwlr9ahGHWtqYagGeRUCtDq1XS8Ma/DzLB/DJfkx3X1aL5Vry5H5j/Y1J9Kw5GWuvat0ejThf4F9VWDB4mzgk4w1+VMmAwQ8tk6RJKMukM4lMxveJvUzW7esv26CxolSwIzCAVRHZ1oghvESSRpHYwJDLYvqASyR38LOQRyU7gecrLCeyQwAZUJfr0yT2MLIP1H2ZHCdoCaW3qkVrJ+QaX/R9C3dgfksLNc7MryDp7wE01jEUsWYKBTTW3y20ZsKaaRR5NwDTQOS3S/vmd6+fZZhJ8vkTx2rKknMEpxhb8NPCU0zTy3j3smRAATKowCtRvewUsGqs3i2RKUbB0BPYZbI50Cn+aBL6D3LRhmUgNZ6B+P1S24nNbTrN1RFpKK9HlfHdWL3paXIvNROe9fhbwFDyRvwPCxkL1iQOgwXuxjKYvmQMJtM0Rwka6810LGP9bt3WmWesJsch0j6bumk+/5z9zqCoLltj5OSlRoIrAgbvg8IrAuh1cVimLgXLMtEpkl498w/9QcsIrdlkSOhzaxcGzN+LtAVyuyZgi07gx4Us0fQq3nbQzoFcWiYVGMFIp159lDdCoImT3/v+NRMnMgImxokzPx1r4sxPExlsaNvE+aTWnbViwHSTTeXmX24aylLaMnEittLIzUUbt9KgMziQjuUM7NP/f+fVSwbZ79+OMzE/etvFx/HQ3D0EmVflMA0G9GjCzKv8n1/zK3JexRpsv51XRxv4JMotybDcTQnMTH71PKRt8ypipKne6XPvZ+AWWmwexS/h9uYpOIw01zQsw6lJyHDtMu1Olro97bGdo0HmlQgpVekSc4lOuzyPhzrtAgMImnb5nVNo2rU8RrtwhnTKMHBu78nsBjMlgW/TzcLX3Yft5c52ZIK3Ljz5ovX3vhaArVgewKccme5kD4GrtGhWRZ4QYd2WkNyI9hbKqXgMEGw/IGck0K31kXLSgW4tt7+ia3P8gd+rQRl4IVJT0BEI2JLnFXgvmzrxx+Icp6qNUmXyRoWvell01e1ZzW+XQmnvbMXrtkKjQa7pdfQLN90P73ZJJOxzh340Ntfbh8wGhhPZ2ZOLsJdI+1T3l9cc16W/RWyXjbFfFsxzEbCPFFXIJMBLyO4vhfBSyCO3NnopEmDOA6A59akivNRVcD2wvwImktRvROpvy3L0BBaHrVFpgN5Hit3Frkbr99yLsrpQKCeokoGwSga/VSk6e398oOomRsw1SuDjoTc34aCSHKZK+fsqoD7Y3Jew/KeaDcsbEAY8o2mBQMiZSXDaa7qU8LQHvY63P63PhXpMIxU8AEBo4Z7LUwryp3Jo/nRb/ccdw2dGMgr+sjpu8jN5kGBk09jfi8vy9hbypVgLPVVjMLbK28pwyKzmC8CuxX+nEs3KxoJqpz1ohf4km1WDhlnptMjXIg/P0W5ZOBj7q62lIVYwlhIDSDwO2MXUIbtbHSCxYowIH8s/lBbhY6VE+Nj474GFKTH2pnn7D1pSHuveag8f2vOXFmQ/JpfNdHAXfX6r9qFY6txwKj35Tc/S+6fWVAiqPQv6KNlK2DlYtbcLLQes5RUDOYdypLW25vOs1RrnoPzLOfzqyCJVmp2ecIF2+4NJ6onem2nDfBNa5BikyLj7hMVHIQnKKSIkoB/lSQD5BHk0n5CQXzcn5FGjaWF+bmHWkvsMwU20NZPDchd0B/wridJQm0r2Aj/Bm4Mcfb19PD3IHE8f8OwFmJ18WP4+0FmMSF2R2TAibkU4Y0SUqo5cT3d3G9Cz8/1X08+b6Yg+ibQkWp+Um+nN4toBt8//tZpGnr7gSHAEZpAlYFIEy4ntA313YCYGdxYPAvch7Mgn55B2pBdUkLQTADvOMiQFhhgqWDC5LmwOg+Us0Ck6N71sw3ZxFaSDml638/SCvyrYGZKNCyo6kRMquvNEFETkZPl3JSppi8tcZspxYjvCUCJ58EVwuwN7ibemBUNZv5y5rRfLkc10N/R0+vVZYO/nw2UxPZr/3Wk2l+n1y2E0dVUFtK5KdtHIC40KM9hy8hBj+5eCFYL9w4blzgwQ7KpyJJEnhmi9tyeVvIzNZZG54JWgLDSRHRWZmyXiRlo0/hG9Edn/2+gh44EF0uJEKF8gEOkeGoH5jJzIdw+dCa85cvrASXNk7isOmstFY2letYmveRc0zVuditmZr3l7oGTC2Yz87aGIbEZ+KqaIbEZ+KibSsEIZhuACS2SXQCY74pBh2BXNJkvL2LpsyzTDY6VW7k8fzXst8Ls6z/AFpwFAOC9X4cmyFTkLg43Y3l7gQGCSvVm8pUjAcH7yAvD/gI2A3yBSC2R2J+r9CSki0Cg0XORtPbk+VvBeJWIQ/cOlXfPVkPMhuLRLBgaRqiH4n+AgqjHKr0jiJFd05XPgwPzE8he4XJMpu6GZsoS1L43z/SwjaljFUX1ujwWC4WYwG5EJsqzCASUZFKtNbt4E+biyeNmivAuA5uMnjzJ9QJOCU6Izm+VE9uJvIvRatAlCcgIodywcIG9uaukuE9hxZ3oAyv8tKmsU3INmLmlV1qhSc9YoC9JI5BccnrV6/I6zl8wOWswwWT5nzBkc80aRtEQbHXwtoFA0qBAdUOgN0sGDYbpkd5F5o2gKaf5KUwJ2Z029xcnTA+h4v1WNZPfde/JXRcbGYapJV1/WqAh2i+brCneLX02/U69zt7jY0lwdsygtlRvrXd/o4KAe0IMw1Ct3q2hVSFyFl9D3SzpgoK3wWSVSrji5CZVHs8cYrl2ot7xjxI2ziO0FeB3hTtb0Mt47t9BcqBdNEXVKcS6ngvTGXThdEEuHXs1DHcoOxFJiaHhHY5quGi1+ze1pu494ZbXen4hFEWt3LEWAfiOUEthCRRzZXEd3zL7h5WF2rMroLbWsTMdgrrHpPIIoorgESxEvN/5SEoQw/lQwAkm6tQMYEeiKBUYEOuMPRnxcXrxeyuYGY/3OmG8751OqiTvBgVnmi12xsszLXcQCRhSmmi/u+lyJHvrY4viKQws34whGIAk8HCQiu2BJBHShfzsYERi63d1B6odl0tvhNpROf12QMBhRx8KyB4X1fwRGrLn23NJnLI2aGr9LUWP8um8SByN47gQ1bx1wJ5ICI2xqh7p9UQ+wzJ/IeZL23O4KIcAInmdBVQvwLBIDI5CbAcKAEbzBjyoZMPihZZIiCWWZtGvFtppX9UsMDxzW+X7h4qgaEdOz6LiOKH2HQO8EAzaOnu7uTSlq4PwHdBoWl+3YtG5q2eoIObvLWjC9vNgcF75S4NfBcTGBxNjbOFOSwcWEdQWYMiN8QnU+P7fCK96KbxwlNOM4aAdrJHQqpeTaD1ZLO3tDVeDrdjcCMx+8fbi+jj5kKtex5Tm4k21YwFdg+TVFbRyY3iyylzuTwxpG5jKd2L5NR1bAQHdv3o+D8RwOmcl1bFnUBlmMAfO+hQyGfEMLFY8GF2hcQPFzopa3gcDyttyrVctbdeB3k4HtpGHTHgpc5v66MZHfOzN52jcfGzYtadb6YRYntwrG1zqK+q68F3/XNZFbtDZ2zUAwVAMKlSwqQY23zvVqXSiir0FzH+J1lSbdmvaeIoWizFc1/lS0wTRlEIs77VzjakF/yruaNXg1YX8Ka8Pbn5LzIF3sRflTOuBtSdxWhiZsmsZTizTZvb7xo6xWR6M9V33254Y/OY44W+ddSUTSTdPr4tBi8VIsLZB95HdBCTIV7lC0gf9AZ8PkeOtA8ogUxe7Jug0xlyqMymaTH+3oW9VD0OHzLins8JteFockZC8sSQI9+R69B5pHH7F5VUC/ST9oMTPHRpAS58QJdnwrYPxY+QGrE3thZ94RRdeehp4egPzAwAMHH/hh/5Y5aWRZHLRbER6Dv9paKJ09uG3cCKbEGojILyIBwmZGtco1d+ZlADUt4kR+uRMm97dxVmuYpmePu6jyplowUVV6Fvg54X7T9PLvvDGyjk8bvTEd0EYR1KZeVDbP1SZtWpcr3ZT6g6GO4VeZm4klfkaH4xuf9WU+WSbR/L7kXEiARlECDM7lCQCNq55o44owh/XIU3WcDuuRFsPjsH4T5mH9Rr7mymia/4E5lciiXmLOqdT3x8qptF72L8+prJQZ2vdYTiezPI9D6575bCnEM6cSZy8M5lQq+mPlVALWEk9Opb7dxR3zmJPMw5ZN1paLfK3aImcsppxKngSoOZWABJBPUEHzCQTKqURW6RN/TiXSkpLJqawFAb4NgB0niiunMuxqfoVZxw3EzqnkJ8OoonVV4iwZEDUjcVoyIPs/DksG+2CsJYNaMN899CK85sjpAyfNkXt4HDSv9sHS3NqHr7kamual+yKnHfieYZZbPsWuqshbcAst03REKSg61pnmCNQQr7O7J+AjOS5NcXRy04GcaNeMLNcm6paE9x/Q67+zwaiabcojjDUZ2802yGXaHS1p68oArFfBhBJ3kNOi3OfcCrXziyV95PlrToqmQN2hN1p3aHXAnz8ExR7wR5a6xTG4j4SDcegT9MMofeLWx9wK2uND/HHZB80Qrc51bvaF7ZDrjLSFUGoy+FtFWhFZNrUlqcnSotJY+F0a0rEvmo4X+z1/9mmzhUXQkW2Dhi/+KJgL3cnCU1SCD9rJyFA7YGh6u4M7UG0P4JM64Ea0SR0y090TcG5M6KS1ZTE25KMdhO9NGEoHX21hP3wDxuoLgX74TRQbDcbVFAtbFVfryguvu7A8gT0pN0DkVyroveTvjb0KDUsy38/fbnp3guDJsQn0UeGT4+aW3+3skF2vjWMVzHrKBDWiiArb8o7pCluX1cPvI7z9L68ziD4Euzp4YFqNnGV89Z4hRxv6Cp4Zy1h4imTk+a//zqHpnffn0Gz0zQOV7aQ7M0i7cBBJEVOk8gLiFf3g/wymtCo+2rN5kDthd3Xtd/r9NFnXreLV7UsGT8+60uaujkeolNeX6aLMVJvD68utOqFq0sIZfOQcrz87AYYV7cnMEpUXaj5mRAXcf2u2uucPwTTR5qsIp4n+ahJL4BhTDaDTQrOHOgll9kjXK5g18NJnw61X3Gvf3GmoRcSomhKK7efMbTkTodVc4QpKR3bmenqQV/gHLF8FrJE8vDw5YAJNy+YP5PN/0O5OOF75q62lp8L5FbyYJYlsKOL4nARoXX1MaC7h8/YiI2DQLazwh31vkd/SlLL0py0tlxHhVJyjovIluocpx4fFBXqKcNy3w3B7Qb7H/te1hfkeeOPvPOqpM9WxW4KPmie8WppZ672/bxs9qhcgJRhUJJ0S1TkPAFMz8A7CbBvelLVmBmy2bMDvLHv4Dikr4FUhJdePbNpz8rREQdvNwbLdnFbYzv5OQICFf6RBOnVAgtTZyW1NkABtR8a0HTAUCGO71mW6Nttu+e9s96F/b1V22UrGrpQnUsqcQeGCtpuLZbu5WLZro9cHjQNmsKAbR59QxmnV0kQRsg52mhFy8Se4smy6hPDKEnod91k4B3J0cqLAJjWglZ7fujVJV0gEjLps6drJmT/ktIwPXPl+t+BQnzeSrXeaw3MIGArYH+OvQ/qRUNYhWYsYT+YHZZmFKS0avUG1ULByk4wtC3ymacv3sX2b1yDevE+CG34oINeyhQfy6YKibkdY4KbXW0FcgtAJ6YOofD1w86qf26qa032a6mU1fU8ySBG6sqDvL/I7KrzrxVWb+cl4R9H23GXhuR8lWH0apAPB/CLRxJM60FqdSxyn9mZ6aypiDrb1YXmRvdnLWbxzPBbT0ZXs7csL57P9WJC5RBro1XDfNT/oziZba9Ypq/oXfBGMnoCXFY6e8F4Vh3kCc7HMo09Y8/DT5NHM0/8XpATlxP9+5Kw3dTVna60yPjrCbjfJ/iLi0Z1tApaQDyjFAbuty8GyXHSOpC3HB5aEVgooh19o86aSLdLXizQecqPz27z637h7sezrm52hUH4ymBAGjDZoPu1PQplPdb73UjtC7mica/DmK6u/i+DzmDozAGuTm5YDLc+07GfBYnqDUC04OiDek1fowB24WsumVeSTeVHvSnhNDWtsoY7+4KOcMgEdT4jKuvQCU8AyRe7oW9Hn5HkBY1AA0X3tS1rS7PndzfN0RwaMWOsjmA3XCfxKooqyev/eTeCMfroCUrmCUsWLSv8B3QQgFSrCJnKf9cutgqUpeV6VIVIjlfqvT2bZmjFi4t567KV49UGORymh8djO61vFPEgcUaddPFgbEAcajwPQxiOBEoOQUwzuiUFCvVUuNGv4gbsrLNMdcvcbRCl3kUxiUD5gR/+jzfFSMSQGheTlVSxcehSPxCCScGIQCd9ia2S0rjqww4Z5Q3KvmUc6PKO6nucIZid0tWB6e5OpToAdhFJbQeE7oXVZYI0BRsHJHuDnmdDnf80fzY6iRfMI8lntGLco1JUFm1txQOSaDdUOEDppBPNU8rPaOpcMgCX1ezfV8oVrpSc6ErB9R9qBqZNMMgw2WsSdqkKcovOuKLwUbXr5d3MM0jHjwM7bgxLWUknCdWydjvEkbFW0qBesqC9cKZFCIX2QRHP+J+RBWoSKWpZrg1NKdpvZ6F4MaFwB1/EBfASZy/syoieFHRvzB78ZkG5UMrzT3DHfX90XRBatoSs0ySG8FBZ6gzgEA7oHhmCuWfw5eCCaY2t1xkkPvuDtkHGCTJWAVddDnoLBqush41Sw6nrItTbsQcfIFQDsQcdIzwp70LHey61h4dvCzLf97PGl++ALi2APOl7xbMbbkZFaRgdIo19JF4YEwx50rNh//5kC8w/UDXVH0qYsvz0G9qDjcdEzKSFKr612yGcsZU4u6Ad70PGljJqwLSXnGYlx6h13OVz+KZR/AxY+FNmR/3pZFv39q6xpmp3usyHB2X1xKA04CK1DEb00IPIx6O1aGvAfEgrNVxNVGjACpTRgb1p+xWl2xO9LA2qgmfJPfc5TSa/Fh1PmhVoWnv0UaqMTYCvG5zx5vcJ6zpPXSzE85+nYxQ3B+xzSzXcPLVRXOFG5py0havE/52nxK6ynzyi++v99ztPlqTejv0zYQd+qeJpBU+n6liDPeSp/iWUwoEcTLuVLTM952kaaMslQwZ6W0sOvoeb0khO4PudJ8YJr5yuGymaHho/cfnC47BYcRhoZ03DVLyQd0hbjc572m06Jzuozw2o3q0vyYrerOyX6nCeex0N9zhMwgKBpdzAJZdr9Axla2j7dMtlXL61yX3TUrmd9qRQzQ0u/icXQ1t74lzO01xKr5saqPrEo6RG77dKNR5/xZGiNV5cnU0IbzTYuSOIYPM/TxYGhnXATi6EFrCUehjbb+kVKx94H6Imrnb5nyIbvkyRDy5MAlaEFJIB8giaaTyBQqPwIu1rebGZfk3VP7nRfRTH/gG+o/PSFDvVIhhZpSck9l6TugTifS7LBqKCiQ+0DYjO0/FC5FlpXJQzPmX7Ie/wJc1NacC9pBq1qorKIG/knPCey/+PAc2o/wuI56x/y3cMQwmuOnD5w0tw/pGLFxqHjKCnDS1PlNGYG48HQ1mJpHl3L11wbTXOiB7ouzZdVL1q6yzB3surHUXOkNdo10PUPlxFogS5rYKGg/Qwl0FVonl+RpPXs94EuHcIPnxPhJ2OvRnAtI1Ydv7lv9Y35xK0UpFaNNXxqL/KHz1A0zQ2u9rrjN/4o5fC8hWoRs0oEVzTK4Ff1AVMBjdjOziwuC9BJRKorWlbOCH79My7/Mk6/LsNb9fw6YAXpphbtccpme1yd99HXNHhkb39akOap39+wkKlEvquFolcdA/Y9NWBNMFGZO9aASWqvtvW0lcqAiQKul8AVCJNXR46sDeWPgRULm6rign9rLjHs7u65jOUkOtJV7aH+14j6RYaBiVpxa3U7pSJy03neTERuetPrv+vbSRTpE1cvTKLvj7r0uZL+7mUb+3Y+IPMEUOZOohJbxhzjydzWwtWaMPOTHVg+y1gsDi+/n+Xoy+sevFN/kVo+D73xeWjaE6vU43IWd27mChYG6fzruk7CXh3eiPcm500uJNt8UbIp5/Jkg1yCLuHdMHK50RI3LGKLg+ipSNPhUXzlGmbxlWt8yYcRXnL2vtXFrDGXTVOjSROn65Un4SM5cj7FQfI3l7Akz7zEl3w4muSEfp4dsufDTtyRFoKduCOnRtiJu7WT+f4XAe6U9GNaIRGjOx9u+fPs1H6OJF1wkTaJUOp9JH4CpRiHQ2s9NJuc7abxfuQ4T4vgd6/N9a6sMRbMnbJhAStwRxbZ0tfdvRXAzXD+5zjg58DZks0Blu5sp6bpdRkbzBX2cQXs0OI1CFJNjPsUzvESaG5pgVtg4V13BejxnQ1F5HiBOSb6V9q66lA15SXDAssN4GZ8eMszUDGRAmian1uypoe+ydrJyRZdrjk3IFK7wAuJSO3ivfw7X4Hs3230FYogOw0qt1vUkcw58Mk6V1BrTLRQub7NynEFuhrYtUTKN35AWY1KtxsGh6+XdV6QX14l+HQhqIN4iHzMg2Ar7vnE+byehKFW3eV2PcDi36icXYAXC66DBsyB6pmzuByWux74Hm89E/oiEFJ3YXERIAf409YloypvaQ4aFrgEmckJaDK1SCsjl8RtGSRttGtVDjQK3lBF2NU6hzcKWkWCqiGT6KGu7yRSijP5m1LT9udZpjlte6A6r1DwLK2VVBIOUuhjSgF0cWiiGkFCmagsj9EunCGdMgyc23syu8FMSeD7dOMFeL3c2Y5M0YnIaKu0vhbAMGCB5T4cme5kD4GrtGheshuiq37lSYlFgpwHJ2TzJRus2xLSG9HeUo8BPrGgAZAzUlT2MR1cqT0TcQ7IDxuIOAfkZQwgzgGRx3n8dimU9vY4J+zXxLSCvb8pI1pAPpH2SX3Zy3vA9LGmOQvlR82uTVMXsI8UVTimRG3vg0ISiN01QAeFQqMDLHlOaaiAiST1G5H624LP5XBqlUp1xeuctaMGWMQ4dJ9/Y+JlwbwxKQNhlQx+q1LWjc1bNYI2GOwdfDL29pqItj5BBlTpzTMslZKfteo4VQ2WLv57gZBZKxLNFwefv8vrMWCNeKHcefdcnlKQP9VH86dELhQ3Ofv9wInXaiyTS1ZqVI8adFj43tpcKE7uA1ahOPv3eBeKOxkXu3PFKD3zhE9Xrb7lWKfjXigOmQmEQw20xvdYNdAOvBdLobi5Cmu27qnLNEyduHrB8HJXbVwLxZ3rahk1/UeUaUSRh/G7k7FncRDJHlMkuffEyxrk/4irUBz5b8f370frmpa4PSmNeTL4eJu7Oh4INa8vo5ZGA/qyeArFxbx5YHCwB4cS+3rO2oW9lh0iSKE4e0w1gE4LzR4jSSizB7ELxWkEuA0NvRdlFle9vdIuZdB8tLvDqVCc4jusQnGKb8VUKK6039aNjfenG0XsdV6/3VIlQyKF4qiN3zlqs3WMd16LfKLPVR2EQ7Ex0juselaZbwmUziumQnE7LRyXGRZlGgf13Vmz9GpKiJgKxZ0/NuaSw1dds4NSPyp2X1//DAfbLX6LZTtFItlOqC4MPoXiejckbhs89apxaWDxQuVT6ioEKhRX/gazAuMb4hhHLIXikIs/iReK4zk61DJpoW9xLxT3c7nqc637dZa7foy09Lz0zF3iheIU32IpEP+Gvw4ZRUJZh/ypoN7Oe8Omd7kVYJznP7psRPitzmIE9bqoVGKAepHKlfiDenIXfWi6p7ebRSbGTSsqoguWRyYcqNcJFAgVH7qtXPl/C+oVrPu+YvjcO2apdskvfz5QFXxAnORAvRxlLINFSsZgkgD1Nter3Nd3vmW2cdDlvY+MI2bgCuop0fI1kzYUUY50cHA70XPGRxxGmhOm4aZIyHDtAuqljup34/PwrgZJBvau55hDBSuwtTeox/N4qKAeMICgaXc0CWXa/QNBPbXFmftf0FmWBW+n9XF3LZJGu2WcQD13+UoMUG+MfOW/G9SrCu/zwCCVa1GalD/j5qbh8niCetVTZCOe5He3Opbb+dmhapMVOIB6TqC1UEE9wFriAfXOp8Y+u0qayEhUzjkeP9DEUJKgHk8CVFAPkADyCWPQfAKBQL20PHXqeuYu42TT4d9XmKQ7i/9hl0hLSg7Uy+xaKUZQz9mkoCL7cNfKPwLUG4vWVQmT+3tvyEybVdJf6OvqtdeX9tO1xol6QfZ/HJJ/rbtVYiT/6nfju4dxhNccOX3gpPmsNbfWW2ssMwgfpiN14uYgDg6aZ8phaR4tx9d8PJrmRAf1jhyU83nCbDDZ88CqQCFv+/d2BfX+4TICDdQDK1LVKlaKBvUSaPkVP64qVv4W1JuAZso/DhrbdfbY4BuDOVbhumULpTmLV0kAGnshU4kBjeXICEW+iAGNFepoj1HqE0zbcdi3y9AjNycg4tRtg8b6bq5zOLKnmrF5GPUvQ8bERBygsUegzKjQGCCzBKGxtINyf81aMMIiS6Eymtbvs+DzNyULjfFkQ4XGANkglzARzSUQZkZFTn34EExI0+EwofrIYk2odrJ8yScRXvLnieeiuEZ65sGyUTFms77PwEfyd5T+nU0TLphl33zqfzt5biYOklOksSQnS/Mln4wm+Z8CKL29POoT+fNI6pH7+pmlgR5bMO4TP0BpAuhDUAGlOum2znCtAZTUpT5r3O6nZFC0fPvrwnR/BLXWJkAJ2dtxAJT0QeVQkRs5wbUBPLNDXIDSk9Uvv6bYcCxSN72PHB5exSUUoFQnjaVWvnS7Bu7/ZEAJufySMKDEGwWoVI4cYun2uwyE1gFKI06HKYx2szQ9NHHh/qOvXydLGFDidXFUKfKbJ6opJJSJiqCAkv/WUQ6dc/IY+x5O3nx/YQitnQClCT0rMQCluh4izj/+PwGlwGdWs7mRhy0O91Xl3mIeNsIBUML5gAREb/R7VmKgN3I9K8UMKDUO6VKYGTzT6sD8u4yC2uogHACljve2Pkgr7GFeMOLZGoOfY17goBLQrTFUyu/RqmOk1gFKyNN6iQNKvB6DCigBSkH+dCqaPyUyoJS0fsjyodu2UQN763jc2PLsphgApfhelRiAEqWXyLQt1NzA3wNKUx6fWG+scJORNfJ69NO5MhtxB5SQGRA4sDfRoEao7I1rL9RFfFsApQNTjLWu+NIYeaUJya96mjnhCiiRJ3zSntflg+lR76FylwaedMdBJAqmSGq9iJctxf8RF6D00c5RjfMmjVZmcfTQuyEf6wkBKPH6MiqSA/Rl8QBK+zLdK0ezCikll4b1TSrc70kQQImCqQbQaaHZYxoJZfYgNqA0RC5j7KcX9xgbTri9OTvqpqOYAaWtqpUYgJKyqsgwUdsBpSEql31XJcy3CHp1X3tMdX6iRACleQohtl3l3tL32Vopvf/61wYcIJdIUE5UjsJJlUBpjGIClD51Ojk2tJ8zdbNdB5M+f630FhOgVF5THGhvp0gtHptWU/NYio6D7aZg2k6ZQLYjUcQDKK2cPMJPReOT1bG4BTT36DUjCAQovVDBMs4pFQIZRxyAEnLxJ3FAiefoUPEca9XWrUlaACjdiJsbrK76kLJLhkoeFesXL3FASRlTgVoV/jpkOgllHdLqmocDmnuv+GseIikkWM1DZLo0rOYhMrsMVvMQmc8Ge8ogMigFe8ogMg0I9pRBZBYJ7CmDyFNn2FMGkedFsKcMIo/pYE8ZREZKgabOUBNyvw80dYGakEs5oKkrSfRxKtDUDWoy/LvajxlAM9s5t2Lrz0If8HGM3aGmjgPCRu/dZmcZqehTdSnb4x3QpAg1PXt0rrSXVJZRoJ4RPSWg4xCgSQlq2rNwPFn99A3GscsDGKOfD1oGNPWAmspedawy+njONLzruDtSlmazgaaeUNObze6sRikuJW7/gA0ptTtigSZlqEnRdqju1B1PjTeVSmcePB0zDGhSgZq6f/M++8ogzipl6KyFitMazIEmVahpSf3LHNm52+hry+wP3OxSNA9o6kUSvRATqoepRkKph7m8exw9YXwcJVSnNH/KvCN7caiHSUEbr4Q54Ud2HpzSFHEuXsV71nEnrCP++E58H0lF0/xPhTi/36hbemP+dIsN80y7rtZonC/6vnGBOCP1sSDOLvpigDhD7eXTQ7lcRkRo736rRilcJjbEGaSPhZbN1///hTijHlalucTXW+yPL+12oT9bEDWWHMQ5BtNgXSRjMElAnPMGzcnY/vaIed7kLqVblWozcIU4A3v92NBjQQVlV7ZfD5XQZ444jLRHI7AMVzyCOJs03CFO9st+3hWn5lJDS4/EFjm/DZQoxMnzeKgQJzCAoGnXgIQy7f6BEKfcDK2YuxtcLPb438yJOeleImaIk6SFBXFWaf7LIc6e3Tazzl+bTdt/Tbf6Wp8ixLMt2wZxzu194cA1p3LKlqW1R+7GTAnBAeJs1MSCOAFriQfiPL3K4ewGL2uTnWMU9js7HHguSYiTJwEqxAlIAPkEQzSfQCCIkxnUbeV6xnrGvu3vdNe9ffZF/BAn0pKSgzh9hooT4txrVFBB9x76Z0CcRmhdlTA79fgC7dAVd5NNE3sEBa8dmvMAp506sv/jsFNX1sXaqX8YyncPxoTXHDl94KT50hPl43rI083CE6ZPlT/v19YiuqDm0ZpYmns1u2QamuZEhzjHeq/zCyncYZap5xy3Q+ps+0Kc/3AZgQZxgk9bTB6OAnHeMM+vGLBr+O8hThM0U/5xECeFOef+/nRTy8OcTuafSG+3/P6GcYc43QdjQZxjBhMU4txrofEl4Yiy4cEXV4vjNvfcjivEuWXY9iG22XsNwuqvZ+suS/fGAeJ0GowFcQIySxDiPHTXKn5xp1m0DRZ+pi5DFgrmKEkW4uTJhgpxArJBLoGO5hIIM6Mipz58iEKk6XCYUL8NxppQbzdLbkp4ycO79Xxue3m0+b4biotcRr29gY/kb8ITs9PcDjB21xZzDqQsLMOjEMUgzEIUg/iSm6FJ/qdAnANDUnw1nYaYFJ1I3vs0a8bEdoE4czSwIM75Gu0JcZpNytXSmOBqmbJgi/XIyDTEqWObIE5kb8cB4jykgYUlBmm0O8RZGH7I1vLBIoPixyo1c5/cFsSyJQ1xzsdUa4zGfxBnCyFO5PJLwhAnbxSgkovAKBAjxDlUNmTq5ktUw0Pj62OTUhc8kTDEOR9TCqCLQxOVOQlloiIoxNl/Z69v/fdGWGQsdu7gqD17ENZt4QhxFuthQZxOev9BnJB9OsRXjZnZ8Nko50TY9cNvt3TDAeLE+YAExBNz9LDwxEg9cUOc7icYa3VtrOlbXow3LBivLVhO+p9BnBaaKoeZ78/Qoq/l3uq7+OFlHFRywlRpip4YIU7kab3EIU5ej0GFOAGlIH/KQPOnRIY4/7bTNC9nOVsVP2ZOfJbw0lj43toMcaqPxoI4T43CG+L0vxRcxXRayAgcVLpPi/VJFXeIE5kBgQOfqDwai098MUosEGe3S/v22ejcNUqIHPKtZ+eniMq7bYQ4d34/duf+ulfGhUvtduhenHQHB5GAroIhUtIo4mVL8X/EBXHOWFH33spnHWXP4pHj/MKp9wkBcfL6Miq2CPRl8UCcmX5Me5rLRvrmPrcC1ZWNBHuz5CBOXqdFVQPotNDsYUFCmT2IDXG+Xl6+JbM+3nDvOnOvqn2M0WKGONVGYUGc8SPFBHF6lt3su+SJg1WaVd2KzUHdciUCcX6Y+eV4SFigxdoez876Py3oiwMIqDgKizWrH0mgNEYxQZy2y+krOUozzYI0G8bpXzstmLeAH8TZgeHVi/nR2KDYRS9j5aU6kY6llbYrH4llu3gC2U5OTBCnqmv6psUhvmaHKyuuPdm7T9AzShbi9MI0Dp1AxhELxIlc/Ekc4uQ5OlSE8epI3CHOPvSgAbYqnqYbR7CWAvsqwSetSALijB+JpcD8kfx1iCUJZR3Saoizf3PvFT/EiaSQYBAnMl0aBnEis8tgECcynw0GcSKDUjCIE5kGBIM4kVkkMIgTeeoMgziR50UwiBN5TAeDOJGRUhjEidzvwyBO5FIOBnEij1NhEGfvbEWt0BeVhqFnpoSW3y3xhkGcM3udyxn8PcA4y2zRvN25d+fAIM7hOkUx0XcGUEoWS+VOH9njEAzi3P6mU+KVvz9YHh3wbqNtrJsyDOK011fNKXB9ZLVD0yHZLtKuBgZxRttnWVWM7mJVwn2wYouHQx8YxDn3tBTn7IxMRvbwQwuXLurvD4M4BztUKSZl1FP2V6nrX6/tFg2DOJGrLSFSE0Q6RQ79CV7L0s52PWMWV7Px1pLgDztwIDWt0AYlYY7xkT0Ep1xEnKv4gef4ZMxzfFLzOb41muZ/Kqn5sKv+dXuWr8nGW7nMR2P+0hAjqRnEwCI1OzHEQGrOzvq2MuzYS6Oy9186lSslvSQ2qbmSgcWP2TH+f0nN+qUe7wYPWkA7rLOhfP2V3hUEITWHYRqsk2QMJglSk6GcHF/Tr8AobN5F/7E6mw7hSmqOnvVwwZa5NwzjLIZHrp2om4XDSLttjmW4HHPi7MRwJzWly+Q+vw1lG5c1KCWoMUMHSpTU5Hk8VFITGEDQtDuDhDLt/oGk5naP+M9SKlbmccd7kM4u3bdHzKSmtgEWqfmG+i8nNS1uHi0ov7jaaPudn+vVn05APNy0baRm3tEhi6UZJ+k5Xb5kqlV9L8eB1CQbYJGagLXEQ2oezNH5UjdtjlX+8EFPKV5WVZIkNXkSoJKagASQT7BB8wkEIjWnm/ncq9/nTs2xCdpYd2TzUPGTmkhLSobUtC6oIB2giZPUjDcvqDi5l/ZnkJq2aF2VMDt1cscIxo+JWZRQr2vbnqs21OO0U0f2fxx26nQTrJ26tgnfPdgRXnPk9IGT5i8dI6fIF7hYlOzYbFXj+ekZDpp7UbE0t252yTPRNCc6qSk3OYTyOU2BmjBSeuqpVR3Gtiup+Q+XEVikZrUpCql53iy/Qvmc6e9JzVlopvzjSM0tnb0f3q9XMjwk6+x3bcAtcwmQmh+mY5GaxdMJSmr22am5REE7gxY1gWPZ555fAq6kpsNnzhHqYjtGyvd5Jg9cStuaxQuSmi+mY5GagMwSJDU1lZNcjlwJpARNlisfsnMEm0CkJk82VFITkA1yCbPRXAJhZlTk1IcPNog0HQ4T6koK1oQ6n8KX3J7wkl9zmra0m7aqZVHfsWOPDSnsgY/kP/KDQxcNnmiY0jkzzjDTZywe68ZpmOvGaXzJ56BJ/qeQmt2ypU/uiv9AS1E4oC/z18NN7UJqUqZjkZr109qT1DTR3/spo2632dFzgaWM6hzB57q1jdRE9nYcSM0J07HYQ8Xp7U5qatcpTWi8FmQeaZjQz/32BTdCkZr107DUKp/2H6nZQlITufySMKnJGwWoeKLidHGSmsGbTeYHN040iKzZOVRl/lZBEqf9SU1eF0eVorx5oppLQpmoCEpqLuLKbWIUbzHbOJOcei11BOZt4UhqfjDDIjWTzP4jNSH7BKyRJS3yqjA7vKt8yJMzWrtwIDVxPiABGcQXZlgM4ikzcZOagVtu6Q9fU2qZcqB6r2kiW/Bh1P+M1HzvtX1H3txcSua7y7N/vh40HAeVkjBV8jETI6mJPK2XOKnJ6zGopCagFORP56H5UyKTmvKlNgX95nsabWrMynrk4vtJDKSmnRUWqfnNEm9S89TKAPdte8IsY6V6ugwMP3gEd1ITmQGBA4TIsMKCEAdbiYXUdBnk1K3ny49mgbUrVT/dC1bEldTsq2l7cWX4ZXrGm6G3XjEsR+AgEtBVMES6akm8bCn+j7hIzfekfMMr118Zh/SlLS89+3Rom7s6Hmwiry+jsolAXxYPqTkhafF3g5QIs+J3pIr9nX5YEoTU5HVaVDWATgvNHvNJKLMHsUnNgs9RSaaLFOjbX9oa0G6f6C5mUtPaEovUrLYQE6n5jv3M0LLPCsqRzes67LkWMFAipKZ6pkNqmNlx6sY78tarYsv74UD70S2xgDKyhDxqe5KaP2STzfXCR9HT6XoJxlsnnBUTqalq0xD6alCBYZlZmfeIvS6bcLBdowWW7YChQBjbKYqJ1Lxi29GS4vnGOCixq9xorU99CERqHsA0TiCBjCMWUhO5+JM4qclzdKicYhdL3ElNE+9Zyk9unqOUhvSNdxk3YoHESc1qCywFtlrw1yELSCjrEEKTmkgKCUZqItOlYaQmMrsMRmoi89lgpCYyKAUjNZFpQDBSE5lFAiM1kafOMFITeV4EIzWRx3QwUhMZKYWRmsj9PozURC7lYKQm8jgVRmouCq5KnNKhn3HERymTB+cCrsBITa27KfXMggkWZXoXo+6+Gr8bRmr6nk2Mmhn41uLQkM5OqamyQTBSM73yvVZZ8DjGvoaUxSk1JvkwUvOO1JNCt+G3qGH+G5dvfT1uJIzUzMhInm5b7G62LkPB5GbRRxqM1LQpHE4dpnjWIqQ8SD3ar98DGKkZ/fN+z2fnGIbh967GnnlSYAwjNZGrrZaTmpkjx2m6f1lOz335gvvojvpZEQOltaTmQrRBSZhjfGQPwSkXEedSfeA5fvlUrHP85Kl8R7gITfM/ldREPhhXTKTmhMIKknYPQOMQUdu0+mxgcaQktE3DWhC2jNR0f2qVEpi7wDyRqnNr5cthp9pCarYVTAIUIIMKzDcUsQDMB/pgoxJRUMzwjGMqpEZSedTlgQpLfv4USffxl0P4oJjDbsnb9x3iSt/6OW1CwffgOQRAMUGDVSthGeyAZAwmMriYOV3wf4VRTCxj/RbF/PDJsbtHYKFBcYdlk08upT+V6MoVtEwgpmXsJWSZdmEtB654PoZVbG+cpnrcLVWm9ozEWMvQbMiliWQt9ZucOjRxLib9yybOQT8nbvuwK4de8vdF+Y1nvz0WY4mDYlesEgdTXMVQ4uDbiESZzuP8DXdsGX3VQmXyN2KXOMhxxQKvI12JMq+i/YhvXvWLVT2dWfDIJJ6qETfn4IPNBJhXQYM5YRpsimQMJokSB5nxpEuDl9KNYg+aqivOOaiLa4mDHX/fVO9XKGe6N9+BM2n4wLbmO4OGU8Y03AuXf/G0O3534+RN9jNoWQVV6Yn9Ho+W2LQLljjgeTzUEgfAAIKmXSYJZdr9A0sc3DfZmml7djwtXv/Rs9QpJ5zEXOJg8EKsEgcvFvzLSxxUbY75NEmuxii4LtrA4tn4IXiWONjR9dZF3z3PTdMeliw7vElLG4cSB+oLsUocANYST4mDxWeGaWrtczOIfqZrF3HLylmSJQ54EqCWOAAkgHyCA5pPIFCJg6o4o8EfFTpQso+eNl7/fK2e+EscIC0puRIHex3EWeKg1LSg4nyKw59R4sARrasSJsSdMXHszUMhW61iCl2lNmqvHoZTiBvZ/3EIcS92xApxUxz57sGJ8Jojpw+cNC98W3ZtyUEuNWOIte+IEI9VOGieswBL863NLpmFpjnRSxxIv1EZqH8qwiCUdHV4cI/gPqj3J44SB/9wGdF8NRElDs6xUEocfKDnVww4w/p9iQNnNFP+cSUOigxG1SpN5Rqk9Y7zPF0lpyWBEgdv5mGVOMifR9ASB+uCZ33o3r+KnvywPvPCo75KiEyXtpU48PwZv1fjirbZZv9KyriUmraCHWCJg/p5WCUOAJklWOJA42Gf0YdW29GT5+g3hp7dOI1AJQ54sqGWOABkg1yCC5pLIMyMipz68OHtkabDYUL1n481odrP50vuSnjJTYt0kgdHjTfcvaXr8VdBzDx8JP+romaW1fK7jFSqtq5X3ewtOEhuNBdL8sFz+ZKz0ST/U0oc+G4fazH5JtU0caFB3MHgNTPbpcTBlHlYJQ4ezW3PEgd11GXyCspxxodTFO39ikcZ4VjiANnbcShxMGYeFrTfZV67lzjolXi3omhUkmHGh8lxOwtm1hCqxMGjuVhqFc/9r8RBC0scIJdfEi5xwBsFqFx/l3niLHFQvHC+CpfZm7GpbnX0+OnTEIWR2r3EAa+Lo0pR3DxRuZFQJiqCljgYtfqcsfWNOnoON8sgurH3hnYqcVDrjFXiIND5vxIHkH0O3DFd96LmJT1ISu1VbHGXzjiUOMD5gASE96udseD9A87iLnEQqTGpFzkyy3RPUd+a7nb1M3AocWC0Zv2zsB9+ximFtU43erGccFApEFMle2cxljhAntZLvMQBr8egljgAlIL86RI0f0rkEgcpuRfNg6p0TQsnbYlWuPhwpRhKHNCXYJU4eOOGd4kDm9Dg5bUrfQ2OFU3spx2ksxD3EgfIDAgc6H3KEix6X22JWEocUEwzSoeZGFltMYmZlFLk54FriYO/jPtqj86cSMsf4pPtyQiPxEEkoKtgiFTlRrxsKf6PuEocTFo3Zxqd5EjL6Nyw3jlKM40QJQ54fRkV6gf6snhKHAwYNrCy/8x02ja7Q/PPPZdRJ0iJA16nRVUD6LTQ7OFOQpk9iF3iIGrnoRVLHluaxOS+Jx88vtFbzCUOGG5YJQ7OscVU4mAsPW24bkmCeYFNbXjCWOUsiZQ4CDDVvmAdtMlqw4VuLpQP8pk4YPJGblgktrqEPGp7ljjwV33TcMPAwTh3zJ0+uvfTU8VU4iAlRXHKR/l+1CMyPS/37b7yOg62+8DGsh0wFAhjO2UxlTiIVXm23Gd2Jm1b7VeV/nSFBgKVONiLaZyVBDKOWEocIBd/Ei9xwHN0qIC/nBvuJQ4WTPS2+HTiDKVM81FArxccfYmXODjHxlIgms1fh3iQUNYhrS5xoN7ce8Vf4gBJIcFKHCDTpWElDpDZZbASB8h8NliJA2RQClbiAJkGBCtxgMwigZU4QJ46w0ocIM+LYCUOkMd0sBIHyEgprMQBcr8PK3GAXMrBShwgj1NhJQ5MXpjrBO2cRN3iq7Ns08Kj52ElDoafte3nsTvLqGiqY//v2warwUocLGAfsbRSmmiVYn8yLXVgZTisxMHJ+6rpDl9CTEpKgsxnOS5cACtxoCFvK6fbP4Keff2qCqsHyRRW4sCatPCR1a65FmmWShfH7XJQhJU4QK6bhIoVgAUPRA5ibm+yf/TrEeZBO2endTyjPACHYgUctOFFmAN5pK1xyirEuVoteCJfPAfrRD5pDt+leaJp/qcylzmnTqhOe/3RJCv5YOMp2xd9xchcGqzDYi47rBMDc3nR1ksnT4NtGWlh0Es17IEDsZnLaeuwSLCh6/5/mcuid/ZJsxZLm6zdv+9yVPxeKYIwl6qYBusgGYNJgrl8s4d1/mL5W9NsasfFV75K++LKXMoabZK90ehjnBi9olL5x2ItHEbaq7VYhru5ljh7KtyZy9MvXYa9dZtncET1m8aMhl7pEmUueR4PlbkEBhA07XqRUKbdP5C53EMe2nihINtqy9dbat8fzAwUM3MZuRyLubRb/i9nLreuPrH2NHMcNbeSkkAuNv6BJ3M5MbmmWH1pB6P45MQhO3couuHAXAYtx2IuAWuJh7mUuf26wep9lsH+ZzIzHizYM1+SzCVPAlTmEpAA8glL0XwCgZhLg3tX2JHZd4zXjZfP1XnTgyviVnBmLpGWlBxzWbxanMxlhWlBxfyi1X8Gc8lF66qE2al3yXs1a0pHa8PYHrbDpm8YFIvTTh3Z//F4IuMazCcyruG7B2/Ca46cPnDSPFfq8pUUzi3q2lGdTWTlZTg4aF4dgKV5ZgBfcx80zYnOXK4fu6hTmGWCVYjfuthLYeqG7cpc/sNlBBZz+S4Qhbn8m55fYfM28PfMpS+aKf845nIle/qENR6FtE0v7rEfdXxm+Psbxp257OKPxVxeXUZQ5tLl0KGR5mdZ5iXJhX6JDzKycWUuf4z1st+V9IOxaUJcffinhzdxYC47+WMxl4DMEmQuc+2tel3doEfZc2tqb4MLDvkEYi55sqEyl4BskEvwQ3MJhJlRkVMfPgAg0nQ4TKhb/bEmVB9/vuTLCC+5xoQR2epVYcalbtMotn3St+Ej+Y0ea20HzthtUvrtdDElaao/HrU6/DBrdfjxJfdHk/xPYS63ZTccP9fV2yD+4MHw/BkPemDcJ37Mpf0yLOaS1OYZrjXMZdWkh42r/DNMEvJlB3/MGog4am0Tc4ns7Tgwl9bLsChC7WXtzlzafQ7f9q3ku1la6ufMfHaGYIFvSTOXJEy1av3+Yy5byFwil18SZi55owAVNNReJk7mknNr3rTcHq8tto0Y+Gltv4YrEmYuSZhS1DZPVAEklImKoMxlYKNXybVOjYYlb2YlPzx4uQfWbeHIXHLXYjGXtLX/MZeQfSYVXDfuF5ditnZdIMO4SMoPB+YS5wMSkCbkrMWiCeeuFTdzeWVmyPWPE3XMouW+6NPHvRMM2v0z5lKm4USOwYhTRolm9uaU5WvwUImGqdKotWJkLpGn9RJnLnk9BpW5BJSC/OlyNH9KaObSfHvsiEXyhkly0VP1R699JnxvbWYu89ZjMZfh6/FmLt2vPh7YLeQVJezrhUyT/FkHcGcukRkQOOCE2euxcMKd68XCXGp57uDGOO0xOrr5oNJX6uNRuDKXm/06T7YatN4oUY9hvMrD6DEOIoVjiuS3nnjZUvwfcTGXatlvCyIcgmkFa59/8v6xt3ObuzoelCGvL6NShkBfFg9zKTu39kb3rsctDyQd2usuU/Q3QZjLcEw1gE4LzR4rSCizB7GZy8Y5mp2ddFzNgkvMWVNnTnVAuzucmMsx67GYyw/CKcD4MJf6AdS3UUvUDNavodE7+VyslQhzaarFtewm35eaGdfVxS3oyQEcuD399ZjMpYQ8ansyl5p/fXWLOvEXNZJUb92wyfOtmJhL1+crx8540tMy/5Tb+ogHygk42E4O03YfJJQ7LMp2amJiLlN0SFWrn36hbN9vRZl5INacQMxl3TpMIJZAxhELc4lc/EmcueQ5OlTisEcr1yQtYC6nFRg2DHpSRts3LrRvwPmCaokzlx/WYSlwrTlTeiUJZR1C6MdKIykkGHOJTJeGMZfI7DIYc4nMZ4Mxl8igFIy5RKYBwZhLZBYJjLlEnjrDmEvkeRGMuUQe08GYS2SkFM5cIvb7MOYSuZSDMZfI41QYc0kburJmQ42N8dYj9kFuC0/PgzGXSt6htW7XJ5mXvVMZua/D9UMw5vK95eaIs0OH0NZ2Tn90Kv7FNRhzWXJ/36oP0evMSidqZsy3UngPYy4PDRp/tLvmd6OssIhc3RAtJRhzadZT8YRV3EzLfWvoR5c923Udxlz6qfWXZx17aRlpEnzt7crOarDHSl86efnA+fGBlCP9dsguf6f2N+yx0sjVVssfK31QevHqjy7+psVqnQ4vi90dhwOpuQptUBLmGB/ZQ3DKRcS56B54jl/ri3WOn+/Ld4Sr0TT/U0lNP0eplMw9uy3SHrnSqGsfVIu+b1xITddoLFJTO1oMpKbZyMap1xo20rdGxb8q7f66ktikplM0Fj9mHf3/S2rqV4xa7NQ1y3zH2iXUg669JxKE1JyCaTBtyRhMEqRmWfqiF9uvahrkHBtXsc9dZ0PbFraIkXZ3y5CacZVWjKw7IZMCFxcMxOPpmJiGI0nIcO1Cal4xVhnhnLzHfG1C6gC1wXerJEpq8jweKqkJDCBo2l1DQpl2/0BSUzPjgcnE6Q1GhaxxW5RUpaaImdTUjsAiNbtE/MtJzYAJOzKcz3c0KrkbUBB6uMcxPElNxV3k514hAdTioTdNZxRVDsOB1BwcgUVqAtYSD6mpZj/8maOvoXnJfWWHd5r35CVJavIkQCU1AQkgnxCI5hMIRGpOmz6hp9zQDPNDo7tldr+bc0zEreBMaiItKTlS0zVKnKRmBL2g4rxL1J9Baq5F66qE2an3t6tJdDkSRM17pbQsbdisBTjt1JH9Hw9qMAprp14exXcP6wivOXL6wEnz8lPKPxLHxZnm5a3QCFuzZDcOmv8VjqV5YThf8/VomhOd1OzwWsvwyv33JkGhJd+ORJ2ntSup+Q+XEWikJh1YKHzbiEJqHjfJr/D7uvH3pGYQmin/OFLz0jlvHdOjTrS9+w/n1f9Q8fv9DeNOaqqFY5Ga38IISmpyfBaN+Dnph2GoXqacXz53DK6kZoDsTdnETxomW69Q+jAuHbPAgdRUDsciNQGZJUhqqt1/qf515BeTrMqCbjNji+kEIjV5sqGSmoBskEvYgOYSCDOjIqc+fLBBpOlwmFDnY06ojOYJNZjwkhe53BzocOQRdXuYfM8t1Znb8ZH8w/W9m6Mf7Kfn7f8eXO32Oh4HyQ3CsCQf1dzLQ9Ak/1NIzcj+Ofdkv983y1vq+mrbpR+J7UJqloZhkZqb2zzDtYbUVDIa+5Q1dKt5cu3x17NvnxIMZrSN1ET2dhxIzcIwLPZwX1i7k5qO1okKN44PM9l9i3z6p9dWwfoMkiY1N2OqtTrsP1KzhaQmcvklYVKTNwpQ8cR9YeIkNeVGnwvdnFxrnDe+hxXr+W1XCZOamzGlWN08UYWSUCYqgpKahhcbtTzPzLXaPvacg5Lmhw7tRGqu24RFas7a9B+pCdmnMlMtMfb+epOkgfdWm+QqCz6V7p+RmjgfkIAM4upNWAyi2yZxk5o6dhpONgbeRnF3vEoXLKUIlrT7Z6TmzV2jjLWNPSgHNOwezq386YODSrMwVTLYJEZSE3laL3FSk9djUElNQCnIn4ah+VMik5o/cialvVp5nJa1dGP3tddKqWIgNatisEjNpBi8SU3zZXbdhmstt8hOKh4+I/68YIICHqQmMgMCBwjxVAwWhJgZIxZSc3fKbNvX56+Y77BaTasOqRZMJGgrqTkoNpb1sSbQNLkXyfHxjaGXcBApCVOk0BjiZUvxf8RFam4YXmTd287NJD3bW6u0+iSnzV0dDzaR15dR2USgL4uH1DyvopJc4HuDuunbNrcxiz4JelnJkZpJmGoAnRaaPcJJKLMHsUnN3OStFn5B+2kp13d2mxG695uYSU1aDBapKSM8l+BDana+F1FxZ9pR85jo8q1q0+4MlQipudx90GE/N23jUoXjV+cs+qKOA+1nEIMFlOlJyKO2J6l5y2gT5fkJPfNt70Y46L2O6iMmUjO2Zlv0M9Jro7KIeysLzXc34GC7Ppi2kyGQ7dTFRGoGdiy6lXFwFyUu7ucz0rhqwRCUZEnNd9FYxrlLoPxgsZCayMWfxElNnqND5RQHt3JN0gJSc1Qoc2eHnbtMw94HzDt/pEO8xElNGUwF6pszpSNIKOsQQpOaSAoJRmoi06VhpCYyuwxGaiLz2WCkJjIoBSM1kWlAMFITmUUCIzWRp84wUhN5XgQjNZHHdDBSExkphZGayP0+jNRELuVgpCbyOBVGat64w/V+HTfB6IDbV2ppacc4GKk52uHsg/y8owbbGoZdHD1j9EEYqXnMKrmLwxmaUebCffuefslTh5GarqmDUqr93Kyi5wbMe7/b8SGM1EwffbdIUZvCiKNq+u9X7JIGIzVHrbjCuXIuhVI2PK4heUmdBozUrN7f1SzNfz1jS/qXLnox56xhpOakbrUTw966msYdMjr9gGoxAkZqIldbLSc1owqjU3cdHWmYZPzwYo3julgRA6W1pGYk2qAkzDE+sofglIuIc6k+8Bz/RyjWOf6rUL4jjELTXN42zm+fr5tRxstG1njywXcCX7U7tLeyAP7gspnuwrsyWRSp+/B3ZRyylReLY8Ige0DXaNlOLG/PMdebvRiUZNecrjILdD0xb0vIFsg3tFBQe2CtE19aAUwiwJ6sWuiABBC0sbgCuSfDWv31a5oZQI/v49qUvufrzSI7ujI5HJbo4/pk4+qulurnTIN6WA5eVfakn8AXlzVquoLQF25uwHuyBdMnQ0FJDoha/jUCPXBCaYUkln/SjoC0zXPu58+ff7aGtyQLGsbbi+Xo687kkl3ZLq7uYAK+SNsM9ZpnXW6VQD34Y2H3jXZHBbN75GyhiwgHqJpbxGGd+hIs68SXEMA6wAzwszWbpgHGHmxvbzCD0FHATHwXIvoo6tKSVz9e7LFIvae6p/rQ+dmCxmm6oogI8K8WcRiHjmkcwJtI3jigfeDG6fgb44yneoC/kmcTMNYIfJTFcQwga+vr6ZOnkj29mEt9WcPII3n/+vUO0SNq0+yrdznnPGh5Dy8d0f1qnSeYXWMHu75wdo1AqziMd6AYy3j2kjGeyG1v3XS4BTv9xoJTf1nQ25XNCeAASyfAfIC5OJ4c0HTA39w9l/EawX/qg00eTP+mF0SXuNP7vLfPPUOr+D4poZYbgooQlQVcRXG00MvisJwcpuXyiyRtOfBDYF5Dq4IVPZpOhdkcF2xHaKNmxNRfsZG+9UtQYRffeYsFHSHqmulXC+7HzjnQGgJcp1YJLatyeI4QWqduJKGsU3t3WmF7ouiDVZlcxmOtcSsE8aBuhk0oojWX5cdmLRPGm9EQiyFUMOPfG4YzspfDjqnIXk0X9O5uynF093VimXJsWBxo+4++eD00PKvCZY4XJWnIkYbiHuf2Yd2rcG6PYHu3WcAfXp5cHxrb3afpF4vaYqFi5ccAdcsA7eNFHVlPAJa09DKhJS1/WyVyD8U/bQNzKCF5WrSin7RG13Ht0W60nCFRk+oG2D1t++keYnel/U6/nybrulW8un3J4OlZV9q4u1IDlKsHlRN5RmsPrq0ElftdGF/FDraEIXv6sbhctpNod/rkLPVz9SeSabR81JDRbt6ktg9hhFZIH4GDVnRMrRrbd5fAJ3FloS0X+CZwsXMn+c5PORa04uO/aKBv8FOaN7chZ1U5/saA/1bwf7vAlz2Cn2gOcWxCc2Otjjs2Q3/tEHdEbrphcUekSxMKIIHfVmRf1nu5NSx8W5j5tp89vnQffGERDgGkaDR1CRrMYOyQVfPvw7I6eIJ1o+KT2pR2C2Y0fsYKZth/EncwY1qXqbIG/ka0vHEFztPlBw0jQDCj/jPmdvkzAXZkb968aYdgxknVj7m3dL0t90d9bXiUSmUSIphBx7RO4ycCWKddghkdxjlX7tpz1rTI6u27ExoLgwkRzDjwCXM/TATjkCQZzLgY8bhkkkWG4Ya6DdZfDuykESqYIYdpvPyPkt4SEyiYsUDGfK7C7AyD1HuvnoZtHhEn4WCG60csy6lJ3HJiDWb4VibmVa4eYbiH4rtnhvL8e4QIZvDWEKjBDMARQuvUGNK/IJjxMHXc20FP+lNTuDvsX8qWLZdwMKP+C1YwY8KX9glmrDfUzZ36KsMyPLk/yX1l9y64BzPIfzu+fz9a17TE7UlpzJPBx3HYoNd+wdqgh34RVzDjy9CGmd5qNYY7PQOZw+YXDMA9mIH0EThoNQFTq/rG/6tgxmY0N0boYAZy0w0LZiBdWsuDGZbr3w00jS0yLYixmK1wRvUTDsGMLWjqEjSY0XFA2Oi92+wsIxV9qi5le2DfFp7BjMDelRjBjEw1oWx5nIMZj1WStvaoG2+87tQd+fc/L40nQDDDH5QEdWlo3VsiibmCO7L6+vp2CGZEr7GjfarvTonwHFQRo9kzmBDBDG1M65CIYJ12CWZUz/M9WzGsI+OA+/JcxuUjdoQIZtSqYRkH8CaSNw5JksGMLUcn96OSKBYH7Toft3HXf0KoYEYopvEWS8Z4xAxmrEqO5OyYfcg4auKqZdfPnvwu4WDGBEzLKUrccmINZmyuuDW81jCNnnb472/5P/RohAhm8NYQqMEMwBFC69StpH9BMOPZo3OlvaSyjAL1jOgpAR2HSDiYsbJPJUYwY3Af1DphuAYzbl7zePFqu4bBfm6fxvefB37EPZjx0c5RjfMmjVZmcfTQuyEf63HYoPv0QaPnwQ06o0+rSgy0IphhrZDxXjZ5ukGBashpCz1bW9yDGUgfgYNWgzG1+ta+61BJBzNi0dwYoYMZyE03LJiBdGktD2bsWTierH76BuPY5QGM0c8HLcMhmLENTV2CBjN6Zytqhb6oNAw9MyW0/G6Jd7sFM7qMxQpmTBkj7mDGVPOqbV0XTGDsGBwfPuze8o8ECGZ0Gou1NLw9hgA7srq6unYIZsz7rPGx5Hw+LebkPd1dciOjCBHMyBmDZZ1IIlinXYIZQwYelpk6Nsc0bK/PiBEdejEIEcxwwjTOFCIYhyTJYMaJQaPYFTUDKPn7vBX7FyV1IVQwQxnTeC9GS3pLTKBgRm3VxJePrtSbhL68adUl4ruahIMZp0ZjWS5J4pYTazDj76Oci5uHcSxSl4ZnUVIijhEimMFbQ6AGMwBHCK1T40j/gmDGzF7ncgZ/DzDOMls0b3fu3TkSDmZ0GYcVzMgZ2z7BDOMshw0+35wMj07cKP/qrUbb6yUiN+gzVtS9t/JZR9mzeOQ4v3DqfRw26J3GYW3Qb48VVzDjajlzy8Gh7yziSga+fvGUcR73YAbSR+CgVc5YLK0ix/5fBTPi0dwYoYMZyE03LJiBdGktD2YM1ymKib4zgFKyWCp3+sgeh3AIZmxHU5egwYxFwVWJUzr0M474KGXy4FzAlXYLZkyYgRXMcLUWdzDjVDeDLmlsdaM9RzrK5XO2mhEgmKE/A2tpKDeDADuyGzdutEMwQy1n94JzH5XMiycFPl+xxSmBEMGMOmss6+RbE8A67RLMKCp3e1G04qFR/gq/OfPsI9IJEcyIxjSOKxGMQ5JkMOOxQXnFNvdvhlunvFjct6OOEqGCGRRM46lJxnjEDGaYBebStZPl6NvDFLvH1Ax5L+FgxhsrLMtVWUnacmINZhhOH3Bcy3gnpUjhskpUWX9iYCa8NQRqMANwhNA6NYH0LwhmaN1NqWcWTLAo07sYdffV+N0SDmbo22AFM2pntE8w4/GlW6teyrkwtsVfYI3u+n4I7sGM96R8wyvXXxmH9KUtLz37dCgOG3RtG6wNOslGXMGMfvPv5ew9uNskaIqfpvL1VfjXzED6CDyQnBlYWmW27y5B0sGMRDQ3RuhgBnLTDQtmIF1ay4MZvmcTo2YGvrU4NKSzU2qqbBAOwYwkNHUJGszIS9K6PTLVxnD9retnlzj1cW23YMYUD6xghru7uIMZdg4POtpu6kjNntLNcXSQ9WICBDPGeGAtDbt4EGBHdunSpXYIZqTFTVyjGNPLKHL7fl/bYukcQgQzHrljWafYnQDWaZdgxgTn2dwFhw0okU/+2iE3KpFLiGDGVkzjuBPBOCRJBjPkhjZMlZtOMo+YPCLCsKfOHUIFM4wwjacuGeMRM5gxqn/0ErdRYyjbpVZWXVV5ESXhYMaHJViWO7dE0pYTazBjxPHXVxZL9TQO3V5Ot8vSO0WIYAZvDYEazAAcIbRO3UH6FwQzwgy+PWUP7GB21MV+i8GImOMSDmaM4WAFM257tE8wY23MrRfraU+tSpOW6BSv9TqNezBj0ro50+gkR1pG54b1zlGaaThs0IdxsDbonTjiCmZMKf57wuN5/la7lS5Mz7CvZeEezED6CBy0uu2BpVVO++4SJB3M2InmxggdzEBuumHBDKRLa3kww+SFuU7QzknULb46yzYtPHoeh2DGLjR1CRrMoA1dWbOhxsZ46xH7ILeFp+e1WzDjSBBWMIMWJO5gRj+T5/M73bRhrL909lBR3J6bBAhmpAVhLQ23BRFgR3bmzJl2CGYwlzqOvtPN2/Solt4D5sYiGiGCGeswrcMhgnXaJZiReYsh62T6zDR7vm3Rrfl5HQgRzJiLaRwaEYxD+l97ZwIPVffG8UEJlVe7SpokKdL6SrsZ22BmyBattgllJ2mnEKUiQmUnhJAtSyFFSqv20r5JG61S6n/vmJG5M/fG25259/V/+7zv51P3mOve3/Oc5zznOd9zBstihm8WRfvEvRD13JBhopuGDSnAVTFjGqLxZLExHj6LGU7bxoj4Su7R3uE4O8t6zE4njIsZEoiW+7wNa8vxtZhhEpAo31wwWO+AUmnwojH35uKimMHMIWCLGUAgZOWp8YQeUMwY4BF4a9XN2frl74dMTRG+mYlxMUPZH6mYQfAXTDFjEGH97dVvzAwyr+yX/9ttoxbqxQzp3ObindYB2sW+rz57/EjuiwaZ4Y80QR/sz69iRgB5RsO8WeU0n9dPpto35m1FvZgBjREoaEVA1Oq1YEdLrIsZCXBhDNfFDOiku1MxAxrSul7M+EDfu7N24nht374ZT09Hvb6BQjEjEU5dnBYzoN+RLLBihmgYUjEjdi+/ixlnTh5kyBsIU8J9a6yT/nrhi4NihnAYUmr4di8OZmSVlZUCKGYYDzx39dncREpI4MUnosMtxXBRzLizF8k61XiwjkCKGdPmjm6Z8/C9VuCJN0LKWy9MxkUxIxfROLF4MA4By2LGRvEFXu+19uiWjBkkeXLv2QO4KmbsQDSeFzbGw2cxo8/fWdcnqjbTw2MozQFkyb8xLmZYI1qOjrnl+FrMmFi4ccFlQ4Jmsrjqz9uaISG4KGYwcwjYYgYQCFl5ahKhBxQzplvXPi4qzCNHNCpfmr5w+mGMixlbw5CKGWZhgilmnPAJVRg1UNog33yURIv1/GjUixn+k0oNh5us0snI9VAou3zKGYUJ+uYwpAn6qjB+FTPUhx+8r+t6VzfwsCpjZ+uLr6gXM6AxAgWtzBC1Iof9XxUzkuHCGK6LGdBJd6diBjSkdb2Yccwgvp/1WW3NnOUpKS++FsqgUMw4BKfu2YNW1LZZw3S2psj2aRy7oYyz31ABTYnGmlTuKkZvmC5LZlcxiI7gZz0Ydk6A9xJtGSuBf9oSrdcRgfd19yS6ujg4eyoTgXe3A9utnG2JjgxnO097lU1dio3bdS0sFwWUae94dM42M21Pf97Pzd3f2S1d7KY5QGoUHwt00wkaBIIPdDAIBAZiy1iuwQAppEkxH6CTBjzfzqZ5q/jE2CNahYe1fma+C54DSQ7BT/NIDpmXf3vos1/boHd0S/qBvaEOFA/tb38Yx+IBgaJBgd7yimOnwW+wisUkd5TQcAG6v4Mz4Izgz00nwP/pThlEmmk/ttsq2jq4A70LaJ/A+8vV629UqZjdMoi/+r5KqsE6m8OO4prsD3PZslMT2qklaDBPRINZYmMwUS/gjdsn2dzGalrAy1jCv+lsfZnGao8rPO2TmGe2xHHEcc3MyQoj8k2yOM9sEKUyP8hlHPb13/U0iwFZ5C375OmRywsjZq12lUChp1ERDaeGkeF4za+bFnRrptaP2mm04GmqBd+V+4bbDNPPd35meMnyCCeu2IvKa7rcfhXtDqSYz4p4OSQCwRU6JFzOY3Yg1rCbQoAZdiMaPsVMMg2mFp8zOKnzM16O420ktLyBaQIz4eKel8H5+lAtLyvHNawFBEbHDTrdi/2TA7QNjGgkE0W5DVNmG22SUzaY0KURV1T4xwq60Q7trAVNw+ONzsTCPTKXGTq1dVHiy4Crr98PSKwKjLoPoa7+EJiCLd9f3d8Q9C8GkL6zPb0XSx4JXTA4cHlyH+ZlXVt2/4xq8ylJCDXXLUw9TFd/pnS3rwHTVbk+J9Z+/dcHLWxrdguVi2uWvB1G66806HL772M+DoEVkWDngr+0IHpZARMPa0fe8xnrb3taPG3itY99TDJ89WMt55czSZixPko04FJbyIDL44UggWnOpsFpGVFaBqk3V45df6xG9Q8DUwVgLS/QWlOADlEBtVZ4EdNaLHE7REIKBoPbyzZg9v3LkXmq1P/LJcb60H4avi0viioWuiznjN/tt+FWiIh6TLDMY0lQoc5DAkoeUwJWTEiFiwkHih5abH/aoltSVFBydPUjziOsextaOTMcuSc6cOFAkUR0BT/RqU5DdHYBXoOZansyvD2JYLxgePA+d4Uid3iGeI1O7qiBp3ZWu57i8SjcMxBeqtq4uzg6GlkB16HDA8QnoZaE80kxUw+Guwnw+OxfO07TZQ3YE2wcgecBKywMWwdP1rvbAGoB48ljnxSIHdmTXa5KaHEVoeQgYEczDYLPdg0JmpW7nYMzlbGSwyn6tl82Ale9Ol8Xb79u4uLa+SqnM0zVKa7yKT5Y/RdTREN3F2Be6enQ/lR92E/Fa5bqbrVW19nWwab9R5ndWhy8CA7PnS7RwHqnI2ti3h7MwbU0BytHDRfbX58FchVPYKLm1PHvXovcrVx/BYx2V02Dc1Wi3djCwF1B5LBTmdT9X4s3cPqHEcPRah2nq7LrY6IkG+ANPNj6wHnvIBJxLZABE93BO7Gm3Twd1fHO5tslssbUsMcDCog31aV4PEiX+j/0TBGI//9hhIwCkjNiNKuc68NVYAfGM6lodng4jHvNocMHSprH3tSRkswPpwSNyO5zLu3iMBQ0H7EfSXOJjpCcDqe5W7mDkgM9XeNYmYHji6dL3nG8at+Fa8CQowN0HHuYChSn8nDjnbymg4crKLoVkAEzh711k9qDM9EK+I9oB/4GnqaIup737NvC05RE210SUp/st8A+H5dBOBq5TCNu7OLuadC5esbDYP8wjei4G49VKHoMYLChGuD/nAaz1S6qmkCLqe5vzHAEDMawBWIhw5vjdu2mzIAzJfnasHteM/PUjyxZLr3T7ATn6DoY9FpPcPkcpEIYYJ2S4cFd9IJbE5ms4eIEJDftfYd5G9tft2GOwGA5zINpWlsgWe1Svm2oISIvk3yIFvPXg0qPzXEKv39gLiPz/Kku9p+aY1UE+yjAHA1kHjm4IfhtXlGwyyBddHwStZMo4NgNjobgFAbIjhXbZ5UeREA9ZqGM+bf2GgHQKcBFKIYt76rL2Pf72y7a2ensaYr9UDvZvzdnVmjG7Fncs3rW9d+FKftTNl/UpRZQCvVWfPl7innTH4apIkBmW1DmXmQemeOMY0yZuabSfbqn87hO5idaMzzXMhjOYHLkwbBZw3QPB2BKzzsT3JgdF3GiJJW298psq93j1qpxRphf97XljjCdG9FOuJsKWLIt5SXb4AKmbKyQkAkXEnAzokKHvq6MqDzSbYinQk2HwoCaGYU0oEZ3SH4E95Jbn5ZhEEyi1f1iyK6zm823oCP51vjLn6SlQ9RjrW5TwkNPvkVB8r2RSJJvjWRLngUnea3k2A9TVV1oAe/f6atc3cKJxPc3YgCZhw2DSF/j6MhjxINb5pnE/pwz+DkwMjs4AymLg217KF/r4GlPdPG0Z7h3fbxbPjuuunGCOT2btOhOdMUNUYTn5LIMZ3MX1SUCCYck6NB9NXgs9CsC6j6O/NMRbihYLPUAhzbgYTyZqQCoGE8BxIUXKpuJZdN9jKTW3KDnl3C6JPNG3Is+7Zd/55dQb/9Dv5QCdz+ByiXyKkWfB3c/RcIu9HdRuZEdyrlzuBroWjzlk9ycSHfZKUdJ/2x6RVehMYUTjGM5CFhe5laRsxXtsQpU63EkkloXIwVauGc/qJjJOldGZx3GdlrsVtFnuDszHFXAn/FQ0aGs0HX2ZNgx3CFMFvjnT9OTocw0EDQscAuilfO6dlPztDI0/fqTTvKHdq3JZ/WCJhIPuxrmM3sBhzbsxUU4IaTpTG3BjJiZkbFd35anFG+ezMyyqhxNjTE4n5q23MiLUwrmW3FL0X6ZH1IwXRxWiosdA1U2AWagoh/TvniWcFrDZ/HwOQ6NepyLcZLMwparo4MNWEx05h6p4DKCkTSgGzCcgE/ZWDkSnTju0qVxqbXO/EvoFCI1rp7gdvOgwmakx+JG0zjbuxoxgLT/MjgVDuaFoFGAiJEcw2P9gz1F5bH+wVwphax/QJcx2O1CMO2CWB8Zpe3gDsQC0PuZgyWnvXjaZ0zyaINvksp6vnWEwWYv7O9y2EeIxF2KIgl6gYQAmPN8DGuBhKt3XAO/2iKmupNIQr8RSdaYAUzebLulUtZ28YjwvO8Gh+6ILX7Xr3Aep0pkbpXIv1Vp2ZTir0RZO/XwVfm0QEsNMRRUSkZUKSSmW8tI0r+WkbogEHS1vktLSezrqPO/BSyPaSGByT9EC8cCplKseJoDF08vjXr18vNeGs0vK0JukuWn1Zwr5jQXL0bX8/2JzK0DjmBtRtEJ+OQEcJW5fXpFtHJ0cbYjWrFqM13brBb7aqW7hoyZRqrcsv0r5jbacT8b92o+eLWr5QHAl6TjAf2+8wqgBHCraBxPbAvOl/qTrTwYHZAz763H9gv2XehnQzqxZuFud8mD/n9M60L7G5SA+MP+9hDQaHA8HIFKBDfbxneL1h3I9hHm4jbTGXgK5Ubd5Vb+TpUc7yVePv25bhpnT6O58BxI2dd/N9OpWrR+hFndWHJSffCisyIzNVEQCXAVBJFuxeGPlmL/kVfvFoQzqKOT2yK7+p0tIWPyH6drFbTetL0dPGH1H7v6H0NtBSxfpvAy0618pi93KxVv1wIYXJ3a/RksY/DeueBfskdL3JQeGGwgY5K0BoL4ddyFG/H71cQPNZhOC6sG4LSs0eMoAWb0yFApNhtz5YtG+FXHW033Gm9BABSm9xHNLRZzjyGiMJIqdKDB7b5LXOnu4kTc4L1u/SaijYuTq4szOP3u2vgRKsX4WS8+nxq761rzaYPGm3BPxw0j/Wrropo+wPQ9AlSTyAsBJoD7QbjHEjECfJwczHqEDd6d3pvnW37PvmfhfrGPfukgRZdz10drDgTn4O6Ap3BDXcKTzDlL8+a/7s1dmu/c+LuIertlzVWxAg26/9hBZsqDb/7pd5G4AnLuBeU8zcs504CheTNGEZUnxljenRGww7LrfmfZaUOO7NoRZaWeImxsMcH9AufZG30tkGxn0Q3bGUopzqCoZWoGUZMGxLWKxqFgu1WItjPDke2I6t3ZQd1hu/W/s93o0yXHV0/z1omSs9TTv+f9ltN2i5FstxjJdn8Y9UHjkBGNo4Ij43RzJ6cUyzrgoqWn+xqYRR1o8gdZ+GXegsfCb/t11EfhfFagEyODdTGIPaSBVs+47uUk/VkiIADtY5bmiMh+mENLWPVQTHn5N7M/A9pRUMAMUQG1jjwklwCTh3R7+5dsh/fyf/sXdBdSp+1fUFwaaBIm8KbLgCYRVhOUZwOaehF4F6WApt6sJigGBDSJspqgFAnQ1IfAG7gCmsQIvNeLgCZxVhN0mQ5okmA1QSulQFNf9u+CzPeBpn6sJmgqBzT1J/BeTgWaJFlN46XIX9YqTtA8nFfU8HbO+ytA01+sppqYxzfylHI0ojQumEUPZbQATVKspgcfrgy5PFBfJ2qoYVLk7S/1QNMAVtPKGKPBQYeHU/bMj/64eHNRPNA0kNWklre59ilhnca2hLqaMbkNh4CmQaymu/fnTsu/d18zc/TNZn2D1eeBpsGsJqur+jYWjCEauyQeyu6XHisNNA1hNe25cG7aM+n7tAPH6ZGF28q+A01DCbyzLa5dg8MIMLsG9e7cOrb4y0iDgNnzcq8++pTIo6N0d9dgHlynxM0yPtRDUGIRpeKIr1y3ryMdn3hHd2FptTIK6/h0xHX8+R3LI/lwmuP02CloRxTYsVNmCUjHTr2N5/exUxMGzHdpCVDRjDL3i16dPpaTV8Dm2CmjBKRDPOYn4ODsnJKSEgEcOzXpJGP3u4FESlyJsXzEQVHOpUSsjp2aiGidoXiwjkCOnSq+HTrf+uh6/cARU168db/PWf/F6tgpYUTjANEEe+MQsDx2Sm1KjeqZhlEGkboLdOnn9TkPWMT62Kk78YgHumFjPHweOzXsvETKk/rRGnm54nOj5YUgWaLAj53KRbRcLOaWAz/Et2OnLt8tXaI+qVjneA7BK3ujHmdGh9WxU8wcAvbYKSAQsvLUAgJMnvpvOnYKOlXE+NipugSkY6dSEgRz7NQkfYKPEGkYPbxR1s1rhsJl1I+dgi4fonCU0sUEpKOUShL4dezUt6mPexttV9cLmvNgw4qbBbdRP3YKGiNQ0CoFUau9gs1DsT52qhAujOH62Cke1S923REa0rp+7BS0OIZCAekYnLpmo4VXhx+VIhcnOL6bs0mMwlk16DjKor0w3fViRrHQr1MwgGHCHZiYWHmCf2W4gzcgrrRiFtDbiSUHTw/2mVOsX8Rq9yDaWDkTrYHZ5hpXV0cH8NgqF6AR+Hz7Ldc4gx8F99E7g3yAI3MkYl5UIWrYg0cDMSdBS+jLiK5sRpO5BcDFzs6R0bEBC/wZz7UuRCdwY3bXii0bXi5snhqsoJlGmP62d8n2AETZuIstkB/oYswwBPI06VNVQFzktQCeBoxM0pVV3YGpBmgwZQT36rMeiPd+iPwfc9+MqdUIADxHbrkq5xFfvZn34ME3My//Lqoqvp8yahzjpkGUjPkJ+QVHr/5hVFUHFBIDFdrNK6rKAzG3iFOh31U95Dj8kZX0gJqxBIODGGVOh7gGJyXoZAlPzdx65Jkapss/oCr2lUiqAH6Dm5lZ04LuFD5m6K4kmriD02ewF3Nay8Gjc1xgzrY3g7Ns3ptVw8XUCqcfHEbPmmNHUJIjc07IJOgdN+ImWTq18cN0NSeRTOd9EhPT9bF2cXFkWHUKk92ZmI0yBDcSg0MCu5bosBIM7wgLqteHTO6tH5OtFRT8+e6tnaOKICehgPfjDkLtl1GfLxewogxPrMsnnxllurWgrGDCOseOBWR1R5jEvChGhH8q/dCr0YNj3WmcJ/v3Yd2Yu/zNbuCHOMxgAyuONEQc4d+IM759lPo1gndHnQFpZ+NDp53QSmg8GyX2tx8nTS7esXODmwr81cQPhZh9GlYhoE+z8rYiAkzepkWaqPRz3jVS2n3Zw3Wx76Zzsi9MPM3VBSRIuXM2MRid//61AOXw6/O2rAHP0x7IO+3siR1HY7SfBdC1dElKNvVssf5Hkv/DrPS56+tnwD4tN6nTqbGL+noXAwpWA/paaYAlLYi+UoC+ilVcaVI3t5MO/vVYIJTargXPV88+6zo/ru0QZZ/o3/lCY1o4v+pczAw8dIjXiRG/Wn6XQkED4x+mUPaAevageqM1eHjna2BiKl3drRSqX3v3tWXYuTN455cGgUktpQVmpJgHU0evpoYkcSZLmswPcidLrOto907w/WuqkN7fuwrrZKnDM7uRKIGP7OBi62DT3p95fxFZNMNv8+pC/YPDje5+8qzR4fRV9g24fbWjhR/GUEQ0xq3TuEh/CN1ZD1LRd3bxBIYvKxuwMq04ZR4wZQX5c2Xi1Hk29i7utsrEafM83Nw9mf/gna3qHlhoVJZVTPJ5c+2O3DV/zs2Q4uAvMPZc58jdbTo18cNYgaeRjKWGjbEgPYdZd+lOtjrk1zKC8xp3aw+EHnT+kUmohWqb5iG/QY+ubpld+ydT5T80R04eK5BLA2nGZS7oL6/KtK2qe1kqK5IjZFsSDS+/XT8zXGeb7pMv18ONEjGd9oICRFWxBLjFQwAwtHQrE2UPZS5OQELF+2upr5JCI1+LayUbbbVU9PIohgxlzA/yGMrar/NDgIrTCAKkG51mJ5rFhH8X7aQaYqq+fcA7gxjxbDerOcWjBEY7TTlXhUA7hdRwZZYo004Og9VqNjn000298zacNvPnABzQTkRQEti148tnMQn6nMjG/fv3BUA7OZR81WlYkkFLlqDMKf3mbIoL2snnLJJ1puDBOgKhnR7J7un1+cB+cuJtt7CWxdPf4oJ2eliDZBwgmmBvHAKWtJPPzbaTWWo3qYF6oXfU6rfMwhXtpI5ovKYzWCe7OKKd3s0RbU6IXWMQfSPDfYHbhkaMaaf4M0iWM8Tccnylnc6m3XprllVPLR1WPlrdeXYDLmgnZg4BSzsBgZCVp5YQegDtpCkjnz1GspdWyWnrsLy3G15hTDsRz1ch0E6utbDFUlRppxSLTaP2zlKh+D4fJ3R8wHND1Gkn6NwcBYJHClQOluCpqOUqlKJEO8k+Ut1uJJSmmWkqp/5++qto1GknaIxAQSvAjxC0ItYKNOZiTTuVwoUxXNNO0El3J9oJGtK6Tjtdyb4eFHbiAvVgpIxInHXdTxRop+Nw6v5HO/0j2ulgSdvjw/sPkQudRHcfSH+vIjDayec7Eu3k840ftJOXWN81r8+M1sovGOm1aMCWOBRpJ2KrzYcP05V0T6x6Xhb6XP4kCrST63ckOIT4XSC0Uy9p4YynblRaysAKlz4id6oxp50uf0NSBfAb3MzMsKKdlj56Nb+tqEU/KyNVNN3GAT+00xRE0z1sxcVyH99pJ6NWTZqfjht9Z9MbyonXhx9gTDsxowwsrgJEGYHRTtfE1o+YrLGafmD0hGJK5Z1QHNBOzGADKw4QbARHOz3dIPLauzhFM9Ts9sMfw5tFcUI7TUFUCOjTrLztBKFH0E7T6xjUeQvFdfwKDwWO2zgilu+0U8VPJNrJ9YfgaCfPV71cVzaPUU+v1MyhOGyJR512ggZGFGinnJ9IzILlT5Rpp5t/HVoouVONnvR4upJpaWIW5rSTFOL7V/zAOlniF+3UN92z9chYAjn0fujmD0Zy+3FBOwGdFcEYRGyMgTntVHGmXut4frV6iZr1+3PXbiXghHa63IZkLJ82PPQcftJOY186qa+s2kwKLz0wdDxBHvrFB4KmnZiBHJZ20vqJNu1kubcxoX65jH5Kv7FL++rPPoo57fTwBxLtBIQWlGmnQC0DxaCxV+hhkXMGWj3Xm4A57SSGJED6gTZ2ollG+HfRTu63I9NKBs4yOPTx5DeLSUeeCox2Oi+EdLbTdwK/z3Zqbp2wx6dtqa5PqZ2iW9nwNzignU4LIZ2UES2EgwNqbty4IQDaybbp+YBcg4PkcEuzO9fmFYnjgnbyRLQOFQ/WEQjttG7Sum1DTJNJvlWm3nNrNlBxQTvJIxoHiCbYG4eAJe20ZxG5VZ9Qq5O4VHLYtAkJl3BFO10jIBkvExvj4ZN2cqzTEJ30MsbgYHSs21MvEaxpJz9Eyy3F3HJ8pZ3sl3waMlk/RKcsdHmTvVLOW1zQTswcApZ2AgIhK08tJ/QA2mmxr3Oh8s6D9Ciy9YHcn+/7YEw7nRZGOtvJUVgwZzt5kD3XtSarUA7PG/rtcf6F46jTTtC5OQoEz3FhpPOKwoX5dbaTwz1jvRnD/EglISJXouslRVCnnaAxAgWtHBG10hT+vzrbqQIujOGadoJOujvRTtCQ1nXaSdN1nFGhhLHevou3GvzpsxRRoJ1Owqn7H+30j2in8rciNZqfzuvu6K96T4iut0hgtNP5kdUItBN1ZLe+KK+LtJNOFXmyTeh7UvGk4nIZ0v4zKNJOn0xspJ2b0rXLaXmZ78d/+lOGFIRDToMKwcIh0SO5RiB+0E7m305dfP7EixwZ+TI/79CwNsxpJ09EVQC/wc3MDCvaye2B+oCT0tr6udOt73vHnUrCDe0kj2i67yMwMZ3AaadCn6GjWupH6m7duP8Sadu0DIxpJ2aUgcVVgCgjMNrJco/Yx4iNClqxoxcHFT1SnIkD2skTURwqRBy+0k73DlaemFnziBronXOr3I6sjBPaSR5RIaBPs/K2SkKPoJ2a9joyWoTc1SNTR/sn3IrZx3fayXFUNQLtdFoGdgKPOu3UdE0lsW6ClHboZ4/cC8NoU1GnnaCBEQXayRZUD5ZZmDuqWynU72mn1au+ziyptVLf90burHLU5kOY006DEd//tQzWyRK/aKc1CusqvN5fJQV8NPYUkfjbGRe0E9BZEYwRjY0xMKedzExnUJXuRmseVshV2khrWYUT2skT0VhUXPQcftJO/cxvbeu1XEH94NnkLT/K+g/BmHZiBnI42ilDZVT3stTf005npg+QEvVIVs81WeHpP+NLFOa003eZagTaCQgtKNNOVUEtqx3bjMi5qW+URCefWos57RSCJICZhQw70TxF+HfRTlLGE5XmxbzQ2lPWO+fwmVBlgdFO5qORaKdAWX7TTsOOUk/UKL6jpZ6R270+6OpnHNBOhqOR1o4VR+MA2bh06ZIAaKc1J2sjkhdZ0DKzLn8Z4b0CH7QTAdE6t2RxYB2B0E7nv15re1s8Sj9N5Msp9+fmdbignXJkkYwTiAfjELCknY4WkJ9e0/TUDF0tMn+D5SIKrmgnS0TjqWFjPHzSTuYBrX2TtmrRj5aSxVscn7RgTDtJIVquYRTWluMr7dTPfuD41fXbNGPGVF7QVVpwABe0EzOHgKWdgEDIylNPE3oA7fTXd4/at+RIg4SJZsul5jfqY0w7GRKRaKeW0YKhncYsFz7hPlRe49iPfoHa19ZWok47QefmKBA8FCISwUMk8ot2opb2XzTSUkQv43Owb3he1CPUaSdojEBBq5bRSFpdFuwsAWvaqQoujOGadoJOujvRTtCQ1nXaaXXDm/w+iyMovuXmaXf6lS5BgXaqhlP3P9rpH9FO+5t6Hbza+pGeN/r9buN9qwYLjHYyn4lEO91S5QftdPiZl2PsZ5pGpv+hl/maz5ejSDst3PDwg4HnVvUky6mqXjtIj1CgnQxnIsEhijMFQjtNrTo1oa/sUI3gwCmWD9dJ/8CcdiIgqgL4DW5mZljRTpP7X/L9+3USKbBmV2LYFwc53NBOOapIpgvExnQCp50kMrOzVGe0GQQ82PYyz7jXUoxpJ2aUgcVVgCgjMNopp85XexzjpdaRvNb+d+5kR+KAdiIgigMEG8HRTs191OyD9d9plc7Wv+wUZX4BJ7QTs0/DKgT0aVbedobQI2gn8ylD84vtnxrEjLOONwk2uc532qlFDYl2MlQTHO00XazOzLXRn5ZxQCj1ad/aBtRpJ2hgRIF2alJDYhZq1FCmnUzvLpI+VCWvF2MYczhnyZbrmNNO8Yjv762GdbLEL9rJuFW/WnFOHSV+NWNGX4fQKlzQToaIxlDExhiY006vLMbdfXIpnL7D2dO/14Qn03FCOxEQjXVrJh56Dj9pJ/2FYvfks8ZQci5NkHzu9E4FY9qJGchhaacSNbRpp1Dv9NyBhkn6pc1T/ioJaHbCnHYKZAvAk3YyVEObdiqp2HBlG11CN2hFVJum8rWhmNNOMkgCmD2byU40awj/LtopxPyoQdX0fgYn3B9vCHOyHiEw2unpbCTaafBsftNOxH1q2qWhm0j50bEGOac3/cAB7VQ/G2ntOH82DpCNM2fOCIB2qt71pGXg0skGOZTnn9T2vqDggnYKRrSOLR6sIxDaKfWKqZKp9hatmN7B1UuV+9fjgnaai2icwXgwDgFL2mnLAa1qj0GRBmESD/IavuZuxhXt9HoWkvFOz8I62cUR7WR//uX4l35hOlsXLvJ6NcbZGGPaKRrRcp6YW46vtFPizScfMxecoBzWz5ooOnjyXVzQTswcApZ2AgIhK089S+gBtNPiM0LOtQtzqLmTMpe7rZD1xph2qp+DRDv5zREM7XSCmtZPvNdDg12Sb4Yef2QxDXXaCTo3R4HguTYHieDJnMMv2mmTqEONb5/JetnxpMkqZxZbok47QWMEClr5IWq1dM7/Fe10Di6M4Zp2gk66O5/tBAlpXaed5K1rpKKzG9RTa2Sm3LwlGYIC7VQLp+5/tNM/op0yqj8olAeoUlMaEywTrusUCYx2cjVGop2ajPhBO5kl/5VxKTWZni3uNrx/H2cSirTTB0KRxtWbb7W2j9ReX1b7YiIKtJO9MRIcom4sENqp7Nsu8Rz/PtqlKX0Wxz7yeIk57SSNqArgN7iZmWFFO7luXL+h2C1Y56Bj6sG/P+cH4YZ2qjFCMl08NqYTOO002Tvyoke0EeXEu5OaESk0eYxpJ2aUgcVVgCgjMNrp3ctBscuXOpMPxDXIThw4SA8HtJM0ojhAsBEc7SR6vHd+bNYE/WM+kYWVj/WO4IR2YvZpWIWAPs3K284TegTtdE/oecmqSXdJQd6714e/U53Kd9pJyhSJdrI3ERztFNRHaYTfjkTNCBXFgO1r5MxQp52ggREF2knMFIlZeGiCMu20xvb9iTk2tZTdlblrs1vk3DGnnYpMkN4/xATrZIlftJPl65fLXSZn62SNnxG8/OgjL1zQTvaIxlDHxhiY005KkweWLE2yJcVEN6xX6e2cihPaSRrRWE3GeOg5/KSdbqTJi5XdrKVky4WdtPrRSMeYdmIGcljaqc4Ebdoprne/vmrnU9QPjW4J3j/6/HHMaad4EyTayd4EbdppYesGQnLdJkqEyr1Fspc/pWJOO81AEsCszZidaF4g/Ltop+zs+AXGxx31tmZL6Nwp/aQtMNrpuxkS7aRsxm/aydl2/9z5U86SUyc+3pibMHE1Dminj2ZIa8fnzXCAbJSXlwuAdpIavSRt0/h6WkTsCjn1owFbcUE7JSNaZyMerCMQ2umH0PMqjept+nt2rusz9btRDC5oJxNE4yjjwTgELGknG0LcKN0RsZS0JepXVx6wkMQV7dQL0Xj1plgnuziindbHFlnF1P7QKaw+F/8lcfJ3jGmnfFMkywVjbjm+0k6E284T67LtyYGvspQGBig54IJ2YuYQsLQTEAhZeepFQg+gnYxKJpGUpWpp2yv8ZEK8Rj3GmHb6uAiJdopeJBjaaWiY6IJ7MpMMwhRq+hBCsk1Rp52gc3MUCJ7Xi5AIntOL+EU7KRqZ7x2Tn0rLc79Qs1h4lCvqtBM0RqCgVTSiVp6L/q9op0twYQzXtBN00t2JdoKGtK7TTiE/Hw16eZ6qsePBtX1nnxdroUA7XUZN3X4CVHejwwK1LU4l2nteP3B4KvJSo5O6BUJ1VxOc75J8p/XV6SMu6gw0CbOaxqpNzpWpCdIqWzVf3XhERgTQJMJqishtPHm+vwc56vDhHUULHw8Emnqxmm4P9DUeszBRp+z7mePq0fO44bTecObaOvG0cqLUI62tG09Jqa5Mf46Cua7Ames/OO0fwWmTao1HOSUe1SydZyPbFiEvLTA4zc8FCU7r5cIPOM3tWX/LeYfc9CLzqR9XbbJ6hSKcNnurxXwKwUY7u2/jtpW7xqWjAKdtdEFieUxcBAKnrRhqLLuhMYpcKBabmfmYWoo5nKaMqArgN7iZSGMFp5Xq5OSVNobTYmeqLVi1u60ZN3BavTOS6fKdcbE6y3c47V5U87orG+brxGbQNlm9f78XYziNGWVg6SIgyggMTrsYIn5XTMSGvM+IpE/WKOJM7rCB05QRxenlIkA4bZar+O68PZXqe3xWXqufrWKBEziN2adhFQL6NCtvqyP0CDhtmUMW3WDALIME81Pph8ZU7+A7nKbshgSn+bkKDk67muNROTgoVCPNx+L4Aal8zmQeDTgNGhhRgNPk3ZAQk++uKMNptZr9ZOQWh+jn5+/K9vZ6NQxzOO2aK9L7Z7pinSzxC047MNVi3bOjOvrBNikFSRXLOb97GSs4zQ/RGEuxMQbmcFqBweXUDN8Enez4aXPPxPdVwwmcNgPRWP1w0XP4CafVp/xYlnqgTT1+etrE7CX5qX8yVUYBTWIGclg47a0r2nDa64KyyyI5byjR+ZNrk3yLUjCH0467IsFpfq5ow2lTN0mdn7iljBQguSCJXKMGmfdjAKcZIglgNtyVnWheJfy74LRTj4ZmWH/drnPihJ++mc3yZQKD06Q9kOA0iju/4bTNCsuyg7/fIe1wulj4uWjBRhzAaVIeSEv9De44IGyKiooEAKdtvfHGMu3VWVpYn8+ZryTjOb9eCys4rcIdyTpReLCOQOA0XRXjsPUiKpqBqhXyanSNU7iA01wRjUPBg3EIWMJpX66tLPe+1qARNGP/p97Lv3zAFZxGRDReixvWyS6O4LR7oqtJNy7GGiQ8oacTJYo5z44RPJx22Q3JcmmYW46vcNqLpRPE0qxEyVEPx6Sqiu5O+XOyBQU4jZlDwMJpQCBk5anXCD0AThsrbiymJLuTknvz2hDGQIIuxnCalCcSnFbkIRg4jfzE7dEitUz90pKPMfZLrXNRh9Ogc3MUgCsxTyTg6qEHv+C0vhP7kXQO3tIqEMmptFePu486nAaNEShoVeSBpFWIx/8VnHYdLozhGk6DTro74VPQkNZ1OM2QsPypQdxiWjp9wCXVOGspFGinG3Dq/kc7/SPa6cSjlE0fQ7bqlc0al73UQOKDwGina/5ItFO4Pz9op6oRLzaLi5jSEtbemb9WXGEiirSTdG5z8U7rAO1i31efPX4k90WBdrrsjwSHHPcXCO1UOVTS9XBZL2rgx2k/hkv6D8GcdkpDVAXwG9zMzLCinSYKX/yxrLWYXPhkbpnisXV1uKGdfBBN54iN6QROO+W4uXvFXBej5n6I7Hv/gx4NY9qJGWVgcRUgygiMdvpRHvls4bK7BoWl/o0bT/SJxQHtlIYoTri/AGmnN4xV3ptNC8iB3l9JaX2+bsAJ7eSDqBDQp1l5201Cj6CdMuVm5v01rk3zaNDOAqXtCgP4TjulBSDRTiYBgqOdErWnWAe98aPEkcMO1d7UVkKddoIGRhRop+QAxKOoAlCmnba81t9y+4QaJe3VkuLDztOxP4prI+L72wdgnSzxi3bS/fh6puixZXrHFqs7a6aL38MF7WSCaAx1bIyBOe202WmQZe2FJp2MDHPVkcv++oIT2kkZ0VjSuOg5/KSd7k9v2DqzOEGvUJdeWxwzzA9j2okZyOFoJ9OgALRpJ8ZVpZtZwmupSb17HxLxyBXGnHZyZQvAk3YyCUCbdrpmsXRBxapzOscMBxtZiz1Vwpx2mo0kQLpsADvRvEX4d9FOeoOkKg0iTekpWyh5a1/G3RQY7RS7HYl2Ut3Ob9ppsZHkKY2Y4eSQ3O0KjPd5CTignQ5sR1o7DtiOA2QjJydHALSTjJ/sLVkfM2qcl3lsW2VUFS5oJ3dE6yzHg3UEQjvFOV3v88HGST9JdoLtUSedclzQTnqIxlHFg3EIWNJOu+Y370ieZa0duLO67kzbyGhc0U5yiMaTxMZ4+KSdxjYlNXtWG5H3zVGurRA//h5j2qk1AMlyz3ExTeEb7eS4xNnggZmJVurDKRPr149rxAXtxMwhYGknIBCy8tTbhB5AO3lJy4ozjr2hB+sE3Gje2FcaY9ppRCAS7fSWO6XlC+3kUH72x/ZXa2hluwf6vkqXeYo67QSdm6NA8AwNRCJ4hAP5RTudJyqXHznzWmNv2JsEyhtFedRpJ2iMQEGrt9uRtLoj2NESa9rpDlwYwzXtBJ10d6KdoCGt67TTlVN1aRdm+qhnjYrps/69dCsKtNNdOHX/o53+Ee1kf0gu4bLXKoOQxeuWfEi0eSIw2kkhHIl2eh7GD9qp/6m7+14HF9FjDRIzQg5tDEGRdvKfVGo43GSVTkauh0LZ5VPOKNBOcuFIcIhkuEBop7hzvbd5vV5Ij4nu1XzUWc4Lc9qpNQxJFcBvcDMzw4p2GjFcf0HMXhOdg8veXjIKOumIG9qpDtF0ZdiYTuC002Lh8Jq/DgjTD7wL2Bym00zFmHZiRhlYXAWIMgKjnXYFDehHWa+gFxgVrUdPPPcFB7QTM9jAigMEG8HRTuf+ev1ZoqqYVFiS7jd9/JZsnNBOdYgKAX2albfVE3oE7ZQx/X6plKI6NZI0zjtVql8632mn1nAk2iklXHC0E2n/zgfFUXtJ+/q2MqZOmlCJOu0EDYwo0E6fw5GYhcfdS6F+Tzs9oV537Zt2nhae8HmL2NJ3szGnnS4ivn9JONbJEr9opxMnSQTpnY80dix+PDzuZO45XNBOKYjG2IuNMTCnnRzUqAn7/n6jE1Q1+8vbWYmrcEI7bUY01ipc9Bx+0k7W4rTNSxXvUUOmVdwt11rgizHtxAzksLTT3W5mqb+nnU6WHhKamiqhf9R3DOmHWLkO5rRTJVsAnrRTSjjatJPpqwVngu7b6pbvW7NIfUx5Cea0UzCSAOmu4exE8x7h30U7Tdtw1fnq+QT18kmRjfGrH44VGO3UtA+Jdgrcx2/aSfmJzZjE+F66CUe3tv5cpaOJA9rp9T6kteNb+3CAbKSlpQmAdtq/W7lJe6aR+h6F3V6k+WEncEE7nUa0Tg4erCMQ2qnPQdoY5dgZun4ucl9tdi9ZjwvaKRrROIF4MA4BS9qpvnJJ2s/tdvTEDSEvNp+Rf4Ur2skT0XiW2BgPn7TT49i4I5Zqb9Tjj12PkIzUcceYdqIiWk4Nc8vxlXb63lrhMFYzRCtWsv8kk0ElZ3BBOzFzCFjaCQiErDz1PqEH0E6XU/vrpXtvo4ZlfO2nEnreEGPayTECiXZSjxAM7eQ+Tu6YaYqPXmJI2SzxCb7PUKedoHNzFAge+wgkgsckgl+005w55zdt6dWoHXZkvFub0H031GknaIxAQSt1RK2UI/6vaKcHcGEM17QTdNLdiXaChrSu006zJW/NCmq2143M1DzzmESbjALt9BBO3f9op39EO62MMRocdHg4Zc/86I+LNxfFC4x2Wp+IRDvNTuQH7aQW8fCzAWkybUfQ0aKlYkeNUaSd7mwJGZP/OF2roPWm7e3gCatRoJ28EpHgEOtEgdBOTQGrxPz2fdHIcyzfeKnCYRzmtBMdURXAb3AzM8OKdtKccPlW9qYZlHyX5F3uW9euxg3tpIBouoHYmE7gtNO82cuJVrILdMPWrFiYNJ2xD2PaiRllYHEVIMoIjHaaOO76yKUDhXTKyNKFlaPJX3FAO9ERxZmdKEDayepg5sWSMfOpR/z0xn1pqCPihHZSQFQI6NOsvO0RoUfQTmp5m2ufEtZpbEuoqxmT23CI77QTPQmJdmrlTpP4RjvV7c7wX7LambYvvLVo6V5dKdRpJ2hgRIF20ktCYhZUk1CmnQIt9pAGqKymHcwNH/Uo7KsQ5rSTHOL7SyZhnSzxi3b6PLmSuElGk5rUYNL87MEzP1zQTq2JSMZ4jo/0R+C0k8GP5U8pu/7SyjCg+B6zOLQBJ7RTHaKxyjCfZvCbdjq9O9dYbpg6LVF0qLHH62EOGNNOzEAOSztNTkKbdlqkaBIrElSqdbSh8rG3+xJ/zGmnoWwBeNJOrd3MRH9PO8W8qO9jZpFOifiQ7zyJdGM85rTTw0Qk2ul0R6L5mPDvop3u3p87Lf/efc3M0Teb9Q1WnxcY7aSZjEQ71Sfxm3bKX31R9njFQY3I78VTFkc0r8cB7aSejLR2rJyMA2QjISFBALQTVUHs1ifNpfohcoN6vTkQWYoL2kka0Tq98GAdgdBOlXWS77QuaepEr1z+IKnkiScuaKemJCTj1GMz08AR7eTdQI+59/i65i61/BXLwgdQcUU71SAaLx/zaSKOaCf/G3nVdNl63dR5AbqGvmaJGNNO8YiWC8bccnylncil6yrOqDzT2W0T5tUUNTcbF7QTM4eApZ2AQMjKU58QegDtZHVV38aCMURjl8RD2f3SY7E+26kiGYl2Ck8WDO208kd2ybIF10jbHo9+mnl861TUaSfo3BwFgud4MhLBk5bML9pJ4/wnHc2mBNo286b6YyPH90addoLGCBS0CkfUykeweSjWtNNTuDCGa9oJOunuRDtBQ1rXaac9F85NeyZ9n3bgOD2ycFvZdxRop2dw6hLtxhYG7goih53KpO7/WsxZNe1txHC0WsepLsyyEFwXHkQirnVwZxDdwTuxBOS9B76lzVl60QSt2BvBz6e4D5Xj8SDcL/37CHf28r6wgDz9A2/dcm55pI78w14bBX6Rxbuq9nHZhytTAsYGxXdVLMmf417yJRLbjfuLNVNSjA0GfPh2zh+3klOHVCNIrjyEnQq9wL3kH02/ntwe5EPzHfiy1vtF8UjcSn5+CpLkmVPYkjfgXnKZHOtDQXonSbvviRtu2lcxCreSi9GQJG+gsiV/iXvJ1+kqXjT022Pgf1HSTv2jeA5uJf9ujyR5vT1b8kbcS66r4E6XFB9Jyonsb7fK73kabiUP3ook+catbMlf4V7y9Y5yR7xWKWqVSZy8ZrHiqwxuJU8OQZI8PIQt+WvcS367Zc1VsQINuv/YQWbKg29OxK3kTbFIkj+MZUv+Bk7y6fl08mwlC0pZtg9tR1P2TUhBBBDb3cWRyKQ5PbjXGHvDCK2q5Q1MxWzaaUHWyj3rVu3AFnPrwGpnF+BvwNyHtVGha+uPruoLC3btrdBMLZO/cLSiqRnpiXmUcDjau6i0DzCJzjEH0vHTZB74PxHcum5WxQf833pe/uKZcq+0Ip4bJ9isYKSgiP+/9rH7Ypl+iHJM9KGmvWio0B/6oiugUAioUBMJ+AdUoZZ2hbhqqmyJuoj+jdHg9CHW2hMd9K9JIMajwlPF1TpRhS5SQ7VO1EiSbl8s1+IkA2AchX0d7YprRQFLKCKvegwRaG1aVMXFhnRTqBGLGOBKKVMhzn7HW6Gl71c0Gy8x1U5+5L4uMy6gjHNlm3Uz7pVtdgM/NDJchKQR1JmE/4FGTBSMRX0DOv3Oi1qvPi7Rv9pKjtrwfHJZbfVPzr4I3oxbIdZlfugjZYakj6spuzrwFi7wT2gbJp1FFNEqIDd9Y8jacQb+vlQHD0/YrWdwJftRNIaVxxr39q1f7axSe3R3BO7WteCuMmD4u6TysdQCZdLsMtul52CfihtX7tTYVVwZ3Am6BNCxEtDxIVRHV/DchMVcYb2buLI42cqDwRSA5/se05/wcf/pUzo7GfNl7g0X5fxKvl7gK3G9aPvV38V3aND7UzYZkIoIShUFxPcKqFQyx5hSwcZ3nhw3nbnmBjqIgyfDyQPcW0jlqZFb5dpnU6sUyGFxvRmqYhZ+A5kEOPDuWt6u7oyOejGz0mw+iXP1QtDkm1QhSydwhwGXToEFTJ1YXfMdqytxdc1eUz+SJM9cpiSpqt4Ryh57SoTqYM1uS2iIkVkx1YyaLbrH4UeDBCeExKLk2vnsrvdbog6jPVNrJ8WJYErC6HZe5qchUpQx1oWUcVVL5srJBCn4J+MGBjq3diPjiDcGlD7Oq/OCdqgw6lZORuzIyex4y8H7pIBrbqQ2sofW/hgXwxvUOX90yB5/UzRLQDAfY1aKxuWaDe2CdWvZe7gmxF9A0eAJ3WkXVz6qoAXpRkqbpBkXqjhjutkgp4ClhhSvjgqOoYAarI7aRIAZQyMaPsVMMg2mFp8zOKnzM55zLUHiV3jiXvWGm6EO/bV525nI6LiBBHeo602aRFaa2qWeqawwQ/oMTVo7nlG51Oka6TjcY3Lvr/zV1kVZ08BxYgUg6y1ei9oU0MmWVfXv2OHFXm1kRycJXbCncq1e9WFe1rVl94yoNp+ShFBz3cLUw3T1Z0p32e1CMO19DZj+zNVzxNqv/7qxhW3NbqFycc2St8No/ZUGXW5/Hubj/i58DPqlFdAh3B2srB15d4PW5vs79YyqdGNqVLNmPfDgjOASZqyPEklc1hAicfUCIUjIgA6Vf1phAKxJAK05hcQj0XQER/3lVZ00EkJLo2Fqb/3H90vQ3y2yo5fI56QcGI3I3BqRf6sRNAyhoBHg0wgaEZdVsRyww5GQourgdpgIjKe/AgDvgHo9YvBkrXHU/Xr+YjkmeZxH/Im234Y7oLKuox1QDQtYvtJCAicmEB2u5TNVYgXUZriAOvTxLs2Bsy9pJPz9pDy7Zi3ngZJCZN7r7wPasRweUhIk2ps4ynQsioerfMdzgd6YAcyfbZkZKpNEcgIxL1dHBxv4AwhCclOjfIbuoYbeUPd5NvHOHsg7dMVlu2qLDn4NYgtiSRVBOrUKrMSAgxtL9ff/SPX2ZEXgyo9n/UIPMAl1cXQEnh+MGkCnsGMAT8HeTMd75+dVM1UHYkay1uEDwYfSvmaqCmAvEJwpKkDChgY1xYd/ZIq+FoAUTq4uzgxnT4EbZLBZe6lkw7pNv56Cp/rm99ato3kHkzNIow8I1c5ZAvsO3HP4zo1oW0KstIowpQiwRFlnS3zsyaHo6O294WP9/MnJ8qf21W/ZqYpRKCI0Qv3/U0/2/wvHZlyx/qakd1joR1XizW0vceT/rs1Q///ck/1f5EH44/SSgfrFk19uIf+c8Roj/28YWA3x/y892f8rrh/3MTeRIh3/O/369WdCFBz5v+bQaoj/t/Rk/6eNG3LE6sNZ7ZAbBXdHWj6pw8j/HVWg/v+1J/u/MNV1mNUnLfJxO5XsjVceEnDk/zVTof7f2pP9/4Pr/pjCxQXqOe/rFv18JzcJI/9P1oP6/7ee7P9DjRoD38oVa5TrlXtMTrbbgyP/J9Ch/v+9J/u/5pZtL4N+eGkllNyyvT2MYYuR/weuhPp/W0/2/4QEqbmfxEeRskQH1Y38a+NNHPn/dweo///oyf4v2liZT558WvOgnrm++votqzDyfz1fqP//7Mn+b/9q498Lnw+iF51etW3n48EHcOT//bZB/R+Urcf6/524aVqKWk7qaWNNniyu/umJkf8v3gP1f6F/pPq/xP/3XY8IeUl4p1m+88HGEv3ERhz5v2wo1P+Fe7L/L5tS/JUoa6ceviqfFmipIYaR/6fFQP1fpCf7v6GU4gyKWqZmEDVpQFyraByO/N85Dur/vf6RJdo3PAvcBgN/MXMeDDsnBtzJpyvyqL0p/i80fCcolc8eMK+Ox7PzWP9iXkZbdZArirfpqP//Dw==
- true
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwAAADsABataJCQAAAJhJREFUSEvdk4EKgCAMRPfF9gn9WX9Wq5MtEmdKbQQ9GClud4cY/Q6WbwgQ13LnKh5mAsKEle8MeCLm1C9pb2I2QHxNtKC2RLNVeiYjTWyDIxkEZPuKykDTj6QboTZwTA8KA+/0oDRwTg9OgwhxUBh4Xo2SDaLSg5waBrJ3J//uL66mG4zxNGX9BMzezmuDR4UQKg5CxQ2IduVGkrvn0vkHAAAAAElFTkSuQmCC
- 3640aa4f-62eb-4d63-8052-a0e09732f02d
- true
- DIFERENCE CURWATURE LINEAR GRAPH
- DIFERENCE CURWATURE LINEAR GRAPH
- false
- 20
- 106c5295-4ab4-4aa6-aa77-17b1cabe660e
- 17ab48d2-bcb8-4439-9ae7-4711deb61155
- 1d618bec-21b8-4413-b9d0-b0ca022e064d
- 26784ca3-df66-4613-b760-ac9c1e2d63e1
- 3a66ce4a-5df0-4133-b5cb-55a024af3eb7
- 40b9031e-c91b-4327-8c44-ba17ee3528fc
- 63c4f63f-3b9c-4c9e-839e-410d31706448
- 6536ba36-0f3e-4855-9e12-fd57d967ea8a
- 6ecb5ad5-e259-4659-a211-088cf8e4b477
- 74ca0538-baa6-4806-a992-faf5fad6d48e
- 78cc69e8-a743-4023-b94a-9a8aa828d39c
- 82d3c096-76ee-44d4-8798-24f756494b5e
- 8548dc1b-91e3-4cc0-b43b-091e2316c9d3
- 8cd4f22b-f743-4148-bcb0-88afd63f304c
- 8e61e44e-6641-409a-9e86-3d6a5f8855d8
- 94ec5cf6-ef20-4c96-b553-c34d022171bb
- 9c9f7ec6-458c-4c08-989a-a545ac4b25c5
- abbd5fd2-67ff-46d9-a817-2364a4a2ccb6
- c5391385-d15b-49a5-ac81-81d3ed1c0180
- ee3af77c-4fd8-4c52-a97e-5a973605dc48
- e294df03-baaa-4b12-b92f-e97f42ff34ec
- 45329fda-4528-406d-a823-54e35ac6ff74
- f9b9305d-1e20-4067-946a-b44d88604308
- 357ceb68-e651-4e13-b8c4-6a838be2149a
- 34281050-3848-44ac-894c-a3119ffa069f
- 9096d595-00e9-44ef-bf8b-df7cba4ba2ea
- 9d9970f3-5ab6-40b5-b0f2-d257ffef222d
- b4c2ea06-2f42-44c4-9b4a-584b407a7f6a
- 7979dd58-784d-428c-ab41-1f9a01cb3b5b
- ad15254d-f361-46c9-90d6-b5db1b60e3d2
- e9837f44-fe89-4576-a1ba-d864d9176564
- 88ea5216-22ee-43b9-bf4a-bf732fa4678f
- 3c10a1a1-09f5-411d-ae06-13d21b0f7cd7
- 9492d9b1-8423-4285-a424-c395dc7f8b36
- d134b7cd-fb62-4a2b-a901-fec5a2d783e9
- 98a7b290-1680-4c8f-91d6-4080e52ada8f
- 693656d3-ab20-45a4-a99a-8ca5a8f9ac36
- 80bcd5c0-5458-4110-bc35-aad5d5e50148
- 054cb35f-8548-43e7-8129-2bbf3a113dd2
- 17704c02-f561-4245-bc67-2eaf7cd1e000
-
1581
1459
110
404
-
1677
1661
- 20
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 0
- Vector {y} component
- 3a66ce4a-5df0-4133-b5cb-55a024af3eb7
- true
- Y component
- Y component
- true
- 0
-
1583
1461
82
20
-
1624
1471
- 1
- 1
- {0}
- 8
- Second item for multiplication
- 1d618bec-21b8-4413-b9d0-b0ca022e064d
- true
- B
- B
- true
- 0
-
1583
1481
82
20
-
1624
1491
- Vector {y} component
- 40b9031e-c91b-4327-8c44-ba17ee3528fc
- true
- Y component
- Y component
- true
- 0
-
1583
1501
82
20
-
1624
1511
- 1
- 1
- {0}
- 7
- Second item for multiplication
- 17ab48d2-bcb8-4439-9ae7-4711deb61155
- true
- B
- B
- true
- 0
-
1583
1521
82
20
-
1624
1531
- Vector {y} component
- 26784ca3-df66-4613-b760-ac9c1e2d63e1
- true
- Y component
- Y component
- true
- 0
-
1583
1541
82
20
-
1624
1551
- 1
- 1
- {0}
- 6
- Second item for multiplication
- 6536ba36-0f3e-4855-9e12-fd57d967ea8a
- true
- B
- B
- true
- 0
-
1583
1561
82
20
-
1624
1571
- Vector {y} component
- 8548dc1b-91e3-4cc0-b43b-091e2316c9d3
- true
- Y component
- Y component
- true
- 0
-
1583
1581
82
20
-
1624
1591
- 1
- 1
- {0}
- 5
- Second item for multiplication
- 78cc69e8-a743-4023-b94a-9a8aa828d39c
- true
- B
- B
- true
- 0
-
1583
1601
82
20
-
1624
1611
- Vector {y} component
- 82d3c096-76ee-44d4-8798-24f756494b5e
- true
- Y component
- Y component
- true
- 0
-
1583
1621
82
20
-
1624
1631
- 1
- 1
- {0}
- 4
- Second item for multiplication
- 63c4f63f-3b9c-4c9e-839e-410d31706448
- true
- B
- B
- true
- 0
-
1583
1641
82
20
-
1624
1651
- Vector {y} component
- ee3af77c-4fd8-4c52-a97e-5a973605dc48
- true
- Y component
- Y component
- true
- 0
-
1583
1661
82
20
-
1624
1671
- 1
- 1
- {0}
- 3
- Second item for multiplication
- 74ca0538-baa6-4806-a992-faf5fad6d48e
- true
- B
- B
- true
- 0
-
1583
1681
82
20
-
1624
1691
- Vector {y} component
- abbd5fd2-67ff-46d9-a817-2364a4a2ccb6
- true
- Y component
- Y component
- true
- 0
-
1583
1701
82
20
-
1624
1711
- 1
- 1
- {0}
- 2
- Second item for multiplication
- 106c5295-4ab4-4aa6-aa77-17b1cabe660e
- true
- B
- B
- true
- 0
-
1583
1721
82
20
-
1624
1731
- Vector {y} component
- 8e61e44e-6641-409a-9e86-3d6a5f8855d8
- true
- Y component
- Y component
- true
- 0
-
1583
1741
82
20
-
1624
1751
- 1
- 1
- {0}
- 1
- Second item for multiplication
- 8cd4f22b-f743-4148-bcb0-88afd63f304c
- true
- B
- B
- true
- 0
-
1583
1761
82
20
-
1624
1771
- Vector {y} component
- 6ecb5ad5-e259-4659-a211-088cf8e4b477
- true
- Y component
- Y component
- true
- 0
-
1583
1781
82
20
-
1624
1791
- 1
- 1
- {0}
- 0
- Second item for multiplication
- 94ec5cf6-ef20-4c96-b553-c34d022171bb
- true
- B
- B
- true
- 0
-
1583
1801
82
20
-
1624
1811
- Number of segments
- c5391385-d15b-49a5-ac81-81d3ed1c0180
- true
- Count
- Count
- true
- 88cf909b-1dfc-4acd-9ac8-315b06ce095d
- 1
-
1583
1821
82
20
-
1624
1831
- 1
- 1
- {0}
- 10
- Contains a collection of generic curves
- true
- 9c9f7ec6-458c-4c08-989a-a545ac4b25c5
- true
- Curve
- Curve
- true
- 5d1cff17-fdb4-4fdc-8366-b759fcf7a3ba
- 1
-
1583
1841
82
20
-
1624
1851
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 5d1cff17-fdb4-4fdc-8366-b759fcf7a3ba
- Relay
- false
- ffc7114c-425e-4e46-9780-4f5439b2a045
- 1
-
1354
1843
40
16
-
1374
1851
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- e2df2e1d-44d3-46a6-865e-cf271d98e1ba
- Relay
- false
- ce7a6538-1307-4799-aa09-c6d0b388aa6b
- 1
-
1343
1787
40
16
-
1363
1795
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 256fa74d-8451-4366-b97f-fb31ceb7790f
- Panel
- false
- 0
- 0
- 0.0003959052400654102
-
-312
1638
160
84
- 0
- 0
- 0
-
-311.7244
1638.12
- 2
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- b8db01a5-a165-45a8-b68c-2fc89acd8cfd
- Relay
- false
- 9f667c48-eb1e-47a4-8db2-61666d1ea383
- 1
-
-351
1399
40
16
-
-331
1407
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 2d69de74-3ac4-4786-bdb1-2f69d7dda67c
- Relay
- false
- 3e1b6d63-9b79-46a8-8d27-80596e7d8b16
- 1
-
-353
1501
40
16
-
-333
1509
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 46d30a93-1bfb-4b58-b472-667a267525d3
- Relay
- false
- 79b1faa2-503e-498d-9a62-75f1113025b9
- 1
-
-355
1551
40
16
-
-335
1559
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- cb493613-0e2e-4e2b-81d7-7ea202151906
- Format
- Format
-
-297
1363
130
64
-
-205
1395
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- 2eb68e74-837d-4e46-8c99-02a982f20cf7
- Format
- Format
- false
- 0
-
-295
1365
78
20
-
-256
1375
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 5252966c-5c4f-4a9b-b762-3c659429c056
- Culture
- Culture
- false
- 0
-
-295
1385
78
20
-
-256
1395
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- 52f1eacc-39cf-4144-9ece-79646d8595e5
- false
- Data 0
- 0
- true
- b8db01a5-a165-45a8-b68c-2fc89acd8cfd
- 1
-
-295
1405
78
20
-
-256
1415
- Formatted text
- b0ca4533-8708-49c9-abb0-994600403593
- Text
- Text
- false
- 0
-
-193
1365
24
60
-
-181
1395
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- d43e0888-6c1f-49e3-be0f-bb7d829fb494
- Format
- Format
-
-297
1447
130
64
-
-205
1479
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- a864facc-351f-4484-977c-3999f7848a52
- Format
- Format
- false
- 0
-
-295
1449
78
20
-
-256
1459
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- c8912e3a-4df0-4d47-a0f1-a88a53ededd0
- Culture
- Culture
- false
- 0
-
-295
1469
78
20
-
-256
1479
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- 497bd5e0-b27c-4940-9b99-25379961ed41
- false
- Data 0
- 0
- true
- 2d69de74-3ac4-4786-bdb1-2f69d7dda67c
- 1
-
-295
1489
78
20
-
-256
1499
- Formatted text
- 413475f9-4f88-4628-8645-62eae4dd9722
- Text
- Text
- false
- 0
-
-193
1449
24
60
-
-181
1479
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- fffead86-943d-46b8-8937-a2232dae7463
- Format
- Format
-
-296
1530
130
64
-
-204
1562
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- ffb10974-89f5-42f1-8068-026964edf4b7
- Format
- Format
- false
- 0
-
-294
1532
78
20
-
-255
1542
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 47e6c6fb-dd94-42a0-aadb-40c2cb7a1ef5
- Culture
- Culture
- false
- 0
-
-294
1552
78
20
-
-255
1562
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- d4ed8801-7d28-4eb4-88d3-57878affb737
- false
- Data 0
- 0
- true
- 46d30a93-1bfb-4b58-b472-667a267525d3
- 1
-
-294
1572
78
20
-
-255
1582
- Formatted text
- a6d6d315-6584-4d1c-9c7a-258d37fd4a9a
- Text
- Text
- false
- 0
-
-192
1532
24
60
-
-180
1562
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 375085a7-85bd-47e7-800b-36aa5972104d
- Relay
- false
- db90c791-fd03-47f7-9d9f-fce64245413a
- 1
-
91
1571
40
16
-
111
1579
- 290f418a-65ee-406a-a9d0-35699815b512
- Scale NU
- Scale an object with non-uniform factors.
- true
- 8fda1e13-53c9-4af2-94b7-c8a6b46ddc04
- Scale NU
- Scale NU
-
291
1328
226
121
-
453
1389
- Base geometry
- 67f67125-e32e-46ec-968c-e49e99f471e9
- Geometry
- Geometry
- true
- 4be4d01e-f1cd-4466-afb7-4c701c8415b6
- 1
-
293
1330
148
20
-
375
1340
- Base plane
- c052d3d4-ce54-4870-82d8-00e7ad59458d
- Plane
- Plane
- false
- 0
-
293
1350
148
37
-
375
1368.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Scaling factor in {x} direction
- da1a007e-69ac-4e7f-aac5-a78ca7c560ae
- 1/X
- Scale X
- Scale X
- false
- 9f667c48-eb1e-47a4-8db2-61666d1ea383
- 1
-
293
1387
148
20
-
375
1397
- 1
- 1
- {0}
- 1
- Scaling factor in {y} direction
- a5a32c25-5253-47ff-b408-cb47a62cd982
- 1/X
- Scale Y
- Scale Y
- false
- 79b1faa2-503e-498d-9a62-75f1113025b9
- 1
-
293
1407
148
20
-
375
1417
- 1
- 1
- {0}
- 1
- Scaling factor in {z} direction
- f4001ed1-1bec-47f1-b6cf-ad32e8932b74
- Scale Z
- Scale Z
- false
- 0
-
293
1427
148
20
-
375
1437
- 1
- 1
- {0}
- 1
- Scaled geometry
- a35486f2-4dac-4ca8-ba16-9b13976474ec
- Geometry
- Geometry
- false
- 0
-
465
1330
50
58
-
490
1359.25
- Transformation data
- 32b7bf48-2611-46ca-9a94-15871f5f8af5
- Transform
- Transform
- false
- 0
-
465
1388
50
59
-
490
1417.75
- 310f9597-267e-4471-a7d7-048725557528
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
- GraphMapper+
- External Graph mapper
You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
- true
- be4e0dac-54d0-43df-a9f9-d245692a9442
- GraphMapper+
- GraphMapper+
- true
-
781
1162
114
104
-
842
1214
- External curve as a graph
- 32131412-40a4-4796-8cb5-0049955e4cd6
- Curve
- Curve
- false
- 7f6b440a-d60d-4007-bfa5-8cdf447f299c
- 1
-
783
1164
47
20
-
806.5
1174
- Optional Rectangle boundary. If omitted the curve's would be landed
- 10504c35-4cb1-4ccf-ab0d-97db809c54d2
- Boundary
- Boundary
- true
- 5c358a28-dd5e-43a3-b441-5bc768492329
- 1
-
783
1184
47
20
-
806.5
1194
- 1
- List of input numbers
- 71789790-5c60-4473-a7f4-dc3bc01f717d
- Numbers
- Numbers
- false
- 3120c589-9577-4cd1-8824-fe288c8306d2
- 1
-
783
1204
47
20
-
806.5
1214
- 1
- 9
- {0}
- 0.1
- 0.2
- 0.3
- 0.4
- 0.5
- 0.6
- 0.7
- 0.8
- 0.9
- (Optional) Input Domain
if omitted, it would be 0-1 in "Normalize" mode by default
or be the interval of the input list in case of selecting "AutoDomain" mode
- b335bfa0-fb3b-468a-b09b-708cf5b1776f
- Input
- Input
- true
- 3fbe06f6-6671-4795-ad59-b3606b8a1575
- 1
-
783
1224
47
20
-
806.5
1234
- (Optional) Output Domain
if omitted, it would be 0-1 in "Normalize" mode by default
or be the interval of the input list in case of selecting "AutoDomain" mode
- d8d4e7df-a90c-4325-9726-4dfc7089cb9f
- Output
- Output
- true
- 3fbe06f6-6671-4795-ad59-b3606b8a1575
- 1
-
783
1244
47
20
-
806.5
1254
- 1
- Output Numbers
- d0fd8b08-647a-44b7-8722-3f9265acdd47
- Number
- Number
- false
- 0
-
854
1164
39
100
-
873.5
1214
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
- Extract the end points of a curve.
- true
- cb1ce8fd-0f41-450f-9d53-79f7515bfb72
- End Points
- End Points
-
180
953
84
44
-
224
975
- Curve to evaluate
- 94e0bad3-b417-489a-8c29-b38c0b7f7de1
- Curve
- Curve
- false
- 7f6b440a-d60d-4007-bfa5-8cdf447f299c
- 1
-
182
955
30
40
-
197
975
- Curve start point
- b22df60e-f09e-49d7-a1e0-8f2b44f65ead
- Start
- Start
- false
- 0
-
236
955
26
20
-
249
965
- Curve end point
- aea14296-171a-4771-9a84-390715b4afe5
- End
- End
- false
- 0
-
236
975
26
20
-
249
985
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
- Create a rectangle from a base plane and two points
- true
- 7609d6ff-b013-41c3-b0e6-1f1ea2ecfa4d
- Rectangle 2Pt
- Rectangle 2Pt
-
374
1011
198
101
-
510
1062
- Rectangle base plane
- 04b12ec4-09ce-4bce-9c5e-563bb5c6f518
- Plane
- Plane
- false
- 0
-
376
1013
122
37
-
437
1031.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- First corner point.
- e4032d1f-5563-407f-8d59-63c24b553fdf
- Point A
- Point A
- false
- b22df60e-f09e-49d7-a1e0-8f2b44f65ead
- 1
-
376
1050
122
20
-
437
1060
- 1
- 1
- {0}
-
0
0
0
- Second corner point.
- 1598ee77-7a85-4dc4-b49d-da6593b2f937
- Point B
- Point B
- false
- aea14296-171a-4771-9a84-390715b4afe5
- 1
-
376
1070
122
20
-
437
1080
- 1
- 1
- {0}
-
10
5
0
- Rectangle corner fillet radius
- c86be701-5245-4b5e-b8c7-736354a2aa02
- Radius
- Radius
- false
- 0
-
376
1090
122
20
-
437
1100
- 1
- 1
- {0}
- 0
- Rectangle defined by P, A and B
- 5c358a28-dd5e-43a3-b441-5bc768492329
- Rectangle
- Rectangle
- false
- 0
-
522
1013
48
48
-
546
1037.25
- Length of rectangle curve
- fa4073c9-fd23-420d-853c-3a12ebaa1776
- Length
- Length
- false
- 0
-
522
1061
48
49
-
546
1085.75
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 45977af4-69a0-4e08-8746-e247c5098c77
- Relay
- false
- 8646f974-91ff-408b-aa4d-7fb4f8df1cf2
- 1
-
573
1573
40
16
-
593
1581
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 3e0631e2-acee-4952-b380-ca85b2802769
- Relay
- false
- e6883f83-7321-4869-ba03-b28db7c15488
- 1
-
871
1633
40
16
-
891
1641
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- 334df1fa-36cc-47a9-837d-60ac1be4a50d
- Bounds
- Bounds
-
620
1261
110
28
-
678
1275
- 1
- Numbers to include in Bounds
- 37c1ef27-099c-4ee3-95bb-58ae35c8919d
- Numbers
- Numbers
- false
- 3120c589-9577-4cd1-8824-fe288c8306d2
- 1
-
622
1263
44
24
-
644
1275
- Numeric Domain between the lowest and highest numbers in {N}
- 3fbe06f6-6671-4795-ad59-b3606b8a1575
- Domain
- Domain
- false
- 0
-
690
1263
38
24
-
709
1275
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- b8dc634e-a51c-4f2c-81bc-3d5445f2b76d
- Multiplication
- Multiplication
-
452
1146
65
44
-
472
1168
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- e5ee8871-037b-4ec7-bea4-30847970cc8b
- A
- true
- 45977af4-69a0-4e08-8746-e247c5098c77
- 1
-
454
1148
6
20
-
457
1158
- Second item for multiplication
- 2d435093-1ce4-49b9-ba6e-e3467082b029
- B
- true
- ac864993-ecc7-4645-ae0f-6a08f6579f35
- 1
-
454
1168
6
20
-
457
1178
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 65536
- Result of multiplication
- b716b10c-3aa5-40ed-997d-6e57c2ed9dd8
- Result
- Result
- false
- 0
-
484
1148
31
40
-
499.5
1168
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 749a1d6b-ce44-4374-b73f-e79001f96855
- Division
- Division
-
939
1227
40
44
-
959
1249
- Item to divide (dividend)
- dd92453a-f264-451b-82c3-8fcf92690c14
- A
- false
- d0fd8b08-647a-44b7-8722-3f9265acdd47
- 1
-
941
1229
6
20
-
944
1239
- Item to divide with (divisor)
- 034550cc-e2fc-4b88-bf69-428042f4b309
- B
- false
- ac864993-ecc7-4645-ae0f-6a08f6579f35
- 1
-
941
1249
6
20
-
944
1259
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 65536
- The result of the Division
- 2e337179-3366-41e1-91ce-b34ea88fe906
- Result
- false
- 0
-
971
1229
6
40
-
974
1249
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 3120c589-9577-4cd1-8824-fe288c8306d2
- Relay
- false
- b716b10c-3aa5-40ed-997d-6e57c2ed9dd8
- 1
-
540
1176
40
16
-
560
1184
- cae9fe53-6d63-44ed-9d6d-13180fbf6f89
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Curve Graph Mapper
- Remap values with a custom graph using input curves.
- true
- b1b3cfd0-fdbe-4d56-bd37-08900a0112c6
- true
- Curve Graph Mapper
- Curve Graph Mapper
-
745
819
181
224
-
840
931
- 1
- One or multiple graph curves to graph map values with
- ac290670-5842-4a15-aa53-834d345d7f27
- true
- Curves
- Curves
- false
- 7f6b440a-d60d-4007-bfa5-8cdf447f299c
- 1
-
747
821
81
27
-
787.5
834.75
- Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
- 83b94a39-1f18-4e8d-99e0-2385db6d3c47
- true
- Rectangle
- Rectangle
- false
- 5c358a28-dd5e-43a3-b441-5bc768492329
- 1
-
747
848
81
28
-
787.5
862.25
- 1
- Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
- 909ffa9a-b5d6-46dd-a885-b7464e5e7d73
- true
- Values
- Values
- false
- 3120c589-9577-4cd1-8824-fe288c8306d2
- 1
-
747
876
81
27
-
787.5
889.75
- Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
- 776f816b-cff2-40a1-aa86-2920a323ac4e
- true
- X Axis
- X Axis
- true
- 3fbe06f6-6671-4795-ad59-b3606b8a1575
- 1
-
747
903
81
28
-
787.5
917.25
- Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
- 385402d6-4b0c-476f-bd64-6dd764131ae5
- true
- Y Axis
- Y Axis
- true
- 3fbe06f6-6671-4795-ad59-b3606b8a1575
- 1
-
747
931
81
27
-
787.5
944.75
- Flip the graphs X Axis from the bottom of the graph to the top of the graph
- 86ecd77a-d369-44ad-971d-fabd4c06ee62
- true
- Flip
- Flip
- false
- 0
-
747
958
81
28
-
787.5
972.25
- 1
- 1
- {0}
- false
- Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
- 98212030-c666-417d-a30f-04baeb41e9f2
- true
- Snap
- Snap
- false
- 0
-
747
986
81
27
-
787.5
999.75
- 1
- 1
- {0}
- false
- Size of the graph labels
- 48463b98-be10-4297-b07d-3846425e8839
- true
- Text Size
- Text Size
- false
- 0
-
747
1013
81
28
-
787.5
1027.25
- 1
- 1
- {0}
- 0.0625
- 1
- Resulting graph mapped values, mapped on the Y Axis
- e6565b4b-cef3-477d-8812-bc8b999f9b4d
- true
- Mapped
- Mapped
- false
- 0
-
852
821
72
20
-
888
831
- 1
- The graph curves inside the boundary of the graph
- 43464001-9d23-4753-82d1-602f8071c817
- true
- Graph Curves
- Graph Curves
- false
- 0
-
852
841
72
20
-
888
851
- 1
- The points on the graph curves where the X Axis input values intersected
- true
- d9ac758b-cc34-4638-94d5-5cf5361b3e1f
- true
- Graph Points
- Graph Points
- false
- 0
-
852
861
72
20
-
888
871
- 1
- The lines from the X Axis input values to the graph curves
- true
- 445f9076-c008-41b1-97ef-60af947fc621
- true
- Value Lines
- Value Lines
- false
- 0
-
852
881
72
20
-
888
891
- 1
- The points plotted on the X Axis which represent the input values
- true
- aa497984-6e75-4d21-b4bb-b5ae576c4479
- true
- Value Points
- Value Points
- false
- 0
-
852
901
72
20
-
888
911
- 1
- The lines from the graph curves to the Y Axis graph mapped values
- true
- 1b6aa626-e209-48f0-a15f-ab7dc9645ef4
- true
- Mapped Lines
- Mapped Lines
- false
- 0
-
852
921
72
20
-
888
931
- 1
- The points mapped on the Y Axis which represent the graph mapped values
- true
- 5067a63b-73bd-4f7f-963b-3a7b4c4dfd4a
- true
- Mapped Points
- Mapped Points
- false
- 0
-
852
941
72
20
-
888
951
- The graph boundary background as a surface
- 5b3dfa57-e204-4444-9e92-0611bf00405a
- true
- Boundary
- Boundary
- false
- 0
-
852
961
72
20
-
888
971
- 1
- The graph labels as curve outlines
- 59e9cbda-c078-408f-b017-57e4f5e3ce1f
- true
- Labels
- Labels
- false
- 0
-
852
981
72
20
-
888
991
- 1
- True for input values outside of the X Axis domain bounds
False for input values inside of the X Axis domain bounds
- 82eee386-327f-4901-8478-a464457293ac
- true
- Out Of Bounds
- Out Of Bounds
- false
- 0
-
852
1001
72
20
-
888
1011
- 1
- True for input values on the X Axis which intersect a graph curve
False for input values on the X Axis which do not intersect a graph curve
- 72a6c943-24f0-4165-aee6-1e12264947eb
- true
- Intersected
- Intersected
- false
- 0
-
852
1021
72
20
-
888
1031
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 7f6b440a-d60d-4007-bfa5-8cdf447f299c
- Relay
- false
- 2a58a381-2731-4ecb-9622-86d5b7e6f397
- 1
-
278
884
40
16
-
298
892
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 3bc19fd1-a14f-4afe-8c79-98d06f72efe6
- Scale
- Scale
-
24
837
201
64
-
161
869
- Base geometry
- 91fac79f-9c37-49f8-9da4-3c31c7380fd6
- Geometry
- Geometry
- true
- 6ed1c523-bb4c-4547-8b1e-fef80e576ef5
- 1
-
26
839
123
20
-
87.5
849
- Center of scaling
- bb906599-6948-4240-be61-b8f2db1129f8
- Center
- Center
- false
- 0
-
26
859
123
20
-
87.5
869
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 69b2eb88-56be-4742-85ab-abc16a75d511
- Factor
- Factor
- false
- ac864993-ecc7-4645-ae0f-6a08f6579f35
- 1
-
26
879
123
20
-
87.5
889
- 1
- 1
- {0}
- 65536
- Scaled geometry
- 2a58a381-2731-4ecb-9622-86d5b7e6f397
- Geometry
- Geometry
- false
- 0
-
173
839
50
30
-
198
854
- Transformation data
- 2d174878-52b5-45af-9e48-245182783d6b
- Transform
- Transform
- false
- 0
-
173
869
50
30
-
198
884
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 6ed1c523-bb4c-4547-8b1e-fef80e576ef5
- Relay
- false
- fe2c7fd3-a20d-49fe-8b1d-09361e90e45d
- 1
-
-65
851
40
16
-
-45
859
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
- A VB.NET scriptable component
- true
- eea9ee61-f5d5-4cd8-9392-512823c0542f
- DotNET VB Script (LEGACY)
- Turtle
- 0
- Dim i As Integer
Dim dir As New On3dVector(1, 0, 0)
Dim pos As New On3dVector(0, 0, 0)
Dim axis As New On3dVector(0, 0, 1)
Dim pnts As New List(Of On3dVector)
pnts.Add(pos)
For i = 0 To Forward.Count() - 1
Dim P As New On3dVector
dir.Rotate(Left(i), axis)
P = dir * Forward(i) + pnts(i)
pnts.Add(P)
Next
Points = pnts
-
1124
3341
104
44
-
1179
3363
- 1
- 1
- 2
- Script Variable Forward
- Script Variable Left
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- true
- true
- Forward
- Left
- true
- true
- 2
- Print, Reflect and Error streams
- Output parameter Points
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- true
- Output
- Points
- false
- false
- 1
- false
- Script Variable Forward
- 67372680-60ae-44bc-846c-4865450df977
- Forward
- Forward
- true
- 1
- true
- c3ae31b2-8e2f-4176-a84e-b43814396e6c
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
1126
3343
41
20
-
1146.5
3353
- 1
- false
- Script Variable Left
- 78e99550-605c-4e97-9f4b-9c8279389f48
- Left
- Left
- true
- 1
- true
- 9d55f829-b54c-4866-9ced-6f44b43868eb
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
1126
3363
41
20
-
1146.5
3373
- Print, Reflect and Error streams
- 6db48831-5b42-4e0d-961a-891b10ec40c3
- Output
- Output
- false
- 0
-
1191
3343
35
20
-
1208.5
3353
- Output parameter Points
- 9b42fff0-cfd4-4077-bd34-da7089713006
- Points
- Points
- false
- 0
-
1191
3363
35
20
-
1208.5
3373
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- 2c82a4ea-3f85-4c1a-b5b5-2017900737e6
- Series
- Series
-
505
3500
89
64
-
549
3532
- First number in the series
- 7d70527c-3b5e-4035-9c97-3a4e66a71ebb
- Start
- Start
- false
- 8e6ac10d-2238-4545-8ff2-442c876cd85c
- 1
-
507
3502
30
20
-
522
3512
- 1
- 1
- {0}
- 0
- Step size for each successive number
- ea1865d1-db8f-4aab-9811-0b5402206762
- Step
- Step
- false
- 8e6ac10d-2238-4545-8ff2-442c876cd85c
- 1
-
507
3522
30
20
-
522
3532
- 1
- 1
- {0}
- 1
- Number of values in the series
- d8a497e7-23e5-4d55-a9ef-4b474147df58
- Count
- Count
- false
- dc0b9699-7043-422e-b460-d535b9da419e
- 1
-
507
3542
30
20
-
522
3552
- 1
- 1
- {0}
- 500
- 1
- Series of numbers
- e552844e-beed-45c9-8a78-a5fe409f581c
- Series
- Series
- false
- 0
-
561
3502
31
60
-
576.5
3532
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
- Duplicate data a predefined number of times.
- true
- 5f38726a-35c0-4b76-901e-23bf35d464c4
- Duplicate Data
- Duplicate Data
-
496
3343
102
64
-
559
3375
- 1
- Data to duplicate
- 47caabbf-b255-4c5a-a4a5-150c750eda62
- Data
- Data
- false
- 9ea38a50-4760-46d2-8f7b-283ff9e5b2d3
- 1
-
498
3345
49
20
-
522.5
3355
- Number of duplicates
- 531ac858-39f2-4fd7-9685-bece6d955799
- Number
- Number
- false
- dc0b9699-7043-422e-b460-d535b9da419e
- 1
-
498
3365
49
20
-
522.5
3375
- 1
- 1
- {0}
- 500
- Retain list order
- d7a02fc3-4ca1-4ecc-a967-35c15da0554c
- Order
- Order
- false
- 0
-
498
3385
49
20
-
522.5
3395
- 1
- 1
- {0}
- true
- 1
- Duplicated data
- 64514e59-9473-4a0c-b0b8-55f5423b430c
- Data
- Data
- false
- 0
-
571
3345
25
60
-
583.5
3375
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 7e1bc525-0327-427c-afd4-d8b6c2743acb
- Digit Scroller
- .
- false
- 0
- 12
- .
- 11
- 1024.0
-
-29
3493
250
20
-
-28.90819
3493.851
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- c923a52e-eef5-4213-b91c-a99d00b79828
- Digit Scroller
- ЯR
- false
- 0
- 12
- ЯR
- 1
- 0.12220574352
-
-25
3395
250
20
-
-24.20879
3395.534
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 1db31240-f2f8-4f56-bfd1-c8e86a7d0108
- Digit Scroller
- °
- false
- 0
- 12
- °
- 2
- 0.0003860762
-
-27
3438
250
20
-
-26.29068
3438.793
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
- Convert an angle specified in degrees to radians
- true
- cbe7bd82-cc9b-4870-9ac3-7aa5aa5a6971
- Radians
- Radians
-
350
3401
108
28
-
405
3415
- Angle in degrees
- ee7f3a8f-51dd-4ce6-864b-7f1c762117af
- Degrees
- Degrees
- false
- 9698bc3a-1ed1-4414-86f0-6444e8ead760
- 1
-
352
3403
41
24
-
372.5
3415
- Angle in radians
- 8e6ac10d-2238-4545-8ff2-442c876cd85c
- Radians
- Radians
- false
- 0
-
417
3403
39
24
-
436.5
3415
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- 9f5a4e05-ce5c-4e86-a807-564e2bdd48c7
- Point
- Point
- false
- 9b42fff0-cfd4-4077-bd34-da7089713006
- 1
-
1001
3489
50
24
-
1026.471
3501.968
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- dc0b9699-7043-422e-b460-d535b9da419e
- Relay
- false
- 6c7782b5-3c6b-4ea4-b368-9f8596fbb31c
- 1
-
361
3463
40
16
-
381
3471
- be52336f-a2e1-43b1-b5f5-178ba489508a
- Circle Fit
- Fit a circle to a collection of points.
- true
- c73e22cb-aead-46dc-b16c-0dcc22b7dd4e
- Circle Fit
- Circle Fit
-
478
3761
104
64
-
523
3793
- 1
- Points to fit
- 81f3a1ec-91eb-4bf4-8fbc-1c370465acd8
- Points
- Points
- false
- 9f5a4e05-ce5c-4e86-a807-564e2bdd48c7
- 1
-
480
3763
31
60
-
495.5
3793
- Resulting circle
- d68e2f69-3f6f-44fd-a42e-8171647fc776
- Circle
- Circle
- false
- 0
-
535
3763
45
20
-
557.5
3773
- Circle radius
- b567df3e-11d3-4b09-9333-ce91f4c3ae0e
- Radius
- Radius
- false
- 0
-
535
3783
45
20
-
557.5
3793
- Maximum distance between circle and points
- fcc5255c-a398-4ece-83e3-96e14b9c2ac5
- Deviation
- Deviation
- false
- 0
-
535
3803
45
20
-
557.5
3813
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- cos((4*atan(1))/N)
- true
- 2ddf6b0f-02b5-436b-b276-241adb75be4c
- Expression
- Expression
-
629
3723
215
28
-
727
3737
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- e51b1d7a-a1af-48c3-b8da-e133a59540cd
- Variable N
- N
- true
- dc0b9699-7043-422e-b460-d535b9da419e
- 1
-
631
3725
11
24
-
636.5
3737
- Result of expression
- 77e75b08-4e4d-4be7-8856-42f71b66f28c
- Result
- Result
- false
- 0
-
811
3725
31
24
-
826.5
3737
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 054f5a8d-f78d-4a7e-bf5d-2645ef426ad8
- Scale
- Scale
-
652
3868
126
64
-
714
3900
- Base geometry
- 510ed7b4-b3c9-4474-a386-993821af754c
- Geometry
- Geometry
- true
- d68e2f69-3f6f-44fd-a42e-8171647fc776
- 1
-
654
3870
48
20
-
678
3880
- Center of scaling
- a003e2da-4e0b-4f3c-a084-b732e78b89c7
- Center
- Center
- false
- 51a42e21-ee34-499b-9dd4-f81a4b690590
- 1
-
654
3890
48
20
-
678
3900
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- c760a2a1-3ff7-4898-bb85-58cdae47edae
- Factor
- Factor
- false
- 77e75b08-4e4d-4be7-8856-42f71b66f28c
- 1
-
654
3910
48
20
-
678
3920
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- b6b1bef2-1523-4956-aa25-2dac5bdbc61f
- Geometry
- Geometry
- false
- 0
-
726
3870
50
30
-
751
3885
- Transformation data
- 0a98dc6e-bb85-421b-b00c-7339b7acc660
- Transform
- Transform
- false
- 0
-
726
3900
50
30
-
751
3915
- 2e205f24-9279-47b2-b414-d06dcd0b21a7
- Area
- Solve area properties for breps, meshes and planar closed curves.
- true
- 973ba117-2844-42fc-a837-d3bfa8e69ed9
- Area
- Area
-
466
3878
118
44
-
528
3900
- Brep, mesh or planar closed curve for area computation
- 7e8b3833-ef63-446a-81e2-35e1cf71bbc8
- Geometry
- Geometry
- false
- d68e2f69-3f6f-44fd-a42e-8171647fc776
- 1
-
468
3880
48
40
-
492
3900
- Area of geometry
- 264a3238-71d4-4fb9-8de9-6d5e8107f02a
- Area
- Area
- false
- 0
-
540
3880
42
20
-
561
3890
- Area centroid of geometry
- 51a42e21-ee34-499b-9dd4-f81a4b690590
- Centroid
- Centroid
- false
- 0
-
540
3900
42
20
-
561
3910
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 526de354-79e7-4025-9017-d96eec6fcc44
- Multiplication
- Multiplication
-
777
3780
70
44
-
802
3802
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- ef3e20b7-31e9-4b59-8b5b-7d48b7a00581
- A
- A
- true
- 77e75b08-4e4d-4be7-8856-42f71b66f28c
- 1
-
779
3782
11
20
-
784.5
3792
- Second item for multiplication
- 5603b472-3d82-4ad9-acb6-fece068c3098
- B
- B
- true
- b567df3e-11d3-4b09-9333-ce91f4c3ae0e
- 1
-
779
3802
11
20
-
784.5
3812
- Result of multiplication
- 7d8353fa-9341-4524-9a9a-18e418cd2bfe
- Result
- Result
- false
- 0
-
814
3782
31
40
-
829.5
3802
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- .5*L*(1/SIN(π/N))
- true
- b941c138-f5e5-41ec-98ba-14636530b46f
- Expression
- Expression
-
717
3622
207
44
-
811
3644
- 2
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 23a00873-cd15-4b34-a2b3-f668298f3f20
- Variable L
- L
- true
- c923a52e-eef5-4213-b91c-a99d00b79828
- 1
-
719
3624
11
20
-
724.5
3634
- Expression variable
- 16aedcd7-2496-4d7f-b685-3ba86767c62a
- Variable N
- N
- true
- dc0b9699-7043-422e-b460-d535b9da419e
- 1
-
719
3644
11
20
-
724.5
3654
- Result of expression
- d4f062e1-e870-4204-80e2-9d78907879ab
- Result
- Result
- false
- 0
-
891
3624
31
40
-
906.5
3644
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 5b56d761-0e39-48f1-8db0-ceb1b6b1aeda
- Panel
- false
- 0
- d4f062e1-e870-4204-80e2-9d78907879ab
- 1
- Double click to edit panel content…
-
1004
3625
160
100
- 0
- 0
- 0
-
1004.444
3625.77
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- R/(.5*(1/SIN(π/N)))
- true
- a4424e3c-d856-4aa7-8832-ff6f7d317feb
- Expression
- Expression
-
396
3263
224
44
-
498
3285
- 2
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 553f3aa9-172c-4f13-bac7-0b9e210f60e2
- Variable R
- R
- true
- 63179a12-0556-4bc1-9bf4-ef312b611dad
- 1
-
398
3265
11
20
-
403.5
3275
- Expression variable
- 7e057535-e619-4c03-b33d-f4bf1bce78b1
- Variable N
- N
- true
- dc0b9699-7043-422e-b460-d535b9da419e
- 1
-
398
3285
11
20
-
403.5
3295
- Result of expression
- 9ea38a50-4760-46d2-8f7b-283ff9e5b2d3
- Result
- Result
- false
- 0
-
587
3265
31
40
-
602.5
3285
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 0359459d-9d9a-47a0-a6e5-8671853cc66b
- Division
- Division
-
167
3560
90
44
-
212
3582
- Item to divide (dividend)
- d54c5aed-abbf-4257-a6d5-64ab24a130c9
- A
- A
- false
- 0
-
169
3562
31
20
-
184.5
3572
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 360
- Item to divide with (divisor)
- 15406d66-d0dd-43ec-ac83-8190d55c283f
- B
- B
- false
- 7e1bc525-0327-427c-afd4-d8b6c2743acb
- 1
-
169
3582
31
20
-
184.5
3592
- The result of the Division
- 6f7bf996-752f-4e29-aa85-34d7d23fb47b
- Result
- Result
- false
- 0
-
224
3562
31
40
-
239.5
3582
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- d8700d74-83cb-4bb5-a874-5836156b8585
- Panel
- false
- 0
- b567df3e-11d3-4b09-9333-ce91f4c3ae0e
- 1
- Double click to edit panel content…
-
662
3218
160
20
- 0
- 0
- 0
-
662.4798
3218.279
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4
- Reverse List
- Reverse the order of a list.
- true
- 448f2eea-d58f-4b03-a15c-131db29d4d6f
- Reverse List
- Reverse List
-
633
3458
66
28
-
666
3472
- 1
- Base list
- d2a92c6b-d29e-4752-8ae9-4c89e9f387c2
- List
- List
- false
- e552844e-beed-45c9-8a78-a5fe409f581c
- 1
-
635
3460
19
24
-
644.5
3472
- 1
- Reversed list
- f8f66c7a-48a1-42fb-8fb5-b9e101750e10
- List
- List
- false
- 0
-
678
3460
19
24
-
687.5
3472
- a3371040-e552-4bc8-b0ff-10a840258e88
- Negative
- Compute the negative of a value.
- true
- 3374828d-ef30-480b-8c7e-4d3363908193
- Negative
- Negative
-
679
3406
88
28
-
722
3420
- Input value
- 8842f592-ebd1-425b-9235-1eed26cbab14
- Value
- Value
- false
- 68234acb-2189-4140-ae0c-7c1dcad9f4b8
- 1
-
681
3408
29
24
-
695.5
3420
- Output value
- a06377cb-f650-4240-8f06-3e0aa8cea794
- Result
- Result
- false
- 0
-
734
3408
31
24
-
749.5
3420
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- 11841893-58e5-4d69-81f8-6ef5876ad579
- Merge
- Merge
-
798
3368
122
84
-
859
3410
- 4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- ff8d9a28-a359-43d7-9813-26784092c0d5
- 1
- false
- Data 1
- D1
- true
- 9d63dde1-2e33-4f8a-a3cb-303f50d0a8d3
- 1
-
800
3370
47
20
-
831.5
3380
- 2
- Data stream 2
- f5037f9c-4fd3-4870-b046-58bf9cbf663b
- 1
- false
- Data 2
- D2
- true
- 0
-
800
3390
47
20
-
831.5
3400
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 0
- 2
- Data stream 3
- 34ffa90f-4d0d-41d7-9e2a-9e6914e1d97e
- 1
- false
- Data 3
- D3
- true
- a06377cb-f650-4240-8f06-3e0aa8cea794
- 1
-
800
3410
47
20
-
831.5
3420
- 2
- Data stream 4
- 7be9445a-1cc8-42fd-9a91-44e035932117
- false
- Data 4
- D4
- true
- 0
-
800
3430
47
20
-
831.5
3440
- 2
- Result of merge
- 7abea44d-07c7-4298-8d09-060192324a84
- 1
- Result
- Result
- false
- 0
-
871
3370
47
80
-
886.5
3410
- 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4
- Reverse List
- Reverse the order of a list.
- true
- fefb94c4-e829-4cb6-954e-9fa966bb6e09
- Reverse List
- Reverse List
-
657
3265
66
28
-
690
3279
- 1
- Base list
- 3083f7cb-d6f6-4012-9c1d-6b21de28228f
- List
- List
- false
- 64514e59-9473-4a0c-b0b8-55f5423b430c
- 1
-
659
3267
19
24
-
668.5
3279
- 1
- Reversed list
- 293dcebf-c8ef-4af0-bea0-78ac8cc2435f
- List
- List
- false
- 0
-
702
3267
19
24
-
711.5
3279
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- ec279539-9319-45ff-a5ca-90e3b3f745f6
- Merge
- Merge
-
877
3251
122
84
-
938
3293
- 4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 50bb2f13-a19d-42f5-a248-813f6021a844
- 1
- false
- Data 1
- D1
- true
- 293dcebf-c8ef-4af0-bea0-78ac8cc2435f
- 1
-
879
3253
47
20
-
910.5
3263
- 2
- Data stream 2
- f6e7d53a-62d8-430d-aa79-f90e2662521e
- 1
- false
- Data 2
- D2
- true
- 0
-
879
3273
47
20
-
910.5
3283
- 2
- Data stream 3
- c45addba-d44c-468f-916c-7c0e75d7548d
- 1
- false
- Data 3
- D3
- true
- 64514e59-9473-4a0c-b0b8-55f5423b430c
- 1
-
879
3293
47
20
-
910.5
3303
- 2
- Data stream 4
- 121717d7-f0b5-4ab5-8c2a-e6daf79e2ce3
- false
- Data 4
- D4
- true
- 0
-
879
3313
47
20
-
910.5
3323
- 2
- Result of merge
- c3ae31b2-8e2f-4176-a84e-b43814396e6c
- 1
- Result
- Result
- false
- 0
-
950
3253
47
80
-
965.5
3293
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 032109e0-083d-4876-a194-d48d70db4a82
- Panel
- false
- 0
- 7abea44d-07c7-4298-8d09-060192324a84
- 1
- Double click to edit panel content…
-
1272
3232
160
479
- 0
- 0
- 0
-
1272.424
3232.003
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- fcba47ce-cf17-4a9f-b444-fdfd3b58f104
- List Item
- List Item
-
898
3779
77
64
-
955
3811
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 904b0e7d-06c2-4fb7-ace6-0d5e3e73309a
- List
- List
- false
- 9f5a4e05-ce5c-4e86-a807-564e2bdd48c7
- 1
-
900
3781
43
20
-
921.5
3791
- Item index
- 4b4c9ab4-7ff7-493c-804f-f2ee6521d579
- Index
- Index
- false
- 0
-
900
3801
43
20
-
921.5
3811
- 1
- 1
- {0}
- -1
- Wrap index to list bounds
- 401ceedd-2460-47a7-adfe-3fe8bfdcab75
- Wrap
- Wrap
- false
- 0
-
900
3821
43
20
-
921.5
3831
- 1
- 1
- {0}
- true
- Item at {i'}
- 76288414-d3b9-4565-bf15-03a6b907c596
- false
- Item
- i
- false
- 0
-
967
3781
6
60
-
970
3811
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- f6189714-2503-4c33-b10d-828b9753dd63
- Deconstruct
- Deconstruct
-
1011
3785
120
64
-
1052
3817
- Input point
- 1734f987-ef44-4c85-93f8-de26f37b00dd
- Point
- Point
- false
- 76288414-d3b9-4565-bf15-03a6b907c596
- 1
-
1013
3787
27
60
-
1026.5
3817
- Point {x} component
- 7876afcf-7775-45c8-8a25-88d8b7e1f9c2
- X component
- X component
- false
- 0
-
1064
3787
65
20
-
1096.5
3797
- Point {y} component
- 5abe47df-fbe4-4b97-bd03-0ec1b1f6b2d8
- Y component
- Y component
- false
- 0
-
1064
3807
65
20
-
1096.5
3817
- Point {z} component
- fce43a6b-020c-45af-be79-091fc7373c5b
- Z component
- Z component
- false
- 0
-
1064
3827
65
20
-
1096.5
3837
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 04e8baad-2bd4-4512-8434-d1b3544659d7
- Panel
- false
- 0
- ba156c5f-31a5-4478-a04c-85f4b5333b7c
- 1
- Double click to edit panel content…
-
38
3207
116
20
- 0
- 0
- 0
-
38.51038
3207.453
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- f650f2dc-1a4e-481b-af1a-49af3711d7cf
- Panel
- false
- 0
- dd0736c2-159a-42d1-af5f-93e121faa9f7
- 1
- Double click to edit panel content…
-
39
3289
118
20
- 0
- 0
- 0
-
39.33979
3289.087
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 32a6c3f8-891b-465c-a59b-971de8e4b598
- Division
- Division
-
1263
3785
70
44
-
1288
3807
- Item to divide (dividend)
- 5b959b6e-3da7-428d-97ea-89b9c83a5673
- A
- A
- false
- 7876afcf-7775-45c8-8a25-88d8b7e1f9c2
- 1
-
1265
3787
11
20
-
1270.5
3797
- Item to divide with (divisor)
- 3b155943-e856-4f6a-861e-2a442c5af7de
- B
- B
- false
- 5abe47df-fbe4-4b97-bd03-0ec1b1f6b2d8
- 1
-
1265
3807
11
20
-
1270.5
3817
- The result of the Division
- b887e715-85b8-4d63-bcef-54f50d862634
- Result
- Result
- false
- 0
-
1300
3787
31
40
-
1315.5
3807
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 4cbbc23a-5f94-4439-9417-57501beec295
- Panel
- false
- 0
- 35a11262-770e-4498-9d6e-28b546897ca0
- 1
- Double click to edit panel content…
-
38
3249
116
20
- 0
- 0
- 0
-
38.30339
3249.228
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 04e8baad-2bd4-4512-8434-d1b3544659d7
- f650f2dc-1a4e-481b-af1a-49af3711d7cf
- 4cbbc23a-5f94-4439-9417-57501beec295
- 3
- eccb3198-eb6b-4c8a-a3d9-fbc052dd7486
- Group
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- dd203f61-0028-42eb-bd28-7f6f48340bc8
- Division
- Division
-
280
3506
49
44
-
309
3528
- Item to divide (dividend)
- 64037327-91f1-4a5c-a020-c21cdc1c56aa
- A
- false
- 7e1bc525-0327-427c-afd4-d8b6c2743acb
- 1
-
282
3508
15
20
-
289.5
3518
- Item to divide with (divisor)
- 1b254420-5fe8-4023-9282-f9415e798a17
- B
- false
- 0
-
282
3528
15
20
-
289.5
3538
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- The result of the Division
- 6c7782b5-3c6b-4ea4-b368-9f8596fbb31c
- Result
- false
- 0
-
321
3508
6
40
-
324
3528
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 4c63dec2-1390-4291-b6d5-8371589a05f4
- Interpolate
- Interpolate
-
895
3102
225
84
-
1068
3144
- 1
- Interpolation points
- 204c7f61-dafe-4ead-8116-4d615c72795d
- Vertices
- Vertices
- false
- 9868f335-6dc4-451f-8094-d3711f42121a
- 1
-
897
3104
159
20
-
976.5
3114
- Curve degree
- a70ef5d1-c3cb-46d6-9d33-77e1a52d1292
- Degree
- Degree
- false
- 0
-
897
3124
159
20
-
976.5
3134
- 1
- 1
- {0}
- 3
- Periodic curve
- 4d30c792-d92a-4102-8b00-2557c4b3ae9a
- Periodic
- Periodic
- false
- 0
-
897
3144
159
20
-
976.5
3154
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 31ad9203-8d68-486d-b831-33a8a2d37811
- KnotStyle
- KnotStyle
- false
- 0
-
897
3164
159
20
-
976.5
3174
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 650d961c-ef6f-4573-ade0-97f698f6a536
- Curve
- Curve
- false
- 0
-
1080
3104
38
26
-
1099
3117.333
- Curve length
- ccb103da-accf-4a47-99e7-b07e82093feb
- Length
- Length
- false
- 0
-
1080
3130
38
27
-
1099
3144
- Curve domain
- a1b7ba6e-684d-4c4f-b4dd-917607d871fa
- Domain
- Domain
- false
- 0
-
1080
3157
38
27
-
1099
3170.667
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- DIFERENCE CURWATURE SHAPED GRAPH
-
7H0HXBNZ13dQpEpRUVAUgxXp2FFZCSEUCUVBxU4gAaIhiUlQsC0q9oaKitiwd8GOvWFby9p7X1exrdjLqnz3TmZCZjIzJA8B8nzv4/50YU7mZuZ/zj3l3nPPMQuUJKSmCMSKUvDHiMFg1AJ/raWi1CSheMgIgUwulIghKQpchmT4xxR+BLsvRMDjC2TwI7VQsgVGCg2El83Bpb7B959FD1oROeWuInKzLHWVaZRMMEIoGAnpFoBuEp0MRuHboJfDBfLkmHSpAJJrol9shdIiJLIUnghSWoCrK1euLMXuihaIBAkKAR+jCYXCUrtAQaJQLFSAt4iSSaQCmUIokGPDwr/GgTwF8j1m4Jedj1Omz51y18wyUCBPkAmlCvTl4SMyjCN4KQLstzc1Y0OCPT2f7F78cvk08O+TRfng38eLtj9etAv5Afl111r479zZyL9Zj+cuUH3yUk4E/Hl+JhxhIbzlydI1qp8fZ89/nL1A9bHHizaqRlN+TDnIy0U74fXF43Ffjd2LPhJK3Yh/vGVl3zs9F/nwTLqfczepBkT/Ra/Q3oX8jL4R8o1qD7BR9Wzoc2KPXfYZhKp8R/RLkXdHUUVGQPHB7tVEUokwirbyizBGoHxBR8OxD4UX4aynZ3BIrHkvIGFwKsixaQL/WGFX2ZJU5QSqiU0BIGxDgTCi8lMDvWwSw5MlCZBPOsGp9rW0dEAdIFn9JZIUbAZNaBzXvVYfIM64rzKHVzS+xrxXgpTLS5ekKtQ/axEsk6RKNT5cOziExRXGy3gydAoYoTOrFu6j8Iqp8nPpyDOjt9uy5HJBSrwoPShVJFKfCqyo1MREgSxRKE92Z/ZRagy/dp7e8D93JjtVpEiVCfzEglSFjCdyZ0alxouECWGC9BjJMIHYTwxGs8GG7lOmb+DIpugoJqxURbJEhl22ChcmJPMEImaULF0iqxHKx7TMyuJljYf49OHmm8wR/iq2GIWbsRZlj2lK8T11ypRFZDxknwqmPoCDlsprOLDgdRPldYhRDRQ/4+DeZbrPZ02vkwPyNwZtWGNz7vi4TwtxT1UL4ZU5WyJW8IRipR51QUcxCZDIUNWKMcaELRFJUmWYhoP/J9NVTixmEhyXKUlkBst4cnmyRAp0H1OifKsaoYGI9IC/83u9HNPvY1LEdK9Xnt9fpC4EJCOUVBp35/rD+y3CsntuH5Jz/g8LQKqBkmSjf7kXe1sG5v+R/9qxIKw+INVESU+cu/COes7gbl612eeNwMYFkIxR0vbTrBHfHR1Cjjx7NKezrfMDQKqFkj5cf1K4ql4xN+/Z80GZsZtfAJIJSlpxsJ3d9Z+1gw8Z1Sgc55TzHZBMUZI0n7t8s00XTkaD2azQluNGApIZSprw+SDD+rBxZMHBzkaX9wavASRzlDT1xMneR/6y4m7JfDK384uvboBkgZLEezxennqxjbPp0eY4X5d93wDJEiXVPDDsei3fX/55b+Y92uHV7zog1UZJ08e1/PHmRnzQAquoNx+jHPsDkhVKSvvUwNlNmhO2etwM0yVfp/UFJGuU9ONJiy4X3nTosdc32mP4yriPgGSDkn7uZy3rv2B1YK556eXVtzPNAMkWJTVtuuzcrPaPQ+YuP1O0I/j7fECqg5IWh73iHt3cmTtvj1vj5f17ugNSXZT0ZnXtxgUPbCN3xPXk33dsVgRI9VCSs/kxN++wd6zCmB9H59Zq0BmQ7FBSo4HSZXU7vQ1dYLzPcrh16CJAqo+SHrz8uH5WZoOQbceGPbXdsmQjIDVAScWtOaf+zerOPrCE5ZUw9vNjQLJHSb/PyjE78/Zn0FT3q/l/rB2fDEgOKCmxfvQ3o8ljgqYY7ZWJncOmAlJDlBSZUzghrWYEa9WQpLqvzDL/BaRGKOl0arv278dlhB98sPb2dbP08YDkiJIudpw/ct7xSz0K6q4/wDw13hWQGqOknEnX9n5flsLa+s7Zmi/OhRLVBJsORcLJde1zOFnvOW2Pc/1eAZITSup2pem1+cuPsNaO2TIhZdjoTYDUFHuvBxv6rZ/UIXJ84vN7DEZ2PCAxUdJyYUr2rtWenLW1cm8d/NVnj1lo4BCcBnGGmjlULFfwxAmC4FShSplNlP1Z6/aRGiFH9oTPenSUZ0yiNswihAnD1C8zLFgKhUwYn6pQanhUdWMqykhvKuq3KlRR7WIKF/0Ivcne0P1FJ9beKwo1FSXd1STfxDSFk3/TvcO0CS8HqqmozfkXt0148zBsR7xt3Bur7rZqKmp874hPZ9alBW2UTAuZGpB+XE1FPX29b8W74NCAaW5t5jBCmE/VVNTO/GO/Qnb3485ymlFybtFRGzUV1Tum8WmnvqWsxSfa55nH/PyopqJiujVMmdziVeSMCKOPE63CvqupqLHBCsnQtT7BB2pczXxY+8gHNRW1xC3CKejfwRHb5UuWrHcdv11NRX3PSQvcFMoI3tFght/zib3fq6mo+VM57S85jg5a1WU151nRzuZqKqrk9zp1/pwcHrIkpOmuGI82n9VUlEV4x8+XlzULye9xq/vgFtcuqKmoS1HvCzyeh3M2Nl/lZOUj91RTUdPdVqc7RnGDs9JzHXdc6bVfTUXtXVxk6mgq467re8PJ9HpRPzUV1WbXnTPvPr0Km7nynVd0X/tsNRVVw2/HvFH7xkUu/NLVr+3U0mtqKur466j3jWxcwxa7L1tmsT5oq5qK+pTfJ8gi3z9sX3OvOkm9um9VU1F3hzCF+6/3ClnqfLXXjSEHVqipqOlDWV9nnl8Ruj39Q728p+FpaiqK8VdSp6jdJQFZLd69HTSz2001FcWI7vf86LXVPXZcbbiv1ow7ddVUVK+Ofjn1ot1YuwZO6+Ey502mmoqa0nCkY+7O82EzRvPsi14PZaqpqD6pQ9jtitLDdpr6Fdh9lDVXU1Hciw6nlhXWCVp+9PfE+jvblqqpqI8+8zm+70pCdrLz9l8b1CJFTUXV+mdaKqvf9JCpPVkDLkhC/NVU1JYPkes6fW0RuNti+/tj4+fL1FRU889/vPZ3Pha81GQLc1KscT1AckZJvq4HuV7sTkHbT4d2ZA3bMQeQmqGkYUE+vU12rggYbzVp5rj7Z6EL0Bx7+JjMgZuXGgctjv+8zv7AqO6A1AIlHXJ+uzBuigNr8unsW37bDh0BpJYoKcMla1Nzp7kBB9rsj1nU/7EDILVCSeO4u/ufTtkQtDel05LZfZvaA1JrlORxl7mY/9WPM6PTMvsufeXwu1ywJ+x7xXrJiDY9ctfbtnpR1H06ILVBSQvqlEZ05I8JX/aq2Ye78vCegOSKklZ7FMy/5TnNfxYzZnJU0Zw7gOSGkpxW+/1xLiU5aNfqbbeXMTqwAckdJW006tniDDeaPflK7hDTbpZnAckDJZ2aZ2vy27uH4evWLHsUceHQIUDyxKbe5FWnalu97bGup6dtbI9mjoDkhZL+bdhhzeC2sf6HVn75i3vWXQJI3ijpy9en6y80LgmZ/Jv4clazK6MByQcl/eF+osG5mrPDj0z75PzKrO4SQGqLktZO6uS+fMDtgB1OCts/nK5BA9sOJT0btXfC/QvyHlu49qFn+KMCAKk9SlraRfqo4530oF0is71znu3wAqQOmGa71qrZ4BMDg2fX2XEu7PO8IEDqiJLkNVLtI5rY9pi3/eP2oR/2dtMwep0YFEZv0vrnsaxWZ0PGvzg908JmrLUejB40CKRG7/C6mb9t+JnfY/fRbjFnDsjr4r7LJCI1JV4gw1s9U3QoMnvmhX5SzuQxEyQikTL4g9YtUSThKYTiJKZUIhQrmGJkYDnp6xNNHdkjabw/dj0SeR7l0ggSCppEAzucIGCgXFn/eHHDsbc7R+z7c1xyuNulSZZKskbwR4BTFbsGgA/ykUtwojMyXDmMqHYnGYyQAAbjKKtWlHCEBBkHqhyGrTtn9PS2J62jYKQlVwjEikCegkcfdZoEyAAgyQw1hml+yDiKp0jGXr3maO+xxqEKQQqDUbY6ZaJEGH4Gi10ZjCx/VBxqUonDIcG6TeKf57iz3E/u9JbVHYTD3pydKhvBg4EsXiKgc2BCIRFdOSN4olSeQsBUJAuYCdgAUCR4yK8CJk8BfpRLBQnCRKGAz5TyZOA7FQKZp0mIkM8XiFV4kUoL0fuheGINgSkjaclqpgsHAAhY/R2wOiOAwGqmO6D+dtISefohQrE0FYmFTVGQyaCpw0ZeXyFhClCMSF9wzNsXrq+zV4XOHGDZtveqj+Px2gAZQ+Pl0MvlTQaiD1jByeAPEJL6o5OhhDgZLrXhMDK64xAyKgehllGYLDCBFlFKC1+SAgSvXNTmpTXP9wvrFrb1+o399jlNZHixUI2rKRZlpPLQ+9V3rqi4dm7QlJoZnt36TNmlB/SABNGgl+d3srYSPUmqAhUwExr46kchulYFHZhooxVjSeFyHDD/3kKfKP/dNo8bBV3vF40XMmQcTSFTXtaAiQwHhvY4PHJHpagbwCGPiEOsJ4dxqTseB6NycLBXTXXmCKD8JDI6JPhPzEy47BnclaG/dV7z7tIr3fVJpSDi3Z0OESA3OERqaI9IglCWIKKVjXN9b5aGrDsWvokn+qfI7om/gSBS4keHSJTfSdTWwaiW1NZ5Po93/iH7Gpbd79otrw2b7HDvVTtQOELIFzARRapp7kwpgG2D3obZNjBBgKIansoTMUUCcZIimSkXJMFdIblWxo0Yv1M/ogb6OKqWsHoDFeTdFcD6mczEZbkBqq9OJs5GZeL4yNOQvmT3ZalTbj+rHZI55fCm2aFFvwzXwEUBfGwhPkwyscsCKlrahdTAUfnLdZVeK/SGMLkghehSWp24Vg0VEcssnl3oMmrKegJE8HVIIEIulwcRMcbSA0SXfOkgAiJUzQ4xvIkJOaLGKUxjUnHKPloqEipUXIL6cphQPIwigvmjnfHy0U1DD8z6/rzB8On98OwKg/dpskt5Wd+aEvIjqzMdP0o6VQs/TOMlEpGAp1KADA3XBlMsJqyEBIFcrj48qa6BCg9uaClDTHLOLLvHM9lw8wFrVbtaf3P4PQ7jY0vEodFkDXZd77xxR9XJQDLemHki6kTD09ERlmYxPHESYCzq+iCSy9cCqd2NBRuWh81gTQy/OXXB/h6PcUiZoYNqYlVGqQy0EM1CiRbQLBpekI5oNS+LOGB0IdAaLmIwQNh1xUbVBEydVhmQIZOfEjIw+VE3qRaDwk1aMXrh9X+Kh7E3bG3z8+Kfba+TmGe8f2ROg29rygUiIDQCmTBB6Tdp5x0RrbtpOE8qFYqTMKTg6+jRmXjSzrie+f0D4bNXZA91iQzpWEFLCSM6pjlgznSSpaP+ue6cDv3NMOaYUDEn3mVy81zjw/67Y1s4bDp3uwHudW0CBQkSgJssNUHBZMkSNN3YWhRs6tpLAF5BMEK5ahPPkwuYUhFPLHBnynh8YSrgnpgP/iaJVPE4XM8RM3myBO1WbYhbTLTPrcEw4ge0jRqALTzKAYifJ3NvGcC9PcrWyb1tDL6bCcJJtjKGgm5u2YORvveDPRkvHd/1D9o3tG0WJ7LoHu69a5K9K3KxPNEkhmgVFE0GXGyAQOWxGAwpEai8NghQOi1FOAaoZAgRFSVuytiTFKjVfxptuOudFrS/aff6reVLmuD1KTJaFBxNU5+q0fStT4+6objEkulTqQeHweDouDTRSzmftMIkcPfB44dn3A+cnn2j7biRll/wzotyJE3nBb1eGVjEBdJhQZSR8hYlmCx1heIC/kJlwxPL26DwkIJiVniqnvHHfPa2t8sUL0s+P8IrfGRITYWvvFwZkDDZdJBkBGAaHYsKNTS617yx6U26/Aqa27vDDMaSfovwgh8J5k/kCOCdxGoq85oUuNZjS1IA/GDiwckHb07TTkkTN/upHkVzDpbRtPVUgE7JGgqgKwDQPSJCxwB+TIFQJ9VsGQo/pXTiSF9uyfM6v05u6x25yf5025vRPMKKZx94n6bcKC+Xp42JO9AV1MZSuK4AsSlmkewxxboi2OikjWtHIh+jQecVf1jD2v3rR+72H3Gn3dVHuQRVI5CnijRXHLDrep9X7igAX8kAKPRAAEDnlRnVvBp+ROgmjNjE3ns4UvT86YC3uDey7JkK3gWm4EiTyZ1ZLeOHFoFCObBy6XBHS6CAeivdAwskoM+bBL+BFHFi+gzl82nAjiNqYG8eLZEpItXzk0gklpj+oqXEqkYjMCyuNVB1IwDDGrDhX4JrO7Q1J2XsiJNWWKZ6qJgvSMOGg/9HWWlOxcpXfSK4xl7f2AtWnw9aGRnaHweVMRewTlM5GlMwzJktE8DdSR5TBD7OjBcoRgoEYqZipASN9rRTlcQMJ81H0mAbclUHzzUrEfVcvTU8VzADvAU6qUdb+OVM8B4yhfI9Sd+qTcOlT4xeruTMGjhh8y+rnQ54mYxG7ibfG8IRy9OXxM0nPXivUghWFJkZzgP68pJAp21IawQsAQh5qKF6uvu39rs8ngZsvNyH16vAdyZ+k4QD7iUHSo1UHkxEl1gPMAGpoYEpi6+jWVEKlXKJlBSl5JT0kF73d7O3HnGvMWn4lObaThP9mxQPVEYKWHBplOiqeSLQoHrIgkoPnV3C4/70tQ+esM7J9GXz0fjFRDMEjOhArvZRdwBeF6FAgpgyEfzKZ8anq09Yd6YCXdiDsbhyc8lzrFbKiphzSf7cmkt7GEVLjPOA0jJbBTC+RxZu+wMOmK2sBKUV0+DC1pjuQziTkizHeN20CMI7dohe0nTslJerWFEdBQB9XXkShtgkM5AJookNK3XaTnJAAMLkwoUvlCnX19qQAvV7sj1vA/c9Z8bikHq72kRZ4lVWIHazpsoqI5UHWNyRQx8cDwwMynyyoZ91Sad1egAslhYwIFHVsrmkXFyHn2nHoPpT0p244YQ5q6QBDMJL5bwmT42/wjt9NL2Qs9805NtU5922dUPFCoEMMIOTJpUBV1VtrBoesXgHnosMq+nAo9fLYysx01cPbC3Mo2Nrcl517xmWJdGVdNezUYzdP/75+xbFETPvf+3UcGGfhdVmFBmeqD4qIFv2K/BEphdqFC0ZFEaxT9Maw7K32wbsWyl623WsWQh+ZVeVDaiUNO0TK/YZqW7F5Q0mCGRwAGYiT5nYI5KIk5hChRyziOgXoXQ5M4EnBk4+U54qlYpgtmG8BBCFWIZUqhjeCg2qGDlgKxwFPoJc9GSyk6FeRRbEB0QMKktThMu+CkkSXLpSRQ/gMzCCSJHwBVoGEMTDDrSwaS6IEz6gJcNhnCbdBBhen01ioQtg2L2xMlIaHQ9+SE31suFOeLF9c/qB68v0uElDnEwVze8FCMVBhGaTqaZC4ELbbtIw0XR5BM1w8shMhCu+CGYoYOCjpJBZm0TN7rt3F2eucdAfR6ZPiKuYPq+gooCoHN1IhwqQGwNS2LokerQPTWTGyFIF7sgsxnNLKFfXCy7ent7McUwfT29y/8p0syBv45JWoZlbD9mtdGn/Fb98GqEaSHP5VI1WGaxj0rLu0gaDyAcx0snKNlGmugKTALlWlkxO4z/Nuz++Zpbj4R5bsi8e7sV7hd86rdqUV7g1gGiZEDKmMLwQLaPTvlIrfNaHTsB4+17rYNfalr38lnnRrRWX8Mv+pujAGtCoCJUBDqJsKMEBykanjabWSitVZsF1QYeftii7Zof93A0Fx+8Ht8mYrY/Ecj0gxKRFCMxp1G+rzaDw2zgsV7dSv2usDQ+cNl5Z/rYdfq0PiS2kEhGw6Jo+mxkFzh2w9QwxzIPF7uejBk+RLJOkJiWXrZTrst5KPABK+bSaK5NqRG394pYcRt5WgC8PuEkbiG7SJYBv1BYNN8kMU4/abRzYlT1WOZlGce8uN4zZlBY02zj1ROiemzPwqzd9YHEX8IWaqzcqSnkuFFExVtCFYgL0siB6Tdkk0ungymH4b9XJhaqtnL58QZJMQO5fXsizbmU2cj5nxunl2X//+uCKd5YCkRs1nSX0ur5nJ3z/ki1075+3pbqdJZVk6uAowUcWSvhYyhYpI7bM2+55qEshZ8/QvzL2x734Gy+r2ACasqqiVAYzomiZwageZmikw6qzomY5rPAME0sUwHzxEuAJSxdvPxCygsgixZ3p45eQLJHx3Zlt/eTDZQrkF3JvdaqTxdQxy/sHTj7n8zg5q/QU3q7BL4hWpJPkUqiRKoNZBZvpmBW32RBmDhxKt4NZyo1yyCxxqixeTjODsr7YZXb7raTHxCeO4hcTne5UJFSuIDuyvFFF7gDcjEtEdhz14fRuuVU3LxXV5DTeVuf8jt6Hh1wMn9PrbLi9965e1Rr2QgCObkEBuEUCAFQtOnmimClDUp5IARi53TK1Y0QrztrFdfp9tXxYQjBlyI0kpkx5vTIAKN5MA8CmUZsxR9OKQeFo/mcnzqkQ1MuJc2LNEL2eOCceZ9fHifMCihPn/Ru5c9Jf52M8sKbigc453WY0LNBrTjexRoselwaJqlQPjHi0jY4RY7ZhjLChYgQzqfmeqbOmBcw/sYW7+Nu+0fjX7SUQ8dLJGUEIK6g8g3os5kihTMCUwZHQskKkuBMzgEgeRAN3I2a5mBPzyCqaMw8wPzoMPc2UQVJugeE/DMPclgpz8+hFI9alDg3Mf/NV0Im5ER872qAxazj4RybkibTfoWhUFu1GSgXiYC4zBR1Du5CWWGeI9rE0dwAIH9A277I1CE7WQo0OXKxLGnkQHkDXrNEIbelc0SbKwldw9sMlFb4wMTFVLmAmJPPEYoGI9MVve3R4cuJejv/BDYMvjmoVdBa/3hSoHEFzvQkj6H01BUDyCEKygWw1xRbmxaytFq+zFlCuElVJsS9fvpTqEjUz8YyBa12pIp6MmSxMShaBv+Rq4dyQn39OPT4+fP2Pnwscp/w6gQ/gotFBNAM4FaUyuONPy52SNQbAndJSRqkuwXRTTopQLhcCXzABxyZMhZAyR7Jmy/IbW1aG7ao9/pVT5rODeOYoRyTJ3yijVAZz8tbQMSfKEJgD+aNLeN2JlQK/EuEJeBwQZ8sE4oR05QaQH1Mi5Q2H+0U+yG9lnyCfUT1z78qauDhy50z7/ad0e9dk/JH+GLXxNY/046iVwTwGLfMKVld3tF22qfcIt6lnXA4H/co4KE8WitPFwHUC7APsEkvgqTYf8JNIMhIhwl+9ISmFl6a8QL60FX5z6c3nXwJmbXX+slhWmkRIM0smS9tAL1cG5+JW03HOtto5B2/iM3RcJ6lbtk5CqwiXczk9g5xNAgt37Xl3dfiaWnhFSOkzlVH0zRFvT9SHgH7qGQ23ygtRhKifWodB4ac2NB4dffzAx8gjZvl/t+o42h33VtbsVLlCksJEq77j3VSIKdVpoNYsEZB0OZp5AMdANrOTBJIUgUKWzpQqB5TbhIoTRKl8Qai4l0CMnh6gdl6JlTDpnlWDDwS6NazyLZXIFEFCkUKgKnitLfYFcA97PcA+hyxXPgvula2n3K0hjaGCMWwUEgwerTx6sxq/559+0Sp4cr5oc9167ebhxRIbVVMsVZQqTnaBJ5KPQuT8yfRIlBuHIV2vUz5q/Rg1FwY5eiajKgLTxDe386MG70L3rQ0Y1LY5Ifr5j6YwASuijtDH6W1arC6tq1Kdi/WdMEVDLvgh6Ozcz7tfaiZAPT7sYoB3QGktxLYRraoZFhhgH4X/r63u9uDvYGAVJutSqTEDDbeJBXqrLNz2bk4Xbpc0rexwe/X6RvJHM+qGLJ618m+Ll4cWG0C4bducznmRNjOAmKGgoKAKwu3ipZwj9+KaBi34+3GhQOH20iDC7UvOdNzxdjYA7lRJuH3jyypb3tM37AlmK5b9PvZ+lEGE21lM2rWQpgbAHEZ1htvF05/brGY+Y2//fubliKFtpxtUuB3VlDbcdqruoM2Awu2cUN9TN5t1CNje2ybS++jgYdUcbts60VqsJtXNuUoNt2deaPm6ww1z9up3bWub2VgXGES4jfgQlOE2UISon1qP8f9BuE1sIVHN4XZeG7pw29+lasLtfnxLr26D/EInNrnbr2XD7Tv1Hm7ruZooUhC7DV0I+cilssLtvZd8J4ouPw3eKGon4br+M1jv4TZRR+gBKyBHNFjltf4/FW7bUakxAw23iZ1tqizcTt5NF26f2VnZ4bbF1PXXsvr1ZWdHzv/VbIzRSgMIt2N30zkvZrsNIGZ48OBBFYTbbXNc1nbu2TpyTlLbmmc7vN5vEOF24S467iTvMgDuVEm4fTOH67g9f0Vo9qu76U9inC0NItx2oGUO0CbVzxxGdYbbFqE7ml3ra8HKzmj2oODmrx4GFW6n7aRjnkv1MM8ww+27nVfb/jrQij3ee9aOFjZNNldzuH1rBx3npu6obs5Varht49bc2bdFbNiM6QfmdkuXbzSIcBvxISjDbaAIUT+1PuP/g3Cb2HuxmsPtuL104XbBnqoJtwPc2IuG9krvMXtJ3NUjDxu+0Xu4TUwF10MIGbWXLoRk7K2scPv5vPv1FIqYHjtvTv3XZs9v9/UebhN1hB6wAnJEg1Xcnv9T4XYDKjXG+jVC/loxLnRnUtNfUbK4GYS4VtVmiaS0KPwaqrKUTQJlPKDGeoGXkDAJo2h5RJrYFdaEK0kYJuCrbqJ9UpIIHP8BbU8MwSKDPrCSeABZhRlYuNJLQ13RNRBwVp6Ygvq97ImQqqogGkdKr2oFzi+vhnOHFwjZef1dItIZ7drTgmNQPYigAbD1oSrbiCTpeOukxppE81KkIuiFANTkQkU6Fp0FU9aqLfzt7V/FHWoHzq8r+9XwZfYftOiZBiqHJVnjQAn69k+QDDAvOoiA0BmAx4jIuA4l4ayjE3gipH4+dRnhlnaTE5udmxO2sce0kL5FLW3pBRsZkMSRRy6XJ9jE3tJ6EOwsTzqulXgYAteEDJVVsGdQWIXUbwfb7ciLCVv8M3bgtK7Lp+IdxkBhklDBjE6QwcNyOnTXbR6RmoKcp5OjtyJqUC5EyubTnW8kcopWKAiPp9WpL6oJa4aNAi9iNtwE+QLV0TVYkcQEOMeJwrSyr6gFuxaoikJbIsKXmqj2EbQWOwZZIvaNDCXntO252YLDOOoGZG4UW1Pm+vdowemw3w2LZByomM1ufd7Ld+JDbl7QyncK34b4VhVWvQQpPClTeVZUrn3f3NbK+1CuKvsI8phiwUh4CREC5aFhrawdsdU7zRNqsBtP1qGwXMEcqsJyUTBKma1TYTlrhNswRJHBxyFvlrhPlhLc/3zwxnGPVk/LOfFAjxX9iV3v9VBVLg/Cs4pM1ZnBczJzdLLhVsrnoTtIbtGsg/hMsDR4x+ewu3yWlxn+jLPyfs0zzuj18vCJOnD1pe35C9w1I1ZE9fx2uJ4e8GHQ4gPEpzpMgRlSpWeEEohuDOIf3SrNWcXwZEkCBR3TPg/quW1fL7uwfX05g2bP+YAvpmmivF+Taej1yigdFzebjiu2BsoVnZblbBCFJxXwUeVLypiwniU9zn26w80WhfXe5roQf/rHJBy5X5Mx6HV9M8bWE1UncD1Oo3N0lBeH4TJHt8IcjioMYC3UBJGwPDy+jzWyjDh7kjvr56ckTpcr7/ARAFs5gGYEgBEqA5GC2XSIdJ6N2fWGDAq7XjAv7OOArl1CJ3/8qTA7cQdfJh39Ru278HRTFXfHG3DmyGRhQjJTIE6QpEh5cjnsFMIUgRkE/XzU/GsX8DP+SuoUtbskIKvFu7eDZna7Sfa8mjKpvK5DSXfmLLSku0abHn/YpmdmRSuhNUZdDWjshcpVWligV/kkpC8uernHwrl3TOQKxciCSNcRh/DCR+XYqAhVbPxhtWtbiKF3AEk3G6YrgqFOGqsbFhcoy77gyhCLJCMFcmWPALgXDn8u8ymZoyPIW34T7Xm1Vp2B7U0QwBzIAIObEQAwdDI3oprMBlNogyhNeiq08R928KFcAAZiuGEGXaGN5BkY5o4GjzmxXr2eMLcy/r5sT0Qwa9HnFb/bj0z/q4KYl8DM4eVUmHsDzL2XY5g3psI8Ym/QxbOMInZG/4ZdhS971MGH9uFwv1EqEiYgVSY1jRcV0o7hwAcDLoEC3ClipuBG0co2TWk40jF35/mwGaN59kWvhzLpHktzBw1P11ZtwEodywCcM0l3ymB65dKTVqqqrJi3itlwC6SBHI6X8JtMkcuhfEwG+vHPzDY6Yh64/x/7cCu3epcwuhEF3VLZek1DRsyU16kHVj4P8rjwI3TBcpMgoQzoeSFwk5EVIjy/SPnjaZopGLdnQVDuvPp/txkxCN9g3oilOTtYGrPDiDA7mrw9dm9Rq3mhS4clD9s2fOOqipYRBezMgOz0ZpFEH2nwJNKyk2ogGZUDklM0bNXK1wmllCUuY+Y9fBG5ftbr6W+PiPHFqYwCNFEKKBelP9xPNDhXc3b4kWmfnF+Z1V2iB5SAWNOglLX0JCqDKlmi8y0clEkK0BnVAiCiRqzWtoGw+zUiMbBtoEaPpxAPBClUnzah0qe5hY/6TXn6NXR/4e7924c95hKqhPPEApFmw0AqNerCYkrhHWrpCUyxRCFQtpxQCNLQlozkbi73osOpZYV1gpYf/T2x/s62pSSPooEtgwxVZE22F+QivKheKJ8gnKztya0sHBpzJw5JWRd7nU+5wm/WWy6QxYDHx762ZaAkNV4kgJFjwjCkHQRfqEDfHcw6uDrwJGMdgY+q9WHiIm0rDqMkDvDRl83ImMK2COfJkoRiriARJxSWysu9YLKn+nVz5fUYiVT9KnGltxUn5U3cSRsExCiZRAprJSufyhR7KmWGKbyEbRxbwk3aUDEfVlVWzW9zeBEuWahdQuyXCN2PVhpJmEIq5InYsEOIijUm0QoQJKaofjfuK+NJyzSHUlSdqETVYNytjz7zOb7vSkJ2svP2XxvUIkVP7hZR/vXg4l6Kp3Nxo+Ix9dDU4DEn9pzVE+bEltN6wDwrmA5z22AMcyYV5j5rep0ckL8xaMMam3PHx33C90uqFSyTpErxmNfGMA+QqPdBNaKa1STOAouZBMeFZjBYxpPLkyVSoCNQhshrhAZigPVJHcJuV5QettPUr8Duo6w5IGGuIFF+AakGSiLOGECqySBvJgxIxiiptGvru++u27M2130+ucbTC3ZmoYFDcJyBGpW8eNGHyHWdvrYI3G2x/f2x8fNlJBBqmhICjxkYj5XscqZilwFZUF/Xg1wvdqeg7adDO7KG7ZijdwuqMX+Kut4btIi3LqBAOuxR73/+9KgeC3qpJYdROBWWKq00C3qnJWfijqn/HRa0GZWoGow2Hxbk09tk54qA8VaTZo67f7a+nrQ5Uf71oM39p9Npc8Z0TJs3N3jMuTGZAzcvNQ5aHP95nf2BUd0Nd2EuKo0O80sjMcxbUGH+PX7A6XYW68PXHqr5k5H8cz5ZVXXtdzacwgU8OUzDQ9ablQ2zgJ1E2/Rpt3dxyPntwrgpDqzJp7Nv+W07dESXOu/aZq3DtmSOALlCsr2LEjfgmTTSrR2tqtldihIA0jc7MXkBJ3bknsjp7f4OHpbPJzjDhpRZGAUTpCFAJSySdXZ/VwQg3Xpfllvfv4NRw3ez2NLAPZ/8kwuuzare+v6w4SECgBnZRgNsGQ0AQOdWS6q5ZaALsBkuWZuaO80NONBmf8yi/o8dqmABFkpM51yqBdhLYMJNXfy/BViUP9uGtdgwb8R4zoYBgQde7k3tpYcF2AV1SiM68seEL3vV7MNdeXjPCqqHOHhGLpdqabEQUG8truwF2BmODyN9f9vB2bxuQv2UgXIHPSzAEjM59IASEGsalDovrsQFWOKie7UuwGa5oxJDugA71QNBCtWnraj0qcH4h+O4u/ufTtkQtDel05LZfZvaa+MfkgSPle8eTt1O5x6GbMcgb23wkA/re8V6yYg2PXLX27Z6UdR9un4gT05JD+l1fzd76xH3GpOGT2mujzWtJNo1rSQMcheDh5xoNPQDOdHNqyDkUngYYBEV5NCNK1iEQd6GCvL6ifvyc0+e5Szd8mTUucZj8vBZQ5w0qUjCJ2l2WYsC4VboHVjco0zZlqfwkER9tP+7lplc83u9HNPvY1LEdK9Xnt9fpC4kfTTNhCaUoCWIj2Cfi0Mn4boMiXsGN8+8D/2H8ZBA+SCk7/aXXZB95K7LQXum9Pv8vRNniR7jIT0fGGW4gGAaAsQny3c9A6s3HdKpcWWHXgIgGkgdDL4ApvtJ5EJIZ4LnE4qYQFJUcsLkyWCDe0mKMIEUxT9N3tWwWRUWlDtt0sl6HZPwEmKu+h7Nbn1lJL2nabkgEkMD16ODBtFaUbOzNCbVWmYoeqATjV/GLkUyT8FM4Q0TMFOlyDpIPA/WBaJs67eh5pCWyzfLwxbbrk+aMWOLLaHyDDosSeUZjKL3jFkPVNgDybiX44kIu0YOsY7AOWM9aLEjhgIikKRgLXE/mJA5q1dY7nNZrNO2mfjdiv+o460ewPKmBQuIOmp/XBkU9qdP0xrDsrfbBuxbKXrbdawZPrffhgO3MWC+MNVqHFWhrn1GqlsxSwREE/wIwIDJoWgre55IIk4CsZccXZ3xxLe6lzMTeDCRlClPlYKIA3AoXgKI4H7lkKlieCvccxGretUrL3oy2cmwEzjC3wERg9TabAPLoJAkwcNq6hmqipESZgpcxNfONpbG3bn+8H6LsOye24fknP/DghY2zWPMhA/ocJ4p7SjVeSbocKQd0clW1imzlegDkb7s0LYcm6AbS0O2ch1H3txWVEePxpKogfRwZCcZIjSbbEoUAu3vcFQnY9kMJ4/ofh/EDAWMKgL2U/z4PGzslfDt1yP3x3bzi6nWFUWIypkjdKgAuTHQqkPlHV9qH5rIjJHB0lBwFuO5JZSr6wWkktQ4WEGKvPVwn3kzR00p7M3dt6Hzj9WfL13FscwiQjWQBtvUaZXBOhda1t06bKDuDN1yUpMopBsqMAlYnTxhIlTvNGv0qWcv+5gs/xA6/p54X/zRqYSNMWQ8TSWkvKz3WlAeqJYJIWMKwwvRMjqddGoVA40VQGSEQGkXdQCmYWnNS56uf3A2Zo9jZM94RYgg0YE1wzSMUBngIMqGEhygbHRqT9xaaaXKLLgu6PSYszP/hE1K6KwaD2amtbNdgA9RVMv+miFKGakyEHKhRQjMadRvc2NQ+G1nl/C4P33tgyesczJ92Xz0Ybw3ygU+GjM6kKv9wkGA6mAYzG/APGEQISaCX4Hflc4E2MoUyjbGQNmi8gp9L9R1G6uV4yQb/cu92NsyMP+P/NeOBWH1yZ9b04vGKDocEfP+jB4R03CV/KHn/Em3ZQXkAdQwIK92s6Obb5d6gSGb5v/Tm3do8kVCnQt4N0mdC+RyeZ4SUf/p4fwXEwIkJRNCJuwc9Emnw98OCECYXLjwhTJlB2ZyY3tz09KnM63GB2XU4/UvLHmyCz8tA7GbNadlGak8wHy8P7pG/r2kx/KlRluNfp1L1ANgGZ/oAAMSVS1OlNJmwM+0Y1D90TwTTlfixRLhJY1WlWXuV7SKfxc8rb64waiJJyzqImefATM4aVKZQFUGC3FqWQHRLrFtKuYAE1ibUjDtSNpJx6BM62FLLJorxuuBtY8+0rE266Ph+MdZuh0kr81V0+ekzLQzN3VvndsqcEHDKdt6tz6Ib2phzCUrsqm8qve1O09UJxWwIC+I8a0nMsVQw+jOoDCMAdfs74/otNN/64DBDjP6HMInetrBrQMFXPqEla0FsNaaQIfT015sSQqAXLmBgQzDLxsGCQ7LDk3zgZBoZRGfOHfhHfWcwd28arPPG4GNS/kPrMEO0k9p641AS3kOgF5MlpAUB4T/6B8VPUzN4qqBApcbYGIm9DYkYqYLdhAYoIcYVuQnpU6Tw9VoyUgBn9yIXEudZnfDmxe+d1HX1vtyfVzxOgapqUJy1By9Xp6OyQ5ydQ2L/i1kwfNIn3MDfdtVUMdkQXsLYTYmy+rJaYPAXNEl4ZZq7FetbiVIxHJBQioiHjDLgXx1c+R9F8bPHm4Byw9Fhw7MWNQNh6Vl2bia4S+OqG+VwHRHYRtIBtstDwQ2VCV4UKmEc9bNP/h0lIRPfv82zPPq7xxi4SGpiJcgYEakikQkuoDKYfbA7hPD+6DMCsUjeCIhXynkI4Uw/xCEKTLtNcH206wR3x0dQo48ezSns63zA5rnJCuQpEbWNtWsNYchPQvQtSTbfMuD6J6p6NxvAI0aUkZBAY/9QyUJESNPrLl44s8tV3oELZh5fE2/j89D8e4zMpCm+6y8XN50nvD5IMP6sHFkwcHORpf3Bq+p6HY7rEJzlqoKTSysQnOW0n3WEjlHFXIynKhB0SLPrjv1eEo6gxu087Rpm2vdZ3zHlz1HBYR8SwdP1fcshmgBSaJBS3qmSh0s7EHNYtKlAnUcmqudq/EMAy6tQOQJPyP3DA4ZAp3cJIGMUIkP/qmo4m6AGEjIWDAECKrTlawm5TLRMFVkklSQr3Ge6CwoIUszgwVuwCzQaSHMQVkOBfoKiK3CRJ9PXiAkPKzV1S1ZPbaljl95I/EroaIC8lYkGxPI5cqAAhFxSiiAiKOGypNh6Pk3RG2pn/wbYu6aHlKe0k7TpTx1Po1B7mXwkE89cbL3kb+suFsyn8zt/OKrm34gH/2jVYTPvTHhB/saHYzaZF+sB8hvXaGDPOcKBrk3FeQ6n5y0wSCvgpOTxGhM7eQk0T1TOzn54fqTwlX1irl5z54Pyozd/ELt5OSKg+3srv+sHXzIqEbhOKec72onJ6X53OWbbbpwMhrMZoW2HDcSkGoxyN0VQDJBSURBASRTlJTTROz9YGJyyBSHLR5GT6890DiKCYWXVPrEezxennqxjbPp0eY4X5d93/RwFNOHiv/Nwoo87m+3CFpvzI+/8cIWz/96ysV+tkgih+4isoGjfb3SZkFCeAAzGZ5YVA6AhJQwztTpIFDNA8Ou1/L95Z/3Zt6jHV79rpf7iBrgkH1IW68chIqdT4BJdots7RpmHXY+rtPataNytw3prCBBDjVLYFYgdV6Q69Q/Tz0WiiMLFlvVNm9U7/eK7LVV7jL2JYCVywnU7GqU2DsKGwgcJ/XDqbCqr0qJUMeKvPoiv4tNSdvWofMX9R3sm1jrnuGeqYIoAZmhQenoMd3OVLlHYfMKmWwIZtiUg6EelntGvVWSMtKspCFzX+SeIVl9E/s0tq/G/VxY1AoRItINOXji6tZx3dxYV9XuIYRICQ9aaBFYIJxuIq9gMzS2wb/yf0NX2SluXrgSmmIAu5YQpKnH6UDqfFy3fd2WgULlm6uWqspERlnxk1JBbTrBvPF9iWP4fpsF9X3HLmyB30XExtXcRVRRKgOd4mN06OQcwxyjtgwKw/iqTwTX2Osbe8Hq80ErI0P7ay7Ea1pCqtYdzvj9XFWq20gJusqqnSGcPq7ljzc34oMWWEW9+RjlSPJI5HsD2mZ/A8VUcBLAdp7scB4sucg4WQnbtBtNRVcapcwK2LBpaYtzD4ZOwC92IvuxFGYdRyx3m4qg4iqaCQ57HJ+kak2QB49kn9TJ1lkjYAnATKOGKrdm2Lpdvr2DFs77VOdDzDExXhNxwL3kQKmRqtglgDAxaGEqKNLxAHG5W2jEveZq20KDmgaREbiFpnHYTeqJQIPqoXZUesjwWwmkfWrg7CbNCVs9bobpkq/T+lZ6KwF/uIL5+iTsQEzik2fAlfJXem8l8PbTY8tmv1303/F1Q12bwDqN9dhK4Od+1rL+C1YH5pqXXl59O9OsoudNYacFCM8WsjkHuyPGvdZ3K4Emko5MWS1ej/H1bvfuEn9ni15bCdxo3vozl9Weta1J+6J9L2T39ICPLS0+QHwMsmi9nlsJtPKYNrp0xrrAOfuNjJ3rTWpZra0EIFekr+i4wjQorpQcwbii/1YCMQeO3Q8wfcyaaeYrSOns8rhaWwn4e6LqhLRwfgYsnP+6klsJdPRjn9rQczxnztrJc+VbGxIOP1Z5KwGIyNFXdIiEvMLsensGhV3/b2sl8ONJiy4X3nTosdc32mP4yriPldRKwPslXSuBoy+qvpXA+YH+lyXhfTgH2m3ayD929oueWwno2fgjqaQv6VoJAAyruZUA0Z5XeysBBDDKVgIAMHQyd6CazAazcUWUJj1VLCNuc+hh56qwmG7nKq0Yw7wjFeYGWlWpadNl52a1fxwyd/mZoh3B3+fTPZaeqio9AkH21/dUVZXgHkXI+/9VVUL5cym9qPOd/ZeCJ/m1tTYReT/XQ1WlG0vOzH7k3CJy6Y8a9/LjbCq8ZgJmR/F7qnpBMEEn531lV1WaL1p5ZfWFdRHbRmzxdG2fGKiHqkpTOlxiTt33hD0v/IYghrW2orvfEKUQWpS+vqvEqkrErPdqraqELHi/p6qq5OKBIIXq007/Zfp0cdgr7tHNnbnz9rg1Xt6/p3sV6dO8t3T6tOSf/+lTlD+PS9t+/vPe9KD1i3wytj/ev1EP+vTN6tqNCx7YRu6I68m/79isSA+aIustnabwf1vZ+rTP8DmhIwJSA6d3cKqxqovHaD3oU+IigR5QAmJNg1LeP5WoT4k2tNr1KSIxlPoUIIXq085U+tRgYgLidDLI+l0wJMh5QxcSxL7BIPelglznZDZrDPIqSGYjbpOoJbMR11bUktmIAZ1aMhsx0lBLZiMaTbVkNqI0qCWzET00jYw1qBVJRczZ/Jibd9g7VmHMj6NzazXorIeMtS56Y7JlFTKZWKZNjcnEKjVqTCZmuKkxmbjnr8ETYyqeNBooXVa309vQBcb7LIdbhy7SA0+6UvHEgBo6FLfmnPo3qzv7wBKWV8LYz49JHkXPLZFWOadM5t+Zzlrg/zSj88r0bdXXEinq8clKbol0kPv4v6OhQzcqUTUYs/z7rByzM29/Bk11v5r/x9rxyXpaqiPKvz6aCzyhLWX6BLPLfgaPeWL96G9Gk8cETTHaKxM7h0013OXR4qt0mG+4imH+GxXmOptJK0bVmckHLz+un5XZIGTbsWFPbbcs2ahmJonyq2YmiTNGzUwSGavmC2Xsdn94pvk5zqZTiy529Wxmp+YL7dwYMD0/4gF3W/KXNkvWtZ+hYVyh1icVpMicwglpNSNYq4Yk1X1llvmvHoxrdypOmkcvGrEudWhg/puvgk7Mje/x5e3Qjb9w8I8MqErtqwI2wrYMxcxIqUAczGWmoGNotyF4OrVd+/fjMsIPPlh7+7pZ+njax9Ksukf4gLYNKVpzGMzvcLeGDeaJxtIMiMwyvmpsEdKlSTRRijZWfRKWEEiFZTqTeWJg5EhfXC4cEt2/Ez9g5vDAwSmKFk/wG4KByhE0NwQxgt4rGMF0FgjJBsp0lm/VkjhRKwFAq1IaJSUlpboU+2PiGQPrS6WKeDJkn1EE3RdS3uSc2JYzcnnX8CM59f/t8H7zTkIRVXQQkiKqGKUyuCP9RscdpiFwB2ijUl2yi5pyUoRypGxxAo5NmAohZc6u3tK9JQNmRI4/4R3oeGLzGDxzlCOSLOKWUSqDOZe+0jEHaJPqZw7kjzpzMMtExZxOrBT4lQhPwOPIwa0CcUK6suiiH1Mi5Q2HNRp9kN/KPkE+o96dW9NvZ9qPgLWd/mn9aGcHfB2E2jFq42ueY8dRK4N53rTMe/TFcAoF4QtpGpfDQb8yDsqTheJ0MXCCAfsAu8QSMWQd+EkkGYkQ4a/ekJTCS1NeIOWjcEHTLj3X/hUx48S9FZI+QZcI1dCSydKi0cuVwbmsL3Sc8692zsGb4I6KTqkydZXr0UJxEr0i9LybcHip0DN0avLoFi/Oun3CK0JKn6mMovcFb0/Uh4ARxxkNt8oLUYSon+rPoPBTGxqPjj5+4GPkEbP8v1t1HE3YqWMrF3KiZIIRQsFIvJsKMaXKbGvNglWH5GqLQUgB2SSBJEWgkKUzpcoB5TahymyuUHEvgRiNX6id14sd54+cd/xSj4K66w8wT413pXtWzV1FPN26D/hHKpEpgoQihfKLydx9yhOmbTiM2B8A+xyy3cYs4NJu+Jcy6400Gg7GsEEOTiLPqJVH776pzrK9GY0jM69fnv77y2n4c8dm2KiaYqmilBcnE4ubVTROBsiFQOT8yfRIlBuH8fVfnRLd68eouTBMyQiBTCak6Flhbxk2uLbzTc7a2rXOTDyxrV7FpzABK6KO0ANWQI5osIr9t0p1LraOaYqGXPBD0Nm5n3e/1EyAenzYxQDvgNJaiG0jWlUzLDDAPgr/X1vd7cHfoQq3WVRq7H9F+P+jIvw5k67t/b4shbX1nbM1X5z7nRY2fRbhdyilK8Lv8KsyivDvZ+cMnXD/eI/9NSPbrGA0earH0+Z61pGwZrlZKV3N8sJfVVKEv0mdHXsO3F3CnjjUfvv0fSlh1V6EP/kXbWuCX9XtgarvOFVPEf7xyd3rrZ5VJ2Sz9zLWix5bBhlMEf4zP2n7J/z8v1GEv9aziRvPHLYLXFxyrvGfx950I+x0VnURfkTLUFZRB1qmyorwTx585se9xhnBWwP2+y6dNQ2fjVA9RfgRZUPdoeBXFRbhP3Td+/jhTacCNtRaGr750/XbBlDOAmlT8JO2TcFPLPwMYFD4bRyWq1up3zXWhgdOG68sf4svxWeJHOKTSkTAomv6bGYUOHco2yIRlt2P1sIAiMskqUnJwIeTC5ClGl1qOcwvEk6ua5/DyXrPaXuc6/eK8mk1qx6oEbXN7WvJYXgbnWIweGy46EJsuwzwnco4VcGDVXZljwWuoliQvrqpq+v6x+OiQxfIQyeuPeVVXPHeXQQXiqgYK+hCMQF6LhC9pmwS6XRw5YDRTuniQqE90PmCJJmA3L+0mmw5Pzf2Y4/MizdqW+6/1pRwQgq5keSElPK63sv+gve/xaB7/wLGKQNYrkMkUwdHCT6yUMIXJtDUtokZE2/p8WNP2HiH8dmPO/rWwssqNoCmrKoolcGMqbTMiKseZhDdH4YuOxaeYWKJApgvXgJcO3Xx9gMhK4gsUtyZPn4JyRIZ353Z1k8+XKZAfiH3Vi93em5dMPNxwOyz0ssZrJCJeLsGvyBakS4i6X9ZRqoMZnWmZZatQcwcOJRO3mr9soVucaosXk4zg9zOdixk9vFmzy1auG945s0vFQmVK9p83BtV5PCo5yWNulA+nM3vGad08lJRTU7jbYXH1uWaNJsduX3gw91/SK/tqNawFwJwlIECcIsEAKhadPJEMVNGXWQi/YdxcNxnT+7GP7v+69ig+8xqPewLAYhh0EhAnyaMU6ijyWb8d+XjdLvS9Nr85UdYa8dsmZAybPSmKsvHca95iiYfZ2ANDc9Sz/k4I5/Vqf9n/Db/XZ/fz106MivMAPJxWkBIKHc3f9SoFqWPTyq4ceNGFeTj/L7mDcvq1tbwFU/C+e1Kh3UxiHycazXouLPFELhTJfk4t4qMWp+xkHOzx5W27Nv66QGDyMfJpGXOQENgDqM683G2m3YymvdXHGunowPrL8fuzQ0qH6c9LfNqVw/zDDMfR5K1o8+HxK6RhbOiEgffGuBYzfk4T43oOHfQqLo5V6n5OItSwnPZL3xC5wjHXQnwPltsEPk4iA9BmY8DFCHqpwYy/j/Ix/n9wYZ+6yd1iByf+Pweg5EdX835OO2NT9Hk49yrSblYqtd8nMQm4fMV9gP8M9/l3AyYG5+l93wcYmyuhxwTd4gcZY6JsbHGQqme8nG4v+dwR9ik+u9bHB7eslntmnrPxyHqCD1gda8mHVa7alapzq3ufBwOlRobfkToJozYxN57OFL0/OmAt/idkp6p8OxksIwnTdY8YarD9kWLQKFcCk+PqXZz0j2Up0yZPFgzLwl+A6nkLRemZO9a7clZWyv31sFfffZQPp/mTo46UUP+zKOBCotUP4pFIpXEc09aSqVqNLLSsc9PMhgN2PAv4fzn0Nacg1uen7SKFogAwwT8UKDX07DhELYqWRlExUqdz6S5qGS78s+k2cxM75LZoU7A4SKbvZ0jasxQO5M288OHxhm3bwdnJj8b0KS5aaTambQ5Pu94AZuCIzZ7/tva1th5kdqZtHOx+8PuuC8M2H0pcZbLBa8ZamfS5tiGt1kUnBW0qsXtIbltD5WqnUm7OCjuHqfF58hN38ZNqxt4x0vtfH6XiCunF7YqCsnq21O2qMmUfLVmM3Me807F3JFy8kUNuuyP3ugDSGYoaXGTx46JU7oFbEqX3F+W5wLP2pmjpLZ/rv61PjGMs95uxoCV5ncmA5IFSjoiv/og1eJa+LTll8b5nK63A5AsUdI839S/549+GDqXN69zvVbyIECqjZLq1m3Wsr0Rs0f+pOdXQxMHTwMkK5Q02SJmWPcwfvCmB0WN5IG+lwHJGiUNGcJc/3d0u6C5s/PGvRzx5zxAskFJvufDDk4Ji4qY6ia1HzT62HBAskVJbbYmJt5ud6FHfg2THitif4UDUh2U5Hny0aEWPif8Z46Kib+6dMkFQKqLki41cZ26Z9i9oIm/fW10ZabFGECqh5JC9oekLS5JCsl/nNokp8adfYBkh5KkTdtaRVzexco5UnJlYL8GSYBUHyX9HX2k9O5Vc9YBJ6HPtx6HBwNSA5SUcOGGeZtVuZxDTd+0mfSP70RAssce/urTxNDJP7nTf+vECBx0sg8gOWDCFms3/fBiU9be7RefneqZ+DcgNURJ7XtHWg475B+x8/dfq5aNz+UBUiOUZJWw2u78uPjgwxO2nZtn3GYSIDmipJftSr7FvXoUsXL8g72no2Z3BqTGKClA0v7r8lfJgeOzmu96+21HPCA1wbh8R/Dt8pyjActNx70ad/TMdEByQkk+V6wbpL3dH7n6lMfYRrWf/wNITVHSlrb2r05crxWQ1ay92P7TOfheTJRUzC6yKz65MGBLl6HPatQ/JNM4bOnMoDhsubhuhybFDs/ZU/ztGr3tf2GwHg5bBlOpqPqJ+/JzT57lLN3yZNS5xmPy8IuJnDSpSMInySCgakzaCr1DlfOJlFqXp/BEIqCE0Cr2WqYMEBUU6aNprnOiBG1rXwELEGJ+CupXEu83yp3DKDHT8H5pm0CUZVQqH4T03drWqr3H3bGYO+PD+QSLnsN/6TGhUs9OLsOFw/CHAPHJHLczMHXQXKdsgA69gMMkQ9bu+AJYplciFyIpFOD5hCLYdFklJ0zgQTF5MORKIEXx74TGF3/rt4g90dmqzS3f35vht0BV36O5BVpG0nt5VRdEYmjgOmNmEPvVmul6OrYN9UAnGr+MXYpkngLEL8METOCAqNowUe+V/nrqJCm8sTYs+9OXx87dT6YRVsvRYUlWyzGKvrln64EKeyAZ93I8EWHX2DHVEThnLLEHW7QWEIEkBatX/d17PuVeCZjZ5OiolaO/Jlc8jUgPYCGiTgkWEHXU/oQw/nf6QJ+nD4geepWdPsi2OEVz+sDOQidbqeXpg4eZaevSrk8N2VOrlVPTlg7j9GgsiRpID6cPZkKEKJO1+RY6Gcv/9PTByjlC1xWrhRG7J/vEPqnfdkW1nz7oRosKkBsD3SmputMHk+7ku+99mt5jzups6xUXopcZzOmD1+Z0rCsyN1B3Rs+nD543OCVetLkVe3ro8VoLVh+/XM2nDxAtQ5k+DrRMlZ0+OD0xd3P4D7PA+Xc+tvB+HtvKAE4fdKMFx85Ct5yvCp0+GNpnXZu+6d8DlqeZPKjd9TW+Bkj1nT5A5jQlQmBOo35bKIPCbzu7hMf96WsfPGGdk+nL5qMP471RpGdddCBX+4WDAHzLSNQTBhFiIvgV+F3p6n0VgbJF5RX6XqjrNlYrx4m4fkn+3JpeNEbRobWLouUpZWsXDVfJH3DgYwvdlhW06i0pmTSllaOfJGBt4V9N1zDXtyZsssO7STbZkcvleUpE/aeHvi0iCJCUTAiZbhxGYEud9s4cEIAwuXDhC2VAfAGd3Nie6795vMUYT07WgKL4ey2P4WsEmwdiN2tOyzJSeYD902f2yX39soLGX20qutE6rKIH2iFgjWkBAxJVLU6U0mbAz7RjUP3RPNJpRsNLS4SXNFo1YMb211kd0jgHnJOObdyV+KUuchgHMIOTJpUJVFt3iFPLCoh2iW1TMQeYwFqZzZxZzxpOC5/d7tmgKz0LDuiBtedb0LF2TTWxlsw/ztKtAVz5/UuDva1u1nrmHjDVplbI17Z9M6qtfynDE9VJsH+pVCO+9USmGGoYezAoDGPANfv7Izrt9N86YLDDjD6H8KWB7WDJTQVc+oTZuAK4PyzQoeuZF1uSAiBXFv5EhuGXDYMEh2XNzvhASLSyiMRtu/IfWIMdpJ/S1huBC6Y2APTiAJImaHFA+AttKnpWj8VVAwUuN8BSvtDbkIiZLlgDL4Ce8hAf/Emp0+RwNVoyUkBxAudqkItju9gFQbOb5k8X7Q63wesYpBcqSYs49Hq5+RfWfew7mHVjb+/i/nONrH3bCuqYLABzMYTZOICk7VdOGwTmii4Jt1Rjv2p1K0EilgsSUhHxgC0kyFc3a25KSes1+ERw/nV277m8Cwn4rIKycTXDXxxR7yea3FHYBpLBdssDgQ1VCWFUKuGcdfMPPh0l4ZPfvw3zvPo7h9gwWCriJQiYEakiEYkuoHKYPbD7xPA+KLNC8QieSMhXCvlIoSKZKQFhikx7TUDcpad5TrLGxmpkbVPPYClPiK4l2eZbHkTXuqJzvwE0akj7QwVs1weVJESMFIAdx9eMSCq+GjHvzajgM09MjuLdZ2QgTfdZebm86UzMSqhoOhUscwKRW0XmMsDuJY+sKd1nLZFzVCEnw4kaFC1S+BYErUx9dOFi6EE7T+7IY29e4lO1UQEh39LBU/U9iyFaQJJo0MqyrlIHC3tQs5h0qUAdh+ZqOTueYcClFYg84WfknsEhQ6CTmySQEbKE4Z+KKu4GiIGEjAVDgKA6Xclq8uRhgmGqyCSpaA9lT3QWlLDIkgq9kFmg00KYg7KNKfQVEFuFiT6fFIoJgW0t7lkEsQsP7pIlLRprTNiYgG9FsjGBXK4MKBARp4QCiDhqqLgMCkNlMHXridpSPy18KqFsvZ01mrROWrb+oxUGebjBQ07MjdMP5A4HPFpfK00MW3Frml3bb+ef6gHyonp0kK+ph0EeQQW5zlmZNhjkVZCVSZJEiWVlkiRRYlmZJEmUWFYmSRKlKitTM4kSy8okSaLEsjJJkiixrMzBIc1e1j/wzH8dn8vrazd7ikbKGxReUukjpl/qIeUtkor/zcKKPO5vtwhab8yPv/HCFs//esrFfrZIIofuIrKBo+mUm1DMtmZBQtiyJxn2uFEOgISUMM5E0xC0294nppyW+4ga4JB9SFuvHISKHy3BJLtFtnYN20EqLHVau3ZU7rYhp0EkkDUAD/ALdV7Qw4DfrzhnT/OfspAXd/r4+XUV2Wur3GXsSwCr15ao2S3ROGAPwuoCS1I/nAqr+qqUCHWsSFG6bZ4/6eG9ZpxJ3NF/p7zbztBjWsT43hGfzqxLC9oomRYyNSD9uB5QUtCi1NlSc/GBzk9zj8LmFTLZEMywKQdDPSz3jHqrZPKP/V15goecJc4pp22XK25X434ubL+ICBHphtxREAYXWermxrqqdg8hRAlqNSugBcLpJvLEStbLk38u3RIyiXfsis3YkrkGsGsJQVpKC5LCUrd93ZaBQuWbq5aqykQG2VikVlCWv04fuj7iz9DFi4L/uspcja+4Z4aNq7mLqKJUBjpcWnRaWGKOURSDwjC+6hPBNfb6xl6w+nzQysjQ/poL8ZqW0JgCXGf8fq4q1W2kRKeyccQDFtruDWib/Q0Uk7cVgO082dlHBoDtVu1K2KZNb9u3nkn6zoADM413XXWdcxy/2Insx1KYdRyxPC1OVHEVzQQHetoFghVFJmN5sC6clU62zhoBSwBmGjVUPxueu5ZtX+C/8Fm98CXdRfjG7OYccC85UGqkKnYJIExAamhgKqitm7ErfwuNuNdcbVtoUNMgMgK30DQ6CUs9EWhQPdSTSg+xW5/38p34kJsXtPKdwrdhE+I6dApPylSu05Csl1O55q2V92G7Pci5FB5TLBgJLwlkwgTUQGqlloiHu2iekGylXI2sJa7+rTmMg8xTsGoSiU+eAXOemDopKmtkG0q5uAseh/QtR7nln75yamto3trW5xat7+SNd5GQATRdJOXl8uYc8ZxbBecczEzeBeHZQlXRYSZTp2wSK+Xz0BX6Grtk8vbL5xawDmRwTl2MrdkPv/unvF9z9w+9Xh4+1zacHSdYNC3oUJMXHac+FYv0gA+fFh8gPtWRYWCGJG6MUALRjUH8o1slcKsYnixJoKBjWodlDXO791wdvte+zqqRnAOEtBDl/ZpMQ6/rfc0WcMWOliuvmxoSV0qOYFzRyXzZIApPKuCjypeUMa4X/e7u/rY0ZJZD1HLHzB5L8YwJR+7XZAx6Xd+M8fdE1QlcZtSIVzNgfWambgGZowoDJLAQCcvD48yJpv0j340OnOBgLpU+qzkCn1XLVg6gmVWLESoDkW60iDCYmF3vxaCw6wXzwj4O6NoldPLHnwqzE3c+4Hms/Ebtk2G6qSIMvAFnjkwWJiQDtxKeLeTJ5bCigSorBjX/2gUfxHPaZM+rKZPK67rkiTZF80Q1sl/8QVTXrWlFd8Abo64GNPZCZZEaeIRJ+STk3V6XBVlO+qc0MK+f1/lDm6bjDb8plWOjIlSx8UdSSSGG3mQ5GkxXBEOdNFa3CFSilGU5cQe1YD6QXLk+AEsBwp/LfErm6IixpIgS7Xm1VgWFcS0CmAMZYLAWEwAMnczRVJPZYDauiNKkpx7XxG0OPexcFTrR7VzlOGGYx1BhHrE36OJZRhE7o3/DrsKXPergq0Yh/eSlImECcixMU5FSIe0YDvwBYJ4U4E4RMwU3ilZ6kliZgu6xNItZ4enaLtzAILs5gHMm2cIN3KPIaH7KSrUaiXlOmD2xCIW6FMdL+E2myOVQPiYD/fhnZhsdMQ/c/499uJVbvUsY3YiCbhmJqBcNGTFTXqceWPk8yOPCj9AFbk2ChDKgc2B2ApLMhOcXKX+e5gy6Gv3paOik5aHxw579jm/+Z8TSnB0sjdlhRJgdnWvHdjvh3SV0Y5eh85KetVJUdM0EzI5LkJ3eZNkLMEFnQ/NTaiCVt7LkFC1IkAANrQtK/VymH/7+OTVwU8j3D3mbF1/BoxSgiVJAuSi9KCne/9F1mX92/42NzH4W9dcDShm0KMU2P4XKoEqWaLNdlPUCoWOkBUDErHe8DVMOpWnD0OuVseCNSMxXsoUmFw8EKVSf9v4v06fEcj5VpE/dm9Hp02vO/9OnKH/qmh3fN73JtIhVn3t2W3YjqVgP+pRYpkkPmqJFMzpN8cO5svXpSu66iQ2vvWKt+DtnYeGRfkv1oE+JiwR6QAmINQ1KW5wrUZ8SbWi161NEYij1KUAK1ad9qPSpwcQExOmkn2S2DkYN381iSwP3fPJPLrg2q5ceQgIXZ7qQwEwFeV8qyHVOZrPGIK+CZDaSGniYqiepgYcls5HUwMOS2Uhq4GHJbCQ18LBkNpIaeFgyG9FD08hYg1qRVMSI1fP0kLEWqzcmW1Yhk/+zOpIkRRUxJhP3/DV4YkzFE2LZQj3wpB8VT3ILH/Wb8vRr6P7C3fu3D3uMP+dXK4onFog0C7RSKTYXFlMK71CrMs0USxQCZXEhhSBNwVQWZyV9bWLdRZJH0UbbWUYnyCQiUS9oseBF9YasBE245+6EG7x+QwOO/HHSt/ePGt+pNKFZb7lAFgMeH/valoGS1HgRzNWClWBh4R++UIG+O/Aw4C7Hk4x1BJZgpXo1FqVbcRgljYAC9WUzMqawLcJ5siShmCtIxBlAS+XlXrBnh/p1c+X1GIlU/SqhBGyPVpzMfxqdskFAjJLBc4MKofKpTLGnIptQMt7IUDEflt3C4DUyhxfh1ovaJcRXF6FlhZUBAewEIuSJ2LAWlJohUsgEvBTV78Z9ZTyp6h5UVPtTiarBmGViFVA9LdUR5V8PdjnTkc4u8x0xuzzA4DEnllc13OXRODs6zP3tMMwHUmGus5m0YlSdmSSpm4uZSZK6uZiZJKmbi5lJkrq5mC/0qnad3PjflofMbsiLbdpn+DU1X4i7MDunWUyzkNVfBvRmL3Lx1TCuUOuTChKxGK8ejOsgKk4aaMsxYtHhKms5JmpN13JsaavKbjkW7XZy6vGnbuG5I+q33r03E19otXpajvFb0zVw6dbaAPomFRcXV0HLsRdvdsbPzW8UvKjz3CGHS3ZsN4iWY3a03HndygC4UyUtx6RXYn5r+sOdlWuSy/Ny+nneIFqOFbWiY85SQ2AOozpbju37MPtFpvwVu3DocIfP2efxOcfV3XJMQcs8bvUwzzBbjh3r3a7Vg3OL2dsabjuYFDoDv6NX9S3HWtBy7kfL6uYcvKnSWo5139PweaPTo9gH1x+1a9FhK74yXXW1HEN8CMqWY0ARon7qYAaFn/rf1HKM2BajmluOTXWhaznm7VJFLcc+Lejmdftb6GpOhsUps6mf9d5yjFjcTA9ttDJc6NpoxbpUVsuxMe/2BsxrODw8c1nq3biFTZ/rveUYUUfoAStvWqzMXP5PtRwbQqXG/leE/z8qwk/sJlRlRfiL29AV4U9uUxlF+PfUkTfusmlK2PSkls2uTaoboMfT5nrWkbBm+aM2dDXLC9tUSRF+8/kzA1dseNBjE2PCtTsjkjyrvQh/Fi0qQG4MJnbQ7eCP/orw//OjyaGGTn+Fz7jq57HA8uxpgynC70/LOofqYV2VF+G3vyesKz+0K3h2/C+nJle736zmIvyIlqGsog60TJUV4Q92tM69e6xn8BbRuH3XrL/htXP1FOHPogUnuU0VFuE3sr5faicJDZvZLD/tvNOA3QZQzgIi5E+LEJjTqN8Wx6Dw2zgsV7dSv2usDQ+cNl5Z/rYdvo4AcohPKhEBi67ps5lR4NyhbItEWHY/WgsDIC6TpCYlM1VNY3Wp5UDssEj5tJpVD9SI2ub2teQwZroBfHlsuOhCwPcSwPepa0UPVtmVPRa4imJB+uq1L18IGxp4KKhg0ErehaUL7Cveu4vgQhEVYwVdKCZALxOi15RNIp0OrhzGQDedXKjayunLFyTJBOT+5a1//1z06bsoPH/Otp1Tl3YVE05IITeSnJBSXtd72V/w/u1p37+2W3U7SyrJ1MFRgo8slPCFCTS1bUbvWDzR5blV+KLMD9eH7i8W4GUVG0BTVlWUymAGmKw0zDjoahDuD0OXHQvPMLFEAcwXLwGunbp4+4GQFUQWKe5MH7+EZImM785s6ycfLlMgv5B7q7n5my4t93oRub5d0b6WSW6b8XYNfkG0Il1E0v+yjFQZzMqmZZaoephFmDlwKJ281fplC93iVFm8nGYG3WEsNrF+ZhRx+M0R9z1fXaZXJFSuIDuyvFFFDo96XtKoC+XD2RzhppuXimpyGm/rDPeAqEHXVcHr1tUafVscPbpaw14IQGMMgFskAEDVopMnipky6iIT2+52tb9yxys4++eg8NwxitYEU1a1h30hAAWuNAD0SXfFHE0e478rH4fYmLvK8nGmetDl4xS6V3Y+zpdn8YP/Le4esddmhBH38OyeBpCPk+FBt7sZ62EASQV//vlnFeTjZN3ctXhAUELouqh+HezOn480iHwcb1rumBkCd6okH6fFlwV9xUuN/OfneZ0OskrcbhD5OI/c6ZgDtEn1M4dRnfk4dSS7eyaZW4dsPBuSbHz+t0EGlY+TRcu85OphnmHm4zxc0MvN6cjBoDlbd/y2YNS1TtWcj+NPyzmHaudcpebjTOvEP5DW7Ql3g6VX0uTJ0zYaRD4O4kNQ5uMARYj6qfGM/w/ycba0tX914nqtgKxm7cX2n871qeZ8nCxPunyczp5Vk49Tb7PZ9dgH4WFL/F7bb3jYYq7e83GIsbkeckymetLlmMR5VlY+jvfiSTdj5+QErtiRu2zADof3es/HIeoIPWDVmRYrW8//U/k4CVRqbPgRoZswYhN77+FI0fOnA97id0p6psKzk8EynjRZ84SpDtsXLQKFcik8PabazUn3UJ4yZfJgzbwk+A2kklfMLrIrPrkwYEuXoc9q1D8ko3w+zZ0cdaKG/JlHAxUWqX4Ui0QqieeetJRK1Wgk+TTGsDBXAzb8Szj/ObQ1Z1INp1NW0QIRYJiAHwr0eho2HMJWJSv5VKzU+Uyai0q2K/9MWoMsp8stP/3NnXCnVZT71wnv1c6kNZ0TMaSNl1WPjfXa27zZ0PKX2pm0G6U/3/m33cFZLzNKWBKddVjtTJq8D+9iHdOisAM9I+OXF48cpXYmbeeNEEn//e3Dlw+9ncTuHMFTO5P2cN2s4K/ubyInPgxmpq94/FrtfP4IhmTvZ+v+3F0zajjU+mPlTrVmM10WnG3594bJ/lv/NtlYPy07DJDMUFJ25G+3k6++CFqw71JhQuTxWYBkjpKu1VvEWTEwkLN032CrnsMvvwQkC5QUfnD++6EPIiPWfZbdX3MuyhmQLFFSiEWpjOfN48xaLXPzHfZ+JSDVRkkWdQdl/1sQF7breOCEopTb6wHJCiVljr07bljP7ICNOxoUjc58Ao/hWWNPmDDLJLbO3sDVojq1337PsAIkG5TkOrXfwKTmO8LWpJ2cHbKi7WhAssUUcj/F/TD5vMgZfzv1sj7jCTGsg5LuLukyPHFT/7C19gM9piyxyAGkuijp+JmhB1oV9gtdJ09j+opuQy7XQ0l9R3Zo/oPbOCSjfrDx7GDb5oBkh92153H0yp99glbejxmw4YoCIl8fJd33jDO9sZgROH911+n/tlyQCUgNUNKcOYse+HxpGLbN2nuaqHjYSECyR0l7v06b/uRMt+CV+2PCJwzYPAWQHFDSZbdpTWWNjrP3P3nJjTh3JguQGqKk0X4Z9icFnQMORrY5u0Z+vzsgNUJJk19GuXQc+iFwep5X1632/9wDJEeUdCFQ0uvOr/1BC20d1+XtC2oJSI1RUn6fVUuvTH/tv3Scc0zxwgtQ2JpgEmUimvPkntw/s0HPH51/uaYBkhNKWlW8zK9DZvPQrXW/BIwelykFpKYo6dnK28lpnG8Re10T/OaumgCrSzBRkpXvxjHu965z9qc3SDo8+MVbjcOWzgyKw5abpi95c885LWLCoMVzHj7OfqiHw5YCKhVVP3Fffu7Js5ylW56MOtd4TB5+MZGTJhVJ+CQZBFSNSVuhd6hyPpFS6/IUnkgElBBaxV7LlAGigiJ9NM11TpSgbe0reKrG5xTUryTeb5Q7h9HYR7cmEGUZlcoHIX03E78X+z2Xu7NXX9za1tnpgD4TKvXs5DJggVUIEJ/McTsD3LpAH52yATr0Ag6TDFm74wtgmV6JXIikUIDnE4pg02WVnDCBB8XkwZArgRRFl74F/R+ceBhQuDC5yehWNT/it0BV36O5BVpG0nt5VRdEYmjg+uhtEPvVmul6OrYN9UAnGr+MXYpkngLEL8METOCAqNowUe+VjmlwoXjSh27hBZNb1Hs2INCOsFqODkuyWo5R9M09Ww9U2APJuJfjiQi7xo6pjsA5Y4k92KK1gAgkKVgbf33tvy32D+6MHec5ZwubF1Q8jUgPYDWmBQuIOmp/EhkU9ud/pw/+o9MHRA+9yk4fHG1Ld/rAv21lnD7wSK//NEAxN7Tweuu6Lh+DQvVoLIkaSA+nDwrb0iVrZ7WtktMHDvOCuhxsnOm/b0LsP6HZP6Oq/fRBMi0qQG4MdKfk/7F3HVBNZF8/uqgogg0QxBI7IsXeCyGEGoqAvUYSIBoIhiioqIgNBRU7Iir2hl0RUcG1YFd2bdh7XxXbrq7te28yEzKVZBmS7PdfzvEcmctMJr/73n33vfu79+ov+2DqA4evO1sfcMtWNGixsEH/3kaTfWDDqLritkbqzrCcfSD2zWpTLeGy9yzF012tXoqnGjj7ALEytPRxYGX0ln1weeAEn/S/G/pkFux/dqJD0yNGkH0QwQiOazs9Zh84D6jWXnxprueWuYP2fHUqxvc2Nlz2gQ0jQmBOo35bOIfGbzuzQiT83rWuZ+LGhlVeNp2Yh/dGkZ51we5C7Q8O3PAtI1FPGOwQw8CvwO8ar9lXERhbdLxC3wt13SZp5TgRzy+p35vsRWMSHVq7PA9AW7uQXCVXOEYDyqG35Ka1M05+S33uPz2hy415uRffEoLs8G6KIDtyuTRPiWj/WOjbch8CFE01CLmtgYUL0Cl2ZoMAhI0Le7FUAYYvkFMvtiHDehcfaN/BZ379v5r+Nb5+On5aumM3k6dliag0wHZf/DwhflFTj6S7L5M+5jewZQGwVEbAwIgyiBOlWjPg37Tn0P2QUzpNGXRphuiSwaoKC+NHvXO4FbD8TeHZKZmPXtRGknGAMgRx0QqJOnSHOLU8t2D7Aa3K5gATVLvuVv7slccO+yX+kWU96WfIbhZU68qoWhsDqZbKP07VrQFc6f1LX6RW9Nxu9cHj4LaB3V+9UFgYrH8pxxm1SbB/aTRpf+uMTDF0YYzg0CyMblfq3hnXea/r9sHDbJL7HcGXBraEJTeV8OgTsnElMD4s0aHrmQtfHgkgVxX+RB4jLnkMsjksaXYmBoNEqxWRGLYr/YVJ6qD8K229EXhg2gWA/tyNognaCDD4H3cua64eT6gBCjxugKV8obchj+LaYw28AHqqJD74P5VNi4Gn0fJYCU0GzoPJM9aN7pQjyE2oPursbylFeBuD9EKlaBGHXi/NxjSr8an18G+d3dbfmNvw8IF1NmW0MakAZksIs4kbRduvtFYIzGU9Em6uoX716VaoPCpGEjoWGR6whQT16ebWPotrHX1Uw3O2Sea8vi84+IrqZiXPJW9/cULWM5ocUdiGUMFW5ITAhpoEKZ1JOGfR9EPbTnK/me/f+jpfniIgNgyOlolCJVz/sTIZhS2gc5idsPui4H1wzEqjxolkUrFqkMdKlRFcOdimKLS3BMQoPcN7UjU21hBrSz1rKeD06AzQNaMKvmVCdDuVde5bw0UNaX+ohO36oJGEiNH0fLwQ2PF2Vd6MRv4jO6/yf413n5EHkd1n1eXSpjORlVBWOhVArgNEbi2VywC7l1TvTOs+a4mcnRo5BW6owaFFCV/idadqSUG/+2+9Y9s/tm77RXiqNjpAqEM6eCnbsxiiBUYSA1qHO+nVwcJe1DRkfLREE4emGpwdZ1/g0kpkzvBvYpw9vYZDJzdcoiCwhOFPWQ23NbJAQsWCR4BN9XiVqqmzKAgLU1kmSVl7KDujs6CYR0UqdEFmgU4HYTaqNqbQV0DWKmzoiymhMDVfGvPD/4XwkGRv4C3LFw8IgQn4rSgCE8jl8oACGeK0UIAhji5Uozg0C5XR1K0nWkt2WviUQ9l6105MZeu5ashHGz3kRG4cO5A3Oz/lS1TtH/yp96ZmPngY34gFyIu7M0Fe2B2DXEYHuc6szBoY5HpgZVKQKDFWJgWJEmNlUpAoMVYmBYkSY2VSkCgxViYFiRJjZVKQKDFW5qxfZnmKtl51z9tRWMvq8cWhJMobHLyUo49Iv2SB8hZJp/8mviec7uyu5rHJRDzy2ouaeP3XUR3282XyGOguIgEcslNemWa2NfGQwpY9EbDHjeoByJYS7jNRGoJ24X0i5bTUVySBQ/VH2nrlYKvI7QAmWRHV2TVsB5nZXqezaztVtA3JBpFD1QA8wC/0vCBbRb+tyUNiXPc8PzHZerBLj7LE2sr3GLsQYGXTAV12i0kJ9mBbfbs9pR9Oh5WVmhKhiRUlSmaXvgaa9BvAX5Rde/6qSun1WaRFTO3r/+n0xjiPLfLZXklu44+xgBIYMwwoidvr1qTdMRCbV8hkQzDDphzc6mHcM4ZQybcO434k5nlnu7dPnMWVnjBgPBe2X0QGEWVA7ijYBhe3182NdVBHDyFEoRo1K+AKhLNNlODMn9ytefqr9byFUssmXLs6w40gaglBOt2eCaTM9rrFdZu7S1XfXH1UVTJkkMAivYGKrfe03wqz28Kk0AG/zft1+UV8FBF7LjmKqJaUBzpxjOgEtsccoygOzcL4qp+/0MTlC3/JuvMeawK8B5EP4skroQkNuI3x8Vw11S1WrlPZOGKChbaxAW3Z38AwDekIYDtPlfvIAbCZdCyHMO3FrjMC8pz7+y+7+qR2d5PmhNJ9SDyWZlnHCUuz4kQTV1YmOLDTIRCsQKoxlglcc8eOOq11FghYEjDT6KFyrbokcpDXKeF64aVxuc5r++ItkQDcSw2UhkjPLgGEyYQRptsddFvsSg+hEWPNBguhQUuDjBEYQiN1Eo52RqBB7ZCczg7xW5536TrtnjDTY807ZVfbBsRz6EhRNFd1TkNxXk7nmrdU3YdFe5C8FBE3ShILL0kU0lB0gdTKLBGTuxjekOqkXEOsJa6usIyLbwGsmkThkycA1Hf56GSoLJAwlOpwF7wOdZmAnlaLTb5348+qFb7Pq9dg/LeshDyA7CKpLpc254h5bmWcc5CZbA/hyaKr6MDx1YlNYq56H6ZCXw79fmY9e9GQt7hwdN/mfdeuxEf/VPeTo3/o9dLwqVOvrmnPxxeEG3K/Da4xq1cbFvAp8mHCBwwfQzAMTBHixjgVED04xB/dKoGbh4gU4RIlk9Jkrie3dyv66Zpj8uH75sqtCNXZVPeTlYZeZ/3MFhYTY9TKCKPSSnE+phWdlq8aiMGLlohR40upGOUSq/wJlnO8j3x7sOZa5kg7vGL8kPvJikGvs60YV2fUnMBjRtJ+NcFFwPnDR7cNmZ0aA2RjIZOWhodFRNjFMUvP87I4opOvBfPH41m1fNUDyKxaTFAeiOzyYUJE6YOt69EcmnV910Lfj4O7d/Oe+fG70vT4zQ94Has+UXsyTA/1DgO/gHNjI6ShEcCthLmFopgYWNFAzYpBl3/tNh/EPG2q9yWPSdV1XXii3ihPlMR+cQW7ul3eZY2A10ddDbjYS1VFamAKk+pNKL/4ZM9JCT7e3p6bbB/cHHzLBh/IrULn2KgFel78ESopxLANFUeD64BgqJPF6uGPjihVWU5cohbkA8WozgdgKUD4/xKfkjvRfxJ1aRvCem7QqqBwX4sAZkMFGKzFBABDJ/MYuslsNIEr4mhiqcc1MczBQuTK0ZspclVdjbmCDnP/Ax4Xz3BO8BMG2XaXvvSpha8ahfSTj5ZJQ5G0MLIhpUPazg/4A2B5UoI7ZdxI3FO0spPEyhRMr0UuZoWXa3twAzbZQn8AZwrVwQ2MUXz0KzBXn0ZinhO2nlTzhrYUp0v4SVWQy95ibAwMFJ+eVyG/qnvum7p+5q3rFGLyCjRyswDEvJDGiKnqOv2DVe+DvC78E6aNWwMPqQLYHMhOQMhMeH1R6ufIySYXjn8I8tioWLjaxmYinpJagUeeHTzS7KhAmB2dsq37pPp09ZtTv8lMr6Od4st6ZgJmhztUZxsq9gIk6NT3L9AAqbSTpYbBklA5sNC6oNRm+/pMs27Wbll5M3y7X9raC4+SGxklt1JRetVXsXF9mJPbjkJf8YXFv0ezgBIY1gwonfcrQMegeiwxsl1U9QKhY6QFQETWO34NUz2KvIah18vjwBsZMZ+pDprsnRCkUHsa8y+zp8RyPvqyp0JGe+r7nz1F9dP2QNUXue0u8LamD1w7u6h+YxbsKbFMExv2VMhoT4XlbU/T6jyevm3PQq8DCtvKozZXaMWCPSUeErBhT30Z7alvOdpT4hpqeHsqZLSnvpg9VdLZU6PZExCnEztkto4VbN/N5Ue7Z39yjdh1ZW4QC1uCDF+mLUG8GvKxdJDrTGazwCDXA5mNogYeZuopauBhZDaKGngYmY2iBh5GZqOogYeR2Shq4GFkNqKHRmKsQatIOcSI1fNYYKyNY03JZnpU8j+rI0lRVBFTMjHmT9KJCZ1OiGULWdBJLJ1O0nPuD5z1+LN3bs7+3N2jH+A3VZUCRVESGblAK51hs+dxo+EdGlWmuVFypURVXEgpiVNyVcVZqdk6hLqLFK+ijbUzCw5VyGWyILhiwYuaDVkJltDxasME+9tdPJOS3k7z7b+aNrfZtG+MRBECXh/72Obu8rEjZZCrBSvBwsI/YqkS/e7Aw4BRjocJGwkqwUr1kg6lWwg4AwTAgHblcxJm8av5iRTh0iihJAy3AJqpLgfBnh2a16uqrofIozWvEkrA+rQQePUXFNRAQAxUwLxBpVT1VlWwt6KaUApRrHeUGJbdwuCtUBVehKEXjUuIry5DywqrNgSwE4hUJOPDWlAaC5FSIRFFqn836a8QRavvQYdqHN1QNZplmVgFlKWjOuL4Z2Fd/ixgWpeLBNi6PN7oMSeWVzXe49GUHkyYy3pgmE+gw1znZdKco79lkqJuLrZMUtTNxZZJirq52DJJUTcX84WKMpf3/Dhrr9uOlDomkaIqXTR8oQ7FilpmZlvcDxXvHJ1jd70iaXGFVp+6NSShGC8Li+tEOk0aacsxYtFhvbUcu9+HqeVYzT7l3XLsw0qLj53P7AtI6TDk69bEQWuNoOVYUR+mBi67+hhB36T79+/roeXYisV+Q0/MT+NleL4am/sk7qtRtBxLYtTOCGPQjl5ajh38u07C27Adfvuqv7zWp1crPH3VUC3HujAqp6YxKIdjyJZjV3sJju47UJGXPmPuz53hXvuMquXY80Am5R0NNJ5CQQZvOfYtL/JSkysz/TbtCWybeTEs0cAtx9IYNRdtcM3Bm8qt5djOoU2W/3rhT++9Ixo82/9hl4lRtBxDfAjalmPAEKJ+ajyHxk/9N7UcI7bFMHDLsW9BTC3H1gfpp+VY2yVng+TVAwS503O6zbsSdZP1lmPE4mYstNH6GMTURut8UHm1HBu0Itu8z8Y6AbNMHYdZbVi7kfWWY0QbwQJW6xmxig/6n2o5NonOjP1XhP8fFeEndhPSWxH+ISFMRfhvB5dHEf6CBa3uuVWO9Djwx+jPa0Lm49utly3bnGUbCWuWh4Qw1Sx3DNFLEf5+sx3OWG+o7TW7j7ha7eQeNQxehN+EERUwboxm76Bb4g97Rfhrm83d3MfbR5AVudV29PoI/LG9IYvw7wtmUl2KYVSn9yL87UPqC8IHB/olVl31sfaRkXwDF+FHrAxtFXVgZfRWhH9ButAu/nG6V+6gyl+W1rqCL5hlmCL8JozgAGOjvyL8ljObfKnZd4X/3MDfPrVXPMeX0zFcEX5kTtMiBOY06rdN5tD4bQKeQ+ufPa/wNt9tuOX3VW8JdQSQJL5ouQys6GSfzZQG544lIRJpyf1oLQyAuEI+NjyCq24aq0stB2KHRdq3JVc90BBqy+1rLgALMMBXxIeHLgR8CwG+A/qWNbHKsuS1wFUUC8qv/mXd6jo1pN29l7yIOHSlsC+e0fuPencRXCiiYSyjC8UF6H3uC9BrxKcYnTYOAk5hX51cqOqq6SuWhCsk1P7lmcRux94VPeGvTbLKu7mu2JOQIYXcSJEhpbrOetlf8P03M37/hL6GdpbUI1MHRwm+slQuloYy1Lbptdl72mz/YJ/Flkq/hG2Lk/FjFXsAeayqJeWhjAGMymhjGGUQ3R+OLhELZ98ouRIsX6JQeHZq36Yn2LKCnUWkI7dtz9AIuULsyG3XM2aMQon8Qu2tBk+7WlRwpqlgwcBnL4pvnJHj1zX4AcHK8TKK/pclovJQlimjsu6HGMPMgY/SyVu1KjnojhqrGBnDMIMS75hZuYwM4E8/lLko8H2n5mXZKpdRHaltUEMOUz0LSXWh2gq2Heurm5eKWnIGb+uY9WyxadWHvAMpM7K7e32eYdBtLwQgFQOgiAIAaFp08kSxpYy+yIR7/uOaMw8FuCfvvTFoT4M+9Qya7AsBaMYEQL/XIZijOYXz7+LjEBtz642P860/Ex/HsX9583G422In7s8vclv35Nc/3hZNOm4EfJyP/Zmim+f7GwGp4NSpU3rg49wcXiGnU99h7ttvKfdWD38TZxR8nPWM2ok3Bu3ohY+TH8AZ0SLA3Cu5UcKuxsuHDjIKPk4Io3IcjUE5HEPycfr8lvrk6Cm+b0Jm++SDu3aYGhUfx4RRebf7GdrZNSI+jkt1u6c1sgqE0x49aTzncNduBubj7OvHpLkUg2uuXPk4jhvF1/jXV3ku2TpvZerQvRlGwcdBfAhaPg4whKifmsD5f8DHebrmRkSc4Iv/AYfQngvWJsYbmI9jMpCJj5M1QD98nIRLGZMXn8r0TIlbPFB2oN0W1vk4xL05CxyTbwOYOCZXBpQXH2feCd8VD8cO8cheH97yxy9HN7POxyHaCBawymLEavqA/yk+zlQ6MzYmX9pa6r+VfyAvQPbs8WB8G1+zPmNh7qSnQhQdQc4w1SF80cxdGhMNs8fU0ZzxTqosU64I1swLh59AOfLMu26Jd7x9VZA73jo8b9gL+vcjR3I0haTxVzUYmLAAzVQsilFJzHvSclSqn0bBp4nwAqPSmg//EfI/R7UUeIV7FZgHS2RAYRKxN7DrcdjjELWqVJlIp0qdc9Ls1WO7/HPSFo35O/aXBv38V6Ss6jV1yqneGjlppzsuPHyviidveyert527b3mjkZNWI2y2henZ87zZ3VxSX7RvlqCRk+bR7eevf/y93W9l7QPz7kztHaORk3a/7rkRkfsceFt/bWb/efniPRo5ac3l3d9VnDaFl7kgRxqa/+ilRn5+s51PTS7/edZz7qy8b4VXuq3TaDZjlX45YOrV4T6zDvn+2Jr3pR0QmaKiQ9XHFef0PCPY1/uRvTB2fAcgqoqKXk2xdFnUoJNr0qy/pvI+bVsPRNVQ0ddpn795dVrMX3TQ6enBv7xCgcgMFdU+2bB4avYmYbLJVc/efW/sAKLqqOhs+qIqX9uLveZJqhx5ndnhFyAyR0VffG779J+y1Wd3ld1bzp7adw6ILFBRaubzopOKq15rk8T3/zDffg+IaqCiqtL1qxLzvgWs3rf3yd7Ld+Br1ERFb+p5bJx3NNEnc9jtyo+WO8LPqoWKWj4zzaqRt9VnUfvpkmWpdyOAqDYqOhlscb24w1nXLbVkzwcVLo8EojqoaHjKhjmcnk5uh/Pfzr0bZH8diCxRkcLz/N3t/jPcdvvWWBr0pU5NILJCRWfOH8tQnm3unfowv/Wr1ZkjgcgaFVWK7J5fnLrLc7NNw9xxed3DgKguKhpiP3vFsKUrAtYsuxlV9+TH00Bkg4o+LVvX5/P7TwGrsrycggbXfw5EtqjI837/Y75XN3vPvNf51Keu+7oDUT1UtKnYZeru2es9p678sbxNq1B4lx0qmp9jZtou65L/tCejugwbctoCiOqjonfSg29fdT8rSJzTvt2G77M9gagBKnpkZ9Hw5tVit5mtG+/t/ar2USBqiH2vttO6fTqRyNvnMt3KYUD4UiBqhIo6t7nT3y7Wxn/BxO6vbt65uQyIuKjI7UlkgmLF+YAZU7Y5HLrV6AIp2bIxhybZMqO43T2rufd5C0IbtXu+5IMjhdnQNdlyGp2Jsgo7uDP95BlBRtbDCefqx2fiDxMFcdEyuZiCQUDXmLQFeoea84mUWo+JFMlkwAihVey1pAwQDRTlq5HPOVGBtrWvwAoQN6wA2lcK7zcQ9nEbplsTiBJGpepFqPn4qUuqbcjt6r/j0qXI9LUvs1kkVLLs5HLsBZxoCJCYynE7Ddw6r2E6sQE6BgGHSYGc3YklsEyvPEaKUCjA+0llsOmyepxwgQfFFcEtVyglitt4XTestFP453aokpt2I/4WPgSq/hxyCLRExHp5VXtkxDDA9XmoUcSryXQ9HduGOqETTVyiLmWESAn2L6MlXOCAqNsw0cdKC2YIz/xqv5a386lb5js392WE03L0sRSn5ZiEbe3VdEIHuzuV9tKckcFOipjqCFxjjNiDHVpLiEBSglVxQU3HW5Uq+y0P4ORcuyCqVHYaEQtgcRnBAkMdXX+mc2jWn/+yD/5R9gHRQ9db9sGJ4UzZB+7DyyP74MKTYptbVZv4rfq7R+cG1c9ZsLhYEi0QC9kHh4czkbUXD9dL9kFR/Yvjn3eQea5wkPU/9jrymMGzD2SMqIBxY6SREv1lHyzdsODPj58GeSx+lH5U/jUWf65iyOyD+oyq+zjMSN0ZlrMPBqVbx8g8KwlnNx1ULTnrWRcDZx8gVoaWPg6sjN6yD5o3FNZKiRG6Hhl362f1fqYyI8g+kDGC4z5cj9kH1rEubSfdvu25oMP+82YLTI4YSfZBfUaEwJxG/bYZHBq/7cwKkfB717qeiRsbVnnZdGIe3htFetYFuwu1Pzhww7eMRD1hsEMMA78Cv2u8Zl9FYGzR8Qp9L9R1m6SV40Q8v6R+b7IXjUl0aO2SNhFt7UJylVyBBmwmlkNvyYduU2RXx2zzn1Hp9Iphue9tCEF2eDdFkB25XJqnRLR/LPRtSYUARVMNQm5rASdiok6xMxsEIGxc2IulCjB8gZx6sd16SpA9ddIk/oxffX9bd+vmJPy0dMduJk/LElFpgB25FHz7ayW+78quDfcMb+NgyQJgroyAgRFlECdKtWbAv2nPofshp3SaMujSDNElg1WNsVIOT3rq7LZzjV3Rt9+evq2NJOMAZQjiohUSdegOcWp5bsH2A1qVzQEmqDbYawtnaI9c373XPByiZvq5sqDa4glMqj09wXj841TdGsCV3r/0Q5XgxRlm7p7TXV2aLK9+IMBg/Us5zqhNgv1Lo0n7W2dkiqEL40wOzcLodqXunXGd97puHzzMJrnfEXxpYEtYclMJjz4hG1cC48MSHbqeufDlkQByVeFP5DHikscgm8OSZmdiMEi0WhGJYbvSX5ikDsq/0tYbgQemEgD6czeKJmgjwOB/Li5rrh5PqAEKPG6ApXyhtyGP4tpjDbwAeqokPvg/lU2LgafR8lgJTQbO2eMb4rlnUnxW/CZZ3dp3+BO8jUF6oVK0iEOvl2Zjqnz7YSL5e5D7fN67Hg8fCMrKv0gFMNtAmE3cKNp+pbVCYC7rkXBzDfWrT7dC5VExktCxyPCALSSoTzd967w4bsVf77O6pljgnDSkDp5VUPJc8vYXJ2Q9o8kRhW0IFWxFTghsqEmYRWcSzlk0/dC2k9xv5vu3vs6XpwiIDYOjZaJQCdd/rExGYQvoHGYn7L4oeB8cs9KocSKZVKwa5LFSZQRXDrYpCu0tATFKz/CeVI2NNcTaUs9aAp9GDNA1owq+ZUJ0Q8s6963hooa0P1TCdn3QSELEqElVAStd/1g3kLe0ws+jXxtKn+LdZ+RBZPdZdbm06UxkJZSVTgUrOULk1lK5DLB7SU0xrfusJXJ2auQUuKEGhxZ1n8Npjx4+uTrNc+Ht4E+8n7l/46na6AChDungpWzPYogWGEkMaB0N1auDhb2oacj4aIkmDk01ODvOvsCllcic4d/EOHt6DYdObrhEQWAJw5+yGm5rZIGEigWPAJvq8SpVU2qZuDCVZZKUtYeyMzoLinlUpEIXZBbodBBmo2pjCn0FZK3Chr6YEopWmSaRG+QzvJdn5wRPiVu9kxCYgN+KIjCBXC4PKJAhTgsFGOLoQpXEoVmojKZuPdFastPCpxzK1ruHMpWtb6aGfLbRQ07kxrED+VvZ4lVVTQfy9z38e0RLl8EfWYD8YwQT5FciMMjn0EGuMyuzBga5HliZFCRKjJVJQaLEWJkUJEqMlUlBosRYmRQkSoyVSUGiVHdNIpMoMVam8/3ePeeOKfLYNXhmgm0fPx6J8gYHL+XoI9IvWaC8JdPpv4nvCac7u6t5bDIRj7z2oiZe/3VUh/18mTwGuotIAIfslFemmW1NPKSwZU8E7HGjegCypYT7TJSGoF14n0g5LfUVSeBQ/ZG2XjnYKjYTgUlWRHV2DdtBrh+h09m1nSrahmSDyKFqAB7gF3pe0JR9Dc4OP2Hhn+i1s9Hew9sWlyXWVr7H2IUAq/oidNktJiXYg231/RGUfjgdVlZqSoQmVtQckLW7s1v7bvKYc3rCO+9uVaewSIuY2tf/0+mNcR5b5LO9ktzGH2MBJTBmGFCKGKFbk3bHQGxeIZMNwQybcnCrh3HP6EMl/VLPrrrQcr7n9rtjvO1ePHhrwHgubL+IDCLKgNxR2H5xhG5urIM6egghCtWoWQFXIJxtogRnZWfh9ffdj/qnXU2YK1jdZZYRRC0hSOdHMIG0foRucd3m7lLVN1cfVZUMGSSwSG+gji6XPshpE+md8+dhy5SLFyfjo4jYc8lRRLWkPNCJZ0QnZATmGKVwaBbGV/38hSYuX/hL1p33WBPgPYh8EE9eCU1owG2Mj+eqqW6xcp3KxhETLLSNDWjL/gaGacRIANt5qtxHDoDNdGQ5hGmTO/lsPD9aLFxzKfBKV3fuKvxhJxKPpVnWccLSrDjRxJWVCQ7s9AAIViDVGMuEpbhG6rTWWSBgScBMo4dqQHrjHnMD+rkn3h+xP7VpZzzrtaoA3EsNlIZIzy4BhMmUEab7It0Wu9JDaMRYs8FCaNDSIGMEhtBInYSjnRFoUDs0l84O8Vued+k67Z4w02PNO2VX2wbEc+hIUTRXdU5DcV5O55q3VN2HRXuQvBQRN0oSCy9JFNJQdIHUyiwRk7sY3pDqpFxDrCWurrAP2LgCWDWJwidPAKiPGKeTobJAwlCqw13wOtSFhj5POh++/E+3dRbnZEvW96yNd5GQB5BdJNXl0uYcMc+tjHMOMpOLIDxZdBUddo3TiU1irnofpkJfzg8+ztzU6oH7phX7TEZn1b6Ej/6p7idH/9DrpeGzd/g77+Iuv3klCMcPm7VI8hcL+CQx4gOGjyEYBqYIcWOcCogeHOKPbpXAzUNEinCJkklpnlWlMX4TrvHy70W7dLywoBCvNNX9ZKWh11k/s4VBHEat1DQqrRTnY1rRafmqgRi8aIkYNb7U27HG+RWbja7KWz3i2u2Fyyrj47+V/ZD7yYpBr7OtGFdn1JzAY0bSfjXBRcDJGKfbhsxOjQGysZBJS8PjacEI+cE/agmTLF5VbdG5Cz61rQpf9QAyqxYTlAciIxgRaTYOW9fncWjW9V0LfT8O7t7Ne+bH70rT4zc/4HWs+kTtyTA91DsM/ALOjY2QhkYAtxLmFopiYmBFAzUrBl3+tdt8EPO0qd6XPCZV13XhiY5FeaIk9osr2NWNGFvWCHh91NWAi71UVaQGpjCp3oTyi9vNvtHswIY1wqSf0Z+zq6/Dc92r0Dk2aoGeF3+ESgoxbEPF0eA6IBjqZLF6+KMjSlWWE5eoBflAMarzAVgKEP6/xKfkTvSfRIkocT03aFVQuK9FALOhAgzWYgKAoZN5Pt1kNprAFXE0sdTjmhjmYCFydVvJFLk6rMQwT6XD3P+Ax8UznBP8hEG23aUvfWrhq0Yh/eSjZdJQJC2MbEjpkLbzA/4AWJ6U4E4ZNxL3FK3sJLEyBdNrkYtZ4eXaHtzA0kvjAZwpVAc3SIxifIG5+jQS85yw9aSaN7SlOF3CT6qCXPYWY2NgoPj0vAr5Vd1z39T1M29dpxCTV6CRmwUg5oU0RkxV1+kfrHof5HXhnzBt3Bp4SBXA5kB2AkJmwuuLUj8bRdU2VVv11GP/psKqU51lnXD6qcAjzw4eaXZUIMyOk95/Pak+z8Qtb+8c092tClLKemYC47pQnW2o2AuQoHN+fIEGSKWdLDUMloTKgYXWBaW2G1wTZ05Z5r191K4lGaIZI/EouZFRcisVpT8tujflf77mvvzbqktVJtnFsYDSekaU4scXoGNQPZYY2S6qeoHQMdICICLrHb+GqR5FXsPQ6+Vx4I2MmM9UB032TghSqD1d8C+zp8RyPnqyp4FxTPb0c+x/9hTVz5yj3quLL/b13rXazsPq09XmbNhTQpkmFiyFVxyTpeDGlbc9nS5d97pH2ymeSx7ZWll5te3Kgj0lHhKwgBIY1gwoFcaWoz0lrqEGt6fIiKG1pwAp1J4upLOnRrMnIE4ndshsHSvYvpvLj3bP/uQasevK3CAWtgTCWKYtgaMa8kV0kOtMZrPAINcDmY2iBh5m6ilq4GFkNooaeBiZjaIGHkZmo6iBh5HZKGrgYWQ2oodGYqxBq0g5xIjV81hgrC1mTclmelTyP6sjSVFUEVMyMeZP0okJnU6IZQtZ0MkSOp2k59wfOOvxZ+/cnP25u0c/wOf5VQoURUlk5AKtdIbNnseNhndoVJnmRsmVElVxIaUkTslVFWel/NrEuosUr6KNtTMLDlXIZbIguGLBi5oNWQmW8M2ZOueb3fd1X7zg929tzjrSMqlN+8ZIFCHg9bGPbe4uHztSBrlasBIsLPwjlirR7w48DBjleJiwkaASrFQvqRlLCwHHZAwwoF35nIRZ/Gp+IkW4NEooCcMtgGaqy0GwZ4fm9aqq6yHyaM2reCtsEtRCsKPimIIaCIiBCpg3qJSq3qoK9lZUE0ohivWOEsOyWxi8FarCizD0onEJ8dVlaFlh1YYAdgKRimR8WAtKYyFSKiSiSPXvJv0Vomj1PehQXUo3VI1mWSZWAWXpqI44/llYlzePYVqXk8Zg6/Iyo8ecWF7VeI9HM6RMmMdLMczT6DDXeZk05+hvmaSom4stkxR1c7FlkqJuLrZMUtTNxXwh04X5L9OX7HWb8+7TxfaPb9TT8IUcRiVn/1rwxifncVCfqMK3zUiLK7T61KFzQjFeFhbX5XSaNNKWY8Siw3prOZY6ianl2NH48m45ltbiqumgTTO89nQKHj3vcaOVRtByLGkSUwOXEZOMoG/SjRs39NByLCA26Hpj2fuA6b+unD1BPtPMKFqOdWHUTk1j0I5eWo4tqZgz4LfJF33zvnW8FBF8c7RRtBx7Hs+kHGBNDK8cjiFbjkVWKM4IFuf65b9YOCFi0cFpRtVyLI1RedGGUZ5xthy7fOeh17evXgHZspt/Xlo3cbWBW455MWqOa3DNwZvKreUYLzTTLKS10jPpZ7fWlrb9+EbRcgzxIWhbjgFDiPqp6RwaP/Xf1HKM2BbDwC3HsiYztRwLmayflmPcWkFj/oo7KNj5N8cjSDh8Oestx4jFzVhoo7V+MlMbrfjJ5dVyLP/HvWaeL5t7LC/eNKTQq+8K1luOEW0EC1iFMGLlOPl/quXYCjoz9l8R/n9UhJ/YTUhvRfgrJzAV4U+ZUh5F+MfY/zz4zSrEb07r6ydfhG3Bk8jKlm3Oso2ENcsrJjDVLL89RS9F+B9+bxWW7Wjpt9d82lS/GhtbGrwI/74pTKiAcWM0ewfdEn/YK8I/+NFqW06vCJ/sQXv2NKnk2NpoivCLGVXXwzCq03sR/qi0mHpV5lZ3XTD41sFVHQ6lGbgIP2JlaKuoAyujtyL8LgWrW97/fYDbwsVTNiwcl13ZCIrwI8aGFpyUKXoswv+mmuWQBdIi17zYnnmbJl3ebgTlLCBCYkaEwJxG/bYMDo3fJuA5tP7Z8wpv892GW35f9bY9vo4AksQXLZeBFZ3ss5nS4NyxJEQiLbkfrYUBEFfIx4ZHcNVNY3Wp5UDssEj7tuSqBxpCbbl9zQWcIjg9RXx46ELAtxDgOz2hrIlVliWvBa6iWFB+9V/bf67c+tQj/sJRF/3aVtmG77L4j3p3EVwoomEsowvFBehdgeg14lOMTht4SpygkwtVXTV9xZJwhYTav7Ryunn/qSDTbZbZxl9znyWvJWRIITdSZEiprrNe9hd8/yzG75+WYGhnST0ydXCU4CtL5WJpKENtm2VbnwhzEz77ZUh8HzZ6368xfqxiDyCPVbWkPJQxnVEZ0YZRBtH94egSsXD2jZIrwfIlCoVnp/ZteoItK9hZRDpy2/YMjZArxI7cdj1jxiiUyC/U3mrV7dk3fMbNcZ0+vPUskwneffDrGvyAYOV4GUX/yxJReShrCKOyvIxi5sBH6eStWpUcdEeNVYyMYZhBY380aj1s5hr/QxWqvvz1etf7Zdkql1EdqW1QQw5TPQtJdaHaCvoeTNDNS0UtOYO3dURqMmFDi43eR6xuNGqckdDPoNteCEAmBkARBQDQtOjkiWJLGX2RiSZRy6eEW1dyTW5T+4RY6PDYoMm+EIBRTABs9U/AHM2VnH8XH4fYmFtvfJxrU5n4OFFTy5uPc+NVwcjtN4O8Ml832G+9a0JtI+Dj/D6VKbqZN9UISAX5+fl64OOMbnIkfcnEUGHuSw6n9avMAqPg42xl1M5SY9COXvg4ifWT6twIOO2+10O6eq/woKlR8HESGZUTZQzK4RiSj8N5/FfE9c/D/Fa9ul1BWmPIfKPi4wxiVJ6HYZRnnHycfm26JM44pPTMzjeP+97d+aWB+TjtGDXX0OCaK1c+jlVkhx5jCnJdVw8Y1+uSpIfIKPg4iA9By8cBhhD1U1dx/h/wcTq3udPfLtbGf8HE7q9u3rm5zMB8nEGJTHwc50T98HEuWe+4675ht3dSfm7K7P6K86zzcYh7cxY4Jv0SmTgmbonlxccZdPhaXceNc7xX1b9xvfP9T2dY5+MQbQQLWDkzYlUv8X+Kj7OazoyNyZe2lvpv5R/IC5A9ezwYX5verM9YmDvpqRBFR5AzTHUIXzRzl8ZEw+wxdTRnvJMqy5QrgjXzwuEnUI48tyeRCYoV5wNmTNnmcOhWowu070eO5GgKSeOvajAwYQGaqVgUo5KY96TlqFQ/jYJP4woLc1nz4T/8qBw0qqXAsoeywDxYIgMKk4i9gV2Pwx6HqFWlykw6Veqck2avHtvln5M2JLRWj2dhJwUL7n84t67dOpFGThr36+XAux9re662bbvV++u8Axo5aeZmU2Ov/VDyVg8Z1cliej2lRk7ajuNWt39kFHktWrur4eRjA4I0ctJshx/qMqZHhuesbvGHpLIm+Ro5abwB0c/vrBH4zH3ovH9y55Phmvn5jtGbEsbGuy9u2LnSqIXjBBrNZvpbvHqd1e6lz/L+A3JuLJx4DYhMUZHpzm/n91WQ+ubaJjTYlDfgKxBVRUWVB/b9i78mT7Dv6amkUSE7o4CoGipqdcd/1ZPZsQEbMn98G/ym9SkgMkNFDVr9/eH9u5Ee01e6Dje3ePsaiKqjorsP32+I+StUsCzYbNjuu+1gcQFzVCR88mzIlvXT/bPObVha8XzELSCyQEWzAiza3PIs4OUuMYla8bHSZSCqgYomVD65NLHDUY+MBRe4+wfvdQCimqio84uC8aOCQ/037nn+d6uuLj5AVAsVVaghyLpTb7vnVM+6RVcebikAotqoqLnXwIc1PeYEpEe19PHPrXUDiOqgoludxue37xfLnzkiKNmx6cqzQGSJip4cTJ9xcr6599TXjY+/W1VpPxBZoaLdl/bPrJfUQbB86avEHpWfw69sjYr6nNn6fLqysc/+uPWvTsYLnYCoLip61Glcd9frfoI9drMsq7baPwWIbFDRq0shXiN/6eOWu7rlD9fzcjjYbFFR9fj3L9L6TPGbc9Rh1PnsmRuAqB4q2rW09piYS5t8pw83WfMh0RqK7FBRo4jb3XqZt/Nf03bpjGNXT8LPqo+KPKcfbLH3ppffPDurvVUrrTUBogaoyGZn+Jttx9b5bt31+Uw9q+5pQNQQFfEfzY7bMD2Lv8HGqeeBWr13A1EjVLRRaV3r07J5PqnK5U3qVNwMX4OLirbseXn7h2CAcO3cZPtea7udICVbNubQJFuKLW3M21y657dwxNAtF/q5RFCYDV2TLdfQmSirsIM700+eEWRkPZxwrn48PjhdRRAXLZOLKRgEdI1JW6B3qDmfSKn1mEiRTAaMEFrFXkvKANFAUb4a+ZwTFWhb+wqsAN2mF0D7SuH9BjoKOBbTdWsCUcKoVL0I5Xcb5iYMqiuuyFt/z61Oy57NX7FIqGTZyeXYCzidIEBiKsftNHDrmkzXiQ3QMQg4TArk7E4sgWV65TFShEIB3k8qg02X1eOECzworghuuUIpUQx99Ml110lT/7SCoc9db38LxIdA1Z9DDoGWiFgvr2qPjBgGuP6eZhTxajJdT8e2oU7oRBOXqEsZIVKC/ctoCRc4IOo2TPSx0uBW6459syrw3VF4dcCih8d6EU7L0cdSnJZjEra1V9MJHezuVNpLc0YGOyliqiNwjTFiD3ZoLSECSV1zqGb8wsob/+JlX0znDOj3NLXsNCIWwLJgBAsMdXT9Wcv5L/uAzewDooeut+yD+9OZsg8ydVsrtcw+KL6rHLXi53uvQ3aba1eJGRzB4mJJtEAsZB/cns5E1j6t22L5T7MPvB++X9Bn5XX3fXMnNj8+QbzMoDQMJPuAERUwbow0UqK/7IOZ0x9v7WOzxy+h78feeyLfHzOa7IMURtXFGUZ1es8+aBnw5cOkDFuP3PYr7Arfrh5q4OwDxMrQ0sdPU3gp5ZV9sO57ZJOPm3bw5zawyKh/Nx5/Hmig7ANGcDKn6zH7oF29L3PPdF7veWiqjWVl/9E/jCT7IIURITCnUb9tHYfGbzuzQiT83rWuZ+LGhlVeNp2Yh/dGkZ51we5C7Q8O3PAtI1FPGOwQw8CvwO8ar9lXERhbdLxC3wt13SZp5TgRzy+p35vsRWMSHVq7PF6ItnYhuUqusEL5wnLoLfki1P7njo5Lvab5/NFxfrW/zxKC7PBuiiA7crk0T4lo/1jo23IfAhRNNQi5rQWc8wt1ip3ZIABh48JeLFWA4Qvk1Ivtfbcb1/Z9vC7cLBRNqzw94g1+WrpjN5OnZYmoNMAOHL+W1v5yst+MCgfbvDlaT8YCYDmMgIERZRAnSrVmwL9pz6H7Iad0mjLo0gzRJYNVPb3y1GTh9OMBe6ddWTS7ujy/NpKMA5QhiItWSNShO8Sp5bkF2w9oVTYHmKDa/tPv1Kkf9kyQ4X6s97Snzz+z0cOIUbXxBlItlX+cqlsDuNL7l76c0iKtZYeb3rOHKoN2zo1MMFj/Uo4zapNg/9Jo0v7WGZli6MK4nkOzMLpdqXtnXOe9rtsHD7NJ7ncEXxrYEpbcVMKjT8jGlcD4sESHrmcufHkkgFxV+BN5jLjkMcjmsKTZmRgMEq1WRGLYrvQXJqmD8q+09UbA4J83C4D+3I2iCdoIMPgVs8qaq8cTaoACjxtgKV/obcijuPZYAy+AniqJD/5PZdNi4Gm0PFZCk4FjF+NydHfbw26Lq+V/H2HST4q3MUgvVIoWcej10mxMsvDGx2/j2vHWPnp3Z9m2XoPLaGNSAcxzIMwmbhRtv9JaITCX9Ui4uYb61adbofKoGEnoWGR4wBYS1Kebmcd/MX9TONtjy6FDcwunD++IZxWUPJe8/cUJWc9ockRhG0IFW5ETAhtqEjbQmYRzFk0/tO0k95v5/q2v8+UpAmLD4GiZKFTC9R8rk1HYAjqH2Qm7LwreB8esNGqcSCYVqwZ5rFQZwZWDbYpCe0tAjNIzvCdVY2MNsbbUs5YCTkOIrhlV8C0ToPt+ZlnnvjVc1JD2h0rYrg8aSYgYNdfY7fT6tB8dhEvufD51v00vHt59Rh5Edp9Vl0ubzkRWQlnpVAC5ehC5tVQuA+xeUnkWrfusJXJ2auQUuKEGhxYlfAOn2bWp92BPQPLIlDXxM1vE4qna6AChDungpWzPYogWGEkMaN2dqVcHC3tR05Dx0RJNHJpqcHacfYFLK5E5w7+Jcfb0Gg6d3HCJgsAShj9lNdzWyAIJFQseATbV41WqptQycWEqyyQpaw9lZ3QWFPOoSIUuyCzQ6SDMRtXGFPoKyFqFDX0x9aL1JPt9wvZrHqlmGxqeuP8kmRCYgN+KIjCBXC4PKJAhTgsFGOLoQrWRQ7NQGU3deqK1ZKeFTzmUrc+cyVS2PlUN+Sajh5zIjWMHcknFYfvq/F3smWhSWNAmu+IeFiCPm80EecRsDPLNdJDrzMqsgUGuB1YmBYkSY2VSkCgxViYFiRJjZVKQKDFWJgWJEmNlUpAoMVYmBYkSY2Uuyjh3NU041HPHhM9+suAxtUiUNzh4KUcfkX7JAuVtC53+m/iecLqzu5rHJhPxyGsvauL1X0d12M+XyWOgu4gEcMhOeWWa2dbEQwpb9kTAHjeqByBbSrjPRGkI2oX3iZTTUl+RBA7VH2nrlcPjqBlgkhVRnV3DdpCBM3Q6u7ZTRduQbBA5VA3AA/xCzwvqX6t4cpCbm9+2WwejAjL/LCpLrK18j7ELAVYpM9Blt5iUYA+21VEzKP1wOqys1JQITawoUTphIpt6z3lhwNbv22qGtXtYn0VaxNS+/p9Ob4zz2CKf7ZXkNv4YCygFMqLUboZuTdodA7F5hUw2BDNsysGtHsY9ow+VJEcecVjiwxcm3h4riY+a7mzAeC5sv4gMIsqA3FGwDY6boZsb66COHkKIQjVqVsAVCGebKMGpMf1Mt14JP/kbM+/WXVHXx8wIopYQJDEjSIEzdIvrNneXqr65+qiqZMgggUV6A+UYvqZnYFFvz/W1+q/c5SAwwUcRseeSo4hqSXmg04MRHfsZmGO0lUOzML7q5y80cfnCX7LuvMeaAO9B5IN48kpoQgNuY3w8V011i5XrVDaOmGChbWxAW/Y3MEzO0IU/T5X7yIFVHskHUGUP094RnehTwUPmsTfuD+Xw7KQ6+MNOJB5Ls6zjhKUeIRNMXFmZ4MBOO0CwAqnGWCZwza1n6rTWWSBgScBMo4cqzreiV/zz1YL8lpta1Ww1cTjeEgnAvdRAaYj07BJAmCoywvRGx8Wu9BAaMdZssBAatDTIGIEhNFIn4WhnBBrUDm2js0P8ludduk67J8z0WPNO2dW2AfEcOlIUzVWd01Ccl9O55i1V92HRHiQvRcSNksTCSxKFNBRdILUyS8TkLoY3pDop1xBriasrbHqVWgCrJlH45AkAda9UnQyVBRKGUh3ugteh/JZ/v+iatMk2xnPpAue293b/IHRsRB5AdpFUl0ubc8Q8tzLOOchMng7hyaKr6BCdqhObxFz1PkyFvkZnjJm6OXm9z+JLUaZ5ya3H4KN/qvvJ0T/0emn4zPrp/GzD5h/ui248Xup/s99GFvAZwogPGD6GYBiYIsSNcSogenCIP7pVAjcPESnCJUompd2q/2akw4MMv8WbXA7wXzfdjFea6n6y0tDrrJ/ZAq10YNQK16i0UpyPaUWn5asGYvCiJWLU+FIqZsHU+9ebhQ8XbluybOjmefXG4hXjh9xPVgx6nW3FuDqj5gQeM5L2qwkuAk5Yqm4bMjs1BsjGQiYtDY/nYY87e7zOd5tR4FbkMvZ3Vzyrlq96AJlViwnKAxEvRkQcUrF1PYtDs67vWuj7cXD3bt4zP35Xmh6/+QGvY9Unak+G6aHeYeAXcG5shDQ0AriVMLdQFBMDKxqoWTHo8q/d5oOYp031vuQxqbquC090PsoTJbFfXMGu7vT8skbA66OuBlzspaoiNTCFSfUm1N2iHjS3HfvD3CN9yuNFG3ZZHsEPPjrHRi3Q8+KPUEkhhm2oOBpcBwRDnSxWD390RKnKcuIStSAfKEZ1PgBLAcL/l/iU3In+k6iHEmE9N2hVULivRQCzoQIM1mICgKGTeTvdZDaawBVxNLHU45oY5mAhcjVzPlPkapwa8x10mPsf8Lh4hnOCnzDItrv0pU8tfNUopJ98tEwaiqSFkQ0pHdJ2fsAfAMuTEtwp40binqKVnSRWpmB6LXIxK7xc24MbsMm2hlTNFKqDGxijeLmgwFx9Gol5Tth6Us0b2lKcLuEnVUEue4uxMTBQfHpehfyq7rlv6vqZt65TiMkr0MjNAhDzQhojpqrr9A9WvQ/yuvBPmDZuDTykCmBzIDsBITPh9UWpn5CF7puXVljhO/3AidMTw+zww6YCjzw7eKTZUYEwO1bNe2J7+KxDQO7gKw0Hmowoa9cmDpgdtaE621CxFyBB58eCAg2QSjtZahgsCZUDC60LSg9bjvqUZ7fdfd6KRdkvC1+a41FyI6PkVipKn8133SmWBHqsOzX7ZOSm4tEsoASGNQNK1xYUoGNQPZYY2S6qeoHQMdICICLrHb+GqR5FXsPQ6+Vx4I2MmM9UB032TghSqD3d+S+zp8RyPnqyp64LmOyp5X/2FNNP/Ib+O7w/7PFdcnv4xG8O8Y9ZsKfEMk0sWIoejJbCvtztaeSYphlN83q5Lb0WHVXU02kHC/aUeEjAAkqWjChxytOeEtdQg9tTZMTQ2lNLtT3dRWdPjWZPQJxO7JDZOlawfTeXH+2e/ck1YteVuUEsbAnyUpm2BDvUZyq76SDXmcxmgUGuBzIbRQ08zNRT1MDDyGwUNfAwMhtFDTyMzEZRAw8js1HUwMPIbEQPjcRYg1aR+iSZUD2PBcbaHtaUbKZHJf+zOpIURRUxJRNj/iSdmNDphFi2kAWd7KXTydLnn1Y69U0RHjwb8Kvnz8wm+HIdJXmoeMUwxZysS0oWRcGaUOgDqpFzWmt5BAT58ULsm0xs0y1oUhPHgFZa+ZXE0o2VhfLQ0RKx+ia6r0CuOFIi0zbU0ULASUwGtq4Tn+acMyyZwr80QeGi8C8Rl4XgX6Z9T8hds2CAd/amLf6uT1rfYst/ZKx2XYIFd5xIIRWNlFFzhvpEdzy7bGGua/YqvlnHZ2dymdHvhz6KG0B2lAJKdZSINTXLWtYIaG9yMuookbPgWiDaIzpKTP6kZYmjVDLQKVG7Otq2yYexHPc9k1rcvrb7z/eMqNE5TVTHfWUNiLRFITnqSgFJdFsEEtSG7KOzIek59wfOevzZOzdnf+7u0Q/wucKVAkVREhm5yDOd+bDncaPhHRqV6rlRcqVEVaBMKYlTclUFnqlHJ6F2K8WraOMxmQWHKuQyWRD0euHFkrTx4t6EMervYvWb7d5Q110L1rp1nbhvL90YNe0bI1GEgNfHPra5u3wsnBmhMlhNGhYPE0uV6HcHuxQYKX2YsJGgR6zcN0mPYPCmzgV67MrnJMziV/MTKcKlUUJJGG5QmKkuB8G+P5rXq6quh8ijNa8Sykj7tBBcnz+3oAYCYqAC5h4rpaq3qoK9FdWirBDFekeJYek+9WivCi/C8K3GJWS/L0NLk6uMP+wmJBXJ+LCenFo1lYOVCokoUv27SX+FKLrEgKiG6n66oWo0rj2xkjBLx/3E8c+Cb//HXCbf/vZczDxkGz3mxOXEeEMs5xmTgw6rk4MO0GGus6ttztGfq01RextztSlqb2OuNkXtbczVpqi9je2nrBNGt+vYx94rO31t/boN61XW2E9N+PJy68N104SH7nf47cwm7y0kBx1afcqBRCzozYKDnkOnSSNtW0gsXK63toX3FzG1LYxbVN5tC8XNbTpMO/U2IKtdlZDbHX+RGEHbwtuLmJpAnV5kBL3XfvvtNz20LWw5aEW2eHodvwzLAe/r26TPMoq2hfsYtZNpDNrRS9vC6h+f9Pzl3nHBjN+T7x1cboJv9GyotoUpjMqJMwblcAzZtjDxbOMO34dy/PNOOq+tlbEBXx/R0G0LxYzKCzSM8oyzbaH88oU1xYU1+Hl1JZ8Cm9m0NHDbwh6MmrM3uObgTeXWtvDx9eRzH+Y/8NvvkzJ18rhRV4yibSHiQ9C2LQSGEPVTD3Jo/NR/U9tCYmsdA7ctjFrM1LbQbbF+2ha2thLyW/t8FWxODrXpmMnF9+Nmo20hsUAiC634Ri1masXXb3F5tS08sH/t/dAbC90Pn+pSbNpQblL2KUzAimgjWMDKjREr58X/U20Lc+nM2H+NPP5RIw9iRzK9NfJouISpkcddsu1koZHHqwdHz7z/u4tvdljvlLPvVj1ksWIFyzYS9j2ot4Sp70HlJXpp5CHweRPw9x/zXY+8zrqRV7sZvn68IRp5vF/MhMpd/VpDxr2DbsmD7DXyyPiccnbuuQr+KVPjvxyqN3iC0TTyOMuoumzDqE7vjTwmnqrd1vzrJWFig2HRZrPiLQzcyAOxMrSdGICV0Vsjj6mpNS7vPDDVe6PJc4dqF3i3jaCRB2JsaMEBxkZ/jTw4o/q8+TJ7i/vqXtleqRPrZhtBSRyI0FlGhMCcRv22Qxwav03Ac2j9s+cV3ua7Dbf8vupte3wtEiQROFouAys62WczpcG5Y0mIRFpyP1pPByCukI8Nj+CqG0/rUg+G2KWV9m3JlVM0hNryg5sLOMVweor48NCFgG8hwDdjSVmTMy1LXgsyiFRYUH717kfCnFYm3uPnrY0taif/FV9s9B/1/yO4UETDWEYXigvQ+wOi14hPMTptHAScIt1cqOqq6SuWhCsk1P5l4LO2SQ//+EWQ8bV4UA/nNycJWZbIjRRZlqrrrJcOB9//BOP337XE0M6SemTq4CjBV5bKxdJQhvpYh50ubMtrkxQwzWvd+/Hjh9rixyr2APJYVUvKQxkZjMpIMowyiO4PR5eIhbNvlFwJli9RKDw7tW/TE2xZwc4i0pHbtmdohFwhduS26xkzRqFEfqH2Vu+k9Ap/PHK/YPvA5LE+26sfwq9r8AOCleNlFD10S0TloSwlo7JGGMXMgY/SyVu1KjnojhqrGBnDMINeZL97NjR+oc/U3ut2vkzec6QsW+UyqiO1DWrIYbp4Iam2XFtB39909FJRS87gbRVzfT2P2WcFzDk7SbDpQfAMg257IQA5GABFFABA06KTJ4otZfSFarJ2flt7qfFuQXr9iDeFLd7UISxl+i0YAAFIZAJga9gSzNE8zPl38XH4j2bHbZiexd9g49TzQK3eu/XGx3mzlImPM3NpefNxNv3we+llUcl3oY9zu3c1P4QaAR/n5VKm6Oa1pUZAKsjJydEDH+dhvy+KQcuL/FfG9X2W8cWvhlHwcY4xameHMWhHL3yc9sX8lMA3h303LDlWFPnn3vFGwcdJZ1TOTGNQDseQfJz1wRe37fCP917QYG2aa+TaB0bFx1EwKm+YYZRnnHyc1zmH5JWGtXJNfHjsdVann5kG5uP4MGquk8E1V658HG6KPPHJaKHbylqN84f52KYZBR8H8SFo+TjAEKJ+6hHO/wM+zkalda1Py+b5pCqXN6lTcfMGA/NxFMuY+Dgey/TDx+lzt9qvi3vfEWweU9C7X09hf9b5OMS9OQsck6hlTByTQcvKi4/ziddwinX/s35zl7xdHPotYyvrfByijWABKw9GrNot+5/i4+TRmbEx+dLWUv+t/AN5AbJnjwe/xUdK+oyFuZOeClF0BDnDVIfwRTN3aUw0zB5TR3PGO6myTLkiWHczHH4C5cjbsufl7R+CAcK1c5Pte63tdoL2/ciRHE0hafxVDQYmLEAzFYtiVP7D/Gj10yj4NDawuJ81H/4j5H+Oaim4Xnd+gXmwRAYUJhF7A7sehz0OUatKlfl0qtQ5J81ePbbLPydtk6CDnaXzFf6S6EmhByq4Z2jkpF1Ly94d/7tCsG+/W9xDcdJDjZy0qzXnyubYvnY//E6i6JVxoqdGTppf20fBmQ6LBcsPTN8+6GFOA42ctKTxq6YMnMb1SzntPLz9xx5fNXLSGrw4uVRaYCfIP1T11tSXWYUaNT46LVnCETbd673lyIC5he893TQaVs3NGzSBe9bTf/vEZeETDt38CESm2APD1nVpumWt5676jd8nVvvlHhBVxUTyFbn1G05zXZB+tTbvSCMZEFXDXt52WGHkkyi/TW1Ctihn3aoJRGaoaEfwHx6ffh3vn7Rh+Ndefw9OBqLqqKj/MPm8z9mxvLUiYZcN8n2wGIY5KlqzstntKev6uU9b2rqlX73aEUBkgYpu+6XGHuh5RDhjxLW7NTvO7wVENVBR3b2nryQE3vBKHpx1t93RzXWAqCYqkldPP3K8Zxfe+lbhTT/trm8NRLVQ0buonjVXjh3ksW7vG5/aNW9sA6LaqIiTZu9XFFLZY8PxE8kB/WcOBaI6qGhbhcUTo6t8DNht18JrZ/aTZkBkiYq6ra51cr5Div/c22EX/57k9wiIrLDXeNCbG/u6ofu+pCqht3oe2gVE1qjoZ5j92+ajNvNmzoz3eT1M5gVEdVHRERFn2dpzHb3mBDV66t814TMQ2aCi0VPiR+88ONZ31q6UofefXO0GRLaoqOOT1zsTfPL95gya2W7NsecvgKgeKkoeo/QfMq2WcMagsVkLE9MCgMgOFf1a+eWlKgmWwj0dvppWyxlTBET1UZHlCJ8m7btu9Tj8/b6isdR9MRA1QEWT8yfnLE2V+Sw6fsL27P2zEPmGmL6k9dc3XX/d+/Avp37y7vvCAdAIFV3wCjwu+/iXf1KTMbbykKRlQMRFRY+mvYib/LIqb+Xp83lNkm96kJItG3Noki0zLq4wc0qc6rPt5tchl36av6cwG7omWx6lM1FWYQd3pp88I8jIejjhXP14/LasiiAuWiYXUzAI6Jobt0DvUHM+kXYNMZEimQwYIbQThpaUAaKBonw18jknKtC2fh5YAb6lFUD7SuH9BjoKOIVpujWSKWFUql6E2v93WDTsu6i234w07nDugeu9WCRUsuzkcuwFnM8QIDGV43YauHWP03RiA3QMAg6TAjm7E0tgqW95jBShUID3k8pg43b1OOECD4orgluuUEoURRkvjgm2fOKnye7KK92svxwfAlV/DjkEWiJivUSzPTJiGOA6nGYU8WoyXU/H1sNO6EQTl6hLGSFSgv3LaAkXOCDqVm4M3bgOWgb1/3rL/UiHvq07P74tIJyWo4+lOC3HJGxrr6YTOtjdqbSX5owMdlLEVEfgGmPEHuzQWkIEkrpncb+GnKxOq/xT7tW4163xS17ZaUQsgFXICBYY6uj68yvnv+wDNrMPiB663rIPNi5nyj4IW14e2Qcf/hwR9+HKVf8FVy97Hmpa+zmLiyXRArGQfbB2ORNZe95yvWQfKPjVvZOf+gvm36oStihwdlODZx9MYEQFjBsjjZToL/vgx5qxC0f1tuBnW9zZ/2DF/GZGk30QxKi6XoZRnd6zDy73rT/QNGac1+FUF4dt5+ZNN3D2AWJlaOnjwMroLftg3jK+ycqBs9zyuINlHZeuwhdMMEz2wQRGcMKW6zH7oEfDcf7JV/d4zDEZWOVNv7ghRpJ9EMSIEJjTqN92jEPjt51ZIRJ+71rXM3Fjwyovm07Ea90U6XsZ7C7U/uDADd92FvWEwQ4xDPwK/K7xmr1ZgbFFxyv0vVDXbZJWjhPx/JL6vcleNCbRoT3U7U1oeyiSq+QKNJCxqRz609au4nhOGrXLbd3p1UtyKwXWIgTZ4d0UQXbkcmmeEtH+sdD7qQgCFE01CLmtBZwTm3SKndkgAGHjwl4sVYDhC+TUi633ySO9XqzfxVvZ/nn+WfeMY/hp6Y7dTJ6WJaLSANv7a4u6kSHdAxaY7jpr3im/rDXvIWC7GAEDI8ogTpRqzYB/055D90NO6TRl0KUZoksGq8p7eitgSL8Tnmnejgsbxj/8WBtJxgHKIJdcrsxzC7Yf0KpsDjBBtfu+/Vj95inPIz2vV8LVCc0usKDaJEbVKg2kWir/OFW3JpKl90BWNnk0alATW8/VpkEbm7jm5husBzLHGbVJsAdyNGl/64xMMXRhPM6hWRjdrtS9M67zXtftg4fZJPc7gi8NbAlLbirh0Sdk40pgfFiiQ+dEF748EkCuKvyJPEZc8hhkc1jSMFEMBolWKyIxbFf6C5PUQflX2nojYPCHZADQn7tRFBgfAQZ/l4yy5urxhBqgwOMGWMoXehvyKK491gQQoKdK4oP/U9m0GHgaLY+V0GTgePtcF7SOjOMttY1Tfmj/Ft9muTLST5mizSR6vTQb8+f4Ixciv83kL+7ZZmTLb8s/lNHGpAKYAyHMJm4UZa/TWiEwl/VIuLmG+tWnW6HyqBhJ6FhkeMA2NNSnm2E9unZuZPl3wMrVKyaZFeThW9GZlTyXvP3FCVnPaHJEYRtCBVuREwIbahJO0JmEcxZNP7TtJPeb+f6tr/PlKfhjbvMgSbRMFCrh+o+VyShsAZ3D7ITdFwXvg2NWGjVOJJOKVYM8VqqM4MrBNkWhvSUgRukZ3pOqObqGWFvqWUsB5/EKgK4ZVfAtE6Cbs6Ksc98aLmpIC1UlbPkJjSREjDqlxMzm7OOPFYUHP98ImykZ1w7vPiMPIrvPqsulTWciK6GsdCpYFxYit5bKZYAdkM6voHWftUTOTo2cAjfU4NCihG9pbc9M69RKvsu2HgzpOWjrUDxVGx0g1CEdvJTtWQzRymFEa/0KvTpY2IuahoyPlmji0FSDs+PsC1xaicwZ/k2Ms6fXcOjkhksUBJYw/Cmr4bZGFkioWPAIsKker1I1pZaJC1NZJklZ+7A7o7OgmEdFKnRBZoFOB2E2qlbI0FdA1ips6IspoXibN3NJlN8brwPv7r+oX/O3RoTABPxWFIEJ5HJ5QJHDCAUY4uhCdZJDs1AZTd16orVkpw1YOZStD1vBVLa+nxryAuOHnMCNYwfyDu9GZkw8WNtn5ereH8/WkJT11AhC3msVE+TOqzDIT9FBrjMrswYGuR5YmRQkSoyVSUGixFiZFCRKjJVJQaLEWJkUJEo1K5NMosRYmRQkSoyVKQs8XVi1Wj3+Gp+omfU+Cz+SKG9w8FJvQgn0SxYob6fp9N/E94TTnd3VPDaZiEdee1ETr/86qsN+vkweA91FJIBDdsor08y2Jh5S2LInAva4UT0A2VLCfSZKQ9AuvE+knJb6iiRwqP5IW68cbBX7pYNJVkR1dg1bylqn63R2baeKtiHZIHKoGoAH+IWeF/R3WOXjq+XN3HMOj+xyLKp4UFlibeV7jF0IsApKR5fdYlKCPdhWd0in9MPpsLJSUyI0saJEafDHCfmXKih4uY8yWgQcOFSRRVrE1L7+n05vjPPYIp/tleQ2/hgLKFkzovR5OfnwgclPcwzE5hUy2RDMsCkHt3oY94w+VBL+vWXvvIyWgsRLHVeY+TarYcB4LmzhigwiyoDcUbAN7pWumxvroI4eQohCNWpWwBUIZ5uokzX9XTp//X2PT06LbasrCMfNN4KoJQTJgREk63Td4rrN3aWqb64+qioZMkhgkd5AjavTZ/TA3xf5bWt3IPmbwAnfzM4Uey45iqiWlAc6FRnReaOO6Z7h0CyMr/r5C01cvvCXrDvvsSbAexD5IJ68EprQgNsYH89VU91i5TqVjSMmWGgbG9CW/Q0M00cI23mq3EcOgO20bkuddmHavOTBl6/deOqx17lvjM1ix+r4w04kHkuzrOOEpVlxookrKxMc2OliCFYg1RjLBK75bd3WOgsELAmYafRQ3Ru1b0QVywLvVSeHP9rxZ0Eq3hIJwL3UQGmI9OwSQJhOM8K0L123xa70EBox1mywEBq0NMgYgSE0UjfyaGcEGtQOnaWzQ/yW5126TrsnzPRY807Z1bYB8Rw6UhTNVZ3TUJyX07nmLVX3YdEeJC9FxI2SxMJLEoU0FF0gtTJLxOQuhjekOinXEGvbtbSlgJOwoQBWTaLwyRMA6q4bdDJUFkgYSnW4C16H8ltOuORi7VG0znXumAorc7fvHIN3kZAHkF0k1eXS5hwxz62Mcw4yk+MhPFl0FR0iNujEJjFXvQ9ToS/BpEBR4aI1wrzQcRKPJkm/4KN/qvvJ0T/0emn4dPUb8/B7xie/gz1vn0s79uodC/iEMOIDho8hGAamCHFjnAqIHhzij26VwM1DRIpwiZJJaX+PXxSwM8fDb0HQZ/OMtOd4Knll1f1kpaHXWT+zBVpxZNSKjVFppTgf04pOy1cNxOBFS8So8aUuSZI2fkCnSB+3aWsrDzDvwDmMV4wfcj9ZMeh11ntEO6PmBB4zkvarCS4CzrANum3I7NQYIBsLmbQ0PL586mQ+gGfhm/Tjk1NDlw6N8axavuoBZFYtJigPRFwZEWmyAVvXz3Fo1vVdC30/Du7ezXvmx+9K0+M38ZEj9BO1J8P0UO8w8As4NzZCGhoB3EqYWyiKiYEVDdSsGHT5127zQczTpnpf8phUXdeFJ7oe5YmS2C+uYFd3dH1ZI+D1UVcDLvZSVZEamMKkehPq7e2TL5Wc31T33BrM+3x7+Xr8aWwVOsdGLdDz4o9QSSGGbag4GlwHBEOdLFYPf3REqcpy4hK1IB8oRnU+AEsBwv+X+JTcif6TKBElrucGrQoK97UIYDZUgMFaTAAwdDKfp5vMRhO4Io4mlnpcE8McLESuJq9nilxFqTG/QIe5/wGPi2c4J/gJg2y7S1/64OndFkg/+WiZNBRJCyMbUjqk7fyAPwCWJyW4U8aNxD1FKztJrEzB9FrkYlZ4ubYHN2CTbQGpmilUBzcwRvFwY4G5+jQS85yw9aSaN7SlOF3CT6qCXPYWY2NgoPj0vAr5Vd1z39T1M29dpxCTV6CRmwUg5oU0RkxV1+kfrHof5HXhnzBt3Bp4SBXA5kB2AkJmwuuLUj+jO9UtqPTbU2Fq31u2T/dnTMXppwKPPDt4pNlRgTA7WlZb85bTaIzfqju9Q/MvFR8v65kJmB3VoDrbULEXIEHnz40FGiCVdrLUMFgSKgcWWheUQtY5WnYK+NN//uJrme1jfnPHo+RGRsmtVJRmv3N8d3Vlsm+ik9PmwVkTyppdClECw5oBpYsbC9AxqB5LjGwXVb1A6BhpARCR9Y5fw1SPIq9h6PXyOPBGRsxnqoMmeycEKdSeXvyX2VNiOR892dMuG5nsafX/7Cmmn74eJ0bNaNjF44DHuJqXhg9UsGBPiWWaWLAUHRgtBbfc7Wk3s5VOqdcn+aZHDN7cfZVJFAv2lHhIwAJK1RlR+ryhHO0pcQ01uD1FRgytPa2utqeX6Oyp0ewJiNOJHTJbxwq27+byo92zP7lG7LoyN4iFLUH2BqYtwUb1mUohHeQ6k9ksMMj1QGajqIGHmXqKGngYmY2iBh5GZqOogYeR2Shq4GFkNooaeBiZjeihkRhr0CpSDjFi9TwWGGu/saZkMz0q+Z/VkaQoqogpmRjzJ+nEhE4nxLKFLOjkdzqdpOfcHzjr8Wfv3Jz9ubtHP8Dn+VUKFEVJZOQCrXSGzZ7HjYZ3aFSZ5kbJlRJVcSGlJE7JVRVnpfzaxLqLFK+ijbUzCw5VyGWyILhiwYuaDVkJlnB6q6X+D5od909ZOHfhkfvvntFZQtO+MRJFCHh97GObu8vHjpRBrhasBAsL/4ilSvS7Aw8DRjkeJmwkqAQr1Us6lG4BdjxrgQHtyuckzOJX8xMpwqVRQkkYbgE0U10Ogj07NK9XVV0PkUdrXsVb4cq+LQTjzq8tqIGAGKiAeYNKqeqtqmBvRTWhFKJY7ygxLLuFwVuhKrwIQy8alxBfXYaWFVZtCGAnEKlIxoe1oDQWIqVCIopU/27SXyGKVt+DDtXLdEPVaJZlYhVQlo7qiOOfhXX58VqmdfnKWmxdvmL0mBPLqxrv8ehCRmJ/oprYf5UOc52XSXOO/pZJirq52DJJUTcXWyYp6uZiyyRF3VzMF1rq8aVe93gef98h3uBFQ/bxNHyh3p6u3sWDkj1yrzysm746fB1pcYVWn3IgEYvxsrC4XqPTpJG2HCMWHdZby7GizUwtx6I3l3fLsf0tU48Uxvt7LQo6rZT3T+EaQcuxK5uZGrgc3WwEfZPOnDmjh5ZjL/7gV6ux/g+f3DN90g5MamdvFC3Hshi1k2YM2tFLy7FvT/Z6u5yw8Nhdo7i3JC0XT2U0VMux6YzKiTYG5XAM2XJs7bmr8UGr+/gtr3h5acRfSW2NquXYEEbleRlGecbZcmzKi+SUygPvCab9GPis6coCjoFbjnVg1BzX4JqDN5Vby7GjJz2b2dlV8M7PHLOikfCPrkbRcgzxIWhbjgFDiPqp1zk0fuq/qeUYsS2GgVuOhW1hajnWbYt+Wo6ZuFg/nrPpOC/ResuBdVlP8XxgNlqOEYubsdBGa+QWpjZa/lvKq+XYy5r9kms8kvtsumnxcMGWPbNYbzlGtBEsYNWNEasWW/6nWo4V0Zmx/4rw/6Mi/MRuQnorwm+9lakI/zWy7WShCH90L+/WZ1te8s0+0Fq+K997D4vZ5izbSFizvPZWpprlP8g2sjyK8B/5XD+vGq+579YanRyWH8zGF5k1RBH+l1uYULmmX2vIuHfQLfGHvSL8Y+9NeD1U5ihc/du0wW2b9scX3jBkEf5jjKrbYRjV6b0If/sVb+r0rzbbY1G+KDwsqZuNgYvwI1aGtoo6sDJ6K8KfvKnKTesKNYSrr6Xer5rT08oIivAjxoYWnGtb9FiEf6p8/YPFFRt4Jhzcub53zZhTRlDOAiJ0jBEhMKdRv+0Gh8ZvE/AcWv/seYW3+W7DLb+vetseX0cASeKLlsvAik722UxpcO5YEiKRltyP1sIAiCvkY8MjuOqmsbrUciB2WKR9W3LVAw2htty+5gLOczg9RXx46ELAtxDgu3hrWROrLEteC1xFsaD86oXvwjqE+2wO2H/qTLPY07/hG9X9o95dBBeKaBjL6EJxAXqPIXqN+BSj08ZBwCncqpMLVV01fcWScIWE2r+MqdexW+Wwe6655+4dHL2xCv4opbI7ciNFhpTqOutlf8H3P8z4/TdvNbSzpB6ZOjhK8JWlcrE0lKG2jemxYbGOUZ/911n+9sfZic3u4Mcq9gDyWFVLykMZixmVkWAYZRDdH44uEQtn3yi5EixfolB4dmrfpifYsoKdRaQjt23P0Ai5QuzIbdczZoxCifxC7a1WfJVbs/K4TV47lb/cVDw5wseva/ADgpXjZRT9L0tE5aEsGaOyBhjFzIGP0slbtSo56I4aqxgZwzCDks02/8j5UNH3QMeajivdjjcpy1a5jOpIbYMacpjqWUiqC9VW0PfMVt28VNSSM3hbF5xfPaud4xuQEjoo+phlo6oG3fZCAHZhABRRAABNi06eKLaU0ReZuJB/qH3jm2d8cqZV/trkU95ywlKm32RfCMAEJgC2DtuKOZo3Of8uPg6xMbfe+DhPtzHxcSZvK28+zl2TCxfrze/qsWnz241t9o0LMwI+zsNtTNHNi9uMgFSwa9cuPfBxavzZ7MbbGt38Nn1J8ggNG/XUKPg4uYza2WgM2tELHydm4luX9SfWBGRs7Di4x1+mDkbBx1nIqJzJxqAcjiH5OLm3VuWMcH7jOquOWc3i57sSjYqPM4pRef0Mozzj5OP8YRLwNcGstvuMDOtv5zZU/WhgPo4bo+acDa65cuXjvPYZHHEy7qxPsuXBh2kfe7Y3Cj4O4kPQ8nGAIUT91Fuc/wd8nAtegcdlH//yT2oyxlYekrTMwHycUVlMfJxeWfrh47RYXhDsOGW4YOm11o9P7Pklm3U+DnFvzgLHJCyLiWMSlFVefJw+Zi1eD3zTzSfPNqnrgaq8j6zzcYg2ggWsejFi5ZD1P8XHuU1nxsbkS1tL/bfyD+QFyJ49HvwWHynpMxbmTnoqRNER5AxTHcIXzdylMdEwe0wdzRnvpMoy5Ypgzbxw+AmUI+/RtBdxk19W5a08fT6vSfJND9r3I0dyNIWk8Vc1GJiwAM1ULIpRScx70nJUqp9GwaepDgtzWfPhP/yoHDSqpWBGtfUF5sESGVCYROwN7Hoc9jhErSpV3qFTpc45afbqsV3+OWnZl+0bf7862WON89Lzn94uGa2Rk7a61wnHuqm/uB0SNcl6VN/XRiMnbfK4RG7nyt28Z7u125ErDJFp5KS9fGZ20GHxV8+9r8Q+Ez+2KNbISRuyukVNru0W3znff3nof+EPqUZOmuePU8ulE4oDUopqb/WzfDRKIz//RueligUvqwiTBwVlZfDHpms0m9n6aPYa/117eDv7x7VpERNwBIhMUVHPyM3TJr9/6bk2/veTzWuapAFRVVS0ZFzmyZDGFm75igzHb0MCNgJRNVTkUXfTFpfMrx5pM5N/y7q7JACIzFBRA6VNh3fXFbykO79Y7fPtBBPZq6OiLnUvV6jzu0K4p06vaKunqZZAZI6K+sz1KB4WfUKQ03/Z35t+9kkCIgvsezX8fbmX913/LWcrNrN8ad0eiGqgori79hsEk+vych4s/vp0wf4TQFQTFf2+YtJP8wNJHknmopA6A9vMBKJaqKhmUY+JktSKAfn7w8Yqq594BES1UdHbt08tnq835S/oWGz9blWj70BUBxX5+0RkTtkW47/mauTz+ZcPXwQiS1Tk2kIQ8LTtMt7OoUM7mYSF3AAiK1T0qtaT+e1rz/fe/Ndlvyt/1v0JRNaoqHbh1JcpL34NWNj/znTpYd9fgKguKlq8qdvJg10dhGustlccZl5hNRDZoCLn6SnrRh7/6TXnbY5bl++/bwAiW1Q0sPfrdsom7T2WpNz+PveIFdRyPVQ0LciiXe09ll5bBy+zv1xN+QWI7FCR1yLF6dNPV3vOfG0663b9s2eAqD4qCmlWw0L+wYd34PrBw9YcG4hhA1S0zKKgV5eZHTxzPs0/JAuvFw5EDVGRd2a3P5bldQhYUJwXNG7YjgVA1AgVPaxcY7JlhDcvXVlxcMvDkROAiIuKLvw+fEmfSo/9tvEOee5dtkVMSrZszKFJtmwmufZsm/MF/4ShRy4PzH89h4Vky7t0Jsoq7ODO9JNnBBlZDyecqx+fiT9MFMRFy+RiCgYBXWPSFugdas4nUmo9JlIkkwEjhFax15IyQDRQlK9GPudEBdrWvoLFw7cXQPtK4f0Gwg6w23VrAlHCqFS9COV3Wzn+zTBFhVGuSyMXxbeYaFOzLFGi8nVyOfYCThwESEzluJ0Gbp14u05sgI5BwGFSIGd3Ygks0yuPkSIUCvB+UhlsuqweJ1zgQXFFcMsVSp3jsyH66HnhG7eVk38VNe0x+iY+BKr+HHIItETEenlVe2TEMMDVY7tRxKvJdD0d24Y6oRNNXKIuZYRICfYvoyVc4ICo2zDRx0rPVr4xdoywtfeeV82s6/V14RJOy9HHUpyWYxK2tVfTCR3s7lTaS3NGBjspYqojcI0xYg92aC0hAkndevX+vrp1phxwPzLg/9i7DrgmkrcdFBXFgmCvsYIKiL0rSQi9KYi9RAgQDQkmYC9YDrti7wp20BO7goqcCtZTzt4r9oaKZ9dvZrMb2N3ZJZElyef//P28kx12s3nemfd5Z+ad5126yXxr33WFTyPiACx/VrBAV8f55y6PgX/+O33wS6cPqBG6wU4f1N/OdvrggX5cqePpA7Ppk66M25Mg2LPaO7WX3cadHJIl1QNxcPqgzna2ZO0y2w1y+iB9qU2jAe+qiKcEbe7S88fsUUY/ffDvn2yoPDAOJ+qwU2K40wdZ+8TDL4XP9Dp069vKF/Ou7zCZ0wfnWE2XaqrhDMenDzb3Cs1NmTRanDzh0cLpS+Mo9ZAMfvoA8zKM6ePAyxjs9EEnnmzIvskdvCfl7Ilp1eAMeVfdOKcPMGfDCM6DPw14+mBhhTf8UGGY156KFcae961kbiKnD86xIpSqjdvu8RjitlMrJd7fO1R1m7ypTqnnDcamkaNRrGZdgIu37gsHQnLJSDwSBjPEUPAjiLtG56+rCJwt3l9h7IWHbuN1O4dAWb9Evzc9iiZa9CjtUuYQXtqFFio5AwucPlgEtSVPPe1e16bZDeeZZiUuNJZUbUfZZId3IzbZscsFRUpU/8dB3ZaSEKBIVCfkNxPz3h3Ua++sGgYQ0S/sQmQq0H1BO5psnURdz1Z6H+15aEHdF/5de8wlD0sX4mb6sMxrKggw/zHXpJMHZwiTytdcXl34biEHgN05yAYY6FFGCaI0nAF/pxWP6Q/9SKcFiy0tMVuyeNVLfhfqZP1s6DJftS76Y906T6yxwzjAGOJRkSqpdusOC2oFwgC73k0KFwBTTCsYbtVqeN/a4riPa2dHDXnky4Fp97Gadp2RTIuKj+P0KwBXcP3S9wNOjowdlSPe1rLpvBL+Di2NVr+U54j7JFi/NJI2v3XEhhhOjPd5DMQovFT19oh2u53/7Dew2qygw2Rp4EpQcjMKLn3CbFwp3B+W6lH1rLlIGQEg1wh/Yo8JyXsMNjnMK3YWAjqJToxI3bYr+IVp5kD+lq7RCOj8WTsA6E+FiCJog0Hn37OjsGf1BN75QIHLDVDKF0YbSgXfjijgBdDTHOKD/9L4NDVcjVaOlDKcwOn7pdHCz9UTBfOLfcvode7GLbKPwWqhIkrE4dcL9DFX/nj0aste560HbpWdVGdUUiF9TByA+SyE2VyIKPu1rAkGc2GXhBvlM792dStYqVBLg6Ox7gFLSDBUnWt8JaBYu/Y+WzKldx/cHdqGnFWQ91z69JfUyPmJJnsctv4o2K45YLDhLuEBk0s4U77B+xZtlT6x7954OV6cKKYWDI6US4KlfN9ouRzhC5gCZgfiPgW8D/ZZmWKERC4L0XTykbKocL4STFNUunsC6i49y3uiChvna9Y19cxWzBsM0bVEbb7FA3RbF3rsV4GkhpU/jILl+qCThIghAWh/3a1X6a4LBEkVrfb6lq/TgBw+Yw+ih8+aywUNZ2pWQmHTqaAYIERuHSpkgNVL3Hcwhs86IldTi5yK1NVg10LvWye9HXZ/Nd83ttiooY65/hPJqdp4B0Fv6ZBbuR7FEK3WrGjxdxg0wCJe1CJwdKQ0Pw4N8uXsOHqBkFYqd4S/o3Z0cx8Eg9wwqYqSJQz/FNZxV8EIEhoWPAJMqkdrTI20MpWYCjNICltD2REfBTkCVFJhc2wU6LUQVk1TxhTGChhXEV0/BAnF+Wrly0+8qRIsmHbNpefJEj8oGxPwWyE2JrDLRQFFa1Yo+FqieshjICqT0a2nektuSvgUgWz9g2Q22foLyQTk2SYPOTU3jhvIJfV++tQdNtFtq3vJajVbOF/mAPLUXWyQJ+0iIH/EBLneWZkVCMgNkJWJSKIksjIRSZREViYiiZLIykQkURJZmYgkSiIrE5FESWRlIpIoiazMByvrfm25q6nPhn5hZ2bu9XGkpbzBzovsfdT0Sw5S3h4z2b++13GH2zvLuG42Dxly5ZkV2f42msV+kVyphuEitoFDD8pLMoy2+q4yWLInHNa40TwAm1LCeSaehqDb9j415bTAV6SBg/olXaNyMFW8ALeXrqHWrmE5yAXb9Vq7rqnZbcNOgyihaQAe4AfmvKAvp9SevbdUc990z2nsI8+MAYXZayvaZewsgNW57Tjt5tAO2INp9Q76hj8bVpW1KRH5sUKiFHHQ/fmrbX+KDti42bTvnliPw7SIST19P5zcNMo1UTnDfbpw9FEOUFrAilLUdv2KtNv7E+MKG2wYZsSQg1M9IveMeask8OLx5S5vh7ovGxga2/vlrbFG3M+F5RfPMe7npoNpcKqe+7lNtbuHEKLgfJoVkIFIvgm9a+kV4HLnj9Lek5q4zDvXKfGHCexaQpA2sYK0YLt++7qNXGSab65dqsrrMtjGIrODetT9S9Nhj5r6JNu4//NtzZoY8i4i8Vz6LqK2pSjQmcCKztDtRGD0hMdAjC+CfL3Nm38WLV5/1jXBz6MvfSGezoTmDODWI+/nalPdRir1ko2jHrDQdW9A1+xv4JgiYQh/FnX2kQdgc0kugm3aJcdzomLbTnFbs6Jvde+LV+6QFzux/VgGWic1FuTFqS6usJngwE/LIVj+qD4WD9WdkvXiuvIYWFIw0pih6pmxvOKhNb1dD0dtc+efsiOTXGkxuBcNVL4mA4cEECYXVpickvUju4K30Kh7zUbbQoOeBusjcAuNVkk40hGDBvdDT5n8kMj2bPMOU+56x7smvI3qUL02dR06QhLJ16zTINbLmUJzW819xG4Pdi5FwldIR8JLUpUsGCdIndwS9XAXyxuiVsrzNeuIq7OtmLc9JROqJiFi8hiAuiJFL0dVHtuG0izugtdBfss6ddf2X+jw0SM24Kjy6uCbq8ghEvYAeoikuVzQmKOecyvkmIOZyUkQnm1Mig5LUvTKJimneR82oa/ZxWcErXs2wWt3j+ctXO+PMSPv/mnup+/+4dcLwiey25h/1rTe7zLLxnPl3nr3IzjAZzIrPqD7GCPDwAJL3BihAaIzj/pHPyXwcoESVZg0is1oHY+Osr15rKRP4oVo1eqeE1+Rjaa5n240/Drna7bAKn1ZreJqUlbJOUJYRS/6qoA5vEhpCO58kYZpO3PrI3HxBcL9lqmb76UPlZAN44PdTzcMfp1rwzg74u4ELjPS5qsxzcW82Sn6TchqajHAJhZyWUF4nDp498sSl+euhz9nDLdu8qM5OatWpHkAPauWaCgKRBSsiPinELz+jMfA6zsWeOX269TRIzb3e5TFsRvvyTbWfKLuyTCdtTMMMoHzR4bLgsNBWAnPFkrUaqhooM2Kwelft8kH9Zw26n3pfVJzXZ880RQ8T5SW/eIMZnWvDxR2B7wWHmpAspdpRGrgESbNmyC/uPjWw1tDQ146x72ucbVE1RRyKfVSTIGNtsHA5I+lkkIMnVA5GvymGIZ6eazOvniP0shykg5qwXwgtWZ9AEoBwn/nxZT8sb7j0QVUKHxuVFVQOK/FAKuGAgxqMQHA8MH8nGkwm8zGFbU3cVTjmrrNwcHO1bYDbDtXq7SYv2DC3He/67lTvOOimL7VO8mee1Ykq0Zh9eQj5bJg7FgY3ZEyIV3TB8QDgJ6iwJ1yfgTpKTr5SaoyBdtr0cWsyO26LtzAg9QwZXY2auEG7lFYHcwsp12NJCIngk/KeEBfSrIl/KRS2GWPEKIP9Ak5OdfsSGmX1NdVfco1s8ki2s0Y2i39MPdC6yMWmuvMD9a8D/a68FfYJm61XWUq4HNgdgKWzES2F9I+wV+c42tWaueT4N39Yab/jhkk+5gJ6KNDQBsdZpTR0WdqsVbb51p47a8UHeQxYOarwq6ZgNHRHprTCZW9ABN0Gh7MzAdSQStLdQKkwUrgofVB6dDCNbvqvfvpHDel4bjzonhyBqKZkI6SsECU6t9/ebBcmc+iw3X2PR76xOUuByhZsaL0LTUT74PavsSa7aLRC4SBkQ4AUbPeyRymeRSdw/DrRbHgjfWYT6iFJjsHDCncn778f+ZPqXI+BvKnoals/rRj6n/+FLfPxhEN57ey43vPPNO5kVL2cigH/pQq08SBpxiSyuYpfFOL2p8+WyGWzR0/3XtByykjq2ckzeDAn1IXCThAqSMrSo2L0p9SOdTo/hTrMYz+FCCF+9NXTP7UZOYE1OHETTJbG7Pqb+eIIl32fXAO33FpTg8OpgTZKWxTgkvaNZXXTJDrncxWnoDcAMlsCA08wtUjNPCIZDaEBh6RzIbQwCOS2RAaeEQyG0IDj0hmo0ZotIw16BWRXYyqnsdBxtobzoxsaUAj/5qOJEJUkTAydc+fZhNzJptQZQs5sEkOk01WHLjXZ1r2J4/UA3tTdw67Tz7nV8JfopDK6QKtTI7NTsCPhHfkU5nmK5RRUo24UJR0VBRfI86K/NpU3UXEq+ji7SwDglVKubwHZCx4MX9BVoon9Lrm7GBRarJw3rbRD446dbdh8oQWPdVSVSB4feJjG7koo4fIYa4WVIKFwj8hsij8u4MIA+5yPIjZRDEJIdVLW5RuDFzkPuBAO4h4MdNEZXwkqjCZwlsaSiJAS83lHrBmR/7rpTXXA5WR+a9SJGA9G4uPXdiXWQED0V8Fzw1GyTRvVYp4K9SAUklGeihCoOwWAa9ZaXgRbr3ku4TF6nJcVlgzIYCVQGQSuQhqQeUjoiiVVBKh/dm8l0oSqb0H76pvmbqqydAyVQWUo6U6av/ngJet97PxcrH9BC+/M3nMqfKqprs8+oM1sf+1NrH/PRPmetNkOZ7haBKhm0vQJEI3l6BJhG4uQZMI3VwiFjroePrGmca57tP/sJ0g4ldYkC8W2rCkbnP1aqFrSnBZf4v54Tk0coVeHz1doYjxckCuuUyWNNGSY1TRYYOVHCt5mK3k2JpDRV1yzPPHM5v7WUGCNatnO9ZzWBttAiXHih1mK+Dy+pAJ1E06evSoAUqOuW2tfnTZJ2vhthNJmV2Hu1GKuRip5NiNQ2zWyTQF6xik5NiESMcde3OvuG5zGpec8SMlxCRKju1iNc4aUzAOz5glxyrPXX7i21/7XNM2HDp9seW3QSZVcmwmq/FGGMd4pllyrMO0jCsWL90E87Ku2ueqL6cbueTYEFbL+RrdcvCmIis5NqZV55k513r5bpg37kndR2GlTKLkGBZDMJYcA44Qj1M/8Bji1P9PJceoZTGMXHJs0WG2kmPhhw1TcqxN689rhcdCfBfPW7p1/esL5D1tLkqOUcXNOCijFXeYrYzWuMNFVXIso0oj74a5sa4bIoqV+Kv4to2FH8IUrKg+ggOswlmxCjz8P1Vy7F8mN/afCP8vifBTqwkZTITfJY1NhN88rShE+HcdPTl6WmA750l/u92bODljMYenzTn2kVCz3DmNTbPcPs0gIvw37R0CJ43ycE6pPXTNj5njyMqKxhDhr8aKCug3JjN30O/gD3ci/LWjD6/p77beZ4ZqWROvyRdHmowIf85hNtPdMiyREaYzuAj/owrZ9SeN7SucfbTk6nW7enQ1sgg/5mUYVdSBlzGYCP+Pl+r+4wI+uy1+YF/9aNbVIyYgwl+NFRzzNAOK8Bd3rbfs1UBXv4QF3eIrzlekmICcBUQIG9OMCIExjcdtH3kMcZtY0LTZzy6XBFvu1Em8sOYNeenXEjvEF6mUA0anx2wWDDi3ydsikeXdj2thAMRVyuiwcL62aKw+Wg7UCouMb0tXPcjXqGtuXyMxr8oRgK9EBBddKPhmAXyP0sMkPQ9WVcp7LXAVxwL51WfsqvZ3hb9fC2PPWiSbPS/9uvC1uyghFNUxFjKE4gP0rCF6dUWI3lkNbtbqF0KV1QzfEGmYSoqOL39szjDzshN4re+ojl/50ekM5YQUdiPihJTmOueyv+D7P09j+/5XjB4saXumHoESfGWZMkQWzKJtcy2Af3RjppnPYc9px+0ONO9P7qvEA+h9VdtSFMY4ymqM7cYxBjX84emzY+HopVBGAfqSBMO1UzunLmDKCmYWEfb8Fl2Cw5WqEHt+yy7q4aoo7Ad0tCpZunTQ2/ZlfJdN9HtY9+S1ADKvwQ8IiBotR9S/zGsqCmOtYDVWrEmMHPgovaLVynkL3Ypo1RA1ywjanzHducSb827JL9fVOnb/3/KFmSoX0hxxTrgjh0c9s2i6UC3EPT/qGaXinpwl2losrfrmtFOC8EjKIf/u7bvcNOq0FwJwJw0H4BoCAOha9IpECSpjFpnwvnwx+cLYZb57k0pkn3x0Icioh30hAFvYAEianUYEmp94/7/ycaiFuQ2Wj1MpnS0fZ9uRos7HWXT+SsYZawePPU5uw/w8htU1gXwcq3S23c1vR0wgqWDLli0GyMdZu9RqZUD3Hu4HL6/y2XS/yzGTyMd5eoTNOpdMwToGycfxGzu6ZfKo2x67+3+cmf6u016TyMdJZzXONlMwDs+Y+Tg3jqbUXc5LdZ+Rmf4g2i8xyKTycZaxGm+qcYxnmvk4Lv/O+5i2Ksh5/5Derpm3Zi42cj5OJKvl+hvdckWajxMw7dUDWa/lzksa1Tg40KrvD5PIx8FiCMZ8HOAI8Tj1M+83yMd5ULLChErhHoIVUcX62R6KGGPkfJxl6Wz5OPJ0w+TjNOuXE9RxUrL3qv6pNuOqFxvNeT4OdW7OQY7JonS2HJOY9KLKx5mRkHXrwPXFgrgLGwYc/jj/KOf5OFQfwQFWclaseqf/T+XjfGFyY8OPyJrJfJNE+9P85E+y+70h75R0j4ZnJ91Ukshw+glTPbYvGrrI1JHw9Jh2N2e0g+aUKV8CNfPC4Ccge97fFwYt7l4i22er4KDb7qWJIYzvR9/Jyd9I63+lA4AL88t/FAvRK6nnnnTsldqnIfJp2kNhrioi+Jdy/nOordin7YHMcgFSOTCYNMQD+PVRxOMws2pM+ZXJlK32+Ao7NuvjnpYc4zMzJ/kqxcsD86mUco1QtR7F/9qKR4H+FazZAsWXI/FH4TUsYT7UMIUSVrMM5etVe2S9w46F1xxnOM/hB8b6H593g+2NEbxEatdDMjumYgaPd1yIyGlKh160QkYR5DQFXt5U5+E6uehg0g/FEF6PMA5zmjiuoMEHCA2GCMEKGrTStDBeBQgVtgpcPRG5D+ETal/Yvxzg3oQjEsVa48Z+qmr7Wrjnxf47TxdXJhcdL8nQUYjrnOfK2ONA8VEkA+XJ060yaAveegJVo5cULv9gCJHHHRqhH1U3HM5scc9jvvhInLjk9Gvk5Tr8YfTlOqKhKDDiW7FhRO1MxX4BI2x/C09lATgV2Ismd1ucvOqmS+Ly1xPK+mz5Rh6L8GGIsoKay0WBz73ybPg4l8/AHf83Jsff5HvVatv5xcV7hTlfpXXCyI7fEqu3yJRPyzQPqe0jlaijVZp8Vs0GjMa7Q3Vb3Zx7nfVdTp+JCHfds3779dW8NiLGt6Izd75Gfdx6JYDjUSFC3NYKuPV4G5pb1zMHo7QQ1myBACC/76x6gUemLzzju1F92GOdupkLtTCCmp4UpblakH+nOj0u/DuEapkAIckKU/wAVIz+HZmcQq1kKVPwvZEYHZ40Jf7rOBfPGSlPdy1pGL7LGktrAd9dPApM3bRBMBY+93ZoYdTtvKxmOE4wbYqG0z17DCd8aH7HhxJtaJq3yBWUP5Hlvr5t2xtmyQ2OFfeWDSHaEp6urjWoRZB3csl5sh9Py5Bn5fjWnybpRPdxy3eTaiI1TfqLRspF77gs0ax7w5PeAaLYCysGlepseYr5zeiroPlb9eiRzmUB0odQg/cetIOlXjEZXxuThaHhQOugt7sz5thYB/HGvbm17HJ4NqYbojkDwPhl8RCNrqrcFANMr7W86i6U/qKtdYYumlr6740nvW8Lksa49z+76K8wyrazYTOo4u1xNKxQAxVyKEADH6g/eAwcuuTph9UOPWd7p5z2+8vtZ3x9cjZ2nnuiL+UxLa9UyTuRouBLtQ8oQ3d1JQQOwmYtdBqZZWLXZZYt98ZzU3dHq96e9WsyvSY9aTyvTY/ajDHVMjS1GZE6nfyqGYXW6Vz2PSY1YX5vj32bE32dHzW7SdXppLYbQqfTJg8rMCBUMskQOXoYXHoy2ffbGLHP3PmO5xuWerWNbI0g/Fb+L8l0UqmSg7qIg6E1kQKUdsChpFfN0EOmU2eMeM1LLh/wwd0zdkrSP4ruwvYMGP2SSCfVDXGAEejTLBjFVMnQR6SzUp5IZ54DQKK0+f7y6uOvt/dNOT8h3KdZ1h9GFegc7ID3FaRAZ29HDCXcof5kcqhVHsxxse54XpTQ5uGR5JMjXRBsil5SrKjZb0DAySujaSLJ/uDbEzQ5IHRmv+YD4ZJjsFIO19lg/wXmCZMqsCoMGOWhE6sftDK3KX37oM/ctYuG2vm5tzVAqp12p466gQUYfkeJDLg8AxkPNwVET39TmAkNboZfkfg9bX+sypnic32OzPhQ74WF9cpfkPgtLOqDAerOK6mom/3OqE9rk8WfnvJAtMDnijRQsPGpEVCHff1TDhX1Yr8z6s9ynqbmNl3tvKhvYg2L78f7Ggn1e/UzKagX/51Rf9FTtWlDqINwe5ZXyN+LLkQaCfXOPlTUzX9n1P8t36mB6NMVl+Xf1pwvNb7mKCOhzh9NRb3E74z6p3I7budI/V3Xn5iREbE5Z5iRUI+fT0W95O+M+oy39m8vr57lNdnBYUu/bWPERkI9bhMV9VK/M+pU3XUjoX4glYq6xS+hrsk6MTjy1nlr/Hh1aPQs6Wv1NhsGtuztfDjh40PvU/ZKxLsjZknY5SLx622pkWNpJtR//LFrg42juXBf/2orNkX6oNSLyaiXKXrUdZZe/vgpe/PftXLcY7sq/omrfwGlAf0r0stlfNr++8/q+u7Jnte6DWx46W8dF1jYLOIfQbVImd/SIjF77e+ebHBGnJS59Fwnx/qVOLJIaOWAz2ax41ynme1XKep5TefAIjGXqRax/C0t8qJsxRVDuq5xn1td0rtu0PBLHFlkdu9KM9OWlxLs33nucWb30EccWIRfmcoVZX9Li1yLX94ld9pu4fbZNuYRklLtObLIP81m1FXVOCpKffDc2/fMyTgOLNK7C9Ui5X5Li1gsOPJ8xeLdwplvP5xrlX29BkcW+bB0ffdP7z74rdnm7tCjX62nHFgkfCjVIuV/S4tUiRnWsk13O/d9K9bVqlqnRkmOLPLifKD7kOLdhalrbX84n1Xu58AibWdSLVLht7TIEtfPNTqNE4j2HBT0W9h/j4AjiwybOG5Yckq017Qdswfce3S5IwcWyV1DtYjVb2kRahEKjizyi+nfbBbpu5tqkYpMFun+8K5fKfk5t7UpacUm7qtHlnwsExAuC43iw/wxslngWTumVO6afqGhMP1eIpfnJWrhKX1IXJfVVjjdmRLuPq3aNgez7Et3mF4BAa6uW40Ak5PnQfwZiErHjrQHrecKm7dXDksnjFLC44Kh6A5kc2ly920zInz2nP/LouvBGuTEM3Tung79Z+RtO953z2bCNYcDPPrHLO1cWLFJuIpwHk/co+udNAOceD5DL6UkjQWVWK9A4rItuvyCjsODRZuqJFs2fzn2Cu0YZahuwBQ2SxZ882qs3xz0EhM4Qon1QD3OlVvC2lps5daafuz0cbNVV/d1kw90sG1+jrwngVXmMhT8o86xwW9nHPhpqkiFPZagGRFQ4Y8py3fst8a+LW6N8znUy+yQf1LVp7/oKQp7gtUBdwXpzogzGjB/AwwInGCsTZhgBrrXf1754GPnTSHekl6V5k4rGoJpaJ3JQjAbKhZWnE8HgimxeolNjZ+eonltLv456p8a9bghmOJJEaN6DDzmlnxZ1HO+5O9gDgimFsSKcZznVtRPiq9AgpnRL8xzWJDKM7lEz0VpTxYcMCLBnK3I9s1BL/kdCcbt1fUSq+5U9Zk9SKQ8vrBUU+MRzDhW+AONA78RCKbaQQfbSz9DvdZem1Gp5eez2cYjGMwVMBIMGBA4wdiYMMFMKz7NTZJ02SVte1bFytnnBhQNwczuyEYwZTsagGD2Nq5d7sHeNs5zWo52Kr4+4io3BJPUfVHF9IcV3GaYx8/t+YyXwgHBTO3INs77d+SYYF7/7NZpWt+vgp2e5058TAl9bUSCac36zUEv+R0Jpowk1v6+63TfFCfFkAqtEo1IMNkd2OA/1OF/hWAanp34WWH9QzTp7qT4+w/G1TUewWCugJFgwIDACaYSE8HEz58T/dLzk9uS4VXUK2bak717SVdYJiFK9wM77TQ38NXKCCk/BPQAfrQaihtFyiXB0nClPAR0D0zsIBT7PUz4KEoSptbp4M7PTrY3316uKthq/SS2WPbflUp6K4OHSUO0N6FenZ7wr7mu65lYOzHPyQdMEouJUFIHAGInL8QBHggR5GDEAR74l3qAx/ePO10DTrxwnnpmT4zFW79L1AM8U3olTLwR2d99WXr88sfLZncl2ovx0Od0dD7gQ/1gxAEfRq8F68TjZkRvFR8oF+HdvItL2r+LG75qtnZ4YazFve4xsKsVtOsq1JnxOODqIr0NuhxDvKilIlouH6QG30ERpv2yJfN+xih3rFPHHuMRB42YbGXtmjfagqPlUdEq9DmjQ347c87tnusWGzPz4mK/SwmsJisl0jyJLoRANBSF0bK82IwGBqMxGMjcW6RxqPCWidpxj9mGGKNMZFMfviWMS2UKtVSF1VcBH0FymEhbjesd8IJ3Nk28+M9BXpcqVGtJtVUpn+goeCpMCz7lfCn8VCc6SzkVeGCsxOsZ0YI+M92ndxf0+1vp7lzYo/TAqHGebEbN8aAdGGM7VVce7+yAv6OAi0KCJ9gZ3rhMtVreUwZFbOp9OWQta0c3h56OrjuAXeU8yHLE/VK6AEHpzs2xLo5TeuXfgNI3/tHOfk2/68JddaKsTte5NN1AlM6fwEbp/HH/UTr6hGWNjWPm75/sEls33S2j676uJkfpvAlsjmTw+P89So8RZC+eMobvve5EsbijG297myClp49jMxoYjP8rlF7yZVRd5/b2okkOY2Yu27f2ksEo3Ttwav+tq8xdlw/5d1PVg2O6cUDpMWPZjHpvDOeUfrzTrQFLJZuEOyKH3ev5+ryDSVE65pcYKR10cZzSq/wGlL47UTgz2feO9/bwj01Wbmo9y0CUbnGNjdItrv5H6eiaHF9+ikV9pH4bJRfTTi7ZM9/kKP3TVTZHsuXq/x6l9x+1aWLFWuNdt14okT6nv3dFE6T03qxGszCs0YxJ6WNn9F2TmtHCa/oLvxdNeZb9DUbpv3jGhc2oB66wGTX8CueUvq5eRGzIjZmCxc7ZMe0TRm83KUrH/BIjpYMujlN61d+A0r2XLFpWP7C++/qP/XqKltp1MBClO1fJZKH09MqZ/1E6ylqx6nIPr02x8V3f7UncxchB3UyO0ttDuzI6EqsqBt1FNAlKv9EyYeg5m8nCdZ/Np/mIrzcyQUp/WpnNaGAw/q9QevDIDwr7ksW8py6+1uxaRNxlg1H6Lx6SZDPqMlajRlbO5JrS992cfEXSZ6jwyOmMDj2/FftiUpSO+SVGSgddHKf0ar8BpbfOUVW0tEx0OZiTPOxAzavFDETp37qyUfq4rv9ROtJaOVsOHx5674TXsh5e4zLGt7U2OUrP7crmSM52/d+j9Cuz1S7i9JKu8894qpbfOfPBBCl9A6vRxhnWaMak9KqNjiUnH7juHisZ0utf+arrBqP0Xzxlz2bUQFaj2nflnNLtL9eJsbvV3m369DdTvHqtrW5SlI75JUZKB10cp/TqvwGlNx06a99fma89D2T36K7IetPQQJReVs5G6bOH/UfpSGtVaKTcMTrH1nteiwOVQ6tcWGlylG4uZ3Mkt4b971G61aSWnS32NRJOk94ZXq6bfwMTpPQ9w9iMNtuwRjMmpbdLXzyp3jOl3847sk87/+hXw2CU/osyLWxGDWE1audhnFP661M2Zxve83JZNP/CN6fT9s9NitIxv8RI6aCL45Re4zeg9DGfnyc9WD/F++C91v+c2uyRaCBKfz2TjdK3z/yP0tEB2PLBt77M3yhcaFPFpfgJFTs/GIPSn89kcyRXZv7vUbrjNf/6P75Mdd/Qz37gV5fn3U2Q0o+yGm27YY1mTEoffitxwg/eA5/YdorNBxZ3rW8wSv9FnS82o65gNWrsTM4p3bd55X+q7w523jF/nbDD2D27TYrSMb/ESOmgi+OUXvM3oPRubs4eOX1nuaZeelB1xdqw9Qai9Dtr2Sh9zdr/KB1prf0Hj7/L7tjW+Y+hdv07jb55yOQo/cZaNkeSufZ/j9IlLc49nyxxEc4aN26+4Ghj9lOixqH0XaxGW2NYoxmT0le2HHN7w7utvqmegjqXglNnGIzSf1Eoks2oM1mNOmIt55Q+tckS3/sNj/nOXjBnweF7b5+YFKVjfomR0kEXxym91m9A6RuW1G2uXi10TQku628xPzzHQJTedA8bpT/f/R+lI60lldcJ3Jy1zz3N7a8Wb2qnzDE5Sm+8h82RWO/536P0KHn3Nna9/nLZPdOx5HeH/v1MkNJ/7GYzGhiM/yuU/k/aC5vDT+I9Zh2++vp074flDEbpv6g0zGbUK6xGPbqbc0r3uubsYFFqsnDettEPjjp1tzEpSsf8EiOlgy6OU3ptJkpvsaFHRr/kRNctGyqcOTrhwxKyjpSbShkdSWZ0O+1wUKpCyAJLJUVKOfhG8FJD8CP8P7LYkYAfBp8La+64qSRqdbgyMhKW4MHeVF3Mw4XoPrYpE7cPy+jjMmV+FfODTW4NBE0Eze1qNSFmyYWD3vtayz1qZv5wB03E6Nmt6Jjt/aiRaN3CMhOXJHxpBpqK401PT31+b/E+zH3qwSz7tn/nykGTOd60ruGATuLYty4JL98PG/v1RF3QVAJvejzWb/rBlk084zo+tNnQsV48aCqJN82vPrlT4t7iXjvVnqUCux07AppK4U39/6rZ4sZdB8/49WlVHskGNAdNFnjTsaE3hu/Z+1V4+JPVk7POw/4BTaXxpkk1Ol/ofPSLaGezYor78eL+oKkM3pRyofmi8Rl9XafdU8bUWjsDomGJNx2o/Hz+E8l+5zjrCmfnNbpuAZrK4k0ds1S7BIdUoqVBnyxThpw6BZrK4U13hx5/d8t9lPOGEovu/LG20RjQVB5vEp24bV/8T0vf9QmbZ7U/Zl0VNFXAmzbP3fr5cfVvfgmnFpyXxC/fD5qs8CbXFcUyGx/y8En5tmvjnwkj4VeuiDed3DL7zWr5Sec98jZ/t1/T8yVossabzvzlu+TZsEt+0/o12vxI1LwnaLLBmzzm1Kye6trPbVFum7t3/n18ATRVwpv+Fk9LvlrM1nvmW/nBOrZHbEFTZbzpRcVH81pZz/PY8vGiz6V/q/4ETVXwJrc/Du+e9NRNsKh1ibq773yCpqyKNy2oJbv3sccY8ay+QQfkjfzPg6ZqeNPaeY9GpNbc47xzWo0fpZMsA0BTdbyp7oWbI2LKevnO6d/l9uj+5yeDphp40+JOj4d0rPKv964BszolVb90GjTVxJsuPFzrPPBIkufcMNHrU9nb4QNr4U2vkuJrfB9VwiV13pEOFZ1OTQFNtfGmTfe7j9zzp69w36USk/kuXWDvrYM3jT8zWLrybm/hFGGTKstkW9+Bprp40/vHPzdV75wo2FK249mXSzMSQBMfb3p2Zkn3i3vFgsWXkg72SQuysPBwGUTyRvXAX6RTrNXy3G5pG3ev2UsqeYclH6yAcBs0L0j1azzCr2lcVB0mF1U5NCV5RcYp8aptD8acqTUunhxZiEdFypUhlJrLcOQyaS02xu/gSzRVkQGZQgXCCIlcDpwQUQTMUadZBtVBIV+NHvTgDTr6+Xu2Yp7T0UzoXxEF6/3txTzzozQlRjbWs8KqN8M4Qqp5EeR3O2KzOKjK4K4+S7wOf82oerVQdaEpYcH+jOnOJd6cd0t+ua7Wsfv/li9kWAAnXvYQoBBUWHCyiZhX7ahe8ottekhB11DLAEgh0mBlRKRSLYPtfPB+Mjmm0kn0E75EBXpSlDJCFoxEcVjW2mfyvkd8t9neOe88aDBZCLi09nNoSOZr4jpugHCZs8KV85dJiAaaFVY00AEfaCF55ooKB0FzhGSYlA8CkKhwKX+IRC3VOAKk/VI25lrUiL0hXrWx3Pxbwr86kexnEYA/lma+vBaurWflgHd2F5T1ljlinZ0EnJn+wNULAtMLGfhNGKNBlKRUIJFgvV/7Mndjn+2i2e0Xx06U/tWQDBbxTDpY2paiAMucFSzQ1XH+qcvEP0F1iw1btNNKmJIgf9NpvIU76VtVEEORUEmUlO8tVYRFhdN5qBQDxilm2lsJJgJdE/wTgAEewA+VBEcpVcDZKMFMXAa6rhz7AEf8g/B2NT9YouAPkfLV0ZGRchmw0BAlaAT3ax4ZrYC3wlU0BZzqyGVjwK9gFx35onCJIkyK2bef7wB+JLEyBZkhShkWJgejQxo1UipVYL8TNVLJjwCdQEdupEborLDR+gT1F3RVLQZceQUavDJqDW4H4Mol+nFlxTyuxF8IXTvpeOaqiFpTXA+vS1hj1rx4AodkSfVAhdUqBghdgAjNRQ2JA8D7p+lHlvVJ/RGrXqvpejhgMob6tcJNxYQua5MEMZ8Ot0w1W8QnrzkwdAviOudzaYBKEisqoN8YWce4JI/4c6+bPlrGrT1C+YGqaKk9NorJ1pKp8/sFOydHJ/4EfgtHpyZIk2WG17i9/ly4x6qt84ZPGNigMVl13Ff7IJrZ8rcVhekms5pOYRzTFRzOlGRxPLX9lWBiAikBWk0dKQ2WhUL3rmEBpHlGNV4VerPFCrfDf5awXjv+aBmyE8KeR3dCmstcGyXSAfcy7iij8JpjXoYWpbDh0TgQkhVAZIRUw4t6AHN8SsnXRxfd9EtpNfL70hk3VpGnafiD6dM0oqEowEliBWcJBZxiBYBjq2GpPAbXB52G1mVyd8lOuse0/Ox7s/PPueQpina/ij5FyWsqCoQmsyIExjQet/GZ4rZTKyXe3ztUdZu8qU6p5w3GppGjUW8Qo/EDXLx1XzgQilRSTbQmh/fikTCYIYaCH0HcNZoPsFVF8SPhiALOFu+vMPbCQ7fxuol1UdYv0e9Nj6KJFh0xjgfTwLQsgPEtISJUcgYWmJCl37IC9gL5MEB+u3mt/5lzLbm/e0xgn6XzTtwkl0YqEQDvpjspzeWCIiWq/ytkpJQOAErNwusa0johv5mYtymLFimxba1VwwAi+oVdiEwFui9oR5Nt+F7V0ucRk303z27bdGPY5VDysHQhbqYPy7ymAussVTtwadfR98LVudWLB7VcV1j1AgjYAlbAQI8yShCl4Qz4O614TH9yaEGVBYstLTFbsnjVS2V3W34/6OCR2vPNuPN/BF629lAATwmMIR4VqQJT8HzPKikQBtj1blK4AJhi2s0Z40YvXPlWuDfVOnBUreaPOTDtUFbTBhnJtKj4OK6bXqFWWe98/hxpzFczcybGpbn7xKSvdzsnuZ5FrS2hoM/uNFc5X7tzxH3SDtSe3w5HbIjhxFiPiRiFl6reHtFut/Of/QZWmxV02Jv0bSrBsrJRcOnTRRYaKlVJARRqOkkWZ8CyuUgZASDXFLfFHhOS9xhscqgpawQXlmDOj06MSN22K/iFaeZA/pau0Qjo/FMzAOhPQee/R+38g2GB0ozClkISeOcDBS43KCOlKhhtKBV8O00fV/MBehixYv/S+DQ1XI1WjpSGoElk++IBVYMtcnwPhdZOSJy4vgHZxwRh9W3oPga/XpCPafriTfEKh767T3VtOPj1X7MvF9LHxEGJWgizuRDuaVMX65pgMBd2SbhRPvNrV7eClQq1NDga6x5Y+S0klgujtyY7HfVzXXh8eM0DT9xukbC0zHsuffpLauQ808Ueh60/CrZrDhhsuEuoz+QSzpRv8L5FW6VP7Ls3Xo4XJ4pJ361cDymWYsL3jZbLEb6AKWB2IO6DeUpYn5UpRkjkshBNJx8piwrnK8E0RaW7J6Du0rO8J80K5GYd0d1hK+ZVguhaojbf4gG6T48XduxX8cBKvsFVV6kay5PDEEMCsHP3t+9jNu7xjInwuxv4WkHOPimBPYgePmsuFzScqVkJhRzOWQA5K4jcOlTI0LupmPftOGP4rCNyNbXIqUhdDXYtJHzmf5vv6XXtkfhgzWIlUpQb00nwlcU7CHpLh9zK9SiGaIGexILWpeNGSTK0CBwdKc2PQ4N8OTuOXiCklcod4e+oHd3cB8EgN0yqolRfg38K67irYAQJDQseASbVozWmRh/6pBBTYQZJIe062BEfBTkChF39m2OjQK+FsGq+GLYwVtCUisS7fgi6PESFfkuOrdztsaXBhM11HRsOoWxMwG+F2JjALhcFFFgXZ4QCdHGcqBowERU/rMG+6XNmCBce2+a9/HPKWPL3gUHeaDJBMfhipnmdjQD0MZUmfB2Np6QhgaV6S8SL0DNgCvTBi0fEZwTWKy88olpl/62/36bC+mDgN5ZAyPlwjYcKuRWIHGK1kDc0ecipuXHcQO5hvvFH1/HxgnVHgz4sLbX4LgeQK06wQT7wBAF5I86yMisQkBsgKxORRElkZSKSKImsTEQSJZGViUiiJLIyEUmURFYmIomSyMpEJFESWZnXS9VyTN0hcZlyvcvD7SUONKOlvMHOi84EoaRfcpDy1pjJ/vW9jjvc3lnGdbN5yJArz6zI9rfRLPaL5Eo1DBexDRx6UF6SYbTVd5UpQrDNgWD8AdiUEs4z8TQE3bb3qSmnBb4iDRzUL+kalYOpYuwxMMiuodauI8GM3PWYXmvXNTW7bSCQjFQpsV0FJcwKZM4LaretXr/wR6UEaQ1f368hid1RmL22ol3GzgJYTT6G024O1SGlg2l1yDFkHM6EVWVtSkR+rJAoZb8tU6zVEz+/1TOuewSfOJvIYVrEpJ6+H05uGuWaqJzhPl04+igHKLmyomR3jL74wBan2fsT4wobbBhmxJCDUz0i94x5q6Tbm5Z2H4q/dF6ctXX8eatjdkbcz3WyxzsRckMOnm1THNMvjG2q3T2EEGngCVFGwMwnwEAk34QOBl7v/+dqheGea0+fqLjx3bhvJrBrCUHqywqS6zH99nUbucg031y7VJXXZbCNRWYHJTjZcvvgT9vddh1bsstV8JW8u2BBPJe+i6htKQp0WrKiU+cYERjZMhHjiyBfb/Pmn0WL1591TfDz6EtfiKczoTkDuPXI+7naVLeRSnyVVTcipB6w0HVvQNfsb+CYGsIQ/qwQsQDFA7B90o/qdNumfbUs1ubUxZ4ei/sMvOm/7OxM8mInth/LQOukxoK8ONXFFTYTHPhpPgTLH9XH4kFoXha95sQEVnkMLCkYacxQnY//5jvnwCv3DeOXjuzXL5o8EywtBveigcrXZOCQAML06RgbTNl6kl3BW2jUvWajbaFh1USP41tofFrs6IhBg/shOyY/JLI927zDlLve8a4Jb6M6VK9NXYeOkETyNes0iPVyptDcVnMfsduDnUuR8BXSkfCSVCULxglSJ7dEPdzF8oaolfJ8zTri6mwr5g05B3CtgUq9jQGo1z+nl6Mqj21DaRZ3wesgv2W5XerviyXdffck9a7t+TXSnBwiYQ+gh0iaywXuoFPOuRVyzMHM5IEQnm2oMWcFxpznOb2yScpp3gfvE0h0/rBsOGBaWiO/FMm721NHxm0h7/5p7qfv/uHXC8LnSuUGrfeku/mlVdvf6sK90ML6JIhPW1Z8QPcxRoaBBZa4MUIDRGce9Q89bYQtF7dcoEQVJo1iM5q1Inl/qeWDfOI6l2l14X0C+dxVSc39dKPh1zlfswVWKc9qlS9/m5JVco4QVtGLvipgDi9SGoI7X6RhBp+yvTOqfnWfPTPfn+l7oF8K2TA+2P10w+DXuTaMsyPuTuAyI22+GtNczHM+p9+ErKYWA2xiIZcVhEfCibjlrXvbeG/cUulHn04ralIUHzQPQCg+4A1FgUh9VkTMzxG83oSJ13cs8Mrt16mjR2zu9yiLYzfek22s+UTdk2E6a2cYZALnjwyXBYeDsBKeLZSowUw3X1YMTv+6TT6o57RR70vvk5rr+uSJ/o3nidKyX5zBrG7d34XdAa+FhxoabYtgeXQIPJbL17wJ8ot/HGk/wdbjtPPU6efvbrvxLpPc+ZgCG22DgckfSyWFGDqhcjT4TTEM9fJYnX3xHuWi6VH5D2rBfCC1Zn0gXBYWDv+dF1Pyx/qORxdHofA5RQME+xh6V8Kvc57n5oADVg0FmJMjBhg+mJua/MYVtTfpsnFlxi94CZSyzcHBztXgv9l2rvy1mDdjwtx3v+u5U7zjopi+1TvJnntWJH3V8j7R8ihZpFwWjB0LoztSJqRr+oB4ANBTFLhTzo8gPUUnP0lVpmB7LZopKO26LtzAg9TnAZyzUQs3cI/i+HmEHBjBJwg5MPhJVDkwqpwXVQ7sl+W+qDci5L6YfFNtV5kK+ByYnYAlM5HthbTPqsZ/nvxxfKzHjg4pzTa1tx5Mso+ZgD46BAVqD60LPXBk8ZuqwtQbtVOHdvzbrbBrJmB0vITmdEJlL8AEnWvnMxE6W0wg1QmQBiuBh9YHpStVWpUPbjFZuCjyeeTISgPJYgJmQjpKwgJRGj8ore3CLoN9V/Z2jLcOP/aTA5SOs6K04zxNoYk126WHVA2AgYGRDgBRs97JHKZ5FJ3D8OtFseCN9ZhPqIUmOwcMKdyf2v8/86dUOR8D+dMarP709bn//Clun6eHvPcErdrvOm1wB8m1h3XncuBPqTJNHHiKKqyeoliR+9NWNYqVa7iyn9vyzYlLD306X4YDf0pdJOAApdfn2FC6ca4I/SmVQ43uT6uw+tPX2gm+g8nPCajDiZtktjZm1d/OEUW67PvgHL7j0pweHEwJlp1jmxJM10LuyFkyW3kCcgMksyE08AhXj9DAI5LZEBp4RDIbQgOPSGZDaOARyWwIDTwimY0aodEy1qBXRHYxqnoeBxlrzTkzsqUBjfxrOpIIUUXCyNQ9f5pNzJlsQpUt5MAmTkw2WXHgXp9p2Z88Ug/sTd057D75nF8Jf4lCKifbpDSLY7MT8CPhHbjAizpKGcFXKKOkGnEhqJ7KH4EdG0N+baruIuJVdPF2lgHBKqVc3gMyFryYd+QzpxvFEyZ+cDmauGSb+5Kk4G9JXS9nM3lCi55qqQrqsxIf28hFGT1EDnO1wPtgwj8hsij8u4MIA+5yPIjZRDFJCQYH6t9YzIs5AxxoBxEvZpqojI9EFSZTeEtDSQRoqbncQxYWTrpeWnM9UBmZ/yrZC5/o3licOPFMZgUMRH8VPDcYJdO8VSnirVADSiUZ6aEIgbJbBLxmpeFFuPWS7xIWq8MEGe2lsgFQVUIiF0EtqHxEFKWSSiK0P5v3UkkitffgXbWFydMyVQWUo6U6av/ngJczz7Dx8r4zBC+3NHnMqfKqprs8uos1sX+dNrG/FWc0WY5nOJpE6OYSNInQzSVoEqGbS9AkQjeXiIWWLbw5PfY0X/jH7n/aR7qaVcgXC32fGPRhko296xaraZbZgyMu0sgVen1kR6KK8XJArq2ZLFk6YOmITdFDXZJffZK24ye+I8vb4Rt/PuA/KuAqdVcFrEFsGSr4fpFShZs3PwJ/hm4bglTRYdbXoqvuUX5Bx6Hhbyvmpf4Dd2tEYJzQlmbAzKzHP7QtQrY0idqark2oT0IJgWgo0xkuUQCSQ37xuV2ONCnWb4Rwcb8rT5a1mj6cvCHoonkCfUOQaOBcwQhAsg9CsoUpcWLdP0ZJnCgRDKDVOo3U1NSf+oj98cmGgfpS0XKJCttnlMPwBZ05Ydu2jdewwe6rey0Z0PPAU/IygkUA/hCEiCrRUhTWmctqnTGmYB3gjX7qk11UVxwhU2OyxcEkMxEuBGmcStNX9JZ3bOqVutPjxb7pL13IxtE8EbGIm9dSFMYJZTVOD1MwDrRPfuMQzMRknHaCCPiRmE3A66jBrVJF8GiN6GIXvjJSMhxqNLbAfsr7DfSIamf/ZWtihauClDaP5uyedXUn+Rx7YL7n08+xk1qLwnhdWY3X1DjG00FI07wAC3bJs6A6XKYYrQBBMDAfMJdCqYCmA/+SK0dijfBHJ9gUIRmluYC04/NztVSRvsWF+08GnVk57Z+rFDW0cFRaNH65KCxXhdVyxYxuOXgT3FHRK1XGWrMeDQsasTrC8cECu13P1nmsf3YqZGVa0h6yI2SMmfJaOF/wdsRjCDjjOEkLq5pjjhCPU9swxanVzccGHD2Y63fEIvlR47Zj7ck7dSLNQo6/SjpCJh1Jr93GlNlmK4CqQ+p8i0GYgGyYVBkhjVKN5kdqHqiu4KHJ5vJQ9JAq8PkLc/BKLYvB9q70XUVye/kg8J9IpSrKVSaP0nwwKtxnPGHaRMxzvwCwX4babYwDIW2tC4xZb8jZsBuBDXZwEntHnSL6pCXPLljta+0RF1XZ7uAw61xytySeSu+W2paC5slUcbPCzpMBci4QOWeUH/FvJuY5XdAr0b1yYL4Qhq8cIVWpZAw1Ky67VVvZxPe+MDF78tmPM5xuFH4IU9MlKD6CA6xqsWJlccGgPpdYxyyFT7ngL8Fg53b87Z8WUjziIy4KnYQ/S2DcRmVVC2JiQPwq/H/Z/GEP+Q7tdLstkxv7T4T/l0T4qdWEDCbC/+kCmwj/Abrv5ECE/22V7OVHvg91/tOjwp6xzyeSj7sU7rQ5xz4SapbnXmDTLL9H95FFIcJv1/XdWYcEO58Vz6s2MMuWOBtdhP8sKyoHDOsNWecO+h384U6EPz3WukOpld3cDp2YO6tJqfXkHQpjivBvYDVdnHFMZ3AR/nqSyzv/npMljnt4dtZIxyvzjCzCj3kZRhV14GUMJsJ/4q3HFdHLUn4z4qZatHuWu9IERPjPsoJz4IIBRfi9x/b/UzncXHiglGV5UfJmsp6M8UT4N7AiBMY0Hre1Y4rbxIKmzX52uSTYcqdO4oU1b1qRdQSwQ3yRSjlgdHrMZsGAc5u8LRJZ3v24FgZAXKWMDgsHMZxaii3V6KPlQK2wyPi2dNWDfI265vY1EvNOXwT4SkRw0YWCbxbAd8TFwh6sqpT3WuAqjgXyq5eIm/7+Up/HbnODmg45ZhWuLnztLkoIRXWMha0FDNDLhOjVFSF6ZzW4WXtRrxCqrGb4hkjDVFJ0fGk7N65nw8m1xVOzT9woXS/Tg3JCCrsRcUJKc51z2V/w/dewfv+ZF40dLGl7ph6BEnxlmTJEFsyibfMo522FF/GbxLHlnGd12rKenH1uQTyA3le1LUVhjBGsxhhiHGNQwx+ePjsWjl4KZRSgL0kwXDu1c+oCpqxgZhFhz2/RJThcqQqx57fsoh6uisJ+QEerozo7vPnrdar3yrbX3o7ceXoDmdfgBwREjZYj6l/mNRWFsXxZjdXRJEYOfJRe0WrlvIVuRbRqiJplBNW8HTBHcnebx5Qzizyen7jRtDBT5UKaI84Jd+TwqGcWTReqhbjn1ov6Ram4J2eJtkJtWvWs+Km+cEvq+F7B38fXNOq0FwKwgADgGgIA6Fr0ikQJKmMWmVi1YLxiW6kXbn9uftr5mjTFhUJlhj3sCwHozwZAkvNFItBs//8sH4damNtg+TgnL7Hl4wy+VNT5OJVXuB3cW9XRb1HPOo5relwrbwL5OMcvse1u7rhkAkkFCQkJBsjHab9ylcfswefEexZaqdun8v1NIh9nFat1ppuCdQySj5PVqUST4sceuy8sN6Z4wrw1rUwiHyeK1TiDTcE4PGPm4xy/lLDZLsTVc1+WJChxwY6DJpWP481qvPbGMZ5p5uPcjdwaVvxlB989kz/739zaZZGR83EaslrOyuiWK9J8nH/iHTzOvm/iPPdioOIBL7OPSeTjYDEEYz4OcIR4nNrhd8jHef/456bqnRMFW8p2PPtyaUaCkfNxvC+z5ePwLxsmH4dfYvSyx172wj+ffSsbkfFKzXk+DnVuzkGOiftlthyT1peLKh/nYYiA92xOVZ+5nSpfXWP+6AHn+ThUH8EBVnxWrMpe/p/Kx+nI5MaGH5E1k/kmifan+cmfZPd7Q94p6R4Nz066qSSR4fQTpnpsXzR0kakj4ekx7W7OaAfNKVO+BGrmhcFPQPa8Z2eWdL+4VyxYfCnpYJ+0IAvG96Pv5ORvpPW/0gHAhfnlP4qF6JXUc0869krt0xD5NNlnQa+sIoJ/Kec/JbbiVg/PZpYLkMqBwaQhHsCvjyIeh5lVY8pOTKas8mCOi3XH86KENg+PJJ8cSV4LMhOiDVhR490RNuOV0TSRDlnhZEA7fMWVkgf1kPwvKHnoGh2YMVjJCURkcihPAUvkpgtw1Dszof7jj10bbBzNhfv6V1uxKdJnY4GnL8sUPfI6n9iknt7j6MTmL44bNouUP0m1SBcmi8TPnxP90vOT25LhVdQrZtoPIK+JusLkmSh6RMY4vdTcwFcD1tfUu4xWw5AXq9UWrpSHQDlGmBIYiv0eFg5HScLUOsUg1COSJb2VwcOkIdqbUK9OX87VXNd1t9pOzLsDwSyGSuqDouprTiLklyBEcB6HkF+Cf6nyS75/3OkacOKF89Qze2Is3vpdosovTemVMPFGZH/3Zenxyx8vm92VaCcOo/6yPBP1gxHyTEyWtoTqAbgZkdaatftYh+FbQ71jfMdmlckMdCiMtbjfDQN2vQHtugoV8sTBg+YnjVJ40hLWdxykBt9BEZbnMPJ+xlzNWKeOPcYjVKKYbGXtmjfaQEAUFa1iCFwfjGrUaNQI39SyWwXNBmStYTVZKZHmSQitY7yhKIy2i9VoawxrNMIFm3uLNA4V3jJRO+4x2xBjlCnYq++Cl76WKdRSFZZ1Bz6C5DCRtlrRveWrAbYXPRfmWDx7/jJkFtVWpXyioyRD5FoBCx5lswt+qhOdrpwK1Pr6RbpiM+pMVqOOOEnT+mItoIB3dqlGnwUJHlUmhbWjm0NPRy/TgV3lPKPUEfdL6QJEpXvn5lgXxym9KxOld39416+U/Jzb2pS0YhP31Ysl58oGhMtCo/iwriyZ1iFfMdW0rukXGgqnIhK5HC+/KoOF86B4tyMSYMd73brMGX7NdUe/2Jjq3X0ETK+AiJd0TbcHPaN/GEAqUIgqhmcv5t0KLWweWTms+i4Ym2r4wmjxhameB3oUb+obc6H60utfq9WjFnhBfsUCQ0Ivm2fHKos2eK61ChE7Tu9vU9jEe4BVIMRqmQCV+wEm+PZh+mWNaSyoxHoFEhcvdatGPuXu+eyUbT+6ObPhXdqScqhuwBR2PIFvbs76zUEvMYHlZKwH6rHHZgl1htikp446ShxFH4U+s1b37/Oz2J0X5H4J7zYU/HtC2eCfbRz4aRlihS3UrRkRMNsZfBOkRd7IF60pbdFHtOfBl8G2zfvl/qKnKOxqvgPuCtKdEQQz2AEbEDjBdDNhglm46szlZd4D3LaP+eQjDxhesWgIZsV0NoLpO90ABHP+uDrE/OQj9ylTSz6ase+rIzcEE3+seLnXWTNcEw8enJM1dVAbDghmyXS2cT55OscEM2dFlbU/vwa5zfDxOjNu0CAvIxKMgvWbg17yOxJMjRUfSvz770236U6dbnc9cX+g8QjGlRX+lsaB3wgEIy02cI/Nlxy3yeZZmU77iu0yHsFgroCRYMCAwAnG2YQJRu5/Mqt0mRqiBE9FbI1P3rlFQzCxq9kIxnW1AQjGek/rI3Z19ngmnQ8c9s3BO4Ebggnt3KFd3Upf/FavXTneMjPNkwOCmbyabZwrVnNMMDMqtRbdu7jdbenavltL+l5YYUSC6cv6zUEv+R0JZrGk6pA16a88tnTf3Wh+TunnxiOYlqzw1zEO/EYgmNZvh6wam2LtuXptt9zTFaRTjUcwmCtgJBgwIHCCEZgwwTxYWfdry11NfTb0Czszc6+PY9EQTO5ONoLZs9MABJPqkxFQZ4y9x+KRxec03fl0DzcEM6LxlYBi7dr7bMmU3n1wdygXM5icnawLRTs5Jpiuw4KOd+5w1ndFiTGv1/r1zzUiwZxk/eagl/yOBNN9U5PZq65Zio+06NZxa6VZ/Y1HMPGs8M82DvxGIBhJvZ8+dYdNdNvqXrJazRbOl41HMJgrYCQYMCBwghGaMMFcL1XLMXWHxGXK9S4Pt5c40KxoCGZTJhvBhGYagGC2jrcPPDlhqteCNa93fnmx7DY3BLMwemuy01E/14XHh9c88MTtFgcEsy6TbZzPzeSYYAZHfuz1r9cfzttq5d63vrPAxYgEM4b1m4Ne8jsSzJh3DRuZfTojXn979ZPrP1e5GY9gerDC39U48BuBYDzMN/7oOj5esO5o0IelpRbfNR7BYK6AkWDAgMAJRsREMHrXVLDTWq/oayrUvFPn7V+jJnkv+fbu49LotLR8NRUcjyU/FFep5z1L4FBnbkvBzHw1FaZN2F3rijrIc0nQ9p7Vk2/OzldT4U54i2cDVt7zSuUVj8+sGLIgX02FJm73Q17wrF3mPl4fXUkW9ClfTYXHY/2mH2zZxDOu40ObDR3rxeerLzW/+uROiXuLe+1Ue5YK7HbsCGgqhTf1/6tmixt3HTzj16dVeSQbAGtZWeBNLn3sFvZrPsRj/YHUyOBba2EFrNJ4U6snSZPir/k4p2ap5jvluvmCpjJ406fZRw8OGNBC+OekATWDts2CtSIs8SZ+n58NxU0veyzdPXHilWdTt4GmsniTvTwx5c6CEx5JWx/uWXjYJxM0lcObpi5fszFjQXFR3JaKLdztXbNBU3m8KWteywXFnq72m755i4N/7a5tQVMFvOn2xua+38xOue39ZN7n6/nNPNBkhTcFdXk798b7Vj4xfq2syn3p+hdoqog3LbL+N+mu5J3bevuKzT5nFR8CmqwJeIOKLau4X+23ZGbinS1OrSDyNsQD40onj5m/3DPxisfzbweTG4CmSnjTgiZVZ329X1G8rFf2rMYn65UGTZV5jKU4qhAPnDAx8riPnTD50vc6JRrnTARNVfEmpffnlesW3fRc8c/PR40sSkwCTdUIo9h96j5o8XW/Jb2fm/XZfbkDaKqON4VWW1im1TR795mu8ZtGzAosA5pq4E2v6r8pF1F9neuO9hueJD1aMQI01cSbqqrvpbdvs8krZogkef23kpVBUy28Kcki6+sFv2Euu32/5Nr2CQsCTbXxph7lzCKjLTeL1/5r38L8mmg0aKqDN23/GpjQxOmM8/YOZ/a9LP73LNBUF29aM97RN/d2qPfGf1+cCvvYdBRo4uNNG+qeTTv9b7xgZfmFkiXJK9/SioXU4zEUCzkszZxd4dxa0QbztFU1e1zfiXAb+hYLcWFyUZVDU5JXZJwSr9r2YMyZWuPI5a9KiUdFypUhCAUspgC4MX4Hn9AslSlgWBgBAmLghNTSsAipzpJXVAeFfDV6ZiPeoGvtVlsx7861TOhfEae3/EF4vOuaXoqgVnmKoJoXQX63mFOZ30bwu/tN2msmeCJ4u5BDQVCOD2nB7OobEKAQVO7fySZiXuY1vWLiNj2koGtgZ89DpMHKiEilWoZJgIH3k8mxqRPRT/gSFVS9VUbIgtE95MGqn522+Hrt/Tnvr9Hy8YFkCR/t59AlfPKauI4bIFy7WOFac80kIjm63KSekZwDPtBC8swVFS6J4kdIhkn5IACBcgJDJFCLg1Hrp9mTazd6Hn0n3NzVYuTpFZ3+oag94I9FqD0QLVxbz8oB7+wuKOstc8Q6O03xR0/g6hHCdITogpQKJLokcKkKx+52sBbtfDo4qH6viU8LL4PHAVi7WMECXR3nHzET//ynnv1L6tnUCN1g6tlTr7OpZ7tcLwr17BOfm52TO1sJd1UMvbutV3owh2RJ9UAcqGfHXGcTG5ZfN4h6dsq1ex992wW47ZuygNc716uv0dWze7OiAvqNiSp9FLTAxJ169oLrztZD+XddD14aeuT6znX7TEY924nVdLWMYzqDq2c3kiUdE1z44jYnPe1R9O15fCOrZ2NehlH+GHgZg6lnf1xnV0Ua6yVYO0We3vFvc/IWhnHUs3uzguNy3YDq2eVzvy1tE//KL3HeuR4uq32Gmoh6thMrQmBM43GbK1PcdmqlxPt7h6pukzfVKfW8wVjy5NzCG8Ro/AAXb90XDoSEmiEfVnQmImEwQwwFP4K4azQfYKuK0uhEA2eL91cYe+Gh23idAifq+iX6velRNNGiI8bxYBoofwIwvoXadXMGFrB/ot+yAvYC+TBAR0otKz4o3k/gsj95ZaBs4OxWlN0keDdCJAq7XFCkRPV/hYyU0gFA4U/wE/C0TshvJuYFPtFL+6UaBhDRL+xCZCrQfUE7mmwjFJXrBa1s7rk4/cm3iDsnZeRh6ULcTB+WeU0FFmS6csP7lfVSt8Wv4p/MP3ntPQeAObMCBnqUUYIoDWfA32nFY/pDL0liwWJLS8yWLF71eYJ7z5gHSo9dfabX3+CWWccaE5MHxhCPilRJtdIzWFArEAbY9W5SuACYYtryS2dsnOB2Wrh86KW0jpejfDgwbTVW05obybSo+Dium16hVlnvfP4cacyKHvNvh14t6bXKbfrpEVMahVA3/BDCdpqrnK/dOeI+aYcAsee3wxEbYjgxujERo/BS1dsj2u12/rPfwGqzgg57k75NJShAEgWXPqGarBTqG0nVdJIszoBlc5EyAkCukUHBHhOS9xhscqjJNYELS1DYQydGpG7bFfzCNHMgf0vXaAR0/pa3AOhPQee/R+38g0Hnr3KrsPkpAu98oMDlBmWkVAWjDaWCb6fp42o+QE9ThAL+S+PT1HA1WjlSyqAgX3ZlhoPAra9rXFDpnqIhPS3JPiYISzqg+xj8ekE+5kaldP8FLx95bYzxEyzz3RBVSB8TB2B2hDCbC+HBdepiXRMM5sIuCTfKZ37t6lawUqGWBkdj3QPLiULPIj51Ge57Y5Z46oChgsRRdmR5S8u859Knv6RGzuUs7HHY+qNgu+aAwYa7BHcml3CmfIP3LdoqfWLfvfFyvDhRTPpu5XpIMR0Jvm+0XI7wBUwBswNxHxQjwfqsTDFCIpeFaDr5SFlUOF8Jpikq3T0BdZee5T1pViA36yqdaCvmHb0J0LVEbb7Fw1NKNws79qt4YHl4cNVVqsbEcDDEkAD4lqhv5lOymefcL0Ne/Zw7pQs5fMYeRA+fNZcLGs7UrITCygEC5NIgcutQIUPvpmJe0k3G8FlH5GpqkVORuhrsWkj4rnZe4FkiONvtjwoPdr76+IZS+hvvIOgtHXIr16MYorWEFa3JN42iJGQRODpSmh+HBvlydhy9QEgrlTvC31E7urkPgkFumFRFSYmDfwrruKtgBAkNCx4BJtWjNaZGWplKTIUZJIW062BHfBTkoNLm/Jtjo0CvhbBqvhi2MFbQ5O/iXT8ECUXtid9KXG/0Rbg/MEVxwb5XW8rGBPxWiI0J7HJRQLGEFQrQxXGi8mAiKn5Yg33T58wQLjy2zXv555SxBSr/Mfhipnmdzip+VG+pi4ofr0AfPKlG5wudj34R7WxWTHE/Xty/sD4Y+A2Xm7jocgxNBhtEDq21kHuaPOTU3DhuIM/cFhvV48Upl7jvtXLHVJ93hQPIa91hg7zsHQJyL86yMisQkBsgKxORRElkZSKSKImsTEQSJZGViUiiJLIyEUmURFYmIomSyMpEJFESWZlty9+PeXdlqevKTItXD70aWdJS3mDnRfY+avolBylv3kz2r+913OH2zjKum81Dhlx5ZkW2v41msV8kV6phuIht4NCD8pIMo62+q0wRgm0OBOMPwKaUcJ6JpyHotr1PTTkt8BVp4KB+SdeoHEwVW98Ag+wa8sQImJHn6rfNX1Oz24apmSuhaQAe4AfmvKCmgYoUUa2ZngmqjIebg5d1LMxeW9EuY2cBrJxu4LSbQysQBabV1jeQcTgTVpW1KRH5sUKiVEea1Lp2486+B69UuvK91vvzHKZFTOrp++HkplGuicoZ7tOFo49ygFLudTaUrlynLz6wxWn2/sS4wgYbhhkx5OBUj8g9Y94q+SN3Y+4AuaMwzsFfXmfUNG8j7uc62eOdCLkhBwVsa93QL4xtqt09hBAF56u5BhmI5JuQ4PxckPhh6r6awn0rrcJDQreKTGDXEoJkwQpSrp77uo1cZJpvrl2qyusy2MYis4NSf+ieeOfBU5+l+/dkf3J3OETeRSSeS99F1LYUBTr3GPd0ITpntXu6PkzE+CLI19u8+WfR4vVnXRP8PPrSF+LpTGjOAG498n6uNtVtpFKvssfUAxa67g3omv0NHNMF2KnOChELUDwA26YbRbBNK34+aqN0zRbnVXzesNNeXckV6Cyx/VgGWic1FuTFqS6usJngwE+fg2D5o/pYPAjNU/XjuvIYWFIw0pihathV2nLw6kDRhhpjHi+sU6YN2ROJwb1ooPI1GTgkgDBtYoVpwQ39yK7gLTTqXrPRttCgp8H6CNxC49NiR0cMGtwP+TL5IZHt2eYdptz1jndNeBvVoXpt6jp0hCSSr1mnQayXM4Xmtpr7iN0e7FyKhK+QjoSXpCpZME6QOrkl6uEuljdErZTna9YRV2dbMc/qUSas+omIyWMA6lnZejmq8tg2lGZxF7wO8lt6/+j2+WzV2YK0uj+k+w8PppxDwh5AD5E0lwsac9RzboUcczAzuSyEZxtqzMGKZJ+y9comKad5H7ZCteu7Rjv5THovWHz9YJsNGXOTybt/mvvpu3/49YLwOX+i7s6IUw4uC4btTlsor9iNA3yys9nwAd3HGBkGFljixggNEJ151D/0tBG2XNxygRJVmDSKzWhvru+t4eq1zn3ysKGhi9qfakg2muZ+utHw65yv2QKrHGK1yhaTskrOEcIqetFXBczhRUpDcOeLNMzobiNqJ9rO8Ni0Z9bzvR7ri5EN44PdTzcMfp1rwzg74u4ELjPS5qsxzcW819n6TchqajHAJhZyWUF4TLFbUrv5DCv3IynDWlWr8Kw5payD5gGIsg54Q1EgkpXNhsiubILX/Zh4fccCr9x+nTp6xOZ+j7I4doMcpeCfqHsyTGftDINM4PyR4bLgcBBWwrOFErUaVuTSZsXg9K/b5IN6Thv1vvQ+qbmuT55oNp4nSst+cQazOn86r+u5A14LDzU0BSywIovwCJPmTZBffNfBF9Nu7zzsm/jqltfEiddXkjsfU2CjbTAw+WOppBBDJ1SOBr8phqFeHquzL96jNGXlSQe1YD6QWrM+AEtZw3/nxZT8sb7j0QrRFD43alV7OK/FAKuGAgzWEvXXDmZ/k9+4ovYmjip+Ubc5ONi5Kp/NtnP14yGBeXcmzH33u547xTsuiulbvZPsuSdZUL28D6kYHd2RMiFd0wfEA4CeosCdckpJO538JFWZgu216MVYye26LtzAg9SPAZyzUQs3cI9C9RhR84vgE0TNL/hJ1Jpf1Jpd1Jpfv1zTi3ojoqYXk2+q7SpTAZ+jTwnCBc03D6731Mp3seTIxq1LLSeQSxAK6KNDUGCBoW+HVk7vMKGz54KHxU5sLiN7V9g1E6jjD83phMpegAk6sY8zEcW0mED6lUKNqxrHHoqyLe58xFHy/EdpCXmpUbdCjVSUpjx/2Odr9y+us24snHN/1jguUFKxojTwMa0ME2u2i6beNQyMdACImvVO5jDNo+gchl8vigVvrMd8Qi002TlgSOH+tMf/M39KlfMxkD89+YjNn6569J8/xe3TZKvI0WH9Tt+EG7NC/3qZeo4Df0qVaeLAUxx/xOYpdjwqan/aobLnovFNGzjHbrbeNLbt+gwO/Cl1kYADlFaxojT9URH6UyqHGt2fYj2G0Z8CpHB/GmDycwLqcOImma2NWfW3c0SRLvs+OIfvuDSnBwdTAtdHbFOCtlrIAzlLZitPQG6AZDaEBh7h6hEaeEQyG0IDj0hmQ2jgEclsCA08rcQgXQOPSGajRmi0jDXoFdGTHop6HgcZaz05M7KlAY38azqSCFFFwsjUPX+aTcyZbEKVLeTAJkFMNllx4F6fadmfPFIP7E3dOew+NX9IopDK6fXpmRybnYAfCe/ABV5gWXS+Qhkl1YgLwRKpbBq2VN1FxKvo4u0sA4JVSrm8B2QseDHvyGdON4onXG/5+naNyCYuqa5S9cZi81RMntCip1qqgkVYiY9t5KKMHiKHuVrgfTDhnxBZFP7dQYQBdzkexGyimKQEgwP1byzmNX0AHGgHES9mmqiMj0QVJlN4S0NJBGipudxDFhZOul5acz1QGZn/KtkL1wtsLP7a5EFmBQxEfxU8Nxgl07xVKeKtUANKJRnpoQiBslsEvGal4UW49ZLvEharwwQZ7aWyAVBVQiIXQS2ofEQUpZJKIrQ/Y8LE2nvwrtrL5GmZqgLK0VIdtf9zwMtRD9h4OeQBwcu9TR5zqryq6S6PDmZN7PfXJvb34Ywmy/EMR5MI3VyCJhG6uQRNInRzCZpE6OYSsdCDlMFP292r5r1sZocuvEXXsvPFQoMW/HUu0SvDc//Qh7aNvMeH0MgVen1kR6KK8XJArn2ZLFk6YOmITdFDXZJffZK24yeSp0YV8I0/H/AfFXCVuqsC1iC2DBV8v0ipws2bH4E/Q7cNQaroMOtr0VX3KL+g49DwtxXzwp/C3RoRGCe0pRkwM+M9pW0RsqVJ1NZ0bUJ9EkoIREOZznCJApAc8otn1ojet/6Kg2DNgi5ntj61KU7eEHTRPIG+IUg0cK5gBCAJgZBsYUqc8H9qlMSJEsEAWq3T2LVr1099xP74ZMNAfalouUSF7TPKYfiCtE3AG8+HB7zG+ixeVMXi0wbJLYqIKv4QhIgq0VIU1unMah07U7AO8EY/9ckuqiuOkKkx2eJgkpkIF4JOpD8iut5s32nPHQ9l63J3ridvjVlonohYxM1rKQrjVGI1Ds8UjAOhy28cgpmYjNNOEAE/ErMJeB01uFWqCB6tEV3swldGSoZDjcYW2E95v8GQnn1V0tl7W1fBn8s/J9nMXxxBPscemO/59HPspNaiMN7LJ2zGu2ZCQkFkIU3zAizYJc+C6nCZYrQCBMHAfMBcCqUCmg78S64ciTXCH51gU4RklOYCWlMkS2277VVpj3V/mO2omb5+JK22DiItGr9cFJY7zmq5HUa3HLwJ7qjolSpjrVmPlinC2B3hnZCPTvtPtvHbUnbgGLOUSeTo0YIxZspr4XzB2xGPIeCM4yQtrGqOOUI8Tu3HFKdWNx8bcPRgrt8Ri+RHjduOtSfv1Ik0Czn+KukImXQkOUyFmDJlttkKoOqQOt9iECYgGyZVRkijVKP5kZoHqit4aLK5PBQ9pAp8/sIcvFLLYrC9K31XkdxePgj8J1KpinKVyaM0H4wK9xlPmDYR8/6F2C9D7TbGgZD2ND2kJSbIyNmwG4ENdnASe0edIvoKnXc1a1C7o8fm+k6ZI0+ZkbXHLIin0rultqWgeTJV3Kyw82SA3DuInDPKj/g3E/PuPNUr0b1yYL4Qhq8cIVWpZAw1K3h7PUYrpWPcFsYN+rfirPctCj+EKVhRfQQHWJ1mxWqfYUMdYh2zFD7lgr8Eg53b8bd/WkjxiI+4KHQS/iyBcRuVVS2IiQHxq/D/ZfOHPeQ7tNPt/kxu7D8R/l8S4adWEzKYCP+mZ2wi/KHPikKEf1J8j6eVFCPc97VYmubfe8tGDk+bc+wjoWb5umdsmuVznxlEhH/+qyD/Xu+2iBfwsx69XT7ulNFF+MewogL6jcnMHfQ7+MOdCH+5quq3K8bwnNe3Hrqtf6jjMpMR4e/BarquxjGdwUX4l10NvT9vbU+/rQGb43I9Z3wzsgg/5mUYVdSBlzGYCH/p9QnltncLd5s62yu07VXviyYgwj+GFZzQZwYU4V9dfUqpWndruE6zeV1vZWy40gTkLCBCPVgRAmMaj9sGMMVtYkHTZj+7XBJsuVMn8cKaN2S5d0vsEF+kUg4YnR6zWTDg3CZvi0SWdz+uhQEQVymjw8JBDAerXCtD9dJyoFZYZHxbuupBvkZdc/saiXmjngN8JSK46ELBNwvg2/B5YQ9WVcp7LXAVxwL51U+OGiBdOFngvvSk3/ZP7lnmha/dRQmhqI6xkCEUH6AXBdGrK0LVI4abtc/1K4StGb4h0jCVFB1ferZ2KZvwcL9PzLpKJw7Z/lhKOSGF3Yg4IaW5zrnsL/j+3qzfv/1zYwdL2p6pR6AEX1mmDJEFs2jbLL7PS7fiLfTao3zQr/nOfyl15ogH0PuqtqUojNGQ1RhWxjEGrTi2PjsWjl4KZRSgL0kwXDu1c+oCpqxgZhFhz2/RJThcqQqx57fsoh6uisJ+QEerj7tX873qeV+8efrtXUc6Rn0l8xr8gICo0XJE/cu8pqIw1rdnbMZ6avRpBpFXo1e0WjlvoVsRrRqiZhlBSR/8e+6ZHe+Z5h8yU53bt2thpsqFNEecE+7I4VHPLJouVAtxzz7P9YtScU/OEm1Fv5y/+OWcWL+FFb6GW6Y6eRt12gsBcCYAuIYAALoWvSJRgsqYRSb+uD03qaTDN/G6pNNNpgS9aUGhMsMe9oUAlGEDIOm1NtAc+P8sH4damNtg+TgjXrDl45R/UdT5ODturh56v1yO14GF/QZmZedkmEA+juoF2+7mwBcmkFSwfPlyA+TjPOq3WW3e0sVzw+1/2tVb8CTbJPJxPFmt09YUrGOQfJxZfnW83u+299g5IfvD6kequSaRj1Of1TjlTcE4PGPm45SPsIqt/c8b52Vlc6ZstrCOMal8nC/P2Yz32OjTRBPKxwlrYsazmdDQZ1123By7iGm3jJyPc4HVcmlGt1yR5uM4f2/3ZmqDjm6Jd2we2379P/a+A6yJ5P0/eihNRFERRTFWsIDYFcsBIfQmWO7skQSJBoJJEBEL9or1VCyn2FBUFLtiw947p553NixnO3uv/5ktgd2dXRJYknx//+N5fB7Zl91sPu/MO+/MfObz7r1mEnwcLIdg5eOAQEjkqf3/L/Bxlo1yC317Mzp4zfunpwZ9aDLcyHycz0+5+DjnmSltqfBx9krsrp2sUsVv888Hcp9MWCvnnY9Dn5vzwDF5/5SLY5L/tLT4OJrr/4RXGRPqudBsUKcvHx/H8s7HoccIHrA6z4lVjmFTHWPzcQawhbGhB+VN5aHrRbsOhCn+ud/7BXWnpGsCPDvpp5LExzBPmOqxfdHAR66Oh6fHtLs5Sa74KVOhBGrmDYKfgGx5q+ucPXD6fbrXkorzJAs2L3nF+n7MnZzCRkb7s4wEISys8FEsRKukn3vSsVVqn4bg08y8B1qlvQj+o53/lDqLJ6beO24TKVMAh8mkASCuDycfh7kVd6WEzZX2+ak+dh4XRCva3Du4+WSiD00FA+3Aynh0R/hMYIWbKIesiMGAcfiKLyUP+iH5Yih56JodlGHxkjvIyGpCuR9YIjfXi0B9IBvq3yduXV3Fzcx7Zx+HxRnxITSyEuL0pVXpI6/ziU366T2+TmwWr99weWTfLbpHotg8kj4nNeFZ4Ee/BUPt1YunNetLXRP1heQZDTMjY51e4jcI1WDUx+tdJqhhyovVaotRKqRQjhFSAqOxv8PSYY1kkFqnHIR+RLJ8sDJqiEyqvQn16szlXPy6rrvVLmLBjNsAzLIoUh8UVQ++jZBfghDBeRxCfgn+o8svhU681SXyxFPPCWe2p1i8Csujyy+N77lizI34Pv5puemLHqbN6ELaycOoxZZnon8wQp6JzdPWUD2AcCN6D8zyw+oOc5cE7lB6tb+1+0C7kniL/90w4Ncp0K9LUSnPbHjQ/LZRCk9aw/qO/dXgO8QNKggYBb9joSbZ3SNiFEIlis1Xdr4FvQ0kRJoEFTpxfeJ3qnW3Cmc8p8RMOOxWq8s1TpeZi/AnIbSOCUNpOG0Ap9OCDes0MgSbBYvwgApvGaPt95hvyD7KluzV8yFKX8vj1DIVxroDH0EJmEhfDem6vd/IR8u89tXe3zIwqPoauq/MQxI0koEKrYCFgLbZBT/VnTlcuRep9VXM4YrLqe05ndrgNkPri7OAAtHYZbg+C7pEAE0mhbOhm8FIxyzTgV3lnVHqRsSlXC9EpXvP5lgTJ4Z0KduQ3vXe7TBzxXm/5XsOlB2zs+4kKlc2MkYerRHCurLUYR2OV2w1rR3DoqPhVESiUBDlV+WwcB4U73ZDAkwvOMj2Coh8SVe6PWgZ3W4CpLp5o4rhNRMLqt4sKY/MBqu+C/qmGr4wWh6/7uatXw7nBs4Zk/nkH/OXWfQCL8ivWGRKSC+6XlLiPTx4D7FK80JxP8AEv9NN/VhjuAeVWKtA4tLbP6397cmbRal/h0dNnLWhMWNJOVo3YEran+Chds5vDlqJCSwnYy1Qjz02a6gzxCU91T1sS0rNnyaIxvdV1jy540Y2tV3Cuw0Fv4AT/md/mwZDrKSFuvEeAdnO4JugpTpoFXeLGSlKuprvSoSCXE/EADPAFesQxAAjYxtg9NbzcdF6r/T1fDRzckcPPNnea3+t1KRFiXWTC+n5tFhyzvO3pTVC0o5OePTv9il2hfR8TrlN/uVE9JqwOW1mDjnT3zqkkJ7P0Ur7Ggx1kIetKyOa/Pq2eEkhPZ89juX84mvle+3avGJKXN8/ZhXWNmRW/iW1DRGVf8lCvYjKvxaEaVH1fn365aR7p3T/K+DhHx+gMKMlYSq/v+Iau7huwb/XO/vmQ2hQRWCyIkz1KvhufL5/XtCeMbHjJLY144DJmjD5dD0WOcr5pNfsWus/e0/e8A2YKhCm7DsjGtt3uuybGfnzXcX8vp2ByYYw3c2bWD3F+l3A8ua/nZ5Q46k/MFUkTC19le+b7/vd+/cRibl+R/y2AZMtYVobM7pm6onqQavs1o5pMLtXJWCqRJh+it1xrLbtM/GyL/3Sex8y9wamyoTp9d/bL6+LHiz6/d/YF2XXbd8ATHaE6f2zid12Onb23yWJGDIx2lIFTFUIU50uz3esPZkmWv1+dovkvPRUYKpKfq9hC2qPmKQJW2GZ12rR9MdRwFRNwCoDZU+YNnweEdNwdqBofeWfT/0lmeoATNUJ052E/V2i+/j6zn7sMPbggK+1gMmBMI29k1vmTpO2nst7NGp7otqwocBUgzB9W7Khyfpmwz33Djz+540vr9YDU03CdP+1JuOux5TAiQtqvuk14o/fgcmRMLVyOLz73otXwUumDp4XmXUEAlWLMMXc+b5swsiDXpkLOzX4s9mzxsBUmzDJ2tWf96a7d8iW5F52q5rubwhMTqS/dnQwv37zi/eaS1Gv69WKh6KddQjTPbFz4IiHKvGS5TlZnd4vmgFMQrI7RL5ZkhTpH7LLvfb4jb1GOzOEquoKWISq7it+ldQ5X8F//qe/XTxmWV3kQagqmi1EVYves3nxsVPipRvzR5ypNTKdOnUVD49XKKWI0xdsCXAj4g4heV4WK1OnjgUJMQhCRAVAHY9b0AMU8tWYs2rCoKtuuDOYVj0/DuMrYucwHBZkf65fAc2C06j4iyC/2z+1Fnd8/CDGf8XFz0fshtfZxONhVJ43COHKXmsIkBQ17zzZWCwQPtcrJ24TIQNNA+M9SWWwxJFSLceOn4D3kyuwqRPZToQSFTxxrYyVR6GZaiOSm5SpOypw7dL2d2S5O1dQ6ePaz2HSxwtMvJemccFaDAdcH/81iUyOedRRz0zOleho0gJ3aWIkGmGsZIhMCBIQbQlrdp65Rbby0Kg6W/w27zc7FhWiqENjGhKPRTANSQvf3qvkSjR2H5T30tywxs5gm+sJXF3yUBRJ+JPRgUSC5d62r1jl2Cx4WhOfkye7zaFG6mIdweIBrAqcYIGmTow/g9jGn/+UG4ql3EDP0A2m3HDrOZdywzL9xkodlRtedP7lL9vcKgE586Ujarw/d4/HwZIegXhQbrjxnOug+3H9BsviKjd0d1rfdOelwSETPtU1a2q/NsHoyg1bOVEB7cZEWaaGU27wvl+uzdy4e54rXcsFS+97DDIZ5YZpnK4bZhzXGVy5QVgmY6NyWm/RZodvUcrDU58bWbkBizKsR++PI7KU0lJuODFcaDts/s7QiTtr+q+amb/eBJQbtnKCs+y5AZUbGk20vOOySho44/2bqFsfDlGLshlPuWEaJ0KgTxN5Wwxb3nZqiST4W4fqfuMynMyf1E8+QM1Gg0GOJoz0CdZ94cBbWwwXVhMgM2EwQ4wGv4K8K0kIsFVpcI0CEGyJ9gpzLyJ1G6VT4kRfv0S/NzOLJi16lMU9/pUoi8tIlTyBByZ91W9ZAXuBQhggv12G4Eq/Q2dv+k76d77H9hFvBtJ2k+DdiAMK2OWiMiV6/OOh5u3hrwT7itEIhU3Fgk1f9eIdO2AAke3CRSpXgeYL7OjB1qK5tXDbqkchq6s/U1k5jqTKGlv6kDczu2WBqSjAxtmeW365wlPxtuz35ge7tWvIA2CLOQEDLcooSRQ+ZsC/aSVg+2HKYVlw+NIa8yVHVG1ufmb+E0nZgE1pW1an3Lz2ww4TMgHOEA+PV8m0tGcsqfXyjnT5pXHJEmCaa/eGp9UXD4kI2tz+1dvxa7NdeHCtitO1/YzkWlR+PPtnvVKtCsGF4jnSmaPv9Ljlf2q4Z1qdCxHJmdf30Tf8EIeq8Ku8r925ETEpG0UqyXbDuhgxMMrZBkbvvOo3h7Xb5pnVu5/D9B77qeIBVSH5VQOXPuFJZhnk1sv0qBjfXKSMBZDjFFzsMdKCx2CTw4JC8ZBUqtOISN+2K/qFGe5A/pWu2Qhkjr4CoD/yRhSQHwAaf/yrkvJTvIILgQKXG2AZJJhtKOOELmTxc4AeLoAE/4fHNDVcjVYmyljUS/7I7J7atslT0bJjdn/Xcl9KHW3L98BIB8wYQ1wvKsbU/HirceIH39Dtiz0aWbfovqWEMWY2JHJCmM28ESXT0xpjMJd0SbhhIfdrV7eilHFqWVQC1jwwThRaW0t45++dl4/47x5v7xnw/i614KF1wXOZ01+KkXcqZTMCtj4o2K67YrARIWEwW0g4U7H+mxZtlSGTXr8IcrsyRkz5bjYRMozDKAxNUCgQsYAtYXYl74NEWKzNyuOGSRRyKd7IE+WaGKESTFNUukcC+i49x3syvEA163psz1ksqAXRtUZtvqUDdF++LGnftw/AeHhw1VWmxojYGGJIAIa7Tfrm0W1s2IwdT8rUO3m9FzV9xh7ETJ/xy0V1ZzoroaRH0QByDhC5laiUAVZ+NXvFmj7riJyjFjkVpanBpoWE7/3mYbbz1lTxHt/++S+ffTyoSXUFooGgt3SoVr57MUQLtCQOtP5+aRQWu0W3pHhZYRzqF+LsuAWBlFamcIN/o3bz8+8Pk9xBMhWNEgd/Shq47bEBEjoWPAJMqpNwVyO9TB+YStJJSujXAW5EL3iJos2FN8d6gV4LYQ6hGLYwV8D5u0TTlyKhaDJ6yYg1N9aHjW9nVf7gsLAbtI0J+K0QGxPY5dKAAmvirFCAJk4MVEPYBiqTqflHj5b8lD8uhZJ/y15ylfybqYVcYfKQ07lx/EA+1qx8q7ke0QFLNB1X7nvq+DMPkA97wwV59BsS8ljeWJm2JOQGYGUiSJQkKxNBoiRZmQgSJcnKRJAoSVYmgkRJsjIRJEqSlYkgUZKszM6psvdmS0W+C2Yc0hyxtvidQXmDjRfZ+uj0Sx4ob3Fs/q8XdNT15hYr37Vm0oFXH1ei+r8KvtgvUijVMF3ENnCYSXl5lt5Wz1cOyx3HwPrA+AOwKSWcZxI0BN229+mU0yJfkQEO6o90zcrBVHHmC9DJriNPjIAZeegLvdauHfHdNkxJQwldA/AAv7DzgrrN/D7iYddnwWmxLhl1puRvL8leW+kuY18EWE17QQy7LxnihGBarXiBzMPZsKqmpUQUxgqJ0ryFPaL/uersub7xm/nrB03w55EWMbZ76LuTGcN9M5VT/ad4Jx3mAaVQTpTcXzAXH7jytGbhZL/COhuGGdnl4FSP5J6xb5U0mf6xzKYu/waPsz5bW9XP5rUR93PdmxGNCLkhBw9PD3uhXxrbRLt7CCGKKqT3CUcgSmxCgnMs2Sdn4JNq/nPCt81JuTq+twnsWkKQBnKCFPpCv33dhj5y/Jtrl6oKmgy2scgeoF70W9/GxTcrcK2n9WqX0O404iL5XOYuotZSGuh4cKLT6AWZGCnZBsanPUKDzZp/Es1fddZ3RVhAL+ZCPHMkNGMBty51P1dLdUtU6iW5Tz9goevegK7sbxCYmsEU/qw3YgFKAEsTMxegSr5N29rRtvefAxZ7TWgSXTmw5TNqGWZrbD+WZVinGIuK4vQQV1ImOIjTLhCscFQbSwepedWXeo11FTGwZKCnsUOl+bXB2nI71X4z/my3tadtvbPUSCQG96KBKmQycEoAYRJwwvRMz8Gu6C00+l6z0bbQYKTB2gjcQhMyckc3DBoiDsWzxSGR89nmHcbfDk73XfFK06FGbfo6dKwkXoiv0yDWy9lSc2f8PnK3BzuXIhHGyRLhJZlKHkUMkDqFJfrhLo43RK2UFzLriKuns1gw+PNxqDiNyMlTAOpNPusVqCpi21D44i54HfRy+I9RKeu83nnvfuXhJPa4RS15Wg57ADNFwi8X1efo59xK2OcgMzkawrMR1eegGmbEZ73YJDb4+3CJpP/8/MYEV4f2ASmNjv0VuKhSJnX3D7+fuftHXC8Knxp5+U+GtdocMtaviUXvfr0H84BPF058QPMxBsPAAiNuDMOB6CSg/+hXRc2mm0Q1SKbhctqTrdJ6n9dmhmV3GZLnpOwVQXUafj/TacR13tdsgVfsOb1S1qS88vIg6RW9hi9bLODFy6RE8EU65mbi0qn72m0SLXNoOSyo3ZgLVMeEYPczHUNc59sxnm5EOIHLjIz5akpzscD/s34TMkctBtjEQiEvCo/wdXVOug6dHpy5I2TrPjO7vTRJIfwBCEkhwlAaiDThRKTCZ3JcH8o2rmfPDXrbu6NHwKS33zQWR268ofoY/0TdyTCdtDMM6gAuTIyRR8WAtBKeLZSo1VANUsuKIYZ/3SYf9HPaqPdltkn8uj480U8ET5TBfvEEs7r1n0q6A16LSDVw8SRM4BceYcLfBPnF3Z7NDo9V3g2Z77TxnZ95tzbUxseW2GgNBh78MSopxNAdxdEQNsEw1CtidQolWhRe0oRyUAvygdT4+gAsowD/X5BTCpNDRyERpY/nRq2oAue1GGAOKMCgjjUAjOjMKpPfuKK3Jp7UJunbHDzsXMV84tq5+kWLuZoN89BdvudPCY6KUnrV6Ch/EliZqrgdQhFCZQZSNqQdQ0A+AIYnDbhTQZNT1SlO0pUpuF6LKQROteu6cAMPUn8BcM5ALdzAPYqzXxB6k+R4gtCbhJ9E15uk60XS9SaLrSdJvxGhJ8kWm2r7ylUg5ugjf/us8jenRpZuXjP7NT7WOafhn1T5Wy9m7/AqUtzuc5eYck3aPQtb+nJk/t1cp+UlXTMBveMtdKc7ir0ACTp3vhxHCDmygVQckeBvp25nda5XO2TGbZuVQdPrUc9X6yYSTEfpTvv6ox98lQbknHiiaNDke0k5nBCls5wo7f7CkADkZLvgtRZgYqQDQHTWO3UMwx/FHMOI66Wx4I21mI+ohSYXVwwpIp5q/sfiKV3Ox0DxtB5nPH3/+b94SvhH5i2pNlHzLHDuhujMxuXdlvEQT+kyTTxECifOSGFV6vH0uc1c8aJXwUHLW3R9UzHz8mge4il9kYAHlN5/5kIp/3MpxlP6GGr0eOrEGU/fayf4CSY/J6B3J37IbG3K1HiVKor32fnOMyY7LzWChylB+meuKcFsLeTDeCOzVSQhNwCZDaGBR4Z6hAYeSWZDaOCRZDaEBh5JZkNo4JFkNoQGHklmo2doDMYajIrIJkZXz+OBsZbIm5OtDejk4ulIIkQVSSfT9/wZPjFj8wldtpAHnwxn88ni3Xd+nXz/Y0DO7h05W4bcpZ7zKxcuiZMpmLVR2AKbi5cwHt5RqEKXME6pkeHiQlCem0vDlq67iHgVXaKddWSUSqlQRMARC14sOPL58mdaJNzR+/ur25nlw+aoTw99PrkGK5PaortapoIC4OTHNvRRJgxUQK4WrKIDhX+kcg3x3UGGAXc58lMyaC4hyxwxCtk2EgvGfQABtINIkDJZZBUiUQ2SxwXLoikDoDV+OQLWOy183RK/3k0ZX/gqNQpX7dFIfHnsh+O2GIjhKnhuUCPH38qcfCtUh1JJEgPipFB2i4S3jCW8CLdeCl3CcnUFUZIJnxDAKqpyiUIEtaAKDUQalUwSq/0dEybW3kM01SSTH5bpKqA8LdXR2z8P4/L5D1zj8oEP5Lg8wuQxp8urmu7yaA4nsX+9ltifzNswaSMw3DCJ0M0lh0mEbi45TCJ0c8lhEqGbS+ZC0V2qRN6dVE+0d+KIr2sO1wkrlAsdHp908PrO8V4Te53vZzvy0S3G4AqjPnp9jCbGy8PgOpLNkyZarp0uOmywcu2Hv3GVa+/1rbTLtR8fsvhdWodQ3zlHzJscH/hrtAmUaz/wjav47fpvJlBzesOGDQYo1x5wzsnj2a9pYcv2318Z2WEJreKokcq1L+D0zjhT8I5ByrX/FH4pX701xvN3Qez0HYkZS02iXHscp3N6mYJzBMYs13427HxezuneXruiH5aPGHKMWpfW2OXafTmd19I4zjPNcu0HKmTVc3Bf6jVt3zrZn5ctqNWqDF+u3YnTc1ZG9xy8qdTKtXeQfai20s0xeMe8VeO7hG+makMYq1w7lkOwlmsHgZDIU0ex5an/S+Xa6WUxjFyuPfw7V7n2Bt8NU669yvuQFYfmhATse+8X67y63BDey7XTxc14KEEe/J2rBHn776VVrr3S+Ozq8yctDl3dtX2rJKfBu3kv106PETxg1YATq0rf/78q1z6aLYz9J8JfLBF+ejUhg4nwC35wifDnMmMnDyL8f3Txcp9Tr73vitGO8bI1aVR58pKdNuc5RkLN8q/fuTTLHzFjZGmI8K96eTbz+vWm/qvcnnZwWyXuYHQR/jxOVHINGw055w76HfzhT4Q/2ibv5zf7W4RMrL90T6PtTtTS9cYU4d/I6bo047jO4CL8XeYO/eVTrao+GxMnPYuocJW2q2JwEX4syrCqqIMoYzAR/uyTV09LOouCsms1/nrxQiPqzppxRPjzOMHJ/W5AEX6PYz8O7v9jjs/Gj8t622S6U6dpxhPh38iJEOjTRN42hi1vE3s1afqjc57XultOmZeXvWhF1RHADvHFKxVgRGfmbBYsOLcp2CKRF9xPaGEAxFXKhEExIIeDVa6V0XppOdArLLK+LVP1oJBRV25fQ7HgMkyTJCK46ELD9yLAd/SPkh6sqlrwWuAqgQXyqy9V966Xlv1StOywbfNq/eKpEtfFqt1FS6HogbGkxeYBeuchenVEqHrEcLP2h36FsPHuK5UNUsnQ+WXDtYsFXqMqB8+4vtFhy5FoIe2EFHYj4oQUfp132V/w/TM4v//cH8ZOlrQtU49ECb6yXCmVR3Fo24S3MVuUdHG7z/bLle9psi60o7ZV8gHMtqq1lIYzRnM6Y7BxnMEojq3PjoVbUJxSA4YvSRRcO3Vx7wymrGBmEdtM2KJzVIxSJW0mbNlZPVSlwX5BZ6s3oi4+qREa5r/k0e7AWbmtVlPHNfgBkZokBaL+ZYGpNJzVg9NZ3ibRc+Cj9MpWqxUsdMclqAaqOXrQ+KmazID8hYG7m9wakf6h8v6STJVL6I7Z7kQgh0c9LzJ0oVqIu2/7oV+WSkRyjmxrbbs7GSeOKUSrVp4+EfCsy0KjTnshAItJAK4jAIChRa9MlBzK2EUmGrb0P2rZZoPnXsu+w2aM0eyjDWWGPewLAZByAbDe/weZaKb8j/Fx6IW5DcbHiRGc4ODjtBacKGU+zsot4XU/T34UOnnsnG1r2qSsNQE+TjSEhHV3s4/ghPFJBXPmzDEAH+d62sstdk0zvSfXKNPyW4XUZSbBx4ng9I6/KXjHIHycjnVmnH6XJwzbtfuPUx0+db1oEnycLpzOaW0KzhEYk48TE3M1o4PfqtB5WwOnnukcet6k+DhNOJ0nNI7zTJOPs2i7W/uVjd/5bow+tHTYlzYNjczHsef0XAWje65U+Tgr5/VsccpOGLJg185jHr+tvGoSfBwsh2Dl44BASOSpY/8v8HHuiZ0DRzxUiZcsz8nq9H7RDCPzcdZD7Fn5OL8xU9pS4eN8SR1/qooqICTj4qaTr6qfFfHOx6HPzXngmKyDyLFyTJZRkeORj/Oumvq9v9my0O3dFrUo3+j3JN75OPQYwQNWv3FiNc2wMdfYfJxxbGFs6EF5U3noetGuA2GKf+73fkHdKemaAM9O+qkk8THME6Z6bF808JGr4+HpMe1uTpIrfspUKIGaeYPgJ6BLRka+WZIU6R+yy732+I29Rjuzvh9zJ6ewkdH+LCNBCAsrfBQL0Srp5550bJXapyH4NA8/HhcI7EXwH+38Z7SzuM+Dj8dtImUK4DCZNADE9eHk4zC34q4cz+ZK+/xUHzuPC6IVbe4d3Hwy0YemgoF2YGU8uiN8JrDCTZRDVsRgwDh8xZeSB/2QfDGUPHTNDsqweMkdZGSaL0SJ3FwvAvUJbKh/n7h1dRU3M++dfRwWZ8SHrCny9KVV6SOv84lN+uk9nk5sFrPfcHnE/i3dIxPZPJI+JzXhWeBHvwVD7dWLpzXrS10T9YXkGQ0zI2OdXuI3CNVg1MfrXSaoYcqL1WqLUSqkUI4RUgKjsb/D0mGNZJBapxyEfkSyfLAyaohMqr0J9erM5Vz8uq671S4gCEEwy6JIfVBUPeMtQn4JQgTncQj5JfiPLr8UOvFWl8gTTz0nnNmeYvEqLI8uvzS+54oxN+L7+Kflpi96mDajC2knD6MWW56J/sEIeSY2T1tD9QDCjUhvWT3tlPp3ZvPQ/TEvE/OGVM4vibf43w0Dfs2Hfl2KSnlmw4Pmb41SeNIa1nfsrwbfIW5QQcAo+B0LNcnuHhGjECpRbL6y8y3obSAh0iSo0Ilru8sN2p7rlBK0Lq9G9Qqyl/c5XWYuwp+E0DomDKXhtBxOp2UY1mlkCDYLFuEBFd4yRtvvMd+QfZQt2avnQ5S+lsepZSqMdQc+ghIwkb5aHiZz7TpqcVBG7DPzwUtuDaD7yjwkQSMZqNAKWAhom13wU92Zw5V7kVpfxRyuuJw6l9Opo98ytL44CygQjV2G67MgwaPLpHA2dDMY6ZhlOrCrvDNK3Yi4lOuFqHTv2Rxr4sSQPoltSO9673aYueK83/I9B8qO2Vl3EpUrGxkjj9YIYV1Z6rAOxyu2mtaOYdHRcCoiUSiI8qtyWDgPine7IQGmFxxkewVEvqQr3R60jE2vAVLdvFHF8JqJBXGvS8ojs8Gq74K+qYYvjPyi3rZ2z5fcehI4c8a+oXbHP4fTC7wgv2KRKSG96HpJiffw4D3EKs0Lxf0AE/wFr/VjjeEeVGKtAomLvcvbpyN72gbtHbRS2uTXr98ZS8rRugFT0v4ED7VzfnPQSkxgORlrgXrssVlDnSEu6al2it1pnnlzRfP8Z//Y0S6kD7VdwrsNBX8vTvh9jQM/gyFW0kLdeI+AbGfwTdB6P7SKu8WMFCVdzXclQkGuJ2KAGeCKdQhigJnMNsDorefjovVe6ev59HTq1jTp8B6vFf+O6Vrtzc/BhfR88r5e/euLy1BxjrRxhR0BVg8L6fmMzr66YNn6XwJnaypPfd7i5dBCej5RTQX9H3//22tZXp58e/8+Vwrp+czNauo8O/5S4MKz/hUP3W30qpCeD6LyL6ltiKj8SxbqRVT+tSBMt4/WbGHbY0bw2E8b/q1x+sERYLIkTBbJ5Va8lz8LyVwzQJ65SwHRsCJMdzscqtHppxueqRU1/pFDHrcBJmvCdGXI09//7pEvSh0a2Hf/NafzwFSBMN3cMu90s+UXAjf4tRa0+ivvNjDZEKas5B8LPMPk3mObtTrzY55/EjBVJEz+4e2k7ufVogPSJ5nTrnVZC0y2hCm5uYUi8fZM/5xOX++lZcvnAFMlwtRum/TKP282BqfciVt059iZ2sBUmTBNe3XO6bGsfHD6qTN/5w+8bgNMdoTpbOcdF7/kVAtNa9XmYtyLAa2BqQoJb8PRZVYduxR44MyCBu+2PzoKTFUJU/kXdx60yRwi2lH9+paPV1v2AqZqAlYZKHvCNGXdgxdbIqYFbO57pN91ae0BwFSdMPnOyRv88515AZNclic7Lup4CpgcCNOEVPXRNXe6eE255D9AdeTEXmCqQZjcpm2JDk0f7LPGtezGvr2drwJTTcIk3rrj3DvF4+DJdT0qiKb2gApRjoQpoorZ+vN/XxLNPtP4zI22jZ4AUy3CVNWpvbtGecp7efOZ1XZ9fQzbRm3C9HnZyC6v+n31Tt31SLjTLHslMDkRpg7Z8og7jUf4TJeOrragvX0uMNUhTBXKNhZvrjjCd9L0uBu5i6rAzxISpk9OHmfmzmnou3ZWBf/POy+EM4Sq6gpYhKqsljc817NHc88V/TWzFuzPUfIgVDWFLURVi96zefGxU+KlG/NHnKk1kioaby4eHq9QShGnL9gS4EbEHULyvCxWpk4dCxJiEISICoA6HregByjkqzFn1YRBV91wZ7HgZZkTML4idg7DQXp8owxj55CzgGbBaVT8RZDfrcwbP/XCnm6ida+6De26ZFI5Hg+j8rxBCFf2nkOApKh558nGYsH9MowNQq6UrE2EDDQNjPcklcESR0q1HDt+At5PrsCmTmQ7EUpU8MS1MlYeha5g57Dz8LQ1+WETj4bdG7xUQi1Daqn9HCZ9vMDEe2kaF6zFcMB1sYxReBlFH3XUM5NzJTqatMBdmhiJRhgrGSITggREW8KanWfe4V7sq8pLP4RsfH46Z7GZkFrMziKSeCyCaUha+PZeJVeisfugvJfmhjV2BttcT+DqkoeiSMKfjA4kEqwZK6f8bPdcFDq3zIOJ232aUk9IFusIFg9g3eAECzR1YvyZyjb+/KfcUCzlBnqGbjDlBlHZExzKDfXL6jVW6qjc4Pgu5dsA1zOinDVnek0/ZOHC42BJj0A8KDd4QYRYD7q3K6vXYFlc5QZB/eTt80ff9Fx1qOm4zP4rrxhducGVExXQbkyUZWo45YZK//Z6d/T6u7CNWQtcBe+7Ubf8jancUIPTdbbGcZ3BlRuq98tybR6f5bXolvnVVv1ox3sNr9yARRnWo/cgyhhMueFCxsHsOYPahWV9fxB0fY2QqqtjHOUGV05w6tPAKVXlhji3T773Uw+HLfPY/aXa+DLvTUS5oQYnQqBPE3nbNLa87dQSSfC3DtX9xmU4mT+pn3yAmo0GgxxNGOkTrPvCgbe2GC6sJkBmwmCGGA1+BXlXkhBgq9LgGgUg2BLtFeZeROo2SqfEib5+iX5vZhZNWvQoi9vO8gReFpeRKnkCD1S31G9ZAXuBQhggv92/9oPape7tEpYesWjrpK9mA2i7SfBuxAEF7HJRmRI9/vFQ87YNBCge1QiFTcWCppZ68Y4dMIDIduEilatA8wV29GA79d2OF/e/HvPcVkVetck2P6oOj6UPeTOzWxaYigIsx/na7L8G9PHJvvvTlPanjuTyAFhdTsBAizJKEoWPGfBvWgnYfphyWBYcvrTGfMkRVW2f399a+5SH//oJ3du82vkwyw4TMgHOEA+PV8m0tGcsqfXyjnT5pXHJEmCaa09tSjl9d8hfITmnXV2aDbHx5sG1Npyu/clIrkXlx7N/1ivVqhBcKJ4jnbnA502ixbMOfr9LNt57HbrLm77hhzhUhV/lfe3OjYhJ2ShSSbYb1sWIgXE628DonVf95rB22zyzevdzmN5jP3XVuiokv2rg0ic8ySyD3HqZHhXjm4uUsQBynIKLPUZa8BhsclhQKB6SSnUaEenbdkW/MMMdyL/SNRsBjX/xTwD0R96IAvIDQOOf8RPr0R0dV9y8gguBApcbYBkkmG0o44QuZPFzgB4ugAT/h8c0NVyNVibKWNRLqtfO+v5Z80Q8TXn1090Z76h7J+V7YKQDZowhrhcVY2r73bQdvGmTaE3cs+fSJrOWlTDGzAYwp0GYzbwRJdPTGmMwl3RJuGEh92tXt6KUcWpZVALWPDBOFBLLFm9z86Y/3+63paKgTq+Lba9RT2QUPJc5/aUYeadSNiNg64OC7borBhsREmawhYQzFeu/adFWGTLp9YsgtytjxJTvZhMhwziMwtAEhQIRC9gSZlfyPkiExdqsPG6YRCGX4o08Ua6JESrBNEWleySg79JzvCfDC1Szrsf2nMWCgRBda9TmWzpAN7jEfd8+AOPhwVVXmRojYmOIoRuhJLyzKKO27/y8SQl+i2fWpqbP2IOY6TN+uajuTGcllPQoGkBuAERuJSplgJVfe/zEmj7riJyjFjkVpanBpoWE7830VTm1G23y3z3v5aCq38v/Sj3mTjQQ9JYO1cp3L4ZoBXOi5f2TQRMs8kUtuiXFywrjUL8QZ8ctCKS0MoUb/Bu1m59/f5jkDpKpaJQ4+FPSwG2PDZDQseARYFKdhLsa6WX6wFSSTlJCvw5wI3rBSxRtLrw51gv0WghzCMWwhbkCzt8lmr4ULcuZazm1/Zvm3nMq3frz24dqF2gbE/BbITYmsMulAUUwJxTe2oEqlW2gMpmaf/RoyU/541Io+Vf/J+LAP7Lkn6MW8pkmDzmdG8cP5NG/OfaUT9vnmdrlw8NH5uIPPEA+y4wL8slmJOSzeGNl2pKQG4CViSBRkqxMBImSZGUiSJQkKxNBoiRZmQgSJcnKRJAoSVYmgkRJsjIn7w+ubzu1me/cBX+2DP+0exmD8gYbL7L10emXPFDeZrP5v17QUdebW6x815pJB159XInq/yr4Yr9IoVTDdBHbwGEm5eVZels9XzksdxwD6wPjD8CmlHCeSdAQdNvep1NOi3xFBjioP9I1KwdTxSVwf+A68sQImJEn67fN74jvtmFKGkroGoAH+IWdF3Q0sJt9/Oy5oTOeNe7cfELH0yXZayvdZeyLAKtFZYlh9yVDnBBMq6cxN/y5sKqmpUQUxgqJUtoRl6n7ct6F7Ci7oFXNa+PO8EiLGNs99N3JjOG+mcqp/lO8kw7zgFIyJ0qKsszFB648rVk42a+wzoZhRnY5ONUjuWfsWyU/7NJrLNw8IHiPi/rquWwPjRH3c92bEY0IuSEHD0/P0nM/t4l29xBCFFVI7xOOQJTYhARn45tZuaEff/LLKdds0dVh49xNYNcSgjSRE6RkPfd1G/rI8W+uXaoqaDLYxiJ7gPqY5fybIj7fPyPzqWeg7980Lh75XOYuotZSGugM5URnkHZPdw7bwPi0R2iwWfNPovmrzvquCAvoxVyIZ46EZizg1qXu52qpbolKvST36QcsdN0b0JX9DQLTEwjbWW/EApQAFoHQb6jTbZt2zo1djx+VXxU6/tuvkS2GH9xFXezE9mNZhnWKsagoTg9xJWWCw8JDEKxwVBtLB6n5Lf3GuooYWDLQ09ihepLwMLh6mp//hBavkyedH0EVc7cUg3vRQBUyGTglgDDlccJ0Ws/BrugtNPpes9G20GCkwdoI3EITMnJHNwwaIg7NZYtDIuezzTuMvx2c7rvilaZDjdr0dehYSbwQX6dBrJezpebO+H3kbg92LkUijJMlwksylTyKGCB1Ckv0w10cb4haKS9k1hFXT2exwNLiBFScRuTkKQD1x+Z6BaqK2DYUvrgLXgf5LQPLzjox/ceWgEnb6u16E5PVhJoiYQ9gpkj45aL6HP2cWwn7HGQmm0N4NqL6HFTD/GauF5vEBn8fLpH0zUPyhZkNrL03brl0pOyUE/eou3/4/czdP+J6Ufg8PNGycXiVqZ57kzN9LP5tVdJ1E4jPG3MufEDzMQbDwAIjbgzDgegkoP/oV0XNpptENUim4XLavl7lphz7bbPf2rAl2UPbfA2iOg2/n+k04jrva7bAK7c5vfKHSXnl5UHSK3oNX7ZYwIuXSYngi6658DhLsKXzCu+ZOadmtK0W5kR1TAh2P9MxxHW+HePpRoQTuMzImK+mNBcLPprrNyFz1GKATSwU8qLwWJYs3tc+rXXAjOe96o3MXyilSQrhD0BIChGG0kDksTkXIjfMyXF9Htu4nj036G3vjh4Bk95+01gcufGG6mP8E3Unw3TSzjCoA7gwMUYeFQPSSni2UKJWQzVILSuGGP51m3zQz2mj3pfZJvHrevBEd5kTPFEG+8UTzOoymeO6njvgtYhUAxdPwgR+4REm/E2QX9xyozpy8tvGXntjY1vWlQ+gDm3mbImN1mDgwR/S53ZADN1RHA1hEwxDvSJWp1CiReElTSgHtSAfSI2vD8AyCvD/BTmlMDl0FBJR+nhu1IoqcF6LAeaAAgzqWGdqO/NvJr9xRW9NPKlN0rc5eNi5mmLOtXOVosV8Phvmobt8z58SHBWl9KrRUf4ksDJVcTuEIoTKDKRsSDuGgHwADE8acKeCJqeqU5ykK1NwvRZTCJxq13XhBh6khiP0DNTCDdyjyLE4wdSbJMcThN4k/CS63iRdL5KuN1lsPUn6jQg9SbbYVNtXrgIxRx/5226TD+XcPH5YtDjmzd6jP22sRpW/9WL2Dq8ixe1eqp1Gm4UMDlv2r/m3sGMPTpR0zQQKSUJ3uqPYC5Cgc9TiBELIkQ2k4ogE3ww+Lhs4N8R/juXpiGZO7dcXQySYjlLSr3dTK1ReHXBw6KdmfarJSsrhhCjlcKKUbXGCLgHIyXbBay3AxEgHgOisd+oYhj+KOYYR10tjwRtrMR9RC00urhhSRDxd8D8WT+lyPgaKpzLOeBr2Xzwl/TN994agFq3+9V4xq5KZ+s97N3iIp3SZJh4iRRRnpPi11ONp8uw+XV5NdQ1e4XcvZ/TqvQ15iKf0RQIeUArjRElcmvGUPoYaPZ5GccbTMG08XWjycwJ6d+KHzNamTI1XqaJ4n53vPGOy81JLKhYBpwQNLLimBLW0kKfxRmarSEJuADIbQgOPDPUIDTySzIbQwCPJbAgNPJLMhtDAI8lsCA08ksxGz9AYjDUYFdF7uDT1PB4Ya4t4c7K1AZ1cPB1JhKgi6WT6nj/DJ2ZsPqHLFvLgk8VsPlm8+86vk+9/DMjZvSNny5C71HN+5cIlcTIFszYKW2Bz8RLGwzsKVegSxik1MlxcCMpzc2nY0nUXEa+iS7SzjoxSKRWKCDhiwYsFRz5f/kyLhB2b1zhZc0pdz9n1YgSPaiaw6i5bdFfLVFAAnPzYhj7KhIEKyNWCVXSg8I9UriG+O8gw4C5HfkoGzSVkmSPGonQjsWBeeRBAO4gEKZNFViES1SB5XLAsmjIAWuOXI2C908LXLfHr3ZTxha9So3DFgEZim7nlT9hiIIar4LlBjRx/K3PyrVAdSiVJDIiTQtktEt4ylvAi3HopdAnL1RVESSZ8QgCrqMolChHUgio0EGlUMkms9ndMmFh7D9FUl5j8sExXAeVpqY7e/nkYl/eW5xqXt5Unx+WlJo85XV7VdJdHt3AS+zO1xP7feRsmbQSGGyYRurnkMInQzSWHSYRuLjlMInRzyVwo56z7md/WnRFv+WPCiGuCrg0L5UJL/ty+yOtx+4A5FeNarQkaNZoxuMKoj2xIdDFeHgbXZWyeNNFy7XTRYYOVa99hyVWufSxTSobncu0PelUqWzZlVEhaUvPU+bv6dTGBcu3bLLmK32YaRzCDWnN61apVBijX3t+1YWT0tNPixZMn9hxWW7zQJMq1L+f0znxT8I5ByrVfOl5r/WLNNM+p36LNIl5bPDCJcu3TOZ0z1hScIzBmufZVFjcVe3fleG6TXT98W1HJ1qTKtSdyOi/WhISCjF6u3f5GL2G5obdE82//dPpQ4DhHI5drj+L03K9G9xy8qdTKtQtlv1Zqst/Vd3GneLO1Fe9dMoly7VgOwVqufaxW7Gk5W576v1SunV4Ww8jl2r9acpVrf8hMaUulXLvS50KfaUv+8JleLzroX8u1O3kv104XN+OhBPlnS64S5C/1k03Uo1z7X5VblV3Rf5vP1g5pZRq3kU0qeRemYUWPETxg9ZATq78NG3ONXa49nS2M/SfCXywRfno1IYOJ8Hez4hLhb21VGiL8HYVjGh0WrhHNP3T3206zrrd4PG3Oc4yEmuURVlya5f5WBhHh/+foDY/B2V/D1pb7mnDkSL8Ao4vwd+FEBbQbk5k76Hfwhz8R/sDTZ24me57zPDjfwtGt7uezJiPC34TTdULjuM7gIvw1O/6uyNn/LmBqy777h167+p6202loEX4syrCqqIMoYzAR/uGKFX9+epQbtvJHlNXYsKgpJiDC34UTnNZWBhTh/7t5b8vtrb8HLrlYPv3zoSTq1Md4IvxNOBECfZrI21aw5W1iryZNf3TO81p3yynz8rIXrag6AtghvnilAozozJzNggXnNgVbJPKC+wktDIC4SpkwKAbkcLDKtTJaLy0HeoVF1rdlqh4UMurK7WsoFuyH+EpEcNGFhu9FgO88Zpqk58GqqgWvBa4SWKDJQv3mf7jUsmrQ+iM3uyWftqAVOitO7S5aCkUPjCUtNg/Q2wvRqyNC1SOGm7X6pVAV8O4rlQ1SydD5pXSUm+rrl7reO38/8jRhU04c7YQUdiPihBR+nXfZX/D913J+/9+NnixpW6YeiRJ8ZblSKo/i0LYZXbve+k1XBL5To3Ltl3Ub1YDaVskHMNuq1lIazpjH6YypppH+CPTZsXALilNqwPAliYJrpy7uncGUFcwsYpsJW3SOilGqpM2ELTurh6o02C/obHXch9GCldELglYMSfP9bUX/5dRxDX5ApCZJgah/WWAqDWeN4XRWgkn0HPgovbLVagUL3XEJqoFqjh7kOHP2lJH2fwfsXTD093lVJyaWZKpcQnfMdicCOTzqeZGhC9VCvCFLzyyViOQc2dYOdXh8EycHv5Tle/18WlY6ZdRpLwRgBQnAdQQAMLTolYmSQxm7yMSxF3fSUqVm/nP/qH+336w7SbShzLCHfSEAk7gA6DFcm2iu/B/j49ALcxuMj9PJmouPY2Fd2nycv553Ew/t9S14nmxj35i+zioT4ON4WHPtbrpbmwCpYNq0aQbg41jN2DvFu9MN7+WTnBP+riM5ZxJ8nEac3qllCt4xCB/nwGBxbL97PQKm9n8rqvteHWsSfBw7TudYmIJzBMbk4yyLiXRaWy8+OHXGtLONbZ0+mBQf57sVl/PeGj3ZNSE+Tv6VNe7JXjO9t0zziht6vEZTI/NxnnB67o7RPVeqfJwfHw74NW7UzmueXfukadK8zSbBx8FyCFY+DgiERJ666v8CH6dC2cbizRVH+E6aHncjd1EVY/NxRltz8XFimCltqfBxxo05FPPhRbJo71zPFhNsnV/zzsehz8154JiMtObimKisS4uPU3nHa6VZa5n34jXnPWw7Ro7lnY9DjxE8YBXDiVU/w6Y6xubjrGYLY0MPypvKQ9eLdh0IU/xzv/cL6k5J1wR4dtJPJYmPYZ4w1WP7ooGPXB0PT49pd3OSXPFTpkIJ1MwbBD8B2fI+OXmcmTunoe/aWRX8P++8EM76fsydnMJGRvuzjAQhLKzwUSxEq6Sfe9KxVWqfhuDT+EBhLnsR/Ec7/yl3Fl8WmZ+wiZQpgMNk0gAQ14eTj8PcirtyDZsr7fNTfew8LohWtLl3cPPJRB+aCgbagZXx6I7wmcAKN1EOWRGDAePwFV9KHvRD8sVQ8tA1OyjD4iV3kJHNtCBK5OZ6EahnsKH+feLW1VXczLx39nFYnBEfsqbI05dWpY+8zic26af3eDqxWcx+w+WR22Z0j6xl80j6nNSEZ4Ef/RYMtVcvntasL3VN1BeSZzTMjIx1eonfIFSDUR+vd5mghikvVqstRqmQQjlGSAmMxv4OS4c1kkFqnXIQ+hHJ8sHKqCEyqfYm1Kszl3Px67ruVruIBX7lAJhlUaQ+KKruXA4hvwQhgvM4hPwS/EeXXwqdeKtL5ImnnhPObE+xeBWWR5dfGt9zxZgb8X3803LTFz1Mm9GFtJOHUYstz0T/YIQ8E5unraF6AOFGtPjg5ycjnF9uFs9/k3vuc/e9u0riLf53w4BfxdCvS1Epz2zQhTqWM0rhSWtY37G/GnyHuEEFAaPgdyzUJLt7RIxCqESx+crOt6C3gYRIk6BCJ64nm4iXrLxXOST79R+KIe0z/+V0mbkIfxJC65gwlIbTWnA6zdmwTiNDsFmwCA+o8JYx2n6P+Ybso2zJXj0fovS1PE4tU2GsO/ARlICJ9FXiq0/Px699Hzq9dYOM7KWjBXRfmYckaCQDFVoBCwFtswt+qjtzuHIvUuurmMMVl1Nrczq1SjmG1hdnAQWisctwfRY0Z5omk8LZ0M1gpGOW6cCu8s4odSPiUq4XotK9Z3OsiRND+jq2Ib3rvdth5orzfsv3HCg7Zmdd6nkQq8gYebRGCOvKUod1OF6x1bR2DIuOhlMRiUJBlF+Vw8J5ULzbDQkwveAg2ysg8iVd6fagZTSFaU43b1QxvGZigbVZSXlkNlj1XdA31fCFkV80yH3fooylB0Mnds1pMLH7BKrakBnLVywyJaQXXS8p8R5g1RhileaF4n6ACX4dM/1YY7gHlVirQOKS7d70TmOns96Tqmxssz7/sy1jSTlaN2BK2p/AN6/G+c1BKzGB5WSsBeqxx2YNdYa4pKdyd/QbXmWKzH9uK+Gw29s7HaO2S3i3oeAvwwn/B8PW9ybhZzDESlqoG+8RkO0MvgnSI/SKu8WMFCVdzXclQkGuJ2KAGeCKdQhigMlkG2D01vNx0Xqv9PV8RKnbenm6fAvc1dB/bM/z5dWF9HxcnzcUJKWuC111wfZvzQL7zEJ6Pm0bdRodu+Kg57aLjo9y1zmXK6TncyokeXrmw8qBc5++WCnZGf53IT2f1edWPnIcPTto3Y4W4+9VOd62kJ4PovIvqW2IqPxLFupFVP61IEwtF1YN2LDtu2ha7e+HPO+mrAYmS8K00Nw3ob23PGCmz2/1T384Pw+YrAiT1cw1oeH9vUIWTth3L3zMNE9gsiZM+cNDlyd8WBKyyzatb6cX76H6YgXCNHvtyoPJYTY+B2ZMix/Yq2UAMNkQJo+frvlWfv8saGq5cxcyWg44AUwVyQeuuXdxStyN0PVrqrV/IW1nCUy2hCmm2a/dXVUtAhddLfsmtvfkEcBUiTA1jreq1l94wC9L/M1i9O24KcBUmTCpWniGC1wv+x0oe85vtPedVGCyI0ztvo4d61NeHDRuebDn53FtFwJTFcL0eL3CRhrfOyR96sdzZv/2eAtMVQlT9NHH5nuHfPaZEH/r7fW+c/4BpmoCVhkoe8J0pXeTbxVe/eaZvXpl1IJ1D7YBU3XC9Orp0SNBVmOCFg70XmrbYh4UUnQgTCN3zogJtunqt+VwnLSnh9QCmGoQpu0O5R42vJUQsjDraq3RFxceAqaahMl69F/dhiy6FrTFudHeVr5TVcDkSJjsHzxufGbOi7B5aqvKEZ6VZgNTLcI0uZdF8MSkn8XzU4e+ihv9yQyYahOmepGup/Y+Ge69vO/73fMc2kOTE2H6RTTz15Euf4ZsHyGsVCnHYREw1SFM/o01v90dXtP7tyGXWmVVSXoMTEKyE+05ePRKxsiQrHZ53rEeDmcYQlV1BSxCVTGvlPva1Dwbtkw2reHGyfVPIcKGvkJV69lCVLXoPZsXHzslXroxf8SZWiPTqVNX8fB4hVKKOH3BlgA3Iu4QkudlsTJ16liQEIMgRFQA1PG4BT1AIV+NOasmDLrqhsMSVhVOwPiK2DkMB+nxqQr6FdAsOI2Kvwi6WH2Fu1Ovtw73XTq29Yfmp+5RpehLdhiV5w1CuLJ3EwIkRc07TzYWC65U0CsnbhMhA00D4z1JZbDEkVItx46fgPeTK7CpE9lOhBIVPHGtjJVHIVHs9/jlxkkhwoAlDX5/3Tky/iGVPq79HCZ9vMDEe2kaF6zFcMB1sIJJZHLMo456ZnKuREeTFrhLEyPRCGMlQ2RCkIBoS1iz88ytruw4PN/3vCgt5tXm1629qtOYhsRjEUxD0sK39yq5Eo3dB+W9NDessTPY5noCV5c8FEUS/mR0IJFgLQ2tOXj/i6U+83+3vH/y521UHcxiHcHiAaxTnGCBpk6MPxvYxp//lBuKpdxAz9ANptzQ0oZLucHOpjSUGxwsLi4/fiw2dPnSLXXfLMttxeNgSY9APCg3uNtwHXRvZGMQ5YZl5pfXTTxpL8rJanSnajPLtkZXbqjFiQpoNybKMjWccsOFoAoBbb/EBa6rsitl1cTpvU1GucGC03XfTTWd4Vm5wWrUml6nLeaHpX8/+vn3227UGnGGV27Aogzr0XsQZQym3NDWcV7K829fxAvnS8z/zRz7wwSUG2pxgmNnY0DlhiW/VMwfvbyJ3+8OGfvqR6x/ZiLKDRacCH3X5m0b2fK2U0skwd86VPcbl+Fk/qR+8gFqNhoMcjRhpE+w7gsH3tpiuLCaAJkJgxliNPgV5F1JQoCtSoNrFIBgS7RXmHsRqdsonRIn+vol+r2ZWTRp0aMsbqOqRFlcRqrkCTxQvqp+ywrYCxTCAE2K/23b37dlY/y2L6mR02lwzCvabhK8G3FAAbtcZKZEi3881LxtUJVgXzEaobCpWFCzql68YwcMILJduEjlKtB8gR092B6J3JPZ6NQvwSsTek/JTH74ndotfcibmd2ywFQUYI9O3GlQN35O6LSHwqd7uu5owgNglTgBAy3KKEkUPmbAv2klYPthymFZcPjSGvMlR1Sd8OztxUoT/UL2V+v+MmPl1t52mJAJcIZ4eLxKpqU9Y0mtl3ekyy+NS5YA01w7UJXU4Nvsd/7bnk6tcVtlH8yDa79W4XLt6yqmkx/P/lmvVKtCcKF4jpYsW2lhN9VznueOiUtH/rns/R76hh/iUBV+lfe1OzciJmWjSCXZblgXIwbGLLaB0Tuv+s1h7bZ5ZvXu5zC9x34q0aEqJL9q4NInPMksg9x6mR4V45uLlLEAcpyCiz1GWvAYbHJYUCgekkp1GhHp23ZFvzDDHci/0jUbAY1/akUA+iNvRAH5AaDxJ1csKT/FK7gQKHC5AZZBgtmGMk7oQhY/B+jhAkjwf3hMU8PVaGWijEW9ZOAG98NVJuzxzp54aGHY8TrUssTle2CkA2aMIa4XFWNGBf95IvWcp/+0YZuCWgpu7SlhjJkNYJ4MYTbzRpRMT2uMwVzSJeGGhdyvXd2KUsapZVEJWPPAOFFILPf8tfIP7zGfPGd4Xnx6eeP4mtQTGQXPZU5/KUbeqZTNCNj6oGC77orBRoSETWwh4UzF+m9atFWGTHr9Isjtyhgx5bvZRMgwDqMwNEGhQMQCtoTZlbwPEmGxNiuPGyZRyKV4I0+Ua2KESjBNUekeCei79BzvyfAC1azrsT1nsaArRNcatfmWDtDtWOK+bx+A8fDgqqtMjRGxMcSQADQc827KWfFA39//nWIxJaY/jYyFPYiZPuOXi+rOdFZCSY+iAeTCIHIrUSkDVvm1Imv6rCNyjlrkVJSmBpsWupCL84gFoT5DA9Y8rTn5s3JJf+oxd6KBoLd0qFa+ezFEqyMnWi0qGoXFbtEtKV5WGIf6hTg7bkEgpZUp3ODfqN38/PvDJHeQTEWjxMGfkgZue2yAhI4FjwCT6iTc1Ugv0wemknSSEvp1gBvRC16iaHPhzbFeoNdCmEMohi3MFXD+LtH0pUgoBuVPcOp36ZLn+uYtN4d/TT9P25iA3wqxMYFdLg0oOnJC0UI7UG1mG6hMpuYfPVryU/64FEr+2VXkKvlnpYU82+Qhp3Pj+IH8q/zKY6tGXX3WPVQu9BeOyuUB8tG2XJAPsyUh38IbK9OWhNwArEwEiZJkZSJIlCQrE0GiJFmZCBIlycpEkChJViaCREmyMhEkSpKVueB4Vm1nxSffne0UWebZ2ZsZlDfYeNG7KzT6JQ+Ut61s/q8XdNT15hYr37Vm0oFXH1ei+r8KvtgvUijVMF3ENnCYSXl5lt5Wz1cOyx3HwPrA+AOwKSWcZxI0BN229+mU0yJfkQEO6o90zcrBVHEa3B+4jjwxAmbkg/Xb5nfEd9swJQ0ldA3AA/zCzgsav+jql5nmqaLMn/46+bL52skl2Wsr3WXsiwCrKTbEsPuSIU4IptVJzA1/LqyqaSkRhbFCb2XctXWfEvDVc3x7x6xrDy4s4JEWMbZ76LuTGcN9M5VT/ad4Jx3mAaXBnCj1tmEuPnDlac3CyX6FdTYMM7LLwakeyT1j3yoJPHXzry5tHoTtHfPP+nsZ1f4x4n6uezOiESE35ODh6dF67uc20e4eQoiiCul9whGIEpuQ4GQ1DG/Q2mlPcOoUdYZqfLrSBHYtIUgaTpAG67mv29BHjn9z7VJVQZPBNhbZA1TbZ6lW/2z+03dmapOjbarvaU/dRSSfy9xF1FpKA50BnOj0sCETo21sA+PTHqHBZs0/ieavOuu7IiygF3MhnjkSmrGAW5e6n6uluiUq9ZLcpx+w0HVvQFf2NwhMf0LYznojFqAEALYj+g11um3Tzmh73npD6l++Oy5teHDpo98A6mInth/LMqxTjEVFcXqIKykTHMTpaxCscFQbSwep+Tn9xrqKGFgy0NPYoRo99Oq4G1a3/NbbHe6a1svJgxqJxOBeNFCFTAZOCSBMRzhh2qPnYFf0Fhp9r9loW2gw0mBtBG6hCRm5oxsGDRGHtrPFIZHz2eYdxt8OTvdd8UrToUZt+jp0rCReiK/TINbL2VJzZ/w+crcHO5ciEcbJEuElmUoeRQyQOoUl+uEujjdErZQXMuuIq6ezWPDR7gRUnEbk5CkA9et2egWqitg2FL64C14H+S2vPet/vcHh4QFZA9of+3IhfxQ1RcIewEyR8MtF9Tn6ObcS9jnITH4P4dmI6nNQDfOZnV5sEhv8fbhE0rM2pO49Mr2WaJNj5tnvccFUlSPi6zJ3/4jrReEzZNtn+cVLtr6pNy4k5NuYC3nAJ58TH9B8jMEwsMCIG8NwIDoJ6D/6VVGz6SZRDZJpuJz2cXKr/a3++dUvZYD9nciqN1tSnYbfz3QacZ33NVvglfOcXjlqUl55eZD0il7Dly0W8OJlUiL4opXw/Q9V8H3jFLZgyMaDIzKHlqc6JgS7n+kY4jrfjvF0I8IJXGZkzFdTmosF/9jpNyFz1GKATSwU8qLwGFb2+tlxc2/5bPx50aHqnzv2pEkK4Q9ASAoRhtJA5DonIqfsyHF9B9u4nj036G3vjh4Bk95+01gcufGG6mP8E3Unw3TSzjCoA7gwMUYeFQPSSni2UKJWQzVILSuGGP51XIWjndNGvS+zTeLX9eCJZtgRPFEG+8UTzOrSmOO6njvgtYhUAxdPwgR+4REm/E2QX/yniTWmBC74HjS2/NOVPmU71qI2PrbERmsw8OAP6XOrIYbuKI6GsAmGoV4Rq1Mo0aLwkiaUg1qQD6TG1wdgGQX4/4KcUpgcOgqJKH08N2pFFTivxQBzQAEGdazTtJ15p8lvXNFbE09qk/RtDh52rhLtuHaulFrMd7FhHrrL9/wpwVFRSq8aHeVPAitTFbdDKEKozEDKhrRjCMgHwPCkAXcqaHKqOsVJujIF12sxhcCpdl0XbuBBakiZnYFauIF7FJlVEHqT5HiC0JuEn0TXm6TrRdL1JoutJ0m/EaEnyRabavvKVSDm6CN/6+WWl791hNRvbJ37sz9s//SYKn/rxewdXkWK24U3Cbo++OFZrxy/lId1L7VpXtI1E9A79kN3uqPYC5Cgs63KCYSQIxtIxREJdu2rHLPMwzkg/UDq6hkL644shkgwHaUGmX3Va++dFs+Xtj3UcOBIKx5QyuREaXkVhgQgJ9sFr7UAEyMdAKKz3qljGP4o5hhGXC+NBW+sxXxELTS5uGJIEfF09/9YPKXL+RgonnbjjKdd/ounpH8y341Pr3rtZuj+fSf61khUneQhntJlmniIFBGckcK/1ONp7ajD7Resu+27Rv7038BfN7XhIZ7SFwl4QKkLJ0qtSzOe0sdQo8fTCM542kUbT/eY/JyA3p34IbO1KVPjVaoo3mfnO8+Y7LzUCB6mBFWqcE0JrLWQ5/BGZqtIQm4AMhtCA48M9QgNPJLMhtDAI8lsCA08ksyG0MAjyWwIDTySzEbP0BiMNRgVkU2Mrp7HA2NtL29Otjagk4unI4kQVSSdTN/zZ/jEjM0ndNlCHnyyj80ni3ff+XXy/Y8BObt35GwZcpeaDZcLl8TJFMzaKGyBzcVLGA/vKFShSxin1MhwcSEoz82lYUvXXUS8ii7RzjoySqVUKCLgiAUvFhz5fPkzLRJW7H4hUNr8dVjWlzr118xsV5ktElp0V8tUUACc/NiGPsqEgQrI1YJVdKDwj1SuIb47yDDgLkd+SgbNJWSZI8aidCOxIKUyCKAdRIKUySKrEIlqkDwuWBZNGQCt8csRsN5p4euW+PVuyvjCV6lReJZ/I/GbMZVP2GIghqvguUGNHH8rc/KtUB1KJUkMiJNC2S0S3jKW8CLceil0CcvVFURJJnxCAKuoyiUKEdSCKjQQaVQySaz2d0yYWHsP0VT3m/ywTFcB5Wmpjt7+eRiX11fmGpdXVibH5QMmjzldXtV0l0fTOYn9aVpi/0HehkkbgeGGSYRuLjlMInRzyWESoZtLDpMI3VwyF9qyz7nxiXULArZfcLJWf1c1K5QLXT5y/XDDWS+CUxPDr8YeVBxiDK4w6iMbEl2Ml4fBNZfNkyZarp0uOmywcu2rq3KVa49nSsnwXK7d1mHnb8fkz0JWXf5jXKuMw6ZQrn1lVa7it2nG0UKh1pxeunSpAcq1T5s3xDIwJTZ4sXvElUl/nEo0iXLtMzm9M8EUvGOQcu2fFY0i7RquFG9X1b7XuUY4dSfdWOXaR3A6J94UnCMwZrn2udbZ8ZrNEv/FL/9yTv5wnCpLbOxy7dGczutjJA0okyzXfsS+e0pvj7nBaUGTdrgeTMgwcrn2CE7P+Rvdc/CmUivXnlzTvF5KvbiQub42Z5PsplELmxurXDuWQ7CWa4/Xij0dYstT/5fKtdPLYhi5XPvTqlzl2v9gprSlUq5dMP7PjutO3/Db1W/hX7UUUzfzXq6dLm7GQwnyx1W5SpDf1k82UY9y7R+XJ2ert1cN2zwmf0qtv/pX4L1cOz1G8IDVH5xYnTFszDV2ufbDbGHsPxH+Yonw06sJGUyEX1SNS4S/frXSEOHvOa225vnE1r4b1w2+fPic5z0eT5vzHCOhZrlXNS7N8nbVDCLCn3XpUezZi7V85wcdst03Vr3D6CL8rpyogHZjMnMH/Q7+8CfCX35S1Hb7sDz/7HOrR0YNcuhjMiL8NThdZ2sc1xlchP/qwy45Qe9CAhcMvZjxaFDaTiOL8GNRhlVFHUQZg4nwP5SmrLzS2NdrSs/4cLOG1WeZgAi/Kyc49asZUIR/5xOLzrm53fy3Hdp9vFX9P1+YgJwFRKgGJ0KgTxN52xG2vE3s1aTpj855XutuOWVeXvaCWhjHGjvEF69UgBGdmbNZsODcpmCLRF5wP6GFARBXKRMGxYAcDla5VkbrpeVAr7DI+rZM1YNCRl25fQ3Fgo0QX4kILrrQ8L0I8B3HTJP0PFhVteC1wFUCC/TUaYzUe+OOtX5ZFl3G36mylFrTtli1u2gpFD0wlrTYPEBvPUSvjghVjxhu1uqXQlXAu69UNkglQ+eXG+/MyP5+dr7fhhoBzf/ulEHVUizvg92IOCGFX+dd9hd8/wWc33+G0ZMlbcvUI1GCryxXSuVRHNo2TT7Osc+SVfLJbBIe33H9WlpbJR/AbKtaS2k4YxynM4abRvoj0GfHwi0oTqkBw5ckCq6durh3BlNWMLOIbSZs0TkqRqmSNhO27KweqtJgv6Cz1Qed7Hd3Gd/TK+P1ns2dYytTl/Qs4QdEapIUiPqXBabScFYcp7OkJtFz4KP0ylarFSx0xyWoBqo5etDxOW5n+nU76j9+c9WtvSzNnpRkqlxCd8x2JwI5POp5kaEL1UK8YameWSoRyTmyrYTHs7x2vXbxz/Q5s1yQ+3mCUae9EIDZJADXEQDA0KJXJkoOZewiEx3Kfd/4d8om35zurZ3al+s11qiHfSEACVwA9BikTTSP/o/xceiFuQ3Gx2lqz8XH+cDMLHnm4/i2DZvyzKJr0IbesoEXV5//wwT4OI3tuXY369ibAKlg3LhxBuDjjOow5sf8OauDlu/xvpIuzn9iEnycapzesTYF7xiEj7PEYf4zRd4y7x1b+33zTDhRxST4OGU4nfPBOPmSCfFxok533nU0uJFnlveDCrWyyj4xKT7Ov9W4nHfP6MmuCfFxnHJW93qW19Mv5cyXWjt8zjUwMh/nT07PXTC650qVj1Otw8EdK5TjAyY/XbOobdmpk02Cj4PlEKx8nA/aPPXY/wU+jn9jzW93h9f0/m3IpVZZVZIeG5mPE2vPxcfpaW8YPk7lO+Nk6munvFa9HO4ya5/rMt75OPS5OQ8ckyH2XBwTiX1p8XHOpS7u6e62JWTTi3YPzl2/eo53Pg49RvCAVU9OrEIMm4cam49znC2MDT0obyoPXS/adSBM8c/93tT9KuuuCfDspJ9KEh/DPGGqx/ZFAx+5Oh6eHtPu5iS54qdMhRKomTcIfgJaKmfPwaNXMkaGZLXL8471cDjD+n7MnZzCRkb7s4wEISys8FEsRKukn3vSsVVqn4bg07SEwlz2IviPdv4zxlm8s4XdCZtImQI4TCYNAHF9OPk4zK24K0+wudI+P9XHzuOCaEWbewc3n0z0oalgoB1YGY/uCJ8JrHAT5ZAVMRgwDl/xpeRBPyRfDCUPXbODMixecgcZ2SiyRG6uF4H6STbUv0/curqKm5n3zj4OizPiQ9YUefrSqvSR1/nEJv30Hk8nNovZb7g8ct6W7pFTbB5Jn5Oa8Czwo9+CofbqxdOa9aWuifpC8oyGmZGxTi/xG4RqMOrj9S4T1DDlxWq1xSgVUijHCCmB0djfYemwRjJIrVMOQj8iWT5YGTVEJtXehHp15nIufl3X3WoXsaBtJQBmWRSpD4qq21dCyC9BiOA8DiG/BP/R5ZdCJ97qEnniqeeEM9tTLF6F5dHll8b3XDHmRnwf/7Tc9EUP02Z0Ie3kYdRiyzPRPxghz8TmaWuoHkC4EV0goLXT1hVl8v1+88gYvHby8TYl8Rb/u2HAr62hX5eiUp7ZoAs1qWSUwpPWsL5jfzX4DnGDCgJGwe9YqEl294gYhVCJYvOVnW9BbwMJkSZBhU5czX8X/nj762nR8uibhxKc7NI5XWYuwp+E0DomDKXhNCGn0+wN6zQyBJsFi/CACm8Zo+33mG/IPsqW7NXzIUpfy+PUMhXGugMfQQmYSF/dGD7izDx5tnhbhU3fR/3T14XuK/OQBI1koEIrYCGgbXbBT3VnDlfuRWp9FXO44nJqBU6nlq3E0PriLKBANHYZrs+CBI8uk8LZ0M1gpGOW6cCu8s4odSPiUq4XotK9Z3OsiRND+mm2Ib3rvdth5orzfsv3HCg7ZmfdSVSubGSMPFojhHVlqcM6HK/Yalo7hkVHw6mIRKEgyq/KYeE8KN7thgSYXnCQ7RUQ+ZKudHvQMmrCNKebN6oYXjOx4HOJS1TbYNV3Qd9UwxdGftGhv797/Gfsz+LZ/1TtOihrK1U5xYzlKxaZEtKLrpeUeA+wcoBYpXmhuB9ggl/RVj/WGO5BJdYqkLh0HFDtJ7uFcaEbY8o/bWF99jxjSTlaN2BK2p/ANzfj/OafDVtgmmU5GWuBeuyxWUOdIS7pqQPrq9ZUTLLynVzu9r/PFD2oa1CYSpGh4H9ZkQv+h8aBn8EQK2mhbrxHQLYz+CZIj9Ar7hYzUpR0Nd+VCAW5nogBZoAr1iGIAeYM2wCjt56Pi9Z7pa/ns/+lyqzDyIv+2/OnhY1Y0EBYSM/HrqeFV9djWwNWVFpoP2Gt4l4hPZ8jiZtunO5wISBdfv1pWlRAi0J6PkfuDZ7Td4kqaM/id5b1RrS6VUjP5/3dtat3qYZ6zg+0ia42wO54IT0fROVfUtsQUfmXLNSLqPxrQZgmWbYP3DO6dmj62APJ9zo9tgYmS8L0fM+fyfE+fwRumx6829WlzThgsiJM1+cuyNj1MsJz8eqVC/uMbPszMFkTJosGd3seudo7aOfIuZqE5N0iYKpAmDqOrdBMuu8Xn5QLZ2SNN9/fC0w2hOlRmfC1XyMeBW5veHXh0K1VvYCpIonGz5bdB4cN81z8vU+PiL+2/gZMtoTJ9WgP+w+TrnivuHW1x5w9Ej9gqkSYyow0DykrFPgsy2+Q/3D2sZXAVJkwlW3vF330H3fP/X/UtJkwotkkYLIjTDtHVuiQef6O1/ajYSuXPWg1AJiqEKaxbqH7I375GpCVcuttt0p75wJTVcKUGFhLXmbn8aCDV3s8sv34VwVgqiZglYGyJ0zbN//ZTKACD3y0y3Hak+hrwFSdMA0e8bRs0uv8gFl31n8coXq6G5gcCNO4hBq/Ln4ywX9TmShNxqckd2CqQZhmjz9Soeu7vLBllxb/NMu56ShgqkmYfHacE5i96Bg22f214+G83AbA5EiYfFOfXZ/yZVPgWE8fdfvcpdDLtQiTx9UF+bUffg3ZKV6eFPhTeagrVZswVW+w8Z6ojNp3p6+qyl672lHA5ESYnJ33vl6y+R/Rby8ez/9lSkU5MNUhTJ1TLisTfRt5bh/1dOzNXguhQKiQMNUbt6PPpx8OYQd/vfVhqmvgYoZQVV0Bi1BVh0crh7Vau9Zzz8wN15bvfZ/Og1DVWbYQVS16z+bFx06Jl27MH3Gm1kjqZ5mLh8crlFLE6Qu2BLgRcYeQPC+LlalTx4KEGAQhogKgjsct6AEK+WrMWTVh0FU33FksOF39BIyviJ3DcJAeb6+uXwHNgtOo+Iug6+9Vjgo906FL0LqTT6/N95syg8fDqDxvEMKVvZMQIClq3nmysVhwoLpeOXGbCBloGhjvSSqDJY6Uajl2/AS8n1yBTZ3IdiKUqOCJa2WsPAqJ4unHcTU6WC4MnBNwYuPC0RXnU+nj2s9h0scLTLyXpnHBWgwHXOurm0QmxzzqqGcm50p0NGmBuzQxEo0wVjJEJgQJiLaENTvPXNBo0tXJnYd6r734245Lj7r3pjENiccimIakhW/vVXIlGrsPyntpblhjZ7DN9QSuLnkoiiT8yehAIsFanBhUp22lg0FTLfZaB/r3pc4Ui3UEiwewtnOCBZo6Mf6cYxt//lNuKJZyAz1DN5hyQ20HLuWGb/qNlToqN2hetJk39cF1z3W3Bl345dms6TwOlvQIxINyg6MD10H3yg4GUW6oF2G3O7PxatGS23+1N7vffrnRlRvMOVH5ZpwxUQeWqeGUG9zO3b94Lf2MeIGy8eqyR1ZtMhnlhjfVuVz32FTTGZ6VG8Ysi7vzdvEAvzWrO/ed8fjaWSMrN2BRhvXoPYgyBlNumNPs1k/W7sdDMltUvug5pyGVFG0c5QZzTnC+VTegcsOP7jk/en/b7jPff/lgy2X/UCUcjafcgPVpVoQea/O282x526klkuBvHar7jctwMn9SP/kANRsNBjmaMNInWPeFA29tMVxYTYDMhMEMMRr8CvKuJCHAVqXBNQpAsCXaK8y9iNRtlE6JE339Ev3ezCyatOhRFrdyHaIsLiNV8gQeeOWk37IC9gKFMEAfUHgeP9dnoJvncqeAGp2vBF2h7SbBuxEHFLDLRWVK9PjHQ81b2zoE+4rRCIVNxYJydfTiHTtgAJHtwkUqV4HmC+zowVbdYv7Ek5deh06fO1r575jGnand0oe8mdktC0xFARag8H/cP79N0CzFqcCeY85U4wGwL05cgIEWZZQkCh8z4N+0ErD9MOWwLDh8aY35kmvMObbofnqX957ZbRs+/SfBtrIdJmQCnCEeHq+SaWnPWFLr5R3p8kvjkiXANNcee/0j36dfV98DzjfnfBrT1oMH1/7D6dqbRnItKj+e/bNeqVaF4ELxHOnMTjPWr+0w8+fALM2TrNEDhZ70DT/EoSr8Ku9rd25ETMpGkUqy3bAuRgyMF9gGRu+86jeHtdvmmdW7n8P0HvupZZWqQvKrBi59wpPMMsitl+lRMb65SBkLIMcpuNhjpAWPwSaHBYXiIalUtxGRtm1X9Asz3IH8K12zEdD4NTUA6I+8EQXkB4DGH12jpPwUr+BCoMDlBlgGCWYbyjihC1n8HKCHCyDB/+ExTQ1Xo5WJMhb1krW9lRXrCTNCtq5t9YdEPJ56iL18D4x0wIwxxPWiYoz3ovPxG49YeW512DZryC9L65QwxswGMKsgzGbeiJLpaY0xmEu6JNywkPu1q1tRyji1LCoBax4YJwpN01v74Oacz37BS8b2mPfs/qQl1BMZBc9lTn8pRt6plM0I2PqgYLvuisFGhISLbCHhTMX6b1q0VYZMev0iyO3KGDHlu9lEyDAOozA0QaFAxAK2hNmVvA8SYbE2K48bJlHIpXgjT5RrYoRKME1R6R4J6Lv0HO/J8ALVrOuxPWexoBNE1xq1+ZYO0G1U4r5vH4Dx8OCqq0yNEbExxJAAXFh/Zs7z/HI+27p07r/73Mld1PQZexAzfcYvF9Wd6ayEkh5FA8h5QORWolIGWPnVvQZr+qwjco5a5FSUpgabFhK+1xsbT1nwaVLI+lt7ag9bL7GhHnMnGgh6S4dq5bsXQ7QacaJVq4ZRWOwW3ZLiZYVxqF+Is+MWBFJamcIN/o3azc+/P0xyB8lUNEoc/Clp4LbHBkjoWPAIMKlOwl2N9DJ9YCpJJymhXwe4Eb3gJYo2F94c6wV6LYQ5hGLYwlwB5+8STV+KhMJRPqzmtfRnPjnzb92bG7mlHW1jAn4rxMYEdrk0oGjECUUt7UB1iW2gMpmaf/RoyU/541Io+ffNgavk3zsHEvLLJg85nRvHD+RWg97nNdwcF7RwR6i4ztvsVzxALq/JBbmkJgn5Fd5YmbYk5AZgZSJIlCQrE0GiJFmZCBIlycpEkChJViaCREmyMhEkSpKViSBRkqzMod5BI/vX6xo4e/ewC8le+acZlDfYeJGtj06/5IHylsfm/3pBR11vbrHyXWsmHXj1cSWq/6vgi/0ihVIN00VsA4eZlJdn6W31fOWw3HEMrA+MPwCbUsJ5JkFD0G17n045LfIVGeCg/kjXrBxMFRNgXLuOPDECZuTdHfRau3bEd9swJQ0ldA3AA/zCzgu6fGtSskWnCj6T41/td13hNrEke22lu4x9EWCldiCG3ZcMcUIwrZYyN/y5sKqmpUQUxgqJ0sKfbj8I2hnp9fuX0c+3mX+pxyMtYmz30HcnM4b7Ziqn+k/xTjrMA0rdOVHydWAuPnDlac3CyX6FdTYMM7LLwakeyT1j3yqJ6bDljMuv30PHrk3/o07faYONuJ/r3oxoRMgNOXh4Wq7nfm4T7e4hhCiqkN4nHIEosQkJzjDP27fqBDwVZwZE/xp8oXqACexaQpD6c4LU3UG/fd2GPnL8m2uXqgqaDLaxyB6goq7/SDhxr4HPxNYeG5ocs5hK3UUkn8vcRdRaSgOdIE50vLS56B9sA+PTHqHBZs0/ieavOuu7IiygF3MhnjkSmrGAW5e6n6uluiUq9ZLcpx+w0HVvQFf2NwhMRyFsZ70RC1ACANsm/YY63bZpa2T7nsoTpgcvGHYnufnqMdTNKWtsP5ZlWKcYi4ri9BBXUiY4iNOHIVjhqDaWDlLz3fqNdRUxsGSgp7FD9dJxmvTlinr+m1JqXHrWa9Y2aiQSg3vRQBUyGTglgDBt4oRptZ6DXdFbaPS9ZqNtocFIg7URuIUmZOSObhg0RBy6yhaHRM5nm3cYfzs43XfFK02HGrXp69Cxknghvk6DWC9nS82d8fvI3R7sXIpEGCdLhJdkKnkUMUDqFJboh7s43hC1Ul7IrCOuns5iwb3aJ6DiNCInTwGoH6mtV6CqiG1D4Yu74HWQ33LN9BmzW43c679D/NOe20kRrakpEvYAZoqEXy6qz9HPuZWwz0Fm8l0Iz0ZUn4NqmNdq68UmscHfh0sk/XCZB7077OnmueKL+RbrH6Ig6u4ffj9z94+4XhQ+luu6XXph7R+8s0n9s5LAdfY84HOOEx/QfIzBMLDAiBvDcCA6Ceg/+lVRs+kmUQ2Sabicdv/zywFlTmwLntE2slPm8ZttqU7D72c6jbjO+5ot8MoeTq9sNimvvDxIekWv4csWC3jxMikRfJGOGTe9XcTwo7dDsu+5Palr1YK6KFM+BLuf6RjiOt+O8XQjwglcZmTMV1OaiwWXa+s3IXPUYoBNLBTyovC4U6bsq10f9vgd9CrTrGFUMnU51lyEPwAhKUQYSgORI5yIbK9NjuvX2Mb17LlBb3t39AiY9PabxuLIjTdUH+OfqDsZppN2hkEdwP9fe98B1kTy/h+VUxSxiygqwQpKs2DBlpCEXhQsZzk1QoBoIJgEEcuJYlfsKGLF3nvvZ2/n2XsD29n1PO/UO/U/syWwu7NLQpYk9/t/eR6fR3bYZPfzzrzvOzOf+bzClHhldDxIK+HZQrlWC9Ug9awYIvwbNvmgn9NGPS+zT+LXjeCJzqxD8EQZ7BcRmNWlM+O6kTvgtYlUAxdPwgR+4REm/EnQ9V+qTg3o0Px8yHZ5nwnuh07LqZ2PLbHRN5g5+EP63HSIoTeKoyFsgmFolMdqH070KLykCeWgFuQDafH1AVhGAf4/P6cUDg8fiUSUHs8tWlEFzmsxwBxRgEEd63T9YL5p9RtX9N7Ek9okfZuDh52rAXW4dq566TG/xYZ5+G7/C2cExyVpvWq2U74IrkxV3A6jCKEyHSkb0k5hIB8A4UkH7lTR5FQN8pN0ZQqux2IKgVPbDV24gQepIWV2KmrhBu5RzKmL0Jsk4wlCbxJ+E11vkq4XSdebLLKeJP1GhJ4km2+q46/UAJ9jjPytPHCt95kBqsB9tZoEhMnbZVDlb8XM0SEuVNxu4G93Pv5Ywls0s8TceW0H925h6poJGB1roDm9UewFSNBZXPcUQsiRDaSiiASf7bNjQ6XL+2RZN1K7Jg15FlkEkWA6SlHpK7edea4IXytI/BIbOK8BDyjN4URpcl2GBCAn2wWvtQATIwMAorPeqTEM/yhmDCOuF8eCN9ZjPqEWmlw9MKQIf3r7P+ZP6XI+ZvKnnTj9qdv//Clpn1bpR/eV+DlEunXfsb+7v+gu58Gf0mWaePAUHTg9RYti96dXf57a5lj/xJDdNVq2PfzoXhQP/pS+SMADSm6cKDkXpz+lx1CL+9MOnP7UTe9P71j9nIA+nPghs/mUqPk+Q5Ik3fVRFL/lakYkD1OCb5xTgr/0U4K7vJHZKpCQm4HMhtDA05PZmBp4JJkNoYFHktkQGngkmQ2hgUeS2RAaeCSZjZ6hMRhr0CsiuxhdPY8Hxto93oxsZ0YjF01HEiGqSBqZvufPsIkNm03osoU82OQ+m02y9zzsOeHxp6B9e3bu2zool3rO74fO8kSFilkbhc2xuYqFSfCOAhW6hIlqnQIXF4Ly3FwatnTdRcSjGOLt7KKiNWqVKhJGLHgx/8jnu040T7h8WFju+LeHwvZ2XyBLldoPZfOEtt20Cg0UACe/tqFUnTxABblasIoOFP6JUeqIdwcZBtzlyEtbRTMJWeaIsSjdSCZQ1gYOtK1EkDZBUi5MrolTJoYqYikB0A6/HAnrnRa8Xha/3lWdVPAq1QsvDmskWxtf+1RFDMTOGnhuUKfEn6oM+VSoAaWRpwQlxkDZLRLeEmXhRbj1UuASlquriJJM+IQAVlFVylUSqAVVIBDpNAp5gv53TJhYfw/RVR9YfVimq4DytFRH7/88xOXM2lxxOaM2GZcfWj3mdHlV610encJJ7E/XE/tzeQuT9gLzhUmEbi4ZJhG6uWSYROjmkmESoZtL5kK/Zn0dvfzMT6LxCa//+HeZ/6gCuVDnp+8rLcko55++afzJ3l0eJzOCK/T6yI5EF+PlIbjmsVnSSsu100WHzVaufbozV7n23s7FXa79nG532Joy0bIVwff2B835hTqfsky59gxnruK36c5WUHN6zpw5ZijXPvB0ZpO+v1YJ2Lph9Za0H//Osopy7amc1lFbg3XMUq797JvfSs6r4yTK+PZLsvxgTaq2iaXKtSs4jdPbGowjsGS59iZrXs+J3isNPtxljm3N0IPXrapcexdO4wVYxnjWWa69077fv+cELg5aUlbVsNSCtz9YuFx7B07LtbC45eBNxVaufXEF3yDh4RVBa55uH1PmTcd/rKJcO5ZDsJZrB46QyFMfseWp/6Vy7fSyGBYu137dmatc+xFmSlss5dodorbZKN3dAtb/nbvo4ve+w3gv104XN+OhBPlVZ64S5GeNk000oly7LvT4uLUp+yTbo5d3k49aV930IUzDiu4jeMDqCCdWu8zrcy1drv0xmxv7nwh/kUT46dWEzCbC7ynkEuGvICwOEf6d++5Ne/BlhDTnxgH/PudbleHxtDnPPhJqlrsLuTTL6wnNIsLfYnJYx0M7q0Ws8pk7YsSEClKLi/A7cqIC+o3VzB2MO/jDnwj/XM3TKmV2tgmY2r9Osq5mdaoYpiVF+G04TffFMpMHs4vwV+6oq1n2gE6yut/0DzO+PzplYRF+zMuwqqgDL2M2Ef57yxYNsq2+OOjgma4r25953cMKRPgdOcGpIDSjCP+sD83np5brELawWUhD59F/jbYCOQuIkA0nQl/0088nbHmbTNyk6fcOV8Vr7tdde3nxWyqDzA47xJekVoGIzszZbFlw9snfIlHm309oYQDENerkuHiQw8Eq1+pYo7Qc6BUWWZ+WqXpQoNFQbl9DmWAexFcugYsuNHwvAnwTmGmSkQerquU/FrhKYIGWm3f3bbXmVE7oRPm5RgsWLVhteu0uWgpFd4ymFpsH6GVC9JwlqHrEcLPWuBSqPD58YxRxGgU6v7w4s/49+wPPxbPm1hZPdT+8mHZCCrsRcUIKv8677C94/9Gc759i8WRJ3zONSJTgIyvVMcpoDm2bXhu+fI9vFSHO3Hzm0eGPoRWpfZX8AGZf1bcUhzESOI0RbRljMIpjG7Nj4RmSqNaB8CWPhmunrt4dwJQVzCwS3IXNOkTHqzUx7sLmHbSDNTrsF3S2WuZIQoy7/LN0Q7/Fu6r45FK35MvCL4jSpaoQ9S/zm4rDWD05jRVhFSMHfpRR2Wr1/IXuxGTNAC3HCPotq/JhB3X1wJXOA8dc3p9215SpsonmmOFNOHJ41PMiQxeqmWz9BCOzVMKTc2RbF0SKT5ouW0P21/QJe/Bszx6LTnshAMNJAG4iAICuxahMlAxl7CITlR+dDLXP7h4yp261nZXkj79Y9LAvBKA/FwDdI4Vkovn0P8bHoRfmNhsfx8GFi4+Tx8wseebj/PBO7NpLmBWU2eSXDfceOP1kBXycai5cu5vlXKyAVDBs2DAz8HEeLh4Z9zUlQTRvVau+1Za9eWoVfBwBp3X+skxItgAfZ/RxF0l8i/r++6tM+rWW98sAq+DjvBJyGSfPGowjsCQfJz1QO7/PwjOhCw43mvNg6JlNVsXHuclpvAsWT3atiI9jP29kXc+jN4KnlHo80Tdh8WsL83GOc1pun8UtV6x8nG07xHUXLfKK2LG918PMa8GJVsHHwXIIVj5Onj5PffZ/gY/TIe2yOsW/kWjHyJej7/Wad8rCfJwfXbj4OH4u5uHjtHNL/VAi8UZYWky3lv90WLGKdz4OfW7OA8ekuwsXxyTUpbj4OKd7v7syzv20NCvU47FdvWsJvPNx6D6CB6z8OLFqY95ZgqX5OL+zubHBh5VNleHrJLsPRaiePe79lrpT0iUZnp0M0MiT4pknTI3YvmggVWqT4Okx/W5Oqgd+ylQoh5p5cfAbkD2v3pidfT5/d4w43PP+35M8grNZn4+5k1OwkdH/ykYBFxZR8CgWolfSzz0Z2Cv1n4bg0zjBU/gOEviPdv4zobFMVavOKfsohQoYTBETBPz6UPLjMLPipnzOZkqHvAxpFd/fJDk+jw5vPp1C5YCU8EMbsDLu3RE2E5TDmyiHrIhgwDh8xZeSB/2QfBGUPAzNDkqwWMkbZGTxZIncI2IC9RdsqH8bt21FVU8bv119HLNXJYWtLPT0ZbniR97gE5v003s8ndgs4rjhssjeWnSLvGSzyNKZGcmvgj8FzB3soM2e7E5dsSrtD8kzOmZGxjq9xG8QakHUx+tdJmthyovVaotXq2KgHCOkBMZif4elwzp5nNagHIR+RLJ0qDp6kCJGfxPq0ZnLufh1Q3erXWUCFycAZkkUqQ+KqpdwQsgvQYjgPA4hvwT/0eWXwsfd7xh16qVo7LkdabbvI67S5ZfSe+SMup3UJzDryNL5T7OmdiTbycOoRZZnon8xQp6JzdJ2UD2AMCO6Ck6O84ySKTclm1zjP+69H93QFGvxvxsG7OoM7boQlfLMAEOoupNFCk/awfqO/bTgHRLj8h1G/u+Yqxnu7Rs5EqESxWarKv75ow0kRLpkDTpx3exeLm7BrXV++0fevlQ9obKQ02RlJPgnIbSOiYbiMJodp9FKmNdopAu2CZXgDhXeMko/7jHbkGOULdmrJyVKXysTtQoNxroDX0FxmEhbdX/0qXTptekhY7dsH7wiZ+A5uq3KhCXr5ANUegELAW2zC36rNzNceReu9VW0cMVl1L9rcRn1dS2G1hdnAQWisytwfRYkeHSZFM6ObgM9HbNMB3aVd0apJ+GXjogRle5FXlgXJ0L6K7aQ3uXRg4gyqgsBS/YeKjlqlwtVprBcVLwyVieEdWWpYR3GK7aa1k4RsbFwKiJXqYjyq0pYOA+Kd3siAaYXHGR7BES+ZCjdHvSMH2C/6eqHKobnLhM8MblEtT1WfReMTS18YDS/89SwF8syT4myh//mEOUZTi2IasPyioWmhPSi66YS7wFWpSBWWWIU9wNM8D8zi1JzssZwC6qxXoEuG39meYths/+Q7FixsOFy5S9yxpJyrGHAmDqewJu/rcn15k/MW2CaZTkZ64FG7LHZQZ0hLump+fUdRl94PdF/TvqbOqczWoRT+yW821zw3+GE/5Jl4GcwxEwt1I2PCMh2Bm+CtAi94m4RPYWpq/kehCs4IkIEmP4e2IAgAsxrtgBjtJ6Pq956xa/nU/2il9uS366LN94+1eDIm8xTBfR82vw1v38V8QDxQtVnyd/R3s8L6Pn4/nrl8sHaS8XTZ/f89PeJ3dcK6PloHl5dFHN0lXRfqdvn5+ZO/6GAns+Rr7Y3cvcdDDwc/XtY2K34twX0fBCVf0ltQ0TlX7JQL6Lyry3RtG55w1vl20cGTLZL2ORZzeF30FSWaGr7ceqwR8+PitN7Hf9y02ZhKdBUjmia0fmZy5UpL4O39Qz/+r7ThxOgyY5oqhvcaMeT2d/8M9o30X5daf8UNJUnmu5lja2yuE2ngJzggcdr1xZoQJM9CVR0u1HtW63yT98y+Kdrv64YDJoqEE3CvBVHl04qJ9u4o7Oy+S5pKmiqSDRNFtUr59ba2X/XtuvPSrin+oCmSkRT58yjx2r+czdwaxff0T1ajHQGTZWJpoP2n7KOKiaJpg63OV3RaT9UUqpCNMXFPxkoDKwUlPblacXAst3jQFNVomlNldy/mjaeLEqrlZs7/kwA/MBqRNP6LJ9FS3vcCt09JMd/x2PNMNBUXcAqA+VANH0+6TDizJG10uVZMxpm+h5tBZpqEE3yl227uvuG+GfVu1f18rywi6DJkWj6npR+3MXTV7pRUrbygQZxItBUk2hyr+p3qqNkld9Ue9syX39++hI01SKaLkyqsvN2tWi/KcuTfu00p3l30ORENJVq2jpCcHtk2HbvUi2rzNdAPcfaRFPmmi/nm/iWCjnUdtikXle3LgJNdcgO8Mvsb6ebO4ZvfbTnXu0bTiGgqS7RlHE6pEOlR+v9py8Kmlyt5asjoMmZaOryvnzjEBeNaLrX0chmHyR1QJOQaGq1fc+6slFBQYtWnSh9LLeMLUOoykXAIlTVrvbV6k+X2YeuzHK68aTXwWiE2zBWqOoNm4uqHrt3c/aJM7KFG/KGnas9Yil16iobmqRSxyBOX7AlwI2IO4TkeVmsTJ02ASTEwAkRFQANPG5Bd1DIR2POqokGQ3XDIbeo/inoXxE7h51BevyinnEFNPNPo+IPgny3/vemt9e9HhK+/kRNl5mS4BweD6PyvEEIV/a+1QMAxaDmnafdZII/6xmVE/tEKkDXwHhPMQpY4kitVWLHT8DzKVXY1InsJ0K5Bp64Vicoo9EK3RsdSw2uZRex73r5Rd0PjO9GpY/rv4dJH89v4r00jSvWYzjgeljPKjI55lFHIzM5D2KgxeSbSxcv1wkT5IMUQpCA6EtYs/PMvx0aNKR27QjJHMGVE107rOhIYxoSH4tgGpItfFuvkgfR2aUo62V5Yp2dwTY3EjgX8lAUSfhT0IFEgqWp0X1t1IOx0plTxT3eCPw7mH4EiwewXnCCBbo6EX/essWf/yk3FEm5gZ6hm025Iao+l3JDi/rFodzgseNEUvPXEwPXNanWfdTMeat5DJZ0D8SDckOX+lwH3QPqm0W5YcKoWcmbI3YHzG2T1n1/17sXLK7c0IETFdBvrJRlaj7lhjPrdCW2fejoN3vgpmvldxy4ZjXKDW6cpnO2jOnMrtzwolrNFxUm3Q9b43/y+alKs1wtrNyAeRnWo/fAy5hNuUHjO6T1+Eqp/pOUq5b/8rgGbQZpEeWGDpzgtKhvRuWG5D2zbwapzwaPWXds84UevR5aiXKDGydCYEwTeds7trztzAJ56Ne2NQLGrKpb5kX94Yeo2WgoyNGEUdJQwxcO/PTFcGE1ATITBjPEWPAryLtShQBbjQ7XKADOluivMPciUreRhkle0dYv0c/NzKLJFiPK4gY0IcriMlIlEbBA4ybGLStgD1AAA+TbtZZEB8/4+q80/UKNq//+2ZKWKUXBuxEHFLDLhWVKdP/HQ81bWROCfcXohMKmMkG7Jkbxjh0xgMh+4Rqj1IDuC9rRwbbzlchSB6+VFk3cu8S/yxolteJnWSl5M3NY5jcVBtjAWpva1H3oJF3tIJQ36X1DyQNgzTgBAz3KIkkUHjPg37QQsP0w5bBsOWxph9mSw6tOPX785KxLw6Xb4q73O6p9nV0FEzIBxpANTdIo9LRnLKkV+0W5/uhmWgJML4vZuXXl/qd+D5yYPtHtwsPJP/Jg2jqcpq1qIdOi8uMZnYxKtcqHFvDnaHbui6nlBkR89N88r96H2Y+6OdM3/BCHqvCrvK/deRI+aQuKVLLFExtiRGB8zxYY/a7WuDek9XbRxt59Had0P0gtq1QNkl91cOkTnmRWQG69woiK8V4SdQKAHKfgYh8Tk/8x2OQwv1A8JJUaFBHp23aFPzDDHMi/MjQbAZ1/XQMA+u9+iALy/UHnX9jAVH6KOLQAKHC5AZZBgtmGOlHoShY/B+jhAkjwf7hP08LVaHWKgkW9ZMBdr1tPMtdJt3f3KjtQuUdB9THdMdIB08cQ1wvzMT9J+i/wyGsomqvL6Tq+f49dJvqYGQDmNRBmGz9EyfQsNwxmU5eEGxYwv351K1qdqFVEJ2PdA+NEIbFMHKC7VG/QVP9Vn5ruvvXymyP1REb+5zKnv5RG3qmU7gRsfVCw3fTAYCNcwh9sLuFchfofmrVSh43/422I55VRMsq72UcqMA6jMDxZpUL4AraE2YO8DxJhsT6rTBwiVylj8E6eotTFC9VgmqIx3BPQd+k5npNhBWqzocf2GssEGoiuHWrzbSlAt4/JY98hCOPhwVVXhRYjYmOIIQHIuzdy08vKt8VpvW+s+D664TFq+ox9EDN9xi8XNpzprARTj6IB5JIgcstQKQOs/BrbgDV9NhA5Jz1yGkpXg10LCd+ic2MG/23zJHDNoDqKxC61N1CPuRMdBL2lQ23lexRDtPpwohXZwCIsdtuuqUmKgjjUL8DZ8QwBKa1C5Qn/RusZENgPJrlxCg2NEgd/THXcDliAhIYFHwEm1am4qZFWpgcmUwaJiXbt70mMgnco2lxnL2wUGLUQ5hiOYQtzBZy/S3T9GCQUpUY3uTD89OGAdQcrTQuaOYrmL7C3QmxMYJeLA4o+nFBE6gPVB7ZAZTU1/+jekp/yx8VQ8q9FA66Sf031kP9p9ZDTuXH8QC7s+E9Y5eYzpRkOm90r7I9cxgPkSxpyQT6vIQn5R95YmRVJyM3AykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZn2yqfWgz4lTAin41Ssg7P/uVQXmDnRddm5FGv+SB8vYXm/3rhRz3uLe1nP9qm5gB159Xotq/Kr7YL1GptTBdxDZwmEl5aZbRVs9fCcsdx8P6wPgHYFNKOM8kaAiGbe/TKaeFPiIDHNQfGZqVg6nierg/cBN5YgTMyKcYt83vhO+2YUoaamgagAf4hZ0X1KT3mzt37lcO3Lxw6Pda4+/4m7LXVrzL2BcBVmvrE2H3HUOcEEyrs5kb/lxYVddTIgpihT5S4+q++fGnhsEzex7Jq/VSq+ORFjG6W/jH06uG+q9VTwqc6Jd6lAeUpnCiNKI+c/GBK09z70yOK2ywYZiRQw5O9UjuGftWiX/v6BVl/gmULbT1mTxGMTrVgvu53u5EJ0JuyMHD00uM3M9tot89hBBFF9D7hBGI4pvQKwFDmkScLhkh23ArcVLjs6/PWMGuJQQpkxOkKUbu6zaUKvE31y9V5XcZbGOR3UE5Dlba2jV4ErqgkuM/OQP+rkXdRSQ/l7mLqG8pDnRGc6KTot/T/ZstML7sHh5q4/VZkrn8vH9ORFAv5kI8MxLasIDrQt3P1VPdUtRGSe7TD1gYujdgKPsbOKYvELbzfogFKAGA7bFxoc6wbdpX5Wrtm5i9JHjn2vIpT9++aE1d7MT2Y1nCOqWxMC9Od3GmMsGBn/4EweqM6mNLQWr+xrhYVwEDSwFGGjtUO0ecv/4sdUHguvEJO373+Zta9K+sDNyLBqpAk5lTAgjTY06YbhsZ7ArfQqPvNVtsCw16GqyPwC00ISN39MSgIfzQJzY/JGl83qtt+oPQpf4573Vta9ahr0MnyJOE+DoNYr2cLTVvjN9H7vZg51LkwkRFCryk0CijiQBpGIuEdriL4wlRK+UFmg3EVdRYJqjpdgoqTiNy8jSA+mdXoxxVBWwbCl/cBY+DfMtmB174qsqOD9j8wXlo0LZrjakpEvYBzBQJv1zYmKOfczNxzEFmcg0IzwbUmINqmPZuRrFJ7PHn4RJJD0/t1/Zblw7B65//OKb1q5vUSQrxuszdP+J6oQfb23496ZZaJ3TT5ujX/46r3oMHfEpx4gO6jyUYBrYYcWMIDkR7Af3HuCpq9l3lmjiFjstop0seHt3yl17i2SeHf2/48Rfq0brS+P1MoxHXeV+zBVZ568pllSdWZZV3h0mrGBW+KmIOL0kRQzhfdM2FwVFBCv/+QaPDxfN71Fpwj2qYMOx+pmGI63wbRuRJuBO4zMiYr6Z5yQS2bsZNyJz0GGATC5WyMDzm9e3yjzS0Q/gy4fLay/4a258mKYR/AEJSiGgoDkQ+u3Ih8sKVjOuf2eL6llkhf/Zu5xs0/s+vOttjtz9QbYx/o+FkmPb6GQY1gAtT4pXR8SCthGcL5VotVIPUs2KI8G/Y5IN+Thv1vMw+iV83gid6ypXgiTLYLyIwq9vLjOtG7oDXJlINXDwJE/iFR5jwJ0G++F9zPqTk/fs1eM38x665fzenkufKsCU2+gYzB39InzsBMfRGcTSETTAMjfJY7cOJHoWXNKEc1IJ8IC2+PgDLKMD/5+eUwuHhI9EyL7R4btGKKnBeiwHmiAIM6ljv1Q/mL1a/cUXvTTypTdK3OXjYucpy5dq5mqHH/B82zMN3+184IzguSetVs53yRXBlquJ2GEUIlelI2ZB2CgP5AAhPOnCniianapjeJE2ZguuxmELg1HZDF27gQWoYoaeiFm7gHsVZN4TeJBlPEHqT8JvoepN0vUi63mSR9STpNyL0JNl8Ux1/pQb4HGPkb9fJfr0wesvzwFmvt/2j2R4zmyp/K2aODnGh4nYzzkRVKvlkSeCm2ydlzdNnmHpuUgBGx31oTm8UewESdK66nUIIObKBVBSR4OSJY0R5G53F8w7PmjPcdm2rIogE01Ha/aHG8t/HvfA/vHbP3+VXHjOVcABROsuJ0hE3hgQgJ9sFr7UAEyNDVJRprHdqDMM/ihnDiOvFseCN9ZhPqIUmVw8MKcKf/vsf86d0OR8z+dNkTn/a73/+lLTP/N6KyEc2G0Qr7vZ7c77rkp08+FO6TBMPnkLL6SmUxe5PD+546ruvVvfg2aF5G9OWDnzFgz+lLxLwgFI/TpS6Fac/pcdQi/tTLac/7af3p1+tfk5AH078kNl8StR8nyFJku76KIrfcjUjkocpQUs3rimBux7yb7yR2SqQkJuBzIbQwCNdPUIDjySzITTwSDIbQgOPJLMhNPBIMhtCA48ks9EzNAZjDXpFZBejq+fxwFj7zpuR7cxo5KLpSCJEFUkj0/f8GTaxYbMJXbaQB5tAgyBtkr3nYc8Jjz8F7duzc9/WQbnUc34/dJYnKlTM2ihsjs1VLEyCdxSo0CVMVOsUuLgQlOfm0rCl6y4iHsUQb2cXFa1Rq1SRMGLBi/lHPt91onnChU7zM6v1HhmQWXJ8taBZrmfYPKFtN61CAwXAya9tKFUnD1BBrhasogOFf2KUOuLdQYYBdzny0lbRTEKWOWIsSjeSCRY2Bg60rUSQNkFSLkyuiVMmhipiKQHQDr8cCeudFrxeFr/eVZ1U8CrVC3cPbiRrsaDxqYoYiJ018NygTok/VRnyqVADSiNPCUqMgbJbJLwlysKLcOulwCUsV1cRJZnwCQGsoqqUqyRQC6pAINJpFPIE/e+YMLH+HqKrlmDrqlYTlukqoDwt1dH7Pw9x+Vxjrrh8rDEZl0taPeZ0eVXrXR79hZPYv1dP7C/FhrnRYdJeYL4widDNJcMkQjeXDJMI3VwyTCJ0c8lcaGzLeQurPpohXZ3WfkPM2D+OFciFbqzvfnDAb/XCl6elyLpcTVnDCK7Q6yM7El2Ml4fgasNmSSst104XHTZbufYTTbjKtc9kSsnwXK79qm7f4I/SPMnhKXOnPHvq8s4KyrUfa8JV/HavZQQzqDWnp06daoZy7U/+yKhcLny63+64oC07dKnU1UJLlWvfzGmdldZgHbOUa4+uXOd7h5B2kunX2wQfaxNKXWG2VLn2BZzGmWkNxhFYslx75WulXva8Pyh4XkTrdpUPdy9jVeXaJ3Aab6QVCQVZvFz7tHoTPcZIK/rvr3Llz/67FCMsXK5dy2k5pcUtB28qtnLtZT7vnhN7Xy1ePir7k3DZ549WUa4dyyFYy7XP1Is9/cCWp/6XyrXTy2JYuFx7+aZc5dr/Yqa0xVKufWDU3UHh85cGLFb+9HzZT7tocpA8lGuni5vxUIK8XFOuEuSCpsVVrv3lAXHJf/0uhW240G9El6lvTvJerp3uI3jA6q8mXFi9Mq/PtXS59tJsbux/IvxFEuGnVxMymwh/TFMuEX5p0+IQ4X/5Z+Keg68dgxa82fltlnudejyeNufZR0LN8gFNuTTLf2T6yOIQ4a8wdnNa0M6W4Ztqlb/w5VFAlsVF+MM5UQH9xmrmDsYd/OFPhL/qHMdNQbGlJHs6Vu7Vq9aXilYjwu/LaTpvy5jO7CL8v9548G/i1jai6aO7Rm5fV74ibafT3CL8mJdhVVEHXsZsIvwZBxw/J/8yVzxDlPUt1/1ODSsQ4Q/nBEfa1Iwi/Hc3eF4YW3+53/LyOz4eW1N3uhXIWUCEfDkRAmOayNvKsOVtMnGTpt87XBWvuV937eXFb1tQdQSwQ3xJahWI6MyczZYFZ5/8LRJl/v2EFgZAXKNOjosHORyscq2ONUrLgV5hkfVpmaoHBRoN5fY1lAl+hfjKJXDRhYbvRYDvcmaaZOTBqmr5jwWuElggX33o+8vSytW6S+dOa79glX8vqp5KkWp30VIoumM0tdg8QO8cRM9ZgqpHDDdrjUuhyuPDN0YRp1Gg88ugKqX9yvq2C8u6n91i0/X1j2knpLAbESek8Ou8y/6C99/N+f4bLZ4s6XumEYkSfGSlOkYZzaFtE97ucbnzvzz0m/+1qSb330gVta+SH8Dsq/qW4jDGck5jzLeO9EdgzI6FZ0iiWgfClzwarp26encAU1Yws0hwFzbrEB2v1sS4C5t30A7W6LBf0NmqqNPSq38JjwWMdeyy8+v6mVRuR1n4BVG6VBWi/mV+U3EYazqnscZZxciBH2VUtlo9f6E7MVkzQMsxgtbtFPWcOrFM6Mz71aoHXR/z2JSpsonmmOFNOHJ41PMiQxeqmWz9QSOzVMKTc2RbpZRf6+95Pjxwvaq0eFMj560WnfZCALaSANxEAABdi1GZKBnK2EUmbuZ+Dm2gbi8+MGnStmYvg8dZ9LAvBGAuFwDdJ+oTTdv/GB+HXpjbbHycUHcuPo6je3HzcUbEDYr+2T43bN6OzInXq6b3twI+TrA71+6myN0KSAVakNIXPx/nXo9fp63uMiw4c2+6yz3bm2Wtgo/TitM67tZgHbPwcZLSN9famnbef96dng9XfUk/aRV8nHqcxnG0BuMILMnHya1179v95XbhK3Mj1n3ZM+WIVfFxKnAaz8YyxrNOPs7EUktdA0v8LJm39Kp72vWHfhbm43xpymW5d1YxTSk2Ps6EDz1vzLk2V7x2we5Hr8o2k1oFHwfLIVj5OMAREnlq2f8LfJwu78s3DnHRiKZ7HY1s9kFSx8J8nGnuXHycocyUtlj4OM1edd4zaOLLwC1Rn52bbrsVwDsfhz4354FjMtWdi2Myxr24+Dj28V6Jg1Z/kqRnB7e1qZl4hHc+Dt1H8IDVUE6sEs0bLS3NxynH5sYGH1Y2VYavk+w+FKF69rg3tRCbXZdkeHYyQCNPimeeMDVi+6KBVKlNgqfH9Ls5qR74KVOhHGrmxcFvQPa8Vtv3rCsbFRS0aNWJ0sdyy9iyPh9zJ6dgI6P/lY0CLiyi4FEsRK+kn3sysFfqPw3BpwmDwlwOEviPdv5zYGPZX6Gup+yjFCpgMEVMEPDrQ8mPw8yKm9KOzZQOeRnSKr6/SXJ8Hh3efDqFGmdL+KENWBn37gibCcrhTZRDVkQwYBy+4kvJg35IvghKHoZmByVYrOQNMrLFbkSJ3CNiAvXybKh/G7dtRVVPG79dfRyzVyWFrSz09GW54kfe4BOb9NN7PJ3YLOK44bLI24Z0i9izWWTpzIzkV8GfAuYOdtBmT3b/ibom6g/JMzpmRsY6vcRvEGpB1MfrXSZrYcqL1WqLV6tioBwjpATGYn+HpcM6eZzWoByEfkSydKg6epAiRn8T6tGZy7n4dUN3q11lgh6NAJglUaQ+KKreuhFCfglCBOdxCPkl+I8uvxQ+7n7HqFMvRWPP7UizfR9xlS6/lN4jZ9TtpD6BWUeWzn+aNbUj2U4eRi2yPBP9ixHyTGyWtoPqAYQZ0ZoP7rsPqKpqQuc8HfIlqeKF86ZYi//dMGDXbtCuC1EpzwwwhEIaWaTwpB2s79hPC94hMS7fYeT/jrma4d6+kSMRKlFstqrinz/aQEKkS9agE9fBcYc+LOy8OTAr9ajgxrqEJZwmKyPBPwmhdUw0FIfRxJxGa21eo5Eu2CZUgjtUeMso/bjHbEOOUbZkr56UKH2tTNQqNBjrDnwFxWGiBdN3594YevOteNv+lK01W92dQLdVmbBknXyASi9gIaBtdsFv9WaGK+9Ctb6KGK64jOrBadT6jRhaX5wFFIjOrsD1WZDg0WVSODu6DfR0zDId2FXeGaWehF86IkZUuhd5YV2cCOkV2EJ6l0cPIsqoLgQs2Xuo5KhdLuOpXNmoeGWsTgjrylLDOoxXbDWtnSJiY+FURK5SEeVXlbBwHhTv9kQCTC84yPYIiHzJULo96BntYJrT1Q9VDM9dJnBqaCqPzB6rvgvGphY+MPJFI17eH7OlcaZkedbF8muGxR+kF3hBvmKhKSG96LqpxHuAVVuIVZYYxf0AE3yvhsaxxnALqrFegcTFbmhEiex1iyI2i1XdO/4kL81YUo41DBhTxxN484acbw56iRUsJ2M90Ig9NjuoM8QlPdUjWuYydJpENL1svxr3s+evo/ZLeLe54K/MCX8Zy8DPYIiZWqgbHxGQ7QzeBF20gFZxt4iewtTVfA/CFRwRIQJMfw9sQBABpiJbgDFaz8dVb73i1/OJdxoffn9m68CJBzJrpqxuVVDb8FPmufPvI5TS6Vf2TTjyRbClgJ5PH1mD3BJ9B4q2xB9uHHu3pWMBPZ+xSW9nNz1dPXzW9UlfAk4OaVVAz6dExJOV1eL2Sw5UuzxE2FDct4CeD6LyL6ltiKj8SxbqRVT+tSWaSi21n3lxVU7EgQP7xH65ufVAU1miaWlyyvA5G677zVgy/GsLxchaoKkc0bR9bUVRr4GDpYdfjzr/yfsb/EA7omnIEM/hSx6rRFkfBtdM+5peAzSVJ5o6/7z2uOM/ZaUZecMn/OKfkwya7Ikmz7cOl6dFHY2YdebOsqdxfjNAUwWiqZ/XsbDbNU+Hbty93rFZ0AMxaKpIGuXLipnbf7kVeKB56NpjuwfCx6hENJWv5z/Cc4+TdFOLMlu75fRzA02ViaYzS4SPvmVr/NNSNmf8PkL0E2iqQjTZ3vvzQC+72oFbI/w7uiV16wSaqhJNDh0+9tw/rmHIHP++I34dp9gMmqoRTSvTYl81O3hFdLhNv9ZBgaeqgqbqAlYZKAei6cHxbHHN+UtFB0v16PteF+0LmmoQTfapZfdXmFNZlu2x7Ilb7bOwAzgSTSEfFmhSms0KyOx2oPelN4nwu2qSVu65JySwVrJofKvwVZOz4rqBplpE08XsXoerSOeI9pQKudWu7rTpoMmJaNof0LBJ9XIrAhZnXs9cGe8hB021iabffr309H7N8MCcHy+Pi7dfshM01SGatg3KdBJOOSlbdjekp/LbuTzQVJdosrHr4l11/QjZjMu3BonfV7gDmpyJJv+WO7ydb8SE5axM7xp1wucmaBISTXkXPOT/vpkjHn334rF3FW+dYQhVuQhYhKriNj/xLd/zr4gDD5LPV477bM+DUFUlNhdVPXbv5uwTZ2QLN+QNO1d7xFLq1FU2NEmljkGcvmBLgBsRdwjJ87JYmTptAkiIgRMiKgAaeNyC7qCQj8acVRMNhuqGN5YJFnuegv4VsXPYGaTHEz2NK6CZfxoVfxDku/VMCOwRs7qi/7ijqw//NFl1g8fDqDxvEMKVvYUQoBjUvPO0m0wwy9OonNgnUgG6BsZ7ilHAEkdqrRI7fgKeT6nCpk5kPxHKNfDEtTpBGY1EsfebSuVr1XMImbWi+YOmU7fPpNLH9d/DpI/nN/FemsYV6zEccP3saRWZHPOoo5GZnAcx0GLyzaWLl+uECfJBCiFIQPQlrNl55mvqdg5wz+4k2Tb3nz5Tl1W8SWMaEh+LYBqSLXxbr5IH0dmlKOtleWKdncE2NxI4F/JQFEn4U9CBRIL1zq7jv+Nm+Ug2ry03IutS+RjTj2DxANZETrBAVyfiT2W2+PM/5YYiKTfQM3SzKTe89+RSbrhkXKw0ULkheXJJjeTgUfGEe67yq74fHvAYLOkeiAflhreeXAfdnxgXLIuq3FBtXKl6u+a0DTq8Kv7wuKNzqf3DEsoNdzhRuWSZmGgAy7SwBSb+lBvOfn1Wpf/4x2ErWxyZ6eF3tJ3VKDec4jTdQWtNZ3hWbki2r+r9surysEnrP2adrFzyi4WVGzAvw3r0/gkiSyku5YY6J7M2VtsiiNiTUfZj5TqfqAQhyyg33OEE55KnGZUbJpZxmrI+o3NEWtzwklJp55ZWotxwihOhg/q8rQpb3nZmgTz0a9saAWNW1S3zov7wQ9RsNBTkaMIoaajhCwd++mK4sJoAmQmDGWIs+BXkXalCgK1Gh2sUAGdL9FeYexGp20iDEif6+iX6uZlZNNliRFncJz5EWVxGqiSC9Ut9jFtWwB6gAAbIt2sQV2pi0vTL4ftGeoVW8p1GO7gbBe9GHFDALheWKdH9Hw81bx/5EOwrRicUNpUJbvkYxTt2xAAi+4VrjFIDui9oRwfbXj1sW0+63li05+7jx9OGCyZQh6WUvJk5LPObCgPs2bWYpuOy/pJkKGqnbq+nOsADYL9xAgZ6lEWSKDxmwL9pIWD7Ycph2XLY0g6zJYdXDVvpnhbWbn/Q3skz3/QoPcWzCiZkAowhG5qkUehpz1hSK/aLcv3RzbQEmGbas3U+/N5+2jBJZo7bm5dzckzVe4Om3c9p2q0WMi0qP57RyahUq3xoAX+OPtLo/PvOuNEPpYvPOw2M9vG7St/wQxyqwq/yvnbnSfikLShSyRZPbIgRgbEqW2D0u1rj3pDW20Ube/d1nNL9ILWsUjVIftXBpU94klkBufUKIyrGe0nUCQBynIKLfUxM/sdgk8P8QvGQVGpQRKRv2xX+wAxzIP/K0GwEdP5AbwD6736IAvL9Qef39TaVnyIOLQAKXG6AZZBgtqFOFLqSxc8BergAEvwf7tO0cDVanaJgUS/J05as+HmWd0T2wGM5iyWtqEX6SnfHSAdMH0NcL8zHKHKv5fQRrfAfl+SqGf81Mt1EHzMDwOwPYbbxQ5RMz3LDYDZ1SbhhAfPrV7ei1YlaRXQy1j0wThQSy3kTPb9JckTSXem5g+JnBt2hnsjI/1zm9JfSyDuV0p2ArQ8KtpseGGyES6jG5hLOVaj/oVkrddj4P96GeF4ZJaO8m32kAuMwCsOTVSqEL2BLmD3I+yARFuuzysQhcpUyBu/kKUpdvFANpikawz0BfZee4zkZVqA2G3psr7FMUAmia4fafFsK0P3iZerYdwjCeHhw1VWhxYjYGGJIAM713b45NU8QmPPwvTDd/1xbavqMfRAzfcYvFzac6awEU4+iwYPbELllqJQBVn618WZNnw1EzkmPnIbS1WDXQsIn6zxlW5W7ZUOmOL872jyjP1V4qzzRQdBbOtRWvkcxRAv0JA603nlZhMVu2zU1SVEQh/oFODueISClVag84d9oPQMC+8EkN06hoVHi4I+pjtsBC5DQsOAjwKQ6FTc10sr0wGTKIDHRrv09iVHwDkWb6+yFjQKjFsIcwzFsYa6A83eJrh+DhEI7LeLotWVdg8Y+63Ppw1sVjd+FvRViYwK7XBxQYF2cFQrQxYlAVZ0tUFlNzT+6t+Sn/HExlPy75MVV8u+MHnIHq4eczo3jB/JjJ+7KG453CFkx8NLDeUc+xvIAeYdmXJD7NCMhr8EbK7MiCbkZWJkIEiXJykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrs+wFn65vKm6RZDUqnTlm6t5kBuUNdl5k76PTL3mgvDmy2b9eyHGPe1vL+a+2iRlw/Xklqv2r4ov9EpVaC9NFbAOHmZSXZhlt9fyVsNxxPKwPjH8ANqWE80yChmDY9j6dclroIzLAQf2RoVk5mCoGQb92E3liBMzI3ZhZOdfatRO+24YpaaihaQAe4Bd2XlDd5rXGPpkzI2jaD4vCAprUSTRlr614l7EvAqwCyLD7jiFOCKbVbbyQeTgbVtX1lIiCWCFR+vefw32qd7sim7ti4IwDujFPeKRFjO4W/vH0qqH+a9WTAif6pR7lASU3TpRqeTEXH7jyNPfO5LjCBhuGGTnk4FSP5J6xb5UMOHIqt8WR7sGzRE/CBGtGKyy4n+vtTnQi5IYcPDzdwcu4NLaJfvcQQhRdQO8TRiCKb0LXiRWutn20MFc84cadFW/LxU+2gl1LCFILTpDcvIzb120oVeJvrl+qyu8y2MYih4M6PeLJ+4PHw8bOf/5Tqe+nN1F3EcnPZe4i6luKAx1nTnSq63PRmmyB8WX38FAbr8+SzOXn/XMignoxF+KZkdCGBVwX6n6unuqWojZKcp9+wMLQvQFD2d/AMWVB2M77IRagBAC2McaFOsO2aeOcBv7ldbeULE2U+nHr2ydnqYud2H4sS1inNBbmxekuzlQmOPDTcyFYnVF9bClIzacaF+sqYGApwEhjh2rmqNf7p3qVlU2KbuD2YsPe9lRPJAP3ooEq0GTmlADCNIYTpqFGBrvCt9Doe80W20KDngbrI3ALTcjIHT0xaAg/VIvND0kan/dqm/4gdKl/zntd25p16OvQCfIkIb5Og1gvZ0vNG+P3kbs92LkUuTBRkQIvKTTKaCJAGuSW6Ie7OJ4QtVJeoNlAXEWNZYLdLU9BxWlETp4GUJ/X0ihHVQHbhsIXd8HjIN/yQa9Dp+pdmChblzr8364n2zhQUyTsA5gpEn65sDFHP+dm4piDzOSdEJ4NqDEH1TDXtzSKTWKPPw+XSHrt5Ffyq/36SrI89kSsEi3fQN39w+9n7v4R1wvD58j0XbUTrs0LXzEw536z7A0XecAnhxMf0H0swTCwxYgbQ3Ag2gvoP8ZVUbPvKtfEKXRcRju49UralMhBkkUnB/lf2hAbTDUafj/TaMR13tdsgVUyOK2SblVWeXeYtIpR4asi5vCSFDGE80UapnXpbO2I+KsB03M23nnWaQ/1sF/pMOx+pmGI63wbRuRJuBO4zMiYr6Z5yQSrWho3IXPSY4BNLFTKwvBY3lu5Y9Cr22GLMmpMSsw6702TFMI/ACEpRDQUByLzOBGZ2JKM605scX3LrJA/e7fzDRr/51ed7bHbH6g2xr/RcDJMe/0MgxrAhSnxyuh4kFbCs4VyrRaqQepZMUT4N2zyQT+njXpeZp/ErxvBE1W0JHiiDPaLCMzqejDjupE74LWJVAMXT8IEfuERJvxJkC/+ouGIE/4DW/ovv7Nsblj3lbTOx5bY6BvMHPwhfS4aYuiN4mgIm2AYGuWx2ocTPQovaUI5qAX5QFp8fQCWUYD/z88phcPDRyIRpcdzi1ZUgfNaDDBHFGBQx7qHfjDXtvqNK3pv4kltkr7NwcPOVauWXDtXnnrM67BhHr7b/8IZwXFJWq+a7ZQvgitTFbfDKEKoTEfKhrRTGMgHQHjSgTtVNDlVg/wkXZmC67GYQuDUdkMXbuBBakjVnIpauIF7FPE+CL1JMp4g9CbhN9H1Jul6kXS9ySLrSdJvROhJsvmmOv5KDfA5xsjftnaM+nRRKvHbc/75Mt3Oa2qq/K2YOTrEhYrbDavsNaVi+SvSXUGqDUM1LQeYumYCRscIaE5vFHsBEnQ0PqcQQo5sIBVFJHjL0B3v784f7zd/yuNd51wOXimCSDAdJUWPyOAHa9tFTN909JD36Is7eEApnhOlvj4MCUBOtgteawEmRgYARGe9U2MY/lHMGEZcL44Fb6zHfEItNLl6YEgR/rTuf8yf0uV8zORPq3L6068t/+dPCfu8LLk+pvbIn6RZBz0/KQNsyvHgT+kyTTx4isqcnqJMsfvTM5JDW2p5TgpbPPFATM3F4qKIrtNRoi8S8IDS15ZcKH1oWYz+lB5DLe5PK3P606/6/NTZ6ucE9OHED5nNp0TN9xmSJOmuj6L4LVczInmYElzmnBKc1UMu5I3MVoGE3AxkNoQGHunqERp4JJkNoYFHktkQGngkmQ2hgUeS2RAaeCSZjZ6hMRhr0CsiuxhdPY8HxpoLb0a2M6ORi6YjiRBVJI1M3/Nn2MSGzSZ02UIebFKPzSbZex72nPD4U9C+PTv3bR2USz3n90NneaJCxayNwubYXMXCJHhHgQpdwkS1ToGLC0F5bi4NW7ruIuJRDPF2dlHRGrVKFQkjFryYf+TzXSeaJ/ytWcCWG4kjw2Y33vrQv/NDDzZPaNtNq9BAAXDyaxtK1ckDVJCrBavoQOGfGKWOeHeQYcBdjry0VTSTkGWOGIvSjWSCti2AA20rEaRNkJQLk2vilImhilhKALTDL0fCeqcFr5fFr3dVJxW8SvXC7yIayezbtDhVEQOxswaeG9Qp8acqQz4VakBp5ClBiTFQdouEt0RZeBFuvRS4hOXqKqIkEz4hgFVUlXKVBGpBFQhEOo1CnqD/HRMm1t9DdNX6Vh+W6SqgPC3V0fs/D3FZ2YIrLstbkHG5gdVjTpdXtd7l0X6cxP4eemJ/Q97CpL3AfGESoZtLhkmEbi4ZJhG6uWSYROjmkrlQ0w3DZ3daN0461md1yA9jPW4XyIVU92d1PFkhN3inyz13cfYaMSO4Qq+PVk6hifHyEFwbsVnSSsu100WHzVauPboVV7l2r1bFXa79WE3hyM3aM7K1s/zayBfWpp7stEy5dnkrruK3PVpZQc3pcePGmaFc+5oWM3T7l2aGb7uZPPpBVAx198VS5drDOK0jsQbrmKVce632mfYu4g9+E57N2V/iZsddVlGuvS2ncbyswTgCS5ZrPxp6VjmoVoh475R+fetXGkNV2rV0ufaGnMZzsozxrLNcu2TB6BpdquhkizP7nDxZPXSvhcu1V+a0XBmLWw7eVGzl2su973XcvuUg0WK7zNpnS26QWEW5diyHYC3XDhwhkac2ZstT/0vl2ullMSxcrn1dK65y7XOYKW2xlGv/O63Zo1H9vgVsnpX8e5/N2VTBRD7KtdPFzXgoQb6mFVcJ8sWtiqtc+z2HK6H+K/sEjO5wSChSXMrlvVw73UfwgNUcTqwmm9fnWrpcuyubG/ufCH+RRPjp1YTMJsJfsjWXCH8e03fyIMJf+pe/xjhX6hg0+9HE/TvvH3vK42lznn0k1CwXtObSLP+L6SOLQ4Tfy6fXvdfTe/ktlIRv3+i9l1oH3RIi/K9acaGSZ/EMtOCOk2VE+GvUTlDZRu6TLqhRI33ryn4LrEaE/yan6S5YxnRmF+Ev89Ft1KPAbL8VW2Yln/Zq+8bCIvyYl2FVUQdexmwi/I8vvkh3+fQgKNPNu7EsQtbUCkT4MWfDCk5eKzOK8A9dtn1eepMnklmN1m4u2WDnPSuQs4AI3eRE6IJ++unGlrfJxE2afu9wVbzmft21lxe/bUHVEcAO8SWpVSCiM3M2WxacffK3SJT59xNaGABxjTo5Lh7kcLDKtTrWKC0HeoVF1qdlqh4UaDSU29dQJhgEh6dcAhddaPheBPiKW5t6sKpa/mOBqwQWyFdvU75ryNHk+RF7dk6dfaBW6nHTa3fRUii6YzS12DxATwnRc5ag6hHDzdrWxhXCxodvjCJOo0Dnl4Pnda7afP7biM0OzTSjkmtTCzGXlmI3Ik5I4dd5l/0F79+N8/1DWls6WdL3TCMSJfjISnWMMppD2+b3vUfXrq011W9M90NvBOmfqXrgtuQHMPuqvqU4jCHmNEZryxiDURzbmB0Lz5BEtQ6EL3k0XDt19e4ApqxgZpHgLmzWITperYlxFzbvoB2s0WG/oLPV+g9HKrd/niRaGPTIb1vQUGo6VBZ+QZQuVYWof5nfVBzG8uA0Vn2rGDnwo4zKVqvnL3QnJmsGaDlGUI7P0PITE1767Y0KHZZhl/vWlKmyieaY4U04cnjU8yJDF6qZbH3v1sZlqYQn58i2xk91GfRmbKWw+Y0TRzrUy7pi0WkvBCCCBOAmAgDoWozKRMlQxi4y0SqtxvoN9Z6ErbkbWWXYttA6tFBm3sO+EICWXAB0b9SaTDSb/Mf4OPTC3Gbj47xozcXH2cXMLHnm49geHTJ6W/jY0PlDV/88SPtmjBXwcX5vzbW7ed8yTp9KKhg0aJAZ+DgpNWaualyrkmRb3V7Nf415ILQKPs5VTuuctQbrmIWP0+vb6xqxzyJDDq8ecD9j/IaPVsHHOcJpnF3WYByBJfk4JUdNim+fnuI31/tT0pHvXyOsio+zgdN4yyye7FoRH+dT8siMVkmxkvRas6d+6LW+loX5OFmclptmccsVKx/H41enRXNT1oZvXHnup5m/qN5aBR8HyyFY+Ti79Hlq0/8LfBz/lju8nW/EhOWsTO8adcLnpoX5OO5tuPg4Dm3Mw8eppfy+/LBfL+mm05ubTRNcrsM7H4c+N+eBY9KkDRfHRNimuPg4LjHVHIPfLg2bfOTqsjxp5RW883HoPoIHrBw4sSrf5v8rPo47mxsbfFjZVBm+TrL7UITq2ePeVOds1yUZnp0M0MiT4pknTI3YvmggVWqT4Okx/W5Oqgd+ylQoh5p5cfAb0IUPL3jI/30zRzz67sVj7yreOsP6fMydnIKNjP5XNgq4sIiCR7EQvZJ+7snAXqn/NASf5gU87ecggf9o5z/VjWW/PW9xyj5KoQIGU8QEAb8+lPw4zKy4KT3YTOmQlyGt4vubJMfn0eHNp1Oo1dFL+KENWBn37gibCcrhTZRDVkQwYBy+4kvJg35IvghKHoZmByVYrOQNMrL2ZIncI2ICdU821L+N27aiqqeN364+jtmrksJWFnr6slzxI2/wiU366T2eTmwWcdxwWSSjGd0iXmwWWTozI/lV8KeAuYMdtNmT3amaRqX9IXlGx8zIWKeX+A1CLYj6eL3LZC1MebFabfFqVQyUY4SUwFjs77B0WCeP0xqUg9CPSJYOVUcPUsTob0I9OnM5F79u6G61q0zwEYJZEkXqg6Lq15oh5JcgRHAeh5Bfgv/o8kvh4+53jDr1UjT23I402/cRV+nyS+k9ckbdTuoTmHVk6fynWVM7ku3kYdQiyzPRvxghz8RmaTuoHkCYEWmt/po/N26o7x02O/PQ8YfOe8NMsRb/u2HArh+gXReiUp4ZYAg9b2aRwpN2sL5jPy14h8S4fIeR/zvmaoZ7+0aORKhEsdmqin/+aAMJkS5Zg05cLzg+71QvtFforHVdzjx9Vrk+p8nKSPBPQmgdEw3FYbQHnEa7Zl6jkS7YJlSCO1R4yyj9uMdsQ45RtmSvnpQofa1M1Co0GOsOfAXFYaKPPHtFO3ttLBmye0bJPJcl4xvRbVUmLFknH6DSC1gIaJtd8Fu9meHKu1CtryKGKy6jnuM06i/NGFpfnAUUiM6uwPVZ0ARxmkwKZ0e3gZ6OWaYDu8o7o9ST8EtHxIhK9yIvrIsTId2bLaR3efQgoozqQsCSvYdKjtrlMp7KlY2KV8bqhLCuLDWsw3jFVtPaKSI2Fk5F5CoVUX5VCQvnQfFuTyTA9IKDbI+AyJcMpduDnnELlpjt6ocqhucuE+w1uTy9PVZ9F4xNLXxg5It2319/w5ojC8L3zqnQf+yy5Up6gRfkKxaaEtKLrptKvAdY3YBYZYlR3A8wwf+VWZSakzWGW1CN9QokLlPHTfxyPOcH2fZhPj4bPFxKM5aUYw0DxtTxBN78GOebg15iBcvJWA80Yo/NDuoMcUlPBXm+e3nwbrXg/avu32nx/sJEar+Ed5sL/s2c8K+0DPwMhpiphbrxEQHZzuBN0FIdtIq7RfQUpq7mexCu4IgIEWD6e2ADgggwzdgCjNF6Pq566xW/ns9tYbXdq7U20oNtn9iUan8ppICez4en5cIOZw8MXbirVxkH2X51AT2fcF34rZCwZSGr/xQlBwRnrCmg59O9anTeYNdzfjOjptyxOVsnrICez/322R/tOw+QHWr1ya6S12JFAT0fROVfUtsQUfmXLNSLqPxrSzQ1amnXrI9DTtCiH17nqLbH/AWayhJNz0vmNjixPUk258fo6x2P1vUDTeWIpsa1Xq2NapkasSQzZE6bwN9agiY7ounOxrXxtz0GinPkNy8NvXynJmgqTzTNKqs9Mf/xLvG2xGsO8XtXJ4Ame6Jp6pgOT7Pb3wqd5t8/+1/tvO6gqQLRdH2gS3RgLV3wgpTaTic0VW6BpookUHbj6vzxKsRvu9PeWntthN1AUyWiyfeO7eWqdknBa/yPSkbatDgEmioTTRW6+uR2dUj22zVmaP+Xw6f3Bk1ViKYWEen/vtg6RjJpb4vcK30a2IOmqkTTyWsXIvf98Nxv41ZR/W+tfzwNmqoRTT3KfXjv9DkoYNUgjxLDQ0Nbg6bqAlYZKAeiKeDQ8ZvtwsaFZe64mjku68Ye0FSDaEp4/6NTztrb0g1dfJycfce6gyZHokm5e1ngvKslxOM3uPY87zjjDWiqSTQN9VB1+SpzCdr+e7PaQ67YLwZNtYimYZNPXh0gl/jNEt38uOji4QGgyYlo2vssr2X2sn8Cp0+Ovjr47oDnoKk20dTMJn7rmi03xBkfHJ412Tb9PWiqQzSN/XHN9J/t2oUuUVVt2qxkX2ivukRT7OEz1d2PnBCN3n6yW4r7hDzQ5Ewif+JGeMZkUcCkL/fO7pMOnw+ahORdczteWra4hXh9qFvlaXV2VWAIVbkIWISq5uwRLuvtODF07d7aHVMlTod4EKpqzuaiqsfu3Zx94oxs4Ya8Yedqj1hKnbrKhiap1DGI0xdsCXAj4g4heV4WK1OnTQAJMXBCRAVAA49b0B0U8tGYs2qiwVDd8MYyga/vKehfETuHnUF63MDXuAKa+adR8QdBvtvINhN8c91WB02tMCzr0NJeZXk8jMrzBiFc2WsDAYpBzTtPu8kEnr5G5cQ+kQrQNTDeU4wCljhSa5XY8RPwfEoVNnUi+4lQroEnrtUJymi0hG3utjXXS22TjM1c8mZV7ME1VPq4/nuY9PH8Jt5L07hiPYYDrlq+VpHJMY86GpnJeRADLSbfXLp4uU6YIB+kEIIERF/Cmp1nHtm+fv2w7h8l03o8Gu8ZKv2HxjQkPhbBNCRb+LZeJQ+is0tR1svyxDo7g21uJHAu5KEokvCnoAOJBGtn16UOJ8d2lU67MrNL5pW/B5p+BIsHsBpwggW6OhF/WrDFn/8pNxRJuYGeoZtNuSHDl0u5IcG4WGmgcoPt+GvyMatcApaO3uOo2brZk8dgSfdAPCg3TPHlOug+2rhgWVTlht1/DL546c6l0NV9L94LnJxLKxNqAeWGFE5UEiwTEw1gmRa2wMSfcsMToSQ5bnht6cyWg8vfXfqCeurIksoN0Zym62mt6QzPyg25Le9P9/SJDp79T+9DD2v2sbGwcgPmZViP3o9GZCnFpdww8XXjbzunb5Ks93z6KuRzqUFWoNyQwglOgq8ZlRsm/lz6wHpHkXTi1jiPk3dfPbcS5YZoToR66vO2lmx525kF8tCvbWsEjFlVt8yL+sOpaxS2oSBHE0ZJQw1fOPDTF8OF1QTITBjMEGPBryDvShUCbDU6XKMAOFuiv8Lci0jdRhqUONHXL9HPzcyiyRYjyuKOFhNlcRmpkghYQC42blkBe4ACGKCPvi+OnRfxVCnaNy/57ABVqTzabhK8G3FAAbtcWKZE93881LwdJSbYV4xOKGwqEySLjeIdO2IAkf3CNUapAd0XtKOD7bgFVTUCzfnwFTeaZ7/0mPaAOiyl5M3MYZnfVBhgV/uWDZ+SZxuyynvZuPvO95vzANggTsBAj7JIEoXHDPg3LQRsP0w5LFsOW9phtuTwqi1LHn83YtW1wKnZwYcWzL7UvAomZAKMIRuapFHoac9YUiv2i3L90c20BJhm2nN9d9RNWj9PlO7y923l0+rteDBtD07ThlnItKj8eEYno1Kt8qEF/DnSmBtXDAxsFP6DeMGc2BOu8Vvq0jf8EIeq8Ku8r915Ej5pC4pUssUTG2JEYPRhC4x+V2vcG9J6u2hj776OU7ofpJZVqgbJrzq49AlPMisgt15hRMV4L4k6AUCOU3Cxj4nJ/xhscphfKB6SSg2KiPRtu8IfmGEO5F8Zmo2Azv+4HQD9dz9EAfn+oPNfb2cqP0UcWgAUuNwAyyDBbEOdKHQli58D9HABJPg/3Kdp4Wq0OkXBol5y13n49s0LSwfv/ePNnib+a6jqVaW7Y6QDpo8hrhfmY/aVzK0XcVMmmaB173TptmuOiT5mBoA5D8Js44comZ7lhsFs6pJwwwLm169uRasTtYroZKx7YJwotBOo+2n5siHbwsZ8mbnmt7c/X6CeyMj/XOb0l9LIO5XSnYCtDwq2mx4YbIRLaMXmEs5VqP+hWSt12Pg/3oZ4Xhklo7ybfaQC4zAKw5NVKoQvYEuYPcj7IBEW67PKxCFylTIG7+QpSl28UA2mKRrDPQF9l57jORlWoDYbemwPHj+G6NqhNt+WAnTnmjz2HYIwHh5cdVVoMSI2hhgSAO0X3ZYN96eEr7y79P3OkBFXqekz9kHM9Bm/XNhwprMSTD2KBpBbB5FbhkoZYOXXpe1Y02cDkXPSI6ehdDXYtZDw9f5rz+i4dvaSeXev5bwZadebesyd6CDoLR1qK9+jGKI1lxOtqe0swmK37ZqapCiIQ/0CnB3PEJDSKlSe8G+0ngGB/WCSG6fQ0Chx8MdUx+2ABUhoWPARYFKdipsaaWV6YDJlkJho1/6exCh4h6LNdfbCRoFRC2GO4Ri2MFfA+btE149BQlEx3nfNs9QfxHNKrClzcJrzeNrGBHwrxMYEdrk4oJjLCcVUfaBqzRaorKbmH91b8lP+uBhK/iW04yr5p9BD3sbqIadz4/iB/E3UhzF9Ss7y29vL5diWjzvdeID8VnsuyC+1JyFvyxsrsyIJuRlYmQgSJcnKRJAoSVYmgkRJsjIRJEqSlYkgUZKsTASJkmRlIkiUJCszYWRZ8YGICwEz+lbo371/3jUG5Q12XmTvo9MveaC8+bLZv17IcY97W8v5r7aJGXD9eSWq/avii/0SlVoL00VsA4eZlJdmGW31/JWw3HE8rA+MfwA2pYTzTIKGYNj2Pp1yWugjMsBB/ZGhWTmYKj6B+wM3kSdGwIz8hHHb/E74bhumpKHGisGrISuQnRc0+FhFhax/hGRT6zkxy/bVWGfKXlvxLmNfBFg98iXC7juGOCGYVl9lbvhzYVVdT4koiBUSpT0H7+6ct8gnKHNipevzPWTLeKRFjO4W/vH0qqH+a9WTAif6pR7lAaUTnCjt8mUuPnDlae6dyXGFDTYMM3LIwakeyT1j3yrpdOXCzpPb9wcu3vqh5bqYL98suJ/r7U50IuSGHDw8fcvI/dwm+t1DCFF0Ab1PGIEovgkJzquVP0xMdH4QsSftdNqP+79vsoJdSwjSb5wgnTByX7ehVIm/uX6pKr/LYBuL7A4q5cGAIwt9qoTPePR3ZHKpqz2ou4jk5zJ3EfUtxYHOfk50tur3dNuxBcaX3cNDbbw+SzKXn/fPiQjqxVyIZ0ZCGxZwXaj7uXqqW4raKMl9+gELQ/cGDGV/A8fUEqbw5/0QC1ACAFtd5gKU6du0bn2ck75vmy9ZmfJB1XrF1tXUxU5sP5YlrFMaC/PidBdnKhMc+OnmEKzOqD62FKTmrug1JzawKmBgKcBIY4cqdlXt9JtPS4Xvcj07b3bOjH+pnkgG7kUDVaDJzCkBhKkuJ0zVECvtpm2h0feaLbaFBj0N1kfgFpqQkTt6YtAQfqg9mx+SND7v1Tb9QehS/5z3urY169DXoRPkSUJ8nQaxXs6WmjfG7yN3e7BzKXJhoiIFXlJolNFEgDTILdEPd3E8IWqlvECzgbiKGssEUaJTUHEakZOnAdRbiIxyVBWwbSh8cRc8DvItXXeNPnur+yjR8hulMjZ0vkiVLf0B+wBmioRfLmzM0c+5mTjmIDO5C4RnA2rMQTXMAJFRbBJ7/Hm4RNIX7F/WIGy1U+iGL9ofvR+GlqHu/uH3M3f/iOuF4ZPyaMm/LWrODtn9cpR75vB5a3nApwMnPqD7WIJhYIsRN4bgQLQX0H+Mq6Jm31WuiVPouIy2Ym2nWWs3/RIweeaF9ie3xt2lGg2/n2k04jrva7bAKm6cVnG2Kqu8O0xaxajwVRFzeEmKGML5Ig0zKfrfmPZ1ukr39u59aM7acw5Uw4Rh9zMNQ1zn2zAiT8KdwGVGxnw1zUsm8BMZNyFz0mOATSxUysLwKOU/OnbsgfcRB/5sNttp5qiSNEkh/AMQkkJEQ3Eg0oITkQYiMq53YIvrW2aF/Nm7nW/Q+D+/6myP3f5AtTH+jYaTYdrrZxjUAC5MiVdGx4O0Ep4tlGu1UA1Sz4ohwr9hkw/6OW3U8zL7JH7dCJ5oCRHBE2WwX0RgVvehk6k74LWJVAMXT8IEfuERJvxJkC8ecvV9Wt3VTwIO9J177e+tgzpQOx9bYqNvMHPwh/S5751OwQkcgqMhbIJhaJTHah9O9Ci8pAnloBbkA2nx9QFYRgH+Pz+nFA4PH4leMKDFc4tWVIHzWgwwRxRgUMcaAEYM5o5Wv3FF7008qU3Stzl42Lm63Ilr5+qsHvNObJiH7/a/cEZwXJLWq2Y75YvgylTF7TCKECrTkbIh7RQG8gEQnnTgThVNTtUgP0lXpuB6LKYQOLXd0IUbeJAaUjWnohZu4B6FjRihN0nGE4TeJPwmut4kXS+SrjdZZD1J+o0IPUk231THX6kBPscY+dtNI/6sF3BoZ/CEB20q+fSeXYkqfytmjg5xoeJ2GyY/S2lbMVW8aWq/8/3OXDB5aQmMDkdoTm8UewESdCqITyGEHNlAKopI8JNS284lhPQLnzQyTOs58cWkIogE01E6OfYviVBZO3D0hcnecxtl1OcBJRtOlL6IGBKAnGwXvNYCTIwMAIjOeqfGMPyjmDGMuF4cC95Yj/mEWmhy9cCQIvyp6D/mT+lyPmbyp5tFXP50vuh//pSwz2WF4EjG4HaBC+WTFq+7HDiIB39Kl2niwVNsFHF5iuWi4vanHe02t8qbcSwi66fJnZ6NPt2eB39KXyTgAaX5nChNL05/So+hFvenWI9h9afz9RN8sdXPCejDiR8ym0+Jmu8zJEnSXR9F8VuuZkTyMCVIFHFNCWL1kPvxRmarQEJuBjIbQgOPdPUIDTySzIbQwCPJbAgNPJLMhtDAI8lsCA08ksxGz9AYjDXoFZFdjK6exwNjTcKbke3MaOSi6UgiRBVJI9P3/Bk2sWGzCV22kAebSNlskr3nYc8Jjz8F7duzc9/WQbnUc34/dJYnKlTM2ihsjs1VLEyCdxSo0CVMVOsUuLgQlOfm0rCl6y4iHsUQb2cXFa1Rq1SRMGLBi/lHPt91onnChS3zLsjXRMnGduxZen37S2fYPKFtN61CAwXAya9tKFUnD1BBrhasogOFf2KUOuLdQYYBdzny0lbRTEKWOWIUsm0kE1zuCBxoW4kgbYKkXJhcE6dMDFXEUgKgHX45EtY7LXi9LH69qzqp4FWqF87q2kg27lLHUxUxEDtr4LlBnRJ/qjLkU6EGlEaeEpQYA2W3SHhLlIUX4dZLgUtYrq4iSjLhEwJYRVUpV0mgFlSBQKTTKOQJ+t8xYWL9PURXlVl9WKargPK0VEfv/zzE5R84l+q+diTjsr/VY06XV7Xe5dF/OIn9H/TE/gDewqS9wHxhEqGbS4ZJhG4uGSYRurlkmETo5pK50OxxTdY5fvCX7bulOzVvcrXNBXIhz54pswc+/xC2enApr1LSH4MYwRV6fWRHoovx8hBcA9ksaaXl2umiw2Yr1/5dzFWu/RxTSobncu1dbFxqdtl0UbrsVeVVbcZ5UnfnLVOu/auYq/jtB8sIZlBrTo8cOdIM5drPjqgvaXlssGxChY6j/2xQhXq63FLl2p9zWueBNVjHLOXa/3z761ufMz9K56y51GDf+r7HraJc+zVO45yzBuMILFmuvW1d/7+bl4wLmT4981TC2ZhZVlWu/RdO4+22IqEgi5drvzPgfckbITVCVix6dvbgRVk5C5dr38hpueUWtxy8qdjKtb8tu61O+VPvArY6T3j4MO/5K6so147lEKzl2s/pNxCD2PLU/1K5dnpZDAuXa/f34yrX7u1nnnLtPUbffTjt2eLgLS9q+OXV3SDivVw7XdyMhxLkUj+uEuS+fsVVrn3k7ZT5WcMy/Xfkqm0bHNz5lfdy7XQfwQNW3pxYNfL7/6pcezCbG/ufCH+RRPjp1YTMJsK/2I9LhP9npu/kQYQ/+kevj8eUnuFpDTSJx8r1mMLjaXOefSTULF/ox6VZPovpI4tDhP9K+YuDBTuayPaMejrv8kSJ2OIi/BM5UfnZvN6Qc+5g3MEf/kT4T2h3Ju14vz1spc2z3ya0e7zRakT4dZymG2gZ05ldhD+kljjy59SKwSucnv7TySfPkqINcOEV8zKsKurAy5hNhH+C+PPNF00qBm/8e9uONppj1H5rGRH+iZzg/OxnRhH+P/ptrxBUabtkVrt3PoNqVbxmBXIWECEdJ0JgTBN5Wwhb3iYTN2n6vcNV8Zr7dddeXvyWKkBrhx3iS1KrQERn5my2LDj75G+RKPPvJ7QwAOIadXJcPMjhYJVrdaxRWg70CousT8tUPSjQaCi3r6FMUEYC8JVL4KILDd+LAN977FNMAw9WVct/LHCVwAKdPPX9+KXf0BMBS6KubfH/XULTCylK7S56sXmaYzS12DxA7weInrMEVY8YbtYal0KVx4dvjCJOo0Dnl9cdf8qeWn9+YPblb/MDX7tSy/6WlmI3Ik5I4dd5l/0F7//ej+v9n1k8WdL3TCMSJfjISnWMMppD26a2+LRM5zdRmrWyQbelMyedovZV8gOYfVXfUhzGuMdpjCvWkf4IjNmx8AxJVOtA+JJHw7VTV+8OYMoKZhYJ7sJmHaLj1ZoYd2HzDtrBGh32Czpb/dXl3IApa8ODx03adfTHyl4LqHENfkGULlWFqH+Z31QcxjrDaazDVjFy4EcZla1Wz1/oTkzWDNByjKDwzjZB0oYvZDOkC5tO8Wnax5SpsonmmOFNOHJ41PMiQxeqmWz930ZmqYQn58i2fhyf2W3c/fCIhe9n57rNbORs0WkvBOClHwHATQQA0LUYlYmSoYxdZML3X3cv54VTg3akyqY8rB1w1KKHfSEAF7kA6H5Un2iG/sf4OPTC3Gbj44yXcPFxIiXFzcepeLv5897VkoLnHu6cbvtmyQsr4OOMlXDtbg6TWAGpIDo62gx8nEkVzo96fD8teMf9T9N/H/oh2Sr4OEmc1om1BuuYhY9zLGnLaceJy6TL67y6FNlpl6NV8HH6cBon0hqMI7AkH6du2p+fjz/rHTinZrVfXv4dNt2q+DiBnMbraBnjWScf5+7u2U9/+7Oi6OD8JgdP1Pn2wsJ8nJaclmticcsVKx9n7tWT3x33xgStabhzeblK/VOtgo+D5RCsfBzgCIk8Nez/Ah+nwokb4RmTRQGTvtw7u086fL6F+TinJVx8nG3MlLZY+DiSfj1LRk59K5o56e3Q1lsTVvLOx6HPzXngmJyUcHFMDkiKi48TV7Hfz6X7h4QvuL3p3cUWgY145+PQfQQPWG3jxGqNeX2upfk44WxubPBhZVNl+DrJ7kMRqmePe7+l7pR0SYZnJwM08qR45glTI7YvGkiV2iR4eky/m5PqgZ8yFcqhZl4c/Ab0vHtux0vLFrcQrw91qzytzq4KrM/H3Mkp2Mjof2WjgAuLKHgUC9Er6eeeDOyV+k9D8GnGwtN+DhL4j3b+M6axLDC90yn7KIUKGEwREwT8+lDy4zCz4qaMYDOlQ16GtIrvb5Icn0eHN59OkdJUMNAGrIx7d4TNBOXwJsohKyIYMA5f8aXkQT8kXwQlD0OzgxIsVvIGGdlNEVEi94iYQL0zG+rfxm1bUdXTxm9XH8fsVUlh1DCCOn1ZrviRN/jEJv30Hk8nNos4brgs4taBbpEubBZZOjMj+VXwp4C5gx202ZPdf6KuifpD8oyOmZGxTi/xG4RaEPXxepfJWpjyYrXa4tWqGCjHCCmBsdjfYemwTh6nNSgHoR+RLB2qjh6kiNHfhHp05nIuft3Q3WpXmWAmBLMkitQHRdUHd0DIL0GI4DwOIb8E/9Hll8LH3e8YdeqlaOy5HWm27yOu0uWX0nvkjLqd1Ccw68jS+U+zpnYk28nDqEWWZ6J/MUKeic3SdlA9gDAj0lq3z3z6mvzj1vDVY9stFHeVdzDFWvzvhgG7Tod2XYhKeWaAITSug0UKT9rB+o79tOAdEuPyHUb+75irGe7tGzkSoRLFZqsq/vmjDSREumQNOnFdVGNPztGED/57b21/8eanzy04TVZGgn8SQuuYaCgOow3nNNpg8xqNdME2oRLcocJbRunHPWYbcoyyJXv1pETpa2WiVqHBWHfgKygOE2mrM3O/RUYuGCnZXC3NP+hWO8bwKhOWrJMPUOkFLAS0zS74rd7McOVdqNZXEcMVl1HjOI36UweG1hdnAQWisytwfRYkeHSZFM6ObgM9HbNMB3aVd0apJ+GXjogRle5FXlgXJ0J6JFtI7/LoQUQZ1YWAJXsPlRy1y4Va/bRcVLwyVieEdWWpYR3GK7aa1k4RsbFwKiJXqYjyq0pYOA+Kd3uiBUVoBQfZHgGRLxlKtwc9IxkKU3T1QxXDc5cJurU3lUdmj1XfBWNTCx8Y+aK9OmQIfk4WSqZsr+ffTXvrIL3AC/IVCyfe04qum0q8B1hpIVZZYhT3A0zwle2NY43hFlRjvQKJS0yViRGbt98UZWo9f1L2y53HWFKONQwYU8cTePN+nG8OeokVLCdjPdCIPTY7qDPEJT2lqRFd88qMxv5bzh55/e10eRdqv4R3mwv+EE74xZaBn8EQM7VQNz4iINsZvAnSIvSKu0X0FKau5nsQruCICBFg+ntgA4IIMFFsAebMAnno17Y1AsasqlvmRf3hVF1xW6woVpQ0lEk3YQsvftSadERBLWGMIhb8GiMckFqwcJs7mDDidHw4jyROpo00aAK50DfpYavbqf47VLa7pz/d5oV+bubCLNliIMbvQEojmnVCIPgdFZreAYxFM0/wX7zOadriW58W1AnY2GPq9XLdP02iuVx4N2IXD7tcWDxadFdees2N++JlLX54IosJPmRiPKoED4BCgMaicj4hcAsPqQAVNsFxxAAi+4VrjFIDui9oR7MzxRW/dx/pnCs5VOF6n49DP1JrGpeVkjcz2Zn5TYUBtrO2Ys3ikCni9LAbEzP3BefyANiMmVyAgR5lkTCGH4mBf9NCwPZj3JkxO8yWHDTGY98yR8lPlgzJ/Jry6cW1kSctSmOElnk3g8syS2dYxjLI03uHea5v2GfrsAOH/DqKsgIbdvt7yf5wi9U33OJJuJQtqIlTfy9shBBxrStbXBPuu7FL99tM8eru9RyWJ3pTy3+WjlTrGCd2uCZNzvgNIKqR58Y08JkhqVI+VKlFT5y6Xm1Ur++xPgHTKm87F/LXLH/UIyC0p7Hrhs64oTOZewIvbcQIT5VAeJqRaVx46o6/H6xZiD0I8s2e7hn3pY78n6DRfaMej3+d24X6ZvhHMN+MuF6Yv43Jsy0dKpkSmhPUsc2K9xdfmuhvRQCiNAiRFDWqA8Go9p6LDFCsM0nMQvAwEjQ9Ep8d/Tquqb54nHT00ScbfvPPopYttBGD25hDCbtaGDb0McoDNg8zubChdR/4QbYCjrIM+dgkwoP/rspE4jySFh2//9lQt9P7LyND9r1vPHqO8+x+1ERHDD+EmejglwvDSlsyuUZ4nUrBs7b+uXXgh93tWbHqplXgR5zyRWONwE/Eid+7OdYTMYxkOVXAPVEM4fKQ5ut/+OAHp/19/MfmrelZ4V3rVaY5AhPjxkUPYqTb+CHixk1PrDcTcaNbkfaS8Z5n9v1ko0cVveubMqpM3FSGhJQ9s0+QW5j/Dw==
- true
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvwAADr8BOAVTJAAAAtpJREFUSEu1lF9ojXEYx59OS5IrF5IkiTVriWgXS5HWlFwQbpRYyr+xkgvFLpQMpRU3SEmjmLWEuZLcKGlpaRe7WNKulnQu1trFWms+39/ved9zzvu+59z5dr6d3/d5n3+/v1aNy2Y7fdgI6/w/xQWzbT6sj4tmW3rNlnvMmqUpdvOS2cfwsYJVcBF2BwXOmK0hZgn/O24qBskOq8DZmES6U5rutgeHCu7BBbgjKIBft4oQc85NeeBwSAlPma10kwIn4bDLBCX4FU74OIAZ3CLHQkFDEfqQ7ZigY95Zi5sStMFl2BVURAm/cWJGXedQIlkZp+uuhZLPYsh1NX7CB3EYQfKT5FhkP1e7qRYkeoqDpp6CgqcVdN5srZsSvICf4zCC+Datgv7dVAsq75EDnbS6ybTp2GYpdMVNCZ7AmgI0sk/x7PQmN+WgJZnRhrkOwDaE7ZPLBCPwQxxG4DNAkd8ui4HTY/jDZQD6RkHgOHwYh/E+0MgcM+1zUzG05jjOuwzA1kuRPy4FHWXdhRNBAXyew791NzgBiXoyybRE/XDSpdAJdUw3SDC7cIfgEemGIPkI/OIygMBvcNClcB9OxWE43tN8f+m6PvaaNeFYc2IIboZL6tJNwhh8pgG+LcToDdst3RB03iVnbvNmN4VNJ8kvhsmz0AT14IX1J3E4mgX3JA+SvYbqLsBPxjw2fik2Qq1/hwQfWlWAzU0fv0L4hVIymoqg8z5ss5mT0Q5VIFym42YrPI6JNwBOB9VJ9VSpNE3ggMsE+6EKpH74vIHpzAtBt3cpkB5FdLsKFjy/2kwVSPcpeWJo6ICb8iDhK7p461L6KkEzLquhzlVAM0lB7CicqnvRvIDelwAVg+9cZqHC1+Iwgu7XwzJNvde+uLkCkt1WBy6lx+Ajl1noUn2Pwwrw76DAHIUm+N/l5ghmoAvT71KbPozjUZdZaHnKcVgL4rbCQWLTd+o/wuwf9N7EUShQvi8AAAAASUVORK5CYII=
- 1e8725f4-37c6-4b42-8707-fa6926b11169
- DIFERENCE CURWATURE SHAPED GRAPH
- DIFERENCE CURWATURE SHAPED GRAPH
- true
- 37
- 05a8c343-ff27-42ad-afcf-fa1ff667cbe7
- 0f64163b-c63e-4c64-8cbb-8773b580d59b
- 1cfb2837-6c50-4ee5-aa8f-99081347aba7
- 2b037c5f-58a9-4cb5-8e6d-67c8f9df143d
- 3d530c4d-e834-47c8-bcae-1b4fa53e44af
- 3d6b44d1-1154-4b09-a0d5-a25ea070c226
- 3ec98c82-8319-4c33-b41b-a024084f3a31
- 407bf4a9-858a-4660-9705-8e8f33050563
- 44da1bc7-88be-456e-b69f-45137693f9fc
- 48a0e7d2-c487-494e-9796-eb3b184479ec
- 4eec2e88-5e20-4514-909f-8ce5a6c4aeb4
- 566f2ed4-6b95-49f9-ad73-6761a75a717b
- 57c8a8a1-8116-4ccc-933d-b8e54b24f260
- 5eca0504-be11-4dfa-b0cc-3a8181406ff3
- 60a7fdec-17c1-4d75-b76a-594839ade29b
- 62dd3e82-b9dd-4a0d-8238-0d84ad1ad8c4
- 651fba8e-310a-4fb0-99f4-57c6a81c0def
- 6daf543e-8b47-452f-927f-1fb8d01a3f6e
- 7847ebb2-91c9-46ab-9994-605a8fcfd224
- 83fbba3d-44b7-4802-923b-8e59a8614a3a
- 8ccbf885-f178-4841-9249-66f8ea932254
- 8ee99086-b8f9-43ee-9bd6-fec9ccd7fd67
- a59ab02d-69c2-4571-bb5d-457becd6a4ce
- af2d2cb2-cbd1-4763-ab55-47294a5f0eb4
- c8100f49-2687-4e17-8c09-44290a64e5d2
- c8de52bd-b70c-4863-84a1-797c4bdb334b
- d17d9c72-dca0-490c-a89c-6d0ff75c8dfa
- d6a5a595-fddc-4f1e-93a0-1d97caef0559
- d72e8780-913f-4c19-ade0-67c1bc74babd
- dc078884-ac50-4cf1-ae81-92173c776b72
- e18d388f-be39-4181-8c9a-b9b6699fd507
- e458e107-80a1-4187-9513-8822082224d1
- e6adadf4-be79-42f5-b3c1-7fc3b6b0cd49
- ea5bacce-ee91-4be8-a5d8-d159ac821594
- f0683443-95a2-4914-b42d-62d543c955d4
- f25480e3-66b7-415f-b4b4-f9e6199b06e8
- f8b4cc97-54ee-4b3e-a165-111b7070d704
- 81fd98cd-c9a3-405d-866d-edf2fca2467f
- cb30ccba-a894-45cb-b1d5-847ad7005125
- daca2ebb-26cb-48f4-8885-277e43200f92
- 20d03587-b988-43e2-924d-d6655441a5e8
- 937bac2b-aa3f-4485-8435-a74b05842dda
- 2927bcb1-a8c7-4996-b4cf-1e0b73fe722c
- ddb00df8-65f0-4650-a3c7-89c56da7f06b
- f12cf189-9dd5-4b8b-822d-2da85bac7a45
- bae8f0e9-2af4-409d-945a-a91a08fdc45a
- 3d99a0d8-87f4-42b3-ae8c-13046d610738
- 88db9398-ca86-4220-85b3-d1387046010f
- 1af94696-7c3b-4341-b4bb-415b935cb441
- 326b8016-5135-4828-b69a-a21c171e1a06
- 4a525765-a9df-4f3b-8fae-c2be3081d0b4
- a7e4f8f7-1ccd-48f0-863e-6ed19022d27b
- bbece122-0a0d-43f9-bd1e-b6e66ae744df
- 9c973484-e313-4490-a780-3cac6484f2c3
- e860b9e2-e037-4c18-988a-393d0094d8e4
- a43519fb-325e-4058-bda1-f7e34cc92c6f
- 53133e66-86e1-4322-bb85-7afca5c21f4f
- 233b0ef6-f843-44d6-99fc-9ecf077d1b78
- aa2a8593-f318-4546-bad9-74c7978a14af
- a67255eb-66a4-422d-aed0-4b64cd94d270
- 36be5f7d-3d93-4e60-9b58-2ea01268c3ff
- 59e3ea83-51fb-46fa-8bda-938de18b7cf2
- 7e2338e0-fce5-4964-bac7-ea6c242afeb1
- 43f684c6-6920-481c-81ce-8a3096268d23
- df2cb580-23c8-45cb-aac6-97ce3b2e2214
- 16c32cca-03cb-4d8e-bf89-f521eb08129b
- a317f3b7-85e8-46ea-bfa9-b8f70ca5c382
- 130433e2-dd09-4dbb-8e9f-946a284f4836
- 17750273-1d4e-4a10-92b1-f4b16af3b73c
- 8de15979-110c-49a4-bf71-f92c5c15659e
- 9a110ceb-3e62-489e-8e19-61581f5671d4
- eabf9208-959a-42b3-8af1-f5ce33e4d91a
- 735da924-e3a7-45ca-9564-36c125627c0a
- b2a58353-e9c9-4e65-a900-6efa66489724
-
1562
3202
103
404
-
1623
3404
- 20
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 17
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Second item for multiplication
- d17d9c72-dca0-490c-a89c-6d0ff75c8dfa
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
-
1564
3204
47
20
-
1587.5
3214
- Second item for multiplication
- 5eca0504-be11-4dfa-b0cc-3a8181406ff3
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
-
1564
3224
47
20
-
1587.5
3234
- Second item for multiplication
- dc078884-ac50-4cf1-ae81-92173c776b72
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
-
1564
3244
47
20
-
1587.5
3254
- Second item for multiplication
- f8b4cc97-54ee-4b3e-a165-111b7070d704
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
-
1564
3264
47
20
-
1587.5
3274
- Second item for multiplication
- f25480e3-66b7-415f-b4b4-f9e6199b06e8
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
-
1564
3284
47
20
-
1587.5
3294
- Second item for multiplication
- e6adadf4-be79-42f5-b3c1-7fc3b6b0cd49
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
-
1564
3304
47
20
-
1587.5
3314
- Second item for multiplication
- c8de52bd-b70c-4863-84a1-797c4bdb334b
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
-
1564
3324
47
20
-
1587.5
3334
- Second item for multiplication
- c8100f49-2687-4e17-8c09-44290a64e5d2
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
-
1564
3344
47
20
-
1587.5
3354
- Second item for multiplication
- af2d2cb2-cbd1-4763-ab55-47294a5f0eb4
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
-
1564
3364
47
20
-
1587.5
3374
- Second item for multiplication
- 62dd3e82-b9dd-4a0d-8238-0d84ad1ad8c4
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
-
1564
3384
47
20
-
1587.5
3394
- Second item for multiplication
- 407bf4a9-858a-4660-9705-8e8f33050563
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
-
1564
3404
47
20
-
1587.5
3414
- Second item for multiplication
- 3ec98c82-8319-4c33-b41b-a024084f3a31
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
-
1564
3424
47
20
-
1587.5
3434
- Second item for multiplication
- 8ccbf885-f178-4841-9249-66f8ea932254
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
-
1564
3444
47
20
-
1587.5
3454
- Second item for multiplication
- a59ab02d-69c2-4571-bb5d-457becd6a4ce
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
-
1564
3464
47
20
-
1587.5
3474
- Second item for multiplication
- 44da1bc7-88be-456e-b69f-45137693f9fc
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
-
1564
3484
47
20
-
1587.5
3494
- Second item for multiplication
- 2b037c5f-58a9-4cb5-8e6d-67c8f9df143d
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
-
1564
3504
47
20
-
1587.5
3514
- Second item for multiplication
- d72e8780-913f-4c19-ade0-67c1bc74babd
- B
- B
- true
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- 1
-
1564
3524
47
20
-
1587.5
3534
- Rotation angle (in degrees)
- e458e107-80a1-4187-9513-8822082224d1
- Angle
- Angle
- true
- 0
-
1564
3544
47
20
-
1587.5
3554
- 1
- 1
- {0}
- 0
- Contains a collection of generic curves
- 7847ebb2-91c9-46ab-9994-605a8fcfd224
- Curve
- Curve
- true
- f654ad66-626e-4a53-b0fb-b97bf8db47c6
- 1
-
1564
3564
47
20
-
1587.5
3574
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 256
- Contains a collection of generic curves
- true
- e18d388f-be39-4181-8c9a-b9b6699fd507
- Curve
- Curve
- true
- accfc6c7-d434-41c2-8fa9-df26450c2afb
- 1
-
1564
3584
47
20
-
1587.5
3594
- 2
- A wire relay object
- 8ee99086-b8f9-43ee-9bd6-fec9ccd7fd67
- Relay
- Relay
- false
- 0
-
1635
3204
28
23
-
1649
3215.765
- 2
- A wire relay object
- 3d530c4d-e834-47c8-bcae-1b4fa53e44af
- Relay
- Relay
- false
- 0
-
1635
3227
28
24
-
1649
3239.294
- 2
- A wire relay object
- 651fba8e-310a-4fb0-99f4-57c6a81c0def
- Relay
- Relay
- false
- 0
-
1635
3251
28
23
-
1649
3262.823
- 2
- A wire relay object
- 05a8c343-ff27-42ad-afcf-fa1ff667cbe7
- Relay
- Relay
- false
- 0
-
1635
3274
28
24
-
1649
3286.353
- 2
- A wire relay object
- 3d6b44d1-1154-4b09-a0d5-a25ea070c226
- Relay
- Relay
- false
- 0
-
1635
3298
28
23
-
1649
3309.882
- 2
- A wire relay object
- 0f64163b-c63e-4c64-8cbb-8773b580d59b
- Relay
- Relay
- false
- 0
-
1635
3321
28
24
-
1649
3333.412
- 2
- A wire relay object
- 83fbba3d-44b7-4802-923b-8e59a8614a3a
- Relay
- Relay
- false
- 0
-
1635
3345
28
23
-
1649
3356.941
- 2
- A wire relay object
- 6daf543e-8b47-452f-927f-1fb8d01a3f6e
- Relay
- Relay
- false
- 0
-
1635
3368
28
24
-
1649
3380.47
- 2
- A wire relay object
- 4eec2e88-5e20-4514-909f-8ce5a6c4aeb4
- Relay
- Relay
- false
- 0
-
1635
3392
28
23
-
1649
3404
- 2
- A wire relay object
- 1cfb2837-6c50-4ee5-aa8f-99081347aba7
- Relay
- Relay
- false
- 0
-
1635
3415
28
24
-
1649
3427.529
- 2
- A wire relay object
- 566f2ed4-6b95-49f9-ad73-6761a75a717b
- Relay
- Relay
- false
- 0
-
1635
3439
28
23
-
1649
3451.059
- 2
- A wire relay object
- 57c8a8a1-8116-4ccc-933d-b8e54b24f260
- Relay
- Relay
- false
- 0
-
1635
3462
28
24
-
1649
3474.588
- 2
- A wire relay object
- f0683443-95a2-4914-b42d-62d543c955d4
- Relay
- Relay
- false
- 0
-
1635
3486
28
23
-
1649
3498.118
- 2
- A wire relay object
- 48a0e7d2-c487-494e-9796-eb3b184479ec
- Relay
- Relay
- false
- 0
-
1635
3509
28
24
-
1649
3521.647
- 2
- A wire relay object
- ea5bacce-ee91-4be8-a5d8-d159ac821594
- Relay
- Relay
- false
- 0
-
1635
3533
28
23
-
1649
3545.177
- 2
- A wire relay object
- d6a5a595-fddc-4f1e-93a0-1d97caef0559
- Relay
- Relay
- false
- 0
-
1635
3556
28
24
-
1649
3568.706
- 2
- A wire relay object
- 60a7fdec-17c1-4d75-b76a-594839ade29b
- Relay
- Relay
- false
- 0
-
1635
3580
28
24
-
1649
3592.235
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 00ea1faf-8f43-4db0-a493-cd9e04efce41
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 2
- 0.0625000000
-
1149
3171
250
20
-
1149.177
3171.168
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- DIFERENCE CURWATURE LINEAR GRAPH
-
7J0JIFTd+8dHZW2jkEo1JSIl7XvNWMZgLKHS3mAwYmgs0aqSXVGJUFFpobKE7LSQ3jYtSrt2ad/1tv3uHXd0587cG6875vb+Xv//26/mzFx3vs85zznnOc/nuXJGno6+HiyOz0/gR4pEIkkD/3Xzcvd1YXMW+bG43mxPDthkDbwMNoM/suBb+J+js5hOLC74FmmoWYHfZGoEviwPvDTu0Yv4VaGHzOO/cBpdjJZ9lrXmsvzYrGVguwLQLmPrClzFqTv0sgXL29UuwIsFNneEfnFXqM3Sk+vBdAdbBgOvpqSk/OR/ypblznL0YTnx29hs9k9lI5Yzm8P2Ab6FNdfTi8X1YbO8+ZcF/+tkxPTh/R454B9H73uEx4TckutsxPJ25LK9fKAvD94iqZMl04PF/9fLjvZ0Ez29B7nbG3aGAX8+iMsA/rwfl3U/Lof3F94/c1LBP2M28v6Mvh8T2/zO6nhL8O9bgsArbAM/8iBpb/Pf72/dcn9rbPPb7scdbL5a09uaLtIQdxR8fftagV/N/yx0S1DrQcHb2/Hr94Yn8N4cifX3hLTmC0J/Qq9gfor3d+gb8X4j7AYONt8bdJ/82/71Hl5r03eEfinvu0Oq8q4A6cP/rLCSTQpDajf9Ir4hILtAVxMwHyQvz7J6eiZ0e3kboIeBQ8GbP0zAn678Vw09fZsGUEf+EAA6mxvQGaH+0wF6WcaOyXVh8d7ZH/jnDi0Saaoa0LPmenp68EeQ0tzz06VnAd1Z4FfJg68I/Rp5G0cvBjPA09cH/l4FE66nr5fQm7uY0KkMtgOXyYWGgBQ0sqQF3gq+Itv0vgDePUMfV6R6e7M8HNwDaL7u7vChQLX2dXZmcZ3Z3q7DyLOaPMbU0Xr64P8NIxv6uvv4cllTOSxfHy7TfRjZ2tfBne1ozgqw81zC4kzlAFfrzr/0rF/+BryyLHQVGaqvj6snl/9yVwu2oyuT5U625gZ4cjuYOvG9TEr9DvVFI2cxMmQ2sX/UKywXGLEKv25TFuX3KP1yFlYOoPmaZZIG/ujc9JqAWODrMk2vgxp1gPTrZDLzl+8budemYl7GQdqBvd3Pnlj9cZvAXUnzbCVv6MnxYbI5TX5UG7qKjIEnF3KtfMPIGHq6e/py+R4O/F9Rvqo/lewCXpfs6Uw24TK9vV09vQDfR/Zs+lYdTI14vQf478eiw8lHpjVYhOxPj1e29TUGmqSgJm6OkkNw3wrzfdpXnDTqPr4CmjpATX2PLkqqm8GiZ0ZmrTnUfYo50NQRapLtqZbnrKhoWXz2qwLHK8gAaOoENU27Vm/ZOz2ZkXr9ekjRzY4NQJM01BRuYBQuH2tC37qzfssqv7CtQJMM/w5der4qZV63Wnc3zu8Uhd4INMlCTXmPl52okKm0DHF4UBnyI7IT0CQHNaV7MPZ/UYqxyK/TfaaQm0YFmuShppeDPpydumqG8Ubja2fZCi5LgSYFqEmLNTBOeXYYLT9isSxJN3MJ0NQZavLrJncmP0aPsfb2rEN0vYZioKkL1LRz48ObXl0vG8faTWQHa0yKBJq6Qk3qEaGdRunestpf93rVjamxN4CmblDTi0CXz4vTUunHZOqMXGVipICm7lAT2+wE2dnyOWXz3nE/nqtQXgNNilBTJ2kVHaWhfozMT49ND4d8mwQ0KUFNx5xHnPKnTaPvmdnNZbW0wgegqQfUFPtj3ktTf6Z59oltDT0m3bMCmnpCTUs14u6eMDjB2LB50Or0mKUdgSZl/gW397t+PWkKNZQ6V8l6h8tkoEkFatqk0PUMKfuw5TF2wuq40oZSoEkVahq2d2B4r2W2xvv871PvX0/8G2jqBTXdyoi5onVaxixzSJcNWRYDpYEmNahp4SBlizrSMpNQywrtUWOcjgBNvaEmurebxpLujwxifko5JPUt0QOa+kBNpPSNjt5zfWmlnyxPzR51SRNo6gs1XU7IXvpi1nLjSGaIjrWhTBnQpM6/+T3dspkpGpT1l+aOzPccFgM09YOabg+06RV+OYR+9J15tt6lMtAo/aGm08fjPxt060bLOzvSZk5m2TqgaQDU9NfLsujvX2VN0+x0nw0Jzu4LNJGhJurz0FOLvDItNlb1sVhYVh8mZ2q0SMCDDAQ9synH24fJcWSZ+LKbnZmSvsqnPUY/zFJGb34Z/epWnQi3IWfJdlwCf5mkQPXx4bIdfH2aPDzkuvkuSgo3FzWgHV1USa/Fh1PmhVoWnv0UaqMTYAtzUbR9umWyr15a5b7oqF3P+lIJc1FH2NXyZjP7mqx7cqf7Kor5B5iLSj/kPf6EuSktuJc0g1Y1URnmooxXlydTQhvNNi5I4hg8z9OFuahL82XVi5buMsydrPpx1BxpDZiLKpvtcXXeR1/T4JG9/WlBmqdgLso/pGLFxqHjKCnDS1PlNGYGw1wUe9/qYtaYy6ap0aSJ0/XKk2AuSu3nSNIFF2mTCKXeR+InUIphLsrayXz/iwB3SvoxrZCI0Z0Pw1yU3RBd9StPSiwS5Dw4IZsv2cBc1OTs9wMnXquxTC5ZqVE9atBhmIvSCHAbGnovyiyuenulXcqg+TAXdSL8ZOzVCK5lxKrjN/etvjEf5qIYO2TV/PuwrA6eYN2o+KQ2BeaiHqaOezvoSX9qCneH/UvZsuUwF2W5/t1A09gi04IYi9kKZ1Q/wVxUYuH3Bwe3pxrkechsTEh7pwdzUaMvsxhTZ8ibBOWlhmqu7LMT5qK4N+IOFPaYaJX64fjXOcMPP4K5qLlrOXnDIhIt4w0cErJ/vpOFuSgjL02bPAVbs9gLtfUbLCdqw1wUtfE7R222jvHOa5FP9Lmqg4TGqxraeB1W/GBW3sL1RhkVdru/T66pxmG8dsBtvGq143gVsW7gj1cR6wb+eBWxbuCPVxHrBv54XXHDvefzHaZG+UFldnvPaF39b0nx35KiBUsK5KwMW1IEGXbMT9fwpKZfMVa/dDxFEbakWDT3S90C6mDjI/aTGIEBe6VgS4phWmPUTluo0ZJZJ+Z7XKUWw5YUV2aNY5PT9xofTIhMPfDl0DjYkmLRUYY0fcNTw7U6umWTlKZeFnI2A9CcDXLZjoOz6Yibs1FtR2cjwqPwnY0Ij8J3NiI8Ct/ZiPAofGcjwqPwnY1cgJrmq4Icy/CzHuk7ax4/gDmb9MZDMQsKvjCiDagfJ65aHQJzNiL8EN/ZiPBDfGcjwg/xnY0IP8R3NiL8EN/ZiPBDfGeTdOfgJLf7n2kR2xwHPndb/g3mbJDDS6jzdkfrvMgJAofO2wmt8+o9dRj4jdtovnXO1doRB9KUBX5XFyO2H9uJRTb05fqxBPswaFjQTKJ6pw70MSbZEfwgmc3x8SSzlvoy3cnuLI6LjyvZm+UCxj+9ZehsJycWpznYIlIOZBdGv0UhVQRaEQo1x5wMAKM48V7SAP9dd6yCVJtaQSJ9MiCRAg2krdl+nj78NT1JPw9o3VvR2YvJZXosYnO8fHmBDVlIW1FydOf9djKggRPvbkR+yRvrdhctSOhHSysYX1czO/S6oM1FfzvoZSveb2sK+fJCXDK2gAtxZPFdgId1iPPIruvNt1Zb35z8bUN056ZmoaBWC/WpBvSpAvUhA/okU5H6AK3+qQL6SEH6dEDRp4elr4cD6Lycm/uFSIl2d6F9C54+1HRHvLX77Fs1oxESgV9HhES8l38nEXICxUEibUyJgC7UzRoMsnn7AN/XiOnDbB4DJFEBRxkDLiCHKwk2jIXf1Mma6ePK/+YdV+iv6mTqw/IgkX4dTMhweFLzPwS+D24p8NIyGJbqZevlzvZpthKZ6UNewuYsEW2ukm+vy4b1O8/IKFj2qVhpn76guczBzwmbq+llIXOJsocIp4dlj9C9WPaYIBl7yDp4erqzmM0OkNSlyRqevj4IxyJDdXRkeXvDLy/S14AODwzdkr082WgD6WPQ956vLRdbJmyOYdO9aV8FLCNjzfugkGn4r+Num1zIncwXZZsPOTx3IiCLVOtlGWTH5LgAhiX7AXOhJ5fXc51aoFS9qcKlTp83mwSPNM9cyzlwUkApOeiiwlr9ahGHWtqYagGeRUCtDq1XS8Ma/DzLB/DJfkx3X1aL5Vry5H5j/Y1J9Kw5GWuvat0ejThf4F9VWDB4mzgk4w1+VMmAwQ8tk6RJKMukM4lMxveJvUzW7esv26CxolSwIzCAVRHZ1oghvESSRpHYwJDLYvqASyR38LOQRyU7gecrLCeyQwAZUJfr0yT2MLIP1H2ZHCdoCaW3qkVrJ+QaX/R9C3dgfksLNc7MryDp7wE01jEUsWYKBTTW3y20ZsKaaRR5NwDTQOS3S/vmd6+fZZhJ8vkTx2rKknMEpxhb8NPCU0zTy3j3smRAATKowCtRvewUsGqs3i2RKUbB0BPYZbI50Cn+aBL6D3LRhmUgNZ6B+P1S24nNbTrN1RFpKK9HlfHdWL3paXIvNROe9fhbwFDyRvwPCxkL1iQOgwXuxjKYvmQMJtM0Rwka6810LGP9bt3WmWesJsch0j6bumk+/5z9zqCoLltj5OSlRoIrAgbvg8IrAuh1cVimLgXLMtEpkl498w/9QcsIrdlkSOhzaxcGzN+LtAVyuyZgi07gx4Us0fQq3nbQzoFcWiYVGMFIp159lDdCoImT3/v+NRMnMgImxokzPx1r4sxPExlsaNvE+aTWnbViwHSTTeXmX24aylLaMnEittLIzUUbt9KgMziQjuUM7NP/f+fVSwbZ79+OMzE/etvFx/HQ3D0EmVflMA0G9GjCzKv8n1/zK3JexRpsv51XRxv4JMotybDcTQnMTH71PKRt8ypipKne6XPvZ+AWWmwexS/h9uYpOIw01zQsw6lJyHDtMu1Olro97bGdo0HmlQgpVekSc4lOuzyPhzrtAgMImnb5nVNo2rU8RrtwhnTKMHBu78nsBjMlgW/TzcLX3Yft5c52ZIK3Ljz5ovX3vhaArVgewKccme5kD4GrtGhWRZ4QYd2WkNyI9hbKqXgMEGw/IGck0K31kXLSgW4tt7+ia3P8gd+rQRl4IVJT0BEI2JLnFXgvmzrxx+Icp6qNUmXyRoWvell01e1ZzW+XQmnvbMXrtkKjQa7pdfQLN90P73ZJJOxzh340Ntfbh8wGhhPZ2ZOLsJdI+1T3l9cc16W/RWyXjbFfFsxzEbCPFFXIJMBLyO4vhfBSyCO3NnopEmDOA6A59akivNRVcD2wvwImktRvROpvy3L0BBaHrVFpgN5Hit3Frkbr99yLsrpQKCeokoGwSga/VSk6e398oOomRsw1SuDjoTc34aCSHKZK+fsqoD7Y3Jew/KeaDcsbEAY8o2mBQMiZSXDaa7qU8LQHvY63P63PhXpMIxU8AEBo4Z7LUwryp3Jo/nRb/ccdw2dGMgr+sjpu8jN5kGBk09jfi8vy9hbypVgLPVVjMLbK28pwyKzmC8CuxX+nEs3KxoJqpz1ohf4km1WDhlnptMjXIg/P0W5ZOBj7q62lIVYwlhIDSDwO2MXUIbtbHSCxYowIH8s/lBbhY6VE+Nj474GFKTH2pnn7D1pSHuveag8f2vOXFmQ/JpfNdHAXfX6r9qFY6txwKj35Tc/S+6fWVAiqPQv6KNlK2DlYtbcLLQes5RUDOYdypLW25vOs1RrnoPzLOfzqyCJVmp2ecIF2+4NJ6onem2nDfBNa5BikyLj7hMVHIQnKKSIkoB/lSQD5BHk0n5CQXzcn5FGjaWF+bmHWkvsMwU20NZPDchd0B/wridJQm0r2Aj/Bm4Mcfb19PD3IHE8f8OwFmJ18WP4+0FmMSF2R2TAibkU4Y0SUqo5cT3d3G9Cz8/1X08+b6Yg+ibQkWp+Um+nN4toBt8//tZpGnr7gSHAEZpAlYFIEy4ntA313YCYGdxYPAvch7Mgn55B2pBdUkLQTADvOMiQFhhgqWDC5LmwOg+Us0Ck6N71sw3ZxFaSDml638/SCvyrYGZKNCyo6kRMquvNEFETkZPl3JSppi8tcZspxYjvCUCJ58EVwuwN7ibemBUNZv5y5rRfLkc10N/R0+vVZYO/nw2UxPZr/3Wk2l+n1y2E0dVUFtK5KdtHIC40KM9hy8hBj+5eCFYL9w4blzgwQ7KpyJJEnhmi9tyeVvIzNZZG54JWgLDSRHRWZmyXiRlo0/hG9Edn/2+gh44EF0uJEKF8gEOkeGoH5jJzIdw+dCa85cvrASXNk7isOmstFY2letYmveRc0zVuditmZr3l7oGTC2Yz87aGIbEZ+KqaIbEZ+KibSsEIZhuACS2SXQCY74pBh2BXNJkvL2LpsyzTDY6VW7k8fzXst8Ls6z/AFpwFAOC9X4cmyFTkLg43Y3l7gQGCSvVm8pUjAcH7yAvD/gI2A3yBSC2R2J+r9CSki0Cg0XORtPbk+VvBeJWIQ/cOlXfPVkPMhuLRLBgaRqiH4n+AgqjHKr0jiJFd05XPgwPzE8he4XJMpu6GZsoS1L43z/SwjaljFUX1ujwWC4WYwG5EJsqzCASUZFKtNbt4E+biyeNmivAuA5uMnjzJ9QJOCU6Izm+VE9uJvIvRatAlCcgIodywcIG9uaukuE9hxZ3oAyv8tKmsU3INmLmlV1qhSc9YoC9JI5BccnrV6/I6zl8wOWswwWT5nzBkc80aRtEQbHXwtoFA0qBAdUOgN0sGDYbpkd5F5o2gKaf5KUwJ2Z029xcnTA+h4v1WNZPfde/JXRcbGYapJV1/WqAh2i+brCneLX02/U69zt7jY0lwdsygtlRvrXd/o4KAe0IMw1Ct3q2hVSFyFl9D3SzpgoK3wWSVSrji5CZVHs8cYrl2ot7xjxI2ziO0FeB3hTtb0Mt47t9BcqBdNEXVKcS6ngvTGXThdEEuHXs1DHcoOxFJiaHhHY5quGi1+ze1pu494ZbXen4hFEWt3LEWAfiOUEthCRRzZXEd3zL7h5WF2rMroLbWsTMdgrrHpPIIoorgESxEvN/5SEoQw/lQwAkm6tQMYEeiKBUYEOuMPRnxcXrxeyuYGY/3OmG8751OqiTvBgVnmi12xsszLXcQCRhSmmi/u+lyJHvrY4viKQws34whGIAk8HCQiu2BJBHShfzsYERi63d1B6odl0tvhNpROf12QMBhRx8KyB4X1fwRGrLn23NJnLI2aGr9LUWP8um8SByN47gQ1bx1wJ5ICI2xqh7p9UQ+wzJ/IeZL23O4KIcAInmdBVQvwLBIDI5CbAcKAEbzBjyoZMPihZZIiCWWZtGvFtppX9UsMDxzW+X7h4qgaEdOz6LiOKH2HQO8EAzaOnu7uTSlq4PwHdBoWl+3YtG5q2eoIObvLWjC9vNgcF75S4NfBcTGBxNjbOFOSwcWEdQWYMiN8QnU+P7fCK96KbxwlNOM4aAdrJHQqpeTaD1ZLO3tDVeDrdjcCMx+8fbi+jj5kKtex5Tm4k21YwFdg+TVFbRyY3iyylzuTwxpG5jKd2L5NR1bAQHdv3o+D8RwOmcl1bFnUBlmMAfO+hQyGfEMLFY8GF2hcQPFzopa3gcDyttyrVctbdeB3k4HtpGHTHgpc5v66MZHfOzN52jcfGzYtadb6YRYntwrG1zqK+q68F3/XNZFbtDZ2zUAwVAMKlSwqQY23zvVqXSiir0FzH+J1lSbdmvaeIoWizFc1/lS0wTRlEIs77VzjakF/yruaNXg1YX8Ka8Pbn5LzIF3sRflTOuBtSdxWhiZsmsZTizTZvb7xo6xWR6M9V33254Y/OY44W+ddSUTSTdPr4tBi8VIsLZB95HdBCTIV7lC0gf9AZ8PkeOtA8ogUxe7Jug0xlyqMymaTH+3oW9VD0OHzLins8JteFockZC8sSQI9+R69B5pHH7F5VUC/ST9oMTPHRpAS58QJdnwrYPxY+QGrE3thZ94RRdeehp4egPzAwAMHH/hh/5Y5aWRZHLRbER6Dv9paKJ09uG3cCKbEGojILyIBwmZGtco1d+ZlADUt4kR+uRMm97dxVmuYpmePu6jyplowUVV6Fvg54X7T9PLvvDGyjk8bvTEd0EYR1KZeVDbP1SZtWpcr3ZT6g6GO4VeZm4klfkaH4xuf9WU+WSbR/L7kXEiARlECDM7lCQCNq55o44owh/XIU3WcDuuRFsPjsH4T5mH9Rr7mymia/4E5lciiXmLOqdT3x8qptF72L8+prJQZ2vdYTiezPI9D6575bCnEM6cSZy8M5lQq+mPlVALWEk9Opb7dxR3zmJPMw5ZN1paLfK3aImcsppxKngSoOZWABJBPUEHzCQTKqURW6RN/TiXSkpLJqawFAb4NgB0niiunMuxqfoVZxw3EzqnkJ8OoonVV4iwZEDUjcVoyIPs/DksG+2CsJYNaMN899CK85sjpAyfNkXt4HDSv9sHS3NqHr7kamual+yKnHfieYZZbPsWuqshbcAst03REKSg61pnmCNQQr7O7J+AjOS5NcXRy04GcaNeMLNcm6paE9x/Q67+zwaiabcojjDUZ2802yGXaHS1p68oArFfBhBJ3kNOi3OfcCrXziyV95PlrToqmQN2hN1p3aHXAnz8ExR7wR5a6xTG4j4SDcegT9MMofeLWx9wK2uND/HHZB80Qrc51bvaF7ZDrjLSFUGoy+FtFWhFZNrUlqcnSotJY+F0a0rEvmo4X+z1/9mmzhUXQkW2Dhi/+KJgL3cnCU1SCD9rJyFA7YGh6u4M7UG0P4JM64Ea0SR0y090TcG5M6KS1ZTE25KMdhO9NGEoHX21hP3wDxuoLgX74TRQbDcbVFAtbFVfryguvu7A8gT0pN0DkVyroveTvjb0KDUsy38/fbnp3guDJsQn0UeGT4+aW3+3skF2vjWMVzHrKBDWiiArb8o7pCluX1cPvI7z9L68ziD4Euzp4YFqNnGV89Z4hRxv6Cp4Zy1h4imTk+a//zqHpnffn0Gz0zQOV7aQ7M0i7cBBJEVOk8gLiFf3g/wymtCo+2rN5kDthd3Xtd/r9NFnXreLV7UsGT8+60uaujkeolNeX6aLMVJvD68utOqFq0sIZfOQcrz87AYYV7cnMEpUXaj5mRAXcf2u2uucPwTTR5qsIp4n+ahJL4BhTDaDTQrOHOgll9kjXK5g18NJnw61X3Gvf3GmoRcSomhKK7efMbTkTodVc4QpKR3bmenqQV/gHLF8FrJE8vDw5YAJNy+YP5PN/0O5OOF75q62lp8L5FbyYJYlsKOL4nARoXX1MaC7h8/YiI2DQLazwh31vkd/SlLL0py0tlxHhVJyjovIluocpx4fFBXqKcNy3w3B7Qb7H/te1hfkeeOPvPOqpM9WxW4KPmie8WppZ672/bxs9qhcgJRhUJJ0S1TkPAFMz8A7CbBvelLVmBmy2bMDvLHv4Dikr4FUhJdePbNpz8rREQdvNwbLdnFbYzv5OQICFf6RBOnVAgtTZyW1NkABtR8a0HTAUCGO71mW6Nttu+e9s96F/b1V22UrGrpQnUsqcQeGCtpuLZbu5WLZro9cHjQNmsKAbR59QxmnV0kQRsg52mhFy8Se4smy6hPDKEnod91k4B3J0cqLAJjWglZ7fujVJV0gEjLps6drJmT/ktIwPXPl+t+BQnzeSrXeaw3MIGArYH+OvQ/qRUNYhWYsYT+YHZZmFKS0avUG1ULByk4wtC3ymacv3sX2b1yDevE+CG34oINeyhQfy6YKibkdY4KbXW0FcgtAJ6YOofD1w86qf26qa032a6mU1fU8ySBG6sqDvL/I7KrzrxVWb+cl4R9H23GXhuR8lWH0apAPB/CLRxJM60FqdSxyn9mZ6aypiDrb1YXmRvdnLWbxzPBbT0ZXs7csL57P9WJC5RBro1XDfNT/oziZba9Ypq/oXfBGMnoCXFY6e8F4Vh3kCc7HMo09Y8/DT5NHM0/8XpATlxP9+5Kw3dTVna60yPjrCbjfJ/iLi0Z1tApaQDyjFAbuty8GyXHSOpC3HB5aEVgooh19o86aSLdLXizQecqPz27z637h7sezrm52hUH4ymBAGjDZoPu1PQplPdb73UjtC7mica/DmK6u/i+DzmDozAGuTm5YDLc+07GfBYnqDUC04OiDek1fowB24WsumVeSTeVHvSnhNDWtsoY7+4KOcMgEdT4jKuvQCU8AyRe7oW9Hn5HkBY1AA0X3tS1rS7PndzfN0RwaMWOsjmA3XCfxKooqyev/eTeCMfroCUrmCUsWLSv8B3QQgFSrCJnKf9cutgqUpeV6VIVIjlfqvT2bZmjFi4t567KV49UGORymh8djO61vFPEgcUaddPFgbEAcajwPQxiOBEoOQUwzuiUFCvVUuNGv4gbsrLNMdcvcbRCl3kUxiUD5gR/+jzfFSMSQGheTlVSxcehSPxCCScGIQCd9ia2S0rjqww4Z5Q3KvmUc6PKO6nucIZid0tWB6e5OpToAdhFJbQeE7oXVZYI0BRsHJHuDnmdDnf80fzY6iRfMI8lntGLco1JUFm1txQOSaDdUOEDppBPNU8rPaOpcMgCX1ezfV8oVrpSc6ErB9R9qBqZNMMgw2WsSdqkKcovOuKLwUbXr5d3MM0jHjwM7bgxLWUknCdWydjvEkbFW0qBesqC9cKZFCIX2QRHP+J+RBWoSKWpZrg1NKdpvZ6F4MaFwB1/EBfASZy/syoieFHRvzB78ZkG5UMrzT3DHfX90XRBatoSs0ySG8FBZ6gzgEA7oHhmCuWfw5eCCaY2t1xkkPvuDtkHGCTJWAVddDnoLBqush41Sw6nrItTbsQcfIFQDsQcdIzwp70LHey61h4dvCzLf97PGl++ALi2APOl7xbMbbkZFaRgdIo19JF4YEwx50rNh//5kC8w/UDXVH0qYsvz0G9qDjcdEzKSFKr612yGcsZU4u6Ad70PGljJqwLSXnGYlx6h13OVz+KZR/AxY+FNmR/3pZFv39q6xpmp3usyHB2X1xKA04CK1DEb00IPIx6O1aGvAfEgrNVxNVGjACpTRgb1p+xWl2xO9LA2qgmfJPfc5TSa/Fh1PmhVoWnv0UaqMTYCvG5zx5vcJ6zpPXSzE85+nYxQ3B+xzSzXcPLVRXOFG5py0havE/52nxK6ynzyi++v99ztPlqTejv0zYQd+qeJpBU+n6liDPeSp/iWUwoEcTLuVLTM952kaaMslQwZ6W0sOvoeb0khO4PudJ8YJr5yuGymaHho/cfnC47BYcRhoZ03DVLyQd0hbjc572m06Jzuozw2o3q0vyYrerOyX6nCeex0N9zhMwgKBpdzAJZdr9Axla2j7dMtlXL61yX3TUrmd9qRQzQ0u/icXQ1t74lzO01xKr5saqPrEo6RG77dKNR5/xZGiNV5cnU0IbzTYuSOIYPM/TxYGhnXATi6EFrCUehjbb+kVKx94H6Imrnb5nyIbvkyRDy5MAlaEFJIB8giaaTyBQqPwIu1rebGZfk3VP7nRfRTH/gG+o/PSFDvVIhhZpSck9l6TugTifS7LBqKCiQ+0DYjO0/FC5FlpXJQzPmX7Ie/wJc1NacC9pBq1qorKIG/knPCey/+PAc2o/wuI56x/y3cMQwmuOnD5w0tw/pGLFxqHjKCnDS1PlNGYG48HQ1mJpHl3L11wbTXOiB7ouzZdVL1q6yzB3surHUXOkNdo10PUPlxFogS5rYKGg/Qwl0FVonl+RpPXs94EuHcIPnxPhJ2OvRnAtI1Ydv7lv9Y35xK0UpFaNNXxqL/KHz1A0zQ2u9rrjN/4o5fC8hWoRs0oEVzTK4Ff1AVMBjdjOziwuC9BJRKorWlbOCH79My7/Mk6/LsNb9fw6YAXpphbtccpme1yd99HXNHhkb39akOap39+wkKlEvquFolcdA/Y9NWBNMFGZO9aASWqvtvW0lcqAiQKul8AVCJNXR46sDeWPgRULm6rign9rLjHs7u65jOUkOtJV7aH+14j6RYaBiVpxa3U7pSJy03neTERuetPrv+vbSRTpE1cvTKLvj7r0uZL+7mUb+3Y+IPMEUOZOohJbxhzjydzWwtWaMPOTHVg+y1gsDi+/n+Xoy+sevFN/kVo+D73xeWjaE6vU43IWd27mChYG6fzruk7CXh3eiPcm500uJNt8UbIp5/Jkg1yCLuHdMHK50RI3LGKLg+ipSNPhUXzlGmbxlWt8yYcRXnL2vtXFrDGXTVOjSROn65Un4SM5cj7FQfI3l7Akz7zEl3w4muSEfp4dsufDTtyRFoKduCOnRtiJu7WT+f4XAe6U9GNaIRGjOx9u+fPs1H6OJF1wkTaJUOp9JH4CpRiHQ2s9NJuc7abxfuQ4T4vgd6/N9a6sMRbMnbJhAStwRxbZ0tfdvRXAzXD+5zjg58DZks0Blu5sp6bpdRkbzBX2cQXs0OI1CFJNjPsUzvESaG5pgVtg4V13BejxnQ1F5HiBOSb6V9q66lA15SXDAssN4GZ8eMszUDGRAmian1uypoe+ydrJyRZdrjk3IFK7wAuJSO3ivfw7X4Hs3230FYogOw0qt1vUkcw58Mk6V1BrTLRQub7NynEFuhrYtUTKN35AWY1KtxsGh6+XdV6QX14l+HQhqIN4iHzMg2Ar7vnE+byehKFW3eV2PcDi36icXYAXC66DBsyB6pmzuByWux74Hm89E/oiEFJ3YXERIAf409YloypvaQ4aFrgEmckJaDK1SCsjl8RtGSRttGtVDjQK3lBF2NU6hzcKWkWCqiGT6KGu7yRSijP5m1LT9udZpjlte6A6r1DwLK2VVBIOUuhjSgF0cWiiGkFCmagsj9EunCGdMgyc23syu8FMSeD7dOMFeL3c2Y5M0YnIaKu0vhbAMGCB5T4cme5kD4GrtGheshuiq37lSYlFgpwHJ2TzJRus2xLSG9HeUo8BPrGgAZAzUlT2MR1cqT0TcQ7IDxuIOAfkZQwgzgGRx3n8dimU9vY4J+zXxLSCvb8pI1pAPpH2SX3Zy3vA9LGmOQvlR82uTVMXsI8UVTimRG3vg0ISiN01QAeFQqMDLHlOaaiAiST1G5H624LP5XBqlUp1xeuctaMGWMQ4dJ9/Y+JlwbwxKQNhlQx+q1LWjc1bNYI2GOwdfDL29pqItj5BBlTpzTMslZKfteo4VQ2WLv57gZBZKxLNFwefv8vrMWCNeKHcefdcnlKQP9VH86dELhQ3Ofv9wInXaiyTS1ZqVI8adFj43tpcKE7uA1ahOPv3eBeKOxkXu3PFKD3zhE9Xrb7lWKfjXigOmQmEQw20xvdYNdAOvBdLobi5Cmu27qnLNEyduHrB8HJXbVwLxZ3rahk1/UeUaUSRh/G7k7FncRDJHlMkuffEyxrk/4irUBz5b8f370frmpa4PSmNeTL4eJu7Oh4INa8vo5ZGA/qyeArFxbx5YHCwB4cS+3rO2oW9lh0iSKE4e0w1gE4LzR4jSSizB7ELxWkEuA0NvRdlFle9vdIuZdB8tLvDqVCc4jusQnGKb8VUKK6039aNjfenG0XsdV6/3VIlQyKF4qiN3zlqs3WMd16LfKLPVR2EQ7Ex0juselaZbwmUziumQnE7LRyXGRZlGgf13Vmz9GpKiJgKxZ0/NuaSw1dds4NSPyp2X1//DAfbLX6LZTtFItlOqC4MPoXiejckbhs89apxaWDxQuVT6ioEKhRX/gazAuMb4hhHLIXikIs/iReK4zk61DJpoW9xLxT3c7nqc637dZa7foy09Lz0zF3iheIU32IpEP+Gvw4ZRUJZh/ypoN7Oe8Omd7kVYJznP7psRPitzmIE9bqoVGKAepHKlfiDenIXfWi6p7ebRSbGTSsqoguWRyYcqNcJFAgVH7qtXPl/C+oVrPu+YvjcO2apdskvfz5QFXxAnORAvRxlLINFSsZgkgD1Nter3Nd3vmW2cdDlvY+MI2bgCuop0fI1kzYUUY50cHA70XPGRxxGmhOm4aZIyHDtAuqljup34/PwrgZJBvau55hDBSuwtTeox/N4qKAeMICgaXc0CWXa/QNBPbXFmftf0FmWBW+n9XF3LZJGu2WcQD13+UoMUG+MfOW/G9SrCu/zwCCVa1GalD/j5qbh8niCetVTZCOe5He3Opbb+dmhapMVOIB6TqC1UEE9wFriAfXOp8Y+u0qayEhUzjkeP9DEUJKgHk8CVFAPkADyCWPQfAKBQL20PHXqeuYu42TT4d9XmKQ7i/9hl0hLSg7Uy+xaKUZQz9mkoCL7cNfKPwLUG4vWVQmT+3tvyEybVdJf6OvqtdeX9tO1xol6QfZ/HJJ/rbtVYiT/6nfju4dxhNccOX3gpPmsNbfWW2ssMwgfpiN14uYgDg6aZ8phaR4tx9d8PJrmRAf1jhyU83nCbDDZ88CqQCFv+/d2BfX+4TICDdQDK1LVKlaKBvUSaPkVP64qVv4W1JuAZso/DhrbdfbY4BuDOVbhumULpTmLV0kAGnshU4kBjeXICEW+iAGNFepoj1HqE0zbcdi3y9AjNycg4tRtg8b6bq5zOLKnmrF5GPUvQ8bERBygsUegzKjQGCCzBKGxtINyf81aMMIiS6Eymtbvs+DzNyULjfFkQ4XGANkglzARzSUQZkZFTn34EExI0+EwofrIYk2odrJ8yScRXvLnieeiuEZ65sGyUTFms77PwEfyd5T+nU0TLphl33zqfzt5biYOklOksSQnS/Mln4wm+Z8CKL29POoT+fNI6pH7+pmlgR5bMO4TP0BpAuhDUAGlOum2znCtAZTUpT5r3O6nZFC0fPvrwnR/BLXWJkAJ2dtxAJT0QeVQkRs5wbUBPLNDXIDSk9Uvv6bYcCxSN72PHB5exSUUoFQnjaVWvnS7Bu7/ZEAJufySMKDEGwWoVI4cYun2uwyE1gFKI06HKYx2szQ9NHHh/qOvXydLGFDidXFUKfKbJ6opJJSJiqCAkv/WUQ6dc/IY+x5O3nx/YQitnQClCT0rMQCluh4izj/+PwGlwGdWs7mRhy0O91Xl3mIeNsIBUML5gAREb/R7VmKgN3I9K8UMKDUO6VKYGTzT6sD8u4yC2uogHACljve2Pkgr7GFeMOLZGoOfY17goBLQrTFUyu/RqmOk1gFKyNN6iQNKvB6DCigBSkH+dCqaPyUyoJS0fsjyodu2UQN763jc2PLsphgApfhelRiAEqWXyLQt1NzA3wNKUx6fWG+scJORNfJ69NO5MhtxB5SQGRA4sDfRoEao7I1rL9RFfFsApQNTjLWu+NIYeaUJya96mjnhCiiRJ3zSntflg+lR76FylwaedMdBJAqmSGq9iJctxf8RF6D00c5RjfMmjVZmcfTQuyEf6wkBKPH6MiqSA/Rl8QBK+zLdK0ezCikll4b1TSrc70kQQImCqQbQaaHZYxoJZfYgNqA0RC5j7KcX9xgbTri9OTvqpqOYAaWtqpUYgJKyqsgwUdsBpSEql31XJcy3CHp1X3tMdX6iRACleQohtl3l3tL32Vopvf/61wYcIJdIUE5UjsJJlUBpjGIClD51Ojk2tJ8zdbNdB5M+f630FhOgVF5THGhvp0gtHptWU/NYio6D7aZg2k6ZQLYjUcQDKK2cPMJPReOT1bG4BTT36DUjCAQovVDBMs4pFQIZRxyAEnLxJ3FAiefoUPEca9XWrUlaACjdiJsbrK76kLJLhkoeFesXL3FASRlTgVoV/jpkOgllHdLqmocDmnuv+GseIikkWM1DZLo0rOYhMrsMVvMQmc8Ge8ogMigFe8ogMg0I9pRBZBYJ7CmDyFNn2FMGkedFsKcMIo/pYE8ZREZKgabOUBNyvw80dYGakEs5oKkrSfRxKtDUDWoy/LvajxlAM9s5t2Lrz0If8HGM3aGmjgPCRu/dZmcZqehTdSnb4x3QpAg1PXt0rrSXVJZRoJ4RPSWg4xCgSQlq2rNwPFn99A3GscsDGKOfD1oGNPWAmspedawy+njONLzruDtSlmazgaaeUNObze6sRikuJW7/gA0ptTtigSZlqEnRdqju1B1PjTeVSmcePB0zDGhSgZq6f/M++8ogzipl6KyFitMazIEmVahpSf3LHNm52+hry+wP3OxSNA9o6kUSvRATqoepRkKph7m8exw9YXwcJVSnNH/KvCN7caiHSUEbr4Q54Ud2HpzSFHEuXsV71nEnrCP++E58H0lF0/xPhTi/36hbemP+dIsN80y7rtZonC/6vnGBOCP1sSDOLvpigDhD7eXTQ7lcRkRo736rRilcJjbEGaSPhZbN1///hTijHlalucTXW+yPL+12oT9bEDWWHMQ5BtNgXSRjMElAnPMGzcnY/vaIed7kLqVblWozcIU4A3v92NBjQQVlV7ZfD5XQZ444jLRHI7AMVzyCOJs03CFO9st+3hWn5lJDS4/EFjm/DZQoxMnzeKgQJzCAoGnXgIQy7f6BEKfcDK2YuxtcLPb438yJOeleImaIk6SFBXFWaf7LIc6e3Tazzl+bTdt/Tbf6Wp8ixLMt2wZxzu194cA1p3LKlqW1R+7GTAnBAeJs1MSCOAFriQfiPL3K4ewGL2uTnWMU9js7HHguSYiTJwEqxAlIAPkEQzSfQCCIkxnUbeV6xnrGvu3vdNe9ffZF/BAn0pKSgzh9hooT4txrVFBB9x76Z0CcRmhdlTA79fgC7dAVd5NNE3sEBa8dmvMAp506sv/jsFNX1sXaqX8YyncPxoTXHDl94KT50hPl43rI083CE6ZPlT/v19YiuqDm0ZpYmns1u2QamuZEhzjHeq/zCyncYZap5xy3Q+ps+0Kc/3AZgQZxgk9bTB6OAnHeMM+vGLBr+O8hThM0U/5xECeFOef+/nRTy8OcTuafSG+3/P6GcYc43QdjQZxjBhMU4txrofEl4Yiy4cEXV4vjNvfcjivEuWXY9iG22XsNwuqvZ+suS/fGAeJ0GowFcQIySxDiPHTXKn5xp1m0DRZ+pi5DFgrmKEkW4uTJhgpxArJBLoGO5hIIM6Mipz58iEKk6XCYUL8NxppQbzdLbkp4ycO79Xxue3m0+b4biotcRr29gY/kb8ITs9PcDjB21xZzDqQsLMOjEMUgzEIUg/iSm6FJ/qdAnANDUnw1nYaYFJ1I3vs0a8bEdoE4czSwIM75Gu0JcZpNytXSmOBqmbJgi/XIyDTEqWObIE5kb8cB4jykgYUlBmm0O8RZGH7I1vLBIoPixyo1c5/cFsSyJQ1xzsdUa4zGfxBnCyFO5PJLwhAnbxSgkovAKBAjxDlUNmTq5ktUw0Pj62OTUhc8kTDEOR9TCqCLQxOVOQlloiIoxNl/Z69v/fdGWGQsdu7gqD17ENZt4QhxFuthQZxOev9BnJB9OsRXjZnZ8Nko50TY9cNvt3TDAeLE+YAExBNz9LDwxEg9cUOc7icYa3VtrOlbXow3LBivLVhO+p9BnBaaKoeZ78/Qoq/l3uq7+OFlHFRywlRpip4YIU7kab3EIU5ej0GFOAGlIH/KQPOnRIY4/7bTNC9nOVsVP2ZOfJbw0lj43toMcaqPxoI4T43CG+L0vxRcxXRayAgcVLpPi/VJFXeIE5kBgQOfqDwai098MUosEGe3S/v22ejcNUqIHPKtZ+eniMq7bYQ4d34/duf+ulfGhUvtduhenHQHB5GAroIhUtIo4mVL8X/EBXHOWFH33spnHWXP4pHj/MKp9wkBcfL6Miq2CPRl8UCcmX5Me5rLRvrmPrcC1ZWNBHuz5CBOXqdFVQPotNDsYUFCmT2IDXG+Xl6+JbM+3nDvOnOvqn2M0WKGONVGYUGc8SPFBHF6lt3su+SJg1WaVd2KzUHdciUCcX6Y+eV4SFigxdoez876Py3oiwMIqDgKizWrH0mgNEYxQZy2y+krOUozzYI0G8bpXzstmLeAH8TZgeHVi/nR2KDYRS9j5aU6kY6llbYrH4llu3gC2U5OTBCnqmv6psUhvmaHKyuuPdm7T9AzShbi9MI0Dp1AxhELxIlc/Ekc4uQ5OlSE8epI3CHOPvSgAbYqnqYbR7CWAvsqwSetSALijB+JpcD8kfx1iCUJZR3Saoizf3PvFT/EiaSQYBAnMl0aBnEis8tgECcynw0GcSKDUjCIE5kGBIM4kVkkMIgTeeoMgziR50UwiBN5TAeDOJGRUhjEidzvwyBO5FIOBnEij1NhEGfvbEWt0BeVhqFnpoSW3y3xhkGcM3udyxn8PcA4y2zRvN25d+fAIM7hOkUx0XcGUEoWS+VOH9njEAzi3P6mU+KVvz9YHh3wbqNtrJsyDOK011fNKXB9ZLVD0yHZLtKuBgZxRttnWVWM7mJVwn2wYouHQx8YxDn3tBTn7IxMRvbwQwuXLurvD4M4BztUKSZl1FP2V6nrX6/tFg2DOJGrLSFSE0Q6RQ79CV7L0s52PWMWV7Px1pLgDztwIDWt0AYlYY7xkT0Ep1xEnKv4gef4ZMxzfFLzOb41muZ/Kqn5sKv+dXuWr8nGW7nMR2P+0hAjqRnEwCI1OzHEQGrOzvq2MuzYS6Oy9186lSslvSQ2qbmSgcWP2TH+f0nN+qUe7wYPWkA7rLOhfP2V3hUEITWHYRqsk2QMJglSk6GcHF/Tr8AobN5F/7E6mw7hSmqOnvVwwZa5NwzjLIZHrp2om4XDSLttjmW4HHPi7MRwJzWly+Q+vw1lG5c1KCWoMUMHSpTU5Hk8VFITGEDQtDuDhDLt/oGk5naP+M9SKlbmccd7kM4u3bdHzKSmtgEWqfmG+i8nNS1uHi0ov7jaaPudn+vVn05APNy0baRm3tEhi6UZJ+k5Xb5kqlV9L8eB1CQbYJGagLXEQ2oezNH5UjdtjlX+8EFPKV5WVZIkNXkSoJKagASQT7BB8wkEIjWnm/ncq9/nTs2xCdpYd2TzUPGTmkhLSobUtC6oIB2giZPUjDcvqDi5l/ZnkJq2aF2VMDt1cscIxo+JWZRQr2vbnqs21OO0U0f2fxx26nQTrJ26tgnfPdgRXnPk9IGT5i8dI6fIF7hYlOzYbFXj+ekZDpp7UbE0t252yTPRNCc6qSk3OYTyOU2BmjBSeuqpVR3Gtiup+Q+XEVikZrUpCql53iy/Qvmc6e9JzVlopvzjSM0tnb0f3q9XMjwk6+x3bcAtcwmQmh+mY5GaxdMJSmr22am5REE7gxY1gWPZ555fAq6kpsNnzhHqYjtGyvd5Jg9cStuaxQuSmi+mY5GagMwSJDU1lZNcjlwJpARNlisfsnMEm0CkJk82VFITkA1yCbPRXAJhZlTk1IcPNog0HQ4T6koK1oQ6n8KX3J7wkl9zmra0m7aqZVHfsWOPDSnsgY/kP/KDQxcNnmiY0jkzzjDTZywe68ZpmOvGaXzJ56BJ/qeQmt2ypU/uiv9AS1E4oC/z18NN7UJqUqZjkZr109qT1DTR3/spo2632dFzgaWM6hzB57q1jdRE9nYcSM0J07HYQ8Xp7U5qatcpTWi8FmQeaZjQz/32BTdCkZr107DUKp/2H6nZQlITufySMKnJGwWoeKLidHGSmsGbTeYHN040iKzZOVRl/lZBEqf9SU1eF0eVorx5oppLQpmoCEpqLuLKbWIUbzHbOJOcei11BOZt4UhqfjDDIjWTzP4jNSH7BKyRJS3yqjA7vKt8yJMzWrtwIDVxPiABGcQXZlgM4ikzcZOagVtu6Q9fU2qZcqB6r2kiW/Bh1P+M1HzvtX1H3txcSua7y7N/vh40HAeVkjBV8jETI6mJPK2XOKnJ6zGopCagFORP56H5UyKTmvKlNgX95nsabWrMynrk4vtJDKSmnRUWqfnNEm9S89TKAPdte8IsY6V6ugwMP3gEd1ITmQGBA4TIsMKCEAdbiYXUdBnk1K3ny49mgbUrVT/dC1bEldTsq2l7cWX4ZXrGm6G3XjEsR+AgEtBVMES6akm8bCn+j7hIzfekfMMr118Zh/SlLS89+3Rom7s6Hmwiry+jsolAXxYPqTkhafF3g5QIs+J3pIr9nX5YEoTU5HVaVDWATgvNHvNJKLMHsUnNgs9RSaaLFOjbX9oa0G6f6C5mUtPaEovUrLYQE6n5jv3M0LLPCsqRzes67LkWMFAipKZ6pkNqmNlx6sY78tarYsv74UD70S2xgDKyhDxqe5KaP2STzfXCR9HT6XoJxlsnnBUTqalq0xD6alCBYZlZmfeIvS6bcLBdowWW7YChQBjbKYqJ1Lxi29GS4vnGOCixq9xorU99CERqHsA0TiCBjCMWUhO5+JM4qclzdKicYhdL3ElNE+9Zyk9unqOUhvSNdxk3YoHESc1qCywFtlrw1yELSCjrEEKTmkgKCUZqItOlYaQmMrsMRmoi89lgpCYyKAUjNZFpQDBSE5lFAiM1kafOMFITeV4EIzWRx3QwUhMZKYWRmsj9PozURC7lYKQm8jgVRmouCq5KnNKhn3HERymTB+cCrsBITa27KfXMggkWZXoXo+6+Gr8bRmr6nk2Mmhn41uLQkM5OqamyQTBSM73yvVZZ8DjGvoaUxSk1JvkwUvOO1JNCt+G3qGH+G5dvfT1uJIzUzMhInm5b7G62LkPB5GbRRxqM1LQpHE4dpnjWIqQ8SD3ar98DGKkZ/fN+z2fnGIbh967GnnlSYAwjNZGrrZaTmpkjx2m6f1lOz335gvvojvpZEQOltaTmQrRBSZhjfGQPwSkXEedSfeA5fvlUrHP85Kl8R7gITfM/ldREPhhXTKTmhMIKknYPQOMQUdu0+mxgcaQktE3DWhC2jNR0f2qVEpi7wDyRqnNr5cthp9pCarYVTAIUIIMKzDcUsQDMB/pgoxJRUMzwjGMqpEZSedTlgQpLfv4USffxl0P4oJjDbsnb9x3iSt/6OW1CwffgOQRAMUGDVSthGeyAZAwmMriYOV3wf4VRTCxj/RbF/PDJsbtHYKFBcYdlk08upT+V6MoVtEwgpmXsJWSZdmEtB654PoZVbG+cpnrcLVWm9ozEWMvQbMiliWQt9ZucOjRxLib9yybOQT8nbvuwK4de8vdF+Y1nvz0WY4mDYlesEgdTXMVQ4uDbiESZzuP8DXdsGX3VQmXyN2KXOMhxxQKvI12JMq+i/YhvXvWLVT2dWfDIJJ6qETfn4IPNBJhXQYM5YRpsimQMJokSB5nxpEuDl9KNYg+aqivOOaiLa4mDHX/fVO9XKGe6N9+BM2n4wLbmO4OGU8Y03AuXf/G0O3534+RN9jNoWQVV6Yn9Ho+W2LQLljjgeTzUEgfAAIKmXSYJZdr9A0sc3DfZmml7djwtXv/Rs9QpJ5zEXOJg8EKsEgcvFvzLSxxUbY75NEmuxii4LtrA4tn4IXiWONjR9dZF3z3PTdMeliw7vElLG4cSB+oLsUocANYST4mDxWeGaWrtczOIfqZrF3HLylmSJQ54EqCWOAAkgHyCA5pPIFCJg6o4o8EfFTpQso+eNl7/fK2e+EscIC0puRIHex3EWeKg1LSg4nyKw59R4sARrasSJsSdMXHszUMhW61iCl2lNmqvHoZTiBvZ/3EIcS92xApxUxz57sGJ8Jojpw+cNC98W3ZtyUEuNWOIte+IEI9VOGieswBL863NLpmFpjnRSxxIv1EZqH8qwiCUdHV4cI/gPqj3J44SB/9wGdF8NRElDs6xUEocfKDnVww4w/p9iQNnNFP+cSUOigxG1SpN5Rqk9Y7zPF0lpyWBEgdv5mGVOMifR9ASB+uCZ33o3r+KnvywPvPCo75KiEyXtpU48PwZv1fjirbZZv9KyriUmraCHWCJg/p5WCUOAJklWOJA42Gf0YdW29GT5+g3hp7dOI1AJQ54sqGWOABkg1yCC5pLIMyMipz68OHtkabDYUL1n481odrP50vuSnjJTYt0kgdHjTfcvaXr8VdBzDx8JP+romaW1fK7jFSqtq5X3ewtOEhuNBdL8sFz+ZKz0ST/U0oc+G4fazH5JtU0caFB3MHgNTPbpcTBlHlYJQ4ezW3PEgd11GXyCspxxodTFO39ikcZ4VjiANnbcShxMGYeFrTfZV67lzjolXi3omhUkmHGh8lxOwtm1hCqxMGjuVhqFc/9r8RBC0scIJdfEi5xwBsFqFx/l3niLHFQvHC+CpfZm7GpbnX0+OnTEIWR2r3EAa+Lo0pR3DxRuZFQJiqCljgYtfqcsfWNOnoON8sgurH3hnYqcVDrjFXiIND5vxIHkH0O3DFd96LmJT1ISu1VbHGXzjiUOMD5gASE96udseD9A87iLnEQqTGpFzkyy3RPUd+a7nb1M3AocWC0Zv2zsB9+ximFtU43erGccFApEFMle2cxljhAntZLvMQBr8egljgAlIL86RI0f0rkEgcpuRfNg6p0TQsnbYlWuPhwpRhKHNCXYJU4eOOGd4kDm9Dg5bUrfQ2OFU3spx2ksxD3EgfIDAgc6H3KEix6X22JWEocUEwzSoeZGFltMYmZlFLk54FriYO/jPtqj86cSMsf4pPtyQiPxEEkoKtgiFTlRrxsKf6PuEocTFo3Zxqd5EjL6Nyw3jlKM40QJQ54fRkV6gf6snhKHAwYNrCy/8x02ja7Q/PPPZdRJ0iJA16nRVUD6LTQ7OFOQpk9iF3iIGrnoRVLHluaxOS+Jx88vtFbzCUOGG5YJQ7OscVU4mAsPW24bkmCeYFNbXjCWOUsiZQ4CDDVvmAdtMlqw4VuLpQP8pk4YPJGblgktrqEPGp7ljjwV33TcMPAwTh3zJ0+uvfTU8VU4iAlRXHKR/l+1CMyPS/37b7yOg62+8DGsh0wFAhjO2UxlTiIVXm23Gd2Jm1b7VeV/nSFBgKVONiLaZyVBDKOWEocIBd/Ei9xwHN0qIC/nBvuJQ4WTPS2+HTiDKVM81FArxccfYmXODjHxlIgms1fh3iQUNYhrS5xoN7ce8Vf4gBJIcFKHCDTpWElDpDZZbASB8h8NliJA2RQClbiAJkGBCtxgMwigZU4QJ46w0ocIM+LYCUOkMd0sBIHyEgprMQBcr8PK3GAXMrBShwgj1NhJQ5MXpjrBO2cRN3iq7Ns08Kj52ElDoafte3nsTvLqGiqY//v2warwUocLGAfsbRSmmiVYn8yLXVgZTisxMHJ+6rpDl9CTEpKgsxnOS5cACtxoCFvK6fbP4Keff2qCqsHyRRW4sCatPCR1a65FmmWShfH7XJQhJU4QK6bhIoVgAUPRA5ibm+yf/TrEeZBO2endTyjPACHYgUctOFFmAN5pK1xyirEuVoteCJfPAfrRD5pDt+leaJp/qcylzmnTqhOe/3RJCv5YOMp2xd9xchcGqzDYi47rBMDc3nR1ksnT4NtGWlh0Es17IEDsZnLaeuwSLCh6/5/mcuid/ZJsxZLm6zdv+9yVPxeKYIwl6qYBusgGYNJgrl8s4d1/mL5W9NsasfFV75K++LKXMoabZK90ehjnBi9olL5x2ItHEbaq7VYhru5ljh7KtyZy9MvXYa9dZtncET1m8aMhl7pEmUueR4PlbkEBhA07XqRUKbdP5C53EMe2nihINtqy9dbat8fzAwUM3MZuRyLubRb/i9nLreuPrH2NHMcNbeSkkAuNv6BJ3M5MbmmWH1pB6P45MQhO3couuHAXAYtx2IuAWuJh7mUuf26wep9lsH+ZzIzHizYM1+SzCVPAlTmEpAA8glL0XwCgZhLg3tX2JHZd4zXjZfP1XnTgyviVnBmLpGWlBxzWbxanMxlhWlBxfyi1X8Gc8lF66qE2al3yXs1a0pHa8PYHrbDpm8YFIvTTh3Z//F4IuMazCcyruG7B2/Ca46cPnDSPFfq8pUUzi3q2lGdTWTlZTg4aF4dgKV5ZgBfcx80zYnOXK4fu6hTmGWCVYjfuthLYeqG7cpc/sNlBBZz+S4Qhbn8m55fYfM28PfMpS+aKf845nIle/qENR6FtE0v7rEfdXxm+Psbxp257OKPxVxeXUZQ5tLl0KGR5mdZ5iXJhX6JDzKycWUuf4z1st+V9IOxaUJcffinhzdxYC47+WMxl4DMEmQuc+2tel3doEfZc2tqb4MLDvkEYi55sqEyl4BskEvwQ3MJhJlRkVMfPgAg0nQ4TKhb/bEmVB9/vuTLCC+5xoQR2epVYcalbtMotn3St+Ej+Y0ea20HzthtUvrtdDElaao/HrU6/DBrdfjxJfdHk/xPYS63ZTccP9fV2yD+4MHw/BkPemDcJ37Mpf0yLOaS1OYZrjXMZdWkh42r/DNMEvJlB3/MGog4am0Tc4ns7Tgwl9bLsChC7WXtzlzafQ7f9q3ku1la6ufMfHaGYIFvSTOXJEy1av3+Yy5byFwil18SZi55owAVNNReJk7mknNr3rTcHq8tto0Y+Gltv4YrEmYuSZhS1DZPVAEklImKoMxlYKNXybVOjYYlb2YlPzx4uQfWbeHIXHLXYjGXtLX/MZeQfSYVXDfuF5ditnZdIMO4SMoPB+YS5wMSkCbkrMWiCeeuFTdzeWVmyPWPE3XMouW+6NPHvRMM2v0z5lKm4USOwYhTRolm9uaU5WvwUImGqdKotWJkLpGn9RJnLnk9BpW5BJSC/OlyNH9KaObSfHvsiEXyhkly0VP1R699JnxvbWYu89ZjMZfh6/FmLt2vPh7YLeQVJezrhUyT/FkHcGcukRkQOOCE2euxcMKd68XCXGp57uDGOO0xOrr5oNJX6uNRuDKXm/06T7YatN4oUY9hvMrD6DEOIoVjiuS3nnjZUvwfcTGXatlvCyIcgmkFa59/8v6xt3ObuzoelCGvL6NShkBfFg9zKTu39kb3rsctDyQd2usuU/Q3QZjLcEw1gE4LzR4rSCizB7GZy8Y5mp2ddFzNgkvMWVNnTnVAuzucmMsx67GYyw/CKcD4MJf6AdS3UUvUDNavodE7+VyslQhzaarFtewm35eaGdfVxS3oyQEcuD399ZjMpYQ8ansyl5p/fXWLOvEXNZJUb92wyfOtmJhL1+crx8540tMy/5Tb+ogHygk42E4O03YfJJQ7LMp2amJiLlN0SFWrn36hbN9vRZl5INacQMxl3TpMIJZAxhELc4lc/EmcueQ5OlTisEcr1yQtYC6nFRg2DHpSRts3LrRvwPmCaokzlx/WYSlwrTlTeiUJZR1C6MdKIykkGHOJTJeGMZfI7DIYc4nMZ4Mxl8igFIy5RKYBwZhLZBYJjLlEnjrDmEvkeRGMuUQe08GYS2SkFM5cIvb7MOYSuZSDMZfI41QYc0kburJmQ42N8dYj9kFuC0/PgzGXSt6htW7XJ5mXvVMZua/D9UMw5vK95eaIs0OH0NZ2Tn90Kv7FNRhzWXJ/36oP0evMSidqZsy3UngPYy4PDRp/tLvmd6OssIhc3RAtJRhzadZT8YRV3EzLfWvoR5c923Udxlz6qfWXZx17aRlpEnzt7crOarDHSl86efnA+fGBlCP9dsguf6f2N+yx0sjVVssfK31QevHqjy7+psVqnQ4vi90dhwOpuQptUBLmGB/ZQ3DKRcS56B54jl/ri3WOn+/Ld4Sr0TT/U0lNP0eplMw9uy3SHrnSqGsfVIu+b1xITddoLFJTO1oMpKbZyMap1xo20rdGxb8q7f66ktikplM0Fj9mHf3/S2rqV4xa7NQ1y3zH2iXUg669JxKE1JyCaTBtyRhMEqRmWfqiF9uvahrkHBtXsc9dZ0PbFraIkXZ3y5CacZVWjKw7IZMCFxcMxOPpmJiGI0nIcO1Cal4xVhnhnLzHfG1C6gC1wXerJEpq8jweKqkJDCBo2l1DQpl2/0BSUzPjgcnE6Q1GhaxxW5RUpaaImdTUjsAiNbtE/MtJzYAJOzKcz3c0KrkbUBB6uMcxPElNxV3k514hAdTioTdNZxRVDsOB1BwcgUVqAtYSD6mpZj/8maOvoXnJfWWHd5r35CVJavIkQCU1AQkgnxCI5hMIRGpOmz6hp9zQDPNDo7tldr+bc0zEreBMaiItKTlS0zVKnKRmBL2g4rxL1J9Baq5F66qE2an3t6tJdDkSRM17pbQsbdisBTjt1JH9Hw9qMAprp14exXcP6wivOXL6wEnz8lPKPxLHxZnm5a3QCFuzZDcOmv8VjqV5YThf8/VomhOd1OzwWsvwyv33JkGhJd+ORJ2ntSup+Q+XEWikJh1YKHzbiEJqHjfJr/D7uvH3pGYQmin/OFLz0jlvHdOjTrS9+w/n1f9Q8fv9DeNOaqqFY5Ga38IISmpyfBaN+Dnph2GoXqacXz53DK6kZoDsTdnETxomW69Q+jAuHbPAgdRUDsciNQGZJUhqqt1/qf515BeTrMqCbjNji+kEIjV5sqGSmoBskEvYgOYSCDOjIqc+fLBBpOlwmFDnY06ojOYJNZjwkhe53BzocOQRdXuYfM8t1Znb8ZH8w/W9m6Mf7Kfn7f8eXO32Oh4HyQ3CsCQf1dzLQ9Ak/1NIzcj+Ofdkv983y1vq+mrbpR+J7UJqloZhkZqb2zzDtYbUVDIa+5Q1dKt5cu3x17NvnxIMZrSN1ET2dhxIzcIwLPZwX1i7k5qO1okKN44PM9l9i3z6p9dWwfoMkiY1N2OqtTrsP1KzhaQmcvklYVKTNwpQ8cR9YeIkNeVGnwvdnFxrnDe+hxXr+W1XCZOamzGlWN08UYWSUCYqgpKahhcbtTzPzLXaPvacg5Lmhw7tRGqu24RFas7a9B+pCdmnMlMtMfb+epOkgfdWm+QqCz6V7p+RmjgfkIAM4upNWAyi2yZxk5o6dhpONgbeRnF3vEoXLKUIlrT7Z6TmzV2jjLWNPSgHNOwezq386YODSrMwVTLYJEZSE3laL3FSk9djUElNQCnIn4ah+VMik5o/cialvVp5nJa1dGP3tddKqWIgNatisEjNpBi8SU3zZXbdhmstt8hOKh4+I/68YIICHqQmMgMCBwjxVAwWhJgZIxZSc3fKbNvX56+Y77BaTasOqRZMJGgrqTkoNpb1sSbQNLkXyfHxjaGXcBApCVOk0BjiZUvxf8RFam4YXmTd287NJD3bW6u0+iSnzV0dDzaR15dR2USgL4uH1DyvopJc4HuDuunbNrcxiz4JelnJkZpJmGoAnRaaPcJJKLMHsUnN3OStFn5B+2kp13d2mxG695uYSU1aDBapKSM8l+BDana+F1FxZ9pR85jo8q1q0+4MlQipudx90GE/N23jUoXjV+cs+qKOA+1nEIMFlOlJyKO2J6l5y2gT5fkJPfNt70Y46L2O6iMmUjO2Zlv0M9Jro7KIeysLzXc34GC7Ppi2kyGQ7dTFRGoGdiy6lXFwFyUu7ucz0rhqwRCUZEnNd9FYxrlLoPxgsZCayMWfxElNnqND5RQHt3JN0gJSc1Qoc2eHnbtMw94HzDt/pEO8xElNGUwF6pszpSNIKOsQQpOaSAoJRmoi06VhpCYyuwxGaiLz2WCkJjIoBSM1kWlAMFITmUUCIzWRp84wUhN5XgQjNZHHdDBSExkphZGayP0+jNRELuVgpCbyOBVGat64w/V+HTfB6IDbV2ppacc4GKk52uHsg/y8owbbGoZdHD1j9EEYqXnMKrmLwxmaUebCffuefslTh5GarqmDUqr93Kyi5wbMe7/b8SGM1EwffbdIUZvCiKNq+u9X7JIGIzVHrbjCuXIuhVI2PK4heUmdBozUrN7f1SzNfz1jS/qXLnox56xhpOakbrUTw966msYdMjr9gGoxAkZqIldbLSc1owqjU3cdHWmYZPzwYo3julgRA6W1pGYk2qAkzDE+sofglIuIc6k+8Bz/RyjWOf6rUL4jjELTXN42zm+fr5tRxstG1njywXcCX7U7tLeyAP7gspnuwrsyWRSp+/B3ZRyylReLY8Ige0DXaNlOLG/PMdebvRiUZNecrjILdD0xb0vIFsg3tFBQe2CtE19aAUwiwJ6sWuiABBC0sbgCuSfDWv31a5oZQI/v49qUvufrzSI7ujI5HJbo4/pk4+qulurnTIN6WA5eVfakn8AXlzVquoLQF25uwHuyBdMnQ0FJDoha/jUCPXBCaYUkln/SjoC0zXPu58+ff7aGtyQLGsbbi+Xo687kkl3ZLq7uYAK+SNsM9ZpnXW6VQD34Y2H3jXZHBbN75GyhiwgHqJpbxGGd+hIs68SXEMA6wAzwszWbpgHGHmxvbzCD0FHATHwXIvoo6tKSVz9e7LFIvae6p/rQ+dmCxmm6oogI8K8WcRiHjmkcwJtI3jigfeDG6fgb44yneoC/kmcTMNYIfJTFcQwga+vr6ZOnkj29mEt9WcPII3n/+vUO0SNq0+yrdznnPGh5Dy8d0f1qnSeYXWMHu75wdo1AqziMd6AYy3j2kjGeyG1v3XS4BTv9xoJTf1nQ25XNCeAASyfAfIC5OJ4c0HTA39w9l/EawX/qg00eTP+mF0SXuNP7vLfPPUOr+D4poZYbgooQlQVcRXG00MvisJwcpuXyiyRtOfBDYF5Dq4IVPZpOhdkcF2xHaKNmxNRfsZG+9UtQYRffeYsFHSHqmulXC+7HzjnQGgJcp1YJLatyeI4QWqduJKGsU3t3WmF7ouiDVZlcxmOtcSsE8aBuhk0oojWX5cdmLRPGm9EQiyFUMOPfG4YzspfDjqnIXk0X9O5uynF093VimXJsWBxo+4++eD00PKvCZY4XJWnIkYbiHuf2Yd2rcG6PYHu3WcAfXp5cHxrb3afpF4vaYqFi5ccAdcsA7eNFHVlPAJa09DKhJS1/WyVyD8U/bQNzKCF5WrSin7RG13Ht0W60nCFRk+oG2D1t++keYnel/U6/nybrulW8un3J4OlZV9q4u1IDlKsHlRN5RmsPrq0ElftdGF/FDraEIXv6sbhctpNod/rkLPVz9SeSabR81JDRbt6ktg9hhFZIH4GDVnRMrRrbd5fAJ3FloS0X+CZwsXMn+c5PORa04uO/aKBv8FOaN7chZ1U5/saA/1bwf7vAlz2Cn2gOcWxCc2Otjjs2Q3/tEHdEbrphcUekSxMKIIHfVmRf1nu5NSx8W5j5tp89vnQffGERDgGkaDR1CRrMYOyQVfPvw7I6eIJ1o+KT2pR2C2Y0fsYKZth/EncwY1qXqbIG/ka0vHEFztPlBw0jQDCj/jPmdvkzAXZkb968aYdgxknVj7m3dL0t90d9bXiUSmUSIphBx7RO4ycCWKddghkdxjlX7tpz1rTI6u27ExoLgwkRzDjwCXM/TATjkCQZzLgY8bhkkkWG4Ya6DdZfDuykESqYIYdpvPyPkt4SEyiYsUDGfK7C7AyD1HuvnoZtHhEn4WCG60csy6lJ3HJiDWb4VibmVa4eYbiH4rtnhvL8e4QIZvDWEKjBDMARQuvUGNK/IJjxMHXc20FP+lNTuDvsX8qWLZdwMKP+C1YwY8KX9glmrDfUzZ36KsMyPLk/yX1l9y64BzPIfzu+fz9a17TE7UlpzJPBx3HYoNd+wdqgh34RVzDjy9CGmd5qNYY7PQOZw+YXDMA9mIH0EThoNQFTq/rG/6tgxmY0N0boYAZy0w0LZiBdWsuDGZbr3w00jS0yLYixmK1wRvUTDsGMLWjqEjSY0XFA2Oi92+wsIxV9qi5le2DfFp7BjMDelRjBjEw1oWx5nIMZj1WStvaoG2+87tQd+fc/L40nQDDDH5QEdWlo3VsiibmCO7L6+vp2CGZEr7GjfarvTonwHFQRo9kzmBDBDG1M65CIYJ12CWZUz/M9WzGsI+OA+/JcxuUjdoQIZtSqYRkH8CaSNw5JksGMLUcn96OSKBYH7Toft3HXf0KoYEYopvEWS8Z4xAxmrEqO5OyYfcg4auKqZdfPnvwu4WDGBEzLKUrccmINZmyuuDW81jCNnnb472/5P/RohAhm8NYQqMEMwBFC69StpH9BMOPZo3OlvaSyjAL1jOgpAR2HSDiYsbJPJUYwY3Af1DphuAYzbl7zePFqu4bBfm6fxvefB37EPZjx0c5RjfMmjVZmcfTQuyEf63HYoPv0QaPnwQ06o0+rSgy0IphhrZDxXjZ5ukGBashpCz1bW9yDGUgfgYNWgzG1+ta+61BJBzNi0dwYoYMZyE03LJiBdGktD2bsWTierH76BuPY5QGM0c8HLcMhmLENTV2CBjN6Zytqhb6oNAw9MyW0/G6Jd7sFM7qMxQpmTBkj7mDGVPOqbV0XTGDsGBwfPuze8o8ECGZ0Gou1NLw9hgA7srq6unYIZsz7rPGx5Hw+LebkPd1dciOjCBHMyBmDZZ1IIlinXYIZQwYelpk6Nsc0bK/PiBEdejEIEcxwwjTOFCIYhyTJYMaJQaPYFTUDKPn7vBX7FyV1IVQwQxnTeC9GS3pLTKBgRm3VxJePrtSbhL68adUl4ruahIMZp0ZjWS5J4pYTazDj76Oci5uHcSxSl4ZnUVIijhEimMFbQ6AGMwBHCK1T40j/gmDGzF7ncgZ/DzDOMls0b3fu3TkSDmZ0GYcVzMgZ2z7BDOMshw0+35wMj07cKP/qrUbb6yUiN+gzVtS9t/JZR9mzeOQ4v3DqfRw26J3GYW3Qb48VVzDjajlzy8Gh7yziSga+fvGUcR73YAbSR+CgVc5YLK0ix/5fBTPi0dwYoYMZyE03LJiBdGktD2YM1ymKib4zgFKyWCp3+sgeh3AIZmxHU5egwYxFwVWJUzr0M474KGXy4FzAlXYLZkyYgRXMcLUWdzDjVDeDLmlsdaM9RzrK5XO2mhEgmKE/A2tpKDeDADuyGzdutEMwQy1n94JzH5XMiycFPl+xxSmBEMGMOmss6+RbE8A67RLMKCp3e1G04qFR/gq/OfPsI9IJEcyIxjSOKxGMQ5JkMOOxQXnFNvdvhlunvFjct6OOEqGCGRRM46lJxnjEDGaYBebStZPl6NvDFLvH1Ax5L+FgxhsrLMtVWUnacmINZhhOH3Bcy3gnpUjhskpUWX9iYCa8NQRqMANwhNA6NYH0LwhmaN1NqWcWTLAo07sYdffV+N0SDmbo22AFM2pntE8w4/GlW6teyrkwtsVfYI3u+n4I7sGM96R8wyvXXxmH9KUtLz37dCgOG3RtG6wNOslGXMGMfvPv5ew9uNskaIqfpvL1VfjXzED6CDyQnBlYWmW27y5B0sGMRDQ3RuhgBnLTDQtmIF1ay4MZvmcTo2YGvrU4NKSzU2qqbBAOwYwkNHUJGszIS9K6PTLVxnD9retnlzj1cW23YMYUD6xghru7uIMZdg4POtpu6kjNntLNcXSQ9WICBDPGeGAtDbt4EGBHdunSpXYIZqTFTVyjGNPLKHL7fl/bYukcQgQzHrljWafYnQDWaZdgxgTn2dwFhw0okU/+2iE3KpFLiGDGVkzjuBPBOCRJBjPkhjZMlZtOMo+YPCLCsKfOHUIFM4wwjacuGeMRM5gxqn/0ErdRYyjbpVZWXVV5ESXhYMaHJViWO7dE0pYTazBjxPHXVxZL9TQO3V5Ot8vSO0WIYAZvDYEazAAcIbRO3UH6FwQzwgy+PWUP7GB21MV+i8GImOMSDmaM4WAFM257tE8wY23MrRfraU+tSpOW6BSv9TqNezBj0ro50+gkR1pG54b1zlGaaThs0IdxsDbonTjiCmZMKf57wuN5/la7lS5Mz7CvZeEezED6CBy0uu2BpVVO++4SJB3M2InmxggdzEBuumHBDKRLa3kww+SFuU7QzknULb46yzYtPHoeh2DGLjR1CRrMoA1dWbOhxsZ46xH7ILeFp+e1WzDjSBBWMIMWJO5gRj+T5/M73bRhrL909lBR3J6bBAhmpAVhLQ23BRFgR3bmzJl2CGYwlzqOvtPN2/Solt4D5sYiGiGCGeswrcMhgnXaJZiReYsh62T6zDR7vm3Rrfl5HQgRzJiLaRwaEYxD+l97ZwIPVffG8UEJlVe7SpokKdL6SrsZ22BmyBattgllJ2mnEKUiQmUnhJAtSyFFSqv20r5JG61S6n/vmJG5M/fG25259/V/+7zv51P3mOve3/Oc5zznOd9zBstihm8WRfvEvRD13JBhopuGDSnAVTFjGqLxZLExHj6LGU7bxoj4Su7R3uE4O8t6zE4njIsZEoiW+7wNa8vxtZhhEpAo31wwWO+AUmnwojH35uKimMHMIWCLGUAgZOWp8YQeUMwY4BF4a9XN2frl74dMTRG+mYlxMUPZH6mYQfAXTDFjEGH97dVvzAwyr+yX/9ttoxbqxQzp3ObindYB2sW+rz57/EjuiwaZ4Y80QR/sz69iRgB5RsO8WeU0n9dPpto35m1FvZgBjREoaEVA1Oq1YEdLrIsZCXBhDNfFDOiku1MxAxrSul7M+EDfu7N24nht374ZT09Hvb6BQjEjEU5dnBYzoN+RLLBihmgYUjEjdi+/ixlnTh5kyBsIU8J9a6yT/nrhi4NihnAYUmr4di8OZmSVlZUCKGYYDzx39dncREpI4MUnosMtxXBRzLizF8k61XiwjkCKGdPmjm6Z8/C9VuCJN0LKWy9MxkUxIxfROLF4MA4By2LGRvEFXu+19uiWjBkkeXLv2QO4KmbsQDSeFzbGw2cxo8/fWdcnqjbTw2MozQFkyb8xLmZYI1qOjrnl+FrMmFi4ccFlQ4Jmsrjqz9uaISG4KGYwcwjYYgYQCFl5ahKhBxQzplvXPi4qzCNHNCpfmr5w+mGMixlbw5CKGWZhgilmnPAJVRg1UNog33yURIv1/GjUixn+k0oNh5us0snI9VAou3zKGYUJ+uYwpAn6qjB+FTPUhx+8r+t6VzfwsCpjZ+uLr6gXM6AxAgWtzBC1Iof9XxUzkuHCGK6LGdBJd6diBjSkdb2Yccwgvp/1WW3NnOUpKS++FsqgUMw4BKfu2YNW1LZZw3S2psj2aRy7oYyz31ABTYnGmlTuKkZvmC5LZlcxiI7gZz0Ydk6A9xJtGSuBf9oSrdcRgfd19yS6ujg4eyoTgXe3A9utnG2JjgxnO097lU1dio3bdS0sFwWUae94dM42M21Pf97Pzd3f2S1d7KY5QGoUHwt00wkaBIIPdDAIBAZiy1iuwQAppEkxH6CTBjzfzqZ5q/jE2CNahYe1fma+C54DSQ7BT/NIDpmXf3vos1/boHd0S/qBvaEOFA/tb38Yx+IBgaJBgd7yimOnwW+wisUkd5TQcAG6v4Mz4Izgz00nwP/pThlEmmk/ttsq2jq4A70LaJ/A+8vV629UqZjdMoi/+r5KqsE6m8OO4prsD3PZslMT2qklaDBPRINZYmMwUS/gjdsn2dzGalrAy1jCv+lsfZnGao8rPO2TmGe2xHHEcc3MyQoj8k2yOM9sEKUyP8hlHPb13/U0iwFZ5C375OmRywsjZq12lUChp1ERDaeGkeF4za+bFnRrptaP2mm04GmqBd+V+4bbDNPPd35meMnyCCeu2IvKa7rcfhXtDqSYz4p4OSQCwRU6JFzOY3Yg1rCbQoAZdiMaPsVMMg2mFp8zOKnzM16O420ktLyBaQIz4eKel8H5+lAtLyvHNawFBEbHDTrdi/2TA7QNjGgkE0W5DVNmG22SUzaY0KURV1T4xwq60Q7trAVNw+ONzsTCPTKXGTq1dVHiy4Crr98PSKwKjLoPoa7+EJiCLd9f3d8Q9C8GkL6zPb0XSx4JXTA4cHlyH+ZlXVt2/4xq8ylJCDXXLUw9TFd/pnS3rwHTVbk+J9Z+/dcHLWxrdguVi2uWvB1G66806HL772M+DoEVkWDngr+0IHpZARMPa0fe8xnrb3taPG3itY99TDJ89WMt55czSZixPko04FJbyIDL44UggWnOpsFpGVFaBqk3V45df6xG9Q8DUwVgLS/QWlOADlEBtVZ4EdNaLHE7REIKBoPbyzZg9v3LkXmq1P/LJcb60H4avi0viioWuiznjN/tt+FWiIh6TLDMY0lQoc5DAkoeUwJWTEiFiwkHih5abH/aoltSVFBydPUjziOsextaOTMcuSc6cOFAkUR0BT/RqU5DdHYBXoOZansyvD2JYLxgePA+d4Uid3iGeI1O7qiBp3ZWu57i8SjcMxBeqtq4uzg6GlkB16HDA8QnoZaE80kxUw+Guwnw+OxfO07TZQ3YE2wcgecBKywMWwdP1rvbAGoB48ljnxSIHdmTXa5KaHEVoeQgYEczDYLPdg0JmpW7nYMzlbGSwyn6tl82Ale9Ol8Xb79u4uLa+SqnM0zVKa7yKT5Y/RdTREN3F2Be6enQ/lR92E/Fa5bqbrVW19nWwab9R5ndWhy8CA7PnS7RwHqnI2ti3h7MwbU0BytHDRfbX58FchVPYKLm1PHvXovcrVx/BYx2V02Dc1Wi3djCwF1B5LBTmdT9X4s3cPqHEcPRah2nq7LrY6IkG+ANPNj6wHnvIBJxLZABE93BO7Gm3Twd1fHO5tslssbUsMcDCog31aV4PEiX+j/0TBGI//9hhIwCkjNiNKuc68NVYAfGM6lodng4jHvNocMHSprH3tSRkswPpwSNyO5zLu3iMBQ0H7EfSXOJjpCcDqe5W7mDkgM9XeNYmYHji6dL3nG8at+Fa8CQowN0HHuYChSn8nDjnbymg4crKLoVkAEzh711k9qDM9EK+I9oB/4GnqaIup737NvC05RE210SUp/st8A+H5dBOBq5TCNu7OLuadC5esbDYP8wjei4G49VKHoMYLChGuD/nAaz1S6qmkCLqe5vzHAEDMawBWIhw5vjdu2mzIAzJfnasHteM/PUjyxZLr3T7ATn6DoY9FpPcPkcpEIYYJ2S4cFd9IJbE5ms4eIEJDftfYd5G9tft2GOwGA5zINpWlsgWe1Svm2oISIvk3yIFvPXg0qPzXEKv39gLiPz/Kku9p+aY1UE+yjAHA1kHjm4IfhtXlGwyyBddHwStZMo4NgNjobgFAbIjhXbZ5UeREA9ZqGM+bf2GgHQKcBFKIYt76rL2Pf72y7a2ensaYr9UDvZvzdnVmjG7Fncs3rW9d+FKftTNl/UpRZQCvVWfPl7innTH4apIkBmW1DmXmQemeOMY0yZuabSfbqn87hO5idaMzzXMhjOYHLkwbBZw3QPB2BKzzsT3JgdF3GiJJW298psq93j1qpxRphf97XljjCdG9FOuJsKWLIt5SXb4AKmbKyQkAkXEnAzokKHvq6MqDzSbYinQk2HwoCaGYU0oEZ3SH4E95Jbn5ZhEEyi1f1iyK6zm823oCP51vjLn6SlQ9RjrW5TwkNPvkVB8r2RSJJvjWRLngUnea3k2A9TVV1oAe/f6atc3cKJxPc3YgCZhw2DSF/j6MhjxINb5pnE/pwz+DkwMjs4AymLg217KF/r4GlPdPG0Z7h3fbxbPjuuunGCOT2btOhOdMUNUYTn5LIMZ3MX1SUCCYck6NB9NXgs9CsC6j6O/NMRbihYLPUAhzbgYTyZqQCoGE8BxIUXKpuJZdN9jKTW3KDnl3C6JPNG3Is+7Zd/55dQb/9Dv5QCdz+ByiXyKkWfB3c/RcIu9HdRuZEdyrlzuBroWjzlk9ycSHfZKUdJ/2x6RVehMYUTjGM5CFhe5laRsxXtsQpU63EkkloXIwVauGc/qJjJOldGZx3GdlrsVtFnuDszHFXAn/FQ0aGs0HX2ZNgx3CFMFvjnT9OTocw0EDQscAuilfO6dlPztDI0/fqTTvKHdq3JZ/WCJhIPuxrmM3sBhzbsxUU4IaTpTG3BjJiZkbFd35anFG+ezMyyqhxNjTE4n5q23MiLUwrmW3FL0X6ZH1IwXRxWiosdA1U2AWagoh/TvniWcFrDZ/HwOQ6NepyLcZLMwparo4MNWEx05h6p4DKCkTSgGzCcgE/ZWDkSnTju0qVxqbXO/EvoFCI1rp7gdvOgwmakx+JG0zjbuxoxgLT/MjgVDuaFoFGAiJEcw2P9gz1F5bH+wVwphax/QJcx2O1CMO2CWB8Zpe3gDsQC0PuZgyWnvXjaZ0zyaINvksp6vnWEwWYv7O9y2EeIxF2KIgl6gYQAmPN8DGuBhKt3XAO/2iKmupNIQr8RSdaYAUzebLulUtZ28YjwvO8Gh+6ILX7Xr3Aep0pkbpXIv1Vp2ZTir0RZO/XwVfm0QEsNMRRUSkZUKSSmW8tI0r+WkbogEHS1vktLSezrqPO/BSyPaSGByT9EC8cCplKseJoDF08vjXr18vNeGs0vK0JukuWn1Zwr5jQXL0bX8/2JzK0DjmBtRtEJ+OQEcJW5fXpFtHJ0cbYjWrFqM13brBb7aqW7hoyZRqrcsv0r5jbacT8b92o+eLWr5QHAl6TjAf2+8wqgBHCraBxPbAvOl/qTrTwYHZAz763H9gv2XehnQzqxZuFud8mD/n9M60L7G5SA+MP+9hDQaHA8HIFKBDfbxneL1h3I9hHm4jbTGXgK5Ubd5Vb+TpUc7yVePv25bhpnT6O58BxI2dd/N9OpWrR+hFndWHJSffCisyIzNVEQCXAVBJFuxeGPlmL/kVfvFoQzqKOT2yK7+p0tIWPyH6drFbTetL0dPGH1H7v6H0NtBSxfpvAy0618pi93KxVv1wIYXJ3a/RksY/DeueBfskdL3JQeGGwgY5K0BoL4ddyFG/H71cQPNZhOC6sG4LSs0eMoAWb0yFApNhtz5YtG+FXHW033Gm9BABSm9xHNLRZzjyGiMJIqdKDB7b5LXOnu4kTc4L1u/SaijYuTq4szOP3u2vgRKsX4WS8+nxq761rzaYPGm3BPxw0j/Wrropo+wPQ9AlSTyAsBJoD7QbjHEjECfJwczHqEDd6d3pvnW37PvmfhfrGPfukgRZdz10drDgTn4O6Ap3BDXcKTzDlL8+a/7s1dmu/c+LuIertlzVWxAg26/9hBZsqDb/7pd5G4AnLuBeU8zcs504CheTNGEZUnxljenRGww7LrfmfZaUOO7NoRZaWeImxsMcH9AufZG30tkGxn0Q3bGUopzqCoZWoGUZMGxLWKxqFgu1WItjPDke2I6t3ZQd1hu/W/s93o0yXHV0/z1omSs9TTv+f9ltN2i5FstxjJdn8Y9UHjkBGNo4Ij43RzJ6cUyzrgoqWn+xqYRR1o8gdZ+GXegsfCb/t11EfhfFagEyODdTGIPaSBVs+47uUk/VkiIADtY5bmiMh+mENLWPVQTHn5N7M/A9pRUMAMUQG1jjwklwCTh3R7+5dsh/fyf/sXdBdSp+1fUFwaaBIm8KbLgCYRVhOUZwOaehF4F6WApt6sJigGBDSJspqgFAnQ1IfAG7gCmsQIvNeLgCZxVhN0mQ5okmA1QSulQFNf9u+CzPeBpn6sJmgqBzT1J/BeTgWaJFlN46XIX9YqTtA8nFfU8HbO+ytA01+sppqYxzfylHI0ojQumEUPZbQATVKspgcfrgy5PFBfJ2qoYVLk7S/1QNMAVtPKGKPBQYeHU/bMj/64eHNRPNA0kNWklre59ilhnca2hLqaMbkNh4CmQaymu/fnTsu/d18zc/TNZn2D1eeBpsGsJqur+jYWjCEauyQeyu6XHisNNA1hNe25cG7aM+n7tAPH6ZGF28q+A01DCbyzLa5dg8MIMLsG9e7cOrb4y0iDgNnzcq8++pTIo6N0d9dgHlynxM0yPtRDUGIRpeKIr1y3ryMdn3hHd2FptTIK6/h0xHX8+R3LI/lwmuP02CloRxTYsVNmCUjHTr2N5/exUxMGzHdpCVDRjDL3i16dPpaTV8Dm2CmjBKRDPOYn4ODsnJKSEgEcOzXpJGP3u4FESlyJsXzEQVHOpUSsjp2aiGidoXiwjkCOnSq+HTrf+uh6/cARU168db/PWf/F6tgpYUTjANEEe+MQsDx2Sm1KjeqZhlEGkboLdOnn9TkPWMT62Kk78YgHumFjPHweOzXsvETKk/rRGnm54nOj5YUgWaLAj53KRbRcLOaWAz/Et2OnLt8tXaI+qVjneA7BK3ujHmdGh9WxU8wcAvbYKSAQsvLUAgJMnvpvOnYKOlXE+NipugSkY6dSEgRz7NQkfYKPEGkYPbxR1s1rhsJl1I+dgi4fonCU0sUEpKOUShL4dezUt6mPexttV9cLmvNgw4qbBbdRP3YKGiNQ0CoFUau9gs1DsT52qhAujOH62Cke1S923REa0rp+7BS0OIZCAekYnLpmo4VXhx+VIhcnOL6bs0mMwlk16DjKor0w3fViRrHQr1MwgGHCHZiYWHmCf2W4gzcgrrRiFtDbiSUHTw/2mVOsX8Rq9yDaWDkTrYHZ5hpXV0cH8NgqF6AR+Hz7Ldc4gx8F99E7g3yAI3MkYl5UIWrYg0cDMSdBS+jLiK5sRpO5BcDFzs6R0bEBC/wZz7UuRCdwY3bXii0bXi5snhqsoJlGmP62d8n2AETZuIstkB/oYswwBPI06VNVQFzktQCeBoxM0pVV3YGpBmgwZQT36rMeiPd+iPwfc9+MqdUIADxHbrkq5xFfvZn34ME3My//Lqoqvp8yahzjpkGUjPkJ+QVHr/5hVFUHFBIDFdrNK6rKAzG3iFOh31U95Dj8kZX0gJqxBIODGGVOh7gGJyXoZAlPzdx65Jkapss/oCr2lUiqAH6Dm5lZ04LuFD5m6K4kmriD02ewF3Nay8Gjc1xgzrY3g7Ns3ptVw8XUCqcfHEbPmmNHUJIjc07IJOgdN+ImWTq18cN0NSeRTOd9EhPT9bF2cXFkWHUKk92ZmI0yBDcSg0MCu5bosBIM7wgLqteHTO6tH5OtFRT8+e6tnaOKICehgPfjDkLtl1GfLxewogxPrMsnnxllurWgrGDCOseOBWR1R5jEvChGhH8q/dCr0YNj3WmcJ/v3Yd2Yu/zNbuCHOMxgAyuONEQc4d+IM759lPo1gndHnQFpZ+NDp53QSmg8GyX2tx8nTS7esXODmwr81cQPhZh9GlYhoE+z8rYiAkzepkWaqPRz3jVS2n3Zw3Wx76Zzsi9MPM3VBSRIuXM2MRid//61AOXw6/O2rAHP0x7IO+3siR1HY7SfBdC1dElKNvVssf5Hkv/DrPS56+tnwD4tN6nTqbGL+noXAwpWA/paaYAlLYi+UoC+ilVcaVI3t5MO/vVYIJTargXPV88+6zo/ru0QZZ/o3/lCY1o4v+pczAw8dIjXiRG/Wn6XQkED4x+mUPaAevageqM1eHjna2BiKl3drRSqX3v3tWXYuTN455cGgUktpQVmpJgHU0evpoYkcSZLmswPcidLrOto907w/WuqkN7fuwrrZKnDM7uRKIGP7OBi62DT3p95fxFZNMNv8+pC/YPDje5+8qzR4fRV9g24fbWjhR/GUEQ0xq3TuEh/CN1ZD1LRd3bxBIYvKxuwMq04ZR4wZQX5c2Xi1Hk29i7utsrEafM83Nw9mf/gna3qHlhoVJZVTPJ5c+2O3DV/zs2Q4uAvMPZc58jdbTo18cNYgaeRjKWGjbEgPYdZd+lOtjrk1zKC8xp3aw+EHnT+kUmohWqb5iG/QY+ubpld+ydT5T80R04eK5BLA2nGZS7oL6/KtK2qe1kqK5IjZFsSDS+/XT8zXGeb7pMv18ONEjGd9oICRFWxBLjFQwAwtHQrE2UPZS5OQELF+2upr5JCI1+LayUbbbVU9PIohgxlzA/yGMrar/NDgIrTCAKkG51mJ5rFhH8X7aQaYqq+fcA7gxjxbDerOcWjBEY7TTlXhUA7hdRwZZYo004Og9VqNjn000298zacNvPnABzQTkRQEti148tnMQn6nMjG/fv3BUA7OZR81WlYkkFLlqDMKf3mbIoL2snnLJJ1puDBOgKhnR7J7un1+cB+cuJtt7CWxdPf4oJ2eliDZBwgmmBvHAKWtJPPzbaTWWo3qYF6oXfU6rfMwhXtpI5ovKYzWCe7OKKd3s0RbU6IXWMQfSPDfYHbhkaMaaf4M0iWM8Tccnylnc6m3XprllVPLR1WPlrdeXYDLmgnZg4BSzsBgZCVp5YQegDtpCkjnz1GspdWyWnrsLy3G15hTDsRz1ch0E6utbDFUlRppxSLTaP2zlKh+D4fJ3R8wHND1Gkn6NwcBYJHClQOluCpqOUqlKJEO8k+Ut1uJJSmmWkqp/5++qto1GknaIxAQSvAjxC0ItYKNOZiTTuVwoUxXNNO0El3J9oJGtK6Tjtdyb4eFHbiAvVgpIxInHXdTxRop+Nw6v5HO/0j2ulgSdvjw/sPkQudRHcfSH+vIjDayec7Eu3k840ftJOXWN81r8+M1sovGOm1aMCWOBRpJ2KrzYcP05V0T6x6Xhb6XP4kCrST63ckOIT4XSC0Uy9p4YynblRaysAKlz4id6oxp50uf0NSBfAb3MzMsKKdlj56Nb+tqEU/KyNVNN3GAT+00xRE0z1sxcVyH99pJ6NWTZqfjht9Z9MbyonXhx9gTDsxowwsrgJEGYHRTtfE1o+YrLGafmD0hGJK5Z1QHNBOzGADKw4QbARHOz3dIPLauzhFM9Ts9sMfw5tFcUI7TUFUCOjTrLztBKFH0E7T6xjUeQvFdfwKDwWO2zgilu+0U8VPJNrJ9YfgaCfPV71cVzaPUU+v1MyhOGyJR512ggZGFGinnJ9IzILlT5Rpp5t/HVoouVONnvR4upJpaWIW5rSTFOL7V/zAOlniF+3UN92z9chYAjn0fujmD0Zy+3FBOwGdFcEYRGyMgTntVHGmXut4frV6iZr1+3PXbiXghHa63IZkLJ82PPQcftJOY186qa+s2kwKLz0wdDxBHvrFB4KmnZiBHJZ20vqJNu1kubcxoX65jH5Kv7FL++rPPoo57fTwBxLtBIQWlGmnQC0DxaCxV+hhkXMGWj3Xm4A57SSGJED6gTZ2ollG+HfRTu63I9NKBs4yOPTx5DeLSUeeCox2Oi+EdLbTdwK/z3Zqbp2wx6dtqa5PqZ2iW9nwNzignU4LIZ2UES2EgwNqbty4IQDaybbp+YBcg4PkcEuzO9fmFYnjgnbyRLQOFQ/WEQjttG7Sum1DTJNJvlWm3nNrNlBxQTvJIxoHiCbYG4eAJe20ZxG5VZ9Qq5O4VHLYtAkJl3BFO10jIBkvExvj4ZN2cqzTEJ30MsbgYHSs21MvEaxpJz9Eyy3F3HJ8pZ3sl3waMlk/RKcsdHmTvVLOW1zQTswcApZ2AgIhK08tJ/QA2mmxr3Oh8s6D9Ciy9YHcn+/7YEw7nRZGOtvJUVgwZzt5kD3XtSarUA7PG/rtcf6F46jTTtC5OQoEz3FhpPOKwoX5dbaTwz1jvRnD/EglISJXouslRVCnnaAxAgWtHBG10hT+vzrbqQIujOGadoJOujvRTtCQ1nXaSdN1nFGhhLHevou3GvzpsxRRoJ1Owqn7H+30j2in8rciNZqfzuvu6K96T4iut0hgtNP5kdUItBN1ZLe+KK+LtJNOFXmyTeh7UvGk4nIZ0v4zKNJOn0xspJ2b0rXLaXmZ78d/+lOGFIRDToMKwcIh0SO5RiB+0E7m305dfP7EixwZ+TI/79CwNsxpJ09EVQC/wc3MDCvaye2B+oCT0tr6udOt73vHnUrCDe0kj2i67yMwMZ3AaadCn6GjWupH6m7duP8Sadu0DIxpJ2aUgcVVgCgjMNrJco/Yx4iNClqxoxcHFT1SnIkD2skTURwqRBy+0k73DlaemFnziBronXOr3I6sjBPaSR5RIaBPs/K2SkKPoJ2a9joyWoTc1SNTR/sn3IrZx3fayXFUNQLtdFoGdgKPOu3UdE0lsW6ClHboZ4/cC8NoU1GnnaCBEQXayRZUD5ZZmDuqWynU72mn1au+ziyptVLf90burHLU5kOY006DEd//tQzWyRK/aKc1CusqvN5fJQV8NPYUkfjbGRe0E9BZEYwRjY0xMKedzExnUJXuRmseVshV2khrWYUT2skT0VhUXPQcftJO/cxvbeu1XEH94NnkLT/K+g/BmHZiBnI42ilDZVT3stTf005npg+QEvVIVs81WeHpP+NLFOa003eZagTaCQgtKNNOVUEtqx3bjMi5qW+URCefWos57RSCJICZhQw70TxF+HfRTlLGE5XmxbzQ2lPWO+fwmVBlgdFO5qORaKdAWX7TTsOOUk/UKL6jpZ6R270+6OpnHNBOhqOR1o4VR+MA2bh06ZIAaKc1J2sjkhdZ0DKzLn8Z4b0CH7QTAdE6t2RxYB2B0E7nv15re1s8Sj9N5Msp9+fmdbignXJkkYwTiAfjELCknY4WkJ9e0/TUDF0tMn+D5SIKrmgnS0TjqWFjPHzSTuYBrX2TtmrRj5aSxVscn7RgTDtJIVquYRTWluMr7dTPfuD41fXbNGPGVF7QVVpwABe0EzOHgKWdgEDIylNPE3oA7fTXd4/at+RIg4SJZsul5jfqY0w7GRKRaKeW0YKhncYsFz7hPlRe49iPfoHa19ZWok47QefmKBA8FCISwUMk8ot2opb2XzTSUkQv43Owb3he1CPUaSdojEBBq5bRSFpdFuwsAWvaqQoujOGadoJOujvRTtCQ1nXaaXXDm/w+iyMovuXmaXf6lS5BgXaqhlP3P9rpH9FO+5t6Hbza+pGeN/r9buN9qwYLjHYyn4lEO91S5QftdPiZl2PsZ5pGpv+hl/maz5ejSDst3PDwg4HnVvUky6mqXjtIj1CgnQxnIsEhijMFQjtNrTo1oa/sUI3gwCmWD9dJ/8CcdiIgqgL4DW5mZljRTpP7X/L9+3USKbBmV2LYFwc53NBOOapIpgvExnQCp50kMrOzVGe0GQQ82PYyz7jXUoxpJ2aUgcVVgCgjMNopp85XexzjpdaRvNb+d+5kR+KAdiIgigMEG8HRTs191OyD9d9plc7Wv+wUZX4BJ7QTs0/DKgT0aVbedobQI2gn8ylD84vtnxrEjLOONwk2uc532qlFDYl2MlQTHO00XazOzLXRn5ZxQCj1ad/aBtRpJ2hgRIF2alJDYhZq1FCmnUzvLpI+VCWvF2MYczhnyZbrmNNO8Yjv762GdbLEL9rJuFW/WnFOHSV+NWNGX4fQKlzQToaIxlDExhiY006vLMbdfXIpnL7D2dO/14Qn03FCOxEQjXVrJh56Dj9pJ/2FYvfks8ZQci5NkHzu9E4FY9qJGchhaacSNbRpp1Dv9NyBhkn6pc1T/ioJaHbCnHYKZAvAk3YyVEObdiqp2HBlG11CN2hFVJum8rWhmNNOMkgCmD2byU40awj/LtopxPyoQdX0fgYn3B9vCHOyHiEw2unpbCTaafBsftNOxH1q2qWhm0j50bEGOac3/cAB7VQ/G2ntOH82DpCNM2fOCIB2qt71pGXg0skGOZTnn9T2vqDggnYKRrSOLR6sIxDaKfWKqZKp9hatmN7B1UuV+9fjgnaai2icwXgwDgFL2mnLAa1qj0GRBmESD/IavuZuxhXt9HoWkvFOz8I62cUR7WR//uX4l35hOlsXLvJ6NcbZGGPaKRrRcp6YW46vtFPizScfMxecoBzWz5ooOnjyXVzQTswcApZ2AgIhK089S+gBtNPiM0LOtQtzqLmTMpe7rZD1xph2qp+DRDv5zREM7XSCmtZPvNdDg12Sb4Yef2QxDXXaCTo3R4HguTYHieDJnMMv2mmTqEONb5/JetnxpMkqZxZbok47QWMEClr5IWq1dM7/Fe10Di6M4Zp2gk66O5/tBAlpXaed5K1rpKKzG9RTa2Sm3LwlGYIC7VQLp+5/tNM/op0yqj8olAeoUlMaEywTrusUCYx2cjVGop2ajPhBO5kl/5VxKTWZni3uNrx/H2cSirTTB0KRxtWbb7W2j9ReX1b7YiIKtJO9MRIcom4sENqp7Nsu8Rz/PtqlKX0Wxz7yeIk57SSNqArgN7iZmWFFO7luXL+h2C1Y56Bj6sG/P+cH4YZ2qjFCMl08NqYTOO002Tvyoke0EeXEu5OaESk0eYxpJ2aUgcVVgCgjMNrp3ctBscuXOpMPxDXIThw4SA8HtJM0ojhAsBEc7SR6vHd+bNYE/WM+kYWVj/WO4IR2YvZpWIWAPs3K284TegTtdE/oecmqSXdJQd6714e/U53Kd9pJyhSJdrI3ERztFNRHaYTfjkTNCBXFgO1r5MxQp52ggREF2knMFIlZeGiCMu20xvb9iTk2tZTdlblrs1vk3DGnnYpMkN4/xATrZIlftJPl65fLXSZn62SNnxG8/OgjL1zQTvaIxlDHxhiY005KkweWLE2yJcVEN6xX6e2cihPaSRrRWE3GeOg5/KSdbqTJi5XdrKVky4WdtPrRSMeYdmIGcljaqc4Ebdoprne/vmrnU9QPjW4J3j/6/HHMaad4EyTayd4EbdppYesGQnLdJkqEyr1Fspc/pWJOO81AEsCszZidaF4g/Ltop+zs+AXGxx31tmZL6Nwp/aQtMNrpuxkS7aRsxm/aydl2/9z5U86SUyc+3pibMHE1Dminj2ZIa8fnzXCAbJSXlwuAdpIavSRt0/h6WkTsCjn1owFbcUE7JSNaZyMerCMQ2umH0PMqjept+nt2rusz9btRDC5oJxNE4yjjwTgELGknG0LcKN0RsZS0JepXVx6wkMQV7dQL0Xj1plgnuziindbHFlnF1P7QKaw+F/8lcfJ3jGmnfFMkywVjbjm+0k6E284T67LtyYGvspQGBig54IJ2YuYQsLQTEAhZeepFQg+gnYxKJpGUpWpp2yv8ZEK8Rj3GmHb6uAiJdopeJBjaaWiY6IJ7MpMMwhRq+hBCsk1Rp52gc3MUCJ7Xi5AIntOL+EU7KRqZ7x2Tn0rLc79Qs1h4lCvqtBM0RqCgVTSiVp6L/q9op0twYQzXtBN00t2JdoKGtK7TTiE/Hw16eZ6qsePBtX1nnxdroUA7XUZN3X4CVHejwwK1LU4l2nteP3B4KvJSo5O6BUJ1VxOc75J8p/XV6SMu6gw0CbOaxqpNzpWpCdIqWzVf3XhERgTQJMJqishtPHm+vwc56vDhHUULHw8Emnqxmm4P9DUeszBRp+z7mePq0fO44bTecObaOvG0cqLUI62tG09Jqa5Mf46Cua7Ames/OO0fwWmTao1HOSUe1SydZyPbFiEvLTA4zc8FCU7r5cIPOM3tWX/LeYfc9CLzqR9XbbJ6hSKcNnurxXwKwUY7u2/jtpW7xqWjAKdtdEFieUxcBAKnrRhqLLuhMYpcKBabmfmYWoo5nKaMqArgN7iZSGMFp5Xq5OSVNobTYmeqLVi1u60ZN3BavTOS6fKdcbE6y3c47V5U87orG+brxGbQNlm9f78XYziNGWVg6SIgyggMTrsYIn5XTMSGvM+IpE/WKOJM7rCB05QRxenlIkA4bZar+O68PZXqe3xWXqufrWKBEziN2adhFQL6NCtvqyP0CDhtmUMW3WDALIME81Pph8ZU7+A7nKbshgSn+bkKDk67muNROTgoVCPNx+L4Aal8zmQeDTgNGhhRgNPk3ZAQk++uKMNptZr9ZOQWh+jn5+/K9vZ6NQxzOO2aK9L7Z7pinSzxC047MNVi3bOjOvrBNikFSRXLOb97GSs4zQ/RGEuxMQbmcFqBweXUDN8Enez4aXPPxPdVwwmcNgPRWP1w0XP4CafVp/xYlnqgTT1+etrE7CX5qX8yVUYBTWIGclg47a0r2nDa64KyyyI5byjR+ZNrk3yLUjCH0467IsFpfq5ow2lTN0mdn7iljBQguSCJXKMGmfdjAKcZIglgNtyVnWheJfy74LRTj4ZmWH/drnPihJ++mc3yZQKD06Q9kOA0iju/4bTNCsuyg7/fIe1wulj4uWjBRhzAaVIeSEv9De44IGyKiooEAKdtvfHGMu3VWVpYn8+ZryTjOb9eCys4rcIdyTpReLCOQOA0XRXjsPUiKpqBqhXyanSNU7iA01wRjUPBg3EIWMJpX66tLPe+1qARNGP/p97Lv3zAFZxGRDReixvWyS6O4LR7oqtJNy7GGiQ8oacTJYo5z44RPJx22Q3JcmmYW46vcNqLpRPE0qxEyVEPx6Sqiu5O+XOyBQU4jZlDwMJpQCBk5anXCD0AThsrbiymJLuTknvz2hDGQIIuxnCalCcSnFbkIRg4jfzE7dEitUz90pKPMfZLrXNRh9Ogc3MUgCsxTyTg6qEHv+C0vhP7kXQO3tIqEMmptFePu486nAaNEShoVeSBpFWIx/8VnHYdLozhGk6DTro74VPQkNZ1OM2QsPypQdxiWjp9wCXVOGspFGinG3Dq/kc7/SPa6cSjlE0fQ7bqlc0al73UQOKDwGina/5ItFO4Pz9op6oRLzaLi5jSEtbemb9WXGEiirSTdG5z8U7rAO1i31efPX4k90WBdrrsjwSHHPcXCO1UOVTS9XBZL2rgx2k/hkv6D8GcdkpDVAXwG9zMzLCinSYKX/yxrLWYXPhkbpnisXV1uKGdfBBN54iN6QROO+W4uXvFXBej5n6I7Hv/gx4NY9qJGWVgcRUgygiMdvpRHvls4bK7BoWl/o0bT/SJxQHtlIYoTri/AGmnN4xV3ptNC8iB3l9JaX2+bsAJ7eSDqBDQp1l5201Cj6CdMuVm5v01rk3zaNDOAqXtCgP4TjulBSDRTiYBgqOdErWnWAe98aPEkcMO1d7UVkKddoIGRhRop+QAxKOoAlCmnba81t9y+4QaJe3VkuLDztOxP4prI+L72wdgnSzxi3bS/fh6puixZXrHFqs7a6aL38MF7WSCaAx1bIyBOe202WmQZe2FJp2MDHPVkcv++oIT2kkZ0VjSuOg5/KSd7k9v2DqzOEGvUJdeWxwzzA9j2okZyOFoJ9OgALRpJ8ZVpZtZwmupSb17HxLxyBXGnHZyZQvAk3YyCUCbdrpmsXRBxapzOscMBxtZiz1Vwpx2mo0kQLpsADvRvEX4d9FOeoOkKg0iTekpWyh5a1/G3RQY7RS7HYl2Ut3Ob9ppsZHkKY2Y4eSQ3O0KjPd5CTignQ5sR1o7DtiOA2QjJydHALSTjJ/sLVkfM2qcl3lsW2VUFS5oJ3dE6yzHg3UEQjvFOV3v88HGST9JdoLtUSedclzQTnqIxlHFg3EIWNJOu+Y370ieZa0duLO67kzbyGhc0U5yiMaTxMZ4+KSdxjYlNXtWG5H3zVGurRA//h5j2qk1AMlyz3ExTeEb7eS4xNnggZmJVurDKRPr149rxAXtxMwhYGknIBCy8tTbhB5AO3lJy4ozjr2hB+sE3Gje2FcaY9ppRCAS7fSWO6XlC+3kUH72x/ZXa2hluwf6vkqXeYo67QSdm6NA8AwNRCJ4hAP5RTudJyqXHznzWmNv2JsEyhtFedRpJ2iMQEGrt9uRtLoj2NESa9rpDlwYwzXtBJ10d6KdoCGt67TTlVN1aRdm+qhnjYrps/69dCsKtNNdOHX/o53+Ee1kf0gu4bLXKoOQxeuWfEi0eSIw2kkhHIl2eh7GD9qp/6m7+14HF9FjDRIzQg5tDEGRdvKfVGo43GSVTkauh0LZ5VPOKNBOcuFIcIhkuEBop7hzvbd5vV5Ij4nu1XzUWc4Lc9qpNQxJFcBvcDMzw4p2GjFcf0HMXhOdg8veXjIKOumIG9qpDtF0ZdiYTuC002Lh8Jq/DgjTD7wL2Bym00zFmHZiRhlYXAWIMgKjnXYFDehHWa+gFxgVrUdPPPcFB7QTM9jAigMEG8HRTuf+ev1ZoqqYVFiS7jd9/JZsnNBOdYgKAX2albfVE3oE7ZQx/X6plKI6NZI0zjtVql8632mn1nAk2iklXHC0E2n/zgfFUXtJ+/q2MqZOmlCJOu0EDYwo0E6fw5GYhcfdS6F+Tzs9oV537Zt2nhae8HmL2NJ3szGnnS4ivn9JONbJEr9opxMnSQTpnY80dix+PDzuZO45XNBOKYjG2IuNMTCnnRzUqAn7/n6jE1Q1+8vbWYmrcEI7bUY01ipc9Bx+0k7W4rTNSxXvUUOmVdwt11rgizHtxAzksLTT3W5mqb+nnU6WHhKamiqhf9R3DOmHWLkO5rRTJVsAnrRTSjjatJPpqwVngu7b6pbvW7NIfUx5Cea0UzCSAOmu4exE8x7h30U7Tdtw1fnq+QT18kmRjfGrH44VGO3UtA+Jdgrcx2/aSfmJzZjE+F66CUe3tv5cpaOJA9rp9T6kteNb+3CAbKSlpQmAdtq/W7lJe6aR+h6F3V6k+WEncEE7nUa0Tg4erCMQ2qnPQdoY5dgZun4ucl9tdi9ZjwvaKRrROIF4MA4BS9qpvnJJ2s/tdvTEDSEvNp+Rf4Ur2skT0XiW2BgPn7TT49i4I5Zqb9Tjj12PkIzUcceYdqIiWk4Nc8vxlXb63lrhMFYzRCtWsv8kk0ElZ3BBOzFzCFjaCQiErDz1PqEH0E6XU/vrpXtvo4ZlfO2nEnreEGPayTECiXZSjxAM7eQ+Tu6YaYqPXmJI2SzxCb7PUKedoHNzFAge+wgkgsckgl+005w55zdt6dWoHXZkvFub0H031GknaIxAQSt1RK2UI/6vaKcHcGEM17QTdNLdiXaChrSu006zJW/NCmq2143M1DzzmESbjALt9BBO3f9op39EO62MMRocdHg4Zc/86I+LNxfFC4x2Wp+IRDvNTuQH7aQW8fCzAWkybUfQ0aKlYkeNUaSd7mwJGZP/OF2roPWm7e3gCatRoJ28EpHgEOtEgdBOTQGrxPz2fdHIcyzfeKnCYRzmtBMdURXAb3AzM8OKdtKccPlW9qYZlHyX5F3uW9euxg3tpIBouoHYmE7gtNO82cuJVrILdMPWrFiYNJ2xD2PaiRllYHEVIMoIjHaaOO76yKUDhXTKyNKFlaPJX3FAO9ERxZmdKEDayepg5sWSMfOpR/z0xn1pqCPihHZSQFQI6NOsvO0RoUfQTmp5m2ufEtZpbEuoqxmT23CI77QTPQmJdmrlTpP4RjvV7c7wX7LambYvvLVo6V5dKdRpJ2hgRIF20ktCYhZUk1CmnQIt9pAGqKymHcwNH/Uo7KsQ5rSTHOL7SyZhnSzxi3b6PLmSuElGk5rUYNL87MEzP1zQTq2JSMZ4jo/0R+C0k8GP5U8pu/7SyjCg+B6zOLQBJ7RTHaKxyjCfZvCbdjq9O9dYbpg6LVF0qLHH62EOGNNOzEAOSztNTkKbdlqkaBIrElSqdbSh8rG3+xJ/zGmnoWwBeNJOrd3MRH9PO8W8qO9jZpFOifiQ7zyJdGM85rTTw0Qk2ul0R6L5mPDvop3u3p87Lf/efc3M0Teb9Q1WnxcY7aSZjEQ71Sfxm3bKX31R9njFQY3I78VTFkc0r8cB7aSejLR2rJyMA2QjISFBALQTVUHs1ifNpfohcoN6vTkQWYoL2kka0Tq98GAdgdBOlXWS77QuaepEr1z+IKnkiScuaKemJCTj1GMz08AR7eTdQI+59/i65i61/BXLwgdQcUU71SAaLx/zaSKOaCf/G3nVdNl63dR5AbqGvmaJGNNO8YiWC8bccnylncil6yrOqDzT2W0T5tUUNTcbF7QTM4eApZ2AQMjKU58QegDtZHVV38aCMURjl8RD2f3SY7E+26kiGYl2Ck8WDO208kd2ybIF10jbHo9+mnl861TUaSfo3BwFgud4MhLBk5bML9pJ4/wnHc2mBNo286b6YyPH90addoLGCBS0CkfUykeweSjWtNNTuDCGa9oJOunuRDtBQ1rXaac9F85NeyZ9n3bgOD2ycFvZdxRop2dw6hLtxhYG7goih53KpO7/WsxZNe1txHC0WsepLsyyEFwXHkQirnVwZxDdwTuxBOS9B76lzVl60QSt2BvBz6e4D5Xj8SDcL/37CHf28r6wgDz9A2/dcm55pI78w14bBX6Rxbuq9nHZhytTAsYGxXdVLMmf417yJRLbjfuLNVNSjA0GfPh2zh+3klOHVCNIrjyEnQq9wL3kH02/ntwe5EPzHfiy1vtF8UjcSn5+CpLkmVPYkjfgXnKZHOtDQXonSbvviRtu2lcxCreSi9GQJG+gsiV/iXvJ1+kqXjT022Pgf1HSTv2jeA5uJf9ujyR5vT1b8kbcS66r4E6XFB9Jyonsb7fK73kabiUP3ook+catbMlf4V7y9Y5yR7xWKWqVSZy8ZrHiqwxuJU8OQZI8PIQt+WvcS367Zc1VsQINuv/YQWbKg29OxK3kTbFIkj+MZUv+Bk7y6fl08mwlC0pZtg9tR1P2TUhBBBDb3cWRyKQ5PbjXGHvDCK2q5Q1MxWzaaUHWyj3rVu3AFnPrwGpnF+BvwNyHtVGha+uPruoLC3btrdBMLZO/cLSiqRnpiXmUcDjau6i0DzCJzjEH0vHTZB74PxHcum5WxQf833pe/uKZcq+0Ip4bJ9isYKSgiP+/9rH7Ypl+iHJM9KGmvWio0B/6oiugUAioUBMJ+AdUoZZ2hbhqqmyJuoj+jdHg9CHW2hMd9K9JIMajwlPF1TpRhS5SQ7VO1EiSbl8s1+IkA2AchX0d7YprRQFLKCKvegwRaG1aVMXFhnRTqBGLGOBKKVMhzn7HW6Gl71c0Gy8x1U5+5L4uMy6gjHNlm3Uz7pVtdgM/NDJchKQR1JmE/4FGTBSMRX0DOv3Oi1qvPi7Rv9pKjtrwfHJZbfVPzr4I3oxbIdZlfugjZYakj6spuzrwFi7wT2gbJp1FFNEqIDd9Y8jacQb+vlQHD0/YrWdwJftRNIaVxxr39q1f7axSe3R3BO7WteCuMmD4u6TysdQCZdLsMtul52CfihtX7tTYVVwZ3Am6BNCxEtDxIVRHV/DchMVcYb2buLI42cqDwRSA5/se05/wcf/pUzo7GfNl7g0X5fxKvl7gK3G9aPvV38V3aND7UzYZkIoIShUFxPcKqFQyx5hSwcZ3nhw3nbnmBjqIgyfDyQPcW0jlqZFb5dpnU6sUyGFxvRmqYhZ+A5kEOPDuWt6u7oyOejGz0mw+iXP1QtDkm1QhSydwhwGXToEFTJ1YXfMdqytxdc1eUz+SJM9cpiSpqt4Ryh57SoTqYM1uS2iIkVkx1YyaLbrH4UeDBCeExKLk2vnsrvdbog6jPVNrJ8WJYErC6HZe5qchUpQx1oWUcVVL5srJBCn4J+MGBjq3diPjiDcGlD7Oq/OCdqgw6lZORuzIyex4y8H7pIBrbqQ2sofW/hgXwxvUOX90yB5/UzRLQDAfY1aKxuWaDe2CdWvZe7gmxF9A0eAJ3WkXVz6qoAXpRkqbpBkXqjhjutkgp4ClhhSvjgqOoYAarI7aRIAZQyMaPsVMMg2mFp8zOKnzM55zLUHiV3jiXvWGm6EO/bV525nI6LiBBHeo602aRFaa2qWeqawwQ/oMTVo7nlG51Oka6TjcY3Lvr/zV1kVZ08BxYgUg6y1ei9oU0MmWVfXv2OHFXm1kRycJXbCncq1e9WFe1rVl94yoNp+ShFBz3cLUw3T1Z0p32e1CMO19DZj+zNVzxNqv/7qxhW3NbqFycc2St8No/ZUGXW5/Hubj/i58DPqlFdAh3B2srB15d4PW5vs79YyqdGNqVLNmPfDgjOASZqyPEklc1hAicfUCIUjIgA6Vf1phAKxJAK05hcQj0XQER/3lVZ00EkJLo2Fqb/3H90vQ3y2yo5fI56QcGI3I3BqRf6sRNAyhoBHg0wgaEZdVsRyww5GQourgdpgIjKe/AgDvgHo9YvBkrXHU/Xr+YjkmeZxH/Im234Y7oLKuox1QDQtYvtJCAicmEB2u5TNVYgXUZriAOvTxLs2Bsy9pJPz9pDy7Zi3ngZJCZN7r7wPasRweUhIk2ps4ynQsioerfMdzgd6YAcyfbZkZKpNEcgIxL1dHBxv4AwhCclOjfIbuoYbeUPd5NvHOHsg7dMVlu2qLDn4NYgtiSRVBOrUKrMSAgxtL9ff/SPX2ZEXgyo9n/UIPMAl1cXQEnh+MGkCnsGMAT8HeTMd75+dVM1UHYkay1uEDwYfSvmaqCmAvEJwpKkDChgY1xYd/ZIq+FoAUTq4uzgxnT4EbZLBZe6lkw7pNv56Cp/rm99ato3kHkzNIow8I1c5ZAvsO3HP4zo1oW0KstIowpQiwRFlnS3zsyaHo6O294WP9/MnJ8qf21W/ZqYpRKCI0Qv3/U0/2/wvHZlyx/qakd1joR1XizW0vceT/rs1Q///ck/1f5EH44/SSgfrFk19uIf+c8Roj/28YWA3x/y892f8rrh/3MTeRIh3/O/369WdCFBz5v+bQaoj/t/Rk/6eNG3LE6sNZ7ZAbBXdHWj6pw8j/HVWg/v+1J/u/MNV1mNUnLfJxO5XsjVceEnDk/zVTof7f2pP9/4Pr/pjCxQXqOe/rFv18JzcJI/9P1oP6/7ee7P9DjRoD38oVa5TrlXtMTrbbgyP/J9Ch/v+9J/u/5pZtL4N+eGkllNyyvT2MYYuR/weuhPp/W0/2/4QEqbmfxEeRskQH1Y38a+NNHPn/dweo///oyf4v2liZT558WvOgnrm++votqzDyfz1fqP//7Mn+b/9q498Lnw+iF51etW3n48EHcOT//bZB/R+Urcf6/524aVqKWk7qaWNNniyu/umJkf8v3gP1f6F/pPq/xP/3XY8IeUl4p1m+88HGEv3ERhz5v2wo1P+Fe7L/L5tS/JUoa6ceviqfFmipIYaR/6fFQP1fpCf7v6GU4gyKWqZmEDVpQFyraByO/N85Dur/vf6RJdo3PAvcBgN/MXMeDDsnBtzJpyvyqL0p/i80fCcolc8eMK+Ox7PzWP9iXkZbdZArirfpqP//Dw==
- true
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvwAADr8BOAVTJAAAAJhJREFUSEvdk4EKgCAMRPfF9gn9WX9Wq5MtEmdKbQQ9GClud4cY/Q6WbwgQ13LnKh5mAsKEle8MeCLm1C9pb2I2QHxNtKC2RLNVeiYjTWyDIxkEZPuKykDTj6QboTZwTA8KA+/0oDRwTg9OgwhxUBh4Xo2SDaLSg5waBrJ3J//uL66mG4zxNGX9BMzezmuDR4UQKg5CxQ2IduVGkrvn0vkHAAAAAElFTkSuQmCC
- 1ef12e12-a315-4adc-8a69-1049182100f2
- true
- DIFERENCE CURWATURE LINEAR GRAPH
- DIFERENCE CURWATURE LINEAR GRAPH
- false
- 20
- 02fb770c-ba15-4f83-acf9-af1ba24e79cf
- 3a4d3006-5e80-4a31-a2c2-77bf1567014b
- 3ac17cbc-7b40-4166-9558-9be4e21d91a4
- 40ec6168-79d7-4abc-9d6e-d41627216763
- 4bd05acf-e732-4c02-8528-9002b488a087
- 4e45cde8-7f27-431d-b06c-7f9c5ed9e84a
- 5f77937c-77e2-465e-8b74-0cd1dca8659f
- 657928da-9388-4d25-ac8c-5461f78115ff
- 9bbc0f84-6983-4117-821c-ceb85636c1d3
- a6f5321e-1fc7-4d0b-a809-2c998b9ba647
- b9b3f377-4fa1-41de-a46e-8c5b7fdb8176
- bcc4995d-3075-4627-86d3-17c54f203760
- c2fa32ad-abc6-48b3-98de-eddebf34447c
- c6051a24-e2be-4566-a3f9-7c05b6c560d3
- d1f9d08d-efb2-4192-a859-fc8b5bd7b96e
- d3b1c4de-65d2-4988-bd21-0fa96869795b
- dacca8b2-18e3-46ff-a12a-1c3dcbed30d4
- df5ac2ce-c295-431f-846d-10a3ddd11fe8
- eef837d9-6ad7-45c0-86d4-37d5df250d0a
- ff97abec-08b3-4858-8f83-c4185f48b077
- 9096d595-00e9-44ef-bf8b-df7cba4ba2ea
- 7979dd58-784d-428c-ab41-1f9a01cb3b5b
- e9837f44-fe89-4576-a1ba-d864d9176564
- 98a7b290-1680-4c8f-91d6-4080e52ada8f
- ad15254d-f361-46c9-90d6-b5db1b60e3d2
- 45329fda-4528-406d-a823-54e35ac6ff74
- 9492d9b1-8423-4285-a424-c395dc7f8b36
- 88ea5216-22ee-43b9-bf4a-bf732fa4678f
- 693656d3-ab20-45a4-a99a-8ca5a8f9ac36
- f9b9305d-1e20-4067-946a-b44d88604308
- 3c10a1a1-09f5-411d-ae06-13d21b0f7cd7
- b4c2ea06-2f42-44c4-9b4a-584b407a7f6a
- 9d9970f3-5ab6-40b5-b0f2-d257ffef222d
- 80bcd5c0-5458-4110-bc35-aad5d5e50148
- 054cb35f-8548-43e7-8129-2bbf3a113dd2
- d134b7cd-fb62-4a2b-a901-fec5a2d783e9
- 357ceb68-e651-4e13-b8c4-6a838be2149a
- e294df03-baaa-4b12-b92f-e97f42ff34ec
- 34281050-3848-44ac-894c-a3119ffa069f
- 17704c02-f561-4245-bc67-2eaf7cd1e000
-
1693
3229
110
404
-
1789
3431
- 20
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 0
- Vector {y} component
- eef837d9-6ad7-45c0-86d4-37d5df250d0a
- true
- Y component
- Y component
- true
- 0
-
1695
3231
82
20
-
1736
3241
- 1
- 1
- {0}
- 8
- Second item for multiplication
- a6f5321e-1fc7-4d0b-a809-2c998b9ba647
- true
- B
- B
- true
- 0
-
1695
3251
82
20
-
1736
3261
- Vector {y} component
- 02fb770c-ba15-4f83-acf9-af1ba24e79cf
- true
- Y component
- Y component
- true
- 0
-
1695
3271
82
20
-
1736
3281
- 1
- 1
- {0}
- 7
- Second item for multiplication
- 4e45cde8-7f27-431d-b06c-7f9c5ed9e84a
- true
- B
- B
- true
- 0
-
1695
3291
82
20
-
1736
3301
- Vector {y} component
- dacca8b2-18e3-46ff-a12a-1c3dcbed30d4
- true
- Y component
- Y component
- true
- 0
-
1695
3311
82
20
-
1736
3321
- 1
- 1
- {0}
- 6
- Second item for multiplication
- bcc4995d-3075-4627-86d3-17c54f203760
- true
- B
- B
- true
- 0
-
1695
3331
82
20
-
1736
3341
- Vector {y} component
- b9b3f377-4fa1-41de-a46e-8c5b7fdb8176
- true
- Y component
- Y component
- true
- 0
-
1695
3351
82
20
-
1736
3361
- 1
- 1
- {0}
- 5
- Second item for multiplication
- 3ac17cbc-7b40-4166-9558-9be4e21d91a4
- true
- B
- B
- true
- 0
-
1695
3371
82
20
-
1736
3381
- Vector {y} component
- 657928da-9388-4d25-ac8c-5461f78115ff
- true
- Y component
- Y component
- true
- 0
-
1695
3391
82
20
-
1736
3401
- 1
- 1
- {0}
- 4
- Second item for multiplication
- c2fa32ad-abc6-48b3-98de-eddebf34447c
- true
- B
- B
- true
- 0
-
1695
3411
82
20
-
1736
3421
- Vector {y} component
- ff97abec-08b3-4858-8f83-c4185f48b077
- true
- Y component
- Y component
- true
- 0
-
1695
3431
82
20
-
1736
3441
- 1
- 1
- {0}
- 3
- Second item for multiplication
- 4bd05acf-e732-4c02-8528-9002b488a087
- true
- B
- B
- true
- 0
-
1695
3451
82
20
-
1736
3461
- Vector {y} component
- c6051a24-e2be-4566-a3f9-7c05b6c560d3
- true
- Y component
- Y component
- true
- 0
-
1695
3471
82
20
-
1736
3481
- 1
- 1
- {0}
- 2
- Second item for multiplication
- df5ac2ce-c295-431f-846d-10a3ddd11fe8
- true
- B
- B
- true
- 0
-
1695
3491
82
20
-
1736
3501
- Vector {y} component
- d3b1c4de-65d2-4988-bd21-0fa96869795b
- true
- Y component
- Y component
- true
- 0
-
1695
3511
82
20
-
1736
3521
- 1
- 1
- {0}
- 1
- Second item for multiplication
- 5f77937c-77e2-465e-8b74-0cd1dca8659f
- true
- B
- B
- true
- 0
-
1695
3531
82
20
-
1736
3541
- Vector {y} component
- 3a4d3006-5e80-4a31-a2c2-77bf1567014b
- true
- Y component
- Y component
- true
- 0
-
1695
3551
82
20
-
1736
3561
- 1
- 1
- {0}
- 0
- Second item for multiplication
- 40ec6168-79d7-4abc-9d6e-d41627216763
- true
- B
- B
- true
- 0
-
1695
3571
82
20
-
1736
3581
- Number of segments
- d1f9d08d-efb2-4192-a859-fc8b5bd7b96e
- true
- Count
- Count
- true
- b8207e8f-d1d2-4ad2-b43b-73db4643f17e
- 1
-
1695
3591
82
20
-
1736
3601
- 1
- 1
- {0}
- 10
- Contains a collection of generic curves
- true
- 9bbc0f84-6983-4117-821c-ceb85636c1d3
- true
- Curve
- Curve
- true
- accfc6c7-d434-41c2-8fa9-df26450c2afb
- 1
-
1695
3611
82
20
-
1736
3621
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- accfc6c7-d434-41c2-8fa9-df26450c2afb
- Relay
- false
- 650d961c-ef6f-4573-ade0-97f698f6a536
- 1
-
1466
3613
40
16
-
1486
3621
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- b8207e8f-d1d2-4ad2-b43b-73db4643f17e
- Relay
- false
- 7e1bc525-0327-427c-afd4-d8b6c2743acb
- 1
-
1444
3576
40
16
-
1464
3584
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 9698bc3a-1ed1-4414-86f0-6444e8ead760
- Panel
- false
- 0
- 0
- 0.0003860762109180463019
-
-199
3409
160
84
- 0
- 0
- 0
-
-198.463
3409.569
- 2
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- b0414c5e-b2a5-4397-9a26-3d16457e079d
- Relay
- false
- 7876afcf-7775-45c8-8a25-88d8b7e1f9c2
- 1
-
-239
3169
40
16
-
-219
3177
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 64dc2fad-67da-43a0-afa8-968d779d76bb
- Relay
- false
- b887e715-85b8-4d63-bcef-54f50d862634
- 1
-
-241
3271
40
16
-
-221
3279
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- ce270eae-dd35-42f1-a1e4-d2f99e5bc96c
- Relay
- false
- 5abe47df-fbe4-4b97-bd03-0ec1b1f6b2d8
- 1
-
-243
3321
40
16
-
-223
3329
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- b431a847-2dd3-434f-9b59-8a6329452c37
- Format
- Format
-
-185
3133
130
64
-
-93
3165
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- 189af6c2-3871-43ab-b4a2-828404c5bac2
- Format
- Format
- false
- 0
-
-183
3135
78
20
-
-144
3145
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- d97e0a39-4089-4172-9db8-c08197b8e7b4
- Culture
- Culture
- false
- 0
-
-183
3155
78
20
-
-144
3165
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- bfcdd9ea-5052-41e9-a97a-cd0fe30a0d83
- false
- Data 0
- 0
- true
- b0414c5e-b2a5-4397-9a26-3d16457e079d
- 1
-
-183
3175
78
20
-
-144
3185
- Formatted text
- ba156c5f-31a5-4478-a04c-85f4b5333b7c
- Text
- Text
- false
- 0
-
-81
3135
24
60
-
-69
3165
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- 1e3ae344-cd92-406e-aebd-972deee07f0e
- Format
- Format
-
-185
3217
130
64
-
-93
3249
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- c1c6a58e-c0c7-493c-8c2d-21b09a647d80
- Format
- Format
- false
- 0
-
-183
3219
78
20
-
-144
3229
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 118c54c9-0071-4749-be06-f6920b3500fe
- Culture
- Culture
- false
- 0
-
-183
3239
78
20
-
-144
3249
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- 896cb082-cf84-4e6b-8922-6cda5c56786c
- false
- Data 0
- 0
- true
- 64dc2fad-67da-43a0-afa8-968d779d76bb
- 1
-
-183
3259
78
20
-
-144
3269
- Formatted text
- 35a11262-770e-4498-9d6e-28b546897ca0
- Text
- Text
- false
- 0
-
-81
3219
24
60
-
-69
3249
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- f2c03e9a-5b86-4789-997b-bb044bca2f3e
- Format
- Format
-
-184
3300
130
64
-
-92
3332
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- bc32af76-1e3f-4774-bfb7-f91555ff91fb
- Format
- Format
- false
- 0
-
-182
3302
78
20
-
-143
3312
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- f7c98017-af59-4278-ba02-63d1dad43791
- Culture
- Culture
- false
- 0
-
-182
3322
78
20
-
-143
3332
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- e773dc71-70c2-4170-b0f0-7457a89e3cb5
- false
- Data 0
- 0
- true
- ce270eae-dd35-42f1-a1e4-d2f99e5bc96c
- 1
-
-182
3342
78
20
-
-143
3352
- Formatted text
- dd0736c2-159a-42d1-af5f-93e121faa9f7
- Text
- Text
- false
- 0
-
-80
3302
24
60
-
-68
3332
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 63179a12-0556-4bc1-9bf4-ef312b611dad
- Relay
- false
- c923a52e-eef5-4213-b91c-a99d00b79828
- 1
-
203
3341
40
16
-
223
3349
- 290f418a-65ee-406a-a9d0-35699815b512
- Scale NU
- Scale an object with non-uniform factors.
- true
- d25a347e-f2e0-4e4a-8983-14d071fa7194
- Scale NU
- Scale NU
-
403
3098
226
121
-
565
3159
- Base geometry
- 6c42c611-31df-46b6-a8ee-c7c7171400e4
- Geometry
- Geometry
- true
- 9f5a4e05-ce5c-4e86-a807-564e2bdd48c7
- 1
-
405
3100
148
20
-
487
3110
- Base plane
- f2be336e-646a-4422-ad9e-e4e57dab9a98
- Plane
- Plane
- false
- 0
-
405
3120
148
37
-
487
3138.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Scaling factor in {x} direction
- 98448143-b352-4739-bfc1-429bc2747dd2
- 1/X
- Scale X
- Scale X
- false
- 7876afcf-7775-45c8-8a25-88d8b7e1f9c2
- 1
-
405
3157
148
20
-
487
3167
- 1
- 1
- {0}
- 1
- Scaling factor in {y} direction
- 0a1bb1d6-8dd1-4ff5-9746-b9d1ed378ab9
- 1/X
- Scale Y
- Scale Y
- false
- 5abe47df-fbe4-4b97-bd03-0ec1b1f6b2d8
- 1
-
405
3177
148
20
-
487
3187
- 1
- 1
- {0}
- 1
- Scaling factor in {z} direction
- 56b223c4-49a9-4561-a1a4-af9c5fd7182a
- Scale Z
- Scale Z
- false
- 0
-
405
3197
148
20
-
487
3207
- 1
- 1
- {0}
- 1
- Scaled geometry
- 9868f335-6dc4-451f-8094-d3711f42121a
- Geometry
- Geometry
- false
- 0
-
577
3100
50
58
-
602
3129.25
- Transformation data
- d3a424e3-115d-4433-a6ad-a72744f7056e
- Transform
- Transform
- false
- 0
-
577
3158
50
59
-
602
3187.75
- 310f9597-267e-4471-a7d7-048725557528
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
- GraphMapper+
- External Graph mapper
You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
- true
- e6c0b86a-3030-446a-831b-92169490ee8b
- GraphMapper+
- GraphMapper+
- true
-
902
2886
114
104
-
963
2938
- External curve as a graph
- 37bb3370-d544-4693-9286-1de205aa26be
- Curve
- Curve
- false
- 0517f2f3-0517-41f2-956d-3caa6df4c5ab
- 1
-
904
2888
47
20
-
927.5
2898
- Optional Rectangle boundary. If omitted the curve's would be landed
- 64776ecc-bbe9-4ec5-a5d4-07eb396f92b6
- Boundary
- Boundary
- true
- 3bfc7a24-36db-4b47-8c33-65ba8b072928
- 1
-
904
2908
47
20
-
927.5
2918
- 1
- List of input numbers
- 68fa507c-c522-4467-80f3-fdcf8a652e23
- Numbers
- Numbers
- false
- 8e13165d-ec24-43b2-ab6d-2081a50fd148
- 1
-
904
2928
47
20
-
927.5
2938
- 1
- 9
- {0}
- 0.1
- 0.2
- 0.3
- 0.4
- 0.5
- 0.6
- 0.7
- 0.8
- 0.9
- (Optional) Input Domain
if omitted, it would be 0-1 in "Normalize" mode by default
or be the interval of the input list in case of selecting "AutoDomain" mode
- 6653a230-3ac7-44b2-a9f5-1fe99c263419
- Input
- Input
- true
- 213585e8-4f3a-4f2c-9e91-8385c0f5293e
- 1
-
904
2948
47
20
-
927.5
2958
- (Optional) Output Domain
if omitted, it would be 0-1 in "Normalize" mode by default
or be the interval of the input list in case of selecting "AutoDomain" mode
- f8e14406-9226-4342-a696-98d00dc96a74
- Output
- Output
- true
- 213585e8-4f3a-4f2c-9e91-8385c0f5293e
- 1
-
904
2968
47
20
-
927.5
2978
- 1
- Output Numbers
- b0d8da91-bdcc-44b1-93f8-f3dc5e923e83
- Number
- Number
- false
- 0
-
975
2888
39
100
-
994.5
2938
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
- Extract the end points of a curve.
- true
- 6e0d144c-1a3d-40c0-9029-376abdea13ca
- End Points
- End Points
-
346
2785
84
44
-
390
2807
- Curve to evaluate
- 9b920e58-086f-48e0-a7d3-9489d707f19a
- Curve
- Curve
- false
- 0517f2f3-0517-41f2-956d-3caa6df4c5ab
- 1
-
348
2787
30
40
-
363
2807
- Curve start point
- 8b6f6b53-ff10-4744-b784-aacd1ff32a2b
- Start
- Start
- false
- 0
-
402
2787
26
20
-
415
2797
- Curve end point
- 2eca5a00-e598-4c14-ac50-2590832a1ec9
- End
- End
- false
- 0
-
402
2807
26
20
-
415
2817
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
- Create a rectangle from a base plane and two points
- true
- edc8e274-6c3a-472a-bf0f-4e3da7df79d1
- Rectangle 2Pt
- Rectangle 2Pt
-
481
2794
198
101
-
617
2845
- Rectangle base plane
- 53e04fb8-ff9e-4b0e-a27f-df57d3dc5efa
- Plane
- Plane
- false
- 0
-
483
2796
122
37
-
544
2814.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- First corner point.
- 0c1cf429-1c6b-4c8d-9622-d10850298528
- Point A
- Point A
- false
- 8b6f6b53-ff10-4744-b784-aacd1ff32a2b
- 1
-
483
2833
122
20
-
544
2843
- 1
- 1
- {0}
-
0
0
0
- Second corner point.
- d351db95-b5de-4672-a58c-f4c75d5d5420
- Point B
- Point B
- false
- 2eca5a00-e598-4c14-ac50-2590832a1ec9
- 1
-
483
2853
122
20
-
544
2863
- 1
- 1
- {0}
-
10
5
0
- Rectangle corner fillet radius
- da9761e7-1237-4b20-81d5-09d6e9f1afdc
- Radius
- Radius
- false
- 0
-
483
2873
122
20
-
544
2883
- 1
- 1
- {0}
- 0
- Rectangle defined by P, A and B
- 3bfc7a24-36db-4b47-8c33-65ba8b072928
- Rectangle
- Rectangle
- false
- 0
-
629
2796
48
48
-
653
2820.25
- Length of rectangle curve
- cd1c3d89-ae86-4bf4-a2f2-dcc79f52e1ba
- Length
- Length
- false
- 0
-
629
2844
48
49
-
653
2868.75
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- e3c2f7fa-3c6d-4eda-a7bf-aa70f955e050
- Relay
- false
- 7abea44d-07c7-4298-8d09-060192324a84
- 1
-
899
3432
40
16
-
919
3440
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 9d55f829-b54c-4866-9ced-6f44b43868eb
- Relay
- false
- 7abea44d-07c7-4298-8d09-060192324a84
- 1
-
995
3406
40
16
-
1015
3414
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- 2ba1bf59-61a7-488d-a5b3-a5ed82a48731
- Bounds
- Bounds
-
732
3031
110
28
-
790
3045
- 1
- Numbers to include in Bounds
- d467ba15-dacc-49e4-a358-5f8b21727a8e
- Numbers
- Numbers
- false
- 8e13165d-ec24-43b2-ab6d-2081a50fd148
- 1
-
734
3033
44
24
-
756
3045
- Numeric Domain between the lowest and highest numbers in {N}
- 213585e8-4f3a-4f2c-9e91-8385c0f5293e
- Domain
- Domain
- false
- 0
-
802
3033
38
24
-
821
3045
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 3a2cde3d-d6da-4bca-8862-90ed8bdd89e1
- Multiplication
- Multiplication
-
550
2932
65
44
-
570
2954
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- afaeef1a-7362-4d75-84da-28445edb71ce
- A
- true
- 46440956-1415-4acb-9dea-f43095dd43e0
- 1
-
552
2934
6
20
-
555
2944
- Second item for multiplication
- 5e47cf8a-2eec-4f4d-83d9-a82abf38af83
- B
- true
- ac864993-ecc7-4645-ae0f-6a08f6579f35
- 1
-
552
2954
6
20
-
555
2964
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 65536
- Result of multiplication
- 401b9053-c46d-4e8b-b861-4b450f5eb386
- Result
- Result
- false
- 0
-
582
2934
31
40
-
597.5
2954
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 14ae5d36-3b7d-4915-90c0-7ff8f5596059
- Division
- Division
-
1110
2908
40
44
-
1130
2930
- Item to divide (dividend)
- 3b11c51c-7806-40a5-98b2-da1587f628a9
- A
- false
- b0d8da91-bdcc-44b1-93f8-f3dc5e923e83
- 1
-
1112
2910
6
20
-
1115
2920
- Item to divide with (divisor)
- e38fefc5-a2a7-43cd-9c0a-3d3bcfa80041
- B
- false
- ac864993-ecc7-4645-ae0f-6a08f6579f35
- 1
-
1112
2930
6
20
-
1115
2940
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 65536
- The result of the Division
- 9d63dde1-2e33-4f8a-a3cb-303f50d0a8d3
- Result
- false
- 0
-
1142
2910
6
40
-
1145
2930
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 8e13165d-ec24-43b2-ab6d-2081a50fd148
- Relay
- false
- 401b9053-c46d-4e8b-b861-4b450f5eb386
- 1
-
652
2946
40
16
-
672
2954
- cae9fe53-6d63-44ed-9d6d-13180fbf6f89
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Curve Graph Mapper
- Remap values with a custom graph using input curves.
- true
- 79911ab3-0bb2-423f-9b09-cc7daf554fae
- true
- Curve Graph Mapper
- Curve Graph Mapper
-
863
2524
181
224
-
958
2636
- 1
- One or multiple graph curves to graph map values with
- 0bb544c8-bab7-4688-bbcb-3a8261f6d9df
- true
- Curves
- Curves
- false
- 0517f2f3-0517-41f2-956d-3caa6df4c5ab
- 1
-
865
2526
81
27
-
905.5
2539.75
- Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
- 8f7ff6d9-d1ad-47c3-b95d-c907375d9086
- true
- Rectangle
- Rectangle
- false
- 3bfc7a24-36db-4b47-8c33-65ba8b072928
- 1
-
865
2553
81
28
-
905.5
2567.25
- 1
- Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
- 0a194642-2ace-40a2-9371-1fdb31c6e9bd
- true
- Values
- Values
- false
- 8e13165d-ec24-43b2-ab6d-2081a50fd148
- 1
-
865
2581
81
27
-
905.5
2594.75
- Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
- 1152e18b-29f2-4516-95b9-d00168a6ab5a
- true
- X Axis
- X Axis
- true
- 213585e8-4f3a-4f2c-9e91-8385c0f5293e
- 1
-
865
2608
81
28
-
905.5
2622.25
- Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
- 22bd9999-24b4-4c89-b7c3-8cfceb7bfd7a
- true
- Y Axis
- Y Axis
- true
- 213585e8-4f3a-4f2c-9e91-8385c0f5293e
- 1
-
865
2636
81
27
-
905.5
2649.75
- Flip the graphs X Axis from the bottom of the graph to the top of the graph
- e894ba31-d10e-430a-ae57-3b907326c13b
- true
- Flip
- Flip
- false
- 0
-
865
2663
81
28
-
905.5
2677.25
- 1
- 1
- {0}
- false
- Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
- 5dd47338-a69e-403c-b0e6-28ce8cb72d72
- true
- Snap
- Snap
- false
- 0
-
865
2691
81
27
-
905.5
2704.75
- 1
- 1
- {0}
- true
- Size of the graph labels
- aea304b8-4d9b-4ff0-baf1-1ab501b12c7a
- true
- Text Size
- Text Size
- false
- 0
-
865
2718
81
28
-
905.5
2732.25
- 1
- 1
- {0}
- 0.0625
- 1
- Resulting graph mapped values, mapped on the Y Axis
- c49f47cc-5dc4-4e0c-b8c8-2572f883a609
- true
- Mapped
- Mapped
- false
- 0
-
970
2526
72
20
-
1006
2536
- 1
- The graph curves inside the boundary of the graph
- af88c05c-c65a-452e-afb8-03ead7ccdd13
- true
- Graph Curves
- Graph Curves
- false
- 0
-
970
2546
72
20
-
1006
2556
- 1
- The points on the graph curves where the X Axis input values intersected
- true
- d53018cc-57d9-4a8a-8ec1-f657ce6bf8c7
- true
- Graph Points
- Graph Points
- false
- 0
-
970
2566
72
20
-
1006
2576
- 1
- The lines from the X Axis input values to the graph curves
- true
- 28ed54b6-fb95-4400-9b96-be39d08e61f2
- true
- Value Lines
- Value Lines
- false
- 0
-
970
2586
72
20
-
1006
2596
- 1
- The points plotted on the X Axis which represent the input values
- true
- 3859e8eb-a8d8-489c-9af3-07cbef237797
- true
- Value Points
- Value Points
- false
- 0
-
970
2606
72
20
-
1006
2616
- 1
- The lines from the graph curves to the Y Axis graph mapped values
- true
- 15f46ee6-4d3b-4829-92f3-0234381521fc
- true
- Mapped Lines
- Mapped Lines
- false
- 0
-
970
2626
72
20
-
1006
2636
- 1
- The points mapped on the Y Axis which represent the graph mapped values
- true
- eae5032a-27c6-492d-a9ad-a32197a98c69
- true
- Mapped Points
- Mapped Points
- false
- 0
-
970
2646
72
20
-
1006
2656
- The graph boundary background as a surface
- 385cfc7d-69b8-4bf8-a8e8-235ff6dcb3a3
- true
- Boundary
- Boundary
- false
- 0
-
970
2666
72
20
-
1006
2676
- 1
- The graph labels as curve outlines
- e5350df2-11ec-4670-a160-59d360906919
- true
- Labels
- Labels
- false
- 0
-
970
2686
72
20
-
1006
2696
- 1
- True for input values outside of the X Axis domain bounds
False for input values inside of the X Axis domain bounds
- 7632ccf4-a432-45cd-8527-b7823f3b8396
- true
- Out Of Bounds
- Out Of Bounds
- false
- 0
-
970
2706
72
20
-
1006
2716
- 1
- True for input values on the X Axis which intersect a graph curve
False for input values on the X Axis which do not intersect a graph curve
- 70491f98-3972-4ff2-a978-dec7aa20383c
- true
- Intersected
- Intersected
- false
- 0
-
970
2726
72
20
-
1006
2736
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 0517f2f3-0517-41f2-956d-3caa6df4c5ab
- Relay
- false
- 2272069e-441f-44d2-9cee-25e8d582e273
- 1
-
390
2654
40
16
-
410
2662
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 014f3a82-3e2e-4c4a-b79b-fb754973b0be
- Scale
- Scale
-
136
2607
201
64
-
273
2639
- Base geometry
- 088ca25e-6ea7-48f3-ace4-0c8e930bf8c0
- Geometry
- Geometry
- true
- 244a5752-77fd-4f13-8350-52f02184bb09
- 1
-
138
2609
123
20
-
199.5
2619
- Center of scaling
- 9e7f199c-7b01-4add-9318-865c5543c1ca
- Center
- Center
- false
- 0
-
138
2629
123
20
-
199.5
2639
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 43d3790a-ac7f-4569-a53a-79ba4fab9fc3
- Factor
- Factor
- false
- ac864993-ecc7-4645-ae0f-6a08f6579f35
- 1
-
138
2649
123
20
-
199.5
2659
- 1
- 1
- {0}
- 65536
- Scaled geometry
- 2272069e-441f-44d2-9cee-25e8d582e273
- Geometry
- Geometry
- false
- 0
-
285
2609
50
30
-
310
2624
- Transformation data
- 6ff09d7b-d063-494c-aed8-d823c8e1aee5
- Transform
- Transform
- false
- 0
-
285
2639
50
30
-
310
2654
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 244a5752-77fd-4f13-8350-52f02184bb09
- Relay
- false
- ffc7114c-425e-4e46-9780-4f5439b2a045
- 1
-
47
2621
40
16
-
67
2629
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 790c5d89-8027-4b3f-9974-0aa9c9725140
- Division
- Division
-
1447
3499
85
44
-
1487
3521
- Item to divide (dividend)
- c76f374e-534e-4e89-b239-d9dc8de969fb
- A
- A
- false
- b8207e8f-d1d2-4ad2-b43b-73db4643f17e
- 1
-
1449
3501
26
20
-
1462
3511
- Item to divide with (divisor)
- 897bf1c5-c5a3-40ee-991e-0ef5fe2738c1
- B
- B
- false
- 0
-
1449
3521
26
20
-
1462
3531
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 1
- The result of the Division
- f654ad66-626e-4a53-b0fb-b97bf8db47c6
- Result
- Result
- false
- 0
-
1499
3501
31
40
-
1514.5
3521
- 78fed580-851b-46fe-af2f-6519a9d378e0
- Power
- Raise a value to a power.
- true
- 2a8521de-e5f6-49cb-bbe3-75b663e3287e
- Power
- Power
-
-559
2069
85
44
-
-519
2091
- The item to be raised
- 29d4dc65-97fd-47bd-928a-25c3e40e4289
- A
- A
- false
- 0
-
-557
2071
26
20
-
-544
2081
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 2
- The exponent
- 9080713f-2153-4baa-8370-7871a215faff
- B
- B
- false
- 1144e4e4-28c8-484b-b1e7-db119f50edf8
- 1
-
-557
2091
26
20
-
-544
2101
- A raised to the B power
- ac864993-ecc7-4645-ae0f-6a08f6579f35
- Result
- Result
- false
- 0
-
-507
2071
31
40
-
-491.5
2091
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 1144e4e4-28c8-484b-b1e7-db119f50edf8
- Digit Scroller
-
- false
- 0
- 12
-
- 11
- 16.0
-
-663
2029
250
20
-
-662.1945
2029.497
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
- A VB.NET scriptable component
- true
- 6725d6c9-efab-49aa-9d02-2daa52073dc7
- DotNET VB Script (LEGACY)
- Turtle
- 0
- Dim i As Integer
Dim dir As New On3dVector(1, 0, 0)
Dim pos As New On3dVector(0, 0, 0)
Dim axis As New On3dVector(0, 0, 1)
Dim pnts As New List(Of On3dVector)
pnts.Add(pos)
For i = 0 To Forward.Count() - 1
Dim P As New On3dVector
dir.Rotate(Left(i), axis)
P = dir * Forward(i) + pnts(i)
pnts.Add(P)
Next
Points = pnts
-
1128
5105
104
44
-
1183
5127
- 1
- 1
- 2
- Script Variable Forward
- Script Variable Left
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- true
- true
- Forward
- Left
- true
- true
- 2
- Print, Reflect and Error streams
- Output parameter Points
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- true
- Output
- Points
- false
- false
- 1
- false
- Script Variable Forward
- 996d5ff5-14c1-4c31-b303-f95d048ef52d
- Forward
- Forward
- true
- 1
- true
- 5bb9f473-b63f-45e9-b4cc-e2754dd53763
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
1130
5107
41
20
-
1150.5
5117
- 1
- false
- Script Variable Left
- d2c0c4fb-9cf6-41fa-b702-09c17addb9e2
- Left
- Left
- true
- 1
- true
- 7eca8f17-b48d-4b73-ada0-90a22d3fe212
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
1130
5127
41
20
-
1150.5
5137
- Print, Reflect and Error streams
- 04cee30c-e625-489e-9e48-8001a66c4b60
- Output
- Output
- false
- 0
-
1195
5107
35
20
-
1212.5
5117
- Output parameter Points
- a249c8f7-8389-41ef-9421-d4c3316c347e
- Points
- Points
- false
- 0
-
1195
5127
35
20
-
1212.5
5137
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- 40d5b1ce-cd1e-4185-b05f-eb342b59a010
- Series
- Series
-
561
5266
89
64
-
605
5298
- First number in the series
- 2b666a1d-1cca-44a3-a105-682eb0e2206c
- Start
- Start
- false
- d644c106-358a-4d53-8003-e44a23932f16
- 1
-
563
5268
30
20
-
578
5278
- 1
- 1
- {0}
- 0
- Step size for each successive number
- 85a9b54a-9b4d-46b5-aa17-b491a16746a3
- Step
- Step
- false
- d644c106-358a-4d53-8003-e44a23932f16
- 1
-
563
5288
30
20
-
578
5298
- 1
- 1
- {0}
- 1
- Number of values in the series
- ac84610d-c601-4c95-a440-2d941cb8b3cc
- Count
- Count
- false
- 4c725ef7-1aec-4903-a426-fcecb964fe28
- 1
-
563
5308
30
20
-
578
5318
- 1
- 1
- {0}
- 500
- 1
- Series of numbers
- d2dee351-7ad7-4195-88b0-b83aeaa59ee9
- Series
- Series
- false
- 0
-
617
5268
31
60
-
632.5
5298
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
- Duplicate data a predefined number of times.
- true
- f446bebf-5581-4727-80df-0479210e1c8b
- Duplicate Data
- Duplicate Data
-
552
5109
102
64
-
615
5141
- 1
- Data to duplicate
- df3c469b-15dd-4113-9695-cfe00ba73739
- Data
- Data
- false
- 46557eca-0fa8-4257-9968-cd3caf6e4133
- 1
-
554
5111
49
20
-
578.5
5121
- Number of duplicates
- b029cd2f-bf2b-4ae1-ba0f-ef7e2e1f9cc2
- Number
- Number
- false
- 4c725ef7-1aec-4903-a426-fcecb964fe28
- 1
-
554
5131
49
20
-
578.5
5141
- 1
- 1
- {0}
- 500
- Retain list order
- 5ee2542c-8564-4e98-b47e-a98477318db4
- Order
- Order
- false
- 0
-
554
5151
49
20
-
578.5
5161
- 1
- 1
- {0}
- true
- 1
- Duplicated data
- 7a247abb-61c5-46ae-9afb-f19cc07f8a56
- Data
- Data
- false
- 0
-
627
5111
25
60
-
639.5
5141
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 53dfe8d4-944d-46bf-8495-cdb43c7556b1
- Digit Scroller
- .
- false
- 0
- 12
- .
- 11
- 1024.0
-
27
5260
250
20
-
27.61891
5260.25
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- c2429a84-5049-49fc-9a38-42778a26f71d
- Digit Scroller
- ЯR
- false
- 0
- 12
- ЯR
- 1
- 0.12228574351
-
32
5161
250
20
-
32.31831
5161.933
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- bfe92d3e-548e-4939-be0c-6a54fc045c4e
- Digit Scroller
- °
- false
- 0
- 12
- °
- 2
- 0.0003860762
-
30
5205
250
20
-
30.23642
5205.192
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
- Convert an angle specified in degrees to radians
- true
- 2276773a-904f-4273-aa34-9d5c0f9aced4
- Radians
- Radians
-
406
5167
108
28
-
461
5181
- Angle in degrees
- 541b6184-b2d9-4841-abf0-775b3d5c9532
- Degrees
- Degrees
- false
- 778435a9-4a09-40c9-a8d3-b6ca4d0b2811
- 1
-
408
5169
41
24
-
428.5
5181
- Angle in radians
- d644c106-358a-4d53-8003-e44a23932f16
- Radians
- Radians
- false
- 0
-
473
5169
39
24
-
492.5
5181
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- ddf12dcc-4532-4f5f-9017-ca2181ae4120
- Point
- Point
- false
- a249c8f7-8389-41ef-9421-d4c3316c347e
- 1
-
1057
5256
50
24
-
1082.998
5268.367
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 4c725ef7-1aec-4903-a426-fcecb964fe28
- Relay
- false
- 9b585c51-4d8d-4d1a-abf6-db393bf44760
- 1
-
417
5229
40
16
-
437
5237
- be52336f-a2e1-43b1-b5f5-178ba489508a
- Circle Fit
- Fit a circle to a collection of points.
- true
- ff0d8658-7c8a-4efc-9ff7-d21a2f4d80b9
- Circle Fit
- Circle Fit
-
534
5527
104
64
-
579
5559
- 1
- Points to fit
- a482c1db-c849-4af7-9253-38455522194a
- Points
- Points
- false
- ddf12dcc-4532-4f5f-9017-ca2181ae4120
- 1
-
536
5529
31
60
-
551.5
5559
- Resulting circle
- b4ec1d74-9d97-4ab2-9c19-ca7a15e3e6d2
- Circle
- Circle
- false
- 0
-
591
5529
45
20
-
613.5
5539
- Circle radius
- 823410ef-5164-49ce-aaf0-4fd337d12394
- Radius
- Radius
- false
- 0
-
591
5549
45
20
-
613.5
5559
- Maximum distance between circle and points
- 721bd50f-6894-48cd-8640-471beedf3b88
- Deviation
- Deviation
- false
- 0
-
591
5569
45
20
-
613.5
5579
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- cos((4*atan(1))/N)
- true
- 97df6443-4cee-4503-a278-5775d3d97c17
- Expression
- Expression
-
469
5463
215
28
-
567
5477
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- ac53965d-9c57-49ef-a4e1-15cf2c013e39
- Variable N
- N
- true
- 4c725ef7-1aec-4903-a426-fcecb964fe28
- 1
-
471
5465
11
24
-
476.5
5477
- Result of expression
- 8a13a8ee-43ae-490c-9a67-94c0a5edb3de
- Result
- Result
- false
- 0
-
651
5465
31
24
-
666.5
5477
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 0fb4bac9-595d-4516-9de2-921f847556b0
- Scale
- Scale
-
708
5634
126
64
-
770
5666
- Base geometry
- 269c46c8-fb57-4272-8066-350e30875f30
- Geometry
- Geometry
- true
- b4ec1d74-9d97-4ab2-9c19-ca7a15e3e6d2
- 1
-
710
5636
48
20
-
734
5646
- Center of scaling
- f959d9b2-b769-41c1-a28e-850ee2a2a776
- Center
- Center
- false
- 3554d94d-6df9-4e70-a491-7d5078530e78
- 1
-
710
5656
48
20
-
734
5666
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- f2bf6058-f07e-4ee4-aaf8-c12678761178
- Factor
- Factor
- false
- 8a13a8ee-43ae-490c-9a67-94c0a5edb3de
- 1
-
710
5676
48
20
-
734
5686
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- ec397e86-bb0d-45eb-be56-aed938deaf9d
- Geometry
- Geometry
- false
- 0
-
782
5636
50
30
-
807
5651
- Transformation data
- 4161ae35-ffb9-4065-975d-03f05b73c621
- Transform
- Transform
- false
- 0
-
782
5666
50
30
-
807
5681
- 2e205f24-9279-47b2-b414-d06dcd0b21a7
- Area
- Solve area properties for breps, meshes and planar closed curves.
- true
- cd77b622-9a86-4cac-9598-e29eb480069a
- Area
- Area
-
522
5644
118
44
-
584
5666
- Brep, mesh or planar closed curve for area computation
- 51ccef21-cf74-4b38-acac-13099eba9e08
- Geometry
- Geometry
- false
- b4ec1d74-9d97-4ab2-9c19-ca7a15e3e6d2
- 1
-
524
5646
48
40
-
548
5666
- Area of geometry
- 2e0e9257-78e7-4846-ae26-603cf7b7191f
- Area
- Area
- false
- 0
-
596
5646
42
20
-
617
5656
- Area centroid of geometry
- 3554d94d-6df9-4e70-a491-7d5078530e78
- Centroid
- Centroid
- false
- 0
-
596
5666
42
20
-
617
5676
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- e0da04d7-7efb-44af-880c-05873d34cb64
- Multiplication
- Multiplication
-
833
5546
70
44
-
858
5568
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 00864368-5c1c-4f5f-99fe-d6e5c94e6ebf
- A
- A
- true
- 8a13a8ee-43ae-490c-9a67-94c0a5edb3de
- 1
-
835
5548
11
20
-
840.5
5558
- Second item for multiplication
- 42f713fe-412d-4667-86ff-c867d8d99fe1
- B
- B
- true
- 823410ef-5164-49ce-aaf0-4fd337d12394
- 1
-
835
5568
11
20
-
840.5
5578
- Result of multiplication
- d279ab5e-07f6-49ba-9dd7-e164e8d7e621
- Result
- Result
- false
- 0
-
870
5548
31
40
-
885.5
5568
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- .5*L*(1/SIN(π/N))
- true
- d089d8e3-7cf2-484e-bc5c-7ae0430080bb
- Expression
- Expression
-
796
5398
207
44
-
890
5420
- 2
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- f0766318-0199-4d9f-ae92-ebd30f99e69e
- Variable L
- L
- true
- c2429a84-5049-49fc-9a38-42778a26f71d
- 1
-
798
5400
11
20
-
803.5
5410
- Expression variable
- fda47015-0c34-4726-8afc-bc4c082daa74
- Variable N
- N
- true
- 4c725ef7-1aec-4903-a426-fcecb964fe28
- 1
-
798
5420
11
20
-
803.5
5430
- Result of expression
- 31cc3c48-9804-4a57-8cb1-d42fea2c8488
- Result
- Result
- false
- 0
-
970
5400
31
40
-
985.5
5420
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 14c9fb5a-3cf2-4f86-aa99-97cab6eec72b
- Panel
- false
- 0
- 31cc3c48-9804-4a57-8cb1-d42fea2c8488
- 1
- Double click to edit panel content…
-
1060
5392
160
100
- 0
- 0
- 0
-
1060.971
5392.169
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- R/(.5*(1/SIN(π/N)))
- true
- 72dcab9e-b4c9-4e1f-805d-7d9edf73b6b3
- Expression
- Expression
-
452
5029
224
44
-
554
5051
- 2
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 4208bc57-258a-4aaa-acbb-6ff9d4f4e246
- Variable R
- R
- true
- afcc5191-a0bd-476c-9768-591ad0f7378c
- 1
-
454
5031
11
20
-
459.5
5041
- Expression variable
- eb739245-110e-46d1-9a32-a5e452ca05bd
- Variable N
- N
- true
- 4c725ef7-1aec-4903-a426-fcecb964fe28
- 1
-
454
5051
11
20
-
459.5
5061
- Result of expression
- 46557eca-0fa8-4257-9968-cd3caf6e4133
- Result
- Result
- false
- 0
-
643
5031
31
40
-
658.5
5051
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 88abfddb-dc25-4a47-b1b4-50a31d0d4a16
- Division
- Division
-
223
5326
90
44
-
268
5348
- Item to divide (dividend)
- 999497b8-4949-42d0-82ee-bb6922eaa656
- A
- A
- false
- 0
-
225
5328
31
20
-
240.5
5338
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 360
- Item to divide with (divisor)
- 2027e357-80d3-4640-b420-0441660b8610
- B
- B
- false
- 53dfe8d4-944d-46bf-8495-cdb43c7556b1
- 1
-
225
5348
31
20
-
240.5
5358
- The result of the Division
- 07a66282-69e2-4d09-a2fc-d9349dd70354
- Result
- Result
- false
- 0
-
280
5328
31
40
-
295.5
5348
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- e15bd0e5-52c7-4abc-b78c-67d41b71e40a
- Panel
- false
- 0
- 823410ef-5164-49ce-aaf0-4fd337d12394
- 1
- Double click to edit panel content…
-
787
4979
160
20
- 0
- 0
- 0
-
787.0285
4979.544
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4
- Reverse List
- Reverse the order of a list.
- true
- 3e455af5-11a5-4594-aa1e-1337627e9e91
- Reverse List
- Reverse List
-
667
5187
66
28
-
700
5201
- 1
- Base list
- 586d2783-4e94-43a8-943c-6fdfd3322a72
- List
- List
- false
- d2dee351-7ad7-4195-88b0-b83aeaa59ee9
- 1
-
669
5189
19
24
-
678.5
5201
- 1
- Reversed list
- 7c44bb6d-fef3-43c3-a0d7-3be44f7b0065
- List
- List
- false
- 0
-
712
5189
19
24
-
721.5
5201
- a3371040-e552-4bc8-b0ff-10a840258e88
- Negative
- Compute the negative of a value.
- true
- 8bf27de0-4004-4ff7-b736-5cb42643e79f
- Negative
- Negative
-
693
5285
88
28
-
736
5299
- Input value
- b7de0a45-9da5-47cd-8e32-3a10c8e4a2c6
- Value
- Value
- false
- 3aa110d1-bf16-4618-8fb9-18875ca9621d
- 1
-
695
5287
29
24
-
709.5
5299
- Output value
- dc80f669-d3b5-461a-bbfc-9b9c97908674
- Result
- Result
- false
- 0
-
748
5287
31
24
-
763.5
5299
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- aaecc85c-5804-4f33-b45d-79f7f9c6f1ac
- Merge
- Merge
-
811
5187
122
84
-
872
5229
- 4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 1a063d31-b99f-4b3b-a626-650425924c2b
- 1
- false
- Data 1
- D1
- true
- 8f5ab813-3691-4499-bab5-66b32b35b891
- 1
-
813
5189
47
20
-
844.5
5199
- 2
- Data stream 2
- 8b6a68fc-650b-43b3-b24c-6d7280ddacda
- 1
- false
- Data 2
- D2
- true
- 0
-
813
5209
47
20
-
844.5
5219
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 0
- 2
- Data stream 3
- 0da47d86-2eea-46ac-9cc6-efef4ba603aa
- 1
- false
- Data 3
- D3
- true
- dc80f669-d3b5-461a-bbfc-9b9c97908674
- 1
-
813
5229
47
20
-
844.5
5239
- 2
- Data stream 4
- 1e2778df-a9ca-4306-96b5-4c9c4125ec24
- false
- Data 4
- D4
- true
- 0
-
813
5249
47
20
-
844.5
5259
- 2
- Result of merge
- 277e686f-fcb5-4411-b782-b0d4e125e2c1
- 1
- Result
- Result
- false
- 0
-
884
5189
47
80
-
899.5
5229
- 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4
- Reverse List
- Reverse the order of a list.
- true
- 60e0663b-6476-4b01-bd63-0c0198ccc786
- Reverse List
- Reverse List
-
674
5092
66
28
-
707
5106
- 1
- Base list
- 2dbaef14-36fe-4e6b-a6fc-d6ece26ab7f3
- List
- List
- false
- 7a247abb-61c5-46ae-9afb-f19cc07f8a56
- 1
-
676
5094
19
24
-
685.5
5106
- 1
- Reversed list
- 332a85d2-acae-400d-b270-26b2f3125210
- List
- List
- false
- 0
-
719
5094
19
24
-
728.5
5106
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- 23c55c34-6817-421b-8b50-44e1f6ed219e
- Merge
- Merge
-
879
5025
122
84
-
940
5067
- 4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 8b9f8878-3208-4942-ac54-df3ab345b55b
- 1
- false
- Data 1
- D1
- true
- 332a85d2-acae-400d-b270-26b2f3125210
- 1
-
881
5027
47
20
-
912.5
5037
- 2
- Data stream 2
- 19058d50-e13c-474a-95c0-830c3a9db49b
- 1
- false
- Data 2
- D2
- true
- 0
-
881
5047
47
20
-
912.5
5057
- 2
- Data stream 3
- a500a7bf-9d14-419c-b493-2feba5d238de
- 1
- false
- Data 3
- D3
- true
- 7a247abb-61c5-46ae-9afb-f19cc07f8a56
- 1
-
881
5067
47
20
-
912.5
5077
- 2
- Data stream 4
- c4fef57a-4dca-44a4-84c6-20aadccc963c
- false
- Data 4
- D4
- true
- 0
-
881
5087
47
20
-
912.5
5097
- 2
- Result of merge
- 5bb9f473-b63f-45e9-b4cc-e2754dd53763
- 1
- Result
- Result
- false
- 0
-
952
5027
47
80
-
967.5
5067
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 282f65b3-c82c-4daa-95bc-75a538e5c507
- Panel
- false
- 0
- 277e686f-fcb5-4411-b782-b0d4e125e2c1
- 1
- Double click to edit panel content…
-
1328
4998
160
479
- 0
- 0
- 0
-
1328.951
4998.402
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 2d148978-bc67-490f-aac8-90ad0eee5b78
- List Item
- List Item
-
954
5545
77
64
-
1011
5577
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 043107fb-534e-4338-b36d-df84e0cf9cca
- List
- List
- false
- ddf12dcc-4532-4f5f-9017-ca2181ae4120
- 1
-
956
5547
43
20
-
977.5
5557
- Item index
- 350a0836-dcc8-4f52-8157-c6cd516a99d4
- Index
- Index
- false
- 0
-
956
5567
43
20
-
977.5
5577
- 1
- 1
- {0}
- -1
- Wrap index to list bounds
- d7dc3b8b-6076-4e6c-b5b6-1ab79a6eb7b8
- Wrap
- Wrap
- false
- 0
-
956
5587
43
20
-
977.5
5597
- 1
- 1
- {0}
- true
- Item at {i'}
- f0a2926d-0090-4148-a401-3d572f930ace
- false
- Item
- i
- false
- 0
-
1023
5547
6
60
-
1026
5577
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- b86a52bf-2406-4de9-86d2-b4d485bc251e
- Deconstruct
- Deconstruct
-
1067
5551
120
64
-
1108
5583
- Input point
- 548b57c4-3a3c-4a6f-8af8-bf61e4e59001
- Point
- Point
- false
- f0a2926d-0090-4148-a401-3d572f930ace
- 1
-
1069
5553
27
60
-
1082.5
5583
- Point {x} component
- 44bc53b6-00e2-489b-a5dc-407425442819
- X component
- X component
- false
- 0
-
1120
5553
65
20
-
1152.5
5563
- Point {y} component
- 2f6a5a53-3d55-41a3-aff0-e99afa30befd
- Y component
- Y component
- false
- 0
-
1120
5573
65
20
-
1152.5
5583
- Point {z} component
- 7190c040-cf1d-4a5e-8023-43bb486fb5ff
- Z component
- Z component
- false
- 0
-
1120
5593
65
20
-
1152.5
5603
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- f154e627-b8c9-4f9e-b1ba-a80649ec7c08
- Panel
- false
- 0
- 68c4ecd4-8214-404d-ae51-7077c9a01211
- 1
- Double click to edit panel content…
-
95
4973
116
20
- 0
- 0
- 0
-
95.03748
4973.852
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 5933667b-3af6-464f-b517-0cc7a179cde2
- Panel
- false
- 0
- f2e126e1-a59b-4fae-8f48-32341df4b306
- 1
- Double click to edit panel content…
-
95
5055
118
20
- 0
- 0
- 0
-
95.86689
5055.486
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 85f48747-2124-46a4-98df-e9d256731d7a
- Division
- Division
-
1211
5551
70
44
-
1236
5573
- Item to divide (dividend)
- 2432be2c-9d9f-4aac-803b-2fcde25fb454
- A
- A
- false
- 44bc53b6-00e2-489b-a5dc-407425442819
- 1
-
1213
5553
11
20
-
1218.5
5563
- Item to divide with (divisor)
- 65c55d0e-0edc-48e9-8eae-b467e344896f
- B
- B
- false
- 2f6a5a53-3d55-41a3-aff0-e99afa30befd
- 1
-
1213
5573
11
20
-
1218.5
5583
- The result of the Division
- 1bd4238d-59e3-4478-af43-8dbfe4dda340
- Result
- Result
- false
- 0
-
1248
5553
31
40
-
1263.5
5573
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 007da1ee-8d7e-41b8-aae6-e1f819a393a3
- Panel
- false
- 0
- d2feb401-36df-4805-af94-8e108f24e9dd
- 1
- Double click to edit panel content…
-
94
5015
116
20
- 0
- 0
- 0
-
94.83049
5015.627
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- f154e627-b8c9-4f9e-b1ba-a80649ec7c08
- 5933667b-3af6-464f-b517-0cc7a179cde2
- 007da1ee-8d7e-41b8-aae6-e1f819a393a3
- 3
- 3d90ee0a-71c1-442e-a7e7-660c8099a19d
- Group
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 2bb0b080-8bdc-42a3-8107-71e06cc4368c
- Division
- Division
-
336
5272
49
44
-
365
5294
- Item to divide (dividend)
- 16c182e4-0901-4869-a917-a38957b02052
- A
- false
- 53dfe8d4-944d-46bf-8495-cdb43c7556b1
- 1
-
338
5274
15
20
-
345.5
5284
- Item to divide with (divisor)
- 7858c11b-02d6-4b55-b212-bd137673d36b
- B
- false
- 0
-
338
5294
15
20
-
345.5
5304
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- The result of the Division
- 9b585c51-4d8d-4d1a-abf6-db393bf44760
- Result
- false
- 0
-
377
5274
6
40
-
380
5294
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 5452b66d-1aec-4c7d-9c3e-d3512215367d
- Interpolate
- Interpolate
-
951
4868
225
84
-
1124
4910
- 1
- Interpolation points
- e9187188-4b3d-4dcd-89de-83e57a651893
- Vertices
- Vertices
- false
- 065f686a-4028-4e05-b353-3c9ef8ca5da0
- 1
-
953
4870
159
20
-
1032.5
4880
- Curve degree
- 036ab95a-1c40-4f62-81f0-cb6d46d98e73
- Degree
- Degree
- false
- 0
-
953
4890
159
20
-
1032.5
4900
- 1
- 1
- {0}
- 3
- Periodic curve
- 02139147-d05f-45b9-af8b-12fbeb61998b
- Periodic
- Periodic
- false
- 0
-
953
4910
159
20
-
1032.5
4920
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 17783bc4-4d55-418a-9ec5-a284d3ac4e64
- KnotStyle
- KnotStyle
- false
- 0
-
953
4930
159
20
-
1032.5
4940
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- ee4ecbe2-4fbf-4854-bfd4-5d67e8d925cb
- Curve
- Curve
- false
- 0
-
1136
4870
38
26
-
1155
4883.333
- Curve length
- 926602c6-92cf-4952-979f-f93dfb6a8664
- Length
- Length
- false
- 0
-
1136
4896
38
27
-
1155
4910
- Curve domain
- f0d328d9-b8a7-4455-a914-0a12376e0d53
- Domain
- Domain
- false
- 0
-
1136
4923
38
27
-
1155
4936.667
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- DIFERENCE CURWATURE SHAPED GRAPH
-
7H0HXBNZ13dQpEpRUVAUgxXp2FFZCSEUCUVBxU4gAaIhiUlQsC0q9oaKitiwd8GOvWFby9p7X1exrdjLqnz3TmZCZjIzJA8B8nzv4/50YU7mZuZ/zj3l3nPPMQuUJKSmCMSKUvDHiMFg1AJ/raWi1CSheMgIgUwulIghKQpchmT4xxR+BLsvRMDjC2TwI7VQsgVGCg2El83Bpb7B959FD1oROeWuInKzLHWVaZRMMEIoGAnpFoBuEp0MRuHboJfDBfLkmHSpAJJrol9shdIiJLIUnghSWoCrK1euLMXuihaIBAkKAR+jCYXCUrtAQaJQLFSAt4iSSaQCmUIokGPDwr/GgTwF8j1m4Jedj1Omz51y18wyUCBPkAmlCvTl4SMyjCN4KQLstzc1Y0OCPT2f7F78cvk08O+TRfng38eLtj9etAv5Afl111r479zZyL9Zj+cuUH3yUk4E/Hl+JhxhIbzlydI1qp8fZ89/nL1A9bHHizaqRlN+TDnIy0U74fXF43Ffjd2LPhJK3Yh/vGVl3zs9F/nwTLqfczepBkT/Ra/Q3oX8jL4R8o1qD7BR9Wzoc2KPXfYZhKp8R/RLkXdHUUVGQPHB7tVEUokwirbyizBGoHxBR8OxD4UX4aynZ3BIrHkvIGFwKsixaQL/WGFX2ZJU5QSqiU0BIGxDgTCi8lMDvWwSw5MlCZBPOsGp9rW0dEAdIFn9JZIUbAZNaBzXvVYfIM64rzKHVzS+xrxXgpTLS5ekKtQ/axEsk6RKNT5cOziExRXGy3gydAoYoTOrFu6j8Iqp8nPpyDOjt9uy5HJBSrwoPShVJFKfCqyo1MREgSxRKE92Z/ZRagy/dp7e8D93JjtVpEiVCfzEglSFjCdyZ0alxouECWGC9BjJMIHYTwxGs8GG7lOmb+DIpugoJqxURbJEhl22ChcmJPMEImaULF0iqxHKx7TMyuJljYf49OHmm8wR/iq2GIWbsRZlj2lK8T11ypRFZDxknwqmPoCDlsprOLDgdRPldYhRDRQ/4+DeZbrPZ02vkwPyNwZtWGNz7vi4TwtxT1UL4ZU5WyJW8IRipR51QUcxCZDIUNWKMcaELRFJUmWYhoP/J9NVTixmEhyXKUlkBst4cnmyRAp0H1OifKsaoYGI9IC/83u9HNPvY1LEdK9Xnt9fpC4EJCOUVBp35/rD+y3CsntuH5Jz/g8LQKqBkmSjf7kXe1sG5v+R/9qxIKw+INVESU+cu/COes7gbl612eeNwMYFkIxR0vbTrBHfHR1Cjjx7NKezrfMDQKqFkj5cf1K4ql4xN+/Z80GZsZtfAJIJSlpxsJ3d9Z+1gw8Z1Sgc55TzHZBMUZI0n7t8s00XTkaD2azQluNGApIZSprw+SDD+rBxZMHBzkaX9wavASRzlDT1xMneR/6y4m7JfDK384uvboBkgZLEezxennqxjbPp0eY4X5d93wDJEiXVPDDsei3fX/55b+Y92uHV7zog1UZJ08e1/PHmRnzQAquoNx+jHPsDkhVKSvvUwNlNmhO2etwM0yVfp/UFJGuU9ONJiy4X3nTosdc32mP4yriPgGSDkn7uZy3rv2B1YK556eXVtzPNAMkWJTVtuuzcrPaPQ+YuP1O0I/j7fECqg5IWh73iHt3cmTtvj1vj5f17ugNSXZT0ZnXtxgUPbCN3xPXk33dsVgRI9VCSs/kxN++wd6zCmB9H59Zq0BmQ7FBSo4HSZXU7vQ1dYLzPcrh16CJAqo+SHrz8uH5WZoOQbceGPbXdsmQjIDVAScWtOaf+zerOPrCE5ZUw9vNjQLJHSb/PyjE78/Zn0FT3q/l/rB2fDEgOKCmxfvQ3o8ljgqYY7ZWJncOmAlJDlBSZUzghrWYEa9WQpLqvzDL/BaRGKOl0arv278dlhB98sPb2dbP08YDkiJIudpw/ct7xSz0K6q4/wDw13hWQGqOknEnX9n5flsLa+s7Zmi/OhRLVBJsORcLJde1zOFnvOW2Pc/1eAZITSup2pem1+cuPsNaO2TIhZdjoTYDUFHuvBxv6rZ/UIXJ84vN7DEZ2PCAxUdJyYUr2rtWenLW1cm8d/NVnj1lo4BCcBnGGmjlULFfwxAmC4FShSplNlP1Z6/aRGiFH9oTPenSUZ0yiNswihAnD1C8zLFgKhUwYn6pQanhUdWMqykhvKuq3KlRR7WIKF/0Ivcne0P1FJ9beKwo1FSXd1STfxDSFk3/TvcO0CS8HqqmozfkXt0148zBsR7xt3Bur7rZqKmp874hPZ9alBW2UTAuZGpB+XE1FPX29b8W74NCAaW5t5jBCmE/VVNTO/GO/Qnb3485ymlFybtFRGzUV1Tum8WmnvqWsxSfa55nH/PyopqJiujVMmdziVeSMCKOPE63CvqupqLHBCsnQtT7BB2pczXxY+8gHNRW1xC3CKejfwRHb5UuWrHcdv11NRX3PSQvcFMoI3tFght/zib3fq6mo+VM57S85jg5a1WU151nRzuZqKqrk9zp1/pwcHrIkpOmuGI82n9VUlEV4x8+XlzULye9xq/vgFtcuqKmoS1HvCzyeh3M2Nl/lZOUj91RTUdPdVqc7RnGDs9JzHXdc6bVfTUXtXVxk6mgq467re8PJ9HpRPzUV1WbXnTPvPr0Km7nynVd0X/tsNRVVw2/HvFH7xkUu/NLVr+3U0mtqKur466j3jWxcwxa7L1tmsT5oq5qK+pTfJ8gi3z9sX3OvOkm9um9VU1F3hzCF+6/3ClnqfLXXjSEHVqipqOlDWV9nnl8Ruj39Q728p+FpaiqK8VdSp6jdJQFZLd69HTSz2001FcWI7vf86LXVPXZcbbiv1ow7ddVUVK+Ofjn1ot1YuwZO6+Ey502mmoqa0nCkY+7O82EzRvPsi14PZaqpqD6pQ9jtitLDdpr6Fdh9lDVXU1Hciw6nlhXWCVp+9PfE+jvblqqpqI8+8zm+70pCdrLz9l8b1CJFTUXV+mdaKqvf9JCpPVkDLkhC/NVU1JYPkes6fW0RuNti+/tj4+fL1FRU889/vPZ3Pha81GQLc1KscT1AckZJvq4HuV7sTkHbT4d2ZA3bMQeQmqGkYUE+vU12rggYbzVp5rj7Z6EL0Bx7+JjMgZuXGgctjv+8zv7AqO6A1AIlHXJ+uzBuigNr8unsW37bDh0BpJYoKcMla1Nzp7kBB9rsj1nU/7EDILVCSeO4u/ufTtkQtDel05LZfZvaA1JrlORxl7mY/9WPM6PTMvsufeXwu1ywJ+x7xXrJiDY9ctfbtnpR1H06ILVBSQvqlEZ05I8JX/aq2Ye78vCegOSKklZ7FMy/5TnNfxYzZnJU0Zw7gOSGkpxW+/1xLiU5aNfqbbeXMTqwAckdJW006tniDDeaPflK7hDTbpZnAckDJZ2aZ2vy27uH4evWLHsUceHQIUDyxKbe5FWnalu97bGup6dtbI9mjoDkhZL+bdhhzeC2sf6HVn75i3vWXQJI3ijpy9en6y80LgmZ/Jv4clazK6MByQcl/eF+osG5mrPDj0z75PzKrO4SQGqLktZO6uS+fMDtgB1OCts/nK5BA9sOJT0btXfC/QvyHlu49qFn+KMCAKk9SlraRfqo4530oF0is71znu3wAqQOmGa71qrZ4BMDg2fX2XEu7PO8IEDqiJLkNVLtI5rY9pi3/eP2oR/2dtMwep0YFEZv0vrnsaxWZ0PGvzg908JmrLUejB40CKRG7/C6mb9t+JnfY/fRbjFnDsjr4r7LJCI1JV4gw1s9U3QoMnvmhX5SzuQxEyQikTL4g9YtUSThKYTiJKZUIhQrmGJkYDnp6xNNHdkjabw/dj0SeR7l0ggSCppEAzucIGCgXFn/eHHDsbc7R+z7c1xyuNulSZZKskbwR4BTFbsGgA/ykUtwojMyXDmMqHYnGYyQAAbjKKtWlHCEBBkHqhyGrTtn9PS2J62jYKQlVwjEikCegkcfdZoEyAAgyQw1hml+yDiKp0jGXr3maO+xxqEKQQqDUbY6ZaJEGH4Gi10ZjCx/VBxqUonDIcG6TeKf57iz3E/u9JbVHYTD3pydKhvBg4EsXiKgc2BCIRFdOSN4olSeQsBUJAuYCdgAUCR4yK8CJk8BfpRLBQnCRKGAz5TyZOA7FQKZp0mIkM8XiFV4kUoL0fuheGINgSkjaclqpgsHAAhY/R2wOiOAwGqmO6D+dtISefohQrE0FYmFTVGQyaCpw0ZeXyFhClCMSF9wzNsXrq+zV4XOHGDZtveqj+Px2gAZQ+Pl0MvlTQaiD1jByeAPEJL6o5OhhDgZLrXhMDK64xAyKgehllGYLDCBFlFKC1+SAgSvXNTmpTXP9wvrFrb1+o399jlNZHixUI2rKRZlpPLQ+9V3rqi4dm7QlJoZnt36TNmlB/SABNGgl+d3srYSPUmqAhUwExr46kchulYFHZhooxVjSeFyHDD/3kKfKP/dNo8bBV3vF40XMmQcTSFTXtaAiQwHhvY4PHJHpagbwCGPiEOsJ4dxqTseB6NycLBXTXXmCKD8JDI6JPhPzEy47BnclaG/dV7z7tIr3fVJpSDi3Z0OESA3OERqaI9IglCWIKKVjXN9b5aGrDsWvokn+qfI7om/gSBS4keHSJTfSdTWwaiW1NZ5Po93/iH7Gpbd79otrw2b7HDvVTtQOELIFzARRapp7kwpgG2D3obZNjBBgKIansoTMUUCcZIimSkXJMFdIblWxo0Yv1M/ogb6OKqWsHoDFeTdFcD6mczEZbkBqq9OJs5GZeL4yNOQvmT3ZalTbj+rHZI55fCm2aFFvwzXwEUBfGwhPkwyscsCKlrahdTAUfnLdZVeK/SGMLkghehSWp24Vg0VEcssnl3oMmrKegJE8HVIIEIulwcRMcbSA0SXfOkgAiJUzQ4xvIkJOaLGKUxjUnHKPloqEipUXIL6cphQPIwigvmjnfHy0U1DD8z6/rzB8On98OwKg/dpskt5Wd+aEvIjqzMdP0o6VQs/TOMlEpGAp1KADA3XBlMsJqyEBIFcrj48qa6BCg9uaClDTHLOLLvHM9lw8wFrVbtaf3P4PQ7jY0vEodFkDXZd77xxR9XJQDLemHki6kTD09ERlmYxPHESYCzq+iCSy9cCqd2NBRuWh81gTQy/OXXB/h6PcUiZoYNqYlVGqQy0EM1CiRbQLBpekI5oNS+LOGB0IdAaLmIwQNh1xUbVBEydVhmQIZOfEjIw+VE3qRaDwk1aMXrh9X+Kh7E3bG3z8+Kfba+TmGe8f2ROg29rygUiIDQCmTBB6Tdp5x0RrbtpOE8qFYqTMKTg6+jRmXjSzrie+f0D4bNXZA91iQzpWEFLCSM6pjlgznSSpaP+ue6cDv3NMOaYUDEn3mVy81zjw/67Y1s4bDp3uwHudW0CBQkSgJssNUHBZMkSNN3YWhRs6tpLAF5BMEK5ahPPkwuYUhFPLHBnynh8YSrgnpgP/iaJVPE4XM8RM3myBO1WbYhbTLTPrcEw4ge0jRqALTzKAYifJ3NvGcC9PcrWyb1tDL6bCcJJtjKGgm5u2YORvveDPRkvHd/1D9o3tG0WJ7LoHu69a5K9K3KxPNEkhmgVFE0GXGyAQOWxGAwpEai8NghQOi1FOAaoZAgRFSVuytiTFKjVfxptuOudFrS/aff6reVLmuD1KTJaFBxNU5+q0fStT4+6objEkulTqQeHweDouDTRSzmftMIkcPfB44dn3A+cnn2j7biRll/wzotyJE3nBb1eGVjEBdJhQZSR8hYlmCx1heIC/kJlwxPL26DwkIJiVniqnvHHfPa2t8sUL0s+P8IrfGRITYWvvFwZkDDZdJBkBGAaHYsKNTS617yx6U26/Aqa27vDDMaSfovwgh8J5k/kCOCdxGoq85oUuNZjS1IA/GDiwckHb07TTkkTN/upHkVzDpbRtPVUgE7JGgqgKwDQPSJCxwB+TIFQJ9VsGQo/pXTiSF9uyfM6v05u6x25yf5025vRPMKKZx94n6bcKC+Xp42JO9AV1MZSuK4AsSlmkewxxboi2OikjWtHIh+jQecVf1jD2v3rR+72H3Gn3dVHuQRVI5CnijRXHLDrep9X7igAX8kAKPRAAEDnlRnVvBp+ROgmjNjE3ns4UvT86YC3uDey7JkK3gWm4EiTyZ1ZLeOHFoFCObBy6XBHS6CAeivdAwskoM+bBL+BFHFi+gzl82nAjiNqYG8eLZEpItXzk0gklpj+oqXEqkYjMCyuNVB1IwDDGrDhX4JrO7Q1J2XsiJNWWKZ6qJgvSMOGg/9HWWlOxcpXfSK4xl7f2AtWnw9aGRnaHweVMRewTlM5GlMwzJktE8DdSR5TBD7OjBcoRgoEYqZipASN9rRTlcQMJ81H0mAbclUHzzUrEfVcvTU8VzADvAU6qUdb+OVM8B4yhfI9Sd+qTcOlT4xeruTMGjhh8y+rnQ54mYxG7ibfG8IRy9OXxM0nPXivUghWFJkZzgP68pJAp21IawQsAQh5qKF6uvu39rs8ngZsvNyH16vAdyZ+k4QD7iUHSo1UHkxEl1gPMAGpoYEpi6+jWVEKlXKJlBSl5JT0kF73d7O3HnGvMWn4lObaThP9mxQPVEYKWHBplOiqeSLQoHrIgkoPnV3C4/70tQ+esM7J9GXz0fjFRDMEjOhArvZRdwBeF6FAgpgyEfzKZ8anq09Yd6YCXdiDsbhyc8lzrFbKiphzSf7cmkt7GEVLjPOA0jJbBTC+RxZu+wMOmK2sBKUV0+DC1pjuQziTkizHeN20CMI7dohe0nTslJerWFEdBQB9XXkShtgkM5AJookNK3XaTnJAAMLkwoUvlCnX19qQAvV7sj1vA/c9Z8bikHq72kRZ4lVWIHazpsoqI5UHWNyRQx8cDwwMynyyoZ91Sad1egAslhYwIFHVsrmkXFyHn2nHoPpT0p244YQ5q6QBDMJL5bwmT42/wjt9NL2Qs9805NtU5922dUPFCoEMMIOTJpUBV1VtrBoesXgHnosMq+nAo9fLYysx01cPbC3Mo2Nrcl517xmWJdGVdNezUYzdP/75+xbFETPvf+3UcGGfhdVmFBmeqD4qIFv2K/BEphdqFC0ZFEaxT9Maw7K32wbsWyl623WsWQh+ZVeVDaiUNO0TK/YZqW7F5Q0mCGRwAGYiT5nYI5KIk5hChRyziOgXoXQ5M4EnBk4+U54qlYpgtmG8BBCFWIZUqhjeCg2qGDlgKxwFPoJc9GSyk6FeRRbEB0QMKktThMu+CkkSXLpSRQ/gMzCCSJHwBVoGEMTDDrSwaS6IEz6gJcNhnCbdBBhen01ioQtg2L2xMlIaHQ9+SE31suFOeLF9c/qB68v0uElDnEwVze8FCMVBhGaTqaZC4ELbbtIw0XR5BM1w8shMhCu+CGYoYOCjpJBZm0TN7rt3F2eucdAfR6ZPiKuYPq+gooCoHN1IhwqQGwNS2LokerQPTWTGyFIF7sgsxnNLKFfXCy7ent7McUwfT29y/8p0syBv45JWoZlbD9mtdGn/Fb98GqEaSHP5VI1WGaxj0rLu0gaDyAcx0snKNlGmugKTALlWlkxO4z/Nuz++Zpbj4R5bsi8e7sV7hd86rdqUV7g1gGiZEDKmMLwQLaPTvlIrfNaHTsB4+17rYNfalr38lnnRrRWX8Mv+pujAGtCoCJUBDqJsKMEBykanjabWSitVZsF1QYeftii7Zof93A0Fx+8Ht8mYrY/Ecj0gxKRFCMxp1G+rzaDw2zgsV7dSv2usDQ+cNl5Z/rYdfq0PiS2kEhGw6Jo+mxkFzh2w9QwxzIPF7uejBk+RLJOkJiWXrZTrst5KPABK+bSaK5NqRG394pYcRt5WgC8PuEkbiG7SJYBv1BYNN8kMU4/abRzYlT1WOZlGce8uN4zZlBY02zj1ROiemzPwqzd9YHEX8IWaqzcqSnkuFFExVtCFYgL0siB6Tdkk0ungymH4b9XJhaqtnL58QZJMQO5fXsizbmU2cj5nxunl2X//+uCKd5YCkRs1nSX0ur5nJ3z/ki1075+3pbqdJZVk6uAowUcWSvhYyhYpI7bM2+55qEshZ8/QvzL2x734Gy+r2ACasqqiVAYzomiZwageZmikw6qzomY5rPAME0sUwHzxEuAJSxdvPxCygsgixZ3p45eQLJHx3Zlt/eTDZQrkF3JvdaqTxdQxy/sHTj7n8zg5q/QU3q7BL4hWpJPkUqiRKoNZBZvpmBW32RBmDhxKt4NZyo1yyCxxqixeTjODsr7YZXb7raTHxCeO4hcTne5UJFSuIDuyvFFF7gDcjEtEdhz14fRuuVU3LxXV5DTeVuf8jt6Hh1wMn9PrbLi9965e1Rr2QgCObkEBuEUCAFQtOnmimClDUp5IARi53TK1Y0QrztrFdfp9tXxYQjBlyI0kpkx5vTIAKN5MA8CmUZsxR9OKQeFo/mcnzqkQ1MuJc2LNEL2eOCceZ9fHifMCihPn/Ru5c9Jf52M8sKbigc453WY0LNBrTjexRoselwaJqlQPjHi0jY4RY7ZhjLChYgQzqfmeqbOmBcw/sYW7+Nu+0fjX7SUQ8dLJGUEIK6g8g3os5kihTMCUwZHQskKkuBMzgEgeRAN3I2a5mBPzyCqaMw8wPzoMPc2UQVJugeE/DMPclgpz8+hFI9alDg3Mf/NV0Im5ER872qAxazj4RybkibTfoWhUFu1GSgXiYC4zBR1Du5CWWGeI9rE0dwAIH9A277I1CE7WQo0OXKxLGnkQHkDXrNEIbelc0SbKwldw9sMlFb4wMTFVLmAmJPPEYoGI9MVve3R4cuJejv/BDYMvjmoVdBa/3hSoHEFzvQkj6H01BUDyCEKygWw1xRbmxaytFq+zFlCuElVJsS9fvpTqEjUz8YyBa12pIp6MmSxMShaBv+Rq4dyQn39OPT4+fP2Pnwscp/w6gQ/gotFBNAM4FaUyuONPy52SNQbAndJSRqkuwXRTTopQLhcCXzABxyZMhZAyR7Jmy/IbW1aG7ao9/pVT5rODeOYoRyTJ3yijVAZz8tbQMSfKEJgD+aNLeN2JlQK/EuEJeBwQZ8sE4oR05QaQH1Mi5Q2H+0U+yG9lnyCfUT1z78qauDhy50z7/ad0e9dk/JH+GLXxNY/046iVwTwGLfMKVld3tF22qfcIt6lnXA4H/co4KE8WitPFwHUC7APsEkvgqTYf8JNIMhIhwl+9ISmFl6a8QL60FX5z6c3nXwJmbXX+slhWmkRIM0smS9tAL1cG5+JW03HOtto5B2/iM3RcJ6lbtk5CqwiXczk9g5xNAgt37Xl3dfiaWnhFSOkzlVH0zRFvT9SHgH7qGQ23ygtRhKifWodB4ac2NB4dffzAx8gjZvl/t+o42h33VtbsVLlCksJEq77j3VSIKdVpoNYsEZB0OZp5AMdANrOTBJIUgUKWzpQqB5TbhIoTRKl8Qai4l0CMnh6gdl6JlTDpnlWDDwS6NazyLZXIFEFCkUKgKnitLfYFcA97PcA+hyxXPgvula2n3K0hjaGCMWwUEgwerTx6sxq/559+0Sp4cr5oc9167ebhxRIbVVMsVZQqTnaBJ5KPQuT8yfRIlBuHIV2vUz5q/Rg1FwY5eiajKgLTxDe386MG70L3rQ0Y1LY5Ifr5j6YwASuijtDH6W1arC6tq1Kdi/WdMEVDLvgh6Ozcz7tfaiZAPT7sYoB3QGktxLYRraoZFhhgH4X/r63u9uDvYGAVJutSqTEDDbeJBXqrLNz2bk4Xbpc0rexwe/X6RvJHM+qGLJ618m+Ll4cWG0C4bducznmRNjOAmKGgoKAKwu3ipZwj9+KaBi34+3GhQOH20iDC7UvOdNzxdjYA7lRJuH3jyypb3tM37AlmK5b9PvZ+lEGE21lM2rWQpgbAHEZ1htvF05/brGY+Y2//fubliKFtpxtUuB3VlDbcdqruoM2Awu2cUN9TN5t1CNje2ybS++jgYdUcbts60VqsJtXNuUoNt2deaPm6ww1z9up3bWub2VgXGES4jfgQlOE2UISon1qP8f9BuE1sIVHN4XZeG7pw29+lasLtfnxLr26D/EInNrnbr2XD7Tv1Hm7ruZooUhC7DV0I+cilssLtvZd8J4ouPw3eKGon4br+M1jv4TZRR+gBKyBHNFjltf4/FW7bUakxAw23iZ1tqizcTt5NF26f2VnZ4bbF1PXXsvr1ZWdHzv/VbIzRSgMIt2N30zkvZrsNIGZ48OBBFYTbbXNc1nbu2TpyTlLbmmc7vN5vEOF24S467iTvMgDuVEm4fTOH67g9f0Vo9qu76U9inC0NItx2oGUO0CbVzxxGdYbbFqE7ml3ra8HKzmj2oODmrx4GFW6n7aRjnkv1MM8ww+27nVfb/jrQij3ee9aOFjZNNldzuH1rBx3npu6obs5Varht49bc2bdFbNiM6QfmdkuXbzSIcBvxISjDbaAIUT+1PuP/g3Cb2HuxmsPtuL104XbBnqoJtwPc2IuG9krvMXtJ3NUjDxu+0Xu4TUwF10MIGbWXLoRk7K2scPv5vPv1FIqYHjtvTv3XZs9v9/UebhN1hB6wAnJEg1Xcnv9T4XYDKjXG+jVC/loxLnRnUtNfUbK4GYS4VtVmiaS0KPwaqrKUTQJlPKDGeoGXkDAJo2h5RJrYFdaEK0kYJuCrbqJ9UpIIHP8BbU8MwSKDPrCSeABZhRlYuNJLQ13RNRBwVp6Ygvq97ImQqqogGkdKr2oFzi+vhnOHFwjZef1dItIZ7drTgmNQPYigAbD1oSrbiCTpeOukxppE81KkIuiFANTkQkU6Fp0FU9aqLfzt7V/FHWoHzq8r+9XwZfYftOiZBiqHJVnjQAn69k+QDDAvOoiA0BmAx4jIuA4l4ayjE3gipH4+dRnhlnaTE5udmxO2sce0kL5FLW3pBRsZkMSRRy6XJ9jE3tJ6EOwsTzqulXgYAteEDJVVsGdQWIXUbwfb7ciLCVv8M3bgtK7Lp+IdxkBhklDBjE6QwcNyOnTXbR6RmoKcp5OjtyJqUC5EyubTnW8kcopWKAiPp9WpL6oJa4aNAi9iNtwE+QLV0TVYkcQEOMeJwrSyr6gFuxaoikJbIsKXmqj2EbQWOwZZIvaNDCXntO252YLDOOoGZG4UW1Pm+vdowemw3w2LZByomM1ufd7Ld+JDbl7QyncK34b4VhVWvQQpPClTeVZUrn3f3NbK+1CuKvsI8phiwUh4CREC5aFhrawdsdU7zRNqsBtP1qGwXMEcqsJyUTBKma1TYTlrhNswRJHBxyFvlrhPlhLc/3zwxnGPVk/LOfFAjxX9iV3v9VBVLg/Cs4pM1ZnBczJzdLLhVsrnoTtIbtGsg/hMsDR4x+ewu3yWlxn+jLPyfs0zzuj18vCJOnD1pe35C9w1I1ZE9fx2uJ4e8GHQ4gPEpzpMgRlSpWeEEohuDOIf3SrNWcXwZEkCBR3TPg/quW1fL7uwfX05g2bP+YAvpmmivF+Taej1yigdFzebjiu2BsoVnZblbBCFJxXwUeVLypiwniU9zn26w80WhfXe5roQf/rHJBy5X5Mx6HV9M8bWE1UncD1Oo3N0lBeH4TJHt8IcjioMYC3UBJGwPDy+jzWyjDh7kjvr56ckTpcr7/ARAFs5gGYEgBEqA5GC2XSIdJ6N2fWGDAq7XjAv7OOArl1CJ3/8qTA7cQdfJh39Ru278HRTFXfHG3DmyGRhQjJTIE6QpEh5cjnsFMIUgRkE/XzU/GsX8DP+SuoUtbskIKvFu7eDZna7Sfa8mjKpvK5DSXfmLLSku0abHn/YpmdmRSuhNUZdDWjshcpVWligV/kkpC8uernHwrl3TOQKxciCSNcRh/DCR+XYqAhVbPxhtWtbiKF3AEk3G6YrgqFOGqsbFhcoy77gyhCLJCMFcmWPALgXDn8u8ymZoyPIW34T7Xm1Vp2B7U0QwBzIAIObEQAwdDI3oprMBlNogyhNeiq08R928KFcAAZiuGEGXaGN5BkY5o4GjzmxXr2eMLcy/r5sT0Qwa9HnFb/bj0z/q4KYl8DM4eVUmHsDzL2XY5g3psI8Ym/QxbOMInZG/4ZdhS971MGH9uFwv1EqEiYgVSY1jRcV0o7hwAcDLoEC3ClipuBG0co2TWk40jF35/mwGaN59kWvhzLpHktzBw1P11ZtwEodywCcM0l3ymB65dKTVqqqrJi3itlwC6SBHI6X8JtMkcuhfEwG+vHPzDY6Yh64/x/7cCu3epcwuhEF3VLZek1DRsyU16kHVj4P8rjwI3TBcpMgoQzoeSFwk5EVIjy/SPnjaZopGLdnQVDuvPp/txkxCN9g3oilOTtYGrPDiDA7mrw9dm9Rq3mhS4clD9s2fOOqipYRBezMgOz0ZpFEH2nwJNKyk2ogGZUDklM0bNXK1wmllCUuY+Y9fBG5ftbr6W+PiPHFqYwCNFEKKBelP9xPNDhXc3b4kWmfnF+Z1V2iB5SAWNOglLX0JCqDKlmi8y0clEkK0BnVAiCiRqzWtoGw+zUiMbBtoEaPpxAPBClUnzah0qe5hY/6TXn6NXR/4e7924c95hKqhPPEApFmw0AqNerCYkrhHWrpCUyxRCFQtpxQCNLQlozkbi73osOpZYV1gpYf/T2x/s62pSSPooEtgwxVZE22F+QivKheKJ8gnKztya0sHBpzJw5JWRd7nU+5wm/WWy6QxYDHx762ZaAkNV4kgJFjwjCkHQRfqEDfHcw6uDrwJGMdgY+q9WHiIm0rDqMkDvDRl83ImMK2COfJkoRiriARJxSWysu9YLKn+nVz5fUYiVT9KnGltxUn5U3cSRsExCiZRAprJSufyhR7KmWGKbyEbRxbwk3aUDEfVlVWzW9zeBEuWahdQuyXCN2PVhpJmEIq5InYsEOIijUm0QoQJKaofjfuK+NJyzSHUlSdqETVYNytjz7zOb7vSkJ2svP2XxvUIkVP7hZR/vXg4l6Kp3Nxo+Ix9dDU4DEn9pzVE+bEltN6wDwrmA5z22AMcyYV5j5rep0ckL8xaMMam3PHx33C90uqFSyTpErxmNfGMA+QqPdBNaKa1STOAouZBMeFZjBYxpPLkyVSoCNQhshrhAZigPVJHcJuV5QettPUr8Duo6w5IGGuIFF+AakGSiLOGECqySBvJgxIxiiptGvru++u27M2130+ucbTC3ZmoYFDcJyBGpW8eNGHyHWdvrYI3G2x/f2x8fNlJBBqmhICjxkYj5XscqZilwFZUF/Xg1wvdqeg7adDO7KG7ZijdwuqMX+Kut4btIi3LqBAOuxR73/+9KgeC3qpJYdROBWWKq00C3qnJWfijqn/HRa0GZWoGow2Hxbk09tk54qA8VaTZo67f7a+nrQ5Uf71oM39p9Npc8Z0TJs3N3jMuTGZAzcvNQ5aHP95nf2BUd0Nd2EuKo0O80sjMcxbUGH+PX7A6XYW68PXHqr5k5H8cz5ZVXXtdzacwgU8OUzDQ9ablQ2zgJ1E2/Rpt3dxyPntwrgpDqzJp7Nv+W07dESXOu/aZq3DtmSOALlCsr2LEjfgmTTSrR2tqtldihIA0jc7MXkBJ3bknsjp7f4OHpbPJzjDhpRZGAUTpCFAJSySdXZ/VwQg3Xpfllvfv4NRw3ez2NLAPZ/8kwuuzare+v6w4SECgBnZRgNsGQ0AQOdWS6q5ZaALsBkuWZuaO80NONBmf8yi/o8dqmABFkpM51yqBdhLYMJNXfy/BViUP9uGtdgwb8R4zoYBgQde7k3tpYcF2AV1SiM68seEL3vV7MNdeXjPCqqHOHhGLpdqabEQUG8truwF2BmODyN9f9vB2bxuQv2UgXIHPSzAEjM59IASEGsalDovrsQFWOKie7UuwGa5oxJDugA71QNBCtWnraj0qcH4h+O4u/ufTtkQtDel05LZfZvaa+MfkgSPle8eTt1O5x6GbMcgb23wkA/re8V6yYg2PXLX27Z6UdR9un4gT05JD+l1fzd76xH3GpOGT2mujzWtJNo1rSQMcheDh5xoNPQDOdHNqyDkUngYYBEV5NCNK1iEQd6GCvL6ifvyc0+e5Szd8mTUucZj8vBZQ5w0qUjCJ2l2WYsC4VboHVjco0zZlqfwkER9tP+7lplc83u9HNPvY1LEdK9Xnt9fpC4kfTTNhCaUoCWIj2Cfi0Mn4boMiXsGN8+8D/2H8ZBA+SCk7/aXXZB95K7LQXum9Pv8vRNniR7jIT0fGGW4gGAaAsQny3c9A6s3HdKpcWWHXgIgGkgdDL4ApvtJ5EJIZ4LnE4qYQFJUcsLkyWCDe0mKMIEUxT9N3tWwWRUWlDtt0sl6HZPwEmKu+h7Nbn1lJL2nabkgEkMD16ODBtFaUbOzNCbVWmYoeqATjV/GLkUyT8FM4Q0TMFOlyDpIPA/WBaJs67eh5pCWyzfLwxbbrk+aMWOLLaHyDDosSeUZjKL3jFkPVNgDybiX44kIu0YOsY7AOWM9aLEjhgIikKRgLXE/mJA5q1dY7nNZrNO2mfjdiv+o460ewPKmBQuIOmp/XBkU9qdP0xrDsrfbBuxbKXrbdawZPrffhgO3MWC+MNVqHFWhrn1GqlsxSwREE/wIwIDJoWgre55IIk4CsZccXZ3xxLe6lzMTeDCRlClPlYKIA3AoXgKI4H7lkKlieCvccxGretUrL3oy2cmwEzjC3wERg9TabAPLoJAkwcNq6hmqipESZgpcxNfONpbG3bn+8H6LsOye24fknP/DghY2zWPMhA/ocJ4p7SjVeSbocKQd0clW1imzlegDkb7s0LYcm6AbS0O2ch1H3txWVEePxpKogfRwZCcZIjSbbEoUAu3vcFQnY9kMJ4/ofh/EDAWMKgL2U/z4PGzslfDt1yP3x3bzi6nWFUWIypkjdKgAuTHQqkPlHV9qH5rIjJHB0lBwFuO5JZSr6wWkktQ4WEGKvPVwn3kzR00p7M3dt6Hzj9WfL13FscwiQjWQBtvUaZXBOhda1t06bKDuDN1yUpMopBsqMAlYnTxhIlTvNGv0qWcv+5gs/xA6/p54X/zRqYSNMWQ8TSWkvKz3WlAeqJYJIWMKwwvRMjqddGoVA40VQGSEQGkXdQCmYWnNS56uf3A2Zo9jZM94RYgg0YE1wzSMUBngIMqGEhygbHRqT9xaaaXKLLgu6PSYszP/hE1K6KwaD2amtbNdgA9RVMv+miFKGakyEHKhRQjMadRvc2NQ+G1nl/C4P33tgyesczJ92Xz0Ybw3ygU+GjM6kKv9wkGA6mAYzG/APGEQISaCX4Hflc4E2MoUyjbGQNmi8gp9L9R1G6uV4yQb/cu92NsyMP+P/NeOBWH1yZ9b04vGKDocEfP+jB4R03CV/KHn/Em3ZQXkAdQwIK92s6Obb5d6gSGb5v/Tm3do8kVCnQt4N0mdC+RyeZ4SUf/p4fwXEwIkJRNCJuwc9Emnw98OCECYXLjwhTJlB2ZyY3tz09KnM63GB2XU4/UvLHmyCz8tA7GbNadlGak8wHy8P7pG/r2kx/KlRluNfp1L1ANgGZ/oAAMSVS1OlNJmwM+0Y1D90TwTTlfixRLhJY1WlWXuV7SKfxc8rb64waiJJyzqImefATM4aVKZQFUGC3FqWQHRLrFtKuYAE1ibUjDtSNpJx6BM62FLLJorxuuBtY8+0rE266Ph+MdZuh0kr81V0+ekzLQzN3VvndsqcEHDKdt6tz6Ib2phzCUrsqm8qve1O09UJxWwIC+I8a0nMsVQw+jOoDCMAdfs74/otNN/64DBDjP6HMInetrBrQMFXPqEla0FsNaaQIfT015sSQqAXLmBgQzDLxsGCQ7LDk3zgZBoZRGfOHfhHfWcwd28arPPG4GNS/kPrMEO0k9p641AS3kOgF5MlpAUB4T/6B8VPUzN4qqBApcbYGIm9DYkYqYLdhAYoIcYVuQnpU6Tw9VoyUgBn9yIXEudZnfDmxe+d1HX1vtyfVzxOgapqUJy1By9Xp6OyQ5ydQ2L/i1kwfNIn3MDfdtVUMdkQXsLYTYmy+rJaYPAXNEl4ZZq7FetbiVIxHJBQioiHjDLgXx1c+R9F8bPHm4Byw9Fhw7MWNQNh6Vl2bia4S+OqG+VwHRHYRtIBtstDwQ2VCV4UKmEc9bNP/h0lIRPfv82zPPq7xxi4SGpiJcgYEakikQkuoDKYfbA7hPD+6DMCsUjeCIhXynkI4Uw/xCEKTLtNcH206wR3x0dQo48ezSns63zA5rnJCuQpEbWNtWsNYchPQvQtSTbfMuD6J6p6NxvAI0aUkZBAY/9QyUJESNPrLl44s8tV3oELZh5fE2/j89D8e4zMpCm+6y8XN50nvD5IMP6sHFkwcHORpf3Bq+p6HY7rEJzlqoKTSysQnOW0n3WEjlHFXIynKhB0SLPrjv1eEo6gxu087Rpm2vdZ3zHlz1HBYR8SwdP1fcshmgBSaJBS3qmSh0s7EHNYtKlAnUcmqudq/EMAy6tQOQJPyP3DA4ZAp3cJIGMUIkP/qmo4m6AGEjIWDAECKrTlawm5TLRMFVkklSQr3Ge6CwoIUszgwVuwCzQaSHMQVkOBfoKiK3CRJ9PXiAkPKzV1S1ZPbaljl95I/EroaIC8lYkGxPI5cqAAhFxSiiAiKOGypNh6Pk3RG2pn/wbYu6aHlKe0k7TpTx1Po1B7mXwkE89cbL3kb+suFsyn8zt/OKrm34gH/2jVYTPvTHhB/saHYzaZF+sB8hvXaGDPOcKBrk3FeQ6n5y0wSCvgpOTxGhM7eQk0T1TOzn54fqTwlX1irl5z54Pyozd/ELt5OSKg+3srv+sHXzIqEbhOKec72onJ6X53OWbbbpwMhrMZoW2HDcSkGoxyN0VQDJBSURBASRTlJTTROz9YGJyyBSHLR5GT6890DiKCYWXVPrEezxennqxjbPp0eY4X5d93/RwFNOHiv/Nwoo87m+3CFpvzI+/8cIWz/96ysV+tkgih+4isoGjfb3SZkFCeAAzGZ5YVA6AhJQwztTpIFDNA8Ou1/L95Z/3Zt6jHV79rpf7iBrgkH1IW68chIqdT4BJdots7RpmHXY+rtPataNytw3prCBBDjVLYFYgdV6Q69Q/Tz0WiiMLFlvVNm9U7/eK7LVV7jL2JYCVywnU7GqU2DsKGwgcJ/XDqbCqr0qJUMeKvPoiv4tNSdvWofMX9R3sm1jrnuGeqYIoAZmhQenoMd3OVLlHYfMKmWwIZtiUg6EelntGvVWSMtKspCFzX+SeIVl9E/s0tq/G/VxY1AoRItINOXji6tZx3dxYV9XuIYRICQ9aaBFYIJxuIq9gMzS2wb/yf0NX2SluXrgSmmIAu5YQpKnH6UDqfFy3fd2WgULlm6uWqspERlnxk1JBbTrBvPF9iWP4fpsF9X3HLmyB30XExtXcRVRRKgOd4mN06OQcwxyjtgwKw/iqTwTX2Osbe8Hq80ErI0P7ay7Ea1pCqtYdzvj9XFWq20gJusqqnSGcPq7ljzc34oMWWEW9+RjlSPJI5HsD2mZ/A8VUcBLAdp7scB4sucg4WQnbtBtNRVcapcwK2LBpaYtzD4ZOwC92IvuxFGYdRyx3m4qg4iqaCQ57HJ+kak2QB49kn9TJ1lkjYAnATKOGKrdm2Lpdvr2DFs77VOdDzDExXhNxwL3kQKmRqtglgDAxaGEqKNLxAHG5W2jEveZq20KDmgaREbiFpnHYTeqJQIPqoXZUesjwWwmkfWrg7CbNCVs9bobpkq/T+lZ6KwF/uIL5+iTsQEzik2fAlfJXem8l8PbTY8tmv1303/F1Q12bwDqN9dhK4Od+1rL+C1YH5pqXXl59O9OsoudNYacFCM8WsjkHuyPGvdZ3K4Emko5MWS1ej/H1bvfuEn9ni15bCdxo3vozl9Weta1J+6J9L2T39ICPLS0+QHwMsmi9nlsJtPKYNrp0xrrAOfuNjJ3rTWpZra0EIFekr+i4wjQorpQcwbii/1YCMQeO3Q8wfcyaaeYrSOns8rhaWwn4e6LqhLRwfgYsnP+6klsJdPRjn9rQczxnztrJc+VbGxIOP1Z5KwGIyNFXdIiEvMLsensGhV3/b2sl8ONJiy4X3nTosdc32mP4yriPldRKwPslXSuBoy+qvpXA+YH+lyXhfTgH2m3ayD929oueWwno2fgjqaQv6VoJAAyruZUA0Z5XeysBBDDKVgIAMHQyd6CazAazcUWUJj1VLCNuc+hh56qwmG7nKq0Yw7wjFeYGWlWpadNl52a1fxwyd/mZoh3B3+fTPZaeqio9AkH21/dUVZXgHkXI+/9VVUL5cym9qPOd/ZeCJ/m1tTYReT/XQ1WlG0vOzH7k3CJy6Y8a9/LjbCq8ZgJmR/F7qnpBMEEn531lV1WaL1p5ZfWFdRHbRmzxdG2fGKiHqkpTOlxiTt33hD0v/IYghrW2orvfEKUQWpS+vqvEqkrErPdqraqELHi/p6qq5OKBIIXq007/Zfp0cdgr7tHNnbnz9rg1Xt6/p3sV6dO8t3T6tOSf/+lTlD+PS9t+/vPe9KD1i3wytj/ev1EP+vTN6tqNCx7YRu6I68m/79isSA+aIustnabwf1vZ+rTP8DmhIwJSA6d3cKqxqovHaD3oU+IigR5QAmJNg1LeP5WoT4k2tNr1KSIxlPoUIIXq085U+tRgYgLidDLI+l0wJMh5QxcSxL7BIPelglznZDZrDPIqSGYjbpOoJbMR11bUktmIAZ1aMhsx0lBLZiMaTbVkNqI0qCWzET00jYw1qBVJRczZ/Jibd9g7VmHMj6NzazXorIeMtS56Y7JlFTKZWKZNjcnEKjVqTCZmuKkxmbjnr8ETYyqeNBooXVa309vQBcb7LIdbhy7SA0+6UvHEgBo6FLfmnPo3qzv7wBKWV8LYz49JHkXPLZFWOadM5t+Zzlrg/zSj88r0bdXXEinq8clKbol0kPv4v6OhQzcqUTUYs/z7rByzM29/Bk11v5r/x9rxyXpaqiPKvz6aCzyhLWX6BLPLfgaPeWL96G9Gk8cETTHaKxM7h0013OXR4qt0mG+4imH+GxXmOptJK0bVmckHLz+un5XZIGTbsWFPbbcs2ahmJonyq2YmiTNGzUwSGavmC2Xsdn94pvk5zqZTiy529Wxmp+YL7dwYMD0/4gF3W/KXNkvWtZ+hYVyh1icVpMicwglpNSNYq4Yk1X1llvmvHoxrdypOmkcvGrEudWhg/puvgk7Mje/x5e3Qjb9w8I8MqErtqwI2wrYMxcxIqUAczGWmoGNotyF4OrVd+/fjMsIPPlh7+7pZ+njax9Ksukf4gLYNKVpzGMzvcLeGDeaJxtIMiMwyvmpsEdKlSTRRijZWfRKWEEiFZTqTeWJg5EhfXC4cEt2/Ez9g5vDAwSmKFk/wG4KByhE0NwQxgt4rGMF0FgjJBsp0lm/VkjhRKwFAq1IaJSUlpboU+2PiGQPrS6WKeDJkn1EE3RdS3uSc2JYzcnnX8CM59f/t8H7zTkIRVXQQkiKqGKUyuCP9RscdpiFwB2ijUl2yi5pyUoRypGxxAo5NmAohZc6u3tK9JQNmRI4/4R3oeGLzGDxzlCOSLOKWUSqDOZe+0jEHaJPqZw7kjzpzMMtExZxOrBT4lQhPwOPIwa0CcUK6suiiH1Mi5Q2HNRp9kN/KPkE+o96dW9NvZ9qPgLWd/mn9aGcHfB2E2jFq42ueY8dRK4N53rTMe/TFcAoF4QtpGpfDQb8yDsqTheJ0MXCCAfsAu8QSMWQd+EkkGYkQ4a/ekJTCS1NeIOWjcEHTLj3X/hUx48S9FZI+QZcI1dCSydKi0cuVwbmsL3Sc8692zsGb4I6KTqkydZXr0UJxEr0i9LybcHip0DN0avLoFi/Oun3CK0JKn6mMovcFb0/Uh4ARxxkNt8oLUYSon+rPoPBTGxqPjj5+4GPkEbP8v1t1HE3YqWMrF3KiZIIRQsFIvJsKMaXKbGvNglWH5GqLQUgB2SSBJEWgkKUzpcoB5TahymyuUHEvgRiNX6id14sd54+cd/xSj4K66w8wT413pXtWzV1FPN26D/hHKpEpgoQihfKLydx9yhOmbTiM2B8A+xyy3cYs4NJu+Jcy6400Gg7GsEEOTiLPqJVH776pzrK9GY0jM69fnv77y2n4c8dm2KiaYqmilBcnE4ubVTROBsiFQOT8yfRIlBuH8fVfnRLd68eouTBMyQiBTCak6Flhbxk2uLbzTc7a2rXOTDyxrV7FpzABK6KO0ANWQI5osIr9t0p1LraOaYqGXPBD0Nm5n3e/1EyAenzYxQDvgNJaiG0jWlUzLDDAPgr/X1vd7cHfoQq3WVRq7H9F+P+jIvw5k67t/b4shbX1nbM1X5z7nRY2fRbhdyilK8Lv8KsyivDvZ+cMnXD/eI/9NSPbrGA0earH0+Z61pGwZrlZKV3N8sJfVVKEv0mdHXsO3F3CnjjUfvv0fSlh1V6EP/kXbWuCX9XtgarvOFVPEf7xyd3rrZ5VJ2Sz9zLWix5bBhlMEf4zP2n7J/z8v1GEv9aziRvPHLYLXFxyrvGfx950I+x0VnURfkTLUFZRB1qmyorwTx585se9xhnBWwP2+y6dNQ2fjVA9RfgRZUPdoeBXFRbhP3Td+/jhTacCNtRaGr750/XbBlDOAmlT8JO2TcFPLPwMYFD4bRyWq1up3zXWhgdOG68sf4svxWeJHOKTSkTAomv6bGYUOHco2yIRlt2P1sIAiMskqUnJwIeTC5ClGl1qOcwvEk6ua5/DyXrPaXuc6/eK8mk1qx6oEbXN7WvJYXgbnWIweGy46EJsuwzwnco4VcGDVXZljwWuoliQvrqpq+v6x+OiQxfIQyeuPeVVXPHeXQQXiqgYK+hCMQF6LhC9pmwS6XRw5YDRTuniQqE90PmCJJmA3L+0mmw5Pzf2Y4/MizdqW+6/1pRwQgq5keSElPK63sv+gve/xaB7/wLGKQNYrkMkUwdHCT6yUMIXJtDUtokZE2/p8WNP2HiH8dmPO/rWwssqNoCmrKoolcGMqbTMiKseZhDdH4YuOxaeYWKJApgvXgJcO3Xx9gMhK4gsUtyZPn4JyRIZ353Z1k8+XKZAfiH3Vi93em5dMPNxwOyz0ssZrJCJeLsGvyBakS4i6X9ZRqoMZnWmZZatQcwcOJRO3mr9soVucaosXk4zg9zOdixk9vFmzy1auG945s0vFQmVK9p83BtV5PCo5yWNulA+nM3vGad08lJRTU7jbYXH1uWaNJsduX3gw91/SK/tqNawFwJwlIECcIsEAKhadPJEMVNGXWQi/YdxcNxnT+7GP7v+69ig+8xqPewLAYhh0EhAnyaMU6ijyWb8d+XjdLvS9Nr85UdYa8dsmZAybPSmKsvHca95iiYfZ2ANDc9Sz/k4I5/Vqf9n/Db/XZ/fz106MivMAPJxWkBIKHc3f9SoFqWPTyq4ceNGFeTj/L7mDcvq1tbwFU/C+e1Kh3UxiHycazXouLPFELhTJfk4t4qMWp+xkHOzx5W27Nv66QGDyMfJpGXOQENgDqM683G2m3YymvdXHGunowPrL8fuzQ0qH6c9LfNqVw/zDDMfR5K1o8+HxK6RhbOiEgffGuBYzfk4T43oOHfQqLo5V6n5OItSwnPZL3xC5wjHXQnwPltsEPk4iA9BmY8DFCHqpwYy/j/Ix/n9wYZ+6yd1iByf+Pweg5EdX835OO2NT9Hk49yrSblYqtd8nMQm4fMV9gP8M9/l3AyYG5+l93wcYmyuhxwTd4gcZY6JsbHGQqme8nG4v+dwR9ik+u9bHB7eslntmnrPxyHqCD1gda8mHVa7alapzq3ufBwOlRobfkToJozYxN57OFL0/OmAt/idkp6p8OxksIwnTdY8YarD9kWLQKFcCk+PqXZz0j2Up0yZPFgzLwl+A6nkLRemZO9a7clZWyv31sFfffZQPp/mTo46UUP+zKOBCotUP4pFIpXEc09aSqVqNLLSsc9PMhgN2PAv4fzn0Nacg1uen7SKFogAwwT8UKDX07DhELYqWRlExUqdz6S5qGS78s+k2cxM75LZoU7A4SKbvZ0jasxQO5M288OHxhm3bwdnJj8b0KS5aaTambQ5Pu94AZuCIzZ7/tva1th5kdqZtHOx+8PuuC8M2H0pcZbLBa8ZamfS5tiGt1kUnBW0qsXtIbltD5WqnUm7OCjuHqfF58hN38ZNqxt4x0vtfH6XiCunF7YqCsnq21O2qMmUfLVmM3Me807F3JFy8kUNuuyP3ugDSGYoaXGTx46JU7oFbEqX3F+W5wLP2pmjpLZ/rv61PjGMs95uxoCV5ncmA5IFSjoiv/og1eJa+LTll8b5nK63A5AsUdI839S/549+GDqXN69zvVbyIECqjZLq1m3Wsr0Rs0f+pOdXQxMHTwMkK5Q02SJmWPcwfvCmB0WN5IG+lwHJGiUNGcJc/3d0u6C5s/PGvRzx5zxAskFJvufDDk4Ji4qY6ia1HzT62HBAskVJbbYmJt5ud6FHfg2THitif4UDUh2U5Hny0aEWPif8Z46Kib+6dMkFQKqLki41cZ26Z9i9oIm/fW10ZabFGECqh5JC9oekLS5JCsl/nNokp8adfYBkh5KkTdtaRVzexco5UnJlYL8GSYBUHyX9HX2k9O5Vc9YBJ6HPtx6HBwNSA5SUcOGGeZtVuZxDTd+0mfSP70RAssce/urTxNDJP7nTf+vECBx0sg8gOWDCFms3/fBiU9be7RefneqZ+DcgNURJ7XtHWg475B+x8/dfq5aNz+UBUiOUZJWw2u78uPjgwxO2nZtn3GYSIDmipJftSr7FvXoUsXL8g72no2Z3BqTGKClA0v7r8lfJgeOzmu96+21HPCA1wbh8R/Dt8pyjActNx70ad/TMdEByQkk+V6wbpL3dH7n6lMfYRrWf/wNITVHSlrb2r05crxWQ1ay92P7TOfheTJRUzC6yKz65MGBLl6HPatQ/JNM4bOnMoDhsubhuhybFDs/ZU/ztGr3tf2GwHg5bBlOpqPqJ+/JzT57lLN3yZNS5xmPy8IuJnDSpSMInySCgakzaCr1DlfOJlFqXp/BEIqCE0Cr2WqYMEBUU6aNprnOiBG1rXwELEGJ+CupXEu83yp3DKDHT8H5pm0CUZVQqH4T03drWqr3H3bGYO+PD+QSLnsN/6TGhUs9OLsOFw/CHAPHJHLczMHXQXKdsgA69gMMkQ9bu+AJYplciFyIpFOD5hCLYdFklJ0zgQTF5MORKIEXx74TGF3/rt4g90dmqzS3f35vht0BV36O5BVpG0nt5VRdEYmjgOmNmEPvVmul6OrYN9UAnGr+MXYpkngLEL8METOCAqNowUe+V/nrqJCm8sTYs+9OXx87dT6YRVsvRYUlWyzGKvrln64EKeyAZ93I8EWHX2DHVEThnLLEHW7QWEIEkBatX/d17PuVeCZjZ5OiolaO/Jlc8jUgPYCGiTgkWEHXU/oQw/nf6QJ+nD4geepWdPsi2OEVz+sDOQidbqeXpg4eZaevSrk8N2VOrlVPTlg7j9GgsiRpID6cPZkKEKJO1+RY6Gcv/9PTByjlC1xWrhRG7J/vEPqnfdkW1nz7oRosKkBsD3SmputMHk+7ku+99mt5jzups6xUXopcZzOmD1+Z0rCsyN1B3Rs+nD543OCVetLkVe3ro8VoLVh+/XM2nDxAtQ5k+DrRMlZ0+OD0xd3P4D7PA+Xc+tvB+HtvKAE4fdKMFx85Ct5yvCp0+GNpnXZu+6d8DlqeZPKjd9TW+Bkj1nT5A5jQlQmBOo35bKIPCbzu7hMf96WsfPGGdk+nL5qMP471RpGdddCBX+4WDAHzLSNQTBhFiIvgV+F3p6n0VgbJF5RX6XqjrNlYrx4m4fkn+3JpeNEbRobWLouUpZWsXDVfJH3DgYwvdlhW06i0pmTSllaOfJGBt4V9N1zDXtyZsssO7STbZkcvleUpE/aeHvi0iCJCUTAiZbhxGYEud9s4cEIAwuXDhC2VAfAGd3Nie6795vMUYT07WgKL4ey2P4WsEmwdiN2tOyzJSeYD902f2yX39soLGX20qutE6rKIH2iFgjWkBAxJVLU6U0mbAz7RjUP3RPNJpRsNLS4SXNFo1YMb211kd0jgHnJOObdyV+KUuchgHMIOTJpUJVFt3iFPLCoh2iW1TMQeYwFqZzZxZzxpOC5/d7tmgKz0LDuiBtedb0LF2TTWxlsw/ztKtAVz5/UuDva1u1nrmHjDVplbI17Z9M6qtfynDE9VJsH+pVCO+9USmGGoYezAoDGPANfv7Izrt9N86YLDDjD6H8KWB7WDJTQVc+oTZuAK4PyzQoeuZF1uSAiBXFv5EhuGXDYMEh2XNzvhASLSyiMRtu/IfWIMdpJ/S1huBC6Y2APTiAJImaHFA+AttKnpWj8VVAwUuN8BSvtDbkIiZLlgDL4Ce8hAf/Emp0+RwNVoyUkBxAudqkItju9gFQbOb5k8X7Q63wesYpBcqSYs49Hq5+RfWfew7mHVjb+/i/nONrH3bCuqYLABzMYTZOICk7VdOGwTmii4Jt1Rjv2p1K0EilgsSUhHxgC0kyFc3a25KSes1+ERw/nV277m8Cwn4rIKycTXDXxxR7yea3FHYBpLBdssDgQ1VCWFUKuGcdfMPPh0l4ZPfvw3zvPo7h9gwWCriJQiYEakiEYkuoHKYPbD7xPA+KLNC8QieSMhXCvlIoSKZKQFhikx7TUDcpad5TrLGxmpkbVPPYClPiK4l2eZbHkTXuqJzvwE0akj7QwVs1weVJESMFIAdx9eMSCq+GjHvzajgM09MjuLdZ2QgTfdZebm86UzMSqhoOhUscwKRW0XmMsDuJY+sKd1nLZFzVCEnw4kaFC1S+BYErUx9dOFi6EE7T+7IY29e4lO1UQEh39LBU/U9iyFaQJJo0MqyrlIHC3tQs5h0qUAdh+ZqOTueYcClFYg84WfknsEhQ6CTmySQEbKE4Z+KKu4GiIGEjAVDgKA6Xclq8uRhgmGqyCSpaA9lT3QWlLDIkgq9kFmg00KYg7KNKfQVEFuFiT6fFIoJgW0t7lkEsQsP7pIlLRprTNiYgG9FsjGBXK4MKBARp4QCiDhqqLgMCkNlMHXridpSPy18KqFsvZ01mrROWrb+oxUGebjBQ07MjdMP5A4HPFpfK00MW3Frml3bb+ef6gHyonp0kK+ph0EeQQW5zlmZNhjkVZCVSZJEiWVlkiRRYlmZJEmUWFYmSRKlKitTM4kSy8okSaLEsjJJkiixrMzBIc1e1j/wzH8dn8vrazd7ikbKGxReUukjpl/qIeUtkor/zcKKPO5vtwhab8yPv/HCFs//esrFfrZIIofuIrKBo+mUm1DMtmZBQtiyJxn2uFEOgISUMM5E0xC0294nppyW+4ga4JB9SFuvHISKHy3BJLtFtnYN20EqLHVau3ZU7rYhp0EkkDUAD/ALdV7Qw4DfrzhnT/OfspAXd/r4+XUV2Wur3GXsSwCr15ao2S3ROGAPwuoCS1I/nAqr+qqUCHWsSFG6bZ4/6eG9ZpxJ3NF/p7zbztBjWsT43hGfzqxLC9oomRYyNSD9uB5QUtCi1NlSc/GBzk9zj8LmFTLZEMywKQdDPSz3jHqrZPKP/V15goecJc4pp22XK25X434ubL+ICBHphtxREAYXWermxrqqdg8hRAlqNSugBcLpJvLEStbLk38u3RIyiXfsis3YkrkGsGsJQVpKC5LCUrd93ZaBQuWbq5aqykQG2VikVlCWv04fuj7iz9DFi4L/uspcja+4Z4aNq7mLqKJUBjpcWnRaWGKOURSDwjC+6hPBNfb6xl6w+nzQysjQ/poL8ZqW0JgCXGf8fq4q1W2kRKeyccQDFtruDWib/Q0Uk7cVgO082dlHBoDtVu1K2KZNb9u3nkn6zoADM413XXWdcxy/2Insx1KYdRyxPC1OVHEVzQQHetoFghVFJmN5sC6clU62zhoBSwBmGjVUPxueu5ZtX+C/8Fm98CXdRfjG7OYccC85UGqkKnYJIExAamhgKqitm7ErfwuNuNdcbVtoUNMgMgK30DQ6CUs9EWhQPdSTSg+xW5/38p34kJsXtPKdwrdhE+I6dApPylSu05Csl1O55q2V92G7Pci5FB5TLBgJLwlkwgTUQGqlloiHu2iekGylXI2sJa7+rTmMg8xTsGoSiU+eAXOemDopKmtkG0q5uAseh/QtR7nln75yamto3trW5xat7+SNd5GQATRdJOXl8uYc8ZxbBecczEzeBeHZQlXRYSZTp2wSK+Xz0BX6Grtk8vbL5xawDmRwTl2MrdkPv/unvF9z9w+9Xh4+1zacHSdYNC3oUJMXHac+FYv0gA+fFh8gPtWRYWCGJG6MUALRjUH8o1slcKsYnixJoKBjWodlDXO791wdvte+zqqRnAOEtBDl/ZpMQ6/rfc0WcMWOliuvmxoSV0qOYFzRyXzZIApPKuCjypeUMa4X/e7u/rY0ZJZD1HLHzB5L8YwJR+7XZAx6Xd+M8fdE1QlcZtSIVzNgfWambgGZowoDJLAQCcvD48yJpv0j340OnOBgLpU+qzkCn1XLVg6gmVWLESoDkW60iDCYmF3vxaCw6wXzwj4O6NoldPLHnwqzE3c+4Hms/Ebtk2G6qSIMvAFnjkwWJiQDtxKeLeTJ5bCigSorBjX/2gUfxHPaZM+rKZPK67rkiTZF80Q1sl/8QVTXrWlFd8Abo64GNPZCZZEaeIRJ+STk3V6XBVlO+qc0MK+f1/lDm6bjDb8plWOjIlSx8UdSSSGG3mQ5GkxXBEOdNFa3CFSilGU5cQe1YD6QXLk+AEsBwp/LfErm6IixpIgS7Xm1VgWFcS0CmAMZYLAWEwAMnczRVJPZYDauiNKkpx7XxG0OPexcFTrR7VzlOGGYx1BhHrE36OJZRhE7o3/DrsKXPergq0Yh/eSlImECcixMU5FSIe0YDvwBYJ4U4E4RMwU3ilZ6kliZgu6xNItZ4enaLtzAILs5gHMm2cIN3KPIaH7KSrUaiXlOmD2xCIW6FMdL+E2myOVQPiYD/fhnZhsdMQ/c/499uJVbvUsY3YiCbhmJqBcNGTFTXqceWPk8yOPCj9AFbk2ChDKgc2B2ApLMhOcXKX+e5gy6Gv3paOik5aHxw579jm/+Z8TSnB0sjdlhRJgdnWvHdjvh3SV0Y5eh85KetVJUdM0EzI5LkJ3eZNkLMEFnQ/NTaiCVt7LkFC1IkAANrQtK/VymH/7+OTVwU8j3D3mbF1/BoxSgiVJAuSi9KCne/9F1mX92/42NzH4W9dcDShm0KMU2P4XKoEqWaLNdlPUCoWOkBUDErHe8DVMOpWnD0OuVseCNSMxXsoUmFw8EKVSf9v4v06fEcj5VpE/dm9Hp02vO/9OnKH/qmh3fN73JtIhVn3t2W3YjqVgP+pRYpkkPmqJFMzpN8cO5svXpSu66iQ2vvWKt+DtnYeGRfkv1oE+JiwR6QAmINQ1KW5wrUZ8SbWi161NEYij1KUAK1ad9qPSpwcQExOmkn2S2DkYN381iSwP3fPJPLrg2q5ceQgIXZ7qQwEwFeV8qyHVOZrPGIK+CZDaSGniYqiepgYcls5HUwMOS2Uhq4GHJbCQ18LBkNpIaeFgyG9FD08hYg1qRVMSI1fP0kLEWqzcmW1Yhk/+zOpIkRRUxJhP3/DV4YkzFE2LZQj3wpB8VT3ILH/Wb8vRr6P7C3fu3D3uMP+dXK4onFog0C7RSKTYXFlMK71CrMs0USxQCZXEhhSBNwVQWZyV9bWLdRZJH0UbbWUYnyCQiUS9oseBF9YasBE245+6EG7x+QwOO/HHSt/ePGt+pNKFZb7lAFgMeH/valoGS1HgRzNWClWBh4R++UIG+O/Aw4C7Hk4x1BJZgpXo1FqVbcRgljYAC9WUzMqawLcJ5siShmCtIxBlAS+XlXrBnh/p1c+X1GIlU/SqhBGyPVpzMfxqdskFAjJLBc4MKofKpTLGnIptQMt7IUDEflt3C4DUyhxfh1ovaJcRXF6FlhZUBAewEIuSJ2LAWlJohUsgEvBTV78Z9ZTyp6h5UVPtTiarBmGViFVA9LdUR5V8PdjnTkc4u8x0xuzzA4DEnllc13OXRODs6zP3tMMwHUmGus5m0YlSdmSSpm4uZSZK6uZiZJKmbi5lJkrq5mC/0qnad3PjflofMbsiLbdpn+DU1X4i7MDunWUyzkNVfBvRmL3Lx1TCuUOuTChKxGK8ejOsgKk4aaMsxYtHhKms5JmpN13JsaavKbjkW7XZy6vGnbuG5I+q33r03E19otXpajvFb0zVw6dbaAPomFRcXV0HLsRdvdsbPzW8UvKjz3CGHS3ZsN4iWY3a03HndygC4UyUtx6RXYn5r+sOdlWuSy/Ny+nneIFqOFbWiY85SQ2AOozpbju37MPtFpvwVu3DocIfP2efxOcfV3XJMQcs8bvUwzzBbjh3r3a7Vg3OL2dsabjuYFDoDv6NX9S3HWtBy7kfL6uYcvKnSWo5139PweaPTo9gH1x+1a9FhK74yXXW1HEN8CMqWY0ARon7qYAaFn/rf1HKM2BajmluOTXWhaznm7VJFLcc+Lejmdftb6GpOhsUps6mf9d5yjFjcTA9ttDJc6NpoxbpUVsuxMe/2BsxrODw8c1nq3biFTZ/rveUYUUfoAStvWqzMXP5PtRwbQqXG/leE/z8qwk/sJlRlRfiL29AV4U9uUxlF+PfUkTfusmlK2PSkls2uTaoboMfT5nrWkbBm+aM2dDXLC9tUSRF+8/kzA1dseNBjE2PCtTsjkjyrvQh/Fi0qQG4MJnbQ7eCP/orw//OjyaGGTn+Fz7jq57HA8uxpgynC70/LOofqYV2VF+G3vyesKz+0K3h2/C+nJle736zmIvyIlqGsog60TJUV4Q92tM69e6xn8BbRuH3XrL/htXP1FOHPogUnuU0VFuE3sr5faicJDZvZLD/tvNOA3QZQzgIi5E+LEJjTqN8Wx6Dw2zgsV7dSv2usDQ+cNl5Z/rYdvo4AcohPKhEBi67ps5lR4NyhbItEWHY/WgsDIC6TpCYlM1VNY3Wp5UDssEj5tJpVD9SI2ub2teQwZroBfHlsuOhCwPcSwPepa0UPVtmVPRa4imJB+uq1L18IGxp4KKhg0ErehaUL7Cveu4vgQhEVYwVdKCZALxOi15RNIp0OrhzGQDedXKjayunLFyTJBOT+5a1//1z06bsoPH/Otp1Tl3YVE05IITeSnJBSXtd72V/w/u1p37+2W3U7SyrJ1MFRgo8slPCFCTS1bUbvWDzR5blV+KLMD9eH7i8W4GUVG0BTVlWUymAGmKw0zDjoahDuD0OXHQvPMLFEAcwXLwGunbp4+4GQFUQWKe5MH7+EZImM785s6ycfLlMgv5B7q7n5my4t93oRub5d0b6WSW6b8XYNfkG0Il1E0v+yjFQZzMqmZZaoephFmDlwKJ281fplC93iVFm8nGYG3WEsNrF+ZhRx+M0R9z1fXaZXJFSuIDuyvFFFDo96XtKoC+XD2RzhppuXimpyGm/rDPeAqEHXVcHr1tUafVscPbpaw14IQGMMgFskAEDVopMnipky6iIT2+52tb9yxys4++eg8NwxitYEU1a1h30hAAWuNAD0SXfFHE0e478rH4fYmLvK8nGmetDl4xS6V3Y+zpdn8YP/Le4esddmhBH38OyeBpCPk+FBt7sZ62EASQV//vlnFeTjZN3ctXhAUELouqh+HezOn480iHwcb1rumBkCd6okH6fFlwV9xUuN/OfneZ0OskrcbhD5OI/c6ZgDtEn1M4dRnfk4dSS7eyaZW4dsPBuSbHz+t0EGlY+TRcu85OphnmHm4zxc0MvN6cjBoDlbd/y2YNS1TtWcj+NPyzmHaudcpebjTOvEP5DW7Ql3g6VX0uTJ0zYaRD4O4kNQ5uMARYj6qfGM/w/ycba0tX914nqtgKxm7cX2n871qeZ8nCxPunyczp5Vk49Tb7PZ9dgH4WFL/F7bb3jYYq7e83GIsbkeckymetLlmMR5VlY+jvfiSTdj5+QErtiRu2zADof3es/HIeoIPWDVmRYrW8//U/k4CVRqbPgRoZswYhN77+FI0fOnA97id0p6psKzk8EynjRZ84SpDtsXLQKFcik8PabazUn3UJ4yZfJgzbwk+A2kklfMLrIrPrkwYEuXoc9q1D8ko3w+zZ0cdaKG/JlHAxUWqX4Ui0QqieeetJRK1Wgk+TTGsDBXAzb8Szj/ObQ1Z1INp1NW0QIRYJiAHwr0eho2HMJWJSv5VKzU+Uyai0q2K/9MWoMsp8stP/3NnXCnVZT71wnv1c6kNZ0TMaSNl1WPjfXa27zZ0PKX2pm0G6U/3/m33cFZLzNKWBKddVjtTJq8D+9iHdOisAM9I+OXF48cpXYmbeeNEEn//e3Dlw+9ncTuHMFTO5P2cN2s4K/ubyInPgxmpq94/FrtfP4IhmTvZ+v+3F0zajjU+mPlTrVmM10WnG3594bJ/lv/NtlYPy07DJDMUFJ25G+3k6++CFqw71JhQuTxWYBkjpKu1VvEWTEwkLN032CrnsMvvwQkC5QUfnD++6EPIiPWfZbdX3MuyhmQLFFSiEWpjOfN48xaLXPzHfZ+JSDVRkkWdQdl/1sQF7breOCEopTb6wHJCiVljr07bljP7ICNOxoUjc58Ao/hWWNPmDDLJLbO3sDVojq1337PsAIkG5TkOrXfwKTmO8LWpJ2cHbKi7WhAssUUcj/F/TD5vMgZfzv1sj7jCTGsg5LuLukyPHFT/7C19gM9piyxyAGkuijp+JmhB1oV9gtdJ09j+opuQy7XQ0l9R3Zo/oPbOCSjfrDx7GDb5oBkh92153H0yp99glbejxmw4YoCIl8fJd33jDO9sZgROH911+n/tlyQCUgNUNKcOYse+HxpGLbN2nuaqHjYSECyR0l7v06b/uRMt+CV+2PCJwzYPAWQHFDSZbdpTWWNjrP3P3nJjTh3JguQGqKk0X4Z9icFnQMORrY5u0Z+vzsgNUJJk19GuXQc+iFwep5X1632/9wDJEeUdCFQ0uvOr/1BC20d1+XtC2oJSI1RUn6fVUuvTH/tv3Scc0zxwgtQ2JpgEmUimvPkntw/s0HPH51/uaYBkhNKWlW8zK9DZvPQrXW/BIwelykFpKYo6dnK28lpnG8Re10T/OaumgCrSzBRkpXvxjHu965z9qc3SDo8+MVbjcOWzgyKw5abpi95c885LWLCoMVzHj7OfqiHw5YCKhVVP3Fffu7Js5ylW56MOtd4TB5+MZGTJhVJ+CQZBFSNSVuhd6hyPpFS6/IUnkgElBBaxV7LlAGigiJ9NM11TpSgbe0reKrG5xTUryTeb5Q7h9HYR7cmEGUZlcoHIX03E78X+z2Xu7NXX9za1tnpgD4TKvXs5DJggVUIEJ/McTsD3LpAH52yATr0Ag6TDFm74wtgmV6JXIikUIDnE4pg02WVnDCBB8XkwZArgRRFl74F/R+ceBhQuDC5yehWNT/it0BV36O5BVpG0nt5VRdEYmjg+uhtEPvVmul6OrYN9UAnGr+MXYpkngLEL8METOCAqNowUe+VjmlwoXjSh27hBZNb1Hs2INCOsFqODkuyWo5R9M09Ww9U2APJuJfjiQi7xo6pjsA5Y4k92KK1gAgkKVgbf33tvy32D+6MHec5ZwubF1Q8jUgPYDWmBQuIOmp/EhkU9ud/pw/+o9MHRA+9yk4fHG1Ld/rAv21lnD7wSK//NEAxN7Tweuu6Lh+DQvVoLIkaSA+nDwrb0iVrZ7WtktMHDvOCuhxsnOm/b0LsP6HZP6Oq/fRBMi0qQG4MdKfk/7F3HVBNZF8/uqgogg0QxBI7IsXeCyGEGoqAvUYSIBoIhiioqIgNBRU7Iir2hl0RUcG1YFd2bdh7XxXbrq7te28yEzKVZBmS7PdfzvEcmctMJr/73n33vfu79+ov+2DqA4evO1sfcMtWNGixsEH/3kaTfWDDqLritkbqzrCcfSD2zWpTLeGy9yzF012tXoqnGjj7ALEytPRxYGX0ln1weeAEn/S/G/pkFux/dqJD0yNGkH0QwQiOazs9Zh84D6jWXnxprueWuYP2fHUqxvc2Nlz2gQ0jQmBOo35bOIfGbzuzQiT83rWuZ+LGhlVeNp2Yh/dGkZ51we5C7Q8O3PAtI1FPGOwQw8CvwO8ar9lXERhbdLxC3wt13SZp5TgRzy+p35vsRWMSHVq7PA9AW7uQXCVXOEYDyqG35Ka1M05+S33uPz2hy415uRffEoLs8G6KIDtyuTRPiWj/WOjbch8CFE01CLmtgYUL0Cl2ZoMAhI0Le7FUAYYvkFMvtiHDehcfaN/BZ379v5r+Nb5+On5aumM3k6dliag0wHZf/DwhflFTj6S7L5M+5jewZQGwVEbAwIgyiBOlWjPg37Tn0P2QUzpNGXRphuiSwaoKC+NHvXO4FbD8TeHZKZmPXtRGknGAMgRx0QqJOnSHOLU8t2D7Aa3K5gATVLvuVv7slccO+yX+kWU96WfIbhZU68qoWhsDqZbKP07VrQFc6f1LX6RW9Nxu9cHj4LaB3V+9UFgYrH8pxxm1SbB/aTRpf+uMTDF0YYzg0CyMblfq3hnXea/r9sHDbJL7HcGXBraEJTeV8OgTsnElMD4s0aHrmQtfHgkgVxX+RB4jLnkMsjksaXYmBoNEqxWRGLYr/YVJ6qD8K229EXhg2gWA/tyNognaCDD4H3cua64eT6gBCjxugKV8obchj+LaYw28AHqqJD74P5VNi4Gn0fJYCU0GzoPJM9aN7pQjyE2oPursbylFeBuD9EKlaBGHXi/NxjSr8an18G+d3dbfmNvw8IF1NmW0MakAZksIs4kbRduvtFYIzGU9Em6uoX716VaoPCpGEjoWGR6whQT16ebWPotrHX1Uw3O2Sea8vi84+IrqZiXPJW9/cULWM5ocUdiGUMFW5ITAhpoEKZ1JOGfR9EPbTnK/me/f+jpfniIgNgyOlolCJVz/sTIZhS2gc5idsPui4H1wzEqjxolkUrFqkMdKlRFcOdimKLS3BMQoPcN7UjU21hBrSz1rKeD06AzQNaMKvmVCdDuVde5bw0UNaX+ohO36oJGEiNH0fLwQ2PF2Vd6MRv4jO6/yf413n5EHkd1n1eXSpjORlVBWOhVArgNEbi2VywC7l1TvTOs+a4mcnRo5BW6owaFFCV/idadqSUG/+2+9Y9s/tm77RXiqNjpAqEM6eCnbsxiiBUYSA1qHO+nVwcJe1DRkfLREE4emGpwdZ1/g0kpkzvBvYpw9vYZDJzdcoiCwhOFPWQ23NbJAQsWCR4BN9XiVqqmzKAgLU1kmSVl7KDujs6CYR0UqdEFmgU4HYTaqNqbQV0DWKmzoiymhMDVfGvPD/4XwkGRv4C3LFw8IgQn4rSgCE8jl8oACGeK0UIAhji5Uozg0C5XR1K0nWkt2WviUQ9l6105MZeu5ashHGz3kRG4cO5A3Oz/lS1TtH/yp96ZmPngY34gFyIu7M0Fe2B2DXEYHuc6szBoY5HpgZVKQKDFWJgWJEmNlUpAoMVYmBYkSY2VSkCgxViYFiRJjZVKQKDFW5qxfZnmKtl51z9tRWMvq8cWhJMobHLyUo49Iv2SB8hZJp/8mviec7uyu5rHJRDzy2ouaeP3XUR3282XyGOguIgEcslNemWa2NfGQwpY9EbDHjeoByJYS7jNRGoJ24X0i5bTUVySBQ/VH2nrlYKvI7QAmWRHV2TVsB5nZXqezaztVtA3JBpFD1QA8wC/0vCBbRb+tyUNiXPc8PzHZerBLj7LE2sr3GLsQYGXTAV12i0kJ9mBbfbs9pR9Oh5WVmhKhiRUlSmaXvgaa9BvAX5Rde/6qSun1WaRFTO3r/+n0xjiPLfLZXklu44+xgBIYMwwoidvr1qTdMRCbV8hkQzDDphzc6mHcM4ZQybcO434k5nlnu7dPnMWVnjBgPBe2X0QGEWVA7ijYBhe3182NdVBHDyFEoRo1K+AKhLNNlODMn9ytefqr9byFUssmXLs6w40gaglBOt2eCaTM9rrFdZu7S1XfXH1UVTJkkMAivYGKrfe03wqz28Kk0AG/zft1+UV8FBF7LjmKqJaUBzpxjOgEtsccoygOzcL4qp+/0MTlC3/JuvMeawK8B5EP4skroQkNuI3x8Vw11S1WrlPZOGKChbaxAW3Z38AwDekIYDtPlfvIAbCZdCyHMO3FrjMC8pz7+y+7+qR2d5PmhNJ9SDyWZlnHCUuz4kQTV1YmOLDTIRCsQKoxlglcc8eOOq11FghYEjDT6KFyrbokcpDXKeF64aVxuc5r++ItkQDcSw2UhkjPLgGEyYQRptsddFvsSg+hEWPNBguhQUuDjBEYQiN1Eo52RqBB7ZCczg7xW5536TrtnjDTY807ZVfbBsRz6EhRNFd1TkNxXk7nmrdU3YdFe5C8FBE3ShILL0kU0lB0gdTKLBGTuxjekOqkXEOsJa6usIyLbwGsmkThkycA1Hf56GSoLJAwlOpwF7wOdZmAnlaLTb5348+qFb7Pq9dg/LeshDyA7CKpLpc254h5bmWcc5CZbA/hyaKr6MDx1YlNYq56H6ZCXw79fmY9e9GQt7hwdN/mfdeuxEf/VPeTo3/o9dLwqVOvrmnPxxeEG3K/Da4xq1cbFvAp8mHCBwwfQzAMTBHixjgVED04xB/dKoGbh4gU4RIlk9Jkrie3dyv66Zpj8uH75sqtCNXZVPeTlYZeZ/3MFhYTY9TKCKPSSnE+phWdlq8aiMGLlohR40upGOUSq/wJlnO8j3x7sOZa5kg7vGL8kPvJikGvs60YV2fUnMBjRtJ+NcFFwPnDR7cNmZ0aA2RjIZOWhodFRNjFMUvP87I4opOvBfPH41m1fNUDyKxaTFAeiOzyYUJE6YOt69EcmnV910Lfj4O7d/Oe+fG70vT4zQ94Has+UXsyTA/1DgO/gHNjI6ShEcCthLmFopgYWNFAzYpBl3/tNh/EPG2q9yWPSdV1XXii3ihPlMR+cQW7ul3eZY2A10ddDbjYS1VFamAKk+pNKL/4ZM9JCT7e3p6bbB/cHHzLBh/IrULn2KgFel78ESopxLANFUeD64BgqJPF6uGPjihVWU5cohbkA8WozgdgKUD4/xKfkjvRfxJ1aRvCem7QqqBwX4sAZkMFGKzFBABDJ/MYuslsNIEr4mhiqcc1MczBQuTK0ZspclVdjbmCDnP/Ax4Xz3BO8BMG2XaXvvSpha8ahfSTj5ZJQ5G0MLIhpUPazg/4A2B5UoI7ZdxI3FO0spPEyhRMr0UuZoWXa3twAzbZQn8AZwrVwQ2MUXz0KzBXn0ZinhO2nlTzhrYUp0v4SVWQy95ibAwMFJ+eVyG/qnvum7p+5q3rFGLyCjRyswDEvJDGiKnqOv2DVe+DvC78E6aNWwMPqQLYHMhOQMhMeH1R6ufIySYXjn8I8tioWLjaxmYinpJagUeeHTzS7KhAmB2dsq37pPp09ZtTv8lMr6Od4st6ZgJmhztUZxsq9gIk6NT3L9AAqbSTpYbBklA5sNC6oNRm+/pMs27Wbll5M3y7X9raC4+SGxklt1JRetVXsXF9mJPbjkJf8YXFv0ezgBIY1gwonfcrQMegeiwxsl1U9QKhY6QFQETWO34NUz2KvIah18vjwBsZMZ+pDprsnRCkUHsa8y+zp8RyPvqyp0JGe+r7nz1F9dP2QNUXue0u8LamD1w7u6h+YxbsKbFMExv2VMhoT4XlbU/T6jyevm3PQq8DCtvKozZXaMWCPSUeErBhT30Z7alvOdpT4hpqeHsqZLSnvpg9VdLZU6PZExCnEztkto4VbN/N5Ue7Z39yjdh1ZW4QC1uCDF+mLUG8GvKxdJDrTGazwCDXA5mNogYeZuopauBhZDaKGngYmY2iBh5GZqOogYeR2Shq4GFkNqKHRmKsQatIOcSI1fNYYKyNY03JZnpU8j+rI0lRVBFTMjHmT9KJCZ1OiGULWdBJLJ1O0nPuD5z1+LN3bs7+3N2jH+A3VZUCRVESGblAK51hs+dxo+EdGlWmuVFypURVXEgpiVNyVcVZqdk6hLqLFK+ijbUzCw5VyGWyILhiwYuaDVkJltDxasME+9tdPJOS3k7z7b+aNrfZtG+MRBECXh/72Obu8rEjZZCrBSvBwsI/YqkS/e7Aw4BRjocJGwkqwUr1kg6lWwg4AwTAgHblcxJm8av5iRTh0iihJAy3AJqpLgfBnh2a16uqrofIozWvEkrA+rQQePUXFNRAQAxUwLxBpVT1VlWwt6KaUApRrHeUGJbdwuCtUBVehKEXjUuIry5DywqrNgSwE4hUJOPDWlAaC5FSIRFFqn836a8QRavvQYdqHN1QNZplmVgFlKWjOuL4Z2Fd/ixgWpeLBNi6PN7oMSeWVzXe49GUHkyYy3pgmE+gw1znZdKco79lkqJuLrZMUtTNxZZJirq52DJJUTcX84WKMpf3/Dhrr9uOlDomkaIqXTR8oQ7FilpmZlvcDxXvHJ1jd70iaXGFVp+6NSShGC8Li+tEOk0aacsxYtFhvbUcu9+HqeVYzT7l3XLsw0qLj53P7AtI6TDk69bEQWuNoOVYUR+mBi67+hhB36T79+/roeXYisV+Q0/MT+NleL4am/sk7qtRtBxLYtTOCGPQjl5ajh38u07C27Adfvuqv7zWp1crPH3VUC3HujAqp6YxKIdjyJZjV3sJju47UJGXPmPuz53hXvuMquXY80Am5R0NNJ5CQQZvOfYtL/JSkysz/TbtCWybeTEs0cAtx9IYNRdtcM3Bm8qt5djOoU2W/3rhT++9Ixo82/9hl4lRtBxDfAjalmPAEKJ+ajyHxk/9N7UcI7bFMHDLsW9BTC3H1gfpp+VY2yVng+TVAwS503O6zbsSdZP1lmPE4mYstNH6GMTURut8UHm1HBu0Itu8z8Y6AbNMHYdZbVi7kfWWY0QbwQJW6xmxig/6n2o5NonOjP1XhP8fFeEndhPSWxH+ISFMRfhvB5dHEf6CBa3uuVWO9Djwx+jPa0Lm49utly3bnGUbCWuWh4Qw1Sx3DNFLEf5+sx3OWG+o7TW7j7ha7eQeNQxehN+EERUwboxm76Bb4g97Rfhrm83d3MfbR5AVudV29PoI/LG9IYvw7wtmUl2KYVSn9yL87UPqC8IHB/olVl31sfaRkXwDF+FHrAxtFXVgZfRWhH9ButAu/nG6V+6gyl+W1rqCL5hlmCL8JozgAGOjvyL8ljObfKnZd4X/3MDfPrVXPMeX0zFcEX5kTtMiBOY06rdN5tD4bQKeQ+ufPa/wNt9tuOX3VW8JdQSQJL5ouQys6GSfzZQG544lIRJpyf1oLQyAuEI+NjyCq24aq0stB2KHRdq3JVc90BBqy+1rLgALMMBXxIeHLgR8CwG+A/qWNbHKsuS1wFUUC8qv/mXd6jo1pN29l7yIOHSlsC+e0fuPencRXCiiYSyjC8UF6H3uC9BrxKcYnTYOAk5hX51cqOqq6SuWhCsk1P7lmcRux94VPeGvTbLKu7mu2JOQIYXcSJEhpbrOetlf8P03M37/hL6GdpbUI1MHRwm+slQuloYy1Lbptdl72mz/YJ/Flkq/hG2Lk/FjFXsAeayqJeWhjAGMymhjGGUQ3R+OLhELZ98ouRIsX6JQeHZq36Yn2LKCnUWkI7dtz9AIuULsyG3XM2aMQon8Qu2tBk+7WlRwpqlgwcBnL4pvnJHj1zX4AcHK8TKK/pclovJQlimjsu6HGMPMgY/SyVu1KjnojhqrGBnDMIMS75hZuYwM4E8/lLko8H2n5mXZKpdRHaltUEMOUz0LSXWh2gq2Heurm5eKWnIGb+uY9WyxadWHvAMpM7K7e32eYdBtLwQgFQOgiAIAaFp08kSxpYy+yIR7/uOaMw8FuCfvvTFoT4M+9Qya7AsBaMYEQL/XIZijOYXz7+LjEBtz642P860/Ex/HsX9583G422In7s8vclv35Nc/3hZNOm4EfJyP/Zmim+f7GwGp4NSpU3rg49wcXiGnU99h7ttvKfdWD38TZxR8nPWM2ok3Bu3ohY+TH8AZ0SLA3Cu5UcKuxsuHDjIKPk4Io3IcjUE5HEPycfr8lvrk6Cm+b0Jm++SDu3aYGhUfx4RRebf7GdrZNSI+jkt1u6c1sgqE0x49aTzncNduBubj7OvHpLkUg2uuXPk4jhvF1/jXV3ku2TpvZerQvRlGwcdBfAhaPg4whKifmsD5f8DHebrmRkSc4Iv/AYfQngvWJsYbmI9jMpCJj5M1QD98nIRLGZMXn8r0TIlbPFB2oN0W1vk4xL05CxyTbwOYOCZXBpQXH2feCd8VD8cO8cheH97yxy9HN7POxyHaCBawymLEavqA/yk+zlQ6MzYmX9pa6r+VfyAvQPbs8WB8G1+zPmNh7qSnQhQdQc4w1SF80cxdGhMNs8fU0ZzxTqosU64I1swLh59AOfLMu26Jd7x9VZA73jo8b9gL+vcjR3I0haTxVzUYmLAAzVQsilFJzHvSclSqn0bBp4nwAqPSmg//EfI/R7UUeIV7FZgHS2RAYRKxN7DrcdjjELWqVJlIp0qdc9Ls1WO7/HPSFo35O/aXBv38V6Ss6jV1yqneGjlppzsuPHyviidveyert527b3mjkZNWI2y2henZ87zZ3VxSX7RvlqCRk+bR7eevf/y93W9l7QPz7kztHaORk3a/7rkRkfsceFt/bWb/efniPRo5ac3l3d9VnDaFl7kgRxqa/+ilRn5+s51PTS7/edZz7qy8b4VXuq3TaDZjlX45YOrV4T6zDvn+2Jr3pR0QmaKiQ9XHFef0PCPY1/uRvTB2fAcgqoqKXk2xdFnUoJNr0qy/pvI+bVsPRNVQ0ddpn795dVrMX3TQ6enBv7xCgcgMFdU+2bB4avYmYbLJVc/efW/sAKLqqOhs+qIqX9uLveZJqhx5ndnhFyAyR0VffG779J+y1Wd3ld1bzp7adw6ILFBRaubzopOKq15rk8T3/zDffg+IaqCiqtL1qxLzvgWs3rf3yd7Ld+Br1ERFb+p5bJx3NNEnc9jtyo+WO8LPqoWKWj4zzaqRt9VnUfvpkmWpdyOAqDYqOhlscb24w1nXLbVkzwcVLo8EojqoaHjKhjmcnk5uh/Pfzr0bZH8diCxRkcLz/N3t/jPcdvvWWBr0pU5NILJCRWfOH8tQnm3unfowv/Wr1ZkjgcgaFVWK7J5fnLrLc7NNw9xxed3DgKguKhpiP3vFsKUrAtYsuxlV9+TH00Bkg4o+LVvX5/P7TwGrsrycggbXfw5EtqjI837/Y75XN3vPvNf51Keu+7oDUT1UtKnYZeru2es9p678sbxNq1B4lx0qmp9jZtou65L/tCejugwbctoCiOqjonfSg29fdT8rSJzTvt2G77M9gagBKnpkZ9Hw5tVit5mtG+/t/ar2USBqiH2vttO6fTqRyNvnMt3KYUD4UiBqhIo6t7nT3y7Wxn/BxO6vbt65uQyIuKjI7UlkgmLF+YAZU7Y5HLrV6AIp2bIxhybZMqO43T2rufd5C0IbtXu+5IMjhdnQNdlyGp2Jsgo7uDP95BlBRtbDCefqx2fiDxMFcdEyuZiCQUDXmLQFeoea84mUWo+JFMlkwAihVey1pAwQDRTlq5HPOVGBtrWvwAoQN6wA2lcK7zcQ9nEbplsTiBJGpepFqPn4qUuqbcjt6r/j0qXI9LUvs1kkVLLs5HLsBZxoCJCYynE7Ddw6r2E6sQE6BgGHSYGc3YklsEyvPEaKUCjA+0llsOmyepxwgQfFFcEtVyglitt4XTestFP453aokpt2I/4WPgSq/hxyCLRExHp5VXtkxDDA9XmoUcSryXQ9HduGOqETTVyiLmWESAn2L6MlXOCAqNsw0cdKC2YIz/xqv5a386lb5js392WE03L0sRSn5ZiEbe3VdEIHuzuV9tKckcFOipjqCFxjjNiDHVpLiEBSglVxQU3HW5Uq+y0P4ORcuyCqVHYaEQtgcRnBAkMdXX+mc2jWn/+yD/5R9gHRQ9db9sGJ4UzZB+7DyyP74MKTYptbVZv4rfq7R+cG1c9ZsLhYEi0QC9kHh4czkbUXD9dL9kFR/Yvjn3eQea5wkPU/9jrymMGzD2SMqIBxY6SREv1lHyzdsODPj58GeSx+lH5U/jUWf65iyOyD+oyq+zjMSN0ZlrMPBqVbx8g8KwlnNx1ULTnrWRcDZx8gVoaWPg6sjN6yD5o3FNZKiRG6Hhl362f1fqYyI8g+kDGC4z5cj9kH1rEubSfdvu25oMP+82YLTI4YSfZBfUaEwJxG/bYZHBq/7cwKkfB717qeiRsbVnnZdGIe3htFetYFuwu1Pzhww7eMRD1hsEMMA78Cv2u8Zl9FYGzR8Qp9L9R1m6SV40Q8v6R+b7IXjUl0aO2SNhFt7UJylVyBBmwmlkNvyYduU2RXx2zzn1Hp9Iphue9tCEF2eDdFkB25XJqnRLR/LPRtSYUARVMNQm5rASdiok6xMxsEIGxc2IulCjB8gZx6sd16SpA9ddIk/oxffX9bd+vmJPy0dMduJk/LElFpgB25FHz7ayW+78quDfcMb+NgyQJgroyAgRFlECdKtWbAv2nPofshp3SaMujSDNElg1WNsVIOT3rq7LZzjV3Rt9+evq2NJOMAZQjiohUSdegOcWp5bsH2A1qVzQEmqDbYawtnaI9c373XPByiZvq5sqDa4glMqj09wXj841TdGsCV3r/0Q5XgxRlm7p7TXV2aLK9+IMBg/Us5zqhNgv1Lo0n7W2dkiqEL40wOzcLodqXunXGd97puHzzMJrnfEXxpYEtYclMJjz4hG1cC48MSHbqeufDlkQByVeFP5DHikscgm8OSZmdiMEi0WhGJYbvSX5ikDsq/0tYbgQemEgD6czeKJmgjwOB/Li5rrh5PqAEKPG6ApXyhtyGP4tpjDbwAeqokPvg/lU2LgafR8lgJTQbO2eMb4rlnUnxW/CZZ3dp3+BO8jUF6oVK0iEOvl2Zjqnz7YSL5e5D7fN67Hg8fCMrKv0gFMNtAmE3cKNp+pbVCYC7rkXBzDfWrT7dC5VExktCxyPCALSSoTzd967w4bsVf77O6pljgnDSkDp5VUPJc8vYXJ2Q9o8kRhW0IFWxFTghsqEmYRWcSzlk0/dC2k9xv5vu3vs6XpwiIDYOjZaJQCdd/rExGYQvoHGYn7L4oeB8cs9KocSKZVKwa5LFSZQRXDrYpCu0tATFKz/CeVI2NNcTaUs9aAp9GDNA1owq+ZUJ0Q8s6963hooa0P1TCdn3QSELEqElVAStd/1g3kLe0ws+jXxtKn+LdZ+RBZPdZdbm06UxkJZSVTgUrOULk1lK5DLB7SU0xrfusJXJ2auQUuKEGhxZ1n8Npjx4+uTrNc+Ht4E+8n7l/46na6AChDungpWzPYogWGEkMaB0N1auDhb2oacj4aIkmDk01ODvOvsCllcic4d/EOHt6DYdObrhEQWAJw5+yGm5rZIGEigWPAJvq8SpVU2qZuDCVZZKUtYeyMzoLinlUpEIXZBbodBBmo2pjCn0FZK3Chr6YEopWmSaRG+QzvJdn5wRPiVu9kxCYgN+KIjCBXC4PKJAhTgsFGOLoQpXEoVmojKZuPdFastPCpxzK1ruHMpWtb6aGfLbRQ07kxrED+VvZ4lVVTQfy9z38e0RLl8EfWYD8YwQT5FciMMjn0EGuMyuzBga5HliZFCRKjJVJQaLEWJkUJEqMlUlBosRYmRQkSoyVSUGiVHdNIpMoMVam8/3ePeeOKfLYNXhmgm0fPx6J8gYHL+XoI9IvWaC8JdPpv4nvCac7u6t5bDIRj7z2oiZe/3VUh/18mTwGuotIAIfslFemmW1NPKSwZU8E7HGjegCypYT7TJSGoF14n0g5LfUVSeBQ/ZG2XjnYKjYTgUlWRHV2DdtBrh+h09m1nSrahmSDyKFqAB7gF3pe0JR9Dc4OP2Hhn+i1s9Hew9sWlyXWVr7H2IUAq/oidNktJiXYg231/RGUfjgdVlZqSoQmVtQckLW7s1v7bvKYc3rCO+9uVaewSIuY2tf/0+mNcR5b5LO9ktzGH2MBJTBmGFCKGKFbk3bHQGxeIZMNwQybcnCrh3HP6EMl/VLPrrrQcr7n9rtjvO1ePHhrwHgubL+IDCLKgNxR2H5xhG5urIM6egghCtWoWQFXIJxtogRnZWfh9ffdj/qnXU2YK1jdZZYRRC0hSOdHMIG0foRucd3m7lLVN1cfVZUMGSSwSG+gji6XPshpE+md8+dhy5SLFyfjo4jYc8lRRLWkPNCJZ0QnZATmGKVwaBbGV/38hSYuX/hL1p33WBPgPYh8EE9eCU1owG2Mj+eqqW6xcp3KxhETLLSNDWjL/gaGacRIANt5qtxHDoDNdGQ5hGmTO/lsPD9aLFxzKfBKV3fuKvxhJxKPpVnWccLSrDjRxJWVCQ7s9AAIViDVGMuEpbhG6rTWWSBgScBMo4dqQHrjHnMD+rkn3h+xP7VpZzzrtaoA3EsNlIZIzy4BhMmUEab7It0Wu9JDaMRYs8FCaNDSIGMEhtBInYSjnRFoUDs0l84O8Vued+k67Z4w02PNO2VX2wbEc+hIUTRXdU5DcV5O55q3VN2HRXuQvBQRN0oSCy9JFNJQdIHUyiwRk7sY3pDqpFxDrCWurrAP2LgCWDWJwidPAKiPGKeTobJAwlCqw13wOtSFhj5POh++/E+3dRbnZEvW96yNd5GQB5BdJNXl0uYcMc+tjHMOMpOLIDxZdBUddo3TiU1irnofpkJfzg8+ztzU6oH7phX7TEZn1b6Ej/6p7idH/9DrpeGzd/g77+Iuv3klCMcPm7VI8hcL+CQx4gOGjyEYBqYIcWOcCogeHOKPbpXAzUNEinCJkklpnlWlMX4TrvHy70W7dLywoBCvNNX9ZKWh11k/s4VBHEat1DQqrRTnY1rRafmqgRi8aIkYNb7U27HG+RWbja7KWz3i2u2Fyyrj47+V/ZD7yYpBr7OtGFdn1JzAY0bSfjXBRcDJGKfbhsxOjQGysZBJS8PjacEI+cE/agmTLF5VbdG5Cz61rQpf9QAyqxYTlAciIxgRaTYOW9fncWjW9V0LfT8O7t7Ne+bH70rT4zc/4HWs+kTtyTA91DsM/ALOjY2QhkYAtxLmFopiYmBFAzUrBl3+tdt8EPO0qd6XPCZV13XhiY5FeaIk9osr2NWNGFvWCHh91NWAi71UVaQGpjCp3oTyi9vNvtHswIY1wqSf0Z+zq6/Dc92r0Dk2aoGeF3+ESgoxbEPF0eA6IBjqZLF6+KMjSlWWE5eoBflAMarzAVgKEP6/xKfkTvSfRIkocT03aFVQuK9FALOhAgzWYgKAoZN5Pt1kNprAFXE0sdTjmhjmYCFydVvJFLk6rMQwT6XD3P+Ax8UznBP8hEG23aUvfWrhq0Yh/eSjZdJQJC2MbEjpkLbzA/4AWJ6U4E4ZNxL3FK3sJLEyBdNrkYtZ4eXaHtzA0kvjAZwpVAc3SIxifIG5+jQS85yw9aSaN7SlOF3CT6qCXPYWY2NgoPj0vAr5Vd1z39T1M29dpxCTV6CRmwUg5oU0RkxV1+kfrHof5HXhnzBt3Bp4SBXA5kB2AkJmwuuLUj8bRdU2VVv11GP/psKqU51lnXD6qcAjzw4eaXZUIMyOk95/Pak+z8Qtb+8c092tClLKemYC47pQnW2o2AuQoHN+fIEGSKWdLDUMloTKgYXWBaW2G1wTZ05Z5r191K4lGaIZI/EouZFRcisVpT8tujflf77mvvzbqktVJtnFsYDSekaU4scXoGNQPZYY2S6qeoHQMdICICLrHb+GqR5FXsPQ6+Vx4I2MmM9UB032TghSqD1d8C+zp8RyPnqyp4FxTPb0c+x/9hTVz5yj3quLL/b13rXazsPq09XmbNhTQpkmFiyFVxyTpeDGlbc9nS5d97pH2ymeSx7ZWll5te3Kgj0lHhKwgBIY1gwoFcaWoz0lrqEGt6fIiKG1pwAp1J4upLOnRrMnIE4ndshsHSvYvpvLj3bP/uQasevK3CAWtgTCWKYtgaMa8kV0kOtMZrPAINcDmY2iBh5m6ilq4GFkNooaeBiZjaIGHkZmo6iBh5HZKGrgYWQ2oodGYqxBq0g5xIjV81hgrC1mTclmelTyP6sjSVFUEVMyMeZP0okJnU6IZQtZ0MkSOp2k59wfOOvxZ+/cnP25u0c/wOf5VQoURUlk5AKtdIbNnseNhndoVJnmRsmVElVxIaUkTslVFWel/NrEuosUr6KNtTMLDlXIZbIguGLBi5oNWQmW8M2ZOueb3fd1X7zg929tzjrSMqlN+8ZIFCHg9bGPbe4uHztSBrlasBIsLPwjlirR7w48DBjleJiwkaASrFQvqRlLCwHHZAwwoF35nIRZ/Gp+IkW4NEooCcMtgGaqy0GwZ4fm9aqq6yHyaM2reCtsEtRCsKPimIIaCIiBCpg3qJSq3qoK9lZUE0ohivWOEsOyWxi8FarCizD0onEJ8dVlaFlh1YYAdgKRimR8WAtKYyFSKiSiSPXvJv0Vomj1PehQXUo3VI1mWSZWAWXpqI44/llYlzePYVqXk8Zg6/Iyo8ecWF7VeI9HM6RMmMdLMczT6DDXeZk05+hvmaSom4stkxR1c7FlkqJuLrZMUtTNxXwh04X5L9OX7HWb8+7TxfaPb9TT8IUcRiVn/1rwxifncVCfqMK3zUiLK7T61KFzQjFeFhbX5XSaNNKWY8Siw3prOZY6ianl2NH48m45ltbiqumgTTO89nQKHj3vcaOVRtByLGkSUwOXEZOMoG/SjRs39NByLCA26Hpj2fuA6b+unD1BPtPMKFqOdWHUTk1j0I5eWo4tqZgz4LfJF33zvnW8FBF8c7RRtBx7Hs+kHGBNDK8cjiFbjkVWKM4IFuf65b9YOCFi0cFpRtVyLI1RedGGUZ5xthy7fOeh17evXgHZspt/Xlo3cbWBW455MWqOa3DNwZvKreUYLzTTLKS10jPpZ7fWlrb9+EbRcgzxIWhbjgFDiPqp6RwaP/Xf1HKM2BbDwC3HsiYztRwLmayflmPcWkFj/oo7KNj5N8cjSDh8Oestx4jFzVhoo7V+MlMbrfjJ5dVyLP/HvWaeL5t7LC/eNKTQq+8K1luOEW0EC1iFMGLlOPl/quXYCjoz9l8R/n9UhJ/YTUhvRfgrJzAV4U+ZUh5F+MfY/zz4zSrEb07r6ydfhG3Bk8jKlm3Oso2ENcsrJjDVLL89RS9F+B9+bxWW7Wjpt9d82lS/GhtbGrwI/74pTKiAcWM0ewfdEn/YK8I/+NFqW06vCJ/sQXv2NKnk2NpoivCLGVXXwzCq03sR/qi0mHpV5lZ3XTD41sFVHQ6lGbgIP2JlaKuoAyujtyL8LgWrW97/fYDbwsVTNiwcl13ZCIrwI8aGFpyUKXoswv+mmuWQBdIi17zYnnmbJl3ebgTlLCBCYkaEwJxG/bYMDo3fJuA5tP7Z8wpv892GW35f9bY9vo4AksQXLZeBFZ3ss5nS4NyxJEQiLbkfrYUBEFfIx4ZHcNVNY3Wp5UDssEj7tuSqBxpCbbl9zQWcIjg9RXx46ELAtxDgOz2hrIlVliWvBa6iWFB+9V/bf67c+tQj/sJRF/3aVtmG77L4j3p3EVwoomEsowvFBehdgeg14lOMTht4SpygkwtVXTV9xZJwhYTav7Ryunn/qSDTbZbZxl9znyWvJWRIITdSZEiprrNe9hd8/yzG75+WYGhnST0ydXCU4CtL5WJpKENtm2VbnwhzEz77ZUh8HzZ6368xfqxiDyCPVbWkPJQxnVEZ0YZRBtH94egSsXD2jZIrwfIlCoVnp/ZteoItK9hZRDpy2/YMjZArxI7cdj1jxiiUyC/U3mrV7dk3fMbNcZ0+vPUskwneffDrGvyAYOV4GUX/yxJReShrCKOyvIxi5sBH6eStWpUcdEeNVYyMYZhBY380aj1s5hr/QxWqvvz1etf7Zdkql1EdqW1QQw5TPQtJdaHaCvoeTNDNS0UtOYO3dURqMmFDi43eR6xuNGqckdDPoNteCEAmBkARBQDQtOjkiWJLGX2RiSZRy6eEW1dyTW5T+4RY6PDYoMm+EIBRTABs9U/AHM2VnH8XH4fYmFtvfJxrU5n4OFFTy5uPc+NVwcjtN4O8Ml832G+9a0JtI+Dj/D6VKbqZN9UISAX5+fl64OOMbnIkfcnEUGHuSw6n9avMAqPg42xl1M5SY9COXvg4ifWT6twIOO2+10O6eq/woKlR8HESGZUTZQzK4RiSj8N5/FfE9c/D/Fa9ul1BWmPIfKPi4wxiVJ6HYZRnnHycfm26JM44pPTMzjeP+97d+aWB+TjtGDXX0OCaK1c+jlVkhx5jCnJdVw8Y1+uSpIfIKPg4iA9By8cBhhD1U1dx/h/wcTq3udPfLtbGf8HE7q9u3rm5zMB8nEGJTHwc50T98HEuWe+4675ht3dSfm7K7P6K86zzcYh7cxY4Jv0SmTgmbonlxccZdPhaXceNc7xX1b9xvfP9T2dY5+MQbQQLWDkzYlUv8X+Kj7OazoyNyZe2lvpv5R/IC5A9ezwYX5verM9YmDvpqRBFR5AzTHUIXzRzl8ZEw+wxdTRnvJMqy5QrgjXzwuEnUI48tyeRCYoV5wNmTNnmcOhWowu070eO5GgKSeOvajAwYQGaqVgUo5KY96TlqFQ/jYJP4woLc1nz4T/8qBw0qqXAsoeywDxYIgMKk4i9gV2Pwx6HqFWlykw6Veqck2avHtvln5M2JLRWj2dhJwUL7n84t67dOpFGThr36+XAux9re662bbvV++u8Axo5aeZmU2Ov/VDyVg8Z1cliej2lRk7ajuNWt39kFHktWrur4eRjA4I0ctJshx/qMqZHhuesbvGHpLIm+Ro5abwB0c/vrBH4zH3ovH9y55Phmvn5jtGbEsbGuy9u2LnSqIXjBBrNZvpbvHqd1e6lz/L+A3JuLJx4DYhMUZHpzm/n91WQ+ubaJjTYlDfgKxBVRUWVB/b9i78mT7Dv6amkUSE7o4CoGipqdcd/1ZPZsQEbMn98G/ym9SkgMkNFDVr9/eH9u5Ee01e6Dje3ePsaiKqjorsP32+I+StUsCzYbNjuu+1gcQFzVCR88mzIlvXT/bPObVha8XzELSCyQEWzAiza3PIs4OUuMYla8bHSZSCqgYomVD65NLHDUY+MBRe4+wfvdQCimqio84uC8aOCQ/037nn+d6uuLj5AVAsVVaghyLpTb7vnVM+6RVcebikAotqoqLnXwIc1PeYEpEe19PHPrXUDiOqgoludxue37xfLnzkiKNmx6cqzQGSJip4cTJ9xcr6599TXjY+/W1VpPxBZoaLdl/bPrJfUQbB86avEHpWfw69sjYr6nNn6fLqysc/+uPWvTsYLnYCoLip61Glcd9frfoI9drMsq7baPwWIbFDRq0shXiN/6eOWu7rlD9fzcjjYbFFR9fj3L9L6TPGbc9Rh1PnsmRuAqB4q2rW09piYS5t8pw83WfMh0RqK7FBRo4jb3XqZt/Nf03bpjGNXT8LPqo+KPKcfbLH3ppffPDurvVUrrTUBogaoyGZn+Jttx9b5bt31+Uw9q+5pQNQQFfEfzY7bMD2Lv8HGqeeBWr13A1EjVLRRaV3r07J5PqnK5U3qVNwMX4OLirbseXn7h2CAcO3cZPtea7udICVbNubQJFuKLW3M21y657dwxNAtF/q5RFCYDV2TLdfQmSirsIM700+eEWRkPZxwrn48PjhdRRAXLZOLKRgEdI1JW6B3qDmfSKn1mEiRTAaMEFrFXkvKANFAUb4a+ZwTFWhb+wqsAN2mF0D7SuH9BjoKOBbTdWsCUcKoVL0I5Xcb5iYMqiuuyFt/z61Oy57NX7FIqGTZyeXYCzidIEBiKsftNHDrmkzXiQ3QMQg4TArk7E4sgWV65TFShEIB3k8qg02X1eOECzworghuuUIpUQx99Ml110lT/7SCoc9db38LxIdA1Z9DDoGWiFgvr2qPjBgGuP6eZhTxajJdT8e2oU7oRBOXqEsZIVKC/ctoCRc4IOo2TPSx0uBW6459syrw3VF4dcCih8d6EU7L0cdSnJZjEra1V9MJHezuVNpLc0YGOyliqiNwjTFiD3ZoLSECSV1zqGb8wsob/+JlX0znDOj3NLXsNCIWwLJgBAsMdXT9Wcv5L/uAzewDooeut+yD+9OZsg8ydVsrtcw+KL6rHLXi53uvQ3aba1eJGRzB4mJJtEAsZB/cns5E1j6t22L5T7MPvB++X9Bn5XX3fXMnNj8+QbzMoDQMJPuAERUwbow0UqK/7IOZ0x9v7WOzxy+h78feeyLfHzOa7IMURtXFGUZ1es8+aBnw5cOkDFuP3PYr7Arfrh5q4OwDxMrQ0sdPU3gp5ZV9sO57ZJOPm3bw5zawyKh/Nx5/Hmig7ANGcDKn6zH7oF29L3PPdF7veWiqjWVl/9E/jCT7IIURITCnUb9tHYfGbzuzQiT83rWuZ+LGhlVeNp2Yh/dGkZ51we5C7Q8O3PAtI1FPGOwQw8CvwO8ar9lXERhbdLxC3wt13SZp5TgRzy+p35vsRWMSHVq7PF6ItnYhuUqusEL5wnLoLfki1P7njo5Lvab5/NFxfrW/zxKC7PBuiiA7crk0T4lo/1jo23IfAhRNNQi5rQWc8wt1ip3ZIABh48JeLFWA4Qvk1Ivtfbcb1/Z9vC7cLBRNqzw94g1+WrpjN5OnZYmoNMAOHL+W1v5yst+MCgfbvDlaT8YCYDmMgIERZRAnSrVmwL9pz6H7Iad0mjLo0gzRJYNVPb3y1GTh9OMBe6ddWTS7ujy/NpKMA5QhiItWSNShO8Sp5bkF2w9oVTYHmKDa/tPv1Kkf9kyQ4X6s97Snzz+z0cOIUbXxBlItlX+cqlsDuNL7l76c0iKtZYeb3rOHKoN2zo1MMFj/Uo4zapNg/9Jo0v7WGZli6MK4nkOzMLpdqXtnXOe9rtsHD7NJ7ncEXxrYEpbcVMKjT8jGlcD4sESHrmcufHkkgFxV+BN5jLjkMcjmsKTZmRgMEq1WRGLYrvQXJqmD8q+09UbA4J83C4D+3I2iCdoIMPgVs8qaq8cTaoACjxtgKV/obcijuPZYAy+AniqJD/5PZdNi4Gm0PFZCk4FjF+NydHfbw26Lq+V/H2HST4q3MUgvVIoWcej10mxMsvDGx2/j2vHWPnp3Z9m2XoPLaGNSAcxzIMwmbhRtv9JaITCX9Ui4uYb61adbofKoGEnoWGR4wBYS1Kebmcd/MX9TONtjy6FDcwunD++IZxWUPJe8/cUJWc9ockRhG0IFW5ETAhtqEjbQmYRzFk0/tO0k95v5/q2v8+UpAmLD4GiZKFTC9R8rk1HYAjqH2Qm7LwreB8esNGqcSCYVqwZ5rFQZwZWDbYpCe0tAjNIzvCdVY2MNsbbUs5YCTkOIrhlV8C0ToPt+ZlnnvjVc1JD2h0rYrg8aSYgYNdfY7fT6tB8dhEvufD51v00vHt59Rh5Edp9Vl0ubzkRWQlnpVAC5ehC5tVQuA+xeUnkWrfusJXJ2auQUuKEGhxYlfAOn2bWp92BPQPLIlDXxM1vE4qna6AChDungpWzPYogWGEkMaN2dqVcHC3tR05Dx0RJNHJpqcHacfYFLK5E5w7+Jcfb0Gg6d3HCJgsAShj9lNdzWyAIJFQseATbV41WqptQycWEqyyQpaw9lZ3QWFPOoSIUuyCzQ6SDMRtXGFPoKyFqFDX0x9aL1JPt9wvZrHqlmGxqeuP8kmRCYgN+KIjCBXC4PKJAhTgsFGOLoQrWRQ7NQGU3deqK1ZKeFTzmUrc+cyVS2PlUN+Sajh5zIjWMHcknFYfvq/F3smWhSWNAmu+IeFiCPm80EecRsDPLNdJDrzMqsgUGuB1YmBYkSY2VSkCgxViYFiRJjZVKQKDFWJgWJEmNlUpAoMVYmBYkSY2Uuyjh3NU041HPHhM9+suAxtUiUNzh4KUcfkX7JAuVtC53+m/iecLqzu5rHJhPxyGsvauL1X0d12M+XyWOgu4gEcMhOeWWa2dbEQwpb9kTAHjeqByBbSrjPRGkI2oX3iZTTUl+RBA7VH2nrlcPjqBlgkhVRnV3DdpCBM3Q6u7ZTRduQbBA5VA3AA/xCzwvqX6t4cpCbm9+2WwejAjL/LCpLrK18j7ELAVYpM9Blt5iUYA+21VEzKP1wOqys1JQITawoUTphIpt6z3lhwNbv22qGtXtYn0VaxNS+/p9Ob4zz2CKf7ZXkNv4YCygFMqLUboZuTdodA7F5hUw2BDNsysGtHsY9ow+VJEcecVjiwxcm3h4riY+a7mzAeC5sv4gMIsqA3FGwDY6boZsb66COHkKIQjVqVsAVCGebKMGpMf1Mt14JP/kbM+/WXVHXx8wIopYQJDEjSIEzdIvrNneXqr65+qiqZMgggUV6A+UYvqZnYFFvz/W1+q/c5SAwwUcRseeSo4hqSXmg04MRHfsZmGO0lUOzML7q5y80cfnCX7LuvMeaAO9B5IN48kpoQgNuY3w8V011i5XrVDaOmGChbWxAW/Y3MEzO0IU/T5X7yIFVHskHUGUP094RnehTwUPmsTfuD+Xw7KQ6+MNOJB5Ls6zjhKUeIRNMXFmZ4MBOO0CwAqnGWCZwza1n6rTWWSBgScBMo4cqzreiV/zz1YL8lpta1Ww1cTjeEgnAvdRAaYj07BJAmCoywvRGx8Wu9BAaMdZssBAatDTIGIEhNFIn4WhnBBrUDm2js0P8ludduk67J8z0WPNO2dW2AfEcOlIUzVWd01Ccl9O55i1V92HRHiQvRcSNksTCSxKFNBRdILUyS8TkLoY3pDop1xBriasrbHqVWgCrJlH45AkAda9UnQyVBRKGUh3ugteh/JZ/v+iatMk2xnPpAue293b/IHRsRB5AdpFUl0ubc8Q8tzLOOchMng7hyaKr6BCdqhObxFz1PkyFvkZnjJm6OXm9z+JLUaZ5ya3H4KN/qvvJ0T/0emn4zPrp/GzD5h/ui248Xup/s99GFvAZwogPGD6GYBiYIsSNcSogenCIP7pVAjcPESnCJUompd2q/2akw4MMv8WbXA7wXzfdjFea6n6y0tDrrJ/ZAq10YNQK16i0UpyPaUWn5asGYvCiJWLU+FIqZsHU+9ebhQ8XbluybOjmefXG4hXjh9xPVgx6nW3FuDqj5gQeM5L2qwkuAk5Yqm4bMjs1BsjGQiYtDY/nYY87e7zOd5tR4FbkMvZ3Vzyrlq96AJlViwnKAxEvRkQcUrF1PYtDs67vWuj7cXD3bt4zP35Xmh6/+QGvY9Unak+G6aHeYeAXcG5shDQ0AriVMLdQFBMDKxqoWTHo8q/d5oOYp031vuQxqbquC090PsoTJbFfXMGu7vT8skbA66OuBlzspaoiNTCFSfUm1N2iHjS3HfvD3CN9yuNFG3ZZHsEPPjrHRi3Q8+KPUEkhhm2oOBpcBwRDnSxWD390RKnKcuIStSAfKEZ1PgBLAcL/l/iU3In+k6iHEmE9N2hVULivRQCzoQIM1mICgKGTeTvdZDaawBVxNLHU45oY5mAhcjVzPlPkapwa8x10mPsf8Lh4hnOCnzDItrv0pU8tfNUopJ98tEwaiqSFkQ0pHdJ2fsAfAMuTEtwp40binqKVnSRWpmB6LXIxK7xc24MbsMm2hlTNFKqDGxijeLmgwFx9Gol5Tth6Us0b2lKcLuEnVUEue4uxMTBQfHpehfyq7rlv6vqZt65TiMkr0MjNAhDzQhojpqrr9A9WvQ/yuvBPmDZuDTykCmBzIDsBITPh9UWpn5CF7puXVljhO/3AidMTw+zww6YCjzw7eKTZUYEwO1bNe2J7+KxDQO7gKw0Hmowoa9cmDpgdtaE621CxFyBB58eCAg2QSjtZahgsCZUDC60LSg9bjvqUZ7fdfd6KRdkvC1+a41FyI6PkVipKn8133SmWBHqsOzX7ZOSm4tEsoASGNQNK1xYUoGNQPZYY2S6qeoHQMdICICLrHb+GqR5FXsPQ6+Vx4I2MmM9UB032TghSqD3d+S+zp8RyPnqyp64LmOyp5X/2FNNP/Ib+O7w/7PFdcnv4xG8O8Y9ZsKfEMk0sWIoejJbCvtztaeSYphlN83q5Lb0WHVXU02kHC/aUeEjAAkqWjChxytOeEtdQg9tTZMTQ2lNLtT3dRWdPjWZPQJxO7JDZOlawfTeXH+2e/ck1YteVuUEsbAnyUpm2BDvUZyq76SDXmcxmgUGuBzIbRQ08zNRT1MDDyGwUNfAwMhtFDTyMzEZRAw8js1HUwMPIbEQPjcRYg1aR+iSZUD2PBcbaHtaUbKZHJf+zOpIURRUxJRNj/iSdmNDphFi2kAWd7KXTydLnn1Y69U0RHjwb8Kvnz8wm+HIdJXmoeMUwxZysS0oWRcGaUOgDqpFzWmt5BAT58ULsm0xs0y1oUhPHgFZa+ZXE0o2VhfLQ0RKx+ia6r0CuOFIi0zbU0ULASUwGtq4Tn+acMyyZwr80QeGi8C8Rl4XgX6Z9T8hds2CAd/amLf6uT1rfYst/ZKx2XYIFd5xIIRWNlFFzhvpEdzy7bGGua/YqvlnHZ2dymdHvhz6KG0B2lAJKdZSINTXLWtYIaG9yMuookbPgWiDaIzpKTP6kZYmjVDLQKVG7Otq2yYexHPc9k1rcvrb7z/eMqNE5TVTHfWUNiLRFITnqSgFJdFsEEtSG7KOzIek59wfOevzZOzdnf+7u0Q/wucKVAkVREhm5yDOd+bDncaPhHRqV6rlRcqVEVaBMKYlTclUFnqlHJ6F2K8WraOMxmQWHKuQyWRD0euHFkrTx4t6EMervYvWb7d5Q110L1rp1nbhvL90YNe0bI1GEgNfHPra5u3wsnBmhMlhNGhYPE0uV6HcHuxQYKX2YsJGgR6zcN0mPYPCmzgV67MrnJMziV/MTKcKlUUJJGG5QmKkuB8G+P5rXq6quh8ijNa8Sykj7tBBcnz+3oAYCYqAC5h4rpaq3qoK9FdWirBDFekeJYek+9WivCi/C8K3GJWS/L0NLk6uMP+wmJBXJ+LCenFo1lYOVCokoUv27SX+FKLrEgKiG6n66oWo0rj2xkjBLx/3E8c+Cb//HXCbf/vZczDxkGz3mxOXEeEMs5xmTgw6rk4MO0GGus6ttztGfq01RextztSlqb2OuNkXtbczVpqi9je2nrBNGt+vYx94rO31t/boN61XW2E9N+PJy68N104SH7nf47cwm7y0kBx1afcqBRCzozYKDnkOnSSNtW0gsXK63toX3FzG1LYxbVN5tC8XNbTpMO/U2IKtdlZDbHX+RGEHbwtuLmJpAnV5kBL3XfvvtNz20LWw5aEW2eHodvwzLAe/r26TPMoq2hfsYtZNpDNrRS9vC6h+f9Pzl3nHBjN+T7x1cboJv9GyotoUpjMqJMwblcAzZtjDxbOMO34dy/PNOOq+tlbEBXx/R0G0LxYzKCzSM8oyzbaH88oU1xYU1+Hl1JZ8Cm9m0NHDbwh6MmrM3uObgTeXWtvDx9eRzH+Y/8NvvkzJ18rhRV4yibSHiQ9C2LQSGEPVTD3Jo/NR/U9tCYmsdA7ctjFrM1LbQbbF+2ha2thLyW/t8FWxODrXpmMnF9+Nmo20hsUAiC634Ri1masXXb3F5tS08sH/t/dAbC90Pn+pSbNpQblL2KUzAimgjWMDKjREr58X/U20Lc+nM2H+NPP5RIw9iRzK9NfJouISpkcddsu1koZHHqwdHz7z/u4tvdljvlLPvVj1ksWIFyzYS9j2ot4Sp70HlJXpp5CHweRPw9x/zXY+8zrqRV7sZvn68IRp5vF/MhMpd/VpDxr2DbsmD7DXyyPiccnbuuQr+KVPjvxyqN3iC0TTyOMuoumzDqE7vjTwmnqrd1vzrJWFig2HRZrPiLQzcyAOxMrSdGICV0Vsjj6mpNS7vPDDVe6PJc4dqF3i3jaCRB2JsaMEBxkZ/jTw4o/q8+TJ7i/vqXtleqRPrZhtBSRyI0FlGhMCcRv22Qxwav03Ac2j9s+cV3ua7Dbf8vupte3wtEiQROFouAys62WczpcG5Y0mIRFpyP1pPByCukI8Nj+CqG0/rUg+G2KWV9m3JlVM0hNryg5sLOMVweor48NCFgG8hwDdjSVmTMy1LXgsyiFRYUH717kfCnFYm3uPnrY0taif/FV9s9B/1/yO4UETDWEYXigvQ+wOi14hPMTptHAScIt1cqOqq6SuWhCsk1P5l4LO2SQ//+EWQ8bV4UA/nNycJWZbIjRRZlqrrrJcOB9//BOP337XE0M6SemTq4CjBV5bKxdJQhvpYh50ubMtrkxQwzWvd+/Hjh9rixyr2APJYVUvKQxkZjMpIMowyiO4PR5eIhbNvlFwJli9RKDw7tW/TE2xZwc4i0pHbtmdohFwhduS26xkzRqFEfqH2Vu+k9Ap/PHK/YPvA5LE+26sfwq9r8AOCleNlFD10S0TloSwlo7JGGMXMgY/SyVu1KjnojhqrGBnDMINeZL97NjR+oc/U3ut2vkzec6QsW+UyqiO1DWrIYbp4Iam2XFtB39909FJRS87gbRVzfT2P2WcFzDk7SbDpQfAMg257IQA5GABFFABA06KTJ4otZfSFarJ2flt7qfFuQXr9iDeFLd7UISxl+i0YAAFIZAJga9gSzNE8zPl38XH4j2bHbZiexd9g49TzQK3eu/XGx3mzlImPM3NpefNxNv3we+llUcl3oY9zu3c1P4QaAR/n5VKm6Oa1pUZAKsjJydEDH+dhvy+KQcuL/FfG9X2W8cWvhlHwcY4xameHMWhHL3yc9sX8lMA3h303LDlWFPnn3vFGwcdJZ1TOTGNQDseQfJz1wRe37fCP917QYG2aa+TaB0bFx1EwKm+YYZRnnHyc1zmH5JWGtXJNfHjsdVann5kG5uP4MGquk8E1V658HG6KPPHJaKHbylqN84f52KYZBR8H8SFo+TjAEKJ+6hHO/wM+zkalda1Py+b5pCqXN6lTcfMGA/NxFMuY+Dgey/TDx+lzt9qvi3vfEWweU9C7X09hf9b5OMS9OQsck6hlTByTQcvKi4/ziddwinX/s35zl7xdHPotYyvrfByijWABKw9GrNot+5/i4+TRmbEx+dLWUv+t/AN5AbJnjwe/xUdK+oyFuZOeClF0BDnDVIfwRTN3aUw0zB5TR3PGO6myTLkiWHczHH4C5cjbsufl7R+CAcK1c5Pte63tdoL2/ciRHE0hafxVDQYmLEAzFYtiVP7D/Gj10yj4NDawuJ81H/4j5H+Oaim4Xnd+gXmwRAYUJhF7A7sehz0OUatKlfl0qtQ5J81ePbbLPydtk6CDnaXzFf6S6EmhByq4Z2jkpF1Ly94d/7tCsG+/W9xDcdJDjZy0qzXnyubYvnY//E6i6JVxoqdGTppf20fBmQ6LBcsPTN8+6GFOA42ctKTxq6YMnMb1SzntPLz9xx5fNXLSGrw4uVRaYCfIP1T11tSXWYUaNT46LVnCETbd673lyIC5he893TQaVs3NGzSBe9bTf/vEZeETDt38CESm2APD1nVpumWt5676jd8nVvvlHhBVxUTyFbn1G05zXZB+tTbvSCMZEFXDXt52WGHkkyi/TW1Ctihn3aoJRGaoaEfwHx6ffh3vn7Rh+Ndefw9OBqLqqKj/MPm8z9mxvLUiYZcN8n2wGIY5KlqzstntKev6uU9b2rqlX73aEUBkgYpu+6XGHuh5RDhjxLW7NTvO7wVENVBR3b2nryQE3vBKHpx1t93RzXWAqCYqkldPP3K8Zxfe+lbhTT/trm8NRLVQ0buonjVXjh3ksW7vG5/aNW9sA6LaqIiTZu9XFFLZY8PxE8kB/WcOBaI6qGhbhcUTo6t8DNht18JrZ/aTZkBkiYq6ra51cr5Div/c22EX/57k9wiIrLDXeNCbG/u6ofu+pCqht3oe2gVE1qjoZ5j92+ajNvNmzoz3eT1M5gVEdVHRERFn2dpzHb3mBDV66t814TMQ2aCi0VPiR+88ONZ31q6UofefXO0GRLaoqOOT1zsTfPL95gya2W7NsecvgKgeKkoeo/QfMq2WcMagsVkLE9MCgMgOFf1a+eWlKgmWwj0dvppWyxlTBET1UZHlCJ8m7btu9Tj8/b6isdR9MRA1QEWT8yfnLE2V+Sw6fsL27P2zEPmGmL6k9dc3XX/d+/Avp37y7vvCAdAIFV3wCjwu+/iXf1KTMbbykKRlQMRFRY+mvYib/LIqb+Xp83lNkm96kJItG3Noki0zLq4wc0qc6rPt5tchl36av6cwG7omWx6lM1FWYQd3pp88I8jIejjhXP14/LasiiAuWiYXUzAI6Jobt0DvUHM+kXYNMZEimQwYIbQThpaUAaKBonw18jknKtC2fh5YAb6lFUD7SuH9BjoKOIVpujWSKWFUql6E2v93WDTsu6i234w07nDugeu9WCRUsuzkcuwFnM8QIDGV43YauHWP03RiA3QMAg6TAjm7E0tgqW95jBShUID3k8pg43b1OOECD4orgluuUEoURRkvjgm2fOKnye7KK92svxwfAlV/DjkEWiJivUSzPTJiGOA6nGYU8WoyXU/H1sNO6EQTl6hLGSFSgv3LaAkXOCDqVm4M3bgOWgb1/3rL/UiHvq07P74tIJyWo4+lOC3HJGxrr6YTOtjdqbSX5owMdlLEVEfgGmPEHuzQWkIEkrpncb+GnKxOq/xT7tW4163xS17ZaUQsgFXICBYY6uj68yvnv+wDNrMPiB663rIPNi5nyj4IW14e2Qcf/hwR9+HKVf8FVy97Hmpa+zmLiyXRArGQfbB2ORNZe95yvWQfKPjVvZOf+gvm36oStihwdlODZx9MYEQFjBsjjZToL/vgx5qxC0f1tuBnW9zZ/2DF/GZGk30QxKi6XoZRnd6zDy73rT/QNGac1+FUF4dt5+ZNN3D2AWJlaOnjwMroLftg3jK+ycqBs9zyuINlHZeuwhdMMEz2wQRGcMKW6zH7oEfDcf7JV/d4zDEZWOVNv7ghRpJ9EMSIEJjTqN92jEPjt51ZIRJ+71rXM3Fjwyovm07Ea90U6XsZ7C7U/uDADd92FvWEwQ4xDPwK/K7xmr1ZgbFFxyv0vVDXbZJWjhPx/JL6vcleNCbRoT3U7U1oeyiSq+QKNJCxqRz609au4nhOGrXLbd3p1UtyKwXWIgTZ4d0UQXbkcmmeEtH+sdD7qQgCFE01CLmtBZwTm3SKndkgAGHjwl4sVYDhC+TUi633ySO9XqzfxVvZ/nn+WfeMY/hp6Y7dTJ6WJaLSANv7a4u6kSHdAxaY7jpr3im/rDXvIWC7GAEDI8ogTpRqzYB/055D90NO6TRl0KUZoksGq8p7eitgSL8Tnmnejgsbxj/8WBtJxgHKIJdcrsxzC7Yf0KpsDjBBtfu+/Vj95inPIz2vV8LVCc0usKDaJEbVKg2kWir/OFW3JpKl90BWNnk0alATW8/VpkEbm7jm5husBzLHGbVJsAdyNGl/64xMMXRhPM6hWRjdrtS9M67zXtftg4fZJPc7gi8NbAlLbirh0Sdk40pgfFiiQ+dEF748EkCuKvyJPEZc8hhkc1jSMFEMBolWKyIxbFf6C5PUQflX2nojYPCHZADQn7tRFBgfAQZ/l4yy5urxhBqgwOMGWMoXehvyKK491gQQoKdK4oP/U9m0GHgaLY+V0GTgePtcF7SOjOMttY1Tfmj/Ft9muTLST5mizSR6vTQb8+f4Ixciv83kL+7ZZmTLb8s/lNHGpAKYAyHMJm4UZa/TWiEwl/VIuLmG+tWnW6HyqBhJ6FhkeMA2NNSnm2E9unZuZPl3wMrVKyaZFeThW9GZlTyXvP3FCVnPaHJEYRtCBVuREwIbahJO0JmEcxZNP7TtJPeb+f6tr/PlKfhjbvMgSbRMFCrh+o+VyShsAZ3D7ITdFwXvg2NWGjVOJJOKVYM8VqqM4MrBNkWhvSUgRukZ3pOqObqGWFvqWUsB5/EKgK4ZVfAtE6Cbs6Ksc98aLmpIC1UlbPkJjSREjDqlxMzm7OOPFYUHP98ImykZ1w7vPiMPIrvPqsulTWciK6GsdCpYFxYit5bKZYAdkM6voHWftUTOTo2cAjfU4NCihG9pbc9M69RKvsu2HgzpOWjrUDxVGx0g1CEdvJTtWQzRymFEa/0KvTpY2IuahoyPlmji0FSDs+PsC1xaicwZ/k2Ms6fXcOjkhksUBJYw/Cmr4bZGFkioWPAIsKker1I1pZaJC1NZJklZ+7A7o7OgmEdFKnRBZoFOB2E2qlbI0FdA1ips6IspoXibN3NJlN8brwPv7r+oX/O3RoTABPxWFIEJ5HJ5QJHDCAUY4uhCdZJDs1AZTd16orVkpw1YOZStD1vBVLa+nxryAuOHnMCNYwfyDu9GZkw8WNtn5ereH8/WkJT11AhC3msVE+TOqzDIT9FBrjMrswYGuR5YmRQkSoyVSUGixFiZFCRKjJVJQaLEWJkUJEo1K5NMosRYmRQkSoyVKQs8XVi1Wj3+Gp+omfU+Cz+SKG9w8FJvQgn0SxYob6fp9N/E94TTnd3VPDaZiEdee1ETr/86qsN+vkweA91FJIBDdsor08y2Jh5S2LInAva4UT0A2VLCfSZKQ9AuvE+knJb6iiRwqP5IW68cbBX7pYNJVkR1dg1bylqn63R2baeKtiHZIHKoGoAH+IWeF/R3WOXjq+XN3HMOj+xyLKp4UFlibeV7jF0IsApKR5fdYlKCPdhWd0in9MPpsLJSUyI0saJEafDHCfmXKih4uY8yWgQcOFSRRVrE1L7+n05vjPPYIp/tleQ2/hgLKFkzovR5OfnwgclPcwzE5hUy2RDMsCkHt3oY94w+VBL+vWXvvIyWgsRLHVeY+TarYcB4LmzhigwiyoDcUbAN7pWumxvroI4eQohCNWpWwBUIZ5uokzX9XTp//X2PT06LbasrCMfNN4KoJQTJgREk63Td4rrN3aWqb64+qioZMkhgkd5AjavTZ/TA3xf5bWt3IPmbwAnfzM4Uey45iqiWlAc6FRnReaOO6Z7h0CyMr/r5C01cvvCXrDvvsSbAexD5IJ68EprQgNsYH89VU91i5TqVjSMmWGgbG9CW/Q0M00cI23mq3EcOgO20bkuddmHavOTBl6/deOqx17lvjM1ix+r4w04kHkuzrOOEpVlxookrKxMc2OliCFYg1RjLBK75bd3WOgsELAmYafRQ3Ru1b0QVywLvVSeHP9rxZ0Eq3hIJwL3UQGmI9OwSQJhOM8K0L123xa70EBox1mywEBq0NMgYgSE0UjfyaGcEGtQOnaWzQ/yW5126TrsnzPRY807Z1bYB8Rw6UhTNVZ3TUJyX07nmLVX3YdEeJC9FxI2SxMJLEoU0FF0gtTJLxOQuhjekOinXEGvbtbSlgJOwoQBWTaLwyRMA6q4bdDJUFkgYSnW4C16H8ltOuORi7VG0znXumAorc7fvHIN3kZAHkF0k1eXS5hwxz62Mcw4yk+MhPFl0FR0iNujEJjFXvQ9ToS/BpEBR4aI1wrzQcRKPJkm/4KN/qvvJ0T/0emn4dPUb8/B7xie/gz1vn0s79uodC/iEMOIDho8hGAamCHFjnAqIHhzij26VwM1DRIpwiZJJaX+PXxSwM8fDb0HQZ/OMtOd4Knll1f1kpaHXWT+zBVpxZNSKjVFppTgf04pOy1cNxOBFS8So8aUuSZI2fkCnSB+3aWsrDzDvwDmMV4wfcj9ZMeh11ntEO6PmBB4zkvarCS4CzrANum3I7NQYIBsLmbQ0PL586mQ+gGfhm/Tjk1NDlw6N8axavuoBZFYtJigPRFwZEWmyAVvXz3Fo1vVdC30/Du7ezXvmx+9K0+M38ZEj9BO1J8P0UO8w8As4NzZCGhoB3EqYWyiKiYEVDdSsGHT5127zQczTpnpf8phUXdeFJ7oe5YmS2C+uYFd3dH1ZI+D1UVcDLvZSVZEamMKkehPq7e2TL5Wc31T33BrM+3x7+Xr8aWwVOsdGLdDz4o9QSSGGbag4GlwHBEOdLFYPf3REqcpy4hK1IB8oRnU+AEsBwv+X+JTcif6TKBElrucGrQoK97UIYDZUgMFaTAAwdDKfp5vMRhO4Io4mlnpcE8McLESuJq9nilxFqTG/QIe5/wGPi2c4J/gJg2y7S1/64OndFkg/+WiZNBRJCyMbUjqk7fyAPwCWJyW4U8aNxD1FKztJrEzB9FrkYlZ4ubYHN2CTbQGpmilUBzcwRvFwY4G5+jQS85yw9aSaN7SlOF3CT6qCXPYWY2NgoPj0vAr5Vd1z39T1M29dpxCTV6CRmwUg5oU0RkxV1+kfrHof5HXhnzBt3Bp4SBXA5kB2AkJmwuuLUj+jO9UtqPTbU2Fq31u2T/dnTMXppwKPPDt4pNlRgTA7WlZb85bTaIzfqju9Q/MvFR8v65kJmB3VoDrbULEXIEHnz40FGiCVdrLUMFgSKgcWWheUQtY5WnYK+NN//uJrme1jfnPHo+RGRsmtVJRmv3N8d3Vlsm+ik9PmwVkTyppdClECw5oBpYsbC9AxqB5LjGwXVb1A6BhpARCR9Y5fw1SPIq9h6PXyOPBGRsxnqoMmeycEKdSeXvyX2VNiOR892dMuG5nsafX/7Cmmn74eJ0bNaNjF44DHuJqXhg9UsGBPiWWaWLAUHRgtBbfc7Wk3s5VOqdcn+aZHDN7cfZVJFAv2lHhIwAJK1RlR+ryhHO0pcQ01uD1FRgytPa2utqeX6Oyp0ewJiNOJHTJbxwq27+byo92zP7lG7LoyN4iFLUH2BqYtwUb1mUohHeQ6k9ksMMj1QGajqIGHmXqKGngYmY2iBh5GZqOogYeR2Shq4GFkNooaeBiZjeihkRhr0CpSDjFi9TwWGGu/saZkMz0q+Z/VkaQoqogpmRjzJ+nEhE4nxLKFLOjkdzqdpOfcHzjr8Wfv3Jz9ubtHP8Dn+VUKFEVJZOQCrXSGzZ7HjYZ3aFSZ5kbJlRJVcSGlJE7JVRVnpfzaxLqLFK+ijbUzCw5VyGWyILhiwYuaDVkJlnB6q6X+D5od909ZOHfhkfvvntFZQtO+MRJFCHh97GObu8vHjpRBrhasBAsL/4ilSvS7Aw8DRjkeJmwkqAQr1Us6lG4BdjxrgQHtyuckzOJX8xMpwqVRQkkYbgE0U10Ogj07NK9XVV0PkUdrXsVb4cq+LQTjzq8tqIGAGKiAeYNKqeqtqmBvRTWhFKJY7ygxLLuFwVuhKrwIQy8alxBfXYaWFVZtCGAnEKlIxoe1oDQWIqVCIopU/27SXyGKVt+DDtXLdEPVaJZlYhVQlo7qiOOfhXX58VqmdfnKWmxdvmL0mBPLqxrv8ehCRmJ/oprYf5UOc52XSXOO/pZJirq52DJJUTcXWyYp6uZiyyRF3VzMF1rq8aVe93gef98h3uBFQ/bxNHyh3p6u3sWDkj1yrzysm746fB1pcYVWn3IgEYvxsrC4XqPTpJG2HCMWHdZby7GizUwtx6I3l3fLsf0tU48Uxvt7LQo6rZT3T+EaQcuxK5uZGrgc3WwEfZPOnDmjh5ZjL/7gV6ux/g+f3DN90g5MamdvFC3Hshi1k2YM2tFLy7FvT/Z6u5yw8Nhdo7i3JC0XT2U0VMux6YzKiTYG5XAM2XJs7bmr8UGr+/gtr3h5acRfSW2NquXYEEbleRlGecbZcmzKi+SUygPvCab9GPis6coCjoFbjnVg1BzX4JqDN5Vby7GjJz2b2dlV8M7PHLOikfCPrkbRcgzxIWhbjgFDiPqp1zk0fuq/qeUYsS2GgVuOhW1hajnWbYt+Wo6ZuFg/nrPpOC/ResuBdVlP8XxgNlqOEYubsdBGa+QWpjZa/lvKq+XYy5r9kms8kvtsumnxcMGWPbNYbzlGtBEsYNWNEasWW/6nWo4V0Zmx/4rw/6Mi/MRuQnorwm+9lakI/zWy7WShCH90L+/WZ1te8s0+0Fq+K997D4vZ5izbSFizvPZWpprlP8g2sjyK8B/5XD+vGq+579YanRyWH8zGF5k1RBH+l1uYULmmX2vIuHfQLfGHvSL8Y+9NeD1U5ihc/du0wW2b9scX3jBkEf5jjKrbYRjV6b0If/sVb+r0rzbbY1G+KDwsqZuNgYvwI1aGtoo6sDJ6K8KfvKnKTesKNYSrr6Xer5rT08oIivAjxoYWnGtb9FiEf6p8/YPFFRt4Jhzcub53zZhTRlDOAiJ0jBEhMKdRv+0Gh8ZvE/AcWv/seYW3+W7DLb+vetseX0cASeKLlsvAik722UxpcO5YEiKRltyP1sIAiCvkY8MjuOqmsbrUciB2WKR9W3LVAw2htty+5gLOczg9RXx46ELAtxDgu3hrWROrLEteC1xFsaD86oXvwjqE+2wO2H/qTLPY07/hG9X9o95dBBeKaBjL6EJxAXqPIXqN+BSj08ZBwCncqpMLVV01fcWScIWE2r+MqdexW+Wwe6655+4dHL2xCv4opbI7ciNFhpTqOutlf8H3P8z4/TdvNbSzpB6ZOjhK8JWlcrE0lKG2jemxYbGOUZ/911n+9sfZic3u4Mcq9gDyWFVLykMZixmVkWAYZRDdH44uEQtn3yi5EixfolB4dmrfpifYsoKdRaQjt23P0Ai5QuzIbdczZoxCifxC7a1WfJVbs/K4TV47lb/cVDw5wseva/ADgpXjZRT9L0tE5aEsGaOyBhjFzIGP0slbtSo56I4aqxgZwzCDks02/8j5UNH3QMeajivdjjcpy1a5jOpIbYMacpjqWUiqC9VW0PfMVt28VNSSM3hbF5xfPaud4xuQEjoo+phlo6oG3fZCAHZhABRRAABNi06eKLaU0ReZuJB/qH3jm2d8cqZV/trkU95ywlKm32RfCMAEJgC2DtuKOZo3Of8uPg6xMbfe+DhPtzHxcSZvK28+zl2TCxfrze/qsWnz241t9o0LMwI+zsNtTNHNi9uMgFSwa9cuPfBxavzZ7MbbGt38Nn1J8ggNG/XUKPg4uYza2WgM2tELHydm4luX9SfWBGRs7Di4x1+mDkbBx1nIqJzJxqAcjiH5OLm3VuWMcH7jOquOWc3i57sSjYqPM4pRef0Mozzj5OP8YRLwNcGstvuMDOtv5zZU/WhgPo4bo+acDa65cuXjvPYZHHEy7qxPsuXBh2kfe7Y3Cj4O4kPQ8nGAIUT91Fuc/wd8nAtegcdlH//yT2oyxlYekrTMwHycUVlMfJxeWfrh47RYXhDsOGW4YOm11o9P7Pklm3U+DnFvzgLHJCyLiWMSlFVefJw+Zi1eD3zTzSfPNqnrgaq8j6zzcYg2ggWsejFi5ZD1P8XHuU1nxsbkS1tL/bfyD+QFyJ49HvwWHynpMxbmTnoqRNER5AxTHcIXzdylMdEwe0wdzRnvpMoy5Ypgzbxw+AmUI+/RtBdxk19W5a08fT6vSfJND9r3I0dyNIWk8Vc1GJiwAM1ULIpRScx70nJUqp9GwaepDgtzWfPhP/yoHDSqpWBGtfUF5sESGVCYROwN7Hoc9jhErSpV3qFTpc45afbqsV3+OWnZl+0bf7862WON89Lzn94uGa2Rk7a61wnHuqm/uB0SNcl6VN/XRiMnbfK4RG7nyt28Z7u125ErDJFp5KS9fGZ20GHxV8+9r8Q+Ez+2KNbISRuyukVNru0W3znff3nof+EPqUZOmuePU8ulE4oDUopqb/WzfDRKIz//RueligUvqwiTBwVlZfDHpms0m9n6aPYa/117eDv7x7VpERNwBIhMUVHPyM3TJr9/6bk2/veTzWuapAFRVVS0ZFzmyZDGFm75igzHb0MCNgJRNVTkUXfTFpfMrx5pM5N/y7q7JACIzFBRA6VNh3fXFbykO79Y7fPtBBPZq6OiLnUvV6jzu0K4p06vaKunqZZAZI6K+sz1KB4WfUKQ03/Z35t+9kkCIgvsezX8fbmX913/LWcrNrN8ad0eiGqgori79hsEk+vych4s/vp0wf4TQFQTFf2+YtJP8wNJHknmopA6A9vMBKJaqKhmUY+JktSKAfn7w8Yqq594BES1UdHbt08tnq835S/oWGz9blWj70BUBxX5+0RkTtkW47/mauTz+ZcPXwQiS1Tk2kIQ8LTtMt7OoUM7mYSF3AAiK1T0qtaT+e1rz/fe/Ndlvyt/1v0JRNaoqHbh1JcpL34NWNj/znTpYd9fgKguKlq8qdvJg10dhGustlccZl5hNRDZoCLn6SnrRh7/6TXnbY5bl++/bwAiW1Q0sPfrdsom7T2WpNz+PveIFdRyPVQ0LciiXe09ll5bBy+zv1xN+QWI7FCR1yLF6dNPV3vOfG0663b9s2eAqD4qCmlWw0L+wYd34PrBw9YcG4hhA1S0zKKgV5eZHTxzPs0/JAuvFw5EDVGRd2a3P5bldQhYUJwXNG7YjgVA1AgVPaxcY7JlhDcvXVlxcMvDkROAiIuKLvw+fEmfSo/9tvEOee5dtkVMSrZszKFJtmwmufZsm/MF/4ShRy4PzH89h4Vky7t0Jsoq7ODO9JNnBBlZDyecqx+fiT9MFMRFy+RiCgYBXWPSFugdas4nUmo9JlIkkwEjhFax15IyQDRQlK9GPudEBdrWvoLFw7cXQPtK4f0Gwg6w23VrAlHCqFS9COV3Wzn+zTBFhVGuSyMXxbeYaFOzLFGi8nVyOfYCThwESEzluJ0Gbp14u05sgI5BwGFSIGd3Ygks0yuPkSIUCvB+UhlsuqweJ1zgQXFFcMsVSp3jsyH66HnhG7eVk38VNe0x+iY+BKr+HHIItETEenlVe2TEMMDVY7tRxKvJdD0d24Y6oRNNXKIuZYRICfYvoyVc4ICo2zDRx0rPVr4xdoywtfeeV82s6/V14RJOy9HHUpyWYxK2tVfTCR3s7lTaS3NGBjspYqojcI0xYg92aC0hAkndevX+vrp1phxwPzLg/9i7DrgmkrcdFBXFgmCvsYIKiL0rSQi9KYi9RAgQDQkmYC9YDrti7wp20BO7goqcCtZTzt4r9oaKZ9dvZrMb2N3ZJZElyef//P28kx12s3nemfd5Z+ad5126yXxr33WFTyPiACx/VrBAV8f55y6PgX/+O33wS6cPqBG6wU4f1N/OdvrggX5cqePpA7Ppk66M25Mg2LPaO7WX3cadHJIl1QNxcPqgzna2ZO0y2w1y+iB9qU2jAe+qiKcEbe7S88fsUUY/ffDvn2yoPDAOJ+qwU2K40wdZ+8TDL4XP9Dp069vKF/Ou7zCZ0wfnWE2XaqrhDMenDzb3Cs1NmTRanDzh0cLpS+Mo9ZAMfvoA8zKM6ePAyxjs9EEnnmzIvskdvCfl7Ilp1eAMeVfdOKcPMGfDCM6DPw14+mBhhTf8UGGY156KFcae961kbiKnD86xIpSqjdvu8RjitlMrJd7fO1R1m7ypTqnnDcamkaNRrGZdgIu37gsHQnLJSDwSBjPEUPAjiLtG56+rCJwt3l9h7IWHbuN1O4dAWb9Evzc9iiZa9CjtUuYQXtqFFio5AwucPlgEtSVPPe1e16bZDeeZZiUuNJZUbUfZZId3IzbZscsFRUpU/8dB3ZaSEKBIVCfkNxPz3h3Ua++sGgYQ0S/sQmQq0H1BO5psnURdz1Z6H+15aEHdF/5de8wlD0sX4mb6sMxrKggw/zHXpJMHZwiTytdcXl34biEHgN05yAYY6FFGCaI0nAF/pxWP6Q/9SKcFiy0tMVuyeNVLfhfqZP1s6DJftS76Y906T6yxwzjAGOJRkSqpdusOC2oFwgC73k0KFwBTTCsYbtVqeN/a4riPa2dHDXnky4Fp97Gadp2RTIuKj+P0KwBXcP3S9wNOjowdlSPe1rLpvBL+Di2NVr+U54j7JFi/NJI2v3XEhhhOjPd5DMQovFT19oh2u53/7Dew2qygw2Rp4EpQcjMKLn3CbFwp3B+W6lH1rLlIGQEg1wh/Yo8JyXsMNjnMK3YWAjqJToxI3bYr+IVp5kD+lq7RCOj8WTsA6E+FiCJog0Hn37OjsGf1BN75QIHLDVDKF0YbSgXfjijgBdDTHOKD/9L4NDVcjVaOlDKcwOn7pdHCz9UTBfOLfcvode7GLbKPwWqhIkrE4dcL9DFX/nj0aste560HbpWdVGdUUiF9TByA+SyE2VyIKPu1rAkGc2GXhBvlM792dStYqVBLg6Ox7gFLSDBUnWt8JaBYu/Y+WzKldx/cHdqGnFWQ91z69JfUyPmJJnsctv4o2K45YLDhLuEBk0s4U77B+xZtlT6x7954OV6cKKYWDI6US4KlfN9ouRzhC5gCZgfiPgW8D/ZZmWKERC4L0XTykbKocL4STFNUunsC6i49y3uiChvna9Y19cxWzBsM0bVEbb7FA3RbF3rsV4GkhpU/jILl+qCThIghAWh/3a1X6a4LBEkVrfb6lq/TgBw+Yw+ih8+aywUNZ2pWQmHTqaAYIERuHSpkgNVL3Hcwhs86IldTi5yK1NVg10LvWye9HXZ/Nd83ttiooY65/hPJqdp4B0Fv6ZBbuR7FEK3WrGjxdxg0wCJe1CJwdKQ0Pw4N8uXsOHqBkFYqd4S/o3Z0cx8Eg9wwqYqSJQz/FNZxV8EIEhoWPAJMqkdrTI20MpWYCjNICltD2REfBTkCVFJhc2wU6LUQVk1TxhTGChhXEV0/BAnF+Wrly0+8qRIsmHbNpefJEj8oGxPwWyE2JrDLRQFFa1Yo+FqieshjICqT0a2nektuSvgUgWz9g2Q22foLyQTk2SYPOTU3jhvIJfV++tQdNtFtq3vJajVbOF/mAPLUXWyQJ+0iIH/EBLneWZkVCMgNkJWJSKIksjIRSZREViYiiZLIykQkURJZmYgkSiIrE5FESWRlIpIoiazMByvrfm25q6nPhn5hZ2bu9XGkpbzBzovsfdT0Sw5S3h4z2b++13GH2zvLuG42Dxly5ZkV2f42msV+kVyphuEitoFDD8pLMoy2+q4yWLInHNa40TwAm1LCeSaehqDb9j415bTAV6SBg/olXaNyMFW8ALeXrqHWrmE5yAXb9Vq7rqnZbcNOgyihaQAe4AfmvKAvp9SevbdUc990z2nsI8+MAYXZayvaZewsgNW57Tjt5tAO2INp9Q76hj8bVpW1KRH5sUKiFHHQ/fmrbX+KDti42bTvnliPw7SIST19P5zcNMo1UTnDfbpw9FEOUFrAilLUdv2KtNv7E+MKG2wYZsSQg1M9IveMeask8OLx5S5vh7ovGxga2/vlrbFG3M+F5RfPMe7npoNpcKqe+7lNtbuHEKLgfJoVkIFIvgm9a+kV4HLnj9Lek5q4zDvXKfGHCexaQpA2sYK0YLt++7qNXGSab65dqsrrMtjGIrODetT9S9Nhj5r6JNu4//NtzZoY8i4i8Vz6LqK2pSjQmcCKztDtRGD0hMdAjC+CfL3Nm38WLV5/1jXBz6MvfSGezoTmDODWI+/nalPdRir1ko2jHrDQdW9A1+xv4JgiYQh/FnX2kQdgc0kugm3aJcdzomLbTnFbs6Jvde+LV+6QFzux/VgGWic1FuTFqS6usJngwE/LIVj+qD4WD9WdkvXiuvIYWFIw0pih6pmxvOKhNb1dD0dtc+efsiOTXGkxuBcNVL4mA4cEECYXVpickvUju4K30Kh7zUbbQoOeBusjcAuNVkk40hGDBvdDT5n8kMj2bPMOU+56x7smvI3qUL02dR06QhLJ16zTINbLmUJzW819xG4Pdi5FwldIR8JLUpUsGCdIndwS9XAXyxuiVsrzNeuIq7OtmLc9JROqJiFi8hiAuiJFL0dVHtuG0izugtdBfss6ddf2X+jw0SM24Kjy6uCbq8ghEvYAeoikuVzQmKOecyvkmIOZyUkQnm1Mig5LUvTKJimneR82oa/ZxWcErXs2wWt3j+ctXO+PMSPv/mnup+/+4dcLwiey25h/1rTe7zLLxnPl3nr3IzjAZzIrPqD7GCPDwAJL3BihAaIzj/pHPyXwcoESVZg0is1oHY+Osr15rKRP4oVo1eqeE1+Rjaa5n240/Drna7bAKn1ZreJqUlbJOUJYRS/6qoA5vEhpCO58kYZpO3PrI3HxBcL9lqmb76UPlZAN44PdTzcMfp1rwzg74u4ELjPS5qsxzcW82Sn6TchqajHAJhZyWUF4nDp498sSl+euhz9nDLdu8qM5OatWpHkAPauWaCgKRBSsiPinELz+jMfA6zsWeOX269TRIzb3e5TFsRvvyTbWfKLuyTCdtTMMMoHzR4bLgsNBWAnPFkrUaqhooM2Kwelft8kH9Zw26n3pfVJzXZ880RQ8T5SW/eIMZnWvDxR2B7wWHmpAspdpRGrgESbNmyC/uPjWw1tDQ146x72ucbVE1RRyKfVSTIGNtsHA5I+lkkIMnVA5GvymGIZ6eazOvniP0shykg5qwXwgtWZ9AEoBwn/nxZT8sb7j0QVUKHxuVFVQOK/FAKuGAgxqMQHA8MH8nGkwm8zGFbU3cVTjmrrNwcHO1bYDbDtXq7SYv2DC3He/67lTvOOimL7VO8mee1Ykq0Zh9eQj5bJg7FgY3ZEyIV3TB8QDgJ6iwJ1yfgTpKTr5SaoyBdtr0cWsyO26LtzAg9QwZXY2auEG7lFYHcwsp12NJCIngk/KeEBfSrIl/KRS2GWPEKIP9Ak5OdfsSGmX1NdVfco1s8ki2s0Y2i39MPdC6yMWmuvMD9a8D/a68FfYJm61XWUq4HNgdgKWzES2F9I+wV+c42tWaueT4N39Yab/jhkk+5gJ6KNDQBsdZpTR0WdqsVbb51p47a8UHeQxYOarwq6ZgNHRHprTCZW9ABN0Gh7MzAdSQStLdQKkwUrgofVB6dDCNbvqvfvpHDel4bjzonhyBqKZkI6SsECU6t9/ebBcmc+iw3X2PR76xOUuByhZsaL0LTUT74PavsSa7aLRC4SBkQ4AUbPeyRymeRSdw/DrRbHgjfWYT6iFJjsHDCncn778f+ZPqXI+BvKnoals/rRj6n/+FLfPxhEN57ey43vPPNO5kVL2cigH/pQq08SBpxiSyuYpfFOL2p8+WyGWzR0/3XtByykjq2ckzeDAn1IXCThAqSMrSo2L0p9SOdTo/hTrMYz+FCCF+9NXTP7UZOYE1OHETTJbG7Pqb+eIIl32fXAO33FpTg8OpgTZKWxTgkvaNZXXTJDrncxWnoDcAMlsCA08wtUjNPCIZDaEBh6RzIbQwCOS2RAaeEQyG0IDj0hmo0ZotIw16BWRXYyqnsdBxtobzoxsaUAj/5qOJEJUkTAydc+fZhNzJptQZQs5sEkOk01WHLjXZ1r2J4/UA3tTdw67Tz7nV8JfopDK6QKtTI7NTsCPhHfkU5nmK5RRUo24UJR0VBRfI86K/NpU3UXEq+ji7SwDglVKubwHZCx4MX9BVoon9Lrm7GBRarJw3rbRD446dbdh8oQWPdVSVSB4feJjG7koo4fIYa4WVIKFwj8hsij8u4MIA+5yPIjZRDEJIdVLW5RuDFzkPuBAO4h4MdNEZXwkqjCZwlsaSiJAS83lHrBmR/7rpTXXA5WR+a9SJGA9G4uPXdiXWQED0V8Fzw1GyTRvVYp4K9SAUklGeihCoOwWAa9ZaXgRbr3ku4TF6nJcVlgzIYCVQGQSuQhqQeUjoiiVVBKh/dm8l0oSqb0H76pvmbqqydAyVQWUo6U6av/ngJet97PxcrH9BC+/M3nMqfKqprs8+oM1sf+1NrH/PRPmetNkOZ7haBKhm0vQJEI3l6BJhG4uQZMI3VwiFjroePrGmca57tP/sJ0g4ldYkC8W2rCkbnP1aqFrSnBZf4v54Tk0coVeHz1doYjxckCuuUyWNNGSY1TRYYOVHCt5mK3k2JpDRV1yzPPHM5v7WUGCNatnO9ZzWBttAiXHih1mK+Dy+pAJ1E06evSoAUqOuW2tfnTZJ2vhthNJmV2Hu1GKuRip5NiNQ2zWyTQF6xik5NiESMcde3OvuG5zGpec8SMlxCRKju1iNc4aUzAOz5glxyrPXX7i21/7XNM2HDp9seW3QSZVcmwmq/FGGMd4pllyrMO0jCsWL90E87Ku2ueqL6cbueTYEFbL+RrdcvCmIis5NqZV55k513r5bpg37kndR2GlTKLkGBZDMJYcA44Qj1M/8Bji1P9PJceoZTGMXHJs0WG2kmPhhw1TcqxN689rhcdCfBfPW7p1/esL5D1tLkqOUcXNOCijFXeYrYzWuMNFVXIso0oj74a5sa4bIoqV+Kv4to2FH8IUrKg+ggOswlmxCjz8P1Vy7F8mN/afCP8vifBTqwkZTITfJY1NhN88rShE+HcdPTl6WmA750l/u92bODljMYenzTn2kVCz3DmNTbPcPs0gIvw37R0CJ43ycE6pPXTNj5njyMqKxhDhr8aKCug3JjN30O/gD3ci/LWjD6/p77beZ4ZqWROvyRdHmowIf85hNtPdMiyREaYzuAj/owrZ9SeN7SucfbTk6nW7enQ1sgg/5mUYVdSBlzGYCP+Pl+r+4wI+uy1+YF/9aNbVIyYgwl+NFRzzNAOK8Bd3rbfs1UBXv4QF3eIrzlekmICcBUQIG9OMCIExjcdtH3kMcZtY0LTZzy6XBFvu1Em8sOYNeenXEjvEF6mUA0anx2wWDDi3ydsikeXdj2thAMRVyuiwcL62aKw+Wg7UCouMb0tXPcjXqGtuXyMxr8oRgK9EBBddKPhmAXyP0sMkPQ9WVcp7LXAVxwL51WfsqvZ3hb9fC2PPWiSbPS/9uvC1uyghFNUxFjKE4gP0rCF6dUWI3lkNbtbqF0KV1QzfEGmYSoqOL39szjDzshN4re+ojl/50ekM5YQUdiPihJTmOueyv+D7P09j+/5XjB4saXumHoESfGWZMkQWzKJtcy2Af3RjppnPYc9px+0ONO9P7qvEA+h9VdtSFMY4ymqM7cYxBjX84emzY+HopVBGAfqSBMO1UzunLmDKCmYWEfb8Fl2Cw5WqEHt+yy7q4aoo7Ad0tCpZunTQ2/ZlfJdN9HtY9+S1ADKvwQ8IiBotR9S/zGsqCmOtYDVWrEmMHPgovaLVynkL3Ypo1RA1ywjanzHducSb827JL9fVOnb/3/KFmSoX0hxxTrgjh0c9s2i6UC3EPT/qGaXinpwl2losrfrmtFOC8EjKIf/u7bvcNOq0FwJwJw0H4BoCAOha9IpECSpjFpnwvnwx+cLYZb57k0pkn3x0Icioh30hAFvYAEianUYEmp94/7/ycaiFuQ2Wj1MpnS0fZ9uRos7HWXT+SsYZawePPU5uw/w8htU1gXwcq3S23c1vR0wgqWDLli0GyMdZu9RqZUD3Hu4HL6/y2XS/yzGTyMd5eoTNOpdMwToGycfxGzu6ZfKo2x67+3+cmf6u016TyMdJZzXONlMwDs+Y+Tg3jqbUXc5LdZ+Rmf4g2i8xyKTycZaxGm+qcYxnmvk4Lv/O+5i2Ksh5/5Derpm3Zi42cj5OJKvl+hvdckWajxMw7dUDWa/lzksa1Tg40KrvD5PIx8FiCMZ8HOAI8Tj1M+83yMd5ULLChErhHoIVUcX62R6KGGPkfJxl6Wz5OPJ0w+TjNOuXE9RxUrL3qv6pNuOqFxvNeT4OdW7OQY7JonS2HJOY9KLKx5mRkHXrwPXFgrgLGwYc/jj/KOf5OFQfwQFWclaseqf/T+XjfGFyY8OPyJrJfJNE+9P85E+y+70h75R0j4ZnJ91Ukshw+glTPbYvGrrI1JHw9Jh2N2e0g+aUKV8CNfPC4Ccge97fFwYt7l4i22er4KDb7qWJIYzvR9/Jyd9I63+lA4AL88t/FAvRK6nnnnTsldqnIfJp2kNhrioi+Jdy/nOordin7YHMcgFSOTCYNMQD+PVRxOMws2pM+ZXJlK32+Ao7NuvjnpYc4zMzJ/kqxcsD86mUco1QtR7F/9qKR4H+FazZAsWXI/FH4TUsYT7UMIUSVrMM5etVe2S9w46F1xxnOM/hB8b6H593g+2NEbxEatdDMjumYgaPd1yIyGlKh160QkYR5DQFXt5U5+E6uehg0g/FEF6PMA5zmjiuoMEHCA2GCMEKGrTStDBeBQgVtgpcPRG5D+ETal/Yvxzg3oQjEsVa48Z+qmr7Wrjnxf47TxdXJhcdL8nQUYjrnOfK2ONA8VEkA+XJ060yaAveegJVo5cULv9gCJHHHRqhH1U3HM5scc9jvvhInLjk9Gvk5Tr8YfTlOqKhKDDiW7FhRO1MxX4BI2x/C09lATgV2Ismd1ucvOqmS+Ly1xPK+mz5Rh6L8GGIsoKay0WBz73ybPg4l8/AHf83Jsff5HvVatv5xcV7hTlfpXXCyI7fEqu3yJRPyzQPqe0jlaijVZp8Vs0GjMa7Q3Vb3Zx7nfVdTp+JCHfds3779dW8NiLGt6Izd75Gfdx6JYDjUSFC3NYKuPV4G5pb1zMHo7QQ1myBACC/76x6gUemLzzju1F92GOdupkLtTCCmp4UpblakH+nOj0u/DuEapkAIckKU/wAVIz+HZmcQq1kKVPwvZEYHZ40Jf7rOBfPGSlPdy1pGL7LGktrAd9dPApM3bRBMBY+93ZoYdTtvKxmOE4wbYqG0z17DCd8aH7HhxJtaJq3yBWUP5Hlvr5t2xtmyQ2OFfeWDSHaEp6urjWoRZB3csl5sh9Py5Bn5fjWnybpRPdxy3eTaiI1TfqLRspF77gs0ax7w5PeAaLYCysGlepseYr5zeiroPlb9eiRzmUB0odQg/cetIOlXjEZXxuThaHhQOugt7sz5thYB/HGvbm17HJ4NqYbojkDwPhl8RCNrqrcFANMr7W86i6U/qKtdYYumlr6740nvW8Lksa49z+76K8wyrazYTOo4u1xNKxQAxVyKEADH6g/eAwcuuTph9UOPWd7p5z2+8vtZ3x9cjZ2nnuiL+UxLa9UyTuRouBLtQ8oQ3d1JQQOwmYtdBqZZWLXZZYt98ZzU3dHq96e9WsyvSY9aTyvTY/ajDHVMjS1GZE6nfyqGYXW6Vz2PSY1YX5vj32bE32dHzW7SdXppLYbQqfTJg8rMCBUMskQOXoYXHoy2ffbGLHP3PmO5xuWerWNbI0g/Fb+L8l0UqmSg7qIg6E1kQKUdsChpFfN0EOmU2eMeM1LLh/wwd0zdkrSP4ruwvYMGP2SSCfVDXGAEejTLBjFVMnQR6SzUp5IZ54DQKK0+f7y6uOvt/dNOT8h3KdZ1h9GFegc7ID3FaRAZ29HDCXcof5kcqhVHsxxse54XpTQ5uGR5JMjXRBsil5SrKjZb0DAySujaSLJ/uDbEzQ5IHRmv+YD4ZJjsFIO19lg/wXmCZMqsCoMGOWhE6sftDK3KX37oM/ctYuG2vm5tzVAqp12p466gQUYfkeJDLg8AxkPNwVET39TmAkNboZfkfg9bX+sypnic32OzPhQ74WF9cpfkPgtLOqDAerOK6mom/3OqE9rk8WfnvJAtMDnijRQsPGpEVCHff1TDhX1Yr8z6s9ynqbmNl3tvKhvYg2L78f7Ggn1e/UzKagX/51Rf9FTtWlDqINwe5ZXyN+LLkQaCfXOPlTUzX9n1P8t36mB6NMVl+Xf1pwvNb7mKCOhzh9NRb3E74z6p3I7budI/V3Xn5iREbE5Z5iRUI+fT0W95O+M+oy39m8vr57lNdnBYUu/bWPERkI9bhMV9VK/M+pU3XUjoX4glYq6xS+hrsk6MTjy1nlr/Hh1aPQs6Wv1NhsGtuztfDjh40PvU/ZKxLsjZknY5SLx622pkWNpJtR//LFrg42juXBf/2orNkX6oNSLyaiXKXrUdZZe/vgpe/PftXLcY7sq/omrfwGlAf0r0stlfNr++8/q+u7Jnte6DWx46W8dF1jYLOIfQbVImd/SIjF77e+ebHBGnJS59Fwnx/qVOLJIaOWAz2ax41ynme1XKep5TefAIjGXqRax/C0t8qJsxRVDuq5xn1td0rtu0PBLHFlkdu9KM9OWlxLs33nucWb30EccWIRfmcoVZX9Li1yLX94ld9pu4fbZNuYRklLtObLIP81m1FXVOCpKffDc2/fMyTgOLNK7C9Ui5X5Li1gsOPJ8xeLdwplvP5xrlX29BkcW+bB0ffdP7z74rdnm7tCjX62nHFgkfCjVIuV/S4tUiRnWsk13O/d9K9bVqlqnRkmOLPLifKD7kOLdhalrbX84n1Xu58AibWdSLVLht7TIEtfPNTqNE4j2HBT0W9h/j4AjiwybOG5Yckq017Qdswfce3S5IwcWyV1DtYjVb2kRahEKjizyi+nfbBbpu5tqkYpMFun+8K5fKfk5t7UpacUm7qtHlnwsExAuC43iw/wxslngWTumVO6afqGhMP1eIpfnJWrhKX1IXJfVVjjdmRLuPq3aNgez7Et3mF4BAa6uW40Ak5PnQfwZiErHjrQHrecKm7dXDksnjFLC44Kh6A5kc2ly920zInz2nP/LouvBGuTEM3Tung79Z+RtO953z2bCNYcDPPrHLO1cWLFJuIpwHk/co+udNAOceD5DL6UkjQWVWK9A4rItuvyCjsODRZuqJFs2fzn2Cu0YZahuwBQ2SxZ882qs3xz0EhM4Qon1QD3OlVvC2lps5daafuz0cbNVV/d1kw90sG1+jrwngVXmMhT8o86xwW9nHPhpqkiFPZagGRFQ4Y8py3fst8a+LW6N8znUy+yQf1LVp7/oKQp7gtUBdwXpzogzGjB/AwwInGCsTZhgBrrXf1754GPnTSHekl6V5k4rGoJpaJ3JQjAbKhZWnE8HgimxeolNjZ+eonltLv456p8a9bghmOJJEaN6DDzmlnxZ1HO+5O9gDgimFsSKcZznVtRPiq9AgpnRL8xzWJDKM7lEz0VpTxYcMCLBnK3I9s1BL/kdCcbt1fUSq+5U9Zk9SKQ8vrBUU+MRzDhW+AONA78RCKbaQQfbSz9DvdZem1Gp5eez2cYjGMwVMBIMGBA4wdiYMMFMKz7NTZJ02SVte1bFytnnBhQNwczuyEYwZTsagGD2Nq5d7sHeNs5zWo52Kr4+4io3BJPUfVHF9IcV3GaYx8/t+YyXwgHBTO3INs77d+SYYF7/7NZpWt+vgp2e5058TAl9bUSCac36zUEv+R0Jpowk1v6+63TfFCfFkAqtEo1IMNkd2OA/1OF/hWAanp34WWH9QzTp7qT4+w/G1TUewWCugJFgwIDACaYSE8HEz58T/dLzk9uS4VXUK2bak717SVdYJiFK9wM77TQ38NXKCCk/BPQAfrQaihtFyiXB0nClPAR0D0zsIBT7PUz4KEoSptbp4M7PTrY3316uKthq/SS2WPbflUp6K4OHSUO0N6FenZ7wr7mu65lYOzHPyQdMEouJUFIHAGInL8QBHggR5GDEAR74l3qAx/ePO10DTrxwnnpmT4zFW79L1AM8U3olTLwR2d99WXr88sfLZncl2ovx0Od0dD7gQ/1gxAEfRq8F68TjZkRvFR8oF+HdvItL2r+LG75qtnZ4YazFve4xsKsVtOsq1JnxOODqIr0NuhxDvKilIlouH6QG30ERpv2yJfN+xih3rFPHHuMRB42YbGXtmjfagqPlUdEq9DmjQ347c87tnusWGzPz4mK/SwmsJisl0jyJLoRANBSF0bK82IwGBqMxGMjcW6RxqPCWidpxj9mGGKNMZFMfviWMS2UKtVSF1VcBH0FymEhbjesd8IJ3Nk28+M9BXpcqVGtJtVUpn+goeCpMCz7lfCn8VCc6SzkVeGCsxOsZ0YI+M92ndxf0+1vp7lzYo/TAqHGebEbN8aAdGGM7VVce7+yAv6OAi0KCJ9gZ3rhMtVreUwZFbOp9OWQta0c3h56OrjuAXeU8yHLE/VK6AEHpzs2xLo5TeuXfgNI3/tHOfk2/68JddaKsTte5NN1AlM6fwEbp/HH/UTr6hGWNjWPm75/sEls33S2j676uJkfpvAlsjmTw+P89So8RZC+eMobvve5EsbijG297myClp49jMxoYjP8rlF7yZVRd5/b2okkOY2Yu27f2ksEo3Ttwav+tq8xdlw/5d1PVg2O6cUDpMWPZjHpvDOeUfrzTrQFLJZuEOyKH3ev5+ryDSVE65pcYKR10cZzSq/wGlL47UTgz2feO9/bwj01Wbmo9y0CUbnGNjdItrv5H6eiaHF9+ikV9pH4bJRfTTi7ZM9/kKP3TVTZHsuXq/x6l9x+1aWLFWuNdt14okT6nv3dFE6T03qxGszCs0YxJ6WNn9F2TmtHCa/oLvxdNeZb9DUbpv3jGhc2oB66wGTX8CueUvq5eRGzIjZmCxc7ZMe0TRm83KUrH/BIjpYMujlN61d+A0r2XLFpWP7C++/qP/XqKltp1MBClO1fJZKH09MqZ/1E6ylqx6nIPr02x8V3f7UncxchB3UyO0ttDuzI6EqsqBt1FNAlKv9EyYeg5m8nCdZ/Np/mIrzcyQUp/WpnNaGAw/q9QevDIDwr7ksW8py6+1uxaRNxlg1H6Lx6SZDPqMlajRlbO5JrS992cfEXSZ6jwyOmMDj2/FftiUpSO+SVGSgddHKf0ar8BpbfOUVW0tEx0OZiTPOxAzavFDETp37qyUfq4rv9ROtJaOVsOHx5674TXsh5e4zLGt7U2OUrP7crmSM52/d+j9Cuz1S7i9JKu8894qpbfOfPBBCl9A6vRxhnWaMak9KqNjiUnH7juHisZ0utf+arrBqP0Xzxlz2bUQFaj2nflnNLtL9eJsbvV3m369DdTvHqtrW5SlI75JUZKB10cp/TqvwGlNx06a99fma89D2T36K7IetPQQJReVs5G6bOH/UfpSGtVaKTcMTrH1nteiwOVQ6tcWGlylG4uZ3Mkt4b971G61aSWnS32NRJOk94ZXq6bfwMTpPQ9w9iMNtuwRjMmpbdLXzyp3jOl3847sk87/+hXw2CU/osyLWxGDWE1audhnFP661M2Zxve83JZNP/CN6fT9s9NitIxv8RI6aCL45Re4zeg9DGfnyc9WD/F++C91v+c2uyRaCBKfz2TjdK3z/yP0tEB2PLBt77M3yhcaFPFpfgJFTs/GIPSn89kcyRXZv7vUbrjNf/6P75Mdd/Qz37gV5fn3U2Q0o+yGm27YY1mTEoffitxwg/eA5/YdorNBxZ3rW8wSv9FnS82o65gNWrsTM4p3bd55X+q7w523jF/nbDD2D27TYrSMb/ESOmgi+OUXvM3oPRubs4eOX1nuaZeelB1xdqw9Qai9Dtr2Sh9zdr/KB1prf0Hj7/L7tjW+Y+hdv07jb55yOQo/cZaNkeSufZ/j9IlLc49nyxxEc4aN26+4Ghj9lOixqH0XaxGW2NYoxmT0le2HHN7w7utvqmegjqXglNnGIzSf1Eoks2oM1mNOmIt55Q+tckS3/sNj/nOXjBnweF7b5+YFKVjfomR0kEXxym91m9A6RuW1G2uXi10TQku628xPzzHQJTedA8bpT/f/R+lI60lldcJ3Jy1zz3N7a8Wb2qnzDE5Sm+8h82RWO/536P0KHn3Nna9/nLZPdOx5HeH/v1MkNJ/7GYzGhiM/yuU/k/aC5vDT+I9Zh2++vp074flDEbpv6g0zGbUK6xGPbqbc0r3uubsYFFqsnDettEPjjp1tzEpSsf8EiOlgy6OU3ptJkpvsaFHRr/kRNctGyqcOTrhwxKyjpSbShkdSWZ0O+1wUKpCyAJLJUVKOfhG8FJD8CP8P7LYkYAfBp8La+64qSRqdbgyMhKW4MHeVF3Mw4XoPrYpE7cPy+jjMmV+FfODTW4NBE0Eze1qNSFmyYWD3vtayz1qZv5wB03E6Nmt6Jjt/aiRaN3CMhOXJHxpBpqK401PT31+b/E+zH3qwSz7tn/nykGTOd60ruGATuLYty4JL98PG/v1RF3QVAJvejzWb/rBlk084zo+tNnQsV48aCqJN82vPrlT4t7iXjvVnqUCux07AppK4U39/6rZ4sZdB8/49WlVHskGNAdNFnjTsaE3hu/Z+1V4+JPVk7POw/4BTaXxpkk1Ol/ofPSLaGezYor78eL+oKkM3pRyofmi8Rl9XafdU8bUWjsDomGJNx2o/Hz+E8l+5zjrCmfnNbpuAZrK4k0ds1S7BIdUoqVBnyxThpw6BZrK4U13hx5/d8t9lPOGEovu/LG20RjQVB5vEp24bV/8T0vf9QmbZ7U/Zl0VNFXAmzbP3fr5cfVvfgmnFpyXxC/fD5qs8CbXFcUyGx/y8En5tmvjnwkj4VeuiDed3DL7zWr5Sec98jZ/t1/T8yVossabzvzlu+TZsEt+0/o12vxI1LwnaLLBmzzm1Kye6trPbVFum7t3/n18ATRVwpv+Fk9LvlrM1nvmW/nBOrZHbEFTZbzpRcVH81pZz/PY8vGiz6V/q/4ETVXwJrc/Du+e9NRNsKh1ibq773yCpqyKNy2oJbv3sccY8ay+QQfkjfzPg6ZqeNPaeY9GpNbc47xzWo0fpZMsA0BTdbyp7oWbI2LKevnO6d/l9uj+5yeDphp40+JOj4d0rPKv964BszolVb90GjTVxJsuPFzrPPBIkufcMNHrU9nb4QNr4U2vkuJrfB9VwiV13pEOFZ1OTQFNtfGmTfe7j9zzp69w36USk/kuXWDvrYM3jT8zWLrybm/hFGGTKstkW9+Bprp40/vHPzdV75wo2FK249mXSzMSQBMfb3p2Zkn3i3vFgsWXkg72SQuysPBwGUTyRvXAX6RTrNXy3G5pG3ev2UsqeYclH6yAcBs0L0j1azzCr2lcVB0mF1U5NCV5RcYp8aptD8acqTUunhxZiEdFypUhlJrLcOQyaS02xu/gSzRVkQGZQgXCCIlcDpwQUQTMUadZBtVBIV+NHvTgDTr6+Xu2Yp7T0UzoXxEF6/3txTzzozQlRjbWs8KqN8M4Qqp5EeR3O2KzOKjK4K4+S7wOf82oerVQdaEpYcH+jOnOJd6cd0t+ua7Wsfv/li9kWAAnXvYQoBBUWHCyiZhX7ahe8ottekhB11DLAEgh0mBlRKRSLYPtfPB+Mjmm0kn0E75EBXpSlDJCFoxEcVjW2mfyvkd8t9neOe88aDBZCLi09nNoSOZr4jpugHCZs8KV85dJiAaaFVY00AEfaCF55ooKB0FzhGSYlA8CkKhwKX+IRC3VOAKk/VI25lrUiL0hXrWx3Pxbwr86kexnEYA/lma+vBaurWflgHd2F5T1ljlinZ0EnJn+wNULAtMLGfhNGKNBlKRUIJFgvV/7Mndjn+2i2e0Xx06U/tWQDBbxTDpY2paiAMucFSzQ1XH+qcvEP0F1iw1btNNKmJIgf9NpvIU76VtVEEORUEmUlO8tVYRFhdN5qBQDxilm2lsJJgJdE/wTgAEewA+VBEcpVcDZKMFMXAa6rhz7AEf8g/B2NT9YouAPkfLV0ZGRchmw0BAlaAT3ax4ZrYC3wlU0BZzqyGVjwK9gFx35onCJIkyK2bef7wB+JLEyBZkhShkWJgejQxo1UipVYL8TNVLJjwCdQEdupEborLDR+gT1F3RVLQZceQUavDJqDW4H4Mol+nFlxTyuxF8IXTvpeOaqiFpTXA+vS1hj1rx4AodkSfVAhdUqBghdgAjNRQ2JA8D7p+lHlvVJ/RGrXqvpejhgMob6tcJNxYQua5MEMZ8Ot0w1W8QnrzkwdAviOudzaYBKEisqoN8YWce4JI/4c6+bPlrGrT1C+YGqaKk9NorJ1pKp8/sFOydHJ/4EfgtHpyZIk2WG17i9/ly4x6qt84ZPGNigMVl13Ff7IJrZ8rcVhekms5pOYRzTFRzOlGRxPLX9lWBiAikBWk0dKQ2WhUL3rmEBpHlGNV4VerPFCrfDf5awXjv+aBmyE8KeR3dCmstcGyXSAfcy7iij8JpjXoYWpbDh0TgQkhVAZIRUw4t6AHN8SsnXRxfd9EtpNfL70hk3VpGnafiD6dM0oqEowEliBWcJBZxiBYBjq2GpPAbXB52G1mVyd8lOuse0/Ox7s/PPueQpina/ij5FyWsqCoQmsyIExjQet/GZ4rZTKyXe3ztUdZu8qU6p5w3GppGjUW8Qo/EDXLx1XzgQilRSTbQmh/fikTCYIYaCH0HcNZoPsFVF8SPhiALOFu+vMPbCQ7fxuol1UdYv0e9Nj6KJFh0xjgfTwLQsgPEtISJUcgYWmJCl37IC9gL5MEB+u3mt/5lzLbm/e0xgn6XzTtwkl0YqEQDvpjspzeWCIiWq/ytkpJQOAErNwusa0johv5mYtymLFimxba1VwwAi+oVdiEwFui9oR5Nt+F7V0ucRk303z27bdGPY5VDysHQhbqYPy7ymAussVTtwadfR98LVudWLB7VcV1j1AgjYAlbAQI8yShCl4Qz4O614TH9yaEGVBYstLTFbsnjVS2V3W34/6OCR2vPNuPN/BF629lAATwmMIR4VqQJT8HzPKikQBtj1blK4AJhi2s0Z40YvXPlWuDfVOnBUreaPOTDtUFbTBhnJtKj4OK6bXqFWWe98/hxpzFczcybGpbn7xKSvdzsnuZ5FrS2hoM/uNFc5X7tzxH3SDtSe3w5HbIjhxFiPiRiFl6reHtFut/Of/QZWmxV02Jv0bSrBsrJRcOnTRRYaKlVJARRqOkkWZ8CyuUgZASDXFLfFHhOS9xhscqgpawQXlmDOj06MSN22K/iFaeZA/pau0Qjo/FMzAOhPQee/R+38g2GB0ozClkISeOcDBS43KCOlKhhtKBV8O00fV/MBehixYv/S+DQ1XI1WjpSGoElk++IBVYMtcnwPhdZOSJy4vgHZxwRh9W3oPga/XpCPafriTfEKh767T3VtOPj1X7MvF9LHxEGJWgizuRDuaVMX65pgMBd2SbhRPvNrV7eClQq1NDga6x5Y+S0klgujtyY7HfVzXXh8eM0DT9xukbC0zHsuffpLauQ808Ueh60/CrZrDhhsuEuoz+QSzpRv8L5FW6VP7Ls3Xo4XJ4pJ361cDymWYsL3jZbLEb6AKWB2IO6DeUpYn5UpRkjkshBNJx8piwrnK8E0RaW7J6Du0rO8J80K5GYd0d1hK+ZVguhaojbf4gG6T48XduxX8cBKvsFVV6kay5PDEEMCsHP3t+9jNu7xjInwuxv4WkHOPimBPYgePmsuFzScqVkJhRzOWQA5K4jcOlTI0LupmPftOGP4rCNyNbXIqUhdDXYtJHzmf5vv6XXtkfhgzWIlUpQb00nwlcU7CHpLh9zK9SiGaIGexILWpeNGSTK0CBwdKc2PQ4N8OTuOXiCklcod4e+oHd3cB8EgN0yqolRfg38K67irYAQJDQseASbVozWmRh/6pBBTYQZJIe062BEfBTkChF39m2OjQK+FsGq+GLYwVtCUisS7fgi6PESFfkuOrdztsaXBhM11HRsOoWxMwG+F2JjALhcFFFgXZ4QCdHGcqBowERU/rMG+6XNmCBce2+a9/HPKWPL3gUHeaDJBMfhipnmdjQD0MZUmfB2Np6QhgaV6S8SL0DNgCvTBi0fEZwTWKy88olpl/62/36bC+mDgN5ZAyPlwjYcKuRWIHGK1kDc0ecipuXHcQO5hvvFH1/HxgnVHgz4sLbX4LgeQK06wQT7wBAF5I86yMisQkBsgKxORRElkZSKSKImsTEQSJZGViUiiJLIyEUmURFYmIomSyMpEJFESWZnXS9VyTN0hcZlyvcvD7SUONKOlvMHOi84EoaRfcpDy1pjJ/vW9jjvc3lnGdbN5yJArz6zI9rfRLPaL5Eo1DBexDRx6UF6SYbTVd5UpQrDNgWD8AdiUEs4z8TQE3bb3qSmnBb4iDRzUL+kalYOpYuwxMMiuodauI8GM3PWYXmvXNTW7bSCQjFQpsV0FJcwKZM4LaretXr/wR6UEaQ1f368hid1RmL22ol3GzgJYTT6G024O1SGlg2l1yDFkHM6EVWVtSkR+rJAoZb8tU6zVEz+/1TOuewSfOJvIYVrEpJ6+H05uGuWaqJzhPl04+igHKLmyomR3jL74wBan2fsT4wobbBhmxJCDUz0i94x5q6Tbm5Z2H4q/dF6ctXX8eatjdkbcz3WyxzsRckMOnm1THNMvjG2q3T2EEGngCVFGwMwnwEAk34QOBl7v/+dqheGea0+fqLjx3bhvJrBrCUHqywqS6zH99nUbucg031y7VJXXZbCNRWYHJTjZcvvgT9vddh1bsstV8JW8u2BBPJe+i6htKQp0WrKiU+cYERjZMhHjiyBfb/Pmn0WL1591TfDz6EtfiKczoTkDuPXI+7naVLeRSnyVVTcipB6w0HVvQNfsb+CYGsIQ/qwQsQDFA7B90o/qdNumfbUs1ubUxZ4ei/sMvOm/7OxM8mInth/LQOukxoK8ONXFFTYTHPhpPgTLH9XH4kFoXha95sQEVnkMLCkYacxQnY//5jvnwCv3DeOXjuzXL5o8EywtBveigcrXZOCQAML06RgbTNl6kl3BW2jUvWajbaFh1USP41tofFrs6IhBg/shOyY/JLI927zDlLve8a4Jb6M6VK9NXYeOkETyNes0iPVyptDcVnMfsduDnUuR8BXSkfCSVCULxglSJ7dEPdzF8oaolfJ8zTri6mwr5g05B3CtgUq9jQGo1z+nl6Mqj21DaRZ3wesgv2W5XerviyXdffck9a7t+TXSnBwiYQ+gh0iaywXuoFPOuRVyzMHM5IEQnm2oMWcFxpznOb2yScpp3gfvE0h0/rBsOGBaWiO/FMm721NHxm0h7/5p7qfv/uHXC8LnSuUGrfeku/mlVdvf6sK90ML6JIhPW1Z8QPcxRoaBBZa4MUIDRGce9Q89bYQtF7dcoEQVJo1iM5q1Inl/qeWDfOI6l2l14X0C+dxVSc39dKPh1zlfswVWKc9qlS9/m5JVco4QVtGLvipgDi9SGoI7X6RhBp+yvTOqfnWfPTPfn+l7oF8K2TA+2P10w+DXuTaMsyPuTuAyI22+GtNczHM+p9+ErKYWA2xiIZcVhEfCibjlrXvbeG/cUulHn04ralIUHzQPQCg+4A1FgUh9VkTMzxG83oSJ13cs8Mrt16mjR2zu9yiLYzfek22s+UTdk2E6a2cYZALnjwyXBYeDsBKeLZSowUw3X1YMTv+6TT6o57RR70vvk5rr+uSJ/o3nidKyX5zBrG7d34XdAa+FhxoabYtgeXQIPJbL17wJ8ot/HGk/wdbjtPPU6efvbrvxLpPc+ZgCG22DgckfSyWFGDqhcjT4TTEM9fJYnX3xHuWi6VH5D2rBfCC1Zn0gXBYWDv+dF1Pyx/qORxdHofA5RQME+xh6V8Kvc57n5oADVg0FmJMjBhg+mJua/MYVtTfpsnFlxi94CZSyzcHBztXgv9l2rvy1mDdjwtx3v+u5U7zjopi+1TvJnntWJH3V8j7R8ihZpFwWjB0LoztSJqRr+oB4ANBTFLhTzo8gPUUnP0lVpmB7LZopKO26LtzAg9TnAZyzUQs3cI/i+HmEHBjBJwg5MPhJVDkwqpwXVQ7sl+W+qDci5L6YfFNtV5kK+ByYnYAlM5HthbTPqsZ/nvxxfKzHjg4pzTa1tx5Mso+ZgD46BAVqD60LPXBk8ZuqwtQbtVOHdvzbrbBrJmB0vITmdEJlL8AEnWvnMxE6W0wg1QmQBiuBh9YHpStVWpUPbjFZuCjyeeTISgPJYgJmQjpKwgJRGj8ore3CLoN9V/Z2jLcOP/aTA5SOs6K04zxNoYk126WHVA2AgYGRDgBRs97JHKZ5FJ3D8OtFseCN9ZhPqIUmOwcMKdyf2v8/86dUOR8D+dMarP709bn//Clun6eHvPcErdrvOm1wB8m1h3XncuBPqTJNHHiKKqyeoliR+9NWNYqVa7iyn9vyzYlLD306X4YDf0pdJOAApdfn2FC6ca4I/SmVQ43uT6uw+tPX2gm+g8nPCajDiZtktjZm1d/OEUW67PvgHL7j0pweHEwJlp1jmxJM10LuyFkyW3kCcgMksyE08AhXj9DAI5LZEBp4RDIbQgOPSGZDaOARyWwIDTwimY0aodEy1qBXRHYxqnoeBxlrzTkzsqUBjfxrOpIIUUXCyNQ9f5pNzJlsQpUt5MAmTkw2WXHgXp9p2Z88Ug/sTd057D75nF8Jf4lCKifbpDSLY7MT8CPhHbjAizpKGcFXKKOkGnEhqJ7KH4EdG0N+baruIuJVdPF2lgHBKqVc3gMyFryYd+QzpxvFEyZ+cDmauGSb+5Kk4G9JXS9nM3lCi55qqQrqsxIf28hFGT1EDnO1wPtgwj8hsij8u4MIA+5yPIjZRDFJCQYH6t9YzIs5AxxoBxEvZpqojI9EFSZTeEtDSQRoqbncQxYWTrpeWnM9UBmZ/yrZC5/o3licOPFMZgUMRH8VPDcYJdO8VSnirVADSiUZ6aEIgbJbBLxmpeFFuPWS7xIWq8MEGe2lsgFQVUIiF0EtqHxEFKWSSiK0P5v3UkkitffgXbWFydMyVQWUo6U6av/ngJczz7Dx8r4zBC+3NHnMqfKqprs8uos1sX+dNrG/FWc0WY5nOJpE6OYSNInQzSVoEqGbS9AkQjeXiIWWLbw5PfY0X/jH7n/aR7qaVcgXC32fGPRhko296xaraZbZgyMu0sgVen1kR6KK8XJArq2ZLFk6YOmITdFDXZJffZK24ye+I8vb4Rt/PuA/KuAqdVcFrEFsGSr4fpFShZs3PwJ/hm4bglTRYdbXoqvuUX5Bx6Hhbyvmpf4Dd2tEYJzQlmbAzKzHP7QtQrY0idqark2oT0IJgWgo0xkuUQCSQ37xuV2ONCnWb4Rwcb8rT5a1mj6cvCHoonkCfUOQaOBcwQhAsg9CsoUpcWLdP0ZJnCgRDKDVOo3U1NSf+oj98cmGgfpS0XKJCttnlMPwBZ05Ydu2jdewwe6rey0Z0PPAU/IygkUA/hCEiCrRUhTWmctqnTGmYB3gjX7qk11UVxwhU2OyxcEkMxEuBGmcStNX9JZ3bOqVutPjxb7pL13IxtE8EbGIm9dSFMYJZTVOD1MwDrRPfuMQzMRknHaCCPiRmE3A66jBrVJF8GiN6GIXvjJSMhxqNLbAfsr7DfSIamf/ZWtihauClDaP5uyedXUn+Rx7YL7n08+xk1qLwnhdWY3X1DjG00FI07wAC3bJs6A6XKYYrQBBMDAfMJdCqYCmA/+SK0dijfBHJ9gUIRmluYC04/NztVSRvsWF+08GnVk57Z+rFDW0cFRaNH65KCxXhdVyxYxuOXgT3FHRK1XGWrMeDQsasTrC8cECu13P1nmsf3YqZGVa0h6yI2SMmfJaOF/wdsRjCDjjOEkLq5pjjhCPU9swxanVzccGHD2Y63fEIvlR47Zj7ck7dSLNQo6/SjpCJh1Jr93GlNlmK4CqQ+p8i0GYgGyYVBkhjVKN5kdqHqiu4KHJ5vJQ9JAq8PkLc/BKLYvB9q70XUVye/kg8J9IpSrKVSaP0nwwKtxnPGHaRMxzvwCwX4babYwDIW2tC4xZb8jZsBuBDXZwEntHnSL6pCXPLljta+0RF1XZ7uAw61xytySeSu+W2paC5slUcbPCzpMBci4QOWeUH/FvJuY5XdAr0b1yYL4Qhq8cIVWpZAw1Ky67VVvZxPe+MDF78tmPM5xuFH4IU9MlKD6CA6xqsWJlccGgPpdYxyyFT7ngL8Fg53b87Z8WUjziIy4KnYQ/S2DcRmVVC2JiQPwq/H/Z/GEP+Q7tdLstkxv7T4T/l0T4qdWEDCbC/+kCmwj/Abrv5ECE/22V7OVHvg91/tOjwp6xzyeSj7sU7rQ5xz4SapbnXmDTLL9H95FFIcJv1/XdWYcEO58Vz6s2MMuWOBtdhP8sKyoHDOsNWecO+h384U6EPz3WukOpld3cDp2YO6tJqfXkHQpjivBvYDVdnHFMZ3AR/nqSyzv/npMljnt4dtZIxyvzjCzCj3kZRhV14GUMJsJ/4q3HFdHLUn4z4qZatHuWu9IERPjPsoJz4IIBRfi9x/b/UzncXHiglGV5UfJmsp6M8UT4N7AiBMY0Hre1Y4rbxIKmzX52uSTYcqdO4oU1b1qRdQSwQ3yRSjlgdHrMZsGAc5u8LRJZ3v24FgZAXKWMDgsHMZxaii3V6KPlQK2wyPi2dNWDfI265vY1EvNOXwT4SkRw0YWCbxbAd8TFwh6sqpT3WuAqjgXyq5eIm/7+Up/HbnODmg45ZhWuLnztLkoIRXWMha0FDNDLhOjVFSF6ZzW4WXtRrxCqrGb4hkjDVFJ0fGk7N65nw8m1xVOzT9woXS/Tg3JCCrsRcUJKc51z2V/w/dewfv+ZF40dLGl7ph6BEnxlmTJEFsyibfMo522FF/GbxLHlnGd12rKenH1uQTyA3le1LUVhjBGsxhhiHGNQwx+ePjsWjl4KZRSgL0kwXDu1c+oCpqxgZhFhz2/RJThcqQqx57fsoh6uisJ+QEerozo7vPnrdar3yrbX3o7ceXoDmdfgBwREjZYj6l/mNRWFsXxZjdXRJEYOfJRe0WrlvIVuRbRqiJplBNW8HTBHcnebx5Qzizyen7jRtDBT5UKaI84Jd+TwqGcWTReqhbjn1ov6Ram4J2eJtkJtWvWs+Km+cEvq+F7B38fXNOq0FwKwgADgGgIA6Fr0ikQJKmMWmVi1YLxiW6kXbn9uftr5mjTFhUJlhj3sCwHozwZAkvNFItBs//8sH4damNtg+TgnL7Hl4wy+VNT5OJVXuB3cW9XRb1HPOo5relwrbwL5OMcvse1u7rhkAkkFCQkJBsjHab9ylcfswefEexZaqdun8v1NIh9nFat1ppuCdQySj5PVqUST4sceuy8sN6Z4wrw1rUwiHyeK1TiDTcE4PGPm4xy/lLDZLsTVc1+WJChxwY6DJpWP481qvPbGMZ5p5uPcjdwaVvxlB989kz/739zaZZGR83EaslrOyuiWK9J8nH/iHTzOvm/iPPdioOIBL7OPSeTjYDEEYz4OcIR4nNrhd8jHef/456bqnRMFW8p2PPtyaUaCkfNxvC+z5ePwLxsmH4dfYvSyx172wj+ffSsbkfFKzXk+DnVuzkGOiftlthyT1peLKh/nYYiA92xOVZ+5nSpfXWP+6AHn+ThUH8EBVnxWrMpe/p/Kx+nI5MaGH5E1k/kmifan+cmfZPd7Q94p6R4Nz066qSSR4fQTpnpsXzR0kakj4ekx7W7OaAfNKVO+BGrmhcFPQPa8Z2eWdL+4VyxYfCnpYJ+0IAvG96Pv5ORvpPW/0gHAhfnlP4qF6JXUc0869krt0xD5NNlnQa+sIoJ/Kec/JbbiVg/PZpYLkMqBwaQhHsCvjyIeh5lVY8pOTKas8mCOi3XH86KENg+PJJ8cSV4LMhOiDVhR490RNuOV0TSRDlnhZEA7fMWVkgf1kPwvKHnoGh2YMVjJCURkcihPAUvkpgtw1Dszof7jj10bbBzNhfv6V1uxKdJnY4GnL8sUPfI6n9iknt7j6MTmL44bNouUP0m1SBcmi8TPnxP90vOT25LhVdQrZtoPIK+JusLkmSh6RMY4vdTcwFcD1tfUu4xWw5AXq9UWrpSHQDlGmBIYiv0eFg5HScLUOsUg1COSJb2VwcOkIdqbUK9OX87VXNd1t9pOzLsDwSyGSuqDouprTiLklyBEcB6HkF+Cf6nyS75/3OkacOKF89Qze2Is3vpdosovTemVMPFGZH/3Zenxyx8vm92VaCcOo/6yPBP1gxHyTEyWtoTqAbgZkdaatftYh+FbQ71jfMdmlckMdCiMtbjfDQN2vQHtugoV8sTBg+YnjVJ40hLWdxykBt9BEZbnMPJ+xlzNWKeOPcYjVKKYbGXtmjfaQEAUFa1iCFwfjGrUaNQI39SyWwXNBmStYTVZKZHmSQitY7yhKIy2i9VoawxrNMIFm3uLNA4V3jJRO+4x2xBjlCnYq++Cl76WKdRSFZZ1Bz6C5DCRtlrRveWrAbYXPRfmWDx7/jJkFtVWpXyioyRD5FoBCx5lswt+qhOdrpwK1Pr6RbpiM+pMVqOOOEnT+mItoIB3dqlGnwUJHlUmhbWjm0NPRy/TgV3lPKPUEfdL6QJEpXvn5lgXxym9KxOld39416+U/Jzb2pS0YhP31Ysl58oGhMtCo/iwriyZ1iFfMdW0rukXGgqnIhK5HC+/KoOF86B4tyMSYMd73brMGX7NdUe/2Jjq3X0ETK+AiJd0TbcHPaN/GEAqUIgqhmcv5t0KLWweWTms+i4Ym2r4wmjxhameB3oUb+obc6H60utfq9WjFnhBfsUCQ0Ivm2fHKos2eK61ChE7Tu9vU9jEe4BVIMRqmQCV+wEm+PZh+mWNaSyoxHoFEhcvdatGPuXu+eyUbT+6ObPhXdqScqhuwBR2PIFvbs76zUEvMYHlZKwH6rHHZgl1htikp446ShxFH4U+s1b37/Oz2J0X5H4J7zYU/HtC2eCfbRz4aRlihS3UrRkRMNsZfBOkRd7IF60pbdFHtOfBl8G2zfvl/qKnKOxqvgPuCtKdEQQz2AEbEDjBdDNhglm46szlZd4D3LaP+eQjDxhesWgIZsV0NoLpO90ABHP+uDrE/OQj9ylTSz6ase+rIzcEE3+seLnXWTNcEw8enJM1dVAbDghmyXS2cT55OscEM2dFlbU/vwa5zfDxOjNu0CAvIxKMgvWbg17yOxJMjRUfSvz770236U6dbnc9cX+g8QjGlRX+lsaB3wgEIy02cI/Nlxy3yeZZmU77iu0yHsFgroCRYMCAwAnG2YQJRu5/Mqt0mRqiBE9FbI1P3rlFQzCxq9kIxnW1AQjGek/rI3Z19ngmnQ8c9s3BO4Ebggnt3KFd3Upf/FavXTneMjPNkwOCmbyabZwrVnNMMDMqtRbdu7jdbenavltL+l5YYUSC6cv6zUEv+R0JZrGk6pA16a88tnTf3Wh+TunnxiOYlqzw1zEO/EYgmNZvh6wam2LtuXptt9zTFaRTjUcwmCtgJBgwIHCCEZgwwTxYWfdry11NfTb0Czszc6+PY9EQTO5ONoLZs9MABJPqkxFQZ4y9x+KRxec03fl0DzcEM6LxlYBi7dr7bMmU3n1wdygXM5icnawLRTs5Jpiuw4KOd+5w1ndFiTGv1/r1zzUiwZxk/eagl/yOBNN9U5PZq65Zio+06NZxa6VZ/Y1HMPGs8M82DvxGIBhJvZ8+dYdNdNvqXrJazRbOl41HMJgrYCQYMCBwghGaMMFcL1XLMXWHxGXK9S4Pt5c40KxoCGZTJhvBhGYagGC2jrcPPDlhqteCNa93fnmx7DY3BLMwemuy01E/14XHh9c88MTtFgcEsy6TbZzPzeSYYAZHfuz1r9cfzttq5d63vrPAxYgEM4b1m4Ne8jsSzJh3DRuZfTojXn979ZPrP1e5GY9gerDC39U48BuBYDzMN/7oOj5esO5o0IelpRbfNR7BYK6AkWDAgMAJRsREMHrXVLDTWq/oayrUvFPn7V+jJnkv+fbu49LotLR8NRUcjyU/FFep5z1L4FBnbkvBzHw1FaZN2F3rijrIc0nQ9p7Vk2/OzldT4U54i2cDVt7zSuUVj8+sGLIgX02FJm73Q17wrF3mPl4fXUkW9ClfTYXHY/2mH2zZxDOu40ObDR3rxeerLzW/+uROiXuLe+1Ue5YK7HbsCGgqhTf1/6tmixt3HTzj16dVeSQbAGtZWeBNLn3sFvZrPsRj/YHUyOBba2EFrNJ4U6snSZPir/k4p2ap5jvluvmCpjJ406fZRw8OGNBC+OekATWDts2CtSIs8SZ+n58NxU0veyzdPXHilWdTt4GmsniTvTwx5c6CEx5JWx/uWXjYJxM0lcObpi5fszFjQXFR3JaKLdztXbNBU3m8KWteywXFnq72m755i4N/7a5tQVMFvOn2xua+38xOue39ZN7n6/nNPNBkhTcFdXk798b7Vj4xfq2syn3p+hdoqog3LbL+N+mu5J3bevuKzT5nFR8CmqwJeIOKLau4X+23ZGbinS1OrSDyNsQD40onj5m/3DPxisfzbweTG4CmSnjTgiZVZ329X1G8rFf2rMYn65UGTZV5jKU4qhAPnDAx8riPnTD50vc6JRrnTARNVfEmpffnlesW3fRc8c/PR40sSkwCTdUIo9h96j5o8XW/Jb2fm/XZfbkDaKqON4VWW1im1TR795mu8ZtGzAosA5pq4E2v6r8pF1F9neuO9hueJD1aMQI01cSbqqrvpbdvs8krZogkef23kpVBUy28Kcki6+sFv2Euu32/5Nr2CQsCTbXxph7lzCKjLTeL1/5r38L8mmg0aKqDN23/GpjQxOmM8/YOZ/a9LP73LNBUF29aM97RN/d2qPfGf1+cCvvYdBRo4uNNG+qeTTv9b7xgZfmFkiXJK9/SioXU4zEUCzkszZxd4dxa0QbztFU1e1zfiXAb+hYLcWFyUZVDU5JXZJwSr9r2YMyZWuPI5a9KiUdFypUhCAUspgC4MX4Hn9AslSlgWBgBAmLghNTSsAipzpJXVAeFfDV6ZiPeoGvtVlsx7861TOhfEae3/EF4vOuaXoqgVnmKoJoXQX63mFOZ30bwu/tN2msmeCJ4u5BDQVCOD2nB7OobEKAQVO7fySZiXuY1vWLiNj2koGtgZ89DpMHKiEilWoZJgIH3k8mxqRPRT/gSFVS9VUbIgtE95MGqn522+Hrt/Tnvr9Hy8YFkCR/t59AlfPKauI4bIFy7WOFac80kIjm63KSekZwDPtBC8swVFS6J4kdIhkn5IACBcgJDJFCLg1Hrp9mTazd6Hn0n3NzVYuTpFZ3+oag94I9FqD0QLVxbz8oB7+wuKOstc8Q6O03xR0/g6hHCdITogpQKJLokcKkKx+52sBbtfDo4qH6viU8LL4PHAVi7WMECXR3nHzET//ynnv1L6tnUCN1g6tlTr7OpZ7tcLwr17BOfm52TO1sJd1UMvbutV3owh2RJ9UAcqGfHXGcTG5ZfN4h6dsq1ex992wW47ZuygNc716uv0dWze7OiAvqNiSp9FLTAxJ169oLrztZD+XddD14aeuT6znX7TEY924nVdLWMYzqDq2c3kiUdE1z44jYnPe1R9O15fCOrZ2NehlH+GHgZg6lnf1xnV0Ua6yVYO0We3vFvc/IWhnHUs3uzguNy3YDq2eVzvy1tE//KL3HeuR4uq32Gmoh6thMrQmBM43GbK1PcdmqlxPt7h6pukzfVKfW8wVjy5NzCG8Ro/AAXb90XDoSEmiEfVnQmImEwQwwFP4K4azQfYKuK0uhEA2eL91cYe+Gh23idAifq+iX6velRNNGiI8bxYBoofwIwvoXadXMGFrB/ot+yAvYC+TBAR0otKz4o3k/gsj95ZaBs4OxWlN0keDdCJAq7XFCkRPV/hYyU0gFA4U/wE/C0TshvJuYFPtFL+6UaBhDRL+xCZCrQfUE7mmwjFJXrBa1s7rk4/cm3iDsnZeRh6ULcTB+WeU0FFmS6csP7lfVSt8Wv4p/MP3ntPQeAObMCBnqUUYIoDWfA32nFY/pDL0liwWJLS8yWLF71eYJ7z5gHSo9dfabX3+CWWccaE5MHxhCPilRJtdIzWFArEAbY9W5SuACYYtryS2dsnOB2Wrh86KW0jpejfDgwbTVW05obybSo+Dium16hVlnvfP4cacyKHvNvh14t6bXKbfrpEVMahVA3/BDCdpqrnK/dOeI+aYcAsee3wxEbYjgxujERo/BS1dsj2u12/rPfwGqzgg57k75NJShAEgWXPqGarBTqG0nVdJIszoBlc5EyAkCukUHBHhOS9xhscqjJNYELS1DYQydGpG7bFfzCNHMgf0vXaAR0/pa3AOhPQee/R+38g0Hnr3KrsPkpAu98oMDlBmWkVAWjDaWCb6fp42o+QE9ThAL+S+PT1HA1WjlSyqAgX3ZlhoPAra9rXFDpnqIhPS3JPiYISzqg+xj8ekE+5kaldP8FLx95bYzxEyzz3RBVSB8TB2B2hDCbC+HBdepiXRMM5sIuCTfKZ37t6lawUqGWBkdj3QPLiULPIj51Ge57Y5Z46oChgsRRdmR5S8u859Knv6RGzuUs7HHY+qNgu+aAwYa7BHcml3CmfIP3LdoqfWLfvfFyvDhRTPpu5XpIMR0Jvm+0XI7wBUwBswNxHxQjwfqsTDFCIpeFaDr5SFlUOF8Jpikq3T0BdZee5T1pViA36yqdaCvmHb0J0LVEbb7Fw1NKNws79qt4YHl4cNVVqsbEcDDEkAD4lqhv5lOymefcL0Ne/Zw7pQs5fMYeRA+fNZcLGs7UrITCygEC5NIgcutQIUPvpmJe0k3G8FlH5GpqkVORuhrsWkj4rnZe4FkiONvtjwoPdr76+IZS+hvvIOgtHXIr16MYorWEFa3JN42iJGQRODpSmh+HBvlydhy9QEgrlTvC31E7urkPgkFumFRFSYmDfwrruKtgBAkNCx4BJtWjNaZGWplKTIUZJIW062BHfBTkoNLm/Jtjo0CvhbBqvhi2MFbQ5O/iXT8ECUXtid9KXG/0Rbg/MEVxwb5XW8rGBPxWiI0J7HJRQLGEFQrQxXGi8mAiKn5Yg33T58wQLjy2zXv555SxBSr/Mfhipnmdzip+VG+pi4ofr0AfPKlG5wudj34R7WxWTHE/Xty/sD4Y+A2Xm7jocgxNBhtEDq21kHuaPOTU3DhuIM/cFhvV48Upl7jvtXLHVJ93hQPIa91hg7zsHQJyL86yMisQkBsgKxORRElkZSKSKImsTEQSJZGViUiiJLIyEUmURFYmIomSyMpEJFESWZlty9+PeXdlqevKTItXD70aWdJS3mDnRfY+avolBylv3kz2r+913OH2zjKum81Dhlx5ZkW2v41msV8kV6phuIht4NCD8pIMo62+q0wRgm0OBOMPwKaUcJ6JpyHotr1PTTkt8BVp4KB+SdeoHEwVW98Ag+wa8sQImJHn6rfNX1Oz24apmSuhaQAe4AfmvKCmgYoUUa2ZngmqjIebg5d1LMxeW9EuY2cBrJxu4LSbQysQBabV1jeQcTgTVpW1KRH5sUKiVEea1Lp2486+B69UuvK91vvzHKZFTOrp++HkplGuicoZ7tOFo49ygFLudTaUrlynLz6wxWn2/sS4wgYbhhkx5OBUj8g9Y94q+SN3Y+4AuaMwzsFfXmfUNG8j7uc62eOdCLkhBwVsa93QL4xtqt09hBAF56u5BhmI5JuQ4PxckPhh6r6awn0rrcJDQreKTGDXEoJkwQpSrp77uo1cZJpvrl2qyusy2MYis4NSf+ieeOfBU5+l+/dkf3J3OETeRSSeS99F1LYUBTr3GPd0ITpntXu6PkzE+CLI19u8+WfR4vVnXRP8PPrSF+LpTGjOAG498n6uNtVtpFKvssfUAxa67g3omv0NHNMF2KnOChELUDwA26YbRbBNK34+aqN0zRbnVXzesNNeXckV6Cyx/VgGWic1FuTFqS6usJngwE+fg2D5o/pYPAjNU/XjuvIYWFIw0pihathV2nLw6kDRhhpjHi+sU6YN2ROJwb1ooPI1GTgkgDBtYoVpwQ39yK7gLTTqXrPRttCgp8H6CNxC49NiR0cMGtwP+TL5IZHt2eYdptz1jndNeBvVoXpt6jp0hCSSr1mnQayXM4Xmtpr7iN0e7FyKhK+QjoSXpCpZME6QOrkl6uEuljdErZTna9YRV2dbMc/qUSas+omIyWMA6lnZejmq8tg2lGZxF7wO8lt6/+j2+WzV2YK0uj+k+w8PppxDwh5AD5E0lwsac9RzboUcczAzuSyEZxtqzMGKZJ+y9comKad5H7ZCteu7Rjv5THovWHz9YJsNGXOTybt/mvvpu3/49YLwOX+i7s6IUw4uC4btTlsor9iNA3yys9nwAd3HGBkGFljixggNEJ151D/0tBG2XNxygRJVmDSKzWhvru+t4eq1zn3ysKGhi9qfakg2muZ+utHw65yv2QKrHGK1yhaTskrOEcIqetFXBczhRUpDcOeLNMzobiNqJ9rO8Ni0Z9bzvR7ri5EN44PdTzcMfp1rwzg74u4ELjPS5qsxzcW819n6TchqajHAJhZyWUF4TLFbUrv5DCv3IynDWlWr8Kw5payD5gGIsg54Q1EgkpXNhsiubILX/Zh4fccCr9x+nTp6xOZ+j7I4doMcpeCfqHsyTGftDINM4PyR4bLgcBBWwrOFErUaVuTSZsXg9K/b5IN6Thv1vvQ+qbmuT55oNp4nSst+cQazOn86r+u5A14LDzU0BSywIovwCJPmTZBffNfBF9Nu7zzsm/jqltfEiddXkjsfU2CjbTAw+WOppBBDJ1SOBr8phqFeHquzL96jNGXlSQe1YD6QWrM+AEtZw3/nxZT8sb7j0QrRFD43alV7OK/FAKuGAgzWEvXXDmZ/k9+4ovYmjip+Ubc5ONi5Kp/NtnP14yGBeXcmzH33u547xTsuiulbvZPsuSdZUL28D6kYHd2RMiFd0wfEA4CeosCdckpJO538JFWZgu216MVYye26LtzAg9SPAZyzUQs3cI9C9RhR84vgE0TNL/hJ1Jpf1Jpd1Jpfv1zTi3ojoqYXk2+q7SpTAZ+jTwnCBc03D6731Mp3seTIxq1LLSeQSxAK6KNDUGCBoW+HVk7vMKGz54KHxU5sLiN7V9g1E6jjD83phMpegAk6sY8zEcW0mED6lUKNqxrHHoqyLe58xFHy/EdpCXmpUbdCjVSUpjx/2Odr9y+us24snHN/1jguUFKxojTwMa0ME2u2i6beNQyMdACImvVO5jDNo+gchl8vigVvrMd8Qi002TlgSOH+tMf/M39KlfMxkD89+YjNn6569J8/xe3TZKvI0WH9Tt+EG7NC/3qZeo4Df0qVaeLAUxx/xOYpdjwqan/aobLnovFNGzjHbrbeNLbt+gwO/Cl1kYADlFaxojT9URH6UyqHGt2fYj2G0Z8CpHB/GmDycwLqcOImma2NWfW3c0SRLvs+OIfvuDSnBwdTAtdHbFOCtlrIAzlLZitPQG6AZDaEBh7h6hEaeEQyG0IDj0hmQ2jgEclsCA08rcQgXQOPSGajRmi0jDXoFdGTHop6HgcZaz05M7KlAY38azqSCFFFwsjUPX+aTcyZbEKVLeTAJkFMNllx4F6fadmfPFIP7E3dOew+NX9IopDK6fXpmRybnYAfCe/ABV5gWXS+Qhkl1YgLwRKpbBq2VN1FxKvo4u0sA4JVSrm8B2QseDHvyGdON4onXG/5+naNyCYuqa5S9cZi81RMntCip1qqgkVYiY9t5KKMHiKHuVrgfTDhnxBZFP7dQYQBdzkexGyimKQEgwP1byzmNX0AHGgHES9mmqiMj0QVJlN4S0NJBGipudxDFhZOul5acz1QGZn/KtkL1wtsLP7a5EFmBQxEfxU8Nxgl07xVKeKtUANKJRnpoQiBslsEvGal4UW49ZLvEharwwQZ7aWyAVBVQiIXQS2ofEQUpZJKIrQ/Y8LE2nvwrtrL5GmZqgLK0VIdtf9zwMtRD9h4OeQBwcu9TR5zqryq6S6PDmZN7PfXJvb34Ywmy/EMR5MI3VyCJhG6uQRNInRzCZpE6OYSsdCDlMFP292r5r1sZocuvEXXsvPFQoMW/HUu0SvDc//Qh7aNvMeH0MgVen1kR6KK8XJArn2ZLFk6YOmITdFDXZJffZK24yeSp0YV8I0/H/AfFXCVuqsC1iC2DBV8v0ipws2bH4E/Q7cNQaroMOtr0VX3KL+g49DwtxXzwp/C3RoRGCe0pRkwM+M9pW0RsqVJ1NZ0bUJ9EkoIREOZznCJApAc8otn1ojet/6Kg2DNgi5ntj61KU7eEHTRPIG+IUg0cK5gBCAJgZBsYUqc8H9qlMSJEsEAWq3T2LVr1099xP74ZMNAfalouUSF7TPKYfiCtE3AG8+HB7zG+ixeVMXi0wbJLYqIKv4QhIgq0VIU1unMah07U7AO8EY/9ckuqiuOkKkx2eJgkpkIF4JOpD8iut5s32nPHQ9l63J3ridvjVlonohYxM1rKQrjVGI1Ds8UjAOhy28cgpmYjNNOEAE/ErMJeB01uFWqCB6tEV3swldGSoZDjcYW2E95v8GQnn1V0tl7W1fBn8s/J9nMXxxBPscemO/59HPspNaiMN7LJ2zGu2ZCQkFkIU3zAizYJc+C6nCZYrQCBMHAfMBcCqUCmg78S64ciTXCH51gU4RklOYCWlMkS2277VVpj3V/mO2omb5+JK22DiItGr9cFJY7zmq5HUa3HLwJ7qjolSpjrVmPlinC2B3hnZCPTvtPtvHbUnbgGLOUSeTo0YIxZspr4XzB2xGPIeCM4yQtrGqOOUI8Tu3HFKdWNx8bcPRgrt8Ri+RHjduOtSfv1Ik0Czn+KukImXQkOUyFmDJlttkKoOqQOt9iECYgGyZVRkijVKP5kZoHqit4aLK5PBQ9pAp8/sIcvFLLYrC9K31XkdxePgj8J1KpinKVyaM0H4wK9xlPmDYR8/6F2C9D7TbGgZD2ND2kJSbIyNmwG4ENdnASe0edIvoKnXc1a1C7o8fm+k6ZI0+ZkbXHLIin0rultqWgeTJV3Kyw82SA3DuInDPKj/g3E/PuPNUr0b1yYL4Qhq8cIVWpZAw1K3h7PUYrpWPcFsYN+rfirPctCj+EKVhRfQQHWJ1mxWqfYUMdYh2zFD7lgr8Eg53b8bd/WkjxiI+4KHQS/iyBcRuVVS2IiQHxq/D/ZfOHPeQ7tNPt/kxu7D8R/l8S4adWEzKYCP+mZ2wi/KHPikKEf1J8j6eVFCPc97VYmubfe8tGDk+bc+wjoWb5umdsmuVznxlEhH/+qyD/Xu+2iBfwsx69XT7ulNFF+MewogL6jcnMHfQ7+MOdCH+5quq3K8bwnNe3Hrqtf6jjMpMR4e/BarquxjGdwUX4l10NvT9vbU+/rQGb43I9Z3wzsgg/5mUYVdSBlzGYCH/p9QnltncLd5s62yu07VXviyYgwj+GFZzQZwYU4V9dfUqpWndruE6zeV1vZWy40gTkLCBCPVgRAmMaj9sGMMVtYkHTZj+7XBJsuVMn8cKaN2S5d0vsEF+kUg4YnR6zWTDg3CZvi0SWdz+uhQEQVymjw8JBDAerXCtD9dJyoFZYZHxbuupBvkZdc/saiXmjngN8JSK46ELBNwvg2/B5YQ9WVcp7LXAVxwL51U+OGiBdOFngvvSk3/ZP7lnmha/dRQmhqI6xkCEUH6AXBdGrK0LVI4abtc/1K4StGb4h0jCVFB1ferZ2KZvwcL9PzLpKJw7Z/lhKOSGF3Yg4IaW5zrnsL/j+3qzfv/1zYwdL2p6pR6AEX1mmDJEFs2jbLL7PS7fiLfTao3zQr/nOfyl15ogH0PuqtqUojNGQ1RhWxjEGrTi2PjsWjl4KZRSgL0kwXDu1c+oCpqxgZhFhz2/RJThcqQqx57fsoh6uisJ+QEerj7tX873qeV+8efrtXUc6Rn0l8xr8gICo0XJE/cu8pqIw1rdnbMZ6avRpBpFXo1e0WjlvoVsRrRqiZhlBSR/8e+6ZHe+Z5h8yU53bt2thpsqFNEecE+7I4VHPLJouVAtxzz7P9YtScU/OEm1Fv5y/+OWcWL+FFb6GW6Y6eRt12gsBcCYAuIYAALoWvSJRgsqYRSb+uD03qaTDN/G6pNNNpgS9aUGhMsMe9oUAlGEDIOm1NtAc+P8sH4damNtg+TgjXrDl45R/UdT5ODturh56v1yO14GF/QZmZedkmEA+juoF2+7mwBcmkFSwfPlyA+TjPOq3WW3e0sVzw+1/2tVb8CTbJPJxPFmt09YUrGOQfJxZfnW83u+299g5IfvD6kequSaRj1Of1TjlTcE4PGPm45SPsIqt/c8b52Vlc6ZstrCOMal8nC/P2Yz32OjTRBPKxwlrYsazmdDQZ1123By7iGm3jJyPc4HVcmlGt1yR5uM4f2/3ZmqDjm6Jd2we2379P/a+A6yJ5P0/eihNRFERRTFWsIDYFcsBIfQmWO7skQSJBoJJEBEL9or1VCyn2FBUFLtiw947p553NixnO3uv/5ktgd2dXRJYknx//+N5fB7Zl91sPu/MO+/MfObz7r1mEnwcLIdg5eOAQEjkqf3/L/Bxlo1yC317Mzp4zfunpwZ9aDLcyHycz0+5+DjnmSltqfBx9krsrp2sUsVv888Hcp9MWCvnnY9Dn5vzwDF5/5SLY5L/tLT4OJrr/4RXGRPqudBsUKcvHx/H8s7HoccIHrA6z4lVjmFTHWPzcQawhbGhB+VN5aHrRbsOhCn+ud/7BXWnpGsCPDvpp5LExzBPmOqxfdHAR66Oh6fHtLs5Sa74KVOhBGrmDYKfgGx5q+ucPXD6fbrXkorzJAs2L3nF+n7MnZzCRkb7s4wEISys8FEsRKukn3vSsVVqn4bg08y8B1qlvQj+o53/lDqLJ6beO24TKVMAh8mkASCuDycfh7kVd6WEzZX2+ak+dh4XRCva3Du4+WSiD00FA+3Aynh0R/hMYIWbKIesiMGAcfiKLyUP+iH5Yih56JodlGHxkjvIyGpCuR9YIjfXi0B9IBvq3yduXV3Fzcx7Zx+HxRnxITSyEuL0pVXpI6/ziU366T2+TmwWr99weWTfLbpHotg8kj4nNeFZ4Ee/BUPt1YunNetLXRP1heQZDTMjY51e4jcI1WDUx+tdJqhhyovVaotRKqRQjhFSAqOxv8PSYY1kkFqnHIR+RLJ8sDJqiEyqvQn16szlXPy6rrvVLmLBjNsAzLIoUh8UVQ++jZBfghDBeRxCfgn+o8svhU681SXyxFPPCWe2p1i8Csujyy+N77lizI34Pv5puemLHqbN6ELaycOoxZZnon8wQp6JzdPWUD2AcCN6D8zyw+oOc5cE7lB6tb+1+0C7kniL/90w4Ncp0K9LUSnPbHjQ/LZRCk9aw/qO/dXgO8QNKggYBb9joSbZ3SNiFEIlis1Xdr4FvQ0kRJoEFTpxfeJ3qnW3Cmc8p8RMOOxWq8s1TpeZi/AnIbSOCUNpOG0Ap9OCDes0MgSbBYvwgApvGaPt95hvyD7KluzV8yFKX8vj1DIVxroDH0EJmEhfDem6vd/IR8u89tXe3zIwqPoauq/MQxI0koEKrYCFgLbZBT/VnTlcuRep9VXM4YrLqe05ndrgNkPri7OAAtHYZbg+C7pEAE0mhbOhm8FIxyzTgV3lnVHqRsSlXC9EpXvP5lgTJ4Z0KduQ3vXe7TBzxXm/5XsOlB2zs+4kKlc2MkYerRHCurLUYR2OV2w1rR3DoqPhVESiUBDlV+WwcB4U73ZDAkwvOMj2Coh8SVe6PWgZ3W4CpLp5o4rhNRMLqt4sKY/MBqu+C/qmGr4wWh6/7uatXw7nBs4Zk/nkH/OXWfQCL8ivWGRKSC+6XlLiPTx4D7FK80JxP8AEv9NN/VhjuAeVWKtA4tLbP6397cmbRal/h0dNnLWhMWNJOVo3YEran+Chds5vDlqJCSwnYy1Qjz02a6gzxCU91T1sS0rNnyaIxvdV1jy540Y2tV3Cuw0Fv4AT/md/mwZDrKSFuvEeAdnO4JugpTpoFXeLGSlKuprvSoSCXE/EADPAFesQxAAjYxtg9NbzcdF6r/T1fDRzckcPPNnea3+t1KRFiXWTC+n5tFhyzvO3pTVC0o5OePTv9il2hfR8TrlN/uVE9JqwOW1mDjnT3zqkkJ7P0Ur7Ggx1kIetKyOa/Pq2eEkhPZ89juX84mvle+3avGJKXN8/ZhXWNmRW/iW1DRGVf8lCvYjKvxaEaVH1fn365aR7p3T/K+DhHx+gMKMlYSq/v+Iau7huwb/XO/vmQ2hQRWCyIkz1KvhufL5/XtCeMbHjJLY144DJmjD5dD0WOcr5pNfsWus/e0/e8A2YKhCm7DsjGtt3uuybGfnzXcX8vp2ByYYw3c2bWD3F+l3A8ua/nZ5Q46k/MFUkTC19le+b7/vd+/cRibl+R/y2AZMtYVobM7pm6onqQavs1o5pMLtXJWCqRJh+it1xrLbtM/GyL/3Sex8y9wamyoTp9d/bL6+LHiz6/d/YF2XXbd8ATHaE6f2zid12Onb23yWJGDIx2lIFTFUIU50uz3esPZkmWv1+dovkvPRUYKpKfq9hC2qPmKQJW2GZ12rR9MdRwFRNwCoDZU+YNnweEdNwdqBofeWfT/0lmeoATNUJ052E/V2i+/j6zn7sMPbggK+1gMmBMI29k1vmTpO2nst7NGp7otqwocBUgzB9W7Khyfpmwz33Djz+540vr9YDU03CdP+1JuOux5TAiQtqvuk14o/fgcmRMLVyOLz73otXwUumDp4XmXUEAlWLMMXc+b5swsiDXpkLOzX4s9mzxsBUmzDJ2tWf96a7d8iW5F52q5rubwhMTqS/dnQwv37zi/eaS1Gv69WKh6KddQjTPbFz4IiHKvGS5TlZnd4vmgFMQrI7RL5ZkhTpH7LLvfb4jb1GOzOEquoKWISq7it+ldQ5X8F//qe/XTxmWV3kQagqmi1EVYves3nxsVPipRvzR5ypNTKdOnUVD49XKKWI0xdsCXAj4g4heV4WK1OnjgUJMQhCRAVAHY9b0AMU8tWYs2rCoKtuuDOYVj0/DuMrYucwHBZkf65fAc2C06j4iyC/2z+1Fnd8/CDGf8XFz0fshtfZxONhVJ43COHKXmsIkBQ17zzZWCwQPtcrJ24TIQNNA+M9SWWwxJFSLceOn4D3kyuwqRPZToQSFTxxrYyVR6GZaiOSm5SpOypw7dL2d2S5O1dQ6ePaz2HSxwtMvJemccFaDAdcH/81iUyOedRRz0zOleho0gJ3aWIkGmGsZIhMCBIQbQlrdp65Rbby0Kg6W/w27zc7FhWiqENjGhKPRTANSQvf3qvkSjR2H5T30tywxs5gm+sJXF3yUBRJ+JPRgUSC5d62r1jl2Cx4WhOfkye7zaFG6mIdweIBrAqcYIGmTow/g9jGn/+UG4ql3EDP0A2m3HDrOZdywzL9xkodlRtedP7lL9vcKgE586Ujarw/d4/HwZIegXhQbrjxnOug+3H9BsviKjd0d1rfdOelwSETPtU1a2q/NsHoyg1bOVEB7cZEWaaGU27wvl+uzdy4e54rXcsFS+97DDIZ5YZpnK4bZhzXGVy5QVgmY6NyWm/RZodvUcrDU58bWbkBizKsR++PI7KU0lJuODFcaDts/s7QiTtr+q+amb/eBJQbtnKCs+y5AZUbGk20vOOySho44/2bqFsfDlGLshlPuWEaJ0KgTxN5Wwxb3nZqiST4W4fqfuMynMyf1E8+QM1Gg0GOJoz0CdZ94cBbWwwXVhMgM2EwQ4wGv4K8K0kIsFVpcI0CEGyJ9gpzLyJ1G6VT4kRfv0S/NzOLJi16lMU9/pUoi8tIlTyBByZ91W9ZAXuBQhggv12G4Eq/Q2dv+k76d77H9hFvBtJ2k+DdiAMK2OWiMiV6/OOh5u3hrwT7itEIhU3Fgk1f9eIdO2AAke3CRSpXgeYL7OjB1qK5tXDbqkchq6s/U1k5jqTKGlv6kDczu2WBqSjAxtmeW365wlPxtuz35ge7tWvIA2CLOQEDLcooSRQ+ZsC/aSVg+2HKYVlw+NIa8yVHVG1ufmb+E0nZgE1pW1an3Lz2ww4TMgHOEA+PV8m0tGcsqfXyjnT5pXHJEmCaa/eGp9UXD4kI2tz+1dvxa7NdeHCtitO1/YzkWlR+PPtnvVKtCsGF4jnSmaPv9Ljlf2q4Z1qdCxHJmdf30Tf8EIeq8Ku8r925ETEpG0UqyXbDuhgxMMrZBkbvvOo3h7Xb5pnVu5/D9B77qeIBVSH5VQOXPuFJZhnk1sv0qBjfXKSMBZDjFFzsMdKCx2CTw4JC8ZBUqtOISN+2K/qFGe5A/pWu2Qhkjr4CoD/yRhSQHwAaf/yrkvJTvIILgQKXG2AZJJhtKOOELmTxc4AeLoAE/4fHNDVcjVYmyljUS/7I7J7atslT0bJjdn/Xcl9KHW3L98BIB8wYQ1wvKsbU/HirceIH39Dtiz0aWbfovqWEMWY2JHJCmM28ESXT0xpjMJd0SbhhIfdrV7eilHFqWVQC1jwwThRaW0t45++dl4/47x5v7xnw/i614KF1wXOZ01+KkXcqZTMCtj4o2K67YrARIWEwW0g4U7H+mxZtlSGTXr8IcrsyRkz5bjYRMozDKAxNUCgQsYAtYXYl74NEWKzNyuOGSRRyKd7IE+WaGKESTFNUukcC+i49x3syvEA163psz1ksqAXRtUZtvqUDdF++LGnftw/AeHhw1VWmxojYGGJIAIa7Tfrm0W1s2IwdT8rUO3m9FzV9xh7ETJ/xy0V1ZzoroaRH0QByDhC5laiUAVZ+NXvFmj7riJyjFjkVpanBpoWE7/3mYbbz1lTxHt/++S+ffTyoSXUFooGgt3SoVr57MUQLtCQOtP5+aRQWu0W3pHhZYRzqF+LsuAWBlFamcIN/o3bz8+8Pk9xBMhWNEgd/Shq47bEBEjoWPAJMqpNwVyO9TB+YStJJSujXAW5EL3iJos2FN8d6gV4LYQ6hGLYwV8D5u0TTlyKhaDJ6yYg1N9aHjW9nVf7gsLAbtI0J+K0QGxPY5dKAAmvirFCAJk4MVEPYBiqTqflHj5b8lD8uhZJ/y15ylfybqYVcYfKQ07lx/EA+1qx8q7ke0QFLNB1X7nvq+DMPkA97wwV59BsS8ljeWJm2JOQGYGUiSJQkKxNBoiRZmQgSJcnKRJAoSVYmgkRJsjIRJEqSlYkgUZKszM6psvdmS0W+C2Yc0hyxtvidQXmDjRfZ+uj0Sx4ob3Fs/q8XdNT15hYr37Vm0oFXH1ei+r8KvtgvUijVMF3ENnCYSXl5lt5Wz1cOyx3HwPrA+AOwKSWcZxI0BN229+mU0yJfkQEO6o90zcrBVHHmC9DJriNPjIAZeegLvdauHfHdNkxJQwldA/AAv7DzgrrN/D7iYddnwWmxLhl1puRvL8leW+kuY18EWE17QQy7LxnihGBarXiBzMPZsKqmpUQUxgqJ0ryFPaL/uersub7xm/nrB03w55EWMbZ76LuTGcN9M5VT/ad4Jx3mAaVQTpTcXzAXH7jytGbhZL/COhuGGdnl4FSP5J6xb5U0mf6xzKYu/waPsz5bW9XP5rUR93PdmxGNCLkhBw9PD3uhXxrbRLt7CCGKKqT3CUcgSmxCgnMs2Sdn4JNq/nPCt81JuTq+twnsWkKQBnKCFPpCv33dhj5y/Jtrl6oKmgy2scgeoF70W9/GxTcrcK2n9WqX0O404iL5XOYuotZSGuh4cKLT6AWZGCnZBsanPUKDzZp/Es1fddZ3RVhAL+ZCPHMkNGMBty51P1dLdUtU6iW5Tz9goevegK7sbxCYmsEU/qw3YgFKAEsTMxegSr5N29rRtvefAxZ7TWgSXTmw5TNqGWZrbD+WZVinGIuK4vQQV1ImOIjTLhCscFQbSwepedWXeo11FTGwZKCnsUOl+bXB2nI71X4z/my3tadtvbPUSCQG96KBKmQycEoAYRJwwvRMz8Gu6C00+l6z0bbQYKTB2gjcQhMyckc3DBoiDsWzxSGR89nmHcbfDk73XfFK06FGbfo6dKwkXoiv0yDWy9lSc2f8PnK3BzuXIhHGyRLhJZlKHkUMkDqFJfrhLo43RK2UFzLriKuns1gw+PNxqDiNyMlTAOpNPusVqCpi21D44i54HfRy+I9RKeu83nnvfuXhJPa4RS15Wg57ADNFwi8X1efo59xK2OcgMzkawrMR1eegGmbEZ73YJDb4+3CJpP/8/MYEV4f2ASmNjv0VuKhSJnX3D7+fuftHXC8Knxp5+U+GtdocMtaviUXvfr0H84BPF058QPMxBsPAAiNuDMOB6CSg/+hXRc2mm0Q1SKbhctqTrdJ6n9dmhmV3GZLnpOwVQXUafj/TacR13tdsgVfsOb1S1qS88vIg6RW9hi9bLODFy6RE8EU65mbi0qn72m0SLXNoOSyo3ZgLVMeEYPczHUNc59sxnm5EOIHLjIz5akpzscD/s34TMkctBtjEQiEvCo/wdXVOug6dHpy5I2TrPjO7vTRJIfwBCEkhwlAaiDThRKTCZ3JcH8o2rmfPDXrbu6NHwKS33zQWR268ofoY/0TdyTCdtDMM6gAuTIyRR8WAtBKeLZSo1VANUsuKIYZ/3SYf9HPaqPdltkn8uj480U8ET5TBfvEEs7r1n0q6A16LSDVw8SRM4BceYcLfBPnF3Z7NDo9V3g2Z77TxnZ95tzbUxseW2GgNBh78MSopxNAdxdEQNsEw1CtidQolWhRe0oRyUAvygdT4+gAsowD/X5BTCpNDRyERpY/nRq2oAue1GGAOKMCgjjUAjOjMKpPfuKK3Jp7UJunbHDzsXMV84tq5+kWLuZoN89BdvudPCY6KUnrV6Ch/EliZqrgdQhFCZQZSNqQdQ0A+AIYnDbhTQZNT1SlO0pUpuF6LKQROteu6cAMPUn8BcM5ALdzAPYqzXxB6k+R4gtCbhJ9E15uk60XS9SaLrSdJvxGhJ8kWm2r7ylUg5ugjf/us8jenRpZuXjP7NT7WOafhn1T5Wy9m7/AqUtzuc5eYck3aPQtb+nJk/t1cp+UlXTMBveMtdKc7ir0ACTp3vhxHCDmygVQckeBvp25nda5XO2TGbZuVQdPrUc9X6yYSTEfpTvv6ox98lQbknHiiaNDke0k5nBCls5wo7f7CkADkZLvgtRZgYqQDQHTWO3UMwx/FHMOI66Wx4I21mI+ohSYXVwwpIp5q/sfiKV3Ox0DxtB5nPH3/+b94SvhH5i2pNlHzLHDuhujMxuXdlvEQT+kyTTxECifOSGFV6vH0uc1c8aJXwUHLW3R9UzHz8mge4il9kYAHlN5/5kIp/3MpxlP6GGr0eOrEGU/fayf4CSY/J6B3J37IbG3K1HiVKor32fnOMyY7LzWChylB+meuKcFsLeTDeCOzVSQhNwCZDaGBR4Z6hAYeSWZDaOCRZDaEBh5JZkNo4JFkNoQGHklmo2doDMYajIrIJkZXz+OBsZbIm5OtDejk4ulIIkQVSSfT9/wZPjFj8wldtpAHnwxn88ni3Xd+nXz/Y0DO7h05W4bcpZ7zKxcuiZMpmLVR2AKbi5cwHt5RqEKXME6pkeHiQlCem0vDlq67iHgVXaKddWSUSqlQRMARC14sOPL58mdaJNzR+/ur25nlw+aoTw99PrkGK5PaortapoIC4OTHNvRRJgxUQK4WrKIDhX+kcg3x3UGGAXc58lMyaC4hyxwxCtk2EgvGfQABtINIkDJZZBUiUQ2SxwXLoikDoDV+OQLWOy183RK/3k0ZX/gqNQpX7dFIfHnsh+O2GIjhKnhuUCPH38qcfCtUh1JJEgPipFB2i4S3jCW8CLdeCl3CcnUFUZIJnxDAKqpyiUIEtaAKDUQalUwSq/0dEybW3kM01SSTH5bpKqA8LdXR2z8P4/L5D1zj8oEP5Lg8wuQxp8urmu7yaA4nsX+9ltifzNswaSMw3DCJ0M0lh0mEbi45TCJ0c8lhEqGbS+ZC0V2qRN6dVE+0d+KIr2sO1wkrlAsdHp908PrO8V4Te53vZzvy0S3G4AqjPnp9jCbGy8PgOpLNkyZarp0uOmywcu2Hv3GVa+/1rbTLtR8fsvhdWodQ3zlHzJscH/hrtAmUaz/wjav47fpvJlBzesOGDQYo1x5wzsnj2a9pYcv2318Z2WEJreKokcq1L+D0zjhT8I5ByrX/FH4pX701xvN3Qez0HYkZS02iXHscp3N6mYJzBMYs13427HxezuneXruiH5aPGHKMWpfW2OXafTmd19I4zjPNcu0HKmTVc3Bf6jVt3zrZn5ctqNWqDF+u3YnTc1ZG9xy8qdTKtXeQfai20s0xeMe8VeO7hG+makMYq1w7lkOwlmsHgZDIU0ex5an/S+Xa6WUxjFyuPfw7V7n2Bt8NU669yvuQFYfmhATse+8X67y63BDey7XTxc14KEEe/J2rBHn776VVrr3S+Ozq8yctDl3dtX2rJKfBu3kv106PETxg1YATq0rf/78q1z6aLYz9J8JfLBF+ejUhg4nwC35wifDnMmMnDyL8f3Txcp9Tr73vitGO8bI1aVR58pKdNuc5RkLN8q/fuTTLHzFjZGmI8K96eTbz+vWm/qvcnnZwWyXuYHQR/jxOVHINGw055w76HfzhT4Q/2ibv5zf7W4RMrL90T6PtTtTS9cYU4d/I6bo047jO4CL8XeYO/eVTrao+GxMnPYuocJW2q2JwEX4syrCqqIMoYzAR/uyTV09LOouCsms1/nrxQiPqzppxRPjzOMHJ/W5AEX6PYz8O7v9jjs/Gj8t622S6U6dpxhPh38iJEOjTRN42hi1vE3s1afqjc57XultOmZeXvWhF1RHADvHFKxVgRGfmbBYsOLcp2CKRF9xPaGEAxFXKhEExIIeDVa6V0XppOdArLLK+LVP1oJBRV25fQ7HgMkyTJCK46ELD9yLAd/SPkh6sqlrwWuAqgQXyqy9V966Xlv1StOywbfNq/eKpEtfFqt1FS6HogbGkxeYBeuchenVEqHrEcLP2h36FsPHuK5UNUsnQ+WXDtYsFXqMqB8+4vtFhy5FoIe2EFHYj4oQUfp132V/w/TM4v//cH8ZOlrQtU49ECb6yXCmVR3Fo24S3MVuUdHG7z/bLle9psi60o7ZV8gHMtqq1lIYzRnM6Y7BxnMEojq3PjoVbUJxSA4YvSRRcO3Vx7wymrGBmEdtM2KJzVIxSJW0mbNlZPVSlwX5BZ6s3oi4+qREa5r/k0e7AWbmtVlPHNfgBkZokBaL+ZYGpNJzVg9NZ3ibRc+Cj9MpWqxUsdMclqAaqOXrQ+KmazID8hYG7m9wakf6h8v6STJVL6I7Z7kQgh0c9LzJ0oVqIu2/7oV+WSkRyjmxrbbs7GSeOKUSrVp4+EfCsy0KjTnshAItJAK4jAIChRa9MlBzK2EUmGrb0P2rZZoPnXsu+w2aM0eyjDWWGPewLAZByAbDe/weZaKb8j/Fx6IW5DcbHiRGc4ODjtBacKGU+zsot4XU/T34UOnnsnG1r2qSsNQE+TjSEhHV3s4/ghPFJBXPmzDEAH+d62sstdk0zvSfXKNPyW4XUZSbBx4ng9I6/KXjHIHycjnVmnH6XJwzbtfuPUx0+db1oEnycLpzOaW0KzhEYk48TE3M1o4PfqtB5WwOnnukcet6k+DhNOJ0nNI7zTJOPs2i7W/uVjd/5bow+tHTYlzYNjczHsef0XAWje65U+Tgr5/VsccpOGLJg185jHr+tvGoSfBwsh2Dl44BASOSpY/8v8HHuiZ0DRzxUiZcsz8nq9H7RDCPzcdZD7Fn5OL8xU9pS4eN8SR1/qooqICTj4qaTr6qfFfHOx6HPzXngmKyDyLFyTJZRkeORj/Oumvq9v9my0O3dFrUo3+j3JN75OPQYwQNWv3FiNc2wMdfYfJxxbGFs6EF5U3noetGuA2GKf+73fkHdKemaAM9O+qkk8THME6Z6bF808JGr4+HpMe1uTpIrfspUKIGaeYPgJ6BLRka+WZIU6R+yy732+I29Rjuzvh9zJ6ewkdH+LCNBCAsrfBQL0Srp5550bJXapyH4NA8/HhcI7EXwH+38Z7SzuM+Dj8dtImUK4DCZNADE9eHk4zC34q4cz+ZK+/xUHzuPC6IVbe4d3Hwy0YemgoF2YGU8uiN8JrDCTZRDVsRgwDh8xZeSB/2QfDGUPHTNDsqweMkdZGSaL0SJ3FwvAvUJbKh/n7h1dRU3M++dfRwWZ8SHrCny9KVV6SOv84lN+uk9nk5sFrPfcHnE/i3dIxPZPJI+JzXhWeBHvwVD7dWLpzXrS10T9YXkGQ0zI2OdXuI3CNVg1MfrXSaoYcqL1WqLUSqkUI4RUgKjsb/D0mGNZJBapxyEfkSyfLAyaohMqr0J9erM5Vz8uq671S4gCEEwy6JIfVBUPeMtQn4JQgTncQj5JfiPLr8UOvFWl8gTTz0nnNmeYvEqLI8uvzS+54oxN+L7+Kflpi96mDajC2knD6MWW56J/sEIeSY2T1tD9QDCjUhvWT3tlPp3ZvPQ/TEvE/OGVM4vibf43w0Dfs2Hfl2KSnlmw4Pmb41SeNIa1nfsrwbfIW5QQcAo+B0LNcnuHhGjECpRbL6y8y3obSAh0iSo0Ilru8sN2p7rlBK0Lq9G9Qqyl/c5XWYuwp+E0DomDKXhtBxOp2UY1mlkCDYLFuEBFd4yRtvvMd+QfZQt2avnQ5S+lsepZSqMdQc+ghIwkb5aHiZz7TpqcVBG7DPzwUtuDaD7yjwkQSMZqNAKWAhom13wU92Zw5V7kVpfxRyuuJw6l9Opo98ytL44CygQjV2G67MgwaPLpHA2dDMY6ZhlOrCrvDNK3Yi4lOuFqHTv2Rxr4sSQPoltSO9673aYueK83/I9B8qO2Vl3EpUrGxkjj9YIYV1Z6rAOxyu2mtaOYdHRcCoiUSiI8qtyWDgPine7IQGmFxxkewVEvqQr3R60jE2vAVLdvFHF8JqJBXGvS8ojs8Gq74K+qYYvjPyi3rZ2z5fcehI4c8a+oXbHP4fTC7wgv2KRKSG96HpJiffw4D3EKs0Lxf0AE/wFr/VjjeEeVGKtAomLvcvbpyN72gbtHbRS2uTXr98ZS8rRugFT0v4ED7VzfnPQSkxgORlrgXrssVlDnSEu6al2it1pnnlzRfP8Z//Y0S6kD7VdwrsNBX8vTvh9jQM/gyFW0kLdeI+AbGfwTdB6P7SKu8WMFCVdzXclQkGuJ2KAGeCKdQhigJnMNsDorefjovVe6ev59HTq1jTp8B6vFf+O6Vrtzc/BhfR88r5e/euLy1BxjrRxhR0BVg8L6fmMzr66YNn6XwJnaypPfd7i5dBCej5RTQX9H3//22tZXp58e/8+Vwrp+czNauo8O/5S4MKz/hUP3W30qpCeD6LyL6ltiKj8SxbqRVT+tSBMt4/WbGHbY0bw2E8b/q1x+sERYLIkTBbJ5Va8lz8LyVwzQJ65SwHRsCJMdzscqtHppxueqRU1/pFDHrcBJmvCdGXI09//7pEvSh0a2Hf/NafzwFSBMN3cMu90s+UXAjf4tRa0+ivvNjDZEKas5B8LPMPk3mObtTrzY55/EjBVJEz+4e2k7ufVogPSJ5nTrnVZC0y2hCm5uYUi8fZM/5xOX++lZcvnAFMlwtRum/TKP282BqfciVt059iZ2sBUmTBNe3XO6bGsfHD6qTN/5w+8bgNMdoTpbOcdF7/kVAtNa9XmYtyLAa2BqQoJb8PRZVYduxR44MyCBu+2PzoKTFUJU/kXdx60yRwi2lH9+paPV1v2AqZqAlYZKHvCNGXdgxdbIqYFbO57pN91ae0BwFSdMPnOyRv88515AZNclic7Lup4CpgcCNOEVPXRNXe6eE255D9AdeTEXmCqQZjcpm2JDk0f7LPGtezGvr2drwJTTcIk3rrj3DvF4+DJdT0qiKb2gApRjoQpoorZ+vN/XxLNPtP4zI22jZ4AUy3CVNWpvbtGecp7efOZ1XZ9fQzbRm3C9HnZyC6v+n31Tt31SLjTLHslMDkRpg7Z8og7jUf4TJeOrragvX0uMNUhTBXKNhZvrjjCd9L0uBu5i6rAzxISpk9OHmfmzmnou3ZWBf/POy+EM4Sq6gpYhKqsljc817NHc88V/TWzFuzPUfIgVDWFLURVi96zefGxU+KlG/NHnKk1kioaby4eHq9QShGnL9gS4EbEHULyvCxWpk4dCxJiEISICoA6HregByjkqzFn1YRBV91wZ7HgZZkTML4idg7DQXp8owxj55CzgGbBaVT8RZDfrcwbP/XCnm6ida+6De26ZFI5Hg+j8rxBCFf2nkOApKh558nGYsH9MowNQq6UrE2EDDQNjPcklcESR0q1HDt+At5PrsCmTmQ7EUpU8MS1MlYeha5g57Dz8LQ1+WETj4bdG7xUQi1Daqn9HCZ9vMDEe2kaF6zFcMB1sYxReBlFH3XUM5NzJTqatMBdmhiJRhgrGSITggREW8KanWfe4V7sq8pLP4RsfH46Z7GZkFrMziKSeCyCaUha+PZeJVeisfugvJfmhjV2BttcT+DqkoeiSMKfjA4kEqwZK6f8bPdcFDq3zIOJ232aUk9IFusIFg9g3eAECzR1YvyZyjb+/KfcUCzlBnqGbjDlBlHZExzKDfXL6jVW6qjc4Pgu5dsA1zOinDVnek0/ZOHC42BJj0A8KDd4QYRYD7q3K6vXYFlc5QZB/eTt80ff9Fx1qOm4zP4rrxhducGVExXQbkyUZWo45YZK//Z6d/T6u7CNWQtcBe+7Ubf8jancUIPTdbbGcZ3BlRuq98tybR6f5bXolvnVVv1ox3sNr9yARRnWo/cgyhhMueFCxsHsOYPahWV9fxB0fY2QqqtjHOUGV05w6tPAKVXlhji3T773Uw+HLfPY/aXa+DLvTUS5oQYnQqBPE3nbNLa87dQSSfC3DtX9xmU4mT+pn3yAmo0GgxxNGOkTrPvCgbe2GC6sJkBmwmCGGA1+BXlXkhBgq9LgGgUg2BLtFeZeROo2SqfEib5+iX5vZhZNWvQoi9vO8gReFpeRKnkCD1S31G9ZAXuBQhggv92/9oPape7tEpYesWjrpK9mA2i7SfBuxAEF7HJRmRI9/vFQ87YNBCge1QiFTcWCppZ68Y4dMIDIduEilatA8wV29GA79d2OF/e/HvPcVkVetck2P6oOj6UPeTOzWxaYigIsx/na7L8G9PHJvvvTlPanjuTyAFhdTsBAizJKEoWPGfBvWgnYfphyWBYcvrTGfMkRVW2f399a+5SH//oJ3du82vkwyw4TMgHOEA+PV8m0tGcsqfXyjnT5pXHJEmCaa09tSjl9d8hfITmnXV2aDbHx5sG1Npyu/clIrkXlx7N/1ivVqhBcKJ4jnbnA502ixbMOfr9LNt57HbrLm77hhzhUhV/lfe3OjYhJ2ShSSbYb1sWIgXE628DonVf95rB22zyzevdzmN5jP3XVuiokv2rg0ic8ySyD3HqZHhXjm4uUsQBynIKLPUZa8BhsclhQKB6SSnUaEenbdkW/MMMdyL/SNRsBjX/xTwD0R96IAvIDQOOf8RPr0R0dV9y8gguBApcbYBkkmG0o44QuZPFzgB4ugAT/h8c0NVyNVibKWNRLqtfO+v5Z80Q8TXn1090Z76h7J+V7YKQDZowhrhcVY2r73bQdvGmTaE3cs+fSJrOWlTDGzAYwp0GYzbwRJdPTGmMwl3RJuGEh92tXt6KUcWpZVALWPDBOFBLLFm9z86Y/3+63paKgTq+Lba9RT2QUPJc5/aUYeadSNiNg64OC7borBhsREmawhYQzFeu/adFWGTLp9YsgtytjxJTvZhMhwziMwtAEhQIRC9gSZlfyPkiExdqsPG6YRCGX4o08Ua6JESrBNEWleySg79JzvCfDC1Szrsf2nMWCgRBda9TmWzpAN7jEfd8+AOPhwVVXmRojYmOIoRuhJLyzKKO27/y8SQl+i2fWpqbP2IOY6TN+uajuTGcllPQoGkBuAERuJSplgJVfe/zEmj7riJyjFjkVpanBpoWE7830VTm1G23y3z3v5aCq38v/Sj3mTjQQ9JYO1cp3L4ZoBXOi5f2TQRMs8kUtuiXFywrjUL8QZ8ctCKS0MoUb/Bu1m59/f5jkDpKpaJQ4+FPSwG2PDZDQseARYFKdhLsa6WX6wFSSTlJCvw5wI3rBSxRtLrw51gv0WghzCMWwhbkCzt8lmr4ULcuZazm1/Zvm3nMq3frz24dqF2gbE/BbITYmsMulAUUwJxTe2oEqlW2gMpmaf/RoyU/541Io+Vf/J+LAP7Lkn6MW8pkmDzmdG8cP5NG/OfaUT9vnmdrlw8NH5uIPPEA+y4wL8slmJOSzeGNl2pKQG4CViSBRkqxMBImSZGUiSJQkKxNBoiRZmQgSJcnKRJAoSVYmgkRJsjIn7w+ubzu1me/cBX+2DP+0exmD8gYbL7L10emXPFDeZrP5v17QUdebW6x815pJB159XInq/yr4Yr9IoVTDdBHbwGEm5eVZels9XzksdxwD6wPjD8CmlHCeSdAQdNvep1NOi3xFBjioP9I1KwdTxSVwf+A68sQImJEn67fN74jvtmFKGkroGoAH+IWdF3Q0sJt9/Oy5oTOeNe7cfELH0yXZayvdZeyLAKtFZYlh9yVDnBBMq6cxN/y5sKqmpUQUxgqJUtoRl6n7ct6F7Ci7oFXNa+PO8EiLGNs99N3JjOG+mcqp/lO8kw7zgFIyJ0qKsszFB648rVk42a+wzoZhRnY5ONUjuWfsWyU/7NJrLNw8IHiPi/rquWwPjRH3c92bEY0IuSEHD0/P0nM/t4l29xBCFFVI7xOOQJTYhARn45tZuaEff/LLKdds0dVh49xNYNcSgjSRE6RkPfd1G/rI8W+uXaoqaDLYxiJ7gPqY5fybIj7fPyPzqWeg7980Lh75XOYuotZSGugM5URnkHZPdw7bwPi0R2iwWfNPovmrzvquCAvoxVyIZ46EZizg1qXu52qpbolKvST36QcsdN0b0JX9DQLTEwjbWW/EApQAFoHQb6jTbZt2zo1djx+VXxU6/tuvkS2GH9xFXezE9mNZhnWKsagoTg9xJWWCw8JDEKxwVBtLB6n5Lf3GuooYWDLQ09ihepLwMLh6mp//hBavkyedH0EVc7cUg3vRQBUyGTglgDDlccJ0Ws/BrugtNPpes9G20GCkwdoI3EITMnJHNwwaIg7NZYtDIuezzTuMvx2c7rvilaZDjdr0dehYSbwQX6dBrJezpebO+H3kbg92LkUijJMlwksylTyKGCB1Ckv0w10cb4haKS9k1hFXT2exwNLiBFScRuTkKQD1x+Z6BaqK2DYUvrgLXgf5LQPLzjox/ceWgEnb6u16E5PVhJoiYQ9gpkj45aL6HP2cWwn7HGQmm0N4NqL6HFTD/GauF5vEBn8fLpH0zUPyhZkNrL03brl0pOyUE/eou3/4/czdP+J6Ufg8PNGycXiVqZ57kzN9LP5tVdJ1E4jPG3MufEDzMQbDwAIjbgzDgegkoP/oV0XNpptENUim4XLavl7lphz7bbPf2rAl2UPbfA2iOg2/n+k04jrva7bAK7c5vfKHSXnl5UHSK3oNX7ZYwIuXSYngi6658DhLsKXzCu+ZOadmtK0W5kR1TAh2P9MxxHW+HePpRoQTuMzImK+mNBcLPprrNyFz1GKATSwU8qLwWJYs3tc+rXXAjOe96o3MXyilSQrhD0BIChGG0kDksTkXIjfMyXF9Htu4nj036G3vjh4Bk95+01gcufGG6mP8E3Unw3TSzjCoA7gwMUYeFQPSSni2UKJWQzVILSuGGP51m3zQz2mj3pfZJvHrevBEd5kTPFEG+8UTzOoymeO6njvgtYhUAxdPwgR+4REm/E2QX9xyozpy8tvGXntjY1vWlQ+gDm3mbImN1mDgwR/S53ZADN1RHA1hEwxDvSJWp1CiReElTSgHtSAfSI2vD8AyCvD/BTmlMDl0FBJR+nhu1IoqcF6LAeaAAgzqWGdqO/NvJr9xRW9NPKlN0rc5eNi5mmLOtXOVosV8Phvmobt8z58SHBWl9KrRUf4ksDJVcTuEIoTKDKRsSDuGgHwADE8acKeCJqeqU5ykK1NwvRZTCJxq13XhBh6khiP0DNTCDdyjyLE4wdSbJMcThN4k/CS63iRdL5KuN1lsPUn6jQg9SbbYVNtXrgIxRx/5226TD+XcPH5YtDjmzd6jP22sRpW/9WL2Dq8ixe1eqp1Gm4UMDlv2r/m3sGMPTpR0zQQKSUJ3uqPYC5Cgc9TiBELIkQ2k4ogE3ww+Lhs4N8R/juXpiGZO7dcXQySYjlLSr3dTK1ReHXBw6KdmfarJSsrhhCjlcKKUbXGCLgHIyXbBay3AxEgHgOisd+oYhj+KOYYR10tjwRtrMR9RC00urhhSRDxd8D8WT+lyPgaKpzLOeBr2Xzwl/TN994agFq3+9V4xq5KZ+s97N3iIp3SZJh4iRRRnpPi11ONp8uw+XV5NdQ1e4XcvZ/TqvQ15iKf0RQIeUArjRElcmvGUPoYaPZ5GccbTMG08XWjycwJ6d+KHzNamTI1XqaJ4n53vPGOy81JLKhYBpwQNLLimBLW0kKfxRmarSEJuADIbQgOPDPUIDTySzIbQwCPJbAgNPJLMhtDAI8lsCA08ksxGz9AYjDUYFdF7uDT1PB4Ya4t4c7K1AZ1cPB1JhKgi6WT6nj/DJ2ZsPqHLFvLgk8VsPlm8+86vk+9/DMjZvSNny5C71HN+5cIlcTIFszYKW2Bz8RLGwzsKVegSxik1MlxcCMpzc2nY0nUXEa+iS7SzjoxSKRWKCDhiwYsFRz5f/kyLhB2b1zhZc0pdz9n1YgSPaiaw6i5bdFfLVFAAnPzYhj7KhIEKyNWCVXSg8I9UriG+O8gw4C5HfkoGzSVkmSPGonQjsWBeeRBAO4gEKZNFViES1SB5XLAsmjIAWuOXI2C908LXLfHr3ZTxha9So3DFgEZim7nlT9hiIIar4LlBjRx/K3PyrVAdSiVJDIiTQtktEt4ylvAi3HopdAnL1RVESSZ8QgCrqMolChHUgio0EGlUMkms9ndMmFh7D9FUl5j8sExXAeVpqY7e/nkYl/eW5xqXt5Unx+WlJo85XV7VdJdHt3AS+zO1xP7feRsmbQSGGyYRurnkMInQzSWHSYRuLjlMInRzyVwo56z7md/WnRFv+WPCiGuCrg0L5UJL/ty+yOtx+4A5FeNarQkaNZoxuMKoj2xIdDFeHgbXZWyeNNFy7XTRYYOVa99hyVWufSxTSobncu0PelUqWzZlVEhaUvPU+bv6dTGBcu3bLLmK32YaRzCDWnN61apVBijX3t+1YWT0tNPixZMn9hxWW7zQJMq1L+f0znxT8I5ByrVfOl5r/WLNNM+p36LNIl5bPDCJcu3TOZ0z1hScIzBmufZVFjcVe3fleG6TXT98W1HJ1qTKtSdyOi/WhISCjF6u3f5GL2G5obdE82//dPpQ4DhHI5drj+L03K9G9xy8qdTKtQtlv1Zqst/Vd3GneLO1Fe9dMoly7VgOwVqufaxW7Gk5W576v1SunV4Ww8jl2r9acpVrf8hMaUulXLvS50KfaUv+8JleLzroX8u1O3kv104XN+OhBPlnS64S5C/1k03Uo1z7X5VblV3Rf5vP1g5pZRq3kU0qeRemYUWPETxg9ZATq78NG3ONXa49nS2M/SfCXywRfno1IYOJ8Hez4hLhb21VGiL8HYVjGh0WrhHNP3T3206zrrd4PG3Oc4yEmuURVlya5f5WBhHh/+foDY/B2V/D1pb7mnDkSL8Ao4vwd+FEBbQbk5k76Hfwhz8R/sDTZ24me57zPDjfwtGt7uezJiPC34TTdULjuM7gIvw1O/6uyNn/LmBqy777h167+p6202loEX4syrCqqIMoYzAR/uGKFX9+epQbtvJHlNXYsKgpJiDC34UTnNZWBhTh/7t5b8vtrb8HLrlYPv3zoSTq1Md4IvxNOBECfZrI21aw5W1iryZNf3TO81p3yynz8rIXrag6AtghvnilAozozJzNggXnNgVbJPKC+wktDIC4SpkwKAbkcLDKtTJaLy0HeoVF1rdlqh4UMurK7WsoFuyH+EpEcNGFhu9FgO88Zpqk58GqqgWvBa4SWKDJQv3mf7jUsmrQ+iM3uyWftqAVOitO7S5aCkUPjCUtNg/Q2wvRqyNC1SOGm7X6pVAV8O4rlQ1SydD5pXSUm+rrl7reO38/8jRhU04c7YQUdiPihBR+nXfZX/D913J+/9+NnixpW6YeiRJ8ZblSKo/i0LYZXbve+k1XBL5To3Ltl3Ub1YDaVskHMNuq1lIazpjH6YypppH+CPTZsXALilNqwPAliYJrpy7uncGUFcwsYpsJW3SOilGqpM2ELTurh6o02C/obHXch9GCldELglYMSfP9bUX/5dRxDX5ApCZJgah/WWAqDWeN4XRWgkn0HPgovbLVagUL3XEJqoFqjh7kOHP2lJH2fwfsXTD093lVJyaWZKpcQnfMdicCOTzqeZGhC9VCvCFLzyyViOQc2dYOdXh8EycHv5Tle/18WlY6ZdRpLwRgBQnAdQQAMLTolYmSQxm7yMSxF3fSUqVm/nP/qH+336w7SbShzLCHfSEAk7gA6DFcm2iu/B/j49ALcxuMj9PJmouPY2Fd2nycv553Ew/t9S14nmxj35i+zioT4ON4WHPtbrpbmwCpYNq0aQbg41jN2DvFu9MN7+WTnBP+riM5ZxJ8nEac3qllCt4xCB/nwGBxbL97PQKm9n8rqvteHWsSfBw7TudYmIJzBMbk4yyLiXRaWy8+OHXGtLONbZ0+mBQf57sVl/PeGj3ZNSE+Tv6VNe7JXjO9t0zziht6vEZTI/NxnnB67o7RPVeqfJwfHw74NW7UzmueXfukadK8zSbBx8FyCFY+DgiERJ666v8CH6dC2cbizRVH+E6aHncjd1EVY/NxRltz8XFimCltqfBxxo05FPPhRbJo71zPFhNsnV/zzsehz8154JiMtObimKisS4uPU3nHa6VZa5n34jXnPWw7Ro7lnY9DjxE8YBXDiVU/w6Y6xubjrGYLY0MPypvKQ9eLdh0IU/xzv/cL6k5J1wR4dtJPJYmPYZ4w1WP7ooGPXB0PT49pd3OSXPFTpkIJ1MwbBD8B2fI+OXmcmTunoe/aWRX8P++8EM76fsydnMJGRvuzjAQhLKzwUSxEq6Sfe9KxVWqfhuDT+EBhLnsR/Ec7/yl3Fl8WmZ+wiZQpgMNk0gAQ14eTj8PcirtyDZsr7fNTfew8LohWtLl3cPPJRB+aCgbagZXx6I7wmcAKN1EOWRGDAePwFV9KHvRD8sVQ8tA1OyjD4iV3kJHNtCBK5OZ6EahnsKH+feLW1VXczLx39nFYnBEfsqbI05dWpY+8zic26af3eDqxWcx+w+WR22Z0j6xl80j6nNSEZ4Ef/RYMtVcvntasL3VN1BeSZzTMjIx1eonfIFSDUR+vd5mghikvVqstRqmQQjlGSAmMxv4OS4c1kkFqnXIQ+hHJ8sHKqCEyqfYm1Kszl3Px67ruVruIBX7lAJhlUaQ+KKruXA4hvwQhgvM4hPwS/EeXXwqdeKtL5ImnnhPObE+xeBWWR5dfGt9zxZgb8X3803LTFz1Mm9GFtJOHUYstz0T/YIQ8E5unraF6AOFGtPjg5ycjnF9uFs9/k3vuc/e9u0riLf53w4BfxdCvS1Epz2zQhTqWM0rhSWtY37G/GnyHuEEFAaPgdyzUJLt7RIxCqESx+crOt6C3gYRIk6BCJ64nm4iXrLxXOST79R+KIe0z/+V0mbkIfxJC65gwlIbTWnA6zdmwTiNDsFmwCA+o8JYx2n6P+Ybso2zJXj0fovS1PE4tU2GsO/ARlICJ9FXiq0/Px699Hzq9dYOM7KWjBXRfmYckaCQDFVoBCwFtswt+qjtzuHIvUuurmMMVl1Nrczq1SjmG1hdnAQWisctwfRY0Z5omk8LZ0M1gpGOW6cCu8s4odSPiUq4XotK9Z3OsiRND+jq2Ib3rvdth5orzfsv3HCg7Zmdd6nkQq8gYebRGCOvKUod1OF6x1bR2DIuOhlMRiUJBlF+Vw8J5ULzbDQkwveAg2ysg8iVd6fagZTSFaU43b1QxvGZigbVZSXlkNlj1XdA31fCFkV80yH3fooylB0Mnds1pMLH7BKrakBnLVywyJaQXXS8p8R5g1RhileaF4n6ACX4dM/1YY7gHlVirQOKS7d70TmOns96Tqmxssz7/sy1jSTlaN2BK2p/AN6/G+c1BKzGB5WSsBeqxx2YNdYa4pKdyd/QbXmWKzH9uK+Gw29s7HaO2S3i3oeAvwwn/B8PW9ybhZzDESlqoG+8RkO0MvgnSI/SKu8WMFCVdzXclQkGuJ2KAGeCKdQhigMlkG2D01vNx0Xqv9PV8RKnbenm6fAvc1dB/bM/z5dWF9HxcnzcUJKWuC111wfZvzQL7zEJ6Pm0bdRodu+Kg57aLjo9y1zmXK6TncyokeXrmw8qBc5++WCnZGf53IT2f1edWPnIcPTto3Y4W4+9VOd62kJ4PovIvqW2IqPxLFupFVP61IEwtF1YN2LDtu2ha7e+HPO+mrAYmS8K00Nw3ob23PGCmz2/1T384Pw+YrAiT1cw1oeH9vUIWTth3L3zMNE9gsiZM+cNDlyd8WBKyyzatb6cX76H6YgXCNHvtyoPJYTY+B2ZMix/Yq2UAMNkQJo+frvlWfv8saGq5cxcyWg44AUwVyQeuuXdxStyN0PVrqrV/IW1nCUy2hCmm2a/dXVUtAhddLfsmtvfkEcBUiTA1jreq1l94wC9L/M1i9O24KcBUmTCpWniGC1wv+x0oe85vtPedVGCyI0ztvo4d61NeHDRuebDn53FtFwJTFcL0eL3CRhrfOyR96sdzZv/2eAtMVQlT9NHH5nuHfPaZEH/r7fW+c/4BpmoCVhkoe8J0pXeTbxVe/eaZvXpl1IJ1D7YBU3XC9Orp0SNBVmOCFg70XmrbYh4UUnQgTCN3zogJtunqt+VwnLSnh9QCmGoQpu0O5R42vJUQsjDraq3RFxceAqaahMl69F/dhiy6FrTFudHeVr5TVcDkSJjsHzxufGbOi7B5aqvKEZ6VZgNTLcI0uZdF8MSkn8XzU4e+ihv9yQyYahOmepGup/Y+Ge69vO/73fMc2kOTE2H6RTTz15Euf4ZsHyGsVCnHYREw1SFM/o01v90dXtP7tyGXWmVVSXoMTEKyE+05ePRKxsiQrHZ53rEeDmcYQlV1BSxCVTGvlPva1Dwbtkw2reHGyfVPIcKGvkJV69lCVLXoPZsXHzslXroxf8SZWiPTqVNX8fB4hVKKOH3BlgA3Iu4QkudlsTJ16liQEIMgRFQA1PG4BT1AIV+NOasmDLrqhsMSVhVOwPiK2DkMB+nxqQr6FdAsOI2Kvwi6WH2Fu1Ovtw73XTq29Yfmp+5RpehLdhiV5w1CuLJ3EwIkRc07TzYWC65U0CsnbhMhA00D4z1JZbDEkVItx46fgPeTK7CpE9lOhBIVPHGtjJVHIVHs9/jlxkkhwoAlDX5/3Tky/iGVPq79HCZ9vMDEe2kaF6zFcMB1sIJJZHLMo456ZnKuREeTFrhLEyPRCGMlQ2RCkIBoS1iz88ytruw4PN/3vCgt5tXm1629qtOYhsRjEUxD0sK39yq5Eo3dB+W9NDessTPY5noCV5c8FEUS/mR0IJFgLQ2tOXj/i6U+83+3vH/y521UHcxiHcHiAaxTnGCBpk6MPxvYxp//lBuKpdxAz9ANptzQ0oZLucHOpjSUGxwsLi4/fiw2dPnSLXXfLMttxeNgSY9APCg3uNtwHXRvZGMQ5YZl5pfXTTxpL8rJanSnajPLtkZXbqjFiQpoNybKMjWccsOFoAoBbb/EBa6rsitl1cTpvU1GucGC03XfTTWd4Vm5wWrUml6nLeaHpX8/+vn3227UGnGGV27Aogzr0XsQZQym3NDWcV7K829fxAvnS8z/zRz7wwSUG2pxgmNnY0DlhiW/VMwfvbyJ3+8OGfvqR6x/ZiLKDRacCH3X5m0b2fK2U0skwd86VPcbl+Fk/qR+8gFqNhoMcjRhpE+w7gsH3tpiuLCaAJkJgxliNPgV5F1JQoCtSoNrFIBgS7RXmHsRqdsonRIn+vol+r2ZWTRp0aMsbqOqRFlcRqrkCTxQvqp+ywrYCxTCAE2K/23b37dlY/y2L6mR02lwzCvabhK8G3FAAbtcZKZEi3881LxtUJVgXzEaobCpWFCzql68YwcMILJduEjlKtB8gR092B6J3JPZ6NQvwSsTek/JTH74ndotfcibmd2ywFQUYI9O3GlQN35O6LSHwqd7uu5owgNglTgBAy3KKEkUPmbAv2klYPthymFZcPjSGvMlR1Sd8OztxUoT/UL2V+v+MmPl1t52mJAJcIZ4eLxKpqU9Y0mtl3ekyy+NS5YA01w7UJXU4Nvsd/7bnk6tcVtlH8yDa79W4XLt6yqmkx/P/lmvVKtCcKF4jpYsW2lhN9VznueOiUtH/rns/R76hh/iUBV+lfe1OzciJmWjSCXZblgXIwbGLLaB0Tuv+s1h7bZ5ZvXu5zC9x34q0aEqJL9q4NInPMksg9x6mR4V45uLlLEAcpyCiz1GWvAYbHJYUCgekkp1GhHp23ZFvzDDHci/0jUbAY1/akUA+iNvRAH5AaDxJ1csKT/FK7gQKHC5AZZBgtmGMk7oQhY/B+jhAkjwf3hMU8PVaGWijEW9ZOAG98NVJuzxzp54aGHY8TrUssTle2CkA2aMIa4XFWNGBf95IvWcp/+0YZuCWgpu7SlhjJkNYJ4MYTbzRpRMT2uMwVzSJeGGhdyvXd2KUsapZVEJWPPAOFFILPf8tfIP7zGfPGd4Xnx6eeP4mtQTGQXPZU5/KUbeqZTNCNj6oGC77orBRoSETWwh4UzF+m9atFWGTHr9Isjtyhgx5bvZRMgwDqMwNEGhQMQCtoTZlbwPEmGxNiuPGyZRyKV4I0+Ua2KESjBNUekeCei79BzvyfAC1azrsT1nsaArRNcatfmWDtDtWOK+bx+A8fDgqqtMjRGxMcSQADQc827KWfFA39//nWIxJaY/jYyFPYiZPuOXi+rOdFZCSY+iAeTCIHIrUSkDVvm1Imv6rCNyjlrkVJSmBpsWupCL84gFoT5DA9Y8rTn5s3JJf+oxd6KBoLd0qFa+ezFEqyMnWi0qGoXFbtEtKV5WGIf6hTg7bkEgpZUp3ODfqN38/PvDJHeQTEWjxMGfkgZue2yAhI4FjwCT6iTc1Ugv0wemknSSEvp1gBvRC16iaHPhzbFeoNdCmEMohi3MFXD+LtH0pUgoBuVPcOp36ZLn+uYtN4d/TT9P25iA3wqxMYFdLg0oOnJC0UI7UG1mG6hMpuYfPVryU/64FEr+2VXkKvlnpYU82+Qhp3Pj+IH8q/zKY6tGXX3WPVQu9BeOyuUB8tG2XJAPsyUh38IbK9OWhNwArEwEiZJkZSJIlCQrE0GiJFmZCBIlycpEkChJViaCREmyMhEkSpKVueB4Vm1nxSffne0UWebZ2ZsZlDfYeNG7KzT6JQ+Ut61s/q8XdNT15hYr37Vm0oFXH1ei+r8KvtgvUijVMF3ENnCYSXl5lt5Wz1cOyx3HwPrA+AOwKSWcZxI0BN229+mU0yJfkQEO6o90zcrBVHEa3B+4jjwxAmbkg/Xb5nfEd9swJQ0ldA3AA/zCzgsav+jql5nmqaLMn/46+bL52skl2Wsr3WXsiwCrKTbEsPuSIU4IptVJzA1/LqyqaSkRhbFCb2XctXWfEvDVc3x7x6xrDy4s4JEWMbZ76LuTGcN9M5VT/ad4Jx3mAaXBnCj1tmEuPnDlac3CyX6FdTYMM7LLwakeyT1j3yoJPHXzry5tHoTtHfPP+nsZ1f4x4n6uezOiESE35ODh6dF67uc20e4eQoiiCul9whGIEpuQ4GQ1DG/Q2mlPcOoUdYZqfLrSBHYtIUgaTpAG67mv29BHjn9z7VJVQZPBNhbZA1TbZ6lW/2z+03dmapOjbarvaU/dRSSfy9xF1FpKA50BnOj0sCETo21sA+PTHqHBZs0/ieavOuu7IiygF3MhnjkSmrGAW5e6n6uluiUq9ZLcpx+w0HVvQFf2NwhMf0LYznojFqAEALYj+g11um3Tzmh73npD6l++Oy5teHDpo98A6mInth/LMqxTjEVFcXqIKykTHMTpaxCscFQbSwep+Tn9xrqKGFgy0NPYoRo99Oq4G1a3/NbbHe6a1svJgxqJxOBeNFCFTAZOCSBMRzhh2qPnYFf0Fhp9r9loW2gw0mBtBG6hCRm5oxsGDRGHtrPFIZHz2eYdxt8OTvdd8UrToUZt+jp0rCReiK/TINbL2VJzZ/w+crcHO5ciEcbJEuElmUoeRQyQOoUl+uEujjdErZQXMuuIq6ezWPDR7gRUnEbk5CkA9et2egWqitg2FL64C14H+S2vPet/vcHh4QFZA9of+3IhfxQ1RcIewEyR8MtF9Tn6ObcS9jnITH4P4dmI6nNQDfOZnV5sEhv8fbhE0rM2pO49Mr2WaJNj5tnvccFUlSPi6zJ3/4jrReEzZNtn+cVLtr6pNy4k5NuYC3nAJ58TH9B8jMEwsMCIG8NwIDoJ6D/6VVGz6SZRDZJpuJz2cXKr/a3++dUvZYD9nciqN1tSnYbfz3QacZ33NVvglfOcXjlqUl55eZD0il7Dly0W8OJlUiL4opXw/Q9V8H3jFLZgyMaDIzKHlqc6JgS7n+kY4jrfjvF0I8IJXGZkzFdTmosF/9jpNyFz1GKATSwU8qLwGFb2+tlxc2/5bPx50aHqnzv2pEkK4Q9ASAoRhtJA5DonIqfsyHF9B9u4nj036G3vjh4Bk95+01gcufGG6mP8E3Unw3TSzjCoA7gwMUYeFQPSSni2UKJWQzVILSuGGP51XIWjndNGvS+zTeLX9eCJZtgRPFEG+8UTzOrSmOO6njvgtYhUAxdPwgR+4REm/E2QX/yniTWmBC74HjS2/NOVPmU71qI2PrbERmsw8OAP6XOrIYbuKI6GsAmGoV4Rq1Mo0aLwkiaUg1qQD6TG1wdgGQX4/4KcUpgcOgqJKH08N2pFFTivxQBzQAEGdazTtJ15p8lvXNFbE09qk/RtDh52rhLtuHaulFrMd7FhHrrL9/wpwVFRSq8aHeVPAitTFbdDKEKozEDKhrRjCMgHwPCkAXcqaHKqOsVJujIF12sxhcCpdl0XbuBBakiZnYFauIF7FJlVEHqT5HiC0JuEn0TXm6TrRdL1JoutJ0m/EaEnyRabavvKVSDm6CN/6+WWl791hNRvbJ37sz9s//SYKn/rxewdXkWK24U3Cbo++OFZrxy/lId1L7VpXtI1E9A79kN3uqPYC5Cgs63KCYSQIxtIxREJdu2rHLPMwzkg/UDq6hkL644shkgwHaUGmX3Va++dFs+Xtj3UcOBIKx5QyuREaXkVhgQgJ9sFr7UAEyMdAKKz3qljGP4o5hhGXC+NBW+sxXxELTS5uGJIEfF09/9YPKXL+RgonnbjjKdd/ounpH8y341Pr3rtZuj+fSf61khUneQhntJlmniIFBGckcK/1ONp7ajD7Resu+27Rv7038BfN7XhIZ7SFwl4QKkLJ0qtSzOe0sdQo8fTCM542kUbT/eY/JyA3p34IbO1KVPjVaoo3mfnO8+Y7LzUCB6mBFWqcE0JrLWQ5/BGZqtIQm4AMhtCA48M9QgNPJLMhtDAI8lsCA08ksyG0MAjyWwIDTySzEbP0BiMNRgVkU2Mrp7HA2NtL29Otjagk4unI4kQVSSdTN/zZ/jEjM0ndNlCHnyyj80ni3ff+XXy/Y8BObt35GwZcpeaDZcLl8TJFMzaKGyBzcVLGA/vKFShSxin1MhwcSEoz82lYUvXXUS8ii7RzjoySqVUKCLgiAUvFhz5fPkzLRJW7H4hUNr8dVjWlzr118xsV5ktElp0V8tUUACc/NiGPsqEgQrI1YJVdKDwj1SuIb47yDDgLkd+SgbNJWSZI8aidCOxIKUyCKAdRIKUySKrEIlqkDwuWBZNGQCt8csRsN5p4euW+PVuyvjCV6lReJZ/I/GbMZVP2GIghqvguUGNHH8rc/KtUB1KJUkMiJNC2S0S3jKW8CLceil0CcvVFURJJnxCAKuoyiUKEdSCKjQQaVQySaz2d0yYWHsP0VT3m/ywTFcB5Wmpjt7+eRiX11fmGpdXVibH5QMmjzldXtV0l0fTOYn9aVpi/0HehkkbgeGGSYRuLjlMInRzyWESoZtLDpMI3VwyF9qyz7nxiXULArZfcLJWf1c1K5QLXT5y/XDDWS+CUxPDr8YeVBxiDK4w6iMbEl2Ml4fBNZfNkyZarp0uOmywcu2rq3KVa49nSsnwXK7d1mHnb8fkz0JWXf5jXKuMw6ZQrn1lVa7it2nG0UKh1pxeunSpAcq1T5s3xDIwJTZ4sXvElUl/nEo0iXLtMzm9M8EUvGOQcu2fFY0i7RquFG9X1b7XuUY4dSfdWOXaR3A6J94UnCMwZrn2udbZ8ZrNEv/FL/9yTv5wnCpLbOxy7dGczutjJA0okyzXfsS+e0pvj7nBaUGTdrgeTMgwcrn2CE7P+Rvdc/CmUivXnlzTvF5KvbiQub42Z5PsplELmxurXDuWQ7CWa4/Xij0dYstT/5fKtdPLYhi5XPvTqlzl2v9gprSlUq5dMP7PjutO3/Db1W/hX7UUUzfzXq6dLm7GQwnyx1W5SpDf1k82UY9y7R+XJ2ert1cN2zwmf0qtv/pX4L1cOz1G8IDVH5xYnTFszDV2ufbDbGHsPxH+Yonw06sJGUyEX1SNS4S/frXSEOHvOa225vnE1r4b1w2+fPic5z0eT5vzHCOhZrlXNS7N8nbVDCLCn3XpUezZi7V85wcdst03Vr3D6CL8rpyogHZjMnMH/Q7+8CfCX35S1Hb7sDz/7HOrR0YNcuhjMiL8NThdZ2sc1xlchP/qwy45Qe9CAhcMvZjxaFDaTiOL8GNRhlVFHUQZg4nwP5SmrLzS2NdrSs/4cLOG1WeZgAi/Kyc49asZUIR/5xOLzrm53fy3Hdp9vFX9P1+YgJwFRKgGJ0KgTxN52xG2vE3s1aTpj855XutuOWVeXvaCWhjHGjvEF69UgBGdmbNZsODcpmCLRF5wP6GFARBXKRMGxYAcDla5VkbrpeVAr7DI+rZM1YNCRl25fQ3Fgo0QX4kILrrQ8L0I8B3HTJP0PFhVteC1wFUCC/TUaYzUe+OOtX5ZFl3G36mylFrTtli1u2gpFD0wlrTYPEBvPUSvjghVjxhu1uqXQlXAu69UNkglQ+eXG+/MyP5+dr7fhhoBzf/ulEHVUizvg92IOCGFX+dd9hd8/wWc33+G0ZMlbcvUI1GCryxXSuVRHNo2TT7Osc+SVfLJbBIe33H9WlpbJR/AbKtaS2k4YxynM4abRvoj0GfHwi0oTqkBw5ckCq6durh3BlNWMLOIbSZs0TkqRqmSNhO27KweqtJgv6Cz1Qed7Hd3Gd/TK+P1ns2dYytTl/Qs4QdEapIUiPqXBabScFYcp7OkJtFz4KP0ylarFSx0xyWoBqo5etDxOW5n+nU76j9+c9WtvSzNnpRkqlxCd8x2JwI5POp5kaEL1UK8YameWSoRyTmyrYTHs7x2vXbxz/Q5s1yQ+3mCUae9EIDZJADXEQDA0KJXJkoOZewiEx3Kfd/4d8om35zurZ3al+s11qiHfSEACVwA9BikTTSP/o/xceiFuQ3Gx2lqz8XH+cDMLHnm4/i2DZvyzKJr0IbesoEXV5//wwT4OI3tuXY369ibAKlg3LhxBuDjjOow5sf8OauDlu/xvpIuzn9iEnycapzesTYF7xiEj7PEYf4zRd4y7x1b+33zTDhRxST4OGU4nfPBOPmSCfFxok533nU0uJFnlveDCrWyyj4xKT7Ov9W4nHfP6MmuCfFxnHJW93qW19Mv5cyXWjt8zjUwMh/nT07PXTC650qVj1Otw8EdK5TjAyY/XbOobdmpk02Cj4PlEKx8nA/aPPXY/wU+jn9jzW93h9f0/m3IpVZZVZIeG5mPE2vPxcfpaW8YPk7lO+Nk6munvFa9HO4ya5/rMt75OPS5OQ8ckyH2XBwTiX1p8XHOpS7u6e62JWTTi3YPzl2/eo53Pg49RvCAVU9OrEIMm4cam49znC2MDT0obyoPXS/adSBM8c/93tT9KuuuCfDspJ9KEh/DPGGqx/ZFAx+5Oh6eHtPu5iS54qdMhRKomTcIfgJaKmfPwaNXMkaGZLXL8471cDjD+n7MnZzCRkb7s4wEISys8FEsRKukn3vSsVVqn4bg07SEwlz2IviPdv4zxlm8s4XdCZtImQI4TCYNAHF9OPk4zK24K0+wudI+P9XHzuOCaEWbewc3n0z0oalgoB1YGY/uCJ8JrHAT5ZAVMRgwDl/xpeRBPyRfDCUPXbODMixecgcZ2SiyRG6uF4H6STbUv0/curqKm5n3zj4OizPiQ9YUefrSqvSR1/nEJv30Hk8nNovZb7g8ct6W7pFTbB5Jn5Oa8Czwo9+CofbqxdOa9aWuifpC8oyGmZGxTi/xG4RqMOrj9S4T1DDlxWq1xSgVUijHCCmB0djfYemwRjJIrVMOQj8iWT5YGTVEJtXehHp15nIufl3X3WoXsaBtJQBmWRSpD4qq21dCyC9BiOA8DiG/BP/R5ZdCJ97qEnniqeeEM9tTLF6F5dHll8b3XDHmRnwf/7Tc9EUP02Z0Ie3kYdRiyzPRPxghz8TmaWuoHkC4EV0goLXT1hVl8v1+88gYvHby8TYl8Rb/u2HAr62hX5eiUp7ZoAs1qWSUwpPWsL5jfzX4DnGDCgJGwe9YqEl294gYhVCJYvOVnW9BbwMJkSZBhU5czX8X/nj762nR8uibhxKc7NI5XWYuwp+E0DomDKXhNCGn0+wN6zQyBJsFi/CACm8Zo+33mG/IPsqW7NXzIUpfy+PUMhXGugMfQQmYSF/dGD7izDx5tnhbhU3fR/3T14XuK/OQBI1koEIrYCGgbXbBT3VnDlfuRWp9FXO44nJqBU6nlq3E0PriLKBANHYZrs+CBI8uk8LZ0M1gpGOW6cCu8s4odSPiUq4XotK9Z3OsiRND+mm2Ib3rvdth5orzfsv3HCg7ZmfdSVSubGSMPFojhHVlqcM6HK/Yalo7hkVHw6mIRKEgyq/KYeE8KN7thgSYXnCQ7RUQ+ZKudHvQMmrCNKebN6oYXjOx4HOJS1TbYNV3Qd9UwxdGftGhv797/Gfsz+LZ/1TtOihrK1U5xYzlKxaZEtKLrpeUeA+wcoBYpXmhuB9ggl/RVj/WGO5BJdYqkLh0HFDtJ7uFcaEbY8o/bWF99jxjSTlaN2BK2p/ANzfj/OafDVtgmmU5GWuBeuyxWUOdIS7pqQPrq9ZUTLLynVzu9r/PFD2oa1CYSpGh4H9ZkQv+h8aBn8EQK2mhbrxHQLYz+CZIj9Ar7hYzUpR0Nd+VCAW5nogBZoAr1iGIAeYM2wCjt56Pi9Z7pa/ns/+lyqzDyIv+2/OnhY1Y0EBYSM/HrqeFV9djWwNWVFpoP2Gt4l4hPZ8jiZtunO5wISBdfv1pWlRAi0J6PkfuDZ7Td4kqaM/id5b1RrS6VUjP5/3dtat3qYZ6zg+0ia42wO54IT0fROVfUtsQUfmXLNSLqPxrQZgmWbYP3DO6dmj62APJ9zo9tgYmS8L0fM+fyfE+fwRumx6829WlzThgsiJM1+cuyNj1MsJz8eqVC/uMbPszMFkTJosGd3seudo7aOfIuZqE5N0iYKpAmDqOrdBMuu8Xn5QLZ2SNN9/fC0w2hOlRmfC1XyMeBW5veHXh0K1VvYCpIonGz5bdB4cN81z8vU+PiL+2/gZMtoTJ9WgP+w+TrnivuHW1x5w9Ej9gqkSYyow0DykrFPgsy2+Q/3D2sZXAVJkwlW3vF330H3fP/X/UtJkwotkkYLIjTDtHVuiQef6O1/ajYSuXPWg1AJiqEKaxbqH7I375GpCVcuttt0p75wJTVcKUGFhLXmbn8aCDV3s8sv34VwVgqiZglYGyJ0zbN//ZTKACD3y0y3Hak+hrwFSdMA0e8bRs0uv8gFl31n8coXq6G5gcCNO4hBq/Ln4ywX9TmShNxqckd2CqQZhmjz9Soeu7vLBllxb/NMu56ShgqkmYfHacE5i96Bg22f214+G83AbA5EiYfFOfXZ/yZVPgWE8fdfvcpdDLtQiTx9UF+bUffg3ZKV6eFPhTeagrVZswVW+w8Z6ojNp3p6+qyl672lHA5ESYnJ33vl6y+R/Rby8ez/9lSkU5MNUhTJ1TLisTfRt5bh/1dOzNXguhQKiQMNUbt6PPpx8OYQd/vfVhqmvgYoZQVV0Bi1BVh0crh7Vau9Zzz8wN15bvfZ/Og1DVWbYQVS16z+bFx06Jl27MH3Gm1kjqZ5mLh8crlFLE6Qu2BLgRcYeQPC+LlalTx4KEGAQhogKgjsct6AEK+WrMWTVh0FU33FksOF39BIyviJ3DcJAeb6+uXwHNgtOo+Iug6+9Vjgo906FL0LqTT6/N95syg8fDqDxvEMKVvZMQIClq3nmysVhwoLpeOXGbCBloGhjvSSqDJY6Uajl2/AS8n1yBTZ3IdiKUqOCJa2WsPAqJ4unHcTU6WC4MnBNwYuPC0RXnU+nj2s9h0scLTLyXpnHBWgwHXOurm0QmxzzqqGcm50p0NGmBuzQxEo0wVjJEJgQJiLaENTvPXNBo0tXJnYd6r734245Lj7r3pjENiccimIakhW/vVXIlGrsPyntpblhjZ7DN9QSuLnkoiiT8yehAIsFanBhUp22lg0FTLfZaB/r3pc4Ui3UEiwewtnOCBZo6Mf6cYxt//lNuKJZyAz1DN5hyQ20HLuWGb/qNlToqN2hetJk39cF1z3W3Bl345dms6TwOlvQIxINyg6MD10H3yg4GUW6oF2G3O7PxatGS23+1N7vffrnRlRvMOVH5ZpwxUQeWqeGUG9zO3b94Lf2MeIGy8eqyR1ZtMhnlhjfVuVz32FTTGZ6VG8Ysi7vzdvEAvzWrO/ed8fjaWSMrN2BRhvXoPYgyBlNumNPs1k/W7sdDMltUvug5pyGVFG0c5QZzTnC+VTegcsOP7jk/en/b7jPff/lgy2X/UCUcjafcgPVpVoQea/O282x526klkuBvHar7jctwMn9SP/kANRsNBjmaMNInWPeFA29tMVxYTYDMhMEMMRr8CvKuJCHAVqXBNQpAsCXaK8y9iNRtlE6JE339Ev3ezCyatOhRFrdyHaIsLiNV8gQeeOWk37IC9gKFMEAfUHgeP9dnoJvncqeAGp2vBF2h7SbBuxEHFLDLRWVK9PjHQ81b2zoE+4rRCIVNxYJydfTiHTtgAJHtwkUqV4HmC+zowVbdYv7Ek5deh06fO1r575jGnand0oe8mdktC0xFARag8H/cP79N0CzFqcCeY85U4wGwL05cgIEWZZQkCh8z4N+0ErD9MOWwLDh8aY35kmvMObbofnqX957ZbRs+/SfBtrIdJmQCnCEeHq+SaWnPWFLr5R3p8kvjkiXANNcee/0j36dfV98DzjfnfBrT1oMH1/7D6dqbRnItKj+e/bNeqVaF4ELxHOnMTjPWr+0w8+fALM2TrNEDhZ70DT/EoSr8Ku9rd25ETMpGkUqy3bAuRgyMF9gGRu+86jeHtdvmmdW7n8P0HvupZZWqQvKrBi59wpPMMsitl+lRMb65SBkLIMcpuNhjpAWPwSaHBYXiIalUtxGRtm1X9Asz3IH8K12zEdD4NTUA6I+8EQXkB4DGH12jpPwUr+BCoMDlBlgGCWYbyjihC1n8HKCHCyDB/+ExTQ1Xo5WJMhb1krW9lRXrCTNCtq5t9YdEPJ56iL18D4x0wIwxxPWiYoz3ovPxG49YeW512DZryC9L65QwxswGMKsgzGbeiJLpaY0xmEu6JNywkPu1q1tRyji1LCoBax4YJwpN01v74Oacz37BS8b2mPfs/qQl1BMZBc9lTn8pRt6plM0I2PqgYLvuisFGhISLbCHhTMX6b1q0VYZMev0iyO3KGDHlu9lEyDAOozA0QaFAxAK2hNmVvA8SYbE2K48bJlHIpXgjT5RrYoRKME1R6R4J6Lv0HO/J8ALVrOuxPWexoBNE1xq1+ZYO0G1U4r5vH4Dx8OCqq0yNEbExxJAAXFh/Zs7z/HI+27p07r/73Mld1PQZexAzfcYvF9Wd6ayEkh5FA8h5QORWolIGWPnVvQZr+qwjco5a5FSUpgabFhK+1xsbT1nwaVLI+lt7ag9bL7GhHnMnGgh6S4dq5bsXQ7QacaJVq4ZRWOwW3ZLiZYVxqF+Is+MWBFJamcIN/o3azc+/P0xyB8lUNEoc/Clp4LbHBkjoWPAIMKlOwl2N9DJ9YCpJJymhXwe4Eb3gJYo2F94c6wV6LYQ5hGLYwlwB5+8STV+KhMJRPqzmtfRnPjnzb92bG7mlHW1jAn4rxMYEdrk0oGjECUUt7UB1iW2gMpmaf/RoyU/541Io+ffNgavk3zsHEvLLJg85nRvHD+RWg97nNdwcF7RwR6i4ztvsVzxALq/JBbmkJgn5Fd5YmbYk5AZgZSJIlCQrE0GiJFmZCBIlycpEkChJViaCREmyMhEkSpKViSBRkqzMod5BI/vX6xo4e/ewC8le+acZlDfYeJGtj06/5IHylsfm/3pBR11vbrHyXWsmHXj1cSWq/6vgi/0ihVIN00VsA4eZlJdn6W31fOWw3HEMrA+MPwCbUsJ5JkFD0G17n045LfIVGeCg/kjXrBxMFRNgXLuOPDECZuTdHfRau3bEd9swJQ0ldA3AA/zCzgu6fGtSskWnCj6T41/td13hNrEke22lu4x9EWCldiCG3ZcMcUIwrZYyN/y5sKqmpUQUxgqJ0sKfbj8I2hnp9fuX0c+3mX+pxyMtYmz30HcnM4b7Ziqn+k/xTjrMA0rdOVHydWAuPnDlac3CyX6FdTYMM7LLwakeyT1j3yqJ6bDljMuv30PHrk3/o07faYONuJ/r3oxoRMgNOXh4Wq7nfm4T7e4hhCiqkN4nHIEosQkJzjDP27fqBDwVZwZE/xp8oXqACexaQpD6c4LU3UG/fd2GPnL8m2uXqgqaDLaxyB6goq7/SDhxr4HPxNYeG5ocs5hK3UUkn8vcRdRaSgOdIE50vLS56B9sA+PTHqHBZs0/ieavOuu7IiygF3MhnjkSmrGAW5e6n6uluiUq9ZLcpx+w0HVvQFf2NwhMRyFsZ70RC1ACANsm/YY63bZpa2T7nsoTpgcvGHYnufnqMdTNKWtsP5ZlWKcYi4ri9BBXUiY4iNOHIVjhqDaWDlLz3fqNdRUxsGSgp7FD9dJxmvTlinr+m1JqXHrWa9Y2aiQSg3vRQBUyGTglgDBt4oRptZ6DXdFbaPS9ZqNtocFIg7URuIUmZOSObhg0RBy6yhaHRM5nm3cYfzs43XfFK02HGrXp69Cxknghvk6DWC9nS82d8fvI3R7sXIpEGCdLhJdkKnkUMUDqFJboh7s43hC1Ul7IrCOuns5iwb3aJ6DiNCInTwGoH6mtV6CqiG1D4Yu74HWQ33LN9BmzW43c679D/NOe20kRrakpEvYAZoqEXy6qz9HPuZWwz0Fm8l0Iz0ZUn4NqmNdq68UmscHfh0sk/XCZB7077OnmueKL+RbrH6Ig6u4ffj9z94+4XhQ+luu6XXph7R+8s0n9s5LAdfY84HOOEx/QfIzBMLDAiBvDcCA6Ceg/+lVRs+kmUQ2Sabicdv/zywFlTmwLntE2slPm8ZttqU7D72c6jbjO+5ot8MoeTq9sNimvvDxIekWv4csWC3jxMikRfJGOGTe9XcTwo7dDsu+5Palr1YK6KFM+BLuf6RjiOt+O8XQjwglcZmTMV1OaiwWXa+s3IXPUYoBNLBTyovC4U6bsq10f9vgd9CrTrGFUMnU51lyEPwAhKUQYSgORI5yIbK9NjuvX2Mb17LlBb3t39AiY9PabxuLIjTdUH+OfqDsZppN2hkEdwP9fe98B1kTy/h+VUxSxiygqwQpKs2DBlpCEXhQsZzk1QoBoIJgEEcuJYlfsKGLF3nvvZ2/n2XsD29n1PO/UO/U/syWwu7NLQpYk9/t/eR6fR3bYZPfzzrzvOzOf+bzClHhldDxIK+HZQrlWC9Ug9awYIvwbNvmgn9NGPS+zT+LXjeCJzqxD8EQZ7BcRmNWlM+O6kTvgtYlUAxdPwgR+4REm/EnQ9V+qTg3o0Px8yHZ5nwnuh07LqZ2PLbHRN5g5+EP63HSIoTeKoyFsgmFolMdqH070KLykCeWgFuQDafH1AVhGAf4/P6cUDg8fiUSUHs8tWlEFzmsxwBxRgEEd63T9YL5p9RtX9N7Ek9okfZuDh52rAXW4dq566TG/xYZ5+G7/C2cExyVpvWq2U74IrkxV3A6jCKEyHSkb0k5hIB8A4UkH7lTR5FQN8pN0ZQqux2IKgVPbDV24gQepIWV2KmrhBu5RzKmL0Jsk4wlCbxJ+E11vkq4XSdebLLKeJP1GhJ4km2+q46/UAJ9jjPytPHCt95kBqsB9tZoEhMnbZVDlb8XM0SEuVNxu4G93Pv5Ywls0s8TceW0H925h6poJGB1roDm9UewFSNBZXPcUQsiRDaSiiASf7bNjQ6XL+2RZN1K7Jg15FlkEkWA6SlHpK7edea4IXytI/BIbOK8BDyjN4URpcl2GBCAn2wWvtQATIwMAorPeqTEM/yhmDCOuF8eCN9ZjPqEWmlw9MKQIf3r7P+ZP6XI+ZvKnnTj9qdv//Clpn1bpR/eV+DlEunXfsb+7v+gu58Gf0mWaePAUHTg9RYti96dXf57a5lj/xJDdNVq2PfzoXhQP/pS+SMADSm6cKDkXpz+lx1CL+9MOnP7UTe9P71j9nIA+nPghs/mUqPk+Q5Ik3fVRFL/lakYkD1OCb5xTgr/0U4K7vJHZKpCQm4HMhtDA05PZmBp4JJkNoYFHktkQGngkmQ2hgUeS2RAaeCSZjZ6hMRhr0CsiuxhdPY8Hxto93oxsZ0YjF01HEiGqSBqZvufPsIkNm03osoU82OQ+m02y9zzsOeHxp6B9e3bu2zool3rO74fO8kSFilkbhc2xuYqFSfCOAhW6hIlqnQIXF4Ly3FwatnTdRcSjGOLt7KKiNWqVKhJGLHgx/8jnu040T7h8WFju+LeHwvZ2XyBLldoPZfOEtt20Cg0UACe/tqFUnTxABblasIoOFP6JUeqIdwcZBtzlyEtbRTMJWeaIsSjdSCZQ1gYOtK1EkDZBUi5MrolTJoYqYikB0A6/HAnrnRa8Xha/3lWdVPAq1QsvDmskWxtf+1RFDMTOGnhuUKfEn6oM+VSoAaWRpwQlxkDZLRLeEmXhRbj1UuASlquriJJM+IQAVlFVylUSqAVVIBDpNAp5gv53TJhYfw/RVR9YfVimq4DytFRH7/88xOXM2lxxOaM2GZcfWj3mdHlV610encJJ7E/XE/tzeQuT9gLzhUmEbi4ZJhG6uWSYROjmkmESoZtL5kK/Zn0dvfzMT6LxCa//+HeZ/6gCuVDnp+8rLcko55++afzJ3l0eJzOCK/T6yI5EF+PlIbjmsVnSSsu100WHzVaufbozV7n23s7FXa79nG532Joy0bIVwff2B835hTqfsky59gxnruK36c5WUHN6zpw5ZijXPvB0ZpO+v1YJ2Lph9Za0H//Osopy7amc1lFbg3XMUq797JvfSs6r4yTK+PZLsvxgTaq2iaXKtSs4jdPbGowjsGS59iZrXs+J3isNPtxljm3N0IPXrapcexdO4wVYxnjWWa69077fv+cELg5aUlbVsNSCtz9YuFx7B07LtbC45eBNxVaufXEF3yDh4RVBa55uH1PmTcd/rKJcO5ZDsJZrB46QyFMfseWp/6Vy7fSyGBYu137dmatc+xFmSlss5dodorbZKN3dAtb/nbvo4ve+w3gv104XN+OhBPlVZ64S5GeNk000oly7LvT4uLUp+yTbo5d3k49aV930IUzDiu4jeMDqCCdWu8zrcy1drv0xmxv7nwh/kUT46dWEzCbC7ynkEuGvICwOEf6d++5Ne/BlhDTnxgH/PudbleHxtDnPPhJqlrsLuTTL6wnNIsLfYnJYx0M7q0Ws8pk7YsSEClKLi/A7cqIC+o3VzB2MO/jDnwj/XM3TKmV2tgmY2r9Osq5mdaoYpiVF+G04TffFMpMHs4vwV+6oq1n2gE6yut/0DzO+PzplYRF+zMuwqqgDL2M2Ef57yxYNsq2+OOjgma4r25953cMKRPgdOcGpIDSjCP+sD83np5brELawWUhD59F/jbYCOQuIkA0nQl/0088nbHmbTNyk6fcOV8Vr7tdde3nxWyqDzA47xJekVoGIzszZbFlw9snfIlHm309oYQDENerkuHiQw8Eq1+pYo7Qc6BUWWZ+WqXpQoNFQbl9DmWAexFcugYsuNHwvAnwTmGmSkQerquU/FrhKYIGWm3f3bbXmVE7oRPm5RgsWLVhteu0uWgpFd4ymFpsH6GVC9JwlqHrEcLPWuBSqPD58YxRxGgU6v7w4s/49+wPPxbPm1hZPdT+8mHZCCrsRcUIKv8677C94/9Gc759i8WRJ3zONSJTgIyvVMcpoDm2bXhu+fI9vFSHO3Hzm0eGPoRWpfZX8AGZf1bcUhzESOI0RbRljMIpjG7Nj4RmSqNaB8CWPhmunrt4dwJQVzCwS3IXNOkTHqzUx7sLmHbSDNTrsF3S2WuZIQoy7/LN0Q7/Fu6r45FK35MvCL4jSpaoQ9S/zm4rDWD05jRVhFSMHfpRR2Wr1/IXuxGTNAC3HCPotq/JhB3X1wJXOA8dc3p9215SpsonmmOFNOHJ41PMiQxeqmWz9BCOzVMKTc2RbF0SKT5ouW0P21/QJe/Bszx6LTnshAMNJAG4iAICuxahMlAxl7CITlR+dDLXP7h4yp261nZXkj79Y9LAvBKA/FwDdI4Vkovn0P8bHoRfmNhsfx8GFi4+Tx8wseebj/PBO7NpLmBWU2eSXDfceOP1kBXycai5cu5vlXKyAVDBs2DAz8HEeLh4Z9zUlQTRvVau+1Za9eWoVfBwBp3X+skxItgAfZ/RxF0l8i/r++6tM+rWW98sAq+DjvBJyGSfPGowjsCQfJz1QO7/PwjOhCw43mvNg6JlNVsXHuclpvAsWT3atiI9jP29kXc+jN4KnlHo80Tdh8WsL83GOc1pun8UtV6x8nG07xHUXLfKK2LG918PMa8GJVsHHwXIIVj5Onj5PffZ/gY/TIe2yOsW/kWjHyJej7/Wad8rCfJwfXbj4OH4u5uHjtHNL/VAi8UZYWky3lv90WLGKdz4OfW7OA8ekuwsXxyTUpbj4OKd7v7syzv20NCvU47FdvWsJvPNx6D6CB6z8OLFqY95ZgqX5OL+zubHBh5VNleHrJLsPRaiePe79lrpT0iUZnp0M0MiT4pknTI3YvmggVWqT4Okx/W5Oqgd+ylQoh5p5cfAbkD2v3pidfT5/d4w43PP+35M8grNZn4+5k1OwkdH/ykYBFxZR8CgWolfSzz0Z2Cv1n4bg0zjBU/gOEviPdv4zobFMVavOKfsohQoYTBETBPz6UPLjMLPipnzOZkqHvAxpFd/fJDk+jw5vPp1C5YCU8EMbsDLu3RE2E5TDmyiHrIhgwDh8xZeSB/2QfBGUPAzNDkqwWMkbZGTxZIncI2IC9RdsqH8bt21FVU8bv119HLNXJYWtLPT0ZbniR97gE5v003s8ndgs4rjhssjeWnSLvGSzyNKZGcmvgj8FzB3soM2e7E5dsSrtD8kzOmZGxjq9xG8QakHUx+tdJmthyovVaotXq2KgHCOkBMZif4elwzp5nNagHIR+RLJ0qDp6kCJGfxPq0ZnLufh1Q3erXWUCFycAZkkUqQ+KqpdwQsgvQYjgPA4hvwT/0eWXwsfd7xh16qVo7LkdabbvI67S5ZfSe+SMup3UJzDryNL5T7OmdiTbycOoRZZnon8xQp6JzdJ2UD2AMCO6Ck6O84ySKTclm1zjP+69H93QFGvxvxsG7OoM7boQlfLMAEOoupNFCk/awfqO/bTgHRLj8h1G/u+Yqxnu7Rs5EqESxWarKv75ow0kRLpkDTpx3exeLm7BrXV++0fevlQ9obKQ02RlJPgnIbSOiYbiMJodp9FKmNdopAu2CZXgDhXeMko/7jHbkGOULdmrJyVKXysTtQoNxroDX0FxmEhbdX/0qXTptekhY7dsH7wiZ+A5uq3KhCXr5ANUegELAW2zC36rNzNceReu9VW0cMVl1L9rcRn1dS2G1hdnAQWisytwfRYkeHSZFM6ObgM9HbNMB3aVd0apJ+GXjogRle5FXlgXJ0L6K7aQ3uXRg4gyqgsBS/YeKjlqlwtVprBcVLwyVieEdWWpYR3GK7aa1k4RsbFwKiJXqYjyq0pYOA+Kd3siAaYXHGR7BES+ZCjdHvSMH2C/6eqHKobnLhM8MblEtT1WfReMTS18YDS/89SwF8syT4myh//mEOUZTi2IasPyioWmhPSi66YS7wFWpSBWWWIU9wNM8D8zi1JzssZwC6qxXoEuG39meYths/+Q7FixsOFy5S9yxpJyrGHAmDqewJu/rcn15k/MW2CaZTkZ64FG7LHZQZ0hLump+fUdRl94PdF/TvqbOqczWoRT+yW821zw3+GE/5Jl4GcwxEwt1I2PCMh2Bm+CtAi94m4RPYWpq/kehCs4IkIEmP4e2IAgAsxrtgBjtJ6Pq956xa/nU/2il9uS366LN94+1eDIm8xTBfR82vw1v38V8QDxQtVnyd/R3s8L6Pn4/nrl8sHaS8XTZ/f89PeJ3dcK6PloHl5dFHN0lXRfqdvn5+ZO/6GAns+Rr7Y3cvcdDDwc/XtY2K34twX0fBCVf0ltQ0TlX7JQL6Lyry3RtG55w1vl20cGTLZL2ORZzeF30FSWaGr7ceqwR8+PitN7Hf9y02ZhKdBUjmia0fmZy5UpL4O39Qz/+r7ThxOgyY5oqhvcaMeT2d/8M9o30X5daf8UNJUnmu5lja2yuE2ngJzggcdr1xZoQJM9CVR0u1HtW63yT98y+Kdrv64YDJoqEE3CvBVHl04qJ9u4o7Oy+S5pKmiqSDRNFtUr59ba2X/XtuvPSrin+oCmSkRT58yjx2r+czdwaxff0T1ajHQGTZWJpoP2n7KOKiaJpg63OV3RaT9UUqpCNMXFPxkoDKwUlPblacXAst3jQFNVomlNldy/mjaeLEqrlZs7/kwA/MBqRNP6LJ9FS3vcCt09JMd/x2PNMNBUXcAqA+VANH0+6TDizJG10uVZMxpm+h5tBZpqEE3yl227uvuG+GfVu1f18rywi6DJkWj6npR+3MXTV7pRUrbygQZxItBUk2hyr+p3qqNkld9Ue9syX39++hI01SKaLkyqsvN2tWi/KcuTfu00p3l30ORENJVq2jpCcHtk2HbvUi2rzNdAPcfaRFPmmi/nm/iWCjnUdtikXle3LgJNdcgO8Mvsb6ebO4ZvfbTnXu0bTiGgqS7RlHE6pEOlR+v9py8Kmlyt5asjoMmZaOryvnzjEBeNaLrX0chmHyR1QJOQaGq1fc+6slFBQYtWnSh9LLeMLUOoykXAIlTVrvbV6k+X2YeuzHK68aTXwWiE2zBWqOoNm4uqHrt3c/aJM7KFG/KGnas9Yil16iobmqRSxyBOX7AlwI2IO4TkeVmsTJ02ASTEwAkRFQANPG5Bd1DIR2POqokGQ3XDIbeo/inoXxE7h51BevyinnEFNPNPo+IPgny3/vemt9e9HhK+/kRNl5mS4BweD6PyvEEIV/a+1QMAxaDmnafdZII/6xmVE/tEKkDXwHhPMQpY4kitVWLHT8DzKVXY1InsJ0K5Bp64Vicoo9EK3RsdSw2uZRex73r5Rd0PjO9GpY/rv4dJH89v4r00jSvWYzjgeljPKjI55lFHIzM5D2KgxeSbSxcv1wkT5IMUQpCA6EtYs/PMvx0aNKR27QjJHMGVE107rOhIYxoSH4tgGpItfFuvkgfR2aUo62V5Yp2dwTY3EjgX8lAUSfhT0IFEgqWp0X1t1IOx0plTxT3eCPw7mH4EiwewXnCCBbo6EX/essWf/yk3FEm5gZ6hm025Iao+l3JDi/rFodzgseNEUvPXEwPXNanWfdTMeat5DJZ0D8SDckOX+lwH3QPqm0W5YcKoWcmbI3YHzG2T1n1/17sXLK7c0IETFdBvrJRlaj7lhjPrdCW2fejoN3vgpmvldxy4ZjXKDW6cpnO2jOnMrtzwolrNFxUm3Q9b43/y+alKs1wtrNyAeRnWo/fAy5hNuUHjO6T1+Eqp/pOUq5b/8rgGbQZpEeWGDpzgtKhvRuWG5D2zbwapzwaPWXds84UevR5aiXKDGydCYEwTeds7trztzAJ56Ne2NQLGrKpb5kX94Yeo2WgoyNGEUdJQwxcO/PTFcGE1ATITBjPEWPAryLtShQBbjQ7XKADOluivMPciUreRhkle0dYv0c/NzKLJFiPK4gY0IcriMlIlEbBA4ybGLStgD1AAA+TbtZZEB8/4+q80/UKNq//+2ZKWKUXBuxEHFLDLhWVKdP/HQ81bWROCfcXohMKmMkG7Jkbxjh0xgMh+4Rqj1IDuC9rRwbbzlchSB6+VFk3cu8S/yxolteJnWSl5M3NY5jcVBtjAWpva1H3oJF3tIJQ36X1DyQNgzTgBAz3KIkkUHjPg37QQsP0w5bBsOWxph9mSw6tOPX785KxLw6Xb4q73O6p9nV0FEzIBxpANTdIo9LRnLKkV+0W5/uhmWgJML4vZuXXl/qd+D5yYPtHtwsPJP/Jg2jqcpq1qIdOi8uMZnYxKtcqHFvDnaHbui6nlBkR89N88r96H2Y+6OdM3/BCHqvCrvK/deRI+aQuKVLLFExtiRGB8zxYY/a7WuDek9XbRxt59Had0P0gtq1QNkl91cOkTnmRWQG69woiK8V4SdQKAHKfgYh8Tk/8x2OQwv1A8JJUaFBHp23aFPzDDHMi/MjQbAZ1/XQMA+u9+iALy/UHnX9jAVH6KOLQAKHC5AZZBgtmGOlHoShY/B+jhAkjwf7hP08LVaHWKgkW9ZMBdr1tPMtdJt3f3KjtQuUdB9THdMdIB08cQ1wvzMT9J+i/wyGsomqvL6Tq+f49dJvqYGQDmNRBmGz9EyfQsNwxmU5eEGxYwv351K1qdqFVEJ2PdA+NEIbFMHKC7VG/QVP9Vn5ruvvXymyP1REb+5zKnv5RG3qmU7gRsfVCw3fTAYCNcwh9sLuFchfofmrVSh43/422I55VRMsq72UcqMA6jMDxZpUL4AraE2YO8DxJhsT6rTBwiVylj8E6eotTFC9VgmqIx3BPQd+k5npNhBWqzocf2GssEGoiuHWrzbSlAt4/JY98hCOPhwVVXhRYjYmOIIQHIuzdy08vKt8VpvW+s+D664TFq+ox9EDN9xi8XNpzprARTj6IB5JIgcstQKQOs/BrbgDV9NhA5Jz1yGkpXg10LCd+ic2MG/23zJHDNoDqKxC61N1CPuRMdBL2lQ23lexRDtPpwohXZwCIsdtuuqUmKgjjUL8DZ8QwBKa1C5Qn/RusZENgPJrlxCg2NEgd/THXcDliAhIYFHwEm1am4qZFWpgcmUwaJiXbt70mMgnco2lxnL2wUGLUQ5hiOYQtzBZy/S3T9GCQUpUY3uTD89OGAdQcrTQuaOYrmL7C3QmxMYJeLA4o+nFBE6gPVB7ZAZTU1/+jekp/yx8VQ8q9FA66Sf031kP9p9ZDTuXH8QC7s+E9Y5eYzpRkOm90r7I9cxgPkSxpyQT6vIQn5R95YmRVJyM3AykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZn2yqfWgz4lTAin41Ssg7P/uVQXmDnRddm5FGv+SB8vYXm/3rhRz3uLe1nP9qm5gB159Xotq/Kr7YL1GptTBdxDZwmEl5aZbRVs9fCcsdx8P6wPgHYFNKOM8kaAiGbe/TKaeFPiIDHNQfGZqVg6nierg/cBN5YgTMyKcYt83vhO+2YUoaamgagAf4hZ0X1KT3mzt37lcO3Lxw6Pda4+/4m7LXVrzL2BcBVmvrE2H3HUOcEEyrs5kb/lxYVddTIgpihT5S4+q++fGnhsEzex7Jq/VSq+ORFjG6W/jH06uG+q9VTwqc6Jd6lAeUpnCiNKI+c/GBK09z70yOK2ywYZiRQw5O9UjuGftWiX/v6BVl/gmULbT1mTxGMTrVgvu53u5EJ0JuyMHD00uM3M9tot89hBBFF9D7hBGI4pvQKwFDmkScLhkh23ArcVLjs6/PWMGuJQQpkxOkKUbu6zaUKvE31y9V5XcZbGOR3UE5Dlba2jV4ErqgkuM/OQP+rkXdRSQ/l7mLqG8pDnRGc6KTot/T/ZstML7sHh5q4/VZkrn8vH9ORFAv5kI8MxLasIDrQt3P1VPdUtRGSe7TD1gYujdgKPsbOKYvELbzfogFKAGA7bFxoc6wbdpX5Wrtm5i9JHjn2vIpT9++aE1d7MT2Y1nCOqWxMC9Od3GmMsGBn/4EweqM6mNLQWr+xrhYVwEDSwFGGjtUO0ecv/4sdUHguvEJO373+Zta9K+sDNyLBqpAk5lTAgjTY06YbhsZ7ArfQqPvNVtsCw16GqyPwC00ISN39MSgIfzQJzY/JGl83qtt+oPQpf4573Vta9ahr0MnyJOE+DoNYr2cLTVvjN9H7vZg51LkwkRFCryk0CijiQBpGIuEdriL4wlRK+UFmg3EVdRYJqjpdgoqTiNy8jSA+mdXoxxVBWwbCl/cBY+DfMtmB174qsqOD9j8wXlo0LZrjakpEvYBzBQJv1zYmKOfczNxzEFmcg0IzwbUmINqmPZuRrFJ7PHn4RJJD0/t1/Zblw7B65//OKb1q5vUSQrxuszdP+J6oQfb23496ZZaJ3TT5ujX/46r3oMHfEpx4gO6jyUYBrYYcWMIDkR7Af3HuCpq9l3lmjiFjstop0seHt3yl17i2SeHf2/48Rfq0brS+P1MoxHXeV+zBVZ568pllSdWZZV3h0mrGBW+KmIOL0kRQzhfdM2FwVFBCv/+QaPDxfN71Fpwj2qYMOx+pmGI63wbRuRJuBO4zMiYr6Z5yQS2bsZNyJz0GGATC5WyMDzm9e3yjzS0Q/gy4fLay/4a258mKYR/AEJSiGgoDkQ+u3Ih8sKVjOuf2eL6llkhf/Zu5xs0/s+vOttjtz9QbYx/o+FkmPb6GQY1gAtT4pXR8SCthGcL5VotVIPUs2KI8G/Y5IN+Thv1vMw+iV83gid6ypXgiTLYLyIwq9vLjOtG7oDXJlINXDwJE/iFR5jwJ0G++F9zPqTk/fs1eM38x665fzenkufKsCU2+gYzB39InzsBMfRGcTSETTAMjfJY7cOJHoWXNKEc1IJ8IC2+PgDLKMD/5+eUwuHhI9EyL7R4btGKKnBeiwHmiAIM6ljv1Q/mL1a/cUXvTTypTdK3OXjYucpy5dq5mqHH/B82zMN3+184IzguSetVs53yRXBlquJ2GEUIlelI2ZB2CgP5AAhPOnCniianapjeJE2ZguuxmELg1HZDF27gQWoYoaeiFm7gHsVZN4TeJBlPEHqT8JvoepN0vUi63mSR9STpNyL0JNl8Ux1/pQb4HGPkb9fJfr0wesvzwFmvt/2j2R4zmyp/K2aODnGh4nYzzkRVKvlkSeCm2ydlzdNnmHpuUgBGx31oTm8UewESdK66nUIIObKBVBSR4OSJY0R5G53F8w7PmjPcdm2rIogE01Ha/aHG8t/HvfA/vHbP3+VXHjOVcABROsuJ0hE3hgQgJ9sFr7UAEyNDVJRprHdqDMM/ihnDiOvFseCN9ZhPqIUmVw8MKcKf/vsf86d0OR8z+dNkTn/a73/+lLTP/N6KyEc2G0Qr7vZ7c77rkp08+FO6TBMPnkLL6SmUxe5PD+546ruvVvfg2aF5G9OWDnzFgz+lLxLwgFI/TpS6Fac/pcdQi/tTLac/7af3p1+tfk5AH078kNl8StR8nyFJku76KIrfcjUjkocpQUs3rimBux7yb7yR2SqQkJuBzIbQwCNdPUIDjySzITTwSDIbQgOPJLMhNPBIMhtCA48ks9EzNAZjDXpFZBejq+fxwFj7zpuR7cxo5KLpSCJEFUkj0/f8GTaxYbMJXbaQB5tAgyBtkr3nYc8Jjz8F7duzc9/WQbnUc34/dJYnKlTM2ihsjs1VLEyCdxSo0CVMVOsUuLgQlOfm0rCl6y4iHsUQb2cXFa1Rq1SRMGLBi/lHPt91onnChU7zM6v1HhmQWXJ8taBZrmfYPKFtN61CAwXAya9tKFUnD1BBrhasogOFf2KUOuLdQYYBdzny0lbRTEKWOWIsSjeSCRY2Bg60rUSQNkFSLkyuiVMmhipiKQHQDr8cCeudFrxeFr/eVZ1U8CrVC3cPbiRrsaDxqYoYiJ018NygTok/VRnyqVADSiNPCUqMgbJbJLwlysKLcOulwCUsV1cRJZnwCQGsoqqUqyRQC6pAINJpFPIE/e+YMLH+HqKrlmDrqlYTlukqoDwt1dH7Pw9x+Vxjrrh8rDEZl0taPeZ0eVXrXR79hZPYv1dP7C/FhrnRYdJeYL4widDNJcMkQjeXDJMI3VwyTCJ0c8lcaGzLeQurPpohXZ3WfkPM2D+OFciFbqzvfnDAb/XCl6elyLpcTVnDCK7Q6yM7El2Ml4fgasNmSSst104XHTZbufYTTbjKtc9kSsnwXK79qm7f4I/SPMnhKXOnPHvq8s4KyrUfa8JV/HavZQQzqDWnp06daoZy7U/+yKhcLny63+64oC07dKnU1UJLlWvfzGmdldZgHbOUa4+uXOd7h5B2kunX2wQfaxNKXWG2VLn2BZzGmWkNxhFYslx75WulXva8Pyh4XkTrdpUPdy9jVeXaJ3Aab6QVCQVZvFz7tHoTPcZIK/rvr3Llz/67FCMsXK5dy2k5pcUtB28qtnLtZT7vnhN7Xy1ePir7k3DZ549WUa4dyyFYy7XP1Is9/cCWp/6XyrXTy2JYuFx7+aZc5dr/Yqa0xVKufWDU3UHh85cGLFb+9HzZT7tocpA8lGuni5vxUIK8XFOuEuSCpsVVrv3lAXHJf/0uhW240G9El6lvTvJerp3uI3jA6q8mXFi9Mq/PtXS59tJsbux/IvxFEuGnVxMymwh/TFMuEX5p0+IQ4X/5Z+Keg68dgxa82fltlnudejyeNufZR0LN8gFNuTTLf2T6yOIQ4a8wdnNa0M6W4Ztqlb/w5VFAlsVF+MM5UQH9xmrmDsYd/OFPhL/qHMdNQbGlJHs6Vu7Vq9aXilYjwu/LaTpvy5jO7CL8v9548G/i1jai6aO7Rm5fV74ibafT3CL8mJdhVVEHXsZsIvwZBxw/J/8yVzxDlPUt1/1ODSsQ4Q/nBEfa1Iwi/Hc3eF4YW3+53/LyOz4eW1N3uhXIWUCEfDkRAmOayNvKsOVtMnGTpt87XBWvuV937eXFb1tQdQSwQ3xJahWI6MyczZYFZ5/8LRJl/v2EFgZAXKNOjosHORyscq2ONUrLgV5hkfVpmaoHBRoN5fY1lAl+hfjKJXDRhYbvRYDvcmaaZOTBqmr5jwWuElggX33o+8vSytW6S+dOa79glX8vqp5KkWp30VIoumM0tdg8QO8cRM9ZgqpHDDdrjUuhyuPDN0YRp1Gg88ugKqX9yvq2C8u6n91i0/X1j2knpLAbESek8Ou8y/6C99/N+f4bLZ4s6XumEYkSfGSlOkYZzaFtE97ucbnzvzz0m/+1qSb330gVta+SH8Dsq/qW4jDGck5jzLeO9EdgzI6FZ0iiWgfClzwarp26encAU1Yws0hwFzbrEB2v1sS4C5t30A7W6LBf0NmqqNPSq38JjwWMdeyy8+v6mVRuR1n4BVG6VBWi/mV+U3EYazqnscZZxciBH2VUtlo9f6E7MVkzQMsxgtbtFPWcOrFM6Mz71aoHXR/z2JSpsonmmOFNOHJ41PMiQxeqmWz9QSOzVMKTc2RbpZRf6+95Pjxwvaq0eFMj560WnfZCALaSANxEAABdi1GZKBnK2EUmbuZ+Dm2gbi8+MGnStmYvg8dZ9LAvBGAuFwDdJ+oTTdv/GB+HXpjbbHycUHcuPo6je3HzcUbEDYr+2T43bN6OzInXq6b3twI+TrA71+6myN0KSAVakNIXPx/nXo9fp63uMiw4c2+6yz3bm2Wtgo/TitM67tZgHbPwcZLSN9famnbef96dng9XfUk/aRV8nHqcxnG0BuMILMnHya1179v95XbhK3Mj1n3ZM+WIVfFxKnAaz8YyxrNOPs7EUktdA0v8LJm39Kp72vWHfhbm43xpymW5d1YxTSk2Ps6EDz1vzLk2V7x2we5Hr8o2k1oFHwfLIVj5OMAREnlq2f8LfJwu78s3DnHRiKZ7HY1s9kFSx8J8nGnuXHycocyUtlj4OM1edd4zaOLLwC1Rn52bbrsVwDsfhz4354FjMtWdi2Myxr24+Dj28V6Jg1Z/kqRnB7e1qZl4hHc+Dt1H8IDVUE6sEs0bLS3NxynH5sYGH1Y2VYavk+w+FKF69rg3tRCbXZdkeHYyQCNPimeeMDVi+6KBVKlNgqfH9Ls5qR74KVOhHGrmxcFvQPa8Vtv3rCsbFRS0aNWJ0sdyy9iyPh9zJ6dgI6P/lY0CLiyi4FEsRK+kn3sysFfqPw3BpwmDwlwOEviPdv5zYGPZX6Gup+yjFCpgMEVMEPDrQ8mPw8yKm9KOzZQOeRnSKr6/SXJ8Hh3efDqFGmdL+KENWBn37gibCcrhTZRDVkQwYBy+4kvJg35IvghKHoZmByVYrOQNMrLFbkSJ3CNiAvXybKh/G7dtRVVPG79dfRyzVyWFrSz09GW54kfe4BOb9NN7PJ3YLOK44bLI24Z0i9izWWTpzIzkV8GfAuYOdtBmT3b/ibom6g/JMzpmRsY6vcRvEGpB1MfrXSZrYcqL1WqLV6tioBwjpATGYn+HpcM6eZzWoByEfkSydKg6epAiRn8T6tGZy7n4dUN3q11lgh6NAJglUaQ+KKreuhFCfglCBOdxCPkl+I8uvxQ+7n7HqFMvRWPP7UizfR9xlS6/lN4jZ9TtpD6BWUeWzn+aNbUj2U4eRi2yPBP9ixHyTGyWtoPqAYQZ0ZoP7rsPqKpqQuc8HfIlqeKF86ZYi//dMGDXbtCuC1EpzwwwhEIaWaTwpB2s79hPC94hMS7fYeT/jrma4d6+kSMRKlFstqrinz/aQEKkS9agE9fBcYc+LOy8OTAr9ajgxrqEJZwmKyPBPwmhdUw0FIfRxJxGa21eo5Eu2CZUgjtUeMso/bjHbEOOUbZkr56UKH2tTNQqNBjrDnwFxWGiBdN3594YevOteNv+lK01W92dQLdVmbBknXyASi9gIaBtdsFv9WaGK+9Ctb6KGK64jOrBadT6jRhaX5wFFIjOrsD1WZDg0WVSODu6DfR0zDId2FXeGaWehF86IkZUuhd5YV2cCOkV2EJ6l0cPIsqoLgQs2Xuo5KhdLuOpXNmoeGWsTgjrylLDOoxXbDWtnSJiY+FURK5SEeVXlbBwHhTv9kQCTC84yPYIiHzJULo96BntYJrT1Q9VDM9dJnBqaCqPzB6rvgvGphY+MPJFI17eH7OlcaZkedbF8muGxR+kF3hBvmKhKSG96LqpxHuAVVuIVZYYxf0AE3yvhsaxxnALqrFegcTFbmhEiex1iyI2i1XdO/4kL81YUo41DBhTxxN484acbw56iRUsJ2M90Ig9NjuoM8QlPdUjWuYydJpENL1svxr3s+evo/ZLeLe54K/MCX8Zy8DPYIiZWqgbHxGQ7QzeBF20gFZxt4iewtTVfA/CFRwRIQJMfw9sQBABpiJbgDFaz8dVb73i1/OJdxoffn9m68CJBzJrpqxuVVDb8FPmufPvI5TS6Vf2TTjyRbClgJ5PH1mD3BJ9B4q2xB9uHHu3pWMBPZ+xSW9nNz1dPXzW9UlfAk4OaVVAz6dExJOV1eL2Sw5UuzxE2FDct4CeD6LyL6ltiKj8SxbqRVT+tSWaSi21n3lxVU7EgQP7xH65ufVAU1miaWlyyvA5G677zVgy/GsLxchaoKkc0bR9bUVRr4GDpYdfjzr/yfsb/EA7omnIEM/hSx6rRFkfBtdM+5peAzSVJ5o6/7z2uOM/ZaUZecMn/OKfkwya7Ikmz7cOl6dFHY2YdebOsqdxfjNAUwWiqZ/XsbDbNU+Hbty93rFZ0AMxaKpIGuXLipnbf7kVeKB56NpjuwfCx6hENJWv5z/Cc4+TdFOLMlu75fRzA02ViaYzS4SPvmVr/NNSNmf8PkL0E2iqQjTZ3vvzQC+72oFbI/w7uiV16wSaqhJNDh0+9tw/rmHIHP++I34dp9gMmqoRTSvTYl81O3hFdLhNv9ZBgaeqgqbqAlYZKAei6cHxbHHN+UtFB0v16PteF+0LmmoQTfapZfdXmFNZlu2x7Ilb7bOwAzgSTSEfFmhSms0KyOx2oPelN4nwu2qSVu65JySwVrJofKvwVZOz4rqBplpE08XsXoerSOeI9pQKudWu7rTpoMmJaNof0LBJ9XIrAhZnXs9cGe8hB021iabffr309H7N8MCcHy+Pi7dfshM01SGatg3KdBJOOSlbdjekp/LbuTzQVJdosrHr4l11/QjZjMu3BonfV7gDmpyJJv+WO7ydb8SE5axM7xp1wucmaBISTXkXPOT/vpkjHn334rF3FW+dYQhVuQhYhKriNj/xLd/zr4gDD5LPV477bM+DUFUlNhdVPXbv5uwTZ2QLN+QNO1d7xFLq1FU2NEmljkGcvmBLgBsRdwjJ87JYmTptAkiIgRMiKgAaeNyC7qCQj8acVRMNhuqGN5YJFnuegv4VsXPYGaTHEz2NK6CZfxoVfxDku/VMCOwRs7qi/7ijqw//NFl1g8fDqDxvEMKVvYUQoBjUvPO0m0wwy9OonNgnUgG6BsZ7ilHAEkdqrRI7fgKeT6nCpk5kPxHKNfDEtTpBGY1EsfebSuVr1XMImbWi+YOmU7fPpNLH9d/DpI/nN/FemsYV6zEccP3saRWZHPOoo5GZnAcx0GLyzaWLl+uECfJBCiFIQPQlrNl55mvqdg5wz+4k2Tb3nz5Tl1W8SWMaEh+LYBqSLXxbr5IH0dmlKOtleWKdncE2NxI4F/JQFEn4U9CBRIL1zq7jv+Nm+Ug2ry03IutS+RjTj2DxANZETrBAVyfiT2W2+PM/5YYiKTfQM3SzKTe89+RSbrhkXKw0ULkheXJJjeTgUfGEe67yq74fHvAYLOkeiAflhreeXAfdnxgXLIuq3FBtXKl6u+a0DTq8Kv7wuKNzqf3DEsoNdzhRuWSZmGgAy7SwBSb+lBvOfn1Wpf/4x2ErWxyZ6eF3tJ3VKDec4jTdQWtNZ3hWbki2r+r9surysEnrP2adrFzyi4WVGzAvw3r0/gkiSyku5YY6J7M2VtsiiNiTUfZj5TqfqAQhyyg33OEE55KnGZUbJpZxmrI+o3NEWtzwklJp55ZWotxwihOhg/q8rQpb3nZmgTz0a9saAWNW1S3zov7wQ9RsNBTkaMIoaajhCwd++mK4sJoAmQmDGWIs+BXkXalCgK1Gh2sUAGdL9FeYexGp20iDEif6+iX6uZlZNNliRFncJz5EWVxGqiSC9Ut9jFtWwB6gAAbIt2sQV2pi0vTL4ftGeoVW8p1GO7gbBe9GHFDALheWKdH9Hw81bx/5EOwrRicUNpUJbvkYxTt2xAAi+4VrjFIDui9oRwfbXj1sW0+63li05+7jx9OGCyZQh6WUvJk5LPObCgPs2bWYpuOy/pJkKGqnbq+nOsADYL9xAgZ6lEWSKDxmwL9pIWD7Ycph2XLY0g6zJYdXDVvpnhbWbn/Q3skz3/QoPcWzCiZkAowhG5qkUehpz1hSK/aLcv3RzbQEmGbas3U+/N5+2jBJZo7bm5dzckzVe4Om3c9p2q0WMi0qP57RyahUq3xoAX+OPtLo/PvOuNEPpYvPOw2M9vG7St/wQxyqwq/yvnbnSfikLShSyRZPbIgRgbEqW2D0u1rj3pDW20Ube/d1nNL9ILWsUjVIftXBpU94klkBufUKIyrGe0nUCQBynIKLfUxM/sdgk8P8QvGQVGpQRKRv2xX+wAxzIP/K0GwEdP5AbwD6736IAvL9Qef39TaVnyIOLQAKXG6AZZBgtqFOFLqSxc8BergAEvwf7tO0cDVanaJgUS/J05as+HmWd0T2wGM5iyWtqEX6SnfHSAdMH0NcL8zHKHKv5fQRrfAfl+SqGf81Mt1EHzMDwOwPYbbxQ5RMz3LDYDZ1SbhhAfPrV7ei1YlaRXQy1j0wThQSy3kTPb9JckTSXem5g+JnBt2hnsjI/1zm9JfSyDuV0p2ArQ8KtpseGGyES6jG5hLOVaj/oVkrddj4P96GeF4ZJaO8m32kAuMwCsOTVSqEL2BLmD3I+yARFuuzysQhcpUyBu/kKUpdvFANpikawz0BfZee4zkZVqA2G3psr7FMUAmia4fafFsK0P3iZerYdwjCeHhw1VWhxYjYGGJIAM713b45NU8QmPPwvTDd/1xbavqMfRAzfcYvFzac6awEU4+iwYPbELllqJQBVn618WZNnw1EzkmPnIbS1WDXQsIn6zxlW5W7ZUOmOL872jyjP1V4qzzRQdBbOtRWvkcxRAv0JA603nlZhMVu2zU1SVEQh/oFODueISClVag84d9oPQMC+8EkN06hoVHi4I+pjtsBC5DQsOAjwKQ6FTc10sr0wGTKIDHRrv09iVHwDkWb6+yFjQKjFsIcwzFsYa6A83eJrh+DhEI7LeLotWVdg8Y+63Ppw1sVjd+FvRViYwK7XBxQYF2cFQrQxYlAVZ0tUFlNzT+6t+Sn/HExlPy75MVV8u+MHnIHq4eczo3jB/JjJ+7KG453CFkx8NLDeUc+xvIAeYdmXJD7NCMhr8EbK7MiCbkZWJkIEiXJykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrs+wFn65vKm6RZDUqnTlm6t5kBuUNdl5k76PTL3mgvDmy2b9eyHGPe1vL+a+2iRlw/Xklqv2r4ov9EpVaC9NFbAOHmZSXZhlt9fyVsNxxPKwPjH8ANqWE80yChmDY9j6dclroIzLAQf2RoVk5mCoGQb92E3liBMzI3ZhZOdfatRO+24YpaaihaQAe4Bd2XlDd5rXGPpkzI2jaD4vCAprUSTRlr614l7EvAqwCyLD7jiFOCKbVbbyQeTgbVtX1lIiCWCFR+vefw32qd7sim7ti4IwDujFPeKRFjO4W/vH0qqH+a9WTAif6pR7lASU3TpRqeTEXH7jyNPfO5LjCBhuGGTnk4FSP5J6xb5UMOHIqt8WR7sGzRE/CBGtGKyy4n+vtTnQi5IYcPDzdwcu4NLaJfvcQQhRdQO8TRiCKb0LXiRWutn20MFc84cadFW/LxU+2gl1LCFILTpDcvIzb120oVeJvrl+qyu8y2MYih4M6PeLJ+4PHw8bOf/5Tqe+nN1F3EcnPZe4i6luKAx1nTnSq63PRmmyB8WX38FAbr8+SzOXn/XMignoxF+KZkdCGBVwX6n6unuqWojZKcp9+wMLQvQFD2d/AMWVB2M77IRagBAC2McaFOsO2aeOcBv7ldbeULE2U+nHr2ydnqYud2H4sS1inNBbmxekuzlQmOPDTcyFYnVF9bClIzacaF+sqYGApwEhjh2rmqNf7p3qVlU2KbuD2YsPe9lRPJAP3ooEq0GTmlADCNIYTpqFGBrvCt9Doe80W20KDngbrI3ALTcjIHT0xaAg/VIvND0kan/dqm/4gdKl/zntd25p16OvQCfIkIb5Og1gvZ0vNG+P3kbs92LkUuTBRkQIvKTTKaCJAGuSW6Ie7OJ4QtVJeoNlAXEWNZYLdLU9BxWlETp4GUJ/X0ihHVQHbhsIXd8HjIN/yQa9Dp+pdmChblzr8364n2zhQUyTsA5gpEn65sDFHP+dm4piDzOSdEJ4NqDEH1TDXtzSKTWKPPw+XSHrt5Ffyq/36SrI89kSsEi3fQN39w+9n7v4R1wvD58j0XbUTrs0LXzEw536z7A0XecAnhxMf0H0swTCwxYgbQ3Ag2gvoP8ZVUbPvKtfEKXRcRju49UralMhBkkUnB/lf2hAbTDUafj/TaMR13tdsgVUyOK2SblVWeXeYtIpR4asi5vCSFDGE80UapnXpbO2I+KsB03M23nnWaQ/1sF/pMOx+pmGI63wbRuRJuBO4zMiYr6Z5yQSrWho3IXPSY4BNLFTKwvBY3lu5Y9Cr22GLMmpMSsw6702TFMI/ACEpRDQUByLzOBGZ2JKM605scX3LrJA/e7fzDRr/51ed7bHbH6g2xr/RcDJMe/0MgxrAhSnxyuh4kFbCs4VyrRaqQepZMUT4N2zyQT+njXpeZp/ErxvBE1W0JHiiDPaLCMzqejDjupE74LWJVAMXT8IEfuERJvxJkC/+ouGIE/4DW/ovv7Nsblj3lbTOx5bY6BvMHPwhfS4aYuiN4mgIm2AYGuWx2ocTPQovaUI5qAX5QFp8fQCWUYD/z88phcPDRyIRpcdzi1ZUgfNaDDBHFGBQx7qHfjDXtvqNK3pv4kltkr7NwcPOVauWXDtXnnrM67BhHr7b/8IZwXFJWq+a7ZQvgitTFbfDKEKoTEfKhrRTGMgHQHjSgTtVNDlVg/wkXZmC67GYQuDUdkMXbuBBakjVnIpauIF7FPE+CL1JMp4g9CbhN9H1Jul6kXS9ySLrSdJvROhJsvmmOv5KDfA5xsjftnaM+nRRKvHbc/75Mt3Oa2qq/K2YOTrEhYrbDavsNaVi+SvSXUGqDUM1LQeYumYCRscIaE5vFHsBEnQ0PqcQQo5sIBVFJHjL0B3v784f7zd/yuNd51wOXimCSDAdJUWPyOAHa9tFTN909JD36Is7eEApnhOlvj4MCUBOtgteawEmRgYARGe9U2MY/lHMGEZcL44Fb6zHfEItNLl6YEgR/rTuf8yf0uV8zORPq3L6068t/+dPCfu8LLk+pvbIn6RZBz0/KQNsyvHgT+kyTTx4isqcnqJMsfvTM5JDW2p5TgpbPPFATM3F4qKIrtNRoi8S8IDS15ZcKH1oWYz+lB5DLe5PK3P606/6/NTZ6ucE9OHED5nNp0TN9xmSJOmuj6L4LVczInmYElzmnBKc1UMu5I3MVoGE3AxkNoQGHunqERp4JJkNoYFHktkQGngkmQ2hgUeS2RAaeCSZjZ6hMRhr0CsiuxhdPY8HxpoLb0a2M6ORi6YjiRBVJI1M3/Nn2MSGzSZ02UIebFKPzSbZex72nPD4U9C+PTv3bR2USz3n90NneaJCxayNwubYXMXCJHhHgQpdwkS1ToGLC0F5bi4NW7ruIuJRDPF2dlHRGrVKFQkjFryYf+TzXSeaJ/ytWcCWG4kjw2Y33vrQv/NDDzZPaNtNq9BAAXDyaxtK1ckDVJCrBavoQOGfGKWOeHeQYcBdjry0VTSTkGWOGIvSjWSCti2AA20rEaRNkJQLk2vilImhilhKALTDL0fCeqcFr5fFr3dVJxW8SvXC7yIayezbtDhVEQOxswaeG9Qp8acqQz4VakBp5ClBiTFQdouEt0RZeBFuvRS4hOXqKqIkEz4hgFVUlXKVBGpBFQhEOo1CnqD/HRMm1t9DdNX6Vh+W6SqgPC3V0fs/D3FZ2YIrLstbkHG5gdVjTpdXtd7l0X6cxP4eemJ/Q97CpL3AfGESoZtLhkmEbi4ZJhG6uWSYROjmkrlQ0w3DZ3daN0461md1yA9jPW4XyIVU92d1PFkhN3inyz13cfYaMSO4Qq+PVk6hifHyEFwbsVnSSsu100WHzVauPboVV7l2r1bFXa79WE3hyM3aM7K1s/zayBfWpp7stEy5dnkrruK3PVpZQc3pcePGmaFc+5oWM3T7l2aGb7uZPPpBVAx198VS5drDOK0jsQbrmKVce632mfYu4g9+E57N2V/iZsddVlGuvS2ncbyswTgCS5ZrPxp6VjmoVoh475R+fetXGkNV2rV0ufaGnMZzsozxrLNcu2TB6BpdquhkizP7nDxZPXSvhcu1V+a0XBmLWw7eVGzl2su973XcvuUg0WK7zNpnS26QWEW5diyHYC3XDhwhkac2ZstT/0vl2ullMSxcrn1dK65y7XOYKW2xlGv/O63Zo1H9vgVsnpX8e5/N2VTBRD7KtdPFzXgoQb6mFVcJ8sWtiqtc+z2HK6H+K/sEjO5wSChSXMrlvVw73UfwgNUcTqwmm9fnWrpcuyubG/ufCH+RRPjp1YTMJsJfsjWXCH8e03fyIMJf+pe/xjhX6hg0+9HE/TvvH3vK42lznn0k1CwXtObSLP+L6SOLQ4Tfy6fXvdfTe/ktlIRv3+i9l1oH3RIi/K9acaGSZ/EMtOCOk2VE+GvUTlDZRu6TLqhRI33ryn4LrEaE/yan6S5YxnRmF+Ev89Ft1KPAbL8VW2Yln/Zq+8bCIvyYl2FVUQdexmwi/I8vvkh3+fQgKNPNu7EsQtbUCkT4MWfDCk5eKzOK8A9dtn1eepMnklmN1m4u2WDnPSuQs4AI3eRE6IJ++unGlrfJxE2afu9wVbzmft21lxe/bUHVEcAO8SWpVSCiM3M2WxacffK3SJT59xNaGABxjTo5Lh7kcLDKtTrWKC0HeoVF1qdlqh4UaDSU29dQJhgEh6dcAhddaPheBPiKW5t6sKpa/mOBqwQWyFdvU75ryNHk+RF7dk6dfaBW6nHTa3fRUii6YzS12DxATwnRc5ag6hHDzdrWxhXCxodvjCJOo0Dnl4Pnda7afP7biM0OzTSjkmtTCzGXlmI3Ik5I4dd5l/0F79+N8/1DWls6WdL3TCMSJfjISnWMMppD2+b3vUfXrq011W9M90NvBOmfqXrgtuQHMPuqvqU4jCHmNEZryxiDURzbmB0Lz5BEtQ6EL3k0XDt19e4ApqxgZpHgLmzWITperYlxFzbvoB2s0WG/oLPV+g9HKrd/niRaGPTIb1vQUGo6VBZ+QZQuVYWof5nfVBzG8uA0Vn2rGDnwo4zKVqvnL3QnJmsGaDlGUI7P0PITE1767Y0KHZZhl/vWlKmyieaY4U04cnjU8yJDF6qZbH3v1sZlqYQn58i2xk91GfRmbKWw+Y0TRzrUy7pi0WkvBCCCBOAmAgDoWozKRMlQxi4y0SqtxvoN9Z6ErbkbWWXYttA6tFBm3sO+EICWXAB0b9SaTDSb/Mf4OPTC3Gbj47xozcXH2cXMLHnm49geHTJ6W/jY0PlDV/88SPtmjBXwcX5vzbW7ed8yTp9KKhg0aJAZ+DgpNWaualyrkmRb3V7Nf415ILQKPs5VTuuctQbrmIWP0+vb6xqxzyJDDq8ecD9j/IaPVsHHOcJpnF3WYByBJfk4JUdNim+fnuI31/tT0pHvXyOsio+zgdN4yyye7FoRH+dT8siMVkmxkvRas6d+6LW+loX5OFmclptmccsVKx/H41enRXNT1oZvXHnup5m/qN5aBR8HyyFY+Ti79Hlq0/8LfBz/lju8nW/EhOWsTO8adcLnpoX5OO5tuPg4Dm3Mw8eppfy+/LBfL+mm05ubTRNcrsM7H4c+N+eBY9KkDRfHRNimuPg4LjHVHIPfLg2bfOTqsjxp5RW883HoPoIHrBw4sSrf5v8rPo47mxsbfFjZVBm+TrL7UITq2ePeVOds1yUZnp0M0MiT4pknTI3YvmggVWqT4Okx/W5Oqgd+ylQoh5p5cfAb0IUPL3jI/30zRzz67sVj7yreOsP6fMydnIKNjP5XNgq4sIiCR7EQvZJ+7snAXqn/NASf5gU87ecggf9o5z/VjWW/PW9xyj5KoQIGU8QEAb8+lPw4zKy4KT3YTOmQlyGt4vubJMfn0eHNp1Oo1dFL+KENWBn37gibCcrhTZRDVkQwYBy+4kvJg35IvghKHoZmByVYrOQNMrL2ZIncI2ICdU821L+N27aiqqeN364+jtmrksJWFnr6slzxI2/wiU366T2eTmwWcdxwWSSjGd0iXmwWWTozI/lV8KeAuYMdtNmT3amaRqX9IXlGx8zIWKeX+A1CLYj6eL3LZC1MebFabfFqVQyUY4SUwFjs77B0WCeP0xqUg9CPSJYOVUcPUsTob0I9OnM5F79u6G61q0zwEYJZEkXqg6Lq15oh5JcgRHAeh5Bfgv/o8kvh4+53jDr1UjT23I402/cRV+nyS+k9ckbdTuoTmHVk6fynWVM7ku3kYdQiyzPRvxghz8RmaTuoHkCYEWmt/po/N26o7x02O/PQ8YfOe8NMsRb/u2HArh+gXReiUp4ZYAg9b2aRwpN2sL5jPy14h8S4fIeR/zvmaoZ7+0aORKhEsdmqin/+aAMJkS5Zg05cLzg+71QvtFforHVdzjx9Vrk+p8nKSPBPQmgdEw3FYbQHnEa7Zl6jkS7YJlSCO1R4yyj9uMdsQ45RtmSvnpQofa1M1Co0GOsOfAXFYaKPPHtFO3ttLBmye0bJPJcl4xvRbVUmLFknH6DSC1gIaJtd8Fu9meHKu1CtryKGKy6jnuM06i/NGFpfnAUUiM6uwPVZ0ARxmkwKZ0e3gZ6OWaYDu8o7o9ST8EtHxIhK9yIvrIsTId2bLaR3efQgoozqQsCSvYdKjtrlMp7KlY2KV8bqhLCuLDWsw3jFVtPaKSI2Fk5F5CoVUX5VCQvnQfFuTyTA9IKDbI+AyJcMpduDnnELlpjt6ocqhucuE+w1uTy9PVZ9F4xNLXxg5It2319/w5ojC8L3zqnQf+yy5Up6gRfkKxaaEtKLrptKvAdY3YBYZYlR3A8wwf+VWZSakzWGW1CN9QokLlPHTfxyPOcH2fZhPj4bPFxKM5aUYw0DxtTxBN78GOebg15iBcvJWA80Yo/NDuoMcUlPBXm+e3nwbrXg/avu32nx/sJEar+Ed5sL/s2c8K+0DPwMhpiphbrxEQHZzuBN0FIdtIq7RfQUpq7mexCu4IgIEWD6e2ADgggwzdgCjNF6Pq566xW/ns9tYbXdq7U20oNtn9iUan8ppICez4en5cIOZw8MXbirVxkH2X51AT2fcF34rZCwZSGr/xQlBwRnrCmg59O9anTeYNdzfjOjptyxOVsnrICez/322R/tOw+QHWr1ya6S12JFAT0fROVfUtsQUfmXLNSLqPxrSzQ1amnXrI9DTtCiH17nqLbH/AWayhJNz0vmNjixPUk258fo6x2P1vUDTeWIpsa1Xq2NapkasSQzZE6bwN9agiY7ounOxrXxtz0GinPkNy8NvXynJmgqTzTNKqs9Mf/xLvG2xGsO8XtXJ4Ame6Jp6pgOT7Pb3wqd5t8/+1/tvO6gqQLRdH2gS3RgLV3wgpTaTic0VW6BpookUHbj6vzxKsRvu9PeWntthN1AUyWiyfeO7eWqdknBa/yPSkbatDgEmioTTRW6+uR2dUj22zVmaP+Xw6f3Bk1ViKYWEen/vtg6RjJpb4vcK30a2IOmqkTTyWsXIvf98Nxv41ZR/W+tfzwNmqoRTT3KfXjv9DkoYNUgjxLDQ0Nbg6bqAlYZKAeiKeDQ8ZvtwsaFZe64mjku68Ye0FSDaEp4/6NTztrb0g1dfJycfce6gyZHokm5e1ngvKslxOM3uPY87zjjDWiqSTQN9VB1+SpzCdr+e7PaQ67YLwZNtYimYZNPXh0gl/jNEt38uOji4QGgyYlo2vssr2X2sn8Cp0+Ovjr47oDnoKk20dTMJn7rmi03xBkfHJ412Tb9PWiqQzSN/XHN9J/t2oUuUVVt2qxkX2ivukRT7OEz1d2PnBCN3n6yW4r7hDzQ5Ewif+JGeMZkUcCkL/fO7pMOnw+ahORdczteWra4hXh9qFvlaXV2VWAIVbkIWISq5uwRLuvtODF07d7aHVMlTod4EKpqzuaiqsfu3Zx94oxs4Ya8Yedqj1hKnbrKhiap1DGI0xdsCXAj4g4heV4WK1OnTQAJMXBCRAVAA49b0B0U8tGYs2qiwVDd8MYyga/vKehfETuHnUF63MDXuAKa+adR8QdBvtvINhN8c91WB02tMCzr0NJeZXk8jMrzBiFc2WsDAYpBzTtPu8kEnr5G5cQ+kQrQNTDeU4wCljhSa5XY8RPwfEoVNnUi+4lQroEnrtUJymi0hG3utjXXS22TjM1c8mZV7ME1VPq4/nuY9PH8Jt5L07hiPYYDrlq+VpHJMY86GpnJeRADLSbfXLp4uU6YIB+kEIIERF/Cmp1nHtm+fv2w7h8l03o8Gu8ZKv2HxjQkPhbBNCRb+LZeJQ+is0tR1svyxDo7g21uJHAu5KEokvCnoAOJBGtn16UOJ8d2lU67MrNL5pW/B5p+BIsHsBpwggW6OhF/WrDFn/8pNxRJuYGeoZtNuSHDl0u5IcG4WGmgcoPt+GvyMatcApaO3uOo2brZk8dgSfdAPCg3TPHlOug+2rhgWVTlht1/DL546c6l0NV9L94LnJxLKxNqAeWGFE5UEiwTEw1gmRa2wMSfcsMToSQ5bnht6cyWg8vfXfqCeurIksoN0Zym62mt6QzPyg25Le9P9/SJDp79T+9DD2v2sbGwcgPmZViP3o9GZCnFpdww8XXjbzunb5Ks93z6KuRzqUFWoNyQwglOgq8ZlRsm/lz6wHpHkXTi1jiPk3dfPbcS5YZoToR66vO2lmx525kF8tCvbWsEjFlVt8yL+sOpaxS2oSBHE0ZJQw1fOPDTF8OF1QTITBjMEGPBryDvShUCbDU6XKMAOFuiv8Lci0jdRhqUONHXL9HPzcyiyRYjyuKOFhNlcRmpkghYQC42blkBe4ACGKCPvi+OnRfxVCnaNy/57ABVqTzabhK8G3FAAbtcWKZE93881LwdJSbYV4xOKGwqEySLjeIdO2IAkf3CNUapAd0XtKOD7bgFVTUCzfnwFTeaZ7/0mPaAOiyl5M3MYZnfVBhgV/uWDZ+SZxuyynvZuPvO95vzANggTsBAj7JIEoXHDPg3LQRsP0w5LFsOW9phtuTwqi1LHn83YtW1wKnZwYcWzL7UvAomZAKMIRuapFHoac9YUiv2i3L90c20BJhm2nN9d9RNWj9PlO7y923l0+rteDBtD07ThlnItKj8eEYno1Kt8qEF/DnSmBtXDAxsFP6DeMGc2BOu8Vvq0jf8EIeq8Ku8r915Ej5pC4pUssUTG2JEYPRhC4x+V2vcG9J6u2hj776OU7ofpJZVqgbJrzq49AlPMisgt15hRMV4L4k6AUCOU3Cxj4nJ/xhscphfKB6SSg2KiPRtu8IfmGEO5F8Zmo2Azv+4HQD9dz9EAfn+oPNfb2cqP0UcWgAUuNwAyyDBbEOdKHQli58D9HABJPg/3Kdp4Wq0OkXBol5y13n49s0LSwfv/ePNnib+a6jqVaW7Y6QDpo8hrhfmY/aVzK0XcVMmmaB173TptmuOiT5mBoA5D8Js44comZ7lhsFs6pJwwwLm169uRasTtYroZKx7YJwotBOo+2n5siHbwsZ8mbnmt7c/X6CeyMj/XOb0l9LIO5XSnYCtDwq2mx4YbIRLaMXmEs5VqP+hWSt12Pg/3oZ4Xhklo7ybfaQC4zAKw5NVKoQvYEuYPcj7IBEW67PKxCFylTIG7+QpSl28UA2mKRrDPQF9l57jORlWoDYbemwPHj+G6NqhNt+WAnTnmjz2HYIwHh5cdVVoMSI2hhgSAO0X3ZYN96eEr7y79P3OkBFXqekz9kHM9Bm/XNhwprMSTD2KBpBbB5FbhkoZYOXXpe1Y02cDkXPSI6ehdDXYtZDw9f5rz+i4dvaSeXev5bwZadebesyd6CDoLR1qK9+jGKI1lxOtqe0swmK37ZqapCiIQ/0CnB3PEJDSKlSe8G+0ngGB/WCSG6fQ0Chx8MdUx+2ABUhoWPARYFKdipsaaWV6YDJlkJho1/6exCh4h6LNdfbCRoFRC2GO4Ri2MFfA+btE149BQlEx3nfNs9QfxHNKrClzcJrzeNrGBHwrxMYEdrk4oJjLCcVUfaBqzRaorKbmH91b8lP+uBhK/iW04yr5p9BD3sbqIadz4/iB/E3UhzF9Ss7y29vL5diWjzvdeID8VnsuyC+1JyFvyxsrsyIJuRlYmQgSJcnKRJAoSVYmgkRJsjIRJEqSlYkgUZKsTASJkmRlIkiUJCszYWRZ8YGICwEz+lbo371/3jUG5Q12XmTvo9MveaC8+bLZv17IcY97W8v5r7aJGXD9eSWq/avii/0SlVoL00VsA4eZlJdmGW31/JWw3HE8rA+MfwA2pYTzTIKGYNj2Pp1yWugjMsBB/ZGhWTmYKj6B+wM3kSdGwIz8hHHb/E74bhumpKHGisGrISuQnRc0+FhFhax/hGRT6zkxy/bVWGfKXlvxLmNfBFg98iXC7juGOCGYVl9lbvhzYVVdT4koiBUSpT0H7+6ct8gnKHNipevzPWTLeKRFjO4W/vH0qqH+a9WTAif6pR7lAaUTnCjt8mUuPnDlae6dyXGFDTYMM3LIwakeyT1j3yrpdOXCzpPb9wcu3vqh5bqYL98suJ/r7U50IuSGHDw8fcvI/dwm+t1DCFF0Ab1PGIEovgkJzquVP0xMdH4QsSftdNqP+79vsoJdSwjSb5wgnTByX7ehVIm/uX6pKr/LYBuL7A4q5cGAIwt9qoTPePR3ZHKpqz2ou4jk5zJ3EfUtxYHOfk50tur3dNuxBcaX3cNDbbw+SzKXn/fPiQjqxVyIZ0ZCGxZwXaj7uXqqW4raKMl9+gELQ/cGDGV/A8fUEqbw5/0QC1ACAFtd5gKU6du0bn2ck75vmy9ZmfJB1XrF1tXUxU5sP5YlrFMaC/PidBdnKhMc+OnmEKzOqD62FKTmrug1JzawKmBgKcBIY4cqdlXt9JtPS4Xvcj07b3bOjH+pnkgG7kUDVaDJzCkBhKkuJ0zVECvtpm2h0feaLbaFBj0N1kfgFpqQkTt6YtAQfqg9mx+SND7v1Tb9QehS/5z3urY169DXoRPkSUJ8nQaxXs6WmjfG7yN3e7BzKXJhoiIFXlJolNFEgDTILdEPd3E8IWqlvECzgbiKGssEUaJTUHEakZOnAdRbiIxyVBWwbSh8cRc8DvItXXeNPnur+yjR8hulMjZ0vkiVLf0B+wBmioRfLmzM0c+5mTjmIDO5C4RnA2rMQTXMAJFRbBJ7/Hm4RNIX7F/WIGy1U+iGL9ofvR+GlqHu/uH3M3f/iOuF4ZPyaMm/LWrODtn9cpR75vB5a3nApwMnPqD7WIJhYIsRN4bgQLQX0H+Mq6Jm31WuiVPouIy2Ym2nWWs3/RIweeaF9ie3xt2lGg2/n2k04jrva7bAKm6cVnG2Kqu8O0xaxajwVRFzeEmKGML5Ig0zKfrfmPZ1ukr39u59aM7acw5Uw4Rh9zMNQ1zn2zAiT8KdwGVGxnw1zUsm8BMZNyFz0mOATSxUysLwKOU/OnbsgfcRB/5sNttp5qiSNEkh/AMQkkJEQ3Eg0oITkQYiMq53YIvrW2aF/Nm7nW/Q+D+/6myP3f5AtTH+jYaTYdrrZxjUAC5MiVdGx4O0Ep4tlGu1UA1Sz4ohwr9hkw/6OW3U8zL7JH7dCJ5oCRHBE2WwX0RgVvehk6k74LWJVAMXT8IEfuERJvxJkC8ecvV9Wt3VTwIO9J177e+tgzpQOx9bYqNvMHPwh/S5751OwQkcgqMhbIJhaJTHah9O9Ci8pAnloBbkA2nx9QFYRgH+Pz+nFA4PH4leMKDFc4tWVIHzWgwwRxRgUMcaAEYM5o5Wv3FF7008qU3Stzl42Lm63Ilr5+qsHvNObJiH7/a/cEZwXJLWq2Y75YvgylTF7TCKECrTkbIh7RQG8gEQnnTgThVNTtUgP0lXpuB6LKYQOLXd0IUbeJAaUjWnohZu4B6FjRihN0nGE4TeJPwmut4kXS+SrjdZZD1J+o0IPUk231THX6kBPscY+dtNI/6sF3BoZ/CEB20q+fSeXYkqfytmjg5xoeJ2GyY/S2lbMVW8aWq/8/3OXDB5aQmMDkdoTm8UewESdCqITyGEHNlAKopI8JNS284lhPQLnzQyTOs58cWkIogE01E6OfYviVBZO3D0hcnecxtl1OcBJRtOlL6IGBKAnGwXvNYCTIwMAIjOeqfGMPyjmDGMuF4cC95Yj/mEWmhy9cCQIvyp6D/mT+lyPmbyp5tFXP50vuh//pSwz2WF4EjG4HaBC+WTFq+7HDiIB39Kl2niwVNsFHF5iuWi4vanHe02t8qbcSwi66fJnZ6NPt2eB39KXyTgAaX5nChNL05/So+hFvenWI9h9afz9RN8sdXPCejDiR8ym0+Jmu8zJEnSXR9F8VuuZkTyMCVIFHFNCWL1kPvxRmarQEJuBjIbQgOPdPUIDTySzIbQwCPJbAgNPJLMhtDAI8lsCA08ksxGz9AYjDXoFZFdjK6exwNjTcKbke3MaOSi6UgiRBVJI9P3/Bk2sWGzCV22kAebSNlskr3nYc8Jjz8F7duzc9/WQbnUc34/dJYnKlTM2ihsjs1VLEyCdxSo0CVMVOsUuLgQlOfm0rCl6y4iHsUQb2cXFa1Rq1SRMGLBi/lHPt91onnChS3zLsjXRMnGduxZen37S2fYPKFtN61CAwXAya9tKFUnD1BBrhasogOFf2KUOuLdQYYBdzny0lbRTEKWOWIUsm0kE1zuCBxoW4kgbYKkXJhcE6dMDFXEUgKgHX45EtY7LXi9LH69qzqp4FWqF87q2kg27lLHUxUxEDtr4LlBnRJ/qjLkU6EGlEaeEpQYA2W3SHhLlIUX4dZLgUtYrq4iSjLhEwJYRVUpV0mgFlSBQKTTKOQJ+t8xYWL9PURXlVl9WKargPK0VEfv/zzE5R84l+q+diTjsr/VY06XV7Xe5dF/OIn9H/TE/gDewqS9wHxhEqGbS4ZJhG4uGSYRurlkmETo5pK50OxxTdY5fvCX7bulOzVvcrXNBXIhz54pswc+/xC2enApr1LSH4MYwRV6fWRHoovx8hBcA9ksaaXl2umiw2Yr1/5dzFWu/RxTSobncu1dbFxqdtl0UbrsVeVVbcZ5UnfnLVOu/auYq/jtB8sIZlBrTo8cOdIM5drPjqgvaXlssGxChY6j/2xQhXq63FLl2p9zWueBNVjHLOXa/3z761ufMz9K56y51GDf+r7HraJc+zVO45yzBuMILFmuvW1d/7+bl4wLmT4981TC2ZhZVlWu/RdO4+22IqEgi5drvzPgfckbITVCVix6dvbgRVk5C5dr38hpueUWtxy8qdjKtb8tu61O+VPvArY6T3j4MO/5K6so147lEKzl2s/pNxCD2PLU/1K5dnpZDAuXa/f34yrX7u1nnnLtPUbffTjt2eLgLS9q+OXV3SDivVw7XdyMhxLkUj+uEuS+fsVVrn3k7ZT5WcMy/Xfkqm0bHNz5lfdy7XQfwQNW3pxYNfL7/6pcezCbG/ufCH+RRPjp1YTMJsK/2I9LhP9npu/kQYQ/+kevj8eUnuFpDTSJx8r1mMLjaXOefSTULF/ox6VZPovpI4tDhP9K+YuDBTuayPaMejrv8kSJ2OIi/BM5UfnZvN6Qc+5g3MEf/kT4T2h3Ju14vz1spc2z3ya0e7zRakT4dZymG2gZ05ldhD+kljjy59SKwSucnv7TySfPkqINcOEV8zKsKurAy5hNhH+C+PPNF00qBm/8e9uONppj1H5rGRH+iZzg/OxnRhH+P/ptrxBUabtkVrt3PoNqVbxmBXIWECEdJ0JgTBN5Wwhb3iYTN2n6vcNV8Zr7dddeXvyWKkBrhx3iS1KrQERn5my2LDj75G+RKPPvJ7QwAOIadXJcPMjhYJVrdaxRWg70CousT8tUPSjQaCi3r6FMUEYC8JVL4KILDd+LAN977FNMAw9WVct/LHCVwAKdPPX9+KXf0BMBS6KubfH/XULTCylK7S56sXmaYzS12DxA7weInrMEVY8YbtYal0KVx4dvjCJOo0Dnl9cdf8qeWn9+YPblb/MDX7tSy/6WlmI3Ik5I4dd5l/0F7//ej+v9n1k8WdL3TCMSJfjISnWMMppD26a2+LRM5zdRmrWyQbelMyedovZV8gOYfVXfUhzGuMdpjCvWkf4IjNmx8AxJVOtA+JJHw7VTV+8OYMoKZhYJ7sJmHaLj1ZoYd2HzDtrBGh32Czpb/dXl3IApa8ODx03adfTHyl4LqHENfkGULlWFqH+Z31QcxjrDaazDVjFy4EcZla1Wz1/oTkzWDNByjKDwzjZB0oYvZDOkC5tO8Wnax5SpsonmmOFNOHJ41PMiQxeqmWz930ZmqYQn58i2fhyf2W3c/fCIhe9n57rNbORs0WkvBOClHwHATQQA0LUYlYmSoYxdZML3X3cv54VTg3akyqY8rB1w1KKHfSEAF7kA6H5Un2iG/sf4OPTC3Gbj44yXcPFxIiXFzcepeLv5897VkoLnHu6cbvtmyQsr4OOMlXDtbg6TWAGpIDo62gx8nEkVzo96fD8teMf9T9N/H/oh2Sr4OEmc1om1BuuYhY9zLGnLaceJy6TL67y6FNlpl6NV8HH6cBon0hqMI7AkH6du2p+fjz/rHTinZrVfXv4dNt2q+DiBnMbraBnjWScf5+7u2U9/+7Oi6OD8JgdP1Pn2wsJ8nJaclmticcsVKx9n7tWT3x33xgStabhzeblK/VOtgo+D5RCsfBzgCIk8Nez/Ah+nwokb4RmTRQGTvtw7u086fL6F+TinJVx8nG3MlLZY+DiSfj1LRk59K5o56e3Q1lsTVvLOx6HPzXngmJyUcHFMDkiKi48TV7Hfz6X7h4QvuL3p3cUWgY145+PQfQQPWG3jxGqNeX2upfk44WxubPBhZVNl+DrJ7kMRqmePe7+l7pR0SYZnJwM08qR45glTI7YvGkiV2iR4eky/m5PqgZ8yFcqhZl4c/Ab0vHtux0vLFrcQrw91qzytzq4KrM/H3Mkp2Mjof2WjgAuLKHgUC9Er6eeeDOyV+k9D8GnGwtN+DhL4j3b+M6axLDC90yn7KIUKGEwREwT8+lDy4zCz4qaMYDOlQ16GtIrvb5Icn0eHN59OkdJUMNAGrIx7d4TNBOXwJsohKyIYMA5f8aXkQT8kXwQlD0OzgxIsVvIGGdlNEVEi94iYQL0zG+rfxm1bUdXTxm9XH8fsVUlh1DCCOn1ZrviRN/jEJv30Hk8nNos4brgs4taBbpEubBZZOjMj+VXwp4C5gx202ZPdf6KuifpD8oyOmZGxTi/xG4RaEPXxepfJWpjyYrXa4tWqGCjHCCmBsdjfYemwTh6nNSgHoR+RLB2qjh6kiNHfhHp05nIuft3Q3WpXmWAmBLMkitQHRdUHd0DIL0GI4DwOIb8E/9Hll8LH3e8YdeqlaOy5HWm27yOu0uWX0nvkjLqd1Ccw68jS+U+zpnYk28nDqEWWZ6J/MUKeic3SdlA9gDAj0lq3z3z6mvzj1vDVY9stFHeVdzDFWvzvhgG7Tod2XYhKeWaAITSug0UKT9rB+o79tOAdEuPyHUb+75irGe7tGzkSoRLFZqsq/vmjDSREumQNOnFdVGNPztGED/57b21/8eanzy04TVZGgn8SQuuYaCgOow3nNNpg8xqNdME2oRLcocJbRunHPWYbcoyyJXv1pETpa2WiVqHBWHfgKygOE2mrM3O/RUYuGCnZXC3NP+hWO8bwKhOWrJMPUOkFLAS0zS74rd7McOVdqNZXEcMVl1HjOI36UweG1hdnAQWisytwfRYkeHSZFM6ObgM9HbNMB3aVd0apJ+GXjogRle5FXlgXJ0J6JFtI7/LoQUQZ1YWAJXsPlRy1y4Va/bRcVLwyVieEdWWpYR3GK7aa1k4RsbFwKiJXqYjyq0pYOA+Kd3uiBUVoBQfZHgGRLxlKtwc9IxkKU3T1QxXDc5cJurU3lUdmj1XfBWNTCx8Y+aK9OmQIfk4WSqZsr+ffTXvrIL3AC/IVCyfe04qum0q8B1hpIVZZYhT3A0zwle2NY43hFlRjvQKJS0yViRGbt98UZWo9f1L2y53HWFKONQwYU8cTePN+nG8OeokVLCdjPdCIPTY7qDPEJT2lqRFd88qMxv5bzh55/e10eRdqv4R3mwv+EE74xZaBn8EQM7VQNz4iINsZvAnSIvSKu0X0FKau5nsQruCICBFg+ntgA4IIMFFsAebMAnno17Y1AsasqlvmRf3hVF1xW6woVpQ0lEk3YQsvftSadERBLWGMIhb8GiMckFqwcJs7mDDidHw4jyROpo00aAK50DfpYavbqf47VLa7pz/d5oV+bubCLNliIMbvQEojmnVCIPgdFZreAYxFM0/wX7zOadriW58W1AnY2GPq9XLdP02iuVx4N2IXD7tcWDxadFdees2N++JlLX54IosJPmRiPKoED4BCgMaicj4hcAsPqQAVNsFxxAAi+4VrjFIDui9oR7MzxRW/dx/pnCs5VOF6n49DP1JrGpeVkjcz2Zn5TYUBtrO2Ys3ikCni9LAbEzP3BefyANiMmVyAgR5lkTCGH4mBf9NCwPZj3JkxO8yWHDTGY98yR8lPlgzJ/Jry6cW1kSctSmOElnk3g8syS2dYxjLI03uHea5v2GfrsAOH/DqKsgIbdvt7yf5wi9U33OJJuJQtqIlTfy9shBBxrStbXBPuu7FL99tM8eru9RyWJ3pTy3+WjlTrGCd2uCZNzvgNIKqR58Y08JkhqVI+VKlFT5y6Xm1Ur++xPgHTKm87F/LXLH/UIyC0p7Hrhs64oTOZewIvbcQIT5VAeJqRaVx46o6/H6xZiD0I8s2e7hn3pY78n6DRfaMej3+d24X6ZvhHMN+MuF6Yv43Jsy0dKpkSmhPUsc2K9xdfmuhvRQCiNAiRFDWqA8Go9p6LDFCsM0nMQvAwEjQ9Ep8d/Tquqb54nHT00ScbfvPPopYttBGD25hDCbtaGDb0McoDNg8zubChdR/4QbYCjrIM+dgkwoP/rspE4jySFh2//9lQt9P7LyND9r1vPHqO8+x+1ERHDD+EmejglwvDSlsyuUZ4nUrBs7b+uXXgh93tWbHqplXgR5zyRWONwE/Eid+7OdYTMYxkOVXAPVEM4fKQ5ut/+OAHp/19/MfmrelZ4V3rVaY5AhPjxkUPYqTb+CHixk1PrDcTcaNbkfaS8Z5n9v1ko0cVveubMqpM3FSGhJQ9s0+QW5j/Dw==
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvgAADr4B6kKxwAAAAtpJREFUSEu1lF9ojXEYx59OS5IrF5IkiTVriWgXS5HWlFwQbpRYyr+xkgvFLpQMpRU3SEmjmLWEuZLcKGlpaRe7WNKulnQu1trFWms+39/ved9zzvu+59z5dr6d3/d5n3+/v1aNy2Y7fdgI6/w/xQWzbT6sj4tmW3rNlnvMmqUpdvOS2cfwsYJVcBF2BwXOmK0hZgn/O24qBskOq8DZmES6U5rutgeHCu7BBbgjKIBft4oQc85NeeBwSAlPma10kwIn4bDLBCX4FU74OIAZ3CLHQkFDEfqQ7ZigY95Zi5sStMFl2BVURAm/cWJGXedQIlkZp+uuhZLPYsh1NX7CB3EYQfKT5FhkP1e7qRYkeoqDpp6CgqcVdN5srZsSvICf4zCC+Datgv7dVAsq75EDnbS6ybTp2GYpdMVNCZ7AmgI0sk/x7PQmN+WgJZnRhrkOwDaE7ZPLBCPwQxxG4DNAkd8ui4HTY/jDZQD6RkHgOHwYh/E+0MgcM+1zUzG05jjOuwzA1kuRPy4FHWXdhRNBAXyew791NzgBiXoyybRE/XDSpdAJdUw3SDC7cIfgEemGIPkI/OIygMBvcNClcB9OxWE43tN8f+m6PvaaNeFYc2IIboZL6tJNwhh8pgG+LcToDdst3RB03iVnbvNmN4VNJ8kvhsmz0AT14IX1J3E4mgX3JA+SvYbqLsBPxjw2fik2Qq1/hwQfWlWAzU0fv0L4hVIymoqg8z5ss5mT0Q5VIFym42YrPI6JNwBOB9VJ9VSpNE3ggMsE+6EKpH74vIHpzAtBt3cpkB5FdLsKFjy/2kwVSPcpeWJo6ICb8iDhK7p461L6KkEzLquhzlVAM0lB7CicqnvRvIDelwAVg+9cZqHC1+Iwgu7XwzJNvde+uLkCkt1WBy6lx+Ajl1noUn2Pwwrw76DAHIUm+N/l5ghmoAvT71KbPozjUZdZaHnKcVgL4rbCQWLTd+o/wuwf9N7EUShQvi8AAAAASUVORK5CYII=
- 314fd0aa-b899-4f85-bf12-5b9e9659f93e
- DIFERENCE CURWATURE SHAPED GRAPH
- DIFERENCE CURWATURE SHAPED GRAPH
- true
- 37
- 098e7b9e-7b4d-4cef-bda0-50875a59b926
- 0fb027f2-bb77-4eca-a35d-796b227556fc
- 19507874-964b-46ac-a895-60e53f632f29
- 2adb01ba-7cd9-4c5f-a316-08243357a8cd
- 2d53c230-0155-47b8-be10-65af0a7e136e
- 3b356cfc-faae-4b8a-ad5f-521a9c4cc56e
- 3c447cd3-e651-430e-8806-4c598ead2225
- 4f8d7f4e-f77a-484d-900b-333bfe51ba19
- 5511ee1e-138a-45cb-b69e-9ea295492e11
- 5927aad1-90d6-4006-b966-f46d1465952b
- 5b40150d-e9eb-4ea3-8661-fb71b0a913f2
- 5f22b34f-4cbc-4347-a5be-30f64bdd9352
- 61dadb66-9f1f-481f-9353-6dd2584b5b6d
- 648205e6-512f-460d-8649-72b4e8c4d978
- 6484f3aa-0d26-42dd-912c-1d535fe27c98
- 66b0ed95-d3a5-4c74-8fa1-0b63e7386b14
- 76cd154e-bedf-48ef-8855-4e6107eba638
- 7b38907c-c7dc-4ebe-ae16-a3819d667992
- 7bdc141e-6a35-40d3-9584-5154c4315eda
- 87290722-834a-4c57-9a9b-e0dd5cb9b39e
- 9fa27823-77a0-4b75-bcd8-4f611d88e4dd
- a2801291-d228-47b3-8ae5-5c784851fd5f
- a2f18f21-fc41-4d19-b1aa-1d9a7c2c8690
- a6d64955-5e50-41a2-bee1-f25dc8986948
- b557f7b9-32f7-4d1b-b816-f247b02e448c
- b7326999-e8c5-453d-a50e-5d60958d0c4f
- c169fe0a-a0dc-4e54-808f-9ac11fd63248
- d1929846-c2c8-4d52-92c3-08ed69f640cb
- d5cad9cd-1030-4389-a33e-5a68c398ba17
- d774309a-3843-42ba-bb8d-21ce60b8e8ec
- dbde79e0-7764-4ce9-a54c-7dfbac0cbc8a
- dde5657d-1af7-439f-8363-65e4a0c6e86f
- df5def10-369b-46f8-ad3c-a280d4592df7
- e457f7af-00ba-475e-92b7-cd11adf29380
- e5295388-f02c-4451-a296-4ed151ef7c46
- e9642a8c-122c-4b43-8755-8dcef8132cac
- fda35d21-9073-4d87-928a-96c2feb7e0f8
- 81fd98cd-c9a3-405d-866d-edf2fca2467f
- 4a525765-a9df-4f3b-8fae-c2be3081d0b4
- 16c32cca-03cb-4d8e-bf89-f521eb08129b
- 7e2338e0-fce5-4964-bac7-ea6c242afeb1
- e860b9e2-e037-4c18-988a-393d0094d8e4
- daca2ebb-26cb-48f4-8885-277e43200f92
- a43519fb-325e-4058-bda1-f7e34cc92c6f
- a7e4f8f7-1ccd-48f0-863e-6ed19022d27b
- 937bac2b-aa3f-4485-8435-a74b05842dda
- 17750273-1d4e-4a10-92b1-f4b16af3b73c
- 326b8016-5135-4828-b69a-a21c171e1a06
- bbece122-0a0d-43f9-bd1e-b6e66ae744df
- 735da924-e3a7-45ca-9564-36c125627c0a
- a67255eb-66a4-422d-aed0-4b64cd94d270
- 130433e2-dd09-4dbb-8e9f-946a284f4836
- ddb00df8-65f0-4650-a3c7-89c56da7f06b
- 2927bcb1-a8c7-4996-b4cf-1e0b73fe722c
- 36be5f7d-3d93-4e60-9b58-2ea01268c3ff
- 59e3ea83-51fb-46fa-8bda-938de18b7cf2
- 1af94696-7c3b-4341-b4bb-415b935cb441
- df2cb580-23c8-45cb-aac6-97ce3b2e2214
- 88db9398-ca86-4220-85b3-d1387046010f
- eabf9208-959a-42b3-8af1-f5ce33e4d91a
- 53133e66-86e1-4322-bb85-7afca5c21f4f
- 3d99a0d8-87f4-42b3-ae8c-13046d610738
- 9a110ceb-3e62-489e-8e19-61581f5671d4
- 8de15979-110c-49a4-bf71-f92c5c15659e
- bae8f0e9-2af4-409d-945a-a91a08fdc45a
- f12cf189-9dd5-4b8b-822d-2da85bac7a45
- 233b0ef6-f843-44d6-99fc-9ecf077d1b78
- a317f3b7-85e8-46ea-bfa9-b8f70ca5c382
- cb30ccba-a894-45cb-b1d5-847ad7005125
- 43f684c6-6920-481c-81ce-8a3096268d23
- aa2a8593-f318-4546-bad9-74c7978a14af
- 9c973484-e313-4490-a780-3cac6484f2c3
- b2a58353-e9c9-4e65-a900-6efa66489724
- 20d03587-b988-43e2-924d-d6655441a5e8
-
1631
5036
103
404
-
1692
5238
- 20
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 17
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Second item for multiplication
- df5def10-369b-46f8-ad3c-a280d4592df7
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
-
1633
5038
47
20
-
1656.5
5048
- Second item for multiplication
- 0fb027f2-bb77-4eca-a35d-796b227556fc
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
-
1633
5058
47
20
-
1656.5
5068
- Second item for multiplication
- dbde79e0-7764-4ce9-a54c-7dfbac0cbc8a
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
-
1633
5078
47
20
-
1656.5
5088
- Second item for multiplication
- e9642a8c-122c-4b43-8755-8dcef8132cac
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
-
1633
5098
47
20
-
1656.5
5108
- Second item for multiplication
- 61dadb66-9f1f-481f-9353-6dd2584b5b6d
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
-
1633
5118
47
20
-
1656.5
5128
- Second item for multiplication
- c169fe0a-a0dc-4e54-808f-9ac11fd63248
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
-
1633
5138
47
20
-
1656.5
5148
- Second item for multiplication
- 2adb01ba-7cd9-4c5f-a316-08243357a8cd
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
-
1633
5158
47
20
-
1656.5
5168
- Second item for multiplication
- 7bdc141e-6a35-40d3-9584-5154c4315eda
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
-
1633
5178
47
20
-
1656.5
5188
- Second item for multiplication
- 7b38907c-c7dc-4ebe-ae16-a3819d667992
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
-
1633
5198
47
20
-
1656.5
5208
- Second item for multiplication
- 5f22b34f-4cbc-4347-a5be-30f64bdd9352
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
-
1633
5218
47
20
-
1656.5
5228
- Second item for multiplication
- d5cad9cd-1030-4389-a33e-5a68c398ba17
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
-
1633
5238
47
20
-
1656.5
5248
- Second item for multiplication
- 66b0ed95-d3a5-4c74-8fa1-0b63e7386b14
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
-
1633
5258
47
20
-
1656.5
5268
- Second item for multiplication
- d774309a-3843-42ba-bb8d-21ce60b8e8ec
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
-
1633
5278
47
20
-
1656.5
5288
- Second item for multiplication
- 648205e6-512f-460d-8649-72b4e8c4d978
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
-
1633
5298
47
20
-
1656.5
5308
- Second item for multiplication
- d1929846-c2c8-4d52-92c3-08ed69f640cb
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
-
1633
5318
47
20
-
1656.5
5328
- Second item for multiplication
- fda35d21-9073-4d87-928a-96c2feb7e0f8
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
-
1633
5338
47
20
-
1656.5
5348
- Second item for multiplication
- 19507874-964b-46ac-a895-60e53f632f29
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
-
1633
5358
47
20
-
1656.5
5368
- Rotation angle (in degrees)
- 5927aad1-90d6-4006-b966-f46d1465952b
- Angle
- Angle
- true
- 0
-
1633
5378
47
20
-
1656.5
5388
- 1
- 1
- {0}
- 0
- Contains a collection of generic curves
- 3c447cd3-e651-430e-8806-4c598ead2225
- Curve
- Curve
- true
- 1e4870d3-d88b-4e3b-a627-be71345d40a9
- 1
-
1633
5398
47
20
-
1656.5
5408
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 256
- Contains a collection of generic curves
- true
- 6484f3aa-0d26-42dd-912c-1d535fe27c98
- Curve
- Curve
- true
- 0e0d5017-4f0f-4bab-986c-96ea91bffc65
- 1
-
1633
5418
47
20
-
1656.5
5428
- 2
- A wire relay object
- e457f7af-00ba-475e-92b7-cd11adf29380
- Relay
- Relay
- false
- 0
-
1704
5038
28
23
-
1718
5049.765
- 2
- A wire relay object
- 5511ee1e-138a-45cb-b69e-9ea295492e11
- Relay
- Relay
- false
- 0
-
1704
5061
28
24
-
1718
5073.294
- 2
- A wire relay object
- e5295388-f02c-4451-a296-4ed151ef7c46
- Relay
- Relay
- false
- 0
-
1704
5085
28
23
-
1718
5096.823
- 2
- A wire relay object
- 098e7b9e-7b4d-4cef-bda0-50875a59b926
- Relay
- Relay
- false
- 0
-
1704
5108
28
24
-
1718
5120.353
- 2
- A wire relay object
- 76cd154e-bedf-48ef-8855-4e6107eba638
- Relay
- Relay
- false
- 0
-
1704
5132
28
23
-
1718
5143.882
- 2
- A wire relay object
- dde5657d-1af7-439f-8363-65e4a0c6e86f
- Relay
- Relay
- false
- 0
-
1704
5155
28
24
-
1718
5167.412
- 2
- A wire relay object
- a6d64955-5e50-41a2-bee1-f25dc8986948
- Relay
- Relay
- false
- 0
-
1704
5179
28
23
-
1718
5190.941
- 2
- A wire relay object
- 2d53c230-0155-47b8-be10-65af0a7e136e
- Relay
- Relay
- false
- 0
-
1704
5202
28
24
-
1718
5214.471
- 2
- A wire relay object
- a2801291-d228-47b3-8ae5-5c784851fd5f
- Relay
- Relay
- false
- 0
-
1704
5226
28
23
-
1718
5238
- 2
- A wire relay object
- 3b356cfc-faae-4b8a-ad5f-521a9c4cc56e
- Relay
- Relay
- false
- 0
-
1704
5249
28
24
-
1718
5261.529
- 2
- A wire relay object
- 87290722-834a-4c57-9a9b-e0dd5cb9b39e
- Relay
- Relay
- false
- 0
-
1704
5273
28
23
-
1718
5285.059
- 2
- A wire relay object
- 5b40150d-e9eb-4ea3-8661-fb71b0a913f2
- Relay
- Relay
- false
- 0
-
1704
5296
28
24
-
1718
5308.588
- 2
- A wire relay object
- a2f18f21-fc41-4d19-b1aa-1d9a7c2c8690
- Relay
- Relay
- false
- 0
-
1704
5320
28
23
-
1718
5332.118
- 2
- A wire relay object
- b557f7b9-32f7-4d1b-b816-f247b02e448c
- Relay
- Relay
- false
- 0
-
1704
5343
28
24
-
1718
5355.647
- 2
- A wire relay object
- b7326999-e8c5-453d-a50e-5d60958d0c4f
- Relay
- Relay
- false
- 0
-
1704
5367
28
23
-
1718
5379.176
- 2
- A wire relay object
- 9fa27823-77a0-4b75-bcd8-4f611d88e4dd
- Relay
- Relay
- false
- 0
-
1704
5390
28
24
-
1718
5402.706
- 2
- A wire relay object
- 4f8d7f4e-f77a-484d-900b-333bfe51ba19
- Relay
- Relay
- false
- 0
-
1704
5414
28
24
-
1718
5426.235
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 2
- 0.0625000000
-
1205
4937
250
20
-
1205.704
4937.567
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- DIFERENCE CURWATURE LINEAR GRAPH
-
7J0JIFTd+8dHZW2jkEo1JSIl7XvNWMZgLKHS3mAwYmgs0aqSXVGJUFFpobKE7LSQ3jYtSrt2ad/1tv3uHXd0587cG6875vb+Xv//26/mzFx3vs85zznnOc/nuXJGno6+HiyOz0/gR4pEIkkD/3Xzcvd1YXMW+bG43mxPDthkDbwMNoM/suBb+J+js5hOLC74FmmoWYHfZGoEviwPvDTu0Yv4VaGHzOO/cBpdjJZ9lrXmsvzYrGVguwLQLmPrClzFqTv0sgXL29UuwIsFNneEfnFXqM3Sk+vBdAdbBgOvpqSk/OR/ypblznL0YTnx29hs9k9lI5Yzm8P2Ab6FNdfTi8X1YbO8+ZcF/+tkxPTh/R454B9H73uEx4TckutsxPJ25LK9fKAvD94iqZMl04PF/9fLjvZ0Ez29B7nbG3aGAX8+iMsA/rwfl3U/Lof3F94/c1LBP2M28v6Mvh8T2/zO6nhL8O9bgsArbAM/8iBpb/Pf72/dcn9rbPPb7scdbL5a09uaLtIQdxR8fftagV/N/yx0S1DrQcHb2/Hr94Yn8N4cifX3hLTmC0J/Qq9gfor3d+gb8X4j7AYONt8bdJ/82/71Hl5r03eEfinvu0Oq8q4A6cP/rLCSTQpDajf9Ir4hILtAVxMwHyQvz7J6eiZ0e3kboIeBQ8GbP0zAn678Vw09fZsGUEf+EAA6mxvQGaH+0wF6WcaOyXVh8d7ZH/jnDi0Saaoa0LPmenp68EeQ0tzz06VnAd1Z4FfJg68I/Rp5G0cvBjPA09cH/l4FE66nr5fQm7uY0KkMtgOXyYWGgBQ0sqQF3gq+Itv0vgDePUMfV6R6e7M8HNwDaL7u7vChQLX2dXZmcZ3Z3q7DyLOaPMbU0Xr64P8NIxv6uvv4cllTOSxfHy7TfRjZ2tfBne1ozgqw81zC4kzlAFfrzr/0rF/+BryyLHQVGaqvj6snl/9yVwu2oyuT5U625gZ4cjuYOvG9TEr9DvVFI2cxMmQ2sX/UKywXGLEKv25TFuX3KP1yFlYOoPmaZZIG/ujc9JqAWODrMk2vgxp1gPTrZDLzl+8budemYl7GQdqBvd3Pnlj9cZvAXUnzbCVv6MnxYbI5TX5UG7qKjIEnF3KtfMPIGHq6e/py+R4O/F9Rvqo/lewCXpfs6Uw24TK9vV09vQDfR/Zs+lYdTI14vQf478eiw8lHpjVYhOxPj1e29TUGmqSgJm6OkkNw3wrzfdpXnDTqPr4CmjpATX2PLkqqm8GiZ0ZmrTnUfYo50NQRapLtqZbnrKhoWXz2qwLHK8gAaOoENU27Vm/ZOz2ZkXr9ekjRzY4NQJM01BRuYBQuH2tC37qzfssqv7CtQJMM/w5der4qZV63Wnc3zu8Uhd4INMlCTXmPl52okKm0DHF4UBnyI7IT0CQHNaV7MPZ/UYqxyK/TfaaQm0YFmuShppeDPpydumqG8Ubja2fZCi5LgSYFqEmLNTBOeXYYLT9isSxJN3MJ0NQZavLrJncmP0aPsfb2rEN0vYZioKkL1LRz48ObXl0vG8faTWQHa0yKBJq6Qk3qEaGdRunestpf93rVjamxN4CmblDTi0CXz4vTUunHZOqMXGVipICm7lAT2+wE2dnyOWXz3nE/nqtQXgNNilBTJ2kVHaWhfozMT49ND4d8mwQ0KUFNx5xHnPKnTaPvmdnNZbW0wgegqQfUFPtj3ktTf6Z59oltDT0m3bMCmnpCTUs14u6eMDjB2LB50Or0mKUdgSZl/gW397t+PWkKNZQ6V8l6h8tkoEkFatqk0PUMKfuw5TF2wuq40oZSoEkVahq2d2B4r2W2xvv871PvX0/8G2jqBTXdyoi5onVaxixzSJcNWRYDpYEmNahp4SBlizrSMpNQywrtUWOcjgBNvaEmurebxpLujwxifko5JPUt0QOa+kBNpPSNjt5zfWmlnyxPzR51SRNo6gs1XU7IXvpi1nLjSGaIjrWhTBnQpM6/+T3dspkpGpT1l+aOzPccFgM09YOabg+06RV+OYR+9J15tt6lMtAo/aGm08fjPxt060bLOzvSZk5m2TqgaQDU9NfLsujvX2VN0+x0nw0Jzu4LNJGhJurz0FOLvDItNlb1sVhYVh8mZ2q0SMCDDAQ9synH24fJcWSZ+LKbnZmSvsqnPUY/zFJGb34Z/epWnQi3IWfJdlwCf5mkQPXx4bIdfH2aPDzkuvkuSgo3FzWgHV1USa/Fh1PmhVoWnv0UaqMTYAtzUbR9umWyr15a5b7oqF3P+lIJc1FH2NXyZjP7mqx7cqf7Kor5B5iLSj/kPf6EuSktuJc0g1Y1URnmooxXlydTQhvNNi5I4hg8z9OFuahL82XVi5buMsydrPpx1BxpDZiLKpvtcXXeR1/T4JG9/WlBmqdgLso/pGLFxqHjKCnDS1PlNGYGw1wUe9/qYtaYy6ap0aSJ0/XKk2AuSu3nSNIFF2mTCKXeR+InUIphLsrayXz/iwB3SvoxrZCI0Z0Pw1yU3RBd9StPSiwS5Dw4IZsv2cBc1OTs9wMnXquxTC5ZqVE9atBhmIvSCHAbGnovyiyuenulXcqg+TAXdSL8ZOzVCK5lxKrjN/etvjEf5qIYO2TV/PuwrA6eYN2o+KQ2BeaiHqaOezvoSX9qCneH/UvZsuUwF2W5/t1A09gi04IYi9kKZ1Q/wVxUYuH3Bwe3pxrkechsTEh7pwdzUaMvsxhTZ8ibBOWlhmqu7LMT5qK4N+IOFPaYaJX64fjXOcMPP4K5qLlrOXnDIhIt4w0cErJ/vpOFuSgjL02bPAVbs9gLtfUbLCdqw1wUtfE7R222jvHOa5FP9Lmqg4TGqxraeB1W/GBW3sL1RhkVdru/T66pxmG8dsBtvGq143gVsW7gj1cR6wb+eBWxbuCPVxHrBv54XXHDvefzHaZG+UFldnvPaF39b0nx35KiBUsK5KwMW1IEGXbMT9fwpKZfMVa/dDxFEbakWDT3S90C6mDjI/aTGIEBe6VgS4phWmPUTluo0ZJZJ+Z7XKUWw5YUV2aNY5PT9xofTIhMPfDl0DjYkmLRUYY0fcNTw7U6umWTlKZeFnI2A9CcDXLZjoOz6Yibs1FtR2cjwqPwnY0Ij8J3NiI8Ct/ZiPAofGcjwqPwnY1cgJrmq4Icy/CzHuk7ax4/gDmb9MZDMQsKvjCiDagfJ65aHQJzNiL8EN/ZiPBDfGcjwg/xnY0IP8R3NiL8EN/ZiPBDfGeTdOfgJLf7n2kR2xwHPndb/g3mbJDDS6jzdkfrvMgJAofO2wmt8+o9dRj4jdtovnXO1doRB9KUBX5XFyO2H9uJRTb05fqxBPswaFjQTKJ6pw70MSbZEfwgmc3x8SSzlvoy3cnuLI6LjyvZm+UCxj+9ZehsJycWpznYIlIOZBdGv0UhVQRaEQo1x5wMAKM48V7SAP9dd6yCVJtaQSJ9MiCRAg2krdl+nj78NT1JPw9o3VvR2YvJZXosYnO8fHmBDVlIW1FydOf9djKggRPvbkR+yRvrdhctSOhHSysYX1czO/S6oM1FfzvoZSveb2sK+fJCXDK2gAtxZPFdgId1iPPIruvNt1Zb35z8bUN056ZmoaBWC/WpBvSpAvUhA/okU5H6AK3+qQL6SEH6dEDRp4elr4cD6Lycm/uFSIl2d6F9C54+1HRHvLX77Fs1oxESgV9HhES8l38nEXICxUEibUyJgC7UzRoMsnn7AN/XiOnDbB4DJFEBRxkDLiCHKwk2jIXf1Mma6ePK/+YdV+iv6mTqw/IgkX4dTMhweFLzPwS+D24p8NIyGJbqZevlzvZpthKZ6UNewuYsEW2ukm+vy4b1O8/IKFj2qVhpn76guczBzwmbq+llIXOJsocIp4dlj9C9WPaYIBl7yDp4erqzmM0OkNSlyRqevj4IxyJDdXRkeXvDLy/S14AODwzdkr082WgD6WPQ956vLRdbJmyOYdO9aV8FLCNjzfugkGn4r+Num1zIncwXZZsPOTx3IiCLVOtlGWTH5LgAhiX7AXOhJ5fXc51aoFS9qcKlTp83mwSPNM9cyzlwUkApOeiiwlr9ahGHWtqYagGeRUCtDq1XS8Ma/DzLB/DJfkx3X1aL5Vry5H5j/Y1J9Kw5GWuvat0ejThf4F9VWDB4mzgk4w1+VMmAwQ8tk6RJKMukM4lMxveJvUzW7esv26CxolSwIzCAVRHZ1oghvESSRpHYwJDLYvqASyR38LOQRyU7gecrLCeyQwAZUJfr0yT2MLIP1H2ZHCdoCaW3qkVrJ+QaX/R9C3dgfksLNc7MryDp7wE01jEUsWYKBTTW3y20ZsKaaRR5NwDTQOS3S/vmd6+fZZhJ8vkTx2rKknMEpxhb8NPCU0zTy3j3smRAATKowCtRvewUsGqs3i2RKUbB0BPYZbI50Cn+aBL6D3LRhmUgNZ6B+P1S24nNbTrN1RFpKK9HlfHdWL3paXIvNROe9fhbwFDyRvwPCxkL1iQOgwXuxjKYvmQMJtM0Rwka6810LGP9bt3WmWesJsch0j6bumk+/5z9zqCoLltj5OSlRoIrAgbvg8IrAuh1cVimLgXLMtEpkl498w/9QcsIrdlkSOhzaxcGzN+LtAVyuyZgi07gx4Us0fQq3nbQzoFcWiYVGMFIp159lDdCoImT3/v+NRMnMgImxokzPx1r4sxPExlsaNvE+aTWnbViwHSTTeXmX24aylLaMnEittLIzUUbt9KgMziQjuUM7NP/f+fVSwbZ79+OMzE/etvFx/HQ3D0EmVflMA0G9GjCzKv8n1/zK3JexRpsv51XRxv4JMotybDcTQnMTH71PKRt8ypipKne6XPvZ+AWWmwexS/h9uYpOIw01zQsw6lJyHDtMu1Olro97bGdo0HmlQgpVekSc4lOuzyPhzrtAgMImnb5nVNo2rU8RrtwhnTKMHBu78nsBjMlgW/TzcLX3Yft5c52ZIK3Ljz5ovX3vhaArVgewKccme5kD4GrtGhWRZ4QYd2WkNyI9hbKqXgMEGw/IGck0K31kXLSgW4tt7+ia3P8gd+rQRl4IVJT0BEI2JLnFXgvmzrxx+Icp6qNUmXyRoWvell01e1ZzW+XQmnvbMXrtkKjQa7pdfQLN90P73ZJJOxzh340Ntfbh8wGhhPZ2ZOLsJdI+1T3l9cc16W/RWyXjbFfFsxzEbCPFFXIJMBLyO4vhfBSyCO3NnopEmDOA6A59akivNRVcD2wvwImktRvROpvy3L0BBaHrVFpgN5Hit3Frkbr99yLsrpQKCeokoGwSga/VSk6e398oOomRsw1SuDjoTc34aCSHKZK+fsqoD7Y3Jew/KeaDcsbEAY8o2mBQMiZSXDaa7qU8LQHvY63P63PhXpMIxU8AEBo4Z7LUwryp3Jo/nRb/ccdw2dGMgr+sjpu8jN5kGBk09jfi8vy9hbypVgLPVVjMLbK28pwyKzmC8CuxX+nEs3KxoJqpz1ohf4km1WDhlnptMjXIg/P0W5ZOBj7q62lIVYwlhIDSDwO2MXUIbtbHSCxYowIH8s/lBbhY6VE+Nj474GFKTH2pnn7D1pSHuveag8f2vOXFmQ/JpfNdHAXfX6r9qFY6txwKj35Tc/S+6fWVAiqPQv6KNlK2DlYtbcLLQes5RUDOYdypLW25vOs1RrnoPzLOfzqyCJVmp2ecIF2+4NJ6onem2nDfBNa5BikyLj7hMVHIQnKKSIkoB/lSQD5BHk0n5CQXzcn5FGjaWF+bmHWkvsMwU20NZPDchd0B/wridJQm0r2Aj/Bm4Mcfb19PD3IHE8f8OwFmJ18WP4+0FmMSF2R2TAibkU4Y0SUqo5cT3d3G9Cz8/1X08+b6Yg+ibQkWp+Um+nN4toBt8//tZpGnr7gSHAEZpAlYFIEy4ntA313YCYGdxYPAvch7Mgn55B2pBdUkLQTADvOMiQFhhgqWDC5LmwOg+Us0Ck6N71sw3ZxFaSDml638/SCvyrYGZKNCyo6kRMquvNEFETkZPl3JSppi8tcZspxYjvCUCJ58EVwuwN7ibemBUNZv5y5rRfLkc10N/R0+vVZYO/nw2UxPZr/3Wk2l+n1y2E0dVUFtK5KdtHIC40KM9hy8hBj+5eCFYL9w4blzgwQ7KpyJJEnhmi9tyeVvIzNZZG54JWgLDSRHRWZmyXiRlo0/hG9Edn/2+gh44EF0uJEKF8gEOkeGoH5jJzIdw+dCa85cvrASXNk7isOmstFY2letYmveRc0zVuditmZr3l7oGTC2Yz87aGIbEZ+KqaIbEZ+KibSsEIZhuACS2SXQCY74pBh2BXNJkvL2LpsyzTDY6VW7k8fzXst8Ls6z/AFpwFAOC9X4cmyFTkLg43Y3l7gQGCSvVm8pUjAcH7yAvD/gI2A3yBSC2R2J+r9CSki0Cg0XORtPbk+VvBeJWIQ/cOlXfPVkPMhuLRLBgaRqiH4n+AgqjHKr0jiJFd05XPgwPzE8he4XJMpu6GZsoS1L43z/SwjaljFUX1ujwWC4WYwG5EJsqzCASUZFKtNbt4E+biyeNmivAuA5uMnjzJ9QJOCU6Izm+VE9uJvIvRatAlCcgIodywcIG9uaukuE9hxZ3oAyv8tKmsU3INmLmlV1qhSc9YoC9JI5BccnrV6/I6zl8wOWswwWT5nzBkc80aRtEQbHXwtoFA0qBAdUOgN0sGDYbpkd5F5o2gKaf5KUwJ2Z029xcnTA+h4v1WNZPfde/JXRcbGYapJV1/WqAh2i+brCneLX02/U69zt7jY0lwdsygtlRvrXd/o4KAe0IMw1Ct3q2hVSFyFl9D3SzpgoK3wWSVSrji5CZVHs8cYrl2ot7xjxI2ziO0FeB3hTtb0Mt47t9BcqBdNEXVKcS6ngvTGXThdEEuHXs1DHcoOxFJiaHhHY5quGi1+ze1pu494ZbXen4hFEWt3LEWAfiOUEthCRRzZXEd3zL7h5WF2rMroLbWsTMdgrrHpPIIoorgESxEvN/5SEoQw/lQwAkm6tQMYEeiKBUYEOuMPRnxcXrxeyuYGY/3OmG8751OqiTvBgVnmi12xsszLXcQCRhSmmi/u+lyJHvrY4viKQws34whGIAk8HCQiu2BJBHShfzsYERi63d1B6odl0tvhNpROf12QMBhRx8KyB4X1fwRGrLn23NJnLI2aGr9LUWP8um8SByN47gQ1bx1wJ5ICI2xqh7p9UQ+wzJ/IeZL23O4KIcAInmdBVQvwLBIDI5CbAcKAEbzBjyoZMPihZZIiCWWZtGvFtppX9UsMDxzW+X7h4qgaEdOz6LiOKH2HQO8EAzaOnu7uTSlq4PwHdBoWl+3YtG5q2eoIObvLWjC9vNgcF75S4NfBcTGBxNjbOFOSwcWEdQWYMiN8QnU+P7fCK96KbxwlNOM4aAdrJHQqpeTaD1ZLO3tDVeDrdjcCMx+8fbi+jj5kKtex5Tm4k21YwFdg+TVFbRyY3iyylzuTwxpG5jKd2L5NR1bAQHdv3o+D8RwOmcl1bFnUBlmMAfO+hQyGfEMLFY8GF2hcQPFzopa3gcDyttyrVctbdeB3k4HtpGHTHgpc5v66MZHfOzN52jcfGzYtadb6YRYntwrG1zqK+q68F3/XNZFbtDZ2zUAwVAMKlSwqQY23zvVqXSiir0FzH+J1lSbdmvaeIoWizFc1/lS0wTRlEIs77VzjakF/yruaNXg1YX8Ka8Pbn5LzIF3sRflTOuBtSdxWhiZsmsZTizTZvb7xo6xWR6M9V33254Y/OY44W+ddSUTSTdPr4tBi8VIsLZB95HdBCTIV7lC0gf9AZ8PkeOtA8ogUxe7Jug0xlyqMymaTH+3oW9VD0OHzLins8JteFockZC8sSQI9+R69B5pHH7F5VUC/ST9oMTPHRpAS58QJdnwrYPxY+QGrE3thZ94RRdeehp4egPzAwAMHH/hh/5Y5aWRZHLRbER6Dv9paKJ09uG3cCKbEGojILyIBwmZGtco1d+ZlADUt4kR+uRMm97dxVmuYpmePu6jyplowUVV6Fvg54X7T9PLvvDGyjk8bvTEd0EYR1KZeVDbP1SZtWpcr3ZT6g6GO4VeZm4klfkaH4xuf9WU+WSbR/L7kXEiARlECDM7lCQCNq55o44owh/XIU3WcDuuRFsPjsH4T5mH9Rr7mymia/4E5lciiXmLOqdT3x8qptF72L8+prJQZ2vdYTiezPI9D6575bCnEM6cSZy8M5lQq+mPlVALWEk9Opb7dxR3zmJPMw5ZN1paLfK3aImcsppxKngSoOZWABJBPUEHzCQTKqURW6RN/TiXSkpLJqawFAb4NgB0niiunMuxqfoVZxw3EzqnkJ8OoonVV4iwZEDUjcVoyIPs/DksG+2CsJYNaMN899CK85sjpAyfNkXt4HDSv9sHS3NqHr7kamual+yKnHfieYZZbPsWuqshbcAst03REKSg61pnmCNQQr7O7J+AjOS5NcXRy04GcaNeMLNcm6paE9x/Q67+zwaiabcojjDUZ2802yGXaHS1p68oArFfBhBJ3kNOi3OfcCrXziyV95PlrToqmQN2hN1p3aHXAnz8ExR7wR5a6xTG4j4SDcegT9MMofeLWx9wK2uND/HHZB80Qrc51bvaF7ZDrjLSFUGoy+FtFWhFZNrUlqcnSotJY+F0a0rEvmo4X+z1/9mmzhUXQkW2Dhi/+KJgL3cnCU1SCD9rJyFA7YGh6u4M7UG0P4JM64Ea0SR0y090TcG5M6KS1ZTE25KMdhO9NGEoHX21hP3wDxuoLgX74TRQbDcbVFAtbFVfryguvu7A8gT0pN0DkVyroveTvjb0KDUsy38/fbnp3guDJsQn0UeGT4+aW3+3skF2vjWMVzHrKBDWiiArb8o7pCluX1cPvI7z9L68ziD4Euzp4YFqNnGV89Z4hRxv6Cp4Zy1h4imTk+a//zqHpnffn0Gz0zQOV7aQ7M0i7cBBJEVOk8gLiFf3g/wymtCo+2rN5kDthd3Xtd/r9NFnXreLV7UsGT8+60uaujkeolNeX6aLMVJvD68utOqFq0sIZfOQcrz87AYYV7cnMEpUXaj5mRAXcf2u2uucPwTTR5qsIp4n+ahJL4BhTDaDTQrOHOgll9kjXK5g18NJnw61X3Gvf3GmoRcSomhKK7efMbTkTodVc4QpKR3bmenqQV/gHLF8FrJE8vDw5YAJNy+YP5PN/0O5OOF75q62lp8L5FbyYJYlsKOL4nARoXX1MaC7h8/YiI2DQLazwh31vkd/SlLL0py0tlxHhVJyjovIluocpx4fFBXqKcNy3w3B7Qb7H/te1hfkeeOPvPOqpM9WxW4KPmie8WppZ672/bxs9qhcgJRhUJJ0S1TkPAFMz8A7CbBvelLVmBmy2bMDvLHv4Dikr4FUhJdePbNpz8rREQdvNwbLdnFbYzv5OQICFf6RBOnVAgtTZyW1NkABtR8a0HTAUCGO71mW6Nttu+e9s96F/b1V22UrGrpQnUsqcQeGCtpuLZbu5WLZro9cHjQNmsKAbR59QxmnV0kQRsg52mhFy8Se4smy6hPDKEnod91k4B3J0cqLAJjWglZ7fujVJV0gEjLps6drJmT/ktIwPXPl+t+BQnzeSrXeaw3MIGArYH+OvQ/qRUNYhWYsYT+YHZZmFKS0avUG1ULByk4wtC3ymacv3sX2b1yDevE+CG34oINeyhQfy6YKibkdY4KbXW0FcgtAJ6YOofD1w86qf26qa032a6mU1fU8ySBG6sqDvL/I7KrzrxVWb+cl4R9H23GXhuR8lWH0apAPB/CLRxJM60FqdSxyn9mZ6aypiDrb1YXmRvdnLWbxzPBbT0ZXs7csL57P9WJC5RBro1XDfNT/oziZba9Ypq/oXfBGMnoCXFY6e8F4Vh3kCc7HMo09Y8/DT5NHM0/8XpATlxP9+5Kw3dTVna60yPjrCbjfJ/iLi0Z1tApaQDyjFAbuty8GyXHSOpC3HB5aEVgooh19o86aSLdLXizQecqPz27z637h7sezrm52hUH4ymBAGjDZoPu1PQplPdb73UjtC7mica/DmK6u/i+DzmDozAGuTm5YDLc+07GfBYnqDUC04OiDek1fowB24WsumVeSTeVHvSnhNDWtsoY7+4KOcMgEdT4jKuvQCU8AyRe7oW9Hn5HkBY1AA0X3tS1rS7PndzfN0RwaMWOsjmA3XCfxKooqyev/eTeCMfroCUrmCUsWLSv8B3QQgFSrCJnKf9cutgqUpeV6VIVIjlfqvT2bZmjFi4t567KV49UGORymh8djO61vFPEgcUaddPFgbEAcajwPQxiOBEoOQUwzuiUFCvVUuNGv4gbsrLNMdcvcbRCl3kUxiUD5gR/+jzfFSMSQGheTlVSxcehSPxCCScGIQCd9ia2S0rjqww4Z5Q3KvmUc6PKO6nucIZid0tWB6e5OpToAdhFJbQeE7oXVZYI0BRsHJHuDnmdDnf80fzY6iRfMI8lntGLco1JUFm1txQOSaDdUOEDppBPNU8rPaOpcMgCX1ezfV8oVrpSc6ErB9R9qBqZNMMgw2WsSdqkKcovOuKLwUbXr5d3MM0jHjwM7bgxLWUknCdWydjvEkbFW0qBesqC9cKZFCIX2QRHP+J+RBWoSKWpZrg1NKdpvZ6F4MaFwB1/EBfASZy/syoieFHRvzB78ZkG5UMrzT3DHfX90XRBatoSs0ySG8FBZ6gzgEA7oHhmCuWfw5eCCaY2t1xkkPvuDtkHGCTJWAVddDnoLBqush41Sw6nrItTbsQcfIFQDsQcdIzwp70LHey61h4dvCzLf97PGl++ALi2APOl7xbMbbkZFaRgdIo19JF4YEwx50rNh//5kC8w/UDXVH0qYsvz0G9qDjcdEzKSFKr612yGcsZU4u6Ad70PGljJqwLSXnGYlx6h13OVz+KZR/AxY+FNmR/3pZFv39q6xpmp3usyHB2X1xKA04CK1DEb00IPIx6O1aGvAfEgrNVxNVGjACpTRgb1p+xWl2xO9LA2qgmfJPfc5TSa/Fh1PmhVoWnv0UaqMTYCvG5zx5vcJ6zpPXSzE85+nYxQ3B+xzSzXcPLVRXOFG5py0havE/52nxK6ynzyi++v99ztPlqTejv0zYQd+qeJpBU+n6liDPeSp/iWUwoEcTLuVLTM952kaaMslQwZ6W0sOvoeb0khO4PudJ8YJr5yuGymaHho/cfnC47BYcRhoZ03DVLyQd0hbjc572m06Jzuozw2o3q0vyYrerOyX6nCeex0N9zhMwgKBpdzAJZdr9Axla2j7dMtlXL61yX3TUrmd9qRQzQ0u/icXQ1t74lzO01xKr5saqPrEo6RG77dKNR5/xZGiNV5cnU0IbzTYuSOIYPM/TxYGhnXATi6EFrCUehjbb+kVKx94H6Imrnb5nyIbvkyRDy5MAlaEFJIB8giaaTyBQqPwIu1rebGZfk3VP7nRfRTH/gG+o/PSFDvVIhhZpSck9l6TugTifS7LBqKCiQ+0DYjO0/FC5FlpXJQzPmX7Ie/wJc1NacC9pBq1qorKIG/knPCey/+PAc2o/wuI56x/y3cMQwmuOnD5w0tw/pGLFxqHjKCnDS1PlNGYG48HQ1mJpHl3L11wbTXOiB7ouzZdVL1q6yzB3surHUXOkNdo10PUPlxFogS5rYKGg/Qwl0FVonl+RpPXs94EuHcIPnxPhJ2OvRnAtI1Ydv7lv9Y35xK0UpFaNNXxqL/KHz1A0zQ2u9rrjN/4o5fC8hWoRs0oEVzTK4Ff1AVMBjdjOziwuC9BJRKorWlbOCH79My7/Mk6/LsNb9fw6YAXpphbtccpme1yd99HXNHhkb39akOap39+wkKlEvquFolcdA/Y9NWBNMFGZO9aASWqvtvW0lcqAiQKul8AVCJNXR46sDeWPgRULm6rign9rLjHs7u65jOUkOtJV7aH+14j6RYaBiVpxa3U7pSJy03neTERuetPrv+vbSRTpE1cvTKLvj7r0uZL+7mUb+3Y+IPMEUOZOohJbxhzjydzWwtWaMPOTHVg+y1gsDi+/n+Xoy+sevFN/kVo+D73xeWjaE6vU43IWd27mChYG6fzruk7CXh3eiPcm500uJNt8UbIp5/Jkg1yCLuHdMHK50RI3LGKLg+ipSNPhUXzlGmbxlWt8yYcRXnL2vtXFrDGXTVOjSROn65Un4SM5cj7FQfI3l7Akz7zEl3w4muSEfp4dsufDTtyRFoKduCOnRtiJu7WT+f4XAe6U9GNaIRGjOx9u+fPs1H6OJF1wkTaJUOp9JH4CpRiHQ2s9NJuc7abxfuQ4T4vgd6/N9a6sMRbMnbJhAStwRxbZ0tfdvRXAzXD+5zjg58DZks0Blu5sp6bpdRkbzBX2cQXs0OI1CFJNjPsUzvESaG5pgVtg4V13BejxnQ1F5HiBOSb6V9q66lA15SXDAssN4GZ8eMszUDGRAmian1uypoe+ydrJyRZdrjk3IFK7wAuJSO3ivfw7X4Hs3230FYogOw0qt1vUkcw58Mk6V1BrTLRQub7NynEFuhrYtUTKN35AWY1KtxsGh6+XdV6QX14l+HQhqIN4iHzMg2Ar7vnE+byehKFW3eV2PcDi36icXYAXC66DBsyB6pmzuByWux74Hm89E/oiEFJ3YXERIAf409YloypvaQ4aFrgEmckJaDK1SCsjl8RtGSRttGtVDjQK3lBF2NU6hzcKWkWCqiGT6KGu7yRSijP5m1LT9udZpjlte6A6r1DwLK2VVBIOUuhjSgF0cWiiGkFCmagsj9EunCGdMgyc23syu8FMSeD7dOMFeL3c2Y5M0YnIaKu0vhbAMGCB5T4cme5kD4GrtGheshuiq37lSYlFgpwHJ2TzJRus2xLSG9HeUo8BPrGgAZAzUlT2MR1cqT0TcQ7IDxuIOAfkZQwgzgGRx3n8dimU9vY4J+zXxLSCvb8pI1pAPpH2SX3Zy3vA9LGmOQvlR82uTVMXsI8UVTimRG3vg0ISiN01QAeFQqMDLHlOaaiAiST1G5H624LP5XBqlUp1xeuctaMGWMQ4dJ9/Y+JlwbwxKQNhlQx+q1LWjc1bNYI2GOwdfDL29pqItj5BBlTpzTMslZKfteo4VQ2WLv57gZBZKxLNFwefv8vrMWCNeKHcefdcnlKQP9VH86dELhQ3Ofv9wInXaiyTS1ZqVI8adFj43tpcKE7uA1ahOPv3eBeKOxkXu3PFKD3zhE9Xrb7lWKfjXigOmQmEQw20xvdYNdAOvBdLobi5Cmu27qnLNEyduHrB8HJXbVwLxZ3rahk1/UeUaUSRh/G7k7FncRDJHlMkuffEyxrk/4irUBz5b8f370frmpa4PSmNeTL4eJu7Oh4INa8vo5ZGA/qyeArFxbx5YHCwB4cS+3rO2oW9lh0iSKE4e0w1gE4LzR4jSSizB7ELxWkEuA0NvRdlFle9vdIuZdB8tLvDqVCc4jusQnGKb8VUKK6039aNjfenG0XsdV6/3VIlQyKF4qiN3zlqs3WMd16LfKLPVR2EQ7Ex0juselaZbwmUziumQnE7LRyXGRZlGgf13Vmz9GpKiJgKxZ0/NuaSw1dds4NSPyp2X1//DAfbLX6LZTtFItlOqC4MPoXiejckbhs89apxaWDxQuVT6ioEKhRX/gazAuMb4hhHLIXikIs/iReK4zk61DJpoW9xLxT3c7nqc637dZa7foy09Lz0zF3iheIU32IpEP+Gvw4ZRUJZh/ypoN7Oe8Omd7kVYJznP7psRPitzmIE9bqoVGKAepHKlfiDenIXfWi6p7ebRSbGTSsqoguWRyYcqNcJFAgVH7qtXPl/C+oVrPu+YvjcO2apdskvfz5QFXxAnORAvRxlLINFSsZgkgD1Nter3Nd3vmW2cdDlvY+MI2bgCuop0fI1kzYUUY50cHA70XPGRxxGmhOm4aZIyHDtAuqljup34/PwrgZJBvau55hDBSuwtTeox/N4qKAeMICgaXc0CWXa/QNBPbXFmftf0FmWBW+n9XF3LZJGu2WcQD13+UoMUG+MfOW/G9SrCu/zwCCVa1GalD/j5qbh8niCetVTZCOe5He3Opbb+dmhapMVOIB6TqC1UEE9wFriAfXOp8Y+u0qayEhUzjkeP9DEUJKgHk8CVFAPkADyCWPQfAKBQL20PHXqeuYu42TT4d9XmKQ7i/9hl0hLSg7Uy+xaKUZQz9mkoCL7cNfKPwLUG4vWVQmT+3tvyEybVdJf6OvqtdeX9tO1xol6QfZ/HJJ/rbtVYiT/6nfju4dxhNccOX3gpPmsNbfWW2ssMwgfpiN14uYgDg6aZ8phaR4tx9d8PJrmRAf1jhyU83nCbDDZ88CqQCFv+/d2BfX+4TICDdQDK1LVKlaKBvUSaPkVP64qVv4W1JuAZso/DhrbdfbY4BuDOVbhumULpTmLV0kAGnshU4kBjeXICEW+iAGNFepoj1HqE0zbcdi3y9AjNycg4tRtg8b6bq5zOLKnmrF5GPUvQ8bERBygsUegzKjQGCCzBKGxtINyf81aMMIiS6Eymtbvs+DzNyULjfFkQ4XGANkglzARzSUQZkZFTn34EExI0+EwofrIYk2odrJ8yScRXvLnieeiuEZ65sGyUTFms77PwEfyd5T+nU0TLphl33zqfzt5biYOklOksSQnS/Mln4wm+Z8CKL29POoT+fNI6pH7+pmlgR5bMO4TP0BpAuhDUAGlOum2znCtAZTUpT5r3O6nZFC0fPvrwnR/BLXWJkAJ2dtxAJT0QeVQkRs5wbUBPLNDXIDSk9Uvv6bYcCxSN72PHB5exSUUoFQnjaVWvnS7Bu7/ZEAJufySMKDEGwWoVI4cYun2uwyE1gFKI06HKYx2szQ9NHHh/qOvXydLGFDidXFUKfKbJ6opJJSJiqCAkv/WUQ6dc/IY+x5O3nx/YQitnQClCT0rMQCluh4izj/+PwGlwGdWs7mRhy0O91Xl3mIeNsIBUML5gAREb/R7VmKgN3I9K8UMKDUO6VKYGTzT6sD8u4yC2uogHACljve2Pkgr7GFeMOLZGoOfY17goBLQrTFUyu/RqmOk1gFKyNN6iQNKvB6DCigBSkH+dCqaPyUyoJS0fsjyodu2UQN763jc2PLsphgApfhelRiAEqWXyLQt1NzA3wNKUx6fWG+scJORNfJ69NO5MhtxB5SQGRA4sDfRoEao7I1rL9RFfFsApQNTjLWu+NIYeaUJya96mjnhCiiRJ3zSntflg+lR76FylwaedMdBJAqmSGq9iJctxf8RF6D00c5RjfMmjVZmcfTQuyEf6wkBKPH6MiqSA/Rl8QBK+zLdK0ezCikll4b1TSrc70kQQImCqQbQaaHZYxoJZfYgNqA0RC5j7KcX9xgbTri9OTvqpqOYAaWtqpUYgJKyqsgwUdsBpSEql31XJcy3CHp1X3tMdX6iRACleQohtl3l3tL32Vopvf/61wYcIJdIUE5UjsJJlUBpjGIClD51Ojk2tJ8zdbNdB5M+f630FhOgVF5THGhvp0gtHptWU/NYio6D7aZg2k6ZQLYjUcQDKK2cPMJPReOT1bG4BTT36DUjCAQovVDBMs4pFQIZRxyAEnLxJ3FAiefoUPEca9XWrUlaACjdiJsbrK76kLJLhkoeFesXL3FASRlTgVoV/jpkOgllHdLqmocDmnuv+GseIikkWM1DZLo0rOYhMrsMVvMQmc8Ge8ogMigFe8ogMg0I9pRBZBYJ7CmDyFNn2FMGkedFsKcMIo/pYE8ZREZKgabOUBNyvw80dYGakEs5oKkrSfRxKtDUDWoy/LvajxlAM9s5t2Lrz0If8HGM3aGmjgPCRu/dZmcZqehTdSnb4x3QpAg1PXt0rrSXVJZRoJ4RPSWg4xCgSQlq2rNwPFn99A3GscsDGKOfD1oGNPWAmspedawy+njONLzruDtSlmazgaaeUNObze6sRikuJW7/gA0ptTtigSZlqEnRdqju1B1PjTeVSmcePB0zDGhSgZq6f/M++8ogzipl6KyFitMazIEmVahpSf3LHNm52+hry+wP3OxSNA9o6kUSvRATqoepRkKph7m8exw9YXwcJVSnNH/KvCN7caiHSUEbr4Q54Ud2HpzSFHEuXsV71nEnrCP++E58H0lF0/xPhTi/36hbemP+dIsN80y7rtZonC/6vnGBOCP1sSDOLvpigDhD7eXTQ7lcRkRo736rRilcJjbEGaSPhZbN1///hTijHlalucTXW+yPL+12oT9bEDWWHMQ5BtNgXSRjMElAnPMGzcnY/vaIed7kLqVblWozcIU4A3v92NBjQQVlV7ZfD5XQZ444jLRHI7AMVzyCOJs03CFO9st+3hWn5lJDS4/EFjm/DZQoxMnzeKgQJzCAoGnXgIQy7f6BEKfcDK2YuxtcLPb438yJOeleImaIk6SFBXFWaf7LIc6e3Tazzl+bTdt/Tbf6Wp8ixLMt2wZxzu194cA1p3LKlqW1R+7GTAnBAeJs1MSCOAFriQfiPL3K4ewGL2uTnWMU9js7HHguSYiTJwEqxAlIAPkEQzSfQCCIkxnUbeV6xnrGvu3vdNe9ffZF/BAn0pKSgzh9hooT4txrVFBB9x76Z0CcRmhdlTA79fgC7dAVd5NNE3sEBa8dmvMAp506sv/jsFNX1sXaqX8YyncPxoTXHDl94KT50hPl43rI083CE6ZPlT/v19YiuqDm0ZpYmns1u2QamuZEhzjHeq/zCyncYZap5xy3Q+ps+0Kc/3AZgQZxgk9bTB6OAnHeMM+vGLBr+O8hThM0U/5xECeFOef+/nRTy8OcTuafSG+3/P6GcYc43QdjQZxjBhMU4txrofEl4Yiy4cEXV4vjNvfcjivEuWXY9iG22XsNwuqvZ+suS/fGAeJ0GowFcQIySxDiPHTXKn5xp1m0DRZ+pi5DFgrmKEkW4uTJhgpxArJBLoGO5hIIM6Mipz58iEKk6XCYUL8NxppQbzdLbkp4ycO79Xxue3m0+b4biotcRr29gY/kb8ITs9PcDjB21xZzDqQsLMOjEMUgzEIUg/iSm6FJ/qdAnANDUnw1nYaYFJ1I3vs0a8bEdoE4czSwIM75Gu0JcZpNytXSmOBqmbJgi/XIyDTEqWObIE5kb8cB4jykgYUlBmm0O8RZGH7I1vLBIoPixyo1c5/cFsSyJQ1xzsdUa4zGfxBnCyFO5PJLwhAnbxSgkovAKBAjxDlUNmTq5ktUw0Pj62OTUhc8kTDEOR9TCqCLQxOVOQlloiIoxNl/Z69v/fdGWGQsdu7gqD17ENZt4QhxFuthQZxOev9BnJB9OsRXjZnZ8Nko50TY9cNvt3TDAeLE+YAExBNz9LDwxEg9cUOc7icYa3VtrOlbXow3LBivLVhO+p9BnBaaKoeZ78/Qoq/l3uq7+OFlHFRywlRpip4YIU7kab3EIU5ej0GFOAGlIH/KQPOnRIY4/7bTNC9nOVsVP2ZOfJbw0lj43toMcaqPxoI4T43CG+L0vxRcxXRayAgcVLpPi/VJFXeIE5kBgQOfqDwai098MUosEGe3S/v22ejcNUqIHPKtZ+eniMq7bYQ4d34/duf+ulfGhUvtduhenHQHB5GAroIhUtIo4mVL8X/EBXHOWFH33spnHWXP4pHj/MKp9wkBcfL6Miq2CPRl8UCcmX5Me5rLRvrmPrcC1ZWNBHuz5CBOXqdFVQPotNDsYUFCmT2IDXG+Xl6+JbM+3nDvOnOvqn2M0WKGONVGYUGc8SPFBHF6lt3su+SJg1WaVd2KzUHdciUCcX6Y+eV4SFigxdoez876Py3oiwMIqDgKizWrH0mgNEYxQZy2y+krOUozzYI0G8bpXzstmLeAH8TZgeHVi/nR2KDYRS9j5aU6kY6llbYrH4llu3gC2U5OTBCnqmv6psUhvmaHKyuuPdm7T9AzShbi9MI0Dp1AxhELxIlc/Ekc4uQ5OlSE8epI3CHOPvSgAbYqnqYbR7CWAvsqwSetSALijB+JpcD8kfx1iCUJZR3Saoizf3PvFT/EiaSQYBAnMl0aBnEis8tgECcynw0GcSKDUjCIE5kGBIM4kVkkMIgTeeoMgziR50UwiBN5TAeDOJGRUhjEidzvwyBO5FIOBnEij1NhEGfvbEWt0BeVhqFnpoSW3y3xhkGcM3udyxn8PcA4y2zRvN25d+fAIM7hOkUx0XcGUEoWS+VOH9njEAzi3P6mU+KVvz9YHh3wbqNtrJsyDOK011fNKXB9ZLVD0yHZLtKuBgZxRttnWVWM7mJVwn2wYouHQx8YxDn3tBTn7IxMRvbwQwuXLurvD4M4BztUKSZl1FP2V6nrX6/tFg2DOJGrLSFSE0Q6RQ79CV7L0s52PWMWV7Px1pLgDztwIDWt0AYlYY7xkT0Ep1xEnKv4gef4ZMxzfFLzOb41muZ/Kqn5sKv+dXuWr8nGW7nMR2P+0hAjqRnEwCI1OzHEQGrOzvq2MuzYS6Oy9186lSslvSQ2qbmSgcWP2TH+f0nN+qUe7wYPWkA7rLOhfP2V3hUEITWHYRqsk2QMJglSk6GcHF/Tr8AobN5F/7E6mw7hSmqOnvVwwZa5NwzjLIZHrp2om4XDSLttjmW4HHPi7MRwJzWly+Q+vw1lG5c1KCWoMUMHSpTU5Hk8VFITGEDQtDuDhDLt/oGk5naP+M9SKlbmccd7kM4u3bdHzKSmtgEWqfmG+i8nNS1uHi0ov7jaaPudn+vVn05APNy0baRm3tEhi6UZJ+k5Xb5kqlV9L8eB1CQbYJGagLXEQ2oezNH5UjdtjlX+8EFPKV5WVZIkNXkSoJKagASQT7BB8wkEIjWnm/ncq9/nTs2xCdpYd2TzUPGTmkhLSobUtC6oIB2giZPUjDcvqDi5l/ZnkJq2aF2VMDt1cscIxo+JWZRQr2vbnqs21OO0U0f2fxx26nQTrJ26tgnfPdgRXnPk9IGT5i8dI6fIF7hYlOzYbFXj+ekZDpp7UbE0t252yTPRNCc6qSk3OYTyOU2BmjBSeuqpVR3Gtiup+Q+XEVikZrUpCql53iy/Qvmc6e9JzVlopvzjSM0tnb0f3q9XMjwk6+x3bcAtcwmQmh+mY5GaxdMJSmr22am5REE7gxY1gWPZ555fAq6kpsNnzhHqYjtGyvd5Jg9cStuaxQuSmi+mY5GagMwSJDU1lZNcjlwJpARNlisfsnMEm0CkJk82VFITkA1yCbPRXAJhZlTk1IcPNog0HQ4T6koK1oQ6n8KX3J7wkl9zmra0m7aqZVHfsWOPDSnsgY/kP/KDQxcNnmiY0jkzzjDTZywe68ZpmOvGaXzJ56BJ/qeQmt2ypU/uiv9AS1E4oC/z18NN7UJqUqZjkZr109qT1DTR3/spo2632dFzgaWM6hzB57q1jdRE9nYcSM0J07HYQ8Xp7U5qatcpTWi8FmQeaZjQz/32BTdCkZr107DUKp/2H6nZQlITufySMKnJGwWoeKLidHGSmsGbTeYHN040iKzZOVRl/lZBEqf9SU1eF0eVorx5oppLQpmoCEpqLuLKbWIUbzHbOJOcei11BOZt4UhqfjDDIjWTzP4jNSH7BKyRJS3yqjA7vKt8yJMzWrtwIDVxPiABGcQXZlgM4ikzcZOagVtu6Q9fU2qZcqB6r2kiW/Bh1P+M1HzvtX1H3txcSua7y7N/vh40HAeVkjBV8jETI6mJPK2XOKnJ6zGopCagFORP56H5UyKTmvKlNgX95nsabWrMynrk4vtJDKSmnRUWqfnNEm9S89TKAPdte8IsY6V6ugwMP3gEd1ITmQGBA4TIsMKCEAdbiYXUdBnk1K3ny49mgbUrVT/dC1bEldTsq2l7cWX4ZXrGm6G3XjEsR+AgEtBVMES6akm8bCn+j7hIzfekfMMr118Zh/SlLS89+3Rom7s6Hmwiry+jsolAXxYPqTkhafF3g5QIs+J3pIr9nX5YEoTU5HVaVDWATgvNHvNJKLMHsUnNgs9RSaaLFOjbX9oa0G6f6C5mUtPaEovUrLYQE6n5jv3M0LLPCsqRzes67LkWMFAipKZ6pkNqmNlx6sY78tarYsv74UD70S2xgDKyhDxqe5KaP2STzfXCR9HT6XoJxlsnnBUTqalq0xD6alCBYZlZmfeIvS6bcLBdowWW7YChQBjbKYqJ1Lxi29GS4vnGOCixq9xorU99CERqHsA0TiCBjCMWUhO5+JM4qclzdKicYhdL3ElNE+9Zyk9unqOUhvSNdxk3YoHESc1qCywFtlrw1yELSCjrEEKTmkgKCUZqItOlYaQmMrsMRmoi89lgpCYyKAUjNZFpQDBSE5lFAiM1kafOMFITeV4EIzWRx3QwUhMZKYWRmsj9PozURC7lYKQm8jgVRmouCq5KnNKhn3HERymTB+cCrsBITa27KfXMggkWZXoXo+6+Gr8bRmr6nk2Mmhn41uLQkM5OqamyQTBSM73yvVZZ8DjGvoaUxSk1JvkwUvOO1JNCt+G3qGH+G5dvfT1uJIzUzMhInm5b7G62LkPB5GbRRxqM1LQpHE4dpnjWIqQ8SD3ar98DGKkZ/fN+z2fnGIbh967GnnlSYAwjNZGrrZaTmpkjx2m6f1lOz335gvvojvpZEQOltaTmQrRBSZhjfGQPwSkXEedSfeA5fvlUrHP85Kl8R7gITfM/ldREPhhXTKTmhMIKknYPQOMQUdu0+mxgcaQktE3DWhC2jNR0f2qVEpi7wDyRqnNr5cthp9pCarYVTAIUIIMKzDcUsQDMB/pgoxJRUMzwjGMqpEZSedTlgQpLfv4USffxl0P4oJjDbsnb9x3iSt/6OW1CwffgOQRAMUGDVSthGeyAZAwmMriYOV3wf4VRTCxj/RbF/PDJsbtHYKFBcYdlk08upT+V6MoVtEwgpmXsJWSZdmEtB654PoZVbG+cpnrcLVWm9ozEWMvQbMiliWQt9ZucOjRxLib9yybOQT8nbvuwK4de8vdF+Y1nvz0WY4mDYlesEgdTXMVQ4uDbiESZzuP8DXdsGX3VQmXyN2KXOMhxxQKvI12JMq+i/YhvXvWLVT2dWfDIJJ6qETfn4IPNBJhXQYM5YRpsimQMJokSB5nxpEuDl9KNYg+aqivOOaiLa4mDHX/fVO9XKGe6N9+BM2n4wLbmO4OGU8Y03AuXf/G0O3534+RN9jNoWQVV6Yn9Ho+W2LQLljjgeTzUEgfAAIKmXSYJZdr9A0sc3DfZmml7djwtXv/Rs9QpJ5zEXOJg8EKsEgcvFvzLSxxUbY75NEmuxii4LtrA4tn4IXiWONjR9dZF3z3PTdMeliw7vElLG4cSB+oLsUocANYST4mDxWeGaWrtczOIfqZrF3HLylmSJQ54EqCWOAAkgHyCA5pPIFCJg6o4o8EfFTpQso+eNl7/fK2e+EscIC0puRIHex3EWeKg1LSg4nyKw59R4sARrasSJsSdMXHszUMhW61iCl2lNmqvHoZTiBvZ/3EIcS92xApxUxz57sGJ8Jojpw+cNC98W3ZtyUEuNWOIte+IEI9VOGieswBL863NLpmFpjnRSxxIv1EZqH8qwiCUdHV4cI/gPqj3J44SB/9wGdF8NRElDs6xUEocfKDnVww4w/p9iQNnNFP+cSUOigxG1SpN5Rqk9Y7zPF0lpyWBEgdv5mGVOMifR9ASB+uCZ33o3r+KnvywPvPCo75KiEyXtpU48PwZv1fjirbZZv9KyriUmraCHWCJg/p5WCUOAJklWOJA42Gf0YdW29GT5+g3hp7dOI1AJQ54sqGWOABkg1yCC5pLIMyMipz68OHtkabDYUL1n481odrP50vuSnjJTYt0kgdHjTfcvaXr8VdBzDx8JP+romaW1fK7jFSqtq5X3ewtOEhuNBdL8sFz+ZKz0ST/U0oc+G4fazH5JtU0caFB3MHgNTPbpcTBlHlYJQ4ezW3PEgd11GXyCspxxodTFO39ikcZ4VjiANnbcShxMGYeFrTfZV67lzjolXi3omhUkmHGh8lxOwtm1hCqxMGjuVhqFc/9r8RBC0scIJdfEi5xwBsFqFx/l3niLHFQvHC+CpfZm7GpbnX0+OnTEIWR2r3EAa+Lo0pR3DxRuZFQJiqCljgYtfqcsfWNOnoON8sgurH3hnYqcVDrjFXiIND5vxIHkH0O3DFd96LmJT1ISu1VbHGXzjiUOMD5gASE96udseD9A87iLnEQqTGpFzkyy3RPUd+a7nb1M3AocWC0Zv2zsB9+ximFtU43erGccFApEFMle2cxljhAntZLvMQBr8egljgAlIL86RI0f0rkEgcpuRfNg6p0TQsnbYlWuPhwpRhKHNCXYJU4eOOGd4kDm9Dg5bUrfQ2OFU3spx2ksxD3EgfIDAgc6H3KEix6X22JWEocUEwzSoeZGFltMYmZlFLk54FriYO/jPtqj86cSMsf4pPtyQiPxEEkoKtgiFTlRrxsKf6PuEocTFo3Zxqd5EjL6Nyw3jlKM40QJQ54fRkV6gf6snhKHAwYNrCy/8x02ja7Q/PPPZdRJ0iJA16nRVUD6LTQ7OFOQpk9iF3iIGrnoRVLHluaxOS+Jx88vtFbzCUOGG5YJQ7OscVU4mAsPW24bkmCeYFNbXjCWOUsiZQ4CDDVvmAdtMlqw4VuLpQP8pk4YPJGblgktrqEPGp7ljjwV33TcMPAwTh3zJ0+uvfTU8VU4iAlRXHKR/l+1CMyPS/37b7yOg62+8DGsh0wFAhjO2UxlTiIVXm23Gd2Jm1b7VeV/nSFBgKVONiLaZyVBDKOWEocIBd/Ei9xwHN0qIC/nBvuJQ4WTPS2+HTiDKVM81FArxccfYmXODjHxlIgms1fh3iQUNYhrS5xoN7ce8Vf4gBJIcFKHCDTpWElDpDZZbASB8h8NliJA2RQClbiAJkGBCtxgMwigZU4QJ46w0ocIM+LYCUOkMd0sBIHyEgprMQBcr8PK3GAXMrBShwgj1NhJQ5MXpjrBO2cRN3iq7Ns08Kj52ElDoafte3nsTvLqGiqY//v2warwUocLGAfsbRSmmiVYn8yLXVgZTisxMHJ+6rpDl9CTEpKgsxnOS5cACtxoCFvK6fbP4Keff2qCqsHyRRW4sCatPCR1a65FmmWShfH7XJQhJU4QK6bhIoVgAUPRA5ibm+yf/TrEeZBO2endTyjPACHYgUctOFFmAN5pK1xyirEuVoteCJfPAfrRD5pDt+leaJp/qcylzmnTqhOe/3RJCv5YOMp2xd9xchcGqzDYi47rBMDc3nR1ksnT4NtGWlh0Es17IEDsZnLaeuwSLCh6/5/mcuid/ZJsxZLm6zdv+9yVPxeKYIwl6qYBusgGYNJgrl8s4d1/mL5W9NsasfFV75K++LKXMoabZK90ehjnBi9olL5x2ItHEbaq7VYhru5ljh7KtyZy9MvXYa9dZtncET1m8aMhl7pEmUueR4PlbkEBhA07XqRUKbdP5C53EMe2nihINtqy9dbat8fzAwUM3MZuRyLubRb/i9nLreuPrH2NHMcNbeSkkAuNv6BJ3M5MbmmWH1pB6P45MQhO3couuHAXAYtx2IuAWuJh7mUuf26wep9lsH+ZzIzHizYM1+SzCVPAlTmEpAA8glL0XwCgZhLg3tX2JHZd4zXjZfP1XnTgyviVnBmLpGWlBxzWbxanMxlhWlBxfyi1X8Gc8lF66qE2al3yXs1a0pHa8PYHrbDpm8YFIvTTh3Z//F4IuMazCcyruG7B2/Ca46cPnDSPFfq8pUUzi3q2lGdTWTlZTg4aF4dgKV5ZgBfcx80zYnOXK4fu6hTmGWCVYjfuthLYeqG7cpc/sNlBBZz+S4Qhbn8m55fYfM28PfMpS+aKf845nIle/qENR6FtE0v7rEfdXxm+Psbxp257OKPxVxeXUZQ5tLl0KGR5mdZ5iXJhX6JDzKycWUuf4z1st+V9IOxaUJcffinhzdxYC47+WMxl4DMEmQuc+2tel3doEfZc2tqb4MLDvkEYi55sqEyl4BskEvwQ3MJhJlRkVMfPgAg0nQ4TKhb/bEmVB9/vuTLCC+5xoQR2epVYcalbtMotn3St+Ej+Y0ea20HzthtUvrtdDElaao/HrU6/DBrdfjxJfdHk/xPYS63ZTccP9fV2yD+4MHw/BkPemDcJ37Mpf0yLOaS1OYZrjXMZdWkh42r/DNMEvJlB3/MGog4am0Tc4ns7Tgwl9bLsChC7WXtzlzafQ7f9q3ku1la6ufMfHaGYIFvSTOXJEy1av3+Yy5byFwil18SZi55owAVNNReJk7mknNr3rTcHq8tto0Y+Gltv4YrEmYuSZhS1DZPVAEklImKoMxlYKNXybVOjYYlb2YlPzx4uQfWbeHIXHLXYjGXtLX/MZeQfSYVXDfuF5ditnZdIMO4SMoPB+YS5wMSkCbkrMWiCeeuFTdzeWVmyPWPE3XMouW+6NPHvRMM2v0z5lKm4USOwYhTRolm9uaU5WvwUImGqdKotWJkLpGn9RJnLnk9BpW5BJSC/OlyNH9KaObSfHvsiEXyhkly0VP1R699JnxvbWYu89ZjMZfh6/FmLt2vPh7YLeQVJezrhUyT/FkHcGcukRkQOOCE2euxcMKd68XCXGp57uDGOO0xOrr5oNJX6uNRuDKXm/06T7YatN4oUY9hvMrD6DEOIoVjiuS3nnjZUvwfcTGXatlvCyIcgmkFa59/8v6xt3ObuzoelCGvL6NShkBfFg9zKTu39kb3rsctDyQd2usuU/Q3QZjLcEw1gE4LzR4rSCizB7GZy8Y5mp2ddFzNgkvMWVNnTnVAuzucmMsx67GYyw/CKcD4MJf6AdS3UUvUDNavodE7+VyslQhzaarFtewm35eaGdfVxS3oyQEcuD399ZjMpYQ8ansyl5p/fXWLOvEXNZJUb92wyfOtmJhL1+crx8540tMy/5Tb+ogHygk42E4O03YfJJQ7LMp2amJiLlN0SFWrn36hbN9vRZl5INacQMxl3TpMIJZAxhELc4lc/EmcueQ5OlTisEcr1yQtYC6nFRg2DHpSRts3LrRvwPmCaokzlx/WYSlwrTlTeiUJZR1C6MdKIykkGHOJTJeGMZfI7DIYc4nMZ4Mxl8igFIy5RKYBwZhLZBYJjLlEnjrDmEvkeRGMuUQe08GYS2SkFM5cIvb7MOYSuZSDMZfI41QYc0kburJmQ42N8dYj9kFuC0/PgzGXSt6htW7XJ5mXvVMZua/D9UMw5vK95eaIs0OH0NZ2Tn90Kv7FNRhzWXJ/36oP0evMSidqZsy3UngPYy4PDRp/tLvmd6OssIhc3RAtJRhzadZT8YRV3EzLfWvoR5c923Udxlz6qfWXZx17aRlpEnzt7crOarDHSl86efnA+fGBlCP9dsguf6f2N+yx0sjVVssfK31QevHqjy7+psVqnQ4vi90dhwOpuQptUBLmGB/ZQ3DKRcS56B54jl/ri3WOn+/Ld4Sr0TT/U0lNP0eplMw9uy3SHrnSqGsfVIu+b1xITddoLFJTO1oMpKbZyMap1xo20rdGxb8q7f66ktikplM0Fj9mHf3/S2rqV4xa7NQ1y3zH2iXUg669JxKE1JyCaTBtyRhMEqRmWfqiF9uvahrkHBtXsc9dZ0PbFraIkXZ3y5CacZVWjKw7IZMCFxcMxOPpmJiGI0nIcO1Cal4xVhnhnLzHfG1C6gC1wXerJEpq8jweKqkJDCBo2l1DQpl2/0BSUzPjgcnE6Q1GhaxxW5RUpaaImdTUjsAiNbtE/MtJzYAJOzKcz3c0KrkbUBB6uMcxPElNxV3k514hAdTioTdNZxRVDsOB1BwcgUVqAtYSD6mpZj/8maOvoXnJfWWHd5r35CVJavIkQCU1AQkgnxCI5hMIRGpOmz6hp9zQDPNDo7tldr+bc0zEreBMaiItKTlS0zVKnKRmBL2g4rxL1J9Baq5F66qE2an3t6tJdDkSRM17pbQsbdisBTjt1JH9Hw9qMAprp14exXcP6wivOXL6wEnz8lPKPxLHxZnm5a3QCFuzZDcOmv8VjqV5YThf8/VomhOd1OzwWsvwyv33JkGhJd+ORJ2ntSup+Q+XEWikJh1YKHzbiEJqHjfJr/D7uvH3pGYQmin/OFLz0jlvHdOjTrS9+w/n1f9Q8fv9DeNOaqqFY5Ga38IISmpyfBaN+Dnph2GoXqacXz53DK6kZoDsTdnETxomW69Q+jAuHbPAgdRUDsciNQGZJUhqqt1/qf515BeTrMqCbjNji+kEIjV5sqGSmoBskEvYgOYSCDOjIqc+fLBBpOlwmFDnY06ojOYJNZjwkhe53BzocOQRdXuYfM8t1Znb8ZH8w/W9m6Mf7Kfn7f8eXO32Oh4HyQ3CsCQf1dzLQ9Ak/1NIzcj+Ofdkv983y1vq+mrbpR+J7UJqloZhkZqb2zzDtYbUVDIa+5Q1dKt5cu3x17NvnxIMZrSN1ET2dhxIzcIwLPZwX1i7k5qO1okKN44PM9l9i3z6p9dWwfoMkiY1N2OqtTrsP1KzhaQmcvklYVKTNwpQ8cR9YeIkNeVGnwvdnFxrnDe+hxXr+W1XCZOamzGlWN08UYWSUCYqgpKahhcbtTzPzLXaPvacg5Lmhw7tRGqu24RFas7a9B+pCdmnMlMtMfb+epOkgfdWm+QqCz6V7p+RmjgfkIAM4upNWAyi2yZxk5o6dhpONgbeRnF3vEoXLKUIlrT7Z6TmzV2jjLWNPSgHNOwezq386YODSrMwVTLYJEZSE3laL3FSk9djUElNQCnIn4ah+VMik5o/cialvVp5nJa1dGP3tddKqWIgNatisEjNpBi8SU3zZXbdhmstt8hOKh4+I/68YIICHqQmMgMCBwjxVAwWhJgZIxZSc3fKbNvX56+Y77BaTasOqRZMJGgrqTkoNpb1sSbQNLkXyfHxjaGXcBApCVOk0BjiZUvxf8RFam4YXmTd287NJD3bW6u0+iSnzV0dDzaR15dR2USgL4uH1DyvopJc4HuDuunbNrcxiz4JelnJkZpJmGoAnRaaPcJJKLMHsUnN3OStFn5B+2kp13d2mxG695uYSU1aDBapKSM8l+BDana+F1FxZ9pR85jo8q1q0+4MlQipudx90GE/N23jUoXjV+cs+qKOA+1nEIMFlOlJyKO2J6l5y2gT5fkJPfNt70Y46L2O6iMmUjO2Zlv0M9Jro7KIeysLzXc34GC7Ppi2kyGQ7dTFRGoGdiy6lXFwFyUu7ucz0rhqwRCUZEnNd9FYxrlLoPxgsZCayMWfxElNnqND5RQHt3JN0gJSc1Qoc2eHnbtMw94HzDt/pEO8xElNGUwF6pszpSNIKOsQQpOaSAoJRmoi06VhpCYyuwxGaiLz2WCkJjIoBSM1kWlAMFITmUUCIzWRp84wUhN5XgQjNZHHdDBSExkphZGayP0+jNRELuVgpCbyOBVGat64w/V+HTfB6IDbV2ppacc4GKk52uHsg/y8owbbGoZdHD1j9EEYqXnMKrmLwxmaUebCffuefslTh5GarqmDUqr93Kyi5wbMe7/b8SGM1EwffbdIUZvCiKNq+u9X7JIGIzVHrbjCuXIuhVI2PK4heUmdBozUrN7f1SzNfz1jS/qXLnox56xhpOakbrUTw966msYdMjr9gGoxAkZqIldbLSc1owqjU3cdHWmYZPzwYo3julgRA6W1pGYk2qAkzDE+sofglIuIc6k+8Bz/RyjWOf6rUL4jjELTXN42zm+fr5tRxstG1njywXcCX7U7tLeyAP7gspnuwrsyWRSp+/B3ZRyylReLY8Ige0DXaNlOLG/PMdebvRiUZNecrjILdD0xb0vIFsg3tFBQe2CtE19aAUwiwJ6sWuiABBC0sbgCuSfDWv31a5oZQI/v49qUvufrzSI7ujI5HJbo4/pk4+qulurnTIN6WA5eVfakn8AXlzVquoLQF25uwHuyBdMnQ0FJDoha/jUCPXBCaYUkln/SjoC0zXPu58+ff7aGtyQLGsbbi+Xo687kkl3ZLq7uYAK+SNsM9ZpnXW6VQD34Y2H3jXZHBbN75GyhiwgHqJpbxGGd+hIs68SXEMA6wAzwszWbpgHGHmxvbzCD0FHATHwXIvoo6tKSVz9e7LFIvae6p/rQ+dmCxmm6oogI8K8WcRiHjmkcwJtI3jigfeDG6fgb44yneoC/kmcTMNYIfJTFcQwga+vr6ZOnkj29mEt9WcPII3n/+vUO0SNq0+yrdznnPGh5Dy8d0f1qnSeYXWMHu75wdo1AqziMd6AYy3j2kjGeyG1v3XS4BTv9xoJTf1nQ25XNCeAASyfAfIC5OJ4c0HTA39w9l/EawX/qg00eTP+mF0SXuNP7vLfPPUOr+D4poZYbgooQlQVcRXG00MvisJwcpuXyiyRtOfBDYF5Dq4IVPZpOhdkcF2xHaKNmxNRfsZG+9UtQYRffeYsFHSHqmulXC+7HzjnQGgJcp1YJLatyeI4QWqduJKGsU3t3WmF7ouiDVZlcxmOtcSsE8aBuhk0oojWX5cdmLRPGm9EQiyFUMOPfG4YzspfDjqnIXk0X9O5uynF093VimXJsWBxo+4++eD00PKvCZY4XJWnIkYbiHuf2Yd2rcG6PYHu3WcAfXp5cHxrb3afpF4vaYqFi5ccAdcsA7eNFHVlPAJa09DKhJS1/WyVyD8U/bQNzKCF5WrSin7RG13Ht0W60nCFRk+oG2D1t++keYnel/U6/nybrulW8un3J4OlZV9q4u1IDlKsHlRN5RmsPrq0ElftdGF/FDraEIXv6sbhctpNod/rkLPVz9SeSabR81JDRbt6ktg9hhFZIH4GDVnRMrRrbd5fAJ3FloS0X+CZwsXMn+c5PORa04uO/aKBv8FOaN7chZ1U5/saA/1bwf7vAlz2Cn2gOcWxCc2Otjjs2Q3/tEHdEbrphcUekSxMKIIHfVmRf1nu5NSx8W5j5tp89vnQffGERDgGkaDR1CRrMYOyQVfPvw7I6eIJ1o+KT2pR2C2Y0fsYKZth/EncwY1qXqbIG/ka0vHEFztPlBw0jQDCj/jPmdvkzAXZkb968aYdgxknVj7m3dL0t90d9bXiUSmUSIphBx7RO4ycCWKddghkdxjlX7tpz1rTI6u27ExoLgwkRzDjwCXM/TATjkCQZzLgY8bhkkkWG4Ya6DdZfDuykESqYIYdpvPyPkt4SEyiYsUDGfK7C7AyD1HuvnoZtHhEn4WCG60csy6lJ3HJiDWb4VibmVa4eYbiH4rtnhvL8e4QIZvDWEKjBDMARQuvUGNK/IJjxMHXc20FP+lNTuDvsX8qWLZdwMKP+C1YwY8KX9glmrDfUzZ36KsMyPLk/yX1l9y64BzPIfzu+fz9a17TE7UlpzJPBx3HYoNd+wdqgh34RVzDjy9CGmd5qNYY7PQOZw+YXDMA9mIH0EThoNQFTq/rG/6tgxmY0N0boYAZy0w0LZiBdWsuDGZbr3w00jS0yLYixmK1wRvUTDsGMLWjqEjSY0XFA2Oi92+wsIxV9qi5le2DfFp7BjMDelRjBjEw1oWx5nIMZj1WStvaoG2+87tQd+fc/L40nQDDDH5QEdWlo3VsiibmCO7L6+vp2CGZEr7GjfarvTonwHFQRo9kzmBDBDG1M65CIYJ12CWZUz/M9WzGsI+OA+/JcxuUjdoQIZtSqYRkH8CaSNw5JksGMLUcn96OSKBYH7Toft3HXf0KoYEYopvEWS8Z4xAxmrEqO5OyYfcg4auKqZdfPnvwu4WDGBEzLKUrccmINZmyuuDW81jCNnnb472/5P/RohAhm8NYQqMEMwBFC69StpH9BMOPZo3OlvaSyjAL1jOgpAR2HSDiYsbJPJUYwY3Af1DphuAYzbl7zePFqu4bBfm6fxvefB37EPZjx0c5RjfMmjVZmcfTQuyEf63HYoPv0QaPnwQ06o0+rSgy0IphhrZDxXjZ5ukGBashpCz1bW9yDGUgfgYNWgzG1+ta+61BJBzNi0dwYoYMZyE03LJiBdGktD2bsWTierH76BuPY5QGM0c8HLcMhmLENTV2CBjN6Zytqhb6oNAw9MyW0/G6Jd7sFM7qMxQpmTBkj7mDGVPOqbV0XTGDsGBwfPuze8o8ECGZ0Gou1NLw9hgA7srq6unYIZsz7rPGx5Hw+LebkPd1dciOjCBHMyBmDZZ1IIlinXYIZQwYelpk6Nsc0bK/PiBEdejEIEcxwwjTOFCIYhyTJYMaJQaPYFTUDKPn7vBX7FyV1IVQwQxnTeC9GS3pLTKBgRm3VxJePrtSbhL68adUl4ruahIMZp0ZjWS5J4pYTazDj76Oci5uHcSxSl4ZnUVIijhEimMFbQ6AGMwBHCK1T40j/gmDGzF7ncgZ/DzDOMls0b3fu3TkSDmZ0GYcVzMgZ2z7BDOMshw0+35wMj07cKP/qrUbb6yUiN+gzVtS9t/JZR9mzeOQ4v3DqfRw26J3GYW3Qb48VVzDjajlzy8Gh7yziSga+fvGUcR73YAbSR+CgVc5YLK0ix/5fBTPi0dwYoYMZyE03LJiBdGktD2YM1ymKib4zgFKyWCp3+sgeh3AIZmxHU5egwYxFwVWJUzr0M474KGXy4FzAlXYLZkyYgRXMcLUWdzDjVDeDLmlsdaM9RzrK5XO2mhEgmKE/A2tpKDeDADuyGzdutEMwQy1n94JzH5XMiycFPl+xxSmBEMGMOmss6+RbE8A67RLMKCp3e1G04qFR/gq/OfPsI9IJEcyIxjSOKxGMQ5JkMOOxQXnFNvdvhlunvFjct6OOEqGCGRRM46lJxnjEDGaYBebStZPl6NvDFLvH1Ax5L+FgxhsrLMtVWUnacmINZhhOH3Bcy3gnpUjhskpUWX9iYCa8NQRqMANwhNA6NYH0LwhmaN1NqWcWTLAo07sYdffV+N0SDmbo22AFM2pntE8w4/GlW6teyrkwtsVfYI3u+n4I7sGM96R8wyvXXxmH9KUtLz37dCgOG3RtG6wNOslGXMGMfvPv5ew9uNskaIqfpvL1VfjXzED6CDyQnBlYWmW27y5B0sGMRDQ3RuhgBnLTDQtmIF1ay4MZvmcTo2YGvrU4NKSzU2qqbBAOwYwkNHUJGszIS9K6PTLVxnD9retnlzj1cW23YMYUD6xghru7uIMZdg4POtpu6kjNntLNcXSQ9WICBDPGeGAtDbt4EGBHdunSpXYIZqTFTVyjGNPLKHL7fl/bYukcQgQzHrljWafYnQDWaZdgxgTn2dwFhw0okU/+2iE3KpFLiGDGVkzjuBPBOCRJBjPkhjZMlZtOMo+YPCLCsKfOHUIFM4wwjacuGeMRM5gxqn/0ErdRYyjbpVZWXVV5ESXhYMaHJViWO7dE0pYTazBjxPHXVxZL9TQO3V5Ot8vSO0WIYAZvDYEazAAcIbRO3UH6FwQzwgy+PWUP7GB21MV+i8GImOMSDmaM4WAFM257tE8wY23MrRfraU+tSpOW6BSv9TqNezBj0ro50+gkR1pG54b1zlGaaThs0IdxsDbonTjiCmZMKf57wuN5/la7lS5Mz7CvZeEezED6CBy0uu2BpVVO++4SJB3M2InmxggdzEBuumHBDKRLa3kww+SFuU7QzknULb46yzYtPHoeh2DGLjR1CRrMoA1dWbOhxsZ46xH7ILeFp+e1WzDjSBBWMIMWJO5gRj+T5/M73bRhrL909lBR3J6bBAhmpAVhLQ23BRFgR3bmzJl2CGYwlzqOvtPN2/Solt4D5sYiGiGCGeswrcMhgnXaJZiReYsh62T6zDR7vm3Rrfl5HQgRzJiLaRwaEYxD+l97ZwIPVffG8UEJlVe7SpokKdL6SrsZ22BmyBattgllJ2mnEKUiQmUnhJAtSyFFSqv20r5JG61S6n/vmJG5M/fG25259/V/+7zv51P3mOve3/Oc5zznOd9zBstihm8WRfvEvRD13JBhopuGDSnAVTFjGqLxZLExHj6LGU7bxoj4Su7R3uE4O8t6zE4njIsZEoiW+7wNa8vxtZhhEpAo31wwWO+AUmnwojH35uKimMHMIWCLGUAgZOWp8YQeUMwY4BF4a9XN2frl74dMTRG+mYlxMUPZH6mYQfAXTDFjEGH97dVvzAwyr+yX/9ttoxbqxQzp3ObindYB2sW+rz57/EjuiwaZ4Y80QR/sz69iRgB5RsO8WeU0n9dPpto35m1FvZgBjREoaEVA1Oq1YEdLrIsZCXBhDNfFDOiku1MxAxrSul7M+EDfu7N24nht374ZT09Hvb6BQjEjEU5dnBYzoN+RLLBihmgYUjEjdi+/ixlnTh5kyBsIU8J9a6yT/nrhi4NihnAYUmr4di8OZmSVlZUCKGYYDzx39dncREpI4MUnosMtxXBRzLizF8k61XiwjkCKGdPmjm6Z8/C9VuCJN0LKWy9MxkUxIxfROLF4MA4By2LGRvEFXu+19uiWjBkkeXLv2QO4KmbsQDSeFzbGw2cxo8/fWdcnqjbTw2MozQFkyb8xLmZYI1qOjrnl+FrMmFi4ccFlQ4Jmsrjqz9uaISG4KGYwcwjYYgYQCFl5ahKhBxQzplvXPi4qzCNHNCpfmr5w+mGMixlbw5CKGWZhgilmnPAJVRg1UNog33yURIv1/GjUixn+k0oNh5us0snI9VAou3zKGYUJ+uYwpAn6qjB+FTPUhx+8r+t6VzfwsCpjZ+uLr6gXM6AxAgWtzBC1Iof9XxUzkuHCGK6LGdBJd6diBjSkdb2Yccwgvp/1WW3NnOUpKS++FsqgUMw4BKfu2YNW1LZZw3S2psj2aRy7oYyz31ABTYnGmlTuKkZvmC5LZlcxiI7gZz0Ydk6A9xJtGSuBf9oSrdcRgfd19yS6ujg4eyoTgXe3A9utnG2JjgxnO097lU1dio3bdS0sFwWUae94dM42M21Pf97Pzd3f2S1d7KY5QGoUHwt00wkaBIIPdDAIBAZiy1iuwQAppEkxH6CTBjzfzqZ5q/jE2CNahYe1fma+C54DSQ7BT/NIDpmXf3vos1/boHd0S/qBvaEOFA/tb38Yx+IBgaJBgd7yimOnwW+wisUkd5TQcAG6v4Mz4Izgz00nwP/pThlEmmk/ttsq2jq4A70LaJ/A+8vV629UqZjdMoi/+r5KqsE6m8OO4prsD3PZslMT2qklaDBPRINZYmMwUS/gjdsn2dzGalrAy1jCv+lsfZnGao8rPO2TmGe2xHHEcc3MyQoj8k2yOM9sEKUyP8hlHPb13/U0iwFZ5C375OmRywsjZq12lUChp1ERDaeGkeF4za+bFnRrptaP2mm04GmqBd+V+4bbDNPPd35meMnyCCeu2IvKa7rcfhXtDqSYz4p4OSQCwRU6JFzOY3Yg1rCbQoAZdiMaPsVMMg2mFp8zOKnzM16O420ktLyBaQIz4eKel8H5+lAtLyvHNawFBEbHDTrdi/2TA7QNjGgkE0W5DVNmG22SUzaY0KURV1T4xwq60Q7trAVNw+ONzsTCPTKXGTq1dVHiy4Crr98PSKwKjLoPoa7+EJiCLd9f3d8Q9C8GkL6zPb0XSx4JXTA4cHlyH+ZlXVt2/4xq8ylJCDXXLUw9TFd/pnS3rwHTVbk+J9Z+/dcHLWxrdguVi2uWvB1G66806HL772M+DoEVkWDngr+0IHpZARMPa0fe8xnrb3taPG3itY99TDJ89WMt55czSZixPko04FJbyIDL44UggWnOpsFpGVFaBqk3V45df6xG9Q8DUwVgLS/QWlOADlEBtVZ4EdNaLHE7REIKBoPbyzZg9v3LkXmq1P/LJcb60H4avi0viioWuiznjN/tt+FWiIh6TLDMY0lQoc5DAkoeUwJWTEiFiwkHih5abH/aoltSVFBydPUjziOsextaOTMcuSc6cOFAkUR0BT/RqU5DdHYBXoOZansyvD2JYLxgePA+d4Uid3iGeI1O7qiBp3ZWu57i8SjcMxBeqtq4uzg6GlkB16HDA8QnoZaE80kxUw+Guwnw+OxfO07TZQ3YE2wcgecBKywMWwdP1rvbAGoB48ljnxSIHdmTXa5KaHEVoeQgYEczDYLPdg0JmpW7nYMzlbGSwyn6tl82Ale9Ol8Xb79u4uLa+SqnM0zVKa7yKT5Y/RdTREN3F2Be6enQ/lR92E/Fa5bqbrVW19nWwab9R5ndWhy8CA7PnS7RwHqnI2ti3h7MwbU0BytHDRfbX58FchVPYKLm1PHvXovcrVx/BYx2V02Dc1Wi3djCwF1B5LBTmdT9X4s3cPqHEcPRah2nq7LrY6IkG+ANPNj6wHnvIBJxLZABE93BO7Gm3Twd1fHO5tslssbUsMcDCog31aV4PEiX+j/0TBGI//9hhIwCkjNiNKuc68NVYAfGM6lodng4jHvNocMHSprH3tSRkswPpwSNyO5zLu3iMBQ0H7EfSXOJjpCcDqe5W7mDkgM9XeNYmYHji6dL3nG8at+Fa8CQowN0HHuYChSn8nDjnbymg4crKLoVkAEzh711k9qDM9EK+I9oB/4GnqaIup737NvC05RE210SUp/st8A+H5dBOBq5TCNu7OLuadC5esbDYP8wjei4G49VKHoMYLChGuD/nAaz1S6qmkCLqe5vzHAEDMawBWIhw5vjdu2mzIAzJfnasHteM/PUjyxZLr3T7ATn6DoY9FpPcPkcpEIYYJ2S4cFd9IJbE5ms4eIEJDftfYd5G9tft2GOwGA5zINpWlsgWe1Svm2oISIvk3yIFvPXg0qPzXEKv39gLiPz/Kku9p+aY1UE+yjAHA1kHjm4IfhtXlGwyyBddHwStZMo4NgNjobgFAbIjhXbZ5UeREA9ZqGM+bf2GgHQKcBFKIYt76rL2Pf72y7a2ensaYr9UDvZvzdnVmjG7Fncs3rW9d+FKftTNl/UpRZQCvVWfPl7innTH4apIkBmW1DmXmQemeOMY0yZuabSfbqn87hO5idaMzzXMhjOYHLkwbBZw3QPB2BKzzsT3JgdF3GiJJW298psq93j1qpxRphf97XljjCdG9FOuJsKWLIt5SXb4AKmbKyQkAkXEnAzokKHvq6MqDzSbYinQk2HwoCaGYU0oEZ3SH4E95Jbn5ZhEEyi1f1iyK6zm823oCP51vjLn6SlQ9RjrW5TwkNPvkVB8r2RSJJvjWRLngUnea3k2A9TVV1oAe/f6atc3cKJxPc3YgCZhw2DSF/j6MhjxINb5pnE/pwz+DkwMjs4AymLg217KF/r4GlPdPG0Z7h3fbxbPjuuunGCOT2btOhOdMUNUYTn5LIMZ3MX1SUCCYck6NB9NXgs9CsC6j6O/NMRbihYLPUAhzbgYTyZqQCoGE8BxIUXKpuJZdN9jKTW3KDnl3C6JPNG3Is+7Zd/55dQb/9Dv5QCdz+ByiXyKkWfB3c/RcIu9HdRuZEdyrlzuBroWjzlk9ycSHfZKUdJ/2x6RVehMYUTjGM5CFhe5laRsxXtsQpU63EkkloXIwVauGc/qJjJOldGZx3GdlrsVtFnuDszHFXAn/FQ0aGs0HX2ZNgx3CFMFvjnT9OTocw0EDQscAuilfO6dlPztDI0/fqTTvKHdq3JZ/WCJhIPuxrmM3sBhzbsxUU4IaTpTG3BjJiZkbFd35anFG+ezMyyqhxNjTE4n5q23MiLUwrmW3FL0X6ZH1IwXRxWiosdA1U2AWagoh/TvniWcFrDZ/HwOQ6NepyLcZLMwparo4MNWEx05h6p4DKCkTSgGzCcgE/ZWDkSnTju0qVxqbXO/EvoFCI1rp7gdvOgwmakx+JG0zjbuxoxgLT/MjgVDuaFoFGAiJEcw2P9gz1F5bH+wVwphax/QJcx2O1CMO2CWB8Zpe3gDsQC0PuZgyWnvXjaZ0zyaINvksp6vnWEwWYv7O9y2EeIxF2KIgl6gYQAmPN8DGuBhKt3XAO/2iKmupNIQr8RSdaYAUzebLulUtZ28YjwvO8Gh+6ILX7Xr3Aep0pkbpXIv1Vp2ZTir0RZO/XwVfm0QEsNMRRUSkZUKSSmW8tI0r+WkbogEHS1vktLSezrqPO/BSyPaSGByT9EC8cCplKseJoDF08vjXr18vNeGs0vK0JukuWn1Zwr5jQXL0bX8/2JzK0DjmBtRtEJ+OQEcJW5fXpFtHJ0cbYjWrFqM13brBb7aqW7hoyZRqrcsv0r5jbacT8b92o+eLWr5QHAl6TjAf2+8wqgBHCraBxPbAvOl/qTrTwYHZAz763H9gv2XehnQzqxZuFud8mD/n9M60L7G5SA+MP+9hDQaHA8HIFKBDfbxneL1h3I9hHm4jbTGXgK5Ubd5Vb+TpUc7yVePv25bhpnT6O58BxI2dd/N9OpWrR+hFndWHJSffCisyIzNVEQCXAVBJFuxeGPlmL/kVfvFoQzqKOT2yK7+p0tIWPyH6drFbTetL0dPGH1H7v6H0NtBSxfpvAy0618pi93KxVv1wIYXJ3a/RksY/DeueBfskdL3JQeGGwgY5K0BoL4ddyFG/H71cQPNZhOC6sG4LSs0eMoAWb0yFApNhtz5YtG+FXHW033Gm9BABSm9xHNLRZzjyGiMJIqdKDB7b5LXOnu4kTc4L1u/SaijYuTq4szOP3u2vgRKsX4WS8+nxq761rzaYPGm3BPxw0j/Wrropo+wPQ9AlSTyAsBJoD7QbjHEjECfJwczHqEDd6d3pvnW37PvmfhfrGPfukgRZdz10drDgTn4O6Ap3BDXcKTzDlL8+a/7s1dmu/c+LuIertlzVWxAg26/9hBZsqDb/7pd5G4AnLuBeU8zcs504CheTNGEZUnxljenRGww7LrfmfZaUOO7NoRZaWeImxsMcH9AufZG30tkGxn0Q3bGUopzqCoZWoGUZMGxLWKxqFgu1WItjPDke2I6t3ZQd1hu/W/s93o0yXHV0/z1omSs9TTv+f9ltN2i5FstxjJdn8Y9UHjkBGNo4Ij43RzJ6cUyzrgoqWn+xqYRR1o8gdZ+GXegsfCb/t11EfhfFagEyODdTGIPaSBVs+47uUk/VkiIADtY5bmiMh+mENLWPVQTHn5N7M/A9pRUMAMUQG1jjwklwCTh3R7+5dsh/fyf/sXdBdSp+1fUFwaaBIm8KbLgCYRVhOUZwOaehF4F6WApt6sJigGBDSJspqgFAnQ1IfAG7gCmsQIvNeLgCZxVhN0mQ5okmA1QSulQFNf9u+CzPeBpn6sJmgqBzT1J/BeTgWaJFlN46XIX9YqTtA8nFfU8HbO+ytA01+sppqYxzfylHI0ojQumEUPZbQATVKspgcfrgy5PFBfJ2qoYVLk7S/1QNMAVtPKGKPBQYeHU/bMj/64eHNRPNA0kNWklre59ilhnca2hLqaMbkNh4CmQaymu/fnTsu/d18zc/TNZn2D1eeBpsGsJqur+jYWjCEauyQeyu6XHisNNA1hNe25cG7aM+n7tAPH6ZGF28q+A01DCbyzLa5dg8MIMLsG9e7cOrb4y0iDgNnzcq8++pTIo6N0d9dgHlynxM0yPtRDUGIRpeKIr1y3ryMdn3hHd2FptTIK6/h0xHX8+R3LI/lwmuP02CloRxTYsVNmCUjHTr2N5/exUxMGzHdpCVDRjDL3i16dPpaTV8Dm2CmjBKRDPOYn4ODsnJKSEgEcOzXpJGP3u4FESlyJsXzEQVHOpUSsjp2aiGidoXiwjkCOnSq+HTrf+uh6/cARU168db/PWf/F6tgpYUTjANEEe+MQsDx2Sm1KjeqZhlEGkboLdOnn9TkPWMT62Kk78YgHumFjPHweOzXsvETKk/rRGnm54nOj5YUgWaLAj53KRbRcLOaWAz/Et2OnLt8tXaI+qVjneA7BK3ujHmdGh9WxU8wcAvbYKSAQsvLUAgJMnvpvOnYKOlXE+NipugSkY6dSEgRz7NQkfYKPEGkYPbxR1s1rhsJl1I+dgi4fonCU0sUEpKOUShL4dezUt6mPexttV9cLmvNgw4qbBbdRP3YKGiNQ0CoFUau9gs1DsT52qhAujOH62Cke1S923REa0rp+7BS0OIZCAekYnLpmo4VXhx+VIhcnOL6bs0mMwlk16DjKor0w3fViRrHQr1MwgGHCHZiYWHmCf2W4gzcgrrRiFtDbiSUHTw/2mVOsX8Rq9yDaWDkTrYHZ5hpXV0cH8NgqF6AR+Hz7Ldc4gx8F99E7g3yAI3MkYl5UIWrYg0cDMSdBS+jLiK5sRpO5BcDFzs6R0bEBC/wZz7UuRCdwY3bXii0bXi5snhqsoJlGmP62d8n2AETZuIstkB/oYswwBPI06VNVQFzktQCeBoxM0pVV3YGpBmgwZQT36rMeiPd+iPwfc9+MqdUIADxHbrkq5xFfvZn34ME3My//Lqoqvp8yahzjpkGUjPkJ+QVHr/5hVFUHFBIDFdrNK6rKAzG3iFOh31U95Dj8kZX0gJqxBIODGGVOh7gGJyXoZAlPzdx65Jkapss/oCr2lUiqAH6Dm5lZ04LuFD5m6K4kmriD02ewF3Nay8Gjc1xgzrY3g7Ns3ptVw8XUCqcfHEbPmmNHUJIjc07IJOgdN+ImWTq18cN0NSeRTOd9EhPT9bF2cXFkWHUKk92ZmI0yBDcSg0MCu5bosBIM7wgLqteHTO6tH5OtFRT8+e6tnaOKICehgPfjDkLtl1GfLxewogxPrMsnnxllurWgrGDCOseOBWR1R5jEvChGhH8q/dCr0YNj3WmcJ/v3Yd2Yu/zNbuCHOMxgAyuONEQc4d+IM759lPo1gndHnQFpZ+NDp53QSmg8GyX2tx8nTS7esXODmwr81cQPhZh9GlYhoE+z8rYiAkzepkWaqPRz3jVS2n3Zw3Wx76Zzsi9MPM3VBSRIuXM2MRid//61AOXw6/O2rAHP0x7IO+3siR1HY7SfBdC1dElKNvVssf5Hkv/DrPS56+tnwD4tN6nTqbGL+noXAwpWA/paaYAlLYi+UoC+ilVcaVI3t5MO/vVYIJTargXPV88+6zo/ru0QZZ/o3/lCY1o4v+pczAw8dIjXiRG/Wn6XQkED4x+mUPaAevageqM1eHjna2BiKl3drRSqX3v3tWXYuTN455cGgUktpQVmpJgHU0evpoYkcSZLmswPcidLrOto907w/WuqkN7fuwrrZKnDM7uRKIGP7OBi62DT3p95fxFZNMNv8+pC/YPDje5+8qzR4fRV9g24fbWjhR/GUEQ0xq3TuEh/CN1ZD1LRd3bxBIYvKxuwMq04ZR4wZQX5c2Xi1Hk29i7utsrEafM83Nw9mf/gna3qHlhoVJZVTPJ5c+2O3DV/zs2Q4uAvMPZc58jdbTo18cNYgaeRjKWGjbEgPYdZd+lOtjrk1zKC8xp3aw+EHnT+kUmohWqb5iG/QY+ubpld+ydT5T80R04eK5BLA2nGZS7oL6/KtK2qe1kqK5IjZFsSDS+/XT8zXGeb7pMv18ONEjGd9oICRFWxBLjFQwAwtHQrE2UPZS5OQELF+2upr5JCI1+LayUbbbVU9PIohgxlzA/yGMrar/NDgIrTCAKkG51mJ5rFhH8X7aQaYqq+fcA7gxjxbDerOcWjBEY7TTlXhUA7hdRwZZYo004Og9VqNjn000298zacNvPnABzQTkRQEti148tnMQn6nMjG/fv3BUA7OZR81WlYkkFLlqDMKf3mbIoL2snnLJJ1puDBOgKhnR7J7un1+cB+cuJtt7CWxdPf4oJ2eliDZBwgmmBvHAKWtJPPzbaTWWo3qYF6oXfU6rfMwhXtpI5ovKYzWCe7OKKd3s0RbU6IXWMQfSPDfYHbhkaMaaf4M0iWM8Tccnylnc6m3XprllVPLR1WPlrdeXYDLmgnZg4BSzsBgZCVp5YQegDtpCkjnz1GspdWyWnrsLy3G15hTDsRz1ch0E6utbDFUlRppxSLTaP2zlKh+D4fJ3R8wHND1Gkn6NwcBYJHClQOluCpqOUqlKJEO8k+Ut1uJJSmmWkqp/5++qto1GknaIxAQSvAjxC0ItYKNOZiTTuVwoUxXNNO0El3J9oJGtK6Tjtdyb4eFHbiAvVgpIxInHXdTxRop+Nw6v5HO/0j2ulgSdvjw/sPkQudRHcfSH+vIjDayec7Eu3k840ftJOXWN81r8+M1sovGOm1aMCWOBRpJ2KrzYcP05V0T6x6Xhb6XP4kCrST63ckOIT4XSC0Uy9p4YynblRaysAKlz4id6oxp50uf0NSBfAb3MzMsKKdlj56Nb+tqEU/KyNVNN3GAT+00xRE0z1sxcVyH99pJ6NWTZqfjht9Z9MbyonXhx9gTDsxowwsrgJEGYHRTtfE1o+YrLGafmD0hGJK5Z1QHNBOzGADKw4QbARHOz3dIPLauzhFM9Ts9sMfw5tFcUI7TUFUCOjTrLztBKFH0E7T6xjUeQvFdfwKDwWO2zgilu+0U8VPJNrJ9YfgaCfPV71cVzaPUU+v1MyhOGyJR512ggZGFGinnJ9IzILlT5Rpp5t/HVoouVONnvR4upJpaWIW5rSTFOL7V/zAOlniF+3UN92z9chYAjn0fujmD0Zy+3FBOwGdFcEYRGyMgTntVHGmXut4frV6iZr1+3PXbiXghHa63IZkLJ82PPQcftJOY186qa+s2kwKLz0wdDxBHvrFB4KmnZiBHJZ20vqJNu1kubcxoX65jH5Kv7FL++rPPoo57fTwBxLtBIQWlGmnQC0DxaCxV+hhkXMGWj3Xm4A57SSGJED6gTZ2ollG+HfRTu63I9NKBs4yOPTx5DeLSUeeCox2Oi+EdLbTdwK/z3Zqbp2wx6dtqa5PqZ2iW9nwNzignU4LIZ2UES2EgwNqbty4IQDaybbp+YBcg4PkcEuzO9fmFYnjgnbyRLQOFQ/WEQjttG7Sum1DTJNJvlWm3nNrNlBxQTvJIxoHiCbYG4eAJe20ZxG5VZ9Qq5O4VHLYtAkJl3BFO10jIBkvExvj4ZN2cqzTEJ30MsbgYHSs21MvEaxpJz9Eyy3F3HJ8pZ3sl3waMlk/RKcsdHmTvVLOW1zQTswcApZ2AgIhK08tJ/QA2mmxr3Oh8s6D9Ciy9YHcn+/7YEw7nRZGOtvJUVgwZzt5kD3XtSarUA7PG/rtcf6F46jTTtC5OQoEz3FhpPOKwoX5dbaTwz1jvRnD/EglISJXouslRVCnnaAxAgWtHBG10hT+vzrbqQIujOGadoJOujvRTtCQ1nXaSdN1nFGhhLHevou3GvzpsxRRoJ1Owqn7H+30j2in8rciNZqfzuvu6K96T4iut0hgtNP5kdUItBN1ZLe+KK+LtJNOFXmyTeh7UvGk4nIZ0v4zKNJOn0xspJ2b0rXLaXmZ78d/+lOGFIRDToMKwcIh0SO5RiB+0E7m305dfP7EixwZ+TI/79CwNsxpJ09EVQC/wc3MDCvaye2B+oCT0tr6udOt73vHnUrCDe0kj2i67yMwMZ3AaadCn6GjWupH6m7duP8Sadu0DIxpJ2aUgcVVgCgjMNrJco/Yx4iNClqxoxcHFT1SnIkD2skTURwqRBy+0k73DlaemFnziBronXOr3I6sjBPaSR5RIaBPs/K2SkKPoJ2a9joyWoTc1SNTR/sn3IrZx3fayXFUNQLtdFoGdgKPOu3UdE0lsW6ClHboZ4/cC8NoU1GnnaCBEQXayRZUD5ZZmDuqWynU72mn1au+ziyptVLf90burHLU5kOY006DEd//tQzWyRK/aKc1CusqvN5fJQV8NPYUkfjbGRe0E9BZEYwRjY0xMKedzExnUJXuRmseVshV2khrWYUT2skT0VhUXPQcftJO/cxvbeu1XEH94NnkLT/K+g/BmHZiBnI42ilDZVT3stTf005npg+QEvVIVs81WeHpP+NLFOa003eZagTaCQgtKNNOVUEtqx3bjMi5qW+URCefWos57RSCJICZhQw70TxF+HfRTlLGE5XmxbzQ2lPWO+fwmVBlgdFO5qORaKdAWX7TTsOOUk/UKL6jpZ6R270+6OpnHNBOhqOR1o4VR+MA2bh06ZIAaKc1J2sjkhdZ0DKzLn8Z4b0CH7QTAdE6t2RxYB2B0E7nv15re1s8Sj9N5Msp9+fmdbignXJkkYwTiAfjELCknY4WkJ9e0/TUDF0tMn+D5SIKrmgnS0TjqWFjPHzSTuYBrX2TtmrRj5aSxVscn7RgTDtJIVquYRTWluMr7dTPfuD41fXbNGPGVF7QVVpwABe0EzOHgKWdgEDIylNPE3oA7fTXd4/at+RIg4SJZsul5jfqY0w7GRKRaKeW0YKhncYsFz7hPlRe49iPfoHa19ZWok47QefmKBA8FCISwUMk8ot2opb2XzTSUkQv43Owb3he1CPUaSdojEBBq5bRSFpdFuwsAWvaqQoujOGadoJOujvRTtCQ1nXaaXXDm/w+iyMovuXmaXf6lS5BgXaqhlP3P9rpH9FO+5t6Hbza+pGeN/r9buN9qwYLjHYyn4lEO91S5QftdPiZl2PsZ5pGpv+hl/maz5ejSDst3PDwg4HnVvUky6mqXjtIj1CgnQxnIsEhijMFQjtNrTo1oa/sUI3gwCmWD9dJ/8CcdiIgqgL4DW5mZljRTpP7X/L9+3USKbBmV2LYFwc53NBOOapIpgvExnQCp50kMrOzVGe0GQQ82PYyz7jXUoxpJ2aUgcVVgCgjMNopp85XexzjpdaRvNb+d+5kR+KAdiIgigMEG8HRTs191OyD9d9plc7Wv+wUZX4BJ7QTs0/DKgT0aVbedobQI2gn8ylD84vtnxrEjLOONwk2uc532qlFDYl2MlQTHO00XazOzLXRn5ZxQCj1ad/aBtRpJ2hgRIF2alJDYhZq1FCmnUzvLpI+VCWvF2MYczhnyZbrmNNO8Yjv762GdbLEL9rJuFW/WnFOHSV+NWNGX4fQKlzQToaIxlDExhiY006vLMbdfXIpnL7D2dO/14Qn03FCOxEQjXVrJh56Dj9pJ/2FYvfks8ZQci5NkHzu9E4FY9qJGchhaacSNbRpp1Dv9NyBhkn6pc1T/ioJaHbCnHYKZAvAk3YyVEObdiqp2HBlG11CN2hFVJum8rWhmNNOMkgCmD2byU40awj/LtopxPyoQdX0fgYn3B9vCHOyHiEw2unpbCTaafBsftNOxH1q2qWhm0j50bEGOac3/cAB7VQ/G2ntOH82DpCNM2fOCIB2qt71pGXg0skGOZTnn9T2vqDggnYKRrSOLR6sIxDaKfWKqZKp9hatmN7B1UuV+9fjgnaai2icwXgwDgFL2mnLAa1qj0GRBmESD/IavuZuxhXt9HoWkvFOz8I62cUR7WR//uX4l35hOlsXLvJ6NcbZGGPaKRrRcp6YW46vtFPizScfMxecoBzWz5ooOnjyXVzQTswcApZ2AgIhK089S+gBtNPiM0LOtQtzqLmTMpe7rZD1xph2qp+DRDv5zREM7XSCmtZPvNdDg12Sb4Yef2QxDXXaCTo3R4HguTYHieDJnMMv2mmTqEONb5/JetnxpMkqZxZbok47QWMEClr5IWq1dM7/Fe10Di6M4Zp2gk66O5/tBAlpXaed5K1rpKKzG9RTa2Sm3LwlGYIC7VQLp+5/tNM/op0yqj8olAeoUlMaEywTrusUCYx2cjVGop2ajPhBO5kl/5VxKTWZni3uNrx/H2cSirTTB0KRxtWbb7W2j9ReX1b7YiIKtJO9MRIcom4sENqp7Nsu8Rz/PtqlKX0Wxz7yeIk57SSNqArgN7iZmWFFO7luXL+h2C1Y56Bj6sG/P+cH4YZ2qjFCMl08NqYTOO002Tvyoke0EeXEu5OaESk0eYxpJ2aUgcVVgCgjMNrp3ctBscuXOpMPxDXIThw4SA8HtJM0ojhAsBEc7SR6vHd+bNYE/WM+kYWVj/WO4IR2YvZpWIWAPs3K284TegTtdE/oecmqSXdJQd6714e/U53Kd9pJyhSJdrI3ERztFNRHaYTfjkTNCBXFgO1r5MxQp52ggREF2knMFIlZeGiCMu20xvb9iTk2tZTdlblrs1vk3DGnnYpMkN4/xATrZIlftJPl65fLXSZn62SNnxG8/OgjL1zQTvaIxlDHxhiY005KkweWLE2yJcVEN6xX6e2cihPaSRrRWE3GeOg5/KSdbqTJi5XdrKVky4WdtPrRSMeYdmIGcljaqc4Ebdoprne/vmrnU9QPjW4J3j/6/HHMaad4EyTayd4EbdppYesGQnLdJkqEyr1Fspc/pWJOO81AEsCszZidaF4g/Ltop+zs+AXGxx31tmZL6Nwp/aQtMNrpuxkS7aRsxm/aydl2/9z5U86SUyc+3pibMHE1Dminj2ZIa8fnzXCAbJSXlwuAdpIavSRt0/h6WkTsCjn1owFbcUE7JSNaZyMerCMQ2umH0PMqjept+nt2rusz9btRDC5oJxNE4yjjwTgELGknG0LcKN0RsZS0JepXVx6wkMQV7dQL0Xj1plgnuziindbHFlnF1P7QKaw+F/8lcfJ3jGmnfFMkywVjbjm+0k6E284T67LtyYGvspQGBig54IJ2YuYQsLQTEAhZeepFQg+gnYxKJpGUpWpp2yv8ZEK8Rj3GmHb6uAiJdopeJBjaaWiY6IJ7MpMMwhRq+hBCsk1Rp52gc3MUCJ7Xi5AIntOL+EU7KRqZ7x2Tn0rLc79Qs1h4lCvqtBM0RqCgVTSiVp6L/q9op0twYQzXtBN00t2JdoKGtK7TTiE/Hw16eZ6qsePBtX1nnxdroUA7XUZN3X4CVHejwwK1LU4l2nteP3B4KvJSo5O6BUJ1VxOc75J8p/XV6SMu6gw0CbOaxqpNzpWpCdIqWzVf3XhERgTQJMJqishtPHm+vwc56vDhHUULHw8Emnqxmm4P9DUeszBRp+z7mePq0fO44bTecObaOvG0cqLUI62tG09Jqa5Mf46Cua7Ames/OO0fwWmTao1HOSUe1SydZyPbFiEvLTA4zc8FCU7r5cIPOM3tWX/LeYfc9CLzqR9XbbJ6hSKcNnurxXwKwUY7u2/jtpW7xqWjAKdtdEFieUxcBAKnrRhqLLuhMYpcKBabmfmYWoo5nKaMqArgN7iZSGMFp5Xq5OSVNobTYmeqLVi1u60ZN3BavTOS6fKdcbE6y3c47V5U87orG+brxGbQNlm9f78XYziNGWVg6SIgyggMTrsYIn5XTMSGvM+IpE/WKOJM7rCB05QRxenlIkA4bZar+O68PZXqe3xWXqufrWKBEziN2adhFQL6NCtvqyP0CDhtmUMW3WDALIME81Pph8ZU7+A7nKbshgSn+bkKDk67muNROTgoVCPNx+L4Aal8zmQeDTgNGhhRgNPk3ZAQk++uKMNptZr9ZOQWh+jn5+/K9vZ6NQxzOO2aK9L7Z7pinSzxC047MNVi3bOjOvrBNikFSRXLOb97GSs4zQ/RGEuxMQbmcFqBweXUDN8Enez4aXPPxPdVwwmcNgPRWP1w0XP4CafVp/xYlnqgTT1+etrE7CX5qX8yVUYBTWIGclg47a0r2nDa64KyyyI5byjR+ZNrk3yLUjCH0467IsFpfq5ow2lTN0mdn7iljBQguSCJXKMGmfdjAKcZIglgNtyVnWheJfy74LRTj4ZmWH/drnPihJ++mc3yZQKD06Q9kOA0iju/4bTNCsuyg7/fIe1wulj4uWjBRhzAaVIeSEv9De44IGyKiooEAKdtvfHGMu3VWVpYn8+ZryTjOb9eCys4rcIdyTpReLCOQOA0XRXjsPUiKpqBqhXyanSNU7iA01wRjUPBg3EIWMJpX66tLPe+1qARNGP/p97Lv3zAFZxGRDReixvWyS6O4LR7oqtJNy7GGiQ8oacTJYo5z44RPJx22Q3JcmmYW46vcNqLpRPE0qxEyVEPx6Sqiu5O+XOyBQU4jZlDwMJpQCBk5anXCD0AThsrbiymJLuTknvz2hDGQIIuxnCalCcSnFbkIRg4jfzE7dEitUz90pKPMfZLrXNRh9Ogc3MUgCsxTyTg6qEHv+C0vhP7kXQO3tIqEMmptFePu486nAaNEShoVeSBpFWIx/8VnHYdLozhGk6DTro74VPQkNZ1OM2QsPypQdxiWjp9wCXVOGspFGinG3Dq/kc7/SPa6cSjlE0fQ7bqlc0al73UQOKDwGina/5ItFO4Pz9op6oRLzaLi5jSEtbemb9WXGEiirSTdG5z8U7rAO1i31efPX4k90WBdrrsjwSHHPcXCO1UOVTS9XBZL2rgx2k/hkv6D8GcdkpDVAXwG9zMzLCinSYKX/yxrLWYXPhkbpnisXV1uKGdfBBN54iN6QROO+W4uXvFXBej5n6I7Hv/gx4NY9qJGWVgcRUgygiMdvpRHvls4bK7BoWl/o0bT/SJxQHtlIYoTri/AGmnN4xV3ptNC8iB3l9JaX2+bsAJ7eSDqBDQp1l5201Cj6CdMuVm5v01rk3zaNDOAqXtCgP4TjulBSDRTiYBgqOdErWnWAe98aPEkcMO1d7UVkKddoIGRhRop+QAxKOoAlCmnba81t9y+4QaJe3VkuLDztOxP4prI+L72wdgnSzxi3bS/fh6puixZXrHFqs7a6aL38MF7WSCaAx1bIyBOe202WmQZe2FJp2MDHPVkcv++oIT2kkZ0VjSuOg5/KSd7k9v2DqzOEGvUJdeWxwzzA9j2okZyOFoJ9OgALRpJ8ZVpZtZwmupSb17HxLxyBXGnHZyZQvAk3YyCUCbdrpmsXRBxapzOscMBxtZiz1Vwpx2mo0kQLpsADvRvEX4d9FOeoOkKg0iTekpWyh5a1/G3RQY7RS7HYl2Ut3Ob9ppsZHkKY2Y4eSQ3O0KjPd5CTignQ5sR1o7DtiOA2QjJydHALSTjJ/sLVkfM2qcl3lsW2VUFS5oJ3dE6yzHg3UEQjvFOV3v88HGST9JdoLtUSedclzQTnqIxlHFg3EIWNJOu+Y370ieZa0duLO67kzbyGhc0U5yiMaTxMZ4+KSdxjYlNXtWG5H3zVGurRA//h5j2qk1AMlyz3ExTeEb7eS4xNnggZmJVurDKRPr149rxAXtxMwhYGknIBCy8tTbhB5AO3lJy4ozjr2hB+sE3Gje2FcaY9ppRCAS7fSWO6XlC+3kUH72x/ZXa2hluwf6vkqXeYo67QSdm6NA8AwNRCJ4hAP5RTudJyqXHznzWmNv2JsEyhtFedRpJ2iMQEGrt9uRtLoj2NESa9rpDlwYwzXtBJ10d6KdoCGt67TTlVN1aRdm+qhnjYrps/69dCsKtNNdOHX/o53+Ee1kf0gu4bLXKoOQxeuWfEi0eSIw2kkhHIl2eh7GD9qp/6m7+14HF9FjDRIzQg5tDEGRdvKfVGo43GSVTkauh0LZ5VPOKNBOcuFIcIhkuEBop7hzvbd5vV5Ij4nu1XzUWc4Lc9qpNQxJFcBvcDMzw4p2GjFcf0HMXhOdg8veXjIKOumIG9qpDtF0ZdiYTuC002Lh8Jq/DgjTD7wL2Bym00zFmHZiRhlYXAWIMgKjnXYFDehHWa+gFxgVrUdPPPcFB7QTM9jAigMEG8HRTuf+ev1ZoqqYVFiS7jd9/JZsnNBOdYgKAX2albfVE3oE7ZQx/X6plKI6NZI0zjtVql8632mn1nAk2iklXHC0E2n/zgfFUXtJ+/q2MqZOmlCJOu0EDYwo0E6fw5GYhcfdS6F+Tzs9oV537Zt2nhae8HmL2NJ3szGnnS4ivn9JONbJEr9opxMnSQTpnY80dix+PDzuZO45XNBOKYjG2IuNMTCnnRzUqAn7/n6jE1Q1+8vbWYmrcEI7bUY01ipc9Bx+0k7W4rTNSxXvUUOmVdwt11rgizHtxAzksLTT3W5mqb+nnU6WHhKamiqhf9R3DOmHWLkO5rRTJVsAnrRTSjjatJPpqwVngu7b6pbvW7NIfUx5Cea0UzCSAOmu4exE8x7h30U7Tdtw1fnq+QT18kmRjfGrH44VGO3UtA+Jdgrcx2/aSfmJzZjE+F66CUe3tv5cpaOJA9rp9T6kteNb+3CAbKSlpQmAdtq/W7lJe6aR+h6F3V6k+WEncEE7nUa0Tg4erCMQ2qnPQdoY5dgZun4ucl9tdi9ZjwvaKRrROIF4MA4BS9qpvnJJ2s/tdvTEDSEvNp+Rf4Ur2skT0XiW2BgPn7TT49i4I5Zqb9Tjj12PkIzUcceYdqIiWk4Nc8vxlXb63lrhMFYzRCtWsv8kk0ElZ3BBOzFzCFjaCQiErDz1PqEH0E6XU/vrpXtvo4ZlfO2nEnreEGPayTECiXZSjxAM7eQ+Tu6YaYqPXmJI2SzxCb7PUKedoHNzFAge+wgkgsckgl+005w55zdt6dWoHXZkvFub0H031GknaIxAQSt1RK2UI/6vaKcHcGEM17QTdNLdiXaChrSu006zJW/NCmq2143M1DzzmESbjALt9BBO3f9op39EO62MMRocdHg4Zc/86I+LNxfFC4x2Wp+IRDvNTuQH7aQW8fCzAWkybUfQ0aKlYkeNUaSd7mwJGZP/OF2roPWm7e3gCatRoJ28EpHgEOtEgdBOTQGrxPz2fdHIcyzfeKnCYRzmtBMdURXAb3AzM8OKdtKccPlW9qYZlHyX5F3uW9euxg3tpIBouoHYmE7gtNO82cuJVrILdMPWrFiYNJ2xD2PaiRllYHEVIMoIjHaaOO76yKUDhXTKyNKFlaPJX3FAO9ERxZmdKEDayepg5sWSMfOpR/z0xn1pqCPihHZSQFQI6NOsvO0RoUfQTmp5m2ufEtZpbEuoqxmT23CI77QTPQmJdmrlTpP4RjvV7c7wX7LambYvvLVo6V5dKdRpJ2hgRIF20ktCYhZUk1CmnQIt9pAGqKymHcwNH/Uo7KsQ5rSTHOL7SyZhnSzxi3b6PLmSuElGk5rUYNL87MEzP1zQTq2JSMZ4jo/0R+C0k8GP5U8pu/7SyjCg+B6zOLQBJ7RTHaKxyjCfZvCbdjq9O9dYbpg6LVF0qLHH62EOGNNOzEAOSztNTkKbdlqkaBIrElSqdbSh8rG3+xJ/zGmnoWwBeNJOrd3MRH9PO8W8qO9jZpFOifiQ7zyJdGM85rTTw0Qk2ul0R6L5mPDvop3u3p87Lf/efc3M0Teb9Q1WnxcY7aSZjEQ71Sfxm3bKX31R9njFQY3I78VTFkc0r8cB7aSejLR2rJyMA2QjISFBALQTVUHs1ifNpfohcoN6vTkQWYoL2kka0Tq98GAdgdBOlXWS77QuaepEr1z+IKnkiScuaKemJCTj1GMz08AR7eTdQI+59/i65i61/BXLwgdQcUU71SAaLx/zaSKOaCf/G3nVdNl63dR5AbqGvmaJGNNO8YiWC8bccnylncil6yrOqDzT2W0T5tUUNTcbF7QTM4eApZ2AQMjKU58QegDtZHVV38aCMURjl8RD2f3SY7E+26kiGYl2Ck8WDO208kd2ybIF10jbHo9+mnl861TUaSfo3BwFgud4MhLBk5bML9pJ4/wnHc2mBNo286b6YyPH90addoLGCBS0CkfUykeweSjWtNNTuDCGa9oJOunuRDtBQ1rXaac9F85NeyZ9n3bgOD2ycFvZdxRop2dw6hLtxhYG7goih53KpO7/WsxZNe1txHC0WsepLsyyEFwXHkQirnVwZxDdwTuxBOS9B76lzVl60QSt2BvBz6e4D5Xj8SDcL/37CHf28r6wgDz9A2/dcm55pI78w14bBX6Rxbuq9nHZhytTAsYGxXdVLMmf417yJRLbjfuLNVNSjA0GfPh2zh+3klOHVCNIrjyEnQq9wL3kH02/ntwe5EPzHfiy1vtF8UjcSn5+CpLkmVPYkjfgXnKZHOtDQXonSbvviRtu2lcxCreSi9GQJG+gsiV/iXvJ1+kqXjT022Pgf1HSTv2jeA5uJf9ujyR5vT1b8kbcS66r4E6XFB9Jyonsb7fK73kabiUP3ook+catbMlf4V7y9Y5yR7xWKWqVSZy8ZrHiqwxuJU8OQZI8PIQt+WvcS367Zc1VsQINuv/YQWbKg29OxK3kTbFIkj+MZUv+Bk7y6fl08mwlC0pZtg9tR1P2TUhBBBDb3cWRyKQ5PbjXGHvDCK2q5Q1MxWzaaUHWyj3rVu3AFnPrwGpnF+BvwNyHtVGha+uPruoLC3btrdBMLZO/cLSiqRnpiXmUcDjau6i0DzCJzjEH0vHTZB74PxHcum5WxQf833pe/uKZcq+0Ip4bJ9isYKSgiP+/9rH7Ypl+iHJM9KGmvWio0B/6oiugUAioUBMJ+AdUoZZ2hbhqqmyJuoj+jdHg9CHW2hMd9K9JIMajwlPF1TpRhS5SQ7VO1EiSbl8s1+IkA2AchX0d7YprRQFLKCKvegwRaG1aVMXFhnRTqBGLGOBKKVMhzn7HW6Gl71c0Gy8x1U5+5L4uMy6gjHNlm3Uz7pVtdgM/NDJchKQR1JmE/4FGTBSMRX0DOv3Oi1qvPi7Rv9pKjtrwfHJZbfVPzr4I3oxbIdZlfugjZYakj6spuzrwFi7wT2gbJp1FFNEqIDd9Y8jacQb+vlQHD0/YrWdwJftRNIaVxxr39q1f7axSe3R3BO7WteCuMmD4u6TysdQCZdLsMtul52CfihtX7tTYVVwZ3Am6BNCxEtDxIVRHV/DchMVcYb2buLI42cqDwRSA5/se05/wcf/pUzo7GfNl7g0X5fxKvl7gK3G9aPvV38V3aND7UzYZkIoIShUFxPcKqFQyx5hSwcZ3nhw3nbnmBjqIgyfDyQPcW0jlqZFb5dpnU6sUyGFxvRmqYhZ+A5kEOPDuWt6u7oyOejGz0mw+iXP1QtDkm1QhSydwhwGXToEFTJ1YXfMdqytxdc1eUz+SJM9cpiSpqt4Ryh57SoTqYM1uS2iIkVkx1YyaLbrH4UeDBCeExKLk2vnsrvdbog6jPVNrJ8WJYErC6HZe5qchUpQx1oWUcVVL5srJBCn4J+MGBjq3diPjiDcGlD7Oq/OCdqgw6lZORuzIyex4y8H7pIBrbqQ2sofW/hgXwxvUOX90yB5/UzRLQDAfY1aKxuWaDe2CdWvZe7gmxF9A0eAJ3WkXVz6qoAXpRkqbpBkXqjhjutkgp4ClhhSvjgqOoYAarI7aRIAZQyMaPsVMMg2mFp8zOKnzM55zLUHiV3jiXvWGm6EO/bV525nI6LiBBHeo602aRFaa2qWeqawwQ/oMTVo7nlG51Oka6TjcY3Lvr/zV1kVZ08BxYgUg6y1ei9oU0MmWVfXv2OHFXm1kRycJXbCncq1e9WFe1rVl94yoNp+ShFBz3cLUw3T1Z0p32e1CMO19DZj+zNVzxNqv/7qxhW3NbqFycc2St8No/ZUGXW5/Hubj/i58DPqlFdAh3B2srB15d4PW5vs79YyqdGNqVLNmPfDgjOASZqyPEklc1hAicfUCIUjIgA6Vf1phAKxJAK05hcQj0XQER/3lVZ00EkJLo2Fqb/3H90vQ3y2yo5fI56QcGI3I3BqRf6sRNAyhoBHg0wgaEZdVsRyww5GQourgdpgIjKe/AgDvgHo9YvBkrXHU/Xr+YjkmeZxH/Im234Y7oLKuox1QDQtYvtJCAicmEB2u5TNVYgXUZriAOvTxLs2Bsy9pJPz9pDy7Zi3ngZJCZN7r7wPasRweUhIk2ps4ynQsioerfMdzgd6YAcyfbZkZKpNEcgIxL1dHBxv4AwhCclOjfIbuoYbeUPd5NvHOHsg7dMVlu2qLDn4NYgtiSRVBOrUKrMSAgxtL9ff/SPX2ZEXgyo9n/UIPMAl1cXQEnh+MGkCnsGMAT8HeTMd75+dVM1UHYkay1uEDwYfSvmaqCmAvEJwpKkDChgY1xYd/ZIq+FoAUTq4uzgxnT4EbZLBZe6lkw7pNv56Cp/rm99ato3kHkzNIow8I1c5ZAvsO3HP4zo1oW0KstIowpQiwRFlnS3zsyaHo6O294WP9/MnJ8qf21W/ZqYpRKCI0Qv3/U0/2/wvHZlyx/qakd1joR1XizW0vceT/rs1Q///ck/1f5EH44/SSgfrFk19uIf+c8Roj/28YWA3x/y892f8rrh/3MTeRIh3/O/369WdCFBz5v+bQaoj/t/Rk/6eNG3LE6sNZ7ZAbBXdHWj6pw8j/HVWg/v+1J/u/MNV1mNUnLfJxO5XsjVceEnDk/zVTof7f2pP9/4Pr/pjCxQXqOe/rFv18JzcJI/9P1oP6/7ee7P9DjRoD38oVa5TrlXtMTrbbgyP/J9Ch/v+9J/u/5pZtL4N+eGkllNyyvT2MYYuR/weuhPp/W0/2/4QEqbmfxEeRskQH1Y38a+NNHPn/dweo///oyf4v2liZT558WvOgnrm++votqzDyfz1fqP//7Mn+b/9q498Lnw+iF51etW3n48EHcOT//bZB/R+Urcf6/524aVqKWk7qaWNNniyu/umJkf8v3gP1f6F/pPq/xP/3XY8IeUl4p1m+88HGEv3ERhz5v2wo1P+Fe7L/L5tS/JUoa6ceviqfFmipIYaR/6fFQP1fpCf7v6GU4gyKWqZmEDVpQFyraByO/N85Dur/vf6RJdo3PAvcBgN/MXMeDDsnBtzJpyvyqL0p/i80fCcolc8eMK+Ox7PzWP9iXkZbdZArirfpqP//Dw==
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvgAADr4B6kKxwAAAAJhJREFUSEvdk4EKgCAMRPfF9gn9WX9Wq5MtEmdKbQQ9GClud4cY/Q6WbwgQ13LnKh5mAsKEle8MeCLm1C9pb2I2QHxNtKC2RLNVeiYjTWyDIxkEZPuKykDTj6QboTZwTA8KA+/0oDRwTg9OgwhxUBh4Xo2SDaLSg5waBrJ3J//uL66mG4zxNGX9BMzezmuDR4UQKg5CxQ2IduVGkrvn0vkHAAAAAElFTkSuQmCC
- 7a79adc7-72ae-46b0-89d1-0d7c27485b7f
- DIFERENCE CURWATURE LINEAR GRAPH
- DIFERENCE CURWATURE LINEAR GRAPH
- true
- 20
- 14679402-b72a-4ad2-9f68-a6c0cd5198db
- 1ad300f9-25cc-4f0d-9df5-1a184f55ee87
- 1afb9ce7-bab4-4278-8768-18616caf7412
- 225817fa-31b3-46fc-af73-ad1cf4cf3a29
- 4b3c853f-0e70-4511-bcfb-fa488944f91a
- 57014ce6-0b16-4557-a459-363b68df79b0
- 5dbed678-e1f0-47b2-ab5b-7d564e67d149
- 60b6e664-6dfe-4c05-a8f3-8e5d2d331a70
- 7dcdbf99-9851-46d1-bb6a-5efdfe64857f
- 8b025cb0-35f8-4d07-b162-2a8dcf56f30e
- 94294c1e-d8bc-4f8e-ad38-88bd70aa7022
- a096998a-6360-464a-8fc9-30ca988b5c46
- a3b8dfd6-6830-44ea-aacc-1b070cbc6d44
- b1777aa9-7d12-4a17-b1ef-e0f649917e24
- bfaecc51-7527-45a3-aa3a-ce297d97da26
- c0ad88f5-83d4-41b4-a330-b847a1378401
- c9a38c70-c330-4159-a2bf-918d499eef91
- d4be6a2a-28d0-485a-a4a1-5a281e3dd78b
- f5a21887-cfc3-4a0b-b524-44283d4f606e
- f6ed359e-c452-4fd9-acd6-48313360e55b
- 45329fda-4528-406d-a823-54e35ac6ff74
- 357ceb68-e651-4e13-b8c4-6a838be2149a
- 3c10a1a1-09f5-411d-ae06-13d21b0f7cd7
- 88ea5216-22ee-43b9-bf4a-bf732fa4678f
- 9096d595-00e9-44ef-bf8b-df7cba4ba2ea
- 17704c02-f561-4245-bc67-2eaf7cd1e000
- e294df03-baaa-4b12-b92f-e97f42ff34ec
- 34281050-3848-44ac-894c-a3119ffa069f
- 9492d9b1-8423-4285-a424-c395dc7f8b36
- 054cb35f-8548-43e7-8129-2bbf3a113dd2
- d134b7cd-fb62-4a2b-a901-fec5a2d783e9
- 98a7b290-1680-4c8f-91d6-4080e52ada8f
- 9d9970f3-5ab6-40b5-b0f2-d257ffef222d
- b4c2ea06-2f42-44c4-9b4a-584b407a7f6a
- ad15254d-f361-46c9-90d6-b5db1b60e3d2
- f9b9305d-1e20-4067-946a-b44d88604308
- 7979dd58-784d-428c-ab41-1f9a01cb3b5b
- 80bcd5c0-5458-4110-bc35-aad5d5e50148
- e9837f44-fe89-4576-a1ba-d864d9176564
- 693656d3-ab20-45a4-a99a-8ca5a8f9ac36
-
1852
5038
110
404
-
1948
5240
- 20
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 0
- Vector {y} component
- 60b6e664-6dfe-4c05-a8f3-8e5d2d331a70
- Y component
- Y component
- true
- 0
-
1854
5040
82
20
-
1895
5050
- 1
- 1
- {0}
- 8
- Second item for multiplication
- c0ad88f5-83d4-41b4-a330-b847a1378401
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
-
1854
5060
82
20
-
1895
5070
- Vector {y} component
- 4b3c853f-0e70-4511-bcfb-fa488944f91a
- Y component
- Y component
- true
- 0
-
1854
5080
82
20
-
1895
5090
- 1
- 1
- {0}
- 7
- Second item for multiplication
- 14679402-b72a-4ad2-9f68-a6c0cd5198db
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
-
1854
5100
82
20
-
1895
5110
- Vector {y} component
- 1ad300f9-25cc-4f0d-9df5-1a184f55ee87
- Y component
- Y component
- true
- 0
-
1854
5120
82
20
-
1895
5130
- 1
- 1
- {0}
- 6
- Second item for multiplication
- b1777aa9-7d12-4a17-b1ef-e0f649917e24
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
-
1854
5140
82
20
-
1895
5150
- Vector {y} component
- 1afb9ce7-bab4-4278-8768-18616caf7412
- Y component
- Y component
- true
- 0
-
1854
5160
82
20
-
1895
5170
- 1
- 1
- {0}
- 5
- Second item for multiplication
- f5a21887-cfc3-4a0b-b524-44283d4f606e
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
-
1854
5180
82
20
-
1895
5190
- Vector {y} component
- 225817fa-31b3-46fc-af73-ad1cf4cf3a29
- Y component
- Y component
- true
- 0
-
1854
5200
82
20
-
1895
5210
- 1
- 1
- {0}
- 4
- Second item for multiplication
- a3b8dfd6-6830-44ea-aacc-1b070cbc6d44
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
-
1854
5220
82
20
-
1895
5230
- Vector {y} component
- 57014ce6-0b16-4557-a459-363b68df79b0
- Y component
- Y component
- true
- 0
-
1854
5240
82
20
-
1895
5250
- 1
- 1
- {0}
- 3
- Second item for multiplication
- bfaecc51-7527-45a3-aa3a-ce297d97da26
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
-
1854
5260
82
20
-
1895
5270
- Vector {y} component
- d4be6a2a-28d0-485a-a4a1-5a281e3dd78b
- Y component
- Y component
- true
- 0
-
1854
5280
82
20
-
1895
5290
- 1
- 1
- {0}
- 2
- Second item for multiplication
- 5dbed678-e1f0-47b2-ab5b-7d564e67d149
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
-
1854
5300
82
20
-
1895
5310
- Vector {y} component
- 94294c1e-d8bc-4f8e-ad38-88bd70aa7022
- Y component
- Y component
- true
- 0
-
1854
5320
82
20
-
1895
5330
- 1
- 1
- {0}
- 1
- Second item for multiplication
- 7dcdbf99-9851-46d1-bb6a-5efdfe64857f
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
-
1854
5340
82
20
-
1895
5350
- Vector {y} component
- c9a38c70-c330-4159-a2bf-918d499eef91
- Y component
- Y component
- true
- 0
-
1854
5360
82
20
-
1895
5370
- 1
- 1
- {0}
- 0
- Second item for multiplication
- a096998a-6360-464a-8fc9-30ca988b5c46
- B
- B
- true
- 64c76e08-bd85-4d09-a143-3a38170cdfe1
- 1
-
1854
5380
82
20
-
1895
5390
- Number of segments
- 8b025cb0-35f8-4d07-b162-2a8dcf56f30e
- Count
- Count
- true
- 1e4870d3-d88b-4e3b-a627-be71345d40a9
- 1
-
1854
5400
82
20
-
1895
5410
- 1
- 1
- {0}
- 10
- Contains a collection of generic curves
- true
- f6ed359e-c452-4fd9-acd6-48313360e55b
- Curve
- Curve
- true
- 0e0d5017-4f0f-4bab-986c-96ea91bffc65
- 1
-
1854
5420
82
20
-
1895
5430
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 0e0d5017-4f0f-4bab-986c-96ea91bffc65
- Relay
- false
- e2bd9108-6f13-4773-8437-12590f64999f
- 1
-
1544
5455
40
16
-
1564
5463
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 72713788-9a21-48b2-80ba-d8d582f5c87b
- Relay
- false
- 53dfe8d4-944d-46bf-8495-cdb43c7556b1
- 1
-
1505
5336
40
16
-
1525
5344
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 778435a9-4a09-40c9-a8d3-b6ca4d0b2811
- Panel
- false
- 0
- 0
- 0.0003845696719497810789
-
-143
5173
160
84
- 0
- 0
- 0
-
-142.4984
5173.155
- 2
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 2bd646c3-138b-4490-8085-395d24c3f8e8
- Relay
- false
- 44bc53b6-00e2-489b-a5dc-407425442819
- 1
-
-183
4935
40
16
-
-163
4943
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- a09d3489-b53b-4397-8222-838de26f6b45
- Relay
- false
- 1bd4238d-59e3-4478-af43-8dbfe4dda340
- 1
-
-185
5037
40
16
-
-165
5045
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 83ed3584-92a2-46a9-a2f5-4ea9d7c017a4
- Relay
- false
- 2f6a5a53-3d55-41a3-aff0-e99afa30befd
- 1
-
-187
5087
40
16
-
-167
5095
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- 12c4a8f8-eb0e-4c23-9e31-db676262a272
- Format
- Format
-
-129
4899
130
64
-
-37
4931
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- 28fb2c13-7520-4ab7-b732-ed1139ded84b
- Format
- Format
- false
- 0
-
-127
4901
78
20
-
-88
4911
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 72db5d47-eb7d-4255-990d-0ec64b4e2aef
- Culture
- Culture
- false
- 0
-
-127
4921
78
20
-
-88
4931
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- 9a1df9df-53e0-43bd-843c-1ab2324510d4
- false
- Data 0
- 0
- true
- 2bd646c3-138b-4490-8085-395d24c3f8e8
- 1
-
-127
4941
78
20
-
-88
4951
- Formatted text
- 68c4ecd4-8214-404d-ae51-7077c9a01211
- Text
- Text
- false
- 0
-
-25
4901
24
60
-
-13
4931
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- 65270bbe-3414-4860-81af-770ba43c1cdb
- Format
- Format
-
-129
4983
130
64
-
-37
5015
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- 718156d1-1bc7-48c4-8ab1-cad81a3cf9d0
- Format
- Format
- false
- 0
-
-127
4985
78
20
-
-88
4995
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- c59d5187-58ba-4eb8-ba3a-cce2b9be8998
- Culture
- Culture
- false
- 0
-
-127
5005
78
20
-
-88
5015
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- ffd3ed7e-91bb-4d86-92d0-9c2bceabeec0
- false
- Data 0
- 0
- true
- a09d3489-b53b-4397-8222-838de26f6b45
- 1
-
-127
5025
78
20
-
-88
5035
- Formatted text
- d2feb401-36df-4805-af94-8e108f24e9dd
- Text
- Text
- false
- 0
-
-25
4985
24
60
-
-13
5015
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- 7cafc645-fb57-44e8-bd89-b177fc3b564f
- Format
- Format
-
-128
5066
130
64
-
-36
5098
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- b2d99be3-9d7e-4eb9-af2f-d4ea50055fa9
- Format
- Format
- false
- 0
-
-126
5068
78
20
-
-87
5078
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 33a32ff1-3d1c-45ec-a3b6-0c24d1d51fbc
- Culture
- Culture
- false
- 0
-
-126
5088
78
20
-
-87
5098
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- ed7c0f88-8e16-4415-9bae-ced65f520a3c
- false
- Data 0
- 0
- true
- 83ed3584-92a2-46a9-a2f5-4ea9d7c017a4
- 1
-
-126
5108
78
20
-
-87
5118
- Formatted text
- f2e126e1-a59b-4fae-8f48-32341df4b306
- Text
- Text
- false
- 0
-
-24
5068
24
60
-
-12
5098
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- afcc5191-a0bd-476c-9768-591ad0f7378c
- Relay
- false
- c2429a84-5049-49fc-9a38-42778a26f71d
- 1
-
259
5107
40
16
-
279
5115
- 290f418a-65ee-406a-a9d0-35699815b512
- Scale NU
- Scale an object with non-uniform factors.
- true
- a0c1250a-0597-4569-9f33-9ab63d5b8065
- Scale NU
- Scale NU
-
459
4864
226
121
-
621
4925
- Base geometry
- 654843b6-c012-4edc-a2a7-f285f6f8d025
- Geometry
- Geometry
- true
- ddf12dcc-4532-4f5f-9017-ca2181ae4120
- 1
-
461
4866
148
20
-
543
4876
- Base plane
- 9fc4cd47-7135-4ba4-9fca-12bb61107c40
- Plane
- Plane
- false
- 0
-
461
4886
148
37
-
543
4904.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Scaling factor in {x} direction
- 01caad73-e8c3-480c-94d8-6aaf2d86dde3
- 1/X
- Scale X
- Scale X
- false
- 44bc53b6-00e2-489b-a5dc-407425442819
- 1
-
461
4923
148
20
-
543
4933
- 1
- 1
- {0}
- 1
- Scaling factor in {y} direction
- fd670a22-a3e0-4288-8e39-88c566557d2c
- 1/X
- Scale Y
- Scale Y
- false
- 2f6a5a53-3d55-41a3-aff0-e99afa30befd
- 1
-
461
4943
148
20
-
543
4953
- 1
- 1
- {0}
- 1
- Scaling factor in {z} direction
- de6449f5-cc7d-4dab-97b7-f94c56833cef
- Scale Z
- Scale Z
- false
- 0
-
461
4963
148
20
-
543
4973
- 1
- 1
- {0}
- 1
- Scaled geometry
- 065f686a-4028-4e05-b353-3c9ef8ca5da0
- Geometry
- Geometry
- false
- 0
-
633
4866
50
58
-
658
4895.25
- Transformation data
- e6c37588-8d61-476f-98b4-879bcbd8ff43
- Transform
- Transform
- false
- 0
-
633
4924
50
59
-
658
4953.75
- 310f9597-267e-4471-a7d7-048725557528
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
- GraphMapper+
- External Graph mapper
You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
- true
- 9458f1e4-5dcf-4329-ae9a-248ba54fda4d
- GraphMapper+
- GraphMapper+
- true
-
958
4652
114
104
-
1019
4704
- External curve as a graph
- b2c57c52-3939-4f33-b9ab-436fd1ebbfe1
- Curve
- Curve
- false
- 22dbbbf7-d064-42aa-b6ff-7919cb335e9d
- 1
-
960
4654
47
20
-
983.5
4664
- Optional Rectangle boundary. If omitted the curve's would be landed
- 68babcf3-de1b-4aad-a440-d0902f9dc7bb
- Boundary
- Boundary
- true
- 88860703-c3a2-44da-9f68-b7f61777e56c
- 1
-
960
4674
47
20
-
983.5
4684
- 1
- List of input numbers
- 271151c2-8cab-443c-b33d-53f4e3b46f96
- Numbers
- Numbers
- false
- d082c31a-7d28-4f27-855d-7007967854d7
- 1
-
960
4694
47
20
-
983.5
4704
- 1
- 9
- {0}
- 0.1
- 0.2
- 0.3
- 0.4
- 0.5
- 0.6
- 0.7
- 0.8
- 0.9
- (Optional) Input Domain
if omitted, it would be 0-1 in "Normalize" mode by default
or be the interval of the input list in case of selecting "AutoDomain" mode
- d9999967-c06b-46f5-9548-ee85878e5e3f
- Input
- Input
- true
- 6662ae79-7937-416d-a1d8-3b9c21175ff3
- 1
-
960
4714
47
20
-
983.5
4724
- (Optional) Output Domain
if omitted, it would be 0-1 in "Normalize" mode by default
or be the interval of the input list in case of selecting "AutoDomain" mode
- e29e445c-b82b-418d-86e8-57ff247ac464
- Output
- Output
- true
- 6662ae79-7937-416d-a1d8-3b9c21175ff3
- 1
-
960
4734
47
20
-
983.5
4744
- 1
- Output Numbers
- 89bcc9ed-3adc-47f4-a7f5-021fdf009bd8
- Number
- Number
- false
- 0
-
1031
4654
39
100
-
1050.5
4704
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
- Extract the end points of a curve.
- true
- cdd22be9-92c3-4cbe-8b1a-39742554035d
- End Points
- End Points
-
402
4551
84
44
-
446
4573
- Curve to evaluate
- a4b435ea-afbf-41ff-852e-938e38fc482f
- Curve
- Curve
- false
- 22dbbbf7-d064-42aa-b6ff-7919cb335e9d
- 1
-
404
4553
30
40
-
419
4573
- Curve start point
- 99e1eab1-8fcb-4ec6-a7d6-8461b6db7ba3
- Start
- Start
- false
- 0
-
458
4553
26
20
-
471
4563
- Curve end point
- 9cf4e70c-1977-4c9c-8d41-3c777e6c6336
- End
- End
- false
- 0
-
458
4573
26
20
-
471
4583
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
- Create a rectangle from a base plane and two points
- true
- d4b63f37-7307-406f-b3f5-3121871ed53b
- Rectangle 2Pt
- Rectangle 2Pt
-
537
4560
198
101
-
673
4611
- Rectangle base plane
- 5a79d744-c4d6-4c77-8e96-8f4b499eb7a2
- Plane
- Plane
- false
- 0
-
539
4562
122
37
-
600
4580.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- First corner point.
- 8fd6a73b-4768-42e9-a050-4db35290ee9a
- Point A
- Point A
- false
- 99e1eab1-8fcb-4ec6-a7d6-8461b6db7ba3
- 1
-
539
4599
122
20
-
600
4609
- 1
- 1
- {0}
-
0
0
0
- Second corner point.
- b0023087-1c11-47ca-8da1-b9733170a79e
- Point B
- Point B
- false
- 9cf4e70c-1977-4c9c-8d41-3c777e6c6336
- 1
-
539
4619
122
20
-
600
4629
- 1
- 1
- {0}
-
10
5
0
- Rectangle corner fillet radius
- 01c6a537-4c1a-425a-9fce-5c2d4c05aeee
- Radius
- Radius
- false
- 0
-
539
4639
122
20
-
600
4649
- 1
- 1
- {0}
- 0
- Rectangle defined by P, A and B
- 88860703-c3a2-44da-9f68-b7f61777e56c
- Rectangle
- Rectangle
- false
- 0
-
685
4562
48
48
-
709
4586.25
- Length of rectangle curve
- 6f9007af-2f2d-4473-9abb-f5d7287847b0
- Length
- Length
- false
- 0
-
685
4610
48
49
-
709
4634.75
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 1709c4d6-73a6-453f-8c4e-ef2b381b40e1
- Relay
- false
- 277e686f-fcb5-4411-b782-b0d4e125e2c1
- 1
-
958
5178
40
16
-
978
5186
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 7eca8f17-b48d-4b73-ada0-90a22d3fe212
- Relay
- false
- 1709c4d6-73a6-453f-8c4e-ef2b381b40e1
- 1
-
1051
5172
40
16
-
1071
5180
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- 0e4926b2-68c5-4fb5-9406-5ed5323d25c5
- Bounds
- Bounds
-
788
4797
110
28
-
846
4811
- 1
- Numbers to include in Bounds
- f8364432-34aa-4b91-b0e1-9fb5df31bd3e
- Numbers
- Numbers
- false
- d082c31a-7d28-4f27-855d-7007967854d7
- 1
-
790
4799
44
24
-
812
4811
- Numeric Domain between the lowest and highest numbers in {N}
- 6662ae79-7937-416d-a1d8-3b9c21175ff3
- Domain
- Domain
- false
- 0
-
858
4799
38
24
-
877
4811
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 481d2e17-3a5e-4c66-b2f6-96c2454e0f20
- Multiplication
- Multiplication
-
606
4698
65
44
-
626
4720
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- e3fe9b62-e6d7-4e08-a179-1752afe14e7c
- A
- true
- 164341d6-6366-4ed5-ba8e-d0916606237a
- 1
-
608
4700
6
20
-
611
4710
- Second item for multiplication
- 6621c64a-0d85-41a5-9157-bf80f968c97b
- B
- true
- ac864993-ecc7-4645-ae0f-6a08f6579f35
- 1
-
608
4720
6
20
-
611
4730
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 65536
- Result of multiplication
- 9c3c1611-96aa-4d1e-a87a-e922ccd0280c
- Result
- Result
- false
- 0
-
638
4700
31
40
-
653.5
4720
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- b9b2cd39-0a19-48b3-96da-98d6516509a6
- Division
- Division
-
1128
4735
40
44
-
1148
4757
- Item to divide (dividend)
- b6fa3e91-d883-437e-9e09-353a29b328bb
- A
- false
- 89bcc9ed-3adc-47f4-a7f5-021fdf009bd8
- 1
-
1130
4737
6
20
-
1133
4747
- Item to divide with (divisor)
- 6c5f1a49-f196-4546-b9e5-a31f4d8ee704
- B
- false
- ac864993-ecc7-4645-ae0f-6a08f6579f35
- 1
-
1130
4757
6
20
-
1133
4767
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 65536
- The result of the Division
- 8f5ab813-3691-4499-bab5-66b32b35b891
- Result
- false
- 0
-
1160
4737
6
40
-
1163
4757
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- d082c31a-7d28-4f27-855d-7007967854d7
- Relay
- false
- 9c3c1611-96aa-4d1e-a87a-e922ccd0280c
- 1
-
708
4712
40
16
-
728
4720
- cae9fe53-6d63-44ed-9d6d-13180fbf6f89
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Curve Graph Mapper
- Remap values with a custom graph using input curves.
- true
- 1b15e5d7-b70d-40c0-bfb7-a3c51df6fc06
- true
- Curve Graph Mapper
- Curve Graph Mapper
-
918
4306
181
224
-
1013
4418
- 1
- One or multiple graph curves to graph map values with
- 47d711a0-7060-4d1b-bad2-c959a00717d5
- true
- Curves
- Curves
- false
- 22dbbbf7-d064-42aa-b6ff-7919cb335e9d
- 1
-
920
4308
81
27
-
960.5
4321.75
- Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
- 6263c084-69a7-485e-b3a1-322d0d30d4bd
- true
- Rectangle
- Rectangle
- false
- 88860703-c3a2-44da-9f68-b7f61777e56c
- 1
-
920
4335
81
28
-
960.5
4349.25
- 1
- Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
- b246c3b1-0383-40df-a21c-b9274e81e7c9
- true
- Values
- Values
- false
- d082c31a-7d28-4f27-855d-7007967854d7
- 1
-
920
4363
81
27
-
960.5
4376.75
- Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
- 32dc76c2-1d1d-490b-9dee-886be569c4e3
- true
- X Axis
- X Axis
- true
- 6662ae79-7937-416d-a1d8-3b9c21175ff3
- 1
-
920
4390
81
28
-
960.5
4404.25
- Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
- fb3d9ec5-c5dd-4452-b9ed-63bf580c10b8
- true
- Y Axis
- Y Axis
- true
- 6662ae79-7937-416d-a1d8-3b9c21175ff3
- 1
-
920
4418
81
27
-
960.5
4431.75
- Flip the graphs X Axis from the bottom of the graph to the top of the graph
- 1cf007db-993a-4878-a634-f7a46e41c0e8
- true
- Flip
- Flip
- false
- 0
-
920
4445
81
28
-
960.5
4459.25
- 1
- 1
- {0}
- false
- Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
- 8eddb96d-8ebc-47f7-83f3-f3158c04cd9a
- true
- Snap
- Snap
- false
- 0
-
920
4473
81
27
-
960.5
4486.75
- 1
- 1
- {0}
- false
- Size of the graph labels
- 377f3048-7eac-459f-ab33-2cf99fd856ef
- true
- Text Size
- Text Size
- false
- 0
-
920
4500
81
28
-
960.5
4514.25
- 1
- 1
- {0}
- 0.0625
- 1
- Resulting graph mapped values, mapped on the Y Axis
- 4d507023-5f74-4ea9-90d5-c49f4efde4c4
- true
- Mapped
- Mapped
- false
- 0
-
1025
4308
72
20
-
1061
4318
- 1
- The graph curves inside the boundary of the graph
- 69566f84-31c7-4b60-a265-958649cc95b8
- true
- Graph Curves
- Graph Curves
- false
- 0
-
1025
4328
72
20
-
1061
4338
- 1
- The points on the graph curves where the X Axis input values intersected
- true
- 7e15eda7-e3db-46d6-b32c-07f93d04e5e0
- true
- Graph Points
- Graph Points
- false
- 0
-
1025
4348
72
20
-
1061
4358
- 1
- The lines from the X Axis input values to the graph curves
- true
- 2d35311d-b2fc-4e4a-89b9-f8415c329480
- true
- Value Lines
- Value Lines
- false
- 0
-
1025
4368
72
20
-
1061
4378
- 1
- The points plotted on the X Axis which represent the input values
- true
- 3dcf8fc7-f872-4db6-964c-02491ea708e8
- true
- Value Points
- Value Points
- false
- 0
-
1025
4388
72
20
-
1061
4398
- 1
- The lines from the graph curves to the Y Axis graph mapped values
- true
- a619b0f9-cb90-4576-a02e-d14af52404e7
- true
- Mapped Lines
- Mapped Lines
- false
- 0
-
1025
4408
72
20
-
1061
4418
- 1
- The points mapped on the Y Axis which represent the graph mapped values
- true
- 1bed34b2-cb00-432f-81b2-6a7dbf48a2e2
- true
- Mapped Points
- Mapped Points
- false
- 0
-
1025
4428
72
20
-
1061
4438
- The graph boundary background as a surface
- c2408f6a-8cd8-4da3-bab3-ad2d2fa5fd12
- true
- Boundary
- Boundary
- false
- 0
-
1025
4448
72
20
-
1061
4458
- 1
- The graph labels as curve outlines
- a4312d00-9ac4-4615-b68d-4a4a0e2fdfc1
- true
- Labels
- Labels
- false
- 0
-
1025
4468
72
20
-
1061
4478
- 1
- True for input values outside of the X Axis domain bounds
False for input values inside of the X Axis domain bounds
- 22d0b470-534d-45c7-88b1-74c65784c17e
- true
- Out Of Bounds
- Out Of Bounds
- false
- 0
-
1025
4488
72
20
-
1061
4498
- 1
- True for input values on the X Axis which intersect a graph curve
False for input values on the X Axis which do not intersect a graph curve
- 016fc1ef-f251-44ce-b2ef-78713b34bdb8
- true
- Intersected
- Intersected
- false
- 0
-
1025
4508
72
20
-
1061
4518
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 22dbbbf7-d064-42aa-b6ff-7919cb335e9d
- Relay
- false
- bea7057d-410e-465d-a4c2-343e236993d1
- 1
-
446
4420
40
16
-
466
4428
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- d966a5ed-ebea-462a-a91a-ca140d1f1cc4
- Scale
- Scale
-
192
4373
201
64
-
329
4405
- Base geometry
- 5de50612-e493-4e3d-b481-d84f1f959b89
- Geometry
- Geometry
- true
- f95021e8-3298-4a32-aa51-3b43667757bd
- 1
-
194
4375
123
20
-
255.5
4385
- Center of scaling
- e329f2e2-8288-48fb-a898-3564a1c888b0
- Center
- Center
- false
- 0
-
194
4395
123
20
-
255.5
4405
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 632b3e96-d6eb-4512-8ce4-83fe43ac13a4
- Factor
- Factor
- false
- ac864993-ecc7-4645-ae0f-6a08f6579f35
- 1
-
194
4415
123
20
-
255.5
4425
- 1
- 1
- {0}
- 65536
- Scaled geometry
- bea7057d-410e-465d-a4c2-343e236993d1
- Geometry
- Geometry
- false
- 0
-
341
4375
50
30
-
366
4390
- Transformation data
- 6849d363-c208-438c-a436-54d8075fb9a3
- Transform
- Transform
- false
- 0
-
341
4405
50
30
-
366
4420
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- f95021e8-3298-4a32-aa51-3b43667757bd
- Relay
- false
- 650d961c-ef6f-4573-ade0-97f698f6a536
- 1
-
55
4392
40
16
-
75
4400
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 35f29d0e-4815-42cf-ab22-85354efcb3ea
- Division
- Division
-
1499
5262
85
44
-
1539
5284
- Item to divide (dividend)
- 282f9873-f0b4-4058-ae02-3fa37ecbeb08
- A
- A
- false
- 72713788-9a21-48b2-80ba-d8d582f5c87b
- 1
-
1501
5264
26
20
-
1514
5274
- Item to divide with (divisor)
- d96e021c-87ee-46bb-84de-cb2a4be07b14
- B
- B
- false
- 0
-
1501
5284
26
20
-
1514
5294
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 1
- The result of the Division
- 7e4e6adc-a4d1-47ab-a4c6-c48fb8239b6b
- Result
- Result
- false
- 0
-
1551
5264
31
40
-
1566.5
5284
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
- Filters a collection of input streams
- true
- 0ed99bc6-d082-4d7e-bde6-4f2c00d9058f
- Stream Filter
- Stream Filter
-
1503
5556
77
104
-
1542
5608
- 5
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Index of Gate stream
- e26840dc-1a24-4155-abc9-09f76d94d0e2
- Gate
- Gate
- false
- 260f423e-0647-408e-b12e-bd215b96451f
- 1
-
1505
5558
25
20
-
1517.5
5568
- 1
- 1
- {0}
- 0
- 2
- Input stream at index 0
- 7b4d6bcb-9029-417e-b075-523527cc84e6
- false
- Stream 0
- 0
- true
- ee4ecbe2-4fbf-4854-bfd4-5d67e8d925cb
- 1
-
1505
5578
25
20
-
1517.5
5588
- 2
- Input stream at index 1
- b5c3a3c9-9d7f-42f8-b75b-c86c05a7e23b
- false
- Stream 1
- 1
- true
- fd4f2049-66dc-451d-986e-db1e735564bd
- 1
-
1505
5598
25
20
-
1517.5
5608
- 2
- Input stream at index 2
- 72eee393-69a1-4dc3-953e-434e786f7f78
- false
- Stream 2
- 2
- true
- ab0c2868-9e78-4275-96bc-66b04365341d
- 1
-
1505
5618
25
20
-
1517.5
5628
- 2
- Input stream at index 3
- 0ffc7e3c-042a-4fc8-895a-7674dcc73f84
- false
- Stream 3
- 3
- true
- b458474d-c32e-4320-ad51-5c1da52b9f36
- 1
-
1505
5638
25
20
-
1517.5
5648
- 2
- Filtered stream
- e2bd9108-6f13-4773-8437-12590f64999f
- false
- Stream
- S(0)
- false
- 0
-
1554
5558
24
100
-
1566
5608
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 260f423e-0647-408e-b12e-bd215b96451f
- Digit Scroller
-
- false
- 0
- 12
-
- 11
- 0.0
-
1347
5508
250
20
-
1347.551
5508.053
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- b458474d-c32e-4320-ad51-5c1da52b9f36
- Curve
- XHG..⠀⠀⠀⠀ⵙ꞉ⵙ◯ⵙᗝⵙꖴⵙⓄⵙᙏⵙᕤᕦⵙꖴⵙᔓᔕⵙ◯ⵙИNⵙⓄⵙꖴⵙ✤ⵙꖴⵙᔓᔕⵙИNⵙᗩⵙᴥⵙ✤ⵙ◯ⵙꗳⵙᙁⵙᗱᗴⵙᔓᔕⵙ◯ⵙᙁⵙᗩⵙᗱᗴⵙᗝⵙꖴⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙꖴⵙᗝⵙᗱᗴⵙᗩⵙᙁⵙ◯ⵙᔓᔕⵙᗱᗴⵙᙁⵙꗳⵙ◯ⵙ✤ⵙᴥⵙᗩⵙИNⵙᔓᔕⵙꖴⵙ✤ⵙꖴⵙⓄⵙИNⵙ◯ⵙᔓᔕⵙꖴⵙᕤᕦⵙᙏⵙⓄⵙꖴⵙᗝⵙ◯ⵙ꞉ⵙ⠀⠀⠀⠀..GHX
- false
- 0
-
1368
5909
50
24
-
1393.313
5921.028
- 1
- 1
- {0;0;0;0;0;0;0;0;0;0;0;0}
- -1
-
7dh5PJXb/yhwkZSUeR4yzzNbUfqsDiWKdBCNKiSRqchQiJToNFGRkgolGUs5yBApUuZ52uZ5bKBMt57T91n9vufev+794/6xP3949n57rGetz9qvZX8+dEvo6OgWf8TP689gof/xw/LPow7OLnoux4+7OCuK7rJzP+Hg4qy7VllNQ1ldTUNz3Y8XqqpqiqJ6Hk4nPdztdJ3tPE66H3JSFDX1OOzkYLPNztvcxdHOWZdCUVdfp2anvdZmLYVC0VBl/PkUPmJwZQM7l+N2J929lU1dnLz1PNw97Zb++CWT5z8PYz7kbnPUwdNOw/b4ChdXO2dnD/fDJ5baHjp56OdNy5cvp/85TzYZOjr1H9fwuZUsKxh+vGD9+eOZOB0d/Xd/erpH4v+saXaRno7r1/qotQ0mBoM17Pm9dGxBS8QnnnyRD5n78XuXX/ey0dP9d0zAv+gfz/9vYfjtddV6/yMxsdLon6sW+jmhebZ/T4ifPfXAzpW17PkL/0zISMCb9+eE3vy6l+0/g/5MT9D/xeSC//c3ElFOTPIF/HMtgSanjnLPmcpf7+uhgHkNXcnWVmgmnArm5qlRoeXd8JH4fR9sldihkXFyEAqJ+0Zg/dRYeZPQ+K/7J+DWQYNnAYenfv3dJ2DfyhsQofXl199/hTCV/u2PmWd+jfMNGHlf8ue2f/813hz4LZzvq8iY/zXuIsy5JzW56dGhf8anQ1lHOAt8k5egm8Rz6NHJPb4JwbwM6E/ieQxI1aT70pWzS9Fq4rmMaGTTthNRw4yojHj+MvSY8mz3QwsmdJ6Yx3JkKyeIkvOXIz1iPiuQmHCQ9Es5ZrTI83NezKiNbZilMHwlyiXmx4JuLzX7VDbPgryIea5Cu2aym2rtVyNNYr6siGNEvKC9ihXNEPNmQ/0um80+32VD9cT82dAbB+8t3/5kR8+JdbCjhzbJ2gtMHOg6sR4OdHZ/pyLDKw7kSqyLE1lbcosud+dEJsT6OJHuTkPOVTJcSJFYJxcS3HZmGUcrF2Im1suNvumnf+O5xo0GiHVzo4aNvSOCW3hQCbF+HpS5jp8qOsuD4og88KJwdeMaqTReFEjkgw+5KZ4tkbfjQweJvPChHdKZf6sI8KONRH74kZLo4FPNCn4kRORJAK0UEI7VPieAvhP5EkCDnDvDN2oLokYib4Lo7arg83pjgugFkT8hFM/0t/fWh0IogsijEApaMupkbCWM3Il8CqNDs6IH/1wlgkyJvIog+GJuZvlaBCkT+V2DhMdDtuw7tQaxEHleg/xOtt9R5RFFX4l8iyJnNy+eZ66iqJfIuyja78xxlfJeFNUR+RdFxo5PV2RJif3aBzGke3RLkE6AGMok9kMMKdlR53KbxVAcsS/iSOiwjydQxFE4sT/iaKU110ThFXEUROyTOJrdm+KgPySOThD7JYGGrbZ2l+hLIBti3yRQi0XXPsN7EsiM2D8J9P7P0/Xvv0kgPWIfJVHODh5TE3NJpEHspyRK2p5WWpkiiSSIfZVE0YZGemYrpBAnsb9SKHRLT26djRSi3/xzn6WQj56fllWeFJoi9lsKHUN8ac180qiT2HdptFs3Q27/if8cTv++/vuc+e1g+2T5jv7UQVj51sXt2InJjf/xtXynLxpmeMFhzmWtCR+5yXPpifaqDXlpISC8lPdqbIg66QUHjIRmAq/DQkH5IBOnHuk7T+ZepCZFQvCjOA4nDlPS8zt1V8dUx0CdhoA5zwYr0t9o0cns9X0AwtKu1UX0h0gvNWFpbwiLB8nsVonSF0dI9wl6Vhxy+zFoc4wZO2ofJz37yMYBtUdJ8NmkpHJC3510IcXrjbfSU0Dxcbd1vJkn6eYcHK35rWkQ7vXGZtc7H9KPcybFW1pnQBkaLvZ54E+6WdR8kCf1GQw+uZyW5xpIur+BAwfdwUxwnFxy48AfwaT/rX3OvLHtBajZf3tQsjmEdHnU9qp7dxbkijtF3fYJI90zrVCbqfZvqC6M8vCiXiZ9zSCThuz2HDjjhvROr79G+vYt1GjF17lgqhBbUC8STvrz9SlfvlPy4J6p4jYOgRuk/5E0bOXzKB+2BHUUTSneIj3W5tJGw7ACWMbfbK1tGUW6uMt+6o1NhfC0TO55XGQ06cXHX0Te+loIrFv7Cicm7pJuRUdvpPfkNeQU7Tg7rBJLek6LndblfUUgZn5J54L7fdLfHRtlcF5VDPzJMnVSBQ9I59F+XdCYWwxnzh91iOWLI/3hgHt/8bE38H67Wt9H33jSVT9utZHjLYGCT/R8IYMJpOt1JUXMF5aA9UFK2v1Dj0nfXxBuoe34FmRyXLZPdCeSfs2HYaGW4x14HjjuZ+CaRHrct0tHS7PegYmcSK33smTSndc2fGXdXwqn1mlSrRJScB5YxG4+WCyF05NR95tl0ki3cMwq8o0tA2WWK3tUlqSTfjdh77Wb8B4CLg8wcXRgP3L1VOJY63t4sFs02aEwg3Tdl2pmAV7lcHt415DQ42ekIys5z60cHyB9xXIGjvDnpD+2qrmr/+QDhLh59SoHZpIemm88544+wrQto8Zujxc4P45BTtW1H8HX9bShp9NL0qM03U4ctq+A/pOPjB3ts0g/9dcBJDFTARadCmuFj/xNenDvZF2oXiUEry9qcz2aTbrbcM1t4dBKeDmXxrTNOYd0ruZjdO8rKqEmWs376qlc0m/7pttHcFVBp7nvUulzr0i/paDg52tVBaKB1VET4XmkU7nidQKjq+DgNnXLuoR80u1dnzU9aauCusIr7/cdKCCdlYGxeVqkGjR0lPwLh7CHDj+YcbSuhtnoNcVhXoWkaxWqKDHfqwbj0JZ3KUyv8X7laCXUtVXDrU0Wk8KR2HdfjnpTJVgDox1fm8vlikhvLpITpt9dA4P9tdapudgNBL0cj92ogZB4qai/TYtJr43ujlxdVQP3XZZ0dvRiD40YeT61shY22XvV8Jx+g8/Dra2fBLbUgkfgNxMzzhJ8Pg/feRrmXwvlA4YnQ5Owc3BYWxpm1cKN9J3x6fpvSZ+JOhNiNVELbE2FIXnt2EOaRMdfydSB2ju35Y+835HeLitj5negDtrT0kwPcZeSrmjTcz0mog7qTDIqutOxv2W8EitRVgfV540oUjvKSF/60tafY7EOnjV0uwuNYlevC0KuGvVQ5pmaUxD2nvR1n04vbrKvhyrl5cErFMrxeS4T237p9o/vwHeXXBgrw34kjIVh14d6WFgm9Mre8QPp6xNDrz5YrIeddZz2x1k+4v87lrrxp9QaINDu9YqZZOztw2stmg83gF0IgyudaQXpV71WJVSEN0BY6JUk/ynsAvEnQvcVNwDnSFPoS6NK0rXFBNuDPzfAJ5F+Gds72FM3dR8ylWyEPe4v7v8xhv3ZjdCsArNGaDaaZzNFVaRnsn62aQlsBCfGL+kXr2NnVFhZFJfeCFU8ad0jPdjlv+qxiVEb4Vq+psyptdWkT3kkHjRf3QSpKfYi0qHYHcWOPPxjQxNMC9SETrdiX4hLvT/u0ARPvu/aPqhSQ/qm7fSLB241gbprufW3QOxvpKK0I4qb4NTx+DapeuztFZxJ1yebQFLwyoyTXC3p4+wbL+4XaYaoOMG58tPYRXPH+6aNmmEs2XObfiV2K7b557anmiEuV/pglUQd6Sm71IoSHjaDjlTbO/dT2K9YmhQWVDTD8/MWsjLvsfccZkGZs82w5uRmzVGRetLPm/NmnJdpgfTIfc+L3LFHljEeX2vWArcsLc4mlmD/y3jrk1K/FsjP5j53V6CB9D0Zq0PgSQskWlGfxzhjv5Ygzhxd1wIfYyMEnr7GHnjthUA7XSuMzcyXFvM04s/VGdkwZsVWSBtS7e0/hj1vMYtL3LIVOG9+uc2Vjz1zo9Zu6cBW6I/dKG3E2YS/J5yK7uZLbgX7kqQPF+yx394fLzvb0AquBrzd5TnYz/TsvfCRvg32OikV8bE14/Oh7ZphhFIbWNutqjtmi91sek+csVUbtDVNXXydhZ3tvlfWbGAbNPj171uzqoV0O0re9XvJbZAme7o64BB2um9OijqNbbCQH+LVl4n9hm6IYzl9O1yMm+rdwdxK+lF2cQlLpXZIW+qdnXsAu3pTLGeLZTtsyz4fo/gMewrrwpBVYDtI/rlC7x5TG+le/gv6VU/bIbB1+yGufdjtJGyT9BvaYUqnNTssDfvR1QI3ny3pgJ1hdvyMjO34+3DObkcRxQ54XfzAJGA39tmFcv/gXR2waUhfcz4ZO6/8fZ7BgA5oTe9L8qXvIH1y/4tDhkkdEObxKWZ2F/Y5oW1nE+o64Nr3dwunk7CX3uc61zXZAVkBXxRru7H/E1T4n9cfaZ4VuLToTx/wn/f/XzRC/k+Fj6HO9ocdH6RRIVEQS6N1a/uEDsvKoDSiMJZBspoBN3sCZVAsUSDLID41ATb7Nhl0hSiUZRGT8vOLg2tlkT9RMMuiaXkTBqfrssiFKJxlUb/MwOmxEVlkTRTQcqhBMvCrq4Ec2kEU0nLorZiQ66f7cgiIgloOvRR5MegxJ4dUiMJaHj0SNLWZ2SWP1hAFtjy6xTfU6pMuj1iJhok8Os99btf8SgW0QBTcCsiDQ6TS/4gCGiUKbwVkx5plSF+ogNqIAlwBWbD8WXROUBF9IApxRbR5xcgGJk9F9IooyBWR5rLzLy5WKqKnRGGuiCQZRFVZFJTQHaJAV0JcdNmJl4OVUBhRqCsh+nkzCXaqEvIhCnZlNPVt9E64jjJyIAp3ZUT9eoGH54YysiIKeGVU+UnsauS4MjIgCnkVlDeRs0LQSAVpEQW9CkoZtQi6G6eCpIjCXgXdGRqfW7OogkKJAl8VlXzSX1+lqIroT/ws9FWR7hS7F8ceVeRNFPyqKHOi/bnZBVU0QRT+qkhxPGky4rkqOko0AFRR3KiXcn2nKqISjQBVJDiy2ZGXVQ1ZEg0BNRQ+xPHYaoMa+kg0BtQQ82BHT5SDGtpCNAjUUGD/U7GWm2ooj2gUqKFvvd4HhIrVEIVoGKght54t0fsn1dBTonGgjga6OBtjRNSRJNFAUEcHO6lc1G3q6A7RSFBHDR3JO8W81REn0VBQRzvafS4fTlBHoURjQR2VtBq8f1ijjuj3/WwwqKONLVzLe+k0kA/RaNBAmU2d+tLKGmiSaDhoIKXGlLP2ezWQA9F40EBx9b55j0M0EJVoQGggobqts4OZGsiKaERooIga7nUK3RqogmhIaKCV1V0nndg0kQHRmNBEgZWp6cm6miiPaFBoou8fT4+NHdNEWkSjQhO5fzBUUI3URMlEw0ITDb7nOer2RhNJEY0LTXSorDsuY0oT3SEaGBTU+C6t89MaCuIiGhkUZPr2jAjFmIIuEQ0NCnr3xmivpw8FMRCNDQqCYt7Il48oyJdocFDQy9c9tTO1FPSJaHRQkHJhOrsOvdavhocWSsj3M/FV0UJdRONDC4nkbQvL3af1qwGihW7k8r2bv6hFdmn/+4rPmX8fbIKpX16tZqJCHAQPcq/GHui2J1+RmwpZgdEBm+SxM1VJ7tj74/36zedVA82xfz6WejIMqMDxiEX+td9v4wTwo1c/7qOGttktScQuKm5WNuFAhXt3UxqhBnv5zJSmtD8VrHSMT5yZx248ZvxkfwQVLnRdE8+W6SRdvyBg/60f4+Zf213xZSd2uZmA0Jo8Kozt8j2gehq7fbiKJ0ctFVoe5KY5JGDfPu3sbD5Ihcdnih7cr8RO6VxfFrVAhdzkZasav2MPCCod7OLshCWxOUUsUl14nr2xWqpynZA4XHgTdmD3Si2SCNzYCTfQpZ2u3th3natWajLrBI7wZTkxD7FvYF/bQnHohJ3G3jfKPmAvXPVnbqRfJ9QYOsR8msausTPZkT6iEwz3nbzML95NurW++uUTiZ3wQUief8N27PFU25qRvE74K5U6sscTu1jAwy/OtZ0wrRmc4RGL/UShY/b3wU54HGq/6lIZdngZN3V1sRNCGZZE3/2M/eXTMR917i6ISs2cShTpIb0mYWY9Vb4LntZciU/bil27qUU+GnXBffEvuunu2J8JnDG03dUFFHMLSLqDPdfic8IGpy54/KxKKqYE++WP36ylArtgcnOb3cUJ7Otqre6tieyChA11jk4CvaQnmtvHKKZ0gc3xa9Fb9LHXnjobb1zcBSn3R3bwOmOfEAthOdfcBSsS9ZvbbmFfPn1wfdVEFzxXmjobVYidnc/ziRZTNzi7ZwUZDmMXPq7RnSncDZsNldhHufpI72jyCzDV7Ib+t/ymQRuxn1WSVVm+rRueBtbuXnkUu9H49pT2Q90Q7H5T59w17EybkyrqvLohUbZ8YiQb+/DS9lPjV7phXaydk34P9jPHfGKUHnVD5GeZyxdX9ZMuNcNocj2vG7adYZTJ0cIunZn9cE19N0TsOTvdYI1d1np1RcNoN9SWSKa2h2C3cZlie8XYAxdcWUY+pGM/oVSSXSXcA9MrwnXimrFn6X1T5NPqgQPCQtwHGQZwPplt666b9EC/8GL3ogJ2PfNDSvr2PRB75Mr8WXPsNknZL5UDeiCJeX1Cz2nsxtneC+ZRPYAWstik47EbjaRe/TujB65GwgH9D9htz2+isy7vge2fX8XofsF+hDuvw6CvB0zEuapYhQdJ94szLvCk6wVOZoPuLH3sQmeyVMZ+fP62H0jO0HLC7vDxrxdplF7Y5sTJciEc+zVHp/oC014oralJepSNfUO4y3Ixp174/Fe37s1O7Es1CnNqLvRC7sWK/abLh0if9jQ1b3nYC9HhSTdrlLFbhqbL6RT0wsfg0cPCFtgftrCfn2rtBZt7mxQVfLHnZF6MX/a9F9T6xLZ9j8XOo375mRdvH/DF5TOFlGDfN6VXZkTpg5ibL6KqhrFzijhO+pn1AVMJs2wt2zA+H9ZpCPO698GyrX+UXqJgN37Qo8j94/N9O/VJ0Mxu7HZrjg76pPWBs3CpMZcf9vWhKQxGlX2whH9mddt97F5+8xznJvrgRLpm7I432MsNpMPl2fshlFXow9EB7Fc9krs2qvdDxAt+C6mVI6RrHhtCr8364VXqm5GzStg1/pApz/ToB9sbruC7A/vX62X+ApH9cL68aWKVG3YD5pvqk9n9cIy64p7Wdey6q5hu6LT3w5VIg57JDOwP9g2oTC8ZgPoggd0barA3ZUjYyEgPgC37tpscn7DLSnXYvjcagEm3Si03jlF8/lwdQd0uA3DY7F6TuRr2ermwRucbA1A5aSqRvQP7RKJH1/GcAXi/EJN/9zh21esawx2dA3BZPPPwXCj2PsEHFsXLB+HD571l1Y+wW/Ek7hVQHQS1Mfp84WLs8r3srJ2Wg+ArksLV3IF9MPfUHt6AQaguLE9aOotdUt2IPvfxIHjnzrnd5h4j/WZha/yHqkFwFM47HKmCfa+Yf4HR7CDwy/OHzG7FPsAa/URNaghMlmrPFhzC7sJUdztgxxB8T5zr6fXGfrJc6RHFZwjeVPr72V/D3rBZosQkfgg0hu+w6z3Gnu1WUVFaOQRRpxy+eeRhN4lf6h83NwQqwckP5muws1884t4qOwz5OpaXGgawD/r7K7lYDMMbhmGDJfPYr9hW8+8JHIbCDxPeXmzjpGvFDVy4nToMSekHmnUksPP270tTahsGbZUllC0U7JGhXc/Zfny++xg6HSK3YA9ZZ3QfaY+A792E4yqWv40/HeSUbT8CCQvfDVfYY2+jv/fN5+YIeMz1Ckt6Yp8ofcvn/2YEvkfKifidwz5rqR9S9HkEPHfcvsF9HXupl8sXfclRsBE42TsQg52tIWN+0WwU1s8kBX99gr1+e4DKZNAoWLzRZdR9gf36XaOV3M9HIUDOkzmnAPuLV2eWHu0ZBVaPdWYuZdg3tnkG9nGNQdo6lGlVgz2C/3Tnpc1jcPjEARHPlt/m+fb5CUvPMRhjz4go6cLOuX5N4B+PxmCLRKuW4eBv48xdMTZqHIOWK0ob5sewT7JdZnVcMQ79U3WfOz9h3y+UMRurMw7JyV9Lv05jZ04WhgHHcai8xLhx/Sx2/vesTLp3x0F0fnQ4ZR57JdOoU/THH/evKQ3duYh95eO18yHj4yAurMDf9pv/2jX4n1c6Ole6lXd/b4RwxFQt//39Sjpa0IIWtKAFLWhBC1rQgha0oAUtaEELWtCCFrSgBS1oQQta0IIWtKAFLWhBC1rQghb/L+J/AQ==
- 00000000-0000-0000-0000-000000000000
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- ab0c2868-9e78-4275-96bc-66b04365341d
- Curve
- XHG.⠀⠀⠀⠀ⵙ꞉ⵙ◯ⵙᗝⵙꖴⵙⓄⵙᙏⵙᕤᕦⵙꖴⵙᔓᔕⵙ◯ⵙИNⵙⓄⵙꖴⵙ✤ⵙꖴⵙᔓᔕⵙИNⵙᗩⵙᴥⵙ✤ⵙ◯ⵙꗳⵙᙁⵙᗱᗴⵙᔓᔕⵙ◯ⵙᙁⵙᗩⵙᗱᗴⵙᗝⵙꖴⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙꖴⵙᗝⵙᗱᗴⵙᗩⵙᙁⵙ◯ⵙᔓᔕⵙᗱᗴⵙᙁⵙꗳⵙ◯ⵙ✤ⵙᴥⵙᗩⵙИNⵙᔓᔕⵙꖴⵙ✤ⵙꖴⵙⓄⵙИNⵙ◯ⵙᔓᔕⵙꖴⵙᕤᕦⵙᙏⵙⓄⵙꖴⵙᗝⵙ◯ⵙ꞉ⵙ⠀⠀⠀⠀.GHX
- false
- 0
-
1368
5832
50
24
-
1393.624
5844.288
- 1
- 1
- {0;0;0;0;0;0;0;0;0;0;0}
- -1
-
7dZ7OJRpH8DxJ2dRiTbRHnTUUSJpt8OPlBIJFRFZlUROS2ORNNJW5BCdpBJTLQqTiqSDSTZUlENO5WwcBx3eEpE369d977Xte13vdb3/vH/M74/5zv25n2vmmcdzmWFGMAwz+HmGOjSyIp8fLMx2Orq66bm5uLi5zlExt/fwdHRzXaqtNl9TTWO+5oJFn5+oq8+fo6LHct7N8rBf6mrP2u1h5zxHxYS11dlxm6G9zwa3XfauS7W0NDQWzbf/UXubtpaWlqa6+NC7TPjzxdVW2bu52O/28FEzcXP20WN5eNmLfd6U9Bp+s5F2Htt2OnrZa253kXZzt3d1ZXls9RTbbrfbbuggKSkpkaHzlFNlGI3PPdYvIyst+vnJmKEHT3mGEenbJ8I4yA9/po+DIsw4/Hx1peXGq9pKxmbxGbnAEZNfXX4363D/5/15eKycCPP3eQVf0bBn/V1E/w7s8zrD5eoMnVC11NcnpDSWu8VUpnRs1qfhE1qj7KM4dEKX8Fi5Ly86dHmW/w8nt+KfD/xzBv8c0BnuOqwF1ha7DeuA3YV1G/6QjAd2N9YL6431xfph/bFsbAB2PzYQewD7G/Yg9hD2MDYIG4w9gg3BhmLDsOHYo8NlY5kIXGOZSFxjmWO4xjLHcY1lTuAay5zENZY5hWssE4VrLHMa11gmGtdY5gyuscxZXGOZc7jGMjG4xjJfbsqv+/X9RcesSX/s2zr3r+63TO7kT+vWBcHVo2JTzBcsIvv5Ye4tCgan4Z5Nb9fcZDPis5W7Exe84kDutwni2lu2EdeKnj63dUEizJ7ZaqNvQN/n/WDa4hR3LlhuMYiJOuxNvDbffrDw2TWosvXzVNUIID7zwEwlQUMaqH5nrugvOEhcIs7b4o/ODHj+znziTvdQ4gvSFQa8X90GB4mSO7tsIombuPC5c9vvgaTsj8Uzt58kLnPtXKZ0Jw9klygnHHoUTXztv3KtrtlmgxXrm6meYeeJT00Ij7v+5AH0Rmv4VphziE9IW3w9XfMPsAiaNqJb/hLxtzum+Ow6/hC2dxlGLeqLJ36kqX1eUFcuyB56H7pF5gpxPW3LvkLdfLA1iOv7sCKFeF2xlrdY2COY6MTU5hZfJV61bpdtX/FjeP/J7lHBiWvE1wdXKxyRKwDuSJfEB043iI86f1/7jH4h3Iw6mlhhkk5c30liljLrKTw92B69cFUG8SjfdvURxs/gl+350qJrM4k/0TyYl1T9DF7bcC/9bHeH3kdXAxdHORbBsnZd5pfAe8THWMaqFb0uArFodf3Zljzi1u2yM5y8iiFwUovpGa/7xPkqskq+PcXQGnwy6dzpbOKyARr1E1kl0CLru+fR/QfED1/XLnXpLoF3r6vC73blEDe7cMIwYkcp7E8NzRmv8pB4oXe53uWqUuA43J7vuzGX+F3j7B9qDZ/DyYhBlaNhecRnKDh2WmQ+h/M+9yPEH+cTX/jSTnXZ9DK4em6pTMjIx8QVY1TN7oSXgfbatFOVRk+IO4RVBQ+8L4PWEFZuQkQB8ZyAeWJzrcvht+t5WRkVhcSnKUf/ysoqh7nWfvHNcs+IN9baRjCTKiAwVYltkU5dwtl/23t2BTweJ37shHUR8UHHgNd+tRVgMvVFc5BoMXHJ2MLGm0sqIf7khPwfrlA/oluyLS+qElaeskpcsb6EeJpcqmLB20rwjVkvaPlIXfynZI2GtVUQPqHndt/FUuLHs/UjJsVXwWWTogo34+fEx3cMVnEGq6AgO9Z18Qfqa1Olf99j8QIqHaZ1mnHKiB9bbRKdlfICHJ/s4ycZldO/7xHrSLb4S7DqUhLo9FCP7Jh+q3DzS3B1qvGX5FQQN1obfjEj9SVYsyy6e40q6d/FzsvZULIaWkpWmsh/oD5/0Z17kdbVIDdLa4fhhSp6fQxtX0WlVkNkTHx0rPEL4q1+c2UdJGpgirvj61F91MOmVteIba6B1jdtg+GXXhIXSG8Q8eHWQMyBFP4U02r6/1M2pSFPtBbyXoivzu2nPs2+uuiDRS2Y7h+12juhhnj1jHnVMkm1kKO8/pjWhlriiWapfRJNtaBwYGDp7YfUh7/rv6zriKdaejwc3CfC/rL+//mh8w9fcMMbscPVwbKxPCwTh/tYNpaHZTi4j2VjeVjmAu5j2VgelrmI+1g2lodlLuE+lo3lYZnfcR/LxvKwTDzuY9lYHpZJwH0sG8vDMom4j2VjeVjmMu5j2VgelrmC+1g2lodlknAfy8bysEwy7mPZWB6WScF9LBvLwzJc3Meyv+7Q/fWfbugk8/j9/aPqoGfpCDvOt9Qjdu0c2zezDmI8zBfyN1J3WTv2lOiGOihf1vviwRXq/N6EsIn+dfCd/MDmsyPq6Q+Ij8/99RLqIPXujFGuFtRvuUQc3VtcByESMsyiZOohum0+T/rroHuVoWSvSAPxn6yeHdJUrYcM9aRr3E3UWxrjYtNN6+GDE9/IKoW60dMcAyu/ehg1vrr8vWgjcSvLjOQp8fVgtnKDVKAlde1g5wsTiuvh0aOjOv0p1DdlFqXDQD2USL0NshVrIp7+olwjdkYDPFHSCU20pG6l+nHO8g0NMM7IJagshTprJDtSjd0A0THc1Q2ifPo6MdbabkkNcNnilELeJuoDWxObR1c2wC1PMc7+ZOq//6q6W0miER6ol0nLijTT62M7vvCMZiNsuWF2xcac+gB3wuiLdo2QfMNzovtl6iMM4ZDu0UaocImUXfzpL8fn6xQeyGqEaNbehWmmLcRHy5nc3NfdCKD6FkovUu96o7FipUoTtBfpJoX0UP8eWve2mTaBSsmoZ0UGrcQLMiJ/CjjQBLlnJxeeOEP9nbqgbFJGE1xLko/OF1Dnj10nqBM0wYko9QHrpW3Enb0MpUsn8yEqLvzMslDqnIrv3eWs+BA9kdez+SX103rjai5H8kFxeoRn3Kx24hZqWlY3n/Ah9thL475fqS+Z3vSNgVQzBOpJnzXJoe6btWOMx8pmyPWbZBc6poN4aLfP2+UHmmGlTdXxKEvqxcG9HY9ymiFW++BsSw517xLuTkXJFthX6amW1kadmbGsQdOwBTKze2oj5gmIKzffOTMzogWWj1vTUeJJ/UZ2sMNgRQt4lDyMsU2n7mrvz7o1uRVUuZw5Sj3Ul0SN0bB0bYU2QUF7k1YnvZ7npBZX326FK1uKg+M9qEvPmbZTV6YNJvGu6+snUzc48qbe37oN7r75QSyeT13tmqNuCLcNnDo2ul+d2EW8Rl/8ho1YO4SfUlFcs4663vSbk/hW7aCsu8fLmk09U37+evnr7eAU3zmmKIV6zzdnFUtkO8C0zNo7soq6QMTYUWFnB2zcULsjRLSb+N5jmyLu5nSAilpW9pWZ1C3MRNdkThbAeW3X1Boj6j8G2dS9ChBAgYMSZ5wL9doOuY2rGgQw62Kk7bJg6nueVvlx9DohNJ4jaXyR+gN9BZXmS50QMFpjq/Zt6kzsim/fSXXBCpcHhV2F1G1Ozt2b6twFKfNWeLrUUt8y2i6t/1kXNFn05cUJqAfvyfn5plY3mAVKOSa+p67DkuRlR3eD2/nFrN5+6os8qpWW1XxZ098Xw98LX3tn/Sv46w+d6pHpI/+6lmGEIxzhCEc4whGOcIQjHOEIRzjCEY5whCMc4fw3828=
- 00000000-0000-0000-0000-000000000000
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- b458474d-c32e-4320-ad51-5c1da52b9f36
- 1
- d285a8e0-c870-4af1-b21c-2d8dfa72a6bc
- Group
- XHG..⠀⠀⠀⠀ⵙ꞉ⵙ◯ⵙᗝⵙꖴⵙⓄⵙᙏⵙᕤᕦⵙꖴⵙᔓᔕⵙ◯ⵙИNⵙⓄⵙꖴⵙ✤ⵙꖴⵙᔓᔕⵙИNⵙᗩⵙᴥⵙ✤ⵙ◯ⵙꗳⵙᙁⵙᗱᗴⵙᔓᔕⵙ◯ⵙᙁⵙᗩⵙᗱᗴⵙᗝⵙꖴⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙꖴⵙᗝⵙᗱᗴⵙᗩⵙᙁⵙ◯ⵙᔓᔕⵙᗱᗴⵙᙁⵙꗳⵙ◯ⵙ✤ⵙᴥⵙᗩⵙИNⵙᔓᔕⵙꖴⵙ✤ⵙꖴⵙⓄⵙИNⵙ◯ⵙᔓᔕⵙꖴⵙᕤᕦⵙᙏⵙⓄⵙꖴⵙᗝⵙ◯ⵙ꞉ⵙ⠀⠀⠀⠀..GHX
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- ab0c2868-9e78-4275-96bc-66b04365341d
- 1
- 9d0a89d6-8bb6-492d-a109-c81b095422c1
- Group
- XHG.⠀⠀⠀⠀ⵙ꞉ⵙ◯ⵙᗝⵙꖴⵙⓄⵙᙏⵙᕤᕦⵙꖴⵙᔓᔕⵙ◯ⵙИNⵙⓄⵙꖴⵙ✤ⵙꖴⵙᔓᔕⵙИNⵙᗩⵙᴥⵙ✤ⵙ◯ⵙꗳⵙᙁⵙᗱᗴⵙᔓᔕⵙ◯ⵙᙁⵙᗩⵙᗱᗴⵙᗝⵙꖴⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙꖴⵙᗝⵙᗱᗴⵙᗩⵙᙁⵙ◯ⵙᔓᔕⵙᗱᗴⵙᙁⵙꗳⵙ◯ⵙ✤ⵙᴥⵙᗩⵙИNⵙᔓᔕⵙꖴⵙ✤ⵙꖴⵙⓄⵙИNⵙ◯ⵙᔓᔕⵙꖴⵙᕤᕦⵙᙏⵙⓄⵙꖴⵙᗝⵙ◯ⵙ꞉ⵙ⠀⠀⠀⠀.GHX
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- fd4f2049-66dc-451d-986e-db1e735564bd
- Curve
- XHG.⠀ⵙᔓᔕⵙᗱᗴⵙᴥⵙᑎⵙ✤ⵙᗩⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ◯ⵙᗝⵙᗱᗴⵙߦⵙᗩⵙᙏⵙ◯ⵙ∷ⵙ◯ⵙᔓᔕⵙᗝⵙꖴⵙⓄⵙᙏⵙᕤᕦⵙꖴⵙᔓᔕⵙ◯ⵙᗝⵙᗱᗴⵙᗯⵙꖴⵙᴥⵙᗱᗴⵙᗝⵙ◯ⵙᗱᗴⵙᴥⵙᑎⵙ✤ⵙᗩⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ◯ⵙᴥⵙᗩⵙᗱᗴⵙИNⵙꖴⵙᙁⵙ⠀◯⠀ⵙ⠀◯⠀ⵙᙁⵙꖴⵙИNⵙᗱᗴⵙᗩⵙᴥⵙ◯ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗩⵙ✤ⵙᑎⵙᴥⵙᗱᗴⵙ◯ⵙᗝⵙᗱᗴⵙᴥⵙꖴⵙᗯⵙᗱᗴⵙᗝⵙ◯ⵙᔓᔕⵙꖴⵙᕤᕦⵙᙏⵙⓄⵙꖴⵙᗝⵙᔓᔕⵙ◯ⵙ∷ⵙ◯ⵙᙏⵙᗩⵙߦⵙᗱᗴⵙᗝⵙ◯ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗩⵙ✤ⵙᑎⵙᴥⵙᗱᗴⵙᔓᔕⵙ⠀.GHX
- false
- 0
-
1370
5750
50
24
-
1395.726
5762.778
- 1
- 1
- {0;0;0;0;0;0;0;0;0;0;0;0;0}
- -1
-
7dp3PNXv//jxYxRJZSWKrAaFTlS0PGlRyUiDSlZCZnbKrKQkWlaDQklmQ5KkSEZ07M2xZ4iGEn7e357vc3X7fG6/f75/ff84zz+669Hpdb3O4VyubqGwUCiUqen5x3+Gm3X6l4N7La3s7Lfa29ra28mKHzB3dLKyt9usJL9aUV5hteIa5ekPqNTVsuJbXWycXRzNN9uZuzg7mtjIiuu4mNpYme02P7XP3trcbvPatQoKyqvN1yuZKa1du1aROuOfVYT+5+Ly6ub2tubOjqfkdextTm11cXQ1Z5/+Qw7XP4txmTiaWVq5mises51l72BuZ+fiaOrEfszE2eSfB3FycrL+c588yykUhWmv/57NPYtt+oN5//zydAuFwvrLm5XycMuf5zQ+xUoRwOdHr6zRUu+t4H3TSeE5yyI5nPBtRcDv6T+3x8fysFL+c4bhv9Kf/uY/CxvjIwfVP/qgAar/3NCE+H/fkDBvylHd2ZW8byb/3NCuhacW/HND7/GxPP9e9J+Xh+3fT9P/4uZmMP7uvzf3H/Kg4igVVUV1UGPUAfVBQ9BoNBXNQWkoHR3+d/2TuD4qjlJRVVQHNUYdUB80BI1GU9EclIbS0WGU4ojro+IoFVVFdVBj1AH1QUPQaDQVzUFpKB0dRilOuD4qjlJRVVQHNUYdUB80BI1GU9EclIbS0WGU4ozro+IoFVVFdVBj1AH1QUPQaDQVzUFpKB0dRikuuD4qjlJRVVQHNUYdUB80BI1GU9EclIbS0WGU4orro+IoFVVFdVBj1AH1QUPQaDQVzUFpKB0dRiluuD4qjlJRVVQHNUYdUB80BI1GU9EclIbS0WGU4o7ro+IoFVVFdVBj1AH1QUPQaDQVzUFpKB0dRimncH1UHKWiqqgOaow6oD5oCBqNpqI5KA2lo8MoxQPXR8VRKqqK6qDGqAPqg4ag0WgqmoPSUDo6jFJO4/qoOEpFVVEd1Bh1QH3QEDQaTUVzUBpKR4dRyhlcHxVHqagqqoMaow6oDxqCRqOpaA5KQ+noMErxxPVRcZSKqqI6qDHqgPqgIWg0mormoDSUjg6jFC9cHxVHqagqqoMaow6oDxqCRqOpaA5KQ+noMErxxvVRcZSKqqI6qDHqgPqgIWg0mormoDSUjg6jjEMK8Z9zBp8O9dH8b2Gb/nhhEwXHjr9/neMXbfjPnhIjILXomwW8FJdWcbVoVfm3T4j4WrR+dYNdM9o+2gxyMM4rrFpS7KY/fGFr1O8l4hoijK75W7FvYvQCvMrd03QvWIbRHawEBKSHg0BKSJuPRWwNow+cauZq+3YVitmkWo8t2Mzor6xnFB0avQHtl2pEjtZuZfTsmDxRh+EwaPDrUTH8tpPRl/y408b/ORIup72IVTupw+j5eyrHlXrvgMG5ypel2vsYXeGa8goLx2hoMRgxXB+qz+gn3vE7dAzdA1sPtW8m2wwZnW2BeCm3bQwUe2t18smZMDp3pJpGXW8sFNs8DkjpN2N06mLeni3HH8DV3JtOI03HGX1SRff1lraH4Dkq//g92wlGByOz5jLDR6DHPfGY19CW0VXuZVn21iaA9VTw82ZnB0Zvrj7k66eXCHPmlKys2efI6PZ26/eHliSBfUuV3DEtZ3K+NMgXXqyeAjXzJIZcTVwZ/aXbY/9ZxqnAbripbSrIndH1rEo3KomkgWR86MvBCg9Gl7OYUyVQmwbpy/UsFRQ9yevcqEmJuv4EtP2XSr187M3o3cmlDuVaT0HS+xY1Y7Evo/9IsWl5POsZXJt7yU7S2Y/RKxZWcEnnPQO2yLJdvNVnGX0jz6sXW72eQ1HYVQuPbecZPVF0adq4UjrwGAtz6b3xJ/dTfL1A80s6dFXaLwrZEcDoC5V2VCsmvAD+GS3Sy+ovMrpJuuPLJNMMmPv87LFZHoGMHnzFV//FwpfglUOPk1sWxOgzX6rf21P+Elaudj3h33yF0Z2y1C7aXsyER1Ny1md1Qxhd7HbpHAHVVyC02qGetv4qo7fST6xR+f4KVD7eyFoifY1c/3U/V+/jLJh/2VbMXeQ6o2dqZz7kNXkNFHajzlzBG4x+jWveiufzs+HB6fT3lAU3GX14o1wmrTAbQg1Z9iwXDWV09Xd3L5p4vgER+eNNq2TCGD3q2wsrBaEceDRzKplvYzij/8pZO2h9MgfiLqylfdgbwegJFx7/PFyUA1vUxJepO0Qy+pr4MGUWqbdw5lKrTcD1W4zu5/jkyKHTb2F5Hofy2azbjJ58m1v0eMVb6Jw5NCLff4fR71bLrZNa+Q5WblvS6icWxeixnoonQvzewY/OY/NeyUYz+lL7IZ/EunfQ/syL5v2RdB0WDg1Xai6oV4stmm1/j9E/cfJdH/DPhe3s9lv1Be6T+9+euXFuUy6wz0m6ZJpF+vD3Ool6hTwIlTspttQihlyf4/ZK7YA8WLStXvSWQCyjH7O7td2mKQ9+HSgIfpNHOusLVjOqwnuQqRa0DXKLY3Sp1Meekf7vIUGh5taU7APyuo2rhD6qfw+8UleGeTpJ/y6979kR+XxItrOTz4p6yOjxvVe7nvjmA6XlBsfvI/GMvketZMvjynyAOk3RYpFHZH9wlOnatvwDvB7VoSxpIb2YQ/mb16kPcJmfezVLbAKjO/4Wuq1f/AEyDBrEDK0fM7oQR8TcMpECKOcwlFNYm8joI157A7ptC+CaRUqCB0sSo1d+L9S8lV0ADg3FdVQa6QLpwQ/75xaCsVHuZ617yYy+L/zwQM3RQuC9v3j2J+cU8j5aJ+dmlFwI25N5Y/cvTSXvOyGrRN+JQjgjHVptd5V0bq/Rsc2aRaAieWFh6iTpN7m1y69HFoFzzZPjgrZpjC4sk5Hu11ME7P6nH99tJL1MAeS41hXDFUmuiu17njD65sct72XOFsOxMwFvOd+Qvk00Urj1UzFIRu3d37H6KaNrm1wuWiXyEUTzVlpUxZGu9HDmufmWH+FcoEdR7cJnjJ6VdOfX1acfQejdpT39IaSvjNkwEDv5EZr7y1/O4nzO6HymsuJaO0vgB+uaSqoP6XmH11kEXS+Bbx2bDA1/kj6gGHnLtKkE4tTdeS87pTO6stCieyXLSiF/T/6jl4Okv9WfYV5qXwp6tvENbSdekPfjFdnmYxmloCwfZcDeQ/oD0VHuq5RP8Mb6ZMXC4xmMLjI0Z3yvxiegUKe+S3aSnu2yMSsh+BMILeKyFzZ/yejprhbW4dWfgF/sRu+vTtLFdTwXXplLA6P6dax5FpmMfjV3asGt1TT4eWDqxsk+0h33HXBz2kcDxTy9wCnbV4xeO6defoEbDXTG8rdaj5Du7Zxr6h9BA80Na6zS3LIYPdq62OrtKxqULX/+uWSCdHt/MbWCJhqE5wduzz73mtHvXKCuvDVFg6DT8xu9uLMZ/aSC6e4NEmVwM+HLY+6bpL/8Zi3wYEsZTCxtCDRb/IbRy428ApvNymCFgAGfbzzpyTsLWDvOlUFhlXpTqnAO2d8skp+lx5XB6ltSSr5GpL+c8ZrtYH4ZPHZYVZgSR3q3QujG911lsD/p7K8NA6SbeWzLZ+EoBxnVmewSim8Z3eh2ZBb38nKQSMjNNPYgPdeI/1zXjnIYF1NwGHtL+hbRKofg4+VwW3XF3a5Z7xjd1WqslcO/HO6dc30qs5f0ZpcyOZ24cjjIo78uJ5L0cv/BCsu86esbXbGLbyd9Ib1/3d72cqjY6dtMl81l9G8/u95zs1bAdV3HcQtX0v1OHusNF68AH8WYPZtySFfy71v6Q6UClsoHKh3hymN080r92OWGFRAwUJWRv4903nlq3StOV8DeM23bPKJID0sUOcISUQHOC/afcukjPV9ezP1xegVEjB4bTF/7ntHHfmo+lamsgBhvBdjsS/oN6PU686UCvnsrCHGUkL5IeKdD7NxKoO+jfuMTzidfz6cVWe+vrAT251p+Ruakl6e6ZrhoVMKgkcex/jTSfbVOCombV0JrzLLtzydJn5EzP+aebyW8zntS/2r3B3JOuMH79dedSkic35I5EU46D1v/LtnMSjjSY8Dp0UW6gEu46rrqSjChjlmsWlPA6Ds4lfSFRyphm1tJrIgf6UU880Sq51TBzM8K51VppK+e5yRkK1MF0Q6e5RGLC8l5VaO1vHlbFahbzjVfbku6VfqGkZXGVXCEW2eg+xXp41zn2PefrgI1M1HVeq4icp5vz793KLQKynM/rZowID1IuvbQ5rQqcKN8jNB+RPqCXoGGieIqeNDJoUIbIz2e18jxdlcV/FRYdcRLo5icEw7syxdmqYa1axvz9MNJ5xBJNnddVA1KuttsjvaQvjluWe+TtdVwuoq++YryR3J+gIGGT9rVYDCmurE7gPSbmbpjJVbVYJOlImdZR7oZy+dPSWer4fAovyDPihJGnxKZscjhTjXwXP5U1ORB+t1ZbUvmv6gGD7cdKbRi0rVNym7doVXDzPrIxG6RUkbf8Pv71Ky+apAKmt8nYUe6z5WfSw+z1UB64GIZrzekB4atOnZVpAb6Og98HOf5RPbtoEvHktbWwOm5tmURpqTnuTyLTdGqAcEP7A4Hn5EeH188Hm5RA2HqzZnCbDRGNyhIzbLyqYFgTrsEQVnSrzibuUtG1IDKDv5FkvtJd7ZVnspNq4GS8fYzG71IH/q8+rZW0fT9g9FV04ekv7PpH3zXVgPF7E49oTTSgc3XS2K8BvjMuCVrf5LuU5dYfYK/FgY7zzculSoj55bVLd5RK2tB/PGhl96apAvsVmPJ2VoLW260He50Ib0nXZD+8XAtXP8VY3UgivSvZyqi8p1qAZqUL5UXkB4bxfouKbAWNDh0LQxGSD9sp5LvF1MLMb2PEvsWlZPnJSi9YserWrA/yMHpv51002BDq7HyWlgYICez0p70ugLHiYi+WuC/Ufe2Lpz00Z2DhitZ62CLUcb5q+9Ir+FXpyQJ14GOvOGKvQOkz1JuPSi2ug6kDq23WCRYQb4vZM6u9tOoA9MH178NAOm8cpS+GqM6mDPlFZJvRXqDdQdFzK0OGsxpXx9eJz3xeMl5/St14JIg0BrymvSgB29az8XVQf7bC/N9u0kP7Uo7HZs1fX3t2fvceSsZXdI0JONFRR0Mi4sau24k/XzYlvHsvjqwSfw46WFO+pvBpNhMlnq4fu3J9/PBpJfwZvI/FqqHpRe654W9JD08+mBcyKp6UFT5xZ/cTjpF7+wz6x31cCW8u6Roel/8N7+6tydyk2E9iMXwcH1WIr3gcHMSm3M9tAsohgqYks7x5vS2t5fq4aiMsZraZdIvGQanudyrh3ODXxsc00m/75+4QyKjHnZTrik9opOucTdUL6+0HsIC+Zd3cFUzer+++jKjzun7uXXRS2ot6U4aX7lGxuthxi8qv4UR6XK68zU9+RpAkmb9Kvki6Vo81gosMg2wySNT69dT0nfksM/wggbwqHsWt7OZdB+VHbO+7m8A0Ry2yNucNeT5dn/2M7NpAO37h2aOKpD+Wnfhs49+DcDjdzJf05B0syadplURDbAgfDL90QXSabF+m4NSGmDOeOrzWU9I19fi4+t83wBLfq64Z9NI+h6XulClxgaIL/6tXz6zltGXc8jPPD/SAMlOUa83rCZd91R3eAlnI+z6aJ8ad5j07c1m/rxijRBV8oif35907+rL7LprpzvlWJFfKuniRxvVL+9uhB2SgRlf60nf52pyNtekEVq+Nr2znFFH9oeEvJ7vbo0go9Jb2rzqr+6oGb/sSiMofmHLPXCIdDv71uG9sY3g47fbn3aOdAl/vuHTmY2w0TyaoplCemu1UPk9WiPIpt5fWFhH+purDW/zuhpBqjf5tTp7PaNvezTa0/G7Ed59q6/4IE/6a7MUe1b+JlhKHVXfaUD6+eL5nqIyTWB+123Gx7Ok8031rlsHTdC2O2JMO5l0O5Pkt5r7m6DmndLcqlrSLz9+qGpi3QQBcc2Kh9kayP7T0lLl5NsE4ea5B9vkSN8pKnP/XFgTFAvlWp7QJ/3KYfH315Oa4KeV8YFRP9L9WamG93KbYG/cWx7PJNLTrK9dSKprAtGW5ACOWtJHt+8zzhhqAppiSMo11kZynmw+wPpuRjPUi9u4LZYjXVBn74WiRc2w4ltnecJB0jnDajjKVzfDU/1Nz5X8SD8atPdWrXozrOlT53ufSPqsktn6zYbNcGzkVPPemr/WPbVCr92pGbpXNsxtZWki54cvz6O7LzaDaRRXhL0s6RdOhOn1RzXD92ubnCYPkP7b7pbn4PNmOHt5/Y0gX9IltZxWfSluBsXjhqMiiaT326a7j7Y2Q5hzaEBiNemGF9stvv1ohorXxzQ3sTST822NCdePOS3golan9HEl6Y6L/WzGpFpglc7NbUcOkC7x2Dvi5/oWsBwttBnwIX32Rt9bv7Rbps+HSo/PPCZ97oeI0+PmLXA8SHacu5p0g12Far9Pt4DKfX/9O5QWRn+6fuLr76stEFKS+kZuJel1Wby3Jh62wIWgGLns/aSbJn9SnnzdAjLpnVFaPqRbwPeyyYoWcHa8INCSQPrl90JWU70tcGRI8ZJ9FelZ2Y7uCWMtMMM2tfbTF9L//HgBHQb5/vl5EtJfaOknTnmz+vz7+/9DPwjx3//x8T9wojyoECqOSqNUVBlVRTVQHVQfNUYtUQfUHfVBA9AQNByNRuPRVDQDzUELUBpai9LRHnQYHfv3+fv+kRPlQYVQcVQapaLKqCqqgeqg+qgxaok6oO6oDxqAhqDhaDQaj6aiGWgOWoDS0FqUjvagw+gYSvH7IyfKgwqh4qg0SkWVUVVUA9VB9VFj1BJ1QN1RHzQADUHD0Wg0Hk1FM9ActAClobUoHe1Bh9ExlHL2j5woDyqEiqPSKBVVRlVRDVQH1UeNUUvUAXVHfdAANAQNR6PReDQVzUBz0AKUhtaidLQHHUbHUMq5P3KiPKgQKo5Ko1RUGVVFNVAdVB81Ri1RB9Qd9UED0BA0HI1G49FUNAPNQQtQGlqL0tEedBgdQynn/8iJ8qBCqDgqjVJRZVQV1UB1UH3UGLVEHVB31AcNQEPQcDQajUdT0Qw0By1AaWgtSkd70GF0DKX4/5ET5UGFUHFUGqWiyqgqqoHqoPqoMWqJOqDuqA8agIag4Wg0Go+mohloDlqA0tBalI72oMPoGEq58EdOlAcVQsVRaZSKKqOqqAaqg+qjxqgl6oC6oz5oABqChqPRaDyaimagOWgBSkNrUTragw6jYygl4L/855zx/zvYxEbn5yaw0cGm8QG/EAed0TfdcdpNmU0HtUWdGzTmk65FZw+jCNLhmcErl5AVpJdJh7dTJOhQr8Q9/c8t0m9KuCmwyNJhpaZcr/h+0mXMfM+zKNFhWeIycasTpFcfWtTCsoUOtLev9NK8ST8toriFdQ8dNn609Pt5g/QzpvCEVZ8OWiZmCWoJpJ9coarIZkaHDcKRhRffkF44nF3IZkeHmhPPmsoqSRcW+OTBfooOaxz5OoT7SNfbOFdzxjk6zHj2sc5kinTuwtitM4PpEFP79NUjgVZG/6K/w5Ijkg5VRjr+X2RIP6eh8JYzjg5Jmm1r1wPp2bvWHOBKpYNzoXG+zz7SWTniVnG/osPm3FOKBVakr8s9cWBuPh3Gz1x1n+dNupfwrwqeMjq8Fn4XcuAG6XovDzzhb6RDpWiD651Hfz1+jcBvwW463OwyXtqRTfqPmgNZC0foYCB0OXRFJekvQionF0/QwZd1Z55DL+mcTVWfpDhbYebPdfHpk6SvKFq3SYa/FYxjHm78zd9G/mE7aaG7anEr7FC966YmQ/rGcnvRddOv10hT6T5/FdKPnuxP3rymFS763yku0iNdnYdn/o7p11HSWLRyrhXpm1YkGmnvaoWVOfOO7/Uiffcn6SiD/a1wdnW7+83rpJ+iBHYcM26FSZsnbLXxpMNCF7WT1q2QtXXrhHA26VJa0gVerq3Q6DHjyOEK0o1X+gcG+bbCnHBewds9pEsq8UXdudwKhneXSzROkH71xqhgSlgr1GUmOS7ib2f0kazvHO/ut4IuPXnKQJr03RrBF6qTWiFFty4rbDPpqfl1jwcyWmH/Qs+7lXv/6gl3AtnzWqHe6VI4jyXptdu0VRZ/agVvoZC7uz3/WpfG27i+vhWKfV/GnL9G+rsbLz0PdrZCFF9JZPZD0lt4Sje5DbeCmOwK1+9ZpBtsvawYMd4KRbIflsuVk273u+fM65ltsMBg1T3TbtIPb7++poO3DRYl+VSE/ia9uva76xzRNjgSapVSyNvB6JFJKibrpdvA8uaypePLSNe9epDXUrEN2vO9l6zcRLpUzUhcxPTXU5du/m0DXdK9uC+qlO5sgw9vy874Hyf9Hf3I+Iz9bdCiMPEk7TTpLVGeE6rGbaDwYIlcQwjpDW5Fx72t24BWda+W9QHp1ge/Gbx1bYOmFTvvS78ivaDh/K+Zfm3Qf/O4qyaN9CC9RhudoDYw2p6patdJenPqmuo74W0gtcdlIOgX6WlZj44MxbRBId+6Y4/ndTL6Zl3l5dtT2iDxFvu1/CWke4m/M4zKbAPVSS2jlvWkLy7nkZl83wZnAjqffdMifcmquicmZdP38/a7x6xjpPsdyF5a1NgG8TtmRyw8RXr6qn1JStNf95WjLN+lr5C+6Ieka8Lo9OdRe7b7mhjS73M+SpKcaoO4wjj2zRmkqz476hfN1Q4ZWeE+W0pI/1L6QmqJYDu4+g1/2tZG+gvu5e+SJNrBwvpn1dYfpGfJigdvlmuH2QobXYC7i9ETNYVfVyi3w7PXzsFKEqQLFAV5O2xrBxZ66AzZdaR79E5xCei0g+X1Ny9EdpP+QfLXjezD7ZANa8/PMiZ9wmzePgeLdmgyN9UccSZd0LXRW8apHfJP0/qqL5LO2cCp2+fVDnvaJTe/uEv6zVs7WJ5eaodODT6x609J11XWLT4b2g5tWpbWJwpIv/e1v+/I/XZQshgf39REemUB/bZKcjuILk54xDVCOjV1crFMZjvsCj6gWTGzm9ED1ARTRfLbQSu2LTN0EelXYr8GC0+/n2PnyxXvo5LufshoSqy5HUoL5uyds510RwseVWpfOxx9rSuVY0D6luuPbuz63g4/xLJ4be1IN/N6o2rP2gHmrWOD/GdJv7fzUsDduR1wMeR94LMw0rlmdafVLuwAASftF1qJpGsUmlEWL+8AzvlBam05pL/aXpprp9gBn+xdRuyqSK++9VCiGDrg4dyChK+9pCevXOinqNkBkkPBkk6TpIu/j5OL1+8AmdYJqT6+Hkbf8DJzj4x5B2h/igk0WE76pjU9e16c7ABng17utxtJf6fMZrvXa/r97PDCRVyH9E5fdsr4pQ6ISzl13u0Y6Ye0FyikhXWA7ZFagXx30hXHr9i6xHYAj4tc5ewg0v1Oeo6op3VA36rdQRr3SNfxniUkk90BCwQ9fp1+TnqGZA2bcHEHVJilfI0rJN2BPotPqLYDaivlV+c3kW6WZBO4bHqfCm7yd2j8QvrkF+mSbSMdED35+VjPjF5Gp1VWiThNdcD9GQWlvcKky7vR8tO4O4G6Y9SSLke6a6ALH8vCTjgv7DlcrEb6q/7re02Wd0IZ32XhxP2kn7giklK+phN+Scx+5mNF+rlfrz33b+kEscwf9js9SS+JbZvZp90JNfP62WdeJb3/cHBoiGEnNLm/WpYeS7qVe77TTutOyE83CjTIIP2O29gXgel9MOngk+ahYtJbTnfojfp3wuLnxdXuLaS7v3/a0nGjE6pnsiz7OkK6h9el+t770/cT3uNpMrOP0c+v/XGeNa0Tzu1Rv5ojTPqUmIv8qjed8MZk7yxeOdLf6n8YtZ/eN79bPU/eq0p6xMM8qfcNnTDqQV92Xo90wS1dk/J90/dvbi0Wf5x0F6eGD0ljnZA+8WTLq1OkKxsH5qhxdMEXx5H12ZdJn3nWYFn//C6Y6aSQmhpFepTl8NaEJV3AWW2+7doT0l88+qLrrdgFvCWP7pm+J/2Uu9HlE1u6ps8t+XYStaR/ulkhZ6PbBR/DCnVL+0jvyuKyPTe9/5qri4xYTpCu9mFP4FP7Lpi7I3RgeF4/o3Oc5b7z06sLLnlJshyXJP3bvEsdB650wamcowUf1pAekcUZWnynC4Y9DnfMVyedf/uC3oNJXVA712pE24B09WK2eb+zuuDDSYnrLtakm5y8qZ7xcbr7Oev7e5IuofP99eXG6etfGmn3DSa9Iu3JvVMDXXBcWqvM4h7pZe+aRLx/d0GH30S20lPSr3StMb3D3Q0Ry4+qfckjfZmnhFelSDfkrXs650Y16ZYf4+OWyHWDpOy6J2I9pK9suDUZtLkbzogmFVz/SbowTTWTR6sbrIafNg1xDTD60hlF3xKPdoN88tkriiKkF3Vp1Zvad8OtJp8TR+VIV8yyOKHgM319szNLHFT+evwmh5ZFV7thUeQeJUtt0hV2Ldwtdr8bvtlqbNlhTPq77XdLNz3thtjA2vJZJ0kX/HnN0jmvGzoU/cOe+JJeWLVvW/70vm8ZeWOu6jXSNyymOCt0d8M8aaOStPukfzn4diRjrBvuK2V4czwlfZ/ksk4Drh7gDv54XzWX9GuSX3Tmi/RA4CfR8iMVf13/3Ca1frkeGJQVu3e4nfRw5dysBugBt86QuE2jpLs3Ohd06fbAcrli5ynWz+Tz/ij7OPf094NtMy7FxvCRPrr+ZZimaw+s3ZlfJC1J+kwnYYOHAT3waxbN88pq0nmsFB6I3OoBbdeD+ypVSffs/uqWmNQDIdfcO39qk77u4Je8Azk94Pg8r2DyKOnXbuj7LqrogceZe0LbbElXPDB591dnD3i+TemKPUN6UveROV/HeuBEpLDe9kDSU90jXnJw9wLXm30uuRGkK8wPuLJWrBdM2Uq7F8eTvkcx1dlToRdul97ZfjCd9KxvuntbtveC/P3gFTZ5pDdtspl92GB6n82QVjQsJ91LPNd32KYXHsgn/5ahk/7zZeeNKJ9eaNkju7T8M+k7n6yRtLzRC0ubzuzeP076gHAv+674XiiV3jPvKecgo5/hExHcntULPxslefvnk67pVyJrQOsFpf2mI78lSd9u3C/q39ELLiL79vesIn1ztkFW8VgvnNwi05S4ifTOnJ+1MnP6QM+QRX7XTtLnTqZtiZbog+e6gwNv9pPuG+OSL7+uD56y/Xozx5T05BTNVVW7+uDQ9hVainakh50/vOO6UR9M5p0Hqgfped/6yi2d+4BdVmgzuz/pEmoOkfsv9sFr6vfh5Kukj/HfNDa42wd5UWozqXdIV9sL3U5P+yAwTk7mQjzplksiBmML+sA7iJXj2VPS5SaF1g409UGSnYRWevZfr5vfRbedo30wn8KZHFRI+jM73pNZnP2weMu+mvWVpJd6bmzYtrgfEiQLTmc2k54Ek7Ztiv1waf4erXm9pCsvyWu5sbMf7i3/wao8Snq4uFPnYaN+CM7j1F4zQfqhS84KSi79UDL8rYeNY4jRa2qz3JcF9sOLSIuABzykm5hVWMpM7++llSpdixaS/nV+fRq86IfImeFZZlKkL1h8k8WqpB86eUrzPWVJzw12ZI9r74e0455vrdaSHsF6zXx0eh9/ufDCieUqpGcs/1iqxzMAnq38vuk7SD+rn9nzftkAsHCGvRfUJj1lcfahnZsHgM+o7Kf6QdK50jmLm/QGoHRhJX2nEemmAfeb/U4MQNADNhCxIL0zxnG98vS+fNlmYX22Hemesju8JsIGwPzqylOrXUl3KqjRKk8egC/34zqcPEmnc9bsTn8/ADIb9nedP0f6qtIhgUeNAzAQbLHTIpD0tY/KNBKm99lF7Lb1C66RLrZe6fxLrs9QH3rYIiyc9Ev+n49XS3yGW3pX33TeJV3zSMNFyvrPYJdU/ZQ1jvTxO5wXlXQ+Q8hHY8HBBNIf3o6b9LD4DP4fKzIfppLOeoLvXJHXZ3jWt811VTrpS1Z0pS0N/QwjsZvEzr8i3erYd7HLSZ+h9UNGUHwO6SJ6R80npve7KBv5WxHvSa9V8Bc61TjdOwMl9YtIn311xafJ0c+wJnIDpaOUdMdIs8VXZg9CKU2cb3PFX9e3SoxcJjUIqyxilMxqSL+xt6/mw4ZBqHR/qHuggfTBtc5WJ/cOwvDI9S2CLaTPKxJukzwxCG3z9Qbvt5HON7CissF3EMbb9Tb87iR98aBX2a2IQVjhGThHsvev90vXaWvTtEHws3DVERgg/eqkqOKq6fe/XZ7w5/JB0htyJzNYWgdhtSP7J8MvpLe4HgmqGxuEt8I67c9G/3pehhKq6dPvz0Tp+0K130jX4Ok3DpMeAsEXskYffpDeUc/rfUZ1CEr0U+L9fpIeU5kiY64/BNxNbj2zxklX4H40pOMwBFcGTfkNf5N+JDnFCAKGYHZho9iZCdJ5qQc5qdFDwKfSOsNikvRixyE3yYwhmNU/kS06RfqHCepmQdoQHG/ZvSP6r360v7GDq2cIPlQGhA/+1Tdvd4xhGxvC/xcg/c8M/1c/RJ2z5u8fhPB6Lcv+9+9nU5jDHOYwhznMYQ5zmMMc5jCHOcxhDnOYwxzmMIc5zGEOc5jDHOYwhznMYQ5zmMMc5jCHOcxhDnOYwxzmMIc5zGEOc5jDHOYwhznMYQ5zmMMc5jCHOcxhDnOYwxzm/DP/Dw==
- 00000000-0000-0000-0000-000000000000
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- fd4f2049-66dc-451d-986e-db1e735564bd
- 1
- 06de9dbf-d07f-4a85-a765-83ad8b6484b1
- Group
- XHG.⠀ⵙᔓᔕⵙᗱᗴⵙᴥⵙᑎⵙ✤ⵙᗩⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ◯ⵙᗝⵙᗱᗴⵙߦⵙᗩⵙᙏⵙ◯ⵙ∷ⵙ◯ⵙᔓᔕⵙᗝⵙꖴⵙⓄⵙᙏⵙᕤᕦⵙꖴⵙᔓᔕⵙ◯ⵙᗝⵙᗱᗴⵙᗯⵙꖴⵙᴥⵙᗱᗴⵙᗝⵙ◯ⵙᗱᗴⵙᴥⵙᑎⵙ✤ⵙᗩⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ◯ⵙᴥⵙᗩⵙᗱᗴⵙИNⵙꖴⵙᙁⵙ⠀◯⠀ⵙ⠀◯⠀ⵙᙁⵙꖴⵙИNⵙᗱᗴⵙᗩⵙᴥⵙ◯ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗩⵙ✤ⵙᑎⵙᴥⵙᗱᗴⵙ◯ⵙᗝⵙᗱᗴⵙᴥⵙꖴⵙᗯⵙᗱᗴⵙᗝⵙ◯ⵙᔓᔕⵙꖴⵙᕤᕦⵙᙏⵙⓄⵙꖴⵙᗝⵙᔓᔕⵙ◯ⵙ∷ⵙ◯ⵙᙏⵙᗩⵙߦⵙᗱᗴⵙᗝⵙ◯ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗩⵙ✤ⵙᑎⵙᴥⵙᗱᗴⵙᔓᔕⵙ⠀.GHX
- ad013215-63f3-46da-8b16-ce3bf593a0c0
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Curve Edit Points
- Extract the edit points on a curve at knot averages, the points an interpolated curve interpolated through.
- true
- 1606297d-c3a7-4bc0-95e2-acd8e3cc0489
- Curve Edit Points
- Curve Edit Points
-
1641
5475
123
64
-
1695
5507
- Curve to get the edit points of
- c2631487-b875-473d-a3b0-c180fad25644
- Curve
- Curve
- false
- 0e0d5017-4f0f-4bab-986c-96ea91bffc65
- 1
-
1643
5477
40
30
-
1663
5492
- If True, only the edit points at knots (span ends) are extracted (the points an interpolated curve interpolated through)
If False, all edit points are extracted which equals the same amount as the curve control points (like Rhino's EditPtOn command)
- ffda07ea-46a6-4262-9f81-b21190e6784c
- Knots
- Knots
- false
- 0
-
1643
5507
40
30
-
1663
5522
- 1
- 1
- {0}
- true
- 1
- Edit points on the curve
- d0b35ace-2c61-468c-b741-4314b71498c3
- Points
- Points
- false
- 0
-
1707
5477
55
20
-
1734.5
5487
- 1
- Tangent vectors at edit points
- f6957ee7-4abe-433d-8de1-f9298145bca2
- Tangents
- Tangents
- false
- 0
-
1707
5497
55
20
-
1734.5
5507
- 1
- Parameter values at edit points
- f31e48a4-7cbe-4990-89d5-e4c79512edb4
- Parameters
- Parameters
- false
- 0
-
1707
5517
55
20
-
1734.5
5527
- 1817fd29-20ae-4503-b542-f0fb651e67d7
- List Length
- Measure the length of a list.
- true
- 4b2f821b-45e3-4410-9aa9-a29a26c362df
- List Length
- List Length
-
1809
5483
97
28
-
1842
5497
- 1
- Base list
- aab63b11-16ab-4f4e-8cf2-b7fa556e1009
- List
- List
- false
- d0b35ace-2c61-468c-b741-4314b71498c3
- 1
-
1811
5485
19
24
-
1820.5
5497
- Number of items in L
- 1e4870d3-d88b-4e3b-a627-be71345d40a9
- (X-1)/1
- Length
- Length
- false
- 0
-
1854
5485
50
24
-
1871
5497
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 734d95fb-156d-4c55-9bb3-56f2a3e61067
- Relay
- false
- 7428efec-7c04-44c5-9681-0bb0a240649a
- 1
-
1256
388
40
16
-
1276
396
- ad013215-63f3-46da-8b16-ce3bf593a0c0
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Curve Edit Points
- Extract the edit points on a curve at knot averages, the points an interpolated curve interpolated through.
- true
- ee2f1e04-63b6-4a7d-90ab-1493b63269f8
- Curve Edit Points
- Curve Edit Points
-
1353
408
123
64
-
1407
440
- Curve to get the edit points of
- 4ac4708e-5ce1-4a3f-b2cc-101c03484058
- Curve
- Curve
- false
- 734d95fb-156d-4c55-9bb3-56f2a3e61067
- 1
-
1355
410
40
30
-
1375
425
- If True, only the edit points at knots (span ends) are extracted (the points an interpolated curve interpolated through)
If False, all edit points are extracted which equals the same amount as the curve control points (like Rhino's EditPtOn command)
- b5a6be64-c92f-4d78-9254-7fb33ec1220d
- Knots
- Knots
- false
- 0
-
1355
440
40
30
-
1375
455
- 1
- 1
- {0}
- true
- 1
- Edit points on the curve
- 7f0117b0-1715-4a9a-abcf-b275a2b53ae8
- Points
- Points
- false
- 0
-
1419
410
55
20
-
1446.5
420
- 1
- Tangent vectors at edit points
- 5aecc1ce-e736-4bbe-bf47-27c8e3ac96f2
- Tangents
- Tangents
- false
- 0
-
1419
430
55
20
-
1446.5
440
- 1
- Parameter values at edit points
- 03e32f79-d91b-4d6a-bd13-e38bd1e7653d
- Parameters
- Parameters
- false
- 0
-
1419
450
55
20
-
1446.5
460
- 1817fd29-20ae-4503-b542-f0fb651e67d7
- List Length
- Measure the length of a list.
- true
- f11517b1-0ac6-4c19-9d0a-cbffdc540953
- List Length
- List Length
-
1521
416
97
28
-
1554
430
- 1
- Base list
- 501041b5-ac04-4879-946e-be9687ce97d0
- List
- List
- false
- 7f0117b0-1715-4a9a-abcf-b275a2b53ae8
- 1
-
1523
418
19
24
-
1532.5
430
- Number of items in L
- 3537ed18-f4f1-428c-82e7-541bd20996ee
- X-1
- Length
- Length
- false
- 0
-
1566
418
50
24
-
1583
430
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- b8b25b3a-afa6-4a89-bc77-3b6f4bc1d314
- Relay
- false
- 5d1cff17-fdb4-4fdc-8366-b759fcf7a3ba
- 1
-
1369
1953
40
16
-
1389
1961
- ad013215-63f3-46da-8b16-ce3bf593a0c0
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Curve Edit Points
- Extract the edit points on a curve at knot averages, the points an interpolated curve interpolated through.
- true
- 9dd9669c-222d-464b-80ab-97d0a15ba656
- Curve Edit Points
- Curve Edit Points
-
1466
1973
123
64
-
1520
2005
- Curve to get the edit points of
- 4565e9e0-d985-4764-b9b1-4e627262d8e8
- Curve
- Curve
- false
- b8b25b3a-afa6-4a89-bc77-3b6f4bc1d314
- 1
-
1468
1975
40
30
-
1488
1990
- If True, only the edit points at knots (span ends) are extracted (the points an interpolated curve interpolated through)
If False, all edit points are extracted which equals the same amount as the curve control points (like Rhino's EditPtOn command)
- cc45a48d-00a5-4365-9b57-8e081cf8c566
- Knots
- Knots
- false
- 0
-
1468
2005
40
30
-
1488
2020
- 1
- 1
- {0}
- true
- 1
- Edit points on the curve
- bb25bce5-71c5-460f-afe7-35859f892cbd
- Points
- Points
- false
- 0
-
1532
1975
55
20
-
1559.5
1985
- 1
- Tangent vectors at edit points
- 9cd3f046-aab3-4757-9511-931498a692a1
- Tangents
- Tangents
- false
- 0
-
1532
1995
55
20
-
1559.5
2005
- 1
- Parameter values at edit points
- ef5cdbb3-8eb5-427c-822b-1c864c28a266
- Parameters
- Parameters
- false
- 0
-
1532
2015
55
20
-
1559.5
2025
- 1817fd29-20ae-4503-b542-f0fb651e67d7
- List Length
- Measure the length of a list.
- true
- 13ba5673-2c2b-4e63-94ea-3e66f469d924
- List Length
- List Length
-
1634
1981
97
28
-
1667
1995
- 1
- Base list
- 05b2419a-f560-4e1e-98dd-cc61d83a5189
- List
- List
- false
- bb25bce5-71c5-460f-afe7-35859f892cbd
- 1
-
1636
1983
19
24
-
1645.5
1995
- Number of items in L
- 88cf909b-1dfc-4acd-9ac8-315b06ce095d
- X-1
- Length
- Length
- false
- 0
-
1679
1983
50
24
-
1696
1995
- 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4
- Reverse List
- Reverse the order of a list.
- true
- d24e8fab-8966-4b74-90f5-895ca7cc37b8
- Reverse List
- Reverse List
-
1048
1235
66
28
-
1081
1249
- 1
- Base list
- 8d7911d4-3eee-45bc-beda-b487d521c118
- List
- List
- false
- 2e337179-3366-41e1-91ce-b34ea88fe906
- 1
-
1050
1237
19
24
-
1059.5
1249
- 1
- Reversed list
- f90883e5-3fb0-4e4e-927c-2fdab122cf8c
- List
- List
- false
- 0
-
1093
1237
19
24
-
1102.5
1249
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 46440956-1415-4acb-9dea-f43095dd43e0
- Relay
- false
- f8f66c7a-48a1-42fb-8fb5-b9e101750e10
- 1
-
743
3152
40
16
-
763
3160
- 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4
- Reverse List
- Reverse the order of a list.
- true
- 105c0504-25b5-46dc-be74-dc84e2543378
- Reverse List
- Reverse List
-
1205
2927
66
28
-
1238
2941
- 1
- Base list
- a2a61519-984e-4a60-a4b3-e0561a3af6ad
- List
- List
- false
- 9d63dde1-2e33-4f8a-a3cb-303f50d0a8d3
- 1
-
1207
2929
19
24
-
1216.5
2941
- 1
- Reversed list
- 68234acb-2189-4140-ae0c-7c1dcad9f4b8
- List
- List
- false
- 0
-
1250
2929
19
24
-
1259.5
2941
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 164341d6-6366-4ed5-ba8e-d0916606237a
- Relay
- false
- 7c44bb6d-fef3-43c3-a0d7-3be44f7b0065
- 1
-
737
4913
40
16
-
757
4921
- 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4
- Reverse List
- Reverse the order of a list.
- true
- 5fc63833-a7f3-4fb5-b173-f827a32962ca
- Reverse List
- Reverse List
-
1246
4795
66
28
-
1279
4809
- 1
- Base list
- b621ef7f-c5f2-410b-8d37-9d8ee2c9b929
- List
- List
- false
- 8f5ab813-3691-4499-bab5-66b32b35b891
- 1
-
1248
4797
19
24
-
1257.5
4809
- 1
- Reversed list
- 3aa110d1-bf16-4618-8fb9-18875ca9621d
- List
- List
- false
- 0
-
1291
4797
19
24
-
1300.5
4809
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
- Mirror an object.
- true
- b22f5df6-1f13-43b9-950c-1163b6c19fef
- Mirror
- Mirror
-
121
4469
210
61
-
267
4500
- Base geometry
- 483af9d5-b555-4d4b-b9b2-6cf0ef6b7bb7
- Geometry
- Geometry
- true
- f95021e8-3298-4a32-aa51-3b43667757bd
- 1
-
123
4471
132
20
-
189
4481
- Mirror plane
- f07b085e-18a6-4571-9855-90524b249013
- Plane
- Plane
- false
- 0
-
123
4491
132
37
-
189
4509.5
- 1
- 1
- {0}
-
0
0.5
0
0
0
1
1
0
0
- Mirrored geometry
- e3a02c1b-9eb1-42f0-8746-b270098a9942
- Geometry
- Geometry
- false
- 0
-
279
4471
50
28
-
304
4485.25
- Transformation data
- cf68bf38-eff0-4518-9271-a0bbd5fa8831
- Transform
- Transform
- false
- 0
-
279
4499
50
29
-
304
4513.75
-
iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABvGSURBVHhe7d1bdxXHlQfwfJL5CrPWzPOsmfd5nc8x82JIyPJLEhsTCMbEDAjsYGDMLeYiMBeJmzESSIBAAiEMxo4JvttcDAbjSzDzU++maPfp0+ojZc2cA/4/1Kqqrq7atf9779p1Wti/+BlPAh7+jJ7FYwqvXr166dKly5cvv/vuu1euXHnvvffef//9v2T4IMNf//pXj3QqPb127Vo0P/nkE+96RY/6l19+uWfPnt/85jcPHjyINeD777+fmJi4d+9e3m7BN998Y4bbt2/fuHHjzp07xn/88cf79+9XEsAqlvjoo480lfWIMYSJVwYHB1966aWiMO0wNTVFhrxRBYKZNlukW0CqxxR++OGHKEEhJAohKFTSiIox6kFevGIk5uzNW8Z8+umnBmzZsuX+/fvZxnP8+OOPea0KKGRAFy5cuHjx4vj4uIW+/vrrefPmmdOEJg8i9VsUSQ25ZE9DQ0Mvv/xyEwoxVGNk0O0U2jAdtXNE3KiHKj1SllgMncYjSkfA3/72t2zjHQDNwAW/++47ZrFp0yZThawxf4gBQkLqrAHxPvvsM+L98MMP+RpzwFdffdXtFNJLkcJQFoQXeqpOKUpKCY9UN5HBYAbQY/Dw8PC3336bbXwa6PRiR3rkl3woBE0wv5IklgjBwinjaSuCQmATZKiPBGDAO++8cz4Dtkrj796929UURhcmKr0wsaikl3gULOqJF9VVrl+/fuDAgYULFxZjFw2ePHmSa+btBkDhF198UUnPtKV8/DExCBAShmZbB3/++edjY2Nr164VIY1kQ9zaMBuBOCyjbhJNWzhy5Mjx48f37dunLFohdLsXatsbpXDEIoWhI/1gk1G2sujdYJGOHGlr1qxBW7bxaTBnR2ONE1Ax06EjFuDI8S55BNJ23ASiPwggTFBSHGy2gYGBP/zhD7EEq+KRkXOp2II6mpUG6zSPw/jWrVv2NTk5WToau/0sjC7coCFgh2BXAQpS2gNlKSkunhZZ1IOJ0IsjLdt4I/A5LxbTGVFLOiNLDKMhWw2RQCQjw6rUozOejo6ONozh3E4IZYtAmNIWeoNCG6YF2oxtoEQzeFKiTTNc0GCdlSyCE6XohczfhaFJWshTKQ7Ywa5du5hCLGTdeiIhHhkWMpOWqLyN6pvnVoQUMCpjRg8EUqAFO293HAIFKe1Ev8H6VeKRV5QOsGPHjoldRcNn3Vyho7OQElM6YyFkxFoNiSRhyMyZtm3b1sQLjfdu3qgC+XuAwgDyihSC7YVGaFDFTqZJ++ADe44B0fSW10dGRpYuXVrUGtN2Z28YzQJFCgNFItlZ9MSjSnjqLNy5c+fvf//7fNJakN9beaMKzsjeoNDObSZiaRYUHzti4k+PkUmVKhAOikUDSoF0RqRfZyidsQukpt2zZ08E0iJKRGpC/qwFojGR9u7d25H1tEMveSEdlbwQ6CKxSHdKIw1QBqkQ/UCtJa1hJa9VofjrzMTEhLXo65lnntFMt/sizN+ESGO8LjNqcgwHyOns9EqrwCysZyikDqopshjE0GwQGVQpgzzjUasCXj979uyqVauKlyoe6X5W//MVyCDA4Ehntm7dGgthopIhncl6VFrHxICjR48yCA4tqSGVEI0hUNEklYrSGNGe67sR7t+//9SpUyUr7I10JmDndJdiaegoKAzmNKk1XDA6I2Sp6Dl06FDpak8XnhZJnRHx60xIYjmvh2DT8v0UwVNIWCISJaLo4sWLkaefGGQO07S7c+fOxa9Rwr4AoJ/TOzuZIINzt0FtLk2GXgqkAfssUQgpkNJpKI5qlHpUPAoi33rrrY4Ia0VQSIygxLRWKTGUoBOCbKunYaKoe96GDRvSpQKLwNf18Dx1pgaaOlGOOeYI4jkZ4q1Az6QzASqgNYaZKAQ9AcoKTUXTeMP4pYphntJF0loT0Ka1RCq0KdFvqj//+c/pICRPWIx1oxn9ReiERGTI417YkTDIi7xM4EVq3puh97yQCoLCYJFSAnHshUINC/I0VUKzotMbb7xRjELONsGqxi/Zu4A2NTVlGD+wCn3Nnz+fAHSaiTMN88fqylirFdGfiNScnJzkbflK7SFbqT+te+ksDNg8LaRYmtGXx8mwU2pSxqFocDxi8oODg7/73e+KZyEKW39yrATDp27j+d+OHTtMC7lAGTStaCEiqZSeJkS/SQYGBpYtW1YUph0YkI3kjSr0UkYaoAUkFWPpNIc/veAr6TGa3MUYr2hu3769lAt0Cq/HL9GWa+VJT4QBT6MZ/SUIyydOnFixYkWTQCpHLR1+JfTGb6StoMSgcJq9DOFtEanwp6TBIE/FYG9RR0dnYStQGOmM5WKhEk/R9NSKsXT0F+EtdkDaOQoT6LF0JkAvdCSWUmIgI3E6kIJH4XNgMFUaH87x9ttvF08+GjSg5kASY52gdPTFF1+kdGb37t0IMKdV2vGkJ8yIVK00B4XCgwkjEc3XawMDZLBivvPYpno+nQkQunQcgu0pgy1jlJRFxTqdhQcPHnz++eeLx4/bev0nXxFMxHYaIdJ1zTwGz5s3L9KZIk+WqySSSIRUqqcBssrTp0//6U9/YiJex6JHpjKM/SltQQlmDmPduHHj0NCQq70IXMq/etILAzYfFEJsVWnb4YXK0C/tKI3HRKeffIug6NC1SwUfChlAj0VJQo+JpIToIRgZ0oD4E4L45MtKWJUJ5Tj6sWsk++D34ak67cW93ut25LJfyr969SwMxaVYSkdgq2G5tqS04egx3sjQS+tvjB2B+kwLRbbUrZi8Le8tIAaQkzzRBI7YUBhuhznzA0MsvdWrFAI92lLiDyhIGZEzVGaYMUqdMOtPvgkpIzUbGjJBphF168aixUeB6CGhAZjmc0/XJ99KUAqNJBaDP9pRASqOMriURs7iky+fw7pzVHy7efOmoGfdzZs3c+hgokSVps5WghN0sjxjpCdbt24tCtMONuXFvFEFaXYPU0j0SkcM2sJNjdRD6TKXTj/54swMFy9evHz58sTEhHmKv85Mr5fpt4ggyeokybtawBp27dq1aNGifJlahDXkjSr0sBcGKCtAm8FfOKIyEKrEhNiFiWIg7QiCHrJNIi2MdIZmTW7pqE9LU0A8Kp2agXjRPE28cEb06qUiQBdIKjpikKcSjmhM6FEncxYPS7lAp9mN00hOFKsDAUxLAMuVqNLU6ZGlS4/IwxQEwObHMMtDFbQK3Hs/sJUQ0bJIoTKcj3KVwSXyzpw509fXV/RCdWlhKUevh9BqRciXL1DVev5FMwRLzagY/NZbb6GEYPzbqQwkAVaibiEVJabdKw4fPmw8x3UclHy35ymkDjzRIDWpBIqOSN3qrJ4KFi5cWEwC1amSvvJ2CyjUQUiDIqcDjE4tt23bNvObtkiJ0lqWTp0JeowveqoDeM+ePUuWLCGAHpR46nx180mffDVlUq4QKmQ4ePAg8ljhk/DJtwQqiFA2beoZ6FGpU2lvSsMMMHJ4eLi0/3oYjBiqDM2amb6kM1QckwclCTpjuRIMQ3nimEG4573++uvJnoRHRLowKNmNUowFA3SifHJykhWapOc/+bYDxVGQko4CyRGj1AQEFL2wI3gRJKI7duzAAW0WHSugbpVw/RK7AYLFUzNQfXNh8McowUmcdz1Cz3shJMUlCjUTf2H+VM+ZXMWKYZPti1StgXT68twm0eCX6Q8vgkVqLbGop5XdQHrqXW5dOtUq8QR+8q1E8IQwCBYhEanO6g8cOPDb3/62+OsGCgW0Yly68cEHkzt2TJ0+fXhg4Orw8I8tRNImPwhulO1YjH4CFPsDeswgMXnxxRebZKSMzFR5I8unbCpvZOj5dCZALzZW6Yg6DYj+7du31yQvcPvTT89u2XJhYGDPwMD5nTvv3Lz5zqVLpV9n1q9fz6eDmygtUWIr9Vu02B9A4cjIyKpVq5oE0tInXzv679WvPrx/6+F7ww8/mdRz5wkIpEBNXCFUllgEnUFk1PlQvda+u3v3/PbtI9u2berr++jUKUkFD5AQxscmkzh45s2bJ7nAYr52hkq2NK0eNlQEHxUVyNP8LEz47vvvx8bPPTy5+uHlww8/m9LzhATSAH0FaFOZ+AslKo8cOVL0Qhr0tHhZ/vzy5ZHVq0cHB3euW/fJ2Fjem8FgkFbI72O2bM0c2GrHIgeNwy89CgpVCONuOuPXLvGW0chFXSompt49ueXFh5+eyp89GelMIJQVesScugogUkllVP/cc88Vjx/qO3XqFBXkbWfh1asX9+795No196+rQ0P3b9/OHzyCdCbOwlgrXzuDzmnzyf46Le/KoEnFWFTGI2HZuq+88oqoYBJJjc6QE8yQ6t7SFAMc5G73tvD2seFdq58/MXLi9OnTQrGnwuwTQiGwbhqxK5un4tCFHv2a4uGrr75aOgvrnaD1UTEjtYrJi4RVdoImGfBBDPXr168jQzpjQvKwKmYRx63JzcDgjNGpotMuxsbGlCaR3dy6c+/27TugB3/d/qWC0B0BbUGhkr5APYzaU3ppkscn3L13j8ri1xlJDf7IJycSTlUqCUudefsRYox+gqk4SkXFhsKws8hLr1y5whDF8/xBhm7PSNkm9TWEwXiiJkoE/NGX7enRr+kKQR3ZxqfB/N2vazL74q8z8S+bmPwzzzwTH5vIGoRZpcSitYLFYn/AeI+8TvUlMioRkUBJ8qLwCd2eznQKcSnOj2kOMxZBhd8MDQ0tWbKkaPgGj46OYiVv14K6vUv1vJBbJ25ULNfKojEkydsFeMSexsfHN2/e3MQLTWJ83qhCt6cz58+fr/GSVkgvQ6FBIT2q2yHIIJYtW1bUmpmdNE1cISHOwliiIYsIKPaDRXfv3v3CCy/MmIuC19lf3qhCt/9GyuqL0UMaFrmZ6wFttrJrsIjK8yg0/E8ZRJqaQitjUXOkX2cEQzMnblQsYbkiW+qU28qiuncHBgaK95lZo9v//KmEFStWPPvss+Lh8PAw26RHp5SKjINzaDoY1q1bpzP4o9bkiHqMLGmtXolirOMTZyzJ/Jrk27BhgyYaLGfyxI1KDYvK1B+OxRqaBxiZp605PksZNXR7OgO0zLFoTbYii1u5cuWCBQuWL1+uUwyhRwhXU3IyHJ84cYKaKDSIDLXGu0XODK7/5MvRvRtf74R0szl4fvnLX6Z0psSNSiWLhDEy8a1Ud6/gQLgUyS0U1wNQ0YwK2azIhg4dOnT06NHKT77dns5QlnxazKEFdyNRdO3atS7F8+fPt7FsCz8BkxwcHEyqpPRwQfNSgeOnePKpU2WrXVfCucVpaJw2WY8JEzfK4CY6mVQ9i/HJd/HixSZkCijxyE6jPHfunCji/sB04i7hIiHqqE//OjMxgeBcpgzdns5I6CcnJ4mobv82pqQjPZVpCCcT8aiJEhOCSEocGRlpSFg7UB/TMVXIaiGSBIvRE6hkUWkkYVgAPjZu3Ji2oBJ1JedTspgwGp2CjWgRk/TeJ1+wbcx5IBGfkQAUhjbtKhwR5SpK9Y7++rYS1MdEMjlzUKvJCZm3HyHCe5HFQLCLRQGwuTDGm82LVs+7HqHbvRAltKYXMfHbip4aOEJiP3QXFAa8zqE3bdpUNALjnXCluFSE2cQAZ7DZ6M7JZObiP9QOeEq/uCkRVsmipn6s8ycC5Cu1BydDUt6oQrenM+FSbJCUIaieemST5GpFXrigIyc++RaTQBp0zJTiUhH4NomTqZjOpH/ZFAsFLBdrlQjjnVYvdbLF+OQrVOYrtQcJTZI3qtDtFOZ9GSIEldRRA3TSKb1D6Le/v3/WZyF1i3uYe/PNNyOdKYFg4fczssitJZYNP/mysJo4Ad1+L8z7MoSOoCGLhlEo/rxCiSoi4RzPQtosnYUlVAbPEotsixEo5yhMoNvTmbzvETpl0d4MRiQNUq6rWNGinazU3eRASmAEcTTmC1ShMngWOxOFhHE3nTGckvPChQsi+alTp+yi9INAt6czeV8BtIASO8nbtTAYhXgSAPFX+i9eUJ+blpwlb7fAo/TrjAMMfyZct26dEvI1fgr9uEGYMo1JncEiIxgdHV2zZo0JbQRDxqDBvoDAhkXdU6ULYtwLHeet96Juv9pHly0lEJcWYnvxtAZG4s9gL1LB2rVrS/unvhon4CWhwWI686tf/ao1nSnCooQMFvOuAosesQb2tGzZMkuQh1WxEn7pyq9iRXVj1KW+N2/e1ONapUdFhoz4EC/Q7WehbZOPoSXEV+zEjUr+XhuYIRzRW97FWbbxjkHRyKbco0ePKvPZ24BUlkNY3s5QZBE3LhUNhRHqMcdu4pNv6a1up5Dc9pyJmoMq3fAiwjSh0IBEIU8qeqGpGH4xtM4IfikMFt2rHaxrUXIWJQwWMaHCHJukMylIYK6ScvN0NYWMDouZqDloXEh0V0NJ/sZMiB0eO3as9ZOvo6X+4lyCFF98i2lnBJ4YGQMqsSgInz179vXXX6+kpIQIyHmjCunXjO4BqR5TyJCpgJQJbrKsmNBFvcwI413F/vjHPxbzT9ZQ7wqWS7/OKDVNtWXLltKvMzXwIvlL0YLru1wuWrRoxlwU8Ge5vFGFbvfC2DmHS5iFuCahRC/SZkeffIVNNsTjuYIgbJJ2v87UwOrCqXkSiyo2Ir3s6D7TDr10tZ8L2HIosag1TiCWNnEFMIzXYm7v3r0zpjOtwCLagsVwLIll82PYYLkYtP4c+LRQKAyOjY2tWLGi6IX4c1kWHvN2A/DLL7/8Egf5vJ0gclEsAoceHBzk02xCJMcQOCPwoZNIUVGKk4Tv7+8/fPgw63F4l3y32wNp3jdn0HvlJ1+POgqtlMsFw5k6glcQH7lJ8ZOv2SQ1fNQBH2V88jVSKZsT/JXukSL5+Ph46/dCTD8VFAJ7Hx0dLV4qZgTCKC7CJlegLEysXbt22o9mxSJd44Yk7kXSopSR4jKCqrI1tvMzzMXp23uffPO+OYPtU4FI1Zp/0qMB9GtMiWBN2om76YULF5ymWFywYAFfCYV2Cqs4Ec3mLKwUph0YEEmAB+ddj/C0eCGN0/umTZuYMEooQmoQMc21YevWrW6Nu3btMiZTSwV4BvBII2eRziRg0UEIZ86caZKRktCJmDeq0EvfC+eC+Fly4cKFfI4T8KdLly45Whw/btmujJr8rPQzQiua/zpTA8Ls27dv6dKlpYBZCQchIfNGFZ4WCiOC7d69GwfZxqfjZ8QxdFKT0vnU6oUlLXf060w7MAKZcF9fX5NAasX68/vpSmekJ5E1FIEkwSpQ0intyA+9GEdppDMbN26c3UGYYLYIxSmdmQuelnQmcOjQIWFHHKM79zDWzcZropkB1M01ZfYpnWn9nxx0iqDQbO0oJFXRmOrj7dPihe6F+Fu0aJFAasOyCcQ4FN0ZUmidEVSJOVfyuaQzIJC6oa9cubIykMpxsMvd2U2kryjPn1XhabnaS+Kx9dprr7nIB/ABlKjMVNEI+HYW0mk+76wgDBw4cKBdOqMTKxJmC4GwAfmzKnj6tARSekdkkwyiBiis//OnJuBh/MylYo7CBJ6W30jj+HGLkNGEUYf/VfpBgvNyamoKZ97lOo4oU6V/qD0XCMjCaTsKO4oNT0s6g4bh4WGxy+HvgLFnKYn7Vv1Z6JExLhuXC/8ZveI/1G4OnpfAAiRHMtvKdEbOzOBYDI6ZjoXE1fxZFZ6KdIbW6OL48ePLly+nNXsWfByHEs7Ka0YlDOMcFNrf31+TzgRJgejBBxWzG8GTEUhSTLJz587FixfnU/8U/A9/xhhvIWkX+8ufVeHJ90KqpER5nTr1zfErK9bjLAySAtk6FVQBJ46KHv0RAAxWOXz48N/lLHzCvZB+bQ9/ylC36BSZXhNgC1QioEFMCE2oQmoSIyH1mFkMEKvBKRuVWYB41oppuwR/NwqpiTbjXpV0F75Sgs4iorNIkkmcf/EHpdhSRsUY42PmaX4KiM56xEJmMFXIGT0dIQnQPeiAQtIXkfdmoETap5qoRydk6s0RPV6kiCZeFePBK3rSYJXgsjhtR/BWzDO717sNTSmkMqmdwJgQnZka8w86UU/jW6lK0JOoMjJeidcD0ZOQOo33ohmCdfMEncUxTWCkGUzV/JWuRSMKbVVYK/2ET3fyN+qLuKQ5d6qaIL3Yjs4YADG+BiF2k5HdDFzUUUhNFOQocqVzMci4y0Fr7lueusap0wX8HalqgjT57LzTACx6t92AngAu2lJoY6ELm3Tjlk+757kngIpH9m+Mp6G1eCXe/b+HpWP1dnTGAIjxoG5wpDZ5Vw9iBgptnhZi2/ZZQhoGtEYX/+9EBkIklXZ0pjEQLGbv9STqKAzYfGKrBnShpCPjaS20o4eC7mX/3JfjzgLxA2b6DVMAuH79usSqnUiWK2La0DKohzkSL758qSRGVXTmU/QaqKWOQjTYXlCSd9XCMBoJTdGOpjs1JjL9dwy3e7q+kf0H19Hmyv/gwYPt27efO3dO3eSQL/wIRsbvAwH12zfufnXzTtQTYkKvK83/VfYXwHaaz9JToKg6CoH94qNVWTUw2FuIhB07dtAOjX/zzTc3b968ffu2kjNlHM0AmqVuLLIGZiRv4pQrV65cv369OfWEn8WiyDBz/uYjcONLN4fev34ub1chvheGf5swZush2MIMFOIDhbPYGy2Pjo4+++yzyONPaEAGjU9NTcmMMu11DBF1z549ciuzkcqEwFCIJz3ev3///ew/qJb9ac70n4C6Bi0Y+9flI/+prl9Iv3XrFjO6c+cOCY3hefv27TPnxYsXjx49evz4cdYW8vcKbG1mCtm7rXbkiBDjt23bRmsCYDrPElB74sSJq9c+/Mvk+TdeWTN0YiR/0B4m8VbSchxyxBMn16xZ89prr3lKVHRyz3vXPjy3YdP8tf/wX8v+5f79B+wG66hC/8TEhGsSx9VcvHjxr3/96/Hx8d27dy9dujTY7SFQywwUAk3ZfN7oBFgUCUsXygSxi0fu27//peeee3Pzpnffy/+Ak5d4ERnAq7gO6MQBUzhy5EgpsKsjFSv9/f3xlSrm+Xhn///80z+u+vd/nvcf/3Zy4rye9Ch99rK1devWrV69miRmHhkZETzyeXsEdvGYwjhaWksQrBhv6vFmqigpUajMJizDsNLPOiVcmRgfXPJC3sgQf8qGElRxjpMnT6rIGGUxMqO+vr6tW7fy7HyBDMZHYpJP8Qjf/vDDrR++vXXv6zvt/yIGr8C/HYpMITbVQ7CFxxTaQKQe4lKxpJ1UGoAwcCBFCseiPXImKWPSInTWJC/vXLq0a/26vuXL371yhc/lvdkn38hjUYVR+gXzKDdv3jw2NkawfIGfgtPLSnLcuHELLc6+r26bJ+9sgUeA/nyKXgMtPabQMSBeBdSjmUrayPqmjwrHTxyQnINmudrChQvjC1/MG6DoM2fO0I4ZUIIYfBivot9B+PLLL+9b03fu/PmDBw9KOKfZqwUKqdu07XyFJLNGPkWvgVoeU/gzehQ5hT+jh/GLX/wvBa6X54jFBiUAAAAASUVORK5CYII=