0 2 2 1 0 7 9c289971-7752-4ad3-8a4a-deedfe2bc3d8 Shaded 0 255;191;191;191 255;191;191;191 638440181684034983 XHG..⚪⚪ИN⚪Ⓞ⚪ᔓᔕ⚪ꖴ⚪ᴥ⚪ᗩ⚪ߦ⚪ᙏ⚪Ⓞ⚪ᑐᑕ⚪⚪ᗱᗴ⚪ᗯ⚪ᴥ⚪ᑎ⚪ᑐᑕ⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪⚪ᑐᑕ⚪ᑎ⚪ᴥ⚪ᗯ⚪ᗱᗴ⚪⚪ᑐᑕ⚪Ⓞ⚪ᙏ⚪ߦ⚪ᗩ⚪ᴥ⚪ꖴ⚪ᔓᔕ⚪Ⓞ⚪ИN⚪⚪..GHX 0 -1498 -5000 1 0 0 2 Heteroptera, Version=0.7.3.0, Culture=neutral, PublicKeyToken=null 0.7.3.0 Amin Bahrami [Studio Helioripple] 08bdcae0-d034-48dd-a145-24a9fcf3d3ff Heteroptera 0.7.3.4 Pufferfish, Version=3.0.0.0, Culture=neutral, PublicKeyToken=null 3.0.0.0 Michael Pryor 1c9de8a1-315f-4c56-af06-8f69fee80a7a Pufferfish 3.0.0.0 285 fb6aba99-fead-4e42-b5d8-c6de5ff90ea6 DotNET VB Script (LEGACY) A VB.NET scriptable component true 3d61b0e4-4de6-412e-930f-fc95867b87c2 DotNET VB Script (LEGACY) Turtle 0 Dim i As Integer Dim dir As New On3dVector(1, 0, 0) Dim pos As New On3dVector(0, 0, 0) Dim axis As New On3dVector(0, 0, 1) Dim pnts As New List(Of On3dVector) pnts.Add(pos) For i = 0 To Forward.Count() - 1 Dim P As New On3dVector dir.Rotate(Left(i), axis) P = dir * Forward(i) + pnts(i) pnts.Add(P) Next Points = pnts 860 84 104 44 915 106 1 1 2 Script Variable Forward Script Variable Left 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 true true Forward Left true true 2 Print, Reflect and Error streams Output parameter Points 3ede854e-c753-40eb-84cb-b48008f14fd4 8ec86459-bf01-4409-baee-174d0d2b13d0 true true Output Points false false 1 false Script Variable Forward ce317ead-faeb-4407-80c1-d99efd640ebc Forward Forward true 1 true d5996e27-1db2-4cfd-81c0-ba62a76266d3 1 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 862 86 41 20 882.5 96 1 false Script Variable Left ee93da26-6275-4bd5-8137-86f21f15ac46 Left Left true 1 true bcb37e0b-3c8a-405f-aa6f-dcd2e5bb07ca 1 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 862 106 41 20 882.5 116 Print, Reflect and Error streams ffa7a548-a363-4ed3-b06f-1f56c34b92d9 Output Output false 0 927 86 35 20 944.5 96 Output parameter Points 78c464d7-84e4-4bf0-aadc-869f9b4fda82 Points Points false 0 927 106 35 20 944.5 116 e64c5fb1-845c-4ab1-8911-5f338516ba67 Series Create a series of numbers. true 2ca7e1d3-965f-482b-aadc-124aff6b6aea Series Series 359 214 89 64 403 246 First number in the series fadaf414-149e-4983-b3fa-5803240091b4 Start Start false c0501684-bc40-4a82-a718-a4182ddcafd0 1 361 216 30 20 376 226 1 1 {0} 0 Step size for each successive number 7b0495e3-bd4a-4b58-987a-df7e75e23d99 Step Step false c0501684-bc40-4a82-a718-a4182ddcafd0 1 361 236 30 20 376 246 1 1 {0} 1 Number of values in the series c2336e9e-62db-4e7c-b386-10dbce7ec153 Count Count false 262c30fe-27e2-4d85-ab9e-97c61e273cba 1 361 256 30 20 376 266 1 1 {0} 500 1 Series of numbers e19fe4db-d765-4b53-a8f1-aad962d839f5 Series Series false 0 415 216 31 60 430.5 246 dd8134c0-109b-4012-92be-51d843edfff7 Duplicate Data Duplicate data a predefined number of times. true ecdd9484-1dc5-4373-813b-a0843dff0f24 Duplicate Data Duplicate Data 350 57 102 64 413 89 1 Data to duplicate fac6ec86-8adb-4f3b-adb3-49e59eac8176 Data Data false 845d88dc-f057-493a-b7e5-8c521e783992 1 352 59 49 20 376.5 69 Number of duplicates a205ae38-8b3f-4825-ab5c-32284131d818 Number Number false 262c30fe-27e2-4d85-ab9e-97c61e273cba 1 352 79 49 20 376.5 89 1 1 {0} 500 Retain list order 1f01019d-89a2-486c-88ba-d6fb26bd72a9 Order Order false 0 352 99 49 20 376.5 109 1 1 {0} true 1 Duplicated data be464ca1-422c-476c-b2a6-f6710f1fc6f5 Data Data false 0 425 59 25 60 437.5 89 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers f1fbb0e1-fe5e-40d2-841e-732012e40657 Digit Scroller . false 0 12 . 11 1024.0 -178 205 250 20 -177.0572 205.4425 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 7fbc35ee-c93d-4288-b414-b6d63a02edf6 Digit Scroller ЯR false 0 12 ЯR 1 0.11963403409 -173 107 250 20 -172.3578 107.1254 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 2fc63193-0d11-4984-80d9-de58980f5096 Digit Scroller ° false 0 12 ° 2 0.0005104413 -175 150 250 20 -174.4397 150.3848 a4cd2751-414d-42ec-8916-476ebf62d7fe Radians Convert an angle specified in degrees to radians true b8e372a5-0ec1-405a-8c3e-4d4db388b39d Radians Radians 214 268 108 28 269 282 Angle in degrees 70416b1f-5eb7-4580-afa9-2c0961044fb4 Degrees Degrees false f18af49f-2c36-475e-9666-3bd16c62f28a 1 216 270 41 24 236.5 282 Angle in radians c0501684-bc40-4a82-a718-a4182ddcafd0 Radians Radians false 0 281 270 39 24 300.5 282 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true c88c0b93-14b6-40b3-a27f-00ff79f7b13c Point Point false 78c464d7-84e4-4bf0-aadc-869f9b4fda82 1 767 290 50 24 792.0005 302.1751 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 262c30fe-27e2-4d85-ab9e-97c61e273cba Relay false f9f71a55-f522-4a2a-a443-1fc9358ef7f9 1 215 177 40 16 235 185 be52336f-a2e1-43b1-b5f5-178ba489508a Circle Fit Fit a circle to a collection of points. true b4af4abe-d4a8-4b3c-bee6-4c3f34202ce9 Circle Fit Circle Fit 332 475 104 64 377 507 1 Points to fit db0a3289-864c-4f55-99cb-5e0f98a661e3 Points Points false c88c0b93-14b6-40b3-a27f-00ff79f7b13c 1 334 477 31 60 349.5 507 Resulting circle 05372bd4-17e2-415c-9486-b313b5739964 Circle Circle false 0 389 477 45 20 411.5 487 Circle radius 0623a205-c072-466d-92db-0da0f552f93b Radius Radius false 0 389 497 45 20 411.5 507 Maximum distance between circle and points 833b7ba2-ecb4-4e06-bc96-ae20ee32797a Deviation Deviation false 0 389 517 45 20 411.5 527 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression cos((4*atan(1))/N) true 4367604e-a116-40f7-8d8d-988b5d3de819 Expression Expression 413 396 215 28 511 410 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 7ecdea7f-0f93-40d6-8931-a086334ae2d1 Variable N N true 262c30fe-27e2-4d85-ab9e-97c61e273cba 1 415 398 11 24 420.5 410 Result of expression c7cec9be-11ae-4598-8068-2121d1ade51b Result Result false 0 595 398 31 24 610.5 410 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true 03e5b781-f7eb-42f3-abd8-cc10f3b05609 Scale Scale 506 582 126 64 568 614 Base geometry 6907e204-b264-49bd-a5f1-2db17048b9df Geometry Geometry true 05372bd4-17e2-415c-9486-b313b5739964 1 508 584 48 20 532 594 Center of scaling be76ebca-fa99-4f87-8033-b15b1fe639df Center Center false 0cd7c1cb-6524-4abc-b02f-8000b02c2e4a 1 508 604 48 20 532 614 1 1 {0} 0 0 0 Scaling factor b0afd88c-aeb5-40db-842c-94af85a4a1a5 Factor Factor false c7cec9be-11ae-4598-8068-2121d1ade51b 1 508 624 48 20 532 634 1 1 {0} 0.5 Scaled geometry 345752d3-26cb-450b-bbc5-24b071eecb78 Geometry Geometry false 0 580 584 50 30 605 599 Transformation data 1fcd789f-dea0-49e3-a218-f22153dc209a Transform Transform false 0 580 614 50 30 605 629 2e205f24-9279-47b2-b414-d06dcd0b21a7 Area Solve area properties for breps, meshes and planar closed curves. true 85df7bc1-c6a1-40db-8c89-352a1e7599c4 Area Area 320 592 118 44 382 614 Brep, mesh or planar closed curve for area computation bf640742-a279-4f17-bb07-9d1b84caaab4 Geometry Geometry false 05372bd4-17e2-415c-9486-b313b5739964 1 322 594 48 40 346 614 Area of geometry 3c2545f6-aac8-42fc-aefd-5e99034a2bac Area Area false 0 394 594 42 20 415 604 Area centroid of geometry 0cd7c1cb-6524-4abc-b02f-8000b02c2e4a Centroid Centroid false 0 394 614 42 20 415 624 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 7f713906-b4f7-457d-b43d-f57d3d074da3 Multiplication Multiplication 631 494 70 44 656 516 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication 0a2032cc-6c9a-4eca-a40f-88736807e6ee A A true c7cec9be-11ae-4598-8068-2121d1ade51b 1 633 496 11 20 638.5 506 Second item for multiplication 608f7e5e-b2e4-4880-9963-416c99f1afb4 B B true 0623a205-c072-466d-92db-0da0f552f93b 1 633 516 11 20 638.5 526 Result of multiplication b74f0585-4293-489c-9893-889377fac93a Result Result false 0 668 496 31 40 683.5 516 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression .5*L*(1/SIN(π/N)) true f501d46e-90e6-461c-bb9e-83beabda9ca6 Expression Expression 479 314 207 44 573 336 2 ba80fd98-91a1-4958-b6a7-a94e40e52bdb ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 4172d6f8-0262-47fa-b2fa-b487930372f8 Variable L L true 7fbc35ee-c93d-4288-b414-b6d63a02edf6 1 481 316 11 20 486.5 326 Expression variable 893d2f38-c3ff-432d-9562-99fe91034cc4 Variable N N true 262c30fe-27e2-4d85-ab9e-97c61e273cba 1 481 336 11 20 486.5 346 Result of expression 871baec3-457c-4734-ae89-c9dc38a72254 Result Result false 0 653 316 31 40 668.5 336 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values e186075d-d2c2-449d-87c8-80fdeafbef90 Panel false 0 871baec3-457c-4734-ae89-c9dc38a72254 1 Double click to edit panel content… 856 337 160 100 0 0 0 856.2946 337.3611 255;255;255;255 true true true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression R/(.5*(1/SIN(π/N))) true cd4acd9d-cbdc-4d38-97c4-be071e6d8e96 Expression Expression 234 -17 224 44 336 5 2 ba80fd98-91a1-4958-b6a7-a94e40e52bdb ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 47b5aec6-b919-47fa-aa50-c4074fdd094f Variable R R true 23d9f3a2-1454-4364-a19c-8801a4aa8e4a 1 236 -15 11 20 241.5 -5 Expression variable e620dac2-b443-461d-8820-8f57e0929fbd Variable N N true 262c30fe-27e2-4d85-ab9e-97c61e273cba 1 236 5 11 20 241.5 15 Result of expression 845d88dc-f057-493a-b7e5-8c521e783992 Result Result false 0 425 -15 31 40 440.5 5 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 79214b28-9042-4fce-9bff-aefa3c8afdce Division Division 21 274 90 44 66 296 Item to divide (dividend) cd12f72c-b624-4a1d-b4e0-3e7090b7a7ef A A false 0 23 276 31 20 38.5 286 1 1 {0} Grasshopper.Kernel.Types.GH_String false 360 Item to divide with (divisor) 39527ecc-cc31-4e87-a0f0-71398918b3ef B B false f1fbb0e1-fe5e-40d2-841e-732012e40657 1 23 296 31 20 38.5 306 The result of the Division c60648d6-21f7-4608-9114-2716dc67c91f Result Result false 0 78 276 31 40 93.5 296 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values bc8d16e7-6518-4d54-9e28-8feae351da64 Panel false 0 0623a205-c072-466d-92db-0da0f552f93b 1 Double click to edit panel content… 526 -153 160 100 0 0 0 526.2639 -152.3152 255;255;255;255 true true true false false true 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4 Reverse List Reverse the order of a list. true 7f113fc2-d918-4a84-a319-cc5320e0abe4 Reverse List Reverse List 434 152 66 28 467 166 1 Base list ac476c41-08df-4926-99e5-227c0b7793d9 List List false e19fe4db-d765-4b53-a8f1-aad962d839f5 1 436 154 19 24 445.5 166 1 Reversed list a706ad0d-f779-4309-8a67-f57c406db026 List List false 0 479 154 19 24 488.5 166 a3371040-e552-4bc8-b0ff-10a840258e88 Negative Compute the negative of a value. true 8bcc8ae8-e318-42a5-9758-a25fe9ea46a2 Negative Negative 633 248 88 28 676 262 Input value 79828215-32cc-45c1-a351-78dceaf8a991 Value Value false e19fe4db-d765-4b53-a8f1-aad962d839f5 1 635 250 29 24 649.5 262 Output value f8ca467e-c13d-4d81-8b30-5bc5193e7bbb Result Result false 0 688 250 31 24 703.5 262 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true 9a46c0d6-1b86-4536-84b4-88cc87aa997c Merge Merge 578 117 122 84 639 159 4 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 b5578463-fe15-4eb8-ac35-f137bf5743f4 1 false Data 1 D1 true a706ad0d-f779-4309-8a67-f57c406db026 1 580 119 47 20 611.5 129 2 Data stream 2 ae7d37b7-f367-48cc-8f9a-45ba6583d329 1 false Data 2 D2 true 0 580 139 47 20 611.5 149 1 1 {0} Grasshopper.Kernel.Types.GH_String false 0 2 Data stream 3 d1b0650a-6115-4b34-95b2-d759d434da03 1 false Data 3 D3 true f8ca467e-c13d-4d81-8b30-5bc5193e7bbb 1 580 159 47 20 611.5 169 2 Data stream 4 d9d34c99-475c-4a79-b95a-a25471df3fb7 false Data 4 D4 true 0 580 179 47 20 611.5 189 2 Result of merge bcb37e0b-3c8a-405f-aa6f-dcd2e5bb07ca 1 Result Result false 0 651 119 47 80 666.5 159 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4 Reverse List Reverse the order of a list. true 66885faa-16ff-4dcc-883a-2cc9528f684e Reverse List Reverse List 511 -21 66 28 544 -7 1 Base list 4b0852c3-fa4d-4bc2-ae8d-7e187a5a9b96 List List false be464ca1-422c-476c-b2a6-f6710f1fc6f5 1 513 -19 19 24 522.5 -7 1 Reversed list a79dc447-c143-4e69-af36-d93bb673c4f4 List List false 0 556 -19 19 24 565.5 -7 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true 7e129286-32cc-4d60-9d6d-04c9446f6282 Merge Merge 675 -29 122 84 736 13 4 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 40957671-acb8-405a-9dda-8d9bd7232911 1 false Data 1 D1 true a79dc447-c143-4e69-af36-d93bb673c4f4 1 677 -27 47 20 708.5 -17 2 Data stream 2 b530795a-c051-456a-86c1-7a0b4ece28be 1 false Data 2 D2 true 0 677 -7 47 20 708.5 3 2 Data stream 3 5ef29980-07e3-443d-8b13-3534b6d2daa8 1 false Data 3 D3 true be464ca1-422c-476c-b2a6-f6710f1fc6f5 1 677 13 47 20 708.5 23 2 Data stream 4 08749507-1829-4296-8479-604964a24385 false Data 4 D4 true 0 677 33 47 20 708.5 43 2 Result of merge d5996e27-1db2-4cfd-81c0-ba62a76266d3 1 Result Result false 0 748 -27 47 80 763.5 13 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 21c33c2f-9fca-4a36-986e-1011355096ea Panel false 0 bcb37e0b-3c8a-405f-aa6f-dcd2e5bb07ca 1 Double click to edit panel content… 1020 -57 160 479 0 0 0 1020.859 -56.40537 255;255;255;255 true true true false false true 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true 20d638e5-5eab-4294-9eb2-e332f163c51f List Item List Item 752 493 77 64 809 525 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list dca67d8b-109c-4519-8679-2f289d90be84 List List false c88c0b93-14b6-40b3-a27f-00ff79f7b13c 1 754 495 43 20 775.5 505 Item index 2873bc33-81bd-45b7-9091-864600654a23 Index Index false 0 754 515 43 20 775.5 525 1 1 {0} -1 Wrap index to list bounds 2b291a54-118f-4855-9d9b-c247bbb61a58 Wrap Wrap false 0 754 535 43 20 775.5 545 1 1 {0} true Item at {i'} 733e62a8-108b-451e-a02f-fefecafbcf4e false Item i false 0 821 495 6 60 824 525 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true 1c65cddb-9bca-4abc-a88b-4eebe341e2b8 Deconstruct Deconstruct 865 499 120 64 906 531 Input point e43ffa74-15cc-4939-91c8-a9bbfb57563e Point Point false 733e62a8-108b-451e-a02f-fefecafbcf4e 1 867 501 27 60 880.5 531 Point {x} component c48f2a86-4388-4b9b-a155-5f9d30e70ed5 X component X component false 0 918 501 65 20 950.5 511 Point {y} component c2694786-f0d6-43b4-a7b8-e3a0d5b6af9f Y component Y component false 0 918 521 65 20 950.5 531 Point {z} component 20ab697b-7ea5-45b0-9a27-0c47130264ef Z component Z component false 0 918 541 65 20 950.5 551 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values e4a3a123-a46a-4ffe-9866-096c857bfd95 Panel false 0 fe9b2349-403b-4c80-bf8e-3415f7e9017a 1 Double click to edit panel content… -110 -81 116 20 0 0 0 -109.6386 -80.95573 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 1706b589-82a3-484e-8bb3-c9784fb4ea88 Panel false 0 12a00da0-f03d-412c-99e3-24174bf36562 1 Double click to edit panel content… -109 0 118 20 0 0 0 -108.8092 0.6788788 255;255;255;255 false false true false false true 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true b241a6a3-6e71-4ff3-95dd-95c013252b2b Division Division 1117 499 70 44 1142 521 Item to divide (dividend) 93b650fe-9575-4d53-a3ea-1bb3acc7ac2f A A false c48f2a86-4388-4b9b-a155-5f9d30e70ed5 1 1119 501 11 20 1124.5 511 Item to divide with (divisor) b5d9a2c7-a217-4fe1-86b3-eb50e420e921 B B false c2694786-f0d6-43b4-a7b8-e3a0d5b6af9f 1 1119 521 11 20 1124.5 531 The result of the Division 118e674e-db63-4847-b023-71a1ecd9c236 Result Result false 0 1154 501 31 40 1169.5 521 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values eefae472-b11a-4e30-a3af-f2edf06a8f62 Panel false 0 07b602e6-3f30-4265-8f7b-014173103908 1 Double click to edit panel content… -110 -40 116 20 0 0 0 -109.8456 -39.18073 255;255;255;255 false false true false false true fb6aba99-fead-4e42-b5d8-c6de5ff90ea6 DotNET VB Script (LEGACY) A VB.NET scriptable component true ef7b22da-b20f-421c-87e5-2e9f24448f61 true DotNET VB Script (LEGACY) Turtle 0 Dim i As Integer Dim dir As New On3dVector(1, 0, 0) Dim pos As New On3dVector(0, 0, 0) Dim axis As New On3dVector(0, 0, 1) Dim pnts As New List(Of On3dVector) pnts.Add(pos) For i = 0 To Forward.Count() - 1 Dim P As New On3dVector dir.Rotate(Left(i), axis) P = dir * Forward(i) + pnts(i) pnts.Add(P) Next Points = pnts 1751 8294 104 44 1806 8316 1 1 2 Script Variable Forward Script Variable Left 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 true true Forward Left true true 2 Print, Reflect and Error streams Output parameter Points 3ede854e-c753-40eb-84cb-b48008f14fd4 8ec86459-bf01-4409-baee-174d0d2b13d0 true true Output Points false false 1 false Script Variable Forward fd045b5b-1058-41aa-b97b-59bfbe37a445 true Forward Forward true 1 true 7e67df61-227f-4e08-8fea-e7dad9589772 1 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 1753 8296 41 20 1773.5 8306 1 false Script Variable Left e27890c1-ddf5-43e8-aa7c-855130530b9f true Left Left true 1 true 23600005-afd8-49b3-9cdc-f94db3ed139f 1 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 1753 8316 41 20 1773.5 8326 Print, Reflect and Error streams 59490336-0317-48ab-8fa9-f2f20609911c true Output Output false 0 1818 8296 35 20 1835.5 8306 Output parameter Points 6840a0ad-a870-47ab-bde6-1fa3333a7543 true Points Points false 0 1818 8316 35 20 1835.5 8326 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true 5c241406-61cd-4678-b6c8-910e404014a9 Point Point false 6840a0ad-a870-47ab-bde6-1fa3333a7543 1 1848 8214 50 24 1873.7 8226.781 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 63398084-0450-4259-9328-14f137aafbf6 Interpolate Interpolate 1439 7976 197 84 1584 8018 1 Interpolation points 0079b3b3-5e0d-4669-8059-717b19e83522 Vertices Vertices false 5c241406-61cd-4678-b6c8-910e404014a9 1 1441 7978 131 20 1506.5 7988 Curve degree f131594d-f681-40b3-ae43-d4d2fb1d04c5 Degree Degree false 0 1441 7998 131 20 1506.5 8008 1 1 {0} 1 Periodic curve 167576c0-ddfd-4da2-a2b8-bc93ee9de310 Periodic Periodic false 0 1441 8018 131 20 1506.5 8028 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) abb2709c-5d24-446c-be6b-d0277ec8791d KnotStyle KnotStyle false 0 1441 8038 131 20 1506.5 8048 1 1 {0} 1 Resulting nurbs curve 1f58aef3-68df-4afa-abcb-766ccf636dd2 Curve Curve false 0 1596 7978 38 26 1615 7991.333 Curve length 95a44c5f-50e2-48d0-a7c6-c7c016870137 Length Length false 0 1596 8004 38 27 1615 8018 Curve domain e0a12ce0-d875-401f-91ce-0007c6b27dc0 Domain Domain false 0 1596 8031 38 27 1615 8044.667 0d2ccfb3-9d41-4759-9452-da6a522c3eaa Pi Returns a factor of Pi. true effc9ff2-741c-4863-855b-3a155ab1d9a1 Pi Pi 1034 8181 112 28 1097 8195 Factor to be multiplied by Pi d17006a4-ce99-41fe-8ecd-7966c23c3d7a Factor Factor false 0 1036 8183 49 24 1060.5 8195 1 1 {0} 2 Output value b5428967-7bc3-4973-a90b-95ea5e112e93 Output Output false 0 1109 8183 35 24 1126.5 8195 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 19e600ed-4d93-474e-9270-60871e3ea572 Division Division 1241 8202 70 44 1266 8224 Item to divide (dividend) 09773635-d7f3-4dee-bcc5-d34fb2031ac1 A A false b5428967-7bc3-4973-a90b-95ea5e112e93 1 1243 8204 11 20 1248.5 8214 Item to divide with (divisor) e52a2212-3eda-4183-af6c-93c16d4cb773 B B false 2d3182bc-0ec5-416a-a889-562bebb78f4d 1 1243 8224 11 20 1248.5 8234 The result of the Division f5876fb4-0209-47b9-89c8-779610d79b15 Result Result false 0 1278 8204 31 40 1293.5 8224 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers feacff2e-50e3-4537-ac1b-4450d7a3cae4 Digit Scroller Digit Scroller false 0 12 Digit Scroller 11 63.0 506 8513 250 20 506.2305 8513.215 dd8134c0-109b-4012-92be-51d843edfff7 Duplicate Data Duplicate data a predefined number of times. true 95efbcb9-4866-4cc7-8946-58ac406c0650 Duplicate Data Duplicate Data 1595 8256 102 64 1658 8288 1 Data to duplicate 3714f2eb-dd48-4a34-a0aa-888903093857 Data Data false f5876fb4-0209-47b9-89c8-779610d79b15 1 1597 8258 49 20 1621.5 8268 Number of duplicates 7e939ba2-797c-4137-b8a8-d430da27e930 Number Number false 2d3182bc-0ec5-416a-a889-562bebb78f4d 1 1597 8278 49 20 1621.5 8288 1 1 {0} 2 Retain list order 95b2b7dd-614a-42ae-bf10-1aff9572036e Order Order false 0 1597 8298 49 20 1621.5 8308 1 1 {0} true 1 Duplicated data 7e67df61-227f-4e08-8fea-e7dad9589772 Data Data false 0 1670 8258 25 60 1682.5 8288 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef Quick Graph 1 Display a set of y-values as a graph b37d3ce8-3c7b-462a-ad59-ec77ca864ff9 Quick Graph Quick Graph false 0 23600005-afd8-49b3-9cdc-f94db3ed139f 1 2104 8257 150 150 2104.25 8257.683 -1 e64c5fb1-845c-4ab1-8911-5f338516ba67 Series Create a series of numbers. true a159a761-225a-47bc-bd40-22ea126c629b Series Series 1579 8345 122 64 1656 8377 First number in the series bd1dd0f1-5f6e-4438-9280-e9898072b190 Start Start false 0 1581 8347 63 20 1620.5 8357 1 1 {0} 0 Step size for each successive number f00e9eae-ae27-417b-8d69-e7ba1904dc47 Step Step false 422f40c8-6c25-44c9-bedb-da6dc0b54fd9 1 1581 8367 63 20 1620.5 8377 1 1 {0} 1 Number of values in the series 9f5b0947-9738-43af-8617-f16229f943ba X+1 Count Count false 2d3182bc-0ec5-416a-a889-562bebb78f4d 1 1581 8387 63 20 1620.5 8397 1 1 {0} 10 1 Series of numbers a3febab5-0271-4176-b12a-837fcb0b83d6 Series Series false 0 1668 8347 31 60 1683.5 8377 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true d3b99e99-94b2-4d3b-a5b9-6791f7fbcf1f Division Division 1055 8433 70 44 1080 8455 Item to divide (dividend) 437989cf-f5bc-4a29-8bf3-2053b6564069 A A false 087687ee-5b85-4a79-9b21-7b21c6a77520 1 1057 8435 11 20 1062.5 8445 1 1 {0} Grasshopper.Kernel.Types.GH_String false Pi Item to divide with (divisor) 6702514d-d709-4347-b6df-b5df7b7df591 B B false 2d3182bc-0ec5-416a-a889-562bebb78f4d 1 1057 8455 11 20 1062.5 8465 The result of the Division 30e03bf5-47ab-4743-8ca6-661654fa103d Result Result false 0 1092 8435 31 40 1107.5 8455 e64c5fb1-845c-4ab1-8911-5f338516ba67 Series Create a series of numbers. true b02bc189-98fc-45be-8330-ec7401fd8524 Series Series 1109 8603 106 64 1170 8635 First number in the series f92f6d5f-73bb-41d2-8dc8-3a376687a5a9 Start Start false 0 1111 8605 47 20 1134.5 8615 1 1 {0} 0 Step size for each successive number 13e63881-4ca1-4f87-83da-29e52a136cb6 Step Step false 30e03bf5-47ab-4743-8ca6-661654fa103d 1 1111 8625 47 20 1134.5 8635 1 1 {0} 1 Number of values in the series 9c323bdd-446a-4b22-8a2f-aca538e02cef Count Count false 2d3182bc-0ec5-416a-a889-562bebb78f4d 1 1111 8645 47 20 1134.5 8655 1 1 {0} 16 1 Series of numbers 9ba20636-1b4f-4f30-88d1-ccd070ba1f32 Series Series false 0 1182 8605 31 60 1197.5 8635 78fed580-851b-46fe-af2f-6519a9d378e0 Power Raise a value to a power. true 7f12f249-7659-48dc-8774-d8dcb4014948 Power Power 1195 8375 85 44 1235 8397 The item to be raised 05c526ea-ba6f-4b1f-b463-e5886b50b151 A A false 9ba20636-1b4f-4f30-88d1-ccd070ba1f32 1 1197 8377 26 20 1210 8387 The exponent 0da0f993-8b6b-4b81-85c8-6b46088bc636 B B false 0 1197 8397 26 20 1210 8407 1 1 {0} Grasshopper.Kernel.Types.GH_String false 2 A raised to the B power 3cd244e7-2aba-4f95-8566-03dc0fea7a2d Result Result false 0 1247 8377 31 40 1262.5 8397 dd17d442-3776-40b3-ad5b-5e188b56bd4c Relative Differences Compute relative differences for a list of data true 29bec5af-d71f-4b18-b185-c780701e9c65 Relative Differences Relative Differences 1306 8356 116 28 1353 8370 1 List of data to operate on (numbers or points or vectors allowed) 8a3e4a46-60b5-4cd7-b23c-80e2d63b0311 Values Values false 3cd244e7-2aba-4f95-8566-03dc0fea7a2d 1 1308 8358 33 24 1324.5 8370 1 Differences between consecutive items 6ecfdbf0-d6ed-416d-ae60-dc1cd2f30b14 Differenced Differenced false 0 1365 8358 55 24 1392.5 8370 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true d496411c-0e08-4f19-8c68-12df038a1cec List Item List Item 1464 8354 77 64 1521 8386 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list 2bc8b542-a3b1-49f2-8e63-0ddfd4da1235 List List false 6ecfdbf0-d6ed-416d-ae60-dc1cd2f30b14 1 1466 8356 43 20 1487.5 8366 Item index 80fd802f-ac9a-453e-8304-f69ee4cc0bad Index Index false 0 1466 8376 43 20 1487.5 8386 1 1 {0} 1 Wrap index to list bounds 132fbf1d-fa65-4a75-b78b-358d4a9f1143 Wrap Wrap false 0 1466 8396 43 20 1487.5 8406 1 1 {0} true Item at {i'} 422f40c8-6c25-44c9-bedb-da6dc0b54fd9 false Item i false 0 1533 8356 6 60 1536 8386 0d2ccfb3-9d41-4759-9452-da6a522c3eaa Pi Returns a factor of Pi. true f8fd5bf9-b1ba-477c-ac09-f12dbb0d08b7 Pi Pi 885 8396 95 28 931 8410 Factor to be multiplied by Pi 754ee990-be8c-4cb0-a171-80cebfb39821 Factor Factor false 5ce031d5-550e-4710-ac8a-f97d9d9ec811 1 887 8398 32 24 903 8410 1 1 {0} 2 Output value 087687ee-5b85-4a79-9b21-7b21c6a77520 Output Output false 0 943 8398 35 24 960.5 8410 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 6227facb-1359-4bc9-8a73-12332e396c9c Digit Scroller Digit Scroller false 0 12 Digit Scroller 11 8.0 454 8377 250 20 454.3884 8377.877 f44b92b0-3b5b-493a-86f4-fd7408c3daf3 Bounds Create a numeric domain which encompasses a list of numbers. true fa6f6ed3-8022-4333-9e94-6c5db08fe4eb Bounds Bounds 1472 8569 110 28 1530 8583 1 Numbers to include in Bounds 6fee80bf-b69e-4deb-8ded-13a85bc7ece7 Numbers Numbers false a3febab5-0271-4176-b12a-837fcb0b83d6 1 1474 8571 44 24 1496 8583 Numeric Domain between the lowest and highest numbers in {N} 6f69003f-1e11-417d-8dce-8be904a546f9 Domain Domain false 0 1542 8571 38 24 1561 8583 825ea536-aebb-41e9-af32-8baeb2ecb590 Deconstruct Domain Deconstruct a numeric domain into its component parts. true 41f87425-df39-4e1f-bc61-a8f5c18e33a3 Deconstruct Domain Deconstruct Domain 1625 8541 92 44 1677 8563 Base domain 21c2532b-843d-4f8b-ad74-ecdefdba10c2 Domain Domain false 6f69003f-1e11-417d-8dce-8be904a546f9 1 1627 8543 38 40 1646 8563 Start of domain 65ed304d-edc4-4a09-945e-c299554c1818 Start Start false 0 1689 8543 26 20 1702 8553 End of domain 089c5e76-4804-4fcf-8f98-119c1fd40e7b End End false 0 1689 8563 26 20 1702 8573 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression 2/M-acos(cos(x*M/(4)^N))/pi/M*2 true c19c7708-89b4-4d41-a5f6-2a51bc0d8618 Expression Expression 1766 8422 299 64 1919 8454 3 ba80fd98-91a1-4958-b6a7-a94e40e52bdb ba80fd98-91a1-4958-b6a7-a94e40e52bdb ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 4f73ab90-d9c2-4189-96c3-f7ceb3560707 Variable X X true a3febab5-0271-4176-b12a-837fcb0b83d6 1 1768 8424 13 20 1774.5 8434 Expression variable 65f88199-8270-4b57-b0a1-ab7b5996f9f3 Variable M M true 089c5e76-4804-4fcf-8f98-119c1fd40e7b 1 1768 8444 13 20 1774.5 8454 Expression variable bc07ff13-3e3a-4bd7-af78-bb649c9e89ee Variable N N true e7e40e74-e4a9-4cfa-8865-866414e101d5 1 1768 8464 13 20 1774.5 8474 Result of expression 23600005-afd8-49b3-9cdc-f94db3ed139f Result false 0 2057 8424 6 60 2060 8454 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values a87d0fb1-539b-41ce-a26a-b4dcf5b1b5fd Panel false 1 23600005-afd8-49b3-9cdc-f94db3ed139f 1 Double click to edit panel content… 2109 8442 160 427 0 0 0 2109.659 8442.332 255;255;255;255 true true true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 97020dcf-606f-47a4-ab0d-e1e8f271fb8d Panel false 0 a3febab5-0271-4176-b12a-837fcb0b83d6 1 Double click to edit panel content… 1798 8514 160 427 0 0 0 1798.659 8514.332 255;255;255;255 true true true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 1c950b7d-6e97-42a7-be91-b200f898b18f Panel false 0 0 acos(cos(x*M/(4)/1))/pi/M*2 1/M-cos(x*M/4)/M*1 1/M-cos(x*M/(4)^N)/M acos(cos(x*M/(4)^N))/pi/M*2 2/M-acos(cos(x*M/(4)^N))/pi/M*2 2285 8562 160 100 0 0 0 2285.659 8562.332 255;255;255;255 true true true false false true 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers e7e40e74-e4a9-4cfa-8865-866414e101d5 Digit Scroller Digit Scroller false 0 12 Digit Scroller 11 3.0 509 8636 250 20 509.7244 8636.291 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 7589060f-5d73-4d28-9ae2-cdee4613db19 Multiplication Multiplication 818 8479 70 44 843 8501 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication f1e2ab25-8f12-4966-beaf-aabe3350f631 A A true feacff2e-50e3-4537-ac1b-4450d7a3cae4 1 820 8481 11 20 825.5 8491 Second item for multiplication 5457775d-df24-4b87-9fa0-0f9070a5b613 B B true 1fc3214e-bc6b-438b-a612-257a7963060a 1 820 8501 11 20 825.5 8511 Result of multiplication d0fd4455-ef6a-40ab-bf66-a1a06d0f359b Result Result false 0 855 8481 31 40 870.5 8501 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 2d3182bc-0ec5-416a-a889-562bebb78f4d Relay false d0fd4455-ef6a-40ab-bf66-a1a06d0f359b 1 907 8499 40 16 927 8507 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 3739f329-0285-4b2e-ac4c-a8d100233f51 Multiplication Multiplication 773 8335 70 44 798 8357 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication b748839d-75e4-4877-b212-7eddb6662943 A A true 6227facb-1359-4bc9-8a73-12332e396c9c 1 775 8337 11 20 780.5 8347 Second item for multiplication 3541e88a-f4fd-4d36-87a1-cc0f6cdb1331 B B true 1fc3214e-bc6b-438b-a612-257a7963060a 1 775 8357 11 20 780.5 8367 Result of multiplication 5ce031d5-550e-4710-ac8a-f97d9d9ec811 Result Result false 0 810 8337 31 40 825.5 8357 78fed580-851b-46fe-af2f-6519a9d378e0 Power Raise a value to a power. true f775f8ef-72f5-4450-9f33-f67c7addf15e Power Power 684 8432 85 44 724 8454 The item to be raised 6ff9cadb-ce5e-4bbe-a18e-4c62289ec994 A A false 0 686 8434 26 20 699 8444 1 1 {0} Grasshopper.Kernel.Types.GH_String false 2 The exponent 6241507d-85d7-495b-8812-bb17ccd1f133 B B false 390d4b65-0f4c-4379-bea3-25ff8980556d 1 686 8454 26 20 699 8464 A raised to the B power 1fc3214e-bc6b-438b-a612-257a7963060a Result Result false 0 736 8434 31 40 751.5 8454 9c007a04-d0d9-48e4-9da3-9ba142bc4d46 Subtraction Mathematical subtraction true ac482cf8-8042-478c-a153-b403db159440 Subtraction Subtraction 593 8555 85 44 633 8577 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First operand for subtraction 16deb2d3-84bc-41f7-a6a0-152e9348f5f1 A A true e7e40e74-e4a9-4cfa-8865-866414e101d5 1 595 8557 26 20 608 8567 Second operand for subtraction 9ea16d4f-3008-444c-b245-36c78633a93b B B true 0 595 8577 26 20 608 8587 1 1 {0} Grasshopper.Kernel.Types.GH_String false 1 Result of subtraction 390d4b65-0f4c-4379-bea3-25ff8980556d Result Result false 0 645 8557 31 40 660.5 8577 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects e4a3a123-a46a-4ffe-9866-096c857bfd95 1706b589-82a3-484e-8bb3-c9784fb4ea88 eefae472-b11a-4e30-a3af-f2edf06a8f62 3 a7e16223-7e7f-47a9-a6a4-1798355eced1 Group 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 08f95884-61d8-41f8-9981-a49261f89170 Division Division 134 220 49 44 163 242 Item to divide (dividend) 15f59732-d55b-4064-bfcf-d92a0d4a7554 A false f1fbb0e1-fe5e-40d2-841e-732012e40657 1 136 222 15 20 143.5 232 Item to divide with (divisor) 13d0d6f9-cb1f-40ca-910c-0316229f403f B false 0 136 242 15 20 143.5 252 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 2 The result of the Division f9f71a55-f522-4a2a-a443-1fc9358ef7f9 Result false 0 175 222 6 40 178 242 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 8efc9f10-8cb0-403b-8685-a3d111daf33a Interpolate Interpolate 546 -273 225 84 719 -231 1 Interpolation points 8a719936-af83-4cbf-b0ed-2084e2c21b39 Vertices Vertices false 7f737f09-6227-4105-9ed2-0609a54e83ce 1 548 -271 159 20 627.5 -261 Curve degree 83765e12-d3f7-43b5-8493-73ab54796ff6 Degree Degree false 0 548 -251 159 20 627.5 -241 1 1 {0} 3 Periodic curve 099b5b20-3e92-4e05-8202-860af9f51fd3 Periodic Periodic false 0 548 -231 159 20 627.5 -221 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 96546139-2197-41d8-a62f-50f7801e11f7 KnotStyle KnotStyle false 0 548 -211 159 20 627.5 -201 1 1 {0} 2 Resulting nurbs curve fe2c7fd3-a20d-49fe-8b1d-09361e90e45d Curve Curve false 0 731 -271 38 26 750 -257.6667 Curve length a2c92f41-aee7-4cf7-a313-7c3e8badc964 Length Length false 0 731 -245 38 27 750 -231 Curve domain a05c8f68-8b87-484d-9af1-b77025d32b4f Domain Domain false 0 731 -218 38 27 750 -204.3333 f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a DIFERENCE CURWATURE SHAPED GRAPH 7H0HXBNZ13dQpEpRUVAUgwVRuh2VlRaKhKKgYieQANGQxCQo2BYVe0NFRWzYsYIde8O2lsXe67qKbcVeVuW7dzITMhXyECDP9z7uTxfmZCZ3/ufcU+499xwjf0lccpJArCgFf/RYLFYd8NdcKkpOEIqHjRLI5EKJGJIiwGVIhn8M4Uew+4IEPL5ABj9SByWbYKRgf3jZGFzqH3j/WeSQVeHT7irCt8iS1xhGyASjhILRkG4C6AaRieApfAv0cqhAnhiVKhVAcm30i81QWphElsQTQUorcHX16tWl2F2RApEgTiHgYzShUFhq5S+IF4qFCvAWETKJVCBTCAVy7LHwr74/T4F8jxH4ZdfjpJnzp901MvUXyONkQqkCfXk4RJZ+GC9JgP32pnZ0UKCr65M9S1+unAH+fbIkD/z7eMmOx0t2Iz8gv+5eD/+dPxf5N+Px/EWqTxZlhcGfF6bDJyyGtzxZvk718+PMhY8zF6k+9njJJtXTlB9TPuTlkl3w+tKJuK/G7kWHhFI34Ye3oux7Z2YjH57N9HP2ZtUD0X/RK4x3IT+jb4R8o9oANqnGho4TG3bZZxCq8h3RL0XeHUUVeQKKD3YvGUklwijayi/CGIHyBX0ajn0ovAhnXV0Dg6KN+wAJg1NBjk0T+McMu+onSVZOoNrYFADCNhwIIyo/tdDLBlE8WYIA+aQdnGpfS0sH1QOSNVAiScJm0KSmMT3r9APijPsqY3iF9DXGfeKkXF6qJFmh/lmTQJkkWUr6cN3AIB+uMFbGk6FTQA+dWXVwH4VXDJWfS0XGjN5u6SOXC5JiRakBySKR+lTwiUiOjxfI4oXyRGd2P6XG8Org6g7/c2b7JYsUyTKBl1iQrJDxRM7siORYkTAuRJAaJRkhEHuJwdMssEf3K9M38MmG6FMMfJIViRIZdtksVBiXyBOI2BGyVImsVjAf0zKri1c0HebRj5tnME/4q9hkDG7GmpQN05Dme+qVKYvwWMg+FUz9AAdNlddwYMHrBsrrEKNaKH76gX3LdJ/Huj6nBuVtCshdZ3H+xIRPi3GjqoPwythPIlbwhGKlHnVEn2LgK5GhqhVjjIGfRCRJlmEaDv6fSlfZ+bAT4HPZknh2oIwnlydKpED3sSXKt6oV7I9ID/i7sM/LcQM+JoTNdHvl+v1F8mJA0kNJpTF3rj+83yoks/eOYVkX/jABpFooSTb2l3Oxu6l/3h95r23zQxoCUm2U9MS+G++Y6yzuljVbPN4ILBwBSR8l7TjjM+q7rU3Q0WeP5nW1tH8ASHVQ0ofrTwrWNCjm5jx7PiQ9essLQDJASasOdbC6/rNu4GG9WgUT7LK+A5IhSpLmcVdusejGSWs01ye49YTRgGSEkiZ9PsQyP6Ifnn+oq97lfYHrAMkYJU0/earv0b/MuFvTn8zv+uKrEyCZoCTxXpeXp19s52x+tCXG03H/N0AyRUm1D464Xsfzl3fOmwWPdroNuA5IdVHSzAmtf7y5ERuwyCzizccI24GAZIaSUj41sneSZoWsnTDLcNnXGf0ByRwl/XjSqtvFN5167fOMdBm5OuYjIFmgpJ8HfFYMXLTWP9u49PLa2+lGgGSJkpo3X3F+TsfHQfNXni3cGfh9ISDVQ0lLQ15xj23pyl2w16npyoG9nQGpPkp6s7Zu0/wHluE7Y3rz79u2KASkBijJ3vi4k3vIO5+CqB/H5tdp1BWQrFBSk8HSFfW7vA1epL/fdKR58BJAaoiSHrz8uHFOeqOg7cdHPLXcumwTIDVCScVtOKf/zejpd3CZj1vc+M+PAckaJf0+J8vo7NufAdOdr+b9sX5iIiDZoKT4hpHf9KaOC5imt08mtg+ZDkiNUVJ4VsGklNphPmuGJdR/ZZT+LyA1QUlnkjt0fD8hLfTQg/W3rxulTgQkW5R0qfPC0QtOFPXKr7/xIPv0xHaA1BQlZU25tu/7iiSfbe/szfnibChRzbDpUCicWt86i5PxntP+BNfrFSDZoaQeV5pfW7jyqM/6cVsnJY0YuxmQmmPv9SB3wMYpncInxj+/x2JlxgISGyWtFCZl7l7ryllfJ/vWoV/99hoF+w/DaRB7qJmDxXIFTxwnCEwWqpTZZNmfdW4frRV0dG/onEfHePoUasMoTBg3Qv0yy8RHoZAJY5MVSg2Pqm5MRelpTUX9Vo0qqkNUwZIfwTf9cnu+6OKz74pCTUVJdzfLMzBM4uTddO40Y9LLwWoqakvepe2T3jwM2RlrGfPGrKelmoqa2Dfs09kNKQGbJDOCpvumnlBTUU9f71/1LjDYd4ZT23msIPZTNRW1K+/4r6A9A7hz7GaVnF9yzEJNRfWNanrGrn+pz9KTHXOMo35+VFNRUT0aJ01t9Sp8Vpjex8lmId/VVNT4QIVk+HqPwIO1rqY/rHv0g5qKWuYUZhfw79CwHfJlyza2m7hDTUV9z0rx3xzMCtzZaJbX88l936upqIXTOR2LbMcGrOm2lvOscFdLNRVV8nu9en9ODQ1aFtR8d5RL289qKsoktPPnyytaBOX1utVzaKtrF9VUVFHE+3yX56GcTS3X2Jl5yF3VVNRMp7WpthHcwIzUbNudV/ocUFNR+5YWGtoayrgb+t+wM7xeOEBNRbXdfefsu0+vQmavfucW2d86U01F1fLauWDM/gnhi79092o/vfSamoo68TrifROLdiFLnVesMNkYsE1NRX3K6xdgkucdsr+lW72EPj23qamou8PYwgPX+wQtt7/a58awg6vUVNTM4T5fZ19YFbwj9UODnKehKWoqivVXQpeIPSW+Ga3evR0yu8dNNRXFihzw/Ni1tb12Xm28v86sO/XVVFSfzl5ZDSKdfHYPntHLcd6bdDUVNa3xaNvsXRdCZo3lWRe+Hs5WU1H9kof5dShMDdll6JVv9VHWUk1FcS/ZnF5RUC9g5bHf4xvual+qpqI+eizkeL4rCdrll3Pg2pBWSWoqqs4/M5J9BswMmt7bZ9BFSZC3mora+iF8Q5evrfz3mOx4f3ziQpmaimr5+Y/X3vbHA5cbbGVPidZvAEj2KMmz3SGum1+XgB1ngjv7jNg5D5BaoKQRAR59DXat8p1oNmX2hPvnoAvQEht8VPrgLcv1A5bGft5gfXBMT0BqhZIO279dHDPNxmfqmcxbXtsPHwWk1igpzTFjc0u7+b4H2x6IWjLwsQ0gOaCkCdw9A88k5QbsS+qybG7/5taA1AYludxlL+V/9eLM6rLCult/OfwuR2yE/a+YLxvVtlf2RkuHF4U9ZwJSW5S0qF5pWGf+uNAVr1p8uCsP7Q1I7VDSWpf8hbdcZ3jPYUdNjSicdweQnFCS3VqvP84nJQbsXrv99gpWJz9AckZJm/R6tzrLjfSbeiV7mGEP03OA5IKSTi+wNPjt3cPQDetWPAq7ePgwILliU2/qmtN1zd722tDb1TK6VwtbQHJDSf827rRuaPto78Orv/zFPecsASR3lPTl69ONF5uWBE39TXw5o8WVsYDkgZL+cD7Z6HztuaFHZ3yyf2VUfxkgtUdJ66d0cV456LbvTjuF5R9216CB7YCSno3ZN+n+RXmvrVzr4LP8Mb6A1BElLe8mfdT5TmrAbpHRvnnPdroBUidMs11zaDH05ODAufV2ng/5vCAAkDqjJHmtZOuwZpa9Fuz4uGP4h309SEavC4vG6E3Z+Dzax+Fc0MQXZ2abWIw314LRgwaB0ugd2TD7t9yfeb32HOsRdfagvD7uuwzCkpNiBTK81TNEH0Vlz9zQT8rZPHacRCRSBn/QusWLJDyFUJzAlkqEYgVbjDxYTvn6RFNHNSTS+2PXw5HxKJdGkFDQIBLY4TgBC+XKxsdLG4+/3TVs/58TEkOdiqaYKsmk4I8Apyp29QUf5COX4ERnpbXjsCI6nGKxgnxZrGM+dSKEoyTIc6DKYVk6c8bObH/KPAJGWnKFQKzw5yl4zFGnga8MAJLIUmMY+UP6ETxFIvbqtce6j9cPVgiSWKyy1SkDJcLwM1jsymJleKPiUJtOHA4LNmwW/zzPneN8ape7rP4QHPbGfsmyUTwYyOIlAjoHBjQS0Z0ziidK5ikEbEWigB2HPQCKBA/5VcDmKcCPcqkgThgvFPDZUp4MfKdCIHM1CBLy+QKxCi9KaSF6PzQjJglMGamCrGY7cgCAgNXfAavTfAmsZjsD6m+nTJHRDxOKpclILGyIgkwFTT0/5PUVErYAxYjyBce9fdHudeaa4NmDTNv3XfNxIl4bIM8gvRx6ubzJQPQBKzkZvAFCUm90MpQQJ0NRWw4rrScOIb1yEGodgckCG2gRpbTwJUlA8MpFbUFKyzyvkB4h267fOGCd1UyGFwvVc8liUUYqD71f/eeLiutmB0yrnebao9+03VpAD0gQA3o5XqfqKtGTJCtQATNggK9hBKJrVdCBiTZWMZ4SLttBC+8t9ojw3mPxuEnA9QGReCFDnkMWMuVlEkxUOLAqjsMjZ1SKegAccog4RLtyWEU98TjolYODtWqqs0cB5SeRMSHBf2JkwPWbxV0d/FvXde+KXmmuT6oEEfeeTIgAucEhUqviiMQJZXEiRtk43/9madCG46GbeaJ/Cq2eeOsIIiVeTIhEeJ1CbR2MailtnevzWPsfsq8hmQOu3XLL3WyFe6+6/sJRQr6AjShSsrkzpAG2LXobZtvABAGKamQyT8QWCcQJikS2XJAAd4XkFTJuxPidfogk9HHUCsJaBFSQe3cA6xMqE5fhBKieGpk4C5WJ4yOjoXzJniuSp91+VjcofdqRzXODC3/proErAfhYQnxKfCjE7hFQ0dJulAaOzl+ur/RaoTeEyQUlREUp9WIcGivCVpg8u9htzLSNBIjg61BAhFwuDyJijKUFiIo8mSACIlTDDjG8iQ05osYpTGPScco6UioSKlRcgvpyhFA8giaC+aOD/sqxzYMPzvn+vNHImQPw7AqB95HZpbysbU0J+ZHRlYkfJV1qhB+GsRKJSMBTKUAWybXBFIuBT1ycQC5XfzylroEKD25oKUNMas6suMczyL35wGdNhzp/c/i9juBjS8ShIbMGu65t3kQ4o+pkMJUVM3JF1AnJ09EQlhZRPHECYCzq+iCSy68AUnuaCnJXhszymRx6c/qiA70e45AyQh9KxqqMUhVoIZqFFi2gWUhekIZotSyLOGB0IagwXMRggLDrij2VDJg6rSogQyY/LWRg8qNuUh0WjZu0auzi6/8Uj/DL3db256U/21+nMM94/8iYAd82tAtEQGgEMmGc0m+qmHdEtO6GoTypVChOwJCCr6NFZ+JJB/0GxvcPhs5dlTncMTyocyUtJYzo2MaAOTMplo4GZjtzOg00wphjQMecWMepLbP1j3jviW5ls/n87Ua417XwF8RJAG6y5DgF20cWR3Zj69CwqXsfAXgFwSjlqk0sTy5gS0U8scCZLePxhcmAe2I++JsgUsXjcD1HzObJ4iq2akPcYmIcN4lhxA9UNGoAtvAYByB+gcq9ZQH39pifRu5tU/DdbBBO+iljKOjmlg2M8r0f7E17aftuYMD+4e0zOOGF93DvXZvqXZGL5YkmMUSrpGiy4GIDBCoHOA1SIlA5bRGgNFqKsPVVyRAiKkrclLEnJVBr/9TLveueEnCgec+GbeTLmuH1KfK0CPg0sj5Vo2lbnx5zQnGJptKnUhcOi8XRcGmij3I+VQgT/z2HThyZdd9/ZuaN9hNGm37BOy/KJ5GdF/R6VWAR48+EBVFGyluUYPuoKxRH8BcqG55Y3haFhxIUo4LTDfQ/5vltf7tC8bLk8yO8wkceSVb4ystVAQnbjwmSNF9Mo2NRIUmjuy0Yn9qs26+A+X07zWItG7AEL/jhYP6EjwLeSTRZmdemwbWBnyQJwA8mHpx88OaUiilp4mY/3VDIc7CMVlFPBeiUjOEAunwA3SMidCzgx+QLNVLNpsHwU0onjvLllj2v9+vU9r7hm63PtL8ZySOsePaD95HlRnm5PG1M3IGupDaWwnUFiE2xD8UeU3Q7BBuNtHHdcORjDOi84o9oXHdgw/A93qPudLj6KJugagTyZBF5xQG7rvV55YwC8JUKgAIXBAB0XhnRzauRR4VOwrDNfvuOhIuePx30FvdGpr2TwbvAFBxpIrUzW8H4oZW/UA6sXCrc0RIooN5KdcECCejzJsBvoEScmD5DOz4S7DgiCXvjSIlMEa6en0QhscT0lwpKrOppBIbFtAGqbhRgWCM/+Jfg2g5vw0kaP+qUGZapHizmC1Kwx8H/o6w0pmPlq35hXH23b36L1l4IWB0ePBAHlT4XsI6sHPVpGGbvJxPA3UkeWwQ+zo4VKEYLBGK2YrQEjfYqpiqJGU7kIZHYhlzVwHPNiEc9V3eS5wpmgLtAI/VoCb+cDd5DplC+J+VbtW28/Iney9WcOYMnbflltssGL5ORyN3Ue0M4Ynn6krj5pAXvVQrBiqAywzlAXxYJNNqGNEfAEoCQhx6qp3t+67jb5anvpsv9eH3yPWfjN0k44F5qoNRI5cFEdIm1ABOQGgaYMvgamhWlUCmXSClRSkxKDepzf4/ftqPOtaaMnNayotNE+ybFBZWRfGBS2MQJJXVFoEH1kAmdHjq3jMf96WkdOGmDneHLlmPxi4lGCBiR/tyKR92+eF2EAgliynjwK58dm6o+YZ3ZCnRhD8biys0l1/EVUlbEnEvqcZOX9jBKBTHOAUrLaA3A+B5VuO0NOGC0ugqUVlSji9uieg7jTEkwHed20yQA79gheons2CkvV7OiOgYA+rr6FAyxKWYgG0QTuas12k6yQQDC5MKRL5Qp19faUgL1e6I1L5f7njNraVCD3W0jTPEqyx+7mayyykjlARZz9PAH24ODA9Kf5A4wL+myQQuARTMCBiSqRjaXlIvr8DMdWHR/SnoSN5wwZ5UygEF4qZzX1KnxV3hnjqUWcA4YBn2bbr/Hsn6wWCGQAWZwUqQy4KqqPauWSzTegecijyU78Oj18thKzPTVAlsLcpjYmphT03uGZUl0JT21bBSjD0x8/r5Vcdjs+1+7NF7cb3GNGUWWK6qP8qmW/fJdkemFGkVTFo1R7Ne81ojMHZa++1eL3nYfbxSEX9lVZQMqJa3iiRX79VS34vIG4wQy+AB2PE+Z2COSiBPYQoUcs4joF6F0OTuOJwZOPlueLJWKYLZhrAQQhViGVLIY3goNqhg5YCscAz6CXHRl+yVCvYosiA8KG1KWpgiXfRWSBLh0pYoewGdgBJEk4QsqGEAQDzswwkZeECd8oKIrCzBhbzNguL4fhYXOh2H3pqpIabQ99CE52c2CO+nFji2pB6+v0OImDXEyVVI1ZQCEYjbTLel5AyfZcjPJRDPlEbTAySM7Hq74IpihgIGPUkJmbhAxt/++3Zz5+gF/HJ05KaZy+rySigKicmwTEypAbnRIYWuS6NExOJ4dJUsWOCOzGM8toVxdLzi6u7qzJ7A9XN2p/SvDLYKcTcscgtO3HbZa7djxK375NEz1IPLyqRqtKljHZmRdUa5O5IPoaWRlmylTXYFJgFwrSyZn8J8W3J9YO8P2SK+tmZeO9OG9wm+dVm/KK9waQLRMEBVTWG6IltFoX8kBn/WhETDuntc6WbWx9Ft5y7jw1qoi/LK/IfpgEjQqQlWAgygbWnCAstFoo6mN0kqVWXBN0OGnLMms3ekANzf/xP3AtmlztZFYrgWE2IwIgTmN+m11WTR+G8ennVOp1zWf3Ad2m66sfNsBv9aHxBZSiQhYdLLPZkSDcydsPUMM82Cx+/mowVMkyiTJCYllK+WarLcSD4DSjpa8MqlGrKhfDByhnG1oWmwu0U0qAvhGbCW5SUaYeqzYxoFV2bDKyTSKeXe5cdTmlIC5+skng/fenIVfvekHi7uALySv3qgo5blQRMVYSRcKORmzjS5XOwvIrvc2jVyousrpyxckyATU/uXFHHMHo9ELObPOrMz8+9eHdnhnyR+5kewsode1PTvh+5dsZXr/nK017SypJFMDRwkOWSjhYylblIzYumCH6+FuBZy9w/9KOxDz4m+8rGIPIMuqilIVzIhgZAarZphBSodVZ0XtcljhGiKWKID54sXBE5aO7l4gZAWRRZIz28MrLlEi4zuz23vJR8oUyC/U3up0O5Pp41YO9J963uNxYkbpabxdg18QqUilyKVQI1UFs/K3MDErZosuzBz4KM0OZik3yiGzxMmyWDnDDMr4YpXe47eSXpOf2IpfTLa7U5lQubKhgzuqyG0AO4qI7DjmwenbeptmXiqqyRm8ra55nd2PDLsUOq/PuVBr9919ajbsBQAc24oCcIsCAKhaNPJEMVOGpDxRAjB6h2ly5zAHzvql9QZ8NX1YQjBlyI0Upkx5vSoAKN7CAMDmMVswR9OMReNo/mcnzukQ1MqJc2LNEK2eOCceZ9fGifN8mhPnA5s4c1Jf52E8MKfjgcY53UYMLNBqTjexRosWlwaJqlQLjHi0nYkR47ZjjLCgYwQ7oeXe6XNm+C48uZW79Nv+sfjX7SMQ8VKpGUEIK+g8gwY+7NFCmYAtg09CywpR4k7MAKIYCAl3PXa5mBPzyCqbMw8wPzbiFNyyBwygKLfA8h6BYW5Jh7lx5JJRG5KH++e9+Srowt6Ejx0t0Jg1FPwjE/JEFd+haFIW7YZLBeJALjsJfUbFQlpinSHGYZF3AAgf0GA5sGQ9ugNQRMqDAC5WxDpSaMvkijZTFr6Csx8uqfCF8fHJcgE7LpEnFgtElC9+26XTk5P3srwP5Q69NMYh4Bx+vclf+QTyehNG0LaRyweQPIKQpFF5nfkwL2Z9jXiddYBylahKin358qVUk6iZjWcMXOtKFvFk7ERhQqII/KVWC+eH/fxz+omJoRt//FxkO+3XSXwAF4k+hBzAqShVwR1vRu6UrNMB7pSWsko1Caabc5KEcrkQ+IJxODZhKoSSOZJ1W1fe2Lo6ZHfdia/s0p8dwjNH+USK/I0ySlUwJ2cdE3MidIE5kD+ahNddfJLgVyI8AcMBcbZMII5LVW4AebElUt5IuF/kgfxW9gnqGdU7+66smaMtd96M339Kd3RPxB/pj1J7PvlIP45aFcxjMTIvf21NR9tlm3qPcJt6+uVw0KuMg/JEoThVDFwnwD7ALrEEnmrzAD+JJKMRIvzVHZKSeCnKC9RLW6E3l998/sV3zjb7L0tlpQmENLNEqrQN9HJVcC5mLRPnLGucc/AmPkvDdZL6ZeskjIpwJZfTO8DewL9g9953V0euq4NXhLQ+UxlF2xxxd0V9COinniW5VW6IIkT91HosGj+1sf7YyBMHP4YfNcr726HzWGfcW5n7JcsVkiQ2WvUd76ZCTOlOA7XxEQFJl6OZB/AZyGZ2gkCSJFDIUtlS5QPlFsHiOFEyXxAs7iMQo6cH6J1XYiVMprGS+ECgm8Mq31KJTBEgFCkEqoLXFZ4NbTmsoo0A+yyqXPkMuFe2kXa3hjKGCsSwUUgweCrk0RvV+j3vzAuHwKl5oi31G3RYgBdL7KlksVRRqjnZBZ5IPgaR86bSIxFOHJZ0o0b5qA2j1FwY5OiZjK4ITDPP7K6PGr0L3r/ed0j7loTo5z+awgSsiDpCG6e3GbEq2lCtOhfrO2GIhlzwQ9DZuZ9zv9RIgHp82EVfd9/SOohtI1pVIywwwD4K/19X3e3B38HCKkzWp1NjOhpuEwv0Vlu47d6SKdwuaV7V4fbajU3kj2bVD1o6Z/XfJi8PL9WBcNuyJZPzIm2hAzFDfn5+NYTbxcs5R+/FNA9Y9PfjAoHC6aVOhNtF9kzccbfXAe5US7h948saS97TN36TjFat+H38/QidCLcz2IxrIc11gDmsmgy3i2c+t1jLfua34/vZl6OGt5+pU+F2RHPGcNuupoM2HQq3s4I9T99s0cl3R1+LcPdjQ0fUcLhtacdosZrVNOeqNNyefbH16043jP3Wvmtf18jCPF8nwm3Eh6ANt4EiRP3UBqz/D8JtYguJGg63c9oyhdvejtUTbg/gm7r1GOIVPLnZ3QGtG+/YpfVwW8vVRJGC2G2ZQshHjlUVbu8r8pwsuvw0cJOog4Tb7p+hWg+3iTpCC1gBOWLAKqfN/6lw24pOjelouE3sbFNt4XbiHqZw++yuqg63TaZvvJYxoL9fZvjCXy3G6a3WgXA7eg+T82K0RwdihgcPHlRDuN0+y3F9195twucltK99rtPrAzoRbhfsZuJO4m4d4E61hNs3s7i2O/JWBWe+upv6JMreVCfCbRtG5gBtUvPMYdVkuG0SvLPFtf4mPplpLR7k3/zVS6fC7ZRdTMxzrBnm6Wa4fbfrWstfBx38JrrP2dnKotmWGg63b+1k4tz0nTXNuSoNty2cWtp7tooOmTXz4PweqfJNOhFuIz4EbbgNFCHqpzZk/X8QbhN7L9ZwuB2zjynczt9bPeG2r5PfkuF9UnvNXRZz9ejDxm+0Hm4TU8G1EEJG7GMKIVn7qircfr7gfgOFIqrXrpvT/7XY+9t9rYfbRB2hBayAHDFgFbP3/1S43YhOjfn8GiV/rZgQvCuh+a8IWcwsQlyrarNEUVoUfg1dWcpm/jIeUGN9wEtI2ISnVPCINLErrAFXEjdCwFfdxDhSiggc/wENDkm4ewBBmuRLVWEGFq50I6krpgYC9soTU1C/l40IqaoKonGk9GqFwPnl1nj+yHyhX85Ax7BUVoeOjODoVA8iWJjREiJqRTU1z8IkHXeN1FizSF6SVAS9EICaXKhIxaKzQNpatQW/vf2ruFNd/4X1Zb8av8z8gxE9Q3/lYynWOFCCtv0TpMSnGxNEQOh0wGNEZFyDknDmkXE8EVI/n76McGurqfEtzs8L2dRrRlD/wtaWzIKNPJDCkUculyfYxN7SWhDsDFcmrpW46ALXhCyVVbBm0ViF5G+HOuzMiQpZ+jN68IzuK6fjHUZ/YYJQwY6Mk8HDchp0120ZlpyEnKeTo7cialAuRMrmM51vJHKKUSgIw6vQqS+6CWuEPQVexGy4AfIFqqNrsCKJAXCO44UpZV9RB3YtUBWFNkWELzle7SNoLXYMsnjsG1lKzlW052YrDuuYE5C5MX5kmRvYqxWn0wEnLJKxoWO2X5sLbp6TH3JzAla/U3g2xreqMOsjSOJJ2cqzovKK981to7wP5aqyjyCPLRaMhpcQIVAeGq6QtSO2emcYIYndeHJFcYXpC/MArpeozH4EjFLmalRYzhzhNgxRZHA41M0S98uSAgdeCNw04dHaGVknH2ixoj+x630lVV0MgCcHwlOXStWlAFUXMU8jG26mHA/TQXKTFp3EZwOlgTs/h9zl+7gZ4c84K+8nn3FGr5eHT8TBqy8tL1zkrhu1KqL3tyMNtIAPixEfID41YQqMkCo9o5RA9GAR/2hWac4siidLECiYmPZ5SO/t+/tYhezvzxkyd94HfDFNA+X9ZKah17XtVkGuxMxl4oqljnJFo2U5C0ThSQV8VPlSMiakd0mv85/ucDNFIX23t1uMP/1jEIrcT2YMel3bjLF0RdUJXI8jdY6OcOOwHOdpVpjDVoUBrIUaJxKWh8f38XqmYedOcef8/JTA6XblHT4C8FM+gBwBYISqQCR/LhMiXedidr0xi8au5y8I+Tioe7fgqR9/KoxO3sGXSUe/seJdeHqoirvjDTh7dKIwLpEtEMdJkqQ8uRx2CmGLwAyCfj5q/isW8LP+SugSsafEN6PVu7dDZve4STVeskwqr2tQ0p09By3pTmrT4w3r9cyubCW0pqirAY29ULlKCwv0KkdC+eKil3tN7PtGha9SjM4PbzfqMF746BwbFaGajT+sdm0JMXT3pehmw26HYKiRxuqBxQXKsi+4MsQiyWiBXNkjAO6Fw5/LfEr22DDqlt9Ee16jVWdgexMEMBsqwOBmBAAMncxN6CazzhTaIEqTlgpt/IcdfGgXgIEY5s5iKrSROAvD3FbnMSfWq9cS5mb631fsDQv0WfJ51e/Wo1P/qmzrbJg5vJIOc3eAuftKDPOmdJiH7Qu4dI5V6Jc2sHF34cte9fChfSjcb5SKhHFIlUmy8aJD2jYU+GDAJVCAO0XsJNxTKmSbpjUebZu960LIrLE868LXw9lMwyLvoOHpFVUbcD1pBYBzNuVOGUyvXH7KTFWVFfNWMRtugjSQw/ESfpMhcjmYj8nAAP7ZuXpHjf0P/GMdaubUoAij69HQTZWt10gyYqS8Tv9g5XiQ4cKPMAXLzQKEMqDnhcBNRlaI8Pyi5I+rYbpgwt5FAdkLGv7ddtQQfIN5PR/y7PAhzQ49wuxo9vb4vSUOC4KXj0gcsX3kpjWVLSMK2JkG2enuQxV9wH2GFafUQNIrByS7SNiqla8RSknLHMctePgifOOc1zPfHhXji1Pp+ZJR8i0XpT+cTzY6X3tu6NEZn+xfGdVfpgWUgFgzoJSx/BQqgypZYvItbJRJCtAZrQBARI1Yo20DYfdrRGJg20BSj6cgFwQpVJ82o9On2QWPBkx7+jX4QMGeAztGPOYSqoTzxAIRuWEgnRp19GFL4R1q6QlssUQhULacUAhS0JaM1G4u95LN6RUF9QJWHvs9vuGu9qUUQyFhy6JCFVmT7QO5CC+qF8onCKfPjkQHE5um3MnDkjZEX+fTrvAb9ZULZFFg+NjXtvaXJMeKBDByjBuBtIPgCxXou4NZB1cHnqRtIPBRtT5MXEx04LBKYgAfPf1YadP8TEJ5sgShmCuIxwmFqfJyH5jsqX7dWHk9SiJVv0pc6XXgJL2JOWWBgBghk0hhrWTlqAyxUSkzTOElbOPYFG7SBov5sKqyan4bw4twyULtEmK/ROh+tNJIwhRSIU/kBzuEqFhjEKkAQWKS6nf9/jKetExzKEXVjk5Udcbd+uixkOP5riRol1/OgWtDWiVpyd0iyr8WXNyiWCYXNyIWUw/NdR5zYs9ZLWFObDmtBcwzApkwtwzEMGfTYe6xrs+pQXmbAnLXWZw/MeETvl9SnUCZJFmKx7wuhrmvRL0Pqh7drKZwFnzYCfC50AwGynhyeaJECnQEyhB5rWB/DLB+ycP8OhSmhuwy9Mq3+ihrCUiYK0iUX0CqhZKIMwaQarOomwkDkj5KKu3e5u6769Y+W+o/n1rr6UUro2D/YTjOQI1KXbzoQ/iGLl9b+e8x2fH++MSFMgoIyaaEwGMWxmMlu+zp2KVDFtSz3SGum1+XgB1ngjv7jNg5T+sWlDR/CrvfG7KEt8E3XzriUd9//nSpGQta1JrDKpgOS5VWmQW905ozeef0/w4L2oJOVHVGm48I8OhrsGuV70SzKbMn3D/XUEvanCj/WtDm3jOZtDlrJqbNW+o85tyo9MFblusHLI39vMH64JieurswF5HChHnRaAzzVnSYf48ddKaDycbQ9Ydr/2Ql/lxIVVW94jsbdqECnhym4SHrzcqGWcBOom36KrZ3cdj+7eKYaTY+U89k3vLafvioJnXeK5q1DttC2wLkCqj2LkqcgGfSRLN2tKpmd0lKACjf7OTURZzo0XvDZ3b4O3BEHp/gDOtSZmEETJCGAJX4UKyzw5QOAJBmvS/Lre/fSa/xuzl+Uv+9n7wT86/Nqdn6/rDhIQKAEdVGA2wZDQBA51ZrurmlowuwaY4Zm1vazfc92PZA1JKBj22qYQEWSkzXbLoF2CIw4aYv/d8CLMqf7SNa5S4YNZGTO8j/4Mt9yX20sAC7qF5pWGf+uNAVr1p8uCsP7a2FpBzHbLqlxQJAvbW0qhdgZ9k+DPf8bSdny4ZJDZMGy220sABLzOTQAkpArBlQ6rq0ChdgiYvuNboAm+GMSgzlAux0FwQpVJ860OlTnfEPJ3D3DDyTlBuwL6nLsrn9m1tXxD+kCB6r3j2cvoPJPQzagUHeRuchH9H/ivmyUW17ZW+0dHhR2HOmdiBPTEoN6nN/j9+2o861poyc1lIba1oJjGtaCRjkjjoPOdFoaAdyoptXScil8DDAEjrIoRuXvwSDvC0d5A3j9+dlnzrHWb71yZjzTcfl4LOGOClSkYRP0eyyDg3CDugdWNyjTNmWJ/GQRH20/3sFM7kW9nk5bsDHhLCZbq9cv79IXkw5NHJCE0qo6NEs2OfiMNTOVO4Z3DxzP/wfxkMC5UAo3+0vqwDr8N2XA/ZOG/D5exfOMi3GQ1o+MAqT3YogQJTt52zgfvRhjRpXduojAKKB1MHgC2C6n0QuhHQ2GJ9QxAaSopITNk8GG9xLkoRxlCj+afCulsWakIDsGVNONeicgJcQY9X3kLv1lZG0furKEZEYBrgeHdKJ1orkztKYVFcwQ9EFnWj8MnYpEnkKdhJvhICdLEXWQWJ5sC4QbVu/3NrDWq/cIg9ZarkxYdasrZaEyjPoYykqz2AUrWfMuqDC7k/FvSxXRNhJOcQaAmeP9aDFjhgKiEBSgrXM+VBc+pw+IdnPZdF222fjdyv+o463WgDLnREsIOqo/WnHorE//ZrXGpG5w9J3/2rR2+7jjfC5/RYcuI0B84XpVuPoCnXt11PdilkiIJrgRwAGTA5FW9nzRBJxAoi95OjqjCu+1b2cHceDiaRsebIURByAQ7ESQAT3Kx+ZLIa3wj0XsapXvfKiK9svEXYCR/g7KGyIWpttYBkUkgR4WE09Q1UxWsJOgov4FbONpTF3rj+83yoks/eOYVkX/jBhhI18jJnwgYo6HLB6zDG0kBj5GDOwlSlHNbKV9cpsJTogypcd3p5jEXBjedA2ru3om9sL62nRWBI1UCWNJVJqDSIUTTUl4FKQzTGNjGULnDyi+30QMxQwugjYS/Hj84jxV0J3XA8/EN3DK6pmO4YCVM4eZUIFyI2OVh0q7/hSx+B4dpQMloaCsxjPLaFcXS8glaQmwApS1K2H+y2YPWZaQV/u/tyuP9Z+LrqKY5lJmOpBJLap06qCdY6MrLt1REfdGablpGYRSDdUYBKwOnnCeKjeGdbok89d9jBY+SF44j3x/thj0wkbY8jzyEpIeVnbTIElGxEtE0TFFJYbomU0OunkEAWNFUBklEBpFzUApnFp7SLXdn9wNmVOYGXOekWIINEHk8M0jFAV4CDKhhYcoGw0ak/cRmmlyiy4Juj0mrcr76RFUvCcWg9mp3SwXIQPUVTL/uQQpYxUFQg5MiIE5jTqtzmxaPy2c8t43J+e1oGTNtgZvmw59gjeG+UCH40d6c+t+MKBr+pgGMxvwDxhECHGg1+B35XKBtjKFMo2xkDZovIKfS/UdRtfIcdJNvaXc7G7qX/eH3mvbfNDGlKPm+xFYxRNwsDP6BExkqvkDT3nT5otKyADUMOAutrNzh6e3Rr4B21e+E9f3uGplwh1LuDdFHUukMvleUpE/aeF819sCJCUSgjZsHPQJ40Of9sgAGFy4cgXypQdmKmN7c3Ny5/ONpsYkNaAN7Cg5Mlu/LT0x24mT8syUnmAebh/bBf+97JeK5frbdP7dT5eC4ClfWICDEhUjThRSpsBP9OBRfeHfCacqcSLKcJLBq0qSz+gcIh9FzijobjRmMknTeojZ58BMzgpUplAVQYLcWp9fCMdo9tWzgEmsDYpf8bRlFO2AenmI5aZtFRM1AJrH31kYm3GR93xjzM0O0hel6umzymZaWVs6Nwm28F/UeNp2/u2OYRvaqHPpSqyqbyq9SOWrqhOyveBvCDGt67IFEMNozOLxjD6XrO+P6rLLu9tg4bazOp3GJ/oaQW3DhRw6RNWthbAWmsCDU5Pu/lJkgDkyg0M5DH8sscgwWHZoWk+EJIKWcQn9t14x1xncbes2eLxRmDhWP6ASeyg/JQGiwru5wHoxVQJSTFA+I/9UdnD1D5cNVDgcgNMzITehkTMdsQOAgP0EMOK/KTUaXK4Gi0ZLeBTG5FryTOsbrjzQvct6d5mf7ZHO7yOQWqqUBw1R6+Xp2MyA9q1C4n8LWjR83CP84M9O2hhZYINYdanyurJaovAXNkl4dZq7FetbsVJxHJBXDIiHjDLgXp1c/R9R9bPXk6+Kw9HBg9OW9IDh6Vp2XPJ4S+OqG2VwHZGYRtMBdstFwQ2VCW40KmE8+YtP3h0loROff82xPXq7xxi4SGpiBcnYIcli0QUuoDOYXbB7hPD+6DMCsWjeCIhXynko4Uw/xCEKbKKa4IdZ3xGfbe1CTr67NG8rpb2DxjGSVUgSY2sgZcsPUe3+ZYD0T1b2bnfCBo1pIyCAh77h0oSIkadWHPp5J9br/QKWDT7xLoBH58H491n5EFk91l5ubzpPOnzIZb5Ef3w/ENd9S7vC1ynBZchBiKXTuUywM14y3O07nMFkbNVISfDiRoULersutOPp6WyuAG7zhi2vdZz1nd82XNUQKi3dPBUbc9iiBaQJAa0pGer1cHCBmoUlSoVqOPQUu1cjWsIcGkFIlf4GblrYNAw6OQmCGSESnzwT2UVdyPEQELGgkeAoDpVyWpKLhMNU2UmSWVrMbmis6CEKs0MFrgBs0CjhTAbZTkU6CsgtgoTfT51gZDQEIerWzN6bU+euPpG/FdCRQXkrSg2JpDLVQEFIuK0UAARRw2VK0vX82+I2lI7+TfE3DUtpDylnGFKeep6BoPcTechn37yVN+jf5lxt6Y/md/1xVcn7UA+9odDmMe9caGH+usdithsXawFyG9dYYI86woGuTsd5BqfnLTAIK+Gk5PEaEzt5CTRPVM7Ofnh+pOCNQ2KuTnPng9Jj97yQu3k5KpDHayu/6wbeFivVsEEu6zvaicnpXnclVssunHSGs31CW49YTQg1WFRuyuAZICSiIICSIYoKauZ2P3B5MSgaTZbXfSeXntAOooJhZdS+sR7XV6efrGds/nRlhhPx/3ftHAU04OO/y1CCl3u7zAJ2KjPj73xwhLP/wbKxX4/kUQO3UVkA6fi9UpbBAjhAcxEeGJR+QAkpIRxpkYHgWofHHG9jucv75w3Cx7tdBtwvdwhksCh+pAGrUa6ngST7BbV2jXMOux6QqO1a1vlbhvSWUGCHGqWwKxA+rygdtP/PP1YKA7PX2pW17hJg98rs9dWtcvYRXB/9CRqdkkl9o7BBgInKP1wOqwaqlIi1LGirr7I72ZR0r5N8MIl/Yd6xte5p7tnqiBKQGYYUDp2XLMzVc4R2LxCJhuCGTblYKiH5Z7Rb5UkjTYqaczeH753WEb/+H5NrWtwPxcWtUKEiHJDDp64unVCMze2nWr3EEKkhActtAgsEE43UVewGR7d6F/5v8FrrBQ3L14JTtKBXUsI0vQTTCB1PaHZvm5rf6HyzVVLVWUio6z4SaugNp9k3/i+zDb0gMWihp7jF7fC7yJizyXvIqooVYFO8XEmdLKOY45RexaNYXzVL4yr7/bNb9HaCwGrw4MHkhfiyZaQrnWHPX4/V5XqNlqCrrJWzBDOnND6x5sbsQGLzCLefIywpRgS9d5ABWF7BBRT/ikA2wWqBShYcpF1qgq2aTcZiq40SZrjm7t5eavzD4ZPwi92IvuxNGYdRyx3m4qg4iqpxVmwxzEEK4JKxmDjgohTGtk6cwQsAZhp9FBl1w7ZsNuzb8DiBZ/qfYg6LsZrIg64lxooNVI1uwQQJhYjTPmFGh4gLncLjbjXXGNbaFDTIDICt9BIh92krgg0qB7qQKeHdL+VQMqnRvZO0qyQtRNmGS77OqN/lbcSkAKxOfaarpVAGlwpf6X1VgJvPz02bfHbJe+dX3PrW/jXa6rFVgI/D/isGLhorX+2cenltbfTjSq7uwVn1Wu6ouy5sFPXa223Emgm6cyW1eH1mtjgdt9usXe2arWVwI2WbT5zfTr6bG/WsXD/C9k9LeBjyYgPEB+dLFqv5VYCDi4zxpbO2uA/74Cevn2DKa1rtJUA5Ir0FRNX2DrFlZKjGFe030og6uDx+76Gj31mG3kKkro6Pq7RVgLerqg6oSycnwYL57+u4lYCnb38Tuf2nsiZt37qfPm2xoTDj9XeSgAicuwVEyJBrzC73pFFY9f/21oJ/HjSqtvFN5167fOMdBm5OuZjFbUScH/J1Erg2IvqbyVwYbD3ZUloP87BDps38Y+f+6LlVgJaNv5IKulLplYCAMMabiVAtOc13koAAYy2lQAADJ3Mnegms85sXBGlSUsVy4jbHFrYuSooZtq5SinGMO9Mh7mOVlVq3nzF+TkdHwfNX3m2cGfg94VMw9JSVaVHIMj++p6uqhLcowh6/7+qSih/ilILu945UBQ4xau9uYHI/bkWqirdWHZ27iP7VuHLf9S6lxdjUek1EzA7it/T1QuKBtSs91VdVWmhaPWVtRc3hG0ftdW1Xcd4fy1UVZrWqYg9ff8TvwWhNwRRPusru/sNUQpiROnruyqsqkTMeq/RqkrIgvd7uqpKji4IUqg+7fJfpk+XhrziHtvSlbtgr1PTlQN7O1eTPs15y6RPS/75nz5F+fO4tP3nP+/NDNi4xCNtx+MDm7SgT9+srds0/4Fl+M6Y3vz7ti0KtaApMt4yaQrvt1WtT/uNnBc8yjfZf2Ynu1prurmM1YI+JS4SaAElINYMKOX8U4X6lGhDa1yfIhJDq08BUqg+7UqnT3UmJiBOJ52s3wVDgqw3TCFB9BsMck86yDVOZjPHIK+GZDbiNolaMhtxbUUtmY0Y0KklsxEjDbVkNqLRVEtmI0qDWjIb0UMjZaxBrUgpYvbGx53cQ975FET9ODa/TqOuWshY66Y1JptWI5OJZdrUmEysUqPGZGKGmxqTiXv+JJ7o0/GkyWDpivpd3gYv0t9vOtI8eIkWeNKdjic61NChuA3n9L8ZPf0OLvNxixv/+THFULTcEmmNfdJU/p2ZPou8n6Z1XZ26veZaIkU8PlXFLZEOcR//dzR06EEnqjpjln+fk2V09u3PgOnOV/P+WD8xUUtLdUT510ZzgSeMpUyfYHbZS+cxj28Y+U1v6riAaXr7ZGL7kOm6uzxafJUJ89yrGOa/0WGusZk0Y1WfmXzw8uPGOemNgrYfH/HUcuuyTWpmkii/amaSOGPUzCSRsWq+UNoe54dnW57nbD695FJ31xZWar7Qrk2+M/PCHnC3J35pu2xDx1kk4wq1PqUghWcVTEqpHeazZlhC/VdG6f9qwbj2pOOkceSSURuSh/vnvfkq6MLe9B5f3g7d+AsF/8iAqqx4VcAm2JahmB0uFYgDuewk9BkV2xA8k9yh4/sJaaGHHqy/fd0odSLjsMhV9wgf0OTk9ne06l4RaWkGRGZpX0lbhExpEs2Uoo1Vn4QlBJJhmc5EnhgYOcoXlwuHRQ7swvedPdJ/aJKi1RP8hqC/8gnkDUGMoPUWFbB5OIQkjSpxIh/u+H2rkcSJOnEAWpXSKCkpKdWk2B8bzxhYXypZxJMh+4wi6L5Q8ibr5Pas0Su7hx7Navhvp/dbdhGKqKIPoSiiilGqgjvSb0zcYesCd4A2KtUku6g5J0koR8oWx+HYhKkQSubs7ivdVzJoVvjEk+7+tie3jMMzR/lEikXcMkpVMKfoKxNzgDapeeZA/qgzB7NMdMzp4pMEvxLhCRiOHNwqEMelKosuerElUt5IWKPRA/mt7BPUM+rd+XUDdqX88F3f5Z82j3Z1wtdBqBul9nzyOXYctSqY587IvEdfdKdQEL6Qpn45HPQq46A8UShOFQMnGLAPsEssEUPWgZ9EktEIEf7qDklJvBTlBUo+Chc179Z7/V9hs07eWyXpF1BEqIaWSJUWjV6uCs5lfGHinHeNcw7eBHdUNEqVqa9cjxaKE5gVoevduCPLha7B0xPHtnpxzukTXhHS+kxlFK0veLuiPgSMOM6S3Co3RBGifqo3i8ZPbaw/NvLEwY/hR43y/nboPJawU+enXMiJkAlGCQWj8W4qxJQus62ND6w6JFdbDEIKyCYIJEkChSyVLVU+UG4RrMzmChb3EYjR+IXeeb3UeeHoBSeKeuXX33iQfXpiO6axkncV8XTzfuAfqUSmCBCKFMovpnL3aWdDWw4r+gfAPotqtzEDuLS5/9JmvVFGw4EYNsjBSWSMFfLonTfXW7EvrWl4+vXLM39/OQN/7tgIeypZLFWU8uJkYnGzysbJALkgiJw3lR6JcOKwvv6rUaJ7wyg1F4YtGSWQyYQ0PSusTUOG1rW/yVlft87ZySe3N6j8FCZgRdQRWsAKyBEDVtH/VqvOxdYxDdGQC34IOjv3c+6XGglQjw+76OvuW1oHsW1Eq2qEBQbYR+H/66q7Pfg7VOG2D50a+18R/v+oCH/WlGv7vq9I8tn2zt6cL87+zgibNovw25QyFeG3+VUVRfgP+GUNn3T/RK8DtcPbrmI1e6rF0+Za1pFwwcSolKlmecGvainC36zezr0H7y7zmzzcesfM/UkhNV6EP/EXY2uCXzXtgarvONVMEf6JiT0brJ1TL2iL+wqfF722DtGZIvxnfzL2T/j5f6MIf51nkzedPWLlv7TkfNM/j7/pQdjprO4i/IiWoa2iDrRMtRXhnzr07I97TdMCt/ke8Fw+ZwY+G6FmivAjyoa+Q8GvaizCf/i6+4kjm0/75tZZHrrl0/XbOlDOAmlT8JOxTcFPLPz0ZdH4bRyfdk6lXtd8ch/Ybbqy8i2+FJ8pcohPKhEBi0722YxocO5UtkUiLLsfrYUBEJdJkhMSgQ8nFyBLNZrUclhYKJxa3zqLk/Ge0/4E1+sV7WjJVQ/UiBXN7YOd+/ROs1hPAHq5pLbLAN/prNOVPFhlVTYscBXFgvLVDdu12/h4QmTwInnw5PWn3Yor37uL4EIRFWMlXShY9tYRokfZxS4L1sXQO62JC4X2QOcLEmQCav/SbKrpwuzoj73SL92oa3rgWnPCCSnkRooTUsrrVVH29xaL6f3zWad1YLkOkUwNHCU4ZKGEL4xjqG0TNS7W1OXH3pCJNhMzH3f2rIOXVewBZFlVUaqCGdMZmRFTM8wguj8sTXYsXEPEEgUwX7w4uHbq6O4FQlYQWSQ5sz284hIlMr4zu72XfKRMgfxC7a1e7vLcPH/2Y9+556SX03yCJuPtGvyCSEWqiKL/ZRmpKpjVlZFZljoxc+CjNPJWG5YtdIuTZbFyhhnkdK5zAbufu9/8wsX7R6bf/FKZULmyoYM7qsjhUc8iUl0oD86W96zTGnmpqCZn8LZCo+tzDVrMDd8x+OGeP6TXdtZs2AsAOMZCAbhFAQBULRp5opgpoy8ykfpDPzDmsyt305/d/7Vt1HN2jR72hQBEsRgkoF8z1mnU0fRj/Xfl4/S40vzawpVHfdaP2zopacTYzdWWj+Nc+zRDPs7gWiTPUsv5OKOf1Wv4Z+x2792f389fPjojRAfycVpBSGh3N3/UqhGlj08quHHjRjXk4/y+7o2P2a1toauehPI7lI7ophP5ONdqMXFnqy5wp1rycW4V6rU5ayLnZk4obd2/zdODOpGPk87InMG6wBxWTebj7DDsorfgrxifXbY2Pn/Z9mypU/k4HRmZV7dmmKeb+TiSjJ39PsR3Dy+YExE/9NYg2xrOx3mqx8S5Q3o1zbkqzcdZkhSa7ffCI3iecMIVX/dzxTqRj4P4ELT5OEARon6qP+v/g3yc3x/kDtg4pVP4xPjn91iszNgazsfpqH+aIR/nXm3axVKt5uPENwtdqLAe5J3+Luum7/zYDK3n4xBjcy3kmDhD5GhzTPT1SQulWsrH4f6exR1lkey9f2loaOsWdWtrPR+HqCO0gNW92kxY7a5drTq3pvNxOHRqbORRoZMwbLPfviPhoudPB73F75T0ToZnJwNlPGki+YSpBtsXrfyFcik8PabazUl1UZ4yZfNgzbwE+A2UkrdSmJS5e60rZ32d7FuHfvXbSzs+8k6OOpEkf8aRQIWFqx/FopBK4rmnCkql6mnExkltOKz856dYrEZ+8C/h/OfwNpxDW5+fMosUiADDBPxgoNdTsMchbFWyMoCOlRqfSXNUyXbVn0mzmJ3aLb1TPd8jhRb7uobVmqV2Jm32hw9N027fDkxPfDaoWUvDcLUzafM83vF8NweGbXH9t42lvv0StTNp56MPhNxxXuy7pyh+juNFt1lqZ9LmWYa2XRKYEbCm1e1h2e0Pl6qdSbs0JOYep9Xn8M3fJsyo73/HTe18frewK2cWOxQGZfTvLVvSbFqeWrOZeY95p6PuSDl5okbdDkRu8gAkI5S0tNlj2/hpPXw3p0rur8hxhGftjFFS+z/X/toYH8LZaDVr0GrjO1MByQQlHZVffZBsci10xsqiCR5nGuwEJFOUtMAz+e+FYx8Gz+ct6NrAQR4ASHVRUv36LVp31GP3ypvy/Gpw/NAZgGSGkqaaRI3oGcIP3PygsInc3/MyIJmjpGHD2Bv/juwQMH9uzoSXo/5cAEgWKMnzQsihaSERYdOdpNZDxh4fCUiWKKnttvj42x0u9sqrZdBrVfSvUECqh5JcTz063MrjpPfsMVGxV5cvuwhI9VFSUbN20/eOuBcw+bevTa7MNhkHSA1QUtCBoJSlJQlBeY+Tm2XVurMfkKxQkrR5e7Owy7t9so6WXBk8oFECIDVESX9HHi29e9XY56Cd0ONbryNDAakRSoq7eMO47ZpszuHmb9pO+cdzMiBZY4O/+jQ+eOpP7szfurD8h5zqB0g2mLBFW808stTQZ9+OS89O947/G5Aao6SOfcNNRxz2Dtv1+681KyZm8wCpCUoyi1trdWFCbOCRSdvPL9BvOwWQbFHSyw4l32JePQpbPfHBvjMRc7sCUlOU5Cvp+HXlq0T/iRktd7/9tjMWkJphXL4j+HZ53jHflYYTXk04dnYmINmhJI8r5o1S3h4IX3vaZXyTus//AaTmKGlre+tXJ6/X8c1o0VFs/ek8fC82Sir2K7QqPrXYd2u34c9qNTwsIx22tGfRHLZcWr9Ts2Kb537TvK2avB14cagWDlsG0qmohvH787JPneMs3/pkzPmm43Lwi4mcFKlIwqfIIKBrTOqA3qHK+URKrcuTeCIRUEJoFfsKpgwQFRTl0MjrnCihgn5JGogFg4xP03QhjXDmsEqMSN4vYxOIsoxK5UAo3619nbp7nW2LubM+XIgz6T3ylxYTKrXs5MIitd7GdHt6NjB10FijbIBOfYDDJEPW7vgCWKZXIhciKRRgfEIRbLqskhM28KDYPBhyxVGi+Hdc00u/DVjiN9nerO0tz99b4LdAVd9D3gItI2k7koVwAYlhgOuskU7sV5PT9TRsG+qCTjR+GbsUiTwFiF9GCNjAAVG1YaLfK/311E5ScGN9SOanL4/te55KIayWo4+lWC3HKNrmnqULKuz+lBvYroiwk3ZMNQTOHkvswRatBUQgKcHq03DP3k/ZV3xnNzs2ZvXYr4mVTyPSAliIqNOCBUQdtT9BrP+dPtDm6QOih15tpw8yTU4znD6wMtHIVlbw9MHD9JQNKdenB+2t42DXvLXNBC0aS6IG0sLpg9kQIdpkbb6JRsbyPz19sHqesN2qtcKwPVM9op80bL+qxk8f9GBEBciNju6UVN/pgyl38pz3PU3tNW9tpvmqi5ErdOb0wWtjJtYVGuuoO6Pl0wfPG50WL9ni4Dcz+ESdRWtPXK7h0weIlqFNHwdaptpOH5yZnL0l9IeR/8I7H1u5P4920IHTBz0YwbEy0Sznq1KnD4b329C2f+p335UpBg/qdn+NrwFSc6cPkDlNixCY06jfFsyi8dvOLeNxf3paB07aYGf4suXYI3hvFOlZF+nPrfjCgS++ZSTqCYMIMR78CvyuVPW+ikDZovIKfS/UdRtfIceJuH5JPW6yF41RNAgDFa1PK1u7kFwlb8CBj600W1aoUG9JyZRpDrZeEt/1BX81X8fe2IawyQ7vpthkRy6X5ykR9Z8W+raIIEBSKiFkO3FY/q012juzQQDC5MKRL5QB8QV0amN7fuCWiSbjXDkZgwpj77U+jq8RbOyP3UyelmWk8gD7p9/cU/sHZARMvNpcdKNNSGUPtEPAmjICBiSqRpwopc2An+nAovtDPtJpxMBLU4SXDFrVd9aO1xmdUjgH7ROOb9od/6U+chgHMIOTIpUJVFt3iFPr4xvpGN22cg4wgbUyi3lznjWeETq3w7MhV3rnH9QCay+0YmLtuhpiLZV/nKFZA7jy+5cGupvdrPPM2Xe6RZ2gr+37p9VY/1KWK6qTYP9SKSm+dUWmGGoYe7FoDKPvNev7o7rs8t42aKjNrH6H8aWBrWDJTQVc+oTZuAK4PyzQoOuZm58kCUCuLPyJPIZf9hgkOCxrdsYHQlIhi0jctit/wCR2UH5Kg0WFEgsAerEvRRO0GCD8BRaVPavnw1UDBS43wFK+0NuQiNmOWAMvgJ7yEB/8SanT5HA1WjJaQHMC52qAo22H6EUBc5vnzRTtCbXA6xikFypFizj0ern5F+b9rDsZ9fDb0c355zpZx/ZaWJkohjDr+1K0/cpqi8Bc2SXh1mrsV61uxUnEckFcMiIesIUE9epm7c1JKX2GngzMu+7Xdz7vYhw+q6DsueTwF0esihNNCGyDqWC75YLAhqqEEDqVcN685QePzpLQqe/fhrhe/Z1DbBgsFfHiBOywZJGIQhfQOcwu2H1ieB+UWaF4FE8k5CuFfLRQkciWgDBFVnFNQNylZxgnVWNjNbIGXrKlBd3mWw5E17yyc78RNGpI+0MFbNcHlSREjBKAnSfWjUoovhq24M2YwLNPDI7h3WfkQWT3WXm5vOlMzErQgstgBJFLp3IZYEHlR+a07nMFkbNVISfDiRoULUr4FgWsTn508VLwIStX7ujjb17iU7VRAaHe0sFTtd6Y3BGRJAa0Msyr1cHCBmoUlSoVqOPQUi1nxzUEuLQCkSv8jNw1MGgYdHITBDJCljD8U1nF3QgxkJCx4BEgqE5Vspo6eZhgmCozSSrJ1xhXdBaU+FAlFbohs0CjhTAbZRtT6CsgtgoTfT4lFJP825vcMwnwKzi0W5awZLw+YWMCvhXFxgRyuSqgQEScFgog4qih4rJoDJXO1K0nakvttPCpgrL1VuZo0jpl2fqPZhjkoToPOTE3TjuQ2xx0aXOtND5k1a0ZVu2/XXiqBcgLGzBBvq4BBnkYHeQaZ2VaYJBXQ1YmRRIllpVJkUSJZWVSJFFiWZkUSZSqrExyEiWWlUmRRIllZVIkUWJZmUODWrxsePCZ9wY+l9ffau40UsobFF5K6SOmX2oh5S2cjv8tQgpd7u8wCdioz4+98cISz/8GysV+P5FEDt1FZAOH7JQb0My2FgFC2LInEfa4UT4ACSlhnImmIVRse5+YclruEEngUH1Ig+NRH03BJLtFtXYN20EqTDVau7ZV7rYhp0EkkDUAD/ALfV7QQ9/fr9hnzvCetpgXc+bEhQ2V2Wur2mXsIrg/aoqa3RLSAXsQVuebUvrhdFg1VKVEqGNFidJt47wpD++14Ezhjv076d0OlhbTIib2Dft0dkNKwCbJjKDpvqkntICSghGlrqbkxQcmP805AptXyGRDMMOmHAz1sNwz+q2SqT8OdOcJHnKW2SedsVypuF2D+7mw/SIiRJQbcsdAGFxoqpkb2061ewghilOrWQEtEE43USdW+rw89efyrUFTeMevWIwvma8Du5YQpOWMIClMNdvXbe0vVL65aqmqTGSQjUV6BWX668zh66P+DF66JPCvq+y1+Ip7RthzybuIKkpVoMNlRKeVKeYYRbBoDOOrfmFcfbdvfovWXghYHR48kLwQT7aE+jTg2uP3c1WpbqMlGpWNIx6wqOjeQEU7H8OeCmYAtgtUC1AsANutulWwTZvavn8Dg9Rdvgdn6+++2m7eCfxiJ7IfS2PWccTytDhRxVW2Yy7Q044QrAgqGcsBrjnLTCNbZ46AJQAzjR6qn43PX8u0zvde/KxB6LKeInxjdmMOuJcaKDVSNbsEECYgNQww5dfVzNiVv4VG3GuusS00qGkQGYFbaKROwlJXBBpUD/Wm00N+bS64eU5+yM0JWP1O4dm4GXEdOoknZSvXaSjWy+lc8zbK+7DdHuRcCo8tFoyGlwQyYRxqICukloiHuxhGSLVSrkau6C4ZLErABrheovLJ02DOE1sjRWWObEMpF3fBcCjfcoxT3pkrp7cF56xvc37Jxi7ueBcJeQDZRVJeLm/OEc+5VXZ3C8CzG8JTl2rO5YKQZTZbo2wSM+V4mAp9jV82dcfl84t8DqZxTl+Krj0Av/unvJ+8+4deLw+fa7nnJgiWzAg43OxF5+lPxSIt4MNnxAeIT01kGBghiRujlED0YBH/aFYJ3CyKJ0sQKJiY1mlF4+yevdeG7rOut2Y05yAhLUR5P5lp6HWtJ9fCBURGrrxurktcKTmKcUUj82WBKDypgI8qX0rGtLvkdXfPt+VBc2wiVtqm91qOZ0wocj+ZMeh1bTPG2xVVJ3CZkRSvpsH6zGzNAjJbFQZIYCESlofH2ZPNB4a/G+s/ycZYKn1WexQ+q9ZP+QByVi1GqApEejAiwmJjdr0Pi8au5y8I+Tioe7fgqR9/KoxO3vmA57HyGyueDNNDFWHgDTh7dKIwLhG4lfBsIU8uhxUNVFkxqPmvWPBBPKdNNV6yTCqva5In2hzNEyVlv3iDqK5H88rugDdFXQ1o7IXKIjXwCJNyJNTdXlcEmE75p9Q/Z4DbhcObZ+INvyGdY6MiVLPxR1JJIYbuVDka7HYIhhpprB5hqEQpy3LiDmrBfCC5cn0AlgKEP5f5lOyxYeMpESXa8xqtCgrjWgQwGyrAYC0mABg6mSPpJrPObFwRpUlLPa6J2xxa2LkqsGPaucqywzCPosM8bF/ApXOsQr+0gY27C1/2qoevGoX0k5eKhHHIsTCyIqVD2jYU+APAPCnAnSJ2Eu4pFdKTxMoUTMMiF7PC0yu6cAOD7JYAztlUCzdwjyKt5Wkz1Wok5jlh9sQkGOpSHC/hNxkil4P5mAwM4J+dq3fU2P/AP9ahZk4NijC6Hg3dNBxRLyQZMVJep3+wcjzIcOFHmAK3ZgFCGdA5MDsBSWbC84uSP0+zhlyN/HQseMrK4NgRz37HN//T8yHPDh/S7NAjzI6udaN7nHTvFryp2/AFCc8cFJVdMwGzowiy050qeyEaUHNbnlYDqbyVJbtIQZwEaGhNUBrgOPPI98/J/puDvn/I2bL0Ch4lXzJKvuWi9KKk+MDHdiu8MwduamL0s3CgFlBKY0QpuuVpVAZVssSY7aKsFwgdowoARMx6x9sw5aPINgy9XhUL3ojEfKVaaHJ0QZBC9Wnf/zJ9SiznU0361LkFkz69Zv8/fYryp77Rif0zm80IW/O5d48VNxKKtaBPiWWatKApWrVg0hQ/7Ktan67mbpjc+Norn1V/Zy0uODpguRb0KXGRQAsoAbFmQGmrfRXqU6INrXF9ikgMrT4FSKH6tB+dPtWZmIA4nbSTzNZJr/G7OX5S/72fvBPzr83po4WQwNGeKSQwUkHenw5yjZPZzDHIqyGZjaIGHqbqKWrgYclsFDXwsGQ2ihp4WDIbRQ08LJmNogYelsxG9NBIGWtQK1KKGLF6nhYy1qK1xmTTamTyf1ZHkqKoIsZk4p4/iSf6dDwhli3UAk8G0PEku+DRgGlPvwYfKNhzYMeIx/hzfnUieGKBiFyglU6xOfqwpfAOtSrTbLFEIVAWF1IIUhRsZXFWytcm1l2kGEpFtJ1pZJxMIhL1gRYLXlRvyErQhHvvTrrBGzDc9+gfpzz7/qj1nU4TGvWVC2RRYPjY17b2lyTHimCuFqwECwv/8IUK9N2BhwF3OZ6kbSCwBCvVS1qUduCwSpoABerpx0qb5mcSypMlCMVcQTzOAJoqL/eBPTvUrxsrr0dJpOpXCSVgezlw0v9pctoCATFCBs8NKoTKURlio6KaUDLe6GAxH5bdwuDVM4YX4daL2iXEVxehZYWVAQHsBCLkifxgLSg1Q6SQCXhJqt/1+8t4UtU9qKgOpBNVnTHLxCqgWlqqI8q/Fuxyui2TXebbYnZ5kM5jTiyvqrvLozFWTJh7W2GYD6bDXGMzacaqPjNJUTcXM5MUdXMxM0lRNxczkxR1czFf6FXdetmxv60MmtuYF92838hrar4Qd3FmVouoFkFrvwzq67fE0ZNkXKHWpxQkYjFeLRjXIXSc1NGWY8Siw9XWckzUhqnl2HKHqm45Ful0avqJp06h2aMattmzLx1faLVmWo7x2zA1cOnRRgf6JhUXF1dDy7EXb3bFzs9rErik6/xhR0p27tCJlmNWjNx57aAD3KmWlmPSK1G/Nf/h7JNtkM1zs/t5QSdajhU6MDFnuS4wh1WTLcf2f5j7Il3+yq9g+Eibz5kX8DnHNd1yTMHIPG7NME83W44d79vB4cH5pX7bG28/lBA8C7+jV/0tx1oxcu5H65rmHLypylqO9dzb+HmTM2P8Dm08ZtWq0zZ8ZbqaajmG+BC0LceAIkT91KEsGj/1v6nlGLEtRg23HJvuyNRyzN2xmlqOfVrUw+32t+C1nDST00bTP2u95RixuJkW2milOTK10Yp2rKqWY+Pe7fNd0HhkaPqK5Lsxi5s/13rLMaKO0AJW7oxYGTn+n2o5NoxOjf2vCP9/VISf2E2o2orwF7dlKsKf2LYqivDvrSdv2m3ztJCZCa1bXJtS31eLp821rCPhgsmjtkw1ywvaVksRfuOFs/1X5T7otZk16dqdUQmuNV6EP4MRFSA3OhM7aHbwR3tF+P/50exwY7u/Qmdd9XJZZHrujM4U4fdmZJ1NzbCu2ovwW98T1pcf3h04N/aXXbOrPW/WcBF+RMvQVlEHWqbaivAH2ppn3z3eO3CraML+a+bf8Nq5ZorwZzCCk9i2Govw65nfL7WSBIfMbpGXcsFu0B4dKGcBEfJmRAjMadRvi2HR+G0cn3ZOpV7XfHIf2G26svJtB3wdAeQQn1QiAhad7LMZ0eDcqWyLRFh2P1oLAyAukyQnJLJVTWM1qeVA7LBIO1py1QM1YkVz+4AjNNsJ4PsE4JtLdJOKAL5P21X2YJVV2bDAVRQLyleve/liyHD/wwH5Q1bzLi5fZF353l0EF4qoGCvpQsGyt+lOdF3ssoDsDnbSyIWqq5y+fEGCTEDtX976988ln76LQvPmbd81fXl3MeGEFHIjxQkp5fWqKPvbkfH96zrVtLOkkkwNHCU4ZKGEL4xjqG0zdufSyY7PzUKXpH+4PvxAsQAvq9gDyLKqolQFM8BkZWDGoXY64f6wNNmxcA0RSxTAfPHi4Nqpo7sXCFlBZJHkzPbwikuUyPjO7PZe8pEyBfILtbeanbe5aKXbi/CNHQr3t05w2oK3a/ALIhWpIor+l2WkqmBWJiOzRDXDLMLMgY/SyFttWLbQLU6WxcoZZtAd1lID82d6YUfeHHXe+9VxZmVC5cqGDu6oIodHPYtIdaE8OFvCnDTzUlFNzuBtneUeFDXqviZww4Y6Y2+LI8fWbNgLAGiKAXCLAgCoWjTyRDFTRl9kYvvd7tZX7rgFZv4cEpo9TtGGYMqq97AvBCC/HQMA/VLbYY4mj/XflY9DbMxdbfk4012Y8nEKnKs6H+fLs9ih/xb3DNtnMUqPe2Rubx3Ix0lzYdrdjHbRgaSCP//8sxrycTJu7l46KCAueEPEgE5WFy6E60Q+jjsjd4x0gTvVko/T6sui/uLlet4Lc9zOBJjF79CJfJxHzkzMAdqk5pnDqsl8nHqSPb0TjM2DNp0LStS/8NsQncrHyWBkXmLNME8383EeLurjZHf0UMC8bTt/WzTmWpcazsfxZuScTY1zrkrzcWZ04R9M6fGEm2vqljB16oxNOpGPg/gQtPk4QBGifmos6/+DfJyt7a1fnbxexzejRUex9afz/Wo4HyfDlSkfp6tr9eTjNNhidD36QWjIMq/X1rkPW83Xej4OMTbXQo7JdFemHJMY16rKx3FfOuVm9Lws/1U7s1cM2mnzXuv5OEQdoQWsujJiZen6fyofJ45OjY08KnQShm3223ckXPT86aC3+J2S3snw7GSgjCdNJJ8w1WD7opW/UC6Fp8dUuzmpLspTpmwerJmXAL+BUvKK/Qqtik8t9t3abfizWg0Py2jHR97JUSeS5M84EqiwcPWjWBRSSTz3VEGpVD2N2DipDYelDwtzNfKDfwnnP4e34UypZXfaLFIgAgwT8IOBXk/BHoewVclKPh0rNT6T5qiS7ao/k9Yow+5y609/cyfdcYhw/jrpvdqZtObzwoa1dTPrtalBR4s3ua1/qZ1Ju1H68513+52cjTK9uGWRGUfUzqTJ+/Eu1TMsDDnYOzx2ZfHoMWpn0nbdCJIMPNAxdOXw2wl+XcN4amfSHm6YE/jV+U345IeB7NRVj1+rnc8fxZLs+2w+kLt7Vi2bOn+s3qXWbKbbonOt/86d6r3tb4NNDVMyQwDJCCVlhv92O/Hqi4BF+4sK4sJPzAEkY5R0rcESzqrB/pzl+4ea9R55+SUgmaCk0EML3w9/EB624bPs/rrzEfaAZIqSgkxKZTx3HmfOWpmT54j3qwGpLkoyqT8k89/8mJDdJ/wnFSbd3ghIZigpffzdCSN6Z/pu2tmocGz6E3gMzxwbYdwcg+h6+/zXiurVffs9zQyQLFBSu+kDBie03BmyLuXU3KBV7ccCkiWmkAco7ofIF4TP+tuuj/lZV4hhPZR0d1m3kfGbB4astx7sMm2ZSRYg1UdJJ84OP+hQMCB4gzyF7Sm6DbncACX1H92p5Q9u06C0hoH6cwMtWwKSFXbX3seRq3/2C1h9P2pQ7hUFRL4hSrrvGmN4YynLf+Ha7jP/bb0oHZAaoaR585Y88PjSOGS7ufsMUfGI0YBkjZL2fZ0x88nZHoGrD0SFThq0ZRog2aCky04zmsuanPA78OQlN+z82QxAaoySxnqlWZ8SdPU9FN723Dr5/Z6A1AQlTX0Z4dh5+Af/mTlu3bdZ/3MPkGxR0kV/SZ87vw4ELLa03ZCzP6A1IDVFSXn91iy/MvO19/IJ9lHFiy9CYWuGSZSBaN6Te3Lv9Ea9f3T91S4FkOxQ0priFV6d0lsGb6v/xXfshHQpIDVHSc9W305M4XwL29cuzmv+mkmwugQbJZl5bhrnfO8650Bqo4QjQ1+8JR22tGfRHLbcPHPZm3v2KWGThiyd9/Bx5kMtHLYU0KmohvH787JPneMs3/pkzPmm43Lwi4mcFKlIwqfIIKBrTOqA3qHK+URKrcuTeCIRUEJoFfsKpgwQFRTl0MjrnCihgn5JGjxV40HXhTTCmcNq6qFZE4iyjErlQCjfzcDrxQHXlc5+ay9ta29vd1CbCZVadnJhkVqRB92eng0Ilv09NMoG6NQHOEwyZO2OL4BleiVyIZJCAcYnFMGmyyo5YQMPis2DIVccJYqO/fMHPjj50LdgcWKzsQ61P+K3QFXfQ94CLSNpO5KFcDVlhOuju07sV5PT9TRsG+qCTjR+GbsUiTwFiF9GCNjAAVG1YaLfKx3X6GLxlA89QvOntmrwbJC/FWG1HH0sxWo5RtE29yxdUGH3p9zAdkWEnbRjqiFw9lhiD7ZoLSACSQnWpl9fB26P/oM7a+cFzrmClvmVTyPSAlhNGcECoo7an3gWjf353+mD/+j0AdFDr7bTB8faM50+8G5fFacPXFIbPvVVzA8uuN6mvuPHgGAtGkuiBtLC6YOC9kzJ2hntq+X0gc2CgG6HmqZ7758U/U9w5s+IGj99kMiICpAbHd0pqb7TBxMft/s3z2mf715ZM4cFzfr31JnTBzaMrCvx0FF3RsunD/ghW91N0q4GT5M9y2/7kj+xhk8fIFqGNn38/7F3HVBNZF8/uqgogg0QxBI7KsXeCwFCDUXAXiMJEA0EQxRQVERUFFTsiKjYEXtDRAXXgl1xbdgVu66Kbdfu995kJmQqZBmS7PdfzvEcmctMJr/73n33vfu79wIro7XsgytDJnmkfm3skZ6//9mJzs2P6EH2QQgjOA4dtZh9YDe4RifRpXmuW+YN3fPNthjf21h32QcWjAiBOY36bcEcGr/tzEqh4EeP+q5xmxpXe9l8ci7eG0V61vk7C8p+cOCIbxmJesJghxgEfgV+V7R6X0VgbNHxCn0v1HWbUibHiXh+Sf3eZC8ak2iwDXzug7Z2IblKDnCM+lRAb8nN62ae/J783Ds+tvvN+TkX3xKC7PBuiiA7crk0T4lo/1jo2/IAAhRONQi57YCF89EodmaBAISNC2uRRA6GL5BTL7YBI/sVH+jU2WNBw7+b/x3dMBU/LZ2xm8nTskRUGmC7L36eFLO4uUvCvZcJH/MaWbIAWDIjYGBE6cSJUq4Z8G86ceh+yCmdhgy6NEJ0yWBVBQUxY9+1ve2z4k3B2Wnpj17URZJxgDL4UeFysSp0hzi1PEd/68FtyucAE1S7/nbenFXHDnvF/bnNfMqvgN0sqNaBUbUWOlItlX+crFkDuNL7l75Iruy63eyDy8GtQ3q9eiE30Vn/Uo4dapNg/9Jw0v7WDpli6MIYwqFZGB2v1r87sdteh+3DRlokDjyCLw1sCktuKuDRJ2TjimF8WKxB1zN7J1kogFxZ+BN5jKjkMcjmsKTZmQgMkjKtiMSwXekvTFIH5V9pcKjQsDsA/bkjRRO00WDwP+5W3lw9nkANFHjcAEv5Qm9DFsa1xhp4AfSUSXzwf0qbFgFPo2WRYpoMnIdTZ64f1zWbnxNbc+zZy0mFeBuD9EKlaBGHXi/NxrSo9andqO/dHDfcnNf48IH1FiycTJhCmA0cKdp+pbRBYC7vkXBLNfWrTrcCZWER4sAJyPCALSSoTzcz+y+pc/RRLdc5BunzB7zg4CuqG5U8l7z9xQkrIqMJgW04FWyFtghsqEmQ0JmEcybNP3ToKvOa9f6tp92VaXxiw+BwqTBQzPWeIJVS2AI6h9kWuy8M3gfHrCRsolAqESkHeaREEcKVgW2KvOyWgBilZ3hPqsbGamINvOTe3eiCb+kQ3a7lnfvmcFFD2h8qYLs+aCQhYjQ9Hy/4drlTnTezifeYbqu9X+PdZ+RBZPdZebm06UxkJbDgMnSGyMVTuQywoHLNbrTucxmRs1IhJ8cNNTi0KOGLu2FbI8HvD+/Mu5aDIut3WoynaqMDhDqkg5ey3pjcGhlJDGgd7qpVBwt7UcOA6HCxOg7N1Tg7dp7ApRVL7eDfRNi5uo2CTm6wWE5gCcOf8hpuc2SBhIoFjwCb6milqqmzKAgLU3kmSTn1OtoOnQXFPCpSoT0yCzQ6CLNQtjGFvgKyVmFDX0QJhaHxsoif3i8Eh8R7fW+bvnhICEzAb0URmEAuVwQUyBCnhQIMcXShGsuhWaj0pm490Vqy08KnAsrWO3RlKlvPVUE+Tu8hJ3Lj2IG8xflpX8Lq/nSafn96+sOimCYsQF7ciwnygl4Y5FI6yDVmZdbCINcCK5OCRImxMilIlBgrk4JEibEyKUiUGCuTgkSJsTIpSJQYK5OCRImxMmf/NttVmHnNOXdHQR2zxxdHkChvcPBSjj4i/ZIFylsonf6beZ6wvbu7hstmA9GY6y9q4/VfT3nY7ySVRUB3EQngkJ3yqjSzrZmLBLbsCYE9bpQPQLaUcJ+J0hDKFt4nUk5LfUUSOFR/pEF6FLczmGSFVGfXsB1keieNzq6tlNE2JBtEBlUD8AC/0POCLOUDMxOHRzjseX5iqvkw+97libVV7DF2AYyPdkaX3WJSgj3YVt/pROmH02FlpqJEqGNFiZLRpW++BgMHOy3OqrtgdZXUhizSIqYP8P50elOUyxbZHLcEx+hjLKAExgwDSqJOmjVpt/HF5hUy2RDMsCkHt3oY94whVPK988SfcbnuWc6d4mZzJSd0GM+F7ReRQUQZkDsKtsHFnTRzY9uqoocQokC1mhVwBcLZJkpwFkzt2TL11QbeIolpM65VvVF6ELWEIJ3uxARSeifN4rotnSXKb646qioZMkhgkd5ARTZ4OnCl0R1BQuDgy/N/X3ERH0XEnkuOIqokFYFOFCM6vp0wxyiMQ7MwvhroLTCw/+K0dP15l7U+7kPJB/HkldCABtym+HiuiuoWKdOobBwxwaKssYGydj4Ghml4FwDbeaoDKA6AzaBLBYRpL/aY6ZNrN8h7+bUndXsZtCSU7kPisTTLOk5YmhUnmrjydswFdjoAguVLNcbSgWtu00Wjtc4EAUsMZho9VA7Vl4YOdTsl2CC4NDHHbt0AvCXig3upgVITadklgDAZMMJ0p7Nmi13pITRirFlnITRoaZAxAkNopE7C4XYINKgdktHZIafW5+17zLgvSHdZ+07Rw7IR8Rw6VBjOVZ7TUJyX07nmrZX3YdEeJC9FyA0TR8JLYrkkEF0gy2SWiMldDG9IdVKuJi5rlAwMm/aeANeLVD55LEB9l4dGhsoECUMpD3fB61CXCehjtsTgR0+n2XWC97n1HYb/llWQB5BdJOXl0uYcMc+tvNEt2E0ZwlOTas5lgC0Lx1MjNomx8n2YCn21Hfhr27MXjXlLCsYNaDlg3Sp89E95Pzn6h14vDZ96Deob9nl8QbAx5/uwWrP7tmcBn0IPJnzA8NEFw8AQIW5MVALRm0P80awSuHGAUB4sVjApTepwcnvPwl8O2QYffmRUbUOozqa8n6w09Drr5FqglQRGrYzWK60U52Fa0Wj5qoUYvHCxCDW+lIpRLDXLm2Q61/3I94drr6ePscIrxgu5n6wY9DrbinGwQ80JPGYk7Vdj7fmcPz0025BZqTBANhZSSWl4mIQEXRy/7DxvG0d48jV/QTSeVeukfACZVYsJKgKRXR5MiCg8sHU9nEOzru9a5PlxWK+e7rM+/lAYHr/1Aa9j5SeWnQzTW7XDwC/g3MgQSWAIcCthbqEwIgJWNFCxYtDlv2ybD2KeNtX7ksek8romPFF3lCdKYr84gF3dLvfyRsAboq4GXOwlyiI1MIVJ+SaUX3yq65RYD3d3182WD28Nu22BD+RWo3NsVAItL/4IlRRi2J6Ko8Fti2CokcXq7Y2OKGVZTlyiFuQDRSjPB2ApQPj/Ep+SO9l7CnVpG8J6rtOqoHBfiwBmQQUYrMUEAEMn83i6yaw3gSviaGKpxzUxzMFC5MrGnSlyVVOFuZwOc+8DLhfPcE44xQ617CV56VEHXzUK6ScfLpUEImlhZENKh7SVF/AHwPKkAHdKuaG4p5TJThIrUzC9FrmYFV5e1oMbsMkWeAM4k6gObmCM4qNXvrHqNBLznLD1pIY7tKU4XcJPqoZcdhdhY2CI6PT8SnnVnXPe1PcyblevAJNXopEb+SDmhTRGDJXX6R+sfB/kdeGfMG3cGrlI5MDmQHYCQmbC64tSP0dONrtw/IOfyyb5ojUWFpPxlNRKPPLs4JFmRyXC7OiaZd4/2aOH19yGzWa5He0aU94zE1hGAKqzPRV7YTCQNvTOVwOptJOlxv7iQBmw0Jqg1H77hnSjnuaO23Jneva6lNkXj5IjGSXHUlF6NUC+aUOQreOOAk/RhSV/hLOAEhjWDCid98pHx6BqLDGyXZT1AqFjVAaAiKx3/BqmfBR5DUOvV8SBNzJiPlMdNFnbIkih9jTiX2ZPieV8tGVPBYz21PM/e4rqp8OB6i9yOl7gZaYOWTensGFTFuwpsUwTG/ZUwGhPBRVtT1PqPY7fumeR2wG5ZdWxGZXasGBPiYcEbNhTT0Z76lmB9pS4hurengoY7aknZk8VdPZUb/YExOnEDpmtSyXLd/Ocwp2zPjmE7Lo6z4+FLUGaJ9OWIEYF+QQ6yDUms5lgkGuBzEZRAw8z9RQ18DAyG0UNPIzMRlEDDyOzUdTAw8hsFDXwMDIb0UMjMdagVaQcYsTqeSww1iaypmQjLSr5n9WRpCiqiCmZGPMn6cSATifEsoUs6CSSTiep2Q+GzH782T0ne3/O7nEP8ZuqKr7CMLGUXKCVzrBZ87jh8A61KtPcMJlCrCwupBBHKbjK4qzUbB1C3UWKVymLtTPyD5TLpFI/uGLBi+oNWQmW0OZa41jrO91dExLezvActIY2t9lwQIRYHgBeH/vYls6yCWOkkKsFK8HCwj8iiQL97sDDgFGOothNBJVgpXpJh9Kt+JzBfGBAezhxYmc71fASyoMlYQJxEG4BNFJe9oM9O9SvV1deD5CFq18llID1aMV3G8TPr4WA6CuHeYMKifKtqmFvRTWh5MJI9zARLLuFwVupOrwIQy9qlxBfXYqWFVZuCGAnEIlQ6gRrQaktRAq5WBiq+t1gkFwYrroHHapRdENVb5ZlYhVQlo7qiOOfhXX5M59pXS7kY+tytN5jTiyvqr/Ho0m9mTCX9sYwn0SHucbLpDFHe8skRd1cbJmkqJuLLZMUdXOxZZKibi7mCxWmr+jzcfZexx1J9QxChdW6q/lCnYvldYyMtjgfKt45LtvqRmXS4gqtPnVrSEIxXhYW18l0mtTTlmPEosNaazn2oD9Ty7Ha/Su65diHVSYfu53Z55PUefi3zLih6/Sg5Vhhf6YGLrv660HfpAcPHmih5djKJV4jTixI4aW5vpqQ8yTqm160HEtg1M5ofdCOVlqOHfxaL/Zt0A6vfTVfXu/ftw2evqqrlmPdGZVTWx+Uw9Fly7FrfflH9x2ozEudOe/XzmC3fXrVcuy5L5PyjvrqT6Egnbcc+54beqnZ1Vlem/f4dki/GBSn45ZjKYyaC9e55uBNFdZybOeIZit+v/CX+97RjZ7t/7DLQC9ajiE+BG3LMWAIUT81hkPjp/6bWo4R22LouOXYdz+mlmMb/LTTcqzD0rN+spo+/Jz47J7zr4bdYr3lGLG4GQtttD76MbXROu9XUS3Hhq7MMu6/qZ7PbEObkWYb121iveUY0UawgNUGRqxi/P6nWo5NoTNj/xXh/0dF+IndhLRWhH94AFMR/jv+FVGEP39hm/uOVUNdDvw57vPagAX4duvlyzZn2UbCA5OAAKaa5TYBWinCP3BO2zPmG+u6zekvqlE3sXctnRfhN2BEBYwbvdk7aJb4w14R/rpG8zL6u3vwt4VmWo7bEII/ttdlEf59/kyqS9KN6rRehL9TQEN+8DBfr7jqqz/WPTLGScdF+BErQ1tFHVgZrRXhX5gqsIp5nOqWM7Tql2V1ruILZummCL8BIzjA2GivCL/prGZfag9Y6T3P9/KnTvLn+HI6uivCj8xpWoTAnEb9tqkcGr+Nz2vb7lefq7yMe423/LH6LaGOAJLEFy6TghWd7LMZ0uDcpSREIim5H62FARCXyyYEh3BVTWM1qeVA7LBI+7bkqgdqwrJy+4AjxBkI8C0C+GYQ3aQCgO/gAeVNrDIteS1wFcWC8qt/Wb+mXi1JL/elL0IOXS0YgGf0/qPeXQQXimgYy+lCwbK3nwfQdbFLAWO3YIBGLlRN5fQViYPlYmr/8kxcz2PvCp84rUswy721vtiVkCGF3EiRIaW8XhFlfzMYv3/sAF07S6qRqYGjBF9ZIhNJAhlq2/TNcJ8xx9vfY4mpwit265JE/FjFHkAeqypJRShjMKMy2utGGUT3h6NJxMLOM0ymAMuXMBCenVq37wO2rGBnEWrD7dAnMEQmF9lwO/aJGC9XIL9Qe6v+M64V5p9pzl845NmL4ptnZPh1DX6AvyJaStH/skRUEcoyZFTWgwB9mDnwURp5q2YlB91hE+RjIhhmUNxdIzP7MT5O8YfSF/u+79qyPFvl8m4d2qOGHKZ6FpDqQnXgbz02QDMvFbXkDN7WMfM5IsPqRbwDSTOzerl9nqnbbS8AIBkDoJACAGhaNPJEsaWMvsiEc97j2rMO+Tgn7r05dE+j/g10muwLAWjBBMDA1wGYozmN8+/i4xAbc2uNj/N9EBMfx2ZQRfNxuFsjJ+/PK3Rc/+T3P98WTjmuB3ycj4OYopvnB+kBqeDUqVNa4OPcGlUpu+uAkc7bbyv21gx+E6UXfJwNjNqJ0QftaIWPk+fDGd3Kx9gtsUnsrqYrRgzVCz5OAKNybPRBORxd8nH6X05+cvSUk2dseqfEg7t2GOoVH8eAUXl3Bura2dUjPo59TauntbblC2Y8etJ07uEePXXMx9k3kElzSTrXXIXycWw2ia473VjtujRz/qrkEXvT9IKPg/gQtHwcYAhRPzWW8/+Aj/N07c2QKP4X7wNtA/ssXBcXo2M+jsEQJj7OtsHa4ePEXkqbuuRUumtS1JIh0gMdt7DOxyHuzVngmHwfzMQxuTq4ovg48094riyaMNwla0Nw65+/Hc1gnY9DtBEsYLWNEav4wf9TfJzpdGZsfJ6kncQ70+lAro/02eNh+Da+Rv0nwNxJV7kwPIScYapB+KKFsyQiHGaPqaI50bbKLFOuENbMC4afQDnyjHtsibG5c42fE20enDvyBf37kSM56kLS+KvuD0yYj3oqFsWoJOY9lXFUqp5GbJzUms8JcQOj0twJ/iPkf45tzXcLdss39hdLgcLEIndg16OwxyFqVaoyjk6VGuekWavGdsXnpC0e/zXyt0YDvVcmre47fdqpfmo5aae7LDp8v5orb3tXs7fdem15o5aTVitojonh2fO8OT3tk190ahGrlpPm0vPX739+3e61qu6B+Xen94tQy0l7UP/c6NB9bXmZv7ew/rxiyR61nLSWsl7vKs+YxktfmC0JzHv0Ui0/v8XOpwZX/jrrOm927veCqz3XqzWbMUu94jP92iiP2Yc8f2bmfukIRIao6FDNicXZfc7w9/V7ZC2IjO4MRNVR0atppvaLG3V1SJj993Tep60bgKgGKvo24/N3t65LnBYftH168G+3QCAyQkV1TzYunp61WZBocM2134CbO4CoJio6m7q42rdOIrf54mpHXqd3/g2IjFHRF487HoOmZXrsrrZ7y9lT+84BkQkqSk5/XnhSfs1tXYLowZ/G2+8DUS1UVF2yYXVc7nefNfv2Ptl75S58jdqo6E0Dl03zj8Z5pI+8U/XRChv4WXVQUetnhttq5WZ6LO4UL16efC8EiOqiopP+JjeKO5912FJH+nxowYpQIKqHikYlbZzL6WPreDjv7bx7ftY3gMgUFcldz9/b7j3TcbdnrWV+X+rVBiIzVHTm/LE0xdmW7slFee1erUkfA0TmqKhKaK+84uRdrhkWjXMm5vYKAqL6qGi49ZyVI5et9Fm7/FZY/ZMfTwORBSr6tHx9/8/vP/ms3uZm6zes4XMgskRFrg8GHfO8luE+6363U5967OsFRA1Q0eZi++m752xwnb7q54r2bQLhXVaoaEG2kWHHbZe8ZzwZ233k8NMmQNQQFb2THHz7qtdZftzcTh03/pjjCkSNUNEjK5PGt64VO85q13Rvv1d1jwJRY+x7dZjR89OJON4++3iztoODlwFRE1TUrf3dQVaRFt4LJ/d6devureVAxEVFjk9CY+Urz/vMnLa17aHbTS6Qki2bcmiSLdOKO943m/eAtzCwScfnSz/YUJgNTZMtZ9CZKLOggztTT57hp20rmnSuYUw6/jCRHxUulYkoGAR0jUlboXeoOJ9IqfWIUKFUCowQWsW+jJQBooGifDXyOScqKKNfEgv2glEj6bqQ+sI+biM1awJRwqhUvgg1Hz95aY2NOT28d1y6FJq67mUWi4RKlp1cWKQ2fCRdTM8CbJbdRmrEBujiBxwmOXJ2JxLDMr2yCAlCoQDvJ5HCpsuqccIFHhRXCLdcgZQobuX12LjKSu6d07laTsrNmNv4EKjqc8gh0BIR2ztZCBeXEa7PI/QiXk2m62nYNtQWnWiiEnUpQoQKsH8ZJ+YCB0TVhok+Vpo/U3Dmd+t1vJ1PHdPfOTovJ5yWo4+lOC3HJGxrr7YtOtidKQPYdshgJ0VMNQSuKUbswQ6txUQgKcGqvLC2ze0qVb1W+HCyr18QVik/jYgFsLiMYIGhjq4/8Rya9ee/7IN/lH1A9NC1ln1wYhRT9oHzqIrIPrjwpNjidvVmXqu/9u7WqOY5ExYXS6IFYiH74PAoJrL2klFayT4obHgx+nlnqevKttJBx16HHtN59oGUERUwbvQ0UqK97INlGxf+9fHTUJclj1KPyr5F4s9VdJl90JBRdR9H6qk7w3L2wdBU8wipaxXBnOZDayRue9Zdx9kHiJWhpY8DK6O17IOWjQV1kiIEDkcm3v5Vc6ChVA+yD6SM4DiP0mL2gXmkfYcpd+64Luy8/7zRQoMjepJ90JARITCnUb9tJofGbzuzUij40aO+a9ymxtVeNp+ci/dGkZ51/s6Csh8cOOJbRqKeMNghBoFfgd8Vrd5XERhbdLxC3wt13aaUyXEinl9SvzfZi8YkGmwDUyajrV1IrpID0IDF5AroLVnkOE16bfxW75lVTq8cmfPeghBkh3dTBNmRy6V5SkT7x0LflmQIUDjVIOS243NCJmsUO7NAAMLGhbVIIgfDF8ipF9vMU/ys6VOmOM383fPy+tu3puCnpTN2M3lalohKA+zIJf8736o4ea7q0XjPqPZtTVkAzIERMDCidOJEKdcM+DedOHQ/5JROQwZdGiG6ZLCqEWaKUQlP7Rx3rrUq/H756du6SDIOUAY/KlwuVoXuEKeW5+hvPbhN+Rxggmr93bZwRvTO8dx73aVt2CwvBxZUWzyJSbWnJ+mPf5ysWQO40vuXfqjmvyTNyNk13sG+2YqaB3x01r+UY4faJNi/NJy0v7VDphi6MM7i0CyMjlfr353Yba/D9mEjLRIHHsGXBjaFJTcV8OgTsnHFMD4s1qDrmb2TLBRAriz8iTxGVPIYZHNY0uxMBAZJmVZEYtiu9BcmqYPyrzQ4VOCKAejPHSmaoI0Gg/+5qLy5ejyBGijwuAGW8oXehiyMa4018ALoKZP44P+UNi0CnkbLIsU0GThnj2+M4Z5J8lh5WbymneeoJ3gbg/RCpWgRh14vzcZU+/7TQPx1qPMC3rveRQ/55eVfwI2cBYTZwJGi7VdKGwTm8h4Jt1RTv+p0K1AWFiEOnIAMD9hCgvp007Pei+NmThs81tQW8e0ShtfDswpKnkve/uKEFZHRhMA2nAq2QlsENtQkzKYzCedMmn/o0FXmNev9W0+7K9P4xIbB4VJhoJjrPUEqpbAFdA6zLXZfGLwPjllJ2EShVCJSDvJIiSKEKwPbFHnZLQExSs/wnlSNjdXEGnjJDiK64Fs6RDewvHPfHC5qSPtDBWzXB40kRIyaVOWzyuHP9UN4yyr9OvqtseQp3n1GHkR2n5WXS5vORFYCCy5Dd4hcPJXLAAsq1xbRus9lRM5KhZwcN9Tg0KLuczjjUdGTazNcF93x/8T7lfMVT9VGBwh1SAcvZb0xuTUykhjQOhqoVQcLe1HDgOhwsToOzdU4O3aewKUVS+3g30TYubqNgk5usFhOYAnDn/IabnNkgYSKBY8Am+popaoptUxcmMozScqp19F26Cwo5lGRCu2RWaDRQZiFso0p9BWQtQob+iJKKNqkG4RulM10X5GV7T8tas1OQmACfiuKwARyuSKgQIY4LRRgiKMLVQKHZqHSm7r1RGvJTgufCihb7xzIVLa+hQryOXoPOZEbxw7kb6VLVlc3HOK0r+jr6Nb2wz6yAPnHECbIr4ZgkM+lg1xjVmYtDHItsDIpSJQYK5OCRImxMilIlBgrk4JEibEyKUiUGCuTgkSp6ppEJlFirEy7B/36zBtf6LJr2KxYy/5ePBLlDQ5eytFHpF+yQHlLpNN/M88Ttnd313DZbCAac/1Fbbz+6ykP+52ksgjoLiIBHLJTXpVmtjVzkcCWPSGwx43yAciWEu4zURpC2cL7RMppqa9IAofqjzRIj2ohBJOskOrsGraD3DBao7NrK2W0DckGkUHVADzAL/S8oGn7Gp0ddcLEO85tZ5O9h7cuKU+srWKPsQtgfFSILrvFpAR7sK1+MJrSD6fDykxFiVDHipoDsm53VjvPzS5zT096596z+jQWaRHTB3h/Or0pymWLbI5bgmP0MRZQAmOGAaWQ0Zo1abfxxeYVMtkQzLApB7d6GPeMPlQyMPns6gutF7huvzfe3erFw7c6jOfC9ovIIKIMyB2F7RdHa+bGtlVFDyFEgWo1K+AKhLNNlOCs6ia48b7XUe+Ua7Hz+Gu6z9aDqCUE6fxoJpA2jNYsrtvSWaL85qqjqpIhgwQW6Q3U0RWSh9ntQ92z/zpsmnTx4lR8FBF7LjmKqJJUBDoxjOgEjMYcoyQOzcL4aqC3wMD+i9PS9edd1vq4DyUfxJNXQgMacJvi47kqqlukTKOyccQEi7LGBsra+RgYptFjAGznqQ6gOAA2wzEVEKZN7Oqx6fw4kWDtJd+rPZy5q/GHnUg8lmZZxwlLs+JEE1fejrnATg+GYPlSjbF04Jq3H6PRWmeCgCUGM40eqsGpTXvP8xnoHPdg9P7k5t3wrNfqfHAvNVBqIi27BBAmQ0aYHgg1W+xKD6ERY806C6FBS4OMERhCI3USDrdDoEHt0Dw6O+TU+rx9jxn3Bekua98pelg2Ip5DhwrDucpzGorzcjrXvLXyPizag+SlCLlh4kh4SSyXBKILZJnMEjG5i+ENqU7K1cRljZLBYTMR4HqRyiePBaiPnqiRoTJBwlDKw13wOtSFhj5POR+84i/H9SbnpEs39KmLd5GQB5BdJOXl0uYcMc+tvNEtAE8hhKcm1ZzLAFuWXRM1YpMYK9+HqdCX3cOPsza3eei8eeU+g3Hb6l7CR/+U95Ojf+j10vDZO+qde3H3y26xguiRsxeL/2YBnwRGfMDw0QXDwBAhbkxUAtGbQ/zRrBK4cYBQHixWMCnNtbokwmvSdV7e/XD7LhcWFuCVpryfrDT0OuvkWqCV7oxaqa1XWinOw7Si0fJVCzF44WIRanypt2NN8yq3GFedt2b09TuLllfFx3+reiH3kxWDXmdbMQ52qDmBx4yk/WqsPZ+TNlGzDZmVCgNkYyGVlIbH0/zRsoN/1hEkmLyq3qpbd3xqWzUn5QPIrFpMUBGIjGZEpMVEbF2fz6FZ13ct8vw4rFdP91kffygMj9/6gNex8hPLTobprdph4BdwbmSIJDAEuJUwt1AYEQErGqhYMejyX7bNBzFPm+p9yWNSeV0TnugElCdKYr84gF3d6AnljYA3RF0NuNhLlEVqYAqT8k0ov7jVnJstDmxcK0j4Ff45q+Z6PNe9Gp1joxJoefFHqKQQw/ZUHA1uWwRDjSxWb290RCnLcuIStSAfKEJ5PgBLAcL/l/iU3MneUygRJa7nOq0KCve1CGAWVIDBWkwAMHQyL6CbzHoTuCKOJpZ6XBPDHCxEru4omCJXhxUY5sl0mHsfcLl4hnPCKXaoZS/JS486+KpRSD/5cKkkEEkLIxtSOqStvIA/AJYnBbhTyg3FPaVMdpJYmYLptcjFrPDysh7cwNJL0QDOJKqDGyRGEZ1vrDqNxDwnbD2p4Q5tKU6X8JOqIZfdRdgYGCI6Pb9SXnXnnDf1vYzb1SvA5JVo5EY+iHkhjRFD5XX6ByvfB3ld+CdMG7dGLhI5sDmQnYCQmfD6otTPJmGNzTVWP3XZv7mg+nQ7aVecfirxyLODR5odlQiz46T7309qzjdwzN0713B3m/yk8p6ZwLguVGd7KvbCYFhDNjpfDaTSTpYa+4sDZcBCa4JSh40OcbOmLXffPnbX0jThzDF4lBzJKDmWitJfJr2aO32+7rzi++pL1aZYRbGA0gZGlGKi89ExqBpLjGwXZb1A6BiVASAi6x2/hikfRV7D0OsVceCNjJjPVAdN1rYIUqg9Xfgvs6fEcj5asqe+UUz29HPkf/YU1c/co+5rii8OcN+1xsrF7NO1lmzYU0KZJhYshVsUk6XgRlW0PY2XrH/du8M016WPLM3M3Dr0YMGeEg8JWEAJDGsGlAoiK9CeEtdQndtTZMTQ2lOAFGpPF9HZU73ZExCnEztkti6VLN/Ncwp3zvrkELLr6jw/FrYEgkimLYGNCvLFdJBrTGYzwSDXApmNogYeZuopauBhZDaKGngYmY2iBh5GZqOogYeR2Shq4GFkNqKHRmKsQatIOcSI1fNYYKwtYU3JRlpU8j+rI0lRVBFTMjHmT9KJAZ1OiGULWdDJUjqdpGY/GDL78Wf3nOz9ObvHPcTn+VXxFYaJpeQCrXSGzZrHDYd3qFWZ5obJFGJlcSGFOErBVRZnpfzaxLqLFK9SFmtn5B8ol0mlfnDFghfVG7ISLOGbM/XOt3jg6bxk4R/f25+1oWVSGw6IEMsDwOtjH9vSWTZhjBRytWAlWFj4RyRRoN8deBgwylEUu4mgEqxUL9GA+rbicwzGAwPaw4kTO9uphpdQHiwJE4iDcAugkfKyH+zZoX69uvJ6gCxc/SreChv4teLvqDw+vxYCoq8c5g0qJMq3qoa9FdWEkgsj3cNEsOwWBm+l6vAiDL2oXUJ8dSlaVli5IYCdQCRCqROsBaW2ECnkYmGo6neDQXJhuOoedKguoxuqerMsE6uAsnRURxz/LKzLGeOZ1uWE8di6vFzvMSeWV9Xf49E0CRPmMRIM8xQ6zDVeJo052lsmKermYsskRd1cbJmkqJuLLZMUdXMxX8hwUd7L1KV7Hee++3Sx0+ObDdR8obZjE7N+z3/jkf3Yr39YwdsWpMUVWn3q0DmhGC8Li+sKOk3qacsxYtFhrbUcS57C1HLsaExFtxxLaXXNcOjmmW57uvqPm/+4ySo9aDmWMIWpgcvoKXrQN+nmzZtaaDnmE+l3o6n0vU/876vmTJLNMtKLlmPdGbVTWx+0o5WWY0srZw++PPWiZ+73LpdC/G+N04uWY89jmJQDrInulcPRZcux0ErFaf6iHK+8F4smhSw+OEOvWo6lMCovXDfK08+WY1fuFrl9/+bmkyW99del9ZPX6LjlmBuj5rg61xy8qcJajvEC040C2ilcE371bGdqOdBJL1qOIT4EbcsxYAhRPzWVQ+On/ptajhHbYui45di2qUwtxwKmaqflGLeO3/i/ow7yd37luPgJRq1gveUYsbgZC220NkxlaqMVM7WiWo7l/bzfwvVlS5cVxZuHF7gNWMl6yzGijWABqwBGrGym/k+1HFtJZ8b+K8L/j4rwE7sJaa0If9VYpiL8SdMqogj/eOtfB7+bBXjNbXfj5IugLXgSWfmyzVm2kfDApHIsU83yO9O0UoS/6EeboCwbU6+9xjOme9Xa1FrnRfj3TWNCBYwbvdk7aJb4w14R/mGP1lhy+oZ4ZA3ds6dZFZt2elOEX8Sout66UZ3Wi/CHpUQ0qDavpsPCYbcPru58KEXHRfgRK0NbRR1YGa0V4bfPX9P6wR+DHRctmbZx0cSsqnpQhB8xNrTgJE3TYhH+NzVMhy+UFDrkRvbJ3TzlynY9KGcBERIxIgTmNOq3pXFo/DY+r227X32u8jLuNd7yx+q3nfB1BJAkvnCZFKzoZJ/NkAbnLiUhEknJ/WgtDIC4XDYhOISrahqrSS0HYodF2rclVz1QE5aV2wccoUI4PYsAvhlEN6kA4BsfW97EKtOS1wJXUSwov/rvnT5XbXfqkdOisRe9OlTbiu+y+I96dxFcKKJhLKcLBcveXo2l62KXAmNOsRq5UDWV01ckDpaLqf1LM9tbD57y0x1nG236PedZ4jpChhRyI0WGlPJ6RZT93cb4/VNide0sqUamBo4SfGWJTCQJZKhtszzziSAn9rNXmtizqMn7gU3xYxV7AHmsqiQVoYx4RmWE60YZRPeHo0nEws4zTKYAy5cwEJ6dWrfvA7asYGcRasPt0CcwRCYX2XA79okYL1cgv1B7q9W3Z930mDjXIX5Uu9kGk9z749c1+AH+imgpRf/LElFFKGs4o7Lc9GLmwEdp5K2alRx0h02Qj4lgmEETfjZpN3LWWu9Dlaq//P1Gjwfl2SqXd+vQHjXkMNWzgFQXqgN/wMFYzbxU1JIzeFtHJAaTNrba5H7E7GaTpmmxA3W77QUApGMAFFIAAE2LRp4otpTRF5loFrZiWrB5FYfE9nVPiARtH+s02RcCMJYJgEzvWMzRXMX5d/FxiI25tcbHuT6diY8TNr2i+Tg3X+WP2X7Lzy39daP95rsm1dUDPs4f05mim7nT9YBUkJeXpwU+zrhmR1KXTg4U5LzkcNq9Ss/XCz5OJqN2lumDdrTCx4lrmFDvps9p570ukjV7BQcN9YKPE8eonDB9UA5Hl3wczuO/Q258Hum1+tWdSpJawxfoFR9nKKPyXHSjPP3k4wxs3z1u5iGFa1aecdSPXnYvdczH6cioucY611yF8nHMQjv3Hp+f47Bm8MS+l8S9hXrBx0F8CFo+DjCEqJ+6mvP/gI/Trf3dQVaRFt4LJ/d6devureU65uMMjWPi49jFaYePc8l8xz3njbvdE/JykuYMkp9nnY9D3JuzwDEZGMfEMXGMqyg+ztDD1+vbbJrrvrrhzRvdHnw6wzofh2gjWMDKjhGrBnH/U3ycNXRmbHyepJ3EO9PpQK6P9NnjYfja9Eb9J8DcSVe5MDyEnGGqQfiihbMkIhxmj6miOdG2yixTrhDWzAuGn0A58hyfhMbKV573mTlta9tDt5tcoH0/ciRHXUgaf9X9gQnzUU/FohiVxLynMo5K1dOIjZNa8zkOsDCXuRP8hx+VQ8e25pv2VuQb+4ulQGFikTuw61HY4xC1KlWZTqdKjXPSrFVju+Jz0oYH1un9LOgkf+GDD+fWd1wvVMtJ43674nvvY13XNZYdMt2/zT+glpNmbDQ98vpPBW/N8LFdTeIbKNRy0nYcN7vzM63QbfG6XY2nHhvsp5aTZjnqUPfxvdNcZ/eMOSSRNstTy0njDQ5/fnct32Nekd3+qd1OBqvn59uEb46dEOO8pHG3KmMXTeSrNZsZZPLq9baOLz1WDBqcfXPR5OtAZIiKDHd+P7+vksQzxzK20ebcwd+AqDoqqjpkwN9Oa3P5+56eShgbsDMMiGqgojZ3vVc/mRPpszH95/dhb9qdAiIjVNSozdcP79+NcYlf5TDK2OTtayCqiYruFb3fGPF3IH+5v9HI3fc6wuICxqhI8OTZ8C0b4r23ndu4rPL5kNtAZIKKZvuYtL/tms/LWWoQtvJjlStAVAsVTap6cllc56MuaQsvcPcP29sWiGqjom4v8qPH+gd6b9rz/GubHvYeQFQHFVWqxd92t8F21+mu9QuvFm3JB6K6qKil25Ci2i5zfVLDWnt459S5CUT1UNHtrtF5nQZGOs0a7Zdo03zVWSAyRUVPDqbOPLnA2H3666bH362ush+IzFDR7kv7ZzVI6MxfsexVXO+qz+FXNkdF/c9kPo9XNPXYH7Xh1ckYgS0Q1UdFj7pO7OVww4u/x2q2afU2+6cBkQUqenUpwG3Mb/0dc9a0/ulwXgYHmyUqqhnz/kVK/2lec4+2HXs+a9ZGIGqAinYtqzs+4tJmz/hRBms/xJlDkRUqahJyp2df447eazssm3ns2kn4WQ1RkWv8wVZ7b7l5zbcy21u9yjoDIGqEiix2Br/Zemy9Z+auz2camPVKAaLGqMjp0ZyojfHbnDZa2PY5UKffbiBqgoo2KczrfFo+3yNZsaJZvcoZ8DW4qGjLnpd3fvIHC9bNS7Tuu67nCVKyZVMOTbKlyNTCuP2l+16LRo/YcmGgfQiF2dA02XItnYkyCzq4M/XkGX7atqJJ5xrG4IPT1fhR4VKZiIJBQNeYtBV6h4rziZRajwgVSqXACKFV7MtIGSAaKMpXI59zooIy+iWxYC/YM56uC6mvDZ9jEq9ZE4gSRqXyRSi/20hHgV99UWXehvuO9Vr3afmKRUIly04uLFLbNZ4upmcBNsvN4jViA3TxAw6THDm7E4lhmV5ZhAShUID3k0hh02XVOOECD4orhFuuQEoUAx99cth10tA7JX/Ec4c7333xIVDV55BDoCUitneyEC4TRri+ztCLeDWZrqdh21BbdKKJStSlCBEqwP5lnJgLHBBVGyb6WKl/m/XHvpvle+4ouDZ4cdGxvoTTcvSxFKflmIRt7dW2RQe7M2UA2w4Z7KSIqYbANcWIPdihtZgIJHXNodoxi6pu+puXdTGVM3jg0+Ty04hYAMuEESww1NH1Zx3nv+wDNrMPiB661rIPHsQzZR+ka7ZWljH7oPieYuzKX+/dDlll1K0WMSyExcWSaIFYyD64E89E1j6t2WL5T7MP3IveL+y/6obzvnmTWx6fJFquWxoGzD5gRAWMGz2NlGgv+2BW/OPM/hZ7vGIHfOy3J/T9Mb3JPkhiVF2UblSn9eyD1j5fPkxJs3TJ6bTSquDtmhE6zj5ArAwtffw0hZdSUdkH63+ENvu4eYfTvEYmaQ3vxeDPA3WUfcAITnq8FrMPOjb4Mu9Mtw2uh6ZbmFb1HvdTT7IPkhgRAnMa9dvWc2j8tjMrhYIfPeq7xm1qXO1l88m5eG8U6Vnn7ywo+8GBI75lJOoJgx1iEPgV+F3R6n0VgbFFxyv0vVDXbUqZHCfi+SX1e5O9aEyiwTbw8SK0tQvJVXKAFcoXVUBvyReB1r92dFnmNsPjzy4Lanw9Swiyw7spguzI5dI8JaL9Y6FvywMIUDjVIOS243POL9IodmaBAISNC2uRRA6GL5BTL7YPHG9e3/fxhiBDIJxRNT7kDX5aOmM3k6dliag0wA4cv57S6Uqi18xKB9u/OdpAygJg2YyAgRGlEydKuWbAv+nEofshp3QaMujSCNElg1U9verUVEH8cZ+9M64unlNTllcXScYByuBHhcvFqtAd4tTyHP2tB7cpnwNMUO2g+Lv1GgY946c5H+s34+nzz2z0MGJUbYyOVEvlHydr1gCu9P6lL6e1Smnd+Zb7nBEKv53zQmN11r+UY4faJNi/NJy0v7VDphi6MG7g0CyMjlfr353Yba/D9mEjLRIHHsGXBjaFJTcV8OgTsnHFMD4s1qDrmb2TLBRAriz8iTxGVPIYZHNY0uxMBAZJmVZEYtiu9BcmqYPyrzQ4VJg/G4D+3JGiCdpoMPjls8ubq8cTqIECjxtgKV/obcjCuNZYAy+AnjKJD/5PadMi4Gm0LFJMk4FjFWF/dHeHw45LauT9GG0wUIK3MUgvVIoWcej10mxMouDmx+8TO/LWPXp3d/nWvsNYOJmYC2E2cKRo+5XSBoG5vEfCLdXUrzrdCpSFRYgDJyDDA7aQoD7dTD/+m/GbgjkuWw4dmlcQP6oLnlVQ8lzy9hcnrIiMJgS24VSwFdoisKEmYSOdSThn0vxDh64yr1nv33raXZnGJzYMDpcKA8Vc7wlSKYUtoHOYbbH7wuB9cMxKwiYKpRKRcpBHShQhXBnYpsjLbgmIUXqG96RqbKwm1sBLbjybLviWDtB9P6u8c98cLmpI+0MFbNcHjSREjJpr7Hh6Q8rPzoKldz+fetC+Lw/vPiMPIrvPysulTWciK4EFl6EBRC6eymWABZWrzqZ1n8uInJUKOTluqMGhRQnfkBlW7Rs83OOTOCZpbcysVpF4qjY6QKhDOngp643JrZGRxIDWvVladbCwFzUMiA4Xq+PQXI2zY+cJXFqx1A7+TYSdq9so6OQGi+UEljD8Ka/hNkcWSKhY8AiwqY5WqppSy8SFqTyTpJx6HW2HzoJiHhWp0B6ZBRodhFko25hCXwFZq7ChL6JetJ5kvY/dft0l2Whj4xMPniQSAhPwW1EEJpDLFQEFMsRpoQBDHF2oNnFoFiq9qVtPtJbstPCpgLL16bOYytYnqyDfrPeQE7lx7EAurjxyX72vxa5xBgX57bMq72EB8qg5TJCHzMEgz6CDXGNWZi0Mci2wMilIlBgrk4JEibEyKUiUGCuTgkSJsTIpSJQYK5OCRImxMilIlBgrc3HauWspghGuOyZ99pL6j69DorzBwUs5+oj0SxYob1vo9N/M84Tt3d01XDYbiMZcf1Ebr/96ysN+J6ksArqLSACH7JRXpZltzVwksGVPCOxxo3wAsqWE+0yUhlC28D6RclrqK5LAofojDdKjkmeCSVZIdXYN20H6ztTo7NpKGW1DskFkUDUAD/ALPS9oUJ3iqX6Ojl5bbx8M80n/q7A8sbaKPcYugPHRmeiyW0xKsAfb6rCZlH44HVZmKkqEOlaUKJ0wkE6/b7fIJ/PH1tpBHYsaskiLmD7A+9PpTVEuW2Rz3BIco4+xgJIvI0odZ2rWpN3GF5tXyGRDMMOmHNzqYdwz+lBJYuiRtks9nARxdyaIY8Li7XQYz4XtF5FBRBmQOwq2wVEzNXNj26qihxCiQLWaFXAFwtkmSnBqxZ/p2Tf2l9Om9Hv1V9b3MNKDqCUEScQIku9MzeK6LZ0lym+uOqoqGTJIYJHeQNkEr+3jW9jPdUOdQat2teUb4KOI2HPJUUSVpCLQ6c2IjvVMzDHK5NAsjK8GegsM7L84LV1/3mWtj/tQ8kE8eSU0oAG3KT6eq6K6Rco0KhtHTLAoa2ygrJ2PgWGygy78eaoDKA6s8kg+gCp/mPau8ET/Si5Sl71RfypGZSXUwx92IvFYmmUdJyz1CJlg4srbMRfY6bYQLF+qMZYOXHPzWRqtdSYIWGIw0+ihivKs7BbzfA0/r/XmNrXbTB6Ft0R8cC81UGoiLbsEEKbKjDC90XCxKz2ERow16yyEBi0NMkZgCI3USTjcDoEGtUNb6eyQU+vz9j1m3Beku6x9p+hh2Yh4Dh0qDOcqz2kozsvpXPPWyvuwaA+SlyLkhokj4SWxXBKILpBlMkvE5C6GN6Q6KVcTlzVKBoZNQjLA9SKVTx4LK6sla2SoTJAwlPJwF7wO5bf8+qJHwmbLCNdlC+063N/9k9CxEXkA2UVSXi5tzhHz3Mob3QLwxEN4alLNuQywZQlP1ohNYqx8H6ZCX+PSxk/PSNzgseRSmGFuYrvx+Oif8n5y9A+9Xho+s3/ZPduY8dN58c3Hy7xvDdzEAj7DGfEBw0cXDANDhLgxUQlEbw7xR7NK4MYBQnmwWMGktNsN34xp+zDNa8lm+wNOr5tn4JWmvJ+sNPQ66+RaoJXOjFrh6pVWivMwrWi0fNVCDF64WIQaX0rFLJz+4EaL4FGCrUuXj8iY32ACXjFeyP1kxaDX2VaMgx1qTuAxI2m/GmvP5wQla7Yhs1JhgGwspJLS8Hge9Liby+s8x5n5joX2E/5wwLNqnZQPILNqMUFFIOLGiEjbZGxd38ahWdd3LfL8OKxXT/dZH38oDI/f+oDXsfITy06G6a3aYeAXcG5kiCQwBLiVMLdQGBEBKxqoWDHo8l+2zQcxT5vqfcljUnldE57oApQnSmK/OIBd3ekF5Y2AN0RdDbjYS5RFamAKk/JNqLtFPWxpOeGnsUvqtMeLN+4yPYIffHSOjUqg5cUfoZJCDNtTcTS4bREMNbJYvb3REaUsy4lL1IJ8oAjl+QAsBQj/X+JTcid7T6EeSoT1XKdVQeG+FgHMggowWIsJAIZO5u10k1lvAlfE0cRSj2timIOFyNWsBUyRq4kqzHfQYe59wOXiGc4Jp9ihlr0kLz3q4KtGIf3kw6WSQCQtjGxI6ZC28gL+AFieFOBOKTcU95Qy2UliZQqm1yIXs8LLy3pwAzbZ5pCqmUR1cANjFC8X5hurTiMxzwlbT2q4Q1uK0yX8pGrIZXcRNgaGiE7Pr5RX3TnnTX0v43b1CjB5JRq5kQ9iXkhjxFB5nf7ByvdBXhf+CdPGrZGLRA5sDmQnIGQmvL4o9ROwyDljWaWVnvEHTpyeHGSFHzaVeOTZwSPNjkqE2bF6/hPLw2fb+uQMu9p4iMHo8nZt4oDZUReqsz0Ve2EwkP5cmK8GUmknS439xYEyYKE1Qamo9dhPuVbbneevXJz1suClMR4lRzJKjqWi9Nl4191isa/L+lNzToZuLh7HAkpgWDOgdH1hPjoGVWOJke2irBcIHaMyAERkvePXMOWjyGsYer0iDryREfOZ6qDJ2hZBCrWnO/9l9pRYzkdL9tRhIZM9Nf3PnmL6idk4aIf7hz2eS++Mmvy9bcxjFuwpsUwTC5aiN6OlsK5wexo6vnla89y+jsuuh4cV9rHdwYI9JR4SsICSKSNKnIq0p8Q1VOf2FBkxtPbUVGVPd9HZU73ZExCnEztkti6VLN/Ncwp3zvrkELLr6jw/FrYEuclMW4IdqjOV3XSQa0xmM8Eg1wKZjaIGHmbqKWrgYWQ2ihp4GJmNogYeRmajqIGHkdkoauBhZDaih0ZirEGrSH2STKiexwJjbQ9rSjbSopL/WR1JiqKKmJKJMX+STgzodEIsW8iCTvbS6WTZ80+rbAckCQ6e9fnd9Vd6M3y5jpI8VLximGJO5iUli8JgTSj0ATXIOa11XHz8vHgB1s0mt+/pN6WZjU+bMvmVxNKNVQWywHFikeomuq9ArjhSIisrPb0VnxOXCGxdVyeac86gRAr/0gCFi8K/RFwWgn+Z8iM2Z+3Cwe5Zm7d4Ozxpd5st/5Gx2nUJFtyJQrlEOEZKzRnqH97l7PJFOQ5Zq52Mujw7k8OM/kD0UVwfsqPkU6qjRKypWc6VKhZob2oi6iiRs+BaIdojOkpM/qRpiaNUMtApUbs2zrLZhwkc5z1TWt25vvuv94yo0TlNVMd95Q2IdEAhOepAAUl4BwQS1Ibso7MhqdkPhsx+/Nk9J3t/zu5xD/G5wlV8hWFiKbnIM535sOZxw+EdapXquWEyhVhZoEwhjlJwlQWeqUcnoXYrxauUxWMy8g+Uy6RSP+j1woslaePF/Qhj1Nve7LLl3kCHXQvXOfaYvG8v3Rg1HBAhlgeA18c+tqWzbAKcGYFSWE0aFg8TSRTodwe7FBgpLYrdRNAjVu6bpEcweJPnAT32cOLEznaq4SWUB0vCBOIg3KAwUl72g31/1K9XV14PkIWrXyWUkfZoxb+xYF5+LQREXznMPVZIlG9VDXsrqkVZLox0DxPB0n2q0V4dXoThW7VLyH5fipYmVxp/2E1IIpQ6wXpyKtVU9VfIxcJQ1e8Gg+TC8BIDohyq++mGqt649sRKwiwd9xPHPwu+/Z/zmHz7O/Mw85Cl95gTlxP9DbGcZ0wOOqxKDjpAh7nGrrYxR3uuNkXtbczVpqi9jbnaFLW3MVebovY2tp8yjx3XsUt/a7es1HUN6zduUFVtPzXpy8vMovUzBIcedL58ZrP7FpKDDq0+5UAiFvRmwUHPptOknrYtJBYu11rbwgeLmdoWRi2u6LaFopYWnWeceuuzrWO1gDtdfhPrQdvCO4uZmkCdXqwHvdcuX76shbaFrYeuzBLF1/NKMx38vqFF6my9aFu4j1E76fqgHa20Laz58Umf3+4f58/8I/H+wRUG+EbPumpbmMSonCh9UA5Hl20L48427fxjBMc796TdujppG/H1EXXdtlDEqDxf3ShPP9sWyq5cWFtcUMspt774k28Li9Y6blvYm1Fz1jrXHLypwtoWPr6ReO7Dgode+z2Spk+dOPaqXrQtRHwI2raFwBCifupBDo2f+m9qW0hsraPjtoVhS5jaFjou0U7bwnZmAqd2Ht/4GYmBFl3Sufh+3Gy0LSQWSGShFd/YJUyt+AYuqai2hQf2r3sQeHOR8+FT3YsNG8sMyj+FCVgRbQQLWDkyYmW35H+qbWEOnRn7r5HHP2rkQexIprVGHo2XMjXyuEe2nSw08nj18OiZ91+7e2YF9Us6+251EYsVK1i2kfDApMFSpr4HVZdqpZEH3+ONz9c/Fzgceb3tZm7dFvj68bpo5PF+CRMq97RrDRn3DpolD7LXyCPtc9LZeecqeSdNj/lyqMGwSXrTyOMso+qydKM6rTfymHyqbgfjb5cEcY1GhhvNjjHRcSMPxMrQdmIAVkZrjTymJ9e6svPAdPdNBs/b1rjAu6MHjTwQY0MLDjA22mvkwRnb/82XOVuc1/TNckueXD9LD0riQITOMiIE5jTqtx3i0PhtfF7bdr/6XOVl3Gu85Y/Vbzvha5EgicDhMilY0ck+myENzl1KQiSSkvvRejoAcblsQnAIV9V4WpN6MMQurbRvS66coiYsKz8YOELFcHoWAXwziG5SAcA3bWl5kzNNS14LMoiUWFB+9V5HgmxXxd13yl0XWdhR9ju+2Og/6v9HcKGIhrGcLhQsnf3nUrpOmClg7BZq5kLVVE5fkThYLqb2L32fdUgo+vM3ftq34qG97d6cJGRZIjdSZFkqr1dE6fATjN9/11JdO0uqkamBowRfWSITSQIZ6mMdtr2wNbd9gs8Mt/Xvo6NHWOLHKvYA8lhVSSpCGWmMykjQjTKI7g9Hk4iFnWeYTAGWL2EgPDu1bt8HbFnBziLUhtuhT2CITC6y4XbsEzFerkB+ofZW7yb1DX48Zj9/+5DECR7bax7Cr2vwA/wV0VKKHroloopQloJRWaP1YubAR2nkrZqVHHSHTZCPiWCYQS+y3j0bEbPIY3q/9TtfJu45Up6tcnm3Du1RQw7TxQtIteU68Adc1tBLRS05g7dVzPV0PWa9zWfu2Sn8zQ/9Z+p22wsAyMYAKKQAAJoWjTxRbCmjL1Szbef3dZea7uanNgx5U9DqTT3CUqbdggEQgDgmADKDlmKO5mHOv4uP4/RoTtTG+G1OGy1s+xyo02+31vg4b5Yx8XFmLatoPs7mn14v3UyqeC7ysOv4rvaHQD3g47xcxhTdvL5MD0gF2dnZWuDjFA38Ih+6otB7VdSAZ2lfvGrpBR/nGKN2duiDdrTCx+lU7JTk++aw58alxwpD/9obrRd8nFRG5czSB+VwdMnH2eB/cesO7xj3hY3WpTiErnuoV3wcOaPyRupGefrJx3mdfUhWZWQbh7iiY6+3df2VrmM+jgej5rrqXHMVysfhJsninowTOK6q0zRvpIdlil7wcRAfgpaPAwwh6qce4fw/4ONsUpjX+bR8vkeyYkWzepUzNuqYjyNfzsTHcVmuHT5O/3s1fl/S7y4/Y3x+v4F9BINY5+MQ9+YscEzCljNxTIYuryg+zide42nmg856zVv6dkng97RM1vk4RBvBAlYujFh1XP4/xcfJpTNj4/Mk7STemU4Hcn2kzx4Pe4uPlPSfAHMnXeXC8BByhqkG4YsWzpKIcJg9pormRNsqs0y5Qlh3Mxh+AuXI27Ln5Z2f/MGCdfMSrfuu63mC9v3IkRx1IWn8VfcHJsxHPRWLYlT+w/xo1dOI2e2t+RwLWNzP3An+I+R/jm3Nv1F/Qb6xv1gKFCYWuQO7HoU9DlGrUpV5dKrUOCfNWjW2Kz4nbTO/s5Wp3VWnpeFTAg9Uck5Ty0m7npK1O+YPOX/ffseoIlFCkVpO2rXa86RzLV87H34nlvdNO9FHLSfNq8Mj//S2S/grDsRvH1qU3UgtJy0hevW0ITO4Xkmn7UZ1+tj7m1pOWqMXJ5dJ8q34eYeq357+cluBWo2PrkuXcgTN97pvOTJ4XsF7V0e1hlXzcodO4p519d4+eXnwpEO3PgKRIfbAoPXdm29Z57qrYdP3cTV+uw9E1TGRbGVOw8YzHBamXqvLO9JECkQ1sJe3HFkQ+iTMa3P7gC2K2bdrA5ERKtrh/6fLp9+jvRM2jvrW9+uwRCCqiYoGjZTN/5wVyVsnFHTfKNsHi2EYo6K1q1rcmbZ+oPOMZe1aezWoGwJEJqjojldy5IE+RwQzR1+/V7vLgr5AVAsV1d97+mqs7023xGHb7nU8mlEPiGqjIlnN1CPH+3TnbWgT3PzT7obmQFQHFb0L61N71YShLuv3vvGoW/vmViCqi4o4KdZehQFVXTYeP5HoM2jWCCCqh4q2VloyObzaR5/dVq3cdmY9aQFEpqio55o6Jxe0TfKedyfo4tcpXo+AyAx7jYf9uJGvGzvvS6gWeLvPoV1AZI6KfgVZv205NoM3a1aMx+uRUjcgqo+Kjgg5y9ed6+I216/JU+8esZ+ByAIVjZsWM27nwQmes3cljXjw5FpPILJERV2evN4Z65HnNXforI5rjz1/AUQNUFHieIX38Bl1BDOHTti2KC7FB4isUNHvVV9eqhZrKtjT+ZthjezxhUDUEBWZjvZo1qlHpsvhHw/kTSXOS4CoESqamjc1e1my1GPx8ROWZx+chcg3xvQlabih+YYb7od/O/WL98ATDoAmqOiCm+9x6ce/vROajbeUBSQsByIuKno040XU1JfVeatOn89tlnjLhZRs2ZRDk2yZdnGlkW3cdI+tt74Nv/TL+D2F2dA02fIonYkyCzq4M/XkGX7atqJJ5xrG4Ldl1fhR4VKZiIJBQNfcuBV6h4rzibRriAgVSqXACKGdMMpIGSAaKMpXI59zooKyVsgAe8HvKfk0nYx9bficghTNGsmUMCqVL0Lt/7ddPPKHsK7XzBTuKO6BG31ZJFSy7OTCQtefU+hiehZgs/w4RSM2QBc/4DDJkbM7kRiW+pZFSBAKBXg/iRQ2bleNEy7woLhCuOUKpERRmPbiGH/LJ6cU6T1ZlVsNV+BDoKrPIYdAS0Rs72QhXAWMcB1O0Yt4NZmup2HrYVt0oolK1KUIESrA/mWcmAscEFUrN4ZuXAdN/QZ9u+18pPOAdt0e3+ETTsvRx1KclmMStrVX2xYd7M6UAWw7ZLCTIqYaAtcUI/Zgh9ZiIpDUPYsHNuZs67raO+l+rfs9m77klZ9GxAJYBYxggaGOrj+/c/7LPmAz+4DooWst+2DTCqbsg6AVFZF98OGv0VEfrl7zXnjtiuuh5nWfs7hYEi0QC9kH61YwkbXnr9BK9oHcqaZ74lNv/oLb1YIW+85prvPsg0mMqIBxo6eREu1lH/xcO2HR2H4mTlkmd/c/XLmghd5kH/gxqq6vblSn9eyDKwMaDjGMmOh2ONm+7dZz8+N1nH2AWBla+jiwMlrLPpi/3Mlg1ZDZjrncYdIuy1bjCyboJvtgEiM4QSu0mH3Qu/FE78Rre1zmGgyp9mZg1HA9yT7wY0QIzGnUbzvGofHbzqwUCn70qO8at6lxtZfNJ+O1boj0vfR3FpT94MAR33YW9YTBDjEI/Ar8rmj13qzA2KLjFfpeqOs2pUyOE/H8kvq9yV40JtFgG3hnM9oeiuQqOQANpG2ugP60davZnJOE7XJcf3rN0pwqvnUIQXZ4N0WQHblcmqdEtH8s9H4qhACFUw1Cbjs+58RmjWJnFghA2LiwFknkYPgCOfVi637ySN8XG3bxVnV6nnfWOe0Yflo6YzeTp2WJqDTA9v7eqn5oQC+fhYa7zhp3zStvzXsI2C5GwMCI0okTpVwz4N904tD9kFM6DRl0aYToksGq8p7e9hk+8IRrirvNosYxRR/rIsk4QBnkkstVeY7+1oPblM8BJqh23/efa9485bmk5vaNvTapxQUWVJvAqFqFjlRL5R8na9ZEsvQeyIpmj8YObWbpusbQb1Mzh5w8nfVA5tihNgn2QA4n7W/tkCmGLozHOTQLo+PV+ncndtvrsH3YSIvEgUfwpYFNYclNBTz6hGxcMYwPizXonGjvJAsFkCsLfyKPEZU8BtkcljRMFIFBUqYVkRi2K/2FSeqg/CsNDhUC0gDozx0pCoyPBoO/e1p5c/V4AjVQ4HEDLOULvQ1ZGNcaawII0FMm8cH/KW1aBDyNlkWKaTJw3D1u8NuFRvGWWUYpPnR6i2+zXBXpp0zRZhK9XpqN+Sv6yIXQ77OclvRpP6b19xUfWDiZ8IUwGzhSlL1OaYPAXN4j4ZZq6ledbgXKwiLEgROQ4QHb0FCfbgb17tGtielXn1VrVk4xys/Ft6IzKnkuefuLE1ZERhMC23Aq2AptEdhQk3CCziScM2n+oUNXmdes92897a5Mwx9zG/uJw6XCQDHXe4JUSmEL6BxmW+y+MHgfHLOSsIlCqUSkHOSREkUIVwa2KfKyWwJilJ7hPamao6uJNWmiupIu+JYO0M1eWd65bw4XNaSFqgK2/IRGEiJGnVJiZHH28cfKgoOfbwbNEk/siHefkQeR3Wfl5dKmM5GVwEbrVIhcPJXLgBRUXknrPpcROSsVcnLcUINDixK+ZXVd082Tq3guzzwY0Gdo5gg8VRsdINQhHbyU7VkM0cpmRGvDSq06WNiLGgZEh4vVcWiuxtmx8wQurVhqB/8mws7VbRR0coPFcgJLGP6U13CbIwskVCx4BNhURytVTall4sJUnklSTr2OtkNnQTGPilRoj8wCjQ7CLJStkKGvgKxV2NAXUULxNnfW0jCvN24H3j140bD25SaEwAT8VhSBCeRyRUCRzQgFGOLoQnWSQ7NQ6U3deqK1ZKcNWAWUrQ9ayVS2fqAK8nz9h5zAjWMH8s7vxqRNPljXY9Wafh/P1hKX99QIQt53NRPkdqsxyE/RQa4xK7MWBrkWWJkUJEqMlUlBosRYmRQkSoyVSUGixFiZFCRKFSuTTKLEWJkUJEqMlSn1PV1QvUYDp7UeYbMafBZ8JFHe4OCl3oQS6JcsUN5O0+m/mecJ27u7a7hsNhCNuf6iNl7/9ZSH/U5SWQR0F5EADtkpr0oz25q5SGDLnhDY40b5AGRLCfeZKA2hbOF9IuW01FckgUP1RxqkRw1MBZOskOrsGraUNU/V6OzaShltQ7JBZFA1AA/wCz0v6GtQ1eNrZC2csw+P6X4srHhoeWJtFXuMXQDjo6nosltMSrAH2+rOqZR+OB1WZipKhDpWlCgN+zgp71IlOS/nUVornwOHKrNIi5g+wPvT6U1RLltkc9wSHKOPsYCSOSNKn1eQDx+Y/DQbX2xeIZMNwQybcnCrh3HP6EMlwT9a98tNa82Pu9RlpZFni1o6jOfCFq7IIKIMyB0F2+C+qZq5sW1V0UMIUaBazQq4AuFsE3Wyprd9t29/7PHIbrV1TSXBxAV6ELWEILVlBMk8VbO4bktnifKbq46qSoYMElikN1AT6/UfN+SPxV5bOx5I/M63xTezM8SeS44iqiQVgU5lRnTeqGK6Zzg0C+Orgd4CA/svTkvXn3dZ6+M+lHwQT14JDWjAbYqP56qobpEyjcrGERMsyhobKGv3dGCYPkLYzlMdQHEAbKc1W+rKFqbNTRx25frNpy577QZEWCyxqYk/7ETisTTLOk5YmhUnmrjydt0GdroYguVLNcbSgWt+R7O1zgQBSwxmGj1U98fuG13NNN999clRj3b8lZ+Mt0R8cC81UGoiLbsEEKbTjDDtS9VssSs9hEaMNesshAYtDTJGYAiN1I083A6BBrVDZ+nskFPr8/Y9ZtwXpLusfafoYdmIeA4dKgznKs9pKM7L6Vzz1sr7sGgPkpci5IaJI+ElsVwSiC6QZTJLxOQuhjekOilXE5c1SgaGTexGgOtFKp88FqDusFEjQ2WChKGUh7vgdSi/5aRL9uYuhesd5o2vtCpn+87xeBcJeQDZRVJeLm3OEfPcyhvdAvDEQHhqUs25DLBlCdmoEZvEWPk+TIW++FN8hQWL1wpyAyeKXZol/IaP/invJ0f/0Oul4dPDa3zRj7RPXgf73DmXcuzVOxbwCWDEBwwfXTAMDBHixkQlEL05xB/NKoEbBwjlwWIFk9K+Ri/22Znt4rXQ77NxWspzPJW8qvJ+stLQ66yTa4FWbBi1YqFXWinOw7Si0fJVCzF44WIRanypS5KkRA/uGurhOGNd1cHGnTmH8YrxQu4nKwa9znqPaDvUnMBjRtJ+Ndaezxm5UbMNmZUKA2RjIZWUhseXT12NB/NMPBN+frJtbN+5KZ5V66R8AJlViwkqAhEHRkSabcTW9XMcmnV91yLPj8N69XSf9fGHwvD4LXzkCP3EspNheqt2GPgFnBsZIgkMAW4lzC0URkTAigYqVgy6/Jdt80HM06Z6X/KYVF7XhCe6AeWJktgvDmBXd3RDeSPgDVFXAy72EmWRGpjCpHwT6u3tky9V7N7UdM30532+s2ID/jS2Gp1joxJoefFHqKQQw/ZUHA1uWwRDjSxWb290RCnLcuIStSAfKEJ5PgBLAcL/l/iU3MneUygRJa7nOq0KCve1CGAWVIDBWkwAMHQyn6ebzHoTuCKOJpZ6XBPDHCxErqZuYIpchakwv0CHufcBl4tnOCecYoda9pK89MDTu02QfvLhUkkgkhZGNqR0SFt5AX8ALE8KcKeUG4p7SpnsJLEyBdNrkYtZ4eVlPbgBm2wTSNVMojq4gTGKok35xqrTSMxzwtaTGu7QluJ0CT+pGnLZXYSNgSGi0/Mr5VV3znlT38u4Xb0CTF6JRm7kg5gX0hgxVF6nf7DyfZDXhX/CtHFr5CKRA5sD2QkImQmvL0r9jOtaP7/K5aeC5AG3LZ/uT5uO008lHnl28EizoxJhdrSusfYtp8l4r9V3+wXmXSo+Xt4zEzA7akB1tqdiLwwG0r825auBVNrJUmN/caAMWGhNUApYb2Pa1ecv7wVLrqd3irjsjEfJkYySY6kozXln8+7aqkTPOFvbjGHbJpU3uxSiBIY1A0oXN+WjY1A1lhjZLsp6gdAxKgNARNY7fg1TPoq8hqHXK+LAGxkxn6kOmqxtEaRQe3rxX2ZPieV8tGRPu29isqc1/7OnmH4GuJwYO7Nxd5cDLhNrXxo1RM6CPSWWaWLBUnRmtBTcCrenPY1W2SbfmOKZGjIso9dqgzAW7CnxkIAFlGoyovR5YwXaU+IaqnN7iowYWntaU2VPL9HZU73ZExCnEztkti6VLN/Ncwp3zvrkELLr6jw/FrYEWRuZtgSbVGcqBXSQa0xmM8Eg1wKZjaIGHmbqKWrgYWQ2ihp4GJmNogYeRmajqIGHkdkoauBhZDaih0ZirEGrSDnEiNXzWGCsXWZNyUZaVPI/qyNJUVQRUzIx5k/SiQGdTohlC1nQyR90OknNfjBk9uPP7jnZ+3N2j3uIz/Or4isME0vJBVrpDJs1jxsO71CrMs0NkynEyuJCCnGUgqsszkr5tYl1FylepSzWzsg/UC6TSv3gigUvqjdkJVjC+DbLvB+2OO6dtGjeoiMP3j2js4SGAyLE8gDw+tjHtnSWTRgjhVwtWAkWFv4RSRTodwceBoxyFMVuIqgEK9VLOpRuBXY864AB7eHEiZ3tVMNLKA+WhAnEQbgF0Eh52Q/27FC/Xl15PUAWrn4Vb4WrerbiTzy/Lr8WAqKvHOYNKiTKt6qGvRXVhJILI93DRLDsFgZvperwIgy9qF1CfHUpWlZYuSGAnUAkQqkTrAWlthAp5GJhqOp3g0FyYbjqHnSoXqEbqnqzLBOrgLJ0VEcc/yysy4/XMa3LV9dh6/JVvcecWF5Vf49HFzES++NUxP5rdJhrvEwac7S3TFLUzcWWSYq6udgySVE3F1smKermYr7QMpcvDXrF8Jz2HeINWzx8H0/NF+rn6uBePDTRJedqUf3UNcHrSYsrtPqUA4lYjJeFxfU6nSb1tOUYseiw1lqOFWYwtRwLz6jolmP7WycfKYjxdlvsd1ohG5TE1YOWY1czmBq4HM3Qg75JZ86c0ULLsRd/OtWoteFPj5wz/VMOTOlorRctx7YxaidFH7SjlZZj35/sdbc/YeKyu1ZxP3FKDp7KqKuWY/GMygnXB+VwdNlybN25azF+a/p7rah8ZVnI3wkd9Krl2HBG5bnpRnn62XJs2ovEpKpD7vNn/BzyrPmqfI6OW451ZtQcV+eagzdVWMuxoyddW1hZVXLPSx+/songzx560XIM8SFoW44BQ4j6qTc4NH7qv6nlGLEtho5bjgVtYWo51nOLdlqOGdibP567+TgvznzLgfXbnuL5wGy0HCMWN2OhjdaYLUxttLy3VFTLsZe1BybWeiTz2HzLpGjhlj2zWW85RrQRLGDVkxGrVlv+p1qOFdKZsf+K8P+jIvzEbkJaK8JvnslUhP862XayUIQ/vK97u7OtL3lmHWgn25XnvofFbHOWbSQ8MKmbyVSz/CfZRlZEEf4jnxvm1uC19Mys1bXtioNZ+CKzuijC/3ILEyrXtWsNGfcOmiX+sFeEf8L9Sa9HSG0Eay7PGNah+SB84Q1dFuE/xqi6HbpRndaL8Hda+abeoBpzXBbnCYODEnpa6LgIP2JlaKuoAyujtSL8iZur3TKvVEuw5nryg+rZfcz0oAg/Ymxowbm+RYtF+KfLNjxcUrmRa+zBnRv61Y44pQflLCBCxxgRAnMa9dtucmj8Nj6vbbtffa7yMu413vLH6red8HUEkCS+cJkUrOhkn82QBucuJSESScn9aC0MgLhcNiE4hKtqGqtJLQdih0XatyVXPVATlpXbBxyh53B6FgF8M4huUgHAd0lmeROrTEteC1xFsaD86gXvgjoHe2T47D91pkXk6cv4RnX/qHcXwYUiGsZyulCw7O3jTLoudimw8VemRi5UTeX0FYmD5WJq/zKiQZeeVYPuO+Scu39w3KZq+KOUqs7IjRQZUsrrFVH29zDj98/I1LWzpBqZGjhK8JUlMpEkkKG2jeGxkZE2YZ+915te/vPs5BZ38WMVewB5rKokFaGMJYzKiNWNMojuD0eTiIWdZ5hMAZYvYSA8O7Vu3wdsWcHOItSG26FPYIhMLrLhduwTMV6uQH6h9lYrv8qpXXXiZredit9uyZ8cccKva/AD/BXRUor+lyWiilCWlFFZg/Vi5sBHaeStmpUcdIdNkI+JYJhBiUYZP7M/VPY80KW2zSrH483Ks1Uu79ahPWrIYapnAakuVAf+gDOZmnmpqCVn8LYu2L16Vjfb0ycpcGj4MdMm1XW77QUA7MIAKKQAAJoWjTxRbCmjLzJxIe9Qp6a3znhkz6j6rdmn3BWEpUy7yb4QgElMAGSOzMQczVucfxcfh9iYW2t8nKdbmfg4U7dWNB/nnsGFiw0W9HDZnPF2U/t9E4P0gI9TtJUpunlxqx6QCnbt2qUFPk6tv1rcfFurp9fmLwkugUFjn+oFHyeHUTub9EE7WuHjREx+a7/hxFqftE1dhvX+27CtXvBxFjEqZ6o+KIejSz5Ozu3V2aPt3jjMrmdUu/j5rji94uOMZVTeQN0oTz/5OH8a+HyLNarrPDPN/Pu5jdU/6piP48ioOTuda65C+TivPYaFnIw665FoerAo5WOfTnrBx0F8CFo+DjCEqJ96m/P/gI9zwc33uPTj394JzcZbygISluuYjzN2GxMfp+827fBxWq3I97eZNoq/7Hq7xyf2/JbFOh+HuDdngWMStI2JY+K3raL4OP2NWr0e8qanR65lQo8D1XkfWefjEG0EC1j1ZcSq7bb/KT7OHTozNj5P0k7inel0INdH+uzxsLf4SEn/CTB30lUuDA8hZ5hqEL5o4SyJCIfZY6poTrStMsuUK4Q184LhJ1COvEczXkRNfVmdt+r0+dxmibdcaN+PHMlRF5LGX3V/YMJ81FOxKEYlMe+pjKNS9TRi46TWfE5NWJjL3An+w4/KoWNb82fW2JBv7C+WAoWJRe7Arkdhj0PUqlTlXTpVapyTZq0a2xWfk5Z1xbrpj2tTXdbaLTv/6e3ScWo5aWv6nrCpn/yb4yFhs22PGnpaqOWkTZ0Yx+1Wtaf7HMeOO3IEAVK1nLSXz4wOtl3yzXXvK5HH5I+titVy0oavaVWba7nFc+6P34q8L/wpUctJc/15aoVkUrFPUmHdTC/TR2PV8vNvdlsmX/iymiBxqN+2NKcJqWrNZjIfzVnrvWsPb+egqPatInyOAJEhKuoTmjFj6vuXruti/jjZsrZBChBVR0VLJ6afDGhq4pgnT7P5PtxnExDVQEUu9TdvsU//5pIyK/HytntLfYDICBU1Ulh0fndDzku4+5vZPs+uMJG9JirqXv9KpXp/yAV76vUNN3uabApExqio/zyX4pHhJ/jZg5Z/3fyrfwIQmWDfq/EfK9zc73lvOVu5helL805AVAsVRd2z3sifWp+X/XDJt6cL958Aotqo6I+VU34ZH0hwSTAWBtQb0n4WENVBRbULe08WJ1f2ydsfNEFR88QjIKqLit6+fWryfIOh08IuxebvVjf5AUT1UJG3R0j6tK0R3muvhT5fcOXwRSAyRUUOrfg+Tzss5+0cMaKrQVDATSAyQ0Wv6jxZ0KnuAveMv694Xf2r/i8gMkdFdQumv0x68bvPokF34yWHPX8DovqoaMnmnicP9mgrWGu2vfJI40prgMgCFdnFJ60fc/yX29y32Y7df/yxEYgsUdGQfq87Kpp1clmadOfHvCNmUMsNUNEMP5OOdfeYumUOW259pYbiCxBZoSK3xfLTp5+ucZ312nD2nYZnzwBRQ1QU0KKWieyDB+/AjYOHzTkWEMNGqGi5SX7f7rM6u2Z/WnBIGtwgGIgaoyL39J5/Ls/t7LOwONdv4sgdC4GoCSoqqlprqmmIOy9VUXlY68Ohk4CIi4ou/DFqaf8qj7228g657l2+RURKtmzKoUm2bCG+/myr3QXv2BFHrgzJez2XhWTLe3Qmyizo4M7Uk2f4aduKJp1rGJOOP0zkR4VLZSIKBgFdY9JW6B0qzidSaj0iVCiVAiOEVrEvI2WAaKAoX418zokKyuiXxIK9YMx2ui6kvrAD7HbNmkCUMCqVL0L53VZFvxkprzTWYVno4phWky1qlydKVLFOLixSG7WdLqZnATbLou0asQG6+AGHSY6c3YnEsEyvLEKCUCjA+0mksOmyapxwgQfFFcItVyB1js/G8KPnBW8cV039Xdi897hb+BCo6nPIIdASEds7WQiXLyNcvbfrRbyaTNfTsG2oLTrRRCXqUoQIFWD/Mk7MBQ6Iqg0Tfaz0bNWbE8YL2rnvedXCvMEAey7htBx9LMVpOSZhW3u1bdHB7kwZwLZDBjspYqohcE0xYg92aC0mAkndevXBvvr1ph1wPjJ4+SaDrUPXlZ9GxAJYvoxggaGOrj/3OTTrz3/ZB/8o+4DooWst+6DZDqbsgyLN1soyZh9USph+PWbfWt6+VYKcQdYbd7O4WBItEAvZB413MJG1a+zQSvbB0eX1Wo54b86fMXBznwE/k6J0nn3w13YmVIp0syaWIVKiveyDgiz++Kshcz0P3/m+8tWCm7v0JvvgIqPqcvTVnWE5+2DzoKCPB6dH83dOfbI4YXkyoR+S1rMPECtDSx8HVub/2LsOuCaW5x8VFcWCYK+xowJi70oSOqEoiL1ECBANCSZgL1ge9t472EGf2BVQ9KlgV54VuyL2hoq9/Xcvd4G72zsSOZL8/T0/H9+TW+5y+c7szOzO7HcMdvqgE082ZP/kDuJJ2XujWtU/S86qG+f0AWZsGMHJ/NuApw8WlX/DDxaGeO6tUH7sRe+KZiZy+uACK0JJ2rjtPo8hbju9SiL+0aGK6+TNtUs+rz82hRyNYj3r/JzEum8cCMktI/FIGKwQg8GPIO4anbevIjC2uL7C2AsP3cbrdg6Bsn+Jfm96FE2M6LEMLH0Ib+1CC5UcgQTOJBdCb8nTT7vXsW5203FmkeKXGkmqtKMk2eHdiCQ7djm/SIlq/zjo21ICAhSOUkJ+M2feu2S9cmdVMYAIvbAJkqmA+oJxtLN1EHU9V/F9pMehhXVe+HbtMZc8LZ2Im+nTMncoP8B8x2RIJw9OFcaXq7GimvDdIg4Au5vMBhjQKKMEURqfAX+nFY/pD/1IpzmLLC0wWbJY1Ss+l2qn/2rgtEC1PvJTndpPrLDDOEAYzqPCVVJt6g4LagVCP5veTQoWAFNEKxhu2Wp431rO8z+tmx0x5JE3B6Ldzyra9UYSLSo+nq9fA7j8+5e+H3BqZPSobOftLZvOK+5r19Jo/Ut59rhNgv1Lw2nrW3tsiuGO8QGPwTEKr1S5M6LdHse/+w2sOivgMJkauCKk3IyAW5+wGlcK88NSPbqeNRcpwwDkGuJP7DFBuY/BFoe5zc6CgJLo5BGpabv8X5gmDuRv6bGpkL4TgP5UiGiCNhgo/96dBT2rJxDnAQVuN0AqXxhtKBV8G6KBF0BPc4gP/ktj09RwN1o5UspwAqfv14aLvlSLEywo+j2114Wbt8k2BuuFimgRh1/P18Zc++vRq637HLcdvF1mUu1R8RzsTJyDMJsJEW2/ljfBYC7olnDDPOLX7m4FKhVqaWAkph6whQRD17lG1/yKtmvvtTVNei/z3tA25KqC3OfSl7+kwcI40YTB1h8FW4YdBhtuEjKZTMLZcvXft2ir9Ip+98bT/vJEZ2rD4HC5JFDK946UyxG2gClgtiPuU8D7oM7KFCMkclmQRslHyiJC+UqwTFHpbgmoWXqW90Q1Ns4zrEeUPHgnU/ItBqDbusBzvzJ0alj7wwjYrg8aSYgYEoD2N1x7leq6UBBfwXKfd7na9cnhM/YgevisuZzfdKZWJXAQMvSHyE1FhQyQUNltJ2P4rCNyNbTIqUiqBlULnbeOfzvswRq+d3TRUUPtc3wnkku1cQVBp3TIo5w3JrfBNIkFLf5OgwZYxIua+48Ol+bFoX6emh17TxDSSuX28HfU9q5ug2CQGyJVUaqE4Z+CGu7KmIOEggWPAIvq0RpRI6VMdUwFmSQFlOtge3wWZAtQRYXNsVmg10ZYVU0bUxgrYL6KUP0gJBQXq5YrN/GWSrBwWoZTz1PFf1ISE/BbIRIT2OXCgKI1KxR8raN6yGNwVCbDW0+1lty08CkE2vrMBDba+ksJBORZJg85tTaOG8gldX951Rk20XWbW4mqNVo4XuUA8qTdbJDH7yYgf8QEud5VmeUJyA1QlYkooiSqMhFFlERVJqKIkqjKRBRRElWZiCJKoioTUURJVGUiiiiJqszMVXW+tdzd1Gtjv5CzM/d52dNK3qDyIrWPWn7JQcnbYyb51/M8YXdnV2mXLWZBQ649syTL31qz2S+SK9UwXMQSOPSgvATDbKvnIoMte0JhjxvNA7AlJVxn4mUIuqX3qSWn+b4iDRzUL+lxPOoSTC9loPauYTvIhTv02ruuocm2YadBlFA0AA/wA3Nd0NfTao/eW6u6bb7vMPaRR+qAguTaCncbOx3mR3fgbjebdsAeLKt30hP+bFhV0pZE5MUKiVJYstvzV9v/Fh20drVu3z2uLodlEZN6en84tXmUS5xyhtt04ehjHKC0kBWliB36NWm39SXmFTbZMMyIKQeXekTtGXOqxP/yiRVOb4e6LR8YHN375e2xRsznwvaLFxjzuUfBMjhJz3xuU232EEIUmIezAnogkm1CZy09/Zzu/lVKPKmJ07wLneJ+mkDWEoK0mRWkhTv0y+s2dJJpvrl2qypXZbDEIrOBetT9a9Nhj5p6JVi7/ft97doochaReC49i6gdKQx0JrCiM3QHERg94TE4xhcB3mKz5l9ESzacc4n1ce9L34ine0IzBnDrkvO52lK3kUq9aOOoByx0zQ3o2vkYGKZwGMKfQ21A8QBsTgmFkKZdeiI7IrrtFNe1K/tWE1++dpe82YnlYxncOmkwPytONXEF7ZgL7LQcguWL0rEYEJr3TtDL15XDwJKCmcYMVc/UFRUOre3tcjhiuxv/tA3ZyZVyBveigcozZOCQAMLkxAqTQ4J+zi7/FBo112y0FBq0NJiOwBQarZNwuD0GDW6HnjLZIVHjc807TLknjnGJfRvRoVot6j50mCScr9mnQeyXM4XmjTX3Edke7FyKhK+QjoSXpCpZIO4gdTJL1MNdLG+I2inPM6xrlgzy/CYCXC+gYvIogLoiUS9DVQ5LQ2k2d8HrIL9l7Trr+i+y++Qe7XdMeX3wrdXkEAl7AD1E0lzOb85Rz7kVNLsF4ImH8JRBzbmtYMmyNFGvapKymvdhI/qaXWxGwPpnEzz39HjewuXBmCLk7J/mfnr2D7+eHz7h3cb8u7b1AadZ1h6r9tV9EMYBPpNZ8QHqY4wKA3OscGOEBojOPOof/ZjAy/pLVCHSCDahdTw2qvGt4yW84i5Fqtb0nPiKLDTN/XSh4dc5L64FUunLKhUXk5JK9hFCKnq5r/KYwQuXBuHGFymYtjO3PXIutlB4wCJpy/2jQyVkwXhh99MFg1/nWjCO9rg5gduMtPVqVHNn3uxE/RZkNbQYYAsLuSw/PE4n3/u61Om5y+EvqcOtmvxsTq6qFWkeQK+qJQYKAxEFKyK+iYRff8Zj8Os7F3rm9OvU0T0650eE+fGb78ky1nyi7sUwnbUrDLID548MlQWGgrASni2UqNWQ0UBbFYO7f90WH9Rz2qj3peuk5ro+daKJeJ0orfrFEazqXh8saAa8Jh5qQGcv05DUwCNMmjdBfnHn2w9vDw166Tj/dfXrxaskklupl2QKbLQDBnb+WCkpxNABVaPBb4phqJfF6uyNa5SGlpN0UAvWA6k1+wOQChD+Ozem5I/1Ho9uoELx50ZlBYXrWgywqijAIBcTAAyfzM+ZJrPJJK6o2sRRj2tqmoODzNX2g2yZq9VazF8wYe59wOXCad4JUVTfap1kzz0qkFmjsH7y4XJZIHYsjG5ImZCu4QXiAeCeIsCdcn4Y6Sk62UkqMwXba9HJrMjjum7cgEV2Z1gyOxu1cQNzFJbJaWW1u5FE5ET4k9Lu0JaSZAk/qSR22T2I0IE+QafmFjlSyinpdRWvss2s04nxIgzjFj6YeaHpiLnmOvODNe+DvS78FbaFWy0XmQrYHFidgBUzkeWFlE/gV8eYGhXbecWKuz9M8905gySfIgL67BDQZkcRyuzoM7Voqx1zzT0PVIwMcB8w81VB90zA7GgPxemAql7oDUYbJKflASm/naXaftJAJbDQ+qB0aNHa3XXf/XKcP6XBuIuiGHIFYhEhHSVhvijVe/AyuWzpL6LDtfc/HvrE6R4HKFmyovQ9KQ3XQa0usVa7aPgCYWCkA0DUqneyD9M8iu7D8OuFseGNacxn1EaTjR2GFG5PX/4/s6dUOh8D2dPgJDZ72jHpP3uKy2fTiAYLWtnwxTPPdm6olL0cyoE9pdI0cWAphiSxWQrvpMK2p89WOsvmjp8uXthyyshqqfEzOLCn1E0CDlDqyIpSo8K0p1QfanR7imkMoz0FSOH29BWTPTWZNQF1OnFTzNamSLW3c0ThTvs/OIbuvDKnBwdLgqxEtiXBFe2eymsmyPUuZitHQG6AYjYEBx5h6hEceEQxG4IDjyhmQ3DgEcVsCA48opgNwYFHFLNRIzRaxRq0ikgVo7LncVCx9oYzIVsYUMi/xyOJIFUkhEzN+dNkYsYkEyptIQcyyWaSycqD9/tMy/rsnnRwX9KuYQ/I5/yK+0oUUjmdoJXJsNkI+OHwjjws03yFMkKqIReKkI6K4GvIWZFfm8q7iHgVXaydhV+gSimX94AeC17M25CVYgk9MxztzEtOFs7bPjrzmEN3ayZLaN5TLVX5g9cnPrahkzJyiBzWakEmWEj8EySLwL87iDBgliMzajNFJARVL21TuhEwkfuBAe0g4kVNE5X2kqhCZAqxNJjkAC00l3vAnh15r5fSXPdXhue9SqGA9WjkfPzS/rTyGIi+KnhuMEKmeauSxFuhJpRKMtJdEQRptwh4i5SCF2HqJc8lLFaX47TCmgUB7AQik8hFkAsqjyOKUEklYdqfzXqpJOHae3BVfcukqibjlqksoBxt1VH1nwO/bHWAzS8XPUD45XcmjzmVXtV0t0d/shb2v9YW9r9nwlxvN1mWZzg3ieDNJdwkgjeXcJMI3lzCTSJ4c4lYKNn+zM2zjXLcpv/VeIKIX35hnlho49I6zdVrhC6JgWV8zReEZtOcK7T66OUKhYyXA+eawyRJE205RiUdNljLsRKH2VqOrT1U2C3HPH4+s36QHiBYu2a2fV27dZEm0HKs6GG2Bi6vD5lA36Rjx44ZoOWY67Zqx5Z/thJuPxmf1nW4K6WZi5Fajt08xCadNFOQjkFajk0It9+5L+eay3aHcQmpPxODTKLl2G5W4aw1BeHwjNlyrNLcFSe//7PfJWXjoTOXW34fZFItx2ayCm+EcYRnmi3HOkxLvWb+0lUwL/26bY766lEjtxwbwio5b6NLDt5UaC3HxrTqPDM7o5f3xnnjntR5FFLSJFqOYTEEY8sxYAjxOPUDjyFO/f/UcozaFsPILccWH2ZrORZ62DAtx9q0/rJOeDzIe8m8Zds2vL5Ezmlz0XKMSm7GQRut+YfZ2miNO1xYLcdSKzcUN8iJdtkYVrT4P8W2byr4FKZgRbURHGAVyoqV/+H/qZZjH5nM2H8k/L9Fwk/tJmQwEn6nFDYSfrOUwiDh333s1Ohp/u0cJ513vT9xcuoSDk+bc2wj4YaJYwobZ7ltikFI+G/Z2vlPGuXumFhr6NqfM8eRmRWNQcJflRUVoDcms3bQ7+APdyT8tSIPr+3vusFrhmp5E8/Jl0eaDAl/9mE20d02rCMjRGdwEv5H5bPqTRrbVzj7WIk163f36GpkEn7MyjCyqAMrYzAS/p8v1f3H+X1xXZJpW+1Y+vUjJkDCX5UVHLMUA5LwF3Opu/zVQBef2IXdYiosUCSaAJ0FRAib04wIgTmNx22feAxxm7OgabNfXa4Itt6tHXdp7Rvy1q8FdogvXCkHHp0es5kz4NwmN0Uiy70f58IAiKuUkSGhfG3TWH24HKgdFhnfls56kGdQ19o+EAhVPgLwzQT4bqWGSekA32P0MEnPg1UVc18LXMWxQH71Gburni9//rUw+px5QpHnpV4XvHcXJYSiGsYChlCQ9tbqCFMXu+VAd3/qF0KV0UzfIGmISoqOL39uSS3iaSPw3NBRHbPqk8NZygkp7EbECSnN9cKg/X2ewvb9rxk9WNJqph6BEnxlmTJIFsjCbZPhxz+2Ka2I12GPaSdsDjbvT9ZV4gF0XdWOFIYwjrEKY4dxhEENf3j6ZCzsPRXKCOC+JIFw79TGoQtYsoKVRZgtv0WXwFClKsiW37KLergqAvsBHa1Kli0b9LZ9ae/lE30e1jmV4Uf2a/AD/CJGyxH9L3OHCkNYK1mFFW0SMwc+Sq9otVLuRrciUjVEzTKDDqROdyz+5qJrwsv1NY8/+FiuIEvlgi4dHHBDDo96ptN4oVo49/ykZ5SKW3KWaGuJtMqbMw6xwiOJh3y7t+9yy7jLXgDA3RQcgAwEANC06BWJEq6MmWRCfPVywqWxy733xRfPOvXoUoBRD/tCALayARA/O4UIND/z/n/V41AbcxusHqfiUbZ6nO1HCrseZ/HFa6lnrezc9zq4DvNxH1bHBOpxLI+yZTe/HzGBooKtW7caoB5n3TLLVX7de7glX13ttflBl+MmUY/z9AibdK6YgnQMUo/jM3Z0y4RRd9z39P808+i7TvtMoh7nKKtwtpuCcHjGrMe5eSyxzgpektuMtKOZkT5xASZVj7OcVXhTjSM806zHcfo471PK6gDHA0N6u6TdnrnEyPU44ayS6290yRVqPY7ftFeZsl4rHJc2rJ480LLvT5Oox8FiCMZ6HGAI8Tj1C+8PqMfJLFF+QsVQd8HKiKL9Gh8KG2PkepzlR9nqceRHDVOP06xfdkDHSQni1f2TrMdVKzqa83oc6tqcgxqTxUfZakyijhZWPc6M2PTbB28sEcy/tHHA4U8LjnFej0O1ERxgJWfFqvfR/6l6nK9MZmz4EVkzmXe86ECKj/xJVr835ExJ90h4dtJVJQkPpZ8w1SN90cBJpg6Hp8e02ZzRdppTpnwJ5MwLgZ+A1LzzlwYt6V48y2ubINl1z7K4IMb3o2dy8g7S9K+UHzBhPnmPYiG0knruSUet1D6N2jipsTOvPSTmqiyCfynnP4c2dvZqezCtrJ9UDgQmDXIHdn0U8ThMrBpRfmMSZau93sKOzfq4pSREec3MTrhOsfJAfCqlXENUrUfzv7bOo4B+BWpSoPh2JP4ovIclrIcaplDCbpbBfL16j2yw27kow36G4xy+f7TviXk32d4Y4ZdI43pQZkdVSOXxTggRNU1HoRUtn1oINU3+VzfXfrheLkqO/6kYwusRwmFNE8cdNPgAocEQIdhBg9aa1rIphlBBu8DVFZF1CF9Qe0P9soO5CXskijXHjf1cpfFr4d4XB+4+XVKJ3HS8BIOiENe5DiOjbHGg+CgnA+nJj1qm0ja89QSqei8p3P7BECLPOzRCP6tsPJzW4r77Aucj851LTM8gb9fhD6Nv1xEDhYER35INI6oyFf0NjLD8Fl7KAnDKV4smd1uSsPqWU9yK1xPKeG39Tp6L8GGItoKay4WBz/1ybPg4lkvFDf93JsPf5EeVqjv4xZz3CbO/SWuHkA2/BdZvkamelmkdUstLKlFHqjT1rJoEjMa6Q3Zb3Yx77Q1dzpwNC3XZu2HHjTW8NiLGt6J77jyD+pj1igDHY0IEua0lMOsx1jSzrmcNRikh7NkCAUB+31l1/Y9MX3TWe5P6sPt6dTMnamMENb0oSnM1P/tONXpc2HcI1XIBgpL1YBMMKkb7jixOoXaylCn4YiRGhydNifk2zsljRuLT3UsbhO62wspawHd3HgWWbtogGAufe9u1MGo6L70ZjhMsm6LhdN8Wwwmfmj/wqUSbmmYtcgTlTqa7bWjb9maRhPrHi4llQ4ix2Kdrag5qESBOKDFP9vNpafKqHE/9aYpOdJ+3fFepJlLTlL9oqFz0jsviinRvcErsJ4q+tHJQyc4Wp5nfjL4LmndUD410LAOQPoSavPehHCz0isn42pgsBA0Hmge93d0xx8faOW/al1PTJptnbbohmiMAjF8GD9HorMpNMcD02sur5kTRF22vM3TT1FLnN50S3xHEj3Hrf27xPyGUtLNhK6hibHE0LFETFfpQgAY+UX/yGHzo0qcf1tj1nC1OPOPzj+uvmHrkauxc80TfymPaXqmceyJFwZdqH1CabuqKC+yEzVroNDNLR69PK1P2jcfm7vaWvT3q1WB6TXrReO6YHvvWUVVTNb0ZkTyd/CqpBebpXP4jKil2QW/3/VvivB0fNbtF5emkjhuCp9M6FyswIVQyyRA5ehpceTLZ+/sYZ6+5C+wvNij5ajtZGgH4rfzfoumkukoO+iIOhtJEElDaAINytEqqHjSdOmPEa15ixYAPbh7RU+L/VXQXtmfA6LdIOqlmiAOMgE6zYBRVOVUfks6KuSSduQYAidKWByuqjb/R3jvx4oRQr2bpfxmVoHOwHa4rSILO3vYYSrhB/cVkUCtnznGy6nhRFNvm4ZGEUyOdEN4UvaVYQZNvQMDJK60ZItH+4OkJGh0QurJf84FwyzFQKYf7bFB/gXhCpAqsCwPm8tCF1ZmtzKxL3Un2mrtu8VAbH7e2Bii102bqqAks4OF3Fk+F2zPQ4+GigOjpL4oiQoOL4Xcofs/YHq98tthcryMzPtR9YW616jcofguK+mCAuuMqKupF/mTUp7VJ509PzBQt9Lom9RdsemoE1KGuf86mol70T0b9WfbTpJymaxwX942rbv7jRF8joX6/XhoF9WJ/Muoveqo2bwy2E+5I9ww6v/hSuJFQ7+xFRd3sT0b9Y7lO9UWfrzmt+L72YsnxNUYZCXX+aCrqxf9k1D+X3XknW+rrsuHkjNSwLdnDjIR6zAIq6iX+ZNRnvLV9e3XNLM/JdnZb+20f42wk1OdvpqJe8k9Gncq7biTUDyZRUTf/LdQ1VScGR94qd48f7w6NXiV9q9Zm48CWvR0Px356KD5tq0S8O2KVhF0uFLvelho5lmJC/edfuzda25sJ9/evunJzuBeKvZiMeunCR11n6uVPn7O2nK+Z7RbdVfHv/HqXUBzQv0O9XNqr7cd/19RzS/DI6DawwZXzOm6wsEnEN4wqkdJ/pESi9tneO1X/rHN82rILnezrVeRIIsGV/L4UiR7nMq3IAZWirud0DiQSdZUqEYs/UiIvylRYOaTrWre51SS96wQMv8KRRGb3rjgzZUVJwYFdFx6ndQ9+xIFE+JWovqLMHymRjJgVXXKm7RHumG1tFiYp2Z4jifzbbEYdVfVjoqTM52Lvs6fmcyCR3l2oEin7R0rEfOGR5yuX7BHOfPvhQqusG9U5ksiHZRu6f373wWftdje7Hv1qPuVAIqFDqRIp90dKpHLUsJZtutu47V+5vmaV2tVLcCSRFxf93YYU6y5MWtf4p+M55QEOJNJ2JlUi5f9IiSx1+VK90ziBaG+yoN+i/nsFHElk2MRxwxISIz2n7Zw94P6jqx05kEjOWqpELP9IiVCbUHAkkd8s/2aTSN89VIlUYJJI94f3fErKL7iuS0wpOnF/XTLlY2m/UFlwBB/Wj5HFAs/aMZVy1/AJDobl9xK5PLdQCy/pQ+K6vJbC4e6UULdpVbfbFcm6cpfpFRDg6noUq5kz79RFvP6RVo4dbgtGLxS0bq8sVk4YoYTHBYPRCmR9ZXL37TPCvPZe/Me8a3J1cuEZunZPB/0ZeceG98OjmXDtYT/3/lHLOhcwPQ2PrRyEWB11RKSno8Bo6MVUvZiSNBJUYlqBxGV7ZLmFHYcHijZXTrBo/nLsNdoxymDdgClgQhp+86qs3xxoiQkcocQ0UI9z5RawtxZbu7Wmnzp92mLZ1W395IMdGje/QM5JYJ25DAX/qAts8NsYB34aK1JBjyVoZgRk+GOq8h37vZF3i9vjvA71KnLIN77K09+0FAU9wWqXxxTQzmjA+g0wIXAHY2XCDmagW73nlZIfO24OEkt6VZw7rXAcTAOrNBYHs7FCQcn5dHAwxdcsta7+y0M0r83lv0f9W70uNw6mWHzYqB4Dj7smXBX1XCA5H8iBg6kJsWKc5zkV9KPiy9fBzOgX4jEsQOWRULzn4pQnCw8a0cGcq8D2zYGW/IkOxvXVjeKr71bxmj1IpDyxqGRT4zmYcazw+xsHfiM4mKrJdo2v/Ar2XJcxo2LLL+eyjOdgtKYA6WDAhMAdjLUJO5hpxaa5SuKvOqXsSK9QKevCgMJxMLM7sjmYMh0N4GD2NapVNnNfG8c5LUc7FNsQdp0bBxPffXGFow/Lu84wi5nb8xkvkQMHM7Uj2zzv35FjB/P6V7dO0/p+E+zyuHDyU2LwayM6mNas3xxoyZ/oYEpLom0fuEz3TnRQDCnfKs6IDiarAxv8hzr8rziYBucmflFY/RRNujcp5kHmuDrGczBaU4B0MGBC4A6mIpODiVkwJ/Klx2fXpcMrq1fOtCVb9xIusE1ChO4HdtppbuCrlWFSfhDQAH6kGpIbhcslgdJQpTwIqAdGdhCM/R5GfBQhCVHrdHDnV6fGt95erSLYZvUkumjW+YolxMrAYdIg7U2oV6cX/Guu63ouqqkzz8ELLBJ3IqkOAMQOnogDPBAi6IMRB3jgX+oBHu+/7nb1O/nCcerZvVHmb32uUA/wTOkVO/FmeH+35UdjVjxePrsrMV6Uhz6no/MBH+oHIw74MFot2CceFyM6VXywbJi4eRenlI9LGrxqtm54QaTF+dQ5CuRq6YWfd6MZM3hcMlxs0O0Y4kUtFJFy+SA1+A6KEO2XLZH7M+Zyxzp07DEecdCISVZWLrmzLTBSHhGpQp8zOuSzK/vCnrmu0VEzLy/xuRLLKrKSIs2T6EQIxEBhCC3dk01oYDIawwOZiUUagwpvmaid95hsiDnK5GzqwbeEcalMoZaqsP4q4CNIBhMpq3G9/V7wzqU4L/l7kOeV8lVbUmVV0isyAp4K04JPOV8KP9WB7qUc8j0wVvz1jEhBn5lu07sL+p1XujkWMJ6FQp3vwSbUbHfagTG2U3XlcGUH/jsCmCgkeIJdoY1KV60pnjIobHPvq0HrWBXdDFo6Ou8AdpVzLgt73C4dFSBcumNzTMVxl17pD3Dpm/5qZ7u23w3h7toRlmdqX5luIJfOn8Dm0vnj/nPp6BOW1TeNWXBgslN0naOuqV33dzU5l86bwGZIBo//33PpUYKsJVPG8MXrTxadf2zTHbEJuvSj49iEBibj/4pLL/Eyoo5je1vRJLsxM5fvX3fFYC5d7D+1/7bVZi4rhnzcXCV5TDcOXHrUWDah3h/DuUs/0en2gGWSzcKd4cPu93x90c6kXDpmlxhdOlBx3KVX/gNc+p444cwE77viHaGfmqza3HqWgVy6eQabSze//p9LR/fk+PrLWdRH6rNJcjnl1NK9C0zOpX++zmZItl7/33Pp/Udtnlih5niXbZeKH53TX1zBBF16b1ahmRtWaMZ06WNn9F2blNrCc/oLnxdNeRb9DebSf/OMC5tQD15jE2roNc5d+vq6YdFBN2cKljhmRbWPHb3DpFw6ZpcYXTpQcdylV/kDXLp46eLl9fzruW341K+naJlNBwO5dMfKaSwu/WiltP9cOkpa0eqyDzOmWHtv6PZk/uXwQd1MzqW3h3JlNCSWlQ2aRTQJl36zZezQC9aTheu/mE3zcr7R0ARd+tNKbEIDk/F/xaUHjvygsC1RVDx1SUazjLD5Vw3m0n/zkCSbUJezCjW8UhrXLn3/rcnXJH2GCo+cSe3Q83vRrybl0jG7xOjSgYrjLr3qH+DSW2erKlhYxDklZycMO1jjelEDufTvXdlc+riu/7l0pLSytx4+PPT+Sc/lPTzHpY5va2VyLj2nK5shOdf1f8+lX5utdnI+WsJlwVkP1Yq7Zz+YoEvfyCq0cYYVmjFdepWGxxMSDt5wi5YM6fVRvvqGwVz6b56yZxOqP6tQbbty7tJtr9aOsrnd3nX69DdTPHutq2ZSLh2zS4wuHag47tKr/QEuvenQWfv/SXvtcTCrR3dF+psGBnLpZeRsLn32sP9cOlJa5Rsqd47Obiye1+JgpeDKl1aZnEs3k7MZktvD/vdcuuWklp3N9zcUTpPeHV62m299E3Tpe4exCW22YYVmTJfe7uiSSXWfKX123ZV93vVXv+oGc+m/SdPCJtQgVqF2Hsa5S3992vpcg/ueTosXXPrucMb2uUm5dMwuMbp0oOK4S6/+B7j0MV+ex2dumCJOvt/639Nb3OMM5NJfz2Rz6Ttm/ufS0QHYisG3vy7YJFxkXdmp2EkVu38whkt/PpPNkFyb+b/n0u0zfOv9/DrVbWM/24HfnJ53N0GXfoxVaDsMKzRjuvTht+Mm/ORlekW3U2w5uKRrPYO59N/k+WIT6kpWoUbP5Nylezev9G+1PYGOOxesF3YYu3ePSbl0zC4xunSg4rhLr/EHuPRuro7u2X1nuSRdyayycl3IBgO59Lvr2Fz62nX/uXSktA4kn3iX1bGt419Dbfp3Gn3rkMm59Jvr2AxJ2rr/PZcuaXHh+WSJk3DWuHELBMcasZ8SNY5L380qtLWGFZoxXfqqlmPubHy3zTvJQ1D7SmDSDIO59N8kimQT6kxWoY5Yx7lLn9pkqfeDBse9Zy+cs/Dw/bdPTMqlY3aJ0aUDFcddes0/wKVvXFqnuXqN0CUxsIyv+YLQbAO59KZ72Vz68z3/uXSktKTy2v5b0ve7pbj+0+JNrcQ5JufSG+1lMyRWe//3XHqEvHsbm17/OO2ZaV/ih13/fibo0n/uYRMamIz/Ky7935QX1oefxLjPOnz99ZneD8sazKX/JtMwm1CvsQr12B7OXbpnhqOdecnJwnnbR2cec+hubVIuHbNLjC4dqDju0msxufQWG3uk9kuIc9m6sfzZYxM+LCXzSLmqlJHhZI9uo50OSlUQmWCphEgpB98IXmoAfoT/RzY7EvBD4HNhzx1XlUStDlWGh8MWPNibqou6OxHq0zhx4o5hqX2cpiyobJbc5PZAMES4ud2tJkQtvZQs3t9a7l4j7acbGCJmzx5Fxyzxo4ai9YtKT1wa+7UZGCqGDz09/eW9+fsQt6nJ6bZtz+fIwZAZPrS+wYBOztFvnWJfvh829tvJOmCoOD70eKzP9OSWTTzmd3xovbFj3RgwVAIfWlBtcqe4fcU8d6k9Svp3O34EDJXEh/r/U6PFzXt2HjEbUio/kg1oDobM8aHjQ28O37vvm/DwZ8sn5xyH/QuGSuFDk6p3vtT52FfRrmZFFQ9inPuDodL4UOKl5ovHp/Z1mXZfGVVz3QyIhgU+dLDS8wVPJAcc51uVPzev4Q1zMFQGH+qYrtotOKQSLQv4bJE45PRpMFQWH7o39MS7226jHDcWX3z3r3UNx4ChcviQ6OQd22J/W3hviN0yq/1xqypgqDw+tGXuti+Pq333iT298KIkZsUBMGSJD7msLJrW6JC7V+L33Zv+jh0Jv3IFfOjU1tlv1shPOe6Vtznffm3Pl2DICh86+4/30mfDrvhM69dwyyNR855gyBofcp9To1qSSz/XxTlt7t39+PgSGKqID513npZwvWhj8cy38uTajY80BkOV8KEXFR7Na2U1z33rp8teVz5W+QWGKuNDrn8d3jPpqatgcevidfbc/QxFWQUfWlhTdv9TjzHOs/oGHJQ39L0IhqriQ+vmPRqRVGOv465p1X+WirfwA0PV8KE6l26NiCrj6T2nf5c7o/tfnAyGquNDSzo9HtKx8kfx7gGzOsVXu3IGDNXAhy49XOc48Ei8x9wQ0evTWTvgA2viQ6/iY6r/GFXcKWnekQ4VHE5PAUO18KHND7qP3Pu3t3D/leKT+U5doPbWxofGnx0sXXWvt3CKsEnl5bJt78BQHXzo/eNfm6t1jhNsLdPx3MtlqbFgiI8PPTu7tPvlfc6CJVfik/ukBJibuzsNIlmjuuAv0ijWbHlhj7SNm+fspRXFIQnJ5RFmg2YFqXaNR9g1jYmqzWSiKgUnJqxMPe28envmmLM1x8WQIwvnUeFyZRCl5zKcuUxci43wO/gSTVdk4EwhA2GYRC4HRohoAmav0yqDaqCQr0YPevABXe28jTPP4Riw85+FiIb1vrbOPLNjNCZGNq9niXVvhnGEVPMiyO92xHpJQOXBXb2Weh7+llrleoH6QlPCggOp0x2Lv7nomvByfc3jDz6WK2BYEAMAsoUAdUaFBVVB0FD1mF70i216SIFqqGUApCBpoDIsXKmWwXE+eD+ZHGPpJPSEL1EBTYpQhskCkSgOS1/3TN73iPf2xncvOg4aTCYCLqX9HBqSeYa4jhsgXGascGX/YxKkgUUKShpoh0+0oFxxRYSCoDlMMkzKBwFIRKiUP0SilmoMAVJ+iZtyzKtH33RevansgtvCfzqR5Gfuhz+WJr7cEa6lZ2mHK7sTSnrL7TFlJwFXRH/g6gaA5YUM/CaM0SBKUiqQSLDer3uZs6nPDtHs9kuiJ0r/aUAGi3gmHSztSGGAZcYKFlB13P/UYfI/AXWKDlu8y1KYGCt/02m8uRvpW5V3hiShkggpXyxVhESE0v1QSQaME4tobyU8EVBN8E8ABngAP1gSGKFUAWOjBCtxGVBdOfYB9vgH4eNqfqBEwR8i5asjw8PlMiChIUowCO7XPDJSAW+Fu2gKuNSRy8aAX8Eu2vNFoRJFiBSTbz/vAfxwYmcKeoYIZUiIHMwOacRIqVSB/U7ESCU/DCiBjr6RGqGzwkbTCeov6CjwcGDbrkGBm4kQe3A7ga9cqp+vrJDrK/EXQvdOOpG2OqzmFJfD62PXFmleLJZDZ0m1QAV0lvMBQpcgQr1RU8IRWP8U/ZxlPZI+Yt1rNaqHAyZj6F8r3FxU6LQuXhD1+XDLpCKL+eQ9Bwa1IK5zbSggKvGsqAC9MTKPcQke8ed+N324jFu7B/P9VZFSW2wWk6UlU+e1CzYO9g78CfwW9g5NkCJLC61+Z8OFUPfV2+YNnzCwfiMy67i39kE0seUdKwzRTWYVncI4oss/nCnBYnhq+SrBwgS6BCg1dbg0UBYMzbvGCyDFM6rR6uBbLVa6Hv67uNW68cdKk40Q9jy6EdJc5loo4Xa4lXFDCYXXHLMytCiFDY9G/tBZAURGSDV+UQ9gTkwp8frY4ls+ia1G/lg24+Zq8jINfzB9mUYMFAY48azgLKWAUzQfcBprvFSuB9cHnQZWpXN2y065RbX84n2r86+55CWKNl9FX6LkDhUGQpNZEQJzGo/b+Exx2+lVEvGPDlVcJ2+uXfJ5/bEp5GhUDGI0vp+TWPeNA6FIJdVEa3J4Lx4JgxViMPgRxF2j+QBbVQQ/HM4oYGxxfYWxFx66jdeNrIuyf4l+b3oUTYzosQxMSQcY30alKx2BBCak67etgL1AHgyQ325e63/nZCT0d4vy77Ns3slb5NZIxf3g3XQjpbmcX6REtX8FzTYAgJLS8b6GNCXkN3PmbU6nRUpsqbWqGECEXtgEyVRAfcE42tmG7lMtex422XvL7LZNN4VcDSZPSyfiZvq0zB3Kt89S1YNXdh97L1yTU61YQMv1BWYvAIAtZAUMaJRRgiiNz4C/04rH9CebFlSZs8jSApMli1W9UmaPxY9kO/eknm/GXfzL/6qVuwJYSiAM51HhKrAEz/OsEgKhn03vJgULgCmi3ZI6bvSiVW+F+5Ks/EfVbP6YA9EOZRVtgJFEi4qP53fTK9QqI85jz5HCfDUze+L8FDevqKMbXC9IbqRTe0so6Ks7zVWuHSPPHrdJO1E5v5322BTDHWNdJscovFLlzoh2exz/7jew6qyAw2LSt6kI28pGwK1PJ1lwsFQlBVCo6U6yGAOWzUXKMAC5prkt9pig3Mdgi0NNWyO4sQRrfnTyiNS0Xf4vTBMH8rf02FSYmgpAfwqU/z5V+QdDorXUgrZCEojzgAK3G5ThUhWMNpQKvo1Gx9V8gB7mWLF/aWyaGu5GK0dKg9BOZMeSAVUCzbO9DwXXio2buKE+2cYEYP1t6DYGv56fjWn64k2x8od+uE11aTD49T+zr3KwMxEFYTYTwpw2dbOuCQZzQbeEG+YRv3Z3K1CpUEsDIzH1wNpvIbFcFLktweGYj8uiE8NrHHziepuEpUXuc+nLX9Ig1yaBb4vD1h8FW4YdBhtuEuoxmYSz5eq/b9FW6RX97o2n/eWJzqTvVraHFCsx4XtHyuUIW8AUMNsR98E6JUxnZYoRErksSKPkI2URoXwlWKaodLcE1Cw9y3vSpEAe1iNKrpjKlHyLAeg+PVHQuV/ZHWv5BnddpWqsTg5DDAnArj3ff4zZtNcjKsznnv9rBbn6pDj2IHr4rLmc33SmViVwEDJYQuSmokKGdEg8dIIxfNYRuRpa5FQkVYOqhYTP7LzZ3l4Zj5yTaxQtnqjcdJQEXxlcQdApHfIo5/VqNpgmsaB15YRRigzN/UeHS/PiUD9PzY69JwhppXJ7+Dtqe1e3QTDIDZGqKN3X4J+CGu7KmIOEggWPAIvq0RpRow99UhxTQSZJAeU62B6fBdkChFx9m2OzQK+NsKreGLYwVtC0isRVPwjdHqJ8v6XHV+1x31p/wpY69g2GUBIT8FshEhPY5cKAAlNxRiiAiuOOqj6To+KH1N8/fc4M4aLj28UrviSOJX8fGOSNJjsoBlvMtK6zFgAdU2nC19F4SRoSWKq1RLwIvQImXxu8ZERMqn/dcsIjqtW23/v7bC6gDYZ2Y+kJooknFXJLEDlEayFvYPKQU2vjuIHc3WzTz67jYwTrjwV8WFZyyT0OIFecZIN84EkC8oacVWWWJyA3QFUmooiSqMpEFFESVZmIIkqiKhNRRElUZSKKKImqTEQRJVGViSiiJKoyb5SsaZ+0U+I05UaXhzuKH2xGK3mDyouuBKGUX3JQ8taISf71PE/Y3dlV2mWLWdCQa88syfK31mz2i+RKNQwXsQQOPSgvwTDb6rnIFEFYciAQfwC2pITrTLwMQbf0PrXkNN9XpIGD+iUdJ9lOEC1FHweTLAO1dx0OVuQux/Xau66hybaBQDJcpcSyCkpYFchcF9Rue91+oY9KClIavH5QXRK9syC5tsLdxk6H+dHjuNvNphqko2BZHXQcGYczYVVJWxKRFyskSllvSxdt9cTHZ82MG+6BJ8/FcVgWMamn94dTm0e5xClnuE0Xjj7GAUourCjZHKdvPrDFaba+xLzCJhuGGTHl4FKPqD1jTpV0e9PS5kOxl45L0reNv2h53MaI+VwHW1yJkAk5eLZNcVy/MLapNnsIIdLAE6QMg5VPwAORbBM6GHh94N/r5Yd7rDtzssKmd+O+m0DWEoLUlxUkl+P65XUbOsk031y7VZWrMlhikdlACU613DH48w7X3ceX7nYRfCNnF8yJ59KziNqRwkCnJSs6tY8TgVFjJsf4IsBbbNb8i2jJhnMusT7ufekb8XRPaMYAbl1yPldb6jZSie+y6uYIqQcsdM0N6AjbfWCYGsAQ/hxqA4oHYPusn6vTLU37anm09enLPd2X9Bl4y3f5uZnkzU4sH8vg1kmD+VlxqokroBXnATvNh2D5onQMY8ZE7zkxgVUOA0sKZhozVBdjvnvPOfjKbeP4ZSP79YskrwRLOYN70UDlGTJwSABh+nycDaYsPZ1d/ik0aq7ZaCk0rJvoCTyFxqfFjvYYNLgdsmGyQ6LG55p3mHJPHOMS+zaiQ7Va1H3oMEk4X7NPg9gvZwrNG2vuI7I92LkUCV8hHQkvSVWyQNxB6mSWqIe7WN4QtVOeZ1jXLBlQmyEXAK4XUDF5FEC93gW9DFU5LA2l2dwFr4P8lmV3q38skXT33hvfu5bHt3AzcoiEPYAeImku55tBp5xzK2h2C8AzEMJTBjXntoIli8cFvapJymreB9cJJDp/WTQYMC2loU+i5N2dqSPnbyVn/zT307N/+PX88LlWqX7rvUddfVKqHmh16X5wQW0SxKctKz5AfYxRYWCOFW6M0ADRmUf9Qy8bYavFLesvUYVII9iEZqVIOFByxSCv+Z1Lt7r0PpZ87qqE5n660PDrnBfXAqmUY5XK1/OmJJXsI4RU9HJf5TGDFy4Nwo0vUjCDTze+O6peNa+9M9+f7XuwXyJZMF7Y/XTB4Ne5FoyjPW5O4DYjbb0a1dyZ53hBvwVZDS0G2MJCLssPj9iT81e07m0t3rS14s8+nVbWoDA+aB6AYHzABwoDkXqsiJhdIPx6Eya/vnOhZ06/Th3do3N+RJgfv/meLGPNJ+peDNNZu8IgO3D+yFBZYCgIK+HZQokarHTzVMXg7l+3xQf1nDbqfek6qbmuT53oebxOlFb94ghWdevPFzQDXhMPNTTcFoHyyCB4LJeveRPkF/800nZCY/czjlOnX7y3/ea7NLLyMQU22gEDO3+slBRi6ICq0eA3xTDUy2J19sY1ykmjUXkPasF6ILVmfyBUFhIK/50bU/LHeo9HN0eh+HMKBwj2MXRVwq9zXudmhwNWFQWYgz0GGD6Zm5p84oqqTbokrorw898CpaQ5OMhcDT7Plrny1WLejAlz7wMuF07zToii+lbrJHvuUYH0Vct5RcojZOFyWSB2LIxuSJmQruEF4gHgniLAnXJ+GOkpOtlJKjMF22vRREEZ13XjBiyysy8COGejNm5gjuLERQQdGOFPEHRg8JOodGBUOi8qHdhv031Rb0TQfTHZplouMhWwObA6AStmIssLKZ/Vjf4+9fPEWPedHRKbbW5vNZgknyIC+uwQ5Ms9tD744JElb6oIk27WShra8bxrQfdMwOx4CcXpgKpe6A1GMy6mIXi2mECq7ScNVAILrQ9K1yq3KhfYYrJwcfjz8JEVB5LJBIoI6SgJ80Vp/KCUtou6DPZe1ds+xir0+C8OUDrBitLOizSGJtZqlx5SNQAGBkY6AESteif7MM2j6D4Mv14YG96YxnxGbTTZ2GFI4fbU9v+ZPaXS+RjInlZntaevL/xnT3H5PD0k3huw+oDLtMEdJBkP68zlwJ5SaZo4sBSVWS1F0UK3p62qFy3bYFU/1xVb4pYd+nyxNAf2lLpJwAFKry+woXTzQiHaU6oPNbo9rcxqT19rF/h2Jr8moE4nborZ2hSp9naOKNxp/wfH0J1X5vTgYEmw/ALbkmC6FnJ7zorZyhGQG6CYDcGBR5h6BAceUcyG4MAjitkQHHhEMRuCA48oZkNw4BHFbNQIjVaxBq0iUsWo7HkcVKw150zIFgYU8u/xSCJIFQkhU3P+NJmYMcmESlvIgUwcmGSy8uD9PtOyPrsnHdyXtGvYA/I5v+K+EoVUTpZJKRbDZiPgh8M7cIIXdYQyjK9QRkg15EKQPZU/Ajs2hvzaVN5FxKvoYu0s/AJVSrm8B/RY8GLukc/sbhRLGPfB6Vjc0u1uS+MDv8d3vZrFZAnNe6qlKsjPSnxsQydl5BA5rNUC74MR/wTJIvDvDiIMmOXIjNpMEUlxBgPq28iZF3UWGNAOIl7UNFFpL4kqRKYQS4NJDtBCc7mHLCSUdL2U5rq/MjzvVbIVPtm9kXPcxLNp5TEQfVXw3GCETPNWJYm3Qk0olWSkuyII0m4R8BYpBS/C1EueS1isDgtktJfK+EFWCYlcBLmg8jiiCJVUEqb92ayXShKuvQdX1RYm75apLKAcbdVR9Z8Dv5x2ls0v7z9L+OWWJo85lV7VdLdHd7MW9q/XFva34sxNluUZzk0ieHMJN4ngzSXcJII3l3CTCN5cIhZavujW9OgzfOFfe/5tH+5SpHyeWOjHxIAPk6xtXbZaTrPIGhx2meZcodVHKhKVjJcD59qaSZKl/JaN2Bw51Cnh1WdpO37cOzK9HZ748wL/UQFTqTsrYHUiZajg+4RLFa5ifhj+DN0SglTSYdbXorPuUX5Bj5PbSf/irHvptK0ZsDLr8S8tRchWJlFLo9oE+ySkEIiENJ2hEgVwcsgvPrfLkSZF+40QLul37cnyVtOHkxOCTpon0BOCxADXi1V4QmE/hCQKVTixE2b8/jVK4UTxQACt1mgkJSX90ofsj08WDOSXipRLVFieUQ7DF3TlROO2bTyHDXZb02vpgJ4Hn5K3Ecz98IcgSFSJkcKQzlxW6YwxBekAa/RLn+qiOs5hMjVGWxxIEhNhQpDCqTh9ZW95x6aeSbvcX+yf/tKJLBzNExGbuLkjhSGcYFbh9DAF4UD55BUO4ZmYhNNOEAY/EpMJeB01uFWqCBytIV3swleGS4ZDjsYW2E+5v4GeUe1sv26LK39dkNjm0Zw9s67vIp9j98/zfPo5dtJoYQivK6vwmhpHeDoQaZrlI8EuuRJUh8oUoxUgCAbiA+JSKBVQdOBfcuVIbBD+6ACHwiSjNBeQcnx+oaYq3LuY8MCpgLOrpv17ncKGFooqi8YvF4bkKrNKrqjRJQdvghkVvUplrDT70bChEashHB8osNn9bL37hmeng1alxO8lG0LGmCl3hPMNb3s8hoArjlO0sKo5ZgjxOLUNU5xazWys37HkHJ8j5gmPGrUda0vO1Ik0Gzm+KukImXQkvXcbU2VbYwFkHVLn2QzCCGRDpMowaYRqND9c80B1eXdNNZe7oodUga9fmINXalsMtnelZxXJ4+UCwH/ClaoIF5k8QvPBqHCfcTY0cea5XQLYL0dlG+eDkLbmJcaqN+Rq2JXABjs4ib2jThF9/NJnlyz3t3afH1HJJnmYVQ5ZLYmn0tVSO5LfOplKblbQdTJAzgki54iyI77NnHkOl/QqdK/knyeE4StHSFUqGUPPiquuVVc18X4gjMuafO7TDIebBZ/C1HIJio3gAKuarFiZXzKozSX2MUviSy74SzDYuRNz55e5FI/4iItCB+Gv4phvo3pVc2JhQPwq/H+ZvGEP+Q7tcrstkxn7j4T/t0j4qd2EDEbC//kSGwn/Qbrt5ICE/23lrBVHfgx1/Nu9/N6xzyeSj7sU7LQ5xzYSbpjkXGLjLL9Pt5GFQcJv0/XdObtYG6+Vz6vUL5IlcTQ6Cf85VlQOGtYasq4d9Dv4wx0J/9Foqw4lV3VzPXRy7qwmJTeQMxTGJOHfyCq6+cYRncFJ+OtKru46Pyfdef7Dc7NG2l+bZ2QSfszKMLKoAytjMBL+k2/dr4lelvSZMX+qebtnOatMgIT/HCs4By8ZkIRfPLb/38rhZsKDJS3KiRK2kPlkjEfCv5EVITCn8bitHVPc5ixo2uxXlyuCrXdrx11a+6YVmUcAO8QXrpQDj06P2cwZcG6TmyKR5d6Pc2EAxFXKyJBQEMOppdhWjT5cDtQOi4xvS2c9yDOoa20fCITOXAb4ZgJ8t1LDpHSA74jLBT1YVTH3tcBVHAvkVy8+f/r7K30eu84NaDrkuGWouuC9uyghFNUwFjCEgrS3aZeZutgtB7q7+7JeIVQZzfQNkoaopOj4svHc+T0bTK7lPDXr5M1SddPcKSeksBsRJ6Q01wuD9nct6/efednYwZJWM/UIlOAry5RBskAWbptH2W/Lv4jZ7Bxd1nFWp60byNXn5sQD6LqqHSkMYYxgFcYQ4wiDGv7w9MlY2HsqlBHAfUkC4d6pjUMXsGQFK4swW36LLoGhSlWQLb9lF/VwVQT2AzpaHdXZ7s0/r5PEq9pmvB2568xGsl+DH+AXMVqO6H+ZO1QYwvJmFVZHk5g58FF6RauVcje6FZGqIWqWGVTjjt8cyb3t7lPOLnZ/fvJm04IslQu6dHDADTk86plO44Vq4dxz22X9olTckrNEW8HWrXpW+FxPuDVpfK/AH+NrGHfZCwBYSACQgQAAmha9IlHClTGTTKxeOF6xveQL17+3PO2cIU10orgywx72hQD0ZwMg3vEyEWi2/39Wj0NtzG2wepxTV9jqcQZfKex6nEorXZP3VbH3Wdyztv3aHhnlTKAe58QVtuzmzismUFQQGxtrgHqc9qtWu88efMF57yJLdfskvq9J1OOsZpXOdFOQjkHqcdI7FW9S7Phjt0VlxxSLnbe2lUnU40SwCmewKQiHZ8x6nBNXYrfYBLl47E+XBMQt3JlsUvU4YlbhtTeO8EyzHude+LaQYi87eO+d/MX31rYui41cj9OAVXKWRpdcodbj/Btj537ufRPHuZf9FZm8tD4mUY+DxRCM9TjAEOJxaoc/oR7n/eNfm6t1jhNsLdPx3MtlqbFGrscRX2Wrx+FfNUw9Dr/46OWPPW2Ffz/7XiYs9ZWa83oc6tqcgxoTt6tsNSatrxZWPc7DIAHv2ZwqXnM7Vbq+1uxRJuf1OFQbwQFWfFasylz9n6rH6chkxoYfkTWTeceLDqT4yJ9k9XtDzpR0j4RnJ11VkvBQ+glTPdIXDZxk6nB4ekybzRltpzllypdAzrwQ+AlIzXt2dmn3y/ucBUuuxCf3SQkwZ3w/eiYn7yBN/0r5ARPmk/coFkIrqeeedNRK7dOojZMaO/OyzgGtrCyCfynnPyWNnVs9PJdW1k8qBwKTBrkDuz6KeBwmVo0oOzGJsnLmHCerjhdFsW0eHkk4NZK8F1REiBZgBY11R8iMV1ozRDpkhTsD2uErrpg8qIfkf4PJQ9fooAiDlBxARCaH9BSwRe5RAY56ZybUf/61e6O1vZlwf/+qKzeHe23K9/Rl6cJHXucTm9TTexyd2PzNecMmkXKnqBLpwiSRmAVzIl96fHZdOryyeuVM2wHkPVEXWDwTQY/IGJeXmhv4auD1Nf0uI9Uw5MV6tYUq5UGQjhGWBAZjv4eFwxGSELVOMQj1iGQJsTJwmDRIexPq1enbuZrrutKAAjDvQjB3ChFFfZBUfe0pBP0ShAiu4xD0S/AvlX7J+6+7Xf1OvnCcenZvlPlbnytU+qUpvWIn3gzv77b8aMyKx8tndyXGicOov03PRP1gBD0Tk6QtIHsALkaktGbtOd5h+LZgcZT32PTSaf52BZEW93T4kEMIytUSFfLcByFP2imjNJ60gP0dB6nBd1CE5BqM3J8xUzPWoWOP8QiWKCZZWbnkzjYQEEVEqhgC18xRDRuOGuGdVGaboNmA9LWsIisp0jwJwXWMDxSG0HazCm2tYYVGmGAzsUhjUOEtE7XzHpMNMUeZgr16Tnjra5lCLVVhVXfgI0gGEymrld1bvhrQ+LLHomzzZ89fBs2iyqqkV2SEZIhcS2DBoyS74Kc60N2VQ75cX7/prtiEOpNVqCNO0bi+WBso4Mou1fCzIMGj0qSwKroZtHT0Nh3YVa5VPMoet0tHBYhO947NMRXHXXpXJpfe/eE9n5LyC67rElOKTtxfN5pcK+sXKguO4MO+smS3Dv0VU0/rGj7BwXApIpHL8farMtg4D5J32yMBtr/frcuc4RkuO/tFR1Xr7iVgegVEvKTrthTQjP4hBDEFbVvK1pl3O7igdWRlse67YG6q4QujyRemehzsUaypd9SlastufKtal9rgBfkV8w0JPa2fHa8k2uixzjLI2X56f+sCzjG4hPeHWB11RMyxKDBqG6Jf1ZhGgkpMK5C4eKpbNfQqe99rl2zHsS1pDe7RtpSDdQOmgPMJfnMz1m8OtMQEtpMxDdQjx2YBeYbYqKeO2UvsRZ+EXrPW9O/zq+jdF2S9hHcbCv69wWzwzzYO/LQKsYI26tbMCFjtDL4JUiJv5IvXljLvI9qb+XVw4+b9cn7TUhR0N98ujymgOZjBdtiEwB1MNxN2MItWn726XDzAdceYz15yv+EVCsfBrJzO5mD6TjeAg7l4Qh1kduqR25SpJR7N2P/NnhsHE3O8WNnX6TNc4pKT56RPHdSGAwezdDrbPJ88nWMHM2dl5XW/vgW4zvDyPDtu0CBPIzoYBes3B1ryJzqY6is/FP/48ZbrdIdOd7qefDDQeA7GhRX+lsaB3wgORlp04F7rr9muk83S0xz2F91tPAejNQVIBwMmBO5gHE3Ywch9T6WXKl1dFOuhiK7+WZxTOA4meg2bg3FZYwAHY7W39RGb2ns94i/6D/tuJ47lxsEEd+7Qrk7Frz5r1q0ab5GW4sGBg5m8hm2eK9Zw7GBmVGwtun95h+uydX23lfC+tNKIDqYv6zcHWvInOpglkipD1h595b61+56GC7JLPTeeg2nJCn9t48BvBAfT+u2Q1WMTrTzWrOuWc6a8dKrxHIzWFCAdDJgQuIMRmLCDyVxV51vL3U29NvYLOTtzn5d94TiYnF1sDmbvLgM4mCSvVL/aY2zdl4wsNqfprqd7uXEwIxpd8yvarr3X1jTpvcx7Q7lYwWTvYt0o2sWxg+k6LOBE5w7nvFcWH/N6nU//HCM6mFOs3xxoyZ/oYLpvbjJ7dYaF85EW3Tpuqzirv/EcTAwr/LONA78RHIyk7i+vOsMmum5zK1G1RgvHq8ZzMFpTgHQwYELgDkZowg7mRsma9kk7JU5TbnR5uKP4wWaF42A2p7E5mOA0AziYbeNt/U9NmOq5cO3rXV9fLL/DjYNZFLktweGYj8uiE8NrHHziepsDB7M+jW2ez03j2MEMDv/U66PnX47ba+Y8sLq70MmIDmYM6zcHWvInOpgx7xo0LPL5rPOGO2ue3Pi12tV4DqYHK/xdjQO/ERyMu9mmn13HxwjWHwv4sKzkknvGczBaU4B0MGBC4A5GxORg9O6pYKOVXuH3VKhxt/bbf0ZNEi/9/u7TssiUlDw9FeyPJzx0rlxXPEtgV3tuS8HMPD0Vpk3YU/OaOsBjacCOntUSbs3O01PhbmiLZwNW3fdM4hWLSasQtDBPT4Umrg+CXvCsnOY+3hBZURbwOU9PhcdjfaYnt2ziMb/jQ+uNHevG5OkvtaDa5E5x+4p57lJ7lPTvdvwIGCqJD/X/p0aLm/fsPGI2pFR+JBsAe1mZ40NOfWwW9Ws+xH3DwaTwwNvrYAesUvhQqyfxk2IyvByT0lULHHJcvcFQaXzo8+xjyQMGtBD+PWlAjYDts2CvCAt8iN/nVwPnplfdl+2ZOPHas6nbwVAZfMhWHpd4d+FJ9/htD/cuOuyVBobK4kNTV6zdlLqwmGj+1got3GxdssBQOXwofV7LhUWfrvGZvmWrnW+trm3BUHl86M6m5t7fi5x23ffZrM+3i1t4YMgSHwro8nbuzfetvKJ8WlmW/dr1HzBUAR9abPUx/p7knesG2wrNvqQXGwKGrAh4A4our3BA7bN0ZtzdrQ6tIPLWxAPnl0oYs2CFR9w19+ffkxPqg6GK+NDCJlVmfXtQwXl5r6xZjU7VLQWGKvEYW3FUJh44YWL4CS8bYcKVH7WLN8qeCIaq4ENK8ZdV6xff8lj5769HDc2LTwJDVQmh2HzuPmjJDZ+lvZ8X6bPnagcwVA0fCq66qHSrabZuM11iNo+Y5V8aDFXHh17Ve1M2rNp6l53tNz6Jf7RyBBiqgQ9VUd8/2r7NZs+oIZKEDd9LVAJDNfGhePP0b5d8hjnt8f6a07hPSAAYqoUP9ShbJDzSYovzuo+2LcwyRKPBUG18aMc3/9gmDmcdd3Q4u/9lsfOzwFAdfGjteHvvnDvB4k0fX5wO+dR0FBji40Mb65xLOfMxRrCq3CLJ0oRVb2nNQuryGJqFHJamzS5/YZ1oo1nK6ho9buxCmA19m4U4MZmoSsGJCStTTzuv3p455mzNceT2VyWdR4XLlUEIBiymALgRfgef4CyVKWBYGAYCYmCE1NKQMKnOlFdUA4V8NXplIz6gazGXjTPvbgZs3Yg6veULwuPdGXoxglrmMoJqXgT53aJOp30fwe/uM2lfEcETwdtFHBKCcnxIKwYAdDODiZOmKmz3lKFXTNymhxSoBnb2PEgaqAwLV6plGAUYeD+ZHFs6EXrCl6gg660yTBaI1pDM1b86bfX23Pdr3j+j5eP9yRQ+2s+hU/jkDnEdN0C4drPCtTbDJCI5Ot2knpGcHT7RgnLFFREqieCHSYZJ+SAAgXQCQySQi4OR66fZk4ybPY+9E27paj7yzMpO/1LYHvDHItgeiBGupWdphyu7E0p6y+0xZacx/ugJXF2CmI4gXZBSgUS3BC5Z/vi9DlaiXU8HB9TrNfFpwWnwOABrNytYQNVx/+PM5H/+Y8/+LfZsaoRuMPbsqTfY2LOdbhQGe/bJL80uyB0thbsrBN/b3utoIIfOkmqBOGDPjrrBRjYsv2EQ9uzEjPufvNv5ue6fspDXO8ezr9HZs3uzogL0xkSZPvLbYOKOPXvhDUerofx7LslXhh65sWv9fpNhz3ZgFV1N44jO4OzZDWXxxwWXvrrOOZryKPLOPL6R2bMxK8NIfwysjMHYsz+tt6ksjfYUrJsiP9rxvBk5hWEc9uzerOA43TAge3a5nO/L2sS88ombd6GH0xqvoSbCnu3AihCY03jc5sIUt51eJRH/6FDFdfLm2iWf1x9LXpybi0GMxvdzEuu+cSAk2Az5sKMzEQmDFWIw+BHEXaP5AFtVhIYnGhhbXF9h7IWHbuN1Cpyo+5fo96ZH0cSIHstA+ROA8W1U1s0RSMD2iX7bCtgL5MEAHSm1rJBZrJ/A6UDCKn/ZwNmtKNkkeDeCJAq7nF+kRLV/BT1SCAAKfYKfgKcpIR8ehnqiF/dLVQwgQi9sgmQqoL5gHO1swxSV6gasau6x5OiT72F3T8nI09KJuJk+LXOH8m3IdO2m+JXVMtclr2KeLDiV8Z4DwBxZAQMaZZQgSuMz4O+04jH9obckMWeRpQUmSxar+jzWrWdUptJ9d5/p9Ta6ptW2wsjkgTCcR4WrpFrqGSyoFQj9bHo3KVgATBFtuWUzNk1wPSNcMfRKSserEV4ciLYqq2jNjCRaVHw8v5teoVYZcR57jhRmBfcFd4Kvl/Bc7Tr9zIgpDYOoCT8EsZ3mKteOkWeP26SdAkTOb6c9NsVwx+jK5BiFV6rcGdFuj+Pf/QZWnRVwWEz6NhUhAUkE3PqEbLJSyG8kVdOdZDEGLJuLlGEAcg0NCvaYoNzHYItDTa0J3FiCxB46eURq2i7/F6aJA/lbemwqtLwNQH8KlP8+VfkHA+WvfLug9SkCcR5Q4HaDMlyqgtGGUsG30ei4mg/Q0zShgP/S2DQ13I1WjpQyMMiXWZVqJ3Dt6zI/oFRP0ZCeFmQbE4AVHdBtDH49Pxtzs+JR34UvH3luivIRLPfeGMHBzoQ9hNlMCA+uUzfrmmAwF3RLuGEe8Wt3twKVCrU0MBJTD6wmCr2K+NxluPfNWc5TBwwVxI2yIdNbWuQ+l778JQ0WBiM/Blt/FGwZdhhsuElwYzIJZ8vVf9+irdIr+t0bT/vLE51J361sDynGI8H3jpTLEbaAKWC2I+6DZCSYzsoUIyRyWZBGyUfKIkL5SrBMUeluCahZepb3pEmBPKxHlHzsFlPyLQaeUrpV0Llf2R2rw4O7rlI1RoaDIYYEwLt4vSJeJZp5zP065NWvuVO6kMNn7EH08FlzOb/pTK1K4CBkSIHITUWFDOlNnXnxtxjDZx2Rq6FFTkVSNahaSPiud17oUTwwy/Wv8pm7Xn16Q2n9jSsIOqVDHuWclMYG0yQWtCbfMgqTkLn/6HBpXhzq56nZsfcEIa1Ubg9/R23v6jYIBrkhUhWlJA7+Kajhrow5SChY8AiwqB6tETVSylTHVJBJUkC5DrbHZ0G2AEWK2RybBXpthFX1xrCFsYKmfhdX/SAkFLUmfi9+o+FX4QH/RMUl215tKYkJ+K0QiQnscmFAsZQVCqDiuKNyZ3JU/JD6+6fPmSFcdHy7eMWXxLH5Mv8x2GKmdZ3OLH5Ua6kLix8vXxs8qXrnS52PfRXtalZU8SDGuX9BKVlh4uIWUVlNhdwSRA6ttZB7mDzk1No4biBP2x4d0ePFaaf5P2rmjKk27xoHkNe8ywZ5mbsE5J6cVWWWJyA3QFUmooiSqMpEFFESVZmIIkqiKhNRRElUZSKKKImqTEQRJVGViSiiJKoy25Z7EPXu2jKXVWnmrx56NrSglbxB5UVqH7X8koOSNzGT/Ot5nrC7s6u0yxazoCHXnlmS5W+t2ewXyZVqGC5iCRx6UF6CYbbVc5EpgrDkQCD+AGxJCdeZeBmCbul9aslpvq9IAwf1S3rQ+7e+CSZZBvLECDywqF+av4Ym24axmSuhaAAe4AfmuqCm/opEUc2ZHrGq1IdbApd3LEiurXC3sdNhfvQm7nazaQ2iwLLa6iYyDmfCqpK2JCIvVkiUakvjW9dq1Nk7+VrFaz9qvr/IYVnEpJ7eH05tHuUSp5zhNl04+hgHKOXcYEPp2g365gNbnGbrS8wrbLJhmBFTDi71iNoz5lTJXzmbcgbI7YXz7XzltUdNExsxn+tgiysRMiEHCWxr3tQvjG2qzR5CiALz9FyDHohkm5Dg/FoY92Hq/hrC/assQ4OCt4lMIGsJQTJnBSlHz7xuQyeZ5ptrt6pyVQZLLDIbKPWH7nF3M596LTuwN+uzm90hchaReC49i6gdKQx07jPmdCE657Q5XS8mx/giwFts1vyLaMmGcy6xPu596RvxdE9oxgBuXXI+V1vqNlKpV9tj6gELXXMDOsJ2HximS1CpzqE2oHgAts03CyFN6/x81Cbp2q2Oq/m8YWc8u5I70Flg+VgGt04azM+KU01cAa04D9jpCxAsX5SOQRbuJP18XTkMLCmYacxQNegqbTl4jb9oY/UxjxfVLt2GbImcwb1ooPIMGTgkgDBtZoVp4U39nF3+KTRqrtloKTRoaTAdgSk0Pi12tMegwe2QN5MdEjU+17zDlHviGJfYtxEdqtWi7kOHScL5mn0axH45U2jeWHMfke3BzqVI+ArpSHhJqpIF4g5SJ7NEPdzF8oaonfI8w7pmyWBTrUcA1wuomDwKoJ6epZehKoeloTSbu+B1kN9S/LPbl3NVZgtS6vyUHjg8mHIOCXsAPUTSXM5vzlHPuRU0uwXgKQPhKYOac1vBkuVzll7VJGU178PWqHZD10gHr0nvBUtuJLfZmDo3gZz909xPz/7h1/PD5+LJOrvCTts5LRy2J2WRvEI3DvDJymLDB6iPMSoMzLHCjREaIDrzqH/oZSNstbhl/SWqEGkEm9De3NhX3cVzvdvkYUODF7c/3YAsNM39dKHh1zkvrgVSOcQqla0mJZXsI4RU9HJf5TGDFy4Nwo0vUjCju42oFdd4hvvmvbOe73PfUJQsGC/sfrpg8OtcC8bRHjcncJuRtl6Nau7Me52l34KshhYDbGEhl+WHxxSbpbWaz7B0O5I4rFXV8s+aU9o6aB6AaOuADxQGIulZbIjsziL8ug+TX9+50DOnX6eO7tE5PyLMj98kRyn4J+peDNNZu8IgO3D+yFBZYCgIK+HZQolaDTtyaaticPev2+KDek4b9b50ndRc16dONAuvE6VVvziCVZ0v3a/rmQGviYcamgYWWJNFeIRJ8ybIL747+cW0O7sOe8e9uu05ceKNVWTlYwpstAMGdv5YKSnE0AFVo8FvimGol8Xq7I1rlKatPOmgFqwHUmv2B2Ara/jv3JiSP9Z7PJohmuLPjdrVHq5rMcCqogCDvUR9tZPZ1+QTV1Rt4qjjFzXNwUHmqlwWW+bq50MC8+5MmHsfcLlwmndCFNW3WifZcw8yoXo5L1IzOrohZUK6hheIB4B7igB3yikt7XSyk1RmCrbXojdjJY/runEDFtlrHwM4Z6M2bmCOQvUY0fOL8CeInl/wk6g9v6g9u6g9v367pxf1RkRPLybbVMtFpgI2R58WhAubbxlc96ml9xLJkU3blllMILcgFNBnhyDfBkPfD62a3mFCZ4+FD4ue3FJa9q6geyZgdqyE4nRAVS/0BqPRj9MQzbSYQPqdRo2rG0UfimhczPGIveT5z1IS8lajbo0aqShNef6wz7fuX11m3Vw058GscVygpGJFaeBjWhsm1moXTb9rGBjpABC16p3swzSPovsw/HphbHhjGvMZtdFkY4chhdvTHv/P7CmVzsdA9vTUIzZ7uvrRf/YUl0+TbSJ7uw27vGNvzgr+52XSBQ7sKZWmiQNLceIRm6XY+aiw7WmHSh6Lxzet7xi9xWrz2LYbUjmwp9RNAg5QWs2K0vRHhWhPqT7U6PYU0xhGewqQwu2pn8mvCajTiZtitjZFqr2dIwp32v/BMXTnlTk9OFgSuDxiWxK01ULuz1kxWzkCcgMUsyE48AhTj+DAI4rZEBx4RDEbggOPKGZDcOBpKQbpHHhEMRs1QqNVrEGriF70UNjzOKhY68mZkC0MKOTf45FEkCoSQqbm/GkyMWOSCZW2kAOZBDDJZOXB+32mZX12Tzq4L2nXsAfU+iGJQiqn96dnMmw2An44vAMneIFt0fkKZYRUQy4EW6SycdhSeRcRr6KLtbPwC1Qp5fIe0GPBi7lHPrO7USzhBovXd6qHN3FKcpGqNxWdp2KyhOY91VIVbMJKfGxDJ2XkEDms1QLvgxH/BMki8O8OIgyY5ciM2kwRSXEGA+rbyJnXNBMY0A4iXtQ0UWkviSpEphBLg0kO0EJzuYcsJJR0vZTmur8yPO9VshWu69/I+VuTzLTyGIi+KnhuMEKmeauSxFuhJpRKMtJdEQRptwh4i5SCF2HqJc8lLFaHBTLaS2X8IKuERC6CXFB5HFGESioJ0/6MERNr78FVtZfJu2UqCyhHW3VU/efAL0dksvnloEzCL/c2ecyp9Kqmuz06mLWw31db2N+HMzdZlmc4N4ngzSXcJII3l3CTCN5cwk0ieHOJWCgzcfDTdveripfP7NCFtzgjK08sNGjhPxfiPFM9Dgx92LiheHwQzblCq49UJCoZLwfOtS+TJEv5LRuxOXKoU8Krz9J2/Djy0qg8nvjzAv9RAVOpOytgdSJlqOD7hEsVrmJ+GP4M3RKCVNJh1teis+5RfkGPk9uhT3HWvXTa1gxYmfGe0lKEbGUStTSqTbBPQgqBSEjTGSpRACeH/OJp1SP3b7hmJ1i7sMvZbU+ti5ETgk6aJ9ATgsQA14tVeEIhCEIShSqc2Akzfk+NUjhRPBBAqzUau3fv/qUP2R+fLBjILxUpl6iwPKMchi9I2fi98Xh40HOs15LFlc0/b5TcppCo4g9BkKgSI4Uhnc6s0rExBekAa/RLn+qiOs5hMjVGWxxIEhNhQtCF9EdEN5rtP+Ox86Fsfc6uDeTUmLnmiYhN3NyRwhBORVbh8ExBOBC6vMIhPBOTcNoJwuBHYjIBr6MGt0oVgaM1pItd+MpwyXDI0dgC+yn3NxjKs69LOou3dxX8veJLvPWCJWHkc+z+eZ5PP8dOGi0M4b18wia8DBMiCiITaZrlI8EuuRJUh8oUoxUgCAbiA+JSKBVQdOBfcuVIbBD+6ACHwiSjNBfQnCLp6sbbX5VyX/9XkZ01jm4YSeutgyiLxi8XhuROsEpup9ElB2+CGRW9SmWsNPvRMkUIuyG8G/TJ4cCpNj5bywwcUyRxEjl6NGeMmXJHON/wtsdjCLjiOEULq5pjhhCPU/sxxanVzMb6HUvO8TlinvCoUduxtuRMnUizkeOrko6QSUeSw1SIKVNlW2MBZB1S59kMwghkQ6TKMGmEajQ/XPNAdXl3TTWXu6KHVIGvX5iDV2pbDLZ3pWcVyePlAsB/wpWqCBeZPELzwahwn3E2NHHmfYTYL0dlG+eDkPYMPaQlFsjI1bArgQ12cBJ7R50i+vKddzerX6uj+5Z6DmkjTxchc4+ZE0+lq6V2JL91MpXcrKDrZIDcO4icI8qOwDZSd5/qVeheyT9PCMNXjpCqVDKGnhW8fe6jldIxrovmD/pYYdb7FgWfwhSsqDaCA6zOsGK137ChDrGPWRJfcsFfgsHOnZg7v8yleMRHXBQ6CH8Vx3wb1auaEwsD4lfh/8vkDXvId2iX2/2ZzNh/JPy/RcJP7SZkMBL+zc/YSPiDnxUGCf+kmB5PKypGuO1vsSzFt/fWTRyeNufYRsINk/XP2DjL5z4zCAn/glcBvr3ebXVeyE9/9HbFuNNGJ+Efw4oK0BuTWTvod/CHOxL+slXUb1eO4TluaD10e/9g++UmQ8Lfg1V0XY0jOoOT8C+/Hvxg3rqePtv8tszP8Zjx3cgk/JiVYWRRB1bGYCT8pTbElt3RLdR16mzP4LbXxZdNgIR/DCs4wc8MSMK/ptqUkjXvVXeZZv267qroUKUJ0FlAhHqwIgTmNB63DWCK25wFTZv96nJFsPVu7bhLa9+Q6d4tsEN84Uo58Oj0mM2cAec2uSkSWe79OBcGQFyljAwJBTEc7HKtDNaLy4HaYZHxbemsB3kGda3tA4HQqOcA30yA71ZqmJQO8G3wvKAHqyrmvha4imOB/OqnRg2QLposcFt2ymfHZ7d0s4L37qKEUFTDWMAQCtLeRjxn6mK3HOju4Of6NcLWTN8gaYhKio4vPVo7lYl9eMAran3Fk4ca/1xGOSGF3Yg4IaW5Xhi0v2LW79/+ubGDJa1m6hEowVeWKYNkgSzcNkse8I5a8hZ57lVm9mu+6yOlzxzxALquakcKQxgNWIVhaRxh0Jpj65OxsPdUKCOA+5IEwr1TG4cuYMkKVhZhtvwWXQJDlaogW37LLurhqgjsB3S0+rh7Ve/rHg+ct0y/s/tIx4hvZL8GP8AvYrQc0f8yd6gwhPX9GZuwnhp9mUHU1egVrVbK3ehWRKqGqFlmUPwH3557Z8d4pPgGzVTn9O1akKVyQZcODrghh0c902m8UC2ce/Z5rl+Uiltylmgr8uWCJS/nRPssKv8t1CLJQWzcZS8AwJEAIAMBADQtekWihCtjJpn4687c+BJ2353Xx59pMiXgTQuKKzPsYV8IQGk2AOJfawPNgf/P6nGojbkNVo8z4gVbPU65F4Vdj7Pz1pqhD8pmex5c1G9gelZ2qgnU46hesGU3B74wgaKCFStWGKAe51G/LWqzlk4eG+/8267uwidZJlGP48EqnbamIB2D1OPM8qnt+X6PrfuuCVkf1jxSzTWJepx6rMIpZwrC4RmzHqdcmGV0rX/fOC4vkz1li7lVlEnV43x9zia8x0ZfJppQPU5IkyI86wkNvNZnzZ9jEzbttpHrcS6xSi7F6JIr1Hocxx/t3kyt39E17q7148bfkq+bRD0OFkMw1uMAQ4jHqYP+hHqctePtvXPuBIs3fXxxOuRT01FGrsf5+oKtHucCPaQtlHqcZInV9VPW1q4J3VKOPp+6RcZ5PQ51bc5BjcnHF2w1JpkvCqseJyLjia/1RG/HZWYhnb99fhbGeT0O1UZwgNUFVqySDBvqGLseZzCTGRt+RNZM5h0vOpDiI3+S1e8NOVPSPRKenXRVScJD6SdM9UhfNHCSqcPh6TFtNme0neaUKV8COfNC4CcgNW9jnXMpZz7GCFaVWyRZmrDqLeP70TM5eQdp+lfKD5gwn7xHsRBaST33pKNWap9GbZzU2Jk39yHQysoi+Jdy/jOosfNfcx6mlfWTyoHApEHuwK7/H3vfAdZE9r0dFaWLoiKIYOxYQNS1lwVC6E2w7NojCRINBJMgIhbsFXvBjg1FRbEr9t67q667NixrW3uv371TAjNzZ0hgSPL7f8vz+Dwyh5lM3nPvOefec+57hpCPw9SKq1LCpkqHvDRf+7YXRMtb3D+w6WSSL40FA63Airh1R+hMYIWLKIesCGfAOHzFF5MH/ZB8EZg8dI0OSrFoyRNEZNUg3Q9skXvQm0C9HxvqP8ZtWVXJw8xnR0/HhZkJobRiJcTpS6uSR17nE5v003t8ndgs2rzh0sje23SNRLNpJGNmWuLzoE/+8wY5qBdObtyLuifqB4tnNMyIjHV5id8gVAOvj/e7TFTDkBfr1RarVEghHSMsCYzB/g4LhzWS/mqdYhD6EclyIcrogTKp9ibUqzO3c/HrutKAAjCn3oG06T6Ioj5Iqh5yB0G/BCGC6zgE/RL8R6dfCht3u2PUiWdeY89sS7V4HX6VTr80ptvykTcTegakH8xY8Ch9akdSTh5GLTI9E/2DEfRMbJq2huwBhBrROTDLj6vazFoUtF3p3fr2rv2tiqMt/unwIYcQ1GsFVMhzF4Q8mjtGaTxpDfs79lGD7xDfP99g5P+OmZoUz7aRwxEsUWy6svfLn20gINIkqtCB61P/U790tjnjNTF27GGP6h2vc6rMXIQ/CcF1TAhKQml9OZUWYlilkSbYLESEG1R4y0jtvMd0Q85RtmCvli/R+loer5apsKo78BEUg4nU1cBO23oPe7zUe6/LvmZBwVVX03VlHpqokfRTaAksBLRkF/xUT6a78iyU66uI7opLqa05lVrnDoPri7OBAjHYZTg/C7pFAI0mhXOgm0FLx2zTgV3le4inehB26aA3otO9VxNsiBMuXcrm0jvdvxNurjjvv2z3/tIjd9QcT62VjYqVx2iEsK8s1a1Df8XW09o5PCYGLkUkCgXRflUOG+dB8m4PJMD0hoNsr4CIl3TdlgIjo/MtkpiCsS3VWCyofKu4dWS2WPddMDfV8IXR9Pg1N235evhg0MyRWU//MX+VTW/wgvyKhYaE9KbrxZxjcAkfAbE66IWYY6lA2v6WflVjuAaV2KhA4tIjIL31nQmbRGl/R0SPm76+AWNLOUY3YIo5n+A3d+P85mCUmMB2MjYC9cixWUOeIS7qqS7hm1OrlRkrGtNLWe3k9ps51HEJ7zYU/AJO+J//bRoVYsVt1I3PCFjtDL4JmqqD1nG3iJaiuLv57gVMAcPB9HXHJgThYGRsDkZvPh83rfZKns9HM/PgiH4nW3vvq56WvCCpZkoBPp+mi855zVnsFJp+dOzjf7dNtC/A53PKY8JvJ2JWh89sMW3gmT7WoQX4fI5W2FtnkKM8fG0p0YQ3d8SLCvD57HYu659QPc9756blE+N7/TG9ILchs/MvyW2I6PxLNupFdP61IEQLqvbu2Ts3wye1y1+Bj/74CIkZLQlRuX3lV9vHdw5ZUuvs249hweWByIoQ1bLx2/Bi3+zg3SPjRkvsqsUDkTUh8u10LGp4/ZPeM6qv++IzYf13ILIhRDl3hzZwaH/ZLyvq13uKub06AJEtIbp3dVzVVOv3gcuazDk91ulZABCVJ0TN/JQfmuxd4rNkaNJB/yP+W4HIjhCtiR1RLe1E1eCV9mtG1pnRvQIQVSBEZeK2H3Oxey5e+rV3Ro9D5j5AVJEQvfl72+W1MQNES/6Ne1l67bb1QGRPiD48H9d5h3OHgJ2SyIHjYixVQFSJENXo+GL7mpPpolUfZjRNuZqRBkSVye81eJ7L0PGa8OWWV5svmPIkGoiqCFhpoBwI0fovQ2PrzggSrav466m/JJMcgagqIbqbuK9jTE8/vxlPHEcd6PutOhA5EqJRdw+WutuwpdeyrvVanqgyeBAQORGi74vWN1zXeIjXnn7H/7z59fU6IKpGiB680WTeazsxaNy8am+7D/1jCRA5E6Lmjod33X/5OmTRpAGzo7KPQKCqE6LYuz+Wjh12wDtrfvs6fzZ+3gCIXAiRrFXt2W+7+IRuTuluv7LRvrpA5Erqa3sb8xu3vvqsvhT9plb1BEjaWYMQ3RfXDxr6SCVetCw3u/2HBVOBSEhOh6i3i5KjAkJ3erqM2dB9RH0GUVVNAQtR1QPF75Ia520C5n7+263tdKuLPBBVxbCZqCoxuzctPHZKvHhD3tAz1YdlUJeu4iEJCqUUcfqCLQCuR9whJM/LYm3q1HEgIAZGiOgAqONxC7qBQr4ac1VNCHRdSLiBZdULSBuMyhxGwIbsL/RroJl/GhV/EeR3+6f6wnZPHsYGLL/45Yj9kBobeTyMynOCEDb4+eUFWz20I1iVCl/oFRO3iJSBoYHVPUllsMWRUi3Hjp+A95MrsKUTOU6EEhU8ca2Mk0ejK9WGpjQsVXN40JrFre/KDu5YTi0f134Os3w8X8R33ADhsuGE69O/JhHJMY866hnJuRMTTZqvLk2sRCOMkwyUCUEAom1hzV5nbpGjPDS8xmb/TfvMjkWHKmrQKg2JxyIqDUkJ39qr4E4Mdl9k8b8HNtgZ1eZ6AleTPBRFFvzJ6EAiwfJs2Uuscm4cMrmh78mTnWdSLXWRjmDxAJYNJ1hgqBP+pz+b//mPuaFIzA30CN1gzA23X3AxNyzVz1fqyNzwssNvf9kdrBSYO1c61OnDufs8Oku6BeKBueHmC66D7sf1c5ZFZW7o4rqu0Y5LA0LHfq5p1shhTaLRmRu2cKICxo2JVpkWtsHEH3ODz4OyLWbF3/da4V42RPqgbX+TYW6YzKm6wcZRncGZG4SlMjcoJ/cQbXL8Hq08POmFkZkbMCvDevT+OCJKKSnmhhNDhHaD5+4IG7ejWsDKaXnrTIC5YQsnOEtfGJC5od44y7tuK6VBUz+8jb798RC1KZvxmBsmcyIE5jQRt8WyxW2nFklCvrep6j8609X8ae2U/dRoNATEaMIo3xDdNw58tM1wYTcBMhIGK8QY8CuIu5KFAFuVBucoAMaWGK8w9iJCt+E6BU70/Uv0ezOjaFKixzLw+DeiLS4jVPICGhj/Tb9tBewFCmCA/HaZgiu9D5295Tf+37lttw1924+WTYJ3Iw4oYJcLi5To9o+HnreHvxHVV4xBKGwkFmz8plfdsSMGEDku3KRyFRi+QI52thZNrIVbVz4OXVX1ucrKeRiV1tjSl7yZOS3zRYUBNtru3LLLNs/EW3M+mB/o3KouD4At5AQMjCijBFG4z4B/01zA9sOkw7Lg0KU1pksOq9rE/Mzcp5LSgRvTN69KvXX9pz1GZAKUIR6SoJJpy56xoNbbJ8rttwbFC4Bpqt0TkV5bPDAyeFPr1+/GrMlx40G1Kk7V9jaSalHx8Yxf9Qq1bEIK2HOkMkfc7Xo74NQQr/QaFyJTsm7spSf8EIeq8Ku8t5X2IGxSDqqoJMcDm2KEY5SzOUafq1VvDW611Su7R2/HKV33UckDKsPiVw3c+oQnmWWwtl6mR8f4JiJlHIAcL8HFHiPNfwy2OMxvFA+LSnXyiPS0XeEvzFAH8q/02FSY+hqA/tgH0UC+Lxj8Ca+LW5/iHVIAFLjdANsgwWhDGS90I5ufA/RwAiT4P9ymqeFutDJJxsJe8kdWl7SWDZ+Jlh6z/7u652Kqty3XFSs6YNoY4nphNqbap9sNkj76hW1b2LaeddMum3nYmZgIYTbzQbRMT2+AwVzcLeG6BdSv3d2KVsarZdGJ2PDAaqLQ3FrCu3/vuHwkYNcYB6/AD/eoDQ+t85/LXP5ShCXBBoPB1hMF2w13DDbCJAxgMwlnytd+27SlMnT8m5fBHldGiinfzTZShtUwCsMSFQqELWALmN3J+2AhLDZm5fGDJQq5FB/kSXJNrFAJlikq3S0BPUvP8Z4MLVDFekTJ1V+zJd8yALqvXhV37jsEYnV4cNdVpsYKsTHEkAAM8Rj/vW3nUeFTtz8tVevkje7U8Bl7EDN8xi8XNp3pVQk8hAyOELmxqJABNqMye80aPuuInLMWORVlqMGhhYTvw6bBdrNXV/IZ0/rFb19821KDahtigKBTOlQp7wXRbthI4kDr71dGqWK36JycICuIQ+0CNTsewSCklSk84N+oPfwD+sAgt79MRSuJgz/FNdwOmIOEigWPAIvqZFzVSC3THVNxJkkx9drXg5gFr7xRBzKbYLNAr40wxzAMWxgr4PW7xNCXIqFoOGLR0NU314WPaWVV7sDg8Ju0xAT8VojEBHa5JKDAhjgrFGCIE45qIJujMpmef3RryU/74xJo+bf0FVfLv2layBUmDzm9No4fyEeZlWs+q21M4CJNuxV7nzn/ygPkg99yQR7zloQ8jreqTDsScgNUZSKKKMmqTEQRJVmViSiiJKsyEUWUZFUmooiSrMpEFFGSVZmIIkqyKrNDmuyD2WKR37yphzRHrC2WMEre4OBFjj56+SUPJW/xbPqvFXzU/dZmK781ZtJ+155UoOq/Er7ZL1Io1TBcxBI4zKC8HMtsq+Unh+2OY2F/YPwB2JISrjOJMgTd0vv0ktNCX5EBDuqP9KCWmfYSTLIbyBMjYEUe9lKvvWtnPNuGMWkooWoAHuAX9rqgztN+DH3U6XlIepxbZo2JeduKk2sr2W3sizA/+pJwu68Y5IRgWa14iYzD2bCqoi2JKIgVEqXZ87vG/HOtvte6Bm/nrus/NoDHsohRXcLen8wc4pelnBQw0Sf5MA8ohXGi5PmSufnAFac1jiDnFTbZMMzIKQeXemTtGXuqpOGUT6U2dvw3ZLT1WRdVb9s3RsznejYmBhEyIQcPTw9+qV8Y21CbPYQQRRfg+4QeiGKbkOAcS/HN7fe0SsDMiK0zU6+N6WECWUsIUj9OkMJe6pfXresrx7+5dqsqf8hgiUV2A/Wy97oWbn7ZQWu8rFe5hXWhFS6Sz2VmEbWSkkCnLSc69V6SgZGSzTE+6xoWYtbks2juyrN+y8MDuzM34pme0IwF3JrUfK621C1JqRflPv2Aha65AR1huwsMU2MYwp9FbUAJYGti5gZU8dO0vzjb9fiz70LvsQ1jKgY1e05tw2yN5WNZ3DpFWJgVp5u4YlpxAbDTbhCsCNQYgwwQlV/p5evKY2DJwExjh0rze501ZXeo/af+2WpLN7taZ6mWSAzuRQNVQGTgkADCJOCE6bmezq7wFBo912y0FBq0NNgYgSk0ISN29MCgIexQApsdEtU/26TNmDshGX7LX2vaOLnQ96HjJAlCfJ8GsV/OFprXx+8jsz3YuRSJMF6WBC/JVPJowkHqZJboh7s43hC1U15ArGuWDAybAV8ArudRMXkqQL3hF70MVXksDYVv7oLXQW+H/xyeutb7vc+u121dxW1vU1uelsUewAyR8MuFzTn6ObfiZrdg9y8Ijw1qzq0FS5bIL3pVk9ji78NFkv7ri5tj3R1bB6bWO/ZX0IIKWdTsH34/M/tHXC8MH6ereU8HN98UOsq/oUWP3j0G8IBPR058wPAxRoWBBVa4MRgHor2A/qNfFzXbzhJVf5mGS2lPt0hrfVmTFZ7TceBVV2X3SKrS8PuZSiOu815cC7TiwKmV0iallVcHSK3o5b7sMIOXIJMSxhepmFtJiyftbbVRtNSx2eDgViMvUBUTit3PVAxxnW/FeHkQ5gRuMzLWq6lNxIKAL/otyJy1GGALC4W8MDwi1tY46T5oSkjW9tAte83s99AohfAHICiFCEFJINKQExGbL6RfH8Tm13NmBb/r0a5t4Ph33zUWR26+peoY/0Tdi2Haa1cYVAcuTIqVR8eCsBKeLZSo1ZANUlsVQ7h/3RYf9HPaqPdljkn8uj51op+JOlFG9YsXWNWt+1zcDHh1ItTAyZMwgl94hAl/E+QX93g+IyJOeS90ruuG9/7mnVtQBx9bYKMVGNj5Y6WkEENPVI2GsCGGoV4Wq30YMaLwliaUg1qwHkiN7w/ANgrw//kxpTAlbDgSUbo/N2pHFbiuxQBzRAEGeawBYMRkVpl84oo+mnhim6SnOXjIXMV+5spc/abFXM2GedhOv/OnBEdFqd2d2smfBlWkMm6HUohQmYaUDWnnUBAPAPekAXcqaHSqOtlJOjMF12sxicCpcl03bsAi+9NXAOdU1MYNzFGc/YrgmyT9CYJvEn4SnW+SzhdJ55ssMp8k/UYEnySbbXLxk6uAzdGH/vZ5xe+u9Sw9vKf1bnCsQ27dP6n0t97M2eFdKLndl46xZRu2eh6++NWwvHsHXZcVd88EzI53UJ2eqOqF34D07tfjCCJHNpCKQhL8/dSd7A61XEKn3rFdETylFvV8tW4kwXSU7rauPeLhN2lg7omnijoNfxS3hhOidJYTpV1fGRSAnNUueK8FGBjpABC96p3qw/BHMX0Ycb0kNryxEfMJtdHk5o4hRdhTzf+YPaXT+RjIntbitKcfvvxnTwn9yHwkVcZpngfNWh+T1aCcx1Ie7CmdpokHS+HKaSmsStyevrCdJV7wOiR4WdNOb8tnXR7Bgz2lbxLwgNKHL1wo5X0pQXtK96FGt6eunPb0g3aBn2jyawL6dOKnmK1FKafXaaIE3x3vvWJzrqZF8rAkyPjCtSSYoYV8MG/FbOVJyA1QzIbgwCNNPYIDjyxmQ3DgkcVsCA48spgNwYFHFrMhOPDIYjZ6hMaoWINWETnE6Ox5PFSsJfGmZGsDKrloPJIIUkVSyfScP0MnZmw6odMW8qCTIWw6Wbjr7u8THnwKzN21PXfzwHvUc35lIyTxMgWzNwqbYXPzFibAOwp06BLGKzUynFwI0nNzcdjSeRcRr6KLtbOOilYpFYpI6LHgxfwjn69+pVnC7T1+vL6TVS58pvr0oBcTnFgrqS26qGUqSABOfmxdX2ViPwWs1YJddCDxj1SuIb47iDBgliMvNZOmErLNEYM1t55YMPojMKBtRILUCSKrUImqvzw+RBZDcYDW+OVI2O+04HVL/HpnZULBq1QrXLlrPfHlUR+P22EgRqjguUGNHH8rc/KtUBNKJUkKjJdC2i0S3lKW8CJMvRS4hMXqCqIlE74ggF1U5RKFCHJBFXBEGpVMEqf9HSMm1t5DDNVkk3fLdBZQnrbq6OOfB798/iOXX97/kfTLQ00eczq9quluj+ZyFvav0xb2p/DmJm0FhnOTCN5c0k0ieHNJN4ngzSXdJII3l4yFYjpWiro3vpZoz7ih31YfrhFeIBY6PCb5wI0dY7zHdT/f227Y49sM5wqtPnp/jEbGy4NzHcamSRNt104nHTZYu/bD37natXf/XtLt2o8PXPg+vU2Y38wj5g2P9/s9xgTate//ztX8dt13E+g5vX79egO0aw8859r2+e/p4Uv3PVgR1WYRreOokdq1z+PUzmhT0I5B2rWXibiUp94S67VEEDdle1LmYpNo1x7PqZzupqAcgTHbtZ8NP38193QP750xj8pFDjxG7Utr7HbtfpzKa2Yc5Zlmu/b9Ntm1HD0Xe0/eu1b252ULarcqw7drd+XUnJXRNQdvKrF27W1kH6us8HAO2T575ZiOEZuo3BDGateOxRCs7dqBISTi1OFscer/Urt2elsMI7drj/jB1a69zg/DtGuv9CF0+aGZoYF7P/jH1V9VdiDv7drp5GY8tCAP+cHVgrz1j5Jq115hTE7VueMXhq3q1Lp5suuAXby3a6fbCB6wqsOJVYUf/1+1ax/BZsb+I+EvEgk/vZuQwUj4BT+5SPgPMm0nDyT8f3T09pxZq7Xf8hHOCbLV6VR68uKdNufZRsINk28/uDjLHzNtZEmQ8K98dTbrxo1GASs9nrXxWCluY3QS/qucqBw0rDXkXDvod/CHPxL+GNurv77d1zR0XO3Fu+ttc6W2rjcmCf8GTtWlG0d1Bifh7zhr0G+fq1f23ZA0/nmkzTVaVsXgJPyYlWFlUQdWxmAk/Dknr52WdBAF51Rv8O3ihXrUzJpxSPivcoJz8IcBSfjbHvt5YN8fM303fFrawzbLk7pMMx4J/wZOhMCcJuK2kWxxm9i7YaOfHa56r73tmnV56cvmVB4B7BBfglIBPDozZrNgwblFfopEnn8/wYUBEFcpE/vHghgOdrlWxujF5UDvsMj6tkzWgwJCXWv7QCB0GYZJeQDftfQw6SLAd8TP4h6sqpz/WuAqgQXyqy9W96iVnvNKtPSwXZMqvROoFNdF6t1FC6HohrGYIRSkvT3/k62LXToYu7k/9WuEjU9fqay/SoaOL+uuWSjwHl4xZOqNDY6bj8QIaSeksBsRJ6Tw6yVB+5vJ+f1n/TR2sKQdmXoESvCV5UqpPJqD2yaihdmC5IvbfLddrnhfk32hFXWskg9gjlWtpCSUMYJTGQOMowxGc2x9MhYewfFKDXBfkmi4d+rm2QEsWcHKIq6xsGmH6FilStpY2KyDepBKg/2CjlZvRl986hQWHrDo8a6g6Qebr6L6NfgBUZpkBaL/Zb6oJJTVlVNZPiYxc+Cj9IpWq+RvdMcnqvqpOWbQmEmarMC8+UG7Gt4emvGx4r7iLJWLu3TwJAw5POp5kcEL1VTcZetP/aJUwpJzRFtrWt3NPHFMIVq54vSJwOcd5xt32QsAWEgCcAMBADQtekWipCtjJ5mo2yzgqGWL9V57LHsNnjpSs5fmygx72BcCIOUCYF3ATzLQTP0fq8ehN+Y2WD1OrOAERz3OL4ITJVyPs2JzRM0vEx6HTRg1c+vqFqlrTKAeJwZCwprd7Ck4YfyigpkzZxqgHudG+qvN9o2yfCY4lWr23SZtqUnU40RyaifAFLRjkHqcdjWmnn5/VRi+c9cfp9p87nTRJOpxOnIq5xdTUI7AmPU4sbHXMtv4rwybvSVo0pkOYedNqh6nIafyhMZRnmnW4yzY5tF6RYP3fhtiDi0e/LVFXSPX4zhwas7G6Jor0XqcFbO7NT1lLwydt3PHsbZzVlwziXocLIZgrccBhpCIU0f9X6jHuS+uHzT0kUq8aFludvsPC6YauR5nHcSetR5nDjOkLZF6nK9pY05VUgWGZl7cePJ11bMi3utx6GtzHmpM1kLkWGtMllKR47Ee530V9YcAs6Vh2zovaFqu3pJk3utx6DaCB6zmcGI12bA219j1OKPZzNigA/JG8rB1op37wxX/POjxkpop6ZQIz076qyQJscwTpnqkL+r4ytUJ8PSYNpuT7I6fMhVKIGdef/gJ6JaRUW8XJUcFhO70dBmzofuI+qzvx8zkFBQyxp9lFDBh4QWPYiFGJf3ck46jUvs0euOk+mLBo0/HBQIHEfxHO/8ZU1/c8+Gn47ZRMgVQmEwaCOz6EPJxmFpxVY5hU6VDXpqvfdsLouUt7h/YdDLJl8aCgVZgRdy6I3QmsMJFlENWhDNgHL7ii8mDfki+CEweukYHpVi05AkiMs1XokXuQW8C9bFsqP8Yt2VVJQ8znx09HRdmJoSuLvT0pVXJI6/ziU366T2eTmwWcd5wacThHV0j49g0kjEzLfF50Cf/eYMc1AsnN+5F3RP1g8UzGmZExrq8xG8QqoHXx/tdJqphyIv1aotVKqSQjhGWBMZgf4eFwxpJf7VOMQj9iGS5EGX0QJlUexPq1Znbufh1XWlAAZiPIJg5PoiiPkiqnvkOQb8EIYLrOAT9EvxHp18KG3e7Y9SJZ15jz2xLtXgdfpVOvzSm2/KRNxN6BqQfzFjwKH1qR1JOHkYtMj0T/YMR9ExsmraG7AGEGpHasnrWPu3vrCZh+2JfJV0dWDGvONrinw4fcghBvVZAhTx3Qchz/p1RGk9aw/6OfdTgO8T3zzcY+b9jpibFs23kcARLFJuu7P3yZxsIiDSJKnTg2upynZbn2qcGr73qVNVG9uoBp8rMRfiTEFzHhKAklJbLqbRMwyqNNMFmISLcoMJbRmrnPaYbco6yBXu1fInW1/J4tUyFVd2Bj6AYTKSuloXL3DsNXxicGffcfMCi233pujIPTdRI+im0BBYCWrILfqon0115Fsr1VUR3xaXUWZxKHfGOwfXF2UCBGOwynJ8FCR6dJoVzoJtBS8ds04Fd5XuIp3oQdumgN6LTvVcTbIgTLn08m0vvdP9OuLnivP+y3ftLj9xRczy1VjYqVh6jEcK+slS3Dv0VW09r5/CYGLgUkSgURPtVOWycB8m7PZAA0xsOsr0CIl7SdVsKjIyNb0hiCsa2VGOxIP5NcevIbLHuu2BuquELI7+oj539i0W3nwZNm7p3kP3xLxH0Bi/Ir1hoSEhvul7MOQaX8OsgVge9EHMsFUjnvdGvagzXoBIbFUhcHNzePRvWzS54T/8V0oa/f/vB2FKO0Q2YYs4n+M1Hc35zMEpMYDsZG4F65NisIc8QF/VUK8WudK+rs0SzA2b83N4qtCd1XMK7DQV/d074/YwDP6NCrLiNuvEZAaudwTdB8/3QOu4W0VIUdzffvYApYDiYvu7YhCAczAQ2B6M3n4+bVnslz+fTzbVzo+TDu72X/zuyU5W3v4YU4PO5+u3aX1/dBolzpQ1stgdaPSrA5zMi59q8pet+C5qhqTjpRdNXgwrw+UQ3EvR58uNv76VXr8q39el5pQCfz6zsRvVnJFwKmn82oPyhe/VeF+DzQXT+JbkNEZ1/yUa9iM6/FoToztFqTe26Tg0Z9Xn9v06nHx4BIktCZJFSdvkH+fPQrNV95Vk7FRANK0J0r80hp/ZlbnqlldcERA180gKIrAnRlYHPlvzdNU+UNiio177rrueByIYQ3do8+3TjZReC1vv/Imj+19U7QGRLiLJTfs7zCpf7jGrc/MzP2QHJQFSeEAVEtJJ6nleL9kufZk2+3nENENkRopQmFoqkO9MCctt/u5+eI58JRBUIUaut0iv/vN0Qkno3fsHdY2dcgKgiIZr8+pzrE1m5kIxTZ/7O63fDFojsCdHZDtsvfs2tEpbevMXF+Jd9fwGiSiS8dUeUWnnsUtD+M/PqvN/2+CgQVSZE5V7efdgia6Boe9Ubmz9da9YdiKoIWGmgHAjRxLUPX26OnBy4qdeR3jekLn2BqCoh8pt5dcCvd2cHjndbluK8oN0pIHIkRGPT1EdX3+3oPfFSQF/VkRN7gMiJEHlM3hwTljHAd7V76Q29etS/BkTVCJF4y/Zz7xVPQibUbGsjmtQVMkQ5E6LISmbrzv99STTjTIMzN1vWewpE1QlRZdfWnhrlKZ9lTaZV2fntCRwbLoToy9JhHV/3/uaTtvOxcIdZzgogciVEbXLkkXcbDPWdIh1RZV5rh4NAVIMQ2ZRuIN5Ufqjf+CnxNw8uqAQ/S0iIPru2PTNrZl2/NdNtAr7suBDBIKqqKWAhqrJaVvdct65NvJb30Uyfty9XyQNR1UQ2E1UlZvemhcdOiRdvyBt6pvowKmm8uXhIgkIpRZy+YAuA6xF3CMnzslibOnUcCIiBESI6AOp43IJuoJCvxlxVEwJdFxJuYsGrUicEgk+ozGEECI9vlmJkDjkbaOafRsVfBPndSr31V8/v5iFa+7rzoE6Lxpfl8TAqzwlC2ODnBQQIWQ/tCFalD0oxEoRcIVmLSBkYGljdk1QGWxwp1XLs+Al4P7kCWzqR40QoUcET18o4eTS6g53jjsOTV+eFjzsafn/AYgm1Daml9nOY5eP5Ir7jBgjXTU64LpYySl1G4Ucd9Yzk3ImJJs1XlyZWohHGSQbKhCAA0bawZq8zb3M/7nXFxR9DN7w4nbvQTEhtZmcRRTwWUWlISvjWXgV3YrD7Iov/PbDBzqg21xO4muShKLLgT0YHEgnW1BUTf7V/IQqbVerhuG2+jagnJIt0BIsHsG5yggWGOuF/JrH5n/+YG4rE3ECP0A3G3CAqfYKDuaF2ab18pY7MDc7vU7/3dT8jyl19pvuUQxZuPDpLugXigbnBGyLEetC9VWm9nGVRmRsEtVO2zR1xy2vloUajs/qsuGJ05gZ3TlTAuDHRKtPCNpj4Y26o8G/390dvvA/fkD3PXfChMzXlb0zmBidO1dkZR3UGZ26o2jvbvUlCtveC2+bXmvemHe81PHMDZmVYj94DK2Mw5oYLmQdyZvZvFZ7942HwjdVCKq+OcZgb3DnBqU0Dp7DzcsViboj3+Oz3IO1w+NK2u75WGVPqg4kwNzhxIgTmNBG3TWaL204tkoR8b1PVf3Smq/nT2in7qdFoCIjRhFG+IbpvHPhom+HCbgJkJAxWiDHgVxB3JQsBtioNzlEAjC0xXmHsRYRuw3UKnOj7l+j3ZkbRpESPZWAryxN4W1xGqOQFNFDVUr9tBewFCmCA/Hb/OvRvlbanY3hG5IIt47+Z9aVlk+DdiAMK2OXCIiW6/eOh520LCFACahAKG4kFjSz1qjt2xAAix4WbVK4CwxfI0c520vvtLx98O+a1tZK8csOt/lQeHktf8mbmtMwXFQZYbv3rM/7q29M3516Zia1PHTnIA2A1OQEDI8ooQRTuM+DfNBew/TDpsCw4dGmN6ZLDqtq9eLDF5VTbgHVju7R4veNRtj1GZAKUIR6SoJJpy56xoNbbJ8rttwbFC4Bpqj21MfX0vYF/heaedndrPNDWhwfV2nKqtoyRVIuKj2f8qleoZRNSwJ4jlTnP922SxfM2/kskG+6/CdvpQ0/4IQ5V4Vd5byvtQdikHFRRSY4HNsUIxziFzTH6XK16a3CrrV7ZPXo7Tum6j7prXRkWv2rg1ic8ySyDtfUyPTrGNxEp4wDkeAku9hhp/mOwxWF+o3hYVKqTR6Sn7Qp/YYY6kH+lx6bCwjIA9Mc+iAbyfcHgn1qG9eiOjjtu3iEFQIHbDbANEow2lPFCN7L5OUAPJ0CC/8NtmhruRiuTZCzsJVVdsn980TwVT1Ze+3xv6ntq7qRcV6zogGljiOuF2RgX/1t2AzZuFK2Of/5C2nD6Uh52JtIhzGY+iJbp6Q0wmIu7JVy3gPq1u1vRyni1LDoRGx5YTRQSy6bvDl6d8mKb/+byghrdL7a8Tj2Rkf9c5vKXIiwJNhgMtp4o2G64Y7ARJmEqm0k4U77226YtlaHj37wM9rgyUkz5braRMqyGURiWqFAgbAFbwOxO3gcLYbExK48fLFHIpfggT5JrYoVKsExR6W4J6Fl6jvdkaIEq1iNK7leGLfmWAdANKfbcdwjE6vDgrqtMjRViY4ihB6EkooMo08Vv7tXxif4Lp7lQw2fsQczwGb9c2HSmVyXwEDL0hciNRYUMsBlV1zKs4bOOyDlrkVNRhhocWkj43k5ZmetSb2PArtmv+lf+Ue536jF3YoCgUzpUKe8F0W7YSOJAy6eMQQMs8kUtOicnyAriULtAzY5HMAhpZQoP+DdqD/+APjDI7S9T0Uri4E9xDbcD5iChYsEjwKI6GVc1Ust0x1ScSVJMvfb1IGbBK2/Ugcwm2CzQayPMMQzDFsYKeP0uMfSlaFrOg5aTWr9t4jOzwu0/v3+scoGWmIDfCpGYwC6XBBQhnFD4aB1VGpujMpmef3RryU/74xJo+Ve7DHHgH9nyz1kL+TSTh5xeG8cP5DFznLvJJ+/1Suv48dFjc/FHHiCfbsYF+QQzEvLpvFVl2pGQG6AqE1FESVZlIoooyapMRBElWZWJKKIkqzIRRZRkVSaiiJKsykQUUZJVmRP2hdS2m9TYb9a8P5tFfN61lFHyBgcvcvTRyy95KHmbwab/WsFH3W9ttvJbYybtd+1JBar+K+Gb/SKFUg3DRSyBwwzKy7HMtlp+ctjuOBb2B8YfgC0p4TqTKEPQLb1PLzkt9BUZ4KD+SA9qmUUwP3ADeWIErMhT9EvzO+PZNoxJQwlVA/AAv7DXBR0N6uyQMGNW2NTnDTo0GdvudHFybSW7jX0RYLWgNOF2XzHICcGyejIz4c+FVRVtSURBrJAopR9xm7Q3933o9tLzmle7PvoMj2URo7qEvT+ZOcQvSzkpYKJP8mEeUErhRElRmrn5wBWnNY4g5xU22TDMyCkHl3pk7Rl7quSnfYbT/E19Q3a7qa+dy2mrMWI+17MxMYiQCTl4eHq6nvnchtrsIYQougDfJ/RAFNuEBGfD2+kHwz6V8c8t23jBtcGjPU0gawlBGscJUoqeed26vnL8m2u3qvKHDJZYZDdQn7Lrz1Ek5AVkZj3zCvL7m1aLRz6XmUXUSkoCnUGc6PTX5nRnsjnGZ13DQsyafBbNXXnWb3l4YHfmRjzTE5qxgFuTms/VlrolKfWi3KcfsNA1N6AjbHeBYXoKYTuL2oASwCYQ+rk63dK0M2/ufPK43MqwMd9/j2o65MBO6mYnlo9lcesUYWFWnG7iimnFBcBOP4ZgRaDGGGSAuK2fryuPgSUDM40dqqeJj0KqpvsHjG36JmX8+aFUMndLMbgXDVQBkYFDAgjTVU6YTuvp7ApPodFzzUZLoUFLg40RmEITMmJHDwwawg7NYrNDovpnm7QZcyckw2/5a00bJxf6PnScJEGI79Mg9svZQvP6+H1ktgc7lyIRxsuS4CWZSh5NOEidzBL9cBfHG6J2yguIdc2SgWFjaQFwPY+KyVMB6k/M9TJU5bE0FL65C14H+S2DSk8/MeXn5sDxW2vtfBub3ZAaImEPYIZI+OXC5hz9nFtxs1sAHnMIjw1qzq0FS5bv5npVk9ji78NFkr5pYJ4wq461z4bNl46UnnjiPjX7h9/PzP4R1wvD59GJZg0iKk3y2pOS5Wvxb/Pi7ptAfN6ac+EDho8xKgwssMKNwTgQ7QX0H/26qNl2lqj6yzRcStvbvezEY3M2+a8JX5QzqMW3YKrS8PuZSiOu815cC7Ryh1Mrf5iUVl4dILWil/uywwxegkxKGF90z4Un2YLNHZb7TMs9NbVllXBXqmJCsfuZiiGu860YLw/CnMBtRsZ6NbWJWPDJXL8FmbMWA2xhoZAXhsfSFPHe1um/BE590b3WsLz5UhqlEP4ABKUQISgJRJ6YcyFy05z067PZ/HrOrOB3Pdq1DRz/7rvG4sjNt1Qd45+oezFMe+0Kg+rAhUmx8uhYEFbCs4UStRqyQWqrYgj3r9vig35OG/W+zDGJX9cjA77TnKgTZVS/eIFVXRbTr+uZAa9OhBo4eRJG8AuPMOFvgvzilhvUURPeNfDeExfXrKa8L9W1mbMFNlqBgZ0/zO5uhxh6omo0hA0xDPWyWO3DiBGFtzShHNSC9UBqfH8AtlGA/8+PKYUpYcORiNL9uVE7qsB1LQaYIwowyGOdpZ3Mc0w+cUUfTTyxTdLTHDxkriaac2WuUrWYz2XDPGyn3/lTgqOi1O5O7eRPgypSGbdDKUSoTEPKhrRzKIgHgHvSgDsVNDpVnewknZmC67WYROBUua4bN2CRfRF66KmojRuYo8i1OMHkmyT9CYJvEn4SnW+SzhdJ55ssMp8k/UYEnySbbXLxk6uAzdGH/rbzhEO5t44fFi2MfbvnaJkNVaj0t97M2eFdKLndK7XrCLPQAeFL/zX/Hn7s4Yni7pmA2XEeqtMTVb3wG5AetTiBIHJkA6koJMG3Qo7L+s0KDZhpeTqysWvrdUUgCaajlPz7vTSbiqsCDwz63LhnFVlxazghSrmcKOVYnKBTAHJWu+C9FmBgpANA9Kp3qg/DH8X0YcT1ktjwxkbMJ9RGk5s7hhRhT+f9j9lTOp2PgeypjNOehv9nT0n9TNm1Prhp8399lk+vYKb+8/5NHuwpnaaJB0sRzWkpfi9xe5oyo2fH15PcQ5b7388dsWpPXR7sKX2TgAeUwjlREpekPaX7UKPb02hOexqutafzTX5NQJ9O/BSztSjl9DpNlOC7471XbM7VtOKSRcAlQR0LriVBdS3k6bwVs5UnITdAMRuCA4809QgOPLKYDcGBRxazITjwyGI2BAceWcyG4MAji9noERqjYg1aRXQOl8aex0PF2gLelGxtQCUXjUcSQapIKpme82foxIxNJ3TaQh50spBNJwt33f19woNPgbm7tuduHniPes6vbIQkXqZg9kZhM2xu3sIEeEeBDl3CeKVGhpMLQXpuLg5bOu8i4lV0sXbWUdEqpUIRCT0WvJh/5PPVrzRL2K6J08lqE2t6zagVK3hcLZGVd9mii1qmggTg5MfW9VUm9lPAWi3YRQcS/0jlGuK7gwgDZjnyUjNpKiHbHDE2peuJBbPLAQPaRiRInSCyCpWo+svjQ2QxFAdojV+OhP1OC163xK93ViYUvEq1wuUD64ltZ5U7YYeBGKGC5wY1cvytzMm3Qk0olSQpMF4KabdIeEtZwosw9VLgEharK4iWTPiCAHZRlUsUIsgFVcARaVQySZz2d4yYWHsPMVQXmbxbprOA8rRVRx//PPjlPeW4/PLWcqRfXmzymNPpVU13e3QzZ2F/lrawfwlvbtJWYDg3ieDNJd0kgjeXdJMI3lzSTSJ4c8lYKPes55k5a8+IN/8xduh1Qae6BWKhRX9uW+D9pHXgzPLxzVcHDx/BcK7Q6iMHEp2MlwfnupRNkybarp1OOmywdu3bLbnatY9iUsnw3K79YfcKpUunDg9NT26SNndn744m0K59qyVX89ss4xBmUHtOr1y50gDt2vu4142KmXxavHDCuG6DXcTzTaJd+zJO7cw1Be0YpF37pePV1y3UTPaa9D3GLPKNxUOTaNc+hVM5o0xBOQJjtmtfaXFLsWdnrtdW2Y3DdxQV7EyqXXsSp/LiTIgoyOjt2h1udheWHXRbNPdOmdOHgkY7G7ldezSn5n43uubgTSXWrl0o+71Cw33ufgvbJ5itKX//kkm0a8diCNZ27aO0ZE/L2OLU/6V27fS2GEZu1/7Nkqtd+yNmSFsi7dqVvhd6Tl70h++UWjHB/1qu2cF7u3Y6uRkPLci/WHK1IH+lH22iHu3a/6rYvPTyPlt9t7RJL9WghWx88acwDSu6jeABq0ecWP1tWJtr7HbtGWxm7D8S/iKR8NO7CRmMhL+zFRcJ/y9WJUHC3044st5h4WrR3EP3vu8w63Sbx9PmPNtIuGESacXFWR5gZRAS/n+O3mw7IOdb+Jqy3xKPHOkdaHQS/o6cqIBxYzJrB/0O/vBHwh90+sytFK9zXgfmWjh71Pxy1mRI+Btyqk5oHNUZnIS/Wrslitx97wMnNeu1b9D1ax9omU5Dk/BjVoaVRR1YGYOR8A9RLP/z8+OD4St+RluNCo+eaAIk/B05wfnFyoAk/H836WG57ZcfQYsulsv4ciiZuvQxHgl/Q06EwJwm4rblbHGb2Ltho58drnqvve2adXnpy+ZUHgHsEF+CUgE8OjNms2DBuUV+ikSefz/BhQEQVykT+8eCGA52uVbG6MXlQO+wyPq2TNaDAkJda/tAILQP4psH8F1LD5MuAnxnM8MkPQ9WVc5/LXCVwAJdLNR77sdLzSoHrztyq3PKaQtao7Oi9O6ihVB0w1jMEArS3u6xYutilw7G7mb9QigbfPpKZf1VMnR8KR3uofr2tabPjiVHniVuzI2nnZDCbkSckMKvlwTt7xrO77/E6MGSdmTqESjBV5YrpfJoDm6bES611m28IvCbFH3QYWnn4XWoY5V8AHOsaiUloYzZnMqYZBrhj0CfjIVHcLxSA9yXJBrunbp5dgBLVrCyiGssbNohOlapkjYWNuugHqTSYL+go9XRH0cIVsTMC14+MN1vzvI+y6h+DX5AlCZZgeh/mS8qCWWN5FRWoknMHPgovaLVKvkb3fGJqn5qjhnkPG3GxGEOfwfumTdoyezK45KKs1Qu7tLBkzDk8KjnRQYvVFPx+mw9o1TCknNEW9vVEQkNXR39U5ft8fdtVuGUcZe9AIDlJAA3EABA06JXJEq6MnaSiWMv76anSc0CZv1R+17v6XeTaa7MsId9IQDjuQDoOkQbaK74H6vHoTfmNlg9TntrrnocC+uSrsf560Vn8aDu30Nmyzb0iu1VX2UC9Thtrbmym57WJlBUMHnyZAPU41hN3TPRp/1Nn2Xj6yf+XUNyziTqcepxaqe6KWjHIPU4+weI43rf7xo4qc87Uc0P6jiTqMex51SOhSkoR2DMepylsVGua2olhKRNnXy2gZ3rR5Oqx/lhxaW8d0YPdk2oHifvymrPFO9pPpsne8cPOu7UyMj1OE85NXfX6Jor0Xqcnx/3+zeo18p7tn3r5MnSq5tMoh4HiyFY63GAISTi1JX/F+pxbEo3EG8qP9Rv/JT4mwcXVDJ2Pc4Ia656nFhmSFsi9TijRx6K/fgyRbRnllfTsXb13/Bej0Nfm/NQYzLMmqvGRGVdUvU4Fbe/UZr9IvNZuPp8W7t2UaN4r8eh2wgesIrlxKq3YUMdY9fjrGIzY4MOyBvJw9aJdu4PV/zzoMdLaqakUyI8O+mvkiTEMk+Y6pG+qOMrVyfA02PabE6yO37KVCiBnHn94ScgR95n17ZnZs2s67dmuk3Alx0XIljfj5nJKShkjD/LKGDCwgsexUKMSvq5Jx1HpfZp9MZJ9cUCX0jM5SCC/2jnP+X1xZdF5idso2QKoDCZNBDY9SHk4zC14qpczaZKh7w0X/u2F0TLW9w/sOlkki+NBQOtwIq4dUfoTGCFiyiHrAhnwDh8xReTB/2QfBGYPHSNDkqxaMkTRGTTLIgWuQe9CdQz2VD/MW7LqkoeZj47ejouzEwIXV3o6Uurkkde5xOb9NN7PJ3YLOK84dLIHTO6RtawaSRjZlri86BP/vMGOagXTm7ci7on6geLZzTMiIx1eYnfIFQDr4/3u0xUw5AX69UWq1RIIR0jLAmMwf4OC4c1kv5qnWIQ+hHJciHK6IEyqfYm1Kszt3Px67rSgAIw/ctC2nQfRFEfJFWvXxZBvwQhgus4BP0S/EenXwobd7tj1IlnXmPPbEu1eB1+lU6/NKbb8pE3E3oGpB/MWPAofWpHUk4eRi0yPRP9gxH0TGyatobsAYQa0eSDX54Orf9qk3ju24PnvnTZs7M42uKfDh9yCEG9VkCFPHdByNOurFEaT1rD/o591OA7xPfPNxj5v2OmJsWzbeRwBEsUm67s/fJnGwiINIkqdOB6sqF40Yr7FUNz3vyhGNg6619OlZmL8CchuI4JQUkorSmn0uobVmmkCTYLEeEGFd4yUjvvMd2Qc5Qt2KvlS7S+lserZSqs6g58BMVgInWV9PrzizFrPoRN+aVOZs7iEQK6rsxDEzWSfgotgYWAluyCn+rJdFeehXJ9FdFdcSnVhVOplcoyuL44GygQg12G87Oga6ZpNCmcA90MWjpmmw7sKt9DPNWDsEsHvRGd7r2aYEOccOlr2Vx6p/t3ws0V5/2X7d5feuSOmtTzIFZRsfIYjRD2laW6deiv2HpaO4fHxMCliEShINqvymHjPEje7YEEmN5wkO0VEPGSrttSYGQ00hJTMLalGosF1mbFrSOzxbrvgrmphi+M/KLBnnsXZC4+EDauU26dcV3GUtmGzFi+YqEhIb3pejHnGFzCN4BYHfRCzLFUIK1hpl/VGK5BJTYqkLjkeDa628D1rM/4ShtarMv7YsfYUo7RDZhizif4zatwfnMwSkxgOxkbgXrk2KwhzxAX9dTB7b2HVJooC5jVXDj4zrb2x6jjEt5tKPhLccL/0bD9vUn4GRVixW3Ujc8IWO0MvglSI/SOu0W0FMXdzXcvYAoYDqavOzYhCAeTxeZg9ObzcdNqr+T5fERpW7t7uX0P2lk3YFS38+XUBfh83F/UFSSnrQ1becHub808h6wCfD4t67UfEbf8gNfWi86PD66tX7YAn8+p0JQpWY8qBs169nKFZEfE3wX4fFadW/HYecSM4LXbm465X+l4ywJ8PojOvyS3IaLzL9moF9H514IQNZtfOXD91h+iyS4/DnndS10FRJaEaL65X2JrH3ngNN85tU9/PD8biKwIkdW01WERfbxD54/dez9i5GQvILImRHlDwpYlflwUutMuvVf7lx8g+6INIZqxZsWBlHBb3/1TJyf0694sEIhsCVHbMtf9Kn54Hjyp7LkLmc36ngCi8uQDV9+/ODH+Zti61VVav5S2sgQiO0IU2/j3Lu6qpkELrpV+G9djwlAgqkCIGiRYVekj3O+fLf5uMeJO/EQgqkiIVE29IgTul/33lz7nP8LnbhoQ2ROiVt9GjfItJw4evSzE68volvOBqBIherJOYStN6BGaMenTObN/u74DosqEKOboE/M9A7/4jk24/e5Gr5n/AFEVASsNlAMhutKj4Xeb13O8clatiJ639uFWIKpKiF4/O3ok2Gpk8Px+Povtms6GRIqOhGjYjqmxIbad/Dcfjpd2ayu1ACInQrTNseyjurcTQ+dnX6s+4uL8Q0BUjRBZj/ir88AF14M316+3p7nfJBUQORMih4dPGpyZ+TJ8ttqqYqRXhRlAVJ0QTehuETIu+Vfx3LRBr+NHfDYDIhdCVCvK/dSep0N8lvX6sGu2Y2sociVEv4mm/T7M7c/QbUOFFSrkOi4AohqEKKCBZs69IdV85gy81Dy7UvITIBKSk2j3gaNXMoeFZre66hPX1vEMg6iqpoCFqCr2tXJvi2pnw5fKJtfdMKH2KYTZ0Jeoah2biaoSs3vTwmOnxIs35A09U31YBnXpKh6SoFBKEacv2ALgesQdQvK8LNamTh0HAmJghIgOgDoet6AbKOSrMVfVhEDXhYSbWHDHBtIGozKHESA8PmWjXwPN/NOo+Iugm9Xb3Jt045cIv8WjfvnY5NR9KhV98Q6j8pwghA1+btmw1UM7glXpFRu9YuIWkTIwNLC6J6kMtjhSquXY8RPwfnIFtnQix4lQooInrpVx8mgkir2fvNowPlQYuKjOkjcdohIeUcvHtZ/DLB/PF/EdN0C4TnHCdcDGJCI55lFHPSM5d2KiSfPVpYmVaIRxkoEyIQhAtC2s2evMra5sPzzX77woPfb1pje/eFelVRoSj0VUGpISvrVXwZ0Y7L7I4n8PbLAzqs31BK4meSiKLPiT0YFEgrU4rNqAfS8X+85dYvng5K9bqTyYRTqCxQNYpzjBAkOd8D/r2fzPf8wNRWJuoEfoBmNuaGbLxdxgb1sSzA2OFheXHT8WF7Zs8eaab5cebM6js6RbIB6YGzxtuQ6617M1CHPDUvPLa8eddBDlZte7W7mxZUujMzdU50QFjBsTrTItbIOJP+aGC8E2gS2/xgetrbQzdeW4KT1MhrnBglN1P0w1nOGZucFq+Orupy3mhmf8OPplyR0Pao84wzM3YFaG9eg9sDIGY25o6Tw79cX3r+L5cyXm/2aN+mkCzA3VOcGxtzUgc8Oi38rnjVjW0H+JY+be2pHrnpsIc4MFJ0I/tHHbBra47dQiScj3NlX9R2e6mj+tnbKfGo2GgBhNGOUbovvGgY+2GS7sJkBGwmCFGAN+BXFXshBgq9LgHAXA2BLjFcZeROg2XKfAib5/iX5vZhRNSvRYBtarTLTFZYRKXkAD5Srrt62AvUABDNBF8XO2/n1HNtJ/2yKn3PYDYl/TsknwbsQBBexyoZESzf7x0PO2TmWi+ooxCIWNxIJqlfWqO3bEACLHhZtUrgLDF8jRzvZI1O6seqd+C1mR2GNiVsqjH9Rp6UvezJyW+aLCAHt84m6dmgkzwyY/Ej7b3Wl7Qx4Aq8AJGBhRRgmicJ8B/6a5gO2HSYdlwaFLa0yXHFZ17PN3FyuM8w/dV6XLq8wVW3rYY0QmQBniIQkqmbbsGQtqvX2i3H5rULwAmKbafqrkOt9nvA/Y+myS0x2VQwgPqv1WiUu1byqZTnw841e9Qi2bkAL2HE1ZtsLCfpLXbK/t4xYP+3Pph930hB/iUBV+lfe20h6ETcpBFZXkeGBTjHCM2WyO0edq1VuDW231yu7R23FK133UQofKsPhVA7c+4UlmGaytl+nRMb6JSBkHIMdLcLHHSPMfgy0O8xvFw6JSnTwiPW1X+Asz1IH8Kz02FSaVB6A/9kE0kO8LBn9K+eLWp3iHFAAFbjfANkgw2lDGC93I5ucAPZwACf4Pt2lquButTJKxsJf0W+95uNLY3T454w7NDz9eg9qWuFxXrOiAaWOI64XZmOEhf55IO+cVMHnwxuBmgtu7ediZmABhNvNBtExPb4DBXNwt4boF1K/d3YpWxqtl0YnY8MBqopBY7v5rxR8+Iz97TfW6+OzyhjHVqCcy8p/LXP5ShCXBBoPB1hMF2w13DDbCJGxkMwlnytd+27SlMnT8m5fBHldGiinfzTZShtUwCsMSFQqELWALmN3J+2AhLDZm5fGDJQq5FB/kSXJNrFAJlikq3S0BPUvP8Z4MLVDFekTJncqzJd8yALrtij33HQKxOjy46ypTY4XYGGJIAOqOfD/xrLif35J/J1pMjO1DK8bCHsQMn/HLhU1nelUCDyFDOERuLCpkgM2oxOVZw2cdkXPWIqeiDDU4tNCNXOoPnRfmOyhw9bNqE74oF/WhHnMnBgg6pUOV8l4Q7YaNJA60mpY3ShW7RefkBFlBHGoXqNnxCAYhrUzhAf9G7eEf0AcGuf1lKlpJHPwpruF2wBwkVCx4BFhUJ+OqRmqZ7piKM0mKqde+HsQseOWNOpDZBJsFem2EOYZh2MJYAa/fJYa+FAlF/7yxrr0vXfJa16TZpohvGedpiQn4rRCJCexySUDRjhOKplpHtYnNUZlMzz+6teSn/XEJtPyzL8/V8s9KC3mOyUNOr43jB/Jv8itPrOp18l37SDk/QDj8IA+Qj7DjgnywHQn5Zt6qMu1IyA1QlYkooiSrMhFFlGRVJqKIkqzKRBRRklWZiCJKsioTUURJVmUiiijJqsx5x7Nd6is+++1opcg2z8nZxCh5g4MXnV2hlV/yUPK2hU3/tYKPut/abOW3xkza79qTClT9V8I3+0UKpRqGi1gChxmUl2OZbbX85LDdcSzsD4w/AFtSwnUmUYagW3qfXnJa6CsywEH9kR7UMpNhfuAG8sQIWJEP0C/N74xn2zAmDSVUDcAD/MJeFzRmwbWv08zTRFll/jr5qsmaCcXJtZXsNvZFgNVEW8LtvmKQE4JldTIz4c+FVRVtSURBrNCpjHt2nhMDv3mNae2cff3hhXk8lkWM6hL2/mTmEL8s5aSAiT7Jh3lAaQAnSj1smZsPXHFa4whyXmGTDcOMnHJwqUfWnrGnSoJO3fqrY4uH4XtG/rPufmaVf4yYz/VsTAwiZEIOHp4eoWc+t6E2ewghii7A9wk9EMU2IcHJrhtR5xfX3SFpE9WZqjEZShPIWkKQNJwgDdAzr1vXV45/c+1WVf6QwRKL7Aaq5fM0q382/ek3La3h0RZVd7emZhHJ5zKziFpJSaDTlxOdrrZkYLSVzTE+6xoWYtbks2juyrN+y8MDuzM34pme0IwF3JrUfK621C1JqRflPv2Aha65AR1huwsM058QtrOoDSgBgO2Ifq5OtzTt1Jbnrden/eW3/dL6h5c++felbnZi+VgWt04RFmbF6SaumFZcAOz0dQhWBGqMQQaIc/r5uvIYWDIw09ihGjHo2uibVrf919kf7pTe3bUt1RKJwb1ooAqIDBwSQJiOcMK0W09nV3gKjZ5rNloKDVoabIzAFJqQETt6YNAQdmgbmx0S1T/bpM2YOyEZfstfa9o4udD3oeMkCUJ8nwaxX84WmtfH7yOzPdi5FIkwXpYEL8lU8mjCQepkluiHuzjeELVTXkCsa5YMDJtP9gDX86iYPBWgfsNeL0NVHktD4Zu74HWQ3/L68z436hweEpjdt/WxrxfyhlNDJOwBzBAJv1zYnKOfcytudgvA8wHCY4Oac2vBkuW5vV7VJLb4+3CRpGevT9tzZEp10UbnrLM/4kOoLEfE12Vm/4jrheEzcOsX+cVLdn5pNy8k5tmaC3nAJ48THzB8jFFhYIEVbgzGgWgvoP/o10XNtrNE1V+m4VLapwnN9zX/53f/1L4Od6Mq32pGVRp+P1NpxHXei2uBVs5zauWoSWnl1QFSK3q5LzvM4CXIpITxRTPhBxyy8XvrGj5v4IYDQ7MGlaMqJhS7n6kY4jrfivHyIMwJ3GZkrFdTm4gF/9jrtyBz1mKALSwU8sLwGFz6xtnRs277bvh1waGqX9p1o1EK4Q9AUAoRgpJA5AYnIqfsSb++nc2v58wKftejXdvA8e++ayyO3HxL1TH+iboXw7TXrjCoDlyYFCuPjgVhJTxbKFGrIRuktiqGcP867sLRzmmj3pc5JvHremTAM+2JOlFG9YsXWNWlM/26nhnw6kSogZMnYQS/8AgT/ibIL15mnNPEoHk/gkeVe7bCt3S76tTBxxbYaAUGdv4wu7sKYuiJqtEQNsQw1MtitQ8jRhTe0oRyUAvWA6nx/QHYRgH+Pz+mFKaEDUciSvfnRu2oAte1GGCOKMAgj3W6djLvMPnEFX008cQ2SU9z8JC5SrLnylwptZjvZMM8bKff+VOCo6LU7k7t5E+DKlIZt0MpRKhMQ8qGtHMoiAeAe9KAOxU0OlWd7CSdmYLrtZhE4FS5rhs3YJF9AJbMTkVt3MAcRVYlBN8k6U8QfJPwk+h8k3S+SDrfZJH5JOk3Ivgk2WyTi59cBWyOPvS33h5X87YMlfqPqvFgxsdtn59Q6W+9mbPDu1Byu4iGwTcGPDrrneuf+qjmpRZNirtnAmbHPqhOT1T1wm9AurXSCQSRIxtIRSEJdu+lHLm0bf3AjP1pq6bOrzmsCCTBdJTqZPVSr7l/WjxX2vJQ3X7DrHhAKYsTpWWVGBSAnNUueK8FGBjpABC96p3qw/BHMX0Ycb0kNryxEfMJtdHk5o4hRdjTXf9j9pRO52Mge9qZ0552/M+ekvrJej8mo/L1W2H79p7o5ZSkOsmDPaXTNPFgKSI5LUVAidtTl+jDreetveO3Wv7s36DfN7bgwZ7SNwl4QKkjJ0q/lKQ9pftQo9vTSE572lFrT3eb/JqAPp34KWZrUcrpdZoowXfHe6/YnKtpkTwsCSpV4loSWGshz+WtmK08CbkBitkQHHikqUdw4JHFbAgOPLKYDcGBRxazITjwyGI2BAceWcxGj9AYFWvQKiKHGJ09j4eKtT28KdnagEouGo8kglSRVDI958/QiRmbTui0hTzoZC+bThbuuvv7hAefAnN3bc/dPPAeNRouGyGJlymYvVHYDJubtzAB3lGgQ5cwXqmR4eRCkJ6bi8OWzruIeBVdrJ11VLRKqVBEQo8FL+Yf+Xz1K80Slu9yIUja5E149tcatVdPa1WRzRJadFHLVJAAnPzYur7KxH4KWKsFu+hA4h+pXEN8dxBhwCxHXmomTSVkmyPGpnQ9sSC1IjCgbUSC1Akiq1CJqr88PkQWQ3GA1vjlSNjvtOB1S/x6Z2VCwatUKzw9oJ747ciKJ+wwECNU8NygRo6/lTn5VqgJpZIkBcZLIe0WCW8pS3gRpl4KXMJidQXRkglfEMAuqnKJQgS5oAo4Io1KJonT/o4RE2vvIYbqPpN3y3QWUJ626ujjnwe/vK4il19eUZH0y/tNHnM6varpbo9mcBb2p2sL+w/w5iZtBYZzkwjeXNJNInhzSTeJ4M0l3SSCN5eMhTbvrd/gxNp5gdsuuFqrf6gaF4iFLh+5cbju9JchaUkR1+IOKA4xnCu0+siBRCfj5cG5HmTTpIm2a6eTDhusXfuqylzt2hOYVDI8t2u3c9wx55j8eejKy3+Mbp552BTata+ozNX8Nt04XCjUntOLFy82QLv2ybMHWgalxoUs9Iy8Mv6PU0km0a59Gqd2xpqCdgzSrv2Lol6Ufd0V4m0ql/sdnCKomXRjtWsfyqmcBFNQjsCY7dpnWeckaDZJAha++qt+ysfjVFpiY7drj+FUXk8jcUCZZLv2Iw5dUnu0nRWSHjx+u/uBxEwjt2uP5NRcgNE1B28qsXbtKdXMa6XWig+d5Wd7Ntl+MrWxubHatWMxBGu79gQt2dMhtjj1f6ldO70thpHbtT+rzNWu/Q9mSFsi7doFY/5st/b0Tf+dvef/VV0xaRPv7drp5GY8tCB/UpmrBfkd/WgT9WjX/mlZSo56W+XwTSPzJlb/q48N7+3a6TaCB6z+4MTqjGFtrrHbtR9mM2P/kfAXiYSf3k3IYCT8oipcJPy1q5QECX+3yS6aF+N+8duwdsDlw+e87vN42pxnGwk3TLyrcHGWt6piEBL+7EuP485erO43N/iQ3d5R6u1GJ+F350QFjBuTWTvod/CHPxL+cuOjtzmEXw3IObdqWHR/x54mQ8LvxKk6O+OozuAk/NcedcwNfh8aNG/QxczH/dN3GJmEH7MyrCzqwMoYjIT/kTR1xZUGft4TuyVEmNWtOt0ESPjdOcGpXcWAJPw7nlp0OHiwc8DWQ7uON6/950sToLOACDlxIgTmNBG3HWGL28TeDRv97HDVe+1t16zLS19SG+NYY4f4EpQK4NGZMZsFC84t8lMk8vz7CS4MgLhKmdg/FsRwsMu1MkYvLgd6h0XWt2WyHhQQ6lrbBwKhDRDfPIDvWnqYdBHgO5oZJul5sKpy/muBqwQW6KXTSKnPhu1r/LMtOo65W2kxtadtkXp30UIoumEsZggFaW/XVWHrYpcOxm6GfiGUDT59pbL+Khk6vtxwd2rOj7Nz/dc7BTb5u30mlUuxnC92I+KEFH69JGh/53F+/6lGD5a0I1OPQAm+slwplUdzcNs0/DTTIVtWwTerYURCu3VraGOVfABzrGolJaGM0ZzKGGIa4Y9An4yFR3C8UgPclyQa7p26eXYAS1awsohrLGzaITpWqZI2FjbroB6k0mC/oKPVh+0ddnUc0807883uTR3iKlK39CzhB0RpkhWI/pf5opJQVjynsqQmMXPgo/SKVqvkb3THJ6r6qTlm0PGZHmd6dz4aMGZT5S3dLc2eFmepXNylgydhyOFRz4sMXqim4vWL9YxSCUvOEW0lPpnuvfONW0CW75llgoNfxhp32QsAmEECcAMBADQtekWipCtjJ5loU/bHhr9TN/rldvnFtXXZ7qOMetgXApDIBUDX/tpA8+j/WD0OvTG3wepxGjlw1eN8ZEaWPNfj+LUMn/jcolPw+h6yfhdXnf/DBOpxGjhwZTdrOJhAUcHo0aMNUI8zvM3In3NnrgpettvnSoY476lJ1ONU4dSOtSloxyD1OIsc5z5XXF3qs31L7+9eiScqmUQ9TilO5Xw0TrxkQvU40ac77DwaUs8r2+ehTfXs0k9Nqh7n3ypcyrtv9GDXhOpxXHNXdX9+tZt/6pmv1bf7nqtj5HqcPzk1d8HomivRepwqbQ5sX64cEzjh2eoFLUtPmmAS9ThYDMFaj/NRG6ce+79QjxPQQDPn3pBqPnMGXmqeXSn5iZHrceIcuOpxujkYph6n4t3RMvX1U94rXw1xm77XfSnv9Tj0tTkPNSYDHbhqTCQOJVWPcy5tYTdPj82hG1+2enjuxrVzvNfj0G0ED1h148Qq1LBxqLHrcY6zmbFBB+SN5GHrRDv3hyv+edCDmq+y7pQIz076qyQJscwTpnqkL+r4ytUJ8PSYNpuT7I6fMhVKIGdef/gJaKqc3QeOXskcFprd6qpPXFvHM6zvx8zkFBQyxp9lFDBh4QWPYiFGJf3ck46jUvs0euOk+mJBM0jM5SCC/2jnP2Pri3c0tT9hGyVTAIXJpIHArg8hH4epFVflCTZVOuSl+dq3vSBa3uL+gU0nk3xpLBhoBVbErTtCZwIrXEQ5ZEU4A8bhK76YPOiH5IvA5KFrdFCKRUueICIbTrbIPehNoH6SDfUf47asquRh5rOjp+PCzITQ1YWevrQqeeR1PrFJP73H04nNIs4bLo2ct6Nr5BSbRjJmpiU+D/rkP2+Qg3rh5Ma9qHuifrB4RsOMyFiXl/gNQjXw+ni/y0Q1DHmxXm2xSoUU0jHCksAY7O+wcFgj6a/WKQahH5EsF6KMHiiTam9CvTpzOxe/risNKACzZQVIm+6DKOqDpOoOFRD0SxAiuI5D0C/Bf3T6pbBxtztGnXjmNfbMtlSL1+FX6fRLY7otH3kzoWdA+sGMBY/Sp3Yk5eRh1CLTM9E/GEHPxKZpa8geQKgR3SDgF9cty0vl+c9pmzlgzYTjLYqjLf7p8CGHENRrBVTIcxeEPA0rGKXxpDXs79hHDb5DfP98g5H/O2ZqUjzbRg5HsESx6creL3+2gYBIk6hCB67mS4Q/3/1+WrQs5tahRFf7DE6VmYvwJyG4jglBSShNyKk0B8MqjTTBZiEi3KDCW0Zq5z2mG3KOsgV7tXyJ1tfyeLVMhVXdgY+gGEykrm4OGXpmtjxHvNVm44/h//Ryo+vKPDRRI+mn0BJYCGjJLvipnkx35Vko11cR3RWXUm04lVq6AoPri7OBAjHYZTg/CxI8Ok0K50A3g5aO2aYDu8r3EE/1IOzSQW9Ep3uvJtgQJ1z6aTaX3un+nXBzxXn/Zbv3lx65o+Z4aq1sVKw8RiOEfWWpbh36K7ae1s7hMTFwKSJRKIj2q3LYOA+Sd3sgAaY3HGR7BUS8pOu2FBgZ1bTEFIxtqcZiwZdit6i2xbrvgrmphi+M/KKDlrx/8mfcr+IZ/1Tu1D97C5U5xYzlKxYaEtKbrhdzjsElvCPE6qAXYo6lAml5O/2qxnANKrFRgcSlXd8qZeznx4dtiC33rKn12fOMLeUY3YAp5nyC39yM85t/MWyDaZbtZGwE6pFjs4Y8Q1zUU/vXVa6mGG/lN6HsnX+fK7pS96AwliJDwf+qPBf8j4wDP6NCrLiNuvEZAaudwTdBaoTecbeIlqK4u/nuBUwBw8H0dccmBOFgzrA5GL35fNy02it5Pp99r1RmbYZdDNiWNzl86Lw6wgJ8PvbdLLw7HdsSuLzCfIexaxT3C/D5HEnaePN0mwuBGfIbz9KjA5sW4PM5cn/AzF6LVMG7F763rDW0+e0CfD4f7q1ZtVM1yGtukG1Mlb72xwvw+SA6/5LchojOv2SjXkTnXwtCNN6yddDuES5hGaP2p9xv/8QaiCwJ0Yvdf6Yk+P4RtHVKyC53txajgciKEN2YNS9z56tIr4WrVszvOazlr0BkTYgs6tzrduRaj+Adw2ZpElN2iYDIhhC1G2XTWLr3N9/UC2dkDTY92ANEtoTocamINd8iHwdtq3tt/qAtlb2BqDyJxq+WXQaED/Za+KNn18i/tswBIjtC5H60q8PH8Vd8lt++1nXmbok/EFUgRKWGmYeWFgp8l+bVyXs049gKIKpIiEq39o85+o+n174/qtmOHdp4PBDZE6Idw2zaZJ2/673taPiKpQ+b9wWiSoRolEfYvsjfvgVmp95+17nCnllAVJkQJQVVl5facTz4wLWuj+0+/WUDRFUErDRQDoRo26Y/GwtU4IGPdzpPfhpzHYiqEqIBQ5+VTn6TFzj97rpPQ1XPdgGRIyEanej0+8KnYwM2lorWZH5O9gQiJ0I0Y8wRm07vr4YvvbSwzPT6jYYDUTVC5Lv9nMDsZbvwCZ5vnA9fPVgHiJwJkV/a8xsTv24MGuXlq259cDHUcnVC1PbavDyXR99Cd4iXJQeVKQd5pVwIUdU6G+6LSqn9dvipKu2xd4kGIldCVL/+njeLNv0jmvPyydzfJpaXA1ENQtQh9bIyya+e17bhz0bd6j4fEoQKCVGt0dt7fv7pGH7g99sfJ7kHLWQQVdUUsBBVtXm8YnDzNWu8dk9bf33Zng8ZPBBVnWUzUVVidm9aeOyUePGGvKFnqg+jfpa5eEiCQilFnL5gC4DrEXcIyfOyWJs6dRwIiIERIjoA6njcgm6gkK/GXFUTAl0XEm5iwemqkDYYlTmMAOHxtqr6NdDMP42Kvwi6/17F6LAzbToGrz357Ppc/4lTeTyMynOCEDb4OVmVrR7aEaxK91fVKyZuESkDQwOre5LKYIsjpVqOHT8B7ydXYEsncpwIJSp44loZJ49Gonj6SbxTG8v5QTMDT2yYP6L8XGr5uPZzmOXj+SK+4wYI1zZOuNZVNYlIjnnUUc9Izp2YaNJ8dWliJRphnGSgTAgCEG0La/Y6c0G98dcmdBjks+binO2XHnfpQas0JB6LqDQkJXxrr4I7Mdh9kcX/HthgZ1Sb6wlcTfJQFFnwJ6MDiQRrYVJwjZYVDgRPsthjHRTQi7pSLNIRLB7A2sYJFhjqhP85x+Z//mNuKBJzAz1CNxhzg4sjF3PDd/18pY7MDZqXLWZPenjDa+3t/hd+ez59Co/Okm6BeGBucHbkOuhe0dEgzA21Iu13ZTVYJVp056/WZg9aLzM6c4M5JyrfjeMTdagyLWyDiT/mBo9zDy5ezzgjnqdssKr0kZUbTYa54W1VLtU9MdVwhmfmhpFL4+++W9jXf/WqDr2mPrl+1sjMDZiVYT16D6yMwZgbZja+Xcba83hoVtOKF71m1qUWRRuHucGcE5zvVQ3I3PCzS+7PHt+3+c4NWDbAcuk/VApH4zE3YHOaFaEn2rjtPFvcdmqRJOR7m6r+ozNdzZ/WTtlPjUZDQIwmjPIN0X3jwEfbDBd2EyAjYbBCjAG/grgrWQiwVWlwjgJgbInxCmMvInQbrlPgRN+/RL83M4omJXosAyvWINriMkIlL6CB1676bStgL1AAA/QBhRcJs3z7eXgtcw106nAl+AotmwTvRhxQwC4XFinR7R8PPW/tahDVV4xBKGwkFpStoVfdsSMGEDku3KRyFRi+QI52tuqmc8edvPQmbMqsEcp/RzboQJ2WvuTNzGmZLyoMsEBFwJM+eS2CpytOBXUbeaYKD4B9deUCDIwoowRRuM+Af9NcwPbDpMOy4NClNaZLLp9zbMGDjI4fvHJa1n32T6JdRXuMyAQoQzwkQSXTlj1jQa23T5Tbbw2KFwDTVHvszc88396d/PbXvzXz88iWbXlQ7T+cqr1lJNWi4uMZv+oVatmEFLDnSGW2n7puTZtpvwZla55mj+gn9KIn/BCHqvCrvLeV9iBsUg6qqCTHA5tihGO8wOYYfa5WvTW41Vav7B69Had03Udtq1QZFr9q4NYnPMksg7X1Mj06xjcRKeMA5HgJLvYYaf5jsMVhfqN4WFSqm0ekpe0Kf2GGOpB/pcemgsYJgP7YB9FAvi8Y/DFOxa1P8Q4pAArcboBtkGC0oYwXupHNzwF6OAES/B9u09RwN1qZJGNhL1nTQ1m+ljAzdMua5n9IxGOoh9jLdcWKDpg2hrhemI3xWXA+YcMRK68tjlunD/xtcQ0ediZUEGYzH0TL9PQGGMzF3RKuW0D92t2taGW8WhadiA0PrCYKXaa35uGtmV/8QxaN6jr7+YPxi6gnMvKfy1z+UoQlwQaDwdYTBdsNdww2wiRcZDMJZ8rXftu0pTJ0/JuXwR5XRoop3802UobVMArDEhUKhC1gC5jdyftgISw2ZuXxgyUKuRQf5ElyTaxQCZYpKt0tAT1Lz/GeDC1QxXpEye2d2JJvGQDdesWe+w6BWB0e3HWVqbFCbAwxJAAX1p2Z+SKvrO/Wjh367Dp3cic1fMYexAyf8cuFTWd6VQIPIUNbiNxYVMgAm1F5OrGGzzoi56xFTkUZanBoIeF7s6HBxHmfx4euu73bZfA6iS31mDsxQNApHaqU94JoN2wkcaBV3ckoVewWnZMTZAVxqF2gZscjGIS0MoUH/Bu1h39AHxjk9pepaCVx8Ke4htsBc5BQseARYFGdjKsaqWW6YyrOJCmmXvt6ELPglTfqQGYTbBbotRHmGIZhC2MFvH6XGPpSJBTO8sHVrmc8982de/v+rKjNrWiJCfitEIkJ7HJJQFGPE4rqWkd1ic1RmUzPP7q15Kf9cQm0/PvuyNXy770jCfllk4ecXhvHD+RW/T9crbspPnj+9jBxjXc5r3mAXF6NC3JJNRLyK7xVZdqRkBugKhNRRElWZSKKKMmqTEQRJVmViSiiJKsyEUWUZFUmooiSrMpEFFGSVZmDfIKH9anVKWjGrsEXUrzzTjNK3uDgRY4+evklDyVvV9n0Xyv4qPutzVZ+a8yk/a49qUDVfyV8s1+kUKphuIglcJhBeTmW2VbLTw7bHcfC/sD4A7AlJVxnEmUIuqX36SWnhb4iAxzUH+lBLZMI7doN5IkRsCLv4qjX3rUznm3DmDSUUDUAD/ALe13Q5dvjUyza2/hOSHi9z325x7ji5NpKdhv7IsBK7Ui43VcMckKwrJYyE/5cWFXRlkQUxAqJ0vwydx4G74jyXvJ1xIut5l9r8VgWMapL2PuTmUP8spSTAib6JB/mAaUunCj5OTI3H7jitMYR5LzCJhuGGTnl4FKPrD1jT5XEttl8xu33H2Gj1mT8UaPX5AFGzOd6NiYGETIhBw9Py/XM5zbUZg8hRNEF+D6hB6LYJiQ4g73u3K4R+EycFRjze8iFqoEmkLWEIPXhBKmLo3553bq+cvyba7eq8ocMllhkN1DRN34mnrhfx3fcL23XNzxmMYmaRSSfy8wiaiUlgU4wJzre2lj0DzbH+KxrWIhZk8+iuSvP+i0PD+zO3IhnekIzFnBrUvO52lK3JKVelPv0Axa65gZ0hO0uMExHIWxnURtQAgDbRv1cnW5pWqccv1NXhRkh8wbfTWmyaiQ1OWWN5WNZ3DpFWJgVp5u4YlpxAbDThyFYEagxBhkgdunn68pjYMnATGOH6pXzZOmr5bUCNqY6XXreffpWqiUSg3vRQBUQGTgkgDBt5IRplZ7OrvAUGj3XbLQUGrQ02BiBKTQhI3b0wKAh7NA1Njskqn+2SZsxd0Iy/Ja/1rRxcqHvQ8dJEoT4Pg1iv5wtNK+P30dme7BzKRJhvCwJXpKp5NGEg9TJLNEPd3G8IWqnvIBY1ywZpOJ0AbieR8XkqQD1Iy56GaryWBoK39wFr4P8lqunTJ3RfNiegO3iMrvvJEf+Qg2RsAcwQyT8cmFzjn7OrbjZLQDPPQiPDWrOrQVLlusuelWT2OLvw0WSfrjUwx5tdnf2Wv7VfLP1T1EwNfuH38/M/hHXC8PHcm3nSy+tA0J2NKx9VhK01oEHfM5x4gOGjzEqDCywwo3BOBDtBfQf/bqo2XaWqPrLNFxKe/DlVd9SJ7aGTG0Z1T7r+K2WVKXh9zOVRlznvbgWaGU3p1Y2mZRWXh0gtaKX+7LDDF6CTEoYX6RiRk9pFTnk6J3QnPseT2taNaVuypQLxe5nKoa4zrdivDwIcwK3GRnr1dQmYsFlF/0WZM5aDLCFhUJeGB53S5V+vfPjbv8D3qUa141OoW7HmovwByAohQhBSSByhBORbS6kX7/O5tdzZgW/69GubeD4d981FkduvqXqGP9E3Yth2mtXGFQHLkyKlUfHgrASni2UqNWQDVJbFUO4f90WH/Rz2qj3ZY5J/LoeGfCZLkSdKKP6xQus6sYw/bqeGfDqRKiBkydhBL/wCBP+Juj+L5Wm+ndodjZ4q6TnhMb7T0qog48tsNEKDOz8YXZ3OsTQE1WjIWyIYaiXxWofRowovKUJ5aAWrAdS4/sDsI0C/H9+TClMCRuORJTuz43aUQWuazHAHFGAQR7rMdrJfMPkE1f00cQT2yQ9zcFD5qqfC1fmqrsW8z/ZMA/b6Xf+lOCoKLW7Uzv506CKVMbtUAoRKtOQsiHtHAriAeCeNOBOBY1OVSc7SWem4HotJhE4Va7rxg1YZK+DJbNTURs3MEcxxxXBN0n6EwTfJPwkOt8knS+SzjdZZD5J+o0IPkk22+TiJ1cBm6MP/a0kIMvzVD9FQG61hv6hknZpVPpbb+bs8C6U3G7Ahb/e/1bK02tmqXnz2wzq0by4eyZgdqyF6vREVS/8BqRLXU8giBzZQCoKSfDpnts2VLicK06/ntw5YfA/kUUgCaajFDVm9ZZTT2RhWYL4/9fed4A1kbz/R+UUROwiiiVYQWkWLNgSktCLgl1PjRAgGggm4RDLiR0LdhSxYsXeez17O8/ezga2s+t5nuVO/c9sCezu7JKYJcn9/l+ex+eRHXaz+bwz7/vOzGc+7+fYwHkNeEBpDidKk+swJAA52S54rQWYGBkAEJ31To1h+KOYMYy4XhwL3liP+YhaaHL1wJAi/Omt/5g/pcv5mMmfduL0p27/86ekfVqNPbK3xM8h0i17j37o/qy7nAd/Spdp4sFTdOD0FC2K3Z9e+Xlqm6MDEkN2VW/Z9tCDO1E8+FP6IgEPKLlxolS3OP0pPYZa3J924PSnbnp/+rvVzwnow4kfMptPiRpvMyRJ0p3vRfGbr2RE8jAl+Mo5JfhbPyW4zRuZrTwJuRnIbAgNPD2ZjamBR5LZEBp4JJkNoYFHktkQGngkmQ2hgUeS2egZGoOxBr0isovR1fN4YKzd4c3I9mY08vfpSCJEFUkj0/f8GTaxYbMJXbaQB5vcZbNJ9u77vSY+/Bi0d/eOvVsG51HP+f3QWZ6oUDFro7A5NlexMAneUahClzBRrVPg4kJQnptLw5auu4h4FUO8nX1UtEatUkXCiAUvFhz5fNOJ5gmXDwvLm/D6YNie7gtkqVKHoWye0LabVqGBAuDkxzaUqpMHqiBXC1bRgcI/MUod8d1BhgF3OfLTVtFMQpY5YixKN5IJlLWAA20rEaRNlJQNk2vilImhilhKALTHL0fCeqeFr9vh17uqkwpfpXrhxWGNZGvia52sgIHYWQPPDeqU+FuVId8KNaA08pSgxBgou0XCW8IOXoRbL4UuYbm6iijJhE8IYBVVpVwlgVpQhQKRTqOQJ+h/x4SJ9fcQXfWe1YdlugooT0t19P7PQ1zOrMUVlzNqkXH5vtVjTpdXtd7l0SmcxP6xemJ/Hm9h0kFgvjCJ0M0lwyRCN5cMkwjdXDJMInRzyVzo16wvo5ef/lE0IeHln/8u8x9VKBfq/PhtxSUZZf3Hbpxwok+Xh8mM4Aq9PrIj0cV4eQiu+WyWtNJy7XTRYbOVa59el6tce5+6xV2u/axuV1humWjZiuA7+4Lm/EKdT1mmXHtGXa7it2PrWkHN6Tlz5pihXPugU5lN+v1aOWDL+tWb03p+yLKKcu2pnNZRW4N1zFKu/cyr30rOq+0syvj6S7L8QA2qtomlyrUrOI3TxxqMI7BkufYmuS/nRO+RBh/qMse2RuiBa1ZVrr0Lp/ECLGM86yzX3mnvH99yAhcHLbFTNSy14PUPFi7X3oHTci0sbjl4U7GVa19c3jdIeGhFUO7jbWPKvOr4j1WUa8dyCNZy7cAREnnqA7Y89b9Urp1eFsPC5dqv1eUq136YmdIWS7l2x6itNkp3t4B1H/IWXfjWbxjv5drp4mY8lCC/UperBPkZ42QTjSjXrgs9Nn5Nyl7Jtujl3eSj1lYzfQjTsKL7CB6wOsyJ1U7z+lxLl2t/yObG/ifC/10i/PRqQmYT4fcUconwlxcWhwj/jr13pt37PEKac32/f99zrcrweNqcZx8JF0zchVya5fWEZhHhbzE5rOPBHVUjVvnMHTFiYnmpxUX4nThRAf3GauYOxh384U+Ef67mceUyO9oETB1QO1lXoxpVDNOSIvw2nKb7bJnJg9lF+Ct11NWw26+TrO4//d2Mbw9OWliEH/MyrCrqwMuYTYT/zrJFg22rLQ46cLrryvanX/awAhF+J05wygvNKMI/613z+allO4QtbBbSsO7ov0dbgZwFRMiGE6HP+unnI7a8TSZu0vRbhyvi3Lt11lxa/JrKILPHDvElqVUgojNzNlsWnH0KtkiUBfcTWhgAcY06OS4e5HCwyrU61igtB3qFRda3ZaoeFGo0lNsHEqF5EN98gG8uPU26APBNYKZJRh6sqlrwWuAqgQVabt7dt1XuyZzQdPnZRgsWLVhteu0uWgpFd4wmplBQ9jZTyFbFLgv03SnGpVDl8OEbo4jTKND55YWZ9e847H8qnjW3lniq+6HFtBNS2I2IE1L49eKQ/R3N+f1TLJ4s6XumEYkSfGWlOkYZzaFt03v952/xrSLEmZtOPzj0PrQCta+SD2D2VX1LcRgjgdMY0ZYxBqM4tjE7Fp4hiWodCF/yaLh26urdAUxZwcwiwV3YrEN0vFoT4y5s3kE7RKPDfkFnq2UOJ8S4yz9J1/dfvLOyTx51S94OfkCULlWFqH9Z0FQcxurFaawIqxg58FFGZavVCha6E5M1A7UcI+i3rEqHHNXVAlfWHTTm0r6026ZMlU2dOngTjhwe9bzA0IVqJls30cgslfDkHNnWeZHio6bLlpB9NXzC7j3Zvduy014AwHASgBsIAKBrMSoTJUMZu8hEpQcnQh2yu4fMqVN1R0X5w88WPewLARjABUD3SCGZaD7+j/Fx6IW5zcbHcXTh4uPkMzNLnvk4P7wRu/YWZgVlNvll/Z17zj9aAR+nqgvX7mZZFysgFQwbNswMfJz7i0fGfUlJEM1b1apf1WWvHlsFH0fAaZ2/LROSLcDHGX3MRRLfor7/vsqTfq3p/TzAKvg4L4Rcxsm3BuMILMnHGRuond934enQBYcazbk39PRGq+Lj3OA03nmLJ7tWxMdxmDeyjueR68FTSj1M901Y/NLCfJxjnJbba3HLFSsfZ+t2cZ1Fi7witm/rfT/zanCiVfBxsByClY+Tr89Tn/xf4ON0SLukTvFvJNo+8vnoO73nnbQwH6enCxcfx8/FPHycdm6p70okXg9Li+nW8p8OK1bxzsehz8154Jh0d+HimIS6FBcf51SfN5fHu5+SZoV6PLSvdzWBdz4O3UfwgJUfJ1ZtzDtLsDQf5w82NzbkkLKpMnytZNfBCNWTh31eU3dKuiTDs5MBGnlSPPOEqRHbFw2kSm0SPD2m381J9cBPmQrlUDMvDn4CsufVG7Oj76dvThGHet39MMkjOJv1/Zg7OYUbGf3PLgq4sIjCR7EQvZJ+7snAXql/Gr1wUmOZwBmewneUwH+0858JjWWqmrVPOkQpVMBgipgg4NeHko/DzIqb8imbKR3zM6SVfX+T5Pg8OLTpVAqVA1LCD23ASrh3R9hMUBZvohyyIoIB4/AVX0oe9EPy36HkYWh2UILFSt4gI4snS+QeFhOoP2ND/ev4rSuqeNr47ezrlL0qKWxlkacvyxY/8gaf2KSf3uPpxOZ3jhsui+ypSbfIczaLLJ2Zkfwi+GPA3CGO2uzJ7tQVq9L+kDyjY2ZkrNNL/AahFkR9vN5lshamvFittni1KgbKMUJKYCz2d1g6rJPHaQ3KQehHJEuHqqMHK2L0N6Fenbmci183VAYUgOniDGXT/RCkPiiqXsIZIb8EIYLzOIT8EvxHl18KH3+3Y9TJ56JxZ7en2b6NuEKXXxrbI2fUraS+gVmHl85/nDW1I9lOHkb9bnkm+gcj5JnYLG0P1QMIM6Kr4OTUnVEy5YZko2v8+z13oxuaYi3+5fChhhC0a0VUynMfpDzVnC1SeNIe1nfsrwXfITGuwGEU/I65muHevpEjESpRbLaq7F8w2kBCpEvWoBPXTe5l4xbcXOu3b+Sti9USKgk5TVZGgj8JoXVMNBSH0ew5jVbCvEYjXbBNqAR3qPCWUfpxj9mGHKNsyV49KVH6WpmoVWgw1h34CIrDRNqq+4OPpUuvGRsybvO2IStyBp2l26pMWLJOPlClF7AQ0Da74Kd6M8OVd9FaX98XrriM+qEml1Ff1mRofXEWUCA6uwLXZ0GCR5dJ4ezoNtDTMct0YFf57uJpnoRfOixGVLoXeWFdnAjpL9hCepcH9yLKqM4HLNlzsOSonS5UmcKyUfHKWJ0Q1pWlhnUYr9hqWjtHxMbCqYhcpSLKryph4Two3u2JBJhecJDtFRD5kqHLUqBn/KAXpmAsS7nLBI9MLlHtgFXfBWNTC18Yze88OezZssyTouzhvzlGeYZTC6LasHzFIlNCetF1E8cYnMKXglgdFiHGWBpo/cQsSs3JGsMtqMZ6Bbps/OnlLYbN/lOyfcXChsuVv8gZS8qxhgFj4niC3/x1Da5v/si8BaZZlpOxHmjEHps91Bnikp6aX99x9PmX6f5zxr6qfSqjRTi1X8K7zQX/75zwX7QM/AyGmKmFuvERAdnO4JsgLUKvuPudnsLU1XyPQq6AEWAGeGADgggwL9kCjNF6Pq566xW/nk+1C15uS367Jt5w62SDw68yTxbS82nz9/wBlcUDxQtVnyQfor2fFtLz8f318qUDtZaKp8/u9fHD8V1XC+n5aO5fWRRzZJV0b6lb5+bmTf+hkJ7P4S+21/P2Hgg8FP1HWNjN+NeF9HwQlX9JbUNE5V+yUC+i8q8t0bR2ecOb5dpHBky2T9joWdXxD9BkRzS1fT912IOnR8Rjex/7fMNmYSnQVJZomtH5icvlKc+Dt/YK//K207vjoMmeaKoT3Gj7o9lf/TPaN9F+WenwGDSVI5ruZI2rvLhNp4Cc4EHHatUSaECTAwlUdLtR7Vut8h+7eciPV39dMQQ0lSeahPkrjiydVFa2YXtnZfOd0lTQVIFomiyqV9atdV3/nVuvPSnhnuoDmioSTZ0zjxyt8c/twC1dfEf3aDGyLmiqRDQdcPiYdUQxSTR1uM2pCs77oJJSZaIpLv7RIGFgxaC0z48rBNp1jwNNVYim3Mp5fzdtPFmUVjMvb8LpAPjAqkTTuiyfRUt73Azd9VOO//aHmmGgqZqAVQbKkWj6dMJxxOnDa6TLs2Y0zPQ90go0VSea5M/bdnX3DfHPqnenyqV5YRdAkxPR9C1p7DEXT1/pBoldpf0N4kSgqQbR5F7F72RHySq/qQ62Zb78/Pg5aKpJNJ2fVHnHrarRflOWJ/3aaU7z7qDJmWgq1bR1hODWyLBt3qVaVp6vgXqOtYimzNzP55r4lgo52HbYpN5XtiwCTbXJDvDL7K+nmjuFb3mw+06t684hoKkO0ZRxKqRDxQfr/KcvCppcteWLw6CpLtHU5W25xiEuGtF0ryORzd5JaoMmIdHUatvutXZRQUGLVh0vfTSvjC1DqMpFwCJU1a7WlWqPlzmErsxyvv6o94FohNswVqjqFZuLqha7Z1P28dOyhevzh52tNWIpdeoqG5qkUscgTl+wJcCNiDuE5HlZrEydNgEkxMAJERUADTxuQXdQyFdjzqqJBkMnEpBbVB/KBqN2DjuD9PhZPeMKaBacRsVfBPndBtyZ3l738qfwdcdruMyUBOfweBiV5w1CWODnaz02PrQTmJX+Vc+onNgnUgG6BsZ7ilHAEkdqrRI7fgLeT6nCpk5kPxHKNfDEtTpBGY1W6N7gVGpITfuIvdfKLeq+f0I3Kn1c/zlM+nhBE995A4TrGSdc9+tZRSbHPOpoZCbnQQy0mAJz6eLlOmGCfLBCCBIQfQlrdp7514ODf6pVK0IyR3D5eNcOKzrSmIbEYxFMQ7KFb+tV9CA6uxRJ/vfEOjuDbW4kcC7koSiS8KegA4kES1O9+5qoe+OkM6eKe7wS+Hcw/QgWD2A94wQLdHUi/rxmiz//U274LuUGeoZuNuWGqPpcyg0t6heHcoPH9uNJzV+mB65tUrX7qJnzVvMYLOkeiAflhi71uQ66B9Q3i3LDxFGzkjdF7AqY2yat+76ut89bXLmhAycqoN9YKcu0qAUm/pQbTq/Vldj6rqPf7EEbr5bbvv+q1Sg3uHGarq5lTGd25YZnVWs8Kz/pbliu/4mnJyvOcrWwcgPmZViP3gMvYzblBo3vT60nVEz1n6RctfyXh9VpM0iLKDd04ASnRX0zKjck7559I0h9JnjM2qObzvfofd9KlBvcOBECY5rI296w5W2nF8hDv7StHjBmVZ0yz+oPP0jNRkNBjiaMkoYavnDgpy+GC6sJkJkwmCHGgl9B3pUqBNhqdLhGAXC2RH+FuReRuo00TPKKtn6Jfm9mFk22GDENDGhClMVlpEoiYIHGTYxbVsBeoBAGyG/XWhIdPOPLv9Kx56tf+fevlrRMKQrejTiggF0uKlOi+z8eat7KmhDsK0YnFDaVCdo1MYp37IQBRPYL1xilBnRf0I4Otp0vR5Y6cLW0KH3PEv8uuUpqxU87KXkzc1gWNBUF2KCaG9vUue8sXe0olDfpc13JA2DNOAEDPcoiSRQeM+DftBCw/TDlsGw5bGmP2ZLDq049duzErIvDpVvjrvU/on2ZXRkTMgHGkA1N0ij0tGcsqRX7Rbn2dDMtAaaXxezcutKAk38Epo9Ndzt/f3JPHkxbm9O0VSxkWlR+PKOTUalWudBC/hzNzn02tezAiPf+m+bVezf7Qbe69A0/xKEq/CrvZaU9CZ+0GUUq2eyJDTEiML5lC4x+V6rf+an1NtGGPv2cpnQ/QC2rVBWSX3Vw6ROeZFZAbr3CiIrxXhJ1AoAcp+Bij4kpeAw2OSwoFA9JpQZFRPq2XdEvzDAH8q+MWFRY2wCA/ocfooD8AND5FzYwlZ8iDi0EClxugGWQYLahThS6ksXPAXq4ABL8H+7TtHA1Wp2iYFEvGXjb6+ajzLXSbd297AYpdyuoPqY7Rjpg+hjielE+5kfJgAUe+Q1Fc3U5XScM6LGTh5WJXAizjR+iZHqWGwazqUvCDQuZX7+6Fa1O1Cqik7HugXGikFgmDtRdrDd4qv+qj0133Xz+1Yl6IqPguczpL6WxONRgMNj6omC74YHBRriEP9lcwtny9d81a6UOm/Dn6xDPy6NklO/mEKnAOIzC8GSVCuEL2BJmD/I+SITF+qwy8Se5ShmDd/IUpS5eqAbTFI3hnoC+S8/xngwrUJuNyJI1Ddg235YCdPuaPPYdgzAeHlx1VWgxIjaGGBKA/DsjNz6vdEuc1uf6im+jGx6lps/Yg5jpM365qOFMZyXwkDIkQeTGoVIGWIwqtgFr+mwgcs565DSUrga7FhK+RWfHDPlg8ygwd3BtRWKXWuupx9yJDoLe0qG28k6IdsV6EgdakQ0swmK37ZqapCiMQ/1CnB3PEJDSKlSe8G+0ngGB/WGSG6fQ0Chx8MdUx+2IBUhoWPAIMKlOxU2NtDI9MJkySEy06wBPYhS8EaMOZHpho8CohTCncAxbmCvg/F2i68cgoSg1usn54acOBaw9UHFa0MxRNH+BfSvExgR2uTig6MsJRaQ+UL1jC1RWU/OP7i35KX9cDCX/WjTgKvnXVA/5X1YPOZ0bxw/kwo7/hFVqPlOa4bjJvfy+yGU8QL6kIRfk8xqSkL/njZVZgYTcDKxMBImSZGUiSJQkKxNBoiRZmQgSJcnKRJAoSVYmgkRJsjIRJEqSlfnRpuq7NiNOBqzoX72EvPOTXxmUN9h50bUZafRLHihvf7PZv17IMY87W8r6r7aJGXjtaUWq/avgi/0SlVoL00VsA4eZlJdmGW31/JWw3HE8rA+MPwCbUsJ5JkFDMGx7n045LfIVGeCg/sgIaZl1cH/gBvLECJiRTzFum98Z323DlDTU0DQAD/ALOy+oSZ9Xv/9+t1LgpoVDv9Wc8Lu/KXttxbuMfQFgtaY+EXbfMMQJwbQ6m7nhz4VVNT0lojBW6CM1ru6bHn5sGDyz1+H8ms+1Oh5pEaO7hb8/tWqo/xr1pMB0v9QjPKA0hROlEfWZiw9ceZp7Z3JcYYMNw4wccnCqR3LP2LdK/PtEryjzT6Bsoa3P5DGK0akW3M/1dic6EXJDDh6eXmLkfm4T/e4hhCi6kN4njEAU34ReCfipScSpkhGy9TcTJzU+8/K0FexaQpAyOUGaYuS+bkOpEv/m+qWqgi6DbSyyOyinIUpb+waPQhdUdPonZ+CHmtRdRPK5zF1EfUtxoDOaE50U/Z7uB7bA+Lx7eKiN1ydJ5vJz/jkRQb2ZC/HMSGjDAq4LdT9XT3VLURsluU8/YGHo3oCBsN0HjukzhO0cagFKAGB7aFyoM2yb9kXZmnvTs5cE71hTLuXx62etqYud2H4sS1inNBblxekuzkQvLgB++iMEqzOqj0EFiFfGxbryGFgKMNLYodox4ty1J6kLAtdOSNj+h88HatE/Oxm4Fw1UoSYzpwQQpoecMN0yMtgVvYVG32u22BYa9DRYH4FbaEJG7uiJQUP4oY9sfkjS+JxX27H3Qpf657zVta1Rm74OnSBPEuLrNIj1crbUvDF+H7nbg51LkQsTFSnwkkKjjCYCpGEsEtrhLo43RK2UF2o2dJcMdJsabgDX86icPA2g/snVKEdVHtuGwhd3wesgv2Wz/c98VXYTAja9qzs0aOvVxtQUCXsAM0XCLxc15ujn3Ezd3QLwVIfwlEONuVwwZXFwM4pN4oC/D5dIenhq/7Zfu3QIXve055jWL25QJynE12Xu/hHXizzY3vbLCbfU2qEbN0W//Hd8tR484FOKEx/QfSzBMLDFiBs/4UC0F9B/jKui5tBVrolT6LiMdqrkodEtf+ktnn1i+LeG73+hHq0rjd/PNBpxnXdyLbDKa1cuqzyyKqu8OURaxajwVQFzeEmKGML5omsuDIkKUvgPCBodLp7fo+aCO1TDhGH3Mw1DXOfbMCJPwp3AZUbGfDXNSyawdTNuQuasxwCbWKiUReExr1+Xf6ShHcKXCZfXWvb3uAE0SSH8AQhJIaKhOBD55MqFyDNXMq5/Yovrm2eF/NWnnW/QhL++6GyP3npHtTH+iYaTYdrrZxjUAC5MiVdGx4O0Ep4tlGu1UA1Sz4ohwr9hkw/6OW3U+zL7JH7diB3wk64ET5TBfhGBWd0eZlw3cge8FpFq4OJJmMAvPMKEvwnyi/89511K/r9fgnPnP3TN+9CcSp4rw5bY6BvMHPzh7u5xiKE3iqMhbIJhaJTHah9O9Ci8pAnloBbkA2nx9QFYRgH+vyCnFA4PH4mWeaHFc4tWVIHzWgwwJxRgUMd6j34wf7b6jSt6b+JJbZK+zcHDzlWWK9fO1Qw95v+wYR6+y//8acExSVrvGu2Uz4IrURW3wyhCqExHyoa0cxjIB0B40oE7VTQ5VcP0JmnKFFyvxRQCp7YbunADJtn3YYSeilq4gXsUZ9wQepNkPEHoTcJPoutN0vUi6XqT360nSb8RoSfJ5ptq+ys1wOcYI3+7Vvbr+dGbnwbOern1H822mNlU+Vsxc3SIixS3m3E6qmLJR0sCN946IWs+doap5yYFYHTcheb0RrEXeoLWK24nEUKObCB9j0hwcvoYUf6GuuJ5h2bNGW67ptV3iATTUdr1rvryP8Y/8z+0ZveHciuPmko4gCid4UTpsBtDApCT7YLXWoCJkSEqyjTWOzWG4Y9ixjDienEseGM95iNqocnVA0OK8Kf//sf8KV3Ox0z+NJnTn/b/nz8l7TO/jyLygc160Yrb/V+d67pkBw/+lC7TxIOn0HJ6CmWx+9MD2x/77q3ZPXh2aP6GtKWDXvDgT+mLBDyg1J8TpW7F6U/pMdTi/lTL6U/76/3pF6ufE9CHEz9kNp8SNd5mSJKkO9+L4jdfyYjkYUrQ0o1rSuCuh/wrb2S28iTkZiCzITTwSFeP0MAjyWwIDTySzIbQwCPJbAgNPJLMhtDAI8ls9AyNwViDXhHZxejqeTww1r7xZmR7Mxr5+3QkEaKKpJHpe/4Mm9iw2YQuW8iDTaBBkDbJ3n2/18SHH4P27t6xd8vgPOo5vx86yxMVKmZtFDbH5ioWJsE7ClXoEiaqdQpcXAjKc3Np2NJ1FxGvYoi3s4+K1qhVqkgYseDFgiOfbzrRPOFC5/mZVfuMDMgsOaFq0CzX02ye0LabVqGBAuDkxzaUqpMHqiBXC1bRgcI/MUod8d1BhgF3OfLTVtFMQpY5YixKN5IJFjYGDrStRJA2UVI2TK6JUyaGKmIpAdAevxwJ650Wvm6HX++qTip8leqFuwc3krVY0PhkBQzEzhp4blCnxN+qDPlWqAGlkacEJcZA2S0S3hJ28CLceil0CcvVVURJJnxCAKuoKuUqCdSCKhSIdBqFPEH/OyZMrL+H6Kol2Lqq1YRlugooT0t19P7PQ1w+25grLh9tTMblklaPOV1e1XqXR3/hJPbv0RP7S7FhbnSYdBCYL0widHPJMInQzSXDJEI3lwyTCN1cMhca13LewioPZkhXp7VfHzPuz6OFcqHr67ofGPhbvfDlaSmyLldSchnBFXp9ZEeii/HyEFxt2CxppeXa6aLDZivXfrwJV7n2mUwpGZ7LtV/R7R3yXpovOTRl7pQnj13eWEG59qNNuIrf7rGMYAa15vTUqVPNUK790Z8ZlcqGT/fbFRe0ebsulbpaaKly7Zs4rbPSGqxjlnLt0ZVqf+sQ0k4y/Vqb4KNtQqkrzJYq176A0zgzrcE4AkuWa690tdTzXncHB8+LaN2u0qHuZayqXPtETuONtCKhIIuXa59WL91jjLSC/77Kl/8asFMxwsLl2rWcllNa3HLwpmIr117m0645sXfV4uWjsj8Kl316bxXl2rEcgrVc+0y92NMPbHnqf6lcO70shoXLtZdrylWu/W9mSlss5doHRd0eHD5/acBi5Y9Pl/24kyYHyUO5drq4GQ8lyMs25SpBLmhaXOXan+8Xl/zX72LY+vP9R3SZ+uoE7+Xa6T6CB6z+bsKF1Qvz+lxLl2svzebG/ifC/10i/PRqQmYT4Y9pyiXCL21aHCL8z/9K3H3gpVPQglc7vs5yr12Px9PmPPtIuGAysCmXZnlPpo8sDhH+8uM2pQXtaBm+sWa5858fBGRZXIQ/nBMV0G+sZu5g3MEf/kT4q8xx2hgUW0qyu2Ol3r1rfq5gNSL8vpym87aM6cwuwv/r9Xv/Jm5pI5o+umvktrXlKtB2Os0two95GVYVdeBlzCbCn7Hf6VPyL3PFM0RZX/Pcf69uBSL84ZzgSJuaUYT/9nrP8+PqL/dbXm77+6O5daZbgZwFRMiXEyEwpom8rQxb3iYTN2n6rcMVce7dOmsuLX7dgqojgB3iS1KrQERn5my2LDj7FGyRKAvuJ7QwAOIadXJcPMjhYJVrdaxRWg70Cousb8tUPSjUaCi3DyRCv0J88wG+ufQ06QLAdzkzTTLyYFXVgtcCVwkskF996NtL0kpVu0vnTmu/YJV/b6qeynfV7qKlUHTHaGIKBWVvzzZlq2KXBfruL8alUOXw4RujiNMo0PllUOXSfna+7cKy7ma32Hht3UPaCSnsRsQJKfx6ccj+7uL8/hssnizpe6YRiRJ8ZaU6RhnNoW0T3u5h2XO/3Peb/6WpJu/fSBW1r5IPYPZVfUtxGGM5pzHmW0f6IzBmx8IzJFGtA+FLHg3XTl29O4ApK5hZJLgLm3WIjldrYtyFzTtoh2h02C/obFXUaemVv4VHA8Y5ddnxZd1MKrfDDn5AlC5Vhah/WdBUHMaazmms8VYxcuCjjMpWqxUsdCcmawZqOUbQ2h2iXlPTy4TOvFu1WtC1MQ9NmSqbOnXwJhw5POp5gaEL1Uy27oCRWSrhyTmyrVLKL/V3Px0euE5VWryxUd0tlp32AgC2kADcQAAAXYtRmSgZythFJm7kfQptoG4v3j9p0tZmz4PHW/SwLwRgLhcA3dP1iabtf4yPQy/MbTY+Tqg7Fx/Hyb24+Tgj4gZH/+yQFzZve2b6tSpjB1gBHyfYnWt3U+RuBaQCLUjpi5+Pc6fHr9NWdxkWnLlnrMsd2xt2VsHHacVpHXdrsI5Z+DhJYzfV3JJ2zn/e773ur/o89oRV8HHqcRrHyRqMI7AkHyev5p2vd5fbh6/Mi1j7efeUw1bFxynPaTwbyxjPOvk46aWWugaW+Fkyb+kV97Rr9/0szMf53JTLcm+sYppSbHycie96XZ9zda54zYJdD17YNZNaBR8HyyFY+TjAERJ5qt3/BT5Ol7flGoe4aETTvY5ENnsnqW1hPs40dy4+zlBmSlssfJxmLzrvHpz+PHBz1Ke6TbfeDOCdj0Ofm/PAMZnqzsUxGeNeXHwch3ivxMGrP0rGZge3tamReJh3Pg7dR/CA1VBOrBLNGy0tzccpy+bGhhxSNlWGr5XsOhihevKwD7UQm32XZHh2MkAjT4pnnjA1YvuigVSpTYKnx/S7Oake+ClToRxq5sXBT0D2vFbbdq+1iwoKWrTqeOmjeWVsWd+PuZNTuJHR/+yigAuLKHwUC9Er6eeeDOyV+qfRCyc1lgnCoDCXowT+o53/HNRY9neo60mHKIUKGEwREwT8+lDycZhZcVPas5nSMT9DWtn3N0mOz4NDm06lUONsCT+0ASvh3h1hM0FZvIlyyIoIBozDV3wpedAPyX+Hkoeh2UEJFit5g4xssRtRIvewmEC9HBvqX8dvXVHF08ZvZ1+n7FVJYSuLPH1ZtviRN/jEJv30Hk8nNr9z3HBZ5HVDukUc2CyydGZG8ovgjwFzhzhqsye7/0hdE/WH5BkdMyNjnV7iNwi1IOrj9S6TtTDlxWq1xatVMVCOEVICY7G/w9JhnTxOa1AOQj8iWTpUHT1YEaO/CfXqzOVc/LqhMqAAzB6NoGy6H4LUB0XVWzdCyC9BiOA8DiG/BP/R5ZfCx9/tGHXyuWjc2e1ptm8jrtDll8b2yBl1K6lvYNbhpfMfZ03tSLaXFJgoz0T/YIQ8E5ul7aF6AGFGtOaD+679qiqa0DmPf/qcVOH8OVOsxb8cPtQQgnatiEp57oOUJ6SRRQpP2sP6jv214DskxhU4jILfMVcz3Ns3ciRCJYrNVpX9C0YbSIh0yRp04jok7uC7hZ03BWalHhFcX5uwhNNkZST4kxBax0RDcRhNzGm01uY1GumCbUIluEOFt4zSj3vMNuQYZUv26kmJ0tfKRK1Cg7HuwEdQHCZaMH1X3vWhN16Lt+5L2VKj1e2JdFuVCUvWyQeq9AIWAtpmF/xUb2a48i5S6+s7wxWXUT04jVq/EUPri7OAAtHZFbg+CxI8ukwKZ0e3gZ6OWaYDu8p3F0/zJPzSYTGi0r3IC+viREgvzxbSuzy4F1FGdT5gyZ6DJUftdJlA5cpGxStjdUJYV5Ya1mG8Yqtp7RwRGwunInKViii/qoSF86B4tycSYHrBQbZXQORLhi5LgZ7RTi9MwViWcpcJnBuayiNzwKrvgrGphS+M/KIRz++O2dw4U7I860K53GHxB+gFXpBfsciUkF503cQxBqfwbSFWh0WIMZYGWr0aGscawy2oxnoFEhf7oRElstcuitgkVnXv+KO8NGNJOdYwYEwcT/CbN+T85qCXWMFyMtYDjdhjs4c6Q1zSUz2iZS5Dp0lE0+36V7+bPX8ttV/Cu80FfyVO+MtYBn4GQ8zUQt34iIBsZ/BN0EULaBV3v9NTmLqa71HIFTACzAAPbEAQAaYCW4AxWs/HVW+94tfziXeeEH53ZuvA9P2ZNVJWtyqsbfgx8+y5txFK6fTLeyce/izYXEjPp6+sQV6JfoNEm+MPNY693dKpkJ7PuKTXs5ueqhY+69qkzwEnfmpVSM+nRMSjlVXj9kn2V730k7ChuF8hPR9E5V9S2xBR+Zcs1Iuo/GtLNJVa6jDzwqqciP3794r98vLqgSY7omlpcsrwOeuv+c1YMvxLC8XImqCpLNG0bU0FUe9BQ6SHXo4699H7K3ygPdH000+ew5c8VImy3g2pkfZlbHXQVI5o6vzzmmNO/9hJM/KHT/zFPycZNDkQTZ6vHS9NizoSMev078sex/nNAE3liab+XkfDbtU4Fbph1zqnZkH3xKCpAmmUzytmbvvlZuD+5qFrju4aBF+jItFUrp7/CM/dztKNLcps6ZbT3w00VSKaTi8RPviarfFPS9mU8ccI0Y+gqTLRZHvnr/297WsFbonw7+iW1K0TaKpCNDl2eN9r3/iGIXP8+434dbxiE2iqSjStTIt90ezAZdGhNv1bBwWerAKaqglYZaAciaZ7x7LFNeYvFR0o1aPfW120L2iqTjQ5pNrtKz+nkizbY9kjt1pnYAdwIppC3i3QpDSbFZDZbX+fi68S4WfVIK3ca3dIYM1k0YRW4asmZ8V1A001iaYL2b0PVZbOEe0uFXKzXZ1p00GTM9G0L6Bhk2plVwQszryWuTLeQw6aahFNv/168fHdGuGBOT0vjY93WLIDNNUmmrYOznQWTjkhW3Y7pJfy69l80FSHaLKx7+JdZd0I2YxLNweL35b/HTTVJZr8W273rns9Jixn5diuUcd9boAmIdGUf95D/u+rOeLRty8cfVPh5mmGUJWLgEWoKm7TI99yvf6O2H8v+VyluE8OPAhVVWRzUdVi92zKPn5atnB9/rCztUYspU5dZUOTVOoYxOkLtgS4EXGHkDwvi5Wp0yaAhBg4IaICoIHHLegOCvlqzFk10WDoRMJVJljsCWWDUTuHnUF6nO5pXAHNgtOo+Isgv1uvhMAeMasr+I8/svrQj5NV13k8jMrzBiEs8LPQk40P7QRmpbM8jcqJfSIVoGtgvKcYBSxxpNYqseMn4P2UKmzqRPYToVwDT1yrE5TRSBT7vKpYrmY9x5BZK5rfazp120wqfVz/OUz6eEET33kDhCudE66fPa0ik2MedTQyk/MgBlpMgbl08XKdMEE+WCEECYi+hDU7zzy3TucA9+xOkq1z/+k7dVmFGzSmIfFYBNOQbOHbehU9iM4uRZL/PbHOzmCbGwmcC3koiiT8KehAIsF6Y9/x3/GzfCSb1pQdkXWxXIzpR7B4ACudEyzQ1Yn4U4kt/vxPueG7lBvoGbrZlBveenIpN1w0LlYaqNyQPLmkRnLgiHjiHVf5Fd9393gMlnQPxINyw2tProPuj4wLlt+r3FB1fKl6O+e0DTq0Kv7Q+CNzqf3DEsoNv3OictEyMdEAlmlRC0z8KTec+fKk8oAJD8NWtjg808PvSDurUW44yWm6A9aazvCs3JDsUMX7eZXlYZPWvc86UankZwsrN2BehvXo/SNEllJcyg21T2RtqLpZELE7w+59pdofqQQhyyg3/M4JzkVPMyo3pJdxnrIuo3NEWtzwklJp55ZWotxwkhOhA/q8rTJb3nZ6gTz0S9vqAWNW1SnzrP7wg9RsNBTkaMIoaajhCwd++mK4sJoAmQmDGWIs+BXkXalCgK1Gh2sUAGdL9FeYexGp20iDEif6+iX6vZlZNNlixDTwkQ9RFpeRKolg/VIf45YVsBcohAHy2zWIK5WeNP1S+N6RXqEVfafRDu5GwbsRBxSwy0VlSnT/x0PN2wc+BPuK0QmFTWWCmz5G8Y6dMIDIfuEao9SA7gva0cG2dw/b1pOuNRbtvv3w4bThgonUYSklb2YOy4KmogB7cjWm6fisvyUZilqp2+qp9vMA2G+cgIEeZZEkCo8Z8G9aCNh+mHJYthy2tMdsyeFVw1a6p4W12xe0Z/LMVz1KT/GsjAmZAGPIhiZpFHraM5bUiv2iXHu6mZYA00x7pva7P9pPGybJzHF79XxOjql6b9C0+zhNu8VCpkXlxzM6GZVqlQst5M/RRxrr/rEjbvR96eJzzoOiffyu0Df8EIeq8Ku8l5X2JHzSZhSpZLMnNsSIwFiFLTD6Xal+56fW20Qb+vRzmtL9ALWsUlVIftXBpU94klkBufUKIyrGe0nUCQBynIKLPSam4DHY5LCgUDwklRoUEenbdkW/MMMcyL8yYlEh0BuA/ocfooD8AND5fb1N5aeIQwuBApcbYBkkmG2oE4WuZPFzgB4ugAT/h/s0LVyNVqcoWNRL8rUlK3ya5R2RPehozmJJK2qRvtLdMdIB08cQ14vyMYq8qzl9RSv8xye5aiZ8iRzLw8qEP4TZxg9RMj3LDYPZ1CXhhoXMr1/dilYnahXRyVj3wDhRSCznpXt+leSIpDvH5g2Onxn0O/VERsFzmdNfSmNxqMFgsPVFwXbDA4ONcAlV2VzC2fL13zVrpQ6b8OfrEM/Lo2SU7+YQqcA4jMLwZJUK4QvYEmYP8j5IhMX6rDLxJ7lKGYN38hSlLl6oBtMUjeGegL5Lz/GeDCtQm43Ikit6s22+LQXofvYydew7BmE8PLjqqtBiRGwMMSQAZ/tt25SaLwjMuf9WONb/bFtq+ow9iJk+45eLGs50VgIPKUN5iNw4VMoAi1HZeLOmzwYi56xHTkPparBrIeGTdZ6ytfJtu5Apdd8caZ4xgCq8VY7oIOgtHWor74RoV6wncaD1xssiLHbbrqlJisI41C/E2fEMASmtQuUJ/0brGRDYHya5cQoNjRIHf0x13I5YgISGBY8Ak+pU3NRIK9MDkymDxES7DvAkRsEbMepAphc2CoxaCHMKx7CFuQLO3yW6fgwSCu20iCNXl3UNGvek78V3r1U0fhf2rRAbE9jl4oAC6+KsUIAuTgSqamyBympq/tG9JT/lj4uh5N9FL66Sf6f1kDtaPeR0bhw/kB89flvecIJjyIpBF+/PO/w+lgfIOzTjgtynGQl5dd5YmRVIyM3AykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZdud9ur6qsFmS1ah05pipe5IZlDfYeZG9j06/5IHy5sRm/3ohxzzubCnrv9omZuC1pxWp9q+CL/ZLVGotTBexDRxmUl6aZbTV81fCcsfxsD4w/gBsSgnnmQQNwbDtfTrltMhXZICD+iMjpGWCoF+7gTwxAmbkbsysnGvt2hnfbcOUNNTQNAAP8As7L6hO85rjHs2ZETTth0VhAU1qJ5qy11a8y9gXAFYBZNh9wxAnBNPqNl7IPJwNq2p6SkRhrJAo/fvPob7Vul2WzV0xaMZ+3ZhHPNIiRncLf39q1VD/NepJgel+qUd4QMmNE6WaXszFB648zb0zOa6wwYZhRg45ONUjuWfsWyUDD5/Ma3G4e/As0aMwQe5ohQX3c73diU6E3JCDh6c7eBmXxjbR7x5CiKIL6X3CCETxTeg6scLVtg8W5oknXv99xeuy8ZOtYNcSgtSCEyQ3L+P2dRtKlfg31y9VFXQZbGORw0GdGvHo7YFjYePmP/2x1LdTG6m7iORzmbuI+pbiQKcuJzrV9LloDbbA+Lx7eKiN1ydJ5vJz/jkRQb2ZC/HMSGjDAq4LdT9XT3VLURsluU8/YGHo3oCBsN0HjikLwnYOtQAlALCNMS7UGbZNG+c86G+v26VkaaLU91tePzpDXezE9mNZwjqlsSgvTndxJnpxAfDTcyFYnVF9DCpATDUu1pXHwFKAkcYO1cxRL/dN9bKTTYpu4PZs/Z72VE8kA/eigSrUZOaUAMI0hhOmoUYGu6K30Oh7zRbbQoOeBusjcAtNyMgdPTFoCD9Uk80PSRqf82o79l7oUv+ct7q2NWrT16ET5ElCfJ0GsV7Olpo3xu8jd3uwcylyYaIiBV5SaJTRRIA0yC3RD3dxvCFqpbxQs6G7ZKDb7GoJcD2PysnTAOrzWhrlqMpj21D44i54HeS3vNf74Ml659Nla1OH/9v1RBtHaoqEPYCZIuGXixpz9HNupu5uAXh2QHjKocZcLpiyrGtpFJvEAX8fLpH0Wskv5Ff695NkeeyOWCVavp66+4ffz9z9I64Xhc/h6TtrJVydF75iUM7dZtnrL/CATw4nPqD7WIJhYIsRN37CgWgvoP8YV0XNoatcE6fQcRntwJbLaVMiB0sWnRjsf3F9bDDVaPj9TKMR13kn1wKrZHBaZaxVWeXNIdIqRoWvCpjDS1LEEM4XaZjWpbO1I+KvBEzP2fD7k067qYf9Sodh9zMNQ1zn2zAiT8KdwGVGxnw1zUsmWNXSuAmZsx4DbGKhUhaFx/I+yu2DX9wKW5RRfVJi1jlvmqQQ/gCEpBDRUByIzONEJL0lGded2eL65lkhf/Vp5xs04a8vOtujt95RbYx/ouFkmPb6GQY1gAtT4pXR8SCthGcL5VotVIPUs2KI8G/Y5IN+Thv1vsw+iV83Ygdc0ZLgiTLYLyIwq+vBjOtG7oDXIlINXDwJE/iFR5jwN0F+8WcNRxz3H9TSf/nvy+aGdV9J63xsiY2+wczBH+7uRkMMvVEcDWETDEOjPFb7cKJH4SVNKAe1IB9Ii68PwDIK8P8FOaVwePhIJKL0eG7RiipwXosB5oQCDOpY99AP5lpWv3FF7008qU3Stzl42Llq1ZJr58pTj3ltNszDd/mfPy04JknrXaOd8llwJaridhhFCJXpSNmQdg4D+QAITzpwp4omp2qQn6QrU3C9FlMInNpu6MINmGT/DKmaU1ELN3CPIt4HoTdJxhOE3iT8JLreJF0vkq43+d16kvQbEXqSbL6ptr9SA3yOMfK3rZ2iPl6QSvx2n3u6TLfjqpoqfytmjg5xkeJ2wyp5TalQ7rJ0Z5Bq/VBNy4GmrpmA0TECmtMbxV7oCVo1PicRQo5sIH2PSPDmodvf3p4/wW/+lIc7z7ocuPwdIsF0lBQ9IoPvrWkXMX3jkYPeoy9s5wGleE6U+vkwJAA52S54rQWYGBkAEJ31To1h+KOYMYy4XhwL3liP+YhaaHL1wJAi/Gmd/5g/pcv5mMmfVuH0p19a/s+fEvZ5XnJdTK2RP0qzDnh+VAbYlOXBn9JlmnjwFJU4PUWZYvenpyUHN9f0nBS2OH1/TI3F4u8RXaejRF8k4AGlLy25UHrXshj9KT2GWtyfVuL0p1/0+Wldq58T0IcTP2Q2nxI13mZIkqQ734viN1/JiORhSnCJc0pwRg+5kDcyW3kScjOQ2RAaeKSrR2jgkWQ2hAYeSWZDaOCRZDaEBh5JZkNo4JFkNnqGxmCsQa+I7GJ09TweGGsuvBnZ3oxG/j4dSYSoImlk+p4/wyY2bDahyxbyYJN6bDbJ3n2/18SHH4P27t6xd8vgPOo5vx86yxMVKmZtFDbH5ioWJsE7ClXoEiaqdQpcXAjKc3Np2NJ1FxGvYoi3s4+K1qhVqkgYseDFgiOfbzrRPOFvzQI2X08cGTa78Zb7/p3ve7B5QttuWoUGCoCTH9tQqk4eqIJcLVhFBwr/xCh1xHcHGQbc5chPW0UzCVnmiLEo3UgmaNsCONC2EkHaREnZMLkmTpkYqoilBEB7/HIkrHda+Lodfr2rOqnwVaoXfhPRSObQpsXJChiInTXw3KBOib9VGfKtUANKI08JSoyBslskvCXs4EW49VLoEparq4iSTPiEAFZRVcpVEqgFVSgQ6TQKeYL+d0yYWH8P0VXrW31YpquA8rRUR+//PMRlZQuuuCxvQcblBlaPOV1e1XqXR/tzEvt76In9DXkLkw4C84VJhG4uGSYRurlkmETo5pJhEqGbS+ZCTdcPn91p7XjpOJ/VIT+M87hVKBdS3Z3V8UT5vOAdLnfcxdm5YkZwhV4frZxCE+PlIbg2YrOklZZrp4sOm61ce3QrrnLtXq2Ku1z70RrCkZu0p2VrZvm1kS+sRT3ZaZly7fJWXMVve7SygprT48ePN0O59twWM3T7lmaGb72RPPpeVAx198VS5drDOK0jsQbrmKVce832mQ4u4nd+E5/M2VfiRsedVlGuvS2ncbyswTgCS5ZrPxJ6Rjm4Zoh4z5T+/epXHENV2rV0ufaGnMZztozxrLNcu2TB6OpdKutkizP7njhRLXSPhcu1V+K0XBmLWw7eVGzl2su+7X3MoeVg0WL7zFpnSq6XWEW5diyHYC3XDhwhkac2ZstT/0vl2ullMSxcrn1tK65y7XOYKW2xlGv/kNbswaj+XwM2zUr+o++mbKpgIh/l2uniZjyUIM9txVWCfHGr4irXfsfxcqj/yr4BozscFIoUF/N4L9dO9xE8YDWHE6vJ5vW5li7X7srmxv4nwv9dIvz0akJmE+Ev2ZpLhD+f6Tt5EOEv/cvfY+pW7Bg0+0H6vh13jz7m8bQ5zz4SLpgIWnNplv/N9JHFIcLv5dP7zsvpvf0WSsK3bfDeQ62DbgkR/hetuFDJt3gGWnjHyTIi/NVrJahsI/dKF1SvPnbLyv4LrEaE/wan6c5bxnRmF+Ev895t1IPAbL8Vm2cln/Jq+8rCIvyYl2FVUQdexmwi/A8vPBvr8vFeUKabd2NZhKypFYjwY86GFZz8VmYU4R+6bNu8sU0eSWY1WrOpZIMdd6xAzgIidIMTofP66acbW94mEzdp+q3DFXHu3TprLi1+3YKqI4Ad4ktSq0BEZ+Zstiw4+xRskSgL7ie0MADiGnVyXDzI4WCVa3WsUVoO9AqLrG/LVD0o1Ggotw8kQoPh8MwH+ObS06QLAF9xa1MPVlUteC1wlcAC+dXblOsaciR5fsTuHVNn76+Zesz02l20FIruGE1MoaDsrbI1WxW7LNB3+7c2rhA2PnxjFHEaBTq/HDKvc5Xm819HbHJsphmVXItaiLm0FLsRcUIKv14csr/dOL9/SGtLJ0v6nmlEogRfWamOUUZzaNv8sefImjU1p/qN6X7wlWDsJ6oeuC35AGZf1bcUhzHEnMZobRljMIpjG7Nj4RmSqNaB8CWPhmunrt4dwJQVzCwS3IXNOkTHqzUx7sLmHbRDNDrsF3S2Wv/+SOW2T5NEC4Me+G0NGkpNh+zgB0TpUlWI+pcFTcVhLA9OY9W3ipEDH2VUtlqtYKE7MVkzUMsxgnJ8hpZLT3jutycqdFiGfd5rU6bKpk4dvAlHDo96XmDoQjWTrevT2rgslfDkHNnWhKkug1+Nqxg2v3HiSMd6WZctO+0FAESQANxAAABdi1GZKBnK2EUmWqVVX7e+3qOw3NuRlYdtDa1NC2XmPewLAWjJBUD3Rq3JRLPJf4yPQy/MbTY+zrPWXHycnczMkmc+ju2Rn0ZvDR8XOn/o6p8Ha1+NsQI+zh+tuXY371rG6VNJBYMHDzYDHyel+sxVjWtWlGyt07v5rzH3hFbBx7nCaZ0z1mAds/Bxen99WT32SWTIodUD72ZMWP/eKvg4hzmNs9MajCOwJB+n5KhJ8e3HpvjN9f6YdPjblwir4uOs5zTeMosnu1bEx/mYPDKjVVKsZGzN2VPf9V5X08J8nCxOy02zuOWKlY/j8avzorkpa8I3rDz748xfVK+tgo+D5RCsfJyd+jy16f8FPo5/y+3eda/HhOWsHNs16rjPDQvzcdzbcPFxHNuYh49TU/lt+SG/3tKNpzY1mya4VJt3Pg59bs4Dx6RJGy6OibBNcfFxXGKqOgW/Xho2+fCVZfnSSit45+PQfQQPWDlyYlWuzf9XfBx3Njc25JCyqTJ8rWTXwQjVk4d9qM7ZvksyPDsZoJEnxTNPmBqxfdFAqtQmwdNj+t2cVA/8lKlQDjXz4uAnoAsfnveQ//tqjnj07QtH31S4eZr1/Zg7OYUbGf3PLgq4sIjCR7EQvZJ+7snAXql/Gr1wUmMwnYen/Rwl8B/t/Ke6sey3py1OOkQpVMBgipgg4NeHko/DzIqb0oPNlI75GdLKvr9JcnweHNp0KoVaHb2EH9qAlXDvjrCZoCzeRDlkRQQDxuErvpQ86Ifkv0PJw9DsoASLlbxBRtaeLJF7WEyg7smG+tfxW1dU8bTx29nXKXtVUtjKIk9fli1+5A0+sUk/vcfTic3vHDdcFsloRreIF5tFls7MSH4R/DFg7hBHbfZkd6qmUWl/SJ7RMTMy1uklfoNQC6I+Xu8yWQtTXqxWW7xaFQPlGCElMBb7Oywd1snjtAblIPQjkqVD1dGDFTH6m1CvzlzOxa8bKgMKwHwPwdzshyD1QVH1q80Q8ksQIjiPQ8gvwX90+aXw8Xc7Rp18Lhp3dnua7duIK3T5pbE9ckbdSuobmHV46fzHWVM7ku0lBSbKM9E/GCHPxGZpe6geQJgRaa0Bmr82rK/vHTY78+Cx+3X3hJliLf7l8KGGELRrRVTKcx+kPE+bWaTwpD2s79hfC75DYlyBwyj4HXM1w719I0ciVKLYbFXZv2C0gYRIl6xBJ67nnZ52qhfaO3TW2i6nHz+pVJ/TZGUk+JMQWsdEQ3EY7R6n0a6a12ikC7YJleAOFd4ySj/uMduQY5Qt2asnJUpfKxO1Cg3GugMfQXGY6CPPXtF1vTaUDNk1o2S+y5IJjei2KhOWrJMPVOkFLAS0zS74qd7McOVdpNbXd4YrLqOe5TTqL80YWl+cBRSIzq7A9VnQBHGaTApnR7eBno5ZpgO7yncXT/Mk/NJhMaLSvcgL6+JESPdmC+ldHtyLKKM6H7Bkz8GSo3a6TKByZaPilbE6IawrSw3rMF6x1bR2joiNhVMRuUpFlF9VwsJ5ULzbEwkwveAg2ysg8iVDl6VAz7jpTQpTMJal3GWCPSaXp3fAqu+CsamFL4z8ot331V+fe3hB+J455QeMW7ZcSS/wgvyKRaaE9KLrJo4xOIW/DrE6LEKMsTTQ+iuzKDUnawy3oBrrFUhcpo5P/3ws5wfZtmE+Pus9XEozlpRjDQPGxPEEv/lRzm8OeokVLCdjPdCIPTZ7qDPEJT0V5Pnm+YHbVYP3rbr7e4u359Op/RLebS74N3HCv9Iy8DMYYqYW6sZHBGQ7g2+CluqgVdz9Tk9h6mq+RyFXwAgwAzywAUEEmGZsAcZoPR9XvfWKX8/nlrDqrtVaG+mBto9sSrW/GFJIz+fd47Jhh7IHhS7c2buMo2yfupCeT7gu/GZI2LKQ1X+JkgOCM3IL6fl0rxKdP8T1rN/MqCm/25ypHVZIz+du++z3Dp0Hyg62+mhf0WuxopCeD6LyL6ltiKj8SxbqRVT+tSWaGrW0b9bXMSdo0Q8vc1TbYv4GTXZE09OSeQ2Ob0uSzekZfa3jkTp+oKks0dS45os1US1TI5ZkhsxpE/hbS9BkTzT9vmFN/C2PQeIc+Y2LQy/9XgM0lSOaZtlpj89/uFO8NfGqY/ye1QmgyYFomjqmw+Ps9jdDp/kPyP5XO687aCpPNF0b5BIdWFMXvCCllvNxTeWboKkCCZT9+Np/vgjx2+a8p+YeG2E30FSRaPL93fZSFfuk4Fz/I5KRNi0OgqZKRFP5rj55XR2T/XaOGTrg+fDpfUBTZaKpRcTYf59tGSOZtKdF3uW+DRxAUxWi6cTV85F7f3jqt2GLqP7X1j1PgaaqRFOPsu/eOn8KClg12KPE8NDQ1qCpmoBVBsqRaAo4eOxGu7DxYZnbr2SOz7q+GzRVJ5oS3vZ0zllzS7q+i49zXd9x7qDJiWhS7loWOO9KCfGE9a69zjnNeAWaahBNQz1UXb7IXIK2/dGs1k+XHRaDpppE07DJJ64MlEv8ZoluvF904dBA0ORMNO15kt8ye9k/gdMnR18ZcnvgU9BUi2hqZhO/JXfzdXHGO8cnTbZOfwuaahNN43rmTv/Zvl3oElWVps1K9oP2qkM0xR46Xc398HHR6G0nuqW4T8wHTXVJ5I9fD8+YLAqY9PnOmb3S4fNBk5C8a27Hi8sWtxCvC3WrNK32zvIMoSoXAYtQ1ZzdwmV9nNJD1+yp1TFV4nyQB6Gq5mwuqlrsnk3Zx0/LFq7PH3a21oil1KmrbGiSSh2DOH3BlgA3Iu4QkudlsTJ12gSQEAMnRFQANPC4Bd1BIV+NOasmGgydSLjKBL6+UDYYtXPYGaTHDXyNK6BZcBoVfxHkdxvZZqJvntvqoKnlh2UdXNrbjsfDqDxvEMICP2182fjQTmBW6ulrVE7sE6kAXQPjPcUoYIkjtVaJHT8B76dUYVMnsp8I5Rp44lqdoIxGS9jmbc29VmqrZFzmklerYg/kUunj+s9h0scLmvjOGyBcDTjhqulrFZkc86ijkZmcBzHQYgrMpYuX64QJ8sEKIUhA9CWs2Xnmke3r1w/r/l4yrceDCZ6h0n9oTEPisQimIdnCt/UqehCdXYok/3tinZ3BNjcSOBfyUBRJ+FPQgUSCtaPrUscT47pKp12e2SXz8odBph/B4gGsBpxgga5OxJ8WbPHnf8oN36XcQM/QzabckOHLpdyQYFysNFC5wXbCVfmYVS4BS0fvdtJs2eTJY7CkeyAelBum+HIddB9tXLD8XuWGXX8OuXDx94uhq/tduBM4OY9WJtQCyg0pnKgkWCYmGsAyLWqBiT/lhkdCSXLc8FrSmS2HlLu99Bn11JEllRuiOU3Xy1rTGZ6VG/Ja3p3u6RMdPPufPgfv1+hrY2HlBszLsB69H43IUopLuSH9ZeOvO6ZvlKzzfPwi5FOpwVag3JDCCU6CrxmVG9J/Lr1/nZNImr4lzuPE7RdPrUS5IZoToV76vK0lW952eoE89Evb6gFjVtUp86z+cOoahW0oyNGEUdJQwxcO/PTFcGE1ATITBjPEWPAryLtShQBbjQ7XKADOluivMPciUreRBiVO9PVL9Hszs2iyxYhp4GgxURaXkSqJgAXkYuOWFbAXKIQB+uj74th5EY+Vor3zks8MVJXKp+0mwbsRBxSwy0VlSnT/x0PN21Fign3F6ITCpjJBstgo3rETBhDZL1xjlBrQfUE7OtiOX1BFI9CcC19xvXn2c49p96jDUkrezByWBU1FAXaln134lHzbkFXey8bfrXu3OQ+ADeYEDPQoiyRReMyAf9NCwPbDlMOy5bClPWZLDq/asuSxNyNWXQ2cmh18cMHsi80rY0ImwBiyoUkahZ72jCW1Yr8o155upiXANNOe7be9TtK6eaKxLh9uKR9Xa8eDaXtwmjbMQqZF5cczOhmVapULLeTPkcbcsGJQYKPwH8QL5sQed43fXIe+4Yc4VIVf5b2stCfhkzajSCWbPbEhRgRGH7bA6Hel+p2fWm8TbejTz2lK9wPUskpVIflVB5c+4UlmBeTWK4yoGO8lUScAyHEKLvaYmILHYJPDgkLxkFRqUESkb9sV/cIMcyD/yohFhYftAOh/+CEKyA8Anf9aO1P5KeLQQqDA5QZYBglmG+pEoStZ/Byghwsgwf/hPk0LV6PVKQoW9ZLbdYdv27SwdPCeP1/tbuKfS1WvKt0dIx0wfQxxvSgfs7dkXr2IGzLJRK17p4u3XHN4WJnIhzDb+CFKpme5YTCbuiTcsJD59atb0epErSI6GeseGCcK7QTqfFy+7KetYWM+z8z97fXP56knMgqey5z+UhqLQw0Gg60vCrYbHhhshEtoxeYSzpav/65ZK3XYhD9fh3heHiWjfDeHSAXGYRSGJ6tUCF/AljB7kPdBIizWZ5WJP8lVyhi8k6codfFCNZimaAz3BPRdeo73ZFiB2mxElry+Hdvm21KA7lyTx75jEMbDg6uuCi1GxMYQQwKg/azbvP7ulPCVt5e+3REy4go1fcYexEyf8ctFDWc6K4GHlGEtRG4cKmWAxaiWtmNNnw1EzlmPnIbS1WDXQsLX5+/do+PaOUjm3b6a82qkfR/qMXeig6C3dKitvBOiXbGexIHW1HYWYbHbdk1NUhTGoX4hzo5nCEhpFSpP+Ddaz4DA/jDJjVNoaJQ4+GOq43bEAiQ0LHgEmFSn4qZGWpkemEwZJCbadYAnMQreiFEHMr2wUWDUQphTOIYtzBVw/i7R9WOQUFSI9819kvqDeE6J3DIHptWdQNuYgN8KsTGBXS4OKOZyQjFVH6haswUqq6n5R/eW/JQ/LoaSfwntuEr+KfSQt7F6yOncOH4gfxX1bkzfkrP89vR2Obr5/Q43HiC/2Z4L8ovtScjb8sbKrEBCbgZWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZCBIlycpMGGkn3h9xPmBGv/IDug/Iv8qgvMHOi+x9dPolD5Q3Xzb71ws55nFnS1n/1TYxA689rUi1fxV8sV+iUmthuoht4DCT8tIso62evxKWO46H9YHxB2BTSjjPJGgIhm3v0ymnRb4iAxzUHxkhLfMI7g/cQJ4YATPy48Zt8zvju22YkoYaKwavhqxAdl7QkKMVFLIBEZKNrefELNtbfa0pe23Fu4x9AWD1wJcIu28Y4oRgWn2FueHPhVU1PSWiMFZIlHYfuL1j3iKfoMz0itfme8iW8UiLGN0t/P2pVUP916gnBab7pR7hAaXjnCjt9GUuPnDlae6dyXGFDTYMM3LIwakeyT1j3yrpdPn8jhPb9gUu3vKu5dqYz18tuJ/r7U50IuSGHDw8fdPI/dwm+t1DCFF0Ib1PGIEovgkJzouVP6Qn1r0XsTvtVFrPfd82WsGuJQTpN06Qjhu5r9tQqsS/uX6pqqDLYBuL7A4q5d7Awwt9KofPePAhMrnUlR7UXUTyucxdRH1LcaCzjxOdLfo93XZsgfF59/BQG69Pkszl5/xzIoJ6MxfimZHQhgVcF+p+rp7qlqI2SnKffsDC0L0BA2G7DxxTS5jCn0MtQAkAbHWYC1Cmb9O69a2b9G3rfMnKlHeq1iu2rKYudmL7sSxhndJYlBenuzgTvbgA+OnmEKzOqD4GFSBc0WtObGCVx8BSgJHGDlXsqlpjbzwuFb7T9cy82Tkz/qV6Ihm4Fw1UoSYzpwQQpjqcMFVFrLSbtoVG32u22BYa9DRYH4FbaEJG7uiJQUP4ofZsfkjS+JxX27H3Qpf657zVta1Rm74OnSBPEuLrNIj1crbUvDF+H7nbg51LkQsTFSnwkkKjjCYCpEFuiX64i+MNUSvlhZoN3SUD3SZKBHA9j8rJ0wDqLURGOary2DYUvrgLXgf5LV13jj5zs/so0fLrpTLWd75AlS39AXsAM0XCLxc15ujn3Ezd3QLwdIHwlEONuVwwZQkQGcUmccDfh0skfcG+ZQ3CVjuHrv+s7el9P7QMdfcPv5+5+0dcLwqflAdL/m1RY3bIruej3DOHz1vDAz4dOPEB3ccSDANbjLjxEw5EewH9x7gqag5d5Zo4hY7LaCvWdJq1ZuMvAZNnnm9/YkvcbarR8PuZRiOu806uBVZx47RKXauyyptDpFWMCl8VMIeXpIghnC/SMJOi/41pX7urdE+fPgfnrDnrSDVMGHY/0zDEdb4NI/Ik3AlcZmTMV9O8ZAI/kXETMmc9BtjEQqUsCo9S/qNjx+1/G7H/r2aznWeOKkmTFMIfgJAUIhqKA5EWnIg0EJFxvQNbXN88K+SvPu18gyb89UVne/TWO6qN8U80nAzTXj/DoAZwYUq8MjoepJXwbKFcq4VqkHpWDBH+DZt80M9po96X2Sfx60bsgJcQETxRBvtFBGZ17zqZugNei0g1cPEkTOAXHmHC3wT5xUOuvE2rs/pRwP5+c69+2DK4A7XzsSU2+gYzB3+4u/ut00k4gUNwNIRNMAyN8ljtw4kehZc0oRzUgnwgLb4+AMsowP8X5JTC4eEj0QsGtHhu0YoqcF6LAeaEAgzqWAPAiMHc0eo3rui9iSe1Sfo2Bw87V5c6ce1cndFj3okN8/Bd/udPC45J0nrXaKd8FlyJqrgdRhFCZTpSNqSdw0A+AMKTDtyposmpGuQn6coUXK/FFAKnthu6cAMm2TUhVXMqauEG7lHYiBF6k2Q8QehNwk+i603S9SLpepPfrSdJvxGhJ8nmm2r7KzXA5xgjf7txxF/1Ag7uCJ54r01Fnz6zK1Llb8XM0SEuUtxu/eQnKW0rpIo3Tu1/rv/p8yYvLYHR4QTN6Y1iL/QEreXFJxFCjmwgfY9I8KNSW88mhPQPnzQyTOuZ/mzSd4gE01E6Me5viVBZK3D0+cnecxtl1OcBJRtOlD6LGBKAnGwXvNYCTIwMAIjOeqfGMPxRzBhGXC+OBW+sx3xELTS5emBIEf5U9B/zp3Q5HzP5000iLn86X/Q/f0rY55JCcDhjSLvAhfJJi9deChzMgz+lyzTx4Ck2iLg8xXJRcfvTjvabWuXPOBqR9ePkTk9Gn2rPgz+lLxLwgNJ8TpSmF6c/pcdQi/tTrMew+tP5+gm+2OrnBPThxA+ZzadEjbcZkiTpzvei+M1XMiJ5mBIkirimBLF6yP14I7OVJyE3A5kNoYFHunqEBh5JZkNo4JFkNoQGHklmQ2jgkWQ2hAYeSWajZ2gMxhr0isguRlfP44GxJuHNyPZmNPL36UgiRBVJI9P3/Bk2sWGzCV22kAebSNlskr37fq+JDz8G7d29Y++WwXnUc34/dJYnKlTM2ihsjs1VLEyCdxSq0CVMVOsUuLgQlOfm0rCl6y4iXsUQb2cfFa1Rq1SRMGLBiwVHPt90onnChS3zz8tzo2TjOvYqva79xdNsntC2m1ahgQLg5Mc2lKqTB6ogVwtW0YHCPzFKHfHdQYYBdzny01bRTEKWOWKo5jaSCS51BA60rUSQNlFSNkyuiVMmhipiKQHQHr8cCeudFr5uh1/vqk4qfJXqhbO6NpKNv9jxZAUMxM4aeG5Qp8Tfqgz5VqgBpZGnBCXGQNktEt4SdvAi3HopdAnL1VVESSZ8QgCrqCrlKgnUgioUiHQahTxB/zsmTKy/h+iqMqsPy3QVUJ6W6uj9n4e4/APnUt2XjmRc9rd6zOnyqta7PPoPJ7H/nZ7YH8BbmHQQmC9MInRzyTCJ0M0lwyRCN5cMkwjdXDIXmj2+yVqnd/6yvTd1J+dNrrqpUC7k2Stl9qCn78JWDynlVUraM4gRXKHXR3YkuhgvD8E1kM2SVlqunS46bLZy7d/EXOXazzKlZHgu197FxqVGl40XpMteVFrVZrwndXfeMuXav4i5it++s4xgBrXm9MiRI81Qrv3MiPqSlkeHyCaW7zj6rwaVqafLLVWu/Smnde5Zg3XMUq79r9e/vvY53VM6J/dig73r+h2zinLtVzmNc9YajCOwZLn2tnX8PzQvGRcyfXrmyYQzMbOsqlz7L5zG22VFQkEWL9f++8C3Ja+HVA9ZsejJmQMXZGUtXK59A6flllvccvCmYivX/tpua+1yJ98EbKk78f79/KcvrKJcO5ZDsJZrP6vfQAxiy1P/S+Xa6WUxLFyu3d+Pq1y7t595yrX3GH37/rQni4M3P6vul19nvYj3cu10cTMeSpBL/bhKkPv6FVe59pG3UuZnDcv0356ntm1wYMcX3su1030ED1h5c2LVyO//q3LtwWxu7H8i/N8lwk+vJmQ2Ef7Fflwi/D8zfScPIvzRPb3eH1V6hqc10CQeLdtjCo+nzXn2kXDBZKEfl2b5LKaPLA4R/svlLgwRbG8i2z3q8bxL6RKxxUX40zlR+dm83pBz7mDcwR/+RPiPa3ckbX+7LWylzZPfJrZ7uMFqRPh1nKYbZBnTmV2EP6SmOPLn1ArBK5wf/9PJJ9+Sog1w4RXzMqwq6sDLmE2Ef6L4041nTSoEb/iwdXsbzVFqv7WMCH86Jzg/+5lRhP/P/tvKB1XcJpnV7o3P4JoVrlqBnAVESMeJEBjTRN4Wwpa3ycRNmn7rcEWce7fOmkuLX1MFaO2xQ3xJahWI6MyczZYFZ5+CLRJlwf2EFgZAXKNOjosHORyscq2ONUrLgV5hkfVtmaoHhRoN5faBRKiMBOCbD/DNpadJFwC+d9inmAYerKpa8FrgKoEFOnnq9/5z/6HHA5ZEXd3s/4eEphfyPbW76MXmaY7RxBQKyt7+IGGrYpcF+u4/xqVQ5fDhG6OI0yjQ+eU1px+zp9afH5h96ev8wJeu1LK/paXYjYgTUvj14pD9fevH9f2fWDxZ0vdMIxIl+MpKdYwymkPbppb4lEznly7NWtmg29KZk05S+yr5AGZf1bcUhzHucBrjsnWkPwJjdiw8QxLVOhC+5NFw7dTVuwOYsoKZRYK7sFmH6Hi1JsZd2LyDdohGh/2CzlZ/dTk7cMqa8ODxk3Ye6VnJawE1rsEPiNKlqhD1LwuaisNYpzmNdcgqRg58lFHZarWChe7EZM1ALccICu9sEyRt+Ew2Q7qw6RSfpn1NmSqbOnXwJhw5POp5gaEL1Uy27oORWSrhyTmyrZ4TMruNvxsesfDt7Dy3mY3qWnbaCwB47kcAcAMBAHQtRmWiZChjF5nw/dfdq+7CqUHbU2VT7tcKOGLRw74QgAtcAHQ/ok80Q/9jfBx6YW6z8XEmSLj4OJGS4ubjVLjV/GmfqknBcw91Hmv7askzK+DjjJNw7W4Ok1gBqSA6OtoMfJxJ5c+Neng3LXj73Y/T/xj6Ltkq+DhJnNaJtQbrmIWPczRp8ymn9GXS5bVfXIzstNPJKvg4fTmNE2kNxhFYko9TJ+2vT8ee9AmcU6PqL88/hE23Kj5OIKfxOlrGeNbJx7m9a/bj3/6qIDowv8mB47W/PrMwH6clp+WaWNxyxcrHmXvlxDenPTFBuQ13LC9bcUCqVfBxsByClY8DHCGRp4b9X+DjlD9+PTxjsihg0uc7Z/ZKh8+3MB/nlISLj7OVmdIWCx9H0r9Xycipr0UzJ70e2npLwkre+Tj0uTkPHJMTEi6OyX5JcfFx4ir0/7n0gJDwBbc2vrnQIrAR73wcuo/gAautnFjlmtfnWpqPE87mxoYcUjZVhq+V7DoYoXrysM9r6k5Jl2R4djJAI0+KZ54wNWL7ooFUqU2Cp8f0uzmpHvgpU6EcaubFwU9Az7vndry4bHEL8bpQt0rTau8sz/p+zJ2cwo2M/mcXBVxYROGjWIheST/3ZGCv1D+NXjipMYg78LSfowT+o53/jGksCxzb6aRDlEIFDKaICQJ+fSj5OMysuCkj2EzpmJ8hrez7myTH58GhTadSpDQVDLQBK+HeHWEzQVm8iXLIiggGjMNXfCl50A/Jf4eSh6HZQQkWK3mDjOyGiCiRe1hMoN6ZDfWv47euqOJp47ezr1P2qqQwahhBnb4sW/zIG3xik356j6cTm985brgs4taBbpEubBZZOjMj+UXwx4C5Qxy12ZPdf6SuifpD8oyOmZGxTi/xG4RaEPXxepfJWpjyYrXa4tWqGCjHCCmBsdjfYemwTh6nNSgHoR+RLB2qjh6siNHfhHp15nIuft1QGVAA5kwI5mY/BKkPiqoP6YCQX4IQwXkcQn4J/qPLL4WPv9sx6uRz0biz29Ns30Zcocsvje2RM+pWUt/ArMNL5z/OmtqRbC8pMFGeif7BCHkmNkvbQ/UAwoxIa906/fFLcs8t4avHtVso7irvYIq1+JfDhxpC0K4VUSnPfZDyjO9gkcKT9rC+Y38t+A6JcQUOo+B3zNUM9/aNHIlQiWKzVWX/gtEGEiJdsgaduC6qvjvnSMI7/z03tz179eOnFpwmKyPBn4TQOiYaisNowzmNNsS8RiNdsE2oBHeo8JZR+nGP2YYco2zJXj0pUfpamahVaDDWHfgIisNE2ur03K+RkQtGSjZVTfMPutmOMbzKhCXr5ANVegELAW2zC36qNzNceRep9fWd4YrLqHGcRv2xA0Pri7OAAtHZFbg+CxI8ukwKZ0e3gZ6OWaYDu8p3F0/zJPzSYTGi0r3IC+viREiPZAvpXR7ciyijOh+wZM/BkqN2ulCrn5aNilfG6oSwriw1rMN4xVbT2jkiNhZOReQqFVF+VQkL50Hxbk+0oAit4CDbKyDyJUOXpUDPSNYLUzCWpdxlgm7tTeWROWDVd8HY1MIXRn7R3h0yBD8nCyVTttXz76a9eYBe4AX5FYsm3tOKrps4xuAUXguxOixCjLE00KpsbxxrDLegGusVSFxiKqdHbNp2Q5Sp9fxR2T9vHmNJOdYwYEwcT/Cb9+f85qCXWMFyMtYDjdhjs4c6Q1zSU5rq0TUuz2jsv/nM4ZdfT5VzofZLeLe54A/hhF9sGfgZDDFTC3XjIwKyncE3QVqEXnH3Oz2Fqav5HoVcASPADPDABgQRYKLYAszpBfLQL22rB4xZVafMs/rDqbritlhRrChpKJNuwhZe/Kg16YiCWsIYRSz4NUY4MLVw4TZ3MGHE6fhwHkmcTBtp0ARyoW/S/Va3Uv23q2x3TX+81Qv93syFWbLF0F4PUhrRrOMCwX5UaHoDMBbNPM5/8TrnaYtvflxQO2BDj6nXynb/OInmcuHdiF087HJR8WjRbXnp3Ot3xcta/PBIFhN80MR4BItmeUOAvFE53wXgFu5TASpqguOEAUT2C9cYpQZ0X9COZmeKK3zrPrJunuRg+Wt93w99T61pbCclb2ayMwuaigJsRy1F7uKQKeKxYdfTM/cG5/EA2IyZXICBHmWRMIYfiYF/00LA9mPcmTF7zJYcNMajXzNHyU+UDMn8kvLx2dWRJyxKY4SWeTODyzJLZ1jGMsjTe4d4rm/Yd8uw/Qf9OoqyAht2+7BkX7jF6htu9iRcymbUxGmAFzZCiLjWlS2uCfde36n7baZ4dfd6jssTvanlP0tHqnWMEztck6a6+A0gqpHnxjTwnSGpUj5UqUVPnLpeaVSv39G+AdMqbT0b8vcsf9QrILSnseuGMsHdgDOZexwvbcQITxVBeJqRaVx46o5/P1izEHsR5Dd7vHv859ryf4JG94t6OOFlXhfqN8MfwfxmxPWi/G1Mvm3pUMmU0Jygjm1WvL3w3ER/KwIQpUGIpKhRHQhGtfdcZIBinUliFoKHkaDpkfhs798xt9ri8dLRRx6t/80/i1q20EYMbmMOJexqUdjQxygP2NzP5MKG1n3gg2wFHGUZCrBJhAf/XZWJxHkkLTp+/7O+Tqe3n0eG7H3bePScurP7UxMdMXwIM9HBLxeFlbZkcvXw2hWDZ235a8ugd7vas2LVTavAjzgViMYagZ+IE783c6wnYhjJciqPe6IYwuUhzTfg0IF3zvv6+o/Lz+1V/k3rVaY5AhPjxgUPYqTb+CHixg1PrDcTcaPbd+0l4z3P7PvJRo8qetc3ZVSZuKkMCSm7Zx8ntzD/Hw== true iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwAAADsABataJCQAAAtpJREFUSEu1lF9ojXEYx59OS5IrF5IkiTVriWgXS5HWlFwQbpRYyr+xkgvFLpQMpRU3SEmjmLWEuZLcKGlpaRe7WNKulnQu1trFWms+39/ved9zzvu+59z5dr6d3/d5n3+/v1aNy2Y7fdgI6/w/xQWzbT6sj4tmW3rNlnvMmqUpdvOS2cfwsYJVcBF2BwXOmK0hZgn/O24qBskOq8DZmES6U5rutgeHCu7BBbgjKIBft4oQc85NeeBwSAlPma10kwIn4bDLBCX4FU74OIAZ3CLHQkFDEfqQ7ZigY95Zi5sStMFl2BVURAm/cWJGXedQIlkZp+uuhZLPYsh1NX7CB3EYQfKT5FhkP1e7qRYkeoqDpp6CgqcVdN5srZsSvICf4zCC+Datgv7dVAsq75EDnbS6ybTp2GYpdMVNCZ7AmgI0sk/x7PQmN+WgJZnRhrkOwDaE7ZPLBCPwQxxG4DNAkd8ui4HTY/jDZQD6RkHgOHwYh/E+0MgcM+1zUzG05jjOuwzA1kuRPy4FHWXdhRNBAXyew791NzgBiXoyybRE/XDSpdAJdUw3SDC7cIfgEemGIPkI/OIygMBvcNClcB9OxWE43tN8f+m6PvaaNeFYc2IIboZL6tJNwhh8pgG+LcToDdst3RB03iVnbvNmN4VNJ8kvhsmz0AT14IX1J3E4mgX3JA+SvYbqLsBPxjw2fik2Qq1/hwQfWlWAzU0fv0L4hVIymoqg8z5ss5mT0Q5VIFym42YrPI6JNwBOB9VJ9VSpNE3ggMsE+6EKpH74vIHpzAtBt3cpkB5FdLsKFjy/2kwVSPcpeWJo6ICb8iDhK7p461L6KkEzLquhzlVAM0lB7CicqnvRvIDelwAVg+9cZqHC1+Iwgu7XwzJNvde+uLkCkt1WBy6lx+Ajl1noUn2Pwwrw76DAHIUm+N/l5ghmoAvT71KbPozjUZdZaHnKcVgL4rbCQWLTd+o/wuwf9N7EUShQvi8AAAAASUVORK5CYII= 69d1541f-422f-4fd8-ae5b-1cebcb7501b6 true DIFERENCE CURWATURE SHAPED GRAPH DIFERENCE CURWATURE SHAPED GRAPH false 37 0f29d6b5-557d-476d-9fcd-1e35aafe35d6 1327e01f-51fb-4c31-b529-4416006b1a3e 162f3737-68e0-43d9-9000-edca353ab239 2a5be90d-6a4d-49c0-913c-d70e26179b8b 2e2b4494-018b-4b3d-9bbb-fc30e0fbb0b7 2f8549e0-84db-49b3-9fd7-857b8fbfa7c7 3eb6dcf6-830f-4fec-9aa7-1b584e652d50 4ec05b12-4c8a-486f-8714-ddc1a05d9a38 53d8da27-6143-4850-b0c3-4f1386b53720 5782dff4-9e08-4705-8226-1768e292ab2e 599673ec-baa6-4810-ab0d-b293bbd9bb44 6c12a62b-5fa4-4cb8-880b-d3fa7400b8e5 6e52f4cc-ea4e-4f66-b842-f541e2736850 806c65ee-b8de-4133-87d0-9b4c6414ae56 84ab60b5-0405-4c03-8a94-29477c44ce75 95251c39-6e20-4161-97ad-92420e60dcc4 971a627c-1390-4c0a-853b-fb1abcf48166 9ef3de6a-acfc-4d39-ab7d-19ba384fa423 a15a1581-bcad-4009-b8f8-bed52caa28d9 ab6c7f05-12aa-4d56-b76d-a62f99dc474e b2bd482a-2fe6-41d1-8580-03fe3bbce4c3 b6a15caf-2993-4a1f-b467-f63b1154d573 bb37e36f-b619-47cd-acf1-af337ee168cb bb3d4e0b-5b1f-4e69-b754-6fe5a8bc47a8 befb5a7c-a7ef-40cf-b5c7-cf2bb32a8ea5 c40aa5fa-e68d-4bb2-abe6-a2e720c42943 c8dc7fba-2802-414c-937c-0ee49475db9a ceed626a-062d-410b-b4f0-75cd654a34e3 d965eb26-5b84-469b-934f-8d2e6540c7d1 df6b3153-980c-4183-bc57-d1b62bfa6f4a e284a31c-8ac1-4f31-8a46-c0be553a3b44 e3c3b7f6-afca-405a-b0d9-09d8922ada04 f08a4db8-220e-46bf-93e7-68d63cc48dda f6a14f25-35ed-44f6-8764-6a7f6d50d3d1 f6ee1b2e-83fe-4987-9449-6c078a80bfaa f8dd3c7e-c3df-45d9-8cb9-a5f3d4eaa8f6 fe56a2bc-596d-45fb-9cb3-e28b207d7009 53133e66-86e1-4322-bb85-7afca5c21f4f a7e4f8f7-1ccd-48f0-863e-6ed19022d27b e860b9e2-e037-4c18-988a-393d0094d8e4 a43519fb-325e-4058-bda1-f7e34cc92c6f 130433e2-dd09-4dbb-8e9f-946a284f4836 b2a58353-e9c9-4e65-a900-6efa66489724 2927bcb1-a8c7-4996-b4cf-1e0b73fe722c 3d99a0d8-87f4-42b3-ae8c-13046d610738 81fd98cd-c9a3-405d-866d-edf2fca2467f ddb00df8-65f0-4650-a3c7-89c56da7f06b 4a525765-a9df-4f3b-8fae-c2be3081d0b4 1af94696-7c3b-4341-b4bb-415b935cb441 17750273-1d4e-4a10-92b1-f4b16af3b73c 43f684c6-6920-481c-81ce-8a3096268d23 9a110ceb-3e62-489e-8e19-61581f5671d4 a67255eb-66a4-422d-aed0-4b64cd94d270 88db9398-ca86-4220-85b3-d1387046010f 937bac2b-aa3f-4485-8435-a74b05842dda bae8f0e9-2af4-409d-945a-a91a08fdc45a 8de15979-110c-49a4-bf71-f92c5c15659e 16c32cca-03cb-4d8e-bf89-f521eb08129b bbece122-0a0d-43f9-bd1e-b6e66ae744df 9c973484-e313-4490-a780-3cac6484f2c3 cb30ccba-a894-45cb-b1d5-847ad7005125 20d03587-b988-43e2-924d-d6655441a5e8 daca2ebb-26cb-48f4-8885-277e43200f92 f12cf189-9dd5-4b8b-822d-2da85bac7a45 7e2338e0-fce5-4964-bac7-ea6c242afeb1 233b0ef6-f843-44d6-99fc-9ecf077d1b78 59e3ea83-51fb-46fa-8bda-938de18b7cf2 36be5f7d-3d93-4e60-9b58-2ea01268c3ff aa2a8593-f318-4546-bad9-74c7978a14af eabf9208-959a-42b3-8af1-f5ce33e4d91a df2cb580-23c8-45cb-aac6-97ce3b2e2214 735da924-e3a7-45ca-9564-36c125627c0a 326b8016-5135-4828-b69a-a21c171e1a06 a317f3b7-85e8-46ea-bfa9-b8f70ca5c382 1276 -87 103 404 1337 115 20 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 17 b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b Second item for multiplication 806c65ee-b8de-4133-87d0-9b4c6414ae56 true B B true 4cc7e1dc-1b86-4199-baab-1a972e890666 1 1278 -85 47 20 1301.5 -75 Second item for multiplication 599673ec-baa6-4810-ab0d-b293bbd9bb44 true B B true 4cc7e1dc-1b86-4199-baab-1a972e890666 1 1278 -65 47 20 1301.5 -55 Second item for multiplication fe56a2bc-596d-45fb-9cb3-e28b207d7009 true B B true 4cc7e1dc-1b86-4199-baab-1a972e890666 1 1278 -45 47 20 1301.5 -35 Second item for multiplication 2f8549e0-84db-49b3-9fd7-857b8fbfa7c7 true B B true 4cc7e1dc-1b86-4199-baab-1a972e890666 1 1278 -25 47 20 1301.5 -15 Second item for multiplication f6ee1b2e-83fe-4987-9449-6c078a80bfaa true B B true 4cc7e1dc-1b86-4199-baab-1a972e890666 1 1278 -5 47 20 1301.5 5 Second item for multiplication ab6c7f05-12aa-4d56-b76d-a62f99dc474e true B B true 4cc7e1dc-1b86-4199-baab-1a972e890666 1 1278 15 47 20 1301.5 25 Second item for multiplication ceed626a-062d-410b-b4f0-75cd654a34e3 true B B true 4cc7e1dc-1b86-4199-baab-1a972e890666 1 1278 35 47 20 1301.5 45 Second item for multiplication df6b3153-980c-4183-bc57-d1b62bfa6f4a true B B true 4cc7e1dc-1b86-4199-baab-1a972e890666 1 1278 55 47 20 1301.5 65 Second item for multiplication e284a31c-8ac1-4f31-8a46-c0be553a3b44 true B B true 4cc7e1dc-1b86-4199-baab-1a972e890666 1 1278 75 47 20 1301.5 85 Second item for multiplication b6a15caf-2993-4a1f-b467-f63b1154d573 true B B true 4cc7e1dc-1b86-4199-baab-1a972e890666 1 1278 95 47 20 1301.5 105 Second item for multiplication c8dc7fba-2802-414c-937c-0ee49475db9a true B B true 4cc7e1dc-1b86-4199-baab-1a972e890666 1 1278 115 47 20 1301.5 125 Second item for multiplication 5782dff4-9e08-4705-8226-1768e292ab2e true B B true 4cc7e1dc-1b86-4199-baab-1a972e890666 1 1278 135 47 20 1301.5 145 Second item for multiplication d965eb26-5b84-469b-934f-8d2e6540c7d1 true B B true 4cc7e1dc-1b86-4199-baab-1a972e890666 1 1278 155 47 20 1301.5 165 Second item for multiplication 95251c39-6e20-4161-97ad-92420e60dcc4 true B B true 4cc7e1dc-1b86-4199-baab-1a972e890666 1 1278 175 47 20 1301.5 185 Second item for multiplication a15a1581-bcad-4009-b8f8-bed52caa28d9 true B B true 4cc7e1dc-1b86-4199-baab-1a972e890666 1 1278 195 47 20 1301.5 205 Second item for multiplication befb5a7c-a7ef-40cf-b5c7-cf2bb32a8ea5 true B B true 4cc7e1dc-1b86-4199-baab-1a972e890666 1 1278 215 47 20 1301.5 225 Second item for multiplication b2bd482a-2fe6-41d1-8580-03fe3bbce4c3 true B B true 4cc7e1dc-1b86-4199-baab-1a972e890666 1 1278 235 47 20 1301.5 245 Rotation angle (in degrees) 6e52f4cc-ea4e-4f66-b842-f541e2736850 true Angle Angle true 0 1278 255 47 20 1301.5 265 1 1 {0} 0 Contains a collection of generic curves 2a5be90d-6a4d-49c0-913c-d70e26179b8b true Curve Curve true 3537ed18-f4f1-428c-82e7-541bd20996ee 1 1278 275 47 20 1301.5 285 1 1 {0} Grasshopper.Kernel.Types.GH_String false 256 Contains a collection of generic curves true 2e2b4494-018b-4b3d-9bbb-fc30e0fbb0b7 true Curve Curve true 7428efec-7c04-44c5-9681-0bb0a240649a 1 1278 295 47 20 1301.5 305 2 A wire relay object e3c3b7f6-afca-405a-b0d9-09d8922ada04 true Relay Relay false 0 1349 -85 28 23 1363 -73.23529 2 A wire relay object 9ef3de6a-acfc-4d39-ab7d-19ba384fa423 true Relay Relay false 0 1349 -62 28 24 1363 -49.70588 2 A wire relay object bb37e36f-b619-47cd-acf1-af337ee168cb true Relay Relay false 0 1349 -38 28 23 1363 -26.17647 2 A wire relay object 53d8da27-6143-4850-b0c3-4f1386b53720 true Relay Relay false 0 1349 -15 28 24 1363 -2.647052 2 A wire relay object 3eb6dcf6-830f-4fec-9aa7-1b584e652d50 true Relay Relay false 0 1349 9 28 23 1363 20.88236 2 A wire relay object bb3d4e0b-5b1f-4e69-b754-6fe5a8bc47a8 true Relay Relay false 0 1349 32 28 24 1363 44.41177 2 A wire relay object 0f29d6b5-557d-476d-9fcd-1e35aafe35d6 true Relay Relay false 0 1349 56 28 23 1363 67.94119 2 A wire relay object 162f3737-68e0-43d9-9000-edca353ab239 true Relay Relay false 0 1349 79 28 24 1363 91.47061 2 A wire relay object 971a627c-1390-4c0a-853b-fb1abcf48166 true Relay Relay false 0 1349 103 28 23 1363 115 2 A wire relay object c40aa5fa-e68d-4bb2-abe6-a2e720c42943 true Relay Relay false 0 1349 126 28 24 1363 138.5294 2 A wire relay object 6c12a62b-5fa4-4cb8-880b-d3fa7400b8e5 true Relay Relay false 0 1349 150 28 23 1363 162.0589 2 A wire relay object f8dd3c7e-c3df-45d9-8cb9-a5f3d4eaa8f6 true Relay Relay false 0 1349 173 28 24 1363 185.5883 2 A wire relay object f08a4db8-220e-46bf-93e7-68d63cc48dda true Relay Relay false 0 1349 197 28 23 1363 209.1177 2 A wire relay object 4ec05b12-4c8a-486f-8714-ddc1a05d9a38 true Relay Relay false 0 1349 220 28 24 1363 232.6471 2 A wire relay object 84ab60b5-0405-4c03-8a94-29477c44ce75 true Relay Relay false 0 1349 244 28 23 1363 256.1765 2 A wire relay object f6a14f25-35ed-44f6-8764-6a7f6d50d3d1 true Relay Relay false 0 1349 267 28 24 1363 279.706 2 A wire relay object 1327e01f-51fb-4c31-b529-4416006b1a3e true Relay Relay false 0 1349 291 28 24 1363 303.2354 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 4cc7e1dc-1b86-4199-baab-1a972e890666 Digit Scroller Digit Scroller false 0 12 Digit Scroller 2 0.5000000000 976 -140 250 20 976.9166 -139.8604 f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a DIFERENCE CURWATURE LINEAR GRAPH 7J0JIFTr+8dHZW1DSKWaEpGS9r1mBmMbS6i0NxiMGBpLtKpkV1QiVFRaqCwhO3Uj3TYtSrt2ad91b8vvnHFGZ87MOXGdMaf7u/7/26/mnTnOfJ/3fd73fd7n8xw5Iy8nP08Wx/cH8CNFIpGkgf96eHv4ubI5i/1ZXB+2FwdssgFeBpvBH1nwLfzPmbKYziwu+BZpqFmB32RmBL4sD7w0/tGLhNVhhy0SvnCaXI2Wf5a14bL82azlYLsC0C5j5wZcxbkn9LIly8fNPtCbBTZ3hn5xd6jNyovryfQAW4YAr6ampv7gf8qO5cFy8mU589vYbPYPFSOWC5vD9gW+hQ3Xy5vF9WWzfPiXBf/rYsT05f0eOeAfx+57RsSG3pLrasTyceKyvX2hLw/eIqmLFdOTxf/Xy84Opib6+g/ydjTuCgf+fBCfCfx5Pz77fnwu7y+8f+amgX/GbuL9GXM/Nq7lnTUJVuDftwaDV9gOfuRB8r6Wv9/ftvX+triWt92PP9Rytea3NV+kMf4Y+PqOdQK/mv9Z6Jag1kOCt7fz5++NSOS9OQrr74npLReE/oRewfwU7+/QN+L9RtgNHGq5N+g++bf98z281ubvCP1S3neHVOVdAdKH/1lhJZsVhtRu/kV8Q0B2ga4mYD5IXp5l9fVNTB3kbYEeBg4FH/4wAX+681819PJrHkCd+UMA6GzuQGeE+k8n6GUZeybXlcV75wDgnzu1SaRp6kDPmufl5ckfQUrzzs+Qng10Z4FfJQ++IvRr5G2dvBnMQC8/X/h7FUy4Xn7eQm/uZmJKZbAduUwuNASkoJElLfBW8BXZ5vcF8u4Z+rgi1ceH5enoEUj38/CADwWqjZ+LC4vrwvZxG06e3ewxpo3RNwD/bzjZ0M/D14/LmsZh+flymR7DyTZ+jh5sJwtWoL3XUhZnGge4Wk/+pWf/9DfglWWhq8hQ/XzdvLj8l7tbsp3cmCwPsg030IvbycyZ72VSG3ZqLB41m5Eps5n9vUFhhcCIVfh5m7Iov0fpp7OwdgTN1yKTNPBH1+bXBMQCX5dpfh3UqBOkXxeTWT9936h9tpXzMw/RD+7refbkmo/bBe5KmmcreUMvji+TzWn2ozrQVWRoXlzItfINI2Po5eHlx+V7OPB/RfmqAVSyK3hdspcL2YTL9PFx8/IGfB/Zq/lbdTIz4vUe4L/vi4+kHJ3eaBl6ICNBxc7PGGiSgpq4uUqOIf0qLfbrXHHWrP/4CmjqBDX1O7Y4uX4myzQrKnvt4Z5TLYCmzlCTbC/1fBdFRauSs38rcLyDaUBTF6hp+rUGqz4ZKYy069dDi292bgSapKGmCJpRhHyciem2XQ1bV/uHbwOaZPh36NrrVRnzuvX6u/H+pyimTUCTLNSU/3j5yUqZKqtQxwdVod+jugBNclBThifjwBelWMuCer1nCnnpVKBJHmp6OfjD2WmrZxpvMr52lq3gugxoUoCatFmD4lXmhNMLIpfIkvSylgJNXaEm/x5yZwpi9Rnrbs8+bKrfWAI0dYOadm16eNO7+2XjOPtJ7BDNyVFAU3eoSSMyrMtovVvWB+pfr74xLe4G0NQDanoR5Pp5SXqa6XGZeiM3mVgpoKkn1MQ2P0l2sXpO2bJv/PfnqpTXQJMi1NRFWlVXaZg/I+vTY7MjoV8nA01KUNNxl5GnAujTTffO6uG6RlrhA9CkDDXFfZ//0iyAaZFzcnuj8uR71kBTL6hpmWb83ZO0k4yNWwavyYhd1hloUuFfcEf/69eTp1LDqPOUbHa6TgGaVKGmzQrdz5ByjlgdZyeuiS9rLAOa1KCm4fsGRfRebme8P+A+9f71pL+Apt5Q063M2Cvap2XMs4Z225htOUgaaFKHmhYNVrGsJy03CbOq1Bk91vko0NQHajL1cddc2vMRLfaHlGNyv1J9oKkv1ETK2OTkM8+PXvbJ6tSc0Ze0gKZ+UNPlxJxlL2avMI5ihuraGMqUA00a/Jvf2yOHmapJ2XBp3qgCr+GxQFN/qOn2INveEZdDTY+9s8jRv1QOGmUA1HT6RMJnWo8e9Pyzo2znZpWvB5oGQk1/viyP+fa3rFm6vd6zoSE5/YAmMtREfR52arF3luWm6r6Wi8obwuXMjBYLeJBBoGc24/j4MjlOLBM/doszUzJQ/bTX6Lt56pgtL2Ne3aoX4TbkrNhOS+EvkxSovr5ctqOfb7OHh1w330VJ4eaiBnagiyrtveRI6vwwq6Kzn8JsdQPtYC6Kvl+vXPbVS+u8F511GlhfqmAu6ii7Rt58Vj+T9U/u9FxNsfgAc1EZh30mnLQwo4f0lmbQqyepwFyU8ZqKFEpYk/mmhckc2vN8PZiLurRAVqN42W7DvClqH0fPldaEuajyOZ5X53/0MwsZ1SeAHqx1CuaiAkIrV24aNp6SOqIsTU5zVgjMRbH3rylhjb1slhZDmjRDvyIZ5qLUf4wiXXCVNolU6nM0YSKlBOaibJwtDrwI9KBkHNcOjRzT9QjMRdkP1dO48qTUMlHOkxO65ZItzEVNyXk/aNK1WquU0lWaNaMHH4G5KM1A92Fh96LN42t2VNmnDl4Ac1EnI/6IuxrJtYpcfeLm/jU3FsBcFGOnrHpAX5b1oZOsG5Wf1KfCXNTDtPFvBz8ZQE3l7nR4KVu+AuairDa8G2QWV2xWGGs5R+GM2ieYi0oq+vbg0I40Wr6nzKbE9Hf6MBc15jKLMW2mvElwflqY1qq+u2Auinsj/mCR8iTrtA8n/p474sgjmIuat46TPzwyySqB5piY8+OdLMxFGXlr2eYr2JnHXahr2Gg1SQfmoqhN3zjqc3SNd12LemLAVRssNF7V0cbr8JIHs/MXbTDKrLTf821KbQ0O47UTbuNVuwPHq4h1A3+8ilg38MeriHUDf7yKWDfwx+vKGx69nu80MyoILrffd0b76n9Liv+WFK1YUiBnZdiSItiwc0GGphc144qxxqUTqYqwJcXieV/qF1KHGB91mMwICtwnBVtSDNceq37aUp2ewjq5wPMqtQS2pLgyezybnLHP+FBiVNrBL4fHw5YUi48xpE03PjVcp6tXPllp2mUhZzMQzdkgl+04OJvOuDkbtQ50NiI8Ct/ZiPAofGcjwqPwnY0Ij8J3NiI8Ct/ZyAWqa70qzLWKOOuZsav28QOYs8loOhy7sPALI4ZG/Thp9ZpQmLMR4Yf4zkaEH+I7GxF+iO9sRPghvrMR4Yf4zkaEH+I7m+Q7hya73/9Mj9zuNOi5+4qvMGeDHF5CnbcnWudFThA4dN4uaJ1X/6njoK/cJottc6/WjTyYriLwu7oZsf3ZziyyoR/XnyXYh0HDgmYS1Tt1oY8xyU7gB8lsjq8XmbXMj+lB9mBxXH3dyD4sVzD+6SNjynZ2ZnFagi0i5UB2YfRbFFJFoBWhUEvMiQYYxZn3kib475jjlaS6tEoS6QGNRAqiSduw/b18+Wt6kkE+0Lqvsqs3k8v0XMzmePvxAhuykLai5OjJ++1kQANn3t2I/JI31u8pXpjYn55eOKG+dk7YdUGbi/520MvWvN/WHPLlhbhk7AAX4sTiuwBPm1CXUd03WGyrsbk55evGmK7NzUJBrVbqEwToUw3q84ZKIqVQEfrIAa0BaQL6SEH6dELRR9nKz9MRdF4uLf1CpER7utG/hswYZrYzwcZjzq3aMQiJwK8jQiLey7+SCDmB4iCRDqZEQBfqYQMG2Xx8ge9rxPRltowBkqiAowyNC8jhRoINY+E3dbFh+rrxv3nnlQaru5j5sjxJpJ8HEzIcntT8D4Hvg1sKvLQMhqV623l7sH1brERm+pKXsjlLRZur9Ovr8uH9zzMyC5d/KlHabyBoLgvwc8Lman5ZyFyi7CHC6WHZI2wflj0mSsYeso5eXh4sZosDJHVrtoaXny/CschQnZxYPj7wy4v0NaDDA0O3ZG8vNtpA+hj8rddrqyVWiVti2aY+9L8FLCNjw/ugkGn4r+Ntm5o8yJ0soImwzYdcnjsRkEWq7bIMtmdyXAHDkv2BudCLy+u5zq1QqsFM4VKXz1tMQkZZZK3jHPxDQCk56KLCWv1sEYdaOphqAZ5FQK1ObVdL0wb8PMsX8Mn+TA8/VqvlWvrkflPDjcmm2XMz113Vvj0Gcb7Av6qwYPA2cUjGG/yokgGDH1omSZNQlklnkpiMb5N6m6zfP0C2UXNlmWBHYACrIrKdEUN4iSSNIjHNkMti+oJLJA/ws5BHJTuD5yssZ7JjIBlQl+vbLPZwsi/UfZkcZ2gJpb+6VWsn5Bpf9H0Ld2B+Sys1dgBWRQZ7AY1LRK2ZwgCNDfYIrZmwZhpF3g3ANBD57dK/+t/rbxVuknL+5PHa8pRcwSnGDvy08BTT/DLevcwUUIAMKmAgqpclAH2wZo9EphgFQy9gl8nmQKf4Y0joP8hFG5aB1HkG4vdLHWc2t/k0V1ekobwfVSX0YPUxTZd7qZX4TPkvAUPJG/E/LGQsWJM4DBa0B8tgBpIxmEzzHCVorDczsIz1q3VbV56xmh2HSPts7qH1/HPOO1pxfY7mqCnLjARXBAzeB4VXBNDr4rBMfSqWZWJSJb165h/6g5YRWrPJkNDn1m4MmL8XaQvkdk3AFl3AjwtZovlVvO2gkwu5tCxg1eyNdOo1x3gjBJo4+b3vXzNxIiNgYpw4CzKwJs6CdJHBhvZNnE/qPFgrB84w2Vxh8eWmoSylPRMnYiuN3Fy0cysNOoODGVjOwCHj/3devUTLef92vInFsduuvk6H5+0lyLwqh2kwoEcTZl7l//ycX5HzKtZg++W8OobmmyS3NNNqDyUoK+XV89D2zauIkaZ2p++9H0Fb6XH5FP/E21um4jDS3NKxDKcuIcN1yLQ7Rer29Mf2TrSsK5FSatKlFhKddnkeD3XaBQYQNO3yO6fQtGt1nH7hDOmUYdC8PlPYjeZKAt+mh6Wfhy/b24PtxARvXXjyRevv/SwBW7E8gU85MT3IngJXadWsijwhwrotIbkR7a2UU/E4INgBQM4oGti1EXLyvNWByu4t8Qd+rwZl4IVIzUBHIGBLnlfgvWzmzB+Lc52rN0mVyxsVvept2V2vVw2/XQqlvas1r9sKjQa55tfRL9x8P7zbJZGwzx3609lcH18yGxhOZBcvLsJeIu1TM0Bea3y3AZZx3TbFfVk431XAPlJUIZMALyG7vxTCSyGP3NrppUiAOQ+C5jQQFcq9CpjT4UAlTCSpX4g0wI7l5AUsDtui0kD9jxT7i92NNuy9F219oUhOUCWasEq0X6oUk3MgIUhtMyP2GiXo8bCbm3FQSQ5TpYL9lVAfbOlLWP5T3ZblAwgDntG0QiDkzCQ47TVfSnjag17H25825EE9pgnQgox0AB55PKUgfyqH5k+3N3zcOWJWFKPwT+sTJj9SBgtGNo0DvLksHx8hX4q10FMzBmOrvK0Mh8xquQDsWvx3KtGtbS2p9jqDVxpMtl09eLi1bqt8LfLwHO2WhYOxP9taG2ItqCQFxQISjzckkeqR3a0ekFgxVoSP5R9Ki/CxUiJ8bMK3oKLUWAez/AOHrCiP9W51hA/t9VMLsj+Ty2Y6eog+v1X/UCJ1bgTVNOVNr7L7p9ZWCqo9G/oo2VrYOVh3tAutAKzlHQs5hwqktbYV8KzVFueg8tM5/OzIIlWak5F4gX77g0nayT5b6MP9ElvlGKTIuPuEJccgCSooIiQwPcaTAPIJ8mg+IbGgfm7ooyazooK8ouyl9xmCm2gbJoflIegO+FcSpaEOlewNfoI3Bzn5+fh6eZI5Xr7g2QswO/myAnyhsxiRuiKzYUTcinDGiChVnbheHh62oGfn+6/mnzczEH0SaUm0Pik3y4fFtQdun/9rtYy8/MCR4ATMIEvBpAiWM9sX+u7ATAzuLB4E7UfYkU/OCe1ZCitJOomAHWcbkoJCDRUsmVxXNofBchHoFF2bX7Zlu7oJ0kHNr9t7ecNfFewMKcaFlV3IiZU9eSIKInKy/LsSlbTFZS434ziznWAokTz4Irjdgb3EW9OCoayfztzOm+XEZnoYejn//Cyw9/PlspieLf/uMofL9P7pMJq7qgJaVyW7auaHRYfTtv5xmLHjS+FKwf5hy/JgBgp2VTmSyBNDtN7bi0pezuayyFzwSlAWmsiOiszNEnEjrRr/iN6I7P/t9JAJwAJpSVIluFwgkYKQ7qEJmM/ISXz30JXwmiOnD5w0R+a+4qC5XAyW5tWb+Zp3Q9O8zamYXfmadwRKJpzNyN8eishm5Kdiishm5KdiIg0rlGEILrBEdglksiMOGYbd0WyyrJytx7ZKNzxeZu3x9NH81wK/q+tMP3AaAITzdhOeLNuQszDEiO3jDQ4EJtmHxVuKBI7gJy8A/w/YCPgNIrVAZnei3p+QIgKNQsNF3s6L62sN71UiBtE/XNq1XA05H4JLuxRgEKkZgv8JDqJao4LKZE5KZXc+Bw7MT6wAgcs1m7IHmilLWfvTOd/OMqKHVx4z4CovFAw3g9mITJBlFQ4oyaBYbUrLJsjXjcXLFuVdADQfP3mU6QuaFJwSXdgsZ7I3fxOh36pNEJITQLlj4QB5S1Nrd5nAjjvLE1D+L1EHOeAeNGtpm7JGlVqyRlmQRiK/4IjsNRN2nr1kfshypsmKuWPP4Jg3iqQl2ung6wCFYkCFTGlgIh5CITBMl+IhMm8UTSGtn2lKwO6subc4e3kCHe+XqpHsv/lM+VuRsWm4WvLVl7Wqgt2i5brC3eJn06/U69ojPq4sT9c8Wlv1xga3N7o4qAf0IAz1Ktwr2xQSV+Ul9P2UDhhoK31Xi5QrXm5i1bGcsYbrFumv6Bx54yxiewFeR7iTNb+M984tLA/qRVNFnVKcy60kvfEQThfE0qF3y1CHsgOxlBgW0dmYrqdOT1h7e/qeo97ZbfcnYlHExgNLEaDfCKUEtlIRJzbXyQOzb3h7mh+vNnpLLS/Xpc0zNptPEEUUl2Ip4u3OX0qCEMbvCkYgSbcOACOC3LDAiCAX/MGIjytKNkjZ3mBs2BX7ddcCSg1xJzgwy3yJG1aWeYWrWMCIojSLJd2fK5mGPbY8sfLwoi04ghFIAg8HiciuWBIBXejfDkYEhe3wcJT6bpX8doQtpcufFyQMRtSzsOxBYf0fgRFrrz238h1Hp6Yl7FbUnLD+q8TBCJ47Qc1bB9yJpMAI27ph7l80Aq0KJnGepD+3v0IIMILnWVDVAjyLxMAI5GaAMGAEb/CjSgYMfmiZpEhCWSbtXrm99lXDUsODR3S/Xbg4ulbE9Cw6riNK36HQO8GAjZOXh0dziho4/wGdhsVlOzWvm1q3OkLO7rKWTG9vNseVrxT4dXBcTCAx9nbOlGRwMWFTCabMCJ9QnS/Iq/ROsOYbRwnNOI46IZqJXcooeQ5D1NPP3lAT+Lo9jcDMBx9frp+TL5nKdWp9Du4UWxbwFVj+zVEbR6YPi+ztweSwhpO5TGe2X/ORFTDQPVr242A8h0Nmcp1aF7VBFmPAvG8hgyHf0IblbQUXUPycqOVtELC8rfBu0/JWA/jdZGA7adi8hwKXuT9vTOT3zkqZ/tXXlk1Pnr1huOUf2wTja51FfVfei7/qmsgtGg6LuBRQqBRRCWoGx3lCtSkU0Y/W0od4XaVZt+a9p0ihKAvUjD8VbzRLHcziTj/XtEbQn/KuZgNeTdifwtrw9qfkfEgXB1H+1BTwtiRuG0MTts3jqVWa7NnQ9FFWu7PR3qu+B/IinpxAnK3zriQi6ab5dXFosWQZlhbIPvKroASZCncoOsB/oLNhcnx0IXlEimL/ZP3G2EuVRuVzyI929qtWFnT4vEsKO/zml8UhCdkbS5IgL75HV0bz6CO3rA7sP/k7PXbWuEhS0tx4wY5vDYwfa39gdeIg7Mw7o+jay9DLE5AfGHjg4AM/HNA6J40si4N2K8Jj8GdbaykJcNu4CUyJpYnILyIBwmZFt8k1d+VlADUv4kR+uZMm97dz1miaZeSMv6j6pkYwUVV6Nvg54X7T/PKvvDGyjk9707YBbRRBbRpEZfNcbdambbnSzak/GOoY/i1zM6nU3+hIQtOzfswnyyWa35eSBwnQJEqAIXk8AaBx1QttXBHmsB55qo7TYT3SYngc1m/GPKzfxNdcBU3z3zCnElnUS8w5lQYBWDmVNsv/5TmVVTLD+h3P7WKe73l4/TPfrUV45lTi7IXBnErFAKycSsBa4smpNLC/uHM+c7JF+PIpOnJRr9Va5YzFlFPJkwA1pxKQAPIJqmg+gUA5lcgqfeLPqURaUjI5lXVAZ5XbCNhxkrhyKsOvFlSad95I7JxKfjKMGlpXJc6SAVEzEqclA7L/47BkcAjBWjKoh/DdQ2/Ca46cPnDSHLmHx0HzGl8szW18+Zqro2letj9q+sFvmeZ5FVPtq4t9BLfQMs1HlIKiY51pjkQN8bp4eAE+kuPaHEcnNx/IiXbNyHJtom5JeP8Bvf4rG4yu3a4y0liLscN8o1yW/bHS9q4MABvEMKHEHeS0KPc5r1L9/BJJH3n+nJNiKFB36IPWHdoc8OcPQbEH/JGlbnEM7iPhYBz6hOkRlD5x62NeJf3xYf647ItmiDbnOrf4wg7IdUbaQig1GfytIq2ILJvamtRkaVFpLPwuDenYD03Hi/2fP/u0xdIy+Oj2wSOWfBTMhe5i6SUqwQftZGSYPTA0fTzAHaiOJ/BJXXAj2qwOmenhBTg3JnTS2roYG/LRDsL3Jgylg6+2sh++AWP1RUA//CqKjQbjaopFbYqrdeeF111ZXsCelBso8isV9ln616beRYalWe8X7DC7O1Hw5NgE+qjwyXFLy692dsiu186xWg8mXoIaUUSFbXnHdEVty+rh9xHe/pfXGUQfgl0dMii9Vs4qoWbv0GON/QTPjGUsvUQy8vzXf+XQ9M8HcOi2BhZBKvbSXRmk3TiIpIgpUkUh8Yp+8H+GUNoUH+3VMsidsbu6zjuD/lqs69YJGg6lQ2ZkX2l3V8cjVMrry6aizFSXy+vLbTqhatbCBXzkHK8/OwOGFe3JzJNUFmk9ZkQH3n9rvqbXd8E00ZarCKeJ/mwSS+AYUw2g00KzhwYJZfbI0C+cPejSZ8NtVzzq3txprEPEqJoTih3mzms9E6HdUuEKSkd24Xp5klcGBK5YDayRPL29OGACTevmD+Tzf9DuTjhe+bOtlWo2AYMcjFmSehqKOD4ngQUQjwvNJXzeXmQEDLqFlQGw7y3yW5pRlv2wo+cxIp1LclVVv8Qom3F8WVygpwjHfTuNcBDkexx+XluY74E3/sqjnjpTE7c15JhF4qtlWXU+B/q106OCPAkYVCTtEdU5nYGp2buAONuGN+VtmQFbLBv4K8seuUPKDnxVRMnzJ5v1mjI9SdB2c7FsN7cNtnO4ExhoGRBFy6AOTJQ6O6W9CRKg7ciYtgOGAmFs17ZM1xbbrfiV7T4M6KPGLl/F2J36REqFMzhC0HbzsGw3D8t27S0HAiYZH8cyjgGhjNOmpYkiZB3sNCPk4k9wZdl8CeGVJfQ67rNwLuTo5ESBTepAq2lB29Yk3SERMOqyZeikZH2X0zY+eOXb3cLDfd9ItN4pqEDNcSwFHI7z1yH9SSjrkOzFjCcLgrPNw5UWj9moViRYuUnGjgU+07T1+9h+LWsQH94nwQ0/FJBr3cID+XRBUbcjLHDz6609bwIkA6ET0mVR+Xrg5tUgr001p/s218tq/p5kkCJ0Y0HfX+R3VHjXm6s+65PxzuIdecsj8j5KsPq0DTjj5KPl8deBM04ecZzamxltqYg5xM6X5U32Ya9g8c7xWEwnN7KPHy+cz/ZnQeYSaaBXI/zWfjd1MdlWu15FLaDwi2D0BLyscPSE96o4zBOUh2UeA8Kah58mj2aeAT8hJSgn/tcjZ4OZmwVbe7XxsZH2e0gOFxGP7mwXsIR8QGk7l3Kg5epzsSwXkytpy/GBJaGVAsrhF9q8qWSH9PUijYfc6Pwyr/4X7l4s+3qeMwTxT6H8ZDAhDBht0Hw6gIQyn+p+661+lNzZOI/25m/WAFfB5zF1ZQDWJjcvB1qfadnfksX0AaFacHRAvCev0IEHcLXWTavIJ/Oi3pXwmhrW2EodA8BHOWUBOp4UlXXpDaaAZYnc0behz8nzAsagAKL72pf05DkLelrk640KHLnOVzAbrgv4lUQVZfX5tZvAGf10A6RyA6VKEJX+o3GcJxUqwiZyn/XTrYKlKXlelSFSI9WGv5/MtjNnxMa/9dxH8e6LHI9SQuOxg9e3ivmQOKJOu3iwNiAONB4Hoo1HAiUGIacY3BODhHqrXFj2iIN3V1plOOYdoEWrdJNMYlABYMeAYy3xUjEkBoXm51cuWnYMj8QgknBiEAnfYmtktK46qNPG+UPzrllEOT6jup3nCGYndLdk+viQqc6AHYRSW0Hhu6B1WWCNAUbByZ7g55nQ53/OHy2OolXzCPJZ7Ri3KNSVBZvbcEDklgP0nU+iThrBPJWC7PbOJQNhSf0+zbV84Vrpi44E7NiZfnDaZJNM2ibL+FPViFN03hWFl6LNL/9qjkE65nbOMWCIwAGUsI5KEq5j63ycJ2GbokW9YUV94UqJFArpgySa8z8xH9IiTFQQTwecUnLazUb3ZkDjCriOL+AjyFzelxE9KezcVDDkzcAMo9IRXeaN/fbqviCyaANdoVkO4aWw0BvEIRjQPTAEc8vmz8GD0BxbmzNOlPmCd0DGCTJVAlZdD3kKBquuh4xTwarrIdfasAcdI1cAsAcdIz0r7EHH+i+3hUdsD7fY/kP5S88hFxbDHnS88tnMt6OitI0Oksa8ki4KDYE96FhxwIEzhRYfqBvrj6ZPXXF7LOxBx+NjZlFClV5b75TPXMacUtgf9qDjS5m14VtLzzOS4jU673a8/EMo/wYsfCiyI//5sjzm29+yZun2es+GhuT0w6E04GC0DkX00oDIx6B3aGnAf0gotFxNVGnASJTSgH3oBZWn2ZG/Lg2oiWbK3/U5T6W9lxxJnR9mVXT2U5itbqCdGJ/z5P0K6zlP3i/F8Jyn4xc3hux3zLDYM6xIQ+Fk1d72hKjF/5ynJa+wnj6j+Or/9zlPl6fdjPkycafpNsXTDLpq97cEec5TxUssgwE9mnApX2J6ztN20tTJhgoO9FRl/8ba00tP4vqcJ8ULbl2vGKqYHx4xasehEbJbcRhpZEzD1byQdEhbjM95OmA2NSa770zrPaxuKUvcr+6S6HOeeB4P9TlPwACCpt0hJJRp9zdkaOn79cplX720znvRWaeB9aVKzAyt6U0shrbuxr+cob2WVD0vTu2JZaly3PZLNx59xpOhNV5TkUIJazLftDCZQ3uer4cDQzvxJhZDC1hLPAxtjs2L1M59DpomrXH+likbsV+SDC1PAlSGFpAA8glaaD6BQKHyo+waefNZ/UzWP7nTczXF4gO+ofLTFzo1IBlapCUl91yS+gfifC7JRqPCyk51D4jN0PJD5dpoXZUwPGfGYZ8JJy3M6CG9pRn06kkqIm7kn/CcyP6PA8+p8wiL52x4yHcPQwmvOXL6wEnzgNDKlZuGjaekjihLk9OcFYIHQ1uHpXlMHV9zHTTNiR7ourRAVqN42W7DvClqH0fPldbs0EDXP1xGoAW6bICFgs4zlEBXkUVBZbL2s18HunQJP3xORvwRdzWSaxW5+sTN/WtuLCBupSD1GqzhU3eRP3yGoWlOu9r7jv+EY5Qj8xepR84uFVzRqIBf1RdMBTRiu7iwuCxAJxGprmhZOSP59c+4/Ms4/7wMb9Xz84AVpJtatccpn+N5df5HP7OQUX0C6MFap359w0KmEvmuVopefRzY99SCNcFEZe7YACapu9re01YqAyYKuF4CVyBMXh05sg6UPwZWLGyuigv+raXEsIeH13KWs+hIV42nxp8jGxYbBiVpx6/T65KGyE3neTMRuenNr/+qbydTpE9evTDZ9ED0pc9Vpu9etrNvFwAyTwRl7iIqsWXscZ7M7S1crQUzP9mR5bucxeLw8vtZTn687sE79Rep5fOwG5+HpT+xTjshZ3nnZp5gYZCuP6/rLOzV4Y14b3Le5EGyLRAlm0oeTzbIJegR3g0jlxutccMitjiInoo0HR7FV65hFl+5xpd8OOElZ+9fU8Iae9ksLYY0aYZ+RTI+kiPnUxwkf3MJS/KsS3zJR6BJTujn2SF7PuzEHWkh2Ik7cmqEnbjbOFsceBHoQck4rh0aOabrkdY/z079xyjSBVdpk0ilPkcTJlJKcDi01kezydkemu9HjfeyDHn32kL/ylpjwdwpWxawAndika38PDzaANyM4H+OA34OnC3ZHGDpznZunl6Xs8FcYV83wA6tXoMg1cS4T+EcL4HmVvb4g2Cu/BWwEKeoHC8wx8TgSntXHWpmvGRYYLkB3Iwvb3kGKiZSAC2Lc0vXKhuYrJuSYtntmksjIrULvJCI1C7ey7/yFcj+3V5fAbLToHLBoo5kYsAn61xBrTHRSuX6tSjHFehqYNcSKd+EgeW1qj1u0I5cL++6sKCiWvDpQlAH8RT5mAfBVrzXD6BaBphq1V/u0AMs/o3K2Qd6s+A6aMIcqL4Fi8theeiD7/HRNzFdDELqriwuAuQAf9q7ZFTjLc1BwwKXIDM5gc2mFmll5JK4PYOknXatzoVGgUjWxiaXNwraRIKqI5Pooa7vLFKKMwWb09IP5FulO29/oDa/SPAsrY1UEg5SGGBKAXRxaKIaSUKZqKyO0y+cIZ0yDJrXZwq70VxJ4Pv04AV4vT3YTkzRichoq7R+lsAwYIHlPpyYHmRPgau0al6yH6qnceVJqWWinCcndMslW6zbEtIb0d5aAgF8YkEjIGeUqJkJPBB/80zEOSA/bCDiHJCXMYA4B0Qe5/HbpVDaO+KcsH8z0wr2/uaMaAH5RNon7WVvn4EzxpnlLpIfPacuXUPAPlJU4ZgStaMPCkngk0QboYNCodEBljynNFbCRJL6hUgD7MDncji3SaX6kvUuOtEDLWMdey64MemyYN6YFE1YJdovVcq+sWWbZvBG2r4hf8TdXhvZ3ifIgCq9eYalUsqzNh2nqsPSxX8tEDJrRaL54uDzd3k9BqwRL5Q775HHUwrypwZo/pTIheKm5LwfNOlarVVK6SrNmtGDjwjfW7sLxcl9wCoU5/Ae70Jxf8TH7Vo5Wt8i8dNV66+5Nhm4F4pDZgLhUAOt6T1WDbSD78VSKG6ewtpte+uzDNMmrVk4osJNB9dCcee6W0XP+B5tFlnsafzuj7izOIjkgCmS3HviZQ3yf8RVKI78l9P792P0zErdn5TFPhlyot1dHQ+EmteXUUujAX1ZPIXiYt88oB1S5lDiXs9dt6j38sMEKRTngKkG0Gmh2WMUCWX2IHahOM1A92Fh96LN42t2VNmnDl6Adnc4FYpTfIdVKE7xrZgKxZX137ap6f4Mo8h9Lht2WKlmSqRQHLXpG0d9jq7xrmtRTwy4aoNxKDZGeodVzyrrLYHSecVUKG6XpdNyw+Is4+B+u2qXXU0NFVOhuPPHx15y/FvP/JDU98o91zc8w8F2S95i2U6RSLYTqguDT6G4Po1J24dMu2pcFlSySOWUhiqBCsVVvMGswPiGOMYRS6E45OJP4oXieI4OtUxa2FvcC8X9WKH2XPt+vdXu76OsvC4985B4oTjFt1gKJLzhr0NGk1DWIb8rqLfr3vAZ3W4FGucHjCkfGXGrqxhBvW6qVRigXpRKFf6gntxFX7re6R3mUUnx04uLTQXLIxMO1OsCCoSKD91Wqfq/BfUK139bOWLeHfM0+5SXPx6oCT4gTnKgXq4KlsGiJGMwSYB6WxpU7xu43DLfNPjyvkfGkTNxBfWU6AVayRuLKUc7Obqf7DXzIw4jzRnTcFMlZLgOAfXSRve/8XlEd1oyzcHtHHOYYAW2jgb1eB4PFdQDBhA07Y4hoUy7vyGop74k68ALU5ZV4dvpfT3ciqXRbhknUM9DvgoD1BsrX/XvBvWqI/o+oKVxLcuSC2be3DxCHk9Qr2aqbOSTgp7Wx/O6PjtcY7ISB1DPGbQWKqgHWEs8oN75tLhnV0mTGEkquScSBpkYShLU40mACuoBEkA+YSyaTyAQqJeer0HdwNxtnGI24ttKkwwX8T/sEmlJyYF6Wd2rxAjquZgUVuYc6V71W4B649C6KmFyf+8NnWW7WvqL6foGnQ1l/fVscKJekP0fh+Rfmx5VGMm/Bj347mE84TVHTh84aT577a0NNprLaRHDdaVO3hzMwUHzLDkszWPk+JpPQNOc6KDe0UNyvk+YjSZ7H1gXKuTv+NahoN4/XEaggXpgRao6xSrRoF4ivaDy+1XFql+CehPRTPnbQWO7zx4fcmMIxzpCr3yRNGfJaglAYy9kqjCgsVwZocgXMaCxIl2dsUp9Q+g7j/h1G3b05kREnLp90Fi/LfWOR/fWMLYMp/5pyJiUhAM09giUGRUaA2SWIDSWfkjuz9kLR1pmK1TF0Pt/Fnz+pmShMZ5sqNAYIBvkEiahuQTCzKjIqQ8fgglpOhwmVF9ZrAnVXpYv+WTCS/486Vw010jfIkQ2OtZ89reZ+Ej+jjKgq1niBfOcm08DbqfMy8JBcoo0luRkab7kU9Ak/10ApbeXR38ifx5FPXrfIKssyHMrxn3iByhNBH0IKqBUL93eGa4tgJKG1GfN2/2VaMUrdrwuyghAUGvtApSQvR0HQMkAVA4VuZETXBvAMzvEBSg9WfPy71RbjmXa5vdRIyKquYQClOqlsdQqkO7QwP3vDCghl18SBpR4owCVypFDLN1+lYHQNkBp5OlwhTHuVmaHJy06cOz16xQJA0q8Lo4qRUHLRDWVhDJRERRQCtg22rFrbj5j/8MpW+4vCqV3EKA0sVcVBqBUryzi/OP/E1AKemY9hxt1xPJIPzXuLeYRIxwAJZwPSED0xqBXFQZ6I9erSsyAUtPQbkVZIbOsDy64yyisqwnGAVDqfG/bg/QiZYvCkc/W0n6MfYGDSkC3xlCpQLlNx0htA5SQp/USB5R4PQYVUAKUgvzpNDR/SmRAKXnD0BXDtm+nBvXR9byx9dlNMQBKCb2rMAAlSm+RaVuouYG/BpSmPj65wVjhJiN71PWYp/NkNuEOKCEzIHBgb2JAjVDZG7feqIv49gBKB6caa1/xozPyyxJTXvUyd8YVUCJP/KQzv9sHs2M+w+QuDfrDAweRKJgiqfcmXrYU/0dcgNJHeyd1zpt0ernlscPvhn5sIASgxOvLqEgO0JfFAyjtz/KoGsMqopReGt4vueiAF0EAJQqmGkCnhWaP6SSU2YPYgNJQucxxn17cY2w86f7m7OibTmIGlLapVWEASipqIsNE7QeUhqpe9luduMAy+NV9nbE1BUkSAZTmK4TadZd7a7rfzlrp/d9/bsQBcokC5UTlKJzVCJTGKCZA6VOXP8aF9XehbrHvZNL3z1U+YgKUKmpLghzsFakl49Jrax9LmeJgu6mYtlMhkO1IFPEASqumjPRX1fxkfTx+Id0jZu1IAgFKL1SxjHNKlUDGEQeghFz8SRxQ4jk6VDzHRq1ta5JWAEo34ueFaKg9pOyWoZJHx/knSBxQUsFUoE6Vvw6ZQUJZh7S55uHAlt4r/pqHSAoJVvMQmS4Nq3mIzC6D1TxE5rPBnjKIDErBnjKITAOCPWUQmUUCe8og8tQZ9pRB5HkR7CmDyGM62FMGkZFSoKkr1ITc7wNN3aAm5FIOaOpOEn2cCjT1gJoM/6rxZwbSzXfNq9z2o8gXfBxjT6ip88DwMfu221tFKfpWX8rxfAc0KUJNzx6dK+stlW0UpG9kmhrYeSjQpAQ17V00gaxx+gbj+OWBjDHPBy8HmpShpvJXnauNPp4zi+g+/o6UlfkcoKkX1PRmiwerSYpLiT8wcGNq3c44oEkFalK0G6Y3bedT481l0lmHTscOB5pUoaaeX33OvqLFW6cOm71IcXqjBdCkBjUtbXiZKztvu+m6coeDN7sVzweaepNEL8SE6mGqk1DqYa7oGW+aOCGeEqZbVjB1/tF9ONTDpKCNV8Kc8CM7D05pijgXr+I967gL1hF/Qhe+j6Siaf67QpzfbtQvu7FghuXG+Wbd12g2LRB937hAnFEGWBBnNwMxQJxhDvIZYVwuIzKsT//VoxUuExviDDbAQssWGPz/QpzRD6vTXRMaLA8klPW4MIAtiBpLDuIci2mwbpIxmCQgzvmD52bueHvUIn9Kt7JtSnWZuEKcQb2/b1ReWEnZneOvrBr2zAmHkfZoJJbhSkYSZ5OGO8TJftnfp/LUPGpY2dG4Ype3QRKFOHkeDxXiBAYQNO3SSCjT7m8IccrN1I69u9HVcm/AzdzYPzxKxQxxkrSxIM5qrX85xNmrxxbW+Wtz6Aeu6dVc61uMeLZl+yDOeX0uHLzmXEHZuqzu6N3YqaE4QJxNWlgQJ2At8UCcp1c7nt3obWOya6zCARfHg88lCXHyJECFOAEJIJ9giOYTCARxMoN7rNrA2MDYv+Od3vq3z76IH+JEWlJyEKfvMHFCnPuMCitNfYb9HhCnEVpXJcxOPaFQJ2zl3RSzJOXgkHXDch/gtFNH9n8cduoqelg79Q/D+O7BmPCaI6cPnDRfdrJivLK8qXlE4oxp8uf921tEF9Q8RgtLc+8Wl0xH05zoEOc4n/X+oUU7zbP0XeJ3Sp3tWIjzHy4j0CBO8GmLKSNQIM4bFgWVA3eP+DXEaYJmyt8O4qQw594/kGFmdYTTxeIT6e3WX98w7hCnxxAsiHPsEIJCnPssNb8kHlUxPPTiakn8ll47cIU4tw7fMdQuZx8tvOF6jt7yDB8cIE7nIVgQJyCzBCHOw3etE5Z0mU3faOlv5jp0kWCOkmQhTp5sqBAnIBvkEkzRXAJhZlTk1IcPUYg0HQ4T6tchWBPq7RbJzQgveUSPXs/tLo+x2H9DcbHr6Lc38JH8TURSTrr7QcaeuhLOwdRF5XgUohiMWYhiMF9yczTJfxeIc1Boqp+W81CT4pMp+55mz5zUIRBnriYWxLlAsyMhTvPJedqaE92sUhdutRkVlY44dWwXxIns7ThAnIc1sbDEYM0OhziLIg7bWT1YTCt5rFo778ltQSxb0hDnAky1xmr+B3G2EuJELr8kDHHyRgEquQiMAjFCnMNkQ6dtuUQ1PDyhIS45beETCUOcCzClALo4NFFZkFAmKoJCnAN29f46YF+kZeYSl05OOnMGY90WjhBniT4WxOms/x/ECdmnU0L12FmNn41yT4ZfP/J2aw8cIE6cD0hAPDFXHwtPjNIXN8TpcZKxTs/WxnTriwmGhRN0BMtJ/zOI01JL9Qjz/Rl6zLW8W/2WPLyMg0rOmCpN1RcjxIk8rZc4xMnrMagQJ6AU5E8ZaP6UyBDnX/ZaFhUsF+uSx8xJzxJfGgvfW7shTo0xWBDnqdF4Q5wBl0Kqmc6LGEGDy/Zrsz6p4Q5xIjMgcOATVcZg8YkvRosF4uxxaf9+W927RolRQ7/26voUUXm3nRDnrm/H79xf/8q4aJn9Tr2Lk+/gIBLQVTBESh5NvGwp/o+4IM6ZK+vfW/uup+xdMmq8fwT1PiEgTl5fRsUWgb4sHogzy5/pQHfdZLql760gDRUjwd4sOYiT12lR1QA6LTR7WJJQZg9iQ5yvV1RszWpIMNy33sK7ej9jjJghTvXRWBBnwigxQZxe5Tf7LX3iaJ1uXb9yS3CPPIlAnB9mfTkRGh5kuU752dmAp4X9cAABFUdjsWYNowiUxigmiNNuhekqjtIs82CtxvEG104L5i3gB3F2Ynj3Zn40ppW46meuulQv0rG00XYVo7Bsl0Ag28mJCeJUc8vYvCTUz/xIVeW1J/v2C3pGyUKc3pjGMSWQccQCcSIXfxKHOHmODhVhvDoKd4izr2nwQDtVL7NNI1nLgH2V4JNWJAFxJozCUmDBKP46xIqEsg5pM8Q5oKX3ih/iRFJIMIgTmS4NgziR2WUwiBOZzwaDOJFBKRjEiUwDgkGcyCwSGMSJPHWGQZzI8yIYxIk8poNBnMhIKQziRO73YRAncikHgziRx6kwiLNPjqJ22Isqw7AzU8Mq7pb6wCDOWb3P5Q75Fmicbb54/p68u3NhEOcI3eLYmDsDKaVLpPJmjFI+DIM4d7zpknTlrw9Wxwa+22QX564CgzgdDNRyC90eWe/Uckyxj7KvhUGcMQ7Z1pVjulmXch+s3Orp2BcGcc47LcU5OzOLkTPi8KJliwcEwCDOIY7VismZDZQD1RoG1+t6xMAgTuRqS4jUBJFOkUN/ovfy9LPdz5jH1266tTTkw04cSE1rtEFJmGN8ZA/BKRcR5yp+4Dk+GfMcn9Ryjm+DpvnvSmo+7G5w3YHlZ7LpVh7z0dg/NcVIagYzsEjNLgwxkJpzsr+uCj/+0qj8/ZcuFUrJL4lNaq5iYPFj9oz/X1KzYZnnuyGDF9KP6G6s2HClTyVBSM3hmAbrIhmDSYLUZKikJNT2LzQKn38xYJzu5sO4kppjZj9cuHXeDcN4yxFR6ybpZeMw0m5bYBku14I4OzHcSU3pcrnPb8PYxuWNSonqzLBBEiU1eR4PldQEBhA07c4koUy7vyGpucMz4bOUqrVF/All0tll+/eKmdTUoWGRmm+o/3JS0/LmscKKi2uMdtz5sUHj6UTEw03bR2rmHxu6RJrxh2luty9Z6tXfKnAgNck0LFITsJZ4SM1Dubpf6qfPtS4YMfgpxdu6WpKkJk8CVFITkADyCbZoPoFApOYMc997Dfs9qLm2wZvqj24ZJn5SE2lJyZCaNoWVpIN0cZKaCRaFlX/so/8epKYdWlclzE6d3DmS8X1SNiXM+9r252qNDTjt1JH9H4eduqkJ1k5dx4TvHuwJrzly+sBJ85dOUVPlC10tS3dusa71+vQMB829qVia27S45FlomhOd1JSbEkr5nK5ATRwlPe3U6k7jOpTU/IfLCCxSs8YMhdQ8b15QqXLO7Nek5mw0U/52pObWrj4P7zcoGR6WdfG/NvCWhQRIzQ8zsEjNkhkEJTX77tJaqqCTSY+eyLHqe88/EVdS0/Ez5yh1iT0j9dt8kweuZe3N4gVJzRczsEhNQGYJkppaKsmuR68EUYKnyFUM3TWSTSBSkycbKqkJyAa5hDloLoEwMypy6sMHG0SaDocJdRUFa0JdQOFL7kB4ya85T1/WQ0fNqrjfuHHHhxYp4yP594KQsMVDJhmmds2KN8zyHYfHunE65rpxOl/yuWiS/y6kZo8c6T92J3ygpyocNJD58+HmDiE1KTOwSM2G6R1JapoY7PuUWb/H/Ni5oDJGTa7gc93aR2oiezsOpObEGVjsoeKMDic1deqVJjZdC7aIMkzs73H7gjuhSM2G6VhqVUz/j9RsJamJXH5JmNTkjQJUPFFxhjhJzZAtJgtCmibRomp3DVNdsE2QxOl4UpPXxVGlqGiZqOaRUCYqgpKai7lymxklW803zSKnXUsbiXlbOJKaH8yxSM1k8/9ITcg+gWtlSYu9K82P7K4Y+uSM9m4cSE2cD0hABvGFORaDeMpc3KRm0NZbBiPWllmlHqzZZ5bEFnwY9T8jNd9779iZPy+PkvXu8pwfrwePwEGlZEyVfM3FSGoiT+slTmryegwqqQkoBfnT+Wj+lMikpnyZbWH/BV5Gm5uysx+5+n0SA6lpb41Fan61wpvUPLUq0GP73nCrOKleroMiDh3FndREZkDgACEyrLEgxCHWYiE1XQc79+j18qN5UN0qtU/3QhRxJTX7adldXBVx2TTzzbBbrxhWI3EQCegqGCJdtSJethT/R1yk5ntSgeGV66+MQ/vRV5SdfTqs3V0dDzaR15dR2USgL4uH1JyYvOQbLTXSvOQdqfJAl+9WBCE1eZ0WVQ2g00KzxwISyuxBbFKz8HN0stliBdMdL+1o9Nsne4qZ1LSxwiI1ayzFRGq+Yz8ztOq7knJ0y/pOe68FDpIIqamR5ZgWbn6CuumOvM3quIr+ONB+plZYQBlZQh61I0nN77IpFvoRo00zTPUTjbdNPCsmUlPNtjHs1eBCw3Lzcp+R+1w342C7Jkss2wFDgTC2UxQTqXnFrrMVxeuNcXBSd7kx2p/6EojUPIhpnCACGUcspCZy8SdxUpPn6FA5xW5WuJOaJj6zVZ7cPEcpC+2X4Dp+5EKJk5o1llgKbLPkr0MWklDWIYQmNZEUEozURKZLw0hNZHYZjNRE5rPBSE1kUApGaiLTgGCkJjKLBEZqIk+dYaQm8rwIRmoij+lgpCYyUgojNZH7fRipiVzKwUhN5HEqjNRcHFKdNLVTf+PIj1ImD84FXoGRmtp3UxuYhRMty/UvRt99NWEPjNT0O5sUPSvoreXhoV2d09Jkg2GkZkbVe+3ykPGM/Y2pS1JrTQpgpOYdqSdF7iNuUcMDNq3Y9nr8KBipmZmZMsOuxMN8faaCyc3ij3QYqWlbNII6XPGsZWhFsEaMf/8HMFIz5sf9Xs/OMQwj7l2NO/Ok0BhGaiJXW60nNbNGjdfy+LLCNO/lC+6jOxpnRQyUtpKai9AGJWGO8ZE9BKdcRJxL9YHn+BXTsM7xU6bxHeFiNM1/V1IT+WBcMZGaBcB0oqOMRmo25ACLIyWhbRrWgrB1pKbHU+vUoLyFFklU3VurXg4/1R5Ss53T7UFAAbIyGiDWBD5MSokoKGZE5nFVUhOpIvryIIWlP36IpPv4yyF8UMzht+Qd+g11M932OX1i4beQuQRAMUGD1ShhGeygZAwmMriYNUPwf4VRTCxj/RLF/PDJqadnUBGtpNPyKX8sM30q0ZUraJkgTMs4SMgyHcJaDlr5fCyrxME4Xe2Ee5pM3RmJsZZhOZBLE8laGjQ7dWjiXEL6l02cg39M2v5hd65p6V8X5Ted/fpYjCUOStywShxMdRNDiYOvI5Nkuo4PMNy5dcxVS9UpX4ld4iDXDQu8jnIjyryK9iO+edU/Tu10VuEjkwSqZvzcQw+2EGBe5ZUyxzTYVMkYTBIlDrISSJeGLDM1ijtkpqE495AeriUOdv51U6N/kZzZvgJHzuQRg9qb7wwaTgXTcC9c/8XT7oQ9TVM2O8ykZxdWZyT1fzxGYtMuWOKA5/FQSxwAAwiadpkklGn3NyxxcN9kW5bd2Qn0BINHz9KmnnQWc4mDIYuwShy8WPgvL3FQvSX202S5WqOQ+hia5bMJQ/EscbCz+62Lfnufm6U/LF1+ZLO2Dg4lDjQWYZU4AKwlnhIHS84M19Le706LeaZnH3nL2kWSJQ54EqCWOAAkgHyCI5pPIFCJg+p4oyEfFTpRco6dNt7wfJ2++EscIC0puRIH+xzFWeKgzKyw8nyq4+9R4sAJrasSJsSdOWnczcOh26xji9ykNumsGY5TiBvZ/3EIcS9xwgpxU5z47sGZ8Jojpw+cNC96W35t6SEuNXOojd/IUM/VOGieuxBL820tLpmFpjnRSxxIv1EdZHAqkhZGujoiRDmkL+r9iaPEwT9cRrRcTUSJg3MslBIHH0wLKgeeYf26xIELmil/uxIHxbTRdUrTuLT0PvFep6vltCVQ4uDNfKwSBwXzCVriYH3I7A89B1SbpjxsyLrwqJ8SItOlfSUOvH4k7NO8omO+JaCKMj61tr1gB1jioGE+VokDQGYJljjQfNh3zOE19qYpcw2aws5umk6gEgc82VBLHACyQS7BFc0lEGZGRU59+PD2SNPhMKEGLMCaUB0W8CV3I7zkZsW6KUOiJxju2dr9xKtgZj4+kv9ZWTvbesVdRhpVR8+7fs5WHCQ3mocl+ZB5fMnZaJL/LiUO/HaMs5xyk2qWtIgWfyhk7awOKXEwdT5WiYNH8zqyxEE9dbm8gkq88ZFURQf/ktFGOJY4QPZ2HEocjJ2PBe13m9/hJQ56J92tLB6dbJj5YUr8rsJZtYQqcfBoHpZaJfP+K3HQyhIHyOWXhEsc8EYBKtffbb44SxyULFqgymX2YWyuXxMzYcZ0RGGkDi9xwOviqFKUtExU7iSUiYqgJQ5GrzlnbHOj3jSXm02LaeqzsYNKHNS5YJU4CHL5r8QBZJ+Dd8zWv6h9aRospf4qrqRbVxxKHOB8QALC+zUuWPD+QRdxlziI0pzcmxyVbba3uF9tT/uGmTiUODBau+FZ+Hd/49SiOucbvVnOOKgUhKmSg4sYSxwgT+slXuKA12NQSxwASkH+dCmaPyVyiYPUvIsWwdV6ZkWTt8YoXHy4SgwlDkyXYpU4eOOOd4kD27CQFXWr/GjHiyf11wnWXYR7iQNkBgQO9D5lKRa9r75ULCUOKGaZZcNNjKy3msROTi3298S1xMGfxv10xmRNohcM9c3xYkRE4SAS0FUwRKp2J162FP9HXCUOJq+fO92U5ETP7Nq4wSVaK50QJQ54fRkV6gf6snhKHAwcPqhqwKwM+nb7wwvOPZfRIEiJA16nRVUD6LTQ7OFBQpk9iF3iIHrX4ZVLH1uZxOa9Jx86sclHzCUOGO5YJQ7OscVU4mCcafoIvdJEi0LbuojEcSrZEilxEGimc8EmeLP1xgs9XCkf5LNwwOSN3LFIbA0JedSOLHEQoPam8QbN0Thv7J2+evcz0sRU4iA1VXHqR/n+1KMyvS7367nqOg62+8DGsh0wFAhjOxUxlTiIU322wndOFn173d+qA0wVGglU4mAfpnFWEcg4YilxgFz8SbzEAc/RoQL+cu64lzhYOMnH8tPJM5RyrUeBvV9wDCRe4uAcG0uBGDZ/HeJJQlmHtLnEgUZL7xV/iQMkhQQrcYBMl4aVOEBml8FKHCDz2WAlDpBBKViJA2QaEKzEATKLBFbiAHnqDCtxgDwvgpU4QB7TwUocICOlsBIHyP0+rMQBcikHK3GAPE6FlTgweWGhG7xrMnWrn+7yzYuOnYeVOBhx1q6/555so+JpTgO+bR+iDitxsJB91MpaaZJ1qsMf6WmDqiJgJQ7+uK+W4fgl1KS0NNhittOihbASB5rydnJ6AyJNc65fVWUpk8xgJQ5sSIseWe+eZ5lupXRx/G5HRViJA+S6SahYAVjwQOQg5vYhB8S8HmkRvGtOeuczKgNxKFbAQRtehDmQR9oap6xCnKvVgifyJXOxTuST5/Jdmhea5r8rc5l76qTa9NcfTbJTDjWdsnvRT4zMJW09FnPZab0YmMuLdt66+ZpsqyhLWm+18AeOxGYup6/HIsGGrf//ZS6L3zkkz14ibbLuwP7L0Qn7pAjCXKphGqyTZAwmCebyzV7W+YsVb81yqJ2XXPlb2g9X5lLWaLPsjSZf46SYlVUq35do4zDSXq3DMtzNdcTZU+HOXJ5+6Tr8rft82lG1r5ozG3tnSJS55Hk8VOYSGEDQtOtNQpl2f0Pmci95WNOFwhzrrX/fUv/2YFaQmJnLqBVYzKX9in85c7ltzcl1p5njqXlVlERyifF3PJnLSSm1JRrLOhklpCQN3bVT0R0H5jJ4BRZzCVhLPMylzO3Xjdbvs2kHnsnMfLBw7wJJMpc8CVCZS0ACyCcsQ/MJBGIuafeusKNy7hivnyCfp/tGmSviVnBmLpGWlBxzWbJGnMxlpVlh5YLiNb8Hc8lF66qE2al3y381e2pnG8M4ZbvhMzYOjsNpp47s/3g8kXEt5hMZ1/Ldgw/hNUdOHzhpnid1+Uoq5xZ13eiuJrLyMhwcNK8JxNI8K5CvuS+a5kRnLjeMW9wl3CrROtR/fdylcA3DDmUu/+EyAou5fBeEwlz+ZVpQafs26NfMpR+aKX875nIVe8bEtZ5F9M0v7rEfdX5m+Osbxp257BaAxVxeXU5Q5tL18OFRFmdZFqUpRf5JDzJzcGUuv4/zdtid/J2xeWJ8Q8SnhzdxYC67BGAxl4DMEmQu8xyse1/dqE/Ze2taH9oFxwICMZc82VCZS0A2yCX4o7kEwsyoyKkPHwAQaTocJtRtAVgTqm8AX/LlhJdcc+LIHI3qcOMy9+kUu74Z2/GR/IbyOrtBM/eYlH09XUJJnhaAR60Of8xaHf58yQPQJP9dmMvtOY0nznX3oSUcOhRRMPOBMsZ94sdcOizHYi5J7Z7h2sJcVk9+2LQ6INMksUB2yMfsQYij1nYxl8jejgNzabMciyLUWd7hzKX954jtX0u/maenfc4qYGcKFviWNHNJwlSrzv8/5rKVzCVy+SVh5pI3ClBBQ53l4mQuObfmT89Tfm25feSgT+v6N16RMHNJwpSirmWiCiShTFQEZS6DmrxLr3VpMix9Mzvl4aHLyli3hSNzyV2HxVzS1/3HXEL2mVx43bh/fKr5uvVBDONiKX8cmEucD0hAmpCzDosmnLdO3MzllVmh1z9O0jWPkftiYDr+nWDQ7p8xlzKNJ3NpI08ZJZk7WFBWrMVDJTqmSqPXiZG5RJ7WS5y55PUYVOYSUArypyvQ/CmhmUuLHXEjF8sbJsvFTDMYs+6Z8L21m7nM34DFXEZswJu59Lj6eFCP0FeU8L8vZJkUzD6IO3OJzIDAASfM2YCFE+7aIBbmUttrJzfWea/RsS2HlP6mPh6NK3O5xb/rFOvBG4yS9BnGqz2NHuMgUgSmSP4biJctxf8RF3OpnvO2MNIxhF647vknn+/7ura7q+NBGfL6MiplCPRl8TCXsvPqbvTsfsLqYPLhfR4yxX8RhLmMwFQD6LTQ7LGShDJ7EJu5bJqr1dVZ1808pNSCNW3WNEe0u8OJuRy7AYu5/CCcAowPc2kQSH0bvVSdtmEt3bSL78U6iTCXZtpcqx7y/ahZ8d1d3YOfHMSB2zPYgMlcSsijdiRzqfXn3+7RJ/+kRpEabBo3e70VE3Pp9nzVuJlPelkVnHLfEPlAJREH28lh2u6DhHKHRdlOXUzMZaouqXrN0y+UHQesKbMOxlkQiLmsX48JxBLIOGJhLpGLP4kzlzxHh0ocKrdxTdIK5nJ6oWHj4Cfl9P3jw/oFni+skThz+WE9lgLXWjKlV5FQ1iGEfqw0kkKCMZfIdGkYc4nMLoMxl8h8NhhziQxKwZhLZBoQjLlEZpHAmEvkqTOMuUSeF8GYS+QxHYy5REZK4cwlYr8PYy6RSzkYc4k8ToUxl/Rhq2o31toabzvqEOy+6PR8GHOp5BNW5359skX5O9VR+ztdPwxjLt9bbYk8O2wofV3XjEenEl5cgzGXpff3r/4Qs968bJJW5gJrhfcw5vLw4AnHemp9M8oOj8zTC9VWgjGX5r0UT1rHz7Lav9b02PJnu6/DmEt/9QHyrOMvraJMQq69XdVVHfZY6Ut/XD54fkIQ5Wj/nbIr3qn/BXusNHK11frHSh+SXrLmo2uAWYl6lyPL4/bE40BqrkYblIQ5xkf2EJxyEXEuugee49f5YZ3jF/jxHeEaNM1/V1LT30kqNWvvHsv0R2506roHNaLvGxdS0y0Gi9TUiREDqWk+qmnatcZNptuiE16V9XxdRWxS0zkGix+zifn/JTUNKkcvce6ebbFz3VLqIbc+kwhCak7FNJiOZAwmCVKzPGPxix1XtWi5x8dX7vfQ3di+hS1ipN3dOrR2fJU1I/tO6OSgJYWD8Hg6JqbhSBIyXIeQmleMVUe6pOy1WJeYNlB9yN1qiZKaPI+HSmoCAwiadteSUKbd35DU1Mp8YDJpRqNREWv8ViU1qaliJjV1IrFIzW6R/3JSM3DizkyX852NSu8GFoYdUT6OJ6mpuJv83Ds0kFoy7KbZzOKq4TiQmkMisUhNwFriITXVHUY8c/IztCi9r+L4TuuevCRJTZ4EqKQmIAHkE4LQfAKBSM3pMyb2khuWaXF4TI+snndzj4u4FZxJTaQlJUdqukWLk9SMNC2sPO8a/XuQmuvQuiphduoD7GuTXI8GU/NfKS1PHz57IU47dWT/x4MajMbaqVdE893DesJrjpw+cNK84pTK96Tx8Wb5+Ss1w9cu3YOD5n9GYGleFMHXfAOa5kQnNTu91ja8cv+9SXBY6dej0efpHUpq/sNlBBqpaQosFL5uQiE1T5gUVPr/venXpGYwmil/O1Lz0jkfXbNjzvR9B47kN3xX9f/1DeNOaqpHYJGaX8MJSmpyfBeP/DH5u2GYfpacfwF3LK6kZqDsTdmkT5om265Q+jIuHbfEgdRUicAiNQGZJUhqqt9/qfH3qC8m2VWFPWbFlZgSiNTkyYZKagKyQS5hI5pLIMyMipz68MEGkabDYUJdgDmhMlom1BDCS17senOQ49FH1B3h8r221mTtwEfyD9f3bYl5cMA0/8C3kBr31wk4SE4Lx5J8dEsvD0WT/HchNaMG5N6T/XbfPH+Z26vtl74ndQipWRaORWpuafcM1xZSU8lo3FPWsG0WKXUnXs+5fUowmNE+UhPZ23EgNYvCsdjD/eEdTmo62SQp3Dgx3GTPLfLpH97bBOszSJrU3IKp1prw/0jNVpKayOWXhElN3ihAxRP3h4uT1JQbcy5sS0qdcf4EZWvW89tuEiY1t2BKsaZlogojoUxUBCU1DS82aXudmWe9Y9w5RyWtD506iNRcvxmL1Jy9+T9SE7JPVZZ6Utz9DSbJg+6tMclTEXwq3T8jNXE+IAEZxDWbsRhE983iJjV17TWdbWk+RvF3vMsWLqMIlrT7Z6Tmzd2jjXWMPSkHNe0fzqv64YuDSrMxVaJtFiOpiTytlzipyesxqKQmoBTkT8PR/CmRSc3vuZPTX606Qc9etqnnumtlVDGQmtWxWKRmcizepKbFcvseI7RXWOYkl4yYmXBeMEEBD1ITmQGBA4R4KhYLQsyKFQupuSd1jt3r81csdlqvodeE1ggmErSX1BwcF8f6WBtkltKb5PT4xrBLOIiUjClSWCzxsqX4P+IiNTeOKLbpY+9ukpHjo11W8wen3V0dDzaR15dR2USgL4uH1DyvqppS6HeDuvnrdvexiz8JelnJkZrJmGoAnRaaPSJIKLMHsUnNvJRtlv7BB+ip13f1mBm276uYSU16LBapKSM8l+BDana9F1l5Z/oxi9iYim3q0+8MkwipucJj8BF/dx3jMoUTV+cu/qKBA+1Hi8UCyvQl5FE7ktS8ZbSZ8vykvsX2dyMd9V9H9xUTqRlXuz3mGem1UXnkvVVFFnsacbBdX0zbyRDIdhpiIjWDOhffyjy0mxIf/+MZaXyNYAhKsqTmuxgs49wlUH6wWEhN5OJP4qQmz9GhcopD2rgmaQWpOTqMuavTrt1m4e8D558/2ilB4qSmDKYCDS2Z0pEklHUIoUlNJIUEIzWR6dIwUhOZXQYjNZH5bDBSExmUgpGayDQgGKmJzCKBkZrIU2cYqYk8L4KRmshjOhipiYyUwkhN5H4fRmoil3IwUhN5nAojNW/c4fq8jp9odND9b2pZWed4GKk5xvHsg4L8Y7TtjcMvjpk55hCM1DxundLN8QzdKGvR/v1Pv+RrwEhNt7TBqTX+7tYx8wLnv9/j9BBGamaMuVusqENhxFO1Ag4odkuHkZqjV17hXDmXSikfEd+YsrReE0Zq1hzobp4esIGxNeNLN/3YczYwUnNyj7pJ4W/dzOIPG51+QLUcCSM1kaut1pOa0UUxabuPjTJMNn54sdZpfZyIgdJWUjMKbVAS5hgf2UNwykXEuVQfeI7/PQzrHP9VGN8RRqNpLm8X77/fz90o82UTawL50DuBr9oT2ltZAn9w2UwP4V2ZLIrUffm7Mg7Z2pvFMWGQPaFrtG4nlr/3uNvN3gxKiltud5mFel6YtyVkC+Qb2pA1lVBWCSgE7MlqhA5IAEGbSiqRezKs1V//5pkB9Pi+bs3pe34+LLKTG5PDYYk+rk8xrulupXHOLFjZasjq8if9Bb64rFHzFYS+cEsD3pMtmM0QBkoSJGr5dxDogRPLKiWx/JN2AqRtmXM/f/78oy28JVnQMD7eLCc/DyaX7MZ2dfMAE/BF2maY93ybCutE6qHvi3pusj8mmN0jZwddRDhA1dIiDus0lGJZJ6GUANYBZoAfbdk0DTT2ZPv4gBmETgJm4rsQ0UdRl5a++v5ir2XaPbW9NYfPzxE0TvMVRUSAf7aIwzimmMYBvInkjQPaB26czr8wzgSqJ/greTYBY43AR1kcp0CyjoG+AXka2cubucyPNZw8ivevn+8QPaI2z7l6l3POk57/8NJRvb9t8gWza+xh1xfOrhFoFYfxDpZgGc9BMsYTue2tnwG3YJdfWHDaTwv6uLE5gRxg6QSYDzAXx4sDmg74m4fXcl4j+E8DsMmTGdD8gugSd/qf9/W9Z2id0Dc1zGpjcDGisoCbKI4WelkclpPDtFxBsaQtB34IzGtoU7BCuflUmM1xxXaEtupGTIOVm0y3fQku6uY3f4mgI0RdM/1swT2ElAutIcB1arXQsiqX5wihdeomEso6tU+XlXYniz9Yl8tlPtYev1IQD+ph2Iwi2nBZ/mzWcmG8GQ2xGEoFM/59YDgjewXsmIrs3XxBn55mHCcPP2eWGceWxYG2/+iL18Mjsitd53pTkocebSxRPrcf616Fc3sE23vMBv7w9uL60tkevs2/WNQWCxUrB0ZDUzmgfYKoI+uJwJLWtFxoScvfVoncQ/FP28AcSkieVq3oJ6/Vc1p3rAc9d2j05PqB9k/bf7qH2F3pvDPor8W6bp2g4VA6ZEb2lXburtTBtRWonMgzWrCCS4Kgcr8K46vaw5YwZC9/FpfLdhbtTp+cpX6u+UQyi5GPHjrG3YfU/iGM0ArpI3DQyhRTq6aO3SXwSVxZaMsFvglc7NxJufNDjgWt+Pgv0gxoP6R5cxtyVpXjbwz4bwX/txt82SP4iZYQx2Y0N9bmuGML9NcBcUfkphsWd0S6NKEAEvhtRfZl/ZfbwiO2h1ts/6H8peeQC4txCCDFoKlL0GAGY6esekBflvWhk6wblZ/Up3ZYMKPpM1Yww+GTuIMZ07tNk6UFGNHzxxe6zJAfPJwAwYyGz5jb5c8E2JG9efOmA4IZf6h9zLul52N1IPrvxkdpVCYhghmmmNZp+kQA63RIMKPTeJeq3XvPmhVbv313UnNRCCGCGQc/Ye6HiWAckiSDGRcjH5dOtsw03Fi/0ebLwV10QgUz5DCNV/BR0ltiAgUzFspYzFOYk0lLu/fqafiWkfESDma4fcSynLrELSfWYIZfVVJ+1ZqRhnspfntnqiy4R4hgBm8NgRrMABwhtE6NJf0LghkP08a/HfxkADWVu9PhpWz5CgkHMxq+YAUzJn7pmGDGBkO9vGmvMq0iUgaQPFb17IZ7MIP8l9P792P0zErdn5TFPhlyAocNet0XrA162BdxBTO+DGuc5aNea7jLK4g5fEHhQNyDGUgfgYNWEzG1amj6vwpmbEFzY4QOZiA33bBgBtKltT6YYbXh3SCzuGKzwljLOQpn1D7hEMzYiqYuQYMZnQeGj9m33d4qStG3+lKOJ/Zt4RnMCOpThRHMyFIXypbHOZjxWDV5m3L9BOP1p+7Iv/9xaQIBghkBoCSoS0ObPhJJzBXckTU0NHRAMCNmrT39U0NPSqTX4MpYrV4hhAhm6GBah0QE63RIMKNmvt/ZyuGdGQc9VuQxLh+1J0Qwo04dyziAN5G8cUiSDGZsPTalP5VEsTxk3/WErYfBE0IFM8IwjbdEMsYjZjBjdUoUZ+ecw8bRk1Yvv372j28SDmZMxLScosQtJ9ZgxpbKWyPqDNNN04/89bXguz6dEMEM3hoCNZgBOEJonbqN9C8IZjx7dK6st1S2UZC+kWlqYOehEg5mrOpbhRHMGNIXtU4YrsGMm9c8X7zaoUk7wO3b9P7zoI+4BzM+2jupc96k08stjx1+N/RjAw4bdN++aPQ8uEFn9G1TiYE2BDNsFDLfy6bMoBWqhZ621Lezwz2YgfQROGg1BFOrrx27DpV0MCMOzY0ROpiB3HTDghlIl9b6YMbeRRPIGqdvMI5fHsgY83zwchyCGdvR1CVoMKNPjqJ22Isqw7AzU8Mq7pb6dFgwo9s4rGDG1LHiDmZMs6je3n3hRMbOIQkRw++t+EiAYEaXcVhLw9tjCbAjq6+v74BgxvzPmh9LzxfQY/+4p7dbblQ0IYIZuWOxrBNFBOt0SDBj6KAjMtPG5ZqF7/MdObJTbwYhghnOmMaZSgTjkCQZzDg5eDS7snYgpWC/j+KA4uRuhApmqGAa78UYSW+JCRTMqKue9PLRlQaTsJc3rbtFflOXcDDj1BgsyyVL3HJiDWb8dYxzcctwjmXasohsSmrkcUIEM3hrCNRgBuAIoXVqPOlfEMyY1ftc7pBvgcbZ5ovn78m7O1fCwYxu47GCGbnjOiaYYZztuNH3q7PhsUmb5F+91Wx/vUTkBn3myvr31r7rKXuXjBrvH0G9j8MGvct4rA367XHiCmZcrWBuPTTsnWV86aDXL54yzuMezED6CBy0yh2HpVXUuP+rYEYCmhsjdDADuemGBTOQLq31wYwRusWxMXcGUkqXSOXNGKV8GIdgxg40dQkazFgcUp00tVN/48iPUiYPzgVe6bBgxsSZWMEMNxtxBzNO9aB1S2drGO092lmugLPNnADBDIOZWEtDuZkE2JHduHGjA4IZ6rl7Fp77qGRRMjno+cqtzomECGbU22BZp8CGANbpkGBGcYX7i+KVD40KVvrPne8QmUGIYEYMpnHciGAckiSDGY9pFZXbPb4abpv6Ykm/zrpKhApmUDCNpy4Z4xEzmGEelGeqkyJnuiNcsWds7dD3Eg5mvLHGsly1taQtJ9ZghuGMgSe0jXdRihUuq0aXDyAGZsJbQ6AGMwBHCK1TE0n/gmCG9t3UBmbhRMty/YvRd19N2CPhYIaBLVYwo25mxwQzHl+6tfqlnCtje8IF1pju74fiHsx4TyowvHL9lXFoP/qKsrNPh+GwQdexxdqgk2zFFczov+Be7r5De0yCp/prqVxfjX/NDKSPwAPJmYmlVVbH7hIkHcxIQnNjhA5mIDfdsGAG0qW1PpjhdzYpelbQW8vDQ7s6p6XJBuMQzEhGU5egwYz8ZO3bo9JsDTfcun52qXNftw4LZkz1xApmeHiIO5hh7/igs93mztScqT2cxgTbLCFAMGOsJ9bSsJsnAXZkly5d6oBgRnr8pLWKsb2NonYc8LMrkc4lRDDjkQeWdUo8CGCdDglmTHSZw114hEaJevLnTrnRSVxCBDO2YRrHgwjGIUkymCE3rHGa3AySReSUkZGGvXTvECqYYYRpPA3JGI+YwYzRA2KWuo8eS9khtar6quqLaAkHMz4sxbLcuaWStpxYgxkjT7y+skSql3HYjgpT+2z9U4QIZvDWEKjBDMARQuvUnaR/QTAjnPb1KXtQJ/Njrg5baSNjT0g4mDGWgxXMuO3ZMcGMdbG3XmygP7UuS16qW7LO+zTuwYzJ6+dONyU50TO7Nm5widZKx2GDPpyDtUHvwhFXMGNqyV8TH88PsN6jdGFGpkMdC/dgBtJH4KDVbU8srXI7dpcg6WDGLjQ3RuhgBnLTDQtmIF1a64MZJi8sdIN3TaZu9dNdvnnRsfM4BDN2o6lL0GAGfdiq2o21tsbbjjoEuy86Pb/DghlHg7GCGfRgcQcz+ps8X9Dlpi1jw6Wzh4vj994kQDAjPRhrabg9mAA7sjNnznRAMIO5zGnMnR4+Zse09R8wNxXTCRHMWI9pHQ4RrNMhwYysWwxZZ7NnZjkL7IpvLcjvRIhgxjxM49CJYBySJIMZ647+r70zgYeqe+P4oIRK2qRNk8qrSOsr7WZsg5khW7TaJpSdpF2FKBURKjshhGxZCilSWrVQadOmnVYp9b93zMjcmXvj7c7c+/q/fd7386l7zHXv73nOc57znO85Q9E6dS9ILTtomOjmYUPzcFXMmI5oPFlsjIfPYobjjrEi2yT3ae1ymJNhNXa3I8bFDAlEy33egbXl+FrMMPaLH9+cN0T3kGJx4OKx9+bhopjBzCFgixlAIGTlqbGEHlDMGOjuX7e6do5e6fuh05KEa9MxLmYo+SIVMwi+gilmDCZsuL3mjal++rWD4/923aSJejFDJru5cLeVn1bhtlef3X8k9kWDzPBFmqAP8eVXMcOPPLNx/uxSmvfrx9PsXuZsR72YAY0RKGhFQNTqtWBHS6yLGXFwYQzXxQzopLtTMQMa0rpezPhA37+7etJfWtv6pj05G/H6FgrFjHg4dXFazIB+R7LAihmiIUjFjOj9/C5mnDt9mDFeX5gSuq3KKmHA8204KGYIhyClhm/342BGVl5eLoBihtGgC9efzounBPlffiw63EIMF8WMO/uRrFOJB+sIpJgxfd6YlrkP32v6n3ojpLT90hRcFDOyEY0TjQfjELAsZmwSX+j5XnOfTtHYwZKn958/hKtixi5E43liYzx8FjP6/J1xc5JKMz00itLsR5b8G+NihhWi5eiYW46vxYxJ+ZsWXjUgaCSKq/y8rREUhItiBjOHgC1mAIGQlacmEHpAMWOGVXVDQX4OOeyl0pUZi2YcxbiYsT0EqZhhGiKYYsYp72D50YNk9HPNRku0WC2IRL2Y4Tu52GC48WrttGx3+ZKrZ5xQmKBvCUGaoK8O4VcxQ2344fs6Lnd1/I+qMHa3Pv+KejEDGiNQ0MoUUStyyP9VMSMRLozhupgBnXR3KmZAQ1rXixkn9GP7WZ3X0shakZT0/Gv+KBSKGUfg1D1/2JLaNnuY9vYk2T4vx20s4ew3VEBTopEGlbuK0Rumy5LZVQyiA/hZd4atI+C9RBvGKuCfNkSr9UTgfd08iC7O9k4eSkTg3W3BdksnG6IDw8nWw055c5di404dc4vFfiVaux5dsElP2def93Nz93d2Sxe7KdgRY6OBbnqSDKZHkG7qDwzEFtFcgwFSSJNiPkAnDXi+nXXzdvFJ0cc0849q/kx/FzgXkhyCn+aRHDIv//bQZ5+2we/oFvRD+4PtKe5a3/4wjlHAE9VAgabyimMRwGjpH41J7iih7gx0f3snwBnBn5tBgP/TnTKIDNN+bLdVsLF3A3oX0D6R95er19+qUDat04+9/r5CqtEqk8OO4hrsD3PZslMT2qklaDAPRINZYGMwUU/gjdsn2dzGalrIy1jCv+lsfZnGao8rPO0Tn2O61GHESY30KfIjco0zOM9sEKUyP8hlHPb13/U084EZ5K0HxtPDV+SHzV7jIoFCT6MiGk4VI8Pxml83LezWTK0ftdNowdNUC78r9Q21HqaX6/TU4IrFMU5csReV13S5/SraHUghlxXxskgEggt0SLiaw+xArGE3iQAz7IY1foqabBJILbygf1r7Z6wcx9tIaHoB0wRmwsU9L4PzdWlNT0uHtawFBEbHDTrdi/2TA7X0DWkkYwW5jVPnGG6WU9Kf2KURV1T4x0q64S6tjIVNw2MNz0XDPTKXGTq1dVHiqwUVhA0HAYlV1IGcEurqDwFXX3Gwsr8B6F8MIH1ne3ovljwSOmBw4PLkPszLOjbs/hnR5l0UF2ymk598lK72VPFuX32mq3J9Tqz9+q8PmttU7RUqFdcoejuM1l9x8NX238d8HAIrIsHOBX9pQfS0BCYeVg685zNW3/a1eFjHap34mGDw6sc6zi9nkjBlfZSoz6W2kD6XxwtBAtPczUNS0iI09ZNrV43bcKJK5Q8DUxlgLU/QWlOBDlEGtVZoAdNaLHE7REIKBkPayzZg9v3LkXmq1P/LFcaG4H7q21qeF5Qtcl7BGb/bb8OtEBH1mGCRw5KgTI2HBJQcpgSsmJAMFxMOFTw03/mkRaeoIK/o+JpHnEdY9zawdGI4cE904MKBAonoAn6iU52G6OQMvAYz1fZgeHkQwXjBcOd97gpF7uhM8Srt7NGDzuyudDnD41G4ZyC8VLV2c3ZwMLQErkOHB4hPQi0J55NiJu4MN2Pg8dm/doKG81qwJ1g7AM8DVlgYNvYerHe3BtQCxpMG7ySIHdmTXa4xtrCCUHQYsKOpOsF7p7oEzdLN1t6JyljF4RR92y8bgqtena+Lt183dnbpfJXTGaZpF1Z4Fx6uHMAU0cDNGZhXeti3P1Uf9lPxmqW6Wa7TcbKxt27/UWa3FgcvgsNzp0s0sN7pwJqYtwdzcC3N3tJB3dnm12eBXMUDmKg5dvy712I3S5dfAaPdVVPgXJVoOy7ff08AOeRMOvXg18KNnP5hyHCwXM/pquz6mCjJGngDd7Y+cN47mERcB2TARDfwTqxpN09Hdbiz5XaRrBE1pGFgHrFWTYrHg3Sp/0PPFIH4/x9GyAggdSNGssq53tDw0AKMZ1KR7PBwFPeaQ4cPlDSPrtWWkswNpQSMyOxzIeXyMBQ0H3EQSXOJjpCcCqe5a6m9oj09Vf1Eib7D8ydL33G8at9Fa8GQow10HDuYChSn8nDj3XgNe3cXUHRLIANmDnvrJ7cHZ6Il8B/RFvwNPE0RcTPn6bdFZynxNnskpD7ZbYV9Pi6DcDRymUbcyNnNQ79z9YyHwf5hGtFxN2jsBRIFehRgMGl18H9Og9loFVRMpEVV9jdiOAAGY9gAsZDhxXG7dlOmwZmSfGPYPc9ZOWrHlq6Q2W16inN0HQJ6rQe4fA5SIQywTslw5y56wa2JTFF3dgSSm/a+w7yNza/bMEdgsBzmzjStDZCsdinfNlAXGT8q8QgtasCDcvctMfK/f2AuI/P8qS72n6oTFQS7CMAcjWQeObgBOBmNgF0G6aLjk6idRAHHbnA0BKcwQHas0D6rdCcC6jELZcy/tdcIgE4BLkIxbHhXXca9P9h22dZWe19T9IfqKb69ObNCU2bP4p7Vs67/LkzZnbH+oia1kJKvu/LL31PNmv4wTIEAlQ0ocy8yj8xx5gmmzFxT6T7d03lCJ/MTrRge6xgMJzA5cmdYr2W6hz0wpeedCW7KjAk7VZRM239tjuXeCetUOSPMr/vacEeYzo1oJ9xNeSzZlvGSbUgeUzZWSEiHCwm4GVGhQ19XRlQe6TbEU6GmQ2FATY9AGlAjOyQ/hnvJrc6OYhCMI9V8osguc5rNtqIj+fbYq59kZILUoi1vU0KDT79FQfL94UiSbw9nS54BJ3m15LgP01ScaX7v3+kpX9/KicT3N2QAmYc1g0hf6+DAY8SDW+aZzP6cE/g5MDLbOwEpi71NeyhfZ+9hR3T2sGO4dX28WzEnpvLlRDN6JmnxnciyW6IIz8llGc7mbmAvkqBDt/Ba6FcA1G0I/9MRThoslrqDQxvwMB7MVABUjKcA4sKLlEzFMunehlJrb9Fzizhdknkj7kWf9su/80uot/+pX4K7n0DlfHiVooPA3U/hsAv9XVRuZIdybhyuBroWT/kkt8TTnXfLUVI/m1zTkX+ZxAnGsRwELC9zq8jZivZYBarVEI6k1uVwgRbu2Q8qZrzehdFZh3GdFruV9RhuTgwHZfBn3JW1KSt1nDwYtgw3CJMF/vnT9ESamQaChgVuQbR0Wt9uap5WhqZff9JJ/tCuVbmsXtBE4mFXg1xmL+DQhr24CCeEDJ2pLZgRMzMytuvb8JTizeNZGZblY6hR+heTU1YYenJKwXwrbinaL/NDCqaLw0pxuWOgyiTADFT0E1qXzxPOqnsvGT7X/qUu52KcJLOw5eJgbw0WE524Ryq4jGAkDegGDEfgU9aWDkRHjrt0aVxqrTH7EjyVSI2pJ7jWHpbfgvRY3GgaZ3sX5ZQCIsZVcCocyGtkAhcCE6N4rH+wp6g81j+YK6WQ9Q/oMga7XQimXRDrI6O17N2AWAB6P3Ow5LQXT/uMTRyj/01SSXdbDWGI6XO7uxz2ESJxl6JIgl4gIQDmvBjFWiDh6h03wK+2iKrsJJLQb0SSNWIAkzebbqmUsVM8LDTnu/6RO2JL3vXLn8+pEplbJfJvVVo+tfArUdZWLXR1Ls3fQl0MBZUSEVUKiurWMpLMr2WkLggEXa3v0lIS+zrq/G8ey2NaSGDyD9HCIY+pFCueZsHF0yujX734vJ9G88kIk5ts8WkN54o5zdmT0fV8fxJz64ADWJtRcAQ+ORFcZW6fXhEtHZydbImWrNpM1zarRb9a5aY+ylQ9WW75wZXzXtpyPxv3aj54tavlAcCXZGIB/b7zCqAEcKtoDE9sC86X+pMt3RkdkDPvrcd2Cw9c6mdNOrV20V43ycO+f0zrQvsblID4w/72EPyO01g4ApUIbraN7RatO4jtI8zFbaYz8BTKlbrHtfSdCjnWU7x0xjOdFM6eRnPmOZCyr/9uplOxeMMI05px5IT6wMXnRWZpoCAS4CoIItXF4I+WYv8Zr9YtCGdwRye3QXb1O1uDxuY2pGrmtdba3A6cuOaPXf1P42VsHsuXKbzMVJfL9OVupeLtWgCDq2O7P4NlDN47F3yL9mmKm9D9A/VHGSeshSB+HXfhRvx+NfFDDabTwqoBOC1r9DhOgBk90pQLTcde+6Ieet2hruneyzoIgML0PqKZ+RLuMUQURlL5DjS43XeJq9ycHYkbvdZv2Ey0dnZ0cXYCp99dGz+CpRg/68UXUKP33Gg+q/+yFu7puGGkX21dVLMF6ORhoJoD1HkgwARwPwj3WCJGgI+TQ1iPsNGr03vzfMvvmffM3S730SserOB84eYYjUHgHNwN8BRuqEt4shlnad7s1725S/OdG38XUW+3rL0ulqdO9x032FRpSO2ffhdJIyDnflDOeF7OaQMMzVswiqg8McbS7oyAHZZd/zvLTh96bM+uCEu1JGEj84lulzjP3uhrjmQ7827YzkBKYSZFNV0jgJowMKZVNAYF261GtJ0pjmxHVOvODuoO2234ne3GnC06uWa6l3aEnIWu3j2vt5y2W4JkuyVItvvTOQNgHDKicZRxZJxu7uSUYlkHXLT0cFsLs6gDTf4gC7/MW/BY+G2/jvoonMsKdGJksC4GsYcM0OoR072cpD9LBASgfeyyLBHZD3Npcasfiimt+Gb6Z0A7CgqYIiqg2pGHZBNg8pBub/+S7fBe/m//gu5C6rT9C4pLA03CBN50GdAkwmqC8mxAUy8C76IU0NSb1QTFgIAmUVYTlCIBmvoQeANXQJMYgfd6EdAkzmqCLtMBTRKsJmilFGjqy/5dkPk+0NSP1QRN5YCm/gTey6lAkySr6S8p8pd1ChM1juYUNL6d+/4a0DSA1VQV1XArRzFLPUL9kmmkNKMFaJJiNT34cG3o1UF62hHSBgnht7/UA00DWU2rogyHBBwdTtm3IPLjki0FsUDTIFaTas6W6ieE9eo74mqqxmY3HgGaBrOa7t6fNz333n2N9DG1zXr6ay4CTUNYTZbX9azNGUPV90g8lD0oM04GaBrKatp36cL0pzL3aYdO0sPzd5R8B5qkCbyzLa5dg8MIMLsGde/UnVjyZaS+35z52dcffYrn0VG6u2swB65T4mYZH+ohKLGIUjHEVy4715NOTrqjs6i4UgmFdXw64jr+go7lkVw4zXF67BS0Iwrs2CnTOKRjp97G8vvYqYkDFzi3+ClrRJj5RK5JHcfJK2Bz7JRhHNIhHgvicHB2TlFRkQCOnZp8mrH33SAiJabIaHzYYVHOpUSsjp2ahGgdaTxYRyDHThXeDl5gdXyDnv+Iqc/fut3nrP9ideyUMKJxgGiCvXEIWB47pTq1SuVc42j9cJ2FOvSLepwHLGJ97NSdWMQD3bAxHj6PnRp2USLpcf0Y9Zxs8XmR44UgWaLAj53KRrRcNOaWAz/Et2Onrt4tXqo2uVD7ZBbBM3OTLmdGh9WxU8wcAvbYKSAQsvLUPAJMnvpvOnYKOlXE+NipmjikY6eS4gRz7NRkPYK3EGkYPfSlrKvnTPmrqB87BV0+ROEopctxSEcpFcXx69ipb9MaehvuVNMNmPtg48ravNuoHzsFjREoaJWEqNV+weahWB87lQ8XxnB97BSP6he77ggNaV0/dgpaHEOhgHQCTl3TMcJrQo9LkQvjHN7N3SxG4awadBxl0V6Y7noxo1Do1ykYwDDhBkxMLD3AvzLcwBsQV1kyC+jtxJK9hzv7zCnWL2K1uxOtLZ2IVsBsc62Li4M9eGyVM9AIfL79lmudwI+C++idQD7AgTkSMS8qE9XtwKOBmJOgpfTlRBc2o8ncAuBsa+vA6NiABf6MxzpnoiO4MbtrxZaNLxY1TwuU10ghzHjbu2inH6Js3MUWyA90YyegzJmK9mIL1wJ4CjAyyZRXdAemGqjOlBHcq896IN77IXJ/zHsztlrdD/AcuRUqnEd89WbegwffzLz8u6iq8H7q6AmMWv2IUWanxi88fh2FTXxioEJmvKLqQxDw5FTod1UPOQ5/ZCU9oGYsweAgxlFng1wCE+K0M4SnpW8/9lQV0+UfUBW7ciRVAL/BzcysaWF3Ch8zdVYRjd3A6TPYizmtZe/eOS4wZ9tbwFk2782qoWKq+TMOD6NnzLUlKMqROSdkEvSOG3GTLJ3a+GG6qtNIpvM6jYnp+lg5OzswLDuFye5MzEYbgBuJwSGBXUu0XwWGd4QF1ZtDp/TWi8rUDAj8fLdu9+gCyEko4P24g1D7ZdRPbstjRRmeWJd3LjPKdGtBWd6YdY4dC8jqjjDxORGMMN9k+pFXY4ZEu9E4T/bvw7oxd/mb3cAPcZjBBlYcGYg4wr8R56/2UerXCN4ddQamnI8Nnn5KM+7l+Qixv304aXLxjp0b3FTgryZ+KMTs07AKAX2albcVEGDyNk3SJMWf82+QUu7LHq2JfjeDk31h4mkuziBByp2zicHo/PevBSj7X5+3YQ14HnZA3mlrR+w4GqP9LICupUtSssnnC/U+knwfZqTO21A/E/ZpuUmdTo1d5QQBfb0qAX0bAH1ToGmSFKCvQgVXmtTN7aRDfj0WCKW2a8Hz1TPPuyyIaTtCOSD6d67Q2BbOrzoXMwUPHeJ1YsSvlt+lUNDA+KdoGdh/QfXm8fJOJTDJrOxWCtWvvfvaMGzdGLzzS33/hJbiPFNS1INpY9ZQgxI4kyUN5ge5kyXWdX7s+KiqQHp/rwqsk6UOz+xGogQ+sr2zjb11e3/m/UVkkQyfLWvy9Q4PN7z7yaNKm9NX2Tfg9tWOFn4YQwHRGHVncZH+ELqzHqSs5+TsAQxfltZgZVph6nxgygry50rEafOt7ZzdbJSI0+e7u7p5MP/BO1vVObTIsCSjkOT95sYduRu+nJshxcFfYOSx3oG723Rq4oex/M8iGUsVG2NBeg6z7tKdbHXor2UEp7VuVu4IPejiI+Ngc5U2jSM+gx9d3zqn+k+myn9ojqwcViCXAcxxlQv6y6kwaavoXpbKiuQI2ZZE44tvN88N196h8/jLzVDDeEynvaAAERUsAep4CACGlm5louyhzNkRSKh4fy31dVJw+GtxzUTD7RYKnu6FkKGM+UEeQ1n7dX4IUHYWQYBUw7PsRLOQ8O+inVSCTNR2DnynHyWe6Wo5t3C0wGinqRcqEGinoCquzBJl2sl+iGrVZvt+Osl33obSZv0ciAPaiQhKArt2fPU8JkGfE9m4f/++AGgn+6Kv2o1L02iJEpS5xd+cTHBBO3mfR7LOVDxYRyC00yPZfb0+HzpIjr/tGtKyZMZbXNBOD6uQjANEE+yNQ8CSdvKubTudoVpL9dcNvqNav3U2rmgnNUTjNZ3DOtnFEe30bq5oc1z0Wv3IW2luC103vsSYdoo9h2Q5A8wtx1fa6XxK3VvTjHpq8bDSMWpOcxpxQTsxcwhY2gkIhKw8tYjQA2gnjVHjM8dK9tIsOmsVkvN24yuMaSfixQoE2smlGrZYiirtlGS+efT+2cqUbc8mCJ0c+MwAddoJOjdHgeCRApWDJXjKqrkKpSjRTrKPVHYaCqVopJvIqb2f8SoSddoJGiNQ0ArwIwStiNUCjblY007FcGEM17QTdNLdiXaChrSu007XMm8GhJy6RD0cPkokxqrmJwq000k4df+jnf4R7XS4qK3h6MEj5HxH0b2HUt8rC4x28v6ORDt5f+MH7eQp1nft63NjNHPzRnouHrg1BkXaidhq/eHDDEWdU6uflQQ/G38aBdrJ5TsSHEL8LhDaqZeMcNoTVyotaVCZcx+RO5WY005XvyGpAvgNbmZmWNFOyx69WtBW0KKXkZYsmmptjx/aaSqi6R624mK5j++0k2GrBs1H25W+u+kN5dTrow8wpp2YUQYWVwGijMBopxtiG0ZMUV9DPzRmYiGl/E4wDmgnZrCBFQcINoKjnZ5sFHntVZikEWx6++GP4c2iOKGdpiIqBPRpVt52itAjaKcZNQzq/EXi2j75R/wnbBoRzXfaqewnEu3k8kNwtJPHq14uq5rHqqWWa2RR7LfGok47QQMjCrRT1k8kZsHiJ8q0U+2AI4skd6vSExpmKJoUx2dgTjtJIb5/2Q+skyV+0U59Uz1aj40jkIPvB2/5YCh3EBe0E9BZEYxBxMYYmNNOZefqNU/mVqoVqVq9v3CjLg4ntNPVNiRjebfhoefwk3Ya98JRbVXFFlJo8SHpvwjjoV98IGjaiRnIYWknzZ9o004W+1/G1a8YpZfUb9yyvnpzjmNOOz38gUQ7AaEFZdrJX1NfIWDcNXpI+NxBls90J2JOO4khCZB6qI2daJYQ/l20k9vt8JSiQbP1j3w8/c188rEnAqOdLgohne30ncDvs52aWyfu825bpuNdbKvgWjL8DQ5op7NCSCdlRArh4ICaW7duCYB2sml6NjBb/zA51ML0zo35BeK4oJ08EK1DxYN1BEI7rZ+8fsdQk0TStgoTr3lVG6m4oJ3GIxoHiCbYG4eAJe20bzG5VY9QrR2/THLY9IlxV3BFO90gIBkvHRvj4ZN2cqhRF538Ikr/cGS06xNPEaxpJx9Eyy3D3HJ8pZ3sln4aOkUvSLskeEWTnWLWW1zQTswcApZ2AgIhK08tJfQA2mnJNqd8pd2H6RFkq0PZP9/3wZh2OiuMdLaTg7BgznZyJ3usb01UphydL/2tIffSSdRpJ+jcHAWC56Qw0nlFocL8OtvJ/p6R7sxhPqSiIJFrkfWSIqjTTtAYgYJWDohaaQj/X53tVAYXxnBNO0En3Z1oJ2hI6zrtpOEywTBfwkj3wOW6Rl/6bAUUaKfTcOr+Rzv9I9qp9K1Ilcanizq7+qvcE6LrLhYY7XRxZCUC7UQd2a0vyusi7aRdQZ5iHfyeVDi5sHQU6eA5FGmnT8bWMk5NqVqltJz09399+lOGFCxHnQUVgoVDIkdyjUD8oJ3Mvp25/OyxJzk8/EVuzpFhbZjTTh6IqgB+g5uZGVa0k+sDtYGnZbT0smdY3feKOZOAG9ppPKLpvo/AxHQCp53yvaVHt9SP1Nm+6eAV0o7paRjTTswoA4urAFFGYLSTxT6xj2Gb5DWjxywJKHikMAsHtJMHojhUiDh8pZ3uHS4/NavqEdXfK6uu1JashBPaaTyiQkCfZuVt5YQeQTs17XdgtAi5qYUnj/GNq4s6wHfayWF0JQLtdHYU7AQeddqp6YZyfM1EKa3gz+7Zl4bRpqFOO0EDIwq0kw2oHiyzMG90t1Ko39NOa1Z/nVVUbal24I3ceaWILUcwp52GIL7/61FYJ0v8op3Wyq8v83x/neT30chDROJvJ1zQTkBnRTBGJDbGwJx2MjWZSVW8G6lxVD5bcROtZTVOaCcPRGNRcdFz+Ek79TOr29Frhbza4fOJW3+U9B+KMe3EDORwtFOa8ujuZam/p53OzRgoJeqeqJZtvNLDd+aXCMxpp++jKhFoJyC0oEw7VQS0rHFoMyRnJ79RFJ1yZh3mtFMQkgCm5qPYieYZwr+LdpIymqQ4P+q55r6S3llHzwUrCYx2MhuDRDv5y/Kbdhp2nHqqSuEdLfmc3N4NAdc/44B2MhiDtHasMAYHyMaVK1cEQDutPV0dlrjYnJaecfXLCK+V+KCdCIjWqZPFgXUEQjtd/Hqj7W3haL0UkS9n3J6Z1eCCdsqSRTKOPx6MQ8CSdjqeR35yQ8NDI3iNyIKNFospuKKdLBCNp4qN8fBJO5n5tfZN2K5JP15MFm9xeNyCMe0khWi5xtFYW46vtFM/u0F/ranfoRE1tvySjuLCQ7ignZg5BCztBARCVp56ltADaKcB392r35LD9eMmma6QWvBSD2PayYCIRDu1jBEM7TR2hfApN+nx6id+9PPXurGuHHXaCTo3R4HgoRCRCB4ikV+0E7W4/+KRFiK6aZ8Dt4XmRDxCnXaCxggUtGoZg6TVVcHOErCmnSrgwhiuaSfopLsT7QQNaV2nndY0vsntsySMsq3ULOVOv+KlKNBOlXDq/kc7/SPa6WBTr8PXWz/Sc8a832t0YPUQgdFOZrOQaKc6FX7QTkefejpEf6app/seeZGr8WwFirTToo0PP+h7bFdLsJim4rmL9AgF2slgFhIcojBLILTTtIozE/vKSqsH+k+1eLhe5gfmtBMBURXAb3AzM8OKdprS/8q2v18nkPyr9sSHfLGXww3tlKWCZDp/bEwncNpJIj0zQ2Vmm77fgx0vcox6LcOYdmJGGVhcBYgyAqOdsmq2aU1gvNA8ltPa/86dzHAc0E4ERHGAYCM42qm5j6pdoN47zeI5elcdI8wu4YR2YvZpWIWAPs3K284RegTtZDZVOrfQ7ol+1ASrWONA45t8p51aVJFoJwNVwdFOM8RqTF1e+tLSDgklP+lb3Yg67QQNjCjQTk2qSMxClSrKtJPJ3cUyRyrG60YZRB3NWrr1Jua0Uyzi+3upYp0s8Yt2MmrVq1SYW0OJXcOY2dc+uAIXtJMBojEUsDEG5rTTK/MJdx9fCaXvcvLw7TXx8Qyc0E4ERGPVzcJDz+En7aS3SOze+IyxlKwrEyWfOb5Txph2YgZyWNqpSBVt2inYKzV7kEGCXnHz1AFFfs2OmNNO/mwBeNJOBqpo005FZRuv7aBL6ASsjGjTULohjTntNApJANOns9iJZhXh30U7BZkd16+Y0U//lFvDxhBHqxECo52ezEGinYbM4TftRDygqlUcvJmUGxmtn3V28w8c0E71c5DWjnPn4ADZOHfunABop8o9j1sGLZuin0V59kl1/3MKLminQETr2ODBOgKhnZKvmSiaaG3VjOodWLlMqX89LmineYjGGYIH4xCwpJ22HtKsdB8crh8i8SCn8Wv2FlzRTq9nIxnv7Gysk10c0U52F1/89cInRHv7osWer8Y6GWFMO0UiWs4Dc8vxlXaKr338MX3hKcpRvYxJokOm3MUF7cTMIWBpJyAQsvLU84QeQDstOSfkVL0oi5o9OX2F60pZL4xpp/q5SLSTz1zB0E6nqCn9xHs91N8j+Ub65CPz6ajTTtC5OQoEz425SARP+lx+0U6bRe2rtvWZopsZS5qifG6JBeq0EzRGoKCVD6JWy+b+X9FOF+DCGK5pJ+iku/PZTpCQ1nXaabxVlVRkZqNactWoqbV1kkEo0E7VcOr+Rzv9I9oprfKDfKmfCjXpZZxF3E3tAoHRTi5GSLRTkyE/aCfTxAFpV5IT6ZnirsP793EioUg7fSAUqF+vfau5c6TWhpLq55NQoJ3sjJDgEDUjgdBOJd/2iGf59tEqTuqzJPqR+wvMaScZRFUAv8HNzAwr2sll04aNha6B2ocdkg///Tk3ADe0U5UhkulisTGdwGmnKV7hl90jDSmn3p3WCEuijceYdmJGGVhcBYgyAqOd3r0YHL1imRP5UEyj7KRBg3VxQDvJIIoDBBvB0U6iJ3vnRmdM1DvhHZ5f3qB7DCe0E7NPwyoE9GlW3naR0CNop3tCz4pWT75LCvDauyH0nco0vtNOUiZItJOdseBop4A+iiN8dsVrhCkr+O1cK2eKOu0EDYwo0E5iJkjMwkNjlGmntTbvT821rqbsLc9el9ki54Y57VRgjPT+QcZYJ0v8op0sXr9Y4TwlUzvjr5mBK44/8sQF7WSHaAw1bIyBOe2kOGVQ0bIEG1JUZOMG5d5OyTihnWQQjdVkhIeew0/a6VbKeLGS2mpKplzIacsfL+kY007MQA5LO9UYo007xfTu11f1YpLakTEtgQfHXDyJOe0Ua4xEO9kZo007LWrdSEis2UwJU763WPbqp2TMaaeZSAKYthmxE81LhH8X7ZSZGbvQ6KSD7vZMCe07xZ+0BEY7fTdFop2UTPlNOznZHJy3YOp5cvKkhk3ZcZPW4IB2+miKtHZ80RQHyEZpaakAaCepMUtTNv9VTwuLXimndtxvOy5op0RE62zCg3UEQjv9EHpWoV65Q2/f7vV9pn03jMIF7WSMaBwlPBiHgCXtZE2IGa0zIpqSslTt+qpD5pK4op16IRqv3gTrZBdHtNOG6ALLqOof2vmVF2K/xE/5jjHtlGuCZLlAzC3HV9qJcNtpUk2mHdn/VYbiID9Fe1zQTswcApZ2AgIhK0+9TOgBtJNh0WSSklQ1bWeZz6ggz9ENGNNOHxcj0U6RiwVDO0mHiC68N2qyfoh8VR9CUKYJ6rQTdG6OAsHzejESwXN2Mb9oJwVDs/1jc5NpOW6XqpYIj3ZBnXaCxggUtIpE1Mpj8f8V7XQFLozhmnaCTro70U7QkNZ12ino56PBLy5S1Xc9uHHg/LNCTRRop6uoqdtPgOpusl+outWxSGvf6wf2T0ReqHdSN0+o5nqc013Stul9tfuIizoBTcKspnGqU7JHVQVolqxeoGY0Ii0MaBJhNYVlvzx9sb87OeLo0V0FixoGAU29WE23B20zGrsoXrvk+7mTapHzueG03nDm2j7prFK81CPN7ZvOSKmsSn2GgrmuwZnrPzjtH8Fpk6uNRjvGH9conm8t2xY2XkZgcJqPMxKc1suZH3Ca69P+FvOPuOqG51I/rt5s+QpFOG3OdvMFFIK1VmbflztW7ZmQigKctskZieUxdhYInLZS2kh248sIcr5YdHp6A7UYczhNCVEVwG9wM5HGCk4r1s7KKX4ZSouepbpw9d62ZtzAafVOSKbLdcLF6izf4bR7Ec3rr21coB2dRtts+f79fozhNGaUgaWLgCgjMDjtcpD4XTERa/IBQ5IeWb2AM7nDBk5TQhSnl7MA4bTZLuJ7c/aVq+3zXnWjfo6yOU7gNGafhlUI6NOsvK2G0CPgtOX2GXT9gbP148zOpB4ZW7mL73CakisSnObjIjg47XqWe/mQgGD1FG/zk4ekcjmTeTTgNGhgRAFOG++KhJh8d0EZTqvW6DdKbkmQXm7unkwvz1fDMIfTbrggvX+6C9bJEr/gtEPTzNc/Pa6tF2idlJdQtoLzu5exgtN8EI2xDBtjYA6n5elfTU7bFqedGTt93rnYvqo4gdNmIhqrHy56Dj/htPqkH8uTD7Wpxc5ImZS5NDf5T6bKKKBJzEAOC6e9dUEbTnudV3JVJOsNJTJ3SnXCtoIkzOG0ky5IcJqPC9pw2rTNUhcnbS0h+UkuTCBXqULm/RjAaQZIApgOd2EnmtcJ/y447cwj6TSrrzu1T53y0TO1XrFcYHCajDsSnEZx4zectkV+eWbg9zukXY6X8z8XLNyEAzhNyh1pqb/RDQeETUFBgQDgtO233likvDpPC+nzOf2VZCzn12thBaeVuSFZJwIP1hEInKajbBSyQURZw1+lbLwqXf0MLuA0F0TjUPBgHAKWcNqXG6tKvW40qgfMPPip94ovH3AFpxERjdfiinWyiyM47Z7oGtKty9H6cY/pqUSJQs6zYwQPp111RbJcCuaW4yuc9nzZRLEUS1FyxMOxySqie5P+nGxBAU5j5hCwcBoQCFl56g1CD4DTxokbiSnK7qZk194YyhhE0MEYTpPyQILTCtwFA6eRH7s+Wqyarldc9DHKbplVNupwGnRujgJwJeaBBFw9dOcXnNZ3Uj+S9uE6zTyRrHI7tZj7qMNp0BiBglYF7khaBbn/X8FpN+HCGK7hNOikuxM+BQ1pXYfTDAgrnujHLKGl0gdeUYmxkkKBdroFp+5/tNM/op1OPUra/DFou27J7AmZy/QlPgiMdrrhi0Q7hfryg3aqGPF8i7iICS1u3Z0F68TlJ6FIO8lkNxfutvLTKtz26rP7j8S+KNBOV32R4JCTvgKhncqlJV2OlvSi+n+c/mO4pO9QzGmnFERVAL/BzcwMK9ppkvDlH8tbC8n5j+eVKJxYX4Mb2skb0XQO2JhO4LRTlqubZ9RNMWr2h/C+9z/o0jCmnZhRBhZXAaKMwGinH6XhTxctv6ufX+z7ctOpPtE4oJ1SEMUJ9RUg7fSGsdpri0ke2d/rKymlz9eNOKGdvBEVAvo0K2+rJfQI2ildblbOgAltGscDducp7pQfyHfaKcUPiXYy9hMc7RSvNdUq4I0PJYYccqS6VksRddoJGhhRoJ0S/RCPovJDmXba+lpv6+1TqpSUV0sLjzrNwP4ork2I72/nh3WyxC/aSefj61miJ5brnlii5qSRKn4PF7STMaIx1LAxBua00xbHwRbVl5q009LMVEYuH/AFJ7STEqKxZHDRc/hJO92f0bh9VmGcbr4OvbowapgPxrQTM5DD0U4mAX5o006M64q1GcLrqAm9ex8Rcc8Wxpx2cmELwJN2MvZDm3a6Yb5sYdnqC9onDIYYWok9UcScdpqDJECqrB870awj/LtoJ93BUuX64Sb0pK2UnHUvYmoFRjtF70SinVR28pt2WmIoeUY9ajg5KHunPON9ThwOaKdDO5HWjv124gDZyMrKEgDtNMpHtk7W25Qa42kW3VYeUYEL2skN0Tor8GAdgdBOMY43+3ywdtRLkJ1oc9xRuxQXtJMuonFU8GAcApa0054FzbsSZ1tp+e+urDnXNjISV7STHKLxJLExHj5pp3FNCc0elYbkA3OVqsvET77HmHZq9UOy3DNcTFP4Rjs5LHXSf2BqrJn8cOqk+g0TXuKCdmLmELC0ExAIWXnqbUIPoJ08ZWTFGSfe0AO1/W41b+orgzHtNMIfiXZ6y53S8oV2si89/2Pnq7W0kr2Dtr1KHfUEddoJOjdHgeCR9kcieIT9+UU7XSQqlR4791p9f8ibOMobhfGo007QGIGCVm93Iml1R7CjJda00x24MIZr2gk66e5EO0FDWtdpp2tnalIuzfJWyxgd1WfDe5lWFGinu3Dq/kc7/SPaye6IXNxVz9X6QUvWL/0Qb/1YYLSTfCgS7fQshB+0U/8zdw+8DiygR+vHpwUd2RSEIu3kO7nYYLjxau20bHf5kqtnnFCgneRCkeAQyVCB0E4xF3rv8Hy9iB4V2av5uJOcJ+a0U2sIkiqA3+BmZoYV7TRiuN7CqP3G2oeXv71iGHDaATe0Uw2i6UqwMZ3AaaclwqFVAw4J0w+989sSot1MxZh2YkYZWFwFiDICo532BAzsR9kgr+sfEalLj7/wBQe0EzPYwIoDBBvB0U4XBrz+LFFRSMovSvWZ8dfWTJzQTjWICgF9mpW31RN6BO2UNuN+sZSCGjWcNMErWapfKt9pp9ZQJNopKVRwtBPp4O4HhRH7SQf6tjKmTZ5YjjrtBA2MKNBOn0ORmIWG7qVQv6edHlNvuvRNuUgLjfu8VWzZuzmY006XEd+/KBTrZIlftNOp0ySCzO5H6ruWNAyPOZ19ARe0UxKiMfZjYwzMaSd7VWrcgb/faAdUzPnydnb8apzQTlsQjbUaFz2Hn7STlThtyzKFe9Sg6WV3SzUXbsOYdmIGclja6W43s9Tf006ni48ITUuW0Du+bSzph1ipNua0UzlbAJ60U1Io2rSTyauF5wLu2+iUHli7WG1saRHmtFMgkgCpLqHsRPMe4d9FO03feN3p+sU4tdLJ4S9j1zwcJzDaqekAEu3kf4DftJPSY+ux8bG9dOKOb2/9uVpbAwe00+sDSGvHdQdwgGykpKQIgHY6uFepSWuWodo++b2epAUhp3BBO51FtE4WHqwjENqpz2HaWKXomTo+znJfrfcu3YAL2ikS0Tj+eDAOAUvaqb58acrPnbb0+I1Bz7ecG/8KV7STB6LxLLAxHj5pp4bomGMWqm/UYk/cDJMM13bDmHaiIlpOFXPL8ZV2+t5aZj9OI0gzWrL/ZOPBRedwQTsxcwhY2gkIhKw89T6hB9BOV5P766Z67aCGpH3tpxx80QBj2skhDIl2UgsTDO3kNkHuhEmSt258UMls8YnbnqJOO0Hn5igQPHZhSASPcRi/aKe5cy9u3trrpVbIsb9c24Tuu6JOO0FjBApaqSFqpRT2f0U7PYALY7imnaCT7k60EzSkdZ12miNZNzug2U4nPF3jXAOJNgUF2ukhnLr/0U7/iHZaFWU4JODocMq+BZEfl2wpiBUY7bQhHol2mhPPD9pJNezhZ33SFNqugOMFy8SOG6FIO93ZGjQ2tyFVM6+11uZ24MQ1KNBOnvFIcIhVvEBopya/1WI+B76o5ziUbrpSZj8Bc9qJjqgK4De4mZlhRTtpTLxal7l5JiXXOXGP2/Z1a3BDO8kjmm4QNqYTOO00f84KoqXsQp2QtSsXJcxgHMCYdmJGGVhcBYgyAqOdJk24OXLZICHtErJMfvkY8lcc0E50RHHmxAuQdrI8nH65aOwC6jEf3QlfGmuIOKGd5BEVAvo0K297ROgRtJNqzpbqJ4T16jviaqrGZjce4TvtRE9Aop1audMkvtFONXvTfJeucaIdCG0tWLZfRwp12gkaGFGgnXQTkJgFlQSUaSd/832kgcpraIezQ0c/CvkqhDntJIf4/pIJWCdL/KKdPk8pJ24epUFNaDRufvrgqQ8uaKfWeCRjPMNH+iNw2kn/x4onlD0DNNP0KdtOmB/ZiBPaqQbRWCWYTzP4TTud3ZttJDdMjRYvKm3k/nqYPca0EzOQw9JOUxLQpp0WKxhHiwQUax5vLG/wclvqizntJM0WgCft1NrNTPT3tFPU8/o+puaplLAPuU6TSbf+wpx2ehiPRDud7Ug0Gwj/Ltrp7v1503Pv3ddIH1PbrKe/5qLAaCeNRCTaqT6B37RT7prLsifLDquHfy+cuiSseQMOaCe1RKS1Y6VEHCAbcXFxAqCdqPJidZ80lukFyQ3u9eZQeDEuaCcZROv0woN1BEI7lddIvtO8oqEduWrFg4Sixx64oJ2aEpCMU4/NTANHtJNXIz3qXsNNjT2quSuXhw6k4op2qkI0Xi7m00Qc0U6+t3Iq6bL1Osnz/XQMtpnGY0w7xSJaLhBzy/GVdiIXry87p/xUe691iGdTxLxMXNBOzBwClnYCAiErT31M6AG0k+V1PWtzxlD1PRIPZQ/KjMP6bKeyRCTaKTRRMLTTqh+ZRcsX3iDtaBjzJP3k9mmo007QuTkKBM/JRCSCJyWRX7ST+sVP2hpNcbQdZk31J0b+1Rt12gkaI1DQKhRRK2/B5qFY005P4MIYrmkn6KS7E+0EDWldp532Xbow/anMfdqhk/Tw/B0l31GgnZ7CqUu0HZfvvyeAHHImnXrwayFn1bS3IcPBcj2nujDLQnBdeDCJuM7ejUF0A+/EEpD3HviWNieZxRM1o28FPpvqJi3H40G4X/r3Ee781QMhfjl6h966ZtW5J4/8w14bAfRLu3cV7eOyN7TXgstsCu8qWJI/w73kSyV2GvUXa6YkGekP/PDtgi9uJacOrUSQXGkoOxV6jnvJP5p8Pb0zwJu2bdCLaq/nhSNxK/nFqUiSp09lS96Ie8lHZVkdCdA9Tdp7T9xg84Gy0biVXIyGJHkjlS35C9xLvl5H4bKBzz5938uStmofxbNwK/l3OyTJ6+3Ykr/EveQ68m50SfGRpKzw/rarfZ6l4FbywO1Ikm/azpb8Fe4l3+Agd8xztYJmicTpG+Yrv47CreSJQUiShwaxJX+Ne8lvt6y9LpanTvcdN9hUaUjtJNxK3hSNJPnDaLbkb+Akn5FLJ89RNKeUZHrTdjVl1kIKIoDYbs4ORCbN6c69xtgbRmgVTS9gKmbdTguyVu5Zt2oHtphbB9Y4OQN/A+Y+rI0KXVt/dFFblLdnf5lGcsn4S8fLmpqRnphHCYejvYtKewOT6CwzIB0/S+aB/xPBreumFXzA/63m5y6ZJfdKM+yZUZz1SkYSivj/a2/bLxapRygnRB9q2IkGC/2hL7oACgWBCjWRgH9AFWppV4irpsqWqIvo31h1Th9irT3RQf+aDGI8yjxVXKMdke8sJa15qkqSdPtyqSYnGQDjKOzraFdcy/JYQhF51WOIQGvT4gouNqSbQo1YzABXSpkKcfY73gote7+y2WipiVbiI7f16TF+JZwr26ybca9ssxv4oZHBYiSNoM4k/A80YqJgLOob0Ol3XtR6vaFI73orOWLjsykl1ZU/OfsieDNuhViX+aGPlCmSPi4m7OrAW7jAP7FtmEwGUUQzj9z0jSFryxn4+1Lt3T1gt57BlexH0xiW7mvd2rd+tbNK7dHdAbhb14K78sDh7xJKx1HzlEhzSmyWXYB9Km5cuVNjF3X0AgmKpYCO5YCOD6E6uoDnJizhCuvdxJXFyZbuDKYAPN/3hN7EjwfPntHezVgw6t5wUc6v5OsFvhLXi7Zf/V18hwa9P4zvdoBURFCqCCC+l0GlGnWCKRVsfOfJcdOZa26gg9h7MBzdwb2FVJ4auZavezqtQp4cEtOboSJm7jOISYAD767p5eLG6KgXMyvNZpM5Vy8ETb5J5bN0AncYcOnkn8fUidU137G6ElfX7DXtI0ny3FVKgorKHaHMcWdEqPZW7La4xqhRK6eZUjNF99n/aJTghJBYlFw7n931fkvUZrRnau2kOBFMSRjdzst81EUK0sY5k9Kua466djpOCv7JuIGBzq3dyDhijQClT/LqvKAdygy7lZMRO3IyW95y8D4p4IYrqY3srnkwytngFnXuHx2yx98UzQIQzNuIlaJxuWZju2DdWvYergHxF1A0eEJ3+uVVj8poATrhMsYpRvnKTphuNsjKY6khxaujgmMooAarozYRYMbQsMZPUZNNAqmFF/RPa/+M5VxLkPgVnrhXveFmqNK/Nm87ERkdN5DgDnW9SZPJitO61DOV5GfKnKPJaMUyypc53iCdhHtM7v2Vv9q6gXgQVwKy1vFa1KaATra8on/HDi/2aiM7OknogD2Va/WqD/Oyjg27Z0S0eRfFBZvp5Ccfpas9VbzLbheCae+rz/Rnrp4j1n79143Nbar2CpWKaxS9HUbrrzj4avvzMB/3d+Fj8C+tgA7hZm9p5cC7G7Q239+ta1ihE1WlkjH7gTtnBJcwZX2USOKyhhCJqxcIQUIGdKj80woDYE0CaM2pJB6JpgM46q+o6KSREFoaDVN96/tXvzi9vSK7eol8TsiC0YjMrRH5txpBwxAKGgE+jaARcXkFywE7HAkpqg5ph4nAePorAPAOqDfDhkzRnEA9qOsrlmWcw3nEn2j7bbgDKus62gHVII/lKy0kcGIC0eFGLlMlVkBthguo0g17NAbNuaIe9/fj0syqdZwHSgqRea+/D2zHcnhISZBob+Io07EoHq7yHc8FeiMGMH+2YWaoTBLJEcS8XBzsreEPIAjKTo7wlt5HDb6l5v100p19kHfoist21RYd/BrEFsSiCoJMcgVYiQEHN5bq7/+R6u3JisCV/4v1C93BJNTZwQF4fjBqAJ3ClgE8BXszHe+dn9dNVeyJaYmaRw8FHkn5mq4igL1AcKYoAwkbGtQUH/6RKfqaA1I4ujg7MZw8BG6QIabtpZKN6zf/egqe6pvdW7+e5hVITiONOSRUPXcp7Dtwz+E7N6JtCbHiCsLUAsASJZ0t8bEnh6Ljt/eHjvPxJSeOP3OgfutuFYxCEeEl1P8/9WT/v3Ri5jWrb4q6R4V+VMTX7niBI/93aYb6/+ee7P8iD0IbUosG6RVOebGV/HPma4z8v3FQJcT/v/Rk/y+7edLbzFiKdPLv1Js3nwpRcOT/GtKVEP9v6cn+T5sw9Jjlh/NaQbfy7o60eFyDkf87KEP9/2tP9n9hqsswy0+a5JO2ypmbrj0k4Mj/q6ZB/b+1J/v/B5eDUflL8tSy3tcs/vlObjJG/p+oC/X/bz3Z/6UNX/q/lStUL9UtdZ+SaLsPR/5PoEP9/3tP9n+NrTteBPzw1IwrqrO5PYxhg5H/+6+C+n9bT/b/uDipeZ/ER5MyRAfXjBywqRZH/v/dHur/P3qy/4u+LM8lTzmrcVjXTE9tw9bVGPm/7jao///syf5v92rT34ueDaYXnF29Y3fDkEM48v9+O6D+D8rWY/3/Tsx0TQVNR7WUccaPl1T+9MDI/5fsg/q/0D9S/V/i/wduhgW9ILzTKN39YFORXvxLHPm/bDDU/4V7sv8vn1r4lShrqxa6Opfmb6EuhpH/p0RB/V+kJ/u/gZTCTIpqukYANWFgTKtoDI783ykG6v+9/pEl2jc8C9wGg34xc+4MW0cG3MmnK3OovSm+z9W3TVQsnTNwfg2PZ+ex/sW8jLbqIFcUa91R//8f true iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwAAADsABataJCQAAAJhJREFUSEvdk4EKgCAMRPfF9gn9WX9Wq5MtEmdKbQQ9GClud4cY/Q6WbwgQ13LnKh5mAsKEle8MeCLm1C9pb2I2QHxNtKC2RLNVeiYjTWyDIxkEZPuKykDTj6QboTZwTA8KA+/0oDRwTg9OgwhxUBh4Xo2SDaLSg5waBrJ3J//uL66mG4zxNGX9BMzezmuDR4UQKg5CxQ2IduVGkrvn0vkHAAAAAElFTkSuQmCC 888bc43d-bf25-48c3-aa36-9d17285125d3 true DIFERENCE CURWATURE LINEAR GRAPH DIFERENCE CURWATURE LINEAR GRAPH false 20 05f34f0f-4f8e-4462-82aa-5e30fb909cb5 0bdbe3fa-89dd-406d-8c80-6cf3cb28ec67 19201f27-e961-4cd6-a1da-dbd604d23fd7 19a6753b-a9d0-4f37-861b-7022988355e1 240848bf-eb4d-46d2-8106-6ebbac5ab881 2410d7ff-a8b9-400f-890a-b069943f1167 2cdfbce2-6ecc-4836-aa8e-0f85b8a74976 47a31173-f0f1-44a2-a201-5dd8d33b6071 4cc97740-caa8-4b16-a424-4ec69e765379 51f9a605-042d-48b5-a72d-840602c3318e 5feab2b9-bbc8-4117-abda-c735008c5e50 6c1cd4cb-f26d-4baf-a9d0-c412a73f153e 827a1037-9bab-4f09-a804-99da30648e96 876ffa66-c4c5-4e61-8635-2e6563eb9e15 aeb0c3ab-df35-499c-a9ea-aaefe2199a0a c5b9232a-b0ce-47aa-8983-9a32708608c6 cf57d458-4d9e-44c4-85c3-316fb4603137 d0af14ea-590d-4f8b-80a0-c1bfc02e22c3 d364e931-f072-4723-9456-b543274ed03f f24ce9b2-701f-48ec-9ed2-cb2f2bd4896c 9492d9b1-8423-4285-a424-c395dc7f8b36 17704c02-f561-4245-bc67-2eaf7cd1e000 f9b9305d-1e20-4067-946a-b44d88604308 45329fda-4528-406d-a823-54e35ac6ff74 34281050-3848-44ac-894c-a3119ffa069f 88ea5216-22ee-43b9-bf4a-bf732fa4678f e294df03-baaa-4b12-b92f-e97f42ff34ec 357ceb68-e651-4e13-b8c4-6a838be2149a 98a7b290-1680-4c8f-91d6-4080e52ada8f b4c2ea06-2f42-44c4-9b4a-584b407a7f6a ad15254d-f361-46c9-90d6-b5db1b60e3d2 80bcd5c0-5458-4110-bc35-aad5d5e50148 9096d595-00e9-44ef-bf8b-df7cba4ba2ea 9d9970f3-5ab6-40b5-b0f2-d257ffef222d 054cb35f-8548-43e7-8129-2bbf3a113dd2 e9837f44-fe89-4576-a1ba-d864d9176564 7979dd58-784d-428c-ab41-1f9a01cb3b5b d134b7cd-fb62-4a2b-a901-fec5a2d783e9 693656d3-ab20-45a4-a99a-8ca5a8f9ac36 3c10a1a1-09f5-411d-ae06-13d21b0f7cd7 1495 -116 110 404 1591 86 20 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 0 Vector {y} component 240848bf-eb4d-46d2-8106-6ebbac5ab881 true Y component Y component true 0 1497 -114 82 20 1538 -104 1 1 {0} 8 Second item for multiplication 19201f27-e961-4cd6-a1da-dbd604d23fd7 true B B true 4cc7e1dc-1b86-4199-baab-1a972e890666 1 1497 -94 82 20 1538 -84 Vector {y} component 827a1037-9bab-4f09-a804-99da30648e96 true Y component Y component true 0 1497 -74 82 20 1538 -64 1 1 {0} 7 Second item for multiplication 19a6753b-a9d0-4f37-861b-7022988355e1 true B B true 4cc7e1dc-1b86-4199-baab-1a972e890666 1 1497 -54 82 20 1538 -44 Vector {y} component 47a31173-f0f1-44a2-a201-5dd8d33b6071 true Y component Y component true 0 1497 -34 82 20 1538 -24 1 1 {0} 6 Second item for multiplication 51f9a605-042d-48b5-a72d-840602c3318e true B B true 4cc7e1dc-1b86-4199-baab-1a972e890666 1 1497 -14 82 20 1538 -4 Vector {y} component f24ce9b2-701f-48ec-9ed2-cb2f2bd4896c true Y component Y component true 0 1497 6 82 20 1538 16 1 1 {0} 5 Second item for multiplication c5b9232a-b0ce-47aa-8983-9a32708608c6 true B B true 4cc7e1dc-1b86-4199-baab-1a972e890666 1 1497 26 82 20 1538 36 Vector {y} component 2410d7ff-a8b9-400f-890a-b069943f1167 true Y component Y component true 0 1497 46 82 20 1538 56 1 1 {0} 4 Second item for multiplication 876ffa66-c4c5-4e61-8635-2e6563eb9e15 true B B true 4cc7e1dc-1b86-4199-baab-1a972e890666 1 1497 66 82 20 1538 76 Vector {y} component 0bdbe3fa-89dd-406d-8c80-6cf3cb28ec67 true Y component Y component true 0 1497 86 82 20 1538 96 1 1 {0} 3 Second item for multiplication 5feab2b9-bbc8-4117-abda-c735008c5e50 true B B true 4cc7e1dc-1b86-4199-baab-1a972e890666 1 1497 106 82 20 1538 116 Vector {y} component 6c1cd4cb-f26d-4baf-a9d0-c412a73f153e true Y component Y component true 0 1497 126 82 20 1538 136 1 1 {0} 2 Second item for multiplication 2cdfbce2-6ecc-4836-aa8e-0f85b8a74976 true B B true 4cc7e1dc-1b86-4199-baab-1a972e890666 1 1497 146 82 20 1538 156 Vector {y} component d0af14ea-590d-4f8b-80a0-c1bfc02e22c3 true Y component Y component true 0 1497 166 82 20 1538 176 1 1 {0} 1 Second item for multiplication 05f34f0f-4f8e-4462-82aa-5e30fb909cb5 true B B true 4cc7e1dc-1b86-4199-baab-1a972e890666 1 1497 186 82 20 1538 196 Vector {y} component cf57d458-4d9e-44c4-85c3-316fb4603137 true Y component Y component true 0 1497 206 82 20 1538 216 1 1 {0} 0 Second item for multiplication 4cc97740-caa8-4b16-a424-4ec69e765379 true B B true 4cc7e1dc-1b86-4199-baab-1a972e890666 1 1497 226 82 20 1538 236 Number of segments aeb0c3ab-df35-499c-a9ea-aaefe2199a0a true Count Count true 3537ed18-f4f1-428c-82e7-541bd20996ee 1 1497 246 82 20 1538 256 1 1 {0} 10 Contains a collection of generic curves true d364e931-f072-4723-9456-b543274ed03f true Curve Curve true 7428efec-7c04-44c5-9681-0bb0a240649a 1 1497 266 82 20 1538 276 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 7428efec-7c04-44c5-9681-0bb0a240649a Relay false fe2c7fd3-a20d-49fe-8b1d-09361e90e45d 1 1201 307 40 16 1221 315 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 877d17fb-a865-4477-84eb-510ff1f13db3 Relay false f1fbb0e1-fe5e-40d2-841e-732012e40657 1 1188 261 40 16 1208 269 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values f18af49f-2c36-475e-9666-3bd16c62f28a Panel false 0 0 0.000510441291375068915 -347 121 160 84 0 0 0 -346.612 121.1601 2 255;255;255;255 true true true false false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 74e72892-1a4b-4eae-af9f-1aa7c27d779a Relay false c48f2a86-4388-4b9b-a155-5f9d30e70ed5 1 -385 -117 40 16 -365 -109 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 1b67eee0-1eda-4d33-a2d9-8cf379c87ae7 Relay false 118e674e-db63-4847-b023-71a1ecd9c236 1 -387 -15 40 16 -367 -7 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 1e05010e-b50b-4830-b2e7-d7ec43b1b1bc Relay false c2694786-f0d6-43b4-a7b8-e3a0d5b6af9f 1 -389 35 40 16 -369 43 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true 0dc3cf42-8c57-4e88-9c7f-ebfcdb8df114 Format Format -331 -153 130 64 -239 -121 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format 029c7b0e-8214-4576-bbd2-fe0901352c09 Format Format false 0 -329 -151 78 20 -290 -141 1 1 {0} false {0:R} Formatting culture c10e2589-2e0e-44f2-8c2f-494f97d8cd98 Culture Culture false 0 -329 -131 78 20 -290 -121 1 1 {0} 127 Data to insert at {0} placeholders db915e2c-2049-44b0-86a7-8e0a05caa8bd false Data 0 0 true 74e72892-1a4b-4eae-af9f-1aa7c27d779a 1 -329 -111 78 20 -290 -101 Formatted text fe9b2349-403b-4c80-bf8e-3415f7e9017a Text Text false 0 -227 -151 24 60 -215 -121 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true 83c699a3-3a60-468e-8e09-9fc0126b99bc Format Format -331 -69 130 64 -239 -37 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format 4410e18b-8b01-4918-9a82-49048c3b2a4b Format Format false 0 -329 -67 78 20 -290 -57 1 1 {0} false {0:R} Formatting culture 98b62a3d-1fb9-4cc6-9c2d-503672ff8b96 Culture Culture false 0 -329 -47 78 20 -290 -37 1 1 {0} 127 Data to insert at {0} placeholders ec3f478e-2b31-42f3-88b4-9cffd1577e1a false Data 0 0 true 1b67eee0-1eda-4d33-a2d9-8cf379c87ae7 1 -329 -27 78 20 -290 -17 Formatted text 07b602e6-3f30-4265-8f7b-014173103908 Text Text false 0 -227 -67 24 60 -215 -37 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true 19a54d3c-b7b7-4d53-b8d0-f7fa93338ec6 Format Format -330 14 130 64 -238 46 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format 8f443e65-05a0-4035-8bc2-c3635e897552 Format Format false 0 -328 16 78 20 -289 26 1 1 {0} false {0:R} Formatting culture 9bb27c66-c1cf-4073-9393-c8ac657e997a Culture Culture false 0 -328 36 78 20 -289 46 1 1 {0} 127 Data to insert at {0} placeholders 8dc78f70-6c2b-4abe-80fc-fec3aea4db06 false Data 0 0 true 1e05010e-b50b-4830-b2e7-d7ec43b1b1bc 1 -328 56 78 20 -289 66 Formatted text 12a00da0-f03d-412c-99e3-24174bf36562 Text Text false 0 -226 16 24 60 -214 46 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 23d9f3a2-1454-4364-a19c-8801a4aa8e4a Relay false 7fbc35ee-c93d-4288-b414-b6d63a02edf6 1 57 55 40 16 77 63 290f418a-65ee-406a-a9d0-35699815b512 Scale NU Scale an object with non-uniform factors. true 8d1f6b3d-13f3-465f-b3c7-56564b00752c Scale NU Scale NU 153 -193 226 121 315 -132 Base geometry f948e3b2-cfd7-4eef-86a5-50f9dad72123 Geometry Geometry true c88c0b93-14b6-40b3-a27f-00ff79f7b13c 1 155 -191 148 20 237 -181 Base plane 432aecca-5eaa-44b6-b0f2-18b882cfca7b Plane Plane false 0 155 -171 148 37 237 -152.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Scaling factor in {x} direction 5f5ed2c5-b1d2-4d06-b26c-f3b52b48dfce 1/X Scale X Scale X false c48f2a86-4388-4b9b-a155-5f9d30e70ed5 1 155 -134 148 20 237 -124 1 1 {0} 1 Scaling factor in {y} direction 511a0238-63d0-430f-a55c-66dc2b094d0c 1/X Scale Y Scale Y false c2694786-f0d6-43b4-a7b8-e3a0d5b6af9f 1 155 -114 148 20 237 -104 1 1 {0} 1 Scaling factor in {z} direction d91b01d3-f368-46c1-aeaf-e0c7339bfdc7 Scale Z Scale Z false 0 155 -94 148 20 237 -84 1 1 {0} 1 Scaled geometry 7f737f09-6227-4105-9ed2-0609a54e83ce Geometry Geometry false 0 327 -191 50 58 352 -161.75 Transformation data 67e926b8-0b7a-485b-9f8b-0577bd48e6c3 Transform Transform false 0 327 -133 50 59 352 -103.25 fb6aba99-fead-4e42-b5d8-c6de5ff90ea6 DotNET VB Script (LEGACY) A VB.NET scriptable component true 193810d5-127a-4ef2-93a2-2df5119cf6ec DotNET VB Script (LEGACY) Turtle 0 Dim i As Integer Dim dir As New On3dVector(1, 0, 0) Dim pos As New On3dVector(0, 0, 0) Dim axis As New On3dVector(0, 0, 1) Dim pnts As New List(Of On3dVector) pnts.Add(pos) For i = 0 To Forward.Count() - 1 Dim P As New On3dVector dir.Rotate(Left(i), axis) P = dir * Forward(i) + pnts(i) pnts.Add(P) Next Points = pnts 960 1569 104 44 1015 1591 1 1 2 Script Variable Forward Script Variable Left 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 true true Forward Left true true 2 Print, Reflect and Error streams Output parameter Points 3ede854e-c753-40eb-84cb-b48008f14fd4 8ec86459-bf01-4409-baee-174d0d2b13d0 true true Output Points false false 1 false Script Variable Forward 23d5f74b-2615-4df2-98d7-e702968086f3 Forward Forward true 1 true 147ceb0a-e550-4da4-96ca-8ca546338041 1 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 962 1571 41 20 982.5 1581 1 false Script Variable Left cd494ec9-299f-4eff-af9f-62e91ff30a17 Left Left true 1 true 3e0631e2-acee-4952-b380-ca85b2802769 1 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 962 1591 41 20 982.5 1601 Print, Reflect and Error streams f1122156-86f9-4e0a-96ef-9a9fde4cd825 Output Output false 0 1027 1571 35 20 1044.5 1581 Output parameter Points 35165a66-0f4a-41c4-96bb-4865345e7d7e Points Points false 0 1027 1591 35 20 1044.5 1601 e64c5fb1-845c-4ab1-8911-5f338516ba67 Series Create a series of numbers. true 3ccd8fbe-c80d-419d-bf32-d57c2bb4d8e6 Series Series 409 1732 89 64 453 1764 First number in the series 977bf3e7-0d24-45a9-a6b8-e3d9f6e04438 Start Start false 073ee4e1-f1c0-4fe9-b5fa-b550be09f47e 1 411 1734 30 20 426 1744 1 1 {0} 0 Step size for each successive number 254feffa-5877-4f43-9c51-74b6cb770fe8 Step Step false 073ee4e1-f1c0-4fe9-b5fa-b550be09f47e 1 411 1754 30 20 426 1764 1 1 {0} 1 Number of values in the series 16a91bf3-6653-476a-a5ad-6b5eea6b39c7 Count Count false b62d6a8f-bc00-44f0-b8d4-dcc23bcad9a7 1 411 1774 30 20 426 1784 1 1 {0} 500 1 Series of numbers 13c1bcbb-6f8e-4b2c-aa4f-73a4dccf97a7 Series Series false 0 465 1734 31 60 480.5 1764 dd8134c0-109b-4012-92be-51d843edfff7 Duplicate Data Duplicate data a predefined number of times. true 6c965c03-c748-47af-9b8c-55ba80a7c206 Duplicate Data Duplicate Data 384 1573 102 64 447 1605 1 Data to duplicate 371f3cbb-f7cb-4b93-85fa-2553b97d0873 Data Data false ff15de5e-5cfc-4151-a598-a645878d2f45 1 386 1575 49 20 410.5 1585 Number of duplicates c21c1053-7352-4746-afd1-3a086e340bbc Number Number false b62d6a8f-bc00-44f0-b8d4-dcc23bcad9a7 1 386 1595 49 20 410.5 1605 1 1 {0} 500 Retain list order d4b874be-26df-49b4-b504-a68703706422 Order Order false 0 386 1615 49 20 410.5 1625 1 1 {0} true 1 Duplicated data a8d4b2ce-0382-4b07-ad56-e45e8d6691c4 Data Data false 0 459 1575 25 60 471.5 1605 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers ce7a6538-1307-4799-aa09-c6d0b388aa6b Digit Scroller . false 0 12 . 11 1024.0 -143 1722 250 20 -142.1696 1722.402 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers db90c791-fd03-47f7-9d9f-fce64245413a Digit Scroller ЯR false 0 12 ЯR 1 0.12177142743 -138 1624 250 20 -137.4702 1624.085 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 80528f19-96fa-43a4-9544-823f9ed395d3 Digit Scroller ° false 0 12 ° 2 0.0003959052 -140 1667 250 20 -139.5521 1667.344 a4cd2751-414d-42ec-8916-476ebf62d7fe Radians Convert an angle specified in degrees to radians true 9393d860-fd26-4ce8-8516-240665f8d209 Radians Radians 238 1631 108 28 293 1645 Angle in degrees 23aa7fad-d7c7-468b-8fe7-cb92d958d0af Degrees Degrees false 256fa74d-8451-4366-b97f-fb31ceb7790f 1 240 1633 41 24 260.5 1645 Angle in radians 073ee4e1-f1c0-4fe9-b5fa-b550be09f47e Radians Radians false 0 305 1633 39 24 324.5 1645 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true 4be4d01e-f1cd-4466-afb7-4c701c8415b6 Point Point false 35165a66-0f4a-41c4-96bb-4865345e7d7e 1 888 1718 50 24 913.2098 1730.519 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object b62d6a8f-bc00-44f0-b8d4-dcc23bcad9a7 Relay false 5078d0e9-110e-4e9f-a4a7-8a5d53101b3e 1 249 1693 40 16 269 1701 be52336f-a2e1-43b1-b5f5-178ba489508a Circle Fit Fit a circle to a collection of points. true 1e1c32a1-ce8d-4957-8d6b-20e1e7f00d58 Circle Fit Circle Fit 366 1991 104 64 411 2023 1 Points to fit f1050762-10a2-43ca-8bff-809dcce2a36f Points Points false 4be4d01e-f1cd-4466-afb7-4c701c8415b6 1 368 1993 31 60 383.5 2023 Resulting circle 0e3da8fe-67d3-42b3-ba8d-a7dfea586d42 Circle Circle false 0 423 1993 45 20 445.5 2003 Circle radius 1bfdc1a4-f5f2-4440-8ac4-89a785d20c79 Radius Radius false 0 423 2013 45 20 445.5 2023 Maximum distance between circle and points 27b55d9b-ea60-4f36-964a-16c736644482 Deviation Deviation false 0 423 2033 45 20 445.5 2043 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression cos((4*atan(1))/N) true 74efbc8f-3410-4e24-aada-2bcab8a679bf Expression Expression 517 1953 215 28 615 1967 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 4f02194f-7531-4362-9ec9-d41464997f0f Variable N N true b62d6a8f-bc00-44f0-b8d4-dcc23bcad9a7 1 519 1955 11 24 524.5 1967 Result of expression e71a1b21-deda-4ee0-8783-f40fbe34bf91 Result Result false 0 699 1955 31 24 714.5 1967 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true 0868edf0-bef8-44ba-bfff-f419e7d67d07 Scale Scale 540 2098 126 64 602 2130 Base geometry 2eb8844c-6be8-465d-9f45-fe8cda686713 Geometry Geometry true 0e3da8fe-67d3-42b3-ba8d-a7dfea586d42 1 542 2100 48 20 566 2110 Center of scaling 460a9868-24fc-4fc4-b670-679bab81e8e1 Center Center false e7ec9ac1-1a14-4f10-af2d-92b279404e69 1 542 2120 48 20 566 2130 1 1 {0} 0 0 0 Scaling factor 875d2dba-b4e5-42c5-b511-4c5d1b9a78c8 Factor Factor false e71a1b21-deda-4ee0-8783-f40fbe34bf91 1 542 2140 48 20 566 2150 1 1 {0} 0.5 Scaled geometry ab3f2f73-b91a-4c6d-8374-0389102171db Geometry Geometry false 0 614 2100 50 30 639 2115 Transformation data b2e95054-06fc-4de7-a108-3a97edfda004 Transform Transform false 0 614 2130 50 30 639 2145 2e205f24-9279-47b2-b414-d06dcd0b21a7 Area Solve area properties for breps, meshes and planar closed curves. true e0c086dd-125a-4893-b52d-269284ba8332 Area Area 354 2108 118 44 416 2130 Brep, mesh or planar closed curve for area computation f782124a-d5de-4023-a7a5-af4b9cf9feb9 Geometry Geometry false 0e3da8fe-67d3-42b3-ba8d-a7dfea586d42 1 356 2110 48 40 380 2130 Area of geometry 0c7ff78f-224e-4115-9e24-ae9d1967091c Area Area false 0 428 2110 42 20 449 2120 Area centroid of geometry e7ec9ac1-1a14-4f10-af2d-92b279404e69 Centroid Centroid false 0 428 2130 42 20 449 2140 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 461fc3ce-2791-4cc9-8c3e-25389656f03d Multiplication Multiplication 665 2010 70 44 690 2032 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication a247e566-2790-42d7-8a97-f5d9300932cc A A true e71a1b21-deda-4ee0-8783-f40fbe34bf91 1 667 2012 11 20 672.5 2022 Second item for multiplication 8c992c09-9162-4193-ada2-ca180f2bff01 B B true 1bfdc1a4-f5f2-4440-8ac4-89a785d20c79 1 667 2032 11 20 672.5 2042 Result of multiplication 5e47cae8-ad95-4b4c-a1af-feec999bc560 Result Result false 0 702 2012 31 40 717.5 2032 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression .5*L*(1/SIN(π/N)) true eea9f1d0-8fd2-4314-9989-8302e677101f Expression Expression 605 1852 207 44 699 1874 2 ba80fd98-91a1-4958-b6a7-a94e40e52bdb ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 37cc8cad-4cf7-4da7-ae8b-baaa7447ca62 Variable L L true db90c791-fd03-47f7-9d9f-fce64245413a 1 607 1854 11 20 612.5 1864 Expression variable 1bea666f-7b30-4858-b2fb-d70e9f75df7a Variable N N true b62d6a8f-bc00-44f0-b8d4-dcc23bcad9a7 1 607 1874 11 20 612.5 1884 Result of expression 3c9661e6-e5b9-4a08-afce-8c2037330161 Result Result false 0 779 1854 31 40 794.5 1874 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 646f35d6-4eb6-4dd5-8cac-4f8f0c9b5977 Panel false 0 3c9661e6-e5b9-4a08-afce-8c2037330161 1 Double click to edit panel content… 891 1854 160 100 0 0 0 891.1822 1854.321 255;255;255;255 true true true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression R/(.5*(1/SIN(π/N))) true 215d4120-1cff-48de-94bd-f7b73ce01e75 Expression Expression 284 1493 224 44 386 1515 2 ba80fd98-91a1-4958-b6a7-a94e40e52bdb ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 8039b10c-7cc8-4915-bdb9-ff99c2f805d2 Variable R R true 375085a7-85bd-47e7-800b-36aa5972104d 1 286 1495 11 20 291.5 1505 Expression variable fb427817-9f0f-447d-860a-e480261c5a5f Variable N N true b62d6a8f-bc00-44f0-b8d4-dcc23bcad9a7 1 286 1515 11 20 291.5 1525 Result of expression ff15de5e-5cfc-4151-a598-a645878d2f45 Result Result false 0 475 1495 31 40 490.5 1515 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 7de561f6-268d-461f-a4c8-eda519d78324 Division Division 55 1790 90 44 100 1812 Item to divide (dividend) 4b3622ac-b6f6-4c84-aaa1-2e40b4eb5e9a A A false 0 57 1792 31 20 72.5 1802 1 1 {0} Grasshopper.Kernel.Types.GH_String false 360 Item to divide with (divisor) 164f2f15-bca1-48ba-aacd-831d6c5118cf B B false ce7a6538-1307-4799-aa09-c6d0b388aa6b 1 57 1812 31 20 72.5 1822 The result of the Division b62c1df8-8506-432d-a6e8-a67f16f863f9 Result Result false 0 112 1792 31 40 127.5 1812 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 755afd66-a8b6-4eda-b11d-813843840b3a Panel false 0 1bfdc1a4-f5f2-4440-8ac4-89a785d20c79 1 Double click to edit panel content… 556 1393 160 20 0 0 0 556.2406 1393.461 255;255;255;255 false false true false false true 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4 Reverse List Reverse the order of a list. true b2fe30d5-a712-4905-b391-821ae44f7d1f Reverse List Reverse List 505 1635 66 28 538 1649 1 Base list fb6b39e9-a6af-4a51-9455-a92fd1fa3dfd List List false 13c1bcbb-6f8e-4b2c-aa4f-73a4dccf97a7 1 507 1637 19 24 516.5 1649 1 Reversed list 8646f974-91ff-408b-aa4d-7fb4f8df1cf2 List List false 0 550 1637 19 24 559.5 1649 a3371040-e552-4bc8-b0ff-10a840258e88 Negative Compute the negative of a value. true 85d22e58-6d1c-4fc5-a0e6-db45a35dbf06 Negative Negative 589 1695 88 28 632 1709 Input value b9f327a5-f681-4bab-906c-b34f3e2c24e1 Value Value false f90883e5-3fb0-4e4e-927c-2fdab122cf8c 1 591 1697 29 24 605.5 1709 Output value 3ebf92f1-2275-4471-867c-81168d14be25 Result Result false 0 644 1697 31 24 659.5 1709 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true 0e44c07d-1872-4e2f-ab76-00ed6aed824c Merge Merge 707 1639 122 84 768 1681 4 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 8054d771-018f-4a32-b4e5-5bd79d5d438e 1 false Data 1 D1 true 2e337179-3366-41e1-91ce-b34ea88fe906 1 709 1641 47 20 740.5 1651 2 Data stream 2 05fec144-1dbd-44c0-997c-ab726c498b6d 1 false Data 2 D2 true 0 709 1661 47 20 740.5 1671 1 1 {0} Grasshopper.Kernel.Types.GH_String false 0 2 Data stream 3 38e4e3db-338c-43c8-9e0d-578f9c881434 1 false Data 3 D3 true 3ebf92f1-2275-4471-867c-81168d14be25 1 709 1681 47 20 740.5 1691 2 Data stream 4 b01c5f53-5323-449b-9e7d-3debe1530274 false Data 4 D4 true 0 709 1701 47 20 740.5 1711 2 Result of merge e6883f83-7321-4869-ba03-b28db7c15488 1 Result Result false 0 780 1641 47 80 795.5 1681 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4 Reverse List Reverse the order of a list. true 927c4f5f-09d0-4e2a-86de-669a0fb6834f Reverse List Reverse List 550 1447 66 28 583 1461 1 Base list 2b065ff5-2682-48cb-9eed-eb80e4d5eea3 List List false a8d4b2ce-0382-4b07-ad56-e45e8d6691c4 1 552 1449 19 24 561.5 1461 1 Reversed list 80f75b67-ab0d-49db-88ed-3c55aff68d37 List List false 0 595 1449 19 24 604.5 1461 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true b2031a4b-8015-4f12-8f56-d042d761e9b2 Merge Merge 699 1449 122 84 760 1491 4 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 f150b0c2-a9d8-48af-85e6-4a08fc493011 1 false Data 1 D1 true 80f75b67-ab0d-49db-88ed-3c55aff68d37 1 701 1451 47 20 732.5 1461 2 Data stream 2 311df633-43a1-4c6d-9575-509e524f8766 1 false Data 2 D2 true 0 701 1471 47 20 732.5 1481 2 Data stream 3 e88f8a6d-a05a-49e3-a7f7-a253f1d7e828 1 false Data 3 D3 true a8d4b2ce-0382-4b07-ad56-e45e8d6691c4 1 701 1491 47 20 732.5 1501 2 Data stream 4 3dcf6632-4c2c-4051-a3e9-ff6ef825e6a7 false Data 4 D4 true 0 701 1511 47 20 732.5 1521 2 Result of merge 147ceb0a-e550-4da4-96ca-8ca546338041 1 Result Result false 0 772 1451 47 80 787.5 1491 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values e7210d73-6cfe-4de7-8448-9777503ce93c Panel false 0 e6883f83-7321-4869-ba03-b28db7c15488 1 Double click to edit panel content… 1159 1460 160 479 0 0 0 1159.163 1460.554 255;255;255;255 true true true false false true 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true 30cfd029-92c7-4238-a408-6929948027aa List Item List Item 786 2009 77 64 843 2041 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list b6d36df5-0130-4255-b205-5c8692927ee7 List List false 4be4d01e-f1cd-4466-afb7-4c701c8415b6 1 788 2011 43 20 809.5 2021 Item index a40829e0-25d6-4fd6-b645-d96b8a696078 Index Index false 0 788 2031 43 20 809.5 2041 1 1 {0} -1 Wrap index to list bounds a032919e-88c9-48f0-b24a-51aa539e52cc Wrap Wrap false 0 788 2051 43 20 809.5 2061 1 1 {0} true Item at {i'} 231ec3f5-b0c1-43a7-a9fc-ec5669fc1001 false Item i false 0 855 2011 6 60 858 2041 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true b9c21b7f-29c8-4753-b2b5-0e8b3c9b4034 Deconstruct Deconstruct 899 2015 120 64 940 2047 Input point 4a29e212-b848-4130-bf63-69e5f1c898ca Point Point false 231ec3f5-b0c1-43a7-a9fc-ec5669fc1001 1 901 2017 27 60 914.5 2047 Point {x} component 9f667c48-eb1e-47a4-8db2-61666d1ea383 X component X component false 0 952 2017 65 20 984.5 2027 Point {y} component 79b1faa2-503e-498d-9a62-75f1113025b9 Y component Y component false 0 952 2037 65 20 984.5 2047 Point {z} component af4c6c2a-e29e-4d24-8c7f-4df53b899191 Z component Z component false 0 952 2057 65 20 984.5 2067 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values fe052eae-c14b-40dd-a64e-a9605baa3660 Panel false 0 b0ca4533-8708-49c9-abb0-994600403593 1 Double click to edit panel content… -75 1436 116 20 0 0 0 -74.75103 1436.004 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 15a9d74b-afeb-4d95-a1bb-fa7477735b92 Panel false 0 a6d6d315-6584-4d1c-9c7a-258d37fd4a9a 1 Double click to edit panel content… -74 1517 118 20 0 0 0 -73.92162 1517.638 255;255;255;255 false false true false false true 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 5cc4f794-4ed4-4a4c-8c41-7786c46d0031 Division Division 1151 2015 70 44 1176 2037 Item to divide (dividend) 5a96fddc-d35b-496a-8a2b-dc4281e0294f A A false 9f667c48-eb1e-47a4-8db2-61666d1ea383 1 1153 2017 11 20 1158.5 2027 Item to divide with (divisor) 81aba054-a3f4-41cb-bf02-15a2fcc92ee7 B B false 79b1faa2-503e-498d-9a62-75f1113025b9 1 1153 2037 11 20 1158.5 2047 The result of the Division 3e1b6d63-9b79-46a8-8d27-80596e7d8b16 Result Result false 0 1188 2017 31 40 1203.5 2037 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 9a773977-be13-458b-81ce-8e026fc440d3 Panel false 0 413475f9-4f88-4628-8645-62eae4dd9722 1 Double click to edit panel content… -75 1477 116 20 0 0 0 -74.95802 1477.779 255;255;255;255 false false true false false true c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects fe052eae-c14b-40dd-a64e-a9605baa3660 15a9d74b-afeb-4d95-a1bb-fa7477735b92 9a773977-be13-458b-81ce-8e026fc440d3 3 084c7217-4011-493b-8830-63953c7ba928 Group 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 3c066c4e-f82e-4ce0-8965-2fc103a164f1 Division Division 168 1736 49 44 197 1758 Item to divide (dividend) 48454173-6e78-4a1a-90f9-71b265a676a7 A false ce7a6538-1307-4799-aa09-c6d0b388aa6b 1 170 1738 15 20 177.5 1748 Item to divide with (divisor) bd85d2d7-9186-4c60-8c8e-c3db7225fed6 B false 0 170 1758 15 20 177.5 1768 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 2 The result of the Division 5078d0e9-110e-4e9f-a4a7-8a5d53101b3e Result false 0 209 1738 6 40 212 1758 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 5bd76574-5d5a-44cd-ba49-5798321dd60e Interpolate Interpolate 783 1332 225 84 956 1374 1 Interpolation points 1309ce84-0810-4236-b802-033306a3ffa7 Vertices Vertices false a35486f2-4dac-4ca8-ba16-9b13976474ec 1 785 1334 159 20 864.5 1344 Curve degree ff1b1037-4bac-4f05-b1d6-ed7e744d8455 Degree Degree false 0 785 1354 159 20 864.5 1364 1 1 {0} 3 Periodic curve c55a5646-4ba9-4464-af9b-8c798d388029 Periodic Periodic false 0 785 1374 159 20 864.5 1384 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 33a680a9-7b32-4f98-99cc-5298b63afb44 KnotStyle KnotStyle false 0 785 1394 159 20 864.5 1404 1 1 {0} 2 Resulting nurbs curve ffc7114c-425e-4e46-9780-4f5439b2a045 Curve Curve false 0 968 1334 38 26 987 1347.333 Curve length 2b05c6b7-328d-44fa-bf99-ff7ef38fd7f7 Length Length false 0 968 1360 38 27 987 1374 Curve domain f5a94324-cae2-422a-9504-bc1edac874d6 Domain Domain false 0 968 1387 38 27 987 1400.667 f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a DIFERENCE CURWATURE SHAPED GRAPH 7H0HXBNZ13dQpEpRUVAUgwVRuh2VlRaKhKKgYieQANGQxCQo2BYVe0NFRWzYsYIde8O2lsXe67qKbcVeVuW7dzITMhXyECDP9z7uTxfmZCZ3/ufcU+499xwjf0lccpJArCgFf/RYLFYd8NdcKkpOEIqHjRLI5EKJGJIiwGVIhn8M4Uew+4IEPL5ABj9SByWbYKRgf3jZGFzqH3j/WeSQVeHT7irCt8iS1xhGyASjhILRkG4C6AaRieApfAv0cqhAnhiVKhVAcm30i81QWphElsQTQUorcHX16tWl2F2RApEgTiHgYzShUFhq5S+IF4qFCvAWETKJVCBTCAVy7LHwr74/T4F8jxH4ZdfjpJnzp901MvUXyONkQqkCfXk4RJZ+GC9JgP32pnZ0UKCr65M9S1+unAH+fbIkD/z7eMmOx0t2Iz8gv+5eD/+dPxf5N+Px/EWqTxZlhcGfF6bDJyyGtzxZvk718+PMhY8zF6k+9njJJtXTlB9TPuTlkl3w+tKJuK/G7kWHhFI34Ye3oux7Z2YjH57N9HP2ZtUD0X/RK4x3IT+jb4R8o9oANqnGho4TG3bZZxCq8h3RL0XeHUUVeQKKD3YvGUklwijayi/CGIHyBX0ajn0ovAhnXV0Dg6KN+wAJg1NBjk0T+McMu+onSVZOoNrYFADCNhwIIyo/tdDLBlE8WYIA+aQdnGpfS0sH1QOSNVAiScJm0KSmMT3r9APijPsqY3iF9DXGfeKkXF6qJFmh/lmTQJkkWUr6cN3AIB+uMFbGk6FTQA+dWXVwH4VXDJWfS0XGjN5u6SOXC5JiRakBySKR+lTwiUiOjxfI4oXyRGd2P6XG8Org6g7/c2b7JYsUyTKBl1iQrJDxRM7siORYkTAuRJAaJRkhEHuJwdMssEf3K9M38MmG6FMMfJIViRIZdtksVBiXyBOI2BGyVImsVjAf0zKri1c0HebRj5tnME/4q9hkDG7GmpQN05Dme+qVKYvwWMg+FUz9AAdNlddwYMHrBsrrEKNaKH76gX3LdJ/Huj6nBuVtCshdZ3H+xIRPi3GjqoPwythPIlbwhGKlHnVEn2LgK5GhqhVjjIGfRCRJlmEaDv6fSlfZ+bAT4HPZknh2oIwnlydKpED3sSXKt6oV7I9ID/i7sM/LcQM+JoTNdHvl+v1F8mJA0kNJpTF3rj+83yoks/eOYVkX/jABpFooSTb2l3Oxu6l/3h95r23zQxoCUm2U9MS+G++Y6yzuljVbPN4ILBwBSR8l7TjjM+q7rU3Q0WeP5nW1tH8ASHVQ0ofrTwrWNCjm5jx7PiQ9essLQDJASasOdbC6/rNu4GG9WgUT7LK+A5IhSpLmcVdusejGSWs01ye49YTRgGSEkiZ9PsQyP6Ifnn+oq97lfYHrAMkYJU0/earv0b/MuFvTn8zv+uKrEyCZoCTxXpeXp19s52x+tCXG03H/N0AyRUm1D464Xsfzl3fOmwWPdroNuA5IdVHSzAmtf7y5ERuwyCzizccI24GAZIaSUj41sneSZoWsnTDLcNnXGf0ByRwl/XjSqtvFN5167fOMdBm5OuYjIFmgpJ8HfFYMXLTWP9u49PLa2+lGgGSJkpo3X3F+TsfHQfNXni3cGfh9ISDVQ0lLQ15xj23pyl2w16npyoG9nQGpPkp6s7Zu0/wHluE7Y3rz79u2KASkBijJ3vi4k3vIO5+CqB/H5tdp1BWQrFBSk8HSFfW7vA1epL/fdKR58BJAaoiSHrz8uHFOeqOg7cdHPLXcumwTIDVCScVtOKf/zejpd3CZj1vc+M+PAckaJf0+J8vo7NufAdOdr+b9sX5iIiDZoKT4hpHf9KaOC5imt08mtg+ZDkiNUVJ4VsGklNphPmuGJdR/ZZT+LyA1QUlnkjt0fD8hLfTQg/W3rxulTgQkW5R0qfPC0QtOFPXKr7/xIPv0xHaA1BQlZU25tu/7iiSfbe/szfnibChRzbDpUCicWt86i5PxntP+BNfrFSDZoaQeV5pfW7jyqM/6cVsnJY0YuxmQmmPv9SB3wMYpncInxj+/x2JlxgISGyWtFCZl7l7ryllfJ/vWoV/99hoF+w/DaRB7qJmDxXIFTxwnCEwWqpTZZNmfdW4frRV0dG/onEfHePoUasMoTBg3Qv0yy8RHoZAJY5MVSg2Pqm5MRelpTUX9Vo0qqkNUwZIfwTf9cnu+6OKz74pCTUVJdzfLMzBM4uTddO40Y9LLwWoqakvepe2T3jwM2RlrGfPGrKelmoqa2Dfs09kNKQGbJDOCpvumnlBTUU9f71/1LjDYd4ZT23msIPZTNRW1K+/4r6A9A7hz7GaVnF9yzEJNRfWNanrGrn+pz9KTHXOMo35+VFNRUT0aJ01t9Sp8Vpjex8lmId/VVNT4QIVk+HqPwIO1rqY/rHv0g5qKWuYUZhfw79CwHfJlyza2m7hDTUV9z0rx3xzMCtzZaJbX88l936upqIXTOR2LbMcGrOm2lvOscFdLNRVV8nu9en9ODQ1aFtR8d5RL289qKsoktPPnyytaBOX1utVzaKtrF9VUVFHE+3yX56GcTS3X2Jl5yF3VVNRMp7WpthHcwIzUbNudV/ocUFNR+5YWGtoayrgb+t+wM7xeOEBNRbXdfefsu0+vQmavfucW2d86U01F1fLauWDM/gnhi79092o/vfSamoo68TrifROLdiFLnVesMNkYsE1NRX3K6xdgkucdsr+lW72EPj23qamou8PYwgPX+wQtt7/a58awg6vUVNTM4T5fZ19YFbwj9UODnKehKWoqivVXQpeIPSW+Ga3evR0yu8dNNRXFihzw/Ni1tb12Xm28v86sO/XVVFSfzl5ZDSKdfHYPntHLcd6bdDUVNa3xaNvsXRdCZo3lWRe+Hs5WU1H9kof5dShMDdll6JVv9VHWUk1FcS/ZnF5RUC9g5bHf4xvual+qpqI+eizkeL4rCdrll3Pg2pBWSWoqqs4/M5J9BswMmt7bZ9BFSZC3mora+iF8Q5evrfz3mOx4f3ziQpmaimr5+Y/X3vbHA5cbbGVPidZvAEj2KMmz3SGum1+XgB1ngjv7jNg5D5BaoKQRAR59DXat8p1oNmX2hPvnoAvQEht8VPrgLcv1A5bGft5gfXBMT0BqhZIO279dHDPNxmfqmcxbXtsPHwWk1igpzTFjc0u7+b4H2x6IWjLwsQ0gOaCkCdw9A88k5QbsS+qybG7/5taA1AYludxlL+V/9eLM6rLCult/OfwuR2yE/a+YLxvVtlf2RkuHF4U9ZwJSW5S0qF5pWGf+uNAVr1p8uCsP7Q1I7VDSWpf8hbdcZ3jPYUdNjSicdweQnFCS3VqvP84nJQbsXrv99gpWJz9AckZJm/R6tzrLjfSbeiV7mGEP03OA5IKSTi+wNPjt3cPQDetWPAq7ePgwILliU2/qmtN1zd722tDb1TK6VwtbQHJDSf827rRuaPto78Orv/zFPecsASR3lPTl69ONF5uWBE39TXw5o8WVsYDkgZL+cD7Z6HztuaFHZ3yyf2VUfxkgtUdJ66d0cV456LbvTjuF5R9216CB7YCSno3ZN+n+RXmvrVzr4LP8Mb6A1BElLe8mfdT5TmrAbpHRvnnPdroBUidMs11zaDH05ODAufV2ng/5vCAAkDqjJHmtZOuwZpa9Fuz4uGP4h309SEavC4vG6E3Z+Dzax+Fc0MQXZ2abWIw314LRgwaB0ugd2TD7t9yfeb32HOsRdfagvD7uuwzCkpNiBTK81TNEH0Vlz9zQT8rZPHacRCRSBn/QusWLJDyFUJzAlkqEYgVbjDxYTvn6RFNHNSTS+2PXw5HxKJdGkFDQIBLY4TgBC+XKxsdLG4+/3TVs/58TEkOdiqaYKsmk4I8Apyp29QUf5COX4ERnpbXjsCI6nGKxgnxZrGM+dSKEoyTIc6DKYVk6c8bObH/KPAJGWnKFQKzw5yl4zFGnga8MAJLIUmMY+UP6ETxFIvbqtce6j9cPVgiSWKyy1SkDJcLwM1jsymJleKPiUJtOHA4LNmwW/zzPneN8ape7rP4QHPbGfsmyUTwYyOIlAjoHBjQS0Z0ziidK5ikEbEWigB2HPQCKBA/5VcDmKcCPcqkgThgvFPDZUp4MfKdCIHM1CBLy+QKxCi9KaSF6PzQjJglMGamCrGY7cgCAgNXfAavTfAmsZjsD6m+nTJHRDxOKpclILGyIgkwFTT0/5PUVErYAxYjyBce9fdHudeaa4NmDTNv3XfNxIl4bIM8gvRx6ubzJQPQBKzkZvAFCUm90MpQQJ0NRWw4rrScOIb1yEGodgckCG2gRpbTwJUlA8MpFbUFKyzyvkB4h267fOGCd1UyGFwvVc8liUUYqD71f/eeLiutmB0yrnebao9+03VpAD0gQA3o5XqfqKtGTJCtQATNggK9hBKJrVdCBiTZWMZ4SLttBC+8t9ojw3mPxuEnA9QGReCFDnkMWMuVlEkxUOLAqjsMjZ1SKegAccog4RLtyWEU98TjolYODtWqqs0cB5SeRMSHBf2JkwPWbxV0d/FvXde+KXmmuT6oEEfeeTIgAucEhUqviiMQJZXEiRtk43/9madCG46GbeaJ/Cq2eeOsIIiVeTIhEeJ1CbR2MailtnevzWPsfsq8hmQOu3XLL3WyFe6+6/sJRQr6AjShSsrkzpAG2LXobZtvABAGKamQyT8QWCcQJikS2XJAAd4XkFTJuxPidfogk9HHUCsJaBFSQe3cA6xMqE5fhBKieGpk4C5WJ4yOjoXzJniuSp91+VjcofdqRzXODC3/proErAfhYQnxKfCjE7hFQ0dJulAaOzl+ur/RaoTeEyQUlREUp9WIcGivCVpg8u9htzLSNBIjg61BAhFwuDyJijKUFiIo8mSACIlTDDjG8iQ05osYpTGPScco6UioSKlRcgvpyhFA8giaC+aOD/sqxzYMPzvn+vNHImQPw7AqB95HZpbysbU0J+ZHRlYkfJV1qhB+GsRKJSMBTKUAWybXBFIuBT1ycQC5XfzylroEKD25oKUNMas6suMczyL35wGdNhzp/c/i9juBjS8ShIbMGu65t3kQ4o+pkMJUVM3JF1AnJ09EQlhZRPHECYCzq+iCSy68AUnuaCnJXhszymRx6c/qiA70e45AyQh9KxqqMUhVoIZqFFi2gWUhekIZotSyLOGB0IagwXMRggLDrij2VDJg6rSogQyY/LWRg8qNuUh0WjZu0auzi6/8Uj/DL3db256U/21+nMM94/8iYAd82tAtEQGgEMmGc0m+qmHdEtO6GoTypVChOwJCCr6NFZ+JJB/0GxvcPhs5dlTncMTyocyUtJYzo2MaAOTMplo4GZjtzOg00wphjQMecWMepLbP1j3jviW5ls/n87Ua417XwF8RJAG6y5DgF20cWR3Zj69CwqXsfAXgFwSjlqk0sTy5gS0U8scCZLePxhcmAe2I++JsgUsXjcD1HzObJ4iq2akPcYmIcN4lhxA9UNGoAtvAYByB+gcq9ZQH39pifRu5tU/DdbBBO+iljKOjmlg2M8r0f7E17aftuYMD+4e0zOOGF93DvXZvqXZGL5YkmMUSrpGiy4GIDBCoHOA1SIlA5bRGgNFqKsPVVyRAiKkrclLEnJVBr/9TLveueEnCgec+GbeTLmuH1KfK0CPg0sj5Vo2lbnx5zQnGJptKnUhcOi8XRcGmij3I+VQgT/z2HThyZdd9/ZuaN9hNGm37BOy/KJ5GdF/R6VWAR48+EBVFGyluUYPuoKxRH8BcqG55Y3haFhxIUo4LTDfQ/5vltf7tC8bLk8yO8wkceSVb4ystVAQnbjwmSNF9Mo2NRIUmjuy0Yn9qs26+A+X07zWItG7AEL/jhYP6EjwLeSTRZmdemwbWBnyQJwA8mHpx88OaUiilp4mY/3VDIc7CMVlFPBeiUjOEAunwA3SMidCzgx+QLNVLNpsHwU0onjvLllj2v9+vU9r7hm63PtL8ZySOsePaD95HlRnm5PG1M3IGupDaWwnUFiE2xD8UeU3Q7BBuNtHHdcORjDOi84o9oXHdgw/A93qPudLj6KJugagTyZBF5xQG7rvV55YwC8JUKgAIXBAB0XhnRzauRR4VOwrDNfvuOhIuePx30FvdGpr2TwbvAFBxpIrUzW8H4oZW/UA6sXCrc0RIooN5KdcECCejzJsBvoEScmD5DOz4S7DgiCXvjSIlMEa6en0QhscT0lwpKrOppBIbFtAGqbhRgWCM/+Jfg2g5vw0kaP+qUGZapHizmC1Kwx8H/o6w0pmPlq35hXH23b36L1l4IWB0ePBAHlT4XsI6sHPVpGGbvJxPA3UkeWwQ+zo4VKEYLBGK2YrQEjfYqpiqJGU7kIZHYhlzVwHPNiEc9V3eS5wpmgLtAI/VoCb+cDd5DplC+J+VbtW28/Iney9WcOYMnbflltssGL5ORyN3Ue0M4Ynn6krj5pAXvVQrBiqAywzlAXxYJNNqGNEfAEoCQhx6qp3t+67jb5anvpsv9eH3yPWfjN0k44F5qoNRI5cFEdIm1ABOQGgaYMvgamhWlUCmXSClRSkxKDepzf4/ftqPOtaaMnNayotNE+ybFBZWRfGBS2MQJJXVFoEH1kAmdHjq3jMf96WkdOGmDneHLlmPxi4lGCBiR/tyKR92+eF2EAgliynjwK58dm6o+YZ3ZCnRhD8biys0l1/EVUlbEnEvqcZOX9jBKBTHOAUrLaA3A+B5VuO0NOGC0ugqUVlSji9uieg7jTEkwHed20yQA79gheons2CkvV7OiOgYA+rr6FAyxKWYgG0QTuas12k6yQQDC5MKRL5Qp19faUgL1e6I1L5f7njNraVCD3W0jTPEqyx+7mayyykjlARZz9PAH24ODA9Kf5A4wL+myQQuARTMCBiSqRjaXlIvr8DMdWHR/SnoSN5wwZ5UygEF4qZzX1KnxV3hnjqUWcA4YBn2bbr/Hsn6wWCGQAWZwUqQy4KqqPauWSzTegecijyU78Oj18thKzPTVAlsLcpjYmphT03uGZUl0JT21bBSjD0x8/r5Vcdjs+1+7NF7cb3GNGUWWK6qP8qmW/fJdkemFGkVTFo1R7Ne81ojMHZa++1eL3nYfbxSEX9lVZQMqJa3iiRX79VS34vIG4wQy+AB2PE+Z2COSiBPYQoUcs4joF6F0OTuOJwZOPlueLJWKYLZhrAQQhViGVLIY3goNqhg5YCscAz6CXHRl+yVCvYosiA8KG1KWpgiXfRWSBLh0pYoewGdgBJEk4QsqGEAQDzswwkZeECd8oKIrCzBhbzNguL4fhYXOh2H3pqpIabQ99CE52c2CO+nFji2pB6+v0OImDXEyVVI1ZQCEYjbTLel5AyfZcjPJRDPlEbTAySM7Hq74IpihgIGPUkJmbhAxt/++3Zz5+gF/HJ05KaZy+rySigKicmwTEypAbnRIYWuS6NExOJ4dJUsWOCOzGM8toVxdLzi6u7qzJ7A9XN2p/SvDLYKcTcscgtO3HbZa7djxK375NEz1IPLyqRqtKljHZmRdUa5O5IPoaWRlmylTXYFJgFwrSyZn8J8W3J9YO8P2SK+tmZeO9OG9wm+dVm/KK9waQLRMEBVTWG6IltFoX8kBn/WhETDuntc6WbWx9Ft5y7jw1qoi/LK/IfpgEjQqQlWAgygbWnCAstFoo6mN0kqVWXBN0OGnLMms3ekANzf/xP3AtmlztZFYrgWE2IwIgTmN+m11WTR+G8ennVOp1zWf3Ad2m66sfNsBv9aHxBZSiQhYdLLPZkSDcydsPUMM82Cx+/mowVMkyiTJCYllK+WarLcSD4DSjpa8MqlGrKhfDByhnG1oWmwu0U0qAvhGbCW5SUaYeqzYxoFV2bDKyTSKeXe5cdTmlIC5+skng/fenIVfvekHi7uALySv3qgo5blQRMVYSRcKORmzjS5XOwvIrvc2jVyousrpyxckyATU/uXFHHMHo9ELObPOrMz8+9eHdnhnyR+5kewsode1PTvh+5dsZXr/nK017SypJFMDRwkOWSjhYylblIzYumCH6+FuBZy9w/9KOxDz4m+8rGIPIMuqilIVzIhgZAarZphBSodVZ0XtcljhGiKWKID54sXBE5aO7l4gZAWRRZIz28MrLlEi4zuz23vJR8oUyC/U3up0O5Pp41YO9J963uNxYkbpabxdg18QqUilyKVQI1UFs/K3MDErZosuzBz4KM0OZik3yiGzxMmyWDnDDMr4YpXe47eSXpOf2IpfTLa7U5lQubKhgzuqyG0AO4qI7DjmwenbeptmXiqqyRm8ra55nd2PDLsUOq/PuVBr9919ajbsBQAc24oCcIsCAKhaNPJEMVOGpDxRAjB6h2ly5zAHzvql9QZ8NX1YQjBlyI0Upkx5vSoAKN7CAMDmMVswR9OMReNo/mcnzukQ1MqJc2LNEK2eOCceZ9fGifN8mhPnA5s4c1Jf52E8MKfjgcY53UYMLNBqTjexRosWlwaJqlQLjHi0nYkR47ZjjLCgYwQ7oeXe6XNm+C48uZW79Nv+sfjX7SMQ8VKpGUEIK+g8gwY+7NFCmYAtg09CywpR4k7MAKIYCAl3PXa5mBPzyCqbMw8wPzbiFNyyBwygKLfA8h6BYW5Jh7lx5JJRG5KH++e9+Srowt6Ejx0t0Jg1FPwjE/JEFd+haFIW7YZLBeJALjsJfUbFQlpinSHGYZF3AAgf0GA5sGQ9ugNQRMqDAC5WxDpSaMvkijZTFr6Csx8uqfCF8fHJcgE7LpEnFgtElC9+26XTk5P3srwP5Q69NMYh4Bx+vclf+QTyehNG0LaRyweQPIKQpFF5nfkwL2Z9jXiddYBylahKin358qVUk6iZjWcMXOtKFvFk7ERhQqII/KVWC+eH/fxz+omJoRt//FxkO+3XSXwAF4k+hBzAqShVwR1vRu6UrNMB7pSWsko1Caabc5KEcrkQ+IJxODZhKoSSOZJ1W1fe2Lo6ZHfdia/s0p8dwjNH+USK/I0ySlUwJ2cdE3MidIE5kD+ahNddfJLgVyI8AcMBcbZMII5LVW4AebElUt5IuF/kgfxW9gnqGdU7+66smaMtd96M339Kd3RPxB/pj1J7PvlIP45aFcxjMTIvf21NR9tlm3qPcJt6+uVw0KuMg/JEoThVDFwnwD7ALrEEnmrzAD+JJKMRIvzVHZKSeCnKC9RLW6E3l998/sV3zjb7L0tlpQmENLNEqrQN9HJVcC5mLRPnLGucc/AmPkvDdZL6ZeskjIpwJZfTO8DewL9g9953V0euq4NXhLQ+UxlF2xxxd0V9COinniW5VW6IIkT91HosGj+1sf7YyBMHP4YfNcr726HzWGfcW5n7JcsVkiQ2WvUd76ZCTOlOA7XxEQFJl6OZB/AZyGZ2gkCSJFDIUtlS5QPlFsHiOFEyXxAs7iMQo6cH6J1XYiVMprGS+ECgm8Mq31KJTBEgFCkEqoLXFZ4NbTmsoo0A+yyqXPkMuFe2kXa3hjKGCsSwUUgweCrk0RvV+j3vzAuHwKl5oi31G3RYgBdL7KlksVRRqjnZBZ5IPgaR86bSIxFOHJZ0o0b5qA2j1FwY5OiZjK4ITDPP7K6PGr0L3r/ed0j7loTo5z+awgSsiDpCG6e3GbEq2lCtOhfrO2GIhlzwQ9DZuZ9zv9RIgHp82EVfd9/SOohtI1pVIywwwD4K/19X3e3B38HCKkzWp1NjOhpuEwv0Vlu47d6SKdwuaV7V4fbajU3kj2bVD1o6Z/XfJi8PL9WBcNuyJZPzIm2hAzFDfn5+NYTbxcs5R+/FNA9Y9PfjAoHC6aVOhNtF9kzccbfXAe5US7h948saS97TN36TjFat+H38/QidCLcz2IxrIc11gDmsmgy3i2c+t1jLfua34/vZl6OGt5+pU+F2RHPGcNuupoM2HQq3s4I9T99s0cl3R1+LcPdjQ0fUcLhtacdosZrVNOeqNNyefbH16043jP3Wvmtf18jCPF8nwm3Eh6ANt4EiRP3UBqz/D8JtYguJGg63c9oyhdvejtUTbg/gm7r1GOIVPLnZ3QGtG+/YpfVwW8vVRJGC2G2ZQshHjlUVbu8r8pwsuvw0cJOog4Tb7p+hWg+3iTpCC1gBOWLAKqfN/6lw24pOjelouE3sbFNt4XbiHqZw++yuqg63TaZvvJYxoL9fZvjCXy3G6a3WgXA7eg+T82K0RwdihgcPHlRDuN0+y3F9195twucltK99rtPrAzoRbhfsZuJO4m4d4E61hNs3s7i2O/JWBWe+upv6JMreVCfCbRtG5gBtUvPMYdVkuG0SvLPFtf4mPplpLR7k3/zVS6fC7ZRdTMxzrBnm6Wa4fbfrWstfBx38JrrP2dnKotmWGg63b+1k4tz0nTXNuSoNty2cWtp7tooOmTXz4PweqfJNOhFuIz4EbbgNFCHqpzZk/X8QbhN7L9ZwuB2zjynczt9bPeG2r5PfkuF9UnvNXRZz9ejDxm+0Hm4TU8G1EEJG7GMKIVn7qircfr7gfgOFIqrXrpvT/7XY+9t9rYfbRB2hBayAHDFgFbP3/1S43YhOjfn8GiV/rZgQvCuh+a8IWcwsQlyrarNEUVoUfg1dWcpm/jIeUGN9wEtI2ISnVPCINLErrAFXEjdCwFfdxDhSiggc/wENDkm4ewBBmuRLVWEGFq50I6krpgYC9soTU1C/l40IqaoKonGk9GqFwPnl1nj+yHyhX85Ax7BUVoeOjODoVA8iWJjREiJqRTU1z8IkHXeN1FizSF6SVAS9EICaXKhIxaKzQNpatQW/vf2ruFNd/4X1Zb8av8z8gxE9Q3/lYynWOFCCtv0TpMSnGxNEQOh0wGNEZFyDknDmkXE8EVI/n76McGurqfEtzs8L2dRrRlD/wtaWzIKNPJDCkUculyfYxN7SWhDsDFcmrpW46ALXhCyVVbBm0ViF5G+HOuzMiQpZ+jN68IzuK6fjHUZ/YYJQwY6Mk8HDchp0120ZlpyEnKeTo7cialAuRMrmM51vJHKKUSgIw6vQqS+6CWuEPQVexGy4AfIFqqNrsCKJAXCO44UpZV9RB3YtUBWFNkWELzle7SNoLXYMsnjsG1lKzlW052YrDuuYE5C5MX5kmRvYqxWn0wEnLJKxoWO2X5sLbp6TH3JzAla/U3g2xreqMOsjSOJJ2cqzovKK981to7wP5aqyjyCPLRaMhpcQIVAeGq6QtSO2emcYIYndeHJFcYXpC/MArpeozH4EjFLmalRYzhzhNgxRZHA41M0S98uSAgdeCNw04dHaGVknH2ixoj+x630lVV0MgCcHwlOXStWlAFUXMU8jG26mHA/TQXKTFp3EZwOlgTs/h9zl+7gZ4c84K+8nn3FGr5eHT8TBqy8tL1zkrhu1KqL3tyMNtIAPixEfID41YQqMkCo9o5RA9GAR/2hWac4siidLECiYmPZ5SO/t+/tYhezvzxkyd94HfDFNA+X9ZKah17XtVkGuxMxl4oqljnJFo2U5C0ThSQV8VPlSMiakd0mv85/ucDNFIX23t1uMP/1jEIrcT2YMel3bjLF0RdUJXI8jdY6OcOOwHOdpVpjDVoUBrIUaJxKWh8f38XqmYedOcef8/JTA6XblHT4C8FM+gBwBYISqQCR/LhMiXedidr0xi8au5y8I+Tioe7fgqR9/KoxO3sGXSUe/seJdeHqoirvjDTh7dKIwLpEtEMdJkqQ8uRx2CmGLwAyCfj5q/isW8LP+SugSsafEN6PVu7dDZve4STVeskwqr2tQ0p09By3pTmrT4w3r9cyubCW0pqirAY29ULlKCwv0KkdC+eKil3tN7PtGha9SjM4PbzfqMF746BwbFaGajT+sdm0JMXT3pehmw26HYKiRxuqBxQXKsi+4MsQiyWiBXNkjAO6Fw5/LfEr22DDqlt9Ee16jVWdgexMEMBsqwOBmBAAMncxN6CazzhTaIEqTlgpt/IcdfGgXgIEY5s5iKrSROAvD3FbnMSfWq9cS5mb631fsDQv0WfJ51e/Wo1P/qmzrbJg5vJIOc3eAuftKDPOmdJiH7Qu4dI5V6Jc2sHF34cte9fChfSjcb5SKhHFIlUmy8aJD2jYU+GDAJVCAO0XsJNxTKmSbpjUebZu960LIrLE868LXw9lMwyLvoOHpFVUbcD1pBYBzNuVOGUyvXH7KTFWVFfNWMRtugjSQw/ESfpMhcjmYj8nAAP7ZuXpHjf0P/GMdaubUoAij69HQTZWt10gyYqS8Tv9g5XiQ4cKPMAXLzQKEMqDnhcBNRlaI8Pyi5I+rYbpgwt5FAdkLGv7ddtQQfIN5PR/y7PAhzQ49wuxo9vb4vSUOC4KXj0gcsX3kpjWVLSMK2JkG2enuQxV9wH2GFafUQNIrByS7SNiqla8RSknLHMctePgifOOc1zPfHhXji1Pp+ZJR8i0XpT+cTzY6X3tu6NEZn+xfGdVfpgWUgFgzoJSx/BQqgypZYvItbJRJCtAZrQBARI1Yo20DYfdrRGJg20BSj6cgFwQpVJ82o9On2QWPBkx7+jX4QMGeAztGPOYSqoTzxAIRuWEgnRp19GFL4R1q6QlssUQhULacUAhS0JaM1G4u95LN6RUF9QJWHvs9vuGu9qUUQyFhy6JCFVmT7QO5CC+qF8onCKfPjkQHE5um3MnDkjZEX+fTrvAb9ZULZFFg+NjXtvaXJMeKBDByjBuBtIPgCxXou4NZB1cHnqRtIPBRtT5MXEx04LBKYgAfPf1YadP8TEJ5sgShmCuIxwmFqfJyH5jsqX7dWHk9SiJVv0pc6XXgJL2JOWWBgBghk0hhrWTlqAyxUSkzTOElbOPYFG7SBov5sKqyan4bw4twyULtEmK/ROh+tNJIwhRSIU/kBzuEqFhjEKkAQWKS6nf9/jKetExzKEXVjk5Udcbd+uixkOP5riRol1/OgWtDWiVpyd0iyr8WXNyiWCYXNyIWUw/NdR5zYs9ZLWFObDmtBcwzApkwtwzEMGfTYe6xrs+pQXmbAnLXWZw/MeETvl9SnUCZJFmKx7wuhrmvRL0Pqh7drKZwFnzYCfC50AwGynhyeaJECnQEyhB5rWB/DLB+ycP8OhSmhuwy9Mq3+ihrCUiYK0iUX0CqhZKIMwaQarOomwkDkj5KKu3e5u6769Y+W+o/n1rr6UUro2D/YTjOQI1KXbzoQ/iGLl9b+e8x2fH++MSFMgoIyaaEwGMWxmMlu+zp2KVDFtSz3SGum1+XgB1ngjv7jNg5T+sWlDR/CrvfG7KEt8E3XzriUd9//nSpGQta1JrDKpgOS5VWmQW905ozeef0/w4L2oJOVHVGm48I8OhrsGuV70SzKbMn3D/XUEvanCj/WtDm3jOZtDlrJqbNW+o85tyo9MFblusHLI39vMH64JieurswF5HChHnRaAzzVnSYf48ddKaDycbQ9Ydr/2Ql/lxIVVW94jsbdqECnhym4SHrzcqGWcBOom36KrZ3cdj+7eKYaTY+U89k3vLafvioJnXeK5q1DttC2wLkCqj2LkqcgGfSRLN2tKpmd0lKACjf7OTURZzo0XvDZ3b4O3BEHp/gDOtSZmEETJCGAJX4UKyzw5QOAJBmvS/Lre/fSa/xuzl+Uv+9n7wT86/Nqdn6/rDhIQKAEdVGA2wZDQBA51ZrurmlowuwaY4Zm1vazfc92PZA1JKBj22qYQEWSkzXbLoF2CIw4aYv/d8CLMqf7SNa5S4YNZGTO8j/4Mt9yX20sAC7qF5pWGf+uNAVr1p8uCsP7a2FpBzHbLqlxQJAvbW0qhdgZ9k+DPf8bSdny4ZJDZMGy220sABLzOTQAkpArBlQ6rq0ChdgiYvuNboAm+GMSgzlAux0FwQpVJ860OlTnfEPJ3D3DDyTlBuwL6nLsrn9m1tXxD+kCB6r3j2cvoPJPQzagUHeRuchH9H/ivmyUW17ZW+0dHhR2HOmdiBPTEoN6nN/j9+2o861poyc1lIba1oJjGtaCRjkjjoPOdFoaAdyoptXScil8DDAEjrIoRuXvwSDvC0d5A3j9+dlnzrHWb71yZjzTcfl4LOGOClSkYRP0eyyDg3CDugdWNyjTNmWJ/GQRH20/3sFM7kW9nk5bsDHhLCZbq9cv79IXkw5NHJCE0qo6NEs2OfiMNTOVO4Z3DxzP/wfxkMC5UAo3+0vqwDr8N2XA/ZOG/D5exfOMi3GQ1o+MAqT3YogQJTt52zgfvRhjRpXduojAKKB1MHgC2C6n0QuhHQ2GJ9QxAaSopITNk8GG9xLkoRxlCj+afCulsWakIDsGVNONeicgJcQY9X3kLv1lZG0furKEZEYBrgeHdKJ1orkztKYVFcwQ9EFnWj8MnYpEnkKdhJvhICdLEXWQWJ5sC4QbVu/3NrDWq/cIg9ZarkxYdasrZaEyjPoYykqz2AUrWfMuqDC7k/FvSxXRNhJOcQaAmeP9aDFjhgKiEBSgrXM+VBc+pw+IdnPZdF222fjdyv+o463WgDLnREsIOqo/WnHorE//ZrXGpG5w9J3/2rR2+7jjfC5/RYcuI0B84XpVuPoCnXt11PdilkiIJrgRwAGTA5FW9nzRBJxAoi95OjqjCu+1b2cHceDiaRsebIURByAQ7ESQAT3Kx+ZLIa3wj0XsapXvfKiK9svEXYCR/g7KGyIWpttYBkUkgR4WE09Q1UxWsJOgov4FbONpTF3rj+83yoks/eOYVkX/jBhhI18jJnwgYo6HLB6zDG0kBj5GDOwlSlHNbKV9cpsJTogypcd3p5jEXBjedA2ru3om9sL62nRWBI1UCWNJVJqDSIUTTUl4FKQzTGNjGULnDyi+30QMxQwugjYS/Hj84jxV0J3XA8/EN3DK6pmO4YCVM4eZUIFyI2OVh0q7/hSx+B4dpQMloaCsxjPLaFcXS8glaQmwApS1K2H+y2YPWZaQV/u/tyuP9Z+LrqKY5lJmOpBJLap06qCdY6MrLt1REfdGablpGYRSDdUYBKwOnnCeKjeGdbok89d9jBY+SF44j3x/thj0wkbY8jzyEpIeVnbTIElGxEtE0TFFJYbomU0OunkEAWNFUBklEBpFzUApnFp7SLXdn9wNmVOYGXOekWIINEHk8M0jFAV4CDKhhYcoGw0ak/cRmmlyiy4Juj0mrcr76RFUvCcWg9mp3SwXIQPUVTL/uQQpYxUFQg5MiIE5jTqtzmxaPy2c8t43J+e1oGTNtgZvmw59gjeG+UCH40d6c+t+MKBr+pgGMxvwDxhECHGg1+B35XKBtjKFMo2xkDZovIKfS/UdRtfIcdJNvaXc7G7qX/eH3mvbfNDGlKPm+xFYxRNwsDP6BExkqvkDT3nT5otKyADUMOAutrNzh6e3Rr4B21e+E9f3uGplwh1LuDdFHUukMvleUpE/aeF819sCJCUSgjZsHPQJ40Of9sgAGFy4cgXypQdmKmN7c3Ny5/ONpsYkNaAN7Cg5Mlu/LT0x24mT8syUnmAebh/bBf+97JeK5frbdP7dT5eC4ClfWICDEhUjThRSpsBP9OBRfeHfCacqcSLKcJLBq0qSz+gcIh9FzijobjRmMknTeojZ58BMzgpUplAVQYLcWp9fCMdo9tWzgEmsDYpf8bRlFO2AenmI5aZtFRM1AJrH31kYm3GR93xjzM0O0hel6umzymZaWVs6Nwm28F/UeNp2/u2OYRvaqHPpSqyqbyq9SOWrqhOyveBvCDGt67IFEMNozOLxjD6XrO+P6rLLu9tg4bazOp3GJ/oaQW3DhRw6RNWthbAWmsCDU5Pu/lJkgDkyg0M5DH8sscgwWHZoWk+EJIKWcQn9t14x1xncbes2eLxRmDhWP6ASeyg/JQGiwru5wHoxVQJSTFA+I/9UdnD1D5cNVDgcgNMzITehkTMdsQOAgP0EMOK/KTUaXK4Gi0ZLeBTG5FryTOsbrjzQvct6d5mf7ZHO7yOQWqqUBw1R6+Xp2MyA9q1C4n8LWjR83CP84M9O2hhZYINYdanyurJaovAXNkl4dZq7FetbsVJxHJBXDIiHjDLgXp1c/R9R9bPXk6+Kw9HBg9OW9IDh6Vp2XPJ4S+OqG2VwHZGYRtMBdstFwQ2VCW40KmE8+YtP3h0loROff82xPXq7xxi4SGpiBcnYIcli0QUuoDOYXbB7hPD+6DMCsWjeCIhXynko4Uw/xCEKbKKa4IdZ3xGfbe1CTr67NG8rpb2DxjGSVUgSY2sgZcsPUe3+ZYD0T1b2bnfCBo1pIyCAh77h0oSIkadWHPp5J9br/QKWDT7xLoBH58H491n5EFk91l5ubzpPOnzIZb5Ef3w/ENd9S7vC1ynBZchBiKXTuUywM14y3O07nMFkbNVISfDiRoULersutOPp6WyuAG7zhi2vdZz1nd82XNUQKi3dPBUbc9iiBaQJAa0pGer1cHCBmoUlSoVqOPQUu1cjWsIcGkFIlf4GblrYNAw6OQmCGSESnzwT2UVdyPEQELGgkeAoDpVyWpKLhMNU2UmSWVrMbmis6CEKs0MFrgBs0CjhTAbZTkU6CsgtgoTfT51gZDQEIerWzN6bU+euPpG/FdCRQXkrSg2JpDLVQEFIuK0UAARRw2VK0vX82+I2lI7+TfE3DUtpDylnGFKeep6BoPcTechn37yVN+jf5lxt6Y/md/1xVcn7UA+9odDmMe9caGH+usdithsXawFyG9dYYI86woGuTsd5BqfnLTAIK+Gk5PEaEzt5CTRPVM7Ofnh+pOCNQ2KuTnPng9Jj97yQu3k5KpDHayu/6wbeFivVsEEu6zvaicnpXnclVssunHSGs31CW49YTQg1WFRuyuAZICSiIICSIYoKauZ2P3B5MSgaTZbXfSeXntAOooJhZdS+sR7XV6efrGds/nRlhhPx/3ftHAU04OO/y1CCl3u7zAJ2KjPj73xwhLP/wbKxX4/kUQO3UVkA6fi9UpbBAjhAcxEeGJR+QAkpIRxpkYHgWofHHG9jucv75w3Cx7tdBtwvdwhksCh+pAGrUa6ngST7BbV2jXMOux6QqO1a1vlbhvSWUGCHGqWwKxA+rygdtP/PP1YKA7PX2pW17hJg98rs9dWtcvYRXB/9CRqdkkl9o7BBgInKP1wOqwaqlIi1LGirr7I72ZR0r5N8MIl/Yd6xte5p7tnqiBKQGYYUDp2XLMzVc4R2LxCJhuCGTblYKiH5Z7Rb5UkjTYqaczeH753WEb/+H5NrWtwPxcWtUKEiHJDDp64unVCMze2nWr3EEKkhActtAgsEE43UVewGR7d6F/5v8FrrBQ3L14JTtKBXUsI0vQTTCB1PaHZvm5rf6HyzVVLVWUio6z4SaugNp9k3/i+zDb0gMWihp7jF7fC7yJizyXvIqooVYFO8XEmdLKOY45RexaNYXzVL4yr7/bNb9HaCwGrw4MHkhfiyZaQrnWHPX4/V5XqNlqCrrJWzBDOnND6x5sbsQGLzCLefIywpRgS9d5ABWF7BBRT/ikA2wWqBShYcpF1qgq2aTcZiq40SZrjm7t5eavzD4ZPwi92IvuxNGYdRyx3m4qg4iqpxVmwxzEEK4JKxmDjgohTGtk6cwQsAZhp9FBl1w7ZsNuzb8DiBZ/qfYg6LsZrIg64lxooNVI1uwQQJhYjTPmFGh4gLncLjbjXXGNbaFDTIDICt9BIh92krgg0qB7qQKeHdL+VQMqnRvZO0qyQtRNmGS77OqN/lbcSkAKxOfaarpVAGlwpf6X1VgJvPz02bfHbJe+dX3PrW/jXa6rFVgI/D/isGLhorX+2cenltbfTjSq7uwVn1Wu6ouy5sFPXa223Emgm6cyW1eH1mtjgdt9usXe2arWVwI2WbT5zfTr6bG/WsXD/C9k9LeBjyYgPEB+dLFqv5VYCDi4zxpbO2uA/74Cevn2DKa1rtJUA5Ir0FRNX2DrFlZKjGFe030og6uDx+76Gj31mG3kKkro6Pq7RVgLerqg6oSycnwYL57+u4lYCnb38Tuf2nsiZt37qfPm2xoTDj9XeSgAicuwVEyJBrzC73pFFY9f/21oJ/HjSqtvFN5167fOMdBm5OuZjFbUScH/J1Erg2IvqbyVwYbD3ZUloP87BDps38Y+f+6LlVgJaNv5IKulLplYCAMMabiVAtOc13koAAYy2lQAADJ3Mnegms85sXBGlSUsVy4jbHFrYuSooZtq5SinGMO9Mh7mOVlVq3nzF+TkdHwfNX3m2cGfg94VMw9JSVaVHIMj++p6uqhLcowh6/7+qSih/ilILu945UBQ4xau9uYHI/bkWqirdWHZ27iP7VuHLf9S6lxdjUek1EzA7it/T1QuKBtSs91VdVWmhaPWVtRc3hG0ftdW1Xcd4fy1UVZrWqYg9ff8TvwWhNwRRPusru/sNUQpiROnruyqsqkTMeq/RqkrIgvd7uqpKji4IUqg+7fJfpk+XhrziHtvSlbtgr1PTlQN7O1eTPs15y6RPS/75nz5F+fO4tP3nP+/NDNi4xCNtx+MDm7SgT9+srds0/4Fl+M6Y3vz7ti0KtaApMt4yaQrvt1WtT/uNnBc8yjfZf2Ynu1prurmM1YI+JS4SaAElINYMKOX8U4X6lGhDa1yfIhJDq08BUqg+7UqnT3UmJiBOJ52s3wVDgqw3TCFB9BsMck86yDVOZjPHIK+GZDbiNolaMhtxbUUtmY0Y0KklsxEjDbVkNqLRVEtmI0qDWjIb0UMjZaxBrUgpYvbGx53cQ975FET9ODa/TqOuWshY66Y1JptWI5OJZdrUmEysUqPGZGKGmxqTiXv+JJ7o0/GkyWDpivpd3gYv0t9vOtI8eIkWeNKdjic61NChuA3n9L8ZPf0OLvNxixv/+THFULTcEmmNfdJU/p2ZPou8n6Z1XZ26veZaIkU8PlXFLZEOcR//dzR06EEnqjpjln+fk2V09u3PgOnOV/P+WD8xUUtLdUT510ZzgSeMpUyfYHbZS+cxj28Y+U1v6riAaXr7ZGL7kOm6uzxafJUJ89yrGOa/0WGusZk0Y1WfmXzw8uPGOemNgrYfH/HUcuuyTWpmkii/amaSOGPUzCSRsWq+UNoe54dnW57nbD695FJ31xZWar7Qrk2+M/PCHnC3J35pu2xDx1kk4wq1PqUghWcVTEqpHeazZlhC/VdG6f9qwbj2pOOkceSSURuSh/vnvfkq6MLe9B5f3g7d+AsF/8iAqqx4VcAm2JahmB0uFYgDuewk9BkV2xA8k9yh4/sJaaGHHqy/fd0odSLjsMhV9wgf0OTk9ne06l4RaWkGRGZpX0lbhExpEs2Uoo1Vn4QlBJJhmc5EnhgYOcoXlwuHRQ7swvedPdJ/aJKi1RP8hqC/8gnkDUGMoPUWFbB5OIQkjSpxIh/u+H2rkcSJOnEAWpXSKCkpKdWk2B8bzxhYXypZxJMh+4wi6L5Q8ibr5Pas0Su7hx7Navhvp/dbdhGKqKIPoSiiilGqgjvSb0zcYesCd4A2KtUku6g5J0koR8oWx+HYhKkQSubs7ivdVzJoVvjEk+7+tie3jMMzR/lEikXcMkpVMKfoKxNzgDapeeZA/qgzB7NMdMzp4pMEvxLhCRiOHNwqEMelKosuerElUt5IWKPRA/mt7BPUM+rd+XUDdqX88F3f5Z82j3Z1wtdBqBul9nzyOXYctSqY587IvEdfdKdQEL6Qpn45HPQq46A8UShOFQMnGLAPsEssEUPWgZ9EktEIEf7qDklJvBTlBUo+Chc179Z7/V9hs07eWyXpF1BEqIaWSJUWjV6uCs5lfGHinHeNcw7eBHdUNEqVqa9cjxaKE5gVoevduCPLha7B0xPHtnpxzukTXhHS+kxlFK0veLuiPgSMOM6S3Co3RBGifqo3i8ZPbaw/NvLEwY/hR43y/nboPJawU+enXMiJkAlGCQWj8W4qxJQus62ND6w6JFdbDEIKyCYIJEkChSyVLVU+UG4RrMzmChb3EYjR+IXeeb3UeeHoBSeKeuXX33iQfXpiO6axkncV8XTzfuAfqUSmCBCKFMovpnL3aWdDWw4r+gfAPotqtzEDuLS5/9JmvVFGw4EYNsjBSWSMFfLonTfXW7EvrWl4+vXLM39/OQN/7tgIeypZLFWU8uJkYnGzysbJALkgiJw3lR6JcOKwvv6rUaJ7wyg1F4YtGSWQyYQ0PSusTUOG1rW/yVlft87ZySe3N6j8FCZgRdQRWsAKyBEDVtH/VqvOxdYxDdGQC34IOjv3c+6XGglQjw+76OvuW1oHsW1Eq2qEBQbYR+H/66q7Pfg7VOG2D50a+18R/v+oCH/WlGv7vq9I8tn2zt6cL87+zgibNovw25QyFeG3+VUVRfgP+GUNn3T/RK8DtcPbrmI1e6rF0+Za1pFwwcSolKlmecGvainC36zezr0H7y7zmzzcesfM/UkhNV6EP/EXY2uCXzXtgarvONVMEf6JiT0brJ1TL2iL+wqfF722DtGZIvxnfzL2T/j5f6MIf51nkzedPWLlv7TkfNM/j7/pQdjprO4i/IiWoa2iDrRMtRXhnzr07I97TdMCt/ke8Fw+ZwY+G6FmivAjyoa+Q8GvaizCf/i6+4kjm0/75tZZHrrl0/XbOlDOAmlT8JOxTcFPLPz0ZdH4bRyfdk6lXtd8ch/Ybbqy8i2+FJ8pcohPKhEBi0722YxocO5UtkUiLLsfrYUBEJdJkhMSgQ8nFyBLNZrUclhYKJxa3zqLk/Ge0/4E1+sV7WjJVQ/UiBXN7YOd+/ROs1hPAHq5pLbLAN/prNOVPFhlVTYscBXFgvLVDdu12/h4QmTwInnw5PWn3Yor37uL4EIRFWMlXShY9tYRokfZxS4L1sXQO62JC4X2QOcLEmQCav/SbKrpwuzoj73SL92oa3rgWnPCCSnkRooTUsrrVVH29xaL6f3zWad1YLkOkUwNHCU4ZKGEL4xjqG0TNS7W1OXH3pCJNhMzH3f2rIOXVewBZFlVUaqCGdMZmRFTM8wguj8sTXYsXEPEEgUwX7w4uHbq6O4FQlYQWSQ5sz284hIlMr4zu72XfKRMgfxC7a1e7vLcPH/2Y9+556SX03yCJuPtGvyCSEWqiKL/ZRmpKpjVlZFZljoxc+CjNPJWG5YtdIuTZbFyhhnkdK5zAbufu9/8wsX7R6bf/FKZULmyoYM7qsjhUc8iUl0oD86W96zTGnmpqCZn8LZCo+tzDVrMDd8x+OGeP6TXdtZs2AsAOMZCAbhFAQBULRp5opgpoy8ykfpDPzDmsyt305/d/7Vt1HN2jR72hQBEsRgkoF8z1mnU0fRj/Xfl4/S40vzawpVHfdaP2zopacTYzdWWj+Nc+zRDPs7gWiTPUsv5OKOf1Wv4Z+x2792f389fPjojRAfycVpBSGh3N3/UqhGlj08quHHjRjXk4/y+7o2P2a1toauehPI7lI7ophP5ONdqMXFnqy5wp1rycW4V6rU5ayLnZk4obd2/zdODOpGPk87InMG6wBxWTebj7DDsorfgrxifXbY2Pn/Z9mypU/k4HRmZV7dmmKeb+TiSjJ39PsR3Dy+YExE/9NYg2xrOx3mqx8S5Q3o1zbkqzcdZkhSa7ffCI3iecMIVX/dzxTqRj4P4ELT5OEARon6qP+v/g3yc3x/kDtg4pVP4xPjn91iszNgazsfpqH+aIR/nXm3axVKt5uPENwtdqLAe5J3+Luum7/zYDK3n4xBjcy3kmDhD5GhzTPT1SQulWsrH4f6exR1lkey9f2loaOsWdWtrPR+HqCO0gNW92kxY7a5drTq3pvNxOHRqbORRoZMwbLPfviPhoudPB73F75T0ToZnJwNlPGki+YSpBtsXrfyFcik8PabazUl1UZ4yZfNgzbwE+A2UkrdSmJS5e60rZ32d7FuHfvXbSzs+8k6OOpEkf8aRQIWFqx/FopBK4rmnCkql6mnExkltOKz856dYrEZ+8C/h/OfwNpxDW5+fMosUiADDBPxgoNdTsMchbFWyMoCOlRqfSXNUyXbVn0mzmJ3aLb1TPd8jhRb7uobVmqV2Jm32hw9N027fDkxPfDaoWUvDcLUzafM83vF8NweGbXH9t42lvv0StTNp56MPhNxxXuy7pyh+juNFt1lqZ9LmWYa2XRKYEbCm1e1h2e0Pl6qdSbs0JOYep9Xn8M3fJsyo73/HTe18frewK2cWOxQGZfTvLVvSbFqeWrOZeY95p6PuSDl5okbdDkRu8gAkI5S0tNlj2/hpPXw3p0rur8hxhGftjFFS+z/X/toYH8LZaDVr0GrjO1MByQQlHZVffZBsci10xsqiCR5nGuwEJFOUtMAz+e+FYx8Gz+ct6NrAQR4ASHVRUv36LVp31GP3ypvy/Gpw/NAZgGSGkqaaRI3oGcIP3PygsInc3/MyIJmjpGHD2Bv/juwQMH9uzoSXo/5cAEgWKMnzQsihaSERYdOdpNZDxh4fCUiWKKnttvj42x0u9sqrZdBrVfSvUECqh5JcTz063MrjpPfsMVGxV5cvuwhI9VFSUbN20/eOuBcw+bevTa7MNhkHSA1QUtCBoJSlJQlBeY+Tm2XVurMfkKxQkrR5e7Owy7t9so6WXBk8oFECIDVESX9HHi29e9XY56Cd0ONbryNDAakRSoq7eMO47ZpszuHmb9pO+cdzMiBZY4O/+jQ+eOpP7szfurD8h5zqB0g2mLBFW808stTQZ9+OS89O947/G5Aao6SOfcNNRxz2Dtv1+681KyZm8wCpCUoyi1trdWFCbOCRSdvPL9BvOwWQbFHSyw4l32JePQpbPfHBvjMRc7sCUlOU5Cvp+HXlq0T/iRktd7/9tjMWkJphXL4j+HZ53jHflYYTXk04dnYmINmhJI8r5o1S3h4IX3vaZXyTus//AaTmKGlre+tXJ6/X8c1o0VFs/ek8fC82Sir2K7QqPrXYd2u34c9qNTwsIx22tGfRHLZcWr9Ts2Kb537TvK2avB14cagWDlsG0qmohvH787JPneMs3/pkzPmm43Lwi4mcFKlIwqfIIKBrTOqA3qHK+URKrcuTeCIRUEJoFfsKpgwQFRTl0MjrnCihgn5JGogFg4xP03QhjXDmsEqMSN4vYxOIsoxK5UAo3619nbp7nW2LubM+XIgz6T3ylxYTKrXs5MIitd7GdHt6NjB10FijbIBOfYDDJEPW7vgCWKZXIhciKRRgfEIRbLqskhM28KDYPBhyxVGi+Hdc00u/DVjiN9nerO0tz99b4LdAVd9D3gItI2k7koVwAYlhgOuskU7sV5PT9TRsG+qCTjR+GbsUiTwFiF9GCNjAAVG1YaLfK/311E5ScGN9SOanL4/te55KIayWo4+lWC3HKNrmnqULKuz+lBvYroiwk3ZMNQTOHkvswRatBUQgKcHq03DP3k/ZV3xnNzs2ZvXYr4mVTyPSAliIqNOCBUQdtT9BrP+dPtDm6QOih15tpw8yTU4znD6wMtHIVlbw9MHD9JQNKdenB+2t42DXvLXNBC0aS6IG0sLpg9kQIdpkbb6JRsbyPz19sHqesN2qtcKwPVM9op80bL+qxk8f9GBEBciNju6UVN/pgyl38pz3PU3tNW9tpvmqi5ErdOb0wWtjJtYVGuuoO6Pl0wfPG50WL9ni4Dcz+ESdRWtPXK7h0weIlqFNHwdaptpOH5yZnL0l9IeR/8I7H1u5P4920IHTBz0YwbEy0Sznq1KnD4b329C2f+p335UpBg/qdn+NrwFSc6cPkDlNixCY06jfFsyi8dvOLeNxf3paB07aYGf4suXYI3hvFOlZF+nPrfjCgS++ZSTqCYMIMR78CvyuVPW+ikDZovIKfS/UdRtfIceJuH5JPW6yF41RNAgDFa1PK1u7kFwlb8CBj600W1aoUG9JyZRpDrZeEt/1BX81X8fe2IawyQ7vpthkRy6X5ykR9Z8W+raIIEBSKiFkO3FY/q012juzQQDC5MKRL5QB8QV0amN7fuCWiSbjXDkZgwpj77U+jq8RbOyP3UyelmWk8gD7p9/cU/sHZARMvNpcdKNNSGUPtEPAmjICBiSqRpwopc2An+nAovtDPtJpxMBLU4SXDFrVd9aO1xmdUjgH7ROOb9od/6U+chgHMIOTIpUJVFt3iFPr4xvpGN22cg4wgbUyi3lznjWeETq3w7MhV3rnH9QCay+0YmLtuhpiLZV/nKFZA7jy+5cGupvdrPPM2Xe6RZ2gr+37p9VY/1KWK6qTYP9SKSm+dUWmGGoYe7FoDKPvNev7o7rs8t42aKjNrH6H8aWBrWDJTQVc+oTZuAK4PyzQoOuZm58kCUCuLPyJPIZf9hgkOCxrdsYHQlIhi0jctit/wCR2UH5Kg0WFEgsAerEvRRO0GCD8BRaVPavnw1UDBS43wFK+0NuQiNmOWAMvgJ7yEB/8SanT5HA1WjJaQHMC52qAo22H6EUBc5vnzRTtCbXA6xikFypFizj0ern5F+b9rDsZ9fDb0c355zpZx/ZaWJkohjDr+1K0/cpqi8Bc2SXh1mrsV61uxUnEckFcMiIesIUE9epm7c1JKX2GngzMu+7Xdz7vYhw+q6DsueTwF0esihNNCGyDqWC75YLAhqqEEDqVcN685QePzpLQqe/fhrhe/Z1DbBgsFfHiBOywZJGIQhfQOcwu2H1ieB+UWaF4FE8k5CuFfLRQkciWgDBFVnFNQNylZxgnVWNjNbIGXrKlBd3mWw5E17yyc78RNGpI+0MFbNcHlSREjBKAnSfWjUoovhq24M2YwLNPDI7h3WfkQWT3WXm5vOlMzErQgstgBJFLp3IZYEHlR+a07nMFkbNVISfDiRoULUr4FgWsTn508VLwIStX7ujjb17iU7VRAaHe0sFTtd6Y3BGRJAa0Msyr1cHCBmoUlSoVqOPQUi1nxzUEuLQCkSv8jNw1MGgYdHITBDJCljD8U1nF3QgxkJCx4BEgqE5Vspo6eZhgmCozSSrJ1xhXdBaU+FAlFbohs0CjhTAbZRtT6CsgtgoTfT4lFJP825vcMwnwKzi0W5awZLw+YWMCvhXFxgRyuSqgQEScFgog4qih4rJoDJXO1K0nakvttPCpgrL1VuZo0jpl2fqPZhjkoToPOTE3TjuQ2xx0aXOtND5k1a0ZVu2/XXiqBcgLGzBBvq4BBnkYHeQaZ2VaYJBXQ1YmRRIllpVJkUSJZWVSJFFiWZkUSZSqrExyEiWWlUmRRIllZVIkUWJZmUODWrxsePCZ9wY+l9ffau40UsobFF5K6SOmX2oh5S2cjv8tQgpd7u8wCdioz4+98cISz/8GysV+P5FEDt1FZAOH7JQb0My2FgFC2LInEfa4UT4ACSlhnImmIVRse5+YclruEEngUH1Ig+NRH03BJLtFtXYN20EqTDVau7ZV7rYhp0EkkDUAD/ALfV7QQ9/fr9hnzvCetpgXc+bEhQ2V2Wur2mXsIrg/aoqa3RLSAXsQVuebUvrhdFg1VKVEqGNFidJt47wpD++14Ezhjv076d0OlhbTIib2Dft0dkNKwCbJjKDpvqkntICSghGlrqbkxQcmP805AptXyGRDMMOmHAz1sNwz+q2SqT8OdOcJHnKW2SedsVypuF2D+7mw/SIiRJQbcsdAGFxoqpkb2061ewghilOrWQEtEE43USdW+rw89efyrUFTeMevWIwvma8Du5YQpOWMIClMNdvXbe0vVL65aqmqTGSQjUV6BWX668zh66P+DF66JPCvq+y1+Ip7RthzybuIKkpVoMNlRKeVKeYYRbBoDOOrfmFcfbdvfovWXghYHR48kLwQT7aE+jTg2uP3c1WpbqMlGpWNIx6wqOjeQEU7H8OeCmYAtgtUC1AsANutulWwTZvavn8Dg9Rdvgdn6+++2m7eCfxiJ7IfS2PWccTytDhRxVW2Yy7Q044QrAgqGcsBrjnLTCNbZ46AJQAzjR6qn43PX8u0zvde/KxB6LKeInxjdmMOuJcaKDVSNbsEECYgNQww5dfVzNiVv4VG3GuusS00qGkQGYFbaKROwlJXBBpUD/Wm00N+bS64eU5+yM0JWP1O4dm4GXEdOoknZSvXaSjWy+lc8zbK+7DdHuRcCo8tFoyGlwQyYRxqICukloiHuxhGSLVSrkau6C4ZLErABrheovLJ02DOE1sjRWWObEMpF3fBcCjfcoxT3pkrp7cF56xvc37Jxi7ueBcJeQDZRVJeLm/OEc+5VXZ3C8CzG8JTl2rO5YKQZTZbo2wSM+V4mAp9jV82dcfl84t8DqZxTl+Krj0Av/unvJ+8+4deLw+fa7nnJgiWzAg43OxF5+lPxSIt4MNnxAeIT01kGBghiRujlED0YBH/aFYJ3CyKJ0sQKJiY1mlF4+yevdeG7rOut2Y05yAhLUR5P5lp6HWtJ9fCBURGrrxurktcKTmKcUUj82WBKDypgI8qX0rGtLvkdXfPt+VBc2wiVtqm91qOZ0wocj+ZMeh1bTPG2xVVJ3CZkRSvpsH6zGzNAjJbFQZIYCESlofH2ZPNB4a/G+s/ycZYKn1WexQ+q9ZP+QByVi1GqApEejAiwmJjdr0Pi8au5y8I+Tioe7fgqR9/KoxO3vmA57HyGyueDNNDFWHgDTh7dKIwLhG4lfBsIU8uhxUNVFkxqPmvWPBBPKdNNV6yTCqva5In2hzNEyVlv3iDqK5H88rugDdFXQ1o7IXKIjXwCJNyJNTdXlcEmE75p9Q/Z4DbhcObZ+INvyGdY6MiVLPxR1JJIYbuVDka7HYIhhpprB5hqEQpy3LiDmrBfCC5cn0AlgKEP5f5lOyxYeMpESXa8xqtCgrjWgQwGyrAYC0mABg6mSPpJrPObFwRpUlLPa6J2xxa2LkqsGPaucqywzCPosM8bF/ApXOsQr+0gY27C1/2qoevGoX0k5eKhHHIsTCyIqVD2jYU+APAPCnAnSJ2Eu4pFdKTxMoUTMMiF7PC0yu6cAOD7JYAztlUCzdwjyKt5Wkz1Wok5jlh9sQkGOpSHC/hNxkil4P5mAwM4J+dq3fU2P/AP9ahZk4NijC6Hg3dNBxRLyQZMVJep3+wcjzIcOFHmAK3ZgFCGdA5MDsBSWbC84uSP0+zhlyN/HQseMrK4NgRz37HN//T8yHPDh/S7NAjzI6udaN7nHTvFryp2/AFCc8cFJVdMwGzowiy050qeyEaUHNbnlYDqbyVJbtIQZwEaGhNUBrgOPPI98/J/puDvn/I2bL0Ch4lXzJKvuWi9KKk+MDHdiu8MwduamL0s3CgFlBKY0QpuuVpVAZVssSY7aKsFwgdowoARMx6x9sw5aPINgy9XhUL3ojEfKVaaHJ0QZBC9Wnf/zJ9SiznU0361LkFkz69Zv8/fYryp77Rif0zm80IW/O5d48VNxKKtaBPiWWatKApWrVg0hQ/7Ktan67mbpjc+Norn1V/Zy0uODpguRb0KXGRQAsoAbFmQGmrfRXqU6INrXF9ikgMrT4FSKH6tB+dPtWZmIA4nbSTzNZJr/G7OX5S/72fvBPzr83po4WQwNGeKSQwUkHenw5yjZPZzDHIqyGZjaIGHqbqKWrgYclsFDXwsGQ2ihp4WDIbRQ08LJmNogYelsxG9NBIGWtQK1KKGLF6nhYy1qK1xmTTamTyf1ZHkqKoIsZk4p4/iSf6dDwhli3UAk8G0PEku+DRgGlPvwYfKNhzYMeIx/hzfnUieGKBiFyglU6xOfqwpfAOtSrTbLFEIVAWF1IIUhRsZXFWytcm1l2kGEpFtJ1pZJxMIhL1gRYLXlRvyErQhHvvTrrBGzDc9+gfpzz7/qj1nU4TGvWVC2RRYPjY17b2lyTHimCuFqwECwv/8IUK9N2BhwF3OZ6kbSCwBCvVS1qUduCwSpoABerpx0qb5mcSypMlCMVcQTzOAJoqL/eBPTvUrxsrr0dJpOpXCSVgezlw0v9pctoCATFCBs8NKoTKURlio6KaUDLe6GAxH5bdwuDVM4YX4daL2iXEVxehZYWVAQHsBCLkifxgLSg1Q6SQCXhJqt/1+8t4UtU9qKgOpBNVnTHLxCqgWlqqI8q/Fuxyui2TXebbYnZ5kM5jTiyvqrvLozFWTJh7W2GYD6bDXGMzacaqPjNJUTcXM5MUdXMxM0lRNxczkxR1czFf6FXdetmxv60MmtuYF92838hrar4Qd3FmVouoFkFrvwzq67fE0ZNkXKHWpxQkYjFeLRjXIXSc1NGWY8Siw9XWckzUhqnl2HKHqm45Ful0avqJp06h2aMattmzLx1faLVmWo7x2zA1cOnRRgf6JhUXF1dDy7EXb3bFzs9rErik6/xhR0p27tCJlmNWjNx57aAD3KmWlmPSK1G/Nf/h7JNtkM1zs/t5QSdajhU6MDFnuS4wh1WTLcf2f5j7Il3+yq9g+Eibz5kX8DnHNd1yTMHIPG7NME83W44d79vB4cH5pX7bG28/lBA8C7+jV/0tx1oxcu5H65rmHLypylqO9dzb+HmTM2P8Dm08ZtWq0zZ8ZbqaajmG+BC0LceAIkT91KEsGj/1v6nlGLEtRg23HJvuyNRyzN2xmlqOfVrUw+32t+C1nDST00bTP2u95RixuJkW2milOTK10Yp2rKqWY+Pe7fNd0HhkaPqK5Lsxi5s/13rLMaKO0AJW7oxYGTn+n2o5NoxOjf2vCP9/VISf2E2o2orwF7dlKsKf2LYqivDvrSdv2m3ztJCZCa1bXJtS31eLp821rCPhgsmjtkw1ywvaVksRfuOFs/1X5T7otZk16dqdUQmuNV6EP4MRFSA3OhM7aHbwR3tF+P/50exwY7u/Qmdd9XJZZHrujM4U4fdmZJ1NzbCu2ovwW98T1pcf3h04N/aXXbOrPW/WcBF+RMvQVlEHWqbaivAH2ppn3z3eO3CraML+a+bf8Nq5ZorwZzCCk9i2Govw65nfL7WSBIfMbpGXcsFu0B4dKGcBEfJmRAjMadRvi2HR+G0cn3ZOpV7XfHIf2G26svJtB3wdAeQQn1QiAhad7LMZ0eDcqWyLRFh2P1oLAyAukyQnJLJVTWM1qeVA7LBIO1py1QM1YkVz+4AjNNsJ4PsE4JtLdJOKAL5P21X2YJVV2bDAVRQLyleve/liyHD/wwH5Q1bzLi5fZF353l0EF4qoGCvpQsGyt+lOdF3ssoDsDnbSyIWqq5y+fEGCTEDtX976988ln76LQvPmbd81fXl3MeGEFHIjxQkp5fWqKPvbkfH96zrVtLOkkkwNHCU4ZKGEL4xjqG0zdufSyY7PzUKXpH+4PvxAsQAvq9gDyLKqolQFM8BkZWDGoXY64f6wNNmxcA0RSxTAfPHi4Nqpo7sXCFlBZJHkzPbwikuUyPjO7PZe8pEyBfILtbeanbe5aKXbi/CNHQr3t05w2oK3a/ALIhWpIor+l2WkqmBWJiOzRDXDLMLMgY/SyFttWLbQLU6WxcoZZtAd1lID82d6YUfeHHXe+9VxZmVC5cqGDu6oIodHPYtIdaE8OFvCnDTzUlFNzuBtneUeFDXqviZww4Y6Y2+LI8fWbNgLAGiKAXCLAgCoWjTyRDFTRl9kYvvd7tZX7rgFZv4cEpo9TtGGYMqq97AvBCC/HQMA/VLbYY4mj/XflY9DbMxdbfk4012Y8nEKnKs6H+fLs9ih/xb3DNtnMUqPe2Rubx3Ix0lzYdrdjHbRgaSCP//8sxrycTJu7l46KCAueEPEgE5WFy6E60Q+jjsjd4x0gTvVko/T6sui/uLlet4Lc9zOBJjF79CJfJxHzkzMAdqk5pnDqsl8nHqSPb0TjM2DNp0LStS/8NsQncrHyWBkXmLNME8383EeLurjZHf0UMC8bTt/WzTmWpcazsfxZuScTY1zrkrzcWZ04R9M6fGEm2vqljB16oxNOpGPg/gQtPk4QBGifmos6/+DfJyt7a1fnbxexzejRUex9afz/Wo4HyfDlSkfp6tr9eTjNNhidD36QWjIMq/X1rkPW83Xej4OMTbXQo7JdFemHJMY16rKx3FfOuVm9Lws/1U7s1cM2mnzXuv5OEQdoQWsujJiZen6fyofJ45OjY08KnQShm3223ckXPT86aC3+J2S3snw7GSgjCdNJJ8w1WD7opW/UC6Fp8dUuzmpLspTpmwerJmXAL+BUvKK/Qqtik8t9t3abfizWg0Py2jHR97JUSeS5M84EqiwcPWjWBRSSTz3VEGpVD2N2DipDYelDwtzNfKDfwnnP4e34UypZXfaLFIgAgwT8IOBXk/BHoewVclKPh0rNT6T5qiS7ao/k9Yow+5y609/cyfdcYhw/jrpvdqZtObzwoa1dTPrtalBR4s3ua1/qZ1Ju1H68513+52cjTK9uGWRGUfUzqTJ+/Eu1TMsDDnYOzx2ZfHoMWpn0nbdCJIMPNAxdOXw2wl+XcN4amfSHm6YE/jV+U345IeB7NRVj1+rnc8fxZLs+2w+kLt7Vi2bOn+s3qXWbKbbonOt/86d6r3tb4NNDVMyQwDJCCVlhv92O/Hqi4BF+4sK4sJPzAEkY5R0rcESzqrB/pzl+4ea9R55+SUgmaCk0EML3w9/EB624bPs/rrzEfaAZIqSgkxKZTx3HmfOWpmT54j3qwGpLkoyqT8k89/8mJDdJ/wnFSbd3ghIZigpffzdCSN6Z/pu2tmocGz6E3gMzxwbYdwcg+h6+/zXiurVffs9zQyQLFBSu+kDBie03BmyLuXU3KBV7ccCkiWmkAco7ofIF4TP+tuuj/lZV4hhPZR0d1m3kfGbB4astx7sMm2ZSRYg1UdJJ84OP+hQMCB4gzyF7Sm6DbncACX1H92p5Q9u06C0hoH6cwMtWwKSFXbX3seRq3/2C1h9P2pQ7hUFRL4hSrrvGmN4YynLf+Ha7jP/bb0oHZAaoaR585Y88PjSOGS7ufsMUfGI0YBkjZL2fZ0x88nZHoGrD0SFThq0ZRog2aCky04zmsuanPA78OQlN+z82QxAaoySxnqlWZ8SdPU9FN723Dr5/Z6A1AQlTX0Z4dh5+Af/mTlu3bdZ/3MPkGxR0kV/SZ87vw4ELLa03ZCzP6A1IDVFSXn91iy/MvO19/IJ9lHFiy9CYWuGSZSBaN6Te3Lv9Ea9f3T91S4FkOxQ0priFV6d0lsGb6v/xXfshHQpIDVHSc9W305M4XwL29cuzmv+mkmwugQbJZl5bhrnfO8650Bqo4QjQ1+8JR22tGfRHLbcPHPZm3v2KWGThiyd9/Bx5kMtHLYU0KmohvH787JPneMs3/pkzPmm43Lwi4mcFKlIwqfIIKBrTOqA3qHK+URKrcuTeCIRUEJoFfsKpgwQFRTl0MjrnCihgn5JGjxV40HXhTTCmcNq6qFZE4iyjErlQCjfzcDrxQHXlc5+ay9ta29vd1CbCZVadnJhkVqRB92eng0Ilv09NMoG6NQHOEwyZO2OL4BleiVyIZJCAcYnFMGmyyo5YQMPis2DIVccJYqO/fMHPjj50LdgcWKzsQ61P+K3QFXfQ94CLSNpO5KFcDVlhOuju07sV5PT9TRsG+qCTjR+GbsUiTwFiF9GCNjAAVG1YaLfKx3X6GLxlA89QvOntmrwbJC/FWG1HH0sxWo5RtE29yxdUGH3p9zAdkWEnbRjqiFw9lhiD7ZoLSACSQnWpl9fB26P/oM7a+cFzrmClvmVTyPSAlhNGcECoo7an3gWjf353+mD/+j0AdFDr7bTB8faM50+8G5fFacPXFIbPvVVzA8uuN6mvuPHgGAtGkuiBtLC6YOC9kzJ2hntq+X0gc2CgG6HmqZ7758U/U9w5s+IGj99kMiICpAbHd0pqb7TBxMft/s3z2mf715ZM4cFzfr31JnTBzaMrCvx0FF3RsunD/ghW91N0q4GT5M9y2/7kj+xhk8fIFqGNn38/7F3HVBNZF8/uqgogg0QxBI7KsXeCwFCDUXAXiMJEA0EQxRQVERUFFTsiKjYEXtDRAXXgl1xbdgVu66Kbdfu995kJmQqZBmS7PdfzvEcmctMJr/73n33vfu79wIro7XsgytDJnmkfm3skZ6//9mJzs2P6EH2QQgjOA4dtZh9YDe4RifRpXmuW+YN3fPNthjf21h32QcWjAiBOY36bcEcGr/tzEqh4EeP+q5xmxpXe9l8ci7eG0V61vk7C8p+cOCIbxmJesJghxgEfgV+V7R6X0VgbNHxCn0v1HWbUibHiXh+Sf3eZC8ak2iwDXzug7Z2IblKDnCM+lRAb8nN62ae/J783Ds+tvvN+TkX3xKC7PBuiiA7crk0T4lo/1jo2/IAAhRONQi57YCF89EodmaBAISNC2uRRA6GL5BTL7YBI/sVH+jU2WNBw7+b/x3dMBU/LZ2xm8nTskRUGmC7L36eFLO4uUvCvZcJH/MaWbIAWDIjYGBE6cSJUq4Z8G86ceh+yCmdhgy6NEJ0yWBVBQUxY9+1ve2z4k3B2Wnpj17URZJxgDL4UeFysSp0hzi1PEd/68FtyucAE1S7/nbenFXHDnvF/bnNfMqvgN0sqNaBUbUWOlItlX+crFkDuNL7l75Iruy63eyDy8GtQ3q9eiE30Vn/Uo4dapNg/9Jw0v7WDpli6MIYwqFZGB2v1r87sdteh+3DRlokDjyCLw1sCktuKuDRJ2TjimF8WKxB1zN7J1kogFxZ+BN5jKjkMcjmsKTZmQgMkjKtiMSwXekvTFIH5V9pcKjQsDsA/bkjRRO00WDwP+5W3lw9nkANFHjcAEv5Qm9DFsa1xhp4AfSUSXzwf0qbFgFPo2WRYpoMnIdTZ64f1zWbnxNbc+zZy0mFeBuD9EKlaBGHXi/NxrSo9andqO/dHDfcnNf48IH1FiycTJhCmA0cKdp+pbRBYC7vkXBLNfWrTrcCZWER4sAJyPCALSSoTzcz+y+pc/RRLdc5BunzB7zg4CuqG5U8l7z9xQkrIqMJgW04FWyFtghsqEmQ0JmEcybNP3ToKvOa9f6tp92VaXxiw+BwqTBQzPWeIJVS2AI6h9kWuy8M3gfHrCRsolAqESkHeaREEcKVgW2KvOyWgBilZ3hPqsbGamINvOTe3eiCb+kQ3a7lnfvmcFFD2h8qYLs+aCQhYjQ9Hy/4drlTnTezifeYbqu9X+PdZ+RBZPdZebm06UxkJbDgMnSGyMVTuQywoHLNbrTucxmRs1IhJ8cNNTi0KOGLu2FbI8HvD+/Mu5aDIut3WoynaqMDhDqkg5ey3pjcGhlJDGgd7qpVBwt7UcOA6HCxOg7N1Tg7dp7ApRVL7eDfRNi5uo2CTm6wWE5gCcOf8hpuc2SBhIoFjwCb6milqqmzKAgLU3kmSTn1OtoOnQXFPCpSoT0yCzQ6CLNQtjGFvgKyVmFDX0QJhaHxsoif3i8Eh8R7fW+bvnhICEzAb0URmEAuVwQUyBCnhQIMcXShGsuhWaj0pm490Vqy08KnAsrWO3RlKlvPVUE+Tu8hJ3Lj2IG8xflpX8Lq/nSafn96+sOimCYsQF7ciwnygl4Y5FI6yDVmZdbCINcCK5OCRImxMilIlBgrk4JEibEyKUiUGCuTgkSJsTIpSJQYK5OCRImxMmf/NttVmHnNOXdHQR2zxxdHkChvcPBSjj4i/ZIFylsonf6beZ6wvbu7hstmA9GY6y9q4/VfT3nY7ySVRUB3EQngkJ3yqjSzrZmLBLbsCYE9bpQPQLaUcJ+J0hDKFt4nUk5LfUUSOFR/pEF6FLczmGSFVGfXsB1keieNzq6tlNE2JBtEBlUD8AC/0POCLOUDMxOHRzjseX5iqvkw+97libVV7DF2AYyPdkaX3WJSgj3YVt/pROmH02FlpqJEqGNFiZLRpW++BgMHOy3OqrtgdZXUhizSIqYP8P50elOUyxbZHLcEx+hjLKAExgwDSqJOmjVpt/HF5hUy2RDMsCkHt3oY94whVPK988SfcbnuWc6d4mZzJSd0GM+F7ReRQUQZkDsKtsHFnTRzY9uqoocQokC1mhVwBcLZJkpwFkzt2TL11QbeIolpM65VvVF6ELWEIJ3uxARSeifN4rotnSXKb646qioZMkhgkd5ARTZ4OnCl0R1BQuDgy/N/X3ERH0XEnkuOIqokFYFOFCM6vp0wxyiMQ7MwvhroLTCw/+K0dP15l7U+7kPJB/HkldCABtym+HiuiuoWKdOobBwxwaKssYGydj4Ghml4FwDbeaoDKA6AzaBLBYRpL/aY6ZNrN8h7+bUndXsZtCSU7kPisTTLOk5YmhUnmrjydswFdjoAguVLNcbSgWtu00Wjtc4EAUsMZho9VA7Vl4YOdTsl2CC4NDHHbt0AvCXig3upgVITadklgDAZMMJ0p7Nmi13pITRirFlnITRoaZAxAkNopE7C4XYINKgdktHZIafW5+17zLgvSHdZ+07Rw7IR8Rw6VBjOVZ7TUJyX07nmrZX3YdEeJC9FyA0TR8JLYrkkEF0gy2SWiMldDG9IdVKuJi5rlAwMm/aeANeLVD55LEB9l4dGhsoECUMpD3fB61CXCehjtsTgR0+n2XWC97n1HYb/llWQB5BdJOXl0uYcMc+tvNEt2E0ZwlOTas5lgC0Lx1MjNomx8n2YCn21Hfhr27MXjXlLCsYNaDlg3Sp89E95Pzn6h14vDZ96Deob9nl8QbAx5/uwWrP7tmcBn0IPJnzA8NEFw8AQIW5MVALRm0P80awSuHGAUB4sVjApTepwcnvPwl8O2QYffmRUbUOozqa8n6w09Drr5FqglQRGrYzWK60U52Fa0Wj5qoUYvHCxCDW+lIpRLDXLm2Q61/3I94drr6ePscIrxgu5n6wY9DrbinGwQ80JPGYk7Vdj7fmcPz0025BZqTBANhZSSWl4mIQEXRy/7DxvG0d48jV/QTSeVeukfACZVYsJKgKRXR5MiCg8sHU9nEOzru9a5PlxWK+e7rM+/lAYHr/1Aa9j5SeWnQzTW7XDwC/g3MgQSWAIcCthbqEwIgJWNFCxYtDlv2ybD2KeNtX7ksek8romPFF3lCdKYr84gF3dLvfyRsAboq4GXOwlyiI1MIVJ+SaUX3yq65RYD3d3182WD28Nu22BD+RWo3NsVAItL/4IlRRi2J6Ko8Fti2CokcXq7Y2OKGVZTlyiFuQDRSjPB2ApQPj/Ep+SO9l7CnVpG8J6rtOqoHBfiwBmQQUYrMUEAEMn83i6yaw3gSviaGKpxzUxzMFC5MrGnSlyVVOFuZwOc+8DLhfPcE44xQ617CV56VEHXzUK6ScfLpUEImlhZENKh7SVF/AHwPKkAHdKuaG4p5TJThIrUzC9FrmYFV5e1oMbsMkWeAM4k6gObmCM4qNXvrHqNBLznLD1pIY7tKU4XcJPqoZcdhdhY2CI6PT8SnnVnXPe1PcyblevAJNXopEb+SDmhTRGDJXX6R+sfB/kdeGfMG3cGrlI5MDmQHYCQmbC64tSP0dONrtw/IOfyyb5ojUWFpPxlNRKPPLs4JFmRyXC7OiaZd4/2aOH19yGzWa5He0aU94zE1hGAKqzPRV7YTCQNvTOVwOptJOlxv7iQBmw0Jqg1H77hnSjnuaO23Jneva6lNkXj5IjGSXHUlF6NUC+aUOQreOOAk/RhSV/hLOAEhjWDCid98pHx6BqLDGyXZT1AqFjVAaAiKx3/BqmfBR5DUOvV8SBNzJiPlMdNFnbIkih9jTiX2ZPieV8tGVPBYz21PM/e4rqp8OB6i9yOl7gZaYOWTensGFTFuwpsUwTG/ZUwGhPBRVtT1PqPY7fumeR2wG5ZdWxGZXasGBPiYcEbNhTT0Z76lmB9pS4hurengoY7aknZk8VdPZUb/YExOnEDpmtSyXLd/Ocwp2zPjmE7Lo6z4+FLUGaJ9OWIEYF+QQ6yDUms5lgkGuBzEZRAw8z9RQ18DAyG0UNPIzMRlEDDyOzUdTAw8hsFDXwMDIb0UMjMdagVaQcYsTqeSww1iaypmQjLSr5n9WRpCiqiCmZGPMn6cSATifEsoUs6CSSTiep2Q+GzH782T0ne3/O7nEP8ZuqKr7CMLGUXKCVzrBZ87jh8A61KtPcMJlCrCwupBBHKbjK4qzUbB1C3UWKVymLtTPyD5TLpFI/uGLBi+oNWQmW0OZa41jrO91dExLezvActIY2t9lwQIRYHgBeH/vYls6yCWOkkKsFK8HCwj8iiQL97sDDgFGOothNBJVgpXpJh9Kt+JzBfGBAezhxYmc71fASyoMlYQJxEG4BNFJe9oM9O9SvV1deD5CFq18llID1aMV3G8TPr4WA6CuHeYMKifKtqmFvRTWh5MJI9zARLLuFwVupOrwIQy9qlxBfXYqWFVZuCGAnEIlQ6gRrQaktRAq5WBiq+t1gkFwYrroHHapRdENVb5ZlYhVQlo7qiOOfhXX5M59pXS7kY+tytN5jTiyvqr/Ho0m9mTCX9sYwn0SHucbLpDFHe8skRd1cbJmkqJuLLZMUdXOxZZKibi7mCxWmr+jzcfZexx1J9QxChdW6q/lCnYvldYyMtjgfKt45LtvqRmXS4gqtPnVrSEIxXhYW18l0mtTTlmPEosNaazn2oD9Ty7Ha/Su65diHVSYfu53Z55PUefi3zLih6/Sg5Vhhf6YGLrv660HfpAcPHmih5djKJV4jTixI4aW5vpqQ8yTqm160HEtg1M5ofdCOVlqOHfxaL/Zt0A6vfTVfXu/ftw2evqqrlmPdGZVTWx+Uw9Fly7FrfflH9x2ozEudOe/XzmC3fXrVcuy5L5PyjvrqT6Egnbcc+54beqnZ1Vlem/f4dki/GBSn45ZjKYyaC9e55uBNFdZybOeIZit+v/CX+97RjZ7t/7DLQC9ajiE+BG3LMWAIUT81hkPjp/6bWo4R22LouOXYdz+mlmMb/LTTcqzD0rN+spo+/Jz47J7zr4bdYr3lGLG4GQtttD76MbXROu9XUS3Hhq7MMu6/qZ7PbEObkWYb121iveUY0UawgNUGRqxi/P6nWo5NoTNj/xXh/0dF+IndhLRWhH94AFMR/jv+FVGEP39hm/uOVUNdDvw57vPagAX4duvlyzZn2UbCA5OAAKaa5TYBWinCP3BO2zPmG+u6zekvqlE3sXctnRfhN2BEBYwbvdk7aJb4w14R/rpG8zL6u3vwt4VmWo7bEII/ttdlEf59/kyqS9KN6rRehL9TQEN+8DBfr7jqqz/WPTLGScdF+BErQ1tFHVgZrRXhX5gqsIp5nOqWM7Tql2V1ruILZummCL8BIzjA2GivCL/prGZfag9Y6T3P9/KnTvLn+HI6uivCj8xpWoTAnEb9tqkcGr+Nz2vb7lefq7yMe423/LH6LaGOAJLEFy6TghWd7LMZ0uDcpSREIim5H62FARCXyyYEh3BVTWM1qeVA7LBI+7bkqgdqwrJy+4AjxBkI8C0C+GYQ3aQCgO/gAeVNrDIteS1wFcWC8qt/Wb+mXi1JL/elL0IOXS0YgGf0/qPeXQQXimgYy+lCwbK3nwfQdbFLAWO3YIBGLlRN5fQViYPlYmr/8kxcz2PvCp84rUswy721vtiVkCGF3EiRIaW8XhFlfzMYv3/sAF07S6qRqYGjBF9ZIhNJAhlq2/TNcJ8xx9vfY4mpwit265JE/FjFHkAeqypJRShjMKMy2utGGUT3h6NJxMLOM0ymAMuXMBCenVq37wO2rGBnEWrD7dAnMEQmF9lwO/aJGC9XIL9Qe6v+M64V5p9pzl845NmL4ptnZPh1DX6AvyJaStH/skRUEcoyZFTWgwB9mDnwURp5q2YlB91hE+RjIhhmUNxdIzP7MT5O8YfSF/u+79qyPFvl8m4d2qOGHKZ6FpDqQnXgbz02QDMvFbXkDN7WMfM5IsPqRbwDSTOzerl9nqnbbS8AIBkDoJACAGhaNPJEsaWMvsiEc97j2rMO+Tgn7r05dE+j/g10muwLAWjBBMDA1wGYozmN8+/i4xAbc2uNj/N9EBMfx2ZQRfNxuFsjJ+/PK3Rc/+T3P98WTjmuB3ycj4OYopvnB+kBqeDUqVNa4OPcGlUpu+uAkc7bbyv21gx+E6UXfJwNjNqJ0QftaIWPk+fDGd3Kx9gtsUnsrqYrRgzVCz5OAKNybPRBORxd8nH6X05+cvSUk2dseqfEg7t2GOoVH8eAUXl3Bura2dUjPo59TauntbblC2Y8etJ07uEePXXMx9k3kElzSTrXXIXycWw2ia473VjtujRz/qrkEXvT9IKPg/gQtHwcYAhRPzWW8/+Aj/N07c2QKP4X7wNtA/ssXBcXo2M+jsEQJj7OtsHa4ePEXkqbuuRUumtS1JIh0gMdt7DOxyHuzVngmHwfzMQxuTq4ovg48094riyaMNwla0Nw65+/Hc1gnY9DtBEsYLWNEav4wf9TfJzpdGZsfJ6kncQ70+lAro/02eNh+Da+Rv0nwNxJV7kwPIScYapB+KKFsyQiHGaPqaI50bbKLFOuENbMC4afQDnyjHtsibG5c42fE20enDvyBf37kSM56kLS+KvuD0yYj3oqFsWoJOY9lXFUqp5GbJzUms8JcQOj0twJ/iPkf45tzXcLdss39hdLgcLEIndg16OwxyFqVaoyjk6VGuekWavGdsXnpC0e/zXyt0YDvVcmre47fdqpfmo5aae7LDp8v5orb3tXs7fdem15o5aTVitojonh2fO8OT3tk190ahGrlpPm0vPX739+3e61qu6B+Xen94tQy0l7UP/c6NB9bXmZv7ew/rxiyR61nLSWsl7vKs+YxktfmC0JzHv0Ui0/v8XOpwZX/jrrOm927veCqz3XqzWbMUu94jP92iiP2Yc8f2bmfukIRIao6FDNicXZfc7w9/V7ZC2IjO4MRNVR0atppvaLG3V1SJj993Tep60bgKgGKvo24/N3t65LnBYftH168G+3QCAyQkV1TzYunp61WZBocM2134CbO4CoJio6m7q42rdOIrf54mpHXqd3/g2IjFHRF487HoOmZXrsrrZ7y9lT+84BkQkqSk5/XnhSfs1tXYLowZ/G2+8DUS1UVF2yYXVc7nefNfv2Ptl75S58jdqo6E0Dl03zj8Z5pI+8U/XRChv4WXVQUetnhttq5WZ6LO4UL16efC8EiOqiopP+JjeKO5912FJH+nxowYpQIKqHikYlbZzL6WPreDjv7bx7ftY3gMgUFcldz9/b7j3TcbdnrWV+X+rVBiIzVHTm/LE0xdmW7slFee1erUkfA0TmqKhKaK+84uRdrhkWjXMm5vYKAqL6qGi49ZyVI5et9Fm7/FZY/ZMfTwORBSr6tHx9/8/vP/ms3uZm6zes4XMgskRFrg8GHfO8luE+6363U5967OsFRA1Q0eZi++m752xwnb7q54r2bQLhXVaoaEG2kWHHbZe8ZzwZ233k8NMmQNQQFb2THHz7qtdZftzcTh03/pjjCkSNUNEjK5PGt64VO85q13Rvv1d1jwJRY+x7dZjR89OJON4++3iztoODlwFRE1TUrf3dQVaRFt4LJ/d6devureVAxEVFjk9CY+Urz/vMnLa17aHbTS6Qki2bcmiSLdOKO943m/eAtzCwScfnSz/YUJgNTZMtZ9CZKLOggztTT57hp20rmnSuYUw6/jCRHxUulYkoGAR0jUlboXeoOJ9IqfWIUKFUCowQWsW+jJQBooGifDXyOScqKKNfEgv2glEj6bqQ+sI+biM1awJRwqhUvgg1Hz95aY2NOT28d1y6FJq67mUWi4RKlp1cWKQ2fCRdTM8CbJbdRmrEBujiBxwmOXJ2JxLDMr2yCAlCoQDvJ5HCpsuqccIFHhRXCLdcgZQobuX12LjKSu6d07laTsrNmNv4EKjqc8gh0BIR2ztZCBeXEa7PI/QiXk2m62nYNtQWnWiiEnUpQoQKsH8ZJ+YCB0TVhok+Vpo/U3Dmd+t1vJ1PHdPfOTovJ5yWo4+lOC3HJGxrr7YtOtidKQPYdshgJ0VMNQSuKUbswQ6txUQgKcGqvLC2ze0qVb1W+HCyr18QVik/jYgFsLiMYIGhjq4/8Rya9ee/7IN/lH1A9NC1ln1wYhRT9oHzqIrIPrjwpNjidvVmXqu/9u7WqOY5ExYXS6IFYiH74PAoJrL2klFayT4obHgx+nlnqevKttJBx16HHtN59oGUERUwbvQ0UqK97INlGxf+9fHTUJclj1KPyr5F4s9VdJl90JBRdR9H6qk7w3L2wdBU8wipaxXBnOZDayRue9Zdx9kHiJWhpY8DK6O17IOWjQV1kiIEDkcm3v5Vc6ChVA+yD6SM4DiP0mL2gXmkfYcpd+64Luy8/7zRQoMjepJ90JARITCnUb9tJofGbzuzUij40aO+a9ymxtVeNp+ci/dGkZ51/s6Csh8cOOJbRqKeMNghBoFfgd8Vrd5XERhbdLxC3wt13aaUyXEinl9SvzfZi8YkGmwDUyajrV1IrpID0IDF5AroLVnkOE16bfxW75lVTq8cmfPeghBkh3dTBNmRy6V5SkT7x0LflmQIUDjVIOS243NCJmsUO7NAAMLGhbVIIgfDF8ipF9vMU/ys6VOmOM383fPy+tu3puCnpTN2M3lalohKA+zIJf8736o4ea7q0XjPqPZtTVkAzIERMDCidOJEKdcM+DedOHQ/5JROQwZdGiG6ZLCqEWaKUQlP7Rx3rrUq/H756du6SDIOUAY/KlwuVoXuEKeW5+hvPbhN+Rxggmr93bZwRvTO8dx73aVt2CwvBxZUWzyJSbWnJ+mPf5ysWQO40vuXfqjmvyTNyNk13sG+2YqaB3x01r+UY4faJNi/NJy0v7VDphi6MM7i0CyMjlfr353Yba/D9mEjLRIHHsGXBjaFJTcV8OgTsnHFMD4s1qDrmb2TLBRAriz8iTxGVPIYZHNY0uxMBAZJmVZEYtiu9BcmqYPyrzQ4VOCKAejPHSmaoI0Gg/+5qLy5ejyBGijwuAGW8oXehiyMa4018ALoKZP44P+UNi0CnkbLIsU0GThnj2+M4Z5J8lh5WbymneeoJ3gbg/RCpWgRh14vzcZU+/7TQPx1qPMC3rveRQ/55eVfwI2cBYTZwJGi7VdKGwTm8h4Jt1RTv+p0K1AWFiEOnIAMD9hCgvp007Pei+NmThs81tQW8e0ShtfDswpKnkve/uKEFZHRhMA2nAq2QlsENtQkzKYzCedMmn/o0FXmNev9W0+7K9P4xIbB4VJhoJjrPUEqpbAFdA6zLXZfGLwPjllJ2EShVCJSDvJIiSKEKwPbFHnZLQExSs/wnlSNjdXEGnjJDiK64Fs6RDewvHPfHC5qSPtDBWzXB40kRIyaVOWzyuHP9UN4yyr9OvqtseQp3n1GHkR2n5WXS5vORFYCCy5Dd4hcPJXLAAsq1xbRus9lRM5KhZwcN9Tg0KLuczjjUdGTazNcF93x/8T7lfMVT9VGBwh1SAcvZb0xuTUykhjQOhqoVQcLe1HDgOhwsToOzdU4O3aewKUVS+3g30TYubqNgk5usFhOYAnDn/IabnNkgYSKBY8Am+popaoptUxcmMozScqp19F26Cwo5lGRCu2RWaDRQZiFso0p9BWQtQob+iJKKNqkG4RulM10X5GV7T8tas1OQmACfiuKwARyuSKgQIY4LRRgiKMLVQKHZqHSm7r1RGvJTgufCihb7xzIVLa+hQryOXoPOZEbxw7kb6VLVlc3HOK0r+jr6Nb2wz6yAPnHECbIr4ZgkM+lg1xjVmYtDHItsDIpSJQYK5OCRImxMilIlBgrk4JEibEyKUiUGCuTgkSp6ppEJlFirEy7B/36zBtf6LJr2KxYy/5ePBLlDQ5eytFHpF+yQHlLpNN/M88Ttnd313DZbCAac/1Fbbz+6ykP+52ksgjoLiIBHLJTXpVmtjVzkcCWPSGwx43yAciWEu4zURpC2cL7RMppqa9IAofqjzRIj2ohBJOskOrsGraD3DBao7NrK2W0DckGkUHVADzAL/S8oGn7Gp0ddcLEO85tZ5O9h7cuKU+srWKPsQtgfFSILrvFpAR7sK1+MJrSD6fDykxFiVDHipoDsm53VjvPzS5zT096596z+jQWaRHTB3h/Or0pymWLbI5bgmP0MRZQAmOGAaWQ0Zo1abfxxeYVMtkQzLApB7d6GPeMPlQyMPns6gutF7huvzfe3erFw7c6jOfC9ovIIKIMyB2F7RdHa+bGtlVFDyFEgWo1K+AKhLNNlOCs6ia48b7XUe+Ua7Hz+Gu6z9aDqCUE6fxoJpA2jNYsrtvSWaL85qqjqpIhgwQW6Q3U0RWSh9ntQ92z/zpsmnTx4lR8FBF7LjmKqJJUBDoxjOgEjMYcoyQOzcL4aqC3wMD+i9PS9edd1vq4DyUfxJNXQgMacJvi47kqqlukTKOyccQEi7LGBsra+RgYptFjAGznqQ6gOAA2wzEVEKZN7Oqx6fw4kWDtJd+rPZy5q/GHnUg8lmZZxwlLs+JEE1fejrnATg+GYPlSjbF04Jq3H6PRWmeCgCUGM40eqsGpTXvP8xnoHPdg9P7k5t3wrNfqfHAvNVBqIi27BBAmQ0aYHgg1W+xKD6ERY806C6FBS4OMERhCI3USDrdDoEHt0Dw6O+TU+rx9jxn3Bekua98pelg2Ip5DhwrDucpzGorzcjrXvLXyPizag+SlCLlh4kh4SSyXBKILZJnMEjG5i+ENqU7K1cRljZLBYTMR4HqRyiePBaiPnqiRoTJBwlDKw13wOtSFhj5POR+84i/H9SbnpEs39KmLd5GQB5BdJOXl0uYcMc+tvNEtAE8hhKcm1ZzLAFuWXRM1YpMYK9+HqdCX3cOPsza3eei8eeU+g3Hb6l7CR/+U95Ojf+j10vDZO+qde3H3y26xguiRsxeL/2YBnwRGfMDw0QXDwBAhbkxUAtGbQ/zRrBK4cYBQHixWMCnNtbokwmvSdV7e/XD7LhcWFuCVpryfrDT0OuvkWqCV7oxaqa1XWinOw7Si0fJVCzF44WIRanypt2NN8yq3GFedt2b09TuLllfFx3+reiH3kxWDXmdbMQ52qDmBx4yk/WqsPZ+TNlGzDZmVCgNkYyGVlIbH0/zRsoN/1hEkmLyq3qpbd3xqWzUn5QPIrFpMUBGIjGZEpMVEbF2fz6FZ13ct8vw4rFdP91kffygMj9/6gNex8hPLTobprdph4BdwbmSIJDAEuJUwt1AYEQErGqhYMejyX7bNBzFPm+p9yWNSeV0TnugElCdKYr84gF3d6AnljYA3RF0NuNhLlEVqYAqT8k0ov7jVnJstDmxcK0j4Ff45q+Z6PNe9Gp1joxJoefFHqKQQw/ZUHA1uWwRDjSxWb290RCnLcuIStSAfKEJ5PgBLAcL/l/iU3MneUygRJa7nOq0KCve1CGAWVIDBWkwAMHQyL6CbzHoTuCKOJpZ6XBPDHCxEru4omCJXhxUY5sl0mHsfcLl4hnPCKXaoZS/JS486+KpRSD/5cKkkEEkLIxtSOqStvIA/AJYnBbhTyg3FPaVMdpJYmYLptcjFrPDysh7cwNJL0QDOJKqDGyRGEZ1vrDqNxDwnbD2p4Q5tKU6X8JOqIZfdRdgYGCI6Pb9SXnXnnDf1vYzb1SvA5JVo5EY+iHkhjRFD5XX6ByvfB3ld+CdMG7dGLhI5sDmQnYCQmfD6otTPJmGNzTVWP3XZv7mg+nQ7aVecfirxyLODR5odlQiz46T7309qzjdwzN0713B3m/yk8p6ZwLguVGd7KvbCYFhDNjpfDaTSTpYa+4sDZcBCa4JSh40OcbOmLXffPnbX0jThzDF4lBzJKDmWitJfJr2aO32+7rzi++pL1aZYRbGA0gZGlGKi89ExqBpLjGwXZb1A6BiVASAi6x2/hikfRV7D0OsVceCNjJjPVAdN1rYIUqg9Xfgvs6fEcj5asqe+UUz29HPkf/YU1c/co+5rii8OcN+1xsrF7NO1lmzYU0KZJhYshVsUk6XgRlW0PY2XrH/du8M016WPLM3M3Dr0YMGeEg8JWEAJDGsGlAoiK9CeEtdQndtTZMTQ2lOAFGpPF9HZU73ZExCnEztkti6VLN/Ncwp3zvrkELLr6jw/FrYEgkimLYGNCvLFdJBrTGYzwSDXApmNogYeZuopauBhZDaKGngYmY2iBh5GZqOogYeR2Shq4GFkNqKHRmKsQatIOcSI1fNYYKwtYU3JRlpU8j+rI0lRVBFTMjHmT9KJAZ1OiGULWdDJUjqdpGY/GDL78Wf3nOz9ObvHPcTn+VXxFYaJpeQCrXSGzZrHDYd3qFWZ5obJFGJlcSGFOErBVRZnpfzaxLqLFK9SFmtn5B8ol0mlfnDFghfVG7ISLOGbM/XOt3jg6bxk4R/f25+1oWVSGw6IEMsDwOtjH9vSWTZhjBRytWAlWFj4RyRRoN8deBgwylEUu4mgEqxUL9GA+rbicwzGAwPaw4kTO9uphpdQHiwJE4iDcAugkfKyH+zZoX69uvJ6gCxc/SreChv4teLvqDw+vxYCoq8c5g0qJMq3qoa9FdWEkgsj3cNEsOwWBm+l6vAiDL2oXUJ8dSlaVli5IYCdQCRCqROsBaW2ECnkYmGo6neDQXJhuOoedKguoxuqerMsE6uAsnRURxz/LKzLGeOZ1uWE8di6vFzvMSeWV9Xf49E0CRPmMRIM8xQ6zDVeJo052lsmKermYsskRd1cbJmkqJuLLZMUdXMxX8hwUd7L1KV7Hee++3Sx0+ObDdR8obZjE7N+z3/jkf3Yr39YwdsWpMUVWn3q0DmhGC8Li+sKOk3qacsxYtFhrbUcS57C1HLsaExFtxxLaXXNcOjmmW57uvqPm/+4ySo9aDmWMIWpgcvoKXrQN+nmzZtaaDnmE+l3o6n0vU/876vmTJLNMtKLlmPdGbVTWx+0o5WWY0srZw++PPWiZ+73LpdC/G+N04uWY89jmJQDrInulcPRZcux0ErFaf6iHK+8F4smhSw+OEOvWo6lMCovXDfK08+WY1fuFrl9/+bmkyW99del9ZPX6LjlmBuj5rg61xy8qcJajvEC040C2ilcE371bGdqOdBJL1qOIT4EbcsxYAhRPzWVQ+On/ptajhHbYui45di2qUwtxwKmaqflGLeO3/i/ow7yd37luPgJRq1gveUYsbgZC220NkxlaqMVM7WiWo7l/bzfwvVlS5cVxZuHF7gNWMl6yzGijWABqwBGrGym/k+1HFtJZ8b+K8L/j4rwE7sJaa0If9VYpiL8SdMqogj/eOtfB7+bBXjNbXfj5IugLXgSWfmyzVm2kfDApHIsU83yO9O0UoS/6EeboCwbU6+9xjOme9Xa1FrnRfj3TWNCBYwbvdk7aJb4w14R/mGP1lhy+oZ4ZA3ds6dZFZt2elOEX8Sout66UZ3Wi/CHpUQ0qDavpsPCYbcPru58KEXHRfgRK0NbRR1YGa0V4bfPX9P6wR+DHRctmbZx0cSsqnpQhB8xNrTgJE3TYhH+NzVMhy+UFDrkRvbJ3TzlynY9KGcBERIxIgTmNOq3pXFo/DY+r227X32u8jLuNd7yx+q3nfB1BJAkvnCZFKzoZJ/NkAbnLiUhEknJ/WgtDIC4XDYhOISrahqrSS0HYodF2rclVz1QE5aV2wccoUI4PYsAvhlEN6kA4BsfW97EKtOS1wJXUSwov/rvnT5XbXfqkdOisRe9OlTbiu+y+I96dxFcKKJhLKcLBcveXo2l62KXAmNOsRq5UDWV01ckDpaLqf1LM9tbD57y0x1nG236PedZ4jpChhRyI0WGlPJ6RZT93cb4/VNide0sqUamBo4SfGWJTCQJZKhtszzziSAn9rNXmtizqMn7gU3xYxV7AHmsqiQVoYx4RmWE60YZRPeHo0nEws4zTKYAy5cwEJ6dWrfvA7asYGcRasPt0CcwRCYX2XA79okYL1cgv1B7q9W3Z930mDjXIX5Uu9kGk9z749c1+AH+imgpRf/LElFFKGs4o7Lc9GLmwEdp5K2alRx0h02Qj4lgmEETfjZpN3LWWu9Dlaq//P1Gjwfl2SqXd+vQHjXkMNWzgFQXqgN/wMFYzbxU1JIzeFtHJAaTNrba5H7E7GaTpmmxA3W77QUApGMAFFIAAE2LRp4otpTRF5loFrZiWrB5FYfE9nVPiARtH+s02RcCMJYJgEzvWMzRXMX5d/FxiI25tcbHuT6diY8TNr2i+Tg3X+WP2X7Lzy39daP95rsm1dUDPs4f05mim7nT9YBUkJeXpwU+zrhmR1KXTg4U5LzkcNq9Ss/XCz5OJqN2lumDdrTCx4lrmFDvps9p570ukjV7BQcN9YKPE8eonDB9UA5Hl3wczuO/Q258Hum1+tWdSpJawxfoFR9nKKPyXHSjPP3k4wxs3z1u5iGFa1aecdSPXnYvdczH6cioucY611yF8nHMQjv3Hp+f47Bm8MS+l8S9hXrBx0F8CFo+DjCEqJ+6mvP/gI/Trf3dQVaRFt4LJ/d6devureU65uMMjWPi49jFaYePc8l8xz3njbvdE/JykuYMkp9nnY9D3JuzwDEZGMfEMXGMqyg+ztDD1+vbbJrrvrrhzRvdHnw6wzofh2gjWMDKjhGrBnH/U3ycNXRmbHyepJ3EO9PpQK6P9NnjYfja9Eb9J8DcSVe5MDyEnGGqQfiihbMkIhxmj6miOdG2yixTrhDWzAuGn0A58hyfhMbKV573mTlta9tDt5tcoH0/ciRHXUgaf9X9gQnzUU/FohiVxLynMo5K1dOIjZNa8zkOsDCXuRP8hx+VQ8e25pv2VuQb+4ulQGFikTuw61HY4xC1KlWZTqdKjXPSrFVju+Jz0oYH1un9LOgkf+GDD+fWd1wvVMtJ43674nvvY13XNZYdMt2/zT+glpNmbDQ98vpPBW/N8LFdTeIbKNRy0nYcN7vzM63QbfG6XY2nHhvsp5aTZjnqUPfxvdNcZ/eMOSSRNstTy0njDQ5/fnct32Nekd3+qd1OBqvn59uEb46dEOO8pHG3KmMXTeSrNZsZZPLq9baOLz1WDBqcfXPR5OtAZIiKDHd+P7+vksQzxzK20ebcwd+AqDoqqjpkwN9Oa3P5+56eShgbsDMMiGqgojZ3vVc/mRPpszH95/dhb9qdAiIjVNSozdcP79+NcYlf5TDK2OTtayCqiYruFb3fGPF3IH+5v9HI3fc6wuICxqhI8OTZ8C0b4r23ndu4rPL5kNtAZIKKZvuYtL/tms/LWWoQtvJjlStAVAsVTap6cllc56MuaQsvcPcP29sWiGqjom4v8qPH+gd6b9rz/GubHvYeQFQHFVWqxd92t8F21+mu9QuvFm3JB6K6qKil25Ci2i5zfVLDWnt459S5CUT1UNHtrtF5nQZGOs0a7Zdo03zVWSAyRUVPDqbOPLnA2H3666bH362ush+IzFDR7kv7ZzVI6MxfsexVXO+qz+FXNkdF/c9kPo9XNPXYH7Xh1ckYgS0Q1UdFj7pO7OVww4u/x2q2afU2+6cBkQUqenUpwG3Mb/0dc9a0/ulwXgYHmyUqqhnz/kVK/2lec4+2HXs+a9ZGIGqAinYtqzs+4tJmz/hRBms/xJlDkRUqahJyp2df447eazssm3ns2kn4WQ1RkWv8wVZ7b7l5zbcy21u9yjoDIGqEiix2Br/Zemy9Z+auz2camPVKAaLGqMjp0ZyojfHbnDZa2PY5UKffbiBqgoo2KczrfFo+3yNZsaJZvcoZ8DW4qGjLnpd3fvIHC9bNS7Tuu67nCVKyZVMOTbKlyNTCuP2l+16LRo/YcmGgfQiF2dA02XItnYkyCzq4M/XkGX7atqJJ5xrG4IPT1fhR4VKZiIJBQNeYtBV6h4rziZRajwgVSqXACKFV7MtIGSAaKMpXI59zooIy+iWxYC/YM56uC6mvDZ9jEq9ZE4gSRqXyRSi/20hHgV99UWXehvuO9Vr3afmKRUIly04uLFLbNZ4upmcBNsvN4jViA3TxAw6THDm7E4lhmV5ZhAShUID3k0hh02XVOOECD4orhFuuQEoUAx99cth10tA7JX/Ec4c7333xIVDV55BDoCUitneyEC4TRri+ztCLeDWZrqdh21BbdKKJStSlCBEqwP5lnJgLHBBVGyb6WKl/m/XHvpvle+4ouDZ4cdGxvoTTcvSxFKflmIRt7dW2RQe7M2UA2w4Z7KSIqYbANcWIPdihtZgIJHXNodoxi6pu+puXdTGVM3jg0+Ty04hYAMuEESww1NH1Zx3nv+wDNrMPiB661rIPHsQzZR+ka7ZWljH7oPieYuzKX+/dDlll1K0WMSyExcWSaIFYyD64E89E1j6t2WL5T7MP3IveL+y/6obzvnmTWx6fJFquWxoGzD5gRAWMGz2NlGgv+2BW/OPM/hZ7vGIHfOy3J/T9Mb3JPkhiVF2UblSn9eyD1j5fPkxJs3TJ6bTSquDtmhE6zj5ArAwtffw0hZdSUdkH63+ENvu4eYfTvEYmaQ3vxeDPA3WUfcAITnq8FrMPOjb4Mu9Mtw2uh6ZbmFb1HvdTT7IPkhgRAnMa9dvWc2j8tjMrhYIfPeq7xm1qXO1l88m5eG8U6Vnn7ywo+8GBI75lJOoJgx1iEPgV+F3R6n0VgbFFxyv0vVDXbUqZHCfi+SX1e5O9aEyiwTbw8SK0tQvJVXKAFcoXVUBvyReB1r92dFnmNsPjzy4Lanw9Swiyw7spguzI5dI8JaL9Y6FvywMIUDjVIOS243POL9IodmaBAISNC2uRRA6GL5BTL7YPHG9e3/fxhiBDIJxRNT7kDX5aOmM3k6dliag0wA4cv57S6Uqi18xKB9u/OdpAygJg2YyAgRGlEydKuWbAv+nEofshp3QaMujSCNElg1U9verUVEH8cZ+9M64unlNTllcXScYByuBHhcvFqtAd4tTyHP2tB7cpnwNMUO2g+Lv1GgY946c5H+s34+nzz2z0MGJUbYyOVEvlHydr1gCu9P6lL6e1Smnd+Zb7nBEKv53zQmN11r+UY4faJNi/NJy0v7VDphi6MG7g0CyMjlfr353Yba/D9mEjLRIHHsGXBjaFJTcV8OgTsnHFMD4s1qDrmb2TLBRAriz8iTxGVPIYZHNY0uxMBAZJmVZEYtiu9BcmqYPyrzQ4VJg/G4D+3JGiCdpoMPjls8ubq8cTqIECjxtgKV/obcjCuNZYAy+AnjKJD/5PadMi4Gm0LFJMk4FjFWF/dHeHw45LauT9GG0wUIK3MUgvVIoWcej10mxMouDmx+8TO/LWPXp3d/nWvsNYOJmYC2E2cKRo+5XSBoG5vEfCLdXUrzrdCpSFRYgDJyDDA7aQoD7dTD/+m/GbgjkuWw4dmlcQP6oLnlVQ8lzy9hcnrIiMJgS24VSwFdoisKEmYSOdSThn0vxDh64yr1nv33raXZnGJzYMDpcKA8Vc7wlSKYUtoHOYbbH7wuB9cMxKwiYKpRKRcpBHShQhXBnYpsjLbgmIUXqG96RqbKwm1sBLbjybLviWDtB9P6u8c98cLmpI+0MFbNcHjSREjJpr7Hh6Q8rPzoKldz+fetC+Lw/vPiMPIrvPysulTWciK4EFl6EBRC6eymWABZWrzqZ1n8uInJUKOTluqMGhRQnfkBlW7Rs83OOTOCZpbcysVpF4qjY6QKhDOngp643JrZGRxIDWvVladbCwFzUMiA4Xq+PQXI2zY+cJXFqx1A7+TYSdq9so6OQGi+UEljD8Ka/hNkcWSKhY8AiwqY5WqppSy8SFqTyTpJx6HW2HzoJiHhWp0B6ZBRodhFko25hCXwFZq7ChL6JetJ5kvY/dft0l2Whj4xMPniQSAhPwW1EEJpDLFQEFMsRpoQBDHF2oNnFoFiq9qVtPtJbstPCpgLL16bOYytYnqyDfrPeQE7lx7EAurjxyX72vxa5xBgX57bMq72EB8qg5TJCHzMEgz6CDXGNWZi0Mci2wMilIlBgrk4JEibEyKUiUGCuTgkSJsTIpSJQYK5OCRImxMilIlBgrc3HauWspghGuOyZ99pL6j69DorzBwUs5+oj0SxYob1vo9N/M84Tt3d01XDYbiMZcf1Ebr/96ysN+J6ksArqLSACH7JRXpZltzVwksGVPCOxxo3wAsqWE+0yUhlC28D6RclrqK5LAofojDdKjkmeCSVZIdXYN20H6ztTo7NpKGW1DskFkUDUAD/ALPS9oUJ3iqX6Ojl5bbx8M80n/q7A8sbaKPcYugPHRmeiyW0xKsAfb6rCZlH44HVZmKkqEOlaUKJ0wkE6/b7fIJ/PH1tpBHYsaskiLmD7A+9PpTVEuW2Rz3BIco4+xgJIvI0odZ2rWpN3GF5tXyGRDMMOmHNzqYdwz+lBJYuiRtks9nARxdyaIY8Li7XQYz4XtF5FBRBmQOwq2wVEzNXNj26qihxCiQLWaFXAFwtkmSnBqxZ/p2Tf2l9Om9Hv1V9b3MNKDqCUEScQIku9MzeK6LZ0lym+uOqoqGTJIYJHeQNkEr+3jW9jPdUOdQat2teUb4KOI2HPJUUSVpCLQ6c2IjvVMzDHK5NAsjK8GegsM7L84LV1/3mWtj/tQ8kE8eSU0oAG3KT6eq6K6Rco0KhtHTLAoa2ygrJ2PgWGygy78eaoDKA6s8kg+gCp/mPau8ET/Si5Sl71RfypGZSXUwx92IvFYmmUdJyz1CJlg4srbMRfY6bYQLF+qMZYOXHPzWRqtdSYIWGIw0+ihivKs7BbzfA0/r/XmNrXbTB6Ft0R8cC81UGoiLbsEEKbKjDC90XCxKz2ERow16yyEBi0NMkZgCI3USTjcDoEGtUNb6eyQU+vz9j1m3Beku6x9p+hh2Yh4Dh0qDOcqz2kozsvpXPPWyvuwaA+SlyLkhokj4SWxXBKILpBlMkvE5C6GN6Q6KVcTlzVKBoZNQjLA9SKVTx4LK6sla2SoTJAwlPJwF7wO5bf8+qJHwmbLCNdlC+063N/9k9CxEXkA2UVSXi5tzhHz3Mob3QLwxEN4alLNuQywZQlP1ohNYqx8H6ZCX+PSxk/PSNzgseRSmGFuYrvx+Oif8n5y9A+9Xho+s3/ZPduY8dN58c3Hy7xvDdzEAj7DGfEBw0cXDANDhLgxUQlEbw7xR7NK4MYBQnmwWMGktNsN34xp+zDNa8lm+wNOr5tn4JWmvJ+sNPQ66+RaoJXOjFrh6pVWivMwrWi0fNVCDF64WIQaX0rFLJz+4EaL4FGCrUuXj8iY32ACXjFeyP1kxaDX2VaMgx1qTuAxI2m/GmvP5wQla7Yhs1JhgGwspJLS8Hge9Liby+s8x5n5joX2E/5wwLNqnZQPILNqMUFFIOLGiEjbZGxd38ahWdd3LfL8OKxXT/dZH38oDI/f+oDXsfITy06G6a3aYeAXcG5kiCQwBLiVMLdQGBEBKxqoWDHo8l+2zQcxT5vqfcljUnldE57oApQnSmK/OIBd3ekF5Y2AN0RdDbjYS5RFamAKk/JNqLtFPWxpOeGnsUvqtMeLN+4yPYIffHSOjUqg5cUfoZJCDNtTcTS4bREMNbJYvb3REaUsy4lL1IJ8oAjl+QAsBQj/X+JTcid7T6EeSoT1XKdVQeG+FgHMggowWIsJAIZO5u10k1lvAlfE0cRSj2timIOFyNWsBUyRq4kqzHfQYe59wOXiGc4Jp9ihlr0kLz3q4KtGIf3kw6WSQCQtjGxI6ZC28gL+AFieFOBOKTcU95Qy2UliZQqm1yIXs8LLy3pwAzbZ5pCqmUR1cANjFC8X5hurTiMxzwlbT2q4Q1uK0yX8pGrIZXcRNgaGiE7Pr5RX3TnnTX0v43b1CjB5JRq5kQ9iXkhjxFB5nf7ByvdBXhf+CdPGrZGLRA5sDmQnIGQmvL4o9ROwyDljWaWVnvEHTpyeHGSFHzaVeOTZwSPNjkqE2bF6/hPLw2fb+uQMu9p4iMHo8nZt4oDZUReqsz0Ve2EwkP5cmK8GUmknS439xYEyYKE1Qamo9dhPuVbbneevXJz1suClMR4lRzJKjqWi9Nl4191isa/L+lNzToZuLh7HAkpgWDOgdH1hPjoGVWOJke2irBcIHaMyAERkvePXMOWjyGsYer0iDryREfOZ6qDJ2hZBCrWnO/9l9pRYzkdL9tRhIZM9Nf3PnmL6idk4aIf7hz2eS++Mmvy9bcxjFuwpsUwTC5aiN6OlsK5wexo6vnla89y+jsuuh4cV9rHdwYI9JR4SsICSKSNKnIq0p8Q1VOf2FBkxtPbUVGVPd9HZU73ZExCnEztkti6VLN/Ncwp3zvrkELLr6jw/FrYEuclMW4IdqjOV3XSQa0xmM8Eg1wKZjaIGHmbqKWrgYWQ2ihp4GJmNogYeRmajqIGHkdkoauBhZDaih0ZirEGrSH2STKiexwJjbQ9rSjbSopL/WR1JiqKKmJKJMX+STgzodEIsW8iCTvbS6WTZ80+rbAckCQ6e9fnd9Vd6M3y5jpI8VLximGJO5iUli8JgTSj0ATXIOa11XHz8vHgB1s0mt+/pN6WZjU+bMvmVxNKNVQWywHFikeomuq9ArjhSIisrPb0VnxOXCGxdVyeac86gRAr/0gCFi8K/RFwWgn+Z8iM2Z+3Cwe5Zm7d4Ozxpd5st/5Gx2nUJFtyJQrlEOEZKzRnqH97l7PJFOQ5Zq52Mujw7k8OM/kD0UVwfsqPkU6qjRKypWc6VKhZob2oi6iiRs+BaIdojOkpM/qRpiaNUMtApUbs2zrLZhwkc5z1TWt25vvuv94yo0TlNVMd95Q2IdEAhOepAAUl4BwQS1Ibso7MhqdkPhsx+/Nk9J3t/zu5xD/G5wlV8hWFiKbnIM535sOZxw+EdapXquWEyhVhZoEwhjlJwlQWeqUcnoXYrxauUxWMy8g+Uy6RSP+j1woslaePF/Qhj1Nve7LLl3kCHXQvXOfaYvG8v3Rg1HBAhlgeA18c+tqWzbAKcGYFSWE0aFg8TSRTodwe7FBgpLYrdRNAjVu6bpEcweJPnAT32cOLEznaq4SWUB0vCBOIg3KAwUl72g31/1K9XV14PkIWrXyWUkfZoxb+xYF5+LQREXznMPVZIlG9VDXsrqkVZLox0DxPB0n2q0V4dXoThW7VLyH5fipYmVxp/2E1IIpQ6wXpyKtVU9VfIxcJQ1e8Gg+TC8BIDohyq++mGqt649sRKwiwd9xPHPwu+/Z/zmHz7O/Mw85Cl95gTlxP9DbGcZ0wOOqxKDjpAh7nGrrYxR3uuNkXtbczVpqi9jbnaFLW3MVebovY2tp8yjx3XsUt/a7es1HUN6zduUFVtPzXpy8vMovUzBIcedL58ZrP7FpKDDq0+5UAiFvRmwUHPptOknrYtJBYu11rbwgeLmdoWRi2u6LaFopYWnWeceuuzrWO1gDtdfhPrQdvCO4uZmkCdXqwHvdcuX76shbaFrYeuzBLF1/NKMx38vqFF6my9aFu4j1E76fqgHa20Laz58Umf3+4f58/8I/H+wRUG+EbPumpbmMSonCh9UA5Hl20L48427fxjBMc796TdujppG/H1EXXdtlDEqDxf3ShPP9sWyq5cWFtcUMspt774k28Li9Y6blvYm1Fz1jrXHLypwtoWPr6ReO7Dgode+z2Spk+dOPaqXrQtRHwI2raFwBCifupBDo2f+m9qW0hsraPjtoVhS5jaFjou0U7bwnZmAqd2Ht/4GYmBFl3Sufh+3Gy0LSQWSGShFd/YJUyt+AYuqai2hQf2r3sQeHOR8+FT3YsNG8sMyj+FCVgRbQQLWDkyYmW35H+qbWEOnRn7r5HHP2rkQexIprVGHo2XMjXyuEe2nSw08nj18OiZ91+7e2YF9Us6+251EYsVK1i2kfDApMFSpr4HVZdqpZEH3+ONz9c/Fzgceb3tZm7dFvj68bpo5PF+CRMq97RrDRn3DpolD7LXyCPtc9LZeecqeSdNj/lyqMGwSXrTyOMso+qydKM6rTfymHyqbgfjb5cEcY1GhhvNjjHRcSMPxMrQdmIAVkZrjTymJ9e6svPAdPdNBs/b1rjAu6MHjTwQY0MLDjA22mvkwRnb/82XOVuc1/TNckueXD9LD0riQITOMiIE5jTqtx3i0PhtfF7bdr/6XOVl3Gu85Y/Vbzvha5EgicDhMilY0ck+myENzl1KQiSSkvvRejoAcblsQnAIV9V4WpN6MMQurbRvS66coiYsKz8YOELFcHoWAXwziG5SAcA3bWl5kzNNS14LMoiUWFB+9V5HgmxXxd13yl0XWdhR9ju+2Og/6v9HcKGIhrGcLhQsnf3nUrpOmClg7BZq5kLVVE5fkThYLqb2L32fdUgo+vM3ftq34qG97d6cJGRZIjdSZFkqr1dE6fATjN9/11JdO0uqkamBowRfWSITSQIZ6mMdtr2wNbd9gs8Mt/Xvo6NHWOLHKvYA8lhVSSpCGWmMykjQjTKI7g9Hk4iFnWeYTAGWL2EgPDu1bt8HbFnBziLUhtuhT2CITC6y4XbsEzFerkB+ofZW7yb1DX48Zj9/+5DECR7bax7Cr2vwA/wV0VKKHroloopQloJRWaP1YubAR2nkrZqVHHSHTZCPiWCYQS+y3j0bEbPIY3q/9TtfJu45Up6tcnm3Du1RQw7TxQtIteU68Adc1tBLRS05g7dVzPV0PWa9zWfu2Sn8zQ/9Z+p22wsAyMYAKKQAAJoWjTxRbCmjL1Szbef3dZea7uanNgx5U9DqTT3CUqbdggEQgDgmADKDlmKO5mHOv4uP4/RoTtTG+G1OGy1s+xyo02+31vg4b5Yx8XFmLatoPs7mn14v3UyqeC7ysOv4rvaHQD3g47xcxhTdvL5MD0gF2dnZWuDjFA38Ih+6otB7VdSAZ2lfvGrpBR/nGKN2duiDdrTCx+lU7JTk++aw58alxwpD/9obrRd8nFRG5czSB+VwdMnH2eB/cesO7xj3hY3WpTiErnuoV3wcOaPyRupGefrJx3mdfUhWZWQbh7iiY6+3df2VrmM+jgej5rrqXHMVysfhJsninowTOK6q0zRvpIdlil7wcRAfgpaPAwwh6qce4fw/4ONsUpjX+bR8vkeyYkWzepUzNuqYjyNfzsTHcVmuHT5O/3s1fl/S7y4/Y3x+v4F9BINY5+MQ9+YscEzCljNxTIYuryg+zide42nmg856zVv6dkng97RM1vk4RBvBAlYujFh1XP4/xcfJpTNj4/Mk7STemU4Hcn2kzx4Pe4uPlPSfAHMnXeXC8BByhqkG4YsWzpKIcJg9pormRNsqs0y5Qlh3Mxh+AuXI27Ln5Z2f/MGCdfMSrfuu63mC9v3IkRx1IWn8VfcHJsxHPRWLYlT+w/xo1dOI2e2t+RwLWNzP3An+I+R/jm3Nv1F/Qb6xv1gKFCYWuQO7HoU9DlGrUpV5dKrUOCfNWjW2Kz4nbTO/s5Wp3VWnpeFTAg9Uck5Ty0m7npK1O+YPOX/ffseoIlFCkVpO2rXa86RzLV87H34nlvdNO9FHLSfNq8Mj//S2S/grDsRvH1qU3UgtJy0hevW0ITO4Xkmn7UZ1+tj7m1pOWqMXJ5dJ8q34eYeq357+cluBWo2PrkuXcgTN97pvOTJ4XsF7V0e1hlXzcodO4p519d4+eXnwpEO3PgKRIfbAoPXdm29Z57qrYdP3cTV+uw9E1TGRbGVOw8YzHBamXqvLO9JECkQ1sJe3HFkQ+iTMa3P7gC2K2bdrA5ERKtrh/6fLp9+jvRM2jvrW9+uwRCCqiYoGjZTN/5wVyVsnFHTfKNsHi2EYo6K1q1rcmbZ+oPOMZe1aezWoGwJEJqjojldy5IE+RwQzR1+/V7vLgr5AVAsV1d97+mqs7023xGHb7nU8mlEPiGqjIlnN1CPH+3TnbWgT3PzT7obmQFQHFb0L61N71YShLuv3vvGoW/vmViCqi4o4KdZehQFVXTYeP5HoM2jWCCCqh4q2VloyObzaR5/dVq3cdmY9aQFEpqio55o6Jxe0TfKedyfo4tcpXo+AyAx7jYf9uJGvGzvvS6gWeLvPoV1AZI6KfgVZv205NoM3a1aMx+uRUjcgqo+Kjgg5y9ed6+I216/JU+8esZ+ByAIVjZsWM27nwQmes3cljXjw5FpPILJERV2evN4Z65HnNXforI5rjz1/AUQNUFHieIX38Bl1BDOHTti2KC7FB4isUNHvVV9eqhZrKtjT+ZthjezxhUDUEBWZjvZo1qlHpsvhHw/kTSXOS4CoESqamjc1e1my1GPx8ROWZx+chcg3xvQlabih+YYb7od/O/WL98ATDoAmqOiCm+9x6ce/vROajbeUBSQsByIuKno040XU1JfVeatOn89tlnjLhZRs2ZRDk2yZdnGlkW3cdI+tt74Nv/TL+D2F2dA02fIonYkyCzq4M/XkGX7atqJJ5xrG4Ldl1fhR4VKZiIJBQNfcuBV6h4rzibRriAgVSqXACKGdMMpIGSAaKMpXI59zooKyVsgAe8HvKfk0nYx9bficghTNGsmUMCqVL0Lt/7ddPPKHsK7XzBTuKO6BG31ZJFSy7OTCQtefU+hiehZgs/w4RSM2QBc/4DDJkbM7kRiW+pZFSBAKBXg/iRQ2bleNEy7woLhCuOUKpERRmPbiGH/LJ6cU6T1ZlVsNV+BDoKrPIYdAS0Rs72QhXAWMcB1O0Yt4NZmup2HrYVt0oolK1KUIESrA/mWcmAscEFUrN4ZuXAdN/QZ9u+18pPOAdt0e3+ETTsvRx1KclmMStrVX2xYd7M6UAWw7ZLCTIqYaAtcUI/Zgh9ZiIpDUPYsHNuZs67raO+l+rfs9m77klZ9GxAJYBYxggaGOrj+/c/7LPmAz+4DooWst+2DTCqbsg6AVFZF98OGv0VEfrl7zXnjtiuuh5nWfs7hYEi0QC9kH61YwkbXnr9BK9oHcqaZ74lNv/oLb1YIW+85prvPsg0mMqIBxo6eREu1lH/xcO2HR2H4mTlkmd/c/XLmghd5kH/gxqq6vblSn9eyDKwMaDjGMmOh2ONm+7dZz8+N1nH2AWBla+jiwMlrLPpi/3Mlg1ZDZjrncYdIuy1bjCyboJvtgEiM4QSu0mH3Qu/FE78Rre1zmGgyp9mZg1HA9yT7wY0QIzGnUbzvGofHbzqwUCn70qO8at6lxtZfNJ+O1boj0vfR3FpT94MAR33YW9YTBDjEI/Ar8rmj13qzA2KLjFfpeqOs2pUyOE/H8kvq9yV40JtFgG3hnM9oeiuQqOQANpG2ugP60davZnJOE7XJcf3rN0pwqvnUIQXZ4N0WQHblcmqdEtH8s9H4qhACFUw1Cbjs+58RmjWJnFghA2LiwFknkYPgCOfVi637ySN8XG3bxVnV6nnfWOe0Yflo6YzeTp2WJqDTA9v7eqn5oQC+fhYa7zhp3zStvzXsI2C5GwMCI0okTpVwz4N904tD9kFM6DRl0aYToksGq8p7e9hk+8IRrirvNosYxRR/rIsk4QBnkkstVeY7+1oPblM8BJqh23/efa9485bmk5vaNvTapxQUWVJvAqFqFjlRL5R8na9ZEsvQeyIpmj8YObWbpusbQb1Mzh5w8nfVA5tihNgn2QA4n7W/tkCmGLozHOTQLo+PV+ncndtvrsH3YSIvEgUfwpYFNYclNBTz6hGxcMYwPizXonGjvJAsFkCsLfyKPEZU8BtkcljRMFIFBUqYVkRi2K/2FSeqg/CsNDhUC0gDozx0pCoyPBoO/e1p5c/V4AjVQ4HEDLOULvQ1ZGNcaawII0FMm8cH/KW1aBDyNlkWKaTJw3D1u8NuFRvGWWUYpPnR6i2+zXBXpp0zRZhK9XpqN+Sv6yIXQ77OclvRpP6b19xUfWDiZ8IUwGzhSlL1OaYPAXN4j4ZZq6ledbgXKwiLEgROQ4QHb0FCfbgb17tGtielXn1VrVk4xys/Ft6IzKnkuefuLE1ZERhMC23Aq2AptEdhQk3CCziScM2n+oUNXmdes92897a5Mwx9zG/uJw6XCQDHXe4JUSmEL6BxmW+y+MHgfHLOSsIlCqUSkHOSREkUIVwa2KfKyWwJilJ7hPamao6uJNWmiupIu+JYO0M1eWd65bw4XNaSFqgK2/IRGEiJGnVJiZHH28cfKgoOfbwbNEk/siHefkQeR3Wfl5dKmM5GVwEbrVIhcPJXLgBRUXknrPpcROSsVcnLcUINDixK+ZXVd082Tq3guzzwY0Gdo5gg8VRsdINQhHbyU7VkM0cpmRGvDSq06WNiLGgZEh4vVcWiuxtmx8wQurVhqB/8mws7VbRR0coPFcgJLGP6U13CbIwskVCx4BNhURytVTall4sJUnklSTr2OtkNnQTGPilRoj8wCjQ7CLJStkKGvgKxV2NAXUULxNnfW0jCvN24H3j140bD25SaEwAT8VhSBCeRyRUCRzQgFGOLoQnWSQ7NQ6U3deqK1ZKcNWAWUrQ9ayVS2fqAK8nz9h5zAjWMH8s7vxqRNPljXY9Wafh/P1hKX99QIQt53NRPkdqsxyE/RQa4xK7MWBrkWWJkUJEqMlUlBosRYmRQkSoyVSUGixFiZFCRKFSuTTKLEWJkUJEqMlSn1PV1QvUYDp7UeYbMafBZ8JFHe4OCl3oQS6JcsUN5O0+m/mecJ27u7a7hsNhCNuf6iNl7/9ZSH/U5SWQR0F5EADtkpr0oz25q5SGDLnhDY40b5AGRLCfeZKA2hbOF9IuW01FckgUP1RxqkRw1MBZOskOrsGraUNU/V6OzaShltQ7JBZFA1AA/wCz0v6GtQ1eNrZC2csw+P6X4srHhoeWJtFXuMXQDjo6nosltMSrAH2+rOqZR+OB1WZipKhDpWlCgN+zgp71IlOS/nUVornwOHKrNIi5g+wPvT6U1RLltkc9wSHKOPsYCSOSNKn1eQDx+Y/DQbX2xeIZMNwQybcnCrh3HP6EMlwT9a98tNa82Pu9RlpZFni1o6jOfCFq7IIKIMyB0F2+C+qZq5sW1V0UMIUaBazQq4AuFsE3Wyprd9t29/7PHIbrV1TSXBxAV6ELWEILVlBMk8VbO4bktnifKbq46qSoYMElikN1AT6/UfN+SPxV5bOx5I/M63xTezM8SeS44iqiQVgU5lRnTeqGK6Zzg0C+Orgd4CA/svTkvXn3dZ6+M+lHwQT14JDWjAbYqP56qobpEyjcrGERMsyhobKGv3dGCYPkLYzlMdQHEAbKc1W+rKFqbNTRx25frNpy577QZEWCyxqYk/7ETisTTLOk5YmhUnmrjydt0GdroYguVLNcbSgWt+R7O1zgQBSwxmGj1U98fuG13NNN999clRj3b8lZ+Mt0R8cC81UGoiLbsEEKbTjDDtS9VssSs9hEaMNesshAYtDTJGYAiN1I083A6BBrVDZ+nskFPr8/Y9ZtwXpLusfafoYdmIeA4dKgznKs9pKM7L6Vzz1sr7sGgPkpci5IaJI+ElsVwSiC6QZTJLxOQuhjekOilXE5c1SgaGTexGgOtFKp88FqDusFEjQ2WChKGUh7vgdSi/5aRL9uYuhesd5o2vtCpn+87xeBcJeQDZRVJeLm3OEfPcyhvdAvDEQHhqUs25DLBlCdmoEZvEWPk+TIW++FN8hQWL1wpyAyeKXZol/IaP/invJ0f/0Oul4dPDa3zRj7RPXgf73DmXcuzVOxbwCWDEBwwfXTAMDBHixkQlEL05xB/NKoEbBwjlwWIFk9K+Ri/22Znt4rXQ77NxWspzPJW8qvJ+stLQ66yTa4FWbBi1YqFXWinOw7Si0fJVCzF44WIRanypS5KkRA/uGurhOGNd1cHGnTmH8YrxQu4nKwa9znqPaDvUnMBjRtJ+Ndaezxm5UbMNmZUKA2RjIZWUhseXT12NB/NMPBN+frJtbN+5KZ5V66R8AJlViwkqAhEHRkSabcTW9XMcmnV91yLPj8N69XSf9fGHwvD4LXzkCP3EspNheqt2GPgFnBsZIgkMAW4lzC0URkTAigYqVgy6/Jdt80HM06Z6X/KYVF7XhCe6AeWJktgvDmBXd3RDeSPgDVFXAy72EmWRGpjCpHwT6u3tky9V7N7UdM30532+s2ID/jS2Gp1joxJoefFHqKQQw/ZUHA1uWwRDjSxWb290RCnLcuIStSAfKEJ5PgBLAcL/l/iU3MneUygRJa7nOq0KCve1CGAWVIDBWkwAMHQyn6ebzHoTuCKOJpZ6XBPDHCxErqZuYIpchakwv0CHufcBl4tnOCecYoda9pK89MDTu02QfvLhUkkgkhZGNqR0SFt5AX8ALE8KcKeUG4p7SpnsJLEyBdNrkYtZ4eVlPbgBm2wTSNVMojq4gTGKok35xqrTSMxzwtaTGu7QluJ0CT+pGnLZXYSNgSGi0/Mr5VV3znlT38u4Xb0CTF6JRm7kg5gX0hgxVF6nf7DyfZDXhX/CtHFr5CKRA5sD2QkImQmvL0r9jOtaP7/K5aeC5AG3LZ/uT5uO008lHnl28EizoxJhdrSusfYtp8l4r9V3+wXmXSo+Xt4zEzA7akB1tqdiLwwG0r825auBVNrJUmN/caAMWGhNUApYb2Pa1ecv7wVLrqd3irjsjEfJkYySY6kozXln8+7aqkTPOFvbjGHbJpU3uxSiBIY1A0oXN+WjY1A1lhjZLsp6gdAxKgNARNY7fg1TPoq8hqHXK+LAGxkxn6kOmqxtEaRQe3rxX2ZPieV8tGRPu29isqc1/7OnmH4GuJwYO7Nxd5cDLhNrXxo1RM6CPSWWaWLBUnRmtBTcCrenPY1W2SbfmOKZGjIso9dqgzAW7CnxkIAFlGoyovR5YwXaU+IaqnN7iowYWntaU2VPL9HZU73ZExCnEztkti6VLN/Ncwp3zvrkELLr6jw/FrYEWRuZtgSbVGcqBXSQa0xmM8Eg1wKZjaIGHmbqKWrgYWQ2ihp4GJmNogYeRmajqIGHkdkoauBhZDaih0ZirEGrSDnEiNXzWGCsXWZNyUZaVPI/qyNJUVQRUzIx5k/SiQGdTohlC1nQyR90OknNfjBk9uPP7jnZ+3N2j3uIz/Or4isME0vJBVrpDJs1jxsO71CrMs0NkynEyuJCCnGUgqsszkr5tYl1FylepSzWzsg/UC6TSv3gigUvqjdkJVjC+DbLvB+2OO6dtGjeoiMP3j2js4SGAyLE8gDw+tjHtnSWTRgjhVwtWAkWFv4RSRTodwceBoxyFMVuIqgEK9VLOpRuBXY864AB7eHEiZ3tVMNLKA+WhAnEQbgF0Eh52Q/27FC/Xl15PUAWrn4Vb4WrerbiTzy/Lr8WAqKvHOYNKiTKt6qGvRXVhJILI93DRLDsFgZvperwIgy9qF1CfHUpWlZYuSGAnUAkQqkTrAWlthAp5GJhqOp3g0FyYbjqHnSoXqEbqnqzLBOrgLJ0VEcc/yysy4/XMa3LV9dh6/JVvcecWF5Vf49HFzES++NUxP5rdJhrvEwac7S3TFLUzcWWSYq6udgySVE3F1smKermYr7QMpcvDXrF8Jz2HeINWzx8H0/NF+rn6uBePDTRJedqUf3UNcHrSYsrtPqUA4lYjJeFxfU6nSb1tOUYseiw1lqOFWYwtRwLz6jolmP7WycfKYjxdlvsd1ohG5TE1YOWY1czmBq4HM3Qg75JZ86c0ULLsRd/OtWoteFPj5wz/VMOTOlorRctx7YxaidFH7SjlZZj35/sdbc/YeKyu1ZxP3FKDp7KqKuWY/GMygnXB+VwdNlybN25azF+a/p7rah8ZVnI3wkd9Krl2HBG5bnpRnn62XJs2ovEpKpD7vNn/BzyrPmqfI6OW451ZtQcV+eagzdVWMuxoyddW1hZVXLPSx+/songzx560XIM8SFoW44BQ4j6qTc4NH7qv6nlGLEtho5bjgVtYWo51nOLdlqOGdibP567+TgvznzLgfXbnuL5wGy0HCMWN2OhjdaYLUxttLy3VFTLsZe1BybWeiTz2HzLpGjhlj2zWW85RrQRLGDVkxGrVlv+p1qOFdKZsf+K8P+jIvzEbkJaK8JvnslUhP862XayUIQ/vK97u7OtL3lmHWgn25XnvofFbHOWbSQ8MKmbyVSz/CfZRlZEEf4jnxvm1uC19Mys1bXtioNZ+CKzuijC/3ILEyrXtWsNGfcOmiX+sFeEf8L9Sa9HSG0Eay7PGNah+SB84Q1dFuE/xqi6HbpRndaL8Hda+abeoBpzXBbnCYODEnpa6LgIP2JlaKuoAyujtSL8iZur3TKvVEuw5nryg+rZfcz0oAg/Ymxowbm+RYtF+KfLNjxcUrmRa+zBnRv61Y44pQflLCBCxxgRAnMa9dtucmj8Nj6vbbtffa7yMu413vLH6red8HUEkCS+cJkUrOhkn82QBucuJSESScn9aC0MgLhcNiE4hKtqGqtJLQdih0XatyVXPVATlpXbBxyh53B6FgF8M4huUgHAd0lmeROrTEteC1xFsaD86gXvgjoHe2T47D91pkXk6cv4RnX/qHcXwYUiGsZyulCw7O3jTLoudimw8VemRi5UTeX0FYmD5WJq/zKiQZeeVYPuO+Scu39w3KZq+KOUqs7IjRQZUsrrFVH29zDj98/I1LWzpBqZGjhK8JUlMpEkkKG2jeGxkZE2YZ+915te/vPs5BZ38WMVewB5rKokFaGMJYzKiNWNMojuD0eTiIWdZ5hMAZYvYSA8O7Vu3wdsWcHOItSG26FPYIhMLrLhduwTMV6uQH6h9lYrv8qpXXXiZredit9uyZ8cccKva/AD/BXRUor+lyWiilCWlFFZg/Vi5sBHaeStmpUcdIdNkI+JYJhBiUYZP7M/VPY80KW2zSrH483Ks1Uu79ahPWrIYapnAakuVAf+gDOZmnmpqCVn8LYu2L16Vjfb0ycpcGj4MdMm1XW77QUA7MIAKKQAAJoWjTxRbCmjLzJxIe9Qp6a3znhkz6j6rdmn3BWEpUy7yb4QgElMAGSOzMQczVucfxcfh9iYW2t8nKdbmfg4U7dWNB/nnsGFiw0W9HDZnPF2U/t9E4P0gI9TtJUpunlxqx6QCnbt2qUFPk6tv1rcfFurp9fmLwkugUFjn+oFHyeHUTub9EE7WuHjREx+a7/hxFqftE1dhvX+27CtXvBxFjEqZ6o+KIejSz5Ozu3V2aPt3jjMrmdUu/j5rji94uOMZVTeQN0oTz/5OH8a+HyLNarrPDPN/Pu5jdU/6piP48ioOTuda65C+TivPYaFnIw665FoerAo5WOfTnrBx0F8CFo+DjCEqJ96m/P/gI9zwc33uPTj394JzcZbygISluuYjzN2GxMfp+827fBxWq3I97eZNoq/7Hq7xyf2/JbFOh+HuDdngWMStI2JY+K3raL4OP2NWr0e8qanR65lQo8D1XkfWefjEG0EC1j1ZcSq7bb/KT7OHTozNj5P0k7inel0INdH+uzxsLf4SEn/CTB30lUuDA8hZ5hqEL5o4SyJCIfZY6poTrStMsuUK4Q184LhJ1COvEczXkRNfVmdt+r0+dxmibdcaN+PHMlRF5LGX3V/YMJ81FOxKEYlMe+pjKNS9TRi46TWfE5NWJjL3An+w4/KoWNb82fW2JBv7C+WAoWJRe7Arkdhj0PUqlTlXTpVapyTZq0a2xWfk5Z1xbrpj2tTXdbaLTv/6e3ScWo5aWv6nrCpn/yb4yFhs22PGnpaqOWkTZ0Yx+1Wtaf7HMeOO3IEAVK1nLSXz4wOtl3yzXXvK5HH5I+titVy0oavaVWba7nFc+6P34q8L/wpUctJc/15aoVkUrFPUmHdTC/TR2PV8vNvdlsmX/iymiBxqN+2NKcJqWrNZjIfzVnrvWsPb+egqPatInyOAJEhKuoTmjFj6vuXruti/jjZsrZBChBVR0VLJ6afDGhq4pgnT7P5PtxnExDVQEUu9TdvsU//5pIyK/HytntLfYDICBU1Ulh0fndDzku4+5vZPs+uMJG9JirqXv9KpXp/yAV76vUNN3uabApExqio/zyX4pHhJ/jZg5Z/3fyrfwIQmWDfq/EfK9zc73lvOVu5helL805AVAsVRd2z3sifWp+X/XDJt6cL958Aotqo6I+VU34ZH0hwSTAWBtQb0n4WENVBRbULe08WJ1f2ydsfNEFR88QjIKqLit6+fWryfIOh08IuxebvVjf5AUT1UJG3R0j6tK0R3muvhT5fcOXwRSAyRUUOrfg+Tzss5+0cMaKrQVDATSAyQ0Wv6jxZ0KnuAveMv694Xf2r/i8gMkdFdQumv0x68bvPokF34yWHPX8DovqoaMnmnicP9mgrWGu2vfJI40prgMgCFdnFJ60fc/yX29y32Y7df/yxEYgsUdGQfq87Kpp1clmadOfHvCNmUMsNUNEMP5OOdfeYumUOW259pYbiCxBZoSK3xfLTp5+ucZ312nD2nYZnzwBRQ1QU0KKWieyDB+/AjYOHzTkWEMNGqGi5SX7f7rM6u2Z/WnBIGtwgGIgaoyL39J5/Ls/t7LOwONdv4sgdC4GoCSoqqlprqmmIOy9VUXlY68Ohk4CIi4ou/DFqaf8qj7228g657l2+RURKtmzKoUm2bCG+/myr3QXv2BFHrgzJez2XhWTLe3Qmyizo4M7Uk2f4aduKJp1rGJOOP0zkR4VLZSIKBgFdY9JW6B0qzidSaj0iVCiVAiOEVrEvI2WAaKAoX418zokKyuiXxIK9YMx2ui6kvrAD7HbNmkCUMCqVL0L53VZFvxkprzTWYVno4phWky1qlydKVLFOLixSG7WdLqZnATbLou0asQG6+AGHSY6c3YnEsEyvLEKCUCjA+0mksOmyapxwgQfFFcItVyB1js/G8KPnBW8cV039Xdi897hb+BCo6nPIIdASEds7WQiXLyNcvbfrRbyaTNfTsG2oLTrRRCXqUoQIFWD/Mk7MBQ6Iqg0Tfaz0bNWbE8YL2rnvedXCvMEAey7htBx9LMVpOSZhW3u1bdHB7kwZwLZDBjspYqohcE0xYg92aC0mAkndevXBvvr1ph1wPjJ4+SaDrUPXlZ9GxAJYvoxggaGOrj/3OTTrz3/ZB/8o+4DooWst+6DZDqbsgyLN1soyZh9USph+PWbfWt6+VYKcQdYbd7O4WBItEAvZB413MJG1a+zQSvbB0eX1Wo54b86fMXBznwE/k6J0nn3w13YmVIp0syaWIVKiveyDgiz++Kshcz0P3/m+8tWCm7v0JvvgIqPqcvTVnWE5+2DzoKCPB6dH83dOfbI4YXkyoR+S1rMPECtDSx8HVub/2LsOuCaW5x8VFcWCYK+xowJi70oSOqEoiL1ECBANCSZgL1ge9t472EGf2BVQ9KlgV54VuyL2hoq9/Xcvd4G72zsSOZL8/T0/H9+TW+5y+c7szOzO7HcMdvqgE082ZP/kDuJJ2XujWtU/S86qG+f0AWZsGMHJ/NuApw8WlX/DDxaGeO6tUH7sRe+KZiZy+uACK0JJ2rjtPo8hbju9SiL+0aGK6+TNtUs+rz82hRyNYj3r/JzEum8cCMktI/FIGKwQg8GPIO4anbevIjC2uL7C2AsP3cbrdg6Bsn+Jfm96FE2M6LEMLH0Ib+1CC5UcgQTOJBdCb8nTT7vXsW5203FmkeKXGkmqtKMk2eHdiCQ7djm/SIlq/zjo21ICAhSOUkJ+M2feu2S9cmdVMYAIvbAJkqmA+oJxtLN1EHU9V/F9pMehhXVe+HbtMZc8LZ2Im+nTMncoP8B8x2RIJw9OFcaXq7GimvDdIg4Au5vMBhjQKKMEURqfAX+nFY/pD/1IpzmLLC0wWbJY1Ss+l2qn/2rgtEC1PvJTndpPrLDDOEAYzqPCVVJt6g4LagVCP5veTQoWAFNEKxhu2Wp431rO8z+tmx0x5JE3B6Ldzyra9UYSLSo+nq9fA7j8+5e+H3BqZPSobOftLZvOK+5r19Jo/Ut59rhNgv1Lw2nrW3tsiuGO8QGPwTEKr1S5M6LdHse/+w2sOivgMJkauCKk3IyAW5+wGlcK88NSPbqeNRcpwwDkGuJP7DFBuY/BFoe5zc6CgJLo5BGpabv8X5gmDuRv6bGpkL4TgP5UiGiCNhgo/96dBT2rJxDnAQVuN0AqXxhtKBV8G6KBF0BPc4gP/ktj09RwN1o5UspwAqfv14aLvlSLEywo+j2114Wbt8k2BuuFimgRh1/P18Zc++vRq637HLcdvF1mUu1R8RzsTJyDMJsJEW2/ljfBYC7olnDDPOLX7m4FKhVqaWAkph6whQRD17lG1/yKtmvvtTVNei/z3tA25KqC3OfSl7+kwcI40YTB1h8FW4YdBhtuEjKZTMLZcvXft2ir9Ip+98bT/vJEZ2rD4HC5JFDK946UyxG2gClgtiPuU8D7oM7KFCMkclmQRslHyiJC+UqwTFHpbgmoWXqW90Q1Ns4zrEeUPHgnU/ItBqDbusBzvzJ0alj7wwjYrg8aSYgYEoD2N1x7leq6UBBfwXKfd7na9cnhM/YgevisuZzfdKZWJXAQMvSHyE1FhQyQUNltJ2P4rCNyNbTIqUiqBlULnbeOfzvswRq+d3TRUUPtc3wnkku1cQVBp3TIo5w3JrfBNIkFLf5OgwZYxIua+48Ol+bFoX6emh17TxDSSuX28HfU9q5ug2CQGyJVUaqE4Z+CGu7KmIOEggWPAIvq0RpRI6VMdUwFmSQFlOtge3wWZAtQRYXNsVmg10ZYVU0bUxgrYL6KUP0gJBQXq5YrN/GWSrBwWoZTz1PFf1ISE/BbIRIT2OXCgKI1KxR8raN6yGNwVCbDW0+1lty08CkE2vrMBDba+ksJBORZJg85tTaOG8gldX951Rk20XWbW4mqNVo4XuUA8qTdbJDH7yYgf8QEud5VmeUJyA1QlYkooiSqMhFFlERVJqKIkqjKRBRRElWZiCJKoioTUURJVGUiiiiJqszMVXW+tdzd1Gtjv5CzM/d52dNK3qDyIrWPWn7JQcnbYyb51/M8YXdnV2mXLWZBQ649syTL31qz2S+SK9UwXMQSOPSgvATDbKvnIoMte0JhjxvNA7AlJVxn4mUIuqX3qSWn+b4iDRzUL+lxPOoSTC9loPauYTvIhTv02ruuocm2YadBlFA0AA/wA3Nd0NfTao/eW6u6bb7vMPaRR+qAguTaCncbOx3mR3fgbjebdsAeLKt30hP+bFhV0pZE5MUKiVJYstvzV9v/Fh20drVu3z2uLodlEZN6en84tXmUS5xyhtt04ehjHKC0kBWliB36NWm39SXmFTbZMMyIKQeXekTtGXOqxP/yiRVOb4e6LR8YHN375e2xRsznwvaLFxjzuUfBMjhJz3xuU232EEIUmIezAnogkm1CZy09/Zzu/lVKPKmJ07wLneJ+mkDWEoK0mRWkhTv0y+s2dJJpvrl2qypXZbDEIrOBetT9a9Nhj5p6JVi7/ft97doochaReC49i6gdKQx0JrCiM3QHERg94TE4xhcB3mKz5l9ESzacc4n1ce9L34ine0IzBnDrkvO52lK3kUq9aOOoByx0zQ3o2vkYGKZwGMKfQ21A8QBsTgmFkKZdeiI7IrrtFNe1K/tWE1++dpe82YnlYxncOmkwPytONXEF7ZgL7LQcguWL0rEYEJr3TtDL15XDwJKCmcYMVc/UFRUOre3tcjhiuxv/tA3ZyZVyBveigcozZOCQAMLkxAqTQ4J+zi7/FBo112y0FBq0NJiOwBQarZNwuD0GDW6HnjLZIVHjc807TLknjnGJfRvRoVot6j50mCScr9mnQeyXM4XmjTX3Edke7FyKhK+QjoSXpCpZIO4gdTJL1MNdLG+I2inPM6xrlgzy/CYCXC+gYvIogLoiUS9DVQ5LQ2k2d8HrIL9l7Trr+i+y++Qe7XdMeX3wrdXkEAl7AD1E0lzOb85Rz7kVNLsF4ImH8JRBzbmtYMmyNFGvapKymvdhI/qaXWxGwPpnEzz39HjewuXBmCLk7J/mfnr2D7+eHz7h3cb8u7b1AadZ1h6r9tV9EMYBPpNZ8QHqY4wKA3OscGOEBojOPOof/ZjAy/pLVCHSCDahdTw2qvGt4yW84i5Fqtb0nPiKLDTN/XSh4dc5L64FUunLKhUXk5JK9hFCKnq5r/KYwQuXBuHGFymYtjO3PXIutlB4wCJpy/2jQyVkwXhh99MFg1/nWjCO9rg5gduMtPVqVHNn3uxE/RZkNbQYYAsLuSw/PE4n3/u61Om5y+EvqcOtmvxsTq6qFWkeQK+qJQYKAxEFKyK+iYRff8Zj8Os7F3rm9OvU0T0650eE+fGb78ky1nyi7sUwnbUrDLID548MlQWGgrASni2UqNWQ0UBbFYO7f90WH9Rz2qj3peuk5ro+daKJeJ0orfrFEazqXh8saAa8Jh5qQGcv05DUwCNMmjdBfnHn2w9vDw166Tj/dfXrxaskklupl2QKbLQDBnb+WCkpxNABVaPBb4phqJfF6uyNa5SGlpN0UAvWA6k1+wOQChD+Ozem5I/1Ho9uoELx50ZlBYXrWgywqijAIBcTAAyfzM+ZJrPJJK6o2sRRj2tqmoODzNX2g2yZq9VazF8wYe59wOXCad4JUVTfap1kzz0qkFmjsH7y4XJZIHYsjG5ImZCu4QXiAeCeIsCdcn4Y6Sk62UkqMwXba9HJrMjjum7cgEV2Z1gyOxu1cQNzFJbJaWW1u5FE5ET4k9Lu0JaSZAk/qSR22T2I0IE+QafmFjlSyinpdRWvss2s04nxIgzjFj6YeaHpiLnmOvODNe+DvS78FbaFWy0XmQrYHFidgBUzkeWFlE/gV8eYGhXbecWKuz9M8905gySfIgL67BDQZkcRyuzoM7Voqx1zzT0PVIwMcB8w81VB90zA7GgPxemAql7oDUYbJKflASm/naXaftJAJbDQ+qB0aNHa3XXf/XKcP6XBuIuiGHIFYhEhHSVhvijVe/AyuWzpL6LDtfc/HvrE6R4HKFmyovQ9KQ3XQa0usVa7aPgCYWCkA0DUqneyD9M8iu7D8OuFseGNacxn1EaTjR2GFG5PX/4/s6dUOh8D2dPgJDZ72jHpP3uKy2fTiAYLWtnwxTPPdm6olL0cyoE9pdI0cWAphiSxWQrvpMK2p89WOsvmjp8uXthyyshqqfEzOLCn1E0CDlDqyIpSo8K0p1QfanR7imkMoz0FSOH29BWTPTWZNQF1OnFTzNamSLW3c0ThTvs/OIbuvDKnBwdLgqxEtiXBFe2eymsmyPUuZitHQG6AYjYEBx5h6hEceEQxG4IDjyhmQ3DgEcVsCA48opgNwYFHFLNRIzRaxRq0ikgVo7LncVCx9oYzIVsYUMi/xyOJIFUkhEzN+dNkYsYkEyptIQcyyWaSycqD9/tMy/rsnnRwX9KuYQ/I5/yK+0oUUjmdoJXJsNkI+OHwjjws03yFMkKqIReKkI6K4GvIWZFfm8q7iHgVXaydhV+gSimX94AeC17M25CVYgk9MxztzEtOFs7bPjrzmEN3ayZLaN5TLVX5g9cnPrahkzJyiBzWakEmWEj8EySLwL87iDBgliMzajNFJARVL21TuhEwkfuBAe0g4kVNE5X2kqhCZAqxNJjkAC00l3vAnh15r5fSXPdXhue9SqGA9WjkfPzS/rTyGIi+KnhuMEKmeauSxFuhJpRKMtJdEQRptwh4i5SCF2HqJc8lLFaX47TCmgUB7AQik8hFkAsqjyOKUEklYdqfzXqpJOHae3BVfcukqibjlqksoBxt1VH1nwO/bHWAzS8XPUD45XcmjzmVXtV0t0d/shb2v9YW9r9nwlxvN1mWZzg3ieDNJdwkgjeXcJMI3lzCTSJ4c4lYKNn+zM2zjXLcpv/VeIKIX35hnlho49I6zdVrhC6JgWV8zReEZtOcK7T66OUKhYyXA+eawyRJE205RiUdNljLsRKH2VqOrT1U2C3HPH4+s36QHiBYu2a2fV27dZEm0HKs6GG2Bi6vD5lA36Rjx44ZoOWY67Zqx5Z/thJuPxmf1nW4K6WZi5Fajt08xCadNFOQjkFajk0It9+5L+eay3aHcQmpPxODTKLl2G5W4aw1BeHwjNlyrNLcFSe//7PfJWXjoTOXW34fZFItx2ayCm+EcYRnmi3HOkxLvWb+0lUwL/26bY766lEjtxwbwio5b6NLDt5UaC3HxrTqPDM7o5f3xnnjntR5FFLSJFqOYTEEY8sxYAjxOPUDjyFO/f/UcozaFsPILccWH2ZrORZ62DAtx9q0/rJOeDzIe8m8Zds2vL5Ezmlz0XKMSm7GQRut+YfZ2miNO1xYLcdSKzcUN8iJdtkYVrT4P8W2byr4FKZgRbURHGAVyoqV/+H/qZZjH5nM2H8k/L9Fwk/tJmQwEn6nFDYSfrOUwiDh333s1Ohp/u0cJ513vT9xcuoSDk+bc2wj4YaJYwobZ7ltikFI+G/Z2vlPGuXumFhr6NqfM8eRmRWNQcJflRUVoDcms3bQ7+APdyT8tSIPr+3vusFrhmp5E8/Jl0eaDAl/9mE20d02rCMjRGdwEv5H5bPqTRrbVzj7WIk163f36GpkEn7MyjCyqAMrYzAS/p8v1f3H+X1xXZJpW+1Y+vUjJkDCX5UVHLMUA5LwF3Opu/zVQBef2IXdYiosUCSaAJ0FRAib04wIgTmNx22feAxxm7OgabNfXa4Itt6tHXdp7Rvy1q8FdogvXCkHHp0es5kz4NwmN0Uiy70f58IAiKuUkSGhfG3TWH24HKgdFhnfls56kGdQ19o+EAhVPgLwzQT4bqWGSekA32P0MEnPg1UVc18LXMWxQH71Gburni9//rUw+px5QpHnpV4XvHcXJYSiGsYChlCQ9tbqCFMXu+VAd3/qF0KV0UzfIGmISoqOL39uSS3iaSPw3NBRHbPqk8NZygkp7EbECSnN9cKg/X2ewvb9rxk9WNJqph6BEnxlmTJIFsjCbZPhxz+2Ka2I12GPaSdsDjbvT9ZV4gF0XdWOFIYwjrEKY4dxhEENf3j6ZCzsPRXKCOC+JIFw79TGoQtYsoKVRZgtv0WXwFClKsiW37KLergqAvsBHa1Kli0b9LZ9ae/lE30e1jmV4Uf2a/AD/CJGyxH9L3OHCkNYK1mFFW0SMwc+Sq9otVLuRrciUjVEzTKDDqROdyz+5qJrwsv1NY8/+FiuIEvlgi4dHHBDDo96ptN4oVo49/ykZ5SKW3KWaGuJtMqbMw6xwiOJh3y7t+9yy7jLXgDA3RQcgAwEANC06BWJEq6MmWRCfPVywqWxy733xRfPOvXoUoBRD/tCALayARA/O4UIND/z/n/V41AbcxusHqfiUbZ6nO1HCrseZ/HFa6lnrezc9zq4DvNxH1bHBOpxLI+yZTe/HzGBooKtW7caoB5n3TLLVX7de7glX13ttflBl+MmUY/z9AibdK6YgnQMUo/jM3Z0y4RRd9z39P808+i7TvtMoh7nKKtwtpuCcHjGrMe5eSyxzgpektuMtKOZkT5xASZVj7OcVXhTjSM806zHcfo471PK6gDHA0N6u6TdnrnEyPU44ayS6290yRVqPY7ftFeZsl4rHJc2rJ480LLvT5Oox8FiCMZ6HGAI8Tj1C+8PqMfJLFF+QsVQd8HKiKL9Gh8KG2PkepzlR9nqceRHDVOP06xfdkDHSQni1f2TrMdVKzqa83oc6tqcgxqTxUfZakyijhZWPc6M2PTbB28sEcy/tHHA4U8LjnFej0O1ERxgJWfFqvfR/6l6nK9MZmz4EVkzmXe86ECKj/xJVr835ExJ90h4dtJVJQkPpZ8w1SN90cBJpg6Hp8e02ZzRdppTpnwJ5MwLgZ+A1LzzlwYt6V48y2ubINl1z7K4IMb3o2dy8g7S9K+UHzBhPnmPYiG0knruSUet1D6N2jipsTOvPSTmqiyCfynnP4c2dvZqezCtrJ9UDgQmDXIHdn0U8ThMrBpRfmMSZau93sKOzfq4pSREec3MTrhOsfJAfCqlXENUrUfzv7bOo4B+BWpSoPh2JP4ovIclrIcaplDCbpbBfL16j2yw27kow36G4xy+f7TviXk32d4Y4ZdI43pQZkdVSOXxTggRNU1HoRUtn1oINU3+VzfXfrheLkqO/6kYwusRwmFNE8cdNPgAocEQIdhBg9aa1rIphlBBu8DVFZF1CF9Qe0P9soO5CXskijXHjf1cpfFr4d4XB+4+XVKJ3HS8BIOiENe5DiOjbHGg+CgnA+nJj1qm0ja89QSqei8p3P7BECLPOzRCP6tsPJzW4r77Aucj851LTM8gb9fhD6Nv1xEDhYER35INI6oyFf0NjLD8Fl7KAnDKV4smd1uSsPqWU9yK1xPKeG39Tp6L8GGItoKay4WBz/1ybPg4lkvFDf93JsPf5EeVqjv4xZz3CbO/SWuHkA2/BdZvkamelmkdUstLKlFHqjT1rJoEjMa6Q3Zb3Yx77Q1dzpwNC3XZu2HHjTW8NiLGt6J77jyD+pj1igDHY0IEua0lMOsx1jSzrmcNRikh7NkCAUB+31l1/Y9MX3TWe5P6sPt6dTMnamMENb0oSnM1P/tONXpc2HcI1XIBgpL1YBMMKkb7jixOoXaylCn4YiRGhydNifk2zsljRuLT3UsbhO62wspawHd3HgWWbtogGAufe9u1MGo6L70ZjhMsm6LhdN8Wwwmfmj/wqUSbmmYtcgTlTqa7bWjb9maRhPrHi4llQ4ix2Kdrag5qESBOKDFP9vNpafKqHE/9aYpOdJ+3fFepJlLTlL9oqFz0jsviinRvcErsJ4q+tHJQyc4Wp5nfjL4LmndUD410LAOQPoSavPehHCz0isn42pgsBA0Hmge93d0xx8faOW/al1PTJptnbbohmiMAjF8GD9HorMpNMcD02sur5kTRF22vM3TT1FLnN50S3xHEj3Hrf27xPyGUtLNhK6hibHE0LFETFfpQgAY+UX/yGHzo0qcf1tj1nC1OPOPzj+uvmHrkauxc80TfymPaXqmceyJFwZdqH1CabuqKC+yEzVroNDNLR69PK1P2jcfm7vaWvT3q1WB6TXrReO6YHvvWUVVTNb0ZkTyd/CqpBebpXP4jKil2QW/3/VvivB0fNbtF5emkjhuCp9M6FyswIVQyyRA5ehpceTLZ+/sYZ6+5C+wvNij5ajtZGgH4rfzfoumkukoO+iIOhtJEElDaAINytEqqHjSdOmPEa15ixYAPbh7RU+L/VXQXtmfA6LdIOqlmiAOMgE6zYBRVOVUfks6KuSSduQYAidKWByuqjb/R3jvx4oRQr2bpfxmVoHOwHa4rSILO3vYYSrhB/cVkUCtnznGy6nhRFNvm4ZGEUyOdEN4UvaVYQZNvQMDJK60ZItH+4OkJGh0QurJf84FwyzFQKYf7bFB/gXhCpAqsCwPm8tCF1ZmtzKxL3Un2mrtu8VAbH7e2Bii102bqqAks4OF3Fk+F2zPQ4+GigOjpL4oiQoOL4Xcofs/YHq98tthcryMzPtR9YW616jcofguK+mCAuuMqKupF/mTUp7VJ509PzBQt9Lom9RdsemoE1KGuf86mol70T0b9WfbTpJymaxwX942rbv7jRF8joX6/XhoF9WJ/Muoveqo2bwy2E+5I9ww6v/hSuJFQ7+xFRd3sT0b9Y7lO9UWfrzmt+L72YsnxNUYZCXX+aCrqxf9k1D+X3XknW+rrsuHkjNSwLdnDjIR6zAIq6iX+ZNRnvLV9e3XNLM/JdnZb+20f42wk1OdvpqJe8k9Gncq7biTUDyZRUTf/LdQ1VScGR94qd48f7w6NXiV9q9Zm48CWvR0Px356KD5tq0S8O2KVhF0uFLvelho5lmJC/edfuzda25sJ9/evunJzuBeKvZiMeunCR11n6uVPn7O2nK+Z7RbdVfHv/HqXUBzQv0O9XNqr7cd/19RzS/DI6DawwZXzOm6wsEnEN4wqkdJ/pESi9tneO1X/rHN82rILnezrVeRIIsGV/L4UiR7nMq3IAZWirud0DiQSdZUqEYs/UiIvylRYOaTrWre51SS96wQMv8KRRGb3rjgzZUVJwYFdFx6ndQ9+xIFE+JWovqLMHymRjJgVXXKm7RHumG1tFiYp2Z4jifzbbEYdVfVjoqTM52Lvs6fmcyCR3l2oEin7R0rEfOGR5yuX7BHOfPvhQqusG9U5ksiHZRu6f373wWftdje7Hv1qPuVAIqFDqRIp90dKpHLUsJZtutu47V+5vmaV2tVLcCSRFxf93YYU6y5MWtf4p+M55QEOJNJ2JlUi5f9IiSx1+VK90ziBaG+yoN+i/nsFHElk2MRxwxISIz2n7Zw94P6jqx05kEjOWqpELP9IiVCbUHAkkd8s/2aTSN89VIlUYJJI94f3fErKL7iuS0wpOnF/XTLlY2m/UFlwBB/Wj5HFAs/aMZVy1/AJDobl9xK5PLdQCy/pQ+K6vJbC4e6UULdpVbfbFcm6cpfpFRDg6noUq5kz79RFvP6RVo4dbgtGLxS0bq8sVk4YoYTHBYPRCmR9ZXL37TPCvPZe/Me8a3J1cuEZunZPB/0ZeceG98OjmXDtYT/3/lHLOhcwPQ2PrRyEWB11RKSno8Bo6MVUvZiSNBJUYlqBxGV7ZLmFHYcHijZXTrBo/nLsNdoxymDdgClgQhp+86qs3xxoiQkcocQ0UI9z5RawtxZbu7Wmnzp92mLZ1W395IMdGje/QM5JYJ25DAX/qAts8NsYB34aK1JBjyVoZgRk+GOq8h37vZF3i9vjvA71KnLIN77K09+0FAU9wWqXxxTQzmjA+g0wIXAHY2XCDmagW73nlZIfO24OEkt6VZw7rXAcTAOrNBYHs7FCQcn5dHAwxdcsta7+y0M0r83lv0f9W70uNw6mWHzYqB4Dj7smXBX1XCA5H8iBg6kJsWKc5zkV9KPiy9fBzOgX4jEsQOWRULzn4pQnCw8a0cGcq8D2zYGW/IkOxvXVjeKr71bxmj1IpDyxqGRT4zmYcazw+xsHfiM4mKrJdo2v/Ar2XJcxo2LLL+eyjOdgtKYA6WDAhMAdjLUJO5hpxaa5SuKvOqXsSK9QKevCgMJxMLM7sjmYMh0N4GD2NapVNnNfG8c5LUc7FNsQdp0bBxPffXGFow/Lu84wi5nb8xkvkQMHM7Uj2zzv35FjB/P6V7dO0/p+E+zyuHDyU2LwayM6mNas3xxoyZ/oYEpLom0fuEz3TnRQDCnfKs6IDiarAxv8hzr8rziYBucmflFY/RRNujcp5kHmuDrGczBaU4B0MGBC4A6mIpODiVkwJ/Klx2fXpcMrq1fOtCVb9xIusE1ChO4HdtppbuCrlWFSfhDQAH6kGpIbhcslgdJQpTwIqAdGdhCM/R5GfBQhCVHrdHDnV6fGt95erSLYZvUkumjW+YolxMrAYdIg7U2oV6cX/Guu63ouqqkzz8ELLBJ3IqkOAMQOnogDPBAi6IMRB3jgX+oBHu+/7nb1O/nCcerZvVHmb32uUA/wTOkVO/FmeH+35UdjVjxePrsrMV6Uhz6no/MBH+oHIw74MFot2CceFyM6VXywbJi4eRenlI9LGrxqtm54QaTF+dQ5CuRq6YWfd6MZM3hcMlxs0O0Y4kUtFJFy+SA1+A6KEO2XLZH7M+Zyxzp07DEecdCISVZWLrmzLTBSHhGpQp8zOuSzK/vCnrmu0VEzLy/xuRLLKrKSIs2T6EQIxEBhCC3dk01oYDIawwOZiUUagwpvmaid95hsiDnK5GzqwbeEcalMoZaqsP4q4CNIBhMpq3G9/V7wzqU4L/l7kOeV8lVbUmVV0isyAp4K04JPOV8KP9WB7qUc8j0wVvz1jEhBn5lu07sL+p1XujkWMJ6FQp3vwSbUbHfagTG2U3XlcGUH/jsCmCgkeIJdoY1KV60pnjIobHPvq0HrWBXdDFo6Ou8AdpVzLgt73C4dFSBcumNzTMVxl17pD3Dpm/5qZ7u23w3h7toRlmdqX5luIJfOn8Dm0vnj/nPp6BOW1TeNWXBgslN0naOuqV33dzU5l86bwGZIBo//33PpUYKsJVPG8MXrTxadf2zTHbEJuvSj49iEBibj/4pLL/Eyoo5je1vRJLsxM5fvX3fFYC5d7D+1/7bVZi4rhnzcXCV5TDcOXHrUWDah3h/DuUs/0en2gGWSzcKd4cPu93x90c6kXDpmlxhdOlBx3KVX/gNc+p444cwE77viHaGfmqza3HqWgVy6eQabSze//p9LR/fk+PrLWdRH6rNJcjnl1NK9C0zOpX++zmZItl7/33Pp/Udtnlih5niXbZeKH53TX1zBBF16b1ahmRtWaMZ06WNn9F2blNrCc/oLnxdNeRb9DebSf/OMC5tQD15jE2roNc5d+vq6YdFBN2cKljhmRbWPHb3DpFw6ZpcYXTpQcdylV/kDXLp46eLl9fzruW341K+naJlNBwO5dMfKaSwu/WiltP9cOkpa0eqyDzOmWHtv6PZk/uXwQd1MzqW3h3JlNCSWlQ2aRTQJl36zZezQC9aTheu/mE3zcr7R0ARd+tNKbEIDk/F/xaUHjvygsC1RVDx1SUazjLD5Vw3m0n/zkCSbUJezCjW8UhrXLn3/rcnXJH2GCo+cSe3Q83vRrybl0jG7xOjSgYrjLr3qH+DSW2erKlhYxDklZycMO1jjelEDufTvXdlc+riu/7l0pLSytx4+PPT+Sc/lPTzHpY5va2VyLj2nK5shOdf1f8+lX5utdnI+WsJlwVkP1Yq7Zz+YoEvfyCq0cYYVmjFdepWGxxMSDt5wi5YM6fVRvvqGwVz6b56yZxOqP6tQbbty7tJtr9aOsrnd3nX69DdTPHutq2ZSLh2zS4wuHag47tKr/QEuvenQWfv/SXvtcTCrR3dF+psGBnLpZeRsLn32sP9cOlJa5Rsqd47Obiye1+JgpeDKl1aZnEs3k7MZktvD/vdcuuWklp3N9zcUTpPeHV62m299E3Tpe4exCW22YYVmTJfe7uiSSXWfKX123ZV93vVXv+oGc+m/SdPCJtQgVqF2Hsa5S3992vpcg/ueTosXXPrucMb2uUm5dMwuMbp0oOK4S6/+B7j0MV+ex2dumCJOvt/639Nb3OMM5NJfz2Rz6Ttm/ufS0QHYisG3vy7YJFxkXdmp2EkVu38whkt/PpPNkFyb+b/n0u0zfOv9/DrVbWM/24HfnJ53N0GXfoxVaDsMKzRjuvTht+Mm/ORlekW3U2w5uKRrPYO59N/k+WIT6kpWoUbP5Nylezev9G+1PYGOOxesF3YYu3ePSbl0zC4xunSg4rhLr/EHuPRuro7u2X1nuSRdyayycl3IBgO59Lvr2Fz62nX/uXSktA4kn3iX1bGt419Dbfp3Gn3rkMm59Jvr2AxJ2rr/PZcuaXHh+WSJk3DWuHELBMcasZ8SNY5L380qtLWGFZoxXfqqlmPubHy3zTvJQ1D7SmDSDIO59N8kimQT6kxWoY5Yx7lLn9pkqfeDBse9Zy+cs/Dw/bdPTMqlY3aJ0aUDFcddes0/wKVvXFqnuXqN0CUxsIyv+YLQbAO59KZ72Vz68z3/uXSktKTy2v5b0ve7pbj+0+JNrcQ5JufSG+1lMyRWe//3XHqEvHsbm17/OO2ZaV/ih13/fibo0n/uYRMamIz/Ky7935QX1oefxLjPOnz99ZneD8sazKX/JtMwm1CvsQr12B7OXbpnhqOdecnJwnnbR2cec+hubVIuHbNLjC4dqDju0msxufQWG3uk9kuIc9m6sfzZYxM+LCXzSLmqlJHhZI9uo50OSlUQmWCphEgpB98IXmoAfoT/RzY7EvBD4HNhzx1XlUStDlWGh8MWPNibqou6OxHq0zhx4o5hqX2cpiyobJbc5PZAMES4ud2tJkQtvZQs3t9a7l4j7acbGCJmzx5Fxyzxo4ai9YtKT1wa+7UZGCqGDz09/eW9+fsQt6nJ6bZtz+fIwZAZPrS+wYBOztFvnWJfvh829tvJOmCoOD70eKzP9OSWTTzmd3xovbFj3RgwVAIfWlBtcqe4fcU8d6k9Svp3O34EDJXEh/r/U6PFzXt2HjEbUio/kg1oDobM8aHjQ28O37vvm/DwZ8sn5xyH/QuGSuFDk6p3vtT52FfRrmZFFQ9inPuDodL4UOKl5ovHp/Z1mXZfGVVz3QyIhgU+dLDS8wVPJAcc51uVPzev4Q1zMFQGH+qYrtotOKQSLQv4bJE45PRpMFQWH7o39MS7226jHDcWX3z3r3UNx4ChcviQ6OQd22J/W3hviN0yq/1xqypgqDw+tGXuti+Pq333iT298KIkZsUBMGSJD7msLJrW6JC7V+L33Zv+jh0Jv3IFfOjU1tlv1shPOe6Vtznffm3Pl2DICh86+4/30mfDrvhM69dwyyNR855gyBofcp9To1qSSz/XxTlt7t39+PgSGKqID513npZwvWhj8cy38uTajY80BkOV8KEXFR7Na2U1z33rp8teVz5W+QWGKuNDrn8d3jPpqatgcevidfbc/QxFWQUfWlhTdv9TjzHOs/oGHJQ39L0IhqriQ+vmPRqRVGOv465p1X+WirfwA0PV8KE6l26NiCrj6T2nf5c7o/tfnAyGquNDSzo9HtKx8kfx7gGzOsVXu3IGDNXAhy49XOc48Ei8x9wQ0evTWTvgA2viQ6/iY6r/GFXcKWnekQ4VHE5PAUO18KHND7qP3Pu3t3D/leKT+U5doPbWxofGnx0sXXWvt3CKsEnl5bJt78BQHXzo/eNfm6t1jhNsLdPx3MtlqbFgiI8PPTu7tPvlfc6CJVfik/ukBJibuzsNIlmjuuAv0ijWbHlhj7SNm+fspRXFIQnJ5RFmg2YFqXaNR9g1jYmqzWSiKgUnJqxMPe28envmmLM1x8WQIwvnUeFyZRCl5zKcuUxci43wO/gSTVdk4EwhA2GYRC4HRohoAmav0yqDaqCQr0YPevABXe28jTPP4Riw85+FiIb1vrbOPLNjNCZGNq9niXVvhnGEVPMiyO92xHpJQOXBXb2Weh7+llrleoH6QlPCggOp0x2Lv7nomvByfc3jDz6WK2BYEAMAsoUAdUaFBVVB0FD1mF70i216SIFqqGUApCBpoDIsXKmWwXE+eD+ZHGPpJPSEL1EBTYpQhskCkSgOS1/3TN73iPf2xncvOg4aTCYCLqX9HBqSeYa4jhsgXGascGX/YxKkgUUKShpoh0+0oFxxRYSCoDlMMkzKBwFIRKiUP0SilmoMAVJ+iZtyzKtH33RevansgtvCfzqR5Gfuhz+WJr7cEa6lZ2mHK7sTSnrL7TFlJwFXRH/g6gaA5YUM/CaM0SBKUiqQSLDer3uZs6nPDtHs9kuiJ0r/aUAGi3gmHSztSGGAZcYKFlB13P/UYfI/AXWKDlu8y1KYGCt/02m8uRvpW5V3hiShkggpXyxVhESE0v1QSQaME4tobyU8EVBN8E8ABngAP1gSGKFUAWOjBCtxGVBdOfYB9vgH4eNqfqBEwR8i5asjw8PlMiChIUowCO7XPDJSAW+Fu2gKuNSRy8aAX8Eu2vNFoRJFiBSTbz/vAfxwYmcKeoYIZUiIHMwOacRIqVSB/U7ESCU/DCiBjr6RGqGzwkbTCeov6CjwcGDbrkGBm4kQe3A7ga9cqp+vrJDrK/EXQvdOOpG2OqzmFJfD62PXFmleLJZDZ0m1QAV0lvMBQpcgQr1RU8IRWP8U/ZxlPZI+Yt1rNaqHAyZj6F8r3FxU6LQuXhD1+XDLpCKL+eQ9Bwa1IK5zbSggKvGsqAC9MTKPcQke8ed+N324jFu7B/P9VZFSW2wWk6UlU+e1CzYO9g78CfwW9g5NkCJLC61+Z8OFUPfV2+YNnzCwfiMy67i39kE0seUdKwzRTWYVncI4oss/nCnBYnhq+SrBwgS6BCg1dbg0UBYMzbvGCyDFM6rR6uBbLVa6Hv67uNW68cdKk40Q9jy6EdJc5loo4Xa4lXFDCYXXHLMytCiFDY9G/tBZAURGSDV+UQ9gTkwp8frY4ls+ia1G/lg24+Zq8jINfzB9mUYMFAY48azgLKWAUzQfcBprvFSuB9cHnQZWpXN2y065RbX84n2r86+55CWKNl9FX6LkDhUGQpNZEQJzGo/b+Exx2+lVEvGPDlVcJ2+uXfJ5/bEp5GhUDGI0vp+TWPeNA6FIJdVEa3J4Lx4JgxViMPgRxF2j+QBbVQQ/HM4oYGxxfYWxFx66jdeNrIuyf4l+b3oUTYzosQxMSQcY30alKx2BBCak67etgL1AHgyQ325e63/nZCT0d4vy77Ns3slb5NZIxf3g3XQjpbmcX6REtX8FzTYAgJLS8b6GNCXkN3PmbU6nRUpsqbWqGECEXtgEyVRAfcE42tmG7lMtex422XvL7LZNN4VcDSZPSyfiZvq0zB3Kt89S1YNXdh97L1yTU61YQMv1BWYvAIAtZAUMaJRRgiiNz4C/04rH9CebFlSZs8jSApMli1W9UmaPxY9kO/eknm/GXfzL/6qVuwJYSiAM51HhKrAEz/OsEgKhn03vJgULgCmi3ZI6bvSiVW+F+5Ks/EfVbP6YA9EOZRVtgJFEi4qP53fTK9QqI85jz5HCfDUze+L8FDevqKMbXC9IbqRTe0so6Ks7zVWuHSPPHrdJO1E5v5322BTDHWNdJscovFLlzoh2exz/7jew6qyAw2LSt6kI28pGwK1PJ1lwsFQlBVCo6U6yGAOWzUXKMAC5prkt9pig3Mdgi0NNWyO4sQRrfnTyiNS0Xf4vTBMH8rf02FSYmgpAfwqU/z5V+QdDorXUgrZCEojzgAK3G5ThUhWMNpQKvo1Gx9V8gB7mWLF/aWyaGu5GK0dKg9BOZMeSAVUCzbO9DwXXio2buKE+2cYEYP1t6DYGv56fjWn64k2x8od+uE11aTD49T+zr3KwMxEFYTYTwpw2dbOuCQZzQbeEG+YRv3Z3K1CpUEsDIzH1wNpvIbFcFLktweGYj8uiE8NrHHziepuEpUXuc+nLX9Ig1yaBb4vD1h8FW4YdBhtuEuoxmYSz5eq/b9FW6RX97o2n/eWJzqTvVraHFCsx4XtHyuUIW8AUMNsR98E6JUxnZYoRErksSKPkI2URoXwlWKaodLcE1Cw9y3vSpEAe1iNKrpjKlHyLAeg+PVHQuV/ZHWv5BnddpWqsTg5DDAnArj3ff4zZtNcjKsznnv9rBbn6pDj2IHr4rLmc33SmViVwEDJYQuSmokKGdEg8dIIxfNYRuRpa5FQkVYOqhYTP7LzZ3l4Zj5yTaxQtnqjcdJQEXxlcQdApHfIo5/VqNpgmsaB15YRRigzN/UeHS/PiUD9PzY69JwhppXJ7+Dtqe1e3QTDIDZGqKN3X4J+CGu7KmIOEggWPAIvq0RpRow99UhxTQSZJAeU62B6fBdkChFx9m2OzQK+NsKreGLYwVtC0isRVPwjdHqJ8v6XHV+1x31p/wpY69g2GUBIT8FshEhPY5cKAAlNxRiiAiuOOqj6To+KH1N8/fc4M4aLj28UrviSOJX8fGOSNJjsoBlvMtK6zFgAdU2nC19F4SRoSWKq1RLwIvQImXxu8ZERMqn/dcsIjqtW23/v7bC6gDYZ2Y+kJooknFXJLEDlEayFvYPKQU2vjuIHc3WzTz67jYwTrjwV8WFZyyT0OIFecZIN84EkC8oacVWWWJyA3QFUmooiSqMpEFFESVZmIIkqiKhNRRElUZSKKKImqTEQRJVGViSiiJKoyb5SsaZ+0U+I05UaXhzuKH2xGK3mDyouuBKGUX3JQ8taISf71PE/Y3dlV2mWLWdCQa88syfK31mz2i+RKNQwXsQQOPSgvwTDb6rnIFEFYciAQfwC2pITrTLwMQbf0PrXkNN9XpIGD+iUdJ9lOEC1FHweTLAO1dx0OVuQux/Xau66hybaBQDJcpcSyCkpYFchcF9Rue91+oY9KClIavH5QXRK9syC5tsLdxk6H+dHjuNvNphqko2BZHXQcGYczYVVJWxKRFyskSllvSxdt9cTHZ82MG+6BJ8/FcVgWMamn94dTm0e5xClnuE0Xjj7GAUourCjZHKdvPrDFaba+xLzCJhuGGTHl4FKPqD1jTpV0e9PS5kOxl45L0reNv2h53MaI+VwHW1yJkAk5eLZNcVy/MLapNnsIIdLAE6QMg5VPwAORbBM6GHh94N/r5Yd7rDtzssKmd+O+m0DWEoLUlxUkl+P65XUbOsk031y7VZWrMlhikdlACU613DH48w7X3ceX7nYRfCNnF8yJ59KziNqRwkCnJSs6tY8TgVFjJsf4IsBbbNb8i2jJhnMusT7ufekb8XRPaMYAbl1yPldb6jZSie+y6uYIqQcsdM0N6AjbfWCYGsAQ/hxqA4oHYPusn6vTLU37anm09enLPd2X9Bl4y3f5uZnkzU4sH8vg1kmD+VlxqokroBXnATvNh2D5onQMY8ZE7zkxgVUOA0sKZhozVBdjvnvPOfjKbeP4ZSP79YskrwRLOYN70UDlGTJwSABh+nycDaYsPZ1d/ik0aq7ZaCk0rJvoCTyFxqfFjvYYNLgdsmGyQ6LG55p3mHJPHOMS+zaiQ7Va1H3oMEk4X7NPg9gvZwrNG2vuI7I92LkUCV8hHQkvSVWyQNxB6mSWqIe7WN4QtVOeZ1jXLBlQmyEXAK4XUDF5FEC93gW9DFU5LA2l2dwFr4P8lmV3q38skXT33hvfu5bHt3AzcoiEPYAeImku55tBp5xzK2h2C8AzEMJTBjXntoIli8cFvapJymreB9cJJDp/WTQYMC2loU+i5N2dqSPnbyVn/zT307N/+PX88LlWqX7rvUddfVKqHmh16X5wQW0SxKctKz5AfYxRYWCOFW6M0ADRmUf9Qy8bYavFLesvUYVII9iEZqVIOFByxSCv+Z1Lt7r0PpZ87qqE5n660PDrnBfXAqmUY5XK1/OmJJXsI4RU9HJf5TGDFy4Nwo0vUjCDTze+O6peNa+9M9+f7XuwXyJZMF7Y/XTB4Ne5FoyjPW5O4DYjbb0a1dyZ53hBvwVZDS0G2MJCLssPj9iT81e07m0t3rS14s8+nVbWoDA+aB6AYHzABwoDkXqsiJhdIPx6Eya/vnOhZ06/Th3do3N+RJgfv/meLGPNJ+peDNNZu8IgO3D+yFBZYCgIK+HZQokarHTzVMXg7l+3xQf1nDbqfek6qbmuT53oebxOlFb94ghWdevPFzQDXhMPNTTcFoHyyCB4LJeveRPkF/800nZCY/czjlOnX7y3/ea7NLLyMQU22gEDO3+slBRi6ICq0eA3xTDUy2J19sY1ykmjUXkPasF6ILVmfyBUFhIK/50bU/LHeo9HN0eh+HMKBwj2MXRVwq9zXudmhwNWFQWYgz0GGD6Zm5p84oqqTbokrorw898CpaQ5OMhcDT7Plrny1WLejAlz7wMuF07zToii+lbrJHvuUYH0Vct5RcojZOFyWSB2LIxuSJmQruEF4gHgniLAnXJ+GOkpOtlJKjMF22vRREEZ13XjBiyysy8COGejNm5gjuLERQQdGOFPEHRg8JOodGBUOi8qHdhv031Rb0TQfTHZplouMhWwObA6AStmIssLKZ/Vjf4+9fPEWPedHRKbbW5vNZgknyIC+uwQ5Ms9tD744JElb6oIk27WShra8bxrQfdMwOx4CcXpgKpe6A1GMy6mIXi2mECq7ScNVAILrQ9K1yq3KhfYYrJwcfjz8JEVB5LJBIoI6SgJ80Vp/KCUtou6DPZe1ds+xir0+C8OUDrBitLOizSGJtZqlx5SNQAGBkY6AESteif7MM2j6D4Mv14YG96YxnxGbTTZ2GFI4fbU9v+ZPaXS+RjInlZntaevL/xnT3H5PD0k3huw+oDLtMEdJBkP68zlwJ5SaZo4sBSVWS1F0UK3p62qFy3bYFU/1xVb4pYd+nyxNAf2lLpJwAFKry+woXTzQiHaU6oPNbo9rcxqT19rF/h2Jr8moE4nborZ2hSp9naOKNxp/wfH0J1X5vTgYEmw/ALbkmC6FnJ7zorZyhGQG6CYDcGBR5h6BAceUcyG4MAjitkQHHhEMRuCA48oZkNw4BHFbNQIjVaxBq0iUsWo7HkcVKw150zIFgYU8u/xSCJIFQkhU3P+NJmYMcmESlvIgUwcmGSy8uD9PtOyPrsnHdyXtGvYA/I5v+K+EoVUTpZJKRbDZiPgh8M7cIIXdYQyjK9QRkg15EKQPZU/Ajs2hvzaVN5FxKvoYu0s/AJVSrm8B/RY8GLukc/sbhRLGPfB6Vjc0u1uS+MDv8d3vZrFZAnNe6qlKsjPSnxsQydl5BA5rNUC74MR/wTJIvDvDiIMmOXIjNpMEUlxBgPq28iZF3UWGNAOIl7UNFFpL4kqRKYQS4NJDtBCc7mHLCSUdL2U5rq/MjzvVbIVPtm9kXPcxLNp5TEQfVXw3GCETPNWJYm3Qk0olWSkuyII0m4R8BYpBS/C1EueS1isDgtktJfK+EFWCYlcBLmg8jiiCJVUEqb92ayXShKuvQdX1RYm75apLKAcbdVR9Z8Dv5x2ls0v7z9L+OWWJo85lV7VdLdHd7MW9q/XFva34sxNluUZzk0ieHMJN4ngzSXcJII3l3CTCN5cIhZavujW9OgzfOFfe/5tH+5SpHyeWOjHxIAPk6xtXbZaTrPIGhx2meZcodVHKhKVjJcD59qaSZKl/JaN2Bw51Cnh1WdpO37cOzK9HZ748wL/UQFTqTsrYHUiZajg+4RLFa5ifhj+DN0SglTSYdbXorPuUX5Bj5PbSf/irHvptK0ZsDLr8S8tRchWJlFLo9oE+ySkEIiENJ2hEgVwcsgvPrfLkSZF+40QLul37cnyVtOHkxOCTpon0BOCxADXi1V4QmE/hCQKVTixE2b8/jVK4UTxQACt1mgkJSX90ofsj08WDOSXipRLVFieUQ7DF3TlROO2bTyHDXZb02vpgJ4Hn5K3Ecz98IcgSFSJkcKQzlxW6YwxBekAa/RLn+qiOs5hMjVGWxxIEhNhQpDCqTh9ZW95x6aeSbvcX+yf/tKJLBzNExGbuLkjhSGcYFbh9DAF4UD55BUO4ZmYhNNOEAY/EpMJeB01uFWqCBytIV3swleGS4ZDjsYW2E+5v4GeUe1sv26LK39dkNjm0Zw9s67vIp9j98/zfPo5dtJoYQivK6vwmhpHeDoQaZrlI8EuuRJUh8oUoxUgCAbiA+JSKBVQdOBfcuVIbBD+6ACHwiSjNBeQcnx+oaYq3LuY8MCpgLOrpv17ncKGFooqi8YvF4bkKrNKrqjRJQdvghkVvUplrDT70bChEashHB8osNn9bL37hmeng1alxO8lG0LGmCl3hPMNb3s8hoArjlO0sKo5ZgjxOLUNU5xazWys37HkHJ8j5gmPGrUda0vO1Ik0Gzm+KukImXQkvXcbU2VbYwFkHVLn2QzCCGRDpMowaYRqND9c80B1eXdNNZe7oodUga9fmINXalsMtnelZxXJ4+UCwH/ClaoIF5k8QvPBqHCfcTY0cea5XQLYL0dlG+eDkLbmJcaqN+Rq2JXABjs4ib2jThF9/NJnlyz3t3afH1HJJnmYVQ5ZLYmn0tVSO5LfOplKblbQdTJAzgki54iyI77NnHkOl/QqdK/knyeE4StHSFUqGUPPiquuVVc18X4gjMuafO7TDIebBZ/C1HIJio3gAKuarFiZXzKozSX2MUviSy74SzDYuRNz55e5FI/4iItCB+Gv4phvo3pVc2JhQPwq/H+ZvGEP+Q7tcrstkxn7j4T/t0j4qd2EDEbC//kSGwn/Qbrt5ICE/23lrBVHfgx1/Nu9/N6xzyeSj7sU7LQ5xzYSbpjkXGLjLL9Pt5GFQcJv0/XdObtYG6+Vz6vUL5IlcTQ6Cf85VlQOGtYasq4d9Dv4wx0J/9Foqw4lV3VzPXRy7qwmJTeQMxTGJOHfyCq6+cYRncFJ+OtKru46Pyfdef7Dc7NG2l+bZ2QSfszKMLKoAytjMBL+k2/dr4lelvSZMX+qebtnOatMgIT/HCs4By8ZkIRfPLb/38rhZsKDJS3KiRK2kPlkjEfCv5EVITCn8bitHVPc5ixo2uxXlyuCrXdrx11a+6YVmUcAO8QXrpQDj06P2cwZcG6TmyKR5d6Pc2EAxFXKyJBQEMOppdhWjT5cDtQOi4xvS2c9yDOoa20fCITOXAb4ZgJ8t1LDpHSA74jLBT1YVTH3tcBVHAvkVy8+f/r7K30eu84NaDrkuGWouuC9uyghFNUwFjCEgrS3aZeZutgtB7q7+7JeIVQZzfQNkoaopOj4svHc+T0bTK7lPDXr5M1SddPcKSeksBsRJ6Q01wuD9nct6/efednYwZJWM/UIlOAry5RBskAWbptH2W/Lv4jZ7Bxd1nFWp60byNXn5sQD6LqqHSkMYYxgFcYQ4wiDGv7w9MlY2HsqlBHAfUkC4d6pjUMXsGQFK4swW36LLoGhSlWQLb9lF/VwVQT2AzpaHdXZ7s0/r5PEq9pmvB2568xGsl+DH+AXMVqO6H+ZO1QYwvJmFVZHk5g58FF6RauVcje6FZGqIWqWGVTjjt8cyb3t7lPOLnZ/fvJm04IslQu6dHDADTk86plO44Vq4dxz22X9olTckrNEW8HWrXpW+FxPuDVpfK/AH+NrGHfZCwBYSACQgQAAmha9IlHClTGTTKxeOF6xveQL17+3PO2cIU10orgywx72hQD0ZwMg3vEyEWi2/39Wj0NtzG2wepxTV9jqcQZfKex6nEorXZP3VbH3Wdyztv3aHhnlTKAe58QVtuzmzismUFQQGxtrgHqc9qtWu88efMF57yJLdfskvq9J1OOsZpXOdFOQjkHqcdI7FW9S7Phjt0VlxxSLnbe2lUnU40SwCmewKQiHZ8x6nBNXYrfYBLl47E+XBMQt3JlsUvU4YlbhtTeO8EyzHude+LaQYi87eO+d/MX31rYui41cj9OAVXKWRpdcodbj/Btj537ufRPHuZf9FZm8tD4mUY+DxRCM9TjAEOJxaoc/oR7n/eNfm6t1jhNsLdPx3MtlqbFGrscRX2Wrx+FfNUw9Dr/46OWPPW2Ffz/7XiYs9ZWa83oc6tqcgxoTt6tsNSatrxZWPc7DIAHv2ZwqXnM7Vbq+1uxRJuf1OFQbwQFWfFasylz9n6rH6chkxoYfkTWTeceLDqT4yJ9k9XtDzpR0j4RnJ11VkvBQ+glTPdIXDZxk6nB4ekybzRltpzllypdAzrwQ+AlIzXt2dmn3y/ucBUuuxCf3SQkwZ3w/eiYn7yBN/0r5ARPmk/coFkIrqeeedNRK7dOojZMaO/OyzgGtrCyCfynnPyWNnVs9PJdW1k8qBwKTBrkDuz6KeBwmVo0oOzGJsnLmHCerjhdFsW0eHkk4NZK8F1REiBZgBY11R8iMV1ozRDpkhTsD2uErrpg8qIfkf4PJQ9fooAiDlBxARCaH9BSwRe5RAY56ZybUf/61e6O1vZlwf/+qKzeHe23K9/Rl6cJHXucTm9TTexyd2PzNecMmkXKnqBLpwiSRmAVzIl96fHZdOryyeuVM2wHkPVEXWDwTQY/IGJeXmhv4auD1Nf0uI9Uw5MV6tYUq5UGQjhGWBAZjv4eFwxGSELVOMQj1iGQJsTJwmDRIexPq1enbuZrrutKAAjDvQjB3ChFFfZBUfe0pBP0ShAiu4xD0S/AvlX7J+6+7Xf1OvnCcenZvlPlbnytU+qUpvWIn3gzv77b8aMyKx8tndyXGicOov03PRP1gBD0Tk6QtIHsALkaktGbtOd5h+LZgcZT32PTSaf52BZEW93T4kEMIytUSFfLcByFP2imjNJ60gP0dB6nBd1CE5BqM3J8xUzPWoWOP8QiWKCZZWbnkzjYQEEVEqhgC18xRDRuOGuGdVGaboNmA9LWsIisp0jwJwXWMDxSG0HazCm2tYYVGmGAzsUhjUOEtE7XzHpMNMUeZgr16Tnjra5lCLVVhVXfgI0gGEymrld1bvhrQ+LLHomzzZ89fBs2iyqqkV2SEZIhcS2DBoyS74Kc60N2VQ75cX7/prtiEOpNVqCNO0bi+WBso4Mou1fCzIMGj0qSwKroZtHT0Nh3YVa5VPMoet0tHBYhO947NMRXHXXpXJpfe/eE9n5LyC67rElOKTtxfN5pcK+sXKguO4MO+smS3Dv0VU0/rGj7BwXApIpHL8farMtg4D5J32yMBtr/frcuc4RkuO/tFR1Xr7iVgegVEvKTrthTQjP4hBDEFbVvK1pl3O7igdWRlse67YG6q4QujyRemehzsUaypd9SlastufKtal9rgBfkV8w0JPa2fHa8k2uixzjLI2X56f+sCzjG4hPeHWB11RMyxKDBqG6Jf1ZhGgkpMK5C4eKpbNfQqe99rl2zHsS1pDe7RtpSDdQOmgPMJfnMz1m8OtMQEtpMxDdQjx2YBeYbYqKeO2UvsRZ+EXrPW9O/zq+jdF2S9hHcbCv69wWzwzzYO/LQKsYI26tbMCFjtDL4JUiJv5IvXljLvI9qb+XVw4+b9cn7TUhR0N98ujymgOZjBdtiEwB1MNxN2MItWn726XDzAdceYz15yv+EVCsfBrJzO5mD6TjeAg7l4Qh1kduqR25SpJR7N2P/NnhsHE3O8WNnX6TNc4pKT56RPHdSGAwezdDrbPJ88nWMHM2dl5XW/vgW4zvDyPDtu0CBPIzoYBes3B1ryJzqY6is/FP/48ZbrdIdOd7qefDDQeA7GhRX+lsaB3wgORlp04F7rr9muk83S0xz2F91tPAejNQVIBwMmBO5gHE3Ywch9T6WXKl1dFOuhiK7+WZxTOA4meg2bg3FZYwAHY7W39RGb2ns94i/6D/tuJ47lxsEEd+7Qrk7Frz5r1q0ab5GW4sGBg5m8hm2eK9Zw7GBmVGwtun95h+uydX23lfC+tNKIDqYv6zcHWvInOpglkipD1h595b61+56GC7JLPTeeg2nJCn9t48BvBAfT+u2Q1WMTrTzWrOuWc6a8dKrxHIzWFCAdDJgQuIMRmLCDyVxV51vL3U29NvYLOTtzn5d94TiYnF1sDmbvLgM4mCSvVL/aY2zdl4wsNqfprqd7uXEwIxpd8yvarr3X1jTpvcx7Q7lYwWTvYt0o2sWxg+k6LOBE5w7nvFcWH/N6nU//HCM6mFOs3xxoyZ/oYLpvbjJ7dYaF85EW3Tpuqzirv/EcTAwr/LONA78RHIyk7i+vOsMmum5zK1G1RgvHq8ZzMFpTgHQwYELgDkZowg7mRsma9kk7JU5TbnR5uKP4wWaF42A2p7E5mOA0AziYbeNt/U9NmOq5cO3rXV9fLL/DjYNZFLktweGYj8uiE8NrHHziepsDB7M+jW2ez03j2MEMDv/U66PnX47ba+Y8sLq70MmIDmYM6zcHWvInOpgx7xo0LPL5rPOGO2ue3Pi12tV4DqYHK/xdjQO/ERyMu9mmn13HxwjWHwv4sKzkknvGczBaU4B0MGBC4A5GxORg9O6pYKOVXuH3VKhxt/bbf0ZNEi/9/u7TssiUlDw9FeyPJzx0rlxXPEtgV3tuS8HMPD0Vpk3YU/OaOsBjacCOntUSbs3O01PhbmiLZwNW3fdM4hWLSasQtDBPT4Umrg+CXvCsnOY+3hBZURbwOU9PhcdjfaYnt2ziMb/jQ+uNHevG5OkvtaDa5E5x+4p57lJ7lPTvdvwIGCqJD/X/p0aLm/fsPGI2pFR+JBsAe1mZ40NOfWwW9Ws+xH3DwaTwwNvrYAesUvhQqyfxk2IyvByT0lULHHJcvcFQaXzo8+xjyQMGtBD+PWlAjYDts2CvCAt8iN/nVwPnplfdl+2ZOPHas6nbwVAZfMhWHpd4d+FJ9/htD/cuOuyVBobK4kNTV6zdlLqwmGj+1got3GxdssBQOXwofV7LhUWfrvGZvmWrnW+trm3BUHl86M6m5t7fi5x23ffZrM+3i1t4YMgSHwro8nbuzfetvKJ8WlmW/dr1HzBUAR9abPUx/p7knesG2wrNvqQXGwKGrAh4A4our3BA7bN0ZtzdrQ6tIPLWxAPnl0oYs2CFR9w19+ffkxPqg6GK+NDCJlVmfXtQwXl5r6xZjU7VLQWGKvEYW3FUJh44YWL4CS8bYcKVH7WLN8qeCIaq4ENK8ZdV6xff8lj5769HDc2LTwJDVQmh2HzuPmjJDZ+lvZ8X6bPnagcwVA0fCq66qHSrabZuM11iNo+Y5V8aDFXHh17Ve1M2rNp6l53tNz6Jf7RyBBiqgQ9VUd8/2r7NZs+oIZKEDd9LVAJDNfGhePP0b5d8hjnt8f6a07hPSAAYqoUP9ShbJDzSYovzuo+2LcwyRKPBUG18aMc3/9gmDmcdd3Q4u/9lsfOzwFAdfGjteHvvnDvB4k0fX5wO+dR0FBji40Mb65xLOfMxRrCq3CLJ0oRVb2nNQuryGJqFHJamzS5/YZ1oo1nK6ho9buxCmA19m4U4MZmoSsGJCStTTzuv3p455mzNceT2VyWdR4XLlUEIBiymALgRfgef4CyVKWBYGAYCYmCE1NKQMKnOlFdUA4V8NXplIz6gazGXjTPvbgZs3Yg6veULwuPdGXoxglrmMoJqXgT53aJOp30fwe/uM2lfEcETwdtFHBKCcnxIKwYAdDODiZOmKmz3lKFXTNymhxSoBnb2PEgaqAwLV6plGAUYeD+ZHFs6EXrCl6gg660yTBaI1pDM1b86bfX23Pdr3j+j5eP9yRQ+2s+hU/jkDnEdN0C4drPCtTbDJCI5Ot2knpGcHT7RgnLFFREqieCHSYZJ+SAAgXQCQySQi4OR66fZk4ybPY+9E27paj7yzMpO/1LYHvDHItgeiBGupWdphyu7E0p6y+0xZacx/ugJXF2CmI4gXZBSgUS3BC5Z/vi9DlaiXU8HB9TrNfFpwWnwOABrNytYQNVx/+PM5H/+Y8/+LfZsaoRuMPbsqTfY2LOdbhQGe/bJL80uyB0thbsrBN/b3utoIIfOkmqBOGDPjrrBRjYsv2EQ9uzEjPufvNv5ue6fspDXO8ezr9HZs3uzogL0xkSZPvLbYOKOPXvhDUerofx7LslXhh65sWv9fpNhz3ZgFV1N44jO4OzZDWXxxwWXvrrOOZryKPLOPL6R2bMxK8NIfwysjMHYsz+tt6ksjfYUrJsiP9rxvBk5hWEc9uzerOA43TAge3a5nO/L2sS88ombd6GH0xqvoSbCnu3AihCY03jc5sIUt51eJRH/6FDFdfLm2iWf1x9LXpybi0GMxvdzEuu+cSAk2Az5sKMzEQmDFWIw+BHEXaP5AFtVhIYnGhhbXF9h7IWHbuN1Cpyo+5fo96ZH0cSIHstA+ROA8W1U1s0RSMD2iX7bCtgL5MEAHSm1rJBZrJ/A6UDCKn/ZwNmtKNkkeDeCJAq7nF+kRLV/BT1SCAAKfYKfgKcpIR8ehnqiF/dLVQwgQi9sgmQqoL5gHO1swxSV6gasau6x5OiT72F3T8nI09KJuJk+LXOH8m3IdO2m+JXVMtclr2KeLDiV8Z4DwBxZAQMaZZQgSuMz4O+04jH9obckMWeRpQUmSxar+jzWrWdUptJ9d5/p9Ta6ptW2wsjkgTCcR4WrpFrqGSyoFQj9bHo3KVgATBFtuWUzNk1wPSNcMfRKSserEV4ciLYqq2jNjCRaVHw8v5teoVYZcR57jhRmBfcFd4Kvl/Bc7Tr9zIgpDYOoCT8EsZ3mKteOkWeP26SdAkTOb6c9NsVwx+jK5BiFV6rcGdFuj+Pf/QZWnRVwWEz6NhUhAUkE3PqEbLJSyG8kVdOdZDEGLJuLlGEAcg0NCvaYoNzHYItDTa0J3FiCxB46eURq2i7/F6aJA/lbemwqtLwNQH8KlP8+VfkHA+WvfLug9SkCcR5Q4HaDMlyqgtGGUsG30ei4mg/Q0zShgP/S2DQ13I1WjpQyMMiXWZVqJ3Dt6zI/oFRP0ZCeFmQbE4AVHdBtDH49Pxtzs+JR34UvH3luivIRLPfeGMHBzoQ9hNlMCA+uUzfrmmAwF3RLuGEe8Wt3twKVCrU0MBJTD6wmCr2K+NxluPfNWc5TBwwVxI2yIdNbWuQ+l778JQ0WBiM/Blt/FGwZdhhsuElwYzIJZ8vVf9+irdIr+t0bT/vLE51J361sDynGI8H3jpTLEbaAKWC2I+6DZCSYzsoUIyRyWZBGyUfKIkL5SrBMUeluCahZepb3pEmBPKxHlHzsFlPyLQaeUrpV0Llf2R2rw4O7rlI1RoaDIYYEwLt4vSJeJZp5zP065NWvuVO6kMNn7EH08FlzOb/pTK1K4CBkSIHITUWFDOlNnXnxtxjDZx2Rq6FFTkVSNahaSPiud17oUTwwy/Wv8pm7Xn16Q2n9jSsIOqVDHuWclMYG0yQWtCbfMgqTkLn/6HBpXhzq56nZsfcEIa1Ubg9/R23v6jYIBrkhUhWlJA7+Kajhrow5SChY8AiwqB6tETVSylTHVJBJUkC5DrbHZ0G2AEWK2RybBXpthFX1xrCFsYKmfhdX/SAkFLUmfi9+o+FX4QH/RMUl215tKYkJ+K0QiQnscmFAsZQVCqDiuKNyZ3JU/JD6+6fPmSFcdHy7eMWXxLH5Mv8x2GKmdZ3OLH5Ua6kLix8vXxs8qXrnS52PfRXtalZU8SDGuX9BKVlh4uIWUVlNhdwSRA6ttZB7mDzk1No4biBP2x4d0ePFaaf5P2rmjKk27xoHkNe8ywZ5mbsE5J6cVWWWJyA3QFUmooiSqMpEFFESVZmIIkqiKhNRRElUZSKKKImqTEQRJVGViSiiJKoy25Z7EPXu2jKXVWnmrx56NrSglbxB5UVqH7X8koOSNzGT/Ot5nrC7s6u0yxazoCHXnlmS5W+t2ewXyZVqGC5iCRx6UF6CYbbVc5EpgrDkQCD+AGxJCdeZeBmCbul9aslpvq9IAwf1S3rQ+7e+CSZZBvLECDywqF+av4Ym24axmSuhaAAe4AfmuqCm/opEUc2ZHrGq1IdbApd3LEiurXC3sdNhfvQm7nazaQ2iwLLa6iYyDmfCqpK2JCIvVkiUakvjW9dq1Nk7+VrFaz9qvr/IYVnEpJ7eH05tHuUSp5zhNl04+hgHKOXcYEPp2g365gNbnGbrS8wrbLJhmBFTDi71iNoz5lTJXzmbcgbI7YXz7XzltUdNExsxn+tgiysRMiEHCWxr3tQvjG2qzR5CiALz9FyDHohkm5Dg/FoY92Hq/hrC/assQ4OCt4lMIGsJQTJnBSlHz7xuQyeZ5ptrt6pyVQZLLDIbKPWH7nF3M596LTuwN+uzm90hchaReC49i6gdKQx07jPmdCE657Q5XS8mx/giwFts1vyLaMmGcy6xPu596RvxdE9oxgBuXXI+V1vqNlKpV9tj6gELXXMDOsJ2HximS1CpzqE2oHgAts03CyFN6/x81Cbp2q2Oq/m8YWc8u5I70Flg+VgGt04azM+KU01cAa04D9jpCxAsX5SOQRbuJP18XTkMLCmYacxQNegqbTl4jb9oY/UxjxfVLt2GbImcwb1ooPIMGTgkgDBtZoVp4U39nF3+KTRqrtloKTRoaTAdgSk0Pi12tMegwe2QN5MdEjU+17zDlHviGJfYtxEdqtWi7kOHScL5mn0axH45U2jeWHMfke3BzqVI+ArpSHhJqpIF4g5SJ7NEPdzF8oaonfI8w7pmyWBTrUcA1wuomDwKoJ6epZehKoeloTSbu+B1kN9S/LPbl3NVZgtS6vyUHjg8mHIOCXsAPUTSXM5vzlHPuRU0uwXgKQPhKYOac1vBkuVzll7VJGU178PWqHZD10gHr0nvBUtuJLfZmDo3gZz909xPz/7h1/PD5+LJOrvCTts5LRy2J2WRvEI3DvDJymLDB6iPMSoMzLHCjREaIDrzqH/oZSNstbhl/SWqEGkEm9De3NhX3cVzvdvkYUODF7c/3YAsNM39dKHh1zkvrgVSOcQqla0mJZXsI4RU9HJf5TGDFy4Nwo0vUjCju42oFdd4hvvmvbOe73PfUJQsGC/sfrpg8OtcC8bRHjcncJuRtl6Nau7Me52l34KshhYDbGEhl+WHxxSbpbWaz7B0O5I4rFXV8s+aU9o6aB6AaOuADxQGIulZbIjsziL8ug+TX9+50DOnX6eO7tE5PyLMj98kRyn4J+peDNNZu8IgO3D+yFBZYCgIK+HZQolaDTtyaaticPev2+KDek4b9b50ndRc16dONAuvE6VVvziCVZ0v3a/rmQGviYcamgYWWJNFeIRJ8ybIL747+cW0O7sOe8e9uu05ceKNVWTlYwpstAMGdv5YKSnE0AFVo8FvimGol8Xq7I1rlKatPOmgFqwHUmv2B2Ara/jv3JiSP9Z7PJohmuLPjdrVHq5rMcCqogCDvUR9tZPZ1+QTV1Rt4qjjFzXNwUHmqlwWW+bq50MC8+5MmHsfcLlwmndCFNW3WifZcw8yoXo5L1IzOrohZUK6hheIB4B7igB3yikt7XSyk1RmCrbXojdjJY/runEDFtlrHwM4Z6M2bmCOQvUY0fOL8CeInl/wk6g9v6g9u6g9v367pxf1RkRPLybbVMtFpgI2R58WhAubbxlc96ml9xLJkU3blllMILcgFNBnhyDfBkPfD62a3mFCZ4+FD4ue3FJa9q6geyZgdqyE4nRAVS/0BqPRj9MQzbSYQPqdRo2rG0UfimhczPGIveT5z1IS8lajbo0aqShNef6wz7fuX11m3Vw058GscVygpGJFaeBjWhsm1moXTb9rGBjpABC16p3swzSPovsw/HphbHhjGvMZtdFkY4chhdvTHv/P7CmVzsdA9vTUIzZ7uvrRf/YUl0+TbSJ7uw27vGNvzgr+52XSBQ7sKZWmiQNLceIRm6XY+aiw7WmHSh6Lxzet7xi9xWrz2LYbUjmwp9RNAg5QWs2K0vRHhWhPqT7U6PYU0xhGewqQwu2pn8mvCajTiZtitjZFqr2dIwp32v/BMXTnlTk9OFgSuDxiWxK01ULuz1kxWzkCcgMUsyE48AhTj+DAI4rZEBx4RDEbggOPKGZDcOBpKQbpHHhEMRs1QqNVrEGriF70UNjzOKhY68mZkC0MKOTf45FEkCoSQqbm/GkyMWOSCZW2kAOZBDDJZOXB+32mZX12Tzq4L2nXsAfU+iGJQiqn96dnMmw2An44vAMneIFt0fkKZYRUQy4EW6SycdhSeRcRr6KLtbPwC1Qp5fIe0GPBi7lHPrO7USzhBovXd6qHN3FKcpGqNxWdp2KyhOY91VIVbMJKfGxDJ2XkEDms1QLvgxH/BMki8O8OIgyY5ciM2kwRSXEGA+rbyJnXNBMY0A4iXtQ0UWkviSpEphBLg0kO0EJzuYcsJJR0vZTmur8yPO9VshWu69/I+VuTzLTyGIi+KnhuMEKmeauSxFuhJpRKMtJdEQRptwh4i5SCF2HqJc8lLFaHBTLaS2X8IKuERC6CXFB5HFGESioJ0/6MERNr78FVtZfJu2UqCyhHW3VU/efAL0dksvnloEzCL/c2ecyp9Kqmuz06mLWw31db2N+HMzdZlmc4N4ngzSXcJII3l3CTCN5cwk0ieHOJWCgzcfDTdveripfP7NCFtzgjK08sNGjhPxfiPFM9Dgx92LiheHwQzblCq49UJCoZLwfOtS+TJEv5LRuxOXKoU8Krz9J2/Djy0qg8nvjzAv9RAVOpOytgdSJlqOD7hEsVrmJ+GP4M3RKCVNJh1teis+5RfkGPk9uhT3HWvXTa1gxYmfGe0lKEbGUStTSqTbBPQgqBSEjTGSpRACeH/OJp1SP3b7hmJ1i7sMvZbU+ti5ETgk6aJ9ATgsQA14tVeEIhCEIShSqc2Akzfk+NUjhRPBBAqzUau3fv/qUP2R+fLBjILxUpl6iwPKMchi9I2fi98Xh40HOs15LFlc0/b5TcppCo4g9BkKgSI4Uhnc6s0rExBekAa/RLn+qiOs5hMjVGWxxIEhNhQtCF9EdEN5rtP+Ox86Fsfc6uDeTUmLnmiYhN3NyRwhBORVbh8ExBOBC6vMIhPBOTcNoJwuBHYjIBr6MGt0oVgaM1pItd+MpwyXDI0dgC+yn3NxjKs69LOou3dxX8veJLvPWCJWHkc+z+eZ5PP8dOGi0M4b18wia8DBMiCiITaZrlI8EuuRJUh8oUoxUgCAbiA+JSKBVQdOBfcuVIbBD+6ACHwiSjNBfQnCLp6sbbX5VyX/9XkZ01jm4YSeutgyiLxi8XhuROsEpup9ElB2+CGRW9SmWsNPvRMkUIuyG8G/TJ4cCpNj5bywwcUyRxEjl6NGeMmXJHON/wtsdjCLjiOEULq5pjhhCPU/sxxanVzMb6HUvO8TlinvCoUduxtuRMnUizkeOrko6QSUeSw1SIKVNlW2MBZB1S59kMwghkQ6TKMGmEajQ/XPNAdXl3TTWXu6KHVIGvX5iDV2pbDLZ3pWcVyePlAsB/wpWqCBeZPELzwahwn3E2NHHmfYTYL0dlG+eDkPYMPaQlFsjI1bArgQ12cBJ7R50i+vKddzerX6uj+5Z6DmkjTxchc4+ZE0+lq6V2JL91MpXcrKDrZIDcO4icI8qOwDZSd5/qVeheyT9PCMNXjpCqVDKGnhW8fe6jldIxrovmD/pYYdb7FgWfwhSsqDaCA6zOsGK137ChDrGPWRJfcsFfgsHOnZg7v8yleMRHXBQ6CH8Vx3wb1auaEwsD4lfh/8vkDXvId2iX2/2ZzNh/JPy/RcJP7SZkMBL+zc/YSPiDnxUGCf+kmB5PKypGuO1vsSzFt/fWTRyeNufYRsINk/XP2DjL5z4zCAn/glcBvr3ebXVeyE9/9HbFuNNGJ+Efw4oK0BuTWTvod/CHOxL+slXUb1eO4TluaD10e/9g++UmQ8Lfg1V0XY0jOoOT8C+/Hvxg3rqePtv8tszP8Zjx3cgk/JiVYWRRB1bGYCT8pTbElt3RLdR16mzP4LbXxZdNgIR/DCs4wc8MSMK/ptqUkjXvVXeZZv267qroUKUJ0FlAhHqwIgTmNB63DWCK25wFTZv96nJFsPVu7bhLa9+Q6d4tsEN84Uo58Oj0mM2cAec2uSkSWe79OBcGQFyljAwJBTEc7HKtDNaLy4HaYZHxbemsB3kGda3tA4HQqOcA30yA71ZqmJQO8G3wvKAHqyrmvha4imOB/OqnRg2QLposcFt2ymfHZ7d0s4L37qKEUFTDWMAQCtLeRjxn6mK3HOju4Of6NcLWTN8gaYhKio4vPVo7lYl9eMAran3Fk4ca/1xGOSGF3Yg4IaW5Xhi0v2LW79/+ubGDJa1m6hEowVeWKYNkgSzcNkse8I5a8hZ57lVm9mu+6yOlzxzxALquakcKQxgNWIVhaRxh0Jpj65OxsPdUKCOA+5IEwr1TG4cuYMkKVhZhtvwWXQJDlaogW37LLurhqgjsB3S0+rh7Ve/rHg+ct0y/s/tIx4hvZL8GP8AvYrQc0f8yd6gwhPX9GZuwnhp9mUHU1egVrVbK3ehWRKqGqFlmUPwH3557Z8d4pPgGzVTn9O1akKVyQZcODrghh0c902m8UC2ce/Z5rl+Uiltylmgr8uWCJS/nRPssKv8t1CLJQWzcZS8AwJEAIAMBADQtekWihCtjJpn4687c+BJ2353Xx59pMiXgTQuKKzPsYV8IQGk2AOJfawPNgf/P6nGojbkNVo8z4gVbPU65F4Vdj7Pz1pqhD8pmex5c1G9gelZ2qgnU46hesGU3B74wgaKCFStWGKAe51G/LWqzlk4eG+/8267uwidZJlGP48EqnbamIB2D1OPM8qnt+X6PrfuuCVkf1jxSzTWJepx6rMIpZwrC4RmzHqdcmGV0rX/fOC4vkz1li7lVlEnV43x9zia8x0ZfJppQPU5IkyI86wkNvNZnzZ9jEzbttpHrcS6xSi7F6JIr1Hocxx/t3kyt39E17q7148bfkq+bRD0OFkMw1uMAQ4jHqYP+hHqctePtvXPuBIs3fXxxOuRT01FGrsf5+oKtHucCPaQtlHqcZInV9VPW1q4J3VKOPp+6RcZ5PQ51bc5BjcnHF2w1JpkvCqseJyLjia/1RG/HZWYhnb99fhbGeT0O1UZwgNUFVqySDBvqGLseZzCTGRt+RNZM5h0vOpDiI3+S1e8NOVPSPRKenXRVScJD6SdM9UhfNHCSqcPh6TFtNme0neaUKV8COfNC4CcgNW9jnXMpZz7GCFaVWyRZmrDqLeP70TM5eQdp+lfKD5gwn7xHsRBaST33pKNWap9GbZzU2Jk39yHQysoi+Jdy/jOosfNfcx6mlfWTyoHApEHuwK7/H3vfAdZE9r0dFaWLoiKIYOxYQNS1lwVC6E2w7NojCRINBJMgIhbsFXvBjg1FRbEr9t67q667NixrW3uv371TAjNzZ0hgSPL7f8vz+Dwyh5lM3nPvOefec+57hpCPw9SKq1LCpkqHvDRf+7YXRMtb3D+w6WSSL40FA63Airh1R+hMYIWLKIesCGfAOHzFF5MH/ZB8EZg8dI0OSrFoyRNEZNUg3Q9skXvQm0C9HxvqP8ZtWVXJw8xnR0/HhZkJobRiJcTpS6uSR17nE5v003t8ndgs2rzh0sje23SNRLNpJGNmWuLzoE/+8wY5qBdObtyLuifqB4tnNMyIjHV5id8gVAOvj/e7TFTDkBfr1RarVEghHSMsCYzB/g4LhzWS/mqdYhD6EclyIcrogTKp9ibUqzO3c/HrutKAAjCn3oG06T6Ioj5Iqh5yB0G/BCGC6zgE/RL8R6dfCht3u2PUiWdeY89sS7V4HX6VTr80ptvykTcTegakH8xY8Ch9akdSTh5GLTI9E/2DEfRMbJq2huwBhBrROTDLj6vazFoUtF3p3fr2rv2tiqMt/unwIYcQ1GsFVMhzF4Q8mjtGaTxpDfs79lGD7xDfP99g5P+OmZoUz7aRwxEsUWy6svfLn20gINIkqtCB61P/U790tjnjNTF27GGP6h2vc6rMXIQ/CcF1TAhKQml9OZUWYlilkSbYLESEG1R4y0jtvMd0Q85RtmCvli/R+loer5apsKo78BEUg4nU1cBO23oPe7zUe6/LvmZBwVVX03VlHpqokfRTaAksBLRkF/xUT6a78iyU66uI7opLqa05lVrnDoPri7OBAjHYZTg/C7pFAI0mhXOgm0FLx2zTgV3le4inehB26aA3otO9VxNsiBMuXcrm0jvdvxNurjjvv2z3/tIjd9QcT62VjYqVx2iEsK8s1a1Df8XW09o5PCYGLkUkCgXRflUOG+dB8m4PJMD0hoNsr4CIl3TdlgIjo/MtkpiCsS3VWCyofKu4dWS2WPddMDfV8IXR9Pg1N235evhg0MyRWU//MX+VTW/wgvyKhYaE9KbrxZxjcAkfAbE66IWYY6lA2v6WflVjuAaV2KhA4tIjIL31nQmbRGl/R0SPm76+AWNLOUY3YIo5n+A3d+P85mCUmMB2MjYC9cixWUOeIS7qqS7hm1OrlRkrGtNLWe3k9ps51HEJ7zYU/AJO+J//bRoVYsVt1I3PCFjtDL4JmqqD1nG3iJaiuLv57gVMAcPB9HXHJgThYGRsDkZvPh83rfZKns9HM/PgiH4nW3vvq56WvCCpZkoBPp+mi855zVnsFJp+dOzjf7dNtC/A53PKY8JvJ2JWh89sMW3gmT7WoQX4fI5W2FtnkKM8fG0p0YQ3d8SLCvD57HYu659QPc9756blE+N7/TG9ILchs/MvyW2I6PxLNupFdP61IEQLqvbu2Ts3wye1y1+Bj/74CIkZLQlRuX3lV9vHdw5ZUuvs249hweWByIoQ1bLx2/Bi3+zg3SPjRkvsqsUDkTUh8u10LGp4/ZPeM6qv++IzYf13ILIhRDl3hzZwaH/ZLyvq13uKub06AJEtIbp3dVzVVOv3gcuazDk91ulZABCVJ0TN/JQfmuxd4rNkaNJB/yP+W4HIjhCtiR1RLe1E1eCV9mtG1pnRvQIQVSBEZeK2H3Oxey5e+rV3Ro9D5j5AVJEQvfl72+W1MQNES/6Ne1l67bb1QGRPiD48H9d5h3OHgJ2SyIHjYixVQFSJENXo+GL7mpPpolUfZjRNuZqRBkSVye81eJ7L0PGa8OWWV5svmPIkGoiqCFhpoBwI0fovQ2PrzggSrav466m/JJMcgagqIbqbuK9jTE8/vxlPHEcd6PutOhA5EqJRdw+WutuwpdeyrvVanqgyeBAQORGi74vWN1zXeIjXnn7H/7z59fU6IKpGiB680WTeazsxaNy8am+7D/1jCRA5E6Lmjod33X/5OmTRpAGzo7KPQKCqE6LYuz+Wjh12wDtrfvs6fzZ+3gCIXAiRrFXt2W+7+IRuTuluv7LRvrpA5Erqa3sb8xu3vvqsvhT9plb1BEjaWYMQ3RfXDxr6SCVetCw3u/2HBVOBSEhOh6i3i5KjAkJ3erqM2dB9RH0GUVVNAQtR1QPF75Ia520C5n7+263tdKuLPBBVxbCZqCoxuzctPHZKvHhD3tAz1YdlUJeu4iEJCqUUcfqCLQCuR9whJM/LYm3q1HEgIAZGiOgAqONxC7qBQr4ac1VNCHRdSLiBZdULSBuMyhxGwIbsL/RroJl/GhV/EeR3+6f6wnZPHsYGLL/45Yj9kBobeTyMynOCEDb4+eUFWz20I1iVCl/oFRO3iJSBoYHVPUllsMWRUi3Hjp+A95MrsKUTOU6EEhU8ca2Mk0ejK9WGpjQsVXN40JrFre/KDu5YTi0f134Os3w8X8R33ADhsuGE69O/JhHJMY866hnJuRMTTZqvLk2sRCOMkwyUCUEAom1hzV5nbpGjPDS8xmb/TfvMjkWHKmrQKg2JxyIqDUkJ39qr4E4Mdl9k8b8HNtgZ1eZ6AleTPBRFFvzJ6EAiwfJs2Uuscm4cMrmh78mTnWdSLXWRjmDxAJYNJ1hgqBP+pz+b//mPuaFIzA30CN1gzA23X3AxNyzVz1fqyNzwssNvf9kdrBSYO1c61OnDufs8Oku6BeKBueHmC66D7sf1c5ZFZW7o4rqu0Y5LA0LHfq5p1shhTaLRmRu2cKICxo2JVpkWtsHEH3ODz4OyLWbF3/da4V42RPqgbX+TYW6YzKm6wcZRncGZG4SlMjcoJ/cQbXL8Hq08POmFkZkbMCvDevT+OCJKKSnmhhNDhHaD5+4IG7ejWsDKaXnrTIC5YQsnOEtfGJC5od44y7tuK6VBUz+8jb798RC1KZvxmBsmcyIE5jQRt8WyxW2nFklCvrep6j8609X8ae2U/dRoNATEaMIo3xDdNw58tM1wYTcBMhIGK8QY8CuIu5KFAFuVBucoAMaWGK8w9iJCt+E6BU70/Uv0ezOjaFKixzLw+DeiLS4jVPICGhj/Tb9tBewFCmCA/HaZgiu9D5295Tf+37lttw1924+WTYJ3Iw4oYJcLi5To9o+HnreHvxHVV4xBKGwkFmz8plfdsSMGEDku3KRyFRi+QI52thZNrIVbVz4OXVX1ucrKeRiV1tjSl7yZOS3zRYUBNtru3LLLNs/EW3M+mB/o3KouD4At5AQMjCijBFG4z4B/01zA9sOkw7Lg0KU1pksOq9rE/Mzcp5LSgRvTN69KvXX9pz1GZAKUIR6SoJJpy56xoNbbJ8rttwbFC4Bpqt0TkV5bPDAyeFPr1+/GrMlx40G1Kk7V9jaSalHx8Yxf9Qq1bEIK2HOkMkfc7Xo74NQQr/QaFyJTsm7spSf8EIeq8Ku8t5X2IGxSDqqoJMcDm2KEY5SzOUafq1VvDW611Su7R2/HKV33UckDKsPiVw3c+oQnmWWwtl6mR8f4JiJlHIAcL8HFHiPNfwy2OMxvFA+LSnXyiPS0XeEvzFAH8q/02FSY+hqA/tgH0UC+Lxj8Ca+LW5/iHVIAFLjdANsgwWhDGS90I5ufA/RwAiT4P9ymqeFutDJJxsJe8kdWl7SWDZ+Jlh6z/7u652Kqty3XFSs6YNoY4nphNqbap9sNkj76hW1b2LaeddMum3nYmZgIYTbzQbRMT2+AwVzcLeG6BdSv3d2KVsarZdGJ2PDAaqLQ3FrCu3/vuHwkYNcYB6/AD/eoDQ+t85/LXP5ShCXBBoPB1hMF2w13DDbCJAxgMwlnytd+27SlMnT8m5fBHldGiinfzTZShtUwCsMSFQqELWALmN3J+2AhLDZm5fGDJQq5FB/kSXJNrFAJlikq3S0BPUvP8Z4MLVDFekTJ1V+zJd8yALqvXhV37jsEYnV4cNdVpsYKsTHEkAAM8Rj/vW3nUeFTtz8tVevkje7U8Bl7EDN8xi8XNp3pVQk8hAyOELmxqJABNqMye80aPuuInLMWORVlqMGhhYTvw6bBdrNXV/IZ0/rFb19821KDahtigKBTOlQp7wXRbthI4kDr71dGqWK36JycICuIQ+0CNTsewSCklSk84N+oPfwD+sAgt79MRSuJgz/FNdwOmIOEigWPAIvqZFzVSC3THVNxJkkx9drXg5gFr7xRBzKbYLNAr40wxzAMWxgr4PW7xNCXIqFoOGLR0NU314WPaWVV7sDg8Ju0xAT8VojEBHa5JKDAhjgrFGCIE45qIJujMpmef3RryU/74xJo+bf0FVfLv2layBUmDzm9No4fyEeZlWs+q21M4CJNuxV7nzn/ygPkg99yQR7zloQ8jreqTDsScgNUZSKKKMmqTEQRJVmViSiiJKsyEUWUZFUmooiSrMpEFFGSVZmIIkqyKrNDmuyD2WKR37yphzRHrC2WMEre4OBFjj56+SUPJW/xbPqvFXzU/dZmK781ZtJ+155UoOq/Er7ZL1Io1TBcxBI4zKC8HMtsq+Unh+2OY2F/YPwB2JISrjOJMgTd0vv0ktNCX5EBDuqP9KCWmfYSTLIbyBMjYEUe9lKvvWtnPNuGMWkooWoAHuAX9rqgztN+DH3U6XlIepxbZo2JeduKk2sr2W3sizA/+pJwu68Y5IRgWa14iYzD2bCqoi2JKIgVEqXZ87vG/HOtvte6Bm/nrus/NoDHsohRXcLen8wc4pelnBQw0Sf5MA8ohXGi5PmSufnAFac1jiDnFTbZMMzIKQeXemTtGXuqpOGUT6U2dvw3ZLT1WRdVb9s3RsznejYmBhEyIQcPTw9+qV8Y21CbPYQQRRfg+4QeiGKbkOAcS/HN7fe0SsDMiK0zU6+N6WECWUsIUj9OkMJe6pfXresrx7+5dqsqf8hgiUV2A/Wy97oWbn7ZQWu8rFe5hXWhFS6Sz2VmEbWSkkCnLSc69V6SgZGSzTE+6xoWYtbks2juyrN+y8MDuzM34pme0IwF3JrUfK621C1JqRflPv2Aha65AR1huwsMU2MYwp9FbUAJYGti5gZU8dO0vzjb9fiz70LvsQ1jKgY1e05tw2yN5WNZ3DpFWJgVp5u4YlpxAbDTbhCsCNQYgwwQlV/p5evKY2DJwExjh0rze501ZXeo/af+2WpLN7taZ6mWSAzuRQNVQGTgkADCJOCE6bmezq7wFBo912y0FBq0NNgYgSk0ISN29MCgIexQApsdEtU/26TNmDshGX7LX2vaOLnQ96HjJAlCfJ8GsV/OFprXx+8jsz3YuRSJMF6WBC/JVPJowkHqZJboh7s43hC1U15ArGuWDAybAV8ArudRMXkqQL3hF70MVXksDYVv7oLXQW+H/xyeutb7vc+u121dxW1vU1uelsUewAyR8MuFzTn6ObfiZrdg9y8Ijw1qzq0FS5bIL3pVk9ji78NFkv7ri5tj3R1bB6bWO/ZX0IIKWdTsH34/M/tHXC8MH6ereU8HN98UOsq/oUWP3j0G8IBPR058wPAxRoWBBVa4MRgHor2A/qNfFzXbzhJVf5mGS2lPt0hrfVmTFZ7TceBVV2X3SKrS8PuZSiOu815cC7TiwKmV0iallVcHSK3o5b7sMIOXIJMSxhepmFtJiyftbbVRtNSx2eDgViMvUBUTit3PVAxxnW/FeHkQ5gRuMzLWq6lNxIKAL/otyJy1GGALC4W8MDwi1tY46T5oSkjW9tAte83s99AohfAHICiFCEFJINKQExGbL6RfH8Tm13NmBb/r0a5t4Ph33zUWR26+peoY/0Tdi2Haa1cYVAcuTIqVR8eCsBKeLZSo1ZANUlsVQ7h/3RYf9HPaqPdljkn8uj51op+JOlFG9YsXWNWt+1zcDHh1ItTAyZMwgl94hAl/E+QX93g+IyJOeS90ruuG9/7mnVtQBx9bYKMVGNj5Y6WkEENPVI2GsCGGoV4Wq30YMaLwliaUg1qwHkiN7w/ANgrw//kxpTAlbDgSUbo/N2pHFbiuxQBzRAEGeawBYMRkVpl84oo+mnhim6SnOXjIXMV+5spc/abFXM2GedhOv/OnBEdFqd2d2smfBlWkMm6HUohQmYaUDWnnUBAPAPekAXcqaHSqOtlJOjMF12sxicCpcl03bsAi+9NXAOdU1MYNzFGc/YrgmyT9CYJvEn4SnW+SzhdJ55ssMp8k/UYEnySbbXLxk6uAzdGH/vZ5xe+u9Sw9vKf1bnCsQ27dP6n0t97M2eFdKLndl46xZRu2eh6++NWwvHsHXZcVd88EzI53UJ2eqOqF34D07tfjCCJHNpCKQhL8/dSd7A61XEKn3rFdETylFvV8tW4kwXSU7rauPeLhN2lg7omnijoNfxS3hhOidJYTpV1fGRSAnNUueK8FGBjpABC96p3qw/BHMX0Ycb0kNryxEfMJtdHk5o4hRdhTzf+YPaXT+RjIntbitKcfvvxnTwn9yHwkVcZpngfNWh+T1aCcx1Ie7CmdpokHS+HKaSmsStyevrCdJV7wOiR4WdNOb8tnXR7Bgz2lbxLwgNKHL1wo5X0pQXtK96FGt6eunPb0g3aBn2jyawL6dOKnmK1FKafXaaIE3x3vvWJzrqZF8rAkyPjCtSSYoYV8MG/FbOVJyA1QzIbgwCNNPYIDjyxmQ3DgkcVsCA48spgNwYFHFrMhOPDIYjZ6hMaoWINWETnE6Ox5PFSsJfGmZGsDKrloPJIIUkVSyfScP0MnZmw6odMW8qCTIWw6Wbjr7u8THnwKzN21PXfzwHvUc35lIyTxMgWzNwqbYXPzFibAOwp06BLGKzUynFwI0nNzcdjSeRcRr6KLtbOOilYpFYpI6LHgxfwjn69+pVnC7T1+vL6TVS58pvr0oBcTnFgrqS26qGUqSABOfmxdX2ViPwWs1YJddCDxj1SuIb47iDBgliMvNZOmErLNEYM1t55YMPojMKBtRILUCSKrUImqvzw+RBZDcYDW+OVI2O+04HVL/HpnZULBq1QrXLlrPfHlUR+P22EgRqjguUGNHH8rc/KtUBNKJUkKjJdC2i0S3lKW8CJMvRS4hMXqCqIlE74ggF1U5RKFCHJBFXBEGpVMEqf9HSMm1t5DDNVkk3fLdBZQnrbq6OOfB798/iOXX97/kfTLQ00eczq9quluj+ZyFvav0xb2p/DmJm0FhnOTCN5c0k0ieHNJN4ngzSXdJII3l4yFYjpWiro3vpZoz7ih31YfrhFeIBY6PCb5wI0dY7zHdT/f227Y49sM5wqtPnp/jEbGy4NzHcamSRNt104nHTZYu/bD37natXf/XtLt2o8PXPg+vU2Y38wj5g2P9/s9xgTate//ztX8dt13E+g5vX79egO0aw8859r2+e/p4Uv3PVgR1WYRreOokdq1z+PUzmhT0I5B2rWXibiUp94S67VEEDdle1LmYpNo1x7PqZzupqAcgTHbtZ8NP38193QP750xj8pFDjxG7Utr7HbtfpzKa2Yc5Zlmu/b9Ntm1HD0Xe0/eu1b252ULarcqw7drd+XUnJXRNQdvKrF27W1kH6us8HAO2T575ZiOEZuo3BDGateOxRCs7dqBISTi1OFscer/Urt2elsMI7drj/jB1a69zg/DtGuv9CF0+aGZoYF7P/jH1V9VdiDv7drp5GY8tCAP+cHVgrz1j5Jq115hTE7VueMXhq3q1Lp5suuAXby3a6fbCB6wqsOJVYUf/1+1ax/BZsb+I+EvEgk/vZuQwUj4BT+5SPgPMm0nDyT8f3T09pxZq7Xf8hHOCbLV6VR68uKdNufZRsINk28/uDjLHzNtZEmQ8K98dTbrxo1GASs9nrXxWCluY3QS/qucqBw0rDXkXDvod/CHPxL+GNurv77d1zR0XO3Fu+ttc6W2rjcmCf8GTtWlG0d1Bifh7zhr0G+fq1f23ZA0/nmkzTVaVsXgJPyYlWFlUQdWxmAk/Dknr52WdBAF51Rv8O3ihXrUzJpxSPivcoJz8IcBSfjbHvt5YN8fM303fFrawzbLk7pMMx4J/wZOhMCcJuK2kWxxm9i7YaOfHa56r73tmnV56cvmVB4B7BBfglIBPDozZrNgwblFfopEnn8/wYUBEFcpE/vHghgOdrlWxujF5UDvsMj6tkzWgwJCXWv7QCB0GYZJeQDftfQw6SLAd8TP4h6sqpz/WuAqgQXyqy9W96iVnvNKtPSwXZMqvROoFNdF6t1FC6HohrGYIRSkvT3/k62LXToYu7k/9WuEjU9fqay/SoaOL+uuWSjwHl4xZOqNDY6bj8QIaSeksBsRJ6Tw6yVB+5vJ+f1n/TR2sKQdmXoESvCV5UqpPJqD2yaihdmC5IvbfLddrnhfk32hFXWskg9gjlWtpCSUMYJTGQOMowxGc2x9MhYewfFKDXBfkmi4d+rm2QEsWcHKIq6xsGmH6FilStpY2KyDepBKg/2CjlZvRl986hQWHrDo8a6g6Qebr6L6NfgBUZpkBaL/Zb6oJJTVlVNZPiYxc+Cj9IpWq+RvdMcnqvqpOWbQmEmarMC8+UG7Gt4emvGx4r7iLJWLu3TwJAw5POp5kcEL1VTcZetP/aJUwpJzRFtrWt3NPHFMIVq54vSJwOcd5xt32QsAWEgCcAMBADQtekWipCtjJ5mo2yzgqGWL9V57LHsNnjpSs5fmygx72BcCIOUCYF3ATzLQTP0fq8ehN+Y2WD1OrOAERz3OL4ITJVyPs2JzRM0vEx6HTRg1c+vqFqlrTKAeJwZCwprd7Ck4YfyigpkzZxqgHudG+qvN9o2yfCY4lWr23SZtqUnU40RyaifAFLRjkHqcdjWmnn5/VRi+c9cfp9p87nTRJOpxOnIq5xdTUI7AmPU4sbHXMtv4rwybvSVo0pkOYedNqh6nIafyhMZRnmnW4yzY5tF6RYP3fhtiDi0e/LVFXSPX4zhwas7G6Jor0XqcFbO7NT1lLwydt3PHsbZzVlwziXocLIZgrccBhpCIU0f9X6jHuS+uHzT0kUq8aFludvsPC6YauR5nHcSetR5nDjOkLZF6nK9pY05VUgWGZl7cePJ11bMi3utx6GtzHmpM1kLkWGtMllKR47Ee530V9YcAs6Vh2zovaFqu3pJk3utx6DaCB6zmcGI12bA219j1OKPZzNigA/JG8rB1op37wxX/POjxkpop6ZQIz076qyQJscwTpnqkL+r4ytUJ8PSYNpuT7I6fMhVKIGdef/gJ6JaRUW8XJUcFhO70dBmzofuI+qzvx8zkFBQyxp9lFDBh4QWPYiFGJf3ck46jUvs0euOk+mLBo0/HBQIHEfxHO/8ZU1/c8+Gn47ZRMgVQmEwaCOz6EPJxmFpxVY5hU6VDXpqvfdsLouUt7h/YdDLJl8aCgVZgRdy6I3QmsMJFlENWhDNgHL7ii8mDfki+CEweukYHpVi05AkiMs1XokXuQW8C9bFsqP8Yt2VVJQ8znx09HRdmJoSuLvT0pVXJI6/ziU366T2eTmwWcd5wacThHV0j49g0kjEzLfF50Cf/eYMc1AsnN+5F3RP1g8UzGmZExrq8xG8QqoHXx/tdJqphyIv1aotVKqSQjhGWBMZgf4eFwxpJf7VOMQj9iGS5EGX0QJlUexPq1Znbufh1XWlAAZiPIJg5PoiiPkiqnvkOQb8EIYLrOAT9EvxHp18KG3e7Y9SJZ15jz2xLtXgdfpVOvzSm2/KRNxN6BqQfzFjwKH1qR1JOHkYtMj0T/YMR9ExsmraG7AGEGpHasnrWPu3vrCZh+2JfJV0dWDGvONrinw4fcghBvVZAhTx3Qchz/p1RGk9aw/6OfdTgO8T3zzcY+b9jpibFs23kcARLFJuu7P3yZxsIiDSJKnTg2upynZbn2qcGr73qVNVG9uoBp8rMRfiTEFzHhKAklJbLqbRMwyqNNMFmISLcoMJbRmrnPaYbco6yBXu1fInW1/J4tUyFVd2Bj6AYTKSuloXL3DsNXxicGffcfMCi233pujIPTdRI+im0BBYCWrILfqon0115Fsr1VUR3xaXUWZxKHfGOwfXF2UCBGOwynJ8FCR6dJoVzoJtBS8ds04Fd5XuIp3oQdumgN6LTvVcTbIgTLn08m0vvdP9OuLnivP+y3ftLj9xRczy1VjYqVh6jEcK+slS3Dv0VW09r5/CYGLgUkSgURPtVOWycB8m7PZAA0xsOsr0CIl7SdVsKjIyNb0hiCsa2VGOxIP5NcevIbLHuu2BuquELI7+oj539i0W3nwZNm7p3kP3xLxH0Bi/Ir1hoSEhvul7MOQaX8OsgVge9EHMsFUjnvdGvagzXoBIbFUhcHNzePRvWzS54T/8V0oa/f/vB2FKO0Q2YYs4n+M1Hc35zMEpMYDsZG4F65NisIc8QF/VUK8WudK+rs0SzA2b83N4qtCd1XMK7DQV/d074/YwDP6NCrLiNuvEZAaudwTdB8/3QOu4W0VIUdzffvYApYDiYvu7YhCAczAQ2B6M3n4+bVnslz+fTzbVzo+TDu72X/zuyU5W3v4YU4PO5+u3aX1/dBolzpQ1stgdaPSrA5zMi59q8pet+C5qhqTjpRdNXgwrw+UQ3EvR58uNv76VXr8q39el5pQCfz6zsRvVnJFwKmn82oPyhe/VeF+DzQXT+JbkNEZ1/yUa9iM6/FoToztFqTe26Tg0Z9Xn9v06nHx4BIktCZJFSdvkH+fPQrNV95Vk7FRANK0J0r80hp/ZlbnqlldcERA180gKIrAnRlYHPlvzdNU+UNiio177rrueByIYQ3do8+3TjZReC1vv/Imj+19U7QGRLiLJTfs7zCpf7jGrc/MzP2QHJQFSeEAVEtJJ6nleL9kufZk2+3nENENkRopQmFoqkO9MCctt/u5+eI58JRBUIUaut0iv/vN0Qkno3fsHdY2dcgKgiIZr8+pzrE1m5kIxTZ/7O63fDFojsCdHZDtsvfs2tEpbevMXF+Jd9fwGiSiS8dUeUWnnsUtD+M/PqvN/2+CgQVSZE5V7efdgia6Boe9Ubmz9da9YdiKoIWGmgHAjRxLUPX26OnBy4qdeR3jekLn2BqCoh8pt5dcCvd2cHjndbluK8oN0pIHIkRGPT1EdX3+3oPfFSQF/VkRN7gMiJEHlM3hwTljHAd7V76Q29etS/BkTVCJF4y/Zz7xVPQibUbGsjmtQVMkQ5E6LISmbrzv99STTjTIMzN1vWewpE1QlRZdfWnhrlKZ9lTaZV2fntCRwbLoToy9JhHV/3/uaTtvOxcIdZzgogciVEbXLkkXcbDPWdIh1RZV5rh4NAVIMQ2ZRuIN5Ufqjf+CnxNw8uqAQ/S0iIPru2PTNrZl2/NdNtAr7suBDBIKqqKWAhqrJaVvdct65NvJb30Uyfty9XyQNR1UQ2E1UlZvemhcdOiRdvyBt6pvowKmm8uXhIgkIpRZy+YAuA6xF3CMnzslibOnUcCIiBESI6AOp43IJuoJCvxlxVEwJdFxJuYsGrUicEgk+ozGEECI9vlmJkDjkbaOafRsVfBPndSr31V8/v5iFa+7rzoE6Lxpfl8TAqzwlC2ODnBQQIWQ/tCFalD0oxEoRcIVmLSBkYGljdk1QGWxwp1XLs+Al4P7kCWzqR40QoUcET18o4eTS6g53jjsOTV+eFjzsafn/AYgm1Daml9nOY5eP5Ir7jBgjXTU64LpYySl1G4Ucd9Yzk3ImJJs1XlyZWohHGSQbKhCAA0bawZq8zb3M/7nXFxR9DN7w4nbvQTEhtZmcRRTwWUWlISvjWXgV3YrD7Iov/PbDBzqg21xO4muShKLLgT0YHEgnW1BUTf7V/IQqbVerhuG2+jagnJIt0BIsHsG5yggWGOuF/JrH5n/+YG4rE3ECP0A3G3CAqfYKDuaF2ab18pY7MDc7vU7/3dT8jyl19pvuUQxZuPDpLugXigbnBGyLEetC9VWm9nGVRmRsEtVO2zR1xy2vloUajs/qsuGJ05gZ3TlTAuDHRKtPCNpj4Y26o8G/390dvvA/fkD3PXfChMzXlb0zmBidO1dkZR3UGZ26o2jvbvUlCtveC2+bXmvemHe81PHMDZmVYj94DK2Mw5oYLmQdyZvZvFZ7942HwjdVCKq+OcZgb3DnBqU0Dp7DzcsViboj3+Oz3IO1w+NK2u75WGVPqg4kwNzhxIgTmNBG3TWaL204tkoR8b1PVf3Smq/nT2in7qdFoCIjRhFG+IbpvHPhom+HCbgJkJAxWiDHgVxB3JQsBtioNzlEAjC0xXmHsRYRuw3UKnOj7l+j3ZkbRpESPZWAryxN4W1xGqOQFNFDVUr9tBewFCmCA/Hb/OvRvlbanY3hG5IIt47+Z9aVlk+DdiAMK2OXCIiW6/eOh520LCFACahAKG4kFjSz1qjt2xAAix4WbVK4CwxfI0c520vvtLx98O+a1tZK8csOt/lQeHktf8mbmtMwXFQZYbv3rM/7q29M3516Zia1PHTnIA2A1OQEDI8ooQRTuM+DfNBew/TDpsCw4dGmN6ZLDqtq9eLDF5VTbgHVju7R4veNRtj1GZAKUIR6SoJJpy56xoNbbJ8rttwbFC4Bpqj21MfX0vYF/heaedndrPNDWhwfV2nKqtoyRVIuKj2f8qleoZRNSwJ4jlTnP922SxfM2/kskG+6/CdvpQ0/4IQ5V4Vd5byvtQdikHFRRSY4HNsUIxziFzTH6XK16a3CrrV7ZPXo7Tum6j7prXRkWv2rg1ic8ySyDtfUyPTrGNxEp4wDkeAku9hhp/mOwxWF+o3hYVKqTR6Sn7Qp/YYY6kH+lx6bCwjIA9Mc+iAbyfcHgn1qG9eiOjjtu3iEFQIHbDbANEow2lPFCN7L5OUAPJ0CC/8NtmhruRiuTZCzsJVVdsn980TwVT1Ze+3xv6ntq7qRcV6zogGljiOuF2RgX/1t2AzZuFK2Of/5C2nD6Uh52JtIhzGY+iJbp6Q0wmIu7JVy3gPq1u1vRyni1LDoRGx5YTRQSy6bvDl6d8mKb/+byghrdL7a8Tj2Rkf9c5vKXIiwJNhgMtp4o2G64Y7ARJmEqm0k4U77226YtlaHj37wM9rgyUkz5braRMqyGURiWqFAgbAFbwOxO3gcLYbExK48fLFHIpfggT5JrYoVKsExR6W4J6Fl6jvdkaIEq1iNK7leGLfmWAdANKfbcdwjE6vDgrqtMjRViY4ihB6EkooMo08Vv7tXxif4Lp7lQw2fsQczwGb9c2HSmVyXwEDL0hciNRYUMsBlV1zKs4bOOyDlrkVNRhhocWkj43k5ZmetSb2PArtmv+lf+Ue536jF3YoCgUzpUKe8F0W7YSOJAy6eMQQMs8kUtOicnyAriULtAzY5HMAhpZQoP+DdqD/+APjDI7S9T0Uri4E9xDbcD5iChYsEjwKI6GVc1Ust0x1ScSVJMvfb1IGbBK2/Ugcwm2CzQayPMMQzDFsYKeP0uMfSlaFrOg5aTWr9t4jOzwu0/v3+scoGWmIDfCpGYwC6XBBQhnFD4aB1VGpujMpmef3RryU/74xJo+Ve7DHHgH9nyz1kL+TSTh5xeG8cP5DFznLvJJ+/1Suv48dFjc/FHHiCfbsYF+QQzEvLpvFVl2pGQG6AqE1FESVZlIoooyapMRBElWZWJKKIkqzIRRZRkVSaiiJKsykQUUZJVmRP2hdS2m9TYb9a8P5tFfN61lFHyBgcvcvTRyy95KHmbwab/WsFH3W9ttvJbYybtd+1JBar+K+Gb/SKFUg3DRSyBwwzKy7HMtlp+ctjuOBb2B8YfgC0p4TqTKEPQLb1PLzkt9BUZ4KD+SA9qmUUwP3ADeWIErMhT9EvzO+PZNoxJQwlVA/AAv7DXBR0N6uyQMGNW2NTnDTo0GdvudHFybSW7jX0RYLWgNOF2XzHICcGyejIz4c+FVRVtSURBrJAopR9xm7Q3933o9tLzmle7PvoMj2URo7qEvT+ZOcQvSzkpYKJP8mEeUErhRElRmrn5wBWnNY4g5xU22TDMyCkHl3pk7Rl7quSnfYbT/E19Q3a7qa+dy2mrMWI+17MxMYiQCTl4eHq6nvnchtrsIYQougDfJ/RAFNuEBGfD2+kHwz6V8c8t23jBtcGjPU0gawlBGscJUoqeed26vnL8m2u3qvKHDJZYZDdQn7Lrz1Ek5AVkZj3zCvL7m1aLRz6XmUXUSkoCnUGc6PTX5nRnsjnGZ13DQsyafBbNXXnWb3l4YHfmRjzTE5qxgFuTms/VlrolKfWi3KcfsNA1N6AjbHeBYXoKYTuL2oASwCYQ+rk63dK0M2/ufPK43MqwMd9/j2o65MBO6mYnlo9lcesUYWFWnG7iimnFBcBOP4ZgRaDGGGSAuK2fryuPgSUDM40dqqeJj0KqpvsHjG36JmX8+aFUMndLMbgXDVQBkYFDAgjTVU6YTuvp7ApPodFzzUZLoUFLg40RmEITMmJHDwwawg7NYrNDovpnm7QZcyckw2/5a00bJxf6PnScJEGI79Mg9svZQvP6+H1ktgc7lyIRxsuS4CWZSh5NOEidzBL9cBfHG6J2yguIdc2SgWFjaQFwPY+KyVMB6k/M9TJU5bE0FL65C14H+S2DSk8/MeXn5sDxW2vtfBub3ZAaImEPYIZI+OXC5hz9nFtxs1sAHnMIjw1qzq0FS5bv5npVk9ji78NFkr5pYJ4wq461z4bNl46UnnjiPjX7h9/PzP4R1wvD59GJZg0iKk3y2pOS5Wvxb/Pi7ptAfN6ac+EDho8xKgwssMKNwTgQ7QX0H/26qNl2lqj6yzRcStvbvezEY3M2+a8JX5QzqMW3YKrS8PuZSiOu815cC7Ryh1Mrf5iUVl4dILWil/uywwxegkxKGF90z4Un2YLNHZb7TMs9NbVllXBXqmJCsfuZiiGu860YLw/CnMBtRsZ6NbWJWPDJXL8FmbMWA2xhoZAXhsfSFPHe1um/BE590b3WsLz5UhqlEP4ABKUQISgJRJ6YcyFy05z067PZ/HrOrOB3Pdq1DRz/7rvG4sjNt1Qd45+oezFMe+0Kg+rAhUmx8uhYEFbCs4UStRqyQWqrYgj3r9vig35OG/W+zDGJX9cjA77TnKgTZVS/eIFVXRbTr+uZAa9OhBo4eRJG8AuPMOFvgvzilhvUURPeNfDeExfXrKa8L9W1mbMFNlqBgZ0/zO5uhxh6omo0hA0xDPWyWO3DiBGFtzShHNSC9UBqfH8AtlGA/8+PKYUpYcORiNL9uVE7qsB1LQaYIwowyGOdpZ3Mc0w+cUUfTTyxTdLTHDxkriaac2WuUrWYz2XDPGyn3/lTgqOi1O5O7eRPgypSGbdDKUSoTEPKhrRzKIgHgHvSgDsVNDpVnewknZmC67WYROBUua4bN2CRfRF66KmojRuYo8i1OMHkmyT9CYJvEn4SnW+SzhdJ55ssMp8k/UYEnySbbXLxk6uAzdGH/rbzhEO5t44fFi2MfbvnaJkNVaj0t97M2eFdKLndK7XrCLPQAeFL/zX/Hn7s4Yni7pmA2XEeqtMTVb3wG5AetTiBIHJkA6koJMG3Qo7L+s0KDZhpeTqysWvrdUUgCaajlPz7vTSbiqsCDwz63LhnFVlxazghSrmcKOVYnKBTAHJWu+C9FmBgpANA9Kp3qg/DH8X0YcT1ktjwxkbMJ9RGk5s7hhRhT+f9j9lTOp2PgeypjNOehv9nT0n9TNm1Prhp8399lk+vYKb+8/5NHuwpnaaJB0sRzWkpfi9xe5oyo2fH15PcQ5b7388dsWpPXR7sKX2TgAeUwjlREpekPaX7UKPb02hOexqutafzTX5NQJ9O/BSztSjl9DpNlOC7471XbM7VtOKSRcAlQR0LriVBdS3k6bwVs5UnITdAMRuCA4809QgOPLKYDcGBRxazITjwyGI2BAceWcyG4MAji9noERqjYg1aRXQOl8aex0PF2gLelGxtQCUXjUcSQapIKpme82foxIxNJ3TaQh50spBNJwt33f19woNPgbm7tuduHniPes6vbIQkXqZg9kZhM2xu3sIEeEeBDl3CeKVGhpMLQXpuLg5bOu8i4lV0sXbWUdEqpUIRCT0WvJh/5PPVrzRL2K6J08lqE2t6zagVK3hcLZGVd9mii1qmggTg5MfW9VUm9lPAWi3YRQcS/0jlGuK7gwgDZjnyUjNpKiHbHDE2peuJBbPLAQPaRiRInSCyCpWo+svjQ2QxFAdojV+OhP1OC163xK93ViYUvEq1wuUD64ltZ5U7YYeBGKGC5wY1cvytzMm3Qk0olSQpMF4KabdIeEtZwosw9VLgEharK4iWTPiCAHZRlUsUIsgFVcARaVQySZz2d4yYWHsPMVQXmbxbprOA8rRVRx//PPjlPeW4/PLWcqRfXmzymNPpVU13e3QzZ2F/lrawfwlvbtJWYDg3ieDNJd0kgjeXdJMI3lzSTSJ4c8lYKPes55k5a8+IN/8xduh1Qae6BWKhRX9uW+D9pHXgzPLxzVcHDx/BcK7Q6iMHEp2MlwfnupRNkybarp1OOmywdu3bLbnatY9iUsnw3K79YfcKpUunDg9NT26SNndn744m0K59qyVX89ss4xBmUHtOr1y50gDt2vu4142KmXxavHDCuG6DXcTzTaJd+zJO7cw1Be0YpF37pePV1y3UTPaa9D3GLPKNxUOTaNc+hVM5o0xBOQJjtmtfaXFLsWdnrtdW2Y3DdxQV7EyqXXsSp/LiTIgoyOjt2h1udheWHXRbNPdOmdOHgkY7G7ldezSn5n43uubgTSXWrl0o+71Cw33ufgvbJ5itKX//kkm0a8diCNZ27aO0ZE/L2OLU/6V27fS2GEZu1/7Nkqtd+yNmSFsi7dqVvhd6Tl70h++UWjHB/1qu2cF7u3Y6uRkPLci/WHK1IH+lH22iHu3a/6rYvPTyPlt9t7RJL9WghWx88acwDSu6jeABq0ecWP1tWJtr7HbtGWxm7D8S/iKR8NO7CRmMhL+zFRcJ/y9WJUHC3044st5h4WrR3EP3vu8w63Sbx9PmPNtIuGESacXFWR5gZRAS/n+O3mw7IOdb+Jqy3xKPHOkdaHQS/o6cqIBxYzJrB/0O/vBHwh90+sytFK9zXgfmWjh71Pxy1mRI+Btyqk5oHNUZnIS/Wrslitx97wMnNeu1b9D1ax9omU5Dk/BjVoaVRR1YGYOR8A9RLP/z8+OD4St+RluNCo+eaAIk/B05wfnFyoAk/H836WG57ZcfQYsulsv4ciiZuvQxHgl/Q06EwJwm4rblbHGb2Ltho58drnqvve2adXnpy+ZUHgHsEF+CUgE8OjNms2DBuUV+ikSefz/BhQEQVykT+8eCGA52uVbG6MXlQO+wyPq2TNaDAkJda/tAILQP4psH8F1LD5MuAnxnM8MkPQ9WVc5/LXCVwAJdLNR77sdLzSoHrztyq3PKaQtao7Oi9O6ihVB0w1jMEArS3u6xYutilw7G7mb9QigbfPpKZf1VMnR8KR3uofr2tabPjiVHniVuzI2nnZDCbkSckMKvlwTt7xrO77/E6MGSdmTqESjBV5YrpfJoDm6bES611m28IvCbFH3QYWnn4XWoY5V8AHOsaiUloYzZnMqYZBrhj0CfjIVHcLxSA9yXJBrunbp5dgBLVrCyiGssbNohOlapkjYWNuugHqTSYL+go9XRH0cIVsTMC14+MN1vzvI+y6h+DX5AlCZZgeh/mS8qCWWN5FRWoknMHPgovaLVKvkb3fGJqn5qjhnkPG3GxGEOfwfumTdoyezK45KKs1Qu7tLBkzDk8KjnRQYvVFPx+mw9o1TCknNEW9vVEQkNXR39U5ft8fdtVuGUcZe9AIDlJAA3EABA06JXJEq6MnaSiWMv76anSc0CZv1R+17v6XeTaa7MsId9IQDjuQDoOkQbaK74H6vHoTfmNlg9TntrrnocC+uSrsf560Vn8aDu30Nmyzb0iu1VX2UC9Thtrbmym57WJlBUMHnyZAPU41hN3TPRp/1Nn2Xj6yf+XUNyziTqcepxaqe6KWjHIPU4+weI43rf7xo4qc87Uc0P6jiTqMex51SOhSkoR2DMepylsVGua2olhKRNnXy2gZ3rR5Oqx/lhxaW8d0YPdk2oHifvymrPFO9pPpsne8cPOu7UyMj1OE85NXfX6Jor0Xqcnx/3+zeo18p7tn3r5MnSq5tMoh4HiyFY63GAISTi1JX/F+pxbEo3EG8qP9Rv/JT4mwcXVDJ2Pc4Ia656nFhmSFsi9TijRx6K/fgyRbRnllfTsXb13/Bej0Nfm/NQYzLMmqvGRGVdUvU4Fbe/UZr9IvNZuPp8W7t2UaN4r8eh2wgesIrlxKq3YUMdY9fjrGIzY4MOyBvJw9aJdu4PV/zzoMdLaqakUyI8O+mvkiTEMk+Y6pG+qOMrVyfA02PabE6yO37KVCiBnHn94ScgR95n17ZnZs2s67dmuk3Alx0XIljfj5nJKShkjD/LKGDCwgsexUKMSvq5Jx1HpfZp9MZJ9cUCX0jM5SCC/2jnP+X1xZdF5idso2QKoDCZNBDY9SHk4zC14qpczaZKh7w0X/u2F0TLW9w/sOlkki+NBQOtwIq4dUfoTGCFiyiHrAhnwDh8xReTB/2QfBGYPHSNDkqxaMkTRGTTLIgWuQe9CdQz2VD/MW7LqkoeZj47ejouzEwIXV3o6Uurkkde5xOb9NN7PJ3YLOK84dLIHTO6RtawaSRjZlri86BP/vMGOagXTm7ci7on6geLZzTMiIx1eYnfIFQDr4/3u0xUw5AX69UWq1RIIR0jLAmMwf4OC4c1kv5qnWIQ+hHJciHK6IEyqfYm1Kszt3Px67rSgAIw/ctC2nQfRFEfJFWvXxZBvwQhgus4BP0S/EenXwobd7tj1IlnXmPPbEu1eB1+lU6/NKbb8pE3E3oGpB/MWPAofWpHUk4eRi0yPRP9gxH0TGyatobsAYQa0eSDX54Orf9qk3ju24PnvnTZs7M42uKfDh9yCEG9VkCFPHdByNOurFEaT1rD/o591OA7xPfPNxj5v2OmJsWzbeRwBEsUm67s/fJnGwiINIkqdOB6sqF40Yr7FUNz3vyhGNg6619OlZmL8CchuI4JQUkorSmn0uobVmmkCTYLEeEGFd4yUjvvMd2Qc5Qt2KvlS7S+lserZSqs6g58BMVgInWV9PrzizFrPoRN+aVOZs7iEQK6rsxDEzWSfgotgYWAluyCn+rJdFeehXJ9FdFdcSnVhVOplcoyuL44GygQg12G87Oga6ZpNCmcA90MWjpmmw7sKt9DPNWDsEsHvRGd7r2aYEOccOlr2Vx6p/t3ws0V5/2X7d5feuSOmtTzIFZRsfIYjRD2laW6deiv2HpaO4fHxMCliEShINqvymHjPEje7YEEmN5wkO0VEPGSrttSYGQ00hJTMLalGosF1mbFrSOzxbrvgrmphi+M/KLBnnsXZC4+EDauU26dcV3GUtmGzFi+YqEhIb3pejHnGFzCN4BYHfRCzLFUIK1hpl/VGK5BJTYqkLjkeDa628D1rM/4ShtarMv7YsfYUo7RDZhizif4zatwfnMwSkxgOxkbgXrk2KwhzxAX9dTB7b2HVJooC5jVXDj4zrb2x6jjEt5tKPhLccL/0bD9vUn4GRVixW3Ujc8IWO0MvglSI/SOu0W0FMXdzXcvYAoYDqavOzYhCAeTxeZg9ObzcdNqr+T5fERpW7t7uX0P2lk3YFS38+XUBfh83F/UFSSnrQ1becHub808h6wCfD4t67UfEbf8gNfWi86PD66tX7YAn8+p0JQpWY8qBs169nKFZEfE3wX4fFadW/HYecSM4LXbm465X+l4ywJ8PojOvyS3IaLzL9moF9H514IQNZtfOXD91h+iyS4/DnndS10FRJaEaL65X2JrH3ngNN85tU9/PD8biKwIkdW01WERfbxD54/dez9i5GQvILImRHlDwpYlflwUutMuvVf7lx8g+6INIZqxZsWBlHBb3/1TJyf0694sEIhsCVHbMtf9Kn54Hjyp7LkLmc36ngCi8uQDV9+/ODH+Zti61VVav5S2sgQiO0IU2/j3Lu6qpkELrpV+G9djwlAgqkCIGiRYVekj3O+fLf5uMeJO/EQgqkiIVE29IgTul/33lz7nP8LnbhoQ2ROiVt9GjfItJw4evSzE68volvOBqBIherJOYStN6BGaMenTObN/u74DosqEKOboE/M9A7/4jk24/e5Gr5n/AFEVASsNlAMhutKj4Xeb13O8clatiJ639uFWIKpKiF4/O3ok2Gpk8Px+Povtms6GRIqOhGjYjqmxIbad/Dcfjpd2ayu1ACInQrTNseyjurcTQ+dnX6s+4uL8Q0BUjRBZj/ir88AF14M316+3p7nfJBUQORMih4dPGpyZ+TJ8ttqqYqRXhRlAVJ0QTehuETIu+Vfx3LRBr+NHfDYDIhdCVCvK/dSep0N8lvX6sGu2Y2sociVEv4mm/T7M7c/QbUOFFSrkOi4AohqEKKCBZs69IdV85gy81Dy7UvITIBKSk2j3gaNXMoeFZre66hPX1vEMg6iqpoCFqCr2tXJvi2pnw5fKJtfdMKH2KYTZ0Jeoah2biaoSs3vTwmOnxIs35A09U31YBnXpKh6SoFBKEacv2ALgesQdQvK8LNamTh0HAmJghIgOgDoet6AbKOSrMVfVhEDXhYSbWHDHBtIGozKHESA8PmWjXwPN/NOo+Iugm9Xb3Jt045cIv8WjfvnY5NR9KhV98Q6j8pwghA1+btmw1UM7glXpFRu9YuIWkTIwNLC6J6kMtjhSquXY8RPwfnIFtnQix4lQooInrpVx8mgkir2fvNowPlQYuKjOkjcdohIeUcvHtZ/DLB/PF/EdN0C4TnHCdcDGJCI55lFHPSM5d2KiSfPVpYmVaIRxkoEyIQhAtC2s2evMra5sPzzX77woPfb1pje/eFelVRoSj0VUGpISvrVXwZ0Y7L7I4n8PbLAzqs31BK4meSiKLPiT0YFEgrU4rNqAfS8X+85dYvng5K9bqTyYRTqCxQNYpzjBAkOd8D/r2fzPf8wNRWJuoEfoBmNuaGbLxdxgb1sSzA2OFheXHT8WF7Zs8eaab5cebM6js6RbIB6YGzxtuQ6617M1CHPDUvPLa8eddBDlZte7W7mxZUujMzdU50QFjBsTrTItbIOJP+aGC8E2gS2/xgetrbQzdeW4KT1MhrnBglN1P0w1nOGZucFq+Orupy3mhmf8OPplyR0Pao84wzM3YFaG9eg9sDIGY25o6Tw79cX3r+L5cyXm/2aN+mkCzA3VOcGxtzUgc8Oi38rnjVjW0H+JY+be2pHrnpsIc4MFJ0I/tHHbBra47dQiScj3NlX9R2e6mj+tnbKfGo2GgBhNGOUbovvGgY+2GS7sJkBGwmCFGAN+BXFXshBgq9LgHAXA2BLjFcZeROg2XKfAib5/iX5vZhRNSvRYBtarTLTFZYRKXkAD5Srrt62AvUABDNBF8XO2/n1HNtJ/2yKn3PYDYl/TsknwbsQBBexyoZESzf7x0PO2TmWi+ooxCIWNxIJqlfWqO3bEACLHhZtUrgLDF8jRzvZI1O6seqd+C1mR2GNiVsqjH9Rp6UvezJyW+aLCAHt84m6dmgkzwyY/Ej7b3Wl7Qx4Aq8AJGBhRRgmicJ8B/6a5gO2HSYdlwaFLa0yXHFZ17PN3FyuM8w/dV6XLq8wVW3rYY0QmQBniIQkqmbbsGQtqvX2i3H5rULwAmKbafqrkOt9nvA/Y+myS0x2VQwgPqv1WiUu1byqZTnw841e9Qi2bkAL2HE1ZtsLCfpLXbK/t4xYP+3Pph930hB/iUBV+lfe20h6ETcpBFZXkeGBTjHCM2WyO0edq1VuDW231yu7R23FK133UQofKsPhVA7c+4UlmGaytl+nRMb6JSBkHIMdLcLHHSPMfgy0O8xvFw6JSnTwiPW1X+Asz1IH8Kz02FSaVB6A/9kE0kO8LBn9K+eLWp3iHFAAFbjfANkgw2lDGC93I5ucAPZwACf4Pt2lquButTJKxsJf0W+95uNLY3T454w7NDz9eg9qWuFxXrOiAaWOI64XZmOEhf55IO+cVMHnwxuBmgtu7ediZmABhNvNBtExPb4DBXNwt4boF1K/d3YpWxqtl0YnY8MBqopBY7v5rxR8+Iz97TfW6+OzyhjHVqCcy8p/LXP5ShCXBBoPB1hMF2w13DDbCJGxkMwlnytd+27SlMnT8m5fBHldGiinfzTZShtUwCsMSFQqELWALmN3J+2AhLDZm5fGDJQq5FB/kSXJNrFAJlikq3S0BPUvP8Z4MLVDFekTJncqzJd8yALrtij33HQKxOjy46ypTY4XYGGJIAOqOfD/xrLif35J/J1pMjO1DK8bCHsQMn/HLhU1nelUCDyFDOERuLCpkgM2oxOVZw2cdkXPWIqeiDDU4tNCNXOoPnRfmOyhw9bNqE74oF/WhHnMnBgg6pUOV8l4Q7YaNJA60mpY3ShW7RefkBFlBHGoXqNnxCAYhrUzhAf9G7eEf0AcGuf1lKlpJHPwpruF2wBwkVCx4BFhUJ+OqRmqZ7piKM0mKqde+HsQseOWNOpDZBJsFem2EOYZh2MJYAa/fJYa+FAlF/7yxrr0vXfJa16TZpohvGedpiQn4rRCJCexySUDRjhOKplpHtYnNUZlMzz+6teSn/XEJtPyzL8/V8s9KC3mOyUNOr43jB/Jv8itPrOp18l37SDk/QDj8IA+Qj7DjgnywHQn5Zt6qMu1IyA1QlYkooiSrMhFFlGRVJqKIkqzKRBRRklWZiCJKsioTUURJVmUiiijJqsx5x7Nd6is+++1opcg2z8nZxCh5g4MXnV2hlV/yUPK2hU3/tYKPut/abOW3xkza79qTClT9V8I3+0UKpRqGi1gChxmUl2OZbbX85LDdcSzsD4w/AFtSwnUmUYagW3qfXnJa6CsywEH9kR7UMpNhfuAG8sQIWJEP0C/N74xn2zAmDSVUDcAD/MJeFzRmwbWv08zTRFll/jr5qsmaCcXJtZXsNvZFgNVEW8LtvmKQE4JldTIz4c+FVRVtSURBrNCpjHt2nhMDv3mNae2cff3hhXk8lkWM6hL2/mTmEL8s5aSAiT7Jh3lAaQAnSj1smZsPXHFa4whyXmGTDcOMnHJwqUfWnrGnSoJO3fqrY4uH4XtG/rPufmaVf4yYz/VsTAwiZEIOHp4eoWc+t6E2ewghii7A9wk9EMU2IcHJrhtR5xfX3SFpE9WZqjEZShPIWkKQNJwgDdAzr1vXV45/c+1WVf6QwRKL7Aaq5fM0q382/ek3La3h0RZVd7emZhHJ5zKziFpJSaDTlxOdrrZkYLSVzTE+6xoWYtbks2juyrN+y8MDuzM34pme0IwF3JrUfK621C1JqRflPv2Aha65AR1huwsM058QtrOoDSgBgO2Ifq5OtzTt1Jbnrden/eW3/dL6h5c++felbnZi+VgWt04RFmbF6SaumFZcAOz0dQhWBGqMQQaIc/r5uvIYWDIw09ihGjHo2uibVrf919kf7pTe3bUt1RKJwb1ooAqIDBwSQJiOcMK0W09nV3gKjZ5rNloKDVoabIzAFJqQETt6YNAQdmgbmx0S1T/bpM2YOyEZfstfa9o4udD3oeMkCUJ8nwaxX84WmtfH7yOzPdi5FIkwXpYEL8lU8mjCQepkluiHuzjeELVTXkCsa5YMDJtP9gDX86iYPBWgfsNeL0NVHktD4Zu74HWQ3/L68z436hweEpjdt/WxrxfyhlNDJOwBzBAJv1zYnKOfcytudgvA8wHCY4Oac2vBkuW5vV7VJLb4+3CRpGevT9tzZEp10UbnrLM/4kOoLEfE12Vm/4jrheEzcOsX+cVLdn5pNy8k5tmaC3nAJ48THzB8jFFhYIEVbgzGgWgvoP/o10XNtrNE1V+m4VLapwnN9zX/53f/1L4Od6Mq32pGVRp+P1NpxHXei2uBVs5zauWoSWnl1QFSK3q5LzvM4CXIpITxRTPhBxyy8XvrGj5v4IYDQ7MGlaMqJhS7n6kY4jrfivHyIMwJ3GZkrFdTm4gF/9jrtyBz1mKALSwU8sLwGFz6xtnRs277bvh1waGqX9p1o1EK4Q9AUAoRgpJA5AYnIqfsSb++nc2v58wKftejXdvA8e++ayyO3HxL1TH+iboXw7TXrjCoDlyYFCuPjgVhJTxbKFGrIRuktiqGcP867sLRzmmj3pc5JvHremTAM+2JOlFG9YsXWNWlM/26nhnw6kSogZMnYQS/8AgT/ibIL15mnNPEoHk/gkeVe7bCt3S76tTBxxbYaAUGdv4wu7sKYuiJqtEQNsQw1MtitQ8jRhTe0oRyUAvWA6nx/QHYRgH+Pz+mFKaEDUciSvfnRu2oAte1GGCOKMAgj3W6djLvMPnEFX008cQ2SU9z8JC5SrLnylwptZjvZMM8bKff+VOCo6LU7k7t5E+DKlIZt0MpRKhMQ8qGtHMoiAeAe9KAOxU0OlWd7CSdmYLrtZhE4FS5rhs3YJF9AJbMTkVt3MAcRVYlBN8k6U8QfJPwk+h8k3S+SDrfZJH5JOk3Ivgk2WyTi59cBWyOPvS33h5X87YMlfqPqvFgxsdtn59Q6W+9mbPDu1Byu4iGwTcGPDrrneuf+qjmpRZNirtnAmbHPqhOT1T1wm9AurXSCQSRIxtIRSEJdu+lHLm0bf3AjP1pq6bOrzmsCCTBdJTqZPVSr7l/WjxX2vJQ3X7DrHhAKYsTpWWVGBSAnNUueK8FGBjpABC96p3qw/BHMX0Ycb0kNryxEfMJtdHk5o4hRdjTXf9j9pRO52Mge9qZ0552/M+ekvrJej8mo/L1W2H79p7o5ZSkOsmDPaXTNPFgKSI5LUVAidtTl+jDreetveO3Wv7s36DfN7bgwZ7SNwl4QKkjJ0q/lKQ9pftQo9vTSE572lFrT3eb/JqAPp34KWZrUcrpdZoowXfHe6/YnKtpkTwsCSpV4loSWGshz+WtmK08CbkBitkQHHikqUdw4JHFbAgOPLKYDcGBRxazITjwyGI2BAceWcxGj9AYFWvQKiKHGJ09j4eKtT28KdnagEouGo8kglSRVDI958/QiRmbTui0hTzoZC+bThbuuvv7hAefAnN3bc/dPPAeNRouGyGJlymYvVHYDJubtzAB3lGgQ5cwXqmR4eRCkJ6bi8OWzruIeBVdrJ11VLRKqVBEQo8FL+Yf+Xz1K80Slu9yIUja5E149tcatVdPa1WRzRJadFHLVJAAnPzYur7KxH4KWKsFu+hA4h+pXEN8dxBhwCxHXmomTSVkmyPGpnQ9sSC1IjCgbUSC1Akiq1CJqr88PkQWQ3GA1vjlSNjvtOB1S/x6Z2VCwatUKzw9oJ747ciKJ+wwECNU8NygRo6/lTn5VqgJpZIkBcZLIe0WCW8pS3gRpl4KXMJidQXRkglfEMAuqnKJQgS5oAo4Io1KJonT/o4RE2vvIYbqPpN3y3QWUJ626ujjnwe/vK4il19eUZH0y/tNHnM6varpbo9mcBb2p2sL+w/w5iZtBYZzkwjeXNJNInhzSTeJ4M0l3SSCN5eMhTbvrd/gxNp5gdsuuFqrf6gaF4iFLh+5cbju9JchaUkR1+IOKA4xnCu0+siBRCfj5cG5HmTTpIm2a6eTDhusXfuqylzt2hOYVDI8t2u3c9wx55j8eejKy3+Mbp552BTata+ozNX8Nt04XCjUntOLFy82QLv2ybMHWgalxoUs9Iy8Mv6PU0km0a59Gqd2xpqCdgzSrv2Lol6Ufd0V4m0ql/sdnCKomXRjtWsfyqmcBFNQjsCY7dpnWeckaDZJAha++qt+ysfjVFpiY7drj+FUXk8jcUCZZLv2Iw5dUnu0nRWSHjx+u/uBxEwjt2uP5NRcgNE1B28qsXbtKdXMa6XWig+d5Wd7Ntl+MrWxubHatWMxBGu79gQt2dMhtjj1f6ldO70thpHbtT+rzNWu/Q9mSFsi7doFY/5st/b0Tf+dvef/VV0xaRPv7drp5GY8tCB/UpmrBfkd/WgT9WjX/mlZSo56W+XwTSPzJlb/q48N7+3a6TaCB6z+4MTqjGFtrrHbtR9mM2P/kfAXiYSf3k3IYCT8oipcJPy1q5QECX+3yS6aF+N+8duwdsDlw+e87vN42pxnGwk3TLyrcHGWt6piEBL+7EuP485erO43N/iQ3d5R6u1GJ+F350QFjBuTWTvod/CHPxL+cuOjtzmEXw3IObdqWHR/x54mQ8LvxKk6O+OozuAk/NcedcwNfh8aNG/QxczH/dN3GJmEH7MyrCzqwMoYjIT/kTR1xZUGft4TuyVEmNWtOt0ESPjdOcGpXcWAJPw7nlp0OHiwc8DWQ7uON6/950sToLOACDlxIgTmNBG3HWGL28TeDRv97HDVe+1t16zLS19SG+NYY4f4EpQK4NGZMZsFC84t8lMk8vz7CS4MgLhKmdg/FsRwsMu1MkYvLgd6h0XWt2WyHhQQ6lrbBwKhDRDfPIDvWnqYdBHgO5oZJul5sKpy/muBqwQW6KXTSKnPhu1r/LMtOo65W2kxtadtkXp30UIoumEsZggFaW/XVWHrYpcOxm6GfiGUDT59pbL+Khk6vtxwd2rOj7Nz/dc7BTb5u30mlUuxnC92I+KEFH69JGh/53F+/6lGD5a0I1OPQAm+slwplUdzcNs0/DTTIVtWwTerYURCu3VraGOVfABzrGolJaGM0ZzKGGIa4Y9An4yFR3C8UgPclyQa7p26eXYAS1awsohrLGzaITpWqZI2FjbroB6k0mC/oKPVh+0ddnUc0807883uTR3iKlK39CzhB0RpkhWI/pf5opJQVjynsqQmMXPgo/SKVqvkb3THJ6r6qTlm0PGZHmd6dz4aMGZT5S3dLc2eFmepXNylgydhyOFRz4sMXqim4vWL9YxSCUvOEW0lPpnuvfONW0CW75llgoNfxhp32QsAmEECcAMBADQtekWipCtjJ5loU/bHhr9TN/rldvnFtXXZ7qOMetgXApDIBUDX/tpA8+j/WD0OvTG3wepxGjlw1eN8ZEaWPNfj+LUMn/jcolPw+h6yfhdXnf/DBOpxGjhwZTdrOJhAUcHo0aMNUI8zvM3In3NnrgpettvnSoY476lJ1ONU4dSOtSloxyD1OIsc5z5XXF3qs31L7+9eiScqmUQ9TilO5Xw0TrxkQvU40ac77DwaUs8r2+ehTfXs0k9Nqh7n3ypcyrtv9GDXhOpxXHNXdX9+tZt/6pmv1bf7nqtj5HqcPzk1d8HomivRepwqbQ5sX64cEzjh2eoFLUtPmmAS9ThYDMFaj/NRG6ce+79QjxPQQDPn3pBqPnMGXmqeXSn5iZHrceIcuOpxujkYph6n4t3RMvX1U94rXw1xm77XfSnv9Tj0tTkPNSYDHbhqTCQOJVWPcy5tYTdPj82hG1+2enjuxrVzvNfj0G0ED1h148Qq1LBxqLHrcY6zmbFBB+SN5GHrRDv3hyv+edCDmq+y7pQIz076qyQJscwTpnqkL+r4ytUJ8PSYNpuT7I6fMhVKIGdef/gJaKqc3QeOXskcFprd6qpPXFvHM6zvx8zkFBQyxp9lFDBh4QWPYiFGJf3ck46jUvs0euOk+mJBM0jM5SCC/2jnP2Pri3c0tT9hGyVTAIXJpIHArg8hH4epFVflCTZVOuSl+dq3vSBa3uL+gU0nk3xpLBhoBVbErTtCZwIrXEQ5ZEU4A8bhK76YPOiH5IvA5KFrdFCKRUueICIbTrbIPehNoH6SDfUf47asquRh5rOjp+PCzITQ1YWevrQqeeR1PrFJP73H04nNIs4bLo2ct6Nr5BSbRjJmpiU+D/rkP2+Qg3rh5Ma9qHuifrB4RsOMyFiXl/gNQjXw+ni/y0Q1DHmxXm2xSoUU0jHCksAY7O+wcFgj6a/WKQahH5EsF6KMHiiTam9CvTpzOxe/risNKACzZQVIm+6DKOqDpOoOFRD0SxAiuI5D0C/Bf3T6pbBxtztGnXjmNfbMtlSL1+FX6fRLY7otH3kzoWdA+sGMBY/Sp3Yk5eRh1CLTM9E/GEHPxKZpa8geQKgR3SDgF9cty0vl+c9pmzlgzYTjLYqjLf7p8CGHENRrBVTIcxeEPA0rGKXxpDXs79hHDb5DfP98g5H/O2ZqUjzbRg5HsESx6creL3+2gYBIk6hCB67mS4Q/3/1+WrQs5tahRFf7DE6VmYvwJyG4jglBSShNyKk0B8MqjTTBZiEi3KDCW0Zq5z2mG3KOsgV7tXyJ1tfyeLVMhVXdgY+gGEykrm4OGXpmtjxHvNVm44/h//Ryo+vKPDRRI+mn0BJYCGjJLvipnkx35Vko11cR3RWXUm04lVq6AoPri7OBAjHYZTg/CxI8Ok0K50A3g5aO2aYDu8r3EE/1IOzSQW9Ep3uvJtgQJ1z6aTaX3un+nXBzxXn/Zbv3lx65o+Z4aq1sVKw8RiOEfWWpbh36K7ae1s7hMTFwKSJRKIj2q3LYOA+Sd3sgAaY3HGR7BUS8pOu2FBgZ1bTEFIxtqcZiwZdit6i2xbrvgrmphi+M/KKDlrx/8mfcr+IZ/1Tu1D97C5U5xYzlKxYaEtKbrhdzjsElvCPE6qAXYo6lAml5O/2qxnANKrFRgcSlXd8qZeznx4dtiC33rKn12fOMLeUY3YAp5nyC39yM85t/MWyDaZbtZGwE6pFjs4Y8Q1zUU/vXVa6mGG/lN6HsnX+fK7pS96AwliJDwf+qPBf8j4wDP6NCrLiNuvEZAaudwTdBaoTecbeIlqK4u/nuBUwBw8H0dccmBOFgzrA5GL35fNy02it5Pp99r1RmbYZdDNiWNzl86Lw6wgJ8PvbdLLw7HdsSuLzCfIexaxT3C/D5HEnaePN0mwuBGfIbz9KjA5sW4PM5cn/AzF6LVMG7F763rDW0+e0CfD4f7q1ZtVM1yGtukG1Mlb72xwvw+SA6/5LchojOv2SjXkTnXwtCNN6yddDuES5hGaP2p9xv/8QaiCwJ0Yvdf6Yk+P4RtHVKyC53txajgciKEN2YNS9z56tIr4WrVszvOazlr0BkTYgs6tzrduRaj+Adw2ZpElN2iYDIhhC1G2XTWLr3N9/UC2dkDTY92ANEtoTocamINd8iHwdtq3tt/qAtlb2BqDyJxq+WXQaED/Za+KNn18i/tswBIjtC5H60q8PH8Vd8lt++1nXmbok/EFUgRKWGmYeWFgp8l+bVyXs049gKIKpIiEq39o85+o+n174/qtmOHdp4PBDZE6Idw2zaZJ2/673taPiKpQ+b9wWiSoRolEfYvsjfvgVmp95+17nCnllAVJkQJQVVl5facTz4wLWuj+0+/WUDRFUErDRQDoRo26Y/GwtU4IGPdzpPfhpzHYiqEqIBQ5+VTn6TFzj97rpPQ1XPdgGRIyEanej0+8KnYwM2lorWZH5O9gQiJ0I0Y8wRm07vr4YvvbSwzPT6jYYDUTVC5Lv9nMDsZbvwCZ5vnA9fPVgHiJwJkV/a8xsTv24MGuXlq259cDHUcnVC1PbavDyXR99Cd4iXJQeVKQd5pVwIUdU6G+6LSqn9dvipKu2xd4kGIldCVL/+njeLNv0jmvPyydzfJpaXA1ENQtQh9bIyya+e17bhz0bd6j4fEoQKCVGt0dt7fv7pGH7g99sfJ7kHLWQQVdUUsBBVtXm8YnDzNWu8dk9bf33Zng8ZPBBVnWUzUVVidm9aeOyUePGGvKFnqg+jfpa5eEiCQilFnL5gC4DrEXcIyfOyWJs6dRwIiIERIjoA6njcgm6gkK/GXFUTAl0XEm5iwemqkDYYlTmMAOHxtqr6NdDMP42Kvwi6/17F6LAzbToGrz357Ppc/4lTeTyMynOCEDb4OVmVrR7aEaxK91fVKyZuESkDQwOre5LKYIsjpVqOHT8B7ydXYEsncpwIJSp44loZJ49Gonj6SbxTG8v5QTMDT2yYP6L8XGr5uPZzmOXj+SK+4wYI1zZOuNZVNYlIjnnUUc9Izp2YaNJ8dWliJRphnGSgTAgCEG0La/Y6c0G98dcmdBjks+binO2XHnfpQas0JB6LqDQkJXxrr4I7Mdh9kcX/HthgZ1Sb6wlcTfJQFFnwJ6MDiQRrYVJwjZYVDgRPsthjHRTQi7pSLNIRLB7A2sYJFhjqhP85x+Z//mNuKBJzAz1CNxhzg4sjF3PDd/18pY7MDZqXLWZPenjDa+3t/hd+ez59Co/Okm6BeGBucHbkOuhe0dEgzA21Iu13ZTVYJVp056/WZg9aLzM6c4M5JyrfjeMTdagyLWyDiT/mBo9zDy5ezzgjnqdssKr0kZUbTYa54W1VLtU9MdVwhmfmhpFL4+++W9jXf/WqDr2mPrl+1sjMDZiVYT16D6yMwZgbZja+Xcba83hoVtOKF71m1qUWRRuHucGcE5zvVQ3I3PCzS+7PHt+3+c4NWDbAcuk/VApH4zE3YHOaFaEn2rjtPFvcdmqRJOR7m6r+ozNdzZ/WTtlPjUZDQIwmjPIN0X3jwEfbDBd2EyAjYbBCjAG/grgrWQiwVWlwjgJgbInxCmMvInQbrlPgRN+/RL83M4omJXosAyvWINriMkIlL6CB1676bStgL1AAA/QBhRcJs3z7eXgtcw106nAl+AotmwTvRhxQwC4XFinR7R8PPW/tahDVV4xBKGwkFpStoVfdsSMGEDku3KRyFRi+QI52tuqmc8edvPQmbMqsEcp/RzboQJ2WvuTNzGmZLyoMsEBFwJM+eS2CpytOBXUbeaYKD4B9deUCDIwoowRRuM+Af9NcwPbDpMOy4NClNaZLLp9zbMGDjI4fvHJa1n32T6JdRXuMyAQoQzwkQSXTlj1jQa23T5Tbbw2KFwDTVHvszc88396d/PbXvzXz88iWbXlQ7T+cqr1lJNWi4uMZv+oVatmEFLDnSGW2n7puTZtpvwZla55mj+gn9KIn/BCHqvCrvLeV9iBsUg6qqCTHA5tihGO8wOYYfa5WvTW41Vav7B69Had03Udtq1QZFr9q4NYnPMksg7X1Mj06xjcRKeMA5HgJLvYYaf5jsMVhfqN4WFSqm0ekpe0Kf2GGOpB/pcemgsYJgP7YB9FAvi8Y/DFOxa1P8Q4pAArcboBtkGC0oYwXupHNzwF6OAES/B9u09RwN1qZJGNhL1nTQ1m+ljAzdMua5n9IxGOoh9jLdcWKDpg2hrhemI3xWXA+YcMRK68tjlunD/xtcQ0ediZUEGYzH0TL9PQGGMzF3RKuW0D92t2taGW8WhadiA0PrCYKXaa35uGtmV/8QxaN6jr7+YPxi6gnMvKfy1z+UoQlwQaDwdYTBdsNdww2wiRcZDMJZ8rXftu0pTJ0/JuXwR5XRoop3802UobVMArDEhUKhC1gC5jdyftgISw2ZuXxgyUKuRQf5ElyTaxQCZYpKt0tAT1Lz/GeDC1QxXpEye2d2JJvGQDdesWe+w6BWB0e3HWVqbFCbAwxJAAX1p2Z+SKvrO/Wjh367Dp3cic1fMYexAyf8cuFTWd6VQIPIUNbiNxYVMgAm1F5OrGGzzoi56xFTkUZanBoIeF7s6HBxHmfx4euu73bZfA6iS31mDsxQNApHaqU94JoN2wkcaBV3ckoVewWnZMTZAVxqF2gZscjGIS0MoUH/Bu1h39AHxjk9pepaCVx8Ke4htsBc5BQseARYFGdjKsaqWW6YyrOJCmmXvt6ELPglTfqQGYTbBbotRHmGIZhC2MFvH6XGPpSJBTO8sHVrmc8982de/v+rKjNrWiJCfitEIkJ7HJJQFGPE4rqWkd1ic1RmUzPP7q15Kf9cQm0/PvuyNXy770jCfllk4ecXhvHD+RW/T9crbspPnj+9jBxjXc5r3mAXF6NC3JJNRLyK7xVZdqRkBugKhNRRElWZSKKKMmqTEQRJVmViSiiJKsyEUWUZFUmooiSrMpEFFGSVZmDfIKH9anVKWjGrsEXUrzzTjNK3uDgRY4+evklDyVvV9n0Xyv4qPutzVZ+a8yk/a49qUDVfyV8s1+kUKphuIglcJhBeTmW2VbLTw7bHcfC/sD4A7AlJVxnEmUIuqX36SWnhb4iAxzUH+lBLZMI7doN5IkRsCLv4qjX3rUznm3DmDSUUDUAD/ALe13Q5dvjUyza2/hOSHi9z325x7ji5NpKdhv7IsBK7Ui43VcMckKwrJYyE/5cWFXRlkQUxAqJ0vwydx4G74jyXvJ1xIut5l9r8VgWMapL2PuTmUP8spSTAib6JB/mAaUunCj5OTI3H7jitMYR5LzCJhuGGTnl4FKPrD1jT5XEttl8xu33H2Gj1mT8UaPX5AFGzOd6NiYGETIhBw9Py/XM5zbUZg8hRNEF+D6hB6LYJiQ4g73u3K4R+EycFRjze8iFqoEmkLWEIPXhBKmLo3553bq+cvyba7eq8ocMllhkN1DRN34mnrhfx3fcL23XNzxmMYmaRSSfy8wiaiUlgU4wJzre2lj0DzbH+KxrWIhZk8+iuSvP+i0PD+zO3IhnekIzFnBrUvO52lK3JKVelPv0Axa65gZ0hO0uMExHIWxnURtQAgDbRv1cnW5pWqccv1NXhRkh8wbfTWmyaiQ1OWWN5WNZ3DpFWJgVp5u4YlpxAbDThyFYEagxBhkgdunn68pjYMnATGOH6pXzZOmr5bUCNqY6XXreffpWqiUSg3vRQBUQGTgkgDBt5IRplZ7OrvAUGj3XbLQUGrQ02BiBKTQhI3b0wKAh7NA1Njskqn+2SZsxd0Iy/Ja/1rRxcqHvQ8dJEoT4Pg1iv5wtNK+P30dme7BzKRJhvCwJXpKp5NGEg9TJLNEPd3G8IWqnvIBY1ywZpOJ0AbieR8XkqQD1Iy56GaryWBoK39wFr4P8lqunTJ3RfNiegO3iMrvvJEf+Qg2RsAcwQyT8cmFzjn7OrbjZLQDPPQiPDWrOrQVLlusuelWT2OLvw0WSfrjUwx5tdnf2Wv7VfLP1T1EwNfuH38/M/hHXC8PHcm3nSy+tA0J2NKx9VhK01oEHfM5x4gOGjzEqDCywwo3BOBDtBfQf/bqo2XaWqPrLNFxKe/DlVd9SJ7aGTG0Z1T7r+K2WVKXh9zOVRlznvbgWaGU3p1Y2mZRWXh0gtaKX+7LDDF6CTEoYX6RiRk9pFTnk6J3QnPseT2taNaVuypQLxe5nKoa4zrdivDwIcwK3GRnr1dQmYsFlF/0WZM5aDLCFhUJeGB53S5V+vfPjbv8D3qUa141OoW7HmovwByAohQhBSSByhBORbS6kX7/O5tdzZgW/69GubeD4d981FkduvqXqGP9E3Yth2mtXGFQHLkyKlUfHgrASni2UqNWQDVJbFUO4f90WH/Rz2qj3ZY5J/LoeGfCZLkSdKKP6xQus6sYw/bqeGfDqRKiBkydhBL/wCBP+Juj+L5Wm+ndodjZ4q6TnhMb7T0qog48tsNEKDOz8YXZ3OsTQE1WjIWyIYaiXxWofRowovKUJ5aAWrAdS4/sDsI0C/H9+TClMCRuORJTuz43aUQWuazHAHFGAQR7rMdrJfMPkE1f00cQT2yQ9zcFD5qqfC1fmqrsW8z/ZMA/b6Xf+lOCoKLW7Uzv506CKVMbtUAoRKtOQsiHtHAriAeCeNOBOBY1OVSc7SWem4HotJhE4Va7rxg1YZK+DJbNTURs3MEcxxxXBN0n6EwTfJPwkOt8knS+SzjdZZD5J+o0IPkk22+TiJ1cBm6MP/a0kIMvzVD9FQG61hv6hknZpVPpbb+bs8C6U3G7Ahb/e/1bK02tmqXnz2wzq0by4eyZgdqyF6vREVS/8BqRLXU8giBzZQCoKSfDpnts2VLicK06/ntw5YfA/kUUgCaajFDVm9ZZTT2RhWYL4/9fed4A1kbz/R+UUROwiiiVYQWkWLNgSktCLgl1PjRAgGggm4RDLiR0LdhSxYsXeez17O8/ezga2s+t5nuVO/c9sCezu7JKYJcn9/l+ex+eRHXaz+bwz7/vOzGc+7+fYwHkNeEBpDidKk+swJAA52S54rQWYGBkAEJ31To1h+KOYMYy4XhwL3liP+YhaaHL1wJAi/Omt/5g/pcv5mMmfduL0p27/86ekfVqNPbK3xM8h0i17j37o/qy7nAd/Spdp4sFTdOD0FC2K3Z9e+Xlqm6MDEkN2VW/Z9tCDO1E8+FP6IgEPKLlxolS3OP0pPYZa3J924PSnbnp/+rvVzwnow4kfMptPiRpvMyRJ0p3vRfGbr2RE8jAl+Mo5JfhbPyW4zRuZrTwJuRnIbAgNPD2ZjamBR5LZEBp4JJkNoYFHktkQGngkmQ2hgUeS2egZGoOxBr0isovR1fN4YKzd4c3I9mY08vfpSCJEFUkj0/f8GTaxYbMJXbaQB5vcZbNJ9u77vSY+/Bi0d/eOvVsG51HP+f3QWZ6oUDFro7A5NlexMAneUahClzBRrVPg4kJQnptLw5auu4h4FUO8nX1UtEatUkXCiAUvFhz5fNOJ5gmXDwvLm/D6YNie7gtkqVKHoWye0LabVqGBAuDkxzaUqpMHqiBXC1bRgcI/MUod8d1BhgF3OfLTVtFMQpY5YixKN5IJlLWAA20rEaRNlJQNk2vilImhilhKALTHL0fCeqeFr9vh17uqkwpfpXrhxWGNZGvia52sgIHYWQPPDeqU+FuVId8KNaA08pSgxBgou0XCW8IOXoRbL4UuYbm6iijJhE8IYBVVpVwlgVpQhQKRTqOQJ+h/x4SJ9fcQXfWe1YdlugooT0t19P7PQ1zOrMUVlzNqkXH5vtVjTpdXtd7l0SmcxP6xemJ/Hm9h0kFgvjCJ0M0lwyRCN5cMkwjdXDJMInRzyVzo16wvo5ef/lE0IeHln/8u8x9VKBfq/PhtxSUZZf3Hbpxwok+Xh8mM4Aq9PrIj0cV4eQiu+WyWtNJy7XTRYbOVa59el6tce5+6xV2u/axuV1humWjZiuA7+4Lm/EKdT1mmXHtGXa7it2PrWkHN6Tlz5pihXPugU5lN+v1aOWDL+tWb03p+yLKKcu2pnNZRW4N1zFKu/cyr30rOq+0syvj6S7L8QA2qtomlyrUrOI3TxxqMI7BkufYmuS/nRO+RBh/qMse2RuiBa1ZVrr0Lp/ECLGM86yzX3mnvH99yAhcHLbFTNSy14PUPFi7X3oHTci0sbjl4U7GVa19c3jdIeGhFUO7jbWPKvOr4j1WUa8dyCNZy7cAREnnqA7Y89b9Urp1eFsPC5dqv1eUq136YmdIWS7l2x6itNkp3t4B1H/IWXfjWbxjv5drp4mY8lCC/UperBPkZ42QTjSjXrgs9Nn5Nyl7Jtujl3eSj1lYzfQjTsKL7CB6wOsyJ1U7z+lxLl2t/yObG/ifC/10i/PRqQmYT4fcUconwlxcWhwj/jr13pt37PEKac32/f99zrcrweNqcZx8JF0zchVya5fWEZhHhbzE5rOPBHVUjVvnMHTFiYnmpxUX4nThRAf3GauYOxh384U+Ef67mceUyO9oETB1QO1lXoxpVDNOSIvw2nKb7bJnJg9lF+Ct11NWw26+TrO4//d2Mbw9OWliEH/MyrCrqwMuYTYT/zrJFg22rLQ46cLrryvanX/awAhF+J05wygvNKMI/613z+allO4QtbBbSsO7ov0dbgZwFRMiGE6HP+unnI7a8TSZu0vRbhyvi3Lt11lxa/JrKILPHDvElqVUgojNzNlsWnH0KtkiUBfcTWhgAcY06OS4e5HCwyrU61igtB3qFRda3ZaoeFGo0lNsHEqF5EN98gG8uPU26APBNYKZJRh6sqlrwWuAqgQVabt7dt1XuyZzQdPnZRgsWLVhteu0uWgpFd4wmplBQ9jZTyFbFLgv03SnGpVDl8OEbo4jTKND55YWZ9e847H8qnjW3lniq+6HFtBNS2I2IE1L49eKQ/R3N+f1TLJ4s6XumEYkSfGWlOkYZzaFt03v952/xrSLEmZtOPzj0PrQCta+SD2D2VX1LcRgjgdMY0ZYxBqM4tjE7Fp4hiWodCF/yaLh26urdAUxZwcwiwV3YrEN0vFoT4y5s3kE7RKPDfkFnq2UOJ8S4yz9J1/dfvLOyTx51S94OfkCULlWFqH9Z0FQcxurFaawIqxg58FFGZavVCha6E5M1A7UcI+i3rEqHHNXVAlfWHTTm0r6026ZMlU2dOngTjhwe9bzA0IVqJls30cgslfDkHNnWeZHio6bLlpB9NXzC7j3Zvduy014AwHASgBsIAKBrMSoTJUMZu8hEpQcnQh2yu4fMqVN1R0X5w88WPewLARjABUD3SCGZaD7+j/Fx6IW5zcbHcXTh4uPkMzNLnvk4P7wRu/YWZgVlNvll/Z17zj9aAR+nqgvX7mZZFysgFQwbNswMfJz7i0fGfUlJEM1b1apf1WWvHlsFH0fAaZ2/LROSLcDHGX3MRRLfor7/vsqTfq3p/TzAKvg4L4Rcxsm3BuMILMnHGRuond934enQBYcazbk39PRGq+Lj3OA03nmLJ7tWxMdxmDeyjueR68FTSj1M901Y/NLCfJxjnJbba3HLFSsfZ+t2cZ1Fi7witm/rfT/zanCiVfBxsByClY+Tr89Tn/xf4ON0SLukTvFvJNo+8vnoO73nnbQwH6enCxcfx8/FPHycdm6p70okXg9Li+nW8p8OK1bxzsehz8154Jh0d+HimIS6FBcf51SfN5fHu5+SZoV6PLSvdzWBdz4O3UfwgJUfJ1ZtzDtLsDQf5w82NzbkkLKpMnytZNfBCNWTh31eU3dKuiTDs5MBGnlSPPOEqRHbFw2kSm0SPD2m381J9cBPmQrlUDMvDn4CsufVG7Oj76dvThGHet39MMkjOJv1/Zg7OYUbGf3PLgq4sIjCR7EQvZJ+7snAXql/Gr1wUmOZwBmewneUwH+0858JjWWqmrVPOkQpVMBgipgg4NeHko/DzIqb8imbKR3zM6SVfX+T5Pg8OLTpVAqVA1LCD23ASrh3R9hMUBZvohyyIoIB4/AVX0oe9EPy36HkYWh2UILFSt4gI4snS+QeFhOoP2ND/ev4rSuqeNr47ezrlL0qKWxlkacvyxY/8gaf2KSf3uPpxOZ3jhsui+ypSbfIczaLLJ2Zkfwi+GPA3CGO2uzJ7tQVq9L+kDyjY2ZkrNNL/AahFkR9vN5lshamvFittni1KgbKMUJKYCz2d1g6rJPHaQ3KQehHJEuHqqMHK2L0N6Fenbmci183VAYUgOniDGXT/RCkPiiqXsIZIb8EIYLzOIT8EvxHl18KH3+3Y9TJ56JxZ7en2b6NuEKXXxrbI2fUraS+gVmHl85/nDW1I9lOHkb9bnkm+gcj5JnYLG0P1QMIM6Kr4OTUnVEy5YZko2v8+z13oxuaYi3+5fChhhC0a0VUynMfpDzVnC1SeNIe1nfsrwXfITGuwGEU/I65muHevpEjESpRbLaq7F8w2kBCpEvWoBPXTe5l4xbcXOu3b+Sti9USKgk5TVZGgj8JoXVMNBSH0ew5jVbCvEYjXbBNqAR3qPCWUfpxj9mGHKNsyV49KVH6WpmoVWgw1h34CIrDRNqq+4OPpUuvGRsybvO2IStyBp2l26pMWLJOPlClF7AQ0Da74Kd6M8OVd9FaX98XrriM+qEml1Ff1mRofXEWUCA6uwLXZ0GCR5dJ4ezoNtDTMct0YFf57uJpnoRfOixGVLoXeWFdnAjpL9hCepcH9yLKqM4HLNlzsOSonS5UmcKyUfHKWJ0Q1pWlhnUYr9hqWjtHxMbCqYhcpSLKryph4Two3u2JBJhecJDtFRD5kqHLUqBn/KAXpmAsS7nLBI9MLlHtgFXfBWNTC18Yze88OezZssyTouzhvzlGeYZTC6LasHzFIlNCetF1E8cYnMKXglgdFiHGWBpo/cQsSs3JGsMtqMZ6Bbps/OnlLYbN/lOyfcXChsuVv8gZS8qxhgFj4niC3/x1Da5v/si8BaZZlpOxHmjEHps91Bnikp6aX99x9PmX6f5zxr6qfSqjRTi1X8K7zQX/75zwX7QM/AyGmKmFuvERAdnO4JsgLUKvuPudnsLU1XyPQq6AEWAGeGADgggwL9kCjNF6Pq566xW/nk+1C15uS367Jt5w62SDw68yTxbS82nz9/wBlcUDxQtVnyQfor2fFtLz8f318qUDtZaKp8/u9fHD8V1XC+n5aO5fWRRzZJV0b6lb5+bmTf+hkJ7P4S+21/P2Hgg8FP1HWNjN+NeF9HwQlX9JbUNE5V+yUC+i8q8t0bR2ecOb5dpHBky2T9joWdXxD9BkRzS1fT912IOnR8Rjex/7fMNmYSnQVJZomtH5icvlKc+Dt/YK//K207vjoMmeaKoT3Gj7o9lf/TPaN9F+WenwGDSVI5ruZI2rvLhNp4Cc4EHHatUSaECTAwlUdLtR7Vut8h+7eciPV39dMQQ0lSeahPkrjiydVFa2YXtnZfOd0lTQVIFomiyqV9atdV3/nVuvPSnhnuoDmioSTZ0zjxyt8c/twC1dfEf3aDGyLmiqRDQdcPiYdUQxSTR1uM2pCs77oJJSZaIpLv7RIGFgxaC0z48rBNp1jwNNVYim3Mp5fzdtPFmUVjMvb8LpAPjAqkTTuiyfRUt73Azd9VOO//aHmmGgqZqAVQbKkWj6dMJxxOnDa6TLs2Y0zPQ90go0VSea5M/bdnX3DfHPqnenyqV5YRdAkxPR9C1p7DEXT1/pBoldpf0N4kSgqQbR5F7F72RHySq/qQ62Zb78/Pg5aKpJNJ2fVHnHrarRflOWJ/3aaU7z7qDJmWgq1bR1hODWyLBt3qVaVp6vgXqOtYimzNzP55r4lgo52HbYpN5XtiwCTbXJDvDL7K+nmjuFb3mw+06t684hoKkO0ZRxKqRDxQfr/KcvCppcteWLw6CpLtHU5W25xiEuGtF0ryORzd5JaoMmIdHUatvutXZRQUGLVh0vfTSvjC1DqMpFwCJU1a7WlWqPlzmErsxyvv6o94FohNswVqjqFZuLqha7Z1P28dOyhevzh52tNWIpdeoqG5qkUscgTl+wJcCNiDuE5HlZrEydNgEkxMAJERUADTxuQXdQyFdjzqqJBkMnEpBbVB/KBqN2DjuD9PhZPeMKaBacRsVfBPndBtyZ3l738qfwdcdruMyUBOfweBiV5w1CWODnaz02PrQTmJX+Vc+onNgnUgG6BsZ7ilHAEkdqrRI7fgLeT6nCpk5kPxHKNfDEtTpBGY1W6N7gVGpITfuIvdfKLeq+f0I3Kn1c/zlM+nhBE995A4TrGSdc9+tZRSbHPOpoZCbnQQy0mAJz6eLlOmGCfLBCCBIQfQlrdp7514ODf6pVK0IyR3D5eNcOKzrSmIbEYxFMQ7KFb+tV9CA6uxRJ/vfEOjuDbW4kcC7koSiS8KegA4kES1O9+5qoe+OkM6eKe7wS+Hcw/QgWD2A94wQLdHUi/rxmiz//U274LuUGeoZuNuWGqPpcyg0t6heHcoPH9uNJzV+mB65tUrX7qJnzVvMYLOkeiAflhi71uQ66B9Q3i3LDxFGzkjdF7AqY2yat+76ut89bXLmhAycqoN9YKcu0qAUm/pQbTq/Vldj6rqPf7EEbr5bbvv+q1Sg3uHGarq5lTGd25YZnVWs8Kz/pbliu/4mnJyvOcrWwcgPmZViP3gMvYzblBo3vT60nVEz1n6RctfyXh9VpM0iLKDd04ASnRX0zKjck7559I0h9JnjM2qObzvfofd9KlBvcOBECY5rI296w5W2nF8hDv7StHjBmVZ0yz+oPP0jNRkNBjiaMkoYavnDgpy+GC6sJkJkwmCHGgl9B3pUqBNhqdLhGAXC2RH+FuReRuo00TPKKtn6Jfm9mFk22GDENDGhClMVlpEoiYIHGTYxbVsBeoBAGyG/XWhIdPOPLv9Kx56tf+fevlrRMKQrejTiggF0uKlOi+z8eat7KmhDsK0YnFDaVCdo1MYp37IQBRPYL1xilBnRf0I4Otp0vR5Y6cLW0KH3PEv8uuUpqxU87KXkzc1gWNBUF2KCaG9vUue8sXe0olDfpc13JA2DNOAEDPcoiSRQeM+DftBCw/TDlsGw5bGmP2ZLDq049duzErIvDpVvjrvU/on2ZXRkTMgHGkA1N0ij0tGcsqRX7Rbn2dDMtAaaXxezcutKAk38Epo9Ndzt/f3JPHkxbm9O0VSxkWlR+PKOTUalWudBC/hzNzn02tezAiPf+m+bVezf7Qbe69A0/xKEq/CrvZaU9CZ+0GUUq2eyJDTEiML5lC4x+V6rf+an1NtGGPv2cpnQ/QC2rVBWSX3Vw6ROeZFZAbr3CiIrxXhJ1AoAcp+Bij4kpeAw2OSwoFA9JpQZFRPq2XdEvzDAH8q+MWFRY2wCA/ocfooD8AND5FzYwlZ8iDi0EClxugGWQYLahThS6ksXPAXq4ABL8H+7TtHA1Wp2iYFEvGXjb6+ajzLXSbd297AYpdyuoPqY7Rjpg+hjielE+5kfJgAUe+Q1Fc3U5XScM6LGTh5WJXAizjR+iZHqWGwazqUvCDQuZX7+6Fa1O1Cqik7HugXGikFgmDtRdrDd4qv+qj0133Xz+1Yl6IqPguczpL6WxONRgMNj6omC74YHBRriEP9lcwtny9d81a6UOm/Dn6xDPy6NklO/mEKnAOIzC8GSVCuEL2BJmD/I+SITF+qwy8Se5ShmDd/IUpS5eqAbTFI3hnoC+S8/xngwrUJuNyJI1Ddg235YCdPuaPPYdgzAeHlx1VWgxIjaGGBKA/DsjNz6vdEuc1uf6im+jGx6lps/Yg5jpM365qOFMZyXwkDIkQeTGoVIGWIwqtgFr+mwgcs565DSUrga7FhK+RWfHDPlg8ygwd3BtRWKXWuupx9yJDoLe0qG28k6IdsV6EgdakQ0swmK37ZqapCiMQ/1CnB3PEJDSKlSe8G+0ngGB/WGSG6fQ0Chx8MdUx+2IBUhoWPAIMKlOxU2NtDI9MJkySEy06wBPYhS8EaMOZHpho8CohTCncAxbmCvg/F2i68cgoSg1usn54acOBaw9UHFa0MxRNH+BfSvExgR2uTig6MsJRaQ+UL1jC1RWU/OP7i35KX9cDCX/WjTgKvnXVA/5X1YPOZ0bxw/kwo7/hFVqPlOa4bjJvfy+yGU8QL6kIRfk8xqSkL/njZVZgYTcDKxMBImSZGUiSJQkKxNBoiRZmQgSJcnKRJAoSVYmgkRJsjIRJEqSlfnRpuq7NiNOBqzoX72EvPOTXxmUN9h50bUZafRLHihvf7PZv17IMY87W8r6r7aJGXjtaUWq/avgi/0SlVoL00VsA4eZlJdmGW31/JWw3HE8rA+MPwCbUsJ5JkFDMGx7n045LfIVGeCg/sgIaZl1cH/gBvLECJiRTzFum98Z323DlDTU0DQAD/ALOy+oSZ9Xv/9+t1LgpoVDv9Wc8Lu/KXttxbuMfQFgtaY+EXbfMMQJwbQ6m7nhz4VVNT0lojBW6CM1ru6bHn5sGDyz1+H8ms+1Oh5pEaO7hb8/tWqo/xr1pMB0v9QjPKA0hROlEfWZiw9ceZp7Z3JcYYMNw4wccnCqR3LP2LdK/PtEryjzT6Bsoa3P5DGK0akW3M/1dic6EXJDDh6eXmLkfm4T/e4hhCi6kN4njEAU34ReCfipScSpkhGy9TcTJzU+8/K0FexaQpAyOUGaYuS+bkOpEv/m+qWqgi6DbSyyOyinIUpb+waPQhdUdPonZ+CHmtRdRPK5zF1EfUtxoDOaE50U/Z7uB7bA+Lx7eKiN1ydJ5vJz/jkRQb2ZC/HMSGjDAq4LdT9XT3VLURsluU8/YGHo3oCBsN0HjukzhO0cagFKAGB7aFyoM2yb9kXZmnvTs5cE71hTLuXx62etqYud2H4sS1inNBblxekuzkQvLgB++iMEqzOqj0EFiFfGxbryGFgKMNLYodox4ty1J6kLAtdOSNj+h88HatE/Oxm4Fw1UoSYzpwQQpoecMN0yMtgVvYVG32u22BYa9DRYH4FbaEJG7uiJQUP4oY9sfkjS+JxX27H3Qpf657zVta1Rm74OnSBPEuLrNIj1crbUvDF+H7nbg51LkQsTFSnwkkKjjCYCpGEsEtrhLo43RK2UF2o2dJcMdJsabgDX86icPA2g/snVKEdVHtuGwhd3wesgv2Wz/c98VXYTAja9qzs0aOvVxtQUCXsAM0XCLxc15ujn3Ezd3QLwVIfwlEONuVwwZXFwM4pN4oC/D5dIenhq/7Zfu3QIXve055jWL25QJynE12Xu/hHXizzY3vbLCbfU2qEbN0W//Hd8tR484FOKEx/QfSzBMLDFiBs/4UC0F9B/jKui5tBVrolT6LiMdqrkodEtf+ktnn1i+LeG73+hHq0rjd/PNBpxnXdyLbDKa1cuqzyyKqu8OURaxajwVQFzeEmKGML5omsuDIkKUvgPCBodLp7fo+aCO1TDhGH3Mw1DXOfbMCJPwp3AZUbGfDXNSyawdTNuQuasxwCbWKiUReExr1+Xf6ShHcKXCZfXWvb3uAE0SSH8AQhJIaKhOBD55MqFyDNXMq5/Yovrm2eF/NWnnW/QhL++6GyP3npHtTH+iYaTYdrrZxjUAC5MiVdGx4O0Ep4tlGu1UA1Sz4ohwr9hkw/6OW3U+zL7JH7diB3wk64ET5TBfhGBWd0eZlw3cge8FpFq4OJJmMAvPMKEvwnyi/89511K/r9fgnPnP3TN+9CcSp4rw5bY6BvMHPzh7u5xiKE3iqMhbIJhaJTHah9O9Ci8pAnloBbkA2nx9QFYRgH+vyCnFA4PH4mWeaHFc4tWVIHzWgwwJxRgUMd6j34wf7b6jSt6b+JJbZK+zcHDzlWWK9fO1Qw95v+wYR6+y//8acExSVrvGu2Uz4IrURW3wyhCqExHyoa0cxjIB0B40oE7VTQ5VcP0JmnKFFyvxRQCp7YbunADJtn3YYSeilq4gXsUZ9wQepNkPEHoTcJPoutN0vUi6XqT360nSb8RoSfJ5ptq+ys1wOcYI3+7Vvbr+dGbnwbOern1H822mNlU+Vsxc3SIixS3m3E6qmLJR0sCN946IWs+doap5yYFYHTcheb0RrEXeoLWK24nEUKObCB9j0hwcvoYUf6GuuJ5h2bNGW67ptV3iATTUdr1rvryP8Y/8z+0ZveHciuPmko4gCid4UTpsBtDApCT7YLXWoCJkSEqyjTWOzWG4Y9ixjDienEseGM95iNqocnVA0OK8Kf//sf8KV3Ox0z+NJnTn/b/nz8l7TO/jyLygc160Yrb/V+d67pkBw/+lC7TxIOn0HJ6CmWx+9MD2x/77q3ZPXh2aP6GtKWDXvDgT+mLBDyg1J8TpW7F6U/pMdTi/lTL6U/76/3pF6ufE9CHEz9kNp8SNd5mSJKkO9+L4jdfyYjkYUrQ0o1rSuCuh/wrb2S28iTkZiCzITTwSFeP0MAjyWwIDTySzIbQwCPJbAgNPJLMhtDAI8ls9AyNwViDXhHZxejqeTww1r7xZmR7Mxr5+3QkEaKKpJHpe/4Mm9iw2YQuW8iDTaBBkDbJ3n2/18SHH4P27t6xd8vgPOo5vx86yxMVKmZtFDbH5ioWJsE7ClXoEiaqdQpcXAjKc3Np2NJ1FxGvYoi3s4+K1qhVqkgYseDFgiOfbzrRPOFC5/mZVfuMDMgsOaFq0CzX02ye0LabVqGBAuDkxzaUqpMHqiBXC1bRgcI/MUod8d1BhgF3OfLTVtFMQpY5YixKN5IJFjYGDrStRJA2UVI2TK6JUyaGKmIpAdAevxwJ650Wvm6HX++qTip8leqFuwc3krVY0PhkBQzEzhp4blCnxN+qDPlWqAGlkacEJcZA2S0S3hJ28CLceil0CcvVVURJJnxCAKuoKuUqCdSCKhSIdBqFPEH/OyZMrL+H6Kol2Lqq1YRlugooT0t19P7PQ1w+25grLh9tTMblklaPOV1e1XqXR3/hJPbv0RP7S7FhbnSYdBCYL0widHPJMInQzSXDJEI3lwyTCN1cMhca13LewioPZkhXp7VfHzPuz6OFcqHr67ofGPhbvfDlaSmyLldSchnBFXp9ZEeii/HyEFxt2CxppeXa6aLDZivXfrwJV7n2mUwpGZ7LtV/R7R3yXpovOTRl7pQnj13eWEG59qNNuIrf7rGMYAa15vTUqVPNUK790Z8ZlcqGT/fbFRe0ebsulbpaaKly7Zs4rbPSGqxjlnLt0ZVqf+sQ0k4y/Vqb4KNtQqkrzJYq176A0zgzrcE4AkuWa690tdTzXncHB8+LaN2u0qHuZayqXPtETuONtCKhIIuXa59WL91jjLSC/77Kl/8asFMxwsLl2rWcllNa3HLwpmIr117m0645sXfV4uWjsj8Kl316bxXl2rEcgrVc+0y92NMPbHnqf6lcO70shoXLtZdrylWu/W9mSlss5doHRd0eHD5/acBi5Y9Pl/24kyYHyUO5drq4GQ8lyMs25SpBLmhaXOXan+8Xl/zX72LY+vP9R3SZ+uoE7+Xa6T6CB6z+bsKF1Qvz+lxLl2svzebG/ifC/10i/PRqQmYT4Y9pyiXCL21aHCL8z/9K3H3gpVPQglc7vs5yr12Px9PmPPtIuGAysCmXZnlPpo8sDhH+8uM2pQXtaBm+sWa5858fBGRZXIQ/nBMV0G+sZu5g3MEf/kT4q8xx2hgUW0qyu2Ol3r1rfq5gNSL8vpym87aM6cwuwv/r9Xv/Jm5pI5o+umvktrXlKtB2Os0two95GVYVdeBlzCbCn7Hf6VPyL3PFM0RZX/Pcf69uBSL84ZzgSJuaUYT/9nrP8+PqL/dbXm77+6O5daZbgZwFRMiXEyEwpom8rQxb3iYTN2n6rcMVce7dOmsuLX7dgqojgB3iS1KrQERn5my2LDj7FGyRKAvuJ7QwAOIadXJcPMjhYJVrdaxRWg70Cousb8tUPSjUaCi3DyRCv0J88wG+ufQ06QLAdzkzTTLyYFXVgtcCVwkskF996NtL0kpVu0vnTmu/YJV/b6qeynfV7qKlUHTHaGIKBWVvzzZlq2KXBfruL8alUOXw4RujiNMo0PllUOXSfna+7cKy7ma32Hht3UPaCSnsRsQJKfx6ccj+7uL8/hssnizpe6YRiRJ8ZaU6RhnNoW0T3u5h2XO/3Peb/6WpJu/fSBW1r5IPYPZVfUtxGGM5pzHmW0f6IzBmx8IzJFGtA+FLHg3XTl29O4ApK5hZJLgLm3WIjldrYtyFzTtoh2h02C/obFXUaemVv4VHA8Y5ddnxZd1MKrfDDn5AlC5Vhah/WdBUHMaazmms8VYxcuCjjMpWqxUsdCcmawZqOUbQ2h2iXlPTy4TOvFu1WtC1MQ9NmSqbOnXwJhw5POp5gaEL1Uy27oCRWSrhyTmyrVLKL/V3Px0euE5VWryxUd0tlp32AgC2kADcQAAAXYtRmSgZythFJm7kfQptoG4v3j9p0tZmz4PHW/SwLwRgLhcA3dP1iabtf4yPQy/MbTY+Tqg7Fx/Hyb24+Tgj4gZH/+yQFzZve2b6tSpjB1gBHyfYnWt3U+RuBaQCLUjpi5+Pc6fHr9NWdxkWnLlnrMsd2xt2VsHHacVpHXdrsI5Z+DhJYzfV3JJ2zn/e773ur/o89oRV8HHqcRrHyRqMI7AkHyev5p2vd5fbh6/Mi1j7efeUw1bFxynPaTwbyxjPOvk46aWWugaW+Fkyb+kV97Rr9/0szMf53JTLcm+sYppSbHycie96XZ9zda54zYJdD17YNZNaBR8HyyFY+TjAERJ5qt3/BT5Ol7flGoe4aETTvY5ENnsnqW1hPs40dy4+zlBmSlssfJxmLzrvHpz+PHBz1Ke6TbfeDOCdj0Ofm/PAMZnqzsUxGeNeXHwch3ivxMGrP0rGZge3tamReJh3Pg7dR/CA1VBOrBLNGy0tzccpy+bGhhxSNlWGr5XsOhihevKwD7UQm32XZHh2MkAjT4pnnjA1YvuigVSpTYKnx/S7Oake+ClToRxq5sXBT0D2vFbbdq+1iwoKWrTqeOmjeWVsWd+PuZNTuJHR/+yigAuLKHwUC9Er6eeeDOyV+qfRCyc1lgnCoDCXowT+o53/HNRY9neo60mHKIUKGEwREwT8+lDycZhZcVPas5nSMT9DWtn3N0mOz4NDm06lUONsCT+0ASvh3h1hM0FZvIlyyIoIBozDV3wpedAPyX+Hkoeh2UEJFit5g4xssRtRIvewmEC9HBvqX8dvXVHF08ZvZ1+n7FVJYSuLPH1ZtviRN/jEJv30Hk8nNr9z3HBZ5HVDukUc2CyydGZG8ovgjwFzhzhqsye7/0hdE/WH5BkdMyNjnV7iNwi1IOrj9S6TtTDlxWq1xatVMVCOEVICY7G/w9JhnTxOa1AOQj8iWTpUHT1YEaO/CfXqzOVc/LqhMqAAzB6NoGy6H4LUB0XVWzdCyC9BiOA8DiG/BP/R5ZfCx9/tGHXyuWjc2e1ptm8jrtDll8b2yBl1K6lvYNbhpfMfZ03tSLaXFJgoz0T/YIQ8E5ul7aF6AGFGtOaD+679qiqa0DmPf/qcVOH8OVOsxb8cPtQQgnatiEp57oOUJ6SRRQpP2sP6jv214DskxhU4jILfMVcz3Ns3ciRCJYrNVpX9C0YbSIh0yRp04jok7uC7hZ03BWalHhFcX5uwhNNkZST4kxBax0RDcRhNzGm01uY1GumCbUIluEOFt4zSj3vMNuQYZUv26kmJ0tfKRK1Cg7HuwEdQHCZaMH1X3vWhN16Lt+5L2VKj1e2JdFuVCUvWyQeq9AIWAtpmF/xUb2a48i5S6+s7wxWXUT04jVq/EUPri7OAAtHZFbg+CxI8ukwKZ0e3gZ6OWaYDu8p3F0/zJPzSYTGi0r3IC+viREgvzxbSuzy4F1FGdT5gyZ6DJUftdJlA5cpGxStjdUJYV5Ya1mG8Yqtp7RwRGwunInKViii/qoSF86B4tycSYHrBQbZXQORLhi5LgZ7RTi9MwViWcpcJnBuayiNzwKrvgrGphS+M/KIRz++O2dw4U7I860K53GHxB+gFXpBfsciUkF503cQxBqfwbSFWh0WIMZYGWr0aGscawy2oxnoFEhf7oRElstcuitgkVnXv+KO8NGNJOdYwYEwcT/CbN+T85qCXWMFyMtYDjdhjs4c6Q1zSUz2iZS5Dp0lE0+36V7+bPX8ttV/Cu80FfyVO+MtYBn4GQ8zUQt34iIBsZ/BN0EULaBV3v9NTmLqa71HIFTACzAAPbEAQAaYCW4AxWs/HVW+94tfziXeeEH53ZuvA9P2ZNVJWtyqsbfgx8+y5txFK6fTLeyce/izYXEjPp6+sQV6JfoNEm+MPNY693dKpkJ7PuKTXs5ueqhY+69qkzwEnfmpVSM+nRMSjlVXj9kn2V730k7ChuF8hPR9E5V9S2xBR+Zcs1Iuo/GtLNJVa6jDzwqqciP3794r98vLqgSY7omlpcsrwOeuv+c1YMvxLC8XImqCpLNG0bU0FUe9BQ6SHXo4699H7K3ygPdH000+ew5c8VImy3g2pkfZlbHXQVI5o6vzzmmNO/9hJM/KHT/zFPycZNDkQTZ6vHS9NizoSMev078sex/nNAE3liab+XkfDbtU4Fbph1zqnZkH3xKCpAmmUzytmbvvlZuD+5qFrju4aBF+jItFUrp7/CM/dztKNLcps6ZbT3w00VSKaTi8RPviarfFPS9mU8ccI0Y+gqTLRZHvnr/297WsFbonw7+iW1K0TaKpCNDl2eN9r3/iGIXP8+434dbxiE2iqSjStTIt90ezAZdGhNv1bBwWerAKaqglYZaAciaZ7x7LFNeYvFR0o1aPfW120L2iqTjQ5pNrtKz+nkizbY9kjt1pnYAdwIppC3i3QpDSbFZDZbX+fi68S4WfVIK3ca3dIYM1k0YRW4asmZ8V1A001iaYL2b0PVZbOEe0uFXKzXZ1p00GTM9G0L6Bhk2plVwQszryWuTLeQw6aahFNv/168fHdGuGBOT0vjY93WLIDNNUmmrYOznQWTjkhW3Y7pJfy69l80FSHaLKx7+JdZd0I2YxLNweL35b/HTTVJZr8W273rns9Jixn5diuUcd9boAmIdGUf95D/u+rOeLRty8cfVPh5mmGUJWLgEWoKm7TI99yvf6O2H8v+VyluE8OPAhVVWRzUdVi92zKPn5atnB9/rCztUYspU5dZUOTVOoYxOkLtgS4EXGHkDwvi5Wp0yaAhBg4IaICoIHHLegOCvlqzFk10WDoRMJVJljsCWWDUTuHnUF6nO5pXAHNgtOo+Isgv1uvhMAeMasr+I8/svrQj5NV13k8jMrzBiEs8LPQk40P7QRmpbM8jcqJfSIVoGtgvKcYBSxxpNYqseMn4P2UKmzqRPYToVwDT1yrE5TRSBT7vKpYrmY9x5BZK5rfazp120wqfVz/OUz6eEET33kDhCudE66fPa0ik2MedTQyk/MgBlpMgbl08XKdMEE+WCEECYi+hDU7zzy3TucA9+xOkq1z/+k7dVmFGzSmIfFYBNOQbOHbehU9iM4uRZL/PbHOzmCbGwmcC3koiiT8KehAIsF6Y9/x3/GzfCSb1pQdkXWxXIzpR7B4ACudEyzQ1Yn4U4kt/vxPueG7lBvoGbrZlBveenIpN1w0LlYaqNyQPLmkRnLgiHjiHVf5Fd9393gMlnQPxINyw2tProPuj4wLlt+r3FB1fKl6O+e0DTq0Kv7Q+CNzqf3DEsoNv3OictEyMdEAlmlRC0z8KTec+fKk8oAJD8NWtjg808PvSDurUW44yWm6A9aazvCs3JDsUMX7eZXlYZPWvc86UankZwsrN2BehvXo/SNEllJcyg21T2RtqLpZELE7w+59pdofqQQhyyg3/M4JzkVPMyo3pJdxnrIuo3NEWtzwklJp55ZWotxwkhOhA/q8rTJb3nZ6gTz0S9vqAWNW1SnzrP7wg9RsNBTkaMIoaajhCwd++mK4sJoAmQmDGWIs+BXkXalCgK1Gh2sUAGdL9FeYexGp20iDEif6+iX6vZlZNNlixDTwkQ9RFpeRKolg/VIf45YVsBcohAHy2zWIK5WeNP1S+N6RXqEVfafRDu5GwbsRBxSwy0VlSnT/x0PN2wc+BPuK0QmFTWWCmz5G8Y6dMIDIfuEao9SA7gva0cG2dw/b1pOuNRbtvv3w4bThgonUYSklb2YOy4KmogB7cjWm6fisvyUZilqp2+qp9vMA2G+cgIEeZZEkCo8Z8G9aCNh+mHJYthy2tMdsyeFVw1a6p4W12xe0Z/LMVz1KT/GsjAmZAGPIhiZpFHraM5bUiv2iXHu6mZYA00x7pva7P9pPGybJzHF79XxOjql6b9C0+zhNu8VCpkXlxzM6GZVqlQst5M/RRxrr/rEjbvR96eJzzoOiffyu0Df8EIeq8Ku8l5X2JHzSZhSpZLMnNsSIwFiFLTD6Xal+56fW20Qb+vRzmtL9ALWsUlVIftXBpU94klkBufUKIyrGe0nUCQBynIKLPSam4DHY5LCgUDwklRoUEenbdkW/MMMcyL8yYlEh0BuA/ocfooD8AND5fb1N5aeIQwuBApcbYBkkmG2oE4WuZPFzgB4ugAT/h/s0LVyNVqcoWNRL8rUlK3ya5R2RPehozmJJK2qRvtLdMdIB08cQ14vyMYq8qzl9RSv8xye5aiZ8iRzLw8qEP4TZxg9RMj3LDYPZ1CXhhoXMr1/dilYnahXRyVj3wDhRSCznpXt+leSIpDvH5g2Onxn0O/VERsFzmdNfSmNxqMFgsPVFwXbDA4ONcAlV2VzC2fL13zVrpQ6b8OfrEM/Lo2SU7+YQqcA4jMLwZJUK4QvYEmYP8j5IhMX6rDLxJ7lKGYN38hSlLl6oBtMUjeGegL5Lz/GeDCtQm43Ikit6s22+LQXofvYydew7BmE8PLjqqtBiRGwMMSQAZ/tt25SaLwjMuf9WONb/bFtq+ow9iJk+45eLGs50VgIPKUN5iNw4VMoAi1HZeLOmzwYi56xHTkPparBrIeGTdZ6ytfJtu5Apdd8caZ4xgCq8VY7oIOgtHWor74RoV6wncaD1xssiLHbbrqlJisI41C/E2fEMASmtQuUJ/0brGRDYHya5cQoNjRIHf0x13I5YgISGBY8Ak+pU3NRIK9MDkymDxES7DvAkRsEbMepAphc2CoxaCHMKx7CFuQLO3yW6fgwSCu20iCNXl3UNGvek78V3r1U0fhf2rRAbE9jl4oAC6+KsUIAuTgSqamyBympq/tG9JT/lj4uh5N9FL66Sf6f1kDtaPeR0bhw/kB89flvecIJjyIpBF+/PO/w+lgfIOzTjgtynGQl5dd5YmRVIyM3AykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZdud9ur6qsFmS1ah05pipe5IZlDfYeZG9j06/5IHy5sRm/3ohxzzubCnrv9omZuC1pxWp9q+CL/ZLVGotTBexDRxmUl6aZbTV81fCcsfxsD4w/gBsSgnnmQQNwbDtfTrltMhXZICD+iMjpGWCoF+7gTwxAmbkbsysnGvt2hnfbcOUNNTQNAAP8As7L6hO85rjHs2ZETTth0VhAU1qJ5qy11a8y9gXAFYBZNh9wxAnBNPqNl7IPJwNq2p6SkRhrJAo/fvPob7Vul2WzV0xaMZ+3ZhHPNIiRncLf39q1VD/NepJgel+qUd4QMmNE6WaXszFB648zb0zOa6wwYZhRg45ONUjuWfsWyUDD5/Ma3G4e/As0aMwQe5ohQX3c73diU6E3JCDh6c7eBmXxjbR7x5CiKIL6X3CCETxTeg6scLVtg8W5oknXv99xeuy8ZOtYNcSgtSCEyQ3L+P2dRtKlfg31y9VFXQZbGORw0GdGvHo7YFjYePmP/2x1LdTG6m7iORzmbuI+pbiQKcuJzrV9LloDbbA+Lx7eKiN1ydJ5vJz/jkRQb2ZC/HMSGjDAq4LdT9XT3VLURsluU8/YGHo3oCBsN0HjikLwnYOtQAlALCNMS7UGbZNG+c86G+v26VkaaLU91tePzpDXezE9mNZwjqlsSgvTndxJnpxAfDTcyFYnVF9DCpATDUu1pXHwFKAkcYO1cxRL/dN9bKTTYpu4PZs/Z72VE8kA/eigSrUZOaUAMI0hhOmoUYGu6K30Oh7zRbbQoOeBusjcAtNyMgdPTFoCD9Uk80PSRqf82o79l7oUv+ct7q2NWrT16ET5ElCfJ0GsV7Olpo3xu8jd3uwcylyYaIiBV5SaJTRRIA0yC3RD3dxvCFqpbxQs6G7ZKDb7GoJcD2PysnTAOrzWhrlqMpj21D44i54HeS3vNf74Ml659Nla1OH/9v1RBtHaoqEPYCZIuGXixpz9HNupu5uAXh2QHjKocZcLpiyrGtpFJvEAX8fLpH0Wskv5Ff695NkeeyOWCVavp66+4ffz9z9I64Xhc/h6TtrJVydF75iUM7dZtnrL/CATw4nPqD7WIJhYIsRN37CgWgvoP8YV0XNoatcE6fQcRntwJbLaVMiB0sWnRjsf3F9bDDVaPj9TKMR13kn1wKrZHBaZaxVWeXNIdIqRoWvCpjDS1LEEM4XaZjWpbO1I+KvBEzP2fD7k067qYf9Sodh9zMNQ1zn2zAiT8KdwGVGxnw1zUsmWNXSuAmZsx4DbGKhUhaFx/I+yu2DX9wKW5RRfVJi1jlvmqQQ/gCEpBDRUByIzONEJL0lGded2eL65lkhf/Vp5xs04a8vOtujt95RbYx/ouFkmPb6GQY1gAtT4pXR8SCthGcL5VotVIPUs2KI8G/Y5IN+Thv1vsw+iV83Ygdc0ZLgiTLYLyIwq+vBjOtG7oDXIlINXDwJE/iFR5jwN0F+8WcNRxz3H9TSf/nvy+aGdV9J63xsiY2+wczBH+7uRkMMvVEcDWETDEOjPFb7cKJH4SVNKAe1IB9Ii68PwDIK8P8FOaVwePhIJKL0eG7RiipwXosB5oQCDOpY99AP5lpWv3FF7008qU3Stzl42Llq1ZJr58pTj3ltNszDd/mfPy04JknrXaOd8llwJaridhhFCJXpSNmQdg4D+QAITzpwp4omp2qQn6QrU3C9FlMInNpu6MINmGT/DKmaU1ELN3CPIt4HoTdJxhOE3iT8JLreJF0vkq43+d16kvQbEXqSbL6ptr9SA3yOMfK3rZ2iPl6QSvx2n3u6TLfjqpoqfytmjg5xkeJ2wyp5TalQ7rJ0Z5Bq/VBNy4GmrpmA0TECmtMbxV7oCVo1PicRQo5sIH2PSPDmodvf3p4/wW/+lIc7z7ocuPwdIsF0lBQ9IoPvrWkXMX3jkYPeoy9s5wGleE6U+vkwJAA52S54rQWYGBkAEJ31To1h+KOYMYy4XhwL3liP+YhaaHL1wJAi/Gmd/5g/pcv5mMmfVuH0p19a/s+fEvZ5XnJdTK2RP0qzDnh+VAbYlOXBn9JlmnjwFJU4PUWZYvenpyUHN9f0nBS2OH1/TI3F4u8RXaejRF8k4AGlLy25UHrXshj9KT2GWtyfVuL0p1/0+Wldq58T0IcTP2Q2nxI13mZIkqQ734viN1/JiORhSnCJc0pwRg+5kDcyW3kScjOQ2RAaeKSrR2jgkWQ2hAYeSWZDaOCRZDaEBh5JZkNo4JFkNnqGxmCsQa+I7GJ09TweGGsuvBnZ3oxG/j4dSYSoImlk+p4/wyY2bDahyxbyYJN6bDbJ3n2/18SHH4P27t6xd8vgPOo5vx86yxMVKmZtFDbH5ioWJsE7ClXoEiaqdQpcXAjKc3Np2NJ1FxGvYoi3s4+K1qhVqkgYseDFgiOfbzrRPOFvzQI2X08cGTa78Zb7/p3ve7B5QttuWoUGCoCTH9tQqk4eqIJcLVhFBwr/xCh1xHcHGQbc5chPW0UzCVnmiLEo3UgmaNsCONC2EkHaREnZMLkmTpkYqoilBEB7/HIkrHda+Lodfr2rOqnwVaoXfhPRSObQpsXJChiInTXw3KBOib9VGfKtUANKI08JSoyBslskvCXs4EW49VLoEparq4iSTPiEAFZRVcpVEqgFVSgQ6TQKeYL+d0yYWH8P0VXrW31YpquA8rRUR+//PMRlZQuuuCxvQcblBlaPOV1e1XqXR/tzEvt76In9DXkLkw4C84VJhG4uGSYRurlkmETo5pJhEqGbS+ZCTdcPn91p7XjpOJ/VIT+M87hVKBdS3Z3V8UT5vOAdLnfcxdm5YkZwhV4frZxCE+PlIbg2YrOklZZrp4sOm61ce3QrrnLtXq2Ku1z70RrCkZu0p2VrZvm1kS+sRT3ZaZly7fJWXMVve7SygprT48ePN0O59twWM3T7lmaGb72RPPpeVAx198VS5drDOK0jsQbrmKVce832mQ4u4nd+E5/M2VfiRsedVlGuvS2ncbyswTgCS5ZrPxJ6Rjm4Zoh4z5T+/epXHENV2rV0ufaGnMZztozxrLNcu2TB6OpdKutkizP7njhRLXSPhcu1V+K0XBmLWw7eVGzl2su+7X3MoeVg0WL7zFpnSq6XWEW5diyHYC3XDhwhkac2ZstT/0vl2ullMSxcrn1tK65y7XOYKW2xlGv/kNbswaj+XwM2zUr+o++mbKpgIh/l2uniZjyUIM9txVWCfHGr4irXfsfxcqj/yr4BozscFIoUF/N4L9dO9xE8YDWHE6vJ5vW5li7X7srmxv4nwv9dIvz0akJmE+Ev2ZpLhD+f6Tt5EOEv/cvfY+pW7Bg0+0H6vh13jz7m8bQ5zz4SLpgIWnNplv/N9JHFIcLv5dP7zsvpvf0WSsK3bfDeQ62DbgkR/hetuFDJt3gGWnjHyTIi/NVrJahsI/dKF1SvPnbLyv4LrEaE/wan6c5bxnRmF+Ev895t1IPAbL8Vm2cln/Jq+8rCIvyYl2FVUQdexmwi/A8vPBvr8vFeUKabd2NZhKypFYjwY86GFZz8VmYU4R+6bNu8sU0eSWY1WrOpZIMdd6xAzgIidIMTofP66acbW94mEzdp+q3DFXHu3TprLi1+3YKqI4Ad4ktSq0BEZ+Zstiw4+xRskSgL7ie0MADiGnVyXDzI4WCVa3WsUVoO9AqLrG/LVD0o1Ggotw8kQoPh8MwH+ObS06QLAF9xa1MPVlUteC1wlcAC+dXblOsaciR5fsTuHVNn76+Zesz02l20FIruGE1MoaDsrbI1WxW7LNB3+7c2rhA2PnxjFHEaBTq/HDKvc5Xm819HbHJsphmVXItaiLm0FLsRcUIKv14csr/dOL9/SGtLJ0v6nmlEogRfWamOUUZzaNv8sefImjU1p/qN6X7wlWDsJ6oeuC35AGZf1bcUhzHEnMZobRljMIpjG7Nj4RmSqNaB8CWPhmunrt4dwJQVzCwS3IXNOkTHqzUx7sLmHbRDNDrsF3S2Wv/+SOW2T5NEC4Me+G0NGkpNh+zgB0TpUlWI+pcFTcVhLA9OY9W3ipEDH2VUtlqtYKE7MVkzUMsxgnJ8hpZLT3jutycqdFiGfd5rU6bKpk4dvAlHDo96XmDoQjWTrevT2rgslfDkHNnWhKkug1+Nqxg2v3HiSMd6WZctO+0FAESQANxAAABdi1GZKBnK2EUmWqVVX7e+3qOw3NuRlYdtDa1NC2XmPewLAWjJBUD3Rq3JRLPJf4yPQy/MbTY+zrPWXHycnczMkmc+ju2Rn0ZvDR8XOn/o6p8Ha1+NsQI+zh+tuXY371rG6VNJBYMHDzYDHyel+sxVjWtWlGyt07v5rzH3hFbBx7nCaZ0z1mAds/Bxen99WT32SWTIodUD72ZMWP/eKvg4hzmNs9MajCOwJB+n5KhJ8e3HpvjN9f6YdPjblwir4uOs5zTeMosnu1bEx/mYPDKjVVKsZGzN2VPf9V5X08J8nCxOy02zuOWKlY/j8avzorkpa8I3rDz748xfVK+tgo+D5RCsfJyd+jy16f8FPo5/y+3eda/HhOWsHNs16rjPDQvzcdzbcPFxHNuYh49TU/lt+SG/3tKNpzY1mya4VJt3Pg59bs4Dx6RJGy6OibBNcfFxXGKqOgW/Xho2+fCVZfnSSit45+PQfQQPWDlyYlWuzf9XfBx3Njc25JCyqTJ8rWTXwQjVk4d9qM7ZvksyPDsZoJEnxTNPmBqxfdFAqtQmwdNj+t2cVA/8lKlQDjXz4uAnoAsfnveQ//tqjnj07QtH31S4eZr1/Zg7OYUbGf3PLgq4sIjCR7EQvZJ+7snAXql/Gr1wUmMwnYen/Rwl8B/t/Ke6sey3py1OOkQpVMBgipgg4NeHko/DzIqb0oPNlI75GdLKvr9JcnweHNp0KoVaHb2EH9qAlXDvjrCZoCzeRDlkRQQDxuErvpQ86Ifkv0PJw9DsoASLlbxBRtaeLJF7WEyg7smG+tfxW1dU8bTx29nXKXtVUtjKIk9fli1+5A0+sUk/vcfTic3vHDdcFsloRreIF5tFls7MSH4R/DFg7hBHbfZkd6qmUWl/SJ7RMTMy1uklfoNQC6I+Xu8yWQtTXqxWW7xaFQPlGCElMBb7Oywd1snjtAblIPQjkqVD1dGDFTH6m1CvzlzOxa8bKgMKwHwPwdzshyD1QVH1q80Q8ksQIjiPQ8gvwX90+aXw8Xc7Rp18Lhp3dnua7duIK3T5pbE9ckbdSuobmHV46fzHWVM7ku0lBSbKM9E/GCHPxGZpe6geQJgRaa0Bmr82rK/vHTY78+Cx+3X3hJliLf7l8KGGELRrRVTKcx+kPE+bWaTwpD2s79hfC75DYlyBwyj4HXM1w719I0ciVKLYbFXZv2C0gYRIl6xBJ67nnZ52qhfaO3TW2i6nHz+pVJ/TZGUk+JMQWsdEQ3EY7R6n0a6a12ikC7YJleAOFd4ySj/uMduQY5Qt2asnJUpfKxO1Cg3GugMfQXGY6CPPXtF1vTaUDNk1o2S+y5IJjei2KhOWrJMPVOkFLAS0zS74qd7McOVdpNbXd4YrLqOe5TTqL80YWl+cBRSIzq7A9VnQBHGaTApnR7eBno5ZpgO7yncXT/Mk/NJhMaLSvcgL6+JESPdmC+ldHtyLKKM6H7Bkz8GSo3a6TKByZaPilbE6IawrSw3rMF6x1bR2joiNhVMRuUpFlF9VwsJ5ULzbEwkwveAg2ysg8iVDl6VAz7jpTQpTMJal3GWCPSaXp3fAqu+CsamFL4z8ot331V+fe3hB+J455QeMW7ZcSS/wgvyKRaaE9KLrJo4xOIW/DrE6LEKMsTTQ+iuzKDUnawy3oBrrFUhcpo5P/3ws5wfZtmE+Pus9XEozlpRjDQPGxPEEv/lRzm8OeokVLCdjPdCIPTZ7qDPEJT0V5Pnm+YHbVYP3rbr7e4u359Op/RLebS74N3HCv9Iy8DMYYqYW6sZHBGQ7g2+CluqgVdz9Tk9h6mq+RyFXwAgwAzywAUEEmGZsAcZoPR9XvfWKX8/nlrDqrtVaG+mBto9sSrW/GFJIz+fd47Jhh7IHhS7c2buMo2yfupCeT7gu/GZI2LKQ1X+JkgOCM3IL6fl0rxKdP8T1rN/MqCm/25ypHVZIz+du++z3Dp0Hyg62+mhf0WuxopCeD6LyL6ltiKj8SxbqRVT+tSWaGrW0b9bXMSdo0Q8vc1TbYv4GTXZE09OSeQ2Ob0uSzekZfa3jkTp+oKks0dS45os1US1TI5ZkhsxpE/hbS9BkTzT9vmFN/C2PQeIc+Y2LQy/9XgM0lSOaZtlpj89/uFO8NfGqY/ye1QmgyYFomjqmw+Ps9jdDp/kPyP5XO687aCpPNF0b5BIdWFMXvCCllvNxTeWboKkCCZT9+Np/vgjx2+a8p+YeG2E30FSRaPL93fZSFfuk4Fz/I5KRNi0OgqZKRFP5rj55XR2T/XaOGTrg+fDpfUBTZaKpRcTYf59tGSOZtKdF3uW+DRxAUxWi6cTV85F7f3jqt2GLqP7X1j1PgaaqRFOPsu/eOn8KClg12KPE8NDQ1qCpmoBVBsqRaAo4eOxGu7DxYZnbr2SOz7q+GzRVJ5oS3vZ0zllzS7q+i49zXd9x7qDJiWhS7loWOO9KCfGE9a69zjnNeAWaahBNQz1UXb7IXIK2/dGs1k+XHRaDpppE07DJJ64MlEv8ZoluvF904dBA0ORMNO15kt8ye9k/gdMnR18ZcnvgU9BUi2hqZhO/JXfzdXHGO8cnTbZOfwuaahNN43rmTv/Zvl3oElWVps1K9oP2qkM0xR46Xc398HHR6G0nuqW4T8wHTXVJ5I9fD8+YLAqY9PnOmb3S4fNBk5C8a27Hi8sWtxCvC3WrNK32zvIMoSoXAYtQ1ZzdwmV9nNJD1+yp1TFV4nyQB6Gq5mwuqlrsnk3Zx0/LFq7PH3a21oil1KmrbGiSSh2DOH3BlgA3Iu4QkudlsTJ12gSQEAMnRFQANPC4Bd1BIV+NOasmGgydSLjKBL6+UDYYtXPYGaTHDXyNK6BZcBoVfxHkdxvZZqJvntvqoKnlh2UdXNrbjsfDqDxvEMICP2182fjQTmBW6ulrVE7sE6kAXQPjPcUoYIkjtVaJHT8B76dUYVMnsp8I5Rp44lqdoIxGS9jmbc29VmqrZFzmklerYg/kUunj+s9h0scLmvjOGyBcDTjhqulrFZkc86ijkZmcBzHQYgrMpYuX64QJ8sEKIUhA9CWs2Xnmke3r1w/r/l4yrceDCZ6h0n9oTEPisQimIdnCt/UqehCdXYok/3tinZ3BNjcSOBfyUBRJ+FPQgUSCtaPrUscT47pKp12e2SXz8odBph/B4gGsBpxgga5OxJ8WbPHnf8oN36XcQM/QzabckOHLpdyQYFysNFC5wXbCVfmYVS4BS0fvdtJs2eTJY7CkeyAelBum+HIddB9tXLD8XuWGXX8OuXDx94uhq/tduBM4OY9WJtQCyg0pnKgkWCYmGsAyLWqBiT/lhkdCSXLc8FrSmS2HlLu99Bn11JEllRuiOU3Xy1rTGZ6VG/Ja3p3u6RMdPPufPgfv1+hrY2HlBszLsB69H43IUopLuSH9ZeOvO6ZvlKzzfPwi5FOpwVag3JDCCU6CrxmVG9J/Lr1/nZNImr4lzuPE7RdPrUS5IZoToV76vK0lW952eoE89Evb6gFjVtUp86z+cOoahW0oyNGEUdJQwxcO/PTFcGE1ATITBjPEWPAryLtShQBbjQ7XKADOluivMPciUreRBiVO9PVL9Hszs2iyxYhp4GgxURaXkSqJgAXkYuOWFbAXKIQB+uj74th5EY+Vor3zks8MVJXKp+0mwbsRBxSwy0VlSnT/x0PN21Fign3F6ITCpjJBstgo3rETBhDZL1xjlBrQfUE7OtiOX1BFI9CcC19xvXn2c49p96jDUkrezByWBU1FAXaln134lHzbkFXey8bfrXu3OQ+ADeYEDPQoiyRReMyAf9NCwPbDlMOy5bClPWZLDq/asuSxNyNWXQ2cmh18cMHsi80rY0ImwBiyoUkahZ72jCW1Yr8o155upiXANNOe7be9TtK6eaKxLh9uKR9Xa8eDaXtwmjbMQqZF5cczOhmVapULLeTPkcbcsGJQYKPwH8QL5sQed43fXIe+4Yc4VIVf5b2stCfhkzajSCWbPbEhRgRGH7bA6Hel+p2fWm8TbejTz2lK9wPUskpVIflVB5c+4UlmBeTWK4yoGO8lUScAyHEKLvaYmILHYJPDgkLxkFRqUESkb9sV/cIMcyD/yohFhYftAOh/+CEKyA8Anf9aO1P5KeLQQqDA5QZYBglmG+pEoStZ/Byghwsgwf/hPk0LV6PVKQoW9ZLbdYdv27SwdPCeP1/tbuKfS1WvKt0dIx0wfQxxvSgfs7dkXr2IGzLJRK17p4u3XHN4WJnIhzDb+CFKpme5YTCbuiTcsJD59atb0epErSI6GeseGCcK7QTqfFy+7KetYWM+z8z97fXP56knMgqey5z+UhqLQw0Gg60vCrYbHhhshEtoxeYSzpav/65ZK3XYhD9fh3heHiWjfDeHSAXGYRSGJ6tUCF/AljB7kPdBIizWZ5WJP8lVyhi8k6codfFCNZimaAz3BPRdeo73ZFiB2mxElry+Hdvm21KA7lyTx75jEMbDg6uuCi1GxMYQQwKg/azbvP7ulPCVt5e+3REy4go1fcYexEyf8ctFDWc6K4GHlGEtRG4cKmWAxaiWtmNNnw1EzlmPnIbS1WDXQsLX5+/do+PaOUjm3b6a82qkfR/qMXeig6C3dKitvBOiXbGexIHW1HYWYbHbdk1NUhTGoX4hzo5nCEhpFSpP+Ddaz4DA/jDJjVNoaJQ4+GOq43bEAiQ0LHgEmFSn4qZGWpkemEwZJCbadYAnMQreiFEHMr2wUWDUQphTOIYtzBVw/i7R9WOQUFSI9819kvqDeE6J3DIHptWdQNuYgN8KsTGBXS4OKOZyQjFVH6haswUqq6n5R/eW/JQ/LoaSfwntuEr+KfSQt7F6yOncOH4gfxX1bkzfkrP89vR2Obr5/Q43HiC/2Z4L8ovtScjb8sbKrEBCbgZWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZCBIlycpMGGkn3h9xPmBGv/IDug/Iv8qgvMHOi+x9dPolD5Q3Xzb71ws55nFnS1n/1TYxA689rUi1fxV8sV+iUmthuoht4DCT8tIso62evxKWO46H9YHxB2BTSjjPJGgIhm3v0ymnRb4iAxzUHxkhLfMI7g/cQJ4YATPy48Zt8zvju22YkoYaKwavhqxAdl7QkKMVFLIBEZKNrefELNtbfa0pe23Fu4x9AWD1wJcIu28Y4oRgWn2FueHPhVU1PSWiMFZIlHYfuL1j3iKfoMz0itfme8iW8UiLGN0t/P2pVUP916gnBab7pR7hAaXjnCjt9GUuPnDlae6dyXGFDTYMM3LIwakeyT1j3yrpdPn8jhPb9gUu3vKu5dqYz18tuJ/r7U50IuSGHDw8fdPI/dwm+t1DCFF0Ib1PGIEovgkJzouVP6Qn1r0XsTvtVFrPfd82WsGuJQTpN06Qjhu5r9tQqsS/uX6pqqDLYBuL7A4q5d7Awwt9KofPePAhMrnUlR7UXUTyucxdRH1LcaCzjxOdLfo93XZsgfF59/BQG69Pkszl5/xzIoJ6MxfimZHQhgVcF+p+rp7qlqI2SnKffsDC0L0BA2G7DxxTS5jCn0MtQAkAbHWYC1Cmb9O69a2b9G3rfMnKlHeq1iu2rKYudmL7sSxhndJYlBenuzgTvbgA+OnmEKzOqD4GFSBc0WtObGCVx8BSgJHGDlXsqlpjbzwuFb7T9cy82Tkz/qV6Ihm4Fw1UoSYzpwQQpjqcMFVFrLSbtoVG32u22BYa9DRYH4FbaEJG7uiJQUP4ofZsfkjS+JxX27H3Qpf657zVta1Rm74OnSBPEuLrNIj1crbUvDF+H7nbg51LkQsTFSnwkkKjjCYCpEFuiX64i+MNUSvlhZoN3SUD3SZKBHA9j8rJ0wDqLURGOary2DYUvrgLXgf5LV13jj5zs/so0fLrpTLWd75AlS39AXsAM0XCLxc15ujn3Ezd3QLwdIHwlEONuVwwZQkQGcUmccDfh0skfcG+ZQ3CVjuHrv+s7el9P7QMdfcPv5+5+0dcLwqflAdL/m1RY3bIruej3DOHz1vDAz4dOPEB3ccSDANbjLjxEw5EewH9x7gqag5d5Zo4hY7LaCvWdJq1ZuMvAZNnnm9/YkvcbarR8PuZRiOu806uBVZx47RKXauyyptDpFWMCl8VMIeXpIghnC/SMJOi/41pX7urdE+fPgfnrDnrSDVMGHY/0zDEdb4NI/Ik3AlcZmTMV9O8ZAI/kXETMmc9BtjEQqUsCo9S/qNjx+1/G7H/r2aznWeOKkmTFMIfgJAUIhqKA5EWnIg0EJFxvQNbXN88K+SvPu18gyb89UVne/TWO6qN8U80nAzTXj/DoAZwYUq8MjoepJXwbKFcq4VqkHpWDBH+DZt80M9po96X2Sfx60bsgJcQETxRBvtFBGZ17zqZugNei0g1cPEkTOAXHmHC3wT5xUOuvE2rs/pRwP5+c69+2DK4A7XzsSU2+gYzB3+4u/ut00k4gUNwNIRNMAyN8ljtw4kehZc0oRzUgnwgLb4+AMsowP8X5JTC4eEj0QsGtHhu0YoqcF6LAeaEAgzqWAPAiMHc0eo3rui9iSe1Sfo2Bw87V5c6ce1cndFj3okN8/Bd/udPC45J0nrXaKd8FlyJqrgdRhFCZTpSNqSdw0A+AMKTDtyposmpGuQn6coUXK/FFAKnthu6cAMm2TUhVXMqauEG7lHYiBF6k2Q8QehNwk+i603S9SLpepPfrSdJvxGhJ8nmm2r7KzXA5xgjf7txxF/1Ag7uCJ54r01Fnz6zK1Llb8XM0SEuUtxu/eQnKW0rpIo3Tu1/rv/p8yYvLYHR4QTN6Y1iL/QEreXFJxFCjmwgfY9I8KNSW88mhPQPnzQyTOuZ/mzSd4gE01E6Me5viVBZK3D0+cnecxtl1OcBJRtOlD6LGBKAnGwXvNYCTIwMAIjOeqfGMPxRzBhGXC+OBW+sx3xELTS5emBIEf5U9B/zp3Q5HzP5000iLn86X/Q/f0rY55JCcDhjSLvAhfJJi9deChzMgz+lyzTx4Ck2iLg8xXJRcfvTjvabWuXPOBqR9ePkTk9Gn2rPgz+lLxLwgNJ8TpSmF6c/pcdQi/tTrMew+tP5+gm+2OrnBPThxA+ZzadEjbcZkiTpzvei+M1XMiJ5mBIkirimBLF6yP14I7OVJyE3A5kNoYFHunqEBh5JZkNo4JFkNoQGHklmQ2jgkWQ2hAYeSWajZ2gMxhr0isguRlfP44GxJuHNyPZmNPL36UgiRBVJI9P3/Bk2sWGzCV22kAebSNlskr37fq+JDz8G7d29Y++WwXnUc34/dJYnKlTM2ihsjs1VLEyCdxSq0CVMVOsUuLgQlOfm0rCl6y4iXsUQb2cfFa1Rq1SRMGLBiwVHPt90onnChS3zz8tzo2TjOvYqva79xdNsntC2m1ahgQLg5Mc2lKqTB6ogVwtW0YHCPzFKHfHdQYYBdzny01bRTEKWOWKo5jaSCS51BA60rUSQNlFSNkyuiVMmhipiKQHQHr8cCeudFr5uh1/vqk4qfJXqhbO6NpKNv9jxZAUMxM4aeG5Qp8Tfqgz5VqgBpZGnBCXGQNktEt4SdvAi3HopdAnL1VVESSZ8QgCrqCrlKgnUgioUiHQahTxB/zsmTKy/h+iqMqsPy3QVUJ6W6uj9n4e4/APnUt2XjmRc9rd6zOnyqta7PPoPJ7H/nZ7YH8BbmHQQmC9MInRzyTCJ0M0lwyRCN5cMkwjdXDIXmj2+yVqnd/6yvTd1J+dNrrqpUC7k2Stl9qCn78JWDynlVUraM4gRXKHXR3YkuhgvD8E1kM2SVlqunS46bLZy7d/EXOXazzKlZHgu197FxqVGl40XpMteVFrVZrwndXfeMuXav4i5it++s4xgBrXm9MiRI81Qrv3MiPqSlkeHyCaW7zj6rwaVqafLLVWu/Smnde5Zg3XMUq79r9e/vvY53VM6J/dig73r+h2zinLtVzmNc9YajCOwZLn2tnX8PzQvGRcyfXrmyYQzMbOsqlz7L5zG22VFQkEWL9f++8C3Ja+HVA9ZsejJmQMXZGUtXK59A6flllvccvCmYivX/tpua+1yJ98EbKk78f79/KcvrKJcO5ZDsJZrP6vfQAxiy1P/S+Xa6WUxLFyu3d+Pq1y7t595yrX3GH37/rQni4M3P6vul19nvYj3cu10cTMeSpBL/bhKkPv6FVe59pG3UuZnDcv0356ntm1wYMcX3su1030ED1h5c2LVyO//q3LtwWxu7H8i/N8lwk+vJmQ2Ef7Fflwi/D8zfScPIvzRPb3eH1V6hqc10CQeLdtjCo+nzXn2kXDBZKEfl2b5LKaPLA4R/svlLgwRbG8i2z3q8bxL6RKxxUX40zlR+dm83pBz7mDcwR/+RPiPa3ckbX+7LWylzZPfJrZ7uMFqRPh1nKYbZBnTmV2EP6SmOPLn1ArBK5wf/9PJJ9+Sog1w4RXzMqwq6sDLmE2Ef6L4041nTSoEb/iwdXsbzVFqv7WMCH86Jzg/+5lRhP/P/tvKB1XcJpnV7o3P4JoVrlqBnAVESMeJEBjTRN4Wwpa3ycRNmn7rcEWce7fOmkuLX1MFaO2xQ3xJahWI6MyczZYFZ5+CLRJlwf2EFgZAXKNOjosHORyscq2ONUrLgV5hkfVtmaoHhRoN5faBRKiMBOCbD/DNpadJFwC+d9inmAYerKpa8FrgKoEFOnnq9/5z/6HHA5ZEXd3s/4eEphfyPbW76MXmaY7RxBQKyt7+IGGrYpcF+u4/xqVQ5fDhG6OI0yjQ+eU1px+zp9afH5h96ev8wJeu1LK/paXYjYgTUvj14pD9fevH9f2fWDxZ0vdMIxIl+MpKdYwymkPbppb4lEznly7NWtmg29KZk05S+yr5AGZf1bcUhzHucBrjsnWkPwJjdiw8QxLVOhC+5NFw7dTVuwOYsoKZRYK7sFmH6Hi1JsZd2LyDdohGh/2CzlZ/dTk7cMqa8ODxk3Ye6VnJawE1rsEPiNKlqhD1LwuaisNYpzmNdcgqRg58lFHZarWChe7EZM1ALccICu9sEyRt+Ew2Q7qw6RSfpn1NmSqbOnXwJhw5POp5gaEL1Uy27oORWSrhyTmyrZ4TMruNvxsesfDt7Dy3mY3qWnbaCwB47kcAcAMBAHQtRmWiZChjF5nw/dfdq+7CqUHbU2VT7tcKOGLRw74QgAtcAHQ/ok80Q/9jfBx6YW6z8XEmSLj4OJGS4ubjVLjV/GmfqknBcw91Hmv7askzK+DjjJNw7W4Ok1gBqSA6OtoMfJxJ5c+Neng3LXj73Y/T/xj6Ltkq+DhJnNaJtQbrmIWPczRp8ymn9GXS5bVfXIzstNPJKvg4fTmNE2kNxhFYko9TJ+2vT8ee9AmcU6PqL88/hE23Kj5OIKfxOlrGeNbJx7m9a/bj3/6qIDowv8mB47W/PrMwH6clp+WaWNxyxcrHmXvlxDenPTFBuQ13LC9bcUCqVfBxsByClY8DHCGRp4b9X+DjlD9+PTxjsihg0uc7Z/ZKh8+3MB/nlISLj7OVmdIWCx9H0r9Xycipr0UzJ70e2npLwkre+Tj0uTkPHJMTEi6OyX5JcfFx4ir0/7n0gJDwBbc2vrnQIrAR73wcuo/gAautnFjlmtfnWpqPE87mxoYcUjZVhq+V7DoYoXrysM9r6k5Jl2R4djJAI0+KZ54wNWL7ooFUqU2Cp8f0uzmpHvgpU6EcaubFwU9Az7vndry4bHEL8bpQt0rTau8sz/p+zJ2cwo2M/mcXBVxYROGjWIheST/3ZGCv1D+NXjipMYg78LSfowT+o53/jGksCxzb6aRDlEIFDKaICQJ+fSj5OMysuCkj2EzpmJ8hrez7myTH58GhTadSpDQVDLQBK+HeHWEzQVm8iXLIiggGjMNXfCl50A/Jf4eSh6HZQQkWK3mDjOyGiCiRe1hMoN6ZDfWv47euqOJp47ezr1P2qqQwahhBnb4sW/zIG3xik356j6cTm985brgs4taBbpEubBZZOjMj+UXwx4C5Qxy12ZPdf6SuifpD8oyOmZGxTi/xG4RaEPXxepfJWpjyYrXa4tWqGCjHCCmBsdjfYemwTh6nNSgHoR+RLB2qjh6siNHfhHp15nIuft1QGVAA5kwI5mY/BKkPiqoP6YCQX4IQwXkcQn4J/qPLL4WPv9sx6uRz0biz29Ns30Zcocsvje2RM+pWUt/ArMNL5z/OmtqRbC8pMFGeif7BCHkmNkvbQ/UAwoxIa906/fFLcs8t4avHtVso7irvYIq1+JfDhxpC0K4VUSnPfZDyjO9gkcKT9rC+Y38t+A6JcQUOo+B3zNUM9/aNHIlQiWKzVWX/gtEGEiJdsgaduC6qvjvnSMI7/z03tz179eOnFpwmKyPBn4TQOiYaisNowzmNNsS8RiNdsE2oBHeo8JZR+nGP2YYco2zJXj0pUfpamahVaDDWHfgIisNE2ur03K+RkQtGSjZVTfMPutmOMbzKhCXr5ANVegELAW2zC36qNzNceRep9fWd4YrLqHGcRv2xA0Pri7OAAtHZFbg+CxI8ukwKZ0e3gZ6OWaYDu8p3F0/zJPzSYTGi0r3IC+viREiPZAvpXR7ciyijOh+wZM/BkqN2ulCrn5aNilfG6oSwriw1rMN4xVbT2jkiNhZOReQqFVF+VQkL50Hxbk+0oAit4CDbKyDyJUOXpUDPSNYLUzCWpdxlgm7tTeWROWDVd8HY1MIXRn7R3h0yBD8nCyVTttXz76a9eYBe4AX5FYsm3tOKrps4xuAUXguxOixCjLE00KpsbxxrDLegGusVSFxiKqdHbNp2Q5Sp9fxR2T9vHmNJOdYwYEwcT/Cb9+f85qCXWMFyMtYDjdhjs4c6Q1zSU5rq0TUuz2jsv/nM4ZdfT5VzofZLeLe54A/hhF9sGfgZDDFTC3XjIwKyncE3QVqEXnH3Oz2Fqav5HoVcASPADPDABgQRYKLYAszpBfLQL22rB4xZVafMs/rDqbritlhRrChpKJNuwhZe/Kg16YiCWsIYRSz4NUY4MLVw4TZ3MGHE6fhwHkmcTBtp0ARyoW/S/Va3Uv23q2x3TX+81Qv93syFWbLF0F4PUhrRrOMCwX5UaHoDMBbNPM5/8TrnaYtvflxQO2BDj6nXynb/OInmcuHdiF087HJR8WjRbXnp3Ot3xcta/PBIFhN80MR4BItmeUOAvFE53wXgFu5TASpqguOEAUT2C9cYpQZ0X9COZmeKK3zrPrJunuRg+Wt93w99T61pbCclb2ayMwuaigJsRy1F7uKQKeKxYdfTM/cG5/EA2IyZXICBHmWRMIYfiYF/00LA9mPcmTF7zJYcNMajXzNHyU+UDMn8kvLx2dWRJyxKY4SWeTODyzJLZ1jGMsjTe4d4rm/Yd8uw/Qf9OoqyAht2+7BkX7jF6htu9iRcymbUxGmAFzZCiLjWlS2uCfde36n7baZ4dfd6jssTvanlP0tHqnWMEztck6a6+A0gqpHnxjTwnSGpUj5UqUVPnLpeaVSv39G+AdMqbT0b8vcsf9QrILSnseuGMsHdgDOZexwvbcQITxVBeJqRaVx46o5/P1izEHsR5Dd7vHv859ryf4JG94t6OOFlXhfqN8MfwfxmxPWi/G1Mvm3pUMmU0Jygjm1WvL3w3ER/KwIQpUGIpKhRHQhGtfdcZIBinUliFoKHkaDpkfhs798xt9ri8dLRRx6t/80/i1q20EYMbmMOJexqUdjQxygP2NzP5MKG1n3gg2wFHGUZCrBJhAf/XZWJxHkkLTp+/7O+Tqe3n0eG7H3bePScurP7UxMdMXwIM9HBLxeFlbZkcvXw2hWDZ235a8ugd7vas2LVTavAjzgViMYagZ+IE783c6wnYhjJciqPe6IYwuUhzTfg0IF3zvv6+o/Lz+1V/k3rVaY5AhPjxgUPYqTb+CHixg1PrDcTcaPbd+0l4z3P7PvJRo8qetc3ZVSZuKkMCSm7Zx8ntzD/Hw== true iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvwAADr8BOAVTJAAAAtpJREFUSEu1lF9ojXEYx59OS5IrF5IkiTVriWgXS5HWlFwQbpRYyr+xkgvFLpQMpRU3SEmjmLWEuZLcKGlpaRe7WNKulnQu1trFWms+39/ved9zzvu+59z5dr6d3/d5n3+/v1aNy2Y7fdgI6/w/xQWzbT6sj4tmW3rNlnvMmqUpdvOS2cfwsYJVcBF2BwXOmK0hZgn/O24qBskOq8DZmES6U5rutgeHCu7BBbgjKIBft4oQc85NeeBwSAlPma10kwIn4bDLBCX4FU74OIAZ3CLHQkFDEfqQ7ZigY95Zi5sStMFl2BVURAm/cWJGXedQIlkZp+uuhZLPYsh1NX7CB3EYQfKT5FhkP1e7qRYkeoqDpp6CgqcVdN5srZsSvICf4zCC+Datgv7dVAsq75EDnbS6ybTp2GYpdMVNCZ7AmgI0sk/x7PQmN+WgJZnRhrkOwDaE7ZPLBCPwQxxG4DNAkd8ui4HTY/jDZQD6RkHgOHwYh/E+0MgcM+1zUzG05jjOuwzA1kuRPy4FHWXdhRNBAXyew791NzgBiXoyybRE/XDSpdAJdUw3SDC7cIfgEemGIPkI/OIygMBvcNClcB9OxWE43tN8f+m6PvaaNeFYc2IIboZL6tJNwhh8pgG+LcToDdst3RB03iVnbvNmN4VNJ8kvhsmz0AT14IX1J3E4mgX3JA+SvYbqLsBPxjw2fik2Qq1/hwQfWlWAzU0fv0L4hVIymoqg8z5ss5mT0Q5VIFym42YrPI6JNwBOB9VJ9VSpNE3ggMsE+6EKpH74vIHpzAtBt3cpkB5FdLsKFjy/2kwVSPcpeWJo6ICb8iDhK7p461L6KkEzLquhzlVAM0lB7CicqnvRvIDelwAVg+9cZqHC1+Iwgu7XwzJNvde+uLkCkt1WBy6lx+Ajl1noUn2Pwwrw76DAHIUm+N/l5ghmoAvT71KbPozjUZdZaHnKcVgL4rbCQWLTd+o/wuwf9N7EUShQvi8AAAAASUVORK5CYII= 1d3929f4-53e5-4579-ad62-84b2dcfe9025 true DIFERENCE CURWATURE SHAPED GRAPH DIFERENCE CURWATURE SHAPED GRAPH false 37 0f8c31d7-f100-4fc9-b99e-8708b1064c87 11426add-2dad-4504-a229-f384e437c631 12645ff0-d3ae-4dc0-b2a5-8da9d45fab94 13fa3828-fd39-410e-8b31-5743271817f9 1b9b32b3-e98d-400a-b04a-b8a3506fe77a 2c104d71-3268-4080-991f-2140f3080675 3a85fc51-6d5e-4555-965e-c47db2a072c7 54161844-030f-441b-ae36-6c8e6fd9361b 5524a6eb-ec21-4259-9620-fa93f7ba2dd1 5cea064f-6531-45db-86c9-02cf6ea8c994 61c94a5f-b514-47c9-92a0-139978a51dd4 7546bc4b-23bd-446d-b103-122a40b7decd 79063066-5dc0-4aad-b30f-37377464d8ad 7a04a069-f807-4718-8d13-7f0f8da45782 7fbcf0ef-f454-4ef9-86b0-8101eea0d23c 83120356-2358-4a65-bce7-37c29ead52a8 8659f01b-c78f-46b8-9eaf-29709ed0a33b 881d4b81-c60b-4b8b-8dce-2c40a6a7de3c 88326248-5e84-49e9-991f-f69c5ce76ffa 8d481224-cbdc-4fa9-90a5-b7c7d290f9ca 9e655fb0-3ebd-45f4-821b-a4410c510d1a 9eb3a9f5-048d-48f2-ad5a-3c4fe73de0e4 a24fbf38-b1b9-4511-9bc8-bfe921f44089 a6730e96-7e8d-4fc3-b6c7-7e677cc49cb1 a90416e9-5e32-4045-9607-50c791a8677a b79fc36c-baff-4074-ba1c-7c3e26c598a5 bd991454-448e-439e-be40-a2e9bda8dc8e c974d321-6663-4f14-b910-114ab3f151d2 c9aec53c-3f22-480e-b045-ec9e1c2f1461 d15cd278-895a-4f56-ab56-168db09bd1eb d3b685ff-4a01-4f1c-8451-d6c384158081 d4a86874-2cf0-4b31-b7bb-8c7a64ae5e7b d822a4a3-62e1-41b6-bd94-a583fc00c4c0 e693c8d5-0cfb-4d7b-8c03-ffef28614bbf f1bca0d8-e2a3-4ef1-b20f-8d05e83df880 f80e638e-6497-41ea-ac05-21b35434865c fa22da94-54ab-4228-8fec-9daf748619da daca2ebb-26cb-48f4-8885-277e43200f92 b2a58353-e9c9-4e65-a900-6efa66489724 bae8f0e9-2af4-409d-945a-a91a08fdc45a cb30ccba-a894-45cb-b1d5-847ad7005125 aa2a8593-f318-4546-bad9-74c7978a14af bbece122-0a0d-43f9-bd1e-b6e66ae744df 233b0ef6-f843-44d6-99fc-9ecf077d1b78 1af94696-7c3b-4341-b4bb-415b935cb441 ddb00df8-65f0-4650-a3c7-89c56da7f06b a317f3b7-85e8-46ea-bfa9-b8f70ca5c382 43f684c6-6920-481c-81ce-8a3096268d23 326b8016-5135-4828-b69a-a21c171e1a06 2927bcb1-a8c7-4996-b4cf-1e0b73fe722c 8de15979-110c-49a4-bf71-f92c5c15659e a67255eb-66a4-422d-aed0-4b64cd94d270 f12cf189-9dd5-4b8b-822d-2da85bac7a45 17750273-1d4e-4a10-92b1-f4b16af3b73c e860b9e2-e037-4c18-988a-393d0094d8e4 937bac2b-aa3f-4485-8435-a74b05842dda 88db9398-ca86-4220-85b3-d1387046010f 81fd98cd-c9a3-405d-866d-edf2fca2467f a7e4f8f7-1ccd-48f0-863e-6ed19022d27b 3d99a0d8-87f4-42b3-ae8c-13046d610738 9a110ceb-3e62-489e-8e19-61581f5671d4 4a525765-a9df-4f3b-8fae-c2be3081d0b4 7e2338e0-fce5-4964-bac7-ea6c242afeb1 eabf9208-959a-42b3-8af1-f5ce33e4d91a 9c973484-e313-4490-a780-3cac6484f2c3 130433e2-dd09-4dbb-8e9f-946a284f4836 df2cb580-23c8-45cb-aac6-97ce3b2e2214 a43519fb-325e-4058-bda1-f7e34cc92c6f 16c32cca-03cb-4d8e-bf89-f521eb08129b 36be5f7d-3d93-4e60-9b58-2ea01268c3ff 59e3ea83-51fb-46fa-8bda-938de18b7cf2 20d03587-b988-43e2-924d-d6655441a5e8 735da924-e3a7-45ca-9564-36c125627c0a 53133e66-86e1-4322-bb85-7afca5c21f4f 1444 1406 103 404 1505 1608 20 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 17 b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b Second item for multiplication 61c94a5f-b514-47c9-92a0-139978a51dd4 true B B true f6f14880-afdd-423b-afa5-2122f025986b 1 1446 1408 47 20 1469.5 1418 Second item for multiplication a90416e9-5e32-4045-9607-50c791a8677a true B B true f6f14880-afdd-423b-afa5-2122f025986b 1 1446 1428 47 20 1469.5 1438 Second item for multiplication 5cea064f-6531-45db-86c9-02cf6ea8c994 true B B true f6f14880-afdd-423b-afa5-2122f025986b 1 1446 1448 47 20 1469.5 1458 Second item for multiplication 11426add-2dad-4504-a229-f384e437c631 true B B true f6f14880-afdd-423b-afa5-2122f025986b 1 1446 1468 47 20 1469.5 1478 Second item for multiplication f80e638e-6497-41ea-ac05-21b35434865c true B B true f6f14880-afdd-423b-afa5-2122f025986b 1 1446 1488 47 20 1469.5 1498 Second item for multiplication 7a04a069-f807-4718-8d13-7f0f8da45782 true B B true f6f14880-afdd-423b-afa5-2122f025986b 1 1446 1508 47 20 1469.5 1518 Second item for multiplication b79fc36c-baff-4074-ba1c-7c3e26c598a5 true B B true f6f14880-afdd-423b-afa5-2122f025986b 1 1446 1528 47 20 1469.5 1538 Second item for multiplication e693c8d5-0cfb-4d7b-8c03-ffef28614bbf true B B true f6f14880-afdd-423b-afa5-2122f025986b 1 1446 1548 47 20 1469.5 1558 Second item for multiplication d822a4a3-62e1-41b6-bd94-a583fc00c4c0 true B B true f6f14880-afdd-423b-afa5-2122f025986b 1 1446 1568 47 20 1469.5 1578 Second item for multiplication 2c104d71-3268-4080-991f-2140f3080675 true B B true f6f14880-afdd-423b-afa5-2122f025986b 1 1446 1588 47 20 1469.5 1598 Second item for multiplication 83120356-2358-4a65-bce7-37c29ead52a8 true B B true f6f14880-afdd-423b-afa5-2122f025986b 1 1446 1608 47 20 1469.5 1618 Second item for multiplication 5524a6eb-ec21-4259-9620-fa93f7ba2dd1 true B B true f6f14880-afdd-423b-afa5-2122f025986b 1 1446 1628 47 20 1469.5 1638 Second item for multiplication 3a85fc51-6d5e-4555-965e-c47db2a072c7 true B B true f6f14880-afdd-423b-afa5-2122f025986b 1 1446 1648 47 20 1469.5 1658 Second item for multiplication 7fbcf0ef-f454-4ef9-86b0-8101eea0d23c true B B true f6f14880-afdd-423b-afa5-2122f025986b 1 1446 1668 47 20 1469.5 1678 Second item for multiplication 12645ff0-d3ae-4dc0-b2a5-8da9d45fab94 true B B true f6f14880-afdd-423b-afa5-2122f025986b 1 1446 1688 47 20 1469.5 1698 Second item for multiplication f1bca0d8-e2a3-4ef1-b20f-8d05e83df880 true B B true f6f14880-afdd-423b-afa5-2122f025986b 1 1446 1708 47 20 1469.5 1718 Second item for multiplication d4a86874-2cf0-4b31-b7bb-8c7a64ae5e7b true B B true f6f14880-afdd-423b-afa5-2122f025986b 1 1446 1728 47 20 1469.5 1738 Rotation angle (in degrees) 8659f01b-c78f-46b8-9eaf-29709ed0a33b true Angle Angle true 0 1446 1748 47 20 1469.5 1758 1 1 {0} 0 Contains a collection of generic curves d3b685ff-4a01-4f1c-8451-d6c384158081 true Curve Curve true 88cf909b-1dfc-4acd-9ac8-315b06ce095d 1 1446 1768 47 20 1469.5 1778 1 1 {0} Grasshopper.Kernel.Types.GH_String false 256 Contains a collection of generic curves true c9aec53c-3f22-480e-b045-ec9e1c2f1461 true Curve Curve true 5d1cff17-fdb4-4fdc-8366-b759fcf7a3ba 1 1446 1788 47 20 1469.5 1798 2 A wire relay object 1b9b32b3-e98d-400a-b04a-b8a3506fe77a true Relay Relay false 0 1517 1408 28 23 1531 1419.765 2 A wire relay object 88326248-5e84-49e9-991f-f69c5ce76ffa true Relay Relay false 0 1517 1431 28 24 1531 1443.294 2 A wire relay object c974d321-6663-4f14-b910-114ab3f151d2 true Relay Relay false 0 1517 1455 28 23 1531 1466.823 2 A wire relay object 9e655fb0-3ebd-45f4-821b-a4410c510d1a true Relay Relay false 0 1517 1478 28 24 1531 1490.353 2 A wire relay object 79063066-5dc0-4aad-b30f-37377464d8ad true Relay Relay false 0 1517 1502 28 23 1531 1513.882 2 A wire relay object 13fa3828-fd39-410e-8b31-5743271817f9 true Relay Relay false 0 1517 1525 28 24 1531 1537.412 2 A wire relay object fa22da94-54ab-4228-8fec-9daf748619da true Relay Relay false 0 1517 1549 28 23 1531 1560.941 2 A wire relay object 881d4b81-c60b-4b8b-8dce-2c40a6a7de3c true Relay Relay false 0 1517 1572 28 24 1531 1584.471 2 A wire relay object 8d481224-cbdc-4fa9-90a5-b7c7d290f9ca true Relay Relay false 0 1517 1596 28 23 1531 1608 2 A wire relay object 0f8c31d7-f100-4fc9-b99e-8708b1064c87 true Relay Relay false 0 1517 1619 28 24 1531 1631.529 2 A wire relay object 54161844-030f-441b-ae36-6c8e6fd9361b true Relay Relay false 0 1517 1643 28 23 1531 1655.059 2 A wire relay object 7546bc4b-23bd-446d-b103-122a40b7decd true Relay Relay false 0 1517 1666 28 24 1531 1678.588 2 A wire relay object bd991454-448e-439e-be40-a2e9bda8dc8e true Relay Relay false 0 1517 1690 28 23 1531 1702.118 2 A wire relay object a24fbf38-b1b9-4511-9bc8-bfe921f44089 true Relay Relay false 0 1517 1713 28 24 1531 1725.647 2 A wire relay object a6730e96-7e8d-4fc3-b6c7-7e677cc49cb1 true Relay Relay false 0 1517 1737 28 23 1531 1749.177 2 A wire relay object d15cd278-895a-4f56-ab56-168db09bd1eb true Relay Relay false 0 1517 1760 28 24 1531 1772.706 2 A wire relay object 9eb3a9f5-048d-48f2-ad5a-3c4fe73de0e4 true Relay Relay false 0 1517 1784 28 24 1531 1796.235 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers f6f14880-afdd-423b-afa5-2122f025986b Digit Scroller Digit Scroller false 0 12 Digit Scroller 2 0.0625000000 1035 1399 250 20 1035.916 1399.719 f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a DIFERENCE CURWATURE LINEAR GRAPH 7J0JIFTr+8dHZW1DSKWaEpGS9r1mBmMbS6i0NxiMGBpLtKpkV1QiVFRaqCwhO3Uj3TYtSrt2ad91b8vvnHFGZ87MOXGdMaf7u/7/26/mnTnOfJ/3fd73fd7n8xw5Iy8nP08Wx/cH8CNFIpGkgf96eHv4ubI5i/1ZXB+2FwdssgFeBpvBH1nwLfzPmbKYziwu+BZpqFmB32RmBL4sD7w0/tGLhNVhhy0SvnCaXI2Wf5a14bL82azlYLsC0C5j5wZcxbkn9LIly8fNPtCbBTZ3hn5xd6jNyovryfQAW4YAr6ampv7gf8qO5cFy8mU589vYbPYPFSOWC5vD9gW+hQ3Xy5vF9WWzfPiXBf/rYsT05f0eOeAfx+57RsSG3pLrasTyceKyvX2hLw/eIqmLFdOTxf/Xy84Opib6+g/ydjTuCgf+fBCfCfx5Pz77fnwu7y+8f+amgX/GbuL9GXM/Nq7lnTUJVuDftwaDV9gOfuRB8r6Wv9/ftvX+triWt92PP9Rytea3NV+kMf4Y+PqOdQK/mv9Z6Jag1kOCt7fz5++NSOS9OQrr74npLReE/oRewfwU7+/QN+L9RtgNHGq5N+g++bf98z281ubvCP1S3neHVOVdAdKH/1lhJZsVhtRu/kV8Q0B2ga4mYD5IXp5l9fVNTB3kbYEeBg4FH/4wAX+681819PJrHkCd+UMA6GzuQGeE+k8n6GUZeybXlcV75wDgnzu1SaRp6kDPmufl5ckfQUrzzs+Qng10Z4FfJQ++IvRr5G2dvBnMQC8/X/h7FUy4Xn7eQm/uZmJKZbAduUwuNASkoJElLfBW8BXZ5vcF8u4Z+rgi1ceH5enoEUj38/CADwWqjZ+LC4vrwvZxG06e3ewxpo3RNwD/bzjZ0M/D14/LmsZh+flymR7DyTZ+jh5sJwtWoL3XUhZnGge4Wk/+pWf/9DfglWWhq8hQ/XzdvLj8l7tbsp3cmCwPsg030IvbycyZ72VSG3ZqLB41m5Eps5n9vUFhhcCIVfh5m7Iov0fpp7OwdgTN1yKTNPBH1+bXBMQCX5dpfh3UqBOkXxeTWT9936h9tpXzMw/RD+7refbkmo/bBe5KmmcreUMvji+TzWn2ozrQVWRoXlzItfINI2Po5eHlx+V7OPB/RfmqAVSyK3hdspcL2YTL9PFx8/IGfB/Zq/lbdTIz4vUe4L/vi4+kHJ3eaBl6ICNBxc7PGGiSgpq4uUqOIf0qLfbrXHHWrP/4CmjqBDX1O7Y4uX4myzQrKnvt4Z5TLYCmzlCTbC/1fBdFRauSs38rcLyDaUBTF6hp+rUGqz4ZKYy069dDi292bgSapKGmCJpRhHyciem2XQ1bV/uHbwOaZPh36NrrVRnzuvX6u/H+pyimTUCTLNSU/3j5yUqZKqtQxwdVod+jugBNclBThifjwBelWMuCer1nCnnpVKBJHmp6OfjD2WmrZxpvMr52lq3gugxoUoCatFmD4lXmhNMLIpfIkvSylgJNXaEm/x5yZwpi9Rnrbs8+bKrfWAI0dYOadm16eNO7+2XjOPtJ7BDNyVFAU3eoSSMyrMtovVvWB+pfr74xLe4G0NQDanoR5Pp5SXqa6XGZeiM3mVgpoKkn1MQ2P0l2sXpO2bJv/PfnqpTXQJMi1NRFWlVXaZg/I+vTY7MjoV8nA01KUNNxl5GnAujTTffO6uG6RlrhA9CkDDXFfZ//0iyAaZFzcnuj8uR71kBTL6hpmWb83ZO0k4yNWwavyYhd1hloUuFfcEf/69eTp1LDqPOUbHa6TgGaVKGmzQrdz5ByjlgdZyeuiS9rLAOa1KCm4fsGRfRebme8P+A+9f71pL+Apt5Q063M2Cvap2XMs4Z225htOUgaaFKHmhYNVrGsJy03CbOq1Bk91vko0NQHajL1cddc2vMRLfaHlGNyv1J9oKkv1ETK2OTkM8+PXvbJ6tSc0Ze0gKZ+UNPlxJxlL2avMI5ihuraGMqUA00a/Jvf2yOHmapJ2XBp3qgCr+GxQFN/qOn2INveEZdDTY+9s8jRv1QOGmUA1HT6RMJnWo8e9Pyzo2znZpWvB5oGQk1/viyP+fa3rFm6vd6zoSE5/YAmMtREfR52arF3luWm6r6Wi8obwuXMjBYLeJBBoGc24/j4MjlOLBM/doszUzJQ/bTX6Lt56pgtL2Ne3aoX4TbkrNhOS+EvkxSovr5ctqOfb7OHh1w330VJ4eaiBnagiyrtveRI6vwwq6Kzn8JsdQPtYC6Kvl+vXPbVS+u8F511GlhfqmAu6ii7Rt58Vj+T9U/u9FxNsfgAc1EZh30mnLQwo4f0lmbQqyepwFyU8ZqKFEpYk/mmhckc2vN8PZiLurRAVqN42W7DvClqH0fPldaEuajyOZ5X53/0MwsZ1SeAHqx1CuaiAkIrV24aNp6SOqIsTU5zVgjMRbH3rylhjb1slhZDmjRDvyIZ5qLUf4wiXXCVNolU6nM0YSKlBOaibJwtDrwI9KBkHNcOjRzT9QjMRdkP1dO48qTUMlHOkxO65ZItzEVNyXk/aNK1WquU0lWaNaMHH4G5KM1A92Fh96LN42t2VNmnDl4Ac1EnI/6IuxrJtYpcfeLm/jU3FsBcFGOnrHpAX5b1oZOsG5Wf1KfCXNTDtPFvBz8ZQE3l7nR4KVu+AuairDa8G2QWV2xWGGs5R+GM2ieYi0oq+vbg0I40Wr6nzKbE9Hf6MBc15jKLMW2mvElwflqY1qq+u2Auinsj/mCR8iTrtA8n/p474sgjmIuat46TPzwyySqB5piY8+OdLMxFGXlr2eYr2JnHXahr2Gg1SQfmoqhN3zjqc3SNd12LemLAVRssNF7V0cbr8JIHs/MXbTDKrLTf821KbQ0O47UTbuNVuwPHq4h1A3+8ilg38MeriHUDf7yKWDfwx+vKGx69nu80MyoILrffd0b76n9Liv+WFK1YUiBnZdiSItiwc0GGphc144qxxqUTqYqwJcXieV/qF1KHGB91mMwICtwnBVtSDNceq37aUp2ewjq5wPMqtQS2pLgyezybnLHP+FBiVNrBL4fHw5YUi48xpE03PjVcp6tXPllp2mUhZzMQzdkgl+04OJvOuDkbtQ50NiI8Ct/ZiPAofGcjwqPwnY0Ij8J3NiI8Ct/ZyAWqa70qzLWKOOuZsav28QOYs8loOhy7sPALI4ZG/Thp9ZpQmLMR4Yf4zkaEH+I7GxF+iO9sRPghvrMR4Yf4zkaEH+I7m+Q7hya73/9Mj9zuNOi5+4qvMGeDHF5CnbcnWudFThA4dN4uaJ1X/6njoK/cJottc6/WjTyYriLwu7oZsf3ZziyyoR/XnyXYh0HDgmYS1Tt1oY8xyU7gB8lsjq8XmbXMj+lB9mBxXH3dyD4sVzD+6SNjynZ2ZnFagi0i5UB2YfRbFFJFoBWhUEvMiQYYxZn3kib475jjlaS6tEoS6QGNRAqiSduw/b18+Wt6kkE+0Lqvsqs3k8v0XMzmePvxAhuykLai5OjJ++1kQANn3t2I/JI31u8pXpjYn55eOKG+dk7YdUGbi/520MvWvN/WHPLlhbhk7AAX4sTiuwBPm1CXUd03WGyrsbk55evGmK7NzUJBrVbqEwToUw3q84ZKIqVQEfrIAa0BaQL6SEH6dELRR9nKz9MRdF4uLf1CpER7utG/hswYZrYzwcZjzq3aMQiJwK8jQiLey7+SCDmB4iCRDqZEQBfqYQMG2Xx8ge9rxPRltowBkqiAowyNC8jhRoINY+E3dbFh+rrxv3nnlQaru5j5sjxJpJ8HEzIcntT8D4Hvg1sKvLQMhqV623l7sH1brERm+pKXsjlLRZur9Ovr8uH9zzMyC5d/KlHabyBoLgvwc8Lman5ZyFyi7CHC6WHZI2wflj0mSsYeso5eXh4sZosDJHVrtoaXny/CschQnZxYPj7wy4v0NaDDA0O3ZG8vNtpA+hj8rddrqyVWiVti2aY+9L8FLCNjw/ugkGn4r+Ntm5o8yJ0soImwzYdcnjsRkEWq7bIMtmdyXAHDkv2BudCLy+u5zq1QqsFM4VKXz1tMQkZZZK3jHPxDQCk56KLCWv1sEYdaOphqAZ5FQK1ObVdL0wb8PMsX8Mn+TA8/VqvlWvrkflPDjcmm2XMz113Vvj0Gcb7Av6qwYPA2cUjGG/yokgGDH1omSZNQlklnkpiMb5N6m6zfP0C2UXNlmWBHYACrIrKdEUN4iSSNIjHNkMti+oJLJA/ws5BHJTuD5yssZ7JjIBlQl+vbLPZwsi/UfZkcZ2gJpb+6VWsn5Bpf9H0Ld2B+Sys1dgBWRQZ7AY1LRK2ZwgCNDfYIrZmwZhpF3g3ANBD57dK/+t/rbxVuknL+5PHa8pRcwSnGDvy08BTT/DLevcwUUIAMKmAgqpclAH2wZo9EphgFQy9gl8nmQKf4Y0joP8hFG5aB1HkG4vdLHWc2t/k0V1ekobwfVSX0YPUxTZd7qZX4TPkvAUPJG/E/LGQsWJM4DBa0B8tgBpIxmEzzHCVorDczsIz1q3VbV56xmh2HSPts7qH1/HPOO1pxfY7mqCnLjARXBAzeB4VXBNDr4rBMfSqWZWJSJb165h/6g5YRWrPJkNDn1m4MmL8XaQvkdk3AFl3AjwtZovlVvO2gkwu5tCxg1eyNdOo1x3gjBJo4+b3vXzNxIiNgYpw4CzKwJs6CdJHBhvZNnE/qPFgrB84w2Vxh8eWmoSylPRMnYiuN3Fy0cysNOoODGVjOwCHj/3devUTLef92vInFsduuvk6H5+0lyLwqh2kwoEcTZl7l//ycX5HzKtZg++W8OobmmyS3NNNqDyUoK+XV89D2zauIkaZ2p++9H0Fb6XH5FP/E21um4jDS3NKxDKcuIcN1yLQ7Rer29Mf2TrSsK5FSatKlFhKddnkeD3XaBQYQNO3yO6fQtGt1nH7hDOmUYdC8PlPYjeZKAt+mh6Wfhy/b24PtxARvXXjyRevv/SwBW7E8gU85MT3IngJXadWsijwhwrotIbkR7a2UU/E4INgBQM4oGti1EXLyvNWByu4t8Qd+rwZl4IVIzUBHIGBLnlfgvWzmzB+Lc52rN0mVyxsVvept2V2vVw2/XQqlvas1r9sKjQa55tfRL9x8P7zbJZGwzx3609lcH18yGxhOZBcvLsJeIu1TM0Bea3y3AZZx3TbFfVk431XAPlJUIZMALyG7vxTCSyGP3NrppUiAOQ+C5jQQFcq9CpjT4UAlTCSpX4g0wI7l5AUsDtui0kD9jxT7i92NNuy9F219oUhOUCWasEq0X6oUk3MgIUhtMyP2GiXo8bCbm3FQSQ5TpYL9lVAfbOlLWP5T3ZblAwgDntG0QiDkzCQ47TVfSnjag17H25825EE9pgnQgox0AB55PKUgfyqH5k+3N3zcOWJWFKPwT+sTJj9SBgtGNo0DvLksHx8hX4q10FMzBmOrvK0Mh8xquQDsWvx3KtGtbS2p9jqDVxpMtl09eLi1bqt8LfLwHO2WhYOxP9taG2ItqCQFxQISjzckkeqR3a0ekFgxVoSP5R9Ki/CxUiJ8bMK3oKLUWAez/AOHrCiP9W51hA/t9VMLsj+Ty2Y6eog+v1X/UCJ1bgTVNOVNr7L7p9ZWCqo9G/oo2VrYOVh3tAutAKzlHQs5hwqktbYV8KzVFueg8tM5/OzIIlWak5F4gX77g0nayT5b6MP9ElvlGKTIuPuEJccgCSooIiQwPcaTAPIJ8mg+IbGgfm7ooyazooK8ouyl9xmCm2gbJoflIegO+FcSpaEOlewNfoI3Bzn5+fh6eZI5Xr7g2QswO/myAnyhsxiRuiKzYUTcinDGiChVnbheHh62oGfn+6/mnzczEH0SaUm0Pik3y4fFtQdun/9rtYy8/MCR4ATMIEvBpAiWM9sX+u7ATAzuLB4E7UfYkU/OCe1ZCitJOomAHWcbkoJCDRUsmVxXNofBchHoFF2bX7Zlu7oJ0kHNr9t7ecNfFewMKcaFlV3IiZU9eSIKInKy/LsSlbTFZS434ziznWAokTz4Irjdgb3EW9OCoayfztzOm+XEZnoYejn//Cyw9/PlspieLf/uMofL9P7pMJq7qgJaVyW7auaHRYfTtv5xmLHjS+FKwf5hy/JgBgp2VTmSyBNDtN7bi0pezuayyFzwSlAWmsiOiszNEnEjrRr/iN6I7P/t9JAJwAJpSVIluFwgkYKQ7qEJmM/ISXz30JXwmiOnD5w0R+a+4qC5XAyW5tWb+Zp3Q9O8zamYXfmadwRKJpzNyN8eishm5Kdiishm5KdiIg0rlGEILrBEdglksiMOGYbd0WyyrJytx7ZKNzxeZu3x9NH81wK/q+tMP3AaAITzdhOeLNuQszDEiO3jDQ4EJtmHxVuKBI7gJy8A/w/YCPgNIrVAZnei3p+QIgKNQsNF3s6L62sN71UiBtE/XNq1XA05H4JLuxRgEKkZgv8JDqJao4LKZE5KZXc+Bw7MT6wAgcs1m7IHmilLWfvTOd/OMqKHVx4z4CovFAw3g9mITJBlFQ4oyaBYbUrLJsjXjcXLFuVdADQfP3mU6QuaFJwSXdgsZ7I3fxOh36pNEJITQLlj4QB5S1Nrd5nAjjvLE1D+L1EHOeAeNGtpm7JGlVqyRlmQRiK/4IjsNRN2nr1kfshypsmKuWPP4Jg3iqQl2ung6wCFYkCFTGlgIh5CITBMl+IhMm8UTSGtn2lKwO6subc4e3kCHe+XqpHsv/lM+VuRsWm4WvLVl7Wqgt2i5brC3eJn06/U69ojPq4sT9c8Wlv1xga3N7o4qAf0IAz1Ktwr2xQSV+Ul9P2UDhhoK31Xi5QrXm5i1bGcsYbrFumv6Bx54yxiewFeR7iTNb+M984tLA/qRVNFnVKcy60kvfEQThfE0qF3y1CHsgOxlBgW0dmYrqdOT1h7e/qeo97ZbfcnYlHExgNLEaDfCKUEtlIRJzbXyQOzb3h7mh+vNnpLLS/Xpc0zNptPEEUUl2Ip4u3OX0qCEMbvCkYgSbcOACOC3LDAiCAX/MGIjytKNkjZ3mBs2BX7ddcCSg1xJzgwy3yJG1aWeYWrWMCIojSLJd2fK5mGPbY8sfLwoi04ghFIAg8HiciuWBIBXejfDkYEhe3wcJT6bpX8doQtpcufFyQMRtSzsOxBYf0fgRFrrz238h1Hp6Yl7FbUnLD+q8TBCJ47Qc1bB9yJpMAI27ph7l80Aq0KJnGepD+3v0IIMILnWVDVAjyLxMAI5GaAMGAEb/CjSgYMfmiZpEhCWSbtXrm99lXDUsODR3S/Xbg4ulbE9Cw6riNK36HQO8GAjZOXh0dziho4/wGdhsVlOzWvm1q3OkLO7rKWTG9vNseVrxT4dXBcTCAx9nbOlGRwMWFTCabMCJ9QnS/Iq/ROsOYbRwnNOI46IZqJXcooeQ5D1NPP3lAT+Lo9jcDMBx9frp+TL5nKdWp9Du4UWxbwFVj+zVEbR6YPi+ztweSwhpO5TGe2X/ORFTDQPVr242A8h0Nmcp1aF7VBFmPAvG8hgyHf0IblbQUXUPycqOVtELC8rfBu0/JWA/jdZGA7adi8hwKXuT9vTOT3zkqZ/tXXlk1Pnr1huOUf2wTja51FfVfei7/qmsgtGg6LuBRQqBRRCWoGx3lCtSkU0Y/W0od4XaVZt+a9p0ihKAvUjD8VbzRLHcziTj/XtEbQn/KuZgNeTdifwtrw9qfkfEgXB1H+1BTwtiRuG0MTts3jqVWa7NnQ9FFWu7PR3qu+B/IinpxAnK3zriQi6ab5dXFosWQZlhbIPvKroASZCncoOsB/oLNhcnx0IXlEimL/ZP3G2EuVRuVzyI929qtWFnT4vEsKO/zml8UhCdkbS5IgL75HV0bz6CO3rA7sP/k7PXbWuEhS0tx4wY5vDYwfa39gdeIg7Mw7o+jay9DLE5AfGHjg4AM/HNA6J40si4N2K8Jj8GdbaykJcNu4CUyJpYnILyIBwmZFt8k1d+VlADUv4kR+uZMm97dz1miaZeSMv6j6pkYwUVV6Nvg54X7T/PKvvDGyjk9707YBbRRBbRpEZfNcbdambbnSzak/GOoY/i1zM6nU3+hIQtOzfswnyyWa35eSBwnQJEqAIXk8AaBx1QttXBHmsB55qo7TYT3SYngc1m/GPKzfxNdcBU3z3zCnElnUS8w5lQYBWDmVNsv/5TmVVTLD+h3P7WKe73l4/TPfrUV45lTi7IXBnErFAKycSsBa4smpNLC/uHM+c7JF+PIpOnJRr9Va5YzFlFPJkwA1pxKQAPIJqmg+gUA5lcgqfeLPqURaUjI5lXVAZ5XbCNhxkrhyKsOvFlSad95I7JxKfjKMGlpXJc6SAVEzEqclA7L/47BkcAjBWjKoh/DdQ2/Ca46cPnDSHLmHx0HzGl8szW18+Zqro2letj9q+sFvmeZ5FVPtq4t9BLfQMs1HlIKiY51pjkQN8bp4eAE+kuPaHEcnNx/IiXbNyHJtom5JeP8Bvf4rG4yu3a4y0liLscN8o1yW/bHS9q4MABvEMKHEHeS0KPc5r1L9/BJJH3n+nJNiKFB36IPWHdoc8OcPQbEH/JGlbnEM7iPhYBz6hOkRlD5x62NeJf3xYf647ItmiDbnOrf4wg7IdUbaQig1GfytIq2ILJvamtRkaVFpLPwuDenYD03Hi/2fP/u0xdIy+Oj2wSOWfBTMhe5i6SUqwQftZGSYPTA0fTzAHaiOJ/BJXXAj2qwOmenhBTg3JnTS2roYG/LRDsL3Jgylg6+2sh++AWP1RUA//CqKjQbjaopFbYqrdeeF111ZXsCelBso8isV9ln616beRYalWe8X7DC7O1Hw5NgE+qjwyXFLy692dsiu186xWg8mXoIaUUSFbXnHdEVty+rh9xHe/pfXGUQfgl0dMii9Vs4qoWbv0GON/QTPjGUsvUQy8vzXf+XQ9M8HcOi2BhZBKvbSXRmk3TiIpIgpUkUh8Yp+8H+GUNoUH+3VMsidsbu6zjuD/lqs69YJGg6lQ2ZkX2l3V8cjVMrry6aizFSXy+vLbTqhatbCBXzkHK8/OwOGFe3JzJNUFmk9ZkQH3n9rvqbXd8E00ZarCKeJ/mwSS+AYUw2g00KzhwYJZfbI0C+cPejSZ8NtVzzq3txprEPEqJoTih3mzms9E6HdUuEKSkd24Xp5klcGBK5YDayRPL29OGACTevmD+Tzf9DuTjhe+bOtlWo2AYMcjFmSehqKOD4ngQUQjwvNJXzeXmQEDLqFlQGw7y3yW5pRlv2wo+cxIp1LclVVv8Qom3F8WVygpwjHfTuNcBDkexx+XluY74E3/sqjnjpTE7c15JhF4qtlWXU+B/q106OCPAkYVCTtEdU5nYGp2buAONuGN+VtmQFbLBv4K8seuUPKDnxVRMnzJ5v1mjI9SdB2c7FsN7cNtnO4ExhoGRBFy6AOTJQ6O6W9CRKg7ciYtgOGAmFs17ZM1xbbrfiV7T4M6KPGLl/F2J36REqFMzhC0HbzsGw3D8t27S0HAiYZH8cyjgGhjNOmpYkiZB3sNCPk4k9wZdl8CeGVJfQ67rNwLuTo5ESBTepAq2lB29Yk3SERMOqyZeikZH2X0zY+eOXb3cLDfd9ItN4pqEDNcSwFHI7z1yH9SSjrkOzFjCcLgrPNw5UWj9moViRYuUnGjgU+07T1+9h+LWsQH94nwQ0/FJBr3cID+XRBUbcjLHDz6609bwIkA6ET0mVR+Xrg5tUgr001p/s218tq/p5kkCJ0Y0HfX+R3VHjXm6s+65PxzuIdecsj8j5KsPq0DTjj5KPl8deBM04ecZzamxltqYg5xM6X5U32Ya9g8c7xWEwnN7KPHy+cz/ZnQeYSaaBXI/zWfjd1MdlWu15FLaDwi2D0BLyscPSE96o4zBOUh2UeA8Kah58mj2aeAT8hJSgn/tcjZ4OZmwVbe7XxsZH2e0gOFxGP7mwXsIR8QGk7l3Kg5epzsSwXkytpy/GBJaGVAsrhF9q8qWSH9PUijYfc6Pwyr/4X7l4s+3qeMwTxT6H8ZDAhDBht0Hw6gIQyn+p+661+lNzZOI/25m/WAFfB5zF1ZQDWJjcvB1qfadnfksX0AaFacHRAvCev0IEHcLXWTavIJ/Oi3pXwmhrW2EodA8BHOWUBOp4UlXXpDaaAZYnc0behz8nzAsagAKL72pf05DkLelrk640KHLnOVzAbrgv4lUQVZfX5tZvAGf10A6RyA6VKEJX+o3GcJxUqwiZyn/XTrYKlKXlelSFSI9WGv5/MtjNnxMa/9dxH8e6LHI9SQuOxg9e3ivmQOKJOu3iwNiAONB4Hoo1HAiUGIacY3BODhHqrXFj2iIN3V1plOOYdoEWrdJNMYlABYMeAYy3xUjEkBoXm51cuWnYMj8QgknBiEAnfYmtktK46qNPG+UPzrllEOT6jup3nCGYndLdk+viQqc6AHYRSW0Hhu6B1WWCNAUbByZ7g55nQ53/OHy2OolXzCPJZ7Ri3KNSVBZvbcEDklgP0nU+iThrBPJWC7PbOJQNhSf0+zbV84Vrpi44E7NiZfnDaZJNM2ibL+FPViFN03hWFl6LNL/9qjkE65nbOMWCIwAGUsI5KEq5j63ycJ2GbokW9YUV94UqJFArpgySa8z8xH9IiTFQQTwecUnLazUb3ZkDjCriOL+AjyFzelxE9KezcVDDkzcAMo9IRXeaN/fbqviCyaANdoVkO4aWw0BvEIRjQPTAEc8vmz8GD0BxbmzNOlPmCd0DGCTJVAlZdD3kKBquuh4xTwarrIdfasAcdI1cAsAcdIz0r7EHH+i+3hUdsD7fY/kP5S88hFxbDHnS88tnMt6OitI0Oksa8ki4KDYE96FhxwIEzhRYfqBvrj6ZPXXF7LOxBx+NjZlFClV5b75TPXMacUtgf9qDjS5m14VtLzzOS4jU673a8/EMo/wYsfCiyI//5sjzm29+yZun2es+GhuT0w6E04GC0DkX00oDIx6B3aGnAf0gotFxNVGnASJTSgH3oBZWn2ZG/Lg2oiWbK3/U5T6W9lxxJnR9mVXT2U5itbqCdGJ/z5P0K6zlP3i/F8Jyn4xc3hux3zLDYM6xIQ+Fk1d72hKjF/5ynJa+wnj6j+Or/9zlPl6fdjPkycafpNsXTDLpq97cEec5TxUssgwE9mnApX2J6ztN20tTJhgoO9FRl/8ba00tP4vqcJ8ULbl2vGKqYHx4xasehEbJbcRhpZEzD1byQdEhbjM95OmA2NSa770zrPaxuKUvcr+6S6HOeeB4P9TlPwACCpt0hJJRp9zdkaOn79cplX720znvRWaeB9aVKzAyt6U0shrbuxr+cob2WVD0vTu2JZaly3PZLNx59xpOhNV5TkUIJazLftDCZQ3uer4cDQzvxJhZDC1hLPAxtjs2L1M59DpomrXH+likbsV+SDC1PAlSGFpAA8glaaD6BQKHyo+waefNZ/UzWP7nTczXF4gO+ofLTFzo1IBlapCUl91yS+gfifC7JRqPCyk51D4jN0PJD5dpoXZUwPGfGYZ8JJy3M6CG9pRn06kkqIm7kn/CcyP6PA8+p8wiL52x4yHcPQwmvOXL6wEnzgNDKlZuGjaekjihLk9OcFYIHQ1uHpXlMHV9zHTTNiR7ourRAVqN42W7DvClqH0fPldbs0EDXP1xGoAW6bICFgs4zlEBXkUVBZbL2s18HunQJP3xORvwRdzWSaxW5+sTN/WtuLCBupSD1GqzhU3eRP3yGoWlOu9r7jv+EY5Qj8xepR84uFVzRqIBf1RdMBTRiu7iwuCxAJxGprmhZOSP59c+4/Ms4/7wMb9Xz84AVpJtatccpn+N5df5HP7OQUX0C6MFap359w0KmEvmuVopefRzY99SCNcFEZe7YACapu9re01YqAyYKuF4CVyBMXh05sg6UPwZWLGyuigv+raXEsIeH13KWs+hIV42nxp8jGxYbBiVpx6/T65KGyE3neTMRuenNr/+qbydTpE9evTDZ9ED0pc9Vpu9etrNvFwAyTwRl7iIqsWXscZ7M7S1crQUzP9mR5bucxeLw8vtZTn687sE79Rep5fOwG5+HpT+xTjshZ3nnZp5gYZCuP6/rLOzV4Y14b3Le5EGyLRAlm0oeTzbIJegR3g0jlxutccMitjiInoo0HR7FV65hFl+5xpd8OOElZ+9fU8Iae9ksLYY0aYZ+RTI+kiPnUxwkf3MJS/KsS3zJR6BJTujn2SF7PuzEHWkh2Ik7cmqEnbjbOFsceBHoQck4rh0aOabrkdY/z079xyjSBVdpk0ilPkcTJlJKcDi01kezydkemu9HjfeyDHn32kL/ylpjwdwpWxawAndika38PDzaANyM4H+OA34OnC3ZHGDpznZunl6Xs8FcYV83wA6tXoMg1cS4T+EcL4HmVvb4g2Cu/BWwEKeoHC8wx8TgSntXHWpmvGRYYLkB3Iwvb3kGKiZSAC2Lc0vXKhuYrJuSYtntmksjIrULvJCI1C7ey7/yFcj+3V5fAbLToHLBoo5kYsAn61xBrTHRSuX6tSjHFehqYNcSKd+EgeW1qj1u0I5cL++6sKCiWvDpQlAH8RT5mAfBVrzXD6BaBphq1V/u0AMs/o3K2Qd6s+A6aMIcqL4Fi8theeiD7/HRNzFdDELqriwuAuQAf9q7ZFTjLc1BwwKXIDM5gc2mFmll5JK4PYOknXatzoVGgUjWxiaXNwraRIKqI5Pooa7vLFKKMwWb09IP5FulO29/oDa/SPAsrY1UEg5SGGBKAXRxaKIaSUKZqKyO0y+cIZ0yDJrXZwq70VxJ4Pv04AV4vT3YTkzRichoq7R+lsAwYIHlPpyYHmRPgau0al6yH6qnceVJqWWinCcndMslW6zbEtIb0d5aAgF8YkEjIGeUqJkJPBB/80zEOSA/bCDiHJCXMYA4B0Qe5/HbpVDaO+KcsH8z0wr2/uaMaAH5RNon7WVvn4EzxpnlLpIfPacuXUPAPlJU4ZgStaMPCkngk0QboYNCodEBljynNFbCRJL6hUgD7MDncji3SaX6kvUuOtEDLWMdey64MemyYN6YFE1YJdovVcq+sWWbZvBG2r4hf8TdXhvZ3ifIgCq9eYalUsqzNh2nqsPSxX8tEDJrRaL54uDzd3k9BqwRL5Q775HHUwrypwZo/pTIheKm5LwfNOlarVVK6SrNmtGDjwjfW7sLxcl9wCoU5/Ae70Jxf8TH7Vo5Wt8i8dNV66+5Nhm4F4pDZgLhUAOt6T1WDbSD78VSKG6ewtpte+uzDNMmrVk4osJNB9dCcee6W0XP+B5tFlnsafzuj7izOIjkgCmS3HviZQ3yf8RVKI78l9P792P0zErdn5TFPhlyot1dHQ+EmteXUUujAX1ZPIXiYt88oB1S5lDiXs9dt6j38sMEKRTngKkG0Gmh2WMUCWX2IHahOM1A92Fh96LN42t2VNmnDl6Adnc4FYpTfIdVKE7xrZgKxZX137ap6f4Mo8h9Lht2WKlmSqRQHLXpG0d9jq7xrmtRTwy4aoNxKDZGeodVzyrrLYHSecVUKG6XpdNyw+Is4+B+u2qXXU0NFVOhuPPHx15y/FvP/JDU98o91zc8w8F2S95i2U6RSLYTqguDT6G4Po1J24dMu2pcFlSySOWUhiqBCsVVvMGswPiGOMYRS6E45OJP4oXieI4OtUxa2FvcC8X9WKH2XPt+vdXu76OsvC4985B4oTjFt1gKJLzhr0NGk1DWIb8rqLfr3vAZ3W4FGucHjCkfGXGrqxhBvW6qVRigXpRKFf6gntxFX7re6R3mUUnx04uLTQXLIxMO1OsCCoSKD91Wqfq/BfUK139bOWLeHfM0+5SXPx6oCT4gTnKgXq4KlsGiJGMwSYB6WxpU7xu43DLfNPjyvkfGkTNxBfWU6AVayRuLKUc7Obqf7DXzIw4jzRnTcFMlZLgOAfXSRve/8XlEd1oyzcHtHHOYYAW2jgb1eB4PFdQDBhA07Y4hoUy7vyGop74k68ALU5ZV4dvpfT3ciqXRbhknUM9DvgoD1BsrX/XvBvWqI/o+oKVxLcuSC2be3DxCHk9Qr2aqbOSTgp7Wx/O6PjtcY7ISB1DPGbQWKqgHWEs8oN75tLhnV0mTGEkquScSBpkYShLU40mACuoBEkA+YSyaTyAQqJeer0HdwNxtnGI24ttKkwwX8T/sEmlJyYF6Wd2rxAjquZgUVuYc6V71W4B649C6KmFyf+8NnWW7WvqL6foGnQ1l/fVscKJekP0fh+Rfmx5VGMm/Bj347mE84TVHTh84aT577a0NNprLaRHDdaVO3hzMwUHzLDkszWPk+JpPQNOc6KDe0UNyvk+YjSZ7H1gXKuTv+NahoN4/XEaggXpgRao6xSrRoF4ivaDy+1XFql+CehPRTPnbQWO7zx4fcmMIxzpCr3yRNGfJaglAYy9kqjCgsVwZocgXMaCxIl2dsUp9Q+g7j/h1G3b05kREnLp90Fi/LfWOR/fWMLYMp/5pyJiUhAM09giUGRUaA2SWIDSWfkjuz9kLR1pmK1TF0Pt/Fnz+pmShMZ5sqNAYIBvkEiahuQTCzKjIqQ8fgglpOhwmVF9ZrAnVXpYv+WTCS/486Vw010jfIkQ2OtZ89reZ+Ej+jjKgq1niBfOcm08DbqfMy8JBcoo0luRkab7kU9Ak/10ApbeXR38ifx5FPXrfIKssyHMrxn3iByhNBH0IKqBUL93eGa4tgJKG1GfN2/2VaMUrdrwuyghAUGvtApSQvR0HQMkAVA4VuZETXBvAMzvEBSg9WfPy71RbjmXa5vdRIyKquYQClOqlsdQqkO7QwP3vDCghl18SBpR4owCVypFDLN1+lYHQNkBp5OlwhTHuVmaHJy06cOz16xQJA0q8Lo4qRUHLRDWVhDJRERRQCtg22rFrbj5j/8MpW+4vCqV3EKA0sVcVBqBUryzi/OP/E1AKemY9hxt1xPJIPzXuLeYRIxwAJZwPSED0xqBXFQZ6I9erSsyAUtPQbkVZIbOsDy64yyisqwnGAVDqfG/bg/QiZYvCkc/W0n6MfYGDSkC3xlCpQLlNx0htA5SQp/USB5R4PQYVUAKUgvzpNDR/SmRAKXnD0BXDtm+nBvXR9byx9dlNMQBKCb2rMAAlSm+RaVuouYG/BpSmPj65wVjhJiN71PWYp/NkNuEOKCEzIHBgb2JAjVDZG7feqIv49gBKB6caa1/xozPyyxJTXvUyd8YVUCJP/KQzv9sHs2M+w+QuDfrDAweRKJgiqfcmXrYU/0dcgNJHeyd1zpt0ernlscPvhn5sIASgxOvLqEgO0JfFAyjtz/KoGsMqopReGt4vueiAF0EAJQqmGkCnhWaP6SSU2YPYgNJQucxxn17cY2w86f7m7OibTmIGlLapVWEASipqIsNE7QeUhqpe9luduMAy+NV9nbE1BUkSAZTmK4TadZd7a7rfzlrp/d9/bsQBcokC5UTlKJzVCJTGKCZA6VOXP8aF9XehbrHvZNL3z1U+YgKUKmpLghzsFakl49Jrax9LmeJgu6mYtlMhkO1IFPEASqumjPRX1fxkfTx+Id0jZu1IAgFKL1SxjHNKlUDGEQeghFz8SRxQ4jk6VDzHRq1ta5JWAEo34ueFaKg9pOyWoZJHx/knSBxQUsFUoE6Vvw6ZQUJZh7S55uHAlt4r/pqHSAoJVvMQmS4Nq3mIzC6D1TxE5rPBnjKIDErBnjKITAOCPWUQmUUCe8og8tQZ9pRB5HkR7CmDyGM62FMGkZFSoKkr1ITc7wNN3aAm5FIOaOpOEn2cCjT1gJoM/6rxZwbSzXfNq9z2o8gXfBxjT6ip88DwMfu221tFKfpWX8rxfAc0KUJNzx6dK+stlW0UpG9kmhrYeSjQpAQ17V00gaxx+gbj+OWBjDHPBy8HmpShpvJXnauNPp4zi+g+/o6UlfkcoKkX1PRmiwerSYpLiT8wcGNq3c44oEkFalK0G6Y3bedT481l0lmHTscOB5pUoaaeX33OvqLFW6cOm71IcXqjBdCkBjUtbXiZKztvu+m6coeDN7sVzweaepNEL8SE6mGqk1DqYa7oGW+aOCGeEqZbVjB1/tF9ONTDpKCNV8Kc8CM7D05pijgXr+I967gL1hF/Qhe+j6Siaf67QpzfbtQvu7FghuXG+Wbd12g2LRB937hAnFEGWBBnNwMxQJxhDvIZYVwuIzKsT//VoxUuExviDDbAQssWGPz/QpzRD6vTXRMaLA8klPW4MIAtiBpLDuIci2mwbpIxmCQgzvmD52bueHvUIn9Kt7JtSnWZuEKcQb2/b1ReWEnZneOvrBr2zAmHkfZoJJbhSkYSZ5OGO8TJftnfp/LUPGpY2dG4Ype3QRKFOHkeDxXiBAYQNO3SSCjT7m8IccrN1I69u9HVcm/AzdzYPzxKxQxxkrSxIM5qrX85xNmrxxbW+Wtz6Aeu6dVc61uMeLZl+yDOeX0uHLzmXEHZuqzu6N3YqaE4QJxNWlgQJ2At8UCcp1c7nt3obWOya6zCARfHg88lCXHyJECFOAEJIJ9giOYTCARxMoN7rNrA2MDYv+Od3vq3z76IH+JEWlJyEKfvMHFCnPuMCitNfYb9HhCnEVpXJcxOPaFQJ2zl3RSzJOXgkHXDch/gtFNH9n8cduoqelg79Q/D+O7BmPCaI6cPnDRfdrJivLK8qXlE4oxp8uf921tEF9Q8RgtLc+8Wl0xH05zoEOc4n/X+oUU7zbP0XeJ3Sp3tWIjzHy4j0CBO8GmLKSNQIM4bFgWVA3eP+DXEaYJmyt8O4qQw594/kGFmdYTTxeIT6e3WX98w7hCnxxAsiHPsEIJCnPssNb8kHlUxPPTiakn8ll47cIU4tw7fMdQuZx8tvOF6jt7yDB8cIE7nIVgQJyCzBCHOw3etE5Z0mU3faOlv5jp0kWCOkmQhTp5sqBAnIBvkEkzRXAJhZlTk1IcPUYg0HQ4T6tchWBPq7RbJzQgveUSPXs/tLo+x2H9DcbHr6Lc38JH8TURSTrr7QcaeuhLOwdRF5XgUohiMWYhiMF9yczTJfxeIc1Boqp+W81CT4pMp+55mz5zUIRBnriYWxLlAsyMhTvPJedqaE92sUhdutRkVlY44dWwXxIns7ThAnIc1sbDEYM0OhziLIg7bWT1YTCt5rFo778ltQSxb0hDnAky1xmr+B3G2EuJELr8kDHHyRgEquQiMAjFCnMNkQ6dtuUQ1PDyhIS45beETCUOcCzClALo4NFFZkFAmKoJCnAN29f46YF+kZeYSl05OOnMGY90WjhBniT4WxOms/x/ECdmnU0L12FmNn41yT4ZfP/J2aw8cIE6cD0hAPDFXHwtPjNIXN8TpcZKxTs/WxnTriwmGhRN0BMtJ/zOI01JL9Qjz/Rl6zLW8W/2WPLyMg0rOmCpN1RcjxIk8rZc4xMnrMagQJ6AU5E8ZaP6UyBDnX/ZaFhUsF+uSx8xJzxJfGgvfW7shTo0xWBDnqdF4Q5wBl0Kqmc6LGEGDy/Zrsz6p4Q5xIjMgcOATVcZg8YkvRosF4uxxaf9+W927RolRQ7/26voUUXm3nRDnrm/H79xf/8q4aJn9Tr2Lk+/gIBLQVTBESh5NvGwp/o+4IM6ZK+vfW/uup+xdMmq8fwT1PiEgTl5fRsUWgb4sHogzy5/pQHfdZLql760gDRUjwd4sOYiT12lR1QA6LTR7WJJQZg9iQ5yvV1RszWpIMNy33sK7ej9jjJghTvXRWBBnwigxQZxe5Tf7LX3iaJ1uXb9yS3CPPIlAnB9mfTkRGh5kuU752dmAp4X9cAABFUdjsWYNowiUxigmiNNuhekqjtIs82CtxvEG104L5i3gB3F2Ynj3Zn40ppW46meuulQv0rG00XYVo7Bsl0Ag28mJCeJUc8vYvCTUz/xIVeW1J/v2C3pGyUKc3pjGMSWQccQCcSIXfxKHOHmODhVhvDoKd4izr2nwQDtVL7NNI1nLgH2V4JNWJAFxJozCUmDBKP46xIqEsg5pM8Q5oKX3ih/iRFJIMIgTmS4NgziR2WUwiBOZzwaDOJFBKRjEiUwDgkGcyCwSGMSJPHWGQZzI8yIYxIk8poNBnMhIKQziRO73YRAncikHgziRx6kwiLNPjqJ22Isqw7AzU8Mq7pb6wCDOWb3P5Q75Fmicbb54/p68u3NhEOcI3eLYmDsDKaVLpPJmjFI+DIM4d7zpknTlrw9Wxwa+22QX564CgzgdDNRyC90eWe/Uckyxj7KvhUGcMQ7Z1pVjulmXch+s3Orp2BcGcc47LcU5OzOLkTPi8KJliwcEwCDOIY7VismZDZQD1RoG1+t6xMAgTuRqS4jUBJFOkUN/ovfy9LPdz5jH1266tTTkw04cSE1rtEFJmGN8ZA/BKRcR5yp+4Dk+GfMcn9Ryjm+DpvnvSmo+7G5w3YHlZ7LpVh7z0dg/NcVIagYzsEjNLgwxkJpzsr+uCj/+0qj8/ZcuFUrJL4lNaq5iYPFj9oz/X1KzYZnnuyGDF9KP6G6s2HClTyVBSM3hmAbrIhmDSYLUZKikJNT2LzQKn38xYJzu5sO4kppjZj9cuHXeDcN4yxFR6ybpZeMw0m5bYBku14I4OzHcSU3pcrnPb8PYxuWNSonqzLBBEiU1eR4PldQEBhA07c4koUy7vyGpucMz4bOUqrVF/All0tll+/eKmdTUoWGRmm+o/3JS0/LmscKKi2uMdtz5sUHj6UTEw03bR2rmHxu6RJrxh2luty9Z6tXfKnAgNck0LFITsJZ4SM1Dubpf6qfPtS4YMfgpxdu6WpKkJk8CVFITkADyCbZoPoFApOYMc997Dfs9qLm2wZvqj24ZJn5SE2lJyZCaNoWVpIN0cZKaCRaFlX/so/8epKYdWlclzE6d3DmS8X1SNiXM+9r252qNDTjt1JH9H4eduqkJ1k5dx4TvHuwJrzly+sBJ85dOUVPlC10tS3dusa71+vQMB829qVia27S45FlomhOd1JSbEkr5nK5ATRwlPe3U6k7jOpTU/IfLCCxSs8YMhdQ8b15QqXLO7Nek5mw0U/52pObWrj4P7zcoGR6WdfG/NvCWhQRIzQ8zsEjNkhkEJTX77tJaqqCTSY+eyLHqe88/EVdS0/Ez5yh1iT0j9dt8kweuZe3N4gVJzRczsEhNQGYJkppaKsmuR68EUYKnyFUM3TWSTSBSkycbKqkJyAa5hDloLoEwMypy6sMHG0SaDocJdRUFa0JdQOFL7kB4ya85T1/WQ0fNqrjfuHHHhxYp4yP594KQsMVDJhmmds2KN8zyHYfHunE65rpxOl/yuWiS/y6kZo8c6T92J3ygpyocNJD58+HmDiE1KTOwSM2G6R1JapoY7PuUWb/H/Ni5oDJGTa7gc93aR2oiezsOpObEGVjsoeKMDic1deqVJjZdC7aIMkzs73H7gjuhSM2G6VhqVUz/j9RsJamJXH5JmNTkjQJUPFFxhjhJzZAtJgtCmibRomp3DVNdsE2QxOl4UpPXxVGlqGiZqOaRUCYqgpKai7lymxklW803zSKnXUsbiXlbOJKaH8yxSM1k8/9ITcg+gWtlSYu9K82P7K4Y+uSM9m4cSE2cD0hABvGFORaDeMpc3KRm0NZbBiPWllmlHqzZZ5bEFnwY9T8jNd9779iZPy+PkvXu8pwfrwePwEGlZEyVfM3FSGoiT+slTmryegwqqQkoBfnT+Wj+lMikpnyZbWH/BV5Gm5uysx+5+n0SA6lpb41Fan61wpvUPLUq0GP73nCrOKleroMiDh3FndREZkDgACEyrLEgxCHWYiE1XQc79+j18qN5UN0qtU/3QhRxJTX7adldXBVx2TTzzbBbrxhWI3EQCegqGCJdtSJethT/R1yk5ntSgeGV66+MQ/vRV5SdfTqs3V0dDzaR15dR2USgL4uH1JyYvOQbLTXSvOQdqfJAl+9WBCE1eZ0WVQ2g00KzxwISyuxBbFKz8HN0stliBdMdL+1o9Nsne4qZ1LSxwiI1ayzFRGq+Yz8ztOq7knJ0y/pOe68FDpIIqamR5ZgWbn6CuumOvM3quIr+ONB+plZYQBlZQh61I0nN77IpFvoRo00zTPUTjbdNPCsmUlPNtjHs1eBCw3Lzcp+R+1w342C7Jkss2wFDgTC2UxQTqXnFrrMVxeuNcXBSd7kx2p/6EojUPIhpnCACGUcspCZy8SdxUpPn6FA5xW5WuJOaJj6zVZ7cPEcpC+2X4Dp+5EKJk5o1llgKbLPkr0MWklDWIYQmNZEUEozURKZLw0hNZHYZjNRE5rPBSE1kUApGaiLTgGCkJjKLBEZqIk+dYaQm8rwIRmoij+lgpCYyUgojNZH7fRipiVzKwUhN5HEqjNRcHFKdNLVTf+PIj1ImD84FXoGRmtp3UxuYhRMty/UvRt99NWEPjNT0O5sUPSvoreXhoV2d09Jkg2GkZkbVe+3ykPGM/Y2pS1JrTQpgpOYdqSdF7iNuUcMDNq3Y9nr8KBipmZmZMsOuxMN8faaCyc3ij3QYqWlbNII6XPGsZWhFsEaMf/8HMFIz5sf9Xs/OMQwj7l2NO/Ok0BhGaiJXW60nNbNGjdfy+LLCNO/lC+6jOxpnRQyUtpKai9AGJWGO8ZE9BKdcRJxL9YHn+BXTsM7xU6bxHeFiNM1/V1IT+WBcMZGaBcB0oqOMRmo25ACLIyWhbRrWgrB1pKbHU+vUoLyFFklU3VurXg4/1R5Ss53T7UFAAbIyGiDWBD5MSokoKGZE5nFVUhOpIvryIIWlP36IpPv4yyF8UMzht+Qd+g11M932OX1i4beQuQRAMUGD1ShhGeygZAwmMriYNUPwf4VRTCxj/RLF/PDJqadnUBGtpNPyKX8sM30q0ZUraJkgTMs4SMgyHcJaDlr5fCyrxME4Xe2Ee5pM3RmJsZZhOZBLE8laGjQ7dWjiXEL6l02cg39M2v5hd65p6V8X5Ted/fpYjCUOStywShxMdRNDiYOvI5Nkuo4PMNy5dcxVS9UpX4ld4iDXDQu8jnIjyryK9iO+edU/Tu10VuEjkwSqZvzcQw+2EGBe5ZUyxzTYVMkYTBIlDrISSJeGLDM1ijtkpqE495AeriUOdv51U6N/kZzZvgJHzuQRg9qb7wwaTgXTcC9c/8XT7oQ9TVM2O8ykZxdWZyT1fzxGYtMuWOKA5/FQSxwAAwiadpkklGn3NyxxcN9kW5bd2Qn0BINHz9KmnnQWc4mDIYuwShy8WPgvL3FQvSX202S5WqOQ+hia5bMJQ/EscbCz+62Lfnufm6U/LF1+ZLO2Dg4lDjQWYZU4AKwlnhIHS84M19Le706LeaZnH3nL2kWSJQ54EqCWOAAkgHyCI5pPIFCJg+p4oyEfFTpRco6dNt7wfJ2++EscIC0puRIH+xzFWeKgzKyw8nyq4+9R4sAJrasSJsSdOWnczcOh26xji9ykNumsGY5TiBvZ/3EIcS9xwgpxU5z47sGZ8Jojpw+cNC96W35t6SEuNXOojd/IUM/VOGieuxBL820tLpmFpjnRSxxIv1EdZHAqkhZGujoiRDmkL+r9iaPEwT9cRrRcTUSJg3MslBIHH0wLKgeeYf26xIELmil/uxIHxbTRdUrTuLT0PvFep6vltCVQ4uDNfKwSBwXzCVriYH3I7A89B1SbpjxsyLrwqJ8SItOlfSUOvH4k7NO8omO+JaCKMj61tr1gB1jioGE+VokDQGYJljjQfNh3zOE19qYpcw2aws5umk6gEgc82VBLHACyQS7BFc0lEGZGRU59+PD2SNPhMKEGLMCaUB0W8CV3I7zkZsW6KUOiJxju2dr9xKtgZj4+kv9ZWTvbesVdRhpVR8+7fs5WHCQ3mocl+ZB5fMnZaJL/LiUO/HaMs5xyk2qWtIgWfyhk7awOKXEwdT5WiYNH8zqyxEE9dbm8gkq88ZFURQf/ktFGOJY4QPZ2HEocjJ2PBe13m9/hJQ56J92tLB6dbJj5YUr8rsJZtYQqcfBoHpZaJfP+K3HQyhIHyOWXhEsc8EYBKtffbb44SxyULFqgymX2YWyuXxMzYcZ0RGGkDi9xwOviqFKUtExU7iSUiYqgJQ5GrzlnbHOj3jSXm02LaeqzsYNKHNS5YJU4CHL5r8QBZJ+Dd8zWv6h9aRospf4qrqRbVxxKHOB8QALC+zUuWPD+QRdxlziI0pzcmxyVbba3uF9tT/uGmTiUODBau+FZ+Hd/49SiOucbvVnOOKgUhKmSg4sYSxwgT+slXuKA12NQSxwASkH+dCmaPyVyiYPUvIsWwdV6ZkWTt8YoXHy4SgwlDkyXYpU4eOOOd4kD27CQFXWr/GjHiyf11wnWXYR7iQNkBgQO9D5lKRa9r75ULCUOKGaZZcNNjKy3msROTi3298S1xMGfxv10xmRNohcM9c3xYkRE4SAS0FUwRKp2J162FP9HXCUOJq+fO92U5ETP7Nq4wSVaK50QJQ54fRkV6gf6snhKHAwcPqhqwKwM+nb7wwvOPZfRIEiJA16nRVUD6LTQ7OFBQpk9iF3iIHrX4ZVLH1uZxOa9Jx86sclHzCUOGO5YJQ7OscVU4mCcafoIvdJEi0LbuojEcSrZEilxEGimc8EmeLP1xgs9XCkf5LNwwOSN3LFIbA0JedSOLHEQoPam8QbN0Thv7J2+evcz0sRU4iA1VXHqR/n+1KMyvS7367nqOg62+8DGsh0wFAhjOxUxlTiIU322wndOFn173d+qA0wVGglU4mAfpnFWEcg4YilxgFz8SbzEAc/RoQL+cu64lzhYOMnH8tPJM5RyrUeBvV9wDCRe4uAcG0uBGDZ/HeJJQlmHtLnEgUZL7xV/iQMkhQQrcYBMl4aVOEBml8FKHCDz2WAlDpBBKViJA2QaEKzEATKLBFbiAHnqDCtxgDwvgpU4QB7TwUocICOlsBIHyP0+rMQBcikHK3GAPE6FlTgweWGhG7xrMnWrn+7yzYuOnYeVOBhx1q6/555so+JpTgO+bR+iDitxsJB91MpaaZJ1qsMf6WmDqiJgJQ7+uK+W4fgl1KS0NNhittOihbASB5rydnJ6AyJNc65fVWUpk8xgJQ5sSIseWe+eZ5lupXRx/G5HRViJA+S6SahYAVjwQOQg5vYhB8S8HmkRvGtOeuczKgNxKFbAQRtehDmQR9oap6xCnKvVgifyJXOxTuST5/Jdmhea5r8rc5l76qTa9NcfTbJTDjWdsnvRT4zMJW09FnPZab0YmMuLdt66+ZpsqyhLWm+18AeOxGYup6/HIsGGrf//ZS6L3zkkz14ibbLuwP7L0Qn7pAjCXKphGqyTZAwmCebyzV7W+YsVb81yqJ2XXPlb2g9X5lLWaLPsjSZf46SYlVUq35do4zDSXq3DMtzNdcTZU+HOXJ5+6Tr8rft82lG1r5ozG3tnSJS55Hk8VOYSGEDQtOtNQpl2f0Pmci95WNOFwhzrrX/fUv/2YFaQmJnLqBVYzKX9in85c7ltzcl1p5njqXlVlERyifF3PJnLSSm1JRrLOhklpCQN3bVT0R0H5jJ4BRZzCVhLPMylzO3Xjdbvs2kHnsnMfLBw7wJJMpc8CVCZS0ACyCcsQ/MJBGIuafeusKNy7hivnyCfp/tGmSviVnBmLpGWlBxzWbJGnMxlpVlh5YLiNb8Hc8lF66qE2al3y381e2pnG8M4ZbvhMzYOjsNpp47s/3g8kXEt5hMZ1/Ldgw/hNUdOHzhpnid1+Uoq5xZ13eiuJrLyMhwcNK8JxNI8K5CvuS+a5kRnLjeMW9wl3CrROtR/fdylcA3DDmUu/+EyAou5fBeEwlz+ZVpQafs26NfMpR+aKX875nIVe8bEtZ5F9M0v7rEfdX5m+Osbxp257BaAxVxeXU5Q5tL18OFRFmdZFqUpRf5JDzJzcGUuv4/zdtid/J2xeWJ8Q8SnhzdxYC67BGAxl4DMEmQu8xyse1/dqE/Ze2taH9oFxwICMZc82VCZS0A2yCX4o7kEwsyoyKkPHwAQaTocJtRtAVgTqm8AX/LlhJdcc+LIHI3qcOMy9+kUu74Z2/GR/IbyOrtBM/eYlH09XUJJnhaAR60Of8xaHf58yQPQJP9dmMvtOY0nznX3oSUcOhRRMPOBMsZ94sdcOizHYi5J7Z7h2sJcVk9+2LQ6INMksUB2yMfsQYij1nYxl8jejgNzabMciyLUWd7hzKX954jtX0u/maenfc4qYGcKFviWNHNJwlSrzv8/5rKVzCVy+SVh5pI3ClBBQ53l4mQuObfmT89Tfm25feSgT+v6N16RMHNJwpSirmWiCiShTFQEZS6DmrxLr3VpMix9Mzvl4aHLyli3hSNzyV2HxVzS1/3HXEL2mVx43bh/fKr5uvVBDONiKX8cmEucD0hAmpCzDosmnLdO3MzllVmh1z9O0jWPkftiYDr+nWDQ7p8xlzKNJ3NpI08ZJZk7WFBWrMVDJTqmSqPXiZG5RJ7WS5y55PUYVOYSUArypyvQ/CmhmUuLHXEjF8sbJsvFTDMYs+6Z8L21m7nM34DFXEZswJu59Lj6eFCP0FeU8L8vZJkUzD6IO3OJzIDAASfM2YCFE+7aIBbmUttrJzfWea/RsS2HlP6mPh6NK3O5xb/rFOvBG4yS9BnGqz2NHuMgUgSmSP4biJctxf8RF3OpnvO2MNIxhF647vknn+/7ura7q+NBGfL6MiplCPRl8TCXsvPqbvTsfsLqYPLhfR4yxX8RhLmMwFQD6LTQ7LGShDJ7EJu5bJqr1dVZ1808pNSCNW3WNEe0u8OJuRy7AYu5/CCcAowPc2kQSH0bvVSdtmEt3bSL78U6iTCXZtpcqx7y/ahZ8d1d3YOfHMSB2zPYgMlcSsijdiRzqfXn3+7RJ/+kRpEabBo3e70VE3Pp9nzVuJlPelkVnHLfEPlAJREH28lh2u6DhHKHRdlOXUzMZaouqXrN0y+UHQesKbMOxlkQiLmsX48JxBLIOGJhLpGLP4kzlzxHh0ocKrdxTdIK5nJ6oWHj4Cfl9P3jw/oFni+skThz+WE9lgLXWjKlV5FQ1iGEfqw0kkKCMZfIdGkYc4nMLoMxl8h8NhhziQxKwZhLZBoQjLlEZpHAmEvkqTOMuUSeF8GYS+QxHYy5REZK4cwlYr8PYy6RSzkYc4k8ToUxl/Rhq2o31toabzvqEOy+6PR8GHOp5BNW5359skX5O9VR+ztdPwxjLt9bbYk8O2wofV3XjEenEl5cgzGXpff3r/4Qs968bJJW5gJrhfcw5vLw4AnHemp9M8oOj8zTC9VWgjGX5r0UT1rHz7Lav9b02PJnu6/DmEt/9QHyrOMvraJMQq69XdVVHfZY6Ut/XD54fkIQ5Wj/nbIr3qn/BXusNHK11frHSh+SXrLmo2uAWYl6lyPL4/bE40BqrkYblIQ5xkf2EJxyEXEuugee49f5YZ3jF/jxHeEaNM1/V1LT30kqNWvvHsv0R2506roHNaLvGxdS0y0Gi9TUiREDqWk+qmnatcZNptuiE16V9XxdRWxS0zkGix+zifn/JTUNKkcvce6ebbFz3VLqIbc+kwhCak7FNJiOZAwmCVKzPGPxix1XtWi5x8dX7vfQ3di+hS1ipN3dOrR2fJU1I/tO6OSgJYWD8Hg6JqbhSBIyXIeQmleMVUe6pOy1WJeYNlB9yN1qiZKaPI+HSmoCAwiadteSUKbd35DU1Mp8YDJpRqNREWv8ViU1qaliJjV1IrFIzW6R/3JSM3DizkyX852NSu8GFoYdUT6OJ6mpuJv83Ds0kFoy7KbZzOKq4TiQmkMisUhNwFriITXVHUY8c/IztCi9r+L4TuuevCRJTZ4EqKQmIAHkE4LQfAKBSM3pMyb2khuWaXF4TI+snndzj4u4FZxJTaQlJUdqukWLk9SMNC2sPO8a/XuQmuvQuiphduoD7GuTXI8GU/NfKS1PHz57IU47dWT/x4MajMbaqVdE893DesJrjpw+cNK84pTK96Tx8Wb5+Ss1w9cu3YOD5n9GYGleFMHXfAOa5kQnNTu91ja8cv+9SXBY6dej0efpHUpq/sNlBBqpaQosFL5uQiE1T5gUVPr/venXpGYwmil/O1Lz0jkfXbNjzvR9B47kN3xX9f/1DeNOaqpHYJGaX8MJSmpyfBeP/DH5u2GYfpacfwF3LK6kZqDsTdmkT5om265Q+jIuHbfEgdRUicAiNQGZJUhqqt9/qfH3qC8m2VWFPWbFlZgSiNTkyYZKagKyQS5hI5pLIMyMipz68MEGkabDYUJdgDmhMlom1BDCS17senOQ49FH1B3h8r221mTtwEfyD9f3bYl5cMA0/8C3kBr31wk4SE4Lx5J8dEsvD0WT/HchNaMG5N6T/XbfPH+Z26vtl74ndQipWRaORWpuafcM1xZSU8lo3FPWsG0WKXUnXs+5fUowmNE+UhPZ23EgNYvCsdjD/eEdTmo62SQp3Dgx3GTPLfLpH97bBOszSJrU3IKp1prw/0jNVpKayOWXhElN3ihAxRP3h4uT1JQbcy5sS0qdcf4EZWvW89tuEiY1t2BKsaZlogojoUxUBCU1DS82aXudmWe9Y9w5RyWtD506iNRcvxmL1Jy9+T9SE7JPVZZ6Utz9DSbJg+6tMclTEXwq3T8jNXE+IAEZxDWbsRhE983iJjV17TWdbWk+RvF3vMsWLqMIlrT7Z6Tmzd2jjXWMPSkHNe0fzqv64YuDSrMxVaJtFiOpiTytlzipyesxqKQmoBTkT8PR/CmRSc3vuZPTX606Qc9etqnnumtlVDGQmtWxWKRmcizepKbFcvseI7RXWOYkl4yYmXBeMEEBD1ITmQGBA4R4KhYLQsyKFQupuSd1jt3r81csdlqvodeE1ggmErSX1BwcF8f6WBtkltKb5PT4xrBLOIiUjClSWCzxsqX4P+IiNTeOKLbpY+9ukpHjo11W8wen3V0dDzaR15dR2USgL4uH1DyvqppS6HeDuvnrdvexiz8JelnJkZrJmGoAnRaaPSJIKLMHsUnNvJRtlv7BB+ip13f1mBm276uYSU16LBapKSM8l+BDana9F1l5Z/oxi9iYim3q0+8MkwipucJj8BF/dx3jMoUTV+cu/qKBA+1Hi8UCyvQl5FE7ktS8ZbSZ8vykvsX2dyMd9V9H9xUTqRlXuz3mGem1UXnkvVVFFnsacbBdX0zbyRDIdhpiIjWDOhffyjy0mxIf/+MZaXyNYAhKsqTmuxgs49wlUH6wWEhN5OJP4qQmz9GhcopD2rgmaQWpOTqMuavTrt1m4e8D558/2ilB4qSmDKYCDS2Z0pEklHUIoUlNJIUEIzWR6dIwUhOZXQYjNZH5bDBSExmUgpGayDQgGKmJzCKBkZrIU2cYqYk8L4KRmshjOhipiYyUwkhN5H4fRmoil3IwUhN5nAojNW/c4fq8jp9odND9b2pZWed4GKk5xvHsg4L8Y7TtjcMvjpk55hCM1DxundLN8QzdKGvR/v1Pv+RrwEhNt7TBqTX+7tYx8wLnv9/j9BBGamaMuVusqENhxFO1Ag4odkuHkZqjV17hXDmXSikfEd+YsrReE0Zq1hzobp4esIGxNeNLN/3YczYwUnNyj7pJ4W/dzOIPG51+QLUcCSM1kaut1pOa0UUxabuPjTJMNn54sdZpfZyIgdJWUjMKbVAS5hgf2UNwykXEuVQfeI7/PQzrHP9VGN8RRqNpLm8X77/fz90o82UTawL50DuBr9oT2ltZAn9w2UwP4V2ZLIrUffm7Mg7Z2pvFMWGQPaFrtG4nlr/3uNvN3gxKiltud5mFel6YtyVkC+Qb2pA1lVBWCSgE7MlqhA5IAEGbSiqRezKs1V//5pkB9Pi+bs3pe34+LLKTG5PDYYk+rk8xrulupXHOLFjZasjq8if9Bb64rFHzFYS+cEsD3pMtmM0QBkoSJGr5dxDogRPLKiWx/JN2AqRtmXM/f/78oy28JVnQMD7eLCc/DyaX7MZ2dfMAE/BF2maY93ybCutE6qHvi3pusj8mmN0jZwddRDhA1dIiDus0lGJZJ6GUANYBZoAfbdk0DTT2ZPv4gBmETgJm4rsQ0UdRl5a++v5ir2XaPbW9NYfPzxE0TvMVRUSAf7aIwzimmMYBvInkjQPaB26czr8wzgSqJ/greTYBY43AR1kcp0CyjoG+AXka2cubucyPNZw8ivevn+8QPaI2z7l6l3POk57/8NJRvb9t8gWza+xh1xfOrhFoFYfxDpZgGc9BMsYTue2tnwG3YJdfWHDaTwv6uLE5gRxg6QSYDzAXx4sDmg74m4fXcl4j+E8DsMmTGdD8gugSd/qf9/W9Z2id0Dc1zGpjcDGisoCbKI4WelkclpPDtFxBsaQtB34IzGtoU7BCuflUmM1xxXaEtupGTIOVm0y3fQku6uY3f4mgI0RdM/1swT2ElAutIcB1arXQsiqX5wihdeomEso6tU+XlXYniz9Yl8tlPtYev1IQD+ph2Iwi2nBZ/mzWcmG8GQ2xGEoFM/59YDgjewXsmIrs3XxBn55mHCcPP2eWGceWxYG2/+iL18Mjsitd53pTkocebSxRPrcf616Fc3sE23vMBv7w9uL60tkevs2/WNQWCxUrB0ZDUzmgfYKoI+uJwJLWtFxoScvfVoncQ/FP28AcSkieVq3oJ6/Vc1p3rAc9d2j05PqB9k/bf7qH2F3pvDPor8W6bp2g4VA6ZEb2lXburtTBtRWonMgzWrCCS4Kgcr8K46vaw5YwZC9/FpfLdhbtTp+cpX6u+UQyi5GPHjrG3YfU/iGM0ArpI3DQyhRTq6aO3SXwSVxZaMsFvglc7NxJufNDjgWt+Pgv0gxoP6R5cxtyVpXjbwz4bwX/txt82SP4iZYQx2Y0N9bmuGML9NcBcUfkphsWd0S6NKEAEvhtRfZl/ZfbwiO2h1ts/6H8peeQC4txCCDFoKlL0GAGY6esekBflvWhk6wblZ/Up3ZYMKPpM1Yww+GTuIMZ07tNk6UFGNHzxxe6zJAfPJwAwYyGz5jb5c8E2JG9efOmA4IZf6h9zLul52N1IPrvxkdpVCYhghmmmNZp+kQA63RIMKPTeJeq3XvPmhVbv313UnNRCCGCGQc/Ye6HiWAckiSDGRcjH5dOtsw03Fi/0ebLwV10QgUz5DCNV/BR0ltiAgUzFspYzFOYk0lLu/fqafiWkfESDma4fcSynLrELSfWYIZfVVJ+1ZqRhnspfntnqiy4R4hgBm8NgRrMABwhtE6NJf0LghkP08a/HfxkADWVu9PhpWz5CgkHMxq+YAUzJn7pmGDGBkO9vGmvMq0iUgaQPFb17IZ7MIP8l9P792P0zErdn5TFPhlyAocNet0XrA162BdxBTO+DGuc5aNea7jLK4g5fEHhQNyDGUgfgYNWEzG1amj6vwpmbEFzY4QOZiA33bBgBtKltT6YYbXh3SCzuGKzwljLOQpn1D7hEMzYiqYuQYMZnQeGj9m33d4qStG3+lKOJ/Zt4RnMCOpThRHMyFIXypbHOZjxWDV5m3L9BOP1p+7Iv/9xaQIBghkBoCSoS0ObPhJJzBXckTU0NHRAMCNmrT39U0NPSqTX4MpYrV4hhAhm6GBah0QE63RIMKNmvt/ZyuGdGQc9VuQxLh+1J0Qwo04dyziAN5G8cUiSDGZsPTalP5VEsTxk3/WErYfBE0IFM8IwjbdEMsYjZjBjdUoUZ+ecw8bRk1Yvv372j28SDmZMxLScosQtJ9ZgxpbKWyPqDNNN04/89bXguz6dEMEM3hoCNZgBOEJonbqN9C8IZjx7dK6st1S2UZC+kWlqYOehEg5mrOpbhRHMGNIXtU4YrsGMm9c8X7zaoUk7wO3b9P7zoI+4BzM+2jupc96k08stjx1+N/RjAw4bdN++aPQ8uEFn9G1TiYE2BDNsFDLfy6bMoBWqhZ621Lezwz2YgfQROGg1BFOrrx27DpV0MCMOzY0ROpiB3HTDghlIl9b6YMbeRRPIGqdvMI5fHsgY83zwchyCGdvR1CVoMKNPjqJ22Isqw7AzU8Mq7pb6dFgwo9s4rGDG1LHiDmZMs6je3n3hRMbOIQkRw++t+EiAYEaXcVhLw9tjCbAjq6+v74BgxvzPmh9LzxfQY/+4p7dbblQ0IYIZuWOxrBNFBOt0SDBj6KAjMtPG5ZqF7/MdObJTbwYhghnOmMaZSgTjkCQZzDg5eDS7snYgpWC/j+KA4uRuhApmqGAa78UYSW+JCRTMqKue9PLRlQaTsJc3rbtFflOXcDDj1BgsyyVL3HJiDWb8dYxzcctwjmXasohsSmrkcUIEM3hrCNRgBuAIoXVqPOlfEMyY1ftc7pBvgcbZ5ovn78m7O1fCwYxu47GCGbnjOiaYYZztuNH3q7PhsUmb5F+91Wx/vUTkBn3myvr31r7rKXuXjBrvH0G9j8MGvct4rA367XHiCmZcrWBuPTTsnWV86aDXL54yzuMezED6CBy0yh2HpVXUuP+rYEYCmhsjdDADuemGBTOQLq31wYwRusWxMXcGUkqXSOXNGKV8GIdgxg40dQkazFgcUp00tVN/48iPUiYPzgVe6bBgxsSZWMEMNxtxBzNO9aB1S2drGO092lmugLPNnADBDIOZWEtDuZkE2JHduHGjA4IZ6rl7Fp77qGRRMjno+cqtzomECGbU22BZp8CGANbpkGBGcYX7i+KVD40KVvrPne8QmUGIYEYMpnHciGAckiSDGY9pFZXbPb4abpv6Ykm/zrpKhApmUDCNpy4Z4xEzmGEelGeqkyJnuiNcsWds7dD3Eg5mvLHGsly1taQtJ9ZghuGMgSe0jXdRihUuq0aXDyAGZsJbQ6AGMwBHCK1TE0n/gmCG9t3UBmbhRMty/YvRd19N2CPhYIaBLVYwo25mxwQzHl+6tfqlnCtje8IF1pju74fiHsx4TyowvHL9lXFoP/qKsrNPh+GwQdexxdqgk2zFFczov+Be7r5De0yCp/prqVxfjX/NDKSPwAPJmYmlVVbH7hIkHcxIQnNjhA5mIDfdsGAG0qW1PpjhdzYpelbQW8vDQ7s6p6XJBuMQzEhGU5egwYz8ZO3bo9JsDTfcun52qXNftw4LZkz1xApmeHiIO5hh7/igs93mztScqT2cxgTbLCFAMGOsJ9bSsJsnAXZkly5d6oBgRnr8pLWKsb2NonYc8LMrkc4lRDDjkQeWdUo8CGCdDglmTHSZw114hEaJevLnTrnRSVxCBDO2YRrHgwjGIUkymCE3rHGa3AySReSUkZGGvXTvECqYYYRpPA3JGI+YwYzRA2KWuo8eS9khtar6quqLaAkHMz4sxbLcuaWStpxYgxkjT7y+skSql3HYjgpT+2z9U4QIZvDWEKjBDMARQuvUnaR/QTAjnPb1KXtQJ/Njrg5baSNjT0g4mDGWgxXMuO3ZMcGMdbG3XmygP7UuS16qW7LO+zTuwYzJ6+dONyU50TO7Nm5widZKx2GDPpyDtUHvwhFXMGNqyV8TH88PsN6jdGFGpkMdC/dgBtJH4KDVbU8srXI7dpcg6WDGLjQ3RuhgBnLTDQtmIF1a64MZJi8sdIN3TaZu9dNdvnnRsfM4BDN2o6lL0GAGfdiq2o21tsbbjjoEuy86Pb/DghlHg7GCGfRgcQcz+ps8X9Dlpi1jw6Wzh4vj994kQDAjPRhrabg9mAA7sjNnznRAMIO5zGnMnR4+Zse09R8wNxXTCRHMWI9pHQ4RrNMhwYysWwxZZ7NnZjkL7IpvLcjvRIhgxjxM49CJYBySJIMZ647+r70zgYeqe+P4oIRK2qRNk8qrSOsr7WZsg5khW7TaJpSdpF2FKBURKjshhGxZCilSWrVQadOmnVYp9b93zMjcmXvj7c7c+/q/fd7386l7zHXv73nOc57znO85Q9E6dS9ILTtomOjmYUPzcFXMmI5oPFlsjIfPYobjjrEi2yT3ae1ymJNhNXa3I8bFDAlEy33egbXl+FrMMPaLH9+cN0T3kGJx4OKx9+bhopjBzCFgixlAIGTlqbGEHlDMGOjuX7e6do5e6fuh05KEa9MxLmYo+SIVMwi+gilmDCZsuL3mjal++rWD4/923aSJejFDJru5cLeVn1bhtlef3X8k9kWDzPBFmqAP8eVXMcOPPLNx/uxSmvfrx9PsXuZsR72YAY0RKGhFQNTqtWBHS6yLGXFwYQzXxQzopLtTMQMa0rpezPhA37+7etJfWtv6pj05G/H6FgrFjHg4dXFazIB+R7LAihmiIUjFjOj9/C5mnDt9mDFeX5gSuq3KKmHA8204KGYIhyClhm/342BGVl5eLoBihtGgC9efzounBPlffiw63EIMF8WMO/uRrFOJB+sIpJgxfd6YlrkP32v6n3ojpLT90hRcFDOyEY0TjQfjELAsZmwSX+j5XnOfTtHYwZKn958/hKtixi5E43liYzx8FjP6/J1xc5JKMz00itLsR5b8G+NihhWi5eiYW46vxYxJ+ZsWXjUgaCSKq/y8rREUhItiBjOHgC1mAIGQlacmEHpAMWOGVXVDQX4OOeyl0pUZi2YcxbiYsT0EqZhhGiKYYsYp72D50YNk9HPNRku0WC2IRL2Y4Tu52GC48WrttGx3+ZKrZ5xQmKBvCUGaoK8O4VcxQ2344fs6Lnd1/I+qMHa3Pv+KejEDGiNQ0MoUUStyyP9VMSMRLozhupgBnXR3KmZAQ1rXixkn9GP7WZ3X0shakZT0/Gv+KBSKGUfg1D1/2JLaNnuY9vYk2T4vx20s4ew3VEBTopEGlbuK0Rumy5LZVQyiA/hZd4atI+C9RBvGKuCfNkSr9UTgfd08iC7O9k4eSkTg3W3BdksnG6IDw8nWw055c5di404dc4vFfiVaux5dsElP2def93Nz93d2Sxe7KdgRY6OBbnqSDKZHkG7qDwzEFtFcgwFSSJNiPkAnDXi+nXXzdvFJ0cc0849q/kx/FzgXkhyCn+aRHDIv//bQZ5+2we/oFvRD+4PtKe5a3/4wjlHAE9VAgabyimMRwGjpH41J7iih7gx0f3snwBnBn5tBgP/TnTKIDNN+bLdVsLF3A3oX0D6R95er19+qUDat04+9/r5CqtEqk8OO4hrsD3PZslMT2qklaDAPRINZYGMwUU/gjdsn2dzGalrIy1jCv+lsfZnGao8rPO0Tn2O61GHESY30KfIjco0zOM9sEKUyP8hlHPb13/U084EZ5K0HxtPDV+SHzV7jIoFCT6MiGk4VI8Pxml83LezWTK0ftdNowdNUC78r9Q21HqaX6/TU4IrFMU5csReV13S5/SraHUghlxXxskgEggt0SLiaw+xArGE3iQAz7IY1foqabBJILbygf1r7Z6wcx9tIaHoB0wRmwsU9L4PzdWlNT0uHtawFBEbHDTrdi/2TA7X0DWkkYwW5jVPnGG6WU9Kf2KURV1T4x0q64S6tjIVNw2MNz0XDPTKXGTq1dVHiqwUVhA0HAYlV1IGcEurqDwFXX3Gwsr8B6F8MIH1ne3ovljwSOmBw4PLkPszLOjbs/hnR5l0UF2ymk598lK72VPFuX32mq3J9Tqz9+q8PmttU7RUqFdcoejuM1l9x8NX238d8HAIrIsHOBX9pQfS0BCYeVg685zNW3/a1eFjHap34mGDw6sc6zi9nkjBlfZSoz6W2kD6XxwtBAtPczUNS0iI09ZNrV43bcKJK5Q8DUxlgLU/QWlOBDlEGtVZoAdNaLHE7REIKBkPayzZg9v3LkXmq1P/LFcaG4H7q21qeF5Qtcl7BGb/bb8OtEBH1mGCRw5KgTI2HBJQcpgSsmJAMFxMOFTw03/mkRaeoIK/o+JpHnEdY9zawdGI4cE904MKBAonoAn6iU52G6OQMvAYz1fZgeHkQwXjBcOd97gpF7uhM8Srt7NGDzuyudDnD41G4ZyC8VLV2c3ZwMLQErkOHB4hPQi0J55NiJu4MN2Pg8dm/doKG81qwJ1g7AM8DVlgYNvYerHe3BtQCxpMG7ySIHdmTXa4xtrCCUHQYsKOpOsF7p7oEzdLN1t6JyljF4RR92y8bgqtena+Lt183dnbpfJXTGaZpF1Z4Fx6uHMAU0cDNGZhXeti3P1Uf9lPxmqW6Wa7TcbKxt27/UWa3FgcvgsNzp0s0sN7pwJqYtwdzcC3N3tJB3dnm12eBXMUDmKg5dvy712I3S5dfAaPdVVPgXJVoOy7ff08AOeRMOvXg18KNnP5hyHCwXM/pquz6mCjJGngDd7Y+cN47mERcB2TARDfwTqxpN09Hdbiz5XaRrBE1pGFgHrFWTYrHg3Sp/0PPFIH4/x9GyAggdSNGssq53tDw0AKMZ1KR7PBwFPeaQ4cPlDSPrtWWkswNpQSMyOxzIeXyMBQ0H3EQSXOJjpCcCqe5a6m9oj09Vf1Eib7D8ydL33G8at9Fa8GQow10HDuYChSn8nDj3XgNe3cXUHRLIANmDnvrJ7cHZ6Il8B/RFvwNPE0RcTPn6bdFZynxNnskpD7ZbYV9Pi6DcDRymUbcyNnNQ79z9YyHwf5hGtFxN2jsBRIFehRgMGl18H9Og9loFVRMpEVV9jdiOAAGY9gAsZDhxXG7dlOmwZmSfGPYPc9ZOWrHlq6Q2W16inN0HQJ6rQe4fA5SIQywTslw5y56wa2JTFF3dgSSm/a+w7yNza/bMEdgsBzmzjStDZCsdinfNlAXGT8q8QgtasCDcvctMfK/f2AuI/P8qS72n6oTFQS7CMAcjWQeObgBOBmNgF0G6aLjk6idRAHHbnA0BKcwQHas0D6rdCcC6jELZcy/tdcIgE4BLkIxbHhXXca9P9h22dZWe19T9IfqKb69ObNCU2bP4p7Vs67/LkzZnbH+oia1kJKvu/LL31PNmv4wTIEAlQ0ocy8yj8xx5gmmzFxT6T7d03lCJ/MTrRge6xgMJzA5cmdYr2W6hz0wpeedCW7KjAk7VZRM239tjuXeCetUOSPMr/vacEeYzo1oJ9xNeSzZlvGSbUgeUzZWSEiHCwm4GVGhQ19XRlQe6TbEU6GmQ2FATY9AGlAjOyQ/hnvJrc6OYhCMI9V8osguc5rNtqIj+fbYq59kZILUoi1vU0KDT79FQfL94UiSbw9nS54BJ3m15LgP01ScaX7v3+kpX9/KicT3N2QAmYc1g0hf6+DAY8SDW+aZzP6cE/g5MDLbOwEpi71NeyhfZ+9hR3T2sGO4dX28WzEnpvLlRDN6JmnxnciyW6IIz8llGc7mbmAvkqBDt/Ba6FcA1G0I/9MRThoslrqDQxvwMB7MVABUjKcA4sKLlEzFMunehlJrb9Fzizhdknkj7kWf9su/80uot/+pX4K7n0DlfHiVooPA3U/hsAv9XVRuZIdybhyuBroWT/kkt8TTnXfLUVI/m1zTkX+ZxAnGsRwELC9zq8jZivZYBarVEI6k1uVwgRbu2Q8qZrzehdFZh3GdFruV9RhuTgwHZfBn3JW1KSt1nDwYtgw3CJMF/vnT9ESamQaChgVuQbR0Wt9uap5WhqZff9JJ/tCuVbmsXtBE4mFXg1xmL+DQhr24CCeEDJ2pLZgRMzMytuvb8JTizeNZGZblY6hR+heTU1YYenJKwXwrbinaL/NDCqaLw0pxuWOgyiTADFT0E1qXzxPOqnsvGT7X/qUu52KcJLOw5eJgbw0WE524Ryq4jGAkDegGDEfgU9aWDkRHjrt0aVxqrTH7EjyVSI2pJ7jWHpbfgvRY3GgaZ3sX5ZQCIsZVcCocyGtkAhcCE6N4rH+wp6g81j+YK6WQ9Q/oMga7XQimXRDrI6O17N2AWAB6P3Ow5LQXT/uMTRyj/01SSXdbDWGI6XO7uxz2ESJxl6JIgl4gIQDmvBjFWiDh6h03wK+2iKrsJJLQb0SSNWIAkzebbqmUsVM8LDTnu/6RO2JL3vXLn8+pEplbJfJvVVo+tfArUdZWLXR1Ls3fQl0MBZUSEVUKiurWMpLMr2WkLggEXa3v0lIS+zrq/G8ey2NaSGDyD9HCIY+pFCueZsHF0yujX734vJ9G88kIk5ts8WkN54o5zdmT0fV8fxJz64ADWJtRcAQ+ORFcZW6fXhEtHZydbImWrNpM1zarRb9a5aY+ylQ9WW75wZXzXtpyPxv3aj54tavlAcCXZGIB/b7zCqAEcKtoDE9sC86X+pMt3RkdkDPvrcd2Cw9c6mdNOrV20V43ycO+f0zrQvsblID4w/72EPyO01g4ApUIbraN7RatO4jtI8zFbaYz8BTKlbrHtfSdCjnWU7x0xjOdFM6eRnPmOZCyr/9uplOxeMMI05px5IT6wMXnRWZpoCAS4CoIItXF4I+WYv8Zr9YtCGdwRye3QXb1O1uDxuY2pGrmtdba3A6cuOaPXf1P42VsHsuXKbzMVJfL9OVupeLtWgCDq2O7P4NlDN47F3yL9mmKm9D9A/VHGSeshSB+HXfhRvx+NfFDDabTwqoBOC1r9DhOgBk90pQLTcde+6Ieet2hruneyzoIgML0PqKZ+RLuMUQURlL5DjS43XeJq9ycHYkbvdZv2Ey0dnZ0cXYCp99dGz+CpRg/68UXUKP33Gg+q/+yFu7puGGkX21dVLMF6ORhoJoD1HkgwARwPwj3WCJGgI+TQ1iPsNGr03vzfMvvmffM3S730SserOB84eYYjUHgHNwN8BRuqEt4shlnad7s1725S/OdG38XUW+3rL0ulqdO9x032FRpSO2ffhdJIyDnflDOeF7OaQMMzVswiqg8McbS7oyAHZZd/zvLTh96bM+uCEu1JGEj84lulzjP3uhrjmQ7827YzkBKYSZFNV0jgJowMKZVNAYF261GtJ0pjmxHVOvODuoO2234ne3GnC06uWa6l3aEnIWu3j2vt5y2W4JkuyVItvvTOQNgHDKicZRxZJxu7uSUYlkHXLT0cFsLs6gDTf4gC7/MW/BY+G2/jvoonMsKdGJksC4GsYcM0OoR072cpD9LBASgfeyyLBHZD3Npcasfiimt+Gb6Z0A7CgqYIiqg2pGHZBNg8pBub/+S7fBe/m//gu5C6rT9C4pLA03CBN50GdAkwmqC8mxAUy8C76IU0NSb1QTFgIAmUVYTlCIBmvoQeANXQJMYgfd6EdAkzmqCLtMBTRKsJmilFGjqy/5dkPk+0NSP1QRN5YCm/gTey6lAkySr6S8p8pd1ChM1juYUNL6d+/4a0DSA1VQV1XArRzFLPUL9kmmkNKMFaJJiNT34cG3o1UF62hHSBgnht7/UA00DWU2rogyHBBwdTtm3IPLjki0FsUDTIFaTas6W6ieE9eo74mqqxmY3HgGaBrOa7t6fNz333n2N9DG1zXr6ay4CTUNYTZbX9azNGUPV90g8lD0oM04GaBrKatp36cL0pzL3aYdO0sPzd5R8B5qkCbyzLa5dg8MIMLsGde/UnVjyZaS+35z52dcffYrn0VG6u2swB65T4mYZH+ohKLGIUjHEVy4715NOTrqjs6i4UgmFdXw64jr+go7lkVw4zXF67BS0Iwrs2CnTOKRjp97G8vvYqYkDFzi3+ClrRJj5RK5JHcfJK2Bz7JRhHNIhHgvicHB2TlFRkQCOnZp8mrH33SAiJabIaHzYYVHOpUSsjp2ahGgdaTxYRyDHThXeDl5gdXyDnv+Iqc/fut3nrP9ideyUMKJxgGiCvXEIWB47pTq1SuVc42j9cJ2FOvSLepwHLGJ97NSdWMQD3bAxHj6PnRp2USLpcf0Y9Zxs8XmR44UgWaLAj53KRrRcNOaWAz/Et2Onrt4tXqo2uVD7ZBbBM3OTLmdGh9WxU8wcAvbYKSAQsvLUPAJMnvpvOnYKOlXE+NipmjikY6eS4gRz7NRkPYK3EGkYPfSlrKvnTPmrqB87BV0+ROEopctxSEcpFcXx69ipb9MaehvuVNMNmPtg48ravNuoHzsFjREoaJWEqNV+weahWB87lQ8XxnB97BSP6he77ggNaV0/dgpaHEOhgHQCTl3TMcJrQo9LkQvjHN7N3SxG4awadBxl0V6Y7noxo1Do1ykYwDDhBkxMLD3AvzLcwBsQV1kyC+jtxJK9hzv7zCnWL2K1uxOtLZ2IVsBsc62Li4M9eGyVM9AIfL79lmudwI+C++idQD7AgTkSMS8qE9XtwKOBmJOgpfTlRBc2o8ncAuBsa+vA6NiABf6MxzpnoiO4MbtrxZaNLxY1TwuU10ghzHjbu2inH6Js3MUWyA90YyegzJmK9mIL1wJ4CjAyyZRXdAemGqjOlBHcq896IN77IXJ/zHsztlrdD/AcuRUqnEd89WbegwffzLz8u6iq8H7q6AmMWv2IUWanxi88fh2FTXxioEJmvKLqQxDw5FTod1UPOQ5/ZCU9oGYsweAgxlFng1wCE+K0M4SnpW8/9lQV0+UfUBW7ciRVAL/BzcysaWF3Ch8zdVYRjd3A6TPYizmtZe/eOS4wZ9tbwFk2782qoWKq+TMOD6NnzLUlKMqROSdkEvSOG3GTLJ3a+GG6qtNIpvM6jYnp+lg5OzswLDuFye5MzEYbgBuJwSGBXUu0XwWGd4QF1ZtDp/TWi8rUDAj8fLdu9+gCyEko4P24g1D7ZdRPbstjRRmeWJd3LjPKdGtBWd6YdY4dC8jqjjDxORGMMN9k+pFXY4ZEu9E4T/bvw7oxd/mb3cAPcZjBBlYcGYg4wr8R56/2UerXCN4ddQamnI8Nnn5KM+7l+Qixv304aXLxjp0b3FTgryZ+KMTs07AKAX2albcVEGDyNk3SJMWf82+QUu7LHq2JfjeDk31h4mkuziBByp2zicHo/PevBSj7X5+3YQ14HnZA3mlrR+w4GqP9LICupUtSssnnC/U+knwfZqTO21A/E/ZpuUmdTo1d5QQBfb0qAX0bAH1ToGmSFKCvQgVXmtTN7aRDfj0WCKW2a8Hz1TPPuyyIaTtCOSD6d67Q2BbOrzoXMwUPHeJ1YsSvlt+lUNDA+KdoGdh/QfXm8fJOJTDJrOxWCtWvvfvaMGzdGLzzS33/hJbiPFNS1INpY9ZQgxI4kyUN5ge5kyXWdX7s+KiqQHp/rwqsk6UOz+xGogQ+sr2zjb11e3/m/UVkkQyfLWvy9Q4PN7z7yaNKm9NX2Tfg9tWOFn4YQwHRGHVncZH+ELqzHqSs5+TsAQxfltZgZVph6nxgygry50rEafOt7ZzdbJSI0+e7u7p5MP/BO1vVObTIsCSjkOT95sYduRu+nJshxcFfYOSx3oG723Rq4oex/M8iGUsVG2NBeg6z7tKdbHXor2UEp7VuVu4IPejiI+Ngc5U2jSM+gx9d3zqn+k+myn9ojqwcViCXAcxxlQv6y6kwaavoXpbKiuQI2ZZE44tvN88N196h8/jLzVDDeEynvaAAERUsAep4CACGlm5louyhzNkRSKh4fy31dVJw+GtxzUTD7RYKnu6FkKGM+UEeQ1n7dX4IUHYWQYBUw7PsRLOQ8O+inVSCTNR2DnynHyWe6Wo5t3C0wGinqRcqEGinoCquzBJl2sl+iGrVZvt+Osl33obSZv0ciAPaiQhKArt2fPU8JkGfE9m4f/++AGgn+6Kv2o1L02iJEpS5xd+cTHBBO3mfR7LOVDxYRyC00yPZfb0+HzpIjr/tGtKyZMZbXNBOD6uQjANEE+yNQ8CSdvKubTudoVpL9dcNvqNav3U2rmgnNUTjNZ3DOtnFEe30bq5oc1z0Wv3IW2luC103vsSYdoo9h2Q5A8wtx1fa6XxK3VvTjHpq8bDSMWpOcxpxQTsxcwhY2gkIhKw8tYjQA2gnjVHjM8dK9tIsOmsVkvN24yuMaSfixQoE2smlGrZYiirtlGS+efT+2cqUbc8mCJ0c+MwAddoJOjdHgeCRApWDJXjKqrkKpSjRTrKPVHYaCqVopJvIqb2f8SoSddoJGiNQ0ArwIwStiNUCjblY007FcGEM17QTdNLdiXaChrSu007XMm8GhJy6RD0cPkokxqrmJwq000k4df+jnf4R7XS4qK3h6MEj5HxH0b2HUt8rC4x28v6ORDt5f+MH7eQp1nft63NjNHPzRnouHrg1BkXaidhq/eHDDEWdU6uflQQ/G38aBdrJ5TsSHEL8LhDaqZeMcNoTVyotaVCZcx+RO5WY005XvyGpAvgNbmZmWNFOyx69WtBW0KKXkZYsmmptjx/aaSqi6R624mK5j++0k2GrBs1H25W+u+kN5dTrow8wpp2YUQYWVwGijMBopxtiG0ZMUV9DPzRmYiGl/E4wDmgnZrCBFQcINoKjnZ5sFHntVZikEWx6++GP4c2iOKGdpiIqBPRpVt52itAjaKcZNQzq/EXi2j75R/wnbBoRzXfaqewnEu3k8kNwtJPHq14uq5rHqqWWa2RR7LfGok47QQMjCrRT1k8kZsHiJ8q0U+2AI4skd6vSExpmKJoUx2dgTjtJIb5/2Q+skyV+0U59Uz1aj40jkIPvB2/5YCh3EBe0E9BZEYxBxMYYmNNOZefqNU/mVqoVqVq9v3CjLg4ntNPVNiRjebfhoefwk3Ya98JRbVXFFlJo8SHpvwjjoV98IGjaiRnIYWknzZ9o004W+1/G1a8YpZfUb9yyvnpzjmNOOz38gUQ7AaEFZdrJX1NfIWDcNXpI+NxBls90J2JOO4khCZB6qI2daJYQ/l20k9vt8JSiQbP1j3w8/c188rEnAqOdLgohne30ncDvs52aWyfu825bpuNdbKvgWjL8DQ5op7NCSCdlRArh4ICaW7duCYB2sml6NjBb/zA51ML0zo35BeK4oJ08EK1DxYN1BEI7rZ+8fsdQk0TStgoTr3lVG6m4oJ3GIxoHiCbYG4eAJe20bzG5VY9QrR2/THLY9IlxV3BFO90gIBkvHRvj4ZN2cqhRF538Ikr/cGS06xNPEaxpJx9Eyy3D3HJ8pZ3sln4aOkUvSLskeEWTnWLWW1zQTswcApZ2AgIhK08tJfQA2mnJNqd8pd2H6RFkq0PZP9/3wZh2OiuMdLaTg7BgznZyJ3usb01UphydL/2tIffSSdRpJ+jcHAWC56Qw0nlFocL8OtvJ/p6R7sxhPqSiIJFrkfWSIqjTTtAYgYJWDohaaQj/X53tVAYXxnBNO0En3Z1oJ2hI6zrtpOEywTBfwkj3wOW6Rl/6bAUUaKfTcOr+Rzv9I9qp9K1Ilcanizq7+qvcE6LrLhYY7XRxZCUC7UQd2a0vyusi7aRdQZ5iHfyeVDi5sHQU6eA5FGmnT8bWMk5NqVqltJz09399+lOGFCxHnQUVgoVDIkdyjUD8oJ3Mvp25/OyxJzk8/EVuzpFhbZjTTh6IqgB+g5uZGVa0k+sDtYGnZbT0smdY3feKOZOAG9ppPKLpvo/AxHQCp53yvaVHt9SP1Nm+6eAV0o7paRjTTswoA4urAFFGYLSTxT6xj2Gb5DWjxywJKHikMAsHtJMHojhUiDh8pZ3uHS4/NavqEdXfK6uu1JashBPaaTyiQkCfZuVt5YQeQTs17XdgtAi5qYUnj/GNq4s6wHfayWF0JQLtdHYU7AQeddqp6YZyfM1EKa3gz+7Zl4bRpqFOO0EDIwq0kw2oHiyzMG90t1Ko39NOa1Z/nVVUbal24I3ceaWILUcwp52GIL7/61FYJ0v8op3Wyq8v83x/neT30chDROJvJ1zQTkBnRTBGJDbGwJx2MjWZSVW8G6lxVD5bcROtZTVOaCcPRGNRcdFz+Ek79TOr29Frhbza4fOJW3+U9B+KMe3EDORwtFOa8ujuZam/p53OzRgoJeqeqJZtvNLDd+aXCMxpp++jKhFoJyC0oEw7VQS0rHFoMyRnJ79RFJ1yZh3mtFMQkgCm5qPYieYZwr+LdpIymqQ4P+q55r6S3llHzwUrCYx2MhuDRDv5y/Kbdhp2nHqqSuEdLfmc3N4NAdc/44B2MhiDtHasMAYHyMaVK1cEQDutPV0dlrjYnJaecfXLCK+V+KCdCIjWqZPFgXUEQjtd/Hqj7W3haL0UkS9n3J6Z1eCCdsqSRTKOPx6MQ8CSdjqeR35yQ8NDI3iNyIKNFospuKKdLBCNp4qN8fBJO5n5tfZN2K5JP15MFm9xeNyCMe0khWi5xtFYW46vtFM/u0F/ranfoRE1tvySjuLCQ7ignZg5BCztBARCVp56ltADaKcB392r35LD9eMmma6QWvBSD2PayYCIRDu1jBEM7TR2hfApN+nx6id+9PPXurGuHHXaCTo3R4HgoRCRCB4ikV+0E7W4/+KRFiK6aZ8Dt4XmRDxCnXaCxggUtGoZg6TVVcHOErCmnSrgwhiuaSfopLsT7QQNaV2nndY0vsntsySMsq3ULOVOv+KlKNBOlXDq/kc7/SPa6WBTr8PXWz/Sc8a832t0YPUQgdFOZrOQaKc6FX7QTkefejpEf6app/seeZGr8WwFirTToo0PP+h7bFdLsJim4rmL9AgF2slgFhIcojBLILTTtIozE/vKSqsH+k+1eLhe5gfmtBMBURXAb3AzM8OKdprS/8q2v18nkPyr9sSHfLGXww3tlKWCZDp/bEwncNpJIj0zQ2Vmm77fgx0vcox6LcOYdmJGGVhcBYgyAqOdsmq2aU1gvNA8ltPa/86dzHAc0E4ERHGAYCM42qm5j6pdoN47zeI5elcdI8wu4YR2YvZpWIWAPs3K284RegTtZDZVOrfQ7ol+1ASrWONA45t8p51aVJFoJwNVwdFOM8RqTF1e+tLSDgklP+lb3Yg67QQNjCjQTk2qSMxClSrKtJPJ3cUyRyrG60YZRB3NWrr1Jua0Uyzi+3upYp0s8Yt2MmrVq1SYW0OJXcOY2dc+uAIXtJMBojEUsDEG5rTTK/MJdx9fCaXvcvLw7TXx8Qyc0E4ERGPVzcJDz+En7aS3SOze+IyxlKwrEyWfOb5Txph2YgZyWNqpSBVt2inYKzV7kEGCXnHz1AFFfs2OmNNO/mwBeNJOBqpo005FZRuv7aBL6ASsjGjTULohjTntNApJANOns9iJZhXh30U7BZkd16+Y0U//lFvDxhBHqxECo52ezEGinYbM4TftRDygqlUcvJmUGxmtn3V28w8c0E71c5DWjnPn4ADZOHfunABop8o9j1sGLZuin0V59kl1/3MKLminQETr2ODBOgKhnZKvmSiaaG3VjOodWLlMqX89LmineYjGGYIH4xCwpJ22HtKsdB8crh8i8SCn8Wv2FlzRTq9nIxnv7Gysk10c0U52F1/89cInRHv7osWer8Y6GWFMO0UiWs4Dc8vxlXaKr338MX3hKcpRvYxJokOm3MUF7cTMIWBpJyAQsvLU84QeQDstOSfkVL0oi5o9OX2F60pZL4xpp/q5SLSTz1zB0E6nqCn9xHs91N8j+Ub65CPz6ajTTtC5OQoEz425SARP+lx+0U6bRe2rtvWZopsZS5qifG6JBeq0EzRGoKCVD6JWy+b+X9FOF+DCGK5pJ+iku/PZTpCQ1nXaabxVlVRkZqNactWoqbV1kkEo0E7VcOr+Rzv9I9oprfKDfKmfCjXpZZxF3E3tAoHRTi5GSLRTkyE/aCfTxAFpV5IT6ZnirsP793EioUg7fSAUqF+vfau5c6TWhpLq55NQoJ3sjJDgEDUjgdBOJd/2iGf59tEqTuqzJPqR+wvMaScZRFUAv8HNzAwr2sll04aNha6B2ocdkg///Tk3ADe0U5UhkulisTGdwGmnKV7hl90jDSmn3p3WCEuijceYdmJGGVhcBYgyAqOd3r0YHL1imRP5UEyj7KRBg3VxQDvJIIoDBBvB0U6iJ3vnRmdM1DvhHZ5f3qB7DCe0E7NPwyoE9GlW3naR0CNop3tCz4pWT75LCvDauyH0nco0vtNOUiZItJOdseBop4A+iiN8dsVrhCkr+O1cK2eKOu0EDYwo0E5iJkjMwkNjlGmntTbvT821rqbsLc9el9ki54Y57VRgjPT+QcZYJ0v8op0sXr9Y4TwlUzvjr5mBK44/8sQF7WSHaAw1bIyBOe2kOGVQ0bIEG1JUZOMG5d5OyTihnWQQjdVkhIeew0/a6VbKeLGS2mpKplzIacsfL+kY007MQA5LO9UYo007xfTu11f1YpLakTEtgQfHXDyJOe0Ua4xEO9kZo007LWrdSEis2UwJU763WPbqp2TMaaeZSAKYthmxE81LhH8X7ZSZGbvQ6KSD7vZMCe07xZ+0BEY7fTdFop2UTPlNOznZHJy3YOp5cvKkhk3ZcZPW4IB2+miKtHZ80RQHyEZpaakAaCepMUtTNv9VTwuLXimndtxvOy5op0RE62zCg3UEQjv9EHpWoV65Q2/f7vV9pn03jMIF7WSMaBwlPBiHgCXtZE2IGa0zIpqSslTt+qpD5pK4op16IRqv3gTrZBdHtNOG6ALLqOof2vmVF2K/xE/5jjHtlGuCZLlAzC3HV9qJcNtpUk2mHdn/VYbiID9Fe1zQTswcApZ2AgIhK0+9TOgBtJNh0WSSklQ1bWeZz6ggz9ENGNNOHxcj0U6RiwVDO0mHiC68N2qyfoh8VR9CUKYJ6rQTdG6OAsHzejESwXN2Mb9oJwVDs/1jc5NpOW6XqpYIj3ZBnXaCxggUtIpE1Mpj8f8V7XQFLozhmnaCTro70U7QkNZ12ino56PBLy5S1Xc9uHHg/LNCTRRop6uoqdtPgOpusl+outWxSGvf6wf2T0ReqHdSN0+o5nqc013Stul9tfuIizoBTcKspnGqU7JHVQVolqxeoGY0Ii0MaBJhNYVlvzx9sb87OeLo0V0FixoGAU29WE23B20zGrsoXrvk+7mTapHzueG03nDm2j7prFK81CPN7ZvOSKmsSn2GgrmuwZnrPzjtH8Fpk6uNRjvGH9conm8t2xY2XkZgcJqPMxKc1suZH3Ca69P+FvOPuOqG51I/rt5s+QpFOG3OdvMFFIK1VmbflztW7ZmQigKctskZieUxdhYInLZS2kh248sIcr5YdHp6A7UYczhNCVEVwG9wM5HGCk4r1s7KKX4ZSouepbpw9d62ZtzAafVOSKbLdcLF6izf4bR7Ec3rr21coB2dRtts+f79fozhNGaUgaWLgCgjMDjtcpD4XTERa/IBQ5IeWb2AM7nDBk5TQhSnl7MA4bTZLuJ7c/aVq+3zXnWjfo6yOU7gNGafhlUI6NOsvK2G0CPgtOX2GXT9gbP148zOpB4ZW7mL73CakisSnObjIjg47XqWe/mQgGD1FG/zk4ekcjmTeTTgNGhgRAFOG++KhJh8d0EZTqvW6DdKbkmQXm7unkwvz1fDMIfTbrggvX+6C9bJEr/gtEPTzNc/Pa6tF2idlJdQtoLzu5exgtN8EI2xDBtjYA6n5elfTU7bFqedGTt93rnYvqo4gdNmIhqrHy56Dj/htPqkH8uTD7Wpxc5ImZS5NDf5T6bKKKBJzEAOC6e9dUEbTnudV3JVJOsNJTJ3SnXCtoIkzOG0ky5IcJqPC9pw2rTNUhcnbS0h+UkuTCBXqULm/RjAaQZIApgOd2EnmtcJ/y447cwj6TSrrzu1T53y0TO1XrFcYHCajDsSnEZx4zectkV+eWbg9zukXY6X8z8XLNyEAzhNyh1pqb/RDQeETUFBgQDgtO233likvDpPC+nzOf2VZCzn12thBaeVuSFZJwIP1hEInKajbBSyQURZw1+lbLwqXf0MLuA0F0TjUPBgHAKWcNqXG6tKvW40qgfMPPip94ovH3AFpxERjdfiinWyiyM47Z7oGtKty9H6cY/pqUSJQs6zYwQPp111RbJcCuaW4yuc9nzZRLEUS1FyxMOxySqie5P+nGxBAU5j5hCwcBoQCFl56g1CD4DTxokbiSnK7qZk194YyhhE0MEYTpPyQILTCtwFA6eRH7s+Wqyarldc9DHKbplVNupwGnRujgJwJeaBBFw9dOcXnNZ3Uj+S9uE6zTyRrHI7tZj7qMNp0BiBglYF7khaBbn/X8FpN+HCGK7hNOikuxM+BQ1pXYfTDAgrnujHLKGl0gdeUYmxkkKBdroFp+5/tNM/op1OPUra/DFou27J7AmZy/QlPgiMdrrhi0Q7hfryg3aqGPF8i7iICS1u3Z0F68TlJ6FIO8lkNxfutvLTKtz26rP7j8S+KNBOV32R4JCTvgKhncqlJV2OlvSi+n+c/mO4pO9QzGmnFERVAL/BzcwMK9ppkvDlH8tbC8n5j+eVKJxYX4Mb2skb0XQO2JhO4LRTlqubZ9RNMWr2h/C+9z/o0jCmnZhRBhZXAaKMwGinH6XhTxctv6ufX+z7ctOpPtE4oJ1SEMUJ9RUg7fSGsdpri0ke2d/rKymlz9eNOKGdvBEVAvo0K2+rJfQI2ildblbOgAltGscDducp7pQfyHfaKcUPiXYy9hMc7RSvNdUq4I0PJYYccqS6VksRddoJGhhRoJ0S/RCPovJDmXba+lpv6+1TqpSUV0sLjzrNwP4ork2I72/nh3WyxC/aSefj61miJ5brnlii5qSRKn4PF7STMaIx1LAxBua00xbHwRbVl5q009LMVEYuH/AFJ7STEqKxZHDRc/hJO92f0bh9VmGcbr4OvbowapgPxrQTM5DD0U4mAX5o006M64q1GcLrqAm9ex8Rcc8Wxpx2cmELwJN2MvZDm3a6Yb5sYdnqC9onDIYYWok9UcScdpqDJECqrB870awj/LtoJ93BUuX64Sb0pK2UnHUvYmoFRjtF70SinVR28pt2WmIoeUY9ajg5KHunPON9ThwOaKdDO5HWjv124gDZyMrKEgDtNMpHtk7W25Qa42kW3VYeUYEL2skN0Tor8GAdgdBOMY43+3ywdtRLkJ1oc9xRuxQXtJMuonFU8GAcApa0054FzbsSZ1tp+e+urDnXNjISV7STHKLxJLExHj5pp3FNCc0elYbkA3OVqsvET77HmHZq9UOy3DNcTFP4Rjs5LHXSf2BqrJn8cOqk+g0TXuKCdmLmELC0ExAIWXnqbUIPoJ08ZWTFGSfe0AO1/W41b+orgzHtNMIfiXZ6y53S8oV2si89/2Pnq7W0kr2Dtr1KHfUEddoJOjdHgeCR9kcieIT9+UU7XSQqlR4791p9f8ibOMobhfGo007QGIGCVm93Iml1R7CjJda00x24MIZr2gk66e5EO0FDWtdpp2tnalIuzfJWyxgd1WfDe5lWFGinu3Dq/kc7/SPaye6IXNxVz9X6QUvWL/0Qb/1YYLSTfCgS7fQshB+0U/8zdw+8DiygR+vHpwUd2RSEIu3kO7nYYLjxau20bHf5kqtnnFCgneRCkeAQyVCB0E4xF3rv8Hy9iB4V2av5uJOcJ+a0U2sIkiqA3+BmZoYV7TRiuN7CqP3G2oeXv71iGHDaATe0Uw2i6UqwMZ3AaaclwqFVAw4J0w+989sSot1MxZh2YkYZWFwFiDICo532BAzsR9kgr+sfEalLj7/wBQe0EzPYwIoDBBvB0U4XBrz+LFFRSMovSvWZ8dfWTJzQTjWICgF9mpW31RN6BO2UNuN+sZSCGjWcNMErWapfKt9pp9ZQJNopKVRwtBPp4O4HhRH7SQf6tjKmTZ5YjjrtBA2MKNBOn0ORmIWG7qVQv6edHlNvuvRNuUgLjfu8VWzZuzmY006XEd+/KBTrZIlftNOp0ySCzO5H6ruWNAyPOZ19ARe0UxKiMfZjYwzMaSd7VWrcgb/faAdUzPnydnb8apzQTlsQjbUaFz2Hn7STlThtyzKFe9Sg6WV3SzUXbsOYdmIGclja6W43s9Tf006ni48ITUuW0Du+bSzph1ipNua0UzlbAJ60U1Io2rSTyauF5wLu2+iUHli7WG1saRHmtFMgkgCpLqHsRPMe4d9FO03feN3p+sU4tdLJ4S9j1zwcJzDaqekAEu3kf4DftJPSY+ux8bG9dOKOb2/9uVpbAwe00+sDSGvHdQdwgGykpKQIgHY6uFepSWuWodo++b2epAUhp3BBO51FtE4WHqwjENqpz2HaWKXomTo+znJfrfcu3YAL2ikS0Tj+eDAOAUvaqb58acrPnbb0+I1Bz7ecG/8KV7STB6LxLLAxHj5pp4bomGMWqm/UYk/cDJMM13bDmHaiIlpOFXPL8ZV2+t5aZj9OI0gzWrL/ZOPBRedwQTsxcwhY2gkIhKw89T6hB9BOV5P766Z67aCGpH3tpxx80QBj2skhDIl2UgsTDO3kNkHuhEmSt258UMls8YnbnqJOO0Hn5igQPHZhSASPcRi/aKe5cy9u3trrpVbIsb9c24Tuu6JOO0FjBApaqSFqpRT2f0U7PYALY7imnaCT7k60EzSkdZ12miNZNzug2U4nPF3jXAOJNgUF2ukhnLr/0U7/iHZaFWU4JODocMq+BZEfl2wpiBUY7bQhHol2mhPPD9pJNezhZ33SFNqugOMFy8SOG6FIO93ZGjQ2tyFVM6+11uZ24MQ1KNBOnvFIcIhVvEBopya/1WI+B76o5ziUbrpSZj8Bc9qJjqgK4De4mZlhRTtpTLxal7l5JiXXOXGP2/Z1a3BDO8kjmm4QNqYTOO00f84KoqXsQp2QtSsXJcxgHMCYdmJGGVhcBYgyAqOdJk24OXLZICHtErJMfvkY8lcc0E50RHHmxAuQdrI8nH65aOwC6jEf3QlfGmuIOKGd5BEVAvo0K297ROgRtJNqzpbqJ4T16jviaqrGZjce4TvtRE9Aop1audMkvtFONXvTfJeucaIdCG0tWLZfRwp12gkaGFGgnXQTkJgFlQSUaSd/832kgcpraIezQ0c/CvkqhDntJIf4/pIJWCdL/KKdPk8pJ24epUFNaDRufvrgqQ8uaKfWeCRjPMNH+iNw2kn/x4onlD0DNNP0KdtOmB/ZiBPaqQbRWCWYTzP4TTud3ZttJDdMjRYvKm3k/nqYPca0EzOQw9JOUxLQpp0WKxhHiwQUax5vLG/wclvqizntJM0WgCft1NrNTPT3tFPU8/o+puaplLAPuU6TSbf+wpx2ehiPRDud7Ug0Gwj/Ltrp7v1503Pv3ddIH1PbrKe/5qLAaCeNRCTaqT6B37RT7prLsifLDquHfy+cuiSseQMOaCe1RKS1Y6VEHCAbcXFxAqCdqPJidZ80lukFyQ3u9eZQeDEuaCcZROv0woN1BEI7lddIvtO8oqEduWrFg4Sixx64oJ2aEpCMU4/NTANHtJNXIz3qXsNNjT2quSuXhw6k4op2qkI0Xi7m00Qc0U6+t3Iq6bL1Osnz/XQMtpnGY0w7xSJaLhBzy/GVdiIXry87p/xUe691iGdTxLxMXNBOzBwClnYCAiErT31M6AG0k+V1PWtzxlD1PRIPZQ/KjMP6bKeyRCTaKTRRMLTTqh+ZRcsX3iDtaBjzJP3k9mmo007QuTkKBM/JRCSCJyWRX7ST+sVP2hpNcbQdZk31J0b+1Rt12gkaI1DQKhRRK2/B5qFY005P4MIYrmkn6KS7E+0EDWldp532Xbow/anMfdqhk/Tw/B0l31GgnZ7CqUu0HZfvvyeAHHImnXrwayFn1bS3IcPBcj2nujDLQnBdeDCJuM7ejUF0A+/EEpD3HviWNieZxRM1o28FPpvqJi3H40G4X/r3Ee781QMhfjl6h966ZtW5J4/8w14bAfRLu3cV7eOyN7TXgstsCu8qWJI/w73kSyV2GvUXa6YkGekP/PDtgi9uJacOrUSQXGkoOxV6jnvJP5p8Pb0zwJu2bdCLaq/nhSNxK/nFqUiSp09lS96Ie8lHZVkdCdA9Tdp7T9xg84Gy0biVXIyGJHkjlS35C9xLvl5H4bKBzz5938uStmofxbNwK/l3OyTJ6+3Ykr/EveQ68m50SfGRpKzw/rarfZ6l4FbywO1Ikm/azpb8Fe4l3+Agd8xztYJmicTpG+Yrv47CreSJQUiShwaxJX+Ne8lvt6y9LpanTvcdN9hUaUjtJNxK3hSNJPnDaLbkb+Akn5FLJ89RNKeUZHrTdjVl1kIKIoDYbs4ORCbN6c69xtgbRmgVTS9gKmbdTguyVu5Zt2oHtphbB9Y4OQN/A+Y+rI0KXVt/dFFblLdnf5lGcsn4S8fLmpqRnphHCYejvYtKewOT6CwzIB0/S+aB/xPBreumFXzA/63m5y6ZJfdKM+yZUZz1SkYSivj/a2/bLxapRygnRB9q2IkGC/2hL7oACgWBCjWRgH9AFWppV4irpsqWqIvo31h1Th9irT3RQf+aDGI8yjxVXKMdke8sJa15qkqSdPtyqSYnGQDjKOzraFdcy/JYQhF51WOIQGvT4gouNqSbQo1YzABXSpkKcfY73gote7+y2WipiVbiI7f16TF+JZwr26ybca9ssxv4oZHBYiSNoM4k/A80YqJgLOob0Ol3XtR6vaFI73orOWLjsykl1ZU/OfsieDNuhViX+aGPlCmSPi4m7OrAW7jAP7FtmEwGUUQzj9z0jSFryxn4+1Lt3T1gt57BlexH0xiW7mvd2rd+tbNK7dHdAbhb14K78sDh7xJKx1HzlEhzSmyWXYB9Km5cuVNjF3X0AgmKpYCO5YCOD6E6uoDnJizhCuvdxJXFyZbuDKYAPN/3hN7EjwfPntHezVgw6t5wUc6v5OsFvhLXi7Zf/V18hwa9P4zvdoBURFCqCCC+l0GlGnWCKRVsfOfJcdOZa26gg9h7MBzdwb2FVJ4auZavezqtQp4cEtOboSJm7jOISYAD767p5eLG6KgXMyvNZpM5Vy8ETb5J5bN0AncYcOnkn8fUidU137G6ElfX7DXtI0ny3FVKgorKHaHMcWdEqPZW7La4xqhRK6eZUjNF99n/aJTghJBYlFw7n931fkvUZrRnau2kOBFMSRjdzst81EUK0sY5k9Kua466djpOCv7JuIGBzq3dyDhijQClT/LqvKAdygy7lZMRO3IyW95y8D4p4IYrqY3srnkwytngFnXuHx2yx98UzQIQzNuIlaJxuWZju2DdWvYergHxF1A0eEJ3+uVVj8poATrhMsYpRvnKTphuNsjKY6khxaujgmMooAarozYRYMbQsMZPUZNNAqmFF/RPa/+M5VxLkPgVnrhXveFmqNK/Nm87ERkdN5DgDnW9SZPJitO61DOV5GfKnKPJaMUyypc53iCdhHtM7v2Vv9q6gXgQVwKy1vFa1KaATra8on/HDi/2aiM7OknogD2Va/WqD/Oyjg27Z0S0eRfFBZvp5Ccfpas9VbzLbheCae+rz/Rnrp4j1n79143Nbar2CpWKaxS9HUbrrzj4avvzMB/3d+Fj8C+tgA7hZm9p5cC7G7Q239+ta1ihE1WlkjH7gTtnBJcwZX2USOKyhhCJqxcIQUIGdKj80woDYE0CaM2pJB6JpgM46q+o6KSREFoaDVN96/tXvzi9vSK7eol8TsiC0YjMrRH5txpBwxAKGgE+jaARcXkFywE7HAkpqg5ph4nAePorAPAOqDfDhkzRnEA9qOsrlmWcw3nEn2j7bbgDKus62gHVII/lKy0kcGIC0eFGLlMlVkBthguo0g17NAbNuaIe9/fj0syqdZwHSgqRea+/D2zHcnhISZBob+Io07EoHq7yHc8FeiMGMH+2YWaoTBLJEcS8XBzsreEPIAjKTo7wlt5HDb6l5v100p19kHfoist21RYd/BrEFsSiCoJMcgVYiQEHN5bq7/+R6u3JisCV/4v1C93BJNTZwQF4fjBqAJ3ClgE8BXszHe+dn9dNVeyJaYmaRw8FHkn5mq4igL1AcKYoAwkbGtQUH/6RKfqaA1I4ujg7MZw8BG6QIabtpZKN6zf/egqe6pvdW7+e5hVITiONOSRUPXcp7Dtwz+E7N6JtCbHiCsLUAsASJZ0t8bEnh6Ljt/eHjvPxJSeOP3OgfutuFYxCEeEl1P8/9WT/v3Ri5jWrb4q6R4V+VMTX7niBI/93aYb6/+ee7P8iD0IbUosG6RVOebGV/HPma4z8v3FQJcT/v/Rk/y+7edLbzFiKdPLv1Js3nwpRcOT/GtKVEP9v6cn+T5sw9Jjlh/NaQbfy7o60eFyDkf87KEP9/2tP9n9hqsswy0+a5JO2ypmbrj0k4Mj/q6ZB/b+1J/v/B5eDUflL8tSy3tcs/vlObjJG/p+oC/X/bz3Z/6UNX/q/lStUL9UtdZ+SaLsPR/5PoEP9/3tP9n+NrTteBPzw1IwrqrO5PYxhg5H/+6+C+n9bT/b/uDipeZ/ER5MyRAfXjBywqRZH/v/dHur/P3qy/4u+LM8lTzmrcVjXTE9tw9bVGPm/7jao///syf5v92rT34ueDaYXnF29Y3fDkEM48v9+O6D+D8rWY/3/Tsx0TQVNR7WUccaPl1T+9MDI/5fsg/q/0D9S/V/i/wduhgW9ILzTKN39YFORXvxLHPm/bDDU/4V7sv8vn1r4lShrqxa6Opfmb6EuhpH/p0RB/V+kJ/u/gZTCTIpqukYANWFgTKtoDI783ykG6v+9/pEl2jc8C9wGg34xc+4MW0cG3MmnK3OovSm+z9W3TVQsnTNwfg2PZ+ex/sW8jLbqIFcUa91R//8f true iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvwAADr8BOAVTJAAAAJhJREFUSEvdk4EKgCAMRPfF9gn9WX9Wq5MtEmdKbQQ9GClud4cY/Q6WbwgQ13LnKh5mAsKEle8MeCLm1C9pb2I2QHxNtKC2RLNVeiYjTWyDIxkEZPuKykDTj6QboTZwTA8KA+/0oDRwTg9OgwhxUBh4Xo2SDaLSg5waBrJ3J//uL66mG4zxNGX9BMzezmuDR4UQKg5CxQ2IduVGkrvn0vkHAAAAAElFTkSuQmCC 3640aa4f-62eb-4d63-8052-a0e09732f02d true DIFERENCE CURWATURE LINEAR GRAPH DIFERENCE CURWATURE LINEAR GRAPH false 20 106c5295-4ab4-4aa6-aa77-17b1cabe660e 17ab48d2-bcb8-4439-9ae7-4711deb61155 1d618bec-21b8-4413-b9d0-b0ca022e064d 26784ca3-df66-4613-b760-ac9c1e2d63e1 3a66ce4a-5df0-4133-b5cb-55a024af3eb7 40b9031e-c91b-4327-8c44-ba17ee3528fc 63c4f63f-3b9c-4c9e-839e-410d31706448 6536ba36-0f3e-4855-9e12-fd57d967ea8a 6ecb5ad5-e259-4659-a211-088cf8e4b477 74ca0538-baa6-4806-a992-faf5fad6d48e 78cc69e8-a743-4023-b94a-9a8aa828d39c 82d3c096-76ee-44d4-8798-24f756494b5e 8548dc1b-91e3-4cc0-b43b-091e2316c9d3 8cd4f22b-f743-4148-bcb0-88afd63f304c 8e61e44e-6641-409a-9e86-3d6a5f8855d8 94ec5cf6-ef20-4c96-b553-c34d022171bb 9c9f7ec6-458c-4c08-989a-a545ac4b25c5 abbd5fd2-67ff-46d9-a817-2364a4a2ccb6 c5391385-d15b-49a5-ac81-81d3ed1c0180 ee3af77c-4fd8-4c52-a97e-5a973605dc48 e294df03-baaa-4b12-b92f-e97f42ff34ec 45329fda-4528-406d-a823-54e35ac6ff74 f9b9305d-1e20-4067-946a-b44d88604308 357ceb68-e651-4e13-b8c4-6a838be2149a 34281050-3848-44ac-894c-a3119ffa069f 9096d595-00e9-44ef-bf8b-df7cba4ba2ea 9d9970f3-5ab6-40b5-b0f2-d257ffef222d b4c2ea06-2f42-44c4-9b4a-584b407a7f6a 7979dd58-784d-428c-ab41-1f9a01cb3b5b ad15254d-f361-46c9-90d6-b5db1b60e3d2 e9837f44-fe89-4576-a1ba-d864d9176564 88ea5216-22ee-43b9-bf4a-bf732fa4678f 3c10a1a1-09f5-411d-ae06-13d21b0f7cd7 9492d9b1-8423-4285-a424-c395dc7f8b36 d134b7cd-fb62-4a2b-a901-fec5a2d783e9 98a7b290-1680-4c8f-91d6-4080e52ada8f 693656d3-ab20-45a4-a99a-8ca5a8f9ac36 80bcd5c0-5458-4110-bc35-aad5d5e50148 054cb35f-8548-43e7-8129-2bbf3a113dd2 17704c02-f561-4245-bc67-2eaf7cd1e000 1581 1459 110 404 1677 1661 20 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 0 Vector {y} component 3a66ce4a-5df0-4133-b5cb-55a024af3eb7 true Y component Y component true 0 1583 1461 82 20 1624 1471 1 1 {0} 8 Second item for multiplication 1d618bec-21b8-4413-b9d0-b0ca022e064d true B B true 0 1583 1481 82 20 1624 1491 Vector {y} component 40b9031e-c91b-4327-8c44-ba17ee3528fc true Y component Y component true 0 1583 1501 82 20 1624 1511 1 1 {0} 7 Second item for multiplication 17ab48d2-bcb8-4439-9ae7-4711deb61155 true B B true 0 1583 1521 82 20 1624 1531 Vector {y} component 26784ca3-df66-4613-b760-ac9c1e2d63e1 true Y component Y component true 0 1583 1541 82 20 1624 1551 1 1 {0} 6 Second item for multiplication 6536ba36-0f3e-4855-9e12-fd57d967ea8a true B B true 0 1583 1561 82 20 1624 1571 Vector {y} component 8548dc1b-91e3-4cc0-b43b-091e2316c9d3 true Y component Y component true 0 1583 1581 82 20 1624 1591 1 1 {0} 5 Second item for multiplication 78cc69e8-a743-4023-b94a-9a8aa828d39c true B B true 0 1583 1601 82 20 1624 1611 Vector {y} component 82d3c096-76ee-44d4-8798-24f756494b5e true Y component Y component true 0 1583 1621 82 20 1624 1631 1 1 {0} 4 Second item for multiplication 63c4f63f-3b9c-4c9e-839e-410d31706448 true B B true 0 1583 1641 82 20 1624 1651 Vector {y} component ee3af77c-4fd8-4c52-a97e-5a973605dc48 true Y component Y component true 0 1583 1661 82 20 1624 1671 1 1 {0} 3 Second item for multiplication 74ca0538-baa6-4806-a992-faf5fad6d48e true B B true 0 1583 1681 82 20 1624 1691 Vector {y} component abbd5fd2-67ff-46d9-a817-2364a4a2ccb6 true Y component Y component true 0 1583 1701 82 20 1624 1711 1 1 {0} 2 Second item for multiplication 106c5295-4ab4-4aa6-aa77-17b1cabe660e true B B true 0 1583 1721 82 20 1624 1731 Vector {y} component 8e61e44e-6641-409a-9e86-3d6a5f8855d8 true Y component Y component true 0 1583 1741 82 20 1624 1751 1 1 {0} 1 Second item for multiplication 8cd4f22b-f743-4148-bcb0-88afd63f304c true B B true 0 1583 1761 82 20 1624 1771 Vector {y} component 6ecb5ad5-e259-4659-a211-088cf8e4b477 true Y component Y component true 0 1583 1781 82 20 1624 1791 1 1 {0} 0 Second item for multiplication 94ec5cf6-ef20-4c96-b553-c34d022171bb true B B true 0 1583 1801 82 20 1624 1811 Number of segments c5391385-d15b-49a5-ac81-81d3ed1c0180 true Count Count true 88cf909b-1dfc-4acd-9ac8-315b06ce095d 1 1583 1821 82 20 1624 1831 1 1 {0} 10 Contains a collection of generic curves true 9c9f7ec6-458c-4c08-989a-a545ac4b25c5 true Curve Curve true 5d1cff17-fdb4-4fdc-8366-b759fcf7a3ba 1 1583 1841 82 20 1624 1851 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 5d1cff17-fdb4-4fdc-8366-b759fcf7a3ba Relay false ffc7114c-425e-4e46-9780-4f5439b2a045 1 1354 1843 40 16 1374 1851 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object e2df2e1d-44d3-46a6-865e-cf271d98e1ba Relay false ce7a6538-1307-4799-aa09-c6d0b388aa6b 1 1343 1787 40 16 1363 1795 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 256fa74d-8451-4366-b97f-fb31ceb7790f Panel false 0 0 0.0003959052400654102 -312 1638 160 84 0 0 0 -311.7244 1638.12 2 255;255;255;255 true true true false false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object b8db01a5-a165-45a8-b68c-2fc89acd8cfd Relay false 9f667c48-eb1e-47a4-8db2-61666d1ea383 1 -351 1399 40 16 -331 1407 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 2d69de74-3ac4-4786-bdb1-2f69d7dda67c Relay false 3e1b6d63-9b79-46a8-8d27-80596e7d8b16 1 -353 1501 40 16 -333 1509 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 46d30a93-1bfb-4b58-b472-667a267525d3 Relay false 79b1faa2-503e-498d-9a62-75f1113025b9 1 -355 1551 40 16 -335 1559 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true cb493613-0e2e-4e2b-81d7-7ea202151906 Format Format -297 1363 130 64 -205 1395 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format 2eb68e74-837d-4e46-8c99-02a982f20cf7 Format Format false 0 -295 1365 78 20 -256 1375 1 1 {0} false {0:R} Formatting culture 5252966c-5c4f-4a9b-b762-3c659429c056 Culture Culture false 0 -295 1385 78 20 -256 1395 1 1 {0} 127 Data to insert at {0} placeholders 52f1eacc-39cf-4144-9ece-79646d8595e5 false Data 0 0 true b8db01a5-a165-45a8-b68c-2fc89acd8cfd 1 -295 1405 78 20 -256 1415 Formatted text b0ca4533-8708-49c9-abb0-994600403593 Text Text false 0 -193 1365 24 60 -181 1395 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true d43e0888-6c1f-49e3-be0f-bb7d829fb494 Format Format -297 1447 130 64 -205 1479 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format a864facc-351f-4484-977c-3999f7848a52 Format Format false 0 -295 1449 78 20 -256 1459 1 1 {0} false {0:R} Formatting culture c8912e3a-4df0-4d47-a0f1-a88a53ededd0 Culture Culture false 0 -295 1469 78 20 -256 1479 1 1 {0} 127 Data to insert at {0} placeholders 497bd5e0-b27c-4940-9b99-25379961ed41 false Data 0 0 true 2d69de74-3ac4-4786-bdb1-2f69d7dda67c 1 -295 1489 78 20 -256 1499 Formatted text 413475f9-4f88-4628-8645-62eae4dd9722 Text Text false 0 -193 1449 24 60 -181 1479 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true fffead86-943d-46b8-8937-a2232dae7463 Format Format -296 1530 130 64 -204 1562 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format ffb10974-89f5-42f1-8068-026964edf4b7 Format Format false 0 -294 1532 78 20 -255 1542 1 1 {0} false {0:R} Formatting culture 47e6c6fb-dd94-42a0-aadb-40c2cb7a1ef5 Culture Culture false 0 -294 1552 78 20 -255 1562 1 1 {0} 127 Data to insert at {0} placeholders d4ed8801-7d28-4eb4-88d3-57878affb737 false Data 0 0 true 46d30a93-1bfb-4b58-b472-667a267525d3 1 -294 1572 78 20 -255 1582 Formatted text a6d6d315-6584-4d1c-9c7a-258d37fd4a9a Text Text false 0 -192 1532 24 60 -180 1562 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 375085a7-85bd-47e7-800b-36aa5972104d Relay false db90c791-fd03-47f7-9d9f-fce64245413a 1 91 1571 40 16 111 1579 290f418a-65ee-406a-a9d0-35699815b512 Scale NU Scale an object with non-uniform factors. true 8fda1e13-53c9-4af2-94b7-c8a6b46ddc04 Scale NU Scale NU 291 1328 226 121 453 1389 Base geometry 67f67125-e32e-46ec-968c-e49e99f471e9 Geometry Geometry true 4be4d01e-f1cd-4466-afb7-4c701c8415b6 1 293 1330 148 20 375 1340 Base plane c052d3d4-ce54-4870-82d8-00e7ad59458d Plane Plane false 0 293 1350 148 37 375 1368.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Scaling factor in {x} direction da1a007e-69ac-4e7f-aac5-a78ca7c560ae 1/X Scale X Scale X false 9f667c48-eb1e-47a4-8db2-61666d1ea383 1 293 1387 148 20 375 1397 1 1 {0} 1 Scaling factor in {y} direction a5a32c25-5253-47ff-b408-cb47a62cd982 1/X Scale Y Scale Y false 79b1faa2-503e-498d-9a62-75f1113025b9 1 293 1407 148 20 375 1417 1 1 {0} 1 Scaling factor in {z} direction f4001ed1-1bec-47f1-b6cf-ad32e8932b74 Scale Z Scale Z false 0 293 1427 148 20 375 1437 1 1 {0} 1 Scaled geometry a35486f2-4dac-4ca8-ba16-9b13976474ec Geometry Geometry false 0 465 1330 50 58 490 1359.25 Transformation data 32b7bf48-2611-46ca-9a94-15871f5f8af5 Transform Transform false 0 465 1388 50 59 490 1417.75 310f9597-267e-4471-a7d7-048725557528 08bdcae0-d034-48dd-a145-24a9fcf3d3ff GraphMapper+ External Graph mapper You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode. true be4e0dac-54d0-43df-a9f9-d245692a9442 GraphMapper+ GraphMapper+ true 781 1162 114 104 842 1214 External curve as a graph 32131412-40a4-4796-8cb5-0049955e4cd6 Curve Curve false 7f6b440a-d60d-4007-bfa5-8cdf447f299c 1 783 1164 47 20 806.5 1174 Optional Rectangle boundary. If omitted the curve's would be landed 10504c35-4cb1-4ccf-ab0d-97db809c54d2 Boundary Boundary true 5c358a28-dd5e-43a3-b441-5bc768492329 1 783 1184 47 20 806.5 1194 1 List of input numbers 71789790-5c60-4473-a7f4-dc3bc01f717d Numbers Numbers false 3120c589-9577-4cd1-8824-fe288c8306d2 1 783 1204 47 20 806.5 1214 1 9 {0} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 (Optional) Input Domain if omitted, it would be 0-1 in "Normalize" mode by default or be the interval of the input list in case of selecting "AutoDomain" mode b335bfa0-fb3b-468a-b09b-708cf5b1776f Input Input true 3fbe06f6-6671-4795-ad59-b3606b8a1575 1 783 1224 47 20 806.5 1234 (Optional) Output Domain if omitted, it would be 0-1 in "Normalize" mode by default or be the interval of the input list in case of selecting "AutoDomain" mode d8d4e7df-a90c-4325-9726-4dfc7089cb9f Output Output true 3fbe06f6-6671-4795-ad59-b3606b8a1575 1 783 1244 47 20 806.5 1254 1 Output Numbers d0fd8b08-647a-44b7-8722-3f9265acdd47 Number Number false 0 854 1164 39 100 873.5 1214 11bbd48b-bb0a-4f1b-8167-fa297590390d End Points Extract the end points of a curve. true cb1ce8fd-0f41-450f-9d53-79f7515bfb72 End Points End Points 180 953 84 44 224 975 Curve to evaluate 94e0bad3-b417-489a-8c29-b38c0b7f7de1 Curve Curve false 7f6b440a-d60d-4007-bfa5-8cdf447f299c 1 182 955 30 40 197 975 Curve start point b22df60e-f09e-49d7-a1e0-8f2b44f65ead Start Start false 0 236 955 26 20 249 965 Curve end point aea14296-171a-4771-9a84-390715b4afe5 End End false 0 236 975 26 20 249 985 575660b1-8c79-4b8d-9222-7ab4a6ddb359 Rectangle 2Pt Create a rectangle from a base plane and two points true 7609d6ff-b013-41c3-b0e6-1f1ea2ecfa4d Rectangle 2Pt Rectangle 2Pt 374 1011 198 101 510 1062 Rectangle base plane 04b12ec4-09ce-4bce-9c5e-563bb5c6f518 Plane Plane false 0 376 1013 122 37 437 1031.5 1 1 {0} 0 0 0 1 0 0 0 1 0 First corner point. e4032d1f-5563-407f-8d59-63c24b553fdf Point A Point A false b22df60e-f09e-49d7-a1e0-8f2b44f65ead 1 376 1050 122 20 437 1060 1 1 {0} 0 0 0 Second corner point. 1598ee77-7a85-4dc4-b49d-da6593b2f937 Point B Point B false aea14296-171a-4771-9a84-390715b4afe5 1 376 1070 122 20 437 1080 1 1 {0} 10 5 0 Rectangle corner fillet radius c86be701-5245-4b5e-b8c7-736354a2aa02 Radius Radius false 0 376 1090 122 20 437 1100 1 1 {0} 0 Rectangle defined by P, A and B 5c358a28-dd5e-43a3-b441-5bc768492329 Rectangle Rectangle false 0 522 1013 48 48 546 1037.25 Length of rectangle curve fa4073c9-fd23-420d-853c-3a12ebaa1776 Length Length false 0 522 1061 48 49 546 1085.75 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 45977af4-69a0-4e08-8746-e247c5098c77 Relay false 8646f974-91ff-408b-aa4d-7fb4f8df1cf2 1 573 1573 40 16 593 1581 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 3e0631e2-acee-4952-b380-ca85b2802769 Relay false e6883f83-7321-4869-ba03-b28db7c15488 1 871 1633 40 16 891 1641 f44b92b0-3b5b-493a-86f4-fd7408c3daf3 Bounds Create a numeric domain which encompasses a list of numbers. true 334df1fa-36cc-47a9-837d-60ac1be4a50d Bounds Bounds 620 1261 110 28 678 1275 1 Numbers to include in Bounds 37c1ef27-099c-4ee3-95bb-58ae35c8919d Numbers Numbers false 3120c589-9577-4cd1-8824-fe288c8306d2 1 622 1263 44 24 644 1275 Numeric Domain between the lowest and highest numbers in {N} 3fbe06f6-6671-4795-ad59-b3606b8a1575 Domain Domain false 0 690 1263 38 24 709 1275 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true b8dc634e-a51c-4f2c-81bc-3d5445f2b76d Multiplication Multiplication 452 1146 65 44 472 1168 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication e5ee8871-037b-4ec7-bea4-30847970cc8b A true 45977af4-69a0-4e08-8746-e247c5098c77 1 454 1148 6 20 457 1158 Second item for multiplication 2d435093-1ce4-49b9-ba6e-e3467082b029 B true ac864993-ecc7-4645-ae0f-6a08f6579f35 1 454 1168 6 20 457 1178 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 65536 Result of multiplication b716b10c-3aa5-40ed-997d-6e57c2ed9dd8 Result Result false 0 484 1148 31 40 499.5 1168 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 749a1d6b-ce44-4374-b73f-e79001f96855 Division Division 939 1227 40 44 959 1249 Item to divide (dividend) dd92453a-f264-451b-82c3-8fcf92690c14 A false d0fd8b08-647a-44b7-8722-3f9265acdd47 1 941 1229 6 20 944 1239 Item to divide with (divisor) 034550cc-e2fc-4b88-bf69-428042f4b309 B false ac864993-ecc7-4645-ae0f-6a08f6579f35 1 941 1249 6 20 944 1259 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 65536 The result of the Division 2e337179-3366-41e1-91ce-b34ea88fe906 Result false 0 971 1229 6 40 974 1249 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 3120c589-9577-4cd1-8824-fe288c8306d2 Relay false b716b10c-3aa5-40ed-997d-6e57c2ed9dd8 1 540 1176 40 16 560 1184 cae9fe53-6d63-44ed-9d6d-13180fbf6f89 1c9de8a1-315f-4c56-af06-8f69fee80a7a Curve Graph Mapper Remap values with a custom graph using input curves. true b1b3cfd0-fdbe-4d56-bd37-08900a0112c6 true Curve Graph Mapper Curve Graph Mapper 745 819 181 224 840 931 1 One or multiple graph curves to graph map values with ac290670-5842-4a15-aa53-834d345d7f27 true Curves Curves false 7f6b440a-d60d-4007-bfa5-8cdf447f299c 1 747 821 81 27 787.5 834.75 Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary 83b94a39-1f18-4e8d-99e0-2385db6d3c47 true Rectangle Rectangle false 5c358a28-dd5e-43a3-b441-5bc768492329 1 747 848 81 28 787.5 862.25 1 Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis 909ffa9a-b5d6-46dd-a885-b7464e5e7d73 true Values Values false 3120c589-9577-4cd1-8824-fe288c8306d2 1 747 876 81 27 787.5 889.75 Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used) 776f816b-cff2-40a1-aa86-2920a323ac4e true X Axis X Axis true 3fbe06f6-6671-4795-ad59-b3606b8a1575 1 747 903 81 28 787.5 917.25 Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used) 385402d6-4b0c-476f-bd64-6dd764131ae5 true Y Axis Y Axis true 3fbe06f6-6671-4795-ad59-b3606b8a1575 1 747 931 81 27 787.5 944.75 Flip the graphs X Axis from the bottom of the graph to the top of the graph 86ecd77a-d369-44ad-971d-fabd4c06ee62 true Flip Flip false 0 747 958 81 28 787.5 972.25 1 1 {0} false Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle 98212030-c666-417d-a30f-04baeb41e9f2 true Snap Snap false 0 747 986 81 27 787.5 999.75 1 1 {0} false Size of the graph labels 48463b98-be10-4297-b07d-3846425e8839 true Text Size Text Size false 0 747 1013 81 28 787.5 1027.25 1 1 {0} 0.0625 1 Resulting graph mapped values, mapped on the Y Axis e6565b4b-cef3-477d-8812-bc8b999f9b4d true Mapped Mapped false 0 852 821 72 20 888 831 1 The graph curves inside the boundary of the graph 43464001-9d23-4753-82d1-602f8071c817 true Graph Curves Graph Curves false 0 852 841 72 20 888 851 1 The points on the graph curves where the X Axis input values intersected true d9ac758b-cc34-4638-94d5-5cf5361b3e1f true Graph Points Graph Points false 0 852 861 72 20 888 871 1 The lines from the X Axis input values to the graph curves true 445f9076-c008-41b1-97ef-60af947fc621 true Value Lines Value Lines false 0 852 881 72 20 888 891 1 The points plotted on the X Axis which represent the input values true aa497984-6e75-4d21-b4bb-b5ae576c4479 true Value Points Value Points false 0 852 901 72 20 888 911 1 The lines from the graph curves to the Y Axis graph mapped values true 1b6aa626-e209-48f0-a15f-ab7dc9645ef4 true Mapped Lines Mapped Lines false 0 852 921 72 20 888 931 1 The points mapped on the Y Axis which represent the graph mapped values true 5067a63b-73bd-4f7f-963b-3a7b4c4dfd4a true Mapped Points Mapped Points false 0 852 941 72 20 888 951 The graph boundary background as a surface 5b3dfa57-e204-4444-9e92-0611bf00405a true Boundary Boundary false 0 852 961 72 20 888 971 1 The graph labels as curve outlines 59e9cbda-c078-408f-b017-57e4f5e3ce1f true Labels Labels false 0 852 981 72 20 888 991 1 True for input values outside of the X Axis domain bounds False for input values inside of the X Axis domain bounds 82eee386-327f-4901-8478-a464457293ac true Out Of Bounds Out Of Bounds false 0 852 1001 72 20 888 1011 1 True for input values on the X Axis which intersect a graph curve False for input values on the X Axis which do not intersect a graph curve 72a6c943-24f0-4165-aee6-1e12264947eb true Intersected Intersected false 0 852 1021 72 20 888 1031 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 7f6b440a-d60d-4007-bfa5-8cdf447f299c Relay false 2a58a381-2731-4ecb-9622-86d5b7e6f397 1 278 884 40 16 298 892 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true 3bc19fd1-a14f-4afe-8c79-98d06f72efe6 Scale Scale 24 837 201 64 161 869 Base geometry 91fac79f-9c37-49f8-9da4-3c31c7380fd6 Geometry Geometry true 6ed1c523-bb4c-4547-8b1e-fef80e576ef5 1 26 839 123 20 87.5 849 Center of scaling bb906599-6948-4240-be61-b8f2db1129f8 Center Center false 0 26 859 123 20 87.5 869 1 1 {0} 0 0 0 Scaling factor 69b2eb88-56be-4742-85ab-abc16a75d511 Factor Factor false ac864993-ecc7-4645-ae0f-6a08f6579f35 1 26 879 123 20 87.5 889 1 1 {0} 65536 Scaled geometry 2a58a381-2731-4ecb-9622-86d5b7e6f397 Geometry Geometry false 0 173 839 50 30 198 854 Transformation data 2d174878-52b5-45af-9e48-245182783d6b Transform Transform false 0 173 869 50 30 198 884 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 6ed1c523-bb4c-4547-8b1e-fef80e576ef5 Relay false fe2c7fd3-a20d-49fe-8b1d-09361e90e45d 1 -65 851 40 16 -45 859 fb6aba99-fead-4e42-b5d8-c6de5ff90ea6 DotNET VB Script (LEGACY) A VB.NET scriptable component true eea9ee61-f5d5-4cd8-9392-512823c0542f DotNET VB Script (LEGACY) Turtle 0 Dim i As Integer Dim dir As New On3dVector(1, 0, 0) Dim pos As New On3dVector(0, 0, 0) Dim axis As New On3dVector(0, 0, 1) Dim pnts As New List(Of On3dVector) pnts.Add(pos) For i = 0 To Forward.Count() - 1 Dim P As New On3dVector dir.Rotate(Left(i), axis) P = dir * Forward(i) + pnts(i) pnts.Add(P) Next Points = pnts 1124 3341 104 44 1179 3363 1 1 2 Script Variable Forward Script Variable Left 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 true true Forward Left true true 2 Print, Reflect and Error streams Output parameter Points 3ede854e-c753-40eb-84cb-b48008f14fd4 8ec86459-bf01-4409-baee-174d0d2b13d0 true true Output Points false false 1 false Script Variable Forward 67372680-60ae-44bc-846c-4865450df977 Forward Forward true 1 true c3ae31b2-8e2f-4176-a84e-b43814396e6c 1 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 1126 3343 41 20 1146.5 3353 1 false Script Variable Left 78e99550-605c-4e97-9f4b-9c8279389f48 Left Left true 1 true 9d55f829-b54c-4866-9ced-6f44b43868eb 1 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 1126 3363 41 20 1146.5 3373 Print, Reflect and Error streams 6db48831-5b42-4e0d-961a-891b10ec40c3 Output Output false 0 1191 3343 35 20 1208.5 3353 Output parameter Points 9b42fff0-cfd4-4077-bd34-da7089713006 Points Points false 0 1191 3363 35 20 1208.5 3373 e64c5fb1-845c-4ab1-8911-5f338516ba67 Series Create a series of numbers. true 2c82a4ea-3f85-4c1a-b5b5-2017900737e6 Series Series 505 3500 89 64 549 3532 First number in the series 7d70527c-3b5e-4035-9c97-3a4e66a71ebb Start Start false 8e6ac10d-2238-4545-8ff2-442c876cd85c 1 507 3502 30 20 522 3512 1 1 {0} 0 Step size for each successive number ea1865d1-db8f-4aab-9811-0b5402206762 Step Step false 8e6ac10d-2238-4545-8ff2-442c876cd85c 1 507 3522 30 20 522 3532 1 1 {0} 1 Number of values in the series d8a497e7-23e5-4d55-a9ef-4b474147df58 Count Count false dc0b9699-7043-422e-b460-d535b9da419e 1 507 3542 30 20 522 3552 1 1 {0} 500 1 Series of numbers e552844e-beed-45c9-8a78-a5fe409f581c Series Series false 0 561 3502 31 60 576.5 3532 dd8134c0-109b-4012-92be-51d843edfff7 Duplicate Data Duplicate data a predefined number of times. true 5f38726a-35c0-4b76-901e-23bf35d464c4 Duplicate Data Duplicate Data 496 3343 102 64 559 3375 1 Data to duplicate 47caabbf-b255-4c5a-a4a5-150c750eda62 Data Data false 9ea38a50-4760-46d2-8f7b-283ff9e5b2d3 1 498 3345 49 20 522.5 3355 Number of duplicates 531ac858-39f2-4fd7-9685-bece6d955799 Number Number false dc0b9699-7043-422e-b460-d535b9da419e 1 498 3365 49 20 522.5 3375 1 1 {0} 500 Retain list order d7a02fc3-4ca1-4ecc-a967-35c15da0554c Order Order false 0 498 3385 49 20 522.5 3395 1 1 {0} true 1 Duplicated data 64514e59-9473-4a0c-b0b8-55f5423b430c Data Data false 0 571 3345 25 60 583.5 3375 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 7e1bc525-0327-427c-afd4-d8b6c2743acb Digit Scroller . false 0 12 . 11 1024.0 -29 3493 250 20 -28.90819 3493.851 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers c923a52e-eef5-4213-b91c-a99d00b79828 Digit Scroller ЯR false 0 12 ЯR 1 0.12220574352 -25 3395 250 20 -24.20879 3395.534 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 1db31240-f2f8-4f56-bfd1-c8e86a7d0108 Digit Scroller ° false 0 12 ° 2 0.0003860762 -27 3438 250 20 -26.29068 3438.793 a4cd2751-414d-42ec-8916-476ebf62d7fe Radians Convert an angle specified in degrees to radians true cbe7bd82-cc9b-4870-9ac3-7aa5aa5a6971 Radians Radians 350 3401 108 28 405 3415 Angle in degrees ee7f3a8f-51dd-4ce6-864b-7f1c762117af Degrees Degrees false 9698bc3a-1ed1-4414-86f0-6444e8ead760 1 352 3403 41 24 372.5 3415 Angle in radians 8e6ac10d-2238-4545-8ff2-442c876cd85c Radians Radians false 0 417 3403 39 24 436.5 3415 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true 9f5a4e05-ce5c-4e86-a807-564e2bdd48c7 Point Point false 9b42fff0-cfd4-4077-bd34-da7089713006 1 1001 3489 50 24 1026.471 3501.968 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object dc0b9699-7043-422e-b460-d535b9da419e Relay false 6c7782b5-3c6b-4ea4-b368-9f8596fbb31c 1 361 3463 40 16 381 3471 be52336f-a2e1-43b1-b5f5-178ba489508a Circle Fit Fit a circle to a collection of points. true c73e22cb-aead-46dc-b16c-0dcc22b7dd4e Circle Fit Circle Fit 478 3761 104 64 523 3793 1 Points to fit 81f3a1ec-91eb-4bf4-8fbc-1c370465acd8 Points Points false 9f5a4e05-ce5c-4e86-a807-564e2bdd48c7 1 480 3763 31 60 495.5 3793 Resulting circle d68e2f69-3f6f-44fd-a42e-8171647fc776 Circle Circle false 0 535 3763 45 20 557.5 3773 Circle radius b567df3e-11d3-4b09-9333-ce91f4c3ae0e Radius Radius false 0 535 3783 45 20 557.5 3793 Maximum distance between circle and points fcc5255c-a398-4ece-83e3-96e14b9c2ac5 Deviation Deviation false 0 535 3803 45 20 557.5 3813 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression cos((4*atan(1))/N) true 2ddf6b0f-02b5-436b-b276-241adb75be4c Expression Expression 629 3723 215 28 727 3737 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable e51b1d7a-a1af-48c3-b8da-e133a59540cd Variable N N true dc0b9699-7043-422e-b460-d535b9da419e 1 631 3725 11 24 636.5 3737 Result of expression 77e75b08-4e4d-4be7-8856-42f71b66f28c Result Result false 0 811 3725 31 24 826.5 3737 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true 054f5a8d-f78d-4a7e-bf5d-2645ef426ad8 Scale Scale 652 3868 126 64 714 3900 Base geometry 510ed7b4-b3c9-4474-a386-993821af754c Geometry Geometry true d68e2f69-3f6f-44fd-a42e-8171647fc776 1 654 3870 48 20 678 3880 Center of scaling a003e2da-4e0b-4f3c-a084-b732e78b89c7 Center Center false 51a42e21-ee34-499b-9dd4-f81a4b690590 1 654 3890 48 20 678 3900 1 1 {0} 0 0 0 Scaling factor c760a2a1-3ff7-4898-bb85-58cdae47edae Factor Factor false 77e75b08-4e4d-4be7-8856-42f71b66f28c 1 654 3910 48 20 678 3920 1 1 {0} 0.5 Scaled geometry b6b1bef2-1523-4956-aa25-2dac5bdbc61f Geometry Geometry false 0 726 3870 50 30 751 3885 Transformation data 0a98dc6e-bb85-421b-b00c-7339b7acc660 Transform Transform false 0 726 3900 50 30 751 3915 2e205f24-9279-47b2-b414-d06dcd0b21a7 Area Solve area properties for breps, meshes and planar closed curves. true 973ba117-2844-42fc-a837-d3bfa8e69ed9 Area Area 466 3878 118 44 528 3900 Brep, mesh or planar closed curve for area computation 7e8b3833-ef63-446a-81e2-35e1cf71bbc8 Geometry Geometry false d68e2f69-3f6f-44fd-a42e-8171647fc776 1 468 3880 48 40 492 3900 Area of geometry 264a3238-71d4-4fb9-8de9-6d5e8107f02a Area Area false 0 540 3880 42 20 561 3890 Area centroid of geometry 51a42e21-ee34-499b-9dd4-f81a4b690590 Centroid Centroid false 0 540 3900 42 20 561 3910 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 526de354-79e7-4025-9017-d96eec6fcc44 Multiplication Multiplication 777 3780 70 44 802 3802 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication ef3e20b7-31e9-4b59-8b5b-7d48b7a00581 A A true 77e75b08-4e4d-4be7-8856-42f71b66f28c 1 779 3782 11 20 784.5 3792 Second item for multiplication 5603b472-3d82-4ad9-acb6-fece068c3098 B B true b567df3e-11d3-4b09-9333-ce91f4c3ae0e 1 779 3802 11 20 784.5 3812 Result of multiplication 7d8353fa-9341-4524-9a9a-18e418cd2bfe Result Result false 0 814 3782 31 40 829.5 3802 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression .5*L*(1/SIN(π/N)) true b941c138-f5e5-41ec-98ba-14636530b46f Expression Expression 717 3622 207 44 811 3644 2 ba80fd98-91a1-4958-b6a7-a94e40e52bdb ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 23a00873-cd15-4b34-a2b3-f668298f3f20 Variable L L true c923a52e-eef5-4213-b91c-a99d00b79828 1 719 3624 11 20 724.5 3634 Expression variable 16aedcd7-2496-4d7f-b685-3ba86767c62a Variable N N true dc0b9699-7043-422e-b460-d535b9da419e 1 719 3644 11 20 724.5 3654 Result of expression d4f062e1-e870-4204-80e2-9d78907879ab Result Result false 0 891 3624 31 40 906.5 3644 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 5b56d761-0e39-48f1-8db0-ceb1b6b1aeda Panel false 0 d4f062e1-e870-4204-80e2-9d78907879ab 1 Double click to edit panel content… 1004 3625 160 100 0 0 0 1004.444 3625.77 255;255;255;255 true true true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression R/(.5*(1/SIN(π/N))) true a4424e3c-d856-4aa7-8832-ff6f7d317feb Expression Expression 396 3263 224 44 498 3285 2 ba80fd98-91a1-4958-b6a7-a94e40e52bdb ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 553f3aa9-172c-4f13-bac7-0b9e210f60e2 Variable R R true 63179a12-0556-4bc1-9bf4-ef312b611dad 1 398 3265 11 20 403.5 3275 Expression variable 7e057535-e619-4c03-b33d-f4bf1bce78b1 Variable N N true dc0b9699-7043-422e-b460-d535b9da419e 1 398 3285 11 20 403.5 3295 Result of expression 9ea38a50-4760-46d2-8f7b-283ff9e5b2d3 Result Result false 0 587 3265 31 40 602.5 3285 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 0359459d-9d9a-47a0-a6e5-8671853cc66b Division Division 167 3560 90 44 212 3582 Item to divide (dividend) d54c5aed-abbf-4257-a6d5-64ab24a130c9 A A false 0 169 3562 31 20 184.5 3572 1 1 {0} Grasshopper.Kernel.Types.GH_String false 360 Item to divide with (divisor) 15406d66-d0dd-43ec-ac83-8190d55c283f B B false 7e1bc525-0327-427c-afd4-d8b6c2743acb 1 169 3582 31 20 184.5 3592 The result of the Division 6f7bf996-752f-4e29-aa85-34d7d23fb47b Result Result false 0 224 3562 31 40 239.5 3582 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values d8700d74-83cb-4bb5-a874-5836156b8585 Panel false 0 b567df3e-11d3-4b09-9333-ce91f4c3ae0e 1 Double click to edit panel content… 662 3218 160 20 0 0 0 662.4798 3218.279 255;255;255;255 false false true false false true 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4 Reverse List Reverse the order of a list. true 448f2eea-d58f-4b03-a15c-131db29d4d6f Reverse List Reverse List 633 3458 66 28 666 3472 1 Base list d2a92c6b-d29e-4752-8ae9-4c89e9f387c2 List List false e552844e-beed-45c9-8a78-a5fe409f581c 1 635 3460 19 24 644.5 3472 1 Reversed list f8f66c7a-48a1-42fb-8fb5-b9e101750e10 List List false 0 678 3460 19 24 687.5 3472 a3371040-e552-4bc8-b0ff-10a840258e88 Negative Compute the negative of a value. true 3374828d-ef30-480b-8c7e-4d3363908193 Negative Negative 679 3406 88 28 722 3420 Input value 8842f592-ebd1-425b-9235-1eed26cbab14 Value Value false 68234acb-2189-4140-ae0c-7c1dcad9f4b8 1 681 3408 29 24 695.5 3420 Output value a06377cb-f650-4240-8f06-3e0aa8cea794 Result Result false 0 734 3408 31 24 749.5 3420 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true 11841893-58e5-4d69-81f8-6ef5876ad579 Merge Merge 798 3368 122 84 859 3410 4 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 ff8d9a28-a359-43d7-9813-26784092c0d5 1 false Data 1 D1 true 9d63dde1-2e33-4f8a-a3cb-303f50d0a8d3 1 800 3370 47 20 831.5 3380 2 Data stream 2 f5037f9c-4fd3-4870-b046-58bf9cbf663b 1 false Data 2 D2 true 0 800 3390 47 20 831.5 3400 1 1 {0} Grasshopper.Kernel.Types.GH_String false 0 2 Data stream 3 34ffa90f-4d0d-41d7-9e2a-9e6914e1d97e 1 false Data 3 D3 true a06377cb-f650-4240-8f06-3e0aa8cea794 1 800 3410 47 20 831.5 3420 2 Data stream 4 7be9445a-1cc8-42fd-9a91-44e035932117 false Data 4 D4 true 0 800 3430 47 20 831.5 3440 2 Result of merge 7abea44d-07c7-4298-8d09-060192324a84 1 Result Result false 0 871 3370 47 80 886.5 3410 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4 Reverse List Reverse the order of a list. true fefb94c4-e829-4cb6-954e-9fa966bb6e09 Reverse List Reverse List 657 3265 66 28 690 3279 1 Base list 3083f7cb-d6f6-4012-9c1d-6b21de28228f List List false 64514e59-9473-4a0c-b0b8-55f5423b430c 1 659 3267 19 24 668.5 3279 1 Reversed list 293dcebf-c8ef-4af0-bea0-78ac8cc2435f List List false 0 702 3267 19 24 711.5 3279 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true ec279539-9319-45ff-a5ca-90e3b3f745f6 Merge Merge 877 3251 122 84 938 3293 4 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 50bb2f13-a19d-42f5-a248-813f6021a844 1 false Data 1 D1 true 293dcebf-c8ef-4af0-bea0-78ac8cc2435f 1 879 3253 47 20 910.5 3263 2 Data stream 2 f6e7d53a-62d8-430d-aa79-f90e2662521e 1 false Data 2 D2 true 0 879 3273 47 20 910.5 3283 2 Data stream 3 c45addba-d44c-468f-916c-7c0e75d7548d 1 false Data 3 D3 true 64514e59-9473-4a0c-b0b8-55f5423b430c 1 879 3293 47 20 910.5 3303 2 Data stream 4 121717d7-f0b5-4ab5-8c2a-e6daf79e2ce3 false Data 4 D4 true 0 879 3313 47 20 910.5 3323 2 Result of merge c3ae31b2-8e2f-4176-a84e-b43814396e6c 1 Result Result false 0 950 3253 47 80 965.5 3293 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 032109e0-083d-4876-a194-d48d70db4a82 Panel false 0 7abea44d-07c7-4298-8d09-060192324a84 1 Double click to edit panel content… 1272 3232 160 479 0 0 0 1272.424 3232.003 255;255;255;255 true true true false false true 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true fcba47ce-cf17-4a9f-b444-fdfd3b58f104 List Item List Item 898 3779 77 64 955 3811 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list 904b0e7d-06c2-4fb7-ace6-0d5e3e73309a List List false 9f5a4e05-ce5c-4e86-a807-564e2bdd48c7 1 900 3781 43 20 921.5 3791 Item index 4b4c9ab4-7ff7-493c-804f-f2ee6521d579 Index Index false 0 900 3801 43 20 921.5 3811 1 1 {0} -1 Wrap index to list bounds 401ceedd-2460-47a7-adfe-3fe8bfdcab75 Wrap Wrap false 0 900 3821 43 20 921.5 3831 1 1 {0} true Item at {i'} 76288414-d3b9-4565-bf15-03a6b907c596 false Item i false 0 967 3781 6 60 970 3811 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true f6189714-2503-4c33-b10d-828b9753dd63 Deconstruct Deconstruct 1011 3785 120 64 1052 3817 Input point 1734f987-ef44-4c85-93f8-de26f37b00dd Point Point false 76288414-d3b9-4565-bf15-03a6b907c596 1 1013 3787 27 60 1026.5 3817 Point {x} component 7876afcf-7775-45c8-8a25-88d8b7e1f9c2 X component X component false 0 1064 3787 65 20 1096.5 3797 Point {y} component 5abe47df-fbe4-4b97-bd03-0ec1b1f6b2d8 Y component Y component false 0 1064 3807 65 20 1096.5 3817 Point {z} component fce43a6b-020c-45af-be79-091fc7373c5b Z component Z component false 0 1064 3827 65 20 1096.5 3837 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 04e8baad-2bd4-4512-8434-d1b3544659d7 Panel false 0 ba156c5f-31a5-4478-a04c-85f4b5333b7c 1 Double click to edit panel content… 38 3207 116 20 0 0 0 38.51038 3207.453 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values f650f2dc-1a4e-481b-af1a-49af3711d7cf Panel false 0 dd0736c2-159a-42d1-af5f-93e121faa9f7 1 Double click to edit panel content… 39 3289 118 20 0 0 0 39.33979 3289.087 255;255;255;255 false false true false false true 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 32a6c3f8-891b-465c-a59b-971de8e4b598 Division Division 1263 3785 70 44 1288 3807 Item to divide (dividend) 5b959b6e-3da7-428d-97ea-89b9c83a5673 A A false 7876afcf-7775-45c8-8a25-88d8b7e1f9c2 1 1265 3787 11 20 1270.5 3797 Item to divide with (divisor) 3b155943-e856-4f6a-861e-2a442c5af7de B B false 5abe47df-fbe4-4b97-bd03-0ec1b1f6b2d8 1 1265 3807 11 20 1270.5 3817 The result of the Division b887e715-85b8-4d63-bcef-54f50d862634 Result Result false 0 1300 3787 31 40 1315.5 3807 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 4cbbc23a-5f94-4439-9417-57501beec295 Panel false 0 35a11262-770e-4498-9d6e-28b546897ca0 1 Double click to edit panel content… 38 3249 116 20 0 0 0 38.30339 3249.228 255;255;255;255 false false true false false true c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects 04e8baad-2bd4-4512-8434-d1b3544659d7 f650f2dc-1a4e-481b-af1a-49af3711d7cf 4cbbc23a-5f94-4439-9417-57501beec295 3 eccb3198-eb6b-4c8a-a3d9-fbc052dd7486 Group 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true dd203f61-0028-42eb-bd28-7f6f48340bc8 Division Division 280 3506 49 44 309 3528 Item to divide (dividend) 64037327-91f1-4a5c-a020-c21cdc1c56aa A false 7e1bc525-0327-427c-afd4-d8b6c2743acb 1 282 3508 15 20 289.5 3518 Item to divide with (divisor) 1b254420-5fe8-4023-9282-f9415e798a17 B false 0 282 3528 15 20 289.5 3538 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 2 The result of the Division 6c7782b5-3c6b-4ea4-b368-9f8596fbb31c Result false 0 321 3508 6 40 324 3528 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 4c63dec2-1390-4291-b6d5-8371589a05f4 Interpolate Interpolate 895 3102 225 84 1068 3144 1 Interpolation points 204c7f61-dafe-4ead-8116-4d615c72795d Vertices Vertices false 9868f335-6dc4-451f-8094-d3711f42121a 1 897 3104 159 20 976.5 3114 Curve degree a70ef5d1-c3cb-46d6-9d33-77e1a52d1292 Degree Degree false 0 897 3124 159 20 976.5 3134 1 1 {0} 3 Periodic curve 4d30c792-d92a-4102-8b00-2557c4b3ae9a Periodic Periodic false 0 897 3144 159 20 976.5 3154 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 31ad9203-8d68-486d-b831-33a8a2d37811 KnotStyle KnotStyle false 0 897 3164 159 20 976.5 3174 1 1 {0} 2 Resulting nurbs curve 650d961c-ef6f-4573-ade0-97f698f6a536 Curve Curve false 0 1080 3104 38 26 1099 3117.333 Curve length ccb103da-accf-4a47-99e7-b07e82093feb Length Length false 0 1080 3130 38 27 1099 3144 Curve domain a1b7ba6e-684d-4c4f-b4dd-917607d871fa Domain Domain false 0 1080 3157 38 27 1099 3170.667 f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a DIFERENCE CURWATURE SHAPED GRAPH 7H0HXBNZ13dQpEpRUVAUgwVRuh2VlRaKhKKgYieQANGQxCQo2BYVe0NFRWzYsYIde8O2lsXe67qKbcVeVuW7dzITMhXyECDP9z7uTxfmZCZ3/ufcU+499xwjf0lccpJArCgFf/RYLFYd8NdcKkpOEIqHjRLI5EKJGJIiwGVIhn8M4Uew+4IEPL5ABj9SByWbYKRgf3jZGFzqH3j/WeSQVeHT7irCt8iS1xhGyASjhILRkG4C6AaRieApfAv0cqhAnhiVKhVAcm30i81QWphElsQTQUorcHX16tWl2F2RApEgTiHgYzShUFhq5S+IF4qFCvAWETKJVCBTCAVy7LHwr74/T4F8jxH4ZdfjpJnzp901MvUXyONkQqkCfXk4RJZ+GC9JgP32pnZ0UKCr65M9S1+unAH+fbIkD/z7eMmOx0t2Iz8gv+5eD/+dPxf5N+Px/EWqTxZlhcGfF6bDJyyGtzxZvk718+PMhY8zF6k+9njJJtXTlB9TPuTlkl3w+tKJuK/G7kWHhFI34Ye3oux7Z2YjH57N9HP2ZtUD0X/RK4x3IT+jb4R8o9oANqnGho4TG3bZZxCq8h3RL0XeHUUVeQKKD3YvGUklwijayi/CGIHyBX0ajn0ovAhnXV0Dg6KN+wAJg1NBjk0T+McMu+onSVZOoNrYFADCNhwIIyo/tdDLBlE8WYIA+aQdnGpfS0sH1QOSNVAiScJm0KSmMT3r9APijPsqY3iF9DXGfeKkXF6qJFmh/lmTQJkkWUr6cN3AIB+uMFbGk6FTQA+dWXVwH4VXDJWfS0XGjN5u6SOXC5JiRakBySKR+lTwiUiOjxfI4oXyRGd2P6XG8Org6g7/c2b7JYsUyTKBl1iQrJDxRM7siORYkTAuRJAaJRkhEHuJwdMssEf3K9M38MmG6FMMfJIViRIZdtksVBiXyBOI2BGyVImsVjAf0zKri1c0HebRj5tnME/4q9hkDG7GmpQN05Dme+qVKYvwWMg+FUz9AAdNlddwYMHrBsrrEKNaKH76gX3LdJ/Huj6nBuVtCshdZ3H+xIRPi3GjqoPwythPIlbwhGKlHnVEn2LgK5GhqhVjjIGfRCRJlmEaDv6fSlfZ+bAT4HPZknh2oIwnlydKpED3sSXKt6oV7I9ID/i7sM/LcQM+JoTNdHvl+v1F8mJA0kNJpTF3rj+83yoks/eOYVkX/jABpFooSTb2l3Oxu6l/3h95r23zQxoCUm2U9MS+G++Y6yzuljVbPN4ILBwBSR8l7TjjM+q7rU3Q0WeP5nW1tH8ASHVQ0ofrTwrWNCjm5jx7PiQ9essLQDJASasOdbC6/rNu4GG9WgUT7LK+A5IhSpLmcVdusejGSWs01ye49YTRgGSEkiZ9PsQyP6Ifnn+oq97lfYHrAMkYJU0/earv0b/MuFvTn8zv+uKrEyCZoCTxXpeXp19s52x+tCXG03H/N0AyRUm1D464Xsfzl3fOmwWPdroNuA5IdVHSzAmtf7y5ERuwyCzizccI24GAZIaSUj41sneSZoWsnTDLcNnXGf0ByRwl/XjSqtvFN5167fOMdBm5OuYjIFmgpJ8HfFYMXLTWP9u49PLa2+lGgGSJkpo3X3F+TsfHQfNXni3cGfh9ISDVQ0lLQ15xj23pyl2w16npyoG9nQGpPkp6s7Zu0/wHluE7Y3rz79u2KASkBijJ3vi4k3vIO5+CqB/H5tdp1BWQrFBSk8HSFfW7vA1epL/fdKR58BJAaoiSHrz8uHFOeqOg7cdHPLXcumwTIDVCScVtOKf/zejpd3CZj1vc+M+PAckaJf0+J8vo7NufAdOdr+b9sX5iIiDZoKT4hpHf9KaOC5imt08mtg+ZDkiNUVJ4VsGklNphPmuGJdR/ZZT+LyA1QUlnkjt0fD8hLfTQg/W3rxulTgQkW5R0qfPC0QtOFPXKr7/xIPv0xHaA1BQlZU25tu/7iiSfbe/szfnibChRzbDpUCicWt86i5PxntP+BNfrFSDZoaQeV5pfW7jyqM/6cVsnJY0YuxmQmmPv9SB3wMYpncInxj+/x2JlxgISGyWtFCZl7l7ryllfJ/vWoV/99hoF+w/DaRB7qJmDxXIFTxwnCEwWqpTZZNmfdW4frRV0dG/onEfHePoUasMoTBg3Qv0yy8RHoZAJY5MVSg2Pqm5MRelpTUX9Vo0qqkNUwZIfwTf9cnu+6OKz74pCTUVJdzfLMzBM4uTddO40Y9LLwWoqakvepe2T3jwM2RlrGfPGrKelmoqa2Dfs09kNKQGbJDOCpvumnlBTUU9f71/1LjDYd4ZT23msIPZTNRW1K+/4r6A9A7hz7GaVnF9yzEJNRfWNanrGrn+pz9KTHXOMo35+VFNRUT0aJ01t9Sp8Vpjex8lmId/VVNT4QIVk+HqPwIO1rqY/rHv0g5qKWuYUZhfw79CwHfJlyza2m7hDTUV9z0rx3xzMCtzZaJbX88l936upqIXTOR2LbMcGrOm2lvOscFdLNRVV8nu9en9ODQ1aFtR8d5RL289qKsoktPPnyytaBOX1utVzaKtrF9VUVFHE+3yX56GcTS3X2Jl5yF3VVNRMp7WpthHcwIzUbNudV/ocUFNR+5YWGtoayrgb+t+wM7xeOEBNRbXdfefsu0+vQmavfucW2d86U01F1fLauWDM/gnhi79092o/vfSamoo68TrifROLdiFLnVesMNkYsE1NRX3K6xdgkucdsr+lW72EPj23qamou8PYwgPX+wQtt7/a58awg6vUVNTM4T5fZ19YFbwj9UODnKehKWoqivVXQpeIPSW+Ga3evR0yu8dNNRXFihzw/Ni1tb12Xm28v86sO/XVVFSfzl5ZDSKdfHYPntHLcd6bdDUVNa3xaNvsXRdCZo3lWRe+Hs5WU1H9kof5dShMDdll6JVv9VHWUk1FcS/ZnF5RUC9g5bHf4xvual+qpqI+eizkeL4rCdrll3Pg2pBWSWoqqs4/M5J9BswMmt7bZ9BFSZC3mora+iF8Q5evrfz3mOx4f3ziQpmaimr5+Y/X3vbHA5cbbGVPidZvAEj2KMmz3SGum1+XgB1ngjv7jNg5D5BaoKQRAR59DXat8p1oNmX2hPvnoAvQEht8VPrgLcv1A5bGft5gfXBMT0BqhZIO279dHDPNxmfqmcxbXtsPHwWk1igpzTFjc0u7+b4H2x6IWjLwsQ0gOaCkCdw9A88k5QbsS+qybG7/5taA1AYludxlL+V/9eLM6rLCult/OfwuR2yE/a+YLxvVtlf2RkuHF4U9ZwJSW5S0qF5pWGf+uNAVr1p8uCsP7Q1I7VDSWpf8hbdcZ3jPYUdNjSicdweQnFCS3VqvP84nJQbsXrv99gpWJz9AckZJm/R6tzrLjfSbeiV7mGEP03OA5IKSTi+wNPjt3cPQDetWPAq7ePgwILliU2/qmtN1zd722tDb1TK6VwtbQHJDSf827rRuaPto78Orv/zFPecsASR3lPTl69ONF5uWBE39TXw5o8WVsYDkgZL+cD7Z6HztuaFHZ3yyf2VUfxkgtUdJ66d0cV456LbvTjuF5R9216CB7YCSno3ZN+n+RXmvrVzr4LP8Mb6A1BElLe8mfdT5TmrAbpHRvnnPdroBUidMs11zaDH05ODAufV2ng/5vCAAkDqjJHmtZOuwZpa9Fuz4uGP4h309SEavC4vG6E3Z+Dzax+Fc0MQXZ2abWIw314LRgwaB0ugd2TD7t9yfeb32HOsRdfagvD7uuwzCkpNiBTK81TNEH0Vlz9zQT8rZPHacRCRSBn/QusWLJDyFUJzAlkqEYgVbjDxYTvn6RFNHNSTS+2PXw5HxKJdGkFDQIBLY4TgBC+XKxsdLG4+/3TVs/58TEkOdiqaYKsmk4I8Apyp29QUf5COX4ERnpbXjsCI6nGKxgnxZrGM+dSKEoyTIc6DKYVk6c8bObH/KPAJGWnKFQKzw5yl4zFGnga8MAJLIUmMY+UP6ETxFIvbqtce6j9cPVgiSWKyy1SkDJcLwM1jsymJleKPiUJtOHA4LNmwW/zzPneN8ape7rP4QHPbGfsmyUTwYyOIlAjoHBjQS0Z0ziidK5ikEbEWigB2HPQCKBA/5VcDmKcCPcqkgThgvFPDZUp4MfKdCIHM1CBLy+QKxCi9KaSF6PzQjJglMGamCrGY7cgCAgNXfAavTfAmsZjsD6m+nTJHRDxOKpclILGyIgkwFTT0/5PUVErYAxYjyBce9fdHudeaa4NmDTNv3XfNxIl4bIM8gvRx6ubzJQPQBKzkZvAFCUm90MpQQJ0NRWw4rrScOIb1yEGodgckCG2gRpbTwJUlA8MpFbUFKyzyvkB4h267fOGCd1UyGFwvVc8liUUYqD71f/eeLiutmB0yrnebao9+03VpAD0gQA3o5XqfqKtGTJCtQATNggK9hBKJrVdCBiTZWMZ4SLttBC+8t9ojw3mPxuEnA9QGReCFDnkMWMuVlEkxUOLAqjsMjZ1SKegAccog4RLtyWEU98TjolYODtWqqs0cB5SeRMSHBf2JkwPWbxV0d/FvXde+KXmmuT6oEEfeeTIgAucEhUqviiMQJZXEiRtk43/9madCG46GbeaJ/Cq2eeOsIIiVeTIhEeJ1CbR2MailtnevzWPsfsq8hmQOu3XLL3WyFe6+6/sJRQr6AjShSsrkzpAG2LXobZtvABAGKamQyT8QWCcQJikS2XJAAd4XkFTJuxPidfogk9HHUCsJaBFSQe3cA6xMqE5fhBKieGpk4C5WJ4yOjoXzJniuSp91+VjcofdqRzXODC3/proErAfhYQnxKfCjE7hFQ0dJulAaOzl+ur/RaoTeEyQUlREUp9WIcGivCVpg8u9htzLSNBIjg61BAhFwuDyJijKUFiIo8mSACIlTDDjG8iQ05osYpTGPScco6UioSKlRcgvpyhFA8giaC+aOD/sqxzYMPzvn+vNHImQPw7AqB95HZpbysbU0J+ZHRlYkfJV1qhB+GsRKJSMBTKUAWybXBFIuBT1ycQC5XfzylroEKD25oKUNMas6suMczyL35wGdNhzp/c/i9juBjS8ShIbMGu65t3kQ4o+pkMJUVM3JF1AnJ09EQlhZRPHECYCzq+iCSy68AUnuaCnJXhszymRx6c/qiA70e45AyQh9KxqqMUhVoIZqFFi2gWUhekIZotSyLOGB0IagwXMRggLDrij2VDJg6rSogQyY/LWRg8qNuUh0WjZu0auzi6/8Uj/DL3db256U/21+nMM94/8iYAd82tAtEQGgEMmGc0m+qmHdEtO6GoTypVChOwJCCr6NFZ+JJB/0GxvcPhs5dlTncMTyocyUtJYzo2MaAOTMplo4GZjtzOg00wphjQMecWMepLbP1j3jviW5ls/n87Ua417XwF8RJAG6y5DgF20cWR3Zj69CwqXsfAXgFwSjlqk0sTy5gS0U8scCZLePxhcmAe2I++JsgUsXjcD1HzObJ4iq2akPcYmIcN4lhxA9UNGoAtvAYByB+gcq9ZQH39pifRu5tU/DdbBBO+iljKOjmlg2M8r0f7E17aftuYMD+4e0zOOGF93DvXZvqXZGL5YkmMUSrpGiy4GIDBCoHOA1SIlA5bRGgNFqKsPVVyRAiKkrclLEnJVBr/9TLveueEnCgec+GbeTLmuH1KfK0CPg0sj5Vo2lbnx5zQnGJptKnUhcOi8XRcGmij3I+VQgT/z2HThyZdd9/ZuaN9hNGm37BOy/KJ5GdF/R6VWAR48+EBVFGyluUYPuoKxRH8BcqG55Y3haFhxIUo4LTDfQ/5vltf7tC8bLk8yO8wkceSVb4ystVAQnbjwmSNF9Mo2NRIUmjuy0Yn9qs26+A+X07zWItG7AEL/jhYP6EjwLeSTRZmdemwbWBnyQJwA8mHpx88OaUiilp4mY/3VDIc7CMVlFPBeiUjOEAunwA3SMidCzgx+QLNVLNpsHwU0onjvLllj2v9+vU9r7hm63PtL8ZySOsePaD95HlRnm5PG1M3IGupDaWwnUFiE2xD8UeU3Q7BBuNtHHdcORjDOi84o9oXHdgw/A93qPudLj6KJugagTyZBF5xQG7rvV55YwC8JUKgAIXBAB0XhnRzauRR4VOwrDNfvuOhIuePx30FvdGpr2TwbvAFBxpIrUzW8H4oZW/UA6sXCrc0RIooN5KdcECCejzJsBvoEScmD5DOz4S7DgiCXvjSIlMEa6en0QhscT0lwpKrOppBIbFtAGqbhRgWCM/+Jfg2g5vw0kaP+qUGZapHizmC1Kwx8H/o6w0pmPlq35hXH23b36L1l4IWB0ePBAHlT4XsI6sHPVpGGbvJxPA3UkeWwQ+zo4VKEYLBGK2YrQEjfYqpiqJGU7kIZHYhlzVwHPNiEc9V3eS5wpmgLtAI/VoCb+cDd5DplC+J+VbtW28/Iney9WcOYMnbflltssGL5ORyN3Ue0M4Ynn6krj5pAXvVQrBiqAywzlAXxYJNNqGNEfAEoCQhx6qp3t+67jb5anvpsv9eH3yPWfjN0k44F5qoNRI5cFEdIm1ABOQGgaYMvgamhWlUCmXSClRSkxKDepzf4/ftqPOtaaMnNayotNE+ybFBZWRfGBS2MQJJXVFoEH1kAmdHjq3jMf96WkdOGmDneHLlmPxi4lGCBiR/tyKR92+eF2EAgliynjwK58dm6o+YZ3ZCnRhD8biys0l1/EVUlbEnEvqcZOX9jBKBTHOAUrLaA3A+B5VuO0NOGC0ugqUVlSji9uieg7jTEkwHed20yQA79gheons2CkvV7OiOgYA+rr6FAyxKWYgG0QTuas12k6yQQDC5MKRL5Qp19faUgL1e6I1L5f7njNraVCD3W0jTPEqyx+7mayyykjlARZz9PAH24ODA9Kf5A4wL+myQQuARTMCBiSqRjaXlIvr8DMdWHR/SnoSN5wwZ5UygEF4qZzX1KnxV3hnjqUWcA4YBn2bbr/Hsn6wWCGQAWZwUqQy4KqqPauWSzTegecijyU78Oj18thKzPTVAlsLcpjYmphT03uGZUl0JT21bBSjD0x8/r5Vcdjs+1+7NF7cb3GNGUWWK6qP8qmW/fJdkemFGkVTFo1R7Ne81ojMHZa++1eL3nYfbxSEX9lVZQMqJa3iiRX79VS34vIG4wQy+AB2PE+Z2COSiBPYQoUcs4joF6F0OTuOJwZOPlueLJWKYLZhrAQQhViGVLIY3goNqhg5YCscAz6CXHRl+yVCvYosiA8KG1KWpgiXfRWSBLh0pYoewGdgBJEk4QsqGEAQDzswwkZeECd8oKIrCzBhbzNguL4fhYXOh2H3pqpIabQ99CE52c2CO+nFji2pB6+v0OImDXEyVVI1ZQCEYjbTLel5AyfZcjPJRDPlEbTAySM7Hq74IpihgIGPUkJmbhAxt/++3Zz5+gF/HJ05KaZy+rySigKicmwTEypAbnRIYWuS6NExOJ4dJUsWOCOzGM8toVxdLzi6u7qzJ7A9XN2p/SvDLYKcTcscgtO3HbZa7djxK375NEz1IPLyqRqtKljHZmRdUa5O5IPoaWRlmylTXYFJgFwrSyZn8J8W3J9YO8P2SK+tmZeO9OG9wm+dVm/KK9waQLRMEBVTWG6IltFoX8kBn/WhETDuntc6WbWx9Ft5y7jw1qoi/LK/IfpgEjQqQlWAgygbWnCAstFoo6mN0kqVWXBN0OGnLMms3ekANzf/xP3AtmlztZFYrgWE2IwIgTmN+m11WTR+G8ennVOp1zWf3Ad2m66sfNsBv9aHxBZSiQhYdLLPZkSDcydsPUMM82Cx+/mowVMkyiTJCYllK+WarLcSD4DSjpa8MqlGrKhfDByhnG1oWmwu0U0qAvhGbCW5SUaYeqzYxoFV2bDKyTSKeXe5cdTmlIC5+skng/fenIVfvekHi7uALySv3qgo5blQRMVYSRcKORmzjS5XOwvIrvc2jVyousrpyxckyATU/uXFHHMHo9ELObPOrMz8+9eHdnhnyR+5kewsode1PTvh+5dsZXr/nK017SypJFMDRwkOWSjhYylblIzYumCH6+FuBZy9w/9KOxDz4m+8rGIPIMuqilIVzIhgZAarZphBSodVZ0XtcljhGiKWKID54sXBE5aO7l4gZAWRRZIz28MrLlEi4zuz23vJR8oUyC/U3up0O5Pp41YO9J963uNxYkbpabxdg18QqUilyKVQI1UFs/K3MDErZosuzBz4KM0OZik3yiGzxMmyWDnDDMr4YpXe47eSXpOf2IpfTLa7U5lQubKhgzuqyG0AO4qI7DjmwenbeptmXiqqyRm8ra55nd2PDLsUOq/PuVBr9919ajbsBQAc24oCcIsCAKhaNPJEMVOGpDxRAjB6h2ly5zAHzvql9QZ8NX1YQjBlyI0Upkx5vSoAKN7CAMDmMVswR9OMReNo/mcnzukQ1MqJc2LNEK2eOCceZ9fGifN8mhPnA5s4c1Jf52E8MKfjgcY53UYMLNBqTjexRosWlwaJqlQLjHi0nYkR47ZjjLCgYwQ7oeXe6XNm+C48uZW79Nv+sfjX7SMQ8VKpGUEIK+g8gwY+7NFCmYAtg09CywpR4k7MAKIYCAl3PXa5mBPzyCqbMw8wPzbiFNyyBwygKLfA8h6BYW5Jh7lx5JJRG5KH++e9+Srowt6Ejx0t0Jg1FPwjE/JEFd+haFIW7YZLBeJALjsJfUbFQlpinSHGYZF3AAgf0GA5sGQ9ugNQRMqDAC5WxDpSaMvkijZTFr6Csx8uqfCF8fHJcgE7LpEnFgtElC9+26XTk5P3srwP5Q69NMYh4Bx+vclf+QTyehNG0LaRyweQPIKQpFF5nfkwL2Z9jXiddYBylahKin358qVUk6iZjWcMXOtKFvFk7ERhQqII/KVWC+eH/fxz+omJoRt//FxkO+3XSXwAF4k+hBzAqShVwR1vRu6UrNMB7pSWsko1Caabc5KEcrkQ+IJxODZhKoSSOZJ1W1fe2Lo6ZHfdia/s0p8dwjNH+USK/I0ySlUwJ2cdE3MidIE5kD+ahNddfJLgVyI8AcMBcbZMII5LVW4AebElUt5IuF/kgfxW9gnqGdU7+66smaMtd96M339Kd3RPxB/pj1J7PvlIP45aFcxjMTIvf21NR9tlm3qPcJt6+uVw0KuMg/JEoThVDFwnwD7ALrEEnmrzAD+JJKMRIvzVHZKSeCnKC9RLW6E3l998/sV3zjb7L0tlpQmENLNEqrQN9HJVcC5mLRPnLGucc/AmPkvDdZL6ZeskjIpwJZfTO8DewL9g9953V0euq4NXhLQ+UxlF2xxxd0V9COinniW5VW6IIkT91HosGj+1sf7YyBMHP4YfNcr726HzWGfcW5n7JcsVkiQ2WvUd76ZCTOlOA7XxEQFJl6OZB/AZyGZ2gkCSJFDIUtlS5QPlFsHiOFEyXxAs7iMQo6cH6J1XYiVMprGS+ECgm8Mq31KJTBEgFCkEqoLXFZ4NbTmsoo0A+yyqXPkMuFe2kXa3hjKGCsSwUUgweCrk0RvV+j3vzAuHwKl5oi31G3RYgBdL7KlksVRRqjnZBZ5IPgaR86bSIxFOHJZ0o0b5qA2j1FwY5OiZjK4ITDPP7K6PGr0L3r/ed0j7loTo5z+awgSsiDpCG6e3GbEq2lCtOhfrO2GIhlzwQ9DZuZ9zv9RIgHp82EVfd9/SOohtI1pVIywwwD4K/19X3e3B38HCKkzWp1NjOhpuEwv0Vlu47d6SKdwuaV7V4fbajU3kj2bVD1o6Z/XfJi8PL9WBcNuyJZPzIm2hAzFDfn5+NYTbxcs5R+/FNA9Y9PfjAoHC6aVOhNtF9kzccbfXAe5US7h948saS97TN36TjFat+H38/QidCLcz2IxrIc11gDmsmgy3i2c+t1jLfua34/vZl6OGt5+pU+F2RHPGcNuupoM2HQq3s4I9T99s0cl3R1+LcPdjQ0fUcLhtacdosZrVNOeqNNyefbH16043jP3Wvmtf18jCPF8nwm3Eh6ANt4EiRP3UBqz/D8JtYguJGg63c9oyhdvejtUTbg/gm7r1GOIVPLnZ3QGtG+/YpfVwW8vVRJGC2G2ZQshHjlUVbu8r8pwsuvw0cJOog4Tb7p+hWg+3iTpCC1gBOWLAKqfN/6lw24pOjelouE3sbFNt4XbiHqZw++yuqg63TaZvvJYxoL9fZvjCXy3G6a3WgXA7eg+T82K0RwdihgcPHlRDuN0+y3F9195twucltK99rtPrAzoRbhfsZuJO4m4d4E61hNs3s7i2O/JWBWe+upv6JMreVCfCbRtG5gBtUvPMYdVkuG0SvLPFtf4mPplpLR7k3/zVS6fC7ZRdTMxzrBnm6Wa4fbfrWstfBx38JrrP2dnKotmWGg63b+1k4tz0nTXNuSoNty2cWtp7tooOmTXz4PweqfJNOhFuIz4EbbgNFCHqpzZk/X8QbhN7L9ZwuB2zjynczt9bPeG2r5PfkuF9UnvNXRZz9ejDxm+0Hm4TU8G1EEJG7GMKIVn7qircfr7gfgOFIqrXrpvT/7XY+9t9rYfbRB2hBayAHDFgFbP3/1S43YhOjfn8GiV/rZgQvCuh+a8IWcwsQlyrarNEUVoUfg1dWcpm/jIeUGN9wEtI2ISnVPCINLErrAFXEjdCwFfdxDhSiggc/wENDkm4ewBBmuRLVWEGFq50I6krpgYC9soTU1C/l40IqaoKonGk9GqFwPnl1nj+yHyhX85Ax7BUVoeOjODoVA8iWJjREiJqRTU1z8IkHXeN1FizSF6SVAS9EICaXKhIxaKzQNpatQW/vf2ruFNd/4X1Zb8av8z8gxE9Q3/lYynWOFCCtv0TpMSnGxNEQOh0wGNEZFyDknDmkXE8EVI/n76McGurqfEtzs8L2dRrRlD/wtaWzIKNPJDCkUculyfYxN7SWhDsDFcmrpW46ALXhCyVVbBm0ViF5G+HOuzMiQpZ+jN68IzuK6fjHUZ/YYJQwY6Mk8HDchp0120ZlpyEnKeTo7cialAuRMrmM51vJHKKUSgIw6vQqS+6CWuEPQVexGy4AfIFqqNrsCKJAXCO44UpZV9RB3YtUBWFNkWELzle7SNoLXYMsnjsG1lKzlW052YrDuuYE5C5MX5kmRvYqxWn0wEnLJKxoWO2X5sLbp6TH3JzAla/U3g2xreqMOsjSOJJ2cqzovKK981to7wP5aqyjyCPLRaMhpcQIVAeGq6QtSO2emcYIYndeHJFcYXpC/MArpeozH4EjFLmalRYzhzhNgxRZHA41M0S98uSAgdeCNw04dHaGVknH2ixoj+x630lVV0MgCcHwlOXStWlAFUXMU8jG26mHA/TQXKTFp3EZwOlgTs/h9zl+7gZ4c84K+8nn3FGr5eHT8TBqy8tL1zkrhu1KqL3tyMNtIAPixEfID41YQqMkCo9o5RA9GAR/2hWac4siidLECiYmPZ5SO/t+/tYhezvzxkyd94HfDFNA+X9ZKah17XtVkGuxMxl4oqljnJFo2U5C0ThSQV8VPlSMiakd0mv85/ucDNFIX23t1uMP/1jEIrcT2YMel3bjLF0RdUJXI8jdY6OcOOwHOdpVpjDVoUBrIUaJxKWh8f38XqmYedOcef8/JTA6XblHT4C8FM+gBwBYISqQCR/LhMiXedidr0xi8au5y8I+Tioe7fgqR9/KoxO3sGXSUe/seJdeHqoirvjDTh7dKIwLpEtEMdJkqQ8uRx2CmGLwAyCfj5q/isW8LP+SugSsafEN6PVu7dDZve4STVeskwqr2tQ0p09By3pTmrT4w3r9cyubCW0pqirAY29ULlKCwv0KkdC+eKil3tN7PtGha9SjM4PbzfqMF746BwbFaGajT+sdm0JMXT3pehmw26HYKiRxuqBxQXKsi+4MsQiyWiBXNkjAO6Fw5/LfEr22DDqlt9Ee16jVWdgexMEMBsqwOBmBAAMncxN6CazzhTaIEqTlgpt/IcdfGgXgIEY5s5iKrSROAvD3FbnMSfWq9cS5mb631fsDQv0WfJ51e/Wo1P/qmzrbJg5vJIOc3eAuftKDPOmdJiH7Qu4dI5V6Jc2sHF34cte9fChfSjcb5SKhHFIlUmy8aJD2jYU+GDAJVCAO0XsJNxTKmSbpjUebZu960LIrLE868LXw9lMwyLvoOHpFVUbcD1pBYBzNuVOGUyvXH7KTFWVFfNWMRtugjSQw/ESfpMhcjmYj8nAAP7ZuXpHjf0P/GMdaubUoAij69HQTZWt10gyYqS8Tv9g5XiQ4cKPMAXLzQKEMqDnhcBNRlaI8Pyi5I+rYbpgwt5FAdkLGv7ddtQQfIN5PR/y7PAhzQ49wuxo9vb4vSUOC4KXj0gcsX3kpjWVLSMK2JkG2enuQxV9wH2GFafUQNIrByS7SNiqla8RSknLHMctePgifOOc1zPfHhXji1Pp+ZJR8i0XpT+cTzY6X3tu6NEZn+xfGdVfpgWUgFgzoJSx/BQqgypZYvItbJRJCtAZrQBARI1Yo20DYfdrRGJg20BSj6cgFwQpVJ82o9On2QWPBkx7+jX4QMGeAztGPOYSqoTzxAIRuWEgnRp19GFL4R1q6QlssUQhULacUAhS0JaM1G4u95LN6RUF9QJWHvs9vuGu9qUUQyFhy6JCFVmT7QO5CC+qF8onCKfPjkQHE5um3MnDkjZEX+fTrvAb9ZULZFFg+NjXtvaXJMeKBDByjBuBtIPgCxXou4NZB1cHnqRtIPBRtT5MXEx04LBKYgAfPf1YadP8TEJ5sgShmCuIxwmFqfJyH5jsqX7dWHk9SiJVv0pc6XXgJL2JOWWBgBghk0hhrWTlqAyxUSkzTOElbOPYFG7SBov5sKqyan4bw4twyULtEmK/ROh+tNJIwhRSIU/kBzuEqFhjEKkAQWKS6nf9/jKetExzKEXVjk5Udcbd+uixkOP5riRol1/OgWtDWiVpyd0iyr8WXNyiWCYXNyIWUw/NdR5zYs9ZLWFObDmtBcwzApkwtwzEMGfTYe6xrs+pQXmbAnLXWZw/MeETvl9SnUCZJFmKx7wuhrmvRL0Pqh7drKZwFnzYCfC50AwGynhyeaJECnQEyhB5rWB/DLB+ycP8OhSmhuwy9Mq3+ihrCUiYK0iUX0CqhZKIMwaQarOomwkDkj5KKu3e5u6769Y+W+o/n1rr6UUro2D/YTjOQI1KXbzoQ/iGLl9b+e8x2fH++MSFMgoIyaaEwGMWxmMlu+zp2KVDFtSz3SGum1+XgB1ngjv7jNg5T+sWlDR/CrvfG7KEt8E3XzriUd9//nSpGQta1JrDKpgOS5VWmQW905ozeef0/w4L2oJOVHVGm48I8OhrsGuV70SzKbMn3D/XUEvanCj/WtDm3jOZtDlrJqbNW+o85tyo9MFblusHLI39vMH64JieurswF5HChHnRaAzzVnSYf48ddKaDycbQ9Ydr/2Ql/lxIVVW94jsbdqECnhym4SHrzcqGWcBOom36KrZ3cdj+7eKYaTY+U89k3vLafvioJnXeK5q1DttC2wLkCqj2LkqcgGfSRLN2tKpmd0lKACjf7OTURZzo0XvDZ3b4O3BEHp/gDOtSZmEETJCGAJX4UKyzw5QOAJBmvS/Lre/fSa/xuzl+Uv+9n7wT86/Nqdn6/rDhIQKAEdVGA2wZDQBA51ZrurmlowuwaY4Zm1vazfc92PZA1JKBj22qYQEWSkzXbLoF2CIw4aYv/d8CLMqf7SNa5S4YNZGTO8j/4Mt9yX20sAC7qF5pWGf+uNAVr1p8uCsP7a2FpBzHbLqlxQJAvbW0qhdgZ9k+DPf8bSdny4ZJDZMGy220sABLzOTQAkpArBlQ6rq0ChdgiYvuNboAm+GMSgzlAux0FwQpVJ860OlTnfEPJ3D3DDyTlBuwL6nLsrn9m1tXxD+kCB6r3j2cvoPJPQzagUHeRuchH9H/ivmyUW17ZW+0dHhR2HOmdiBPTEoN6nN/j9+2o861poyc1lIba1oJjGtaCRjkjjoPOdFoaAdyoptXScil8DDAEjrIoRuXvwSDvC0d5A3j9+dlnzrHWb71yZjzTcfl4LOGOClSkYRP0eyyDg3CDugdWNyjTNmWJ/GQRH20/3sFM7kW9nk5bsDHhLCZbq9cv79IXkw5NHJCE0qo6NEs2OfiMNTOVO4Z3DxzP/wfxkMC5UAo3+0vqwDr8N2XA/ZOG/D5exfOMi3GQ1o+MAqT3YogQJTt52zgfvRhjRpXduojAKKB1MHgC2C6n0QuhHQ2GJ9QxAaSopITNk8GG9xLkoRxlCj+afCulsWakIDsGVNONeicgJcQY9X3kLv1lZG0furKEZEYBrgeHdKJ1orkztKYVFcwQ9EFnWj8MnYpEnkKdhJvhICdLEXWQWJ5sC4QbVu/3NrDWq/cIg9ZarkxYdasrZaEyjPoYykqz2AUrWfMuqDC7k/FvSxXRNhJOcQaAmeP9aDFjhgKiEBSgrXM+VBc+pw+IdnPZdF222fjdyv+o463WgDLnREsIOqo/WnHorE//ZrXGpG5w9J3/2rR2+7jjfC5/RYcuI0B84XpVuPoCnXt11PdilkiIJrgRwAGTA5FW9nzRBJxAoi95OjqjCu+1b2cHceDiaRsebIURByAQ7ESQAT3Kx+ZLIa3wj0XsapXvfKiK9svEXYCR/g7KGyIWpttYBkUkgR4WE09Q1UxWsJOgov4FbONpTF3rj+83yoks/eOYVkX/jBhhI18jJnwgYo6HLB6zDG0kBj5GDOwlSlHNbKV9cpsJTogypcd3p5jEXBjedA2ru3om9sL62nRWBI1UCWNJVJqDSIUTTUl4FKQzTGNjGULnDyi+30QMxQwugjYS/Hj84jxV0J3XA8/EN3DK6pmO4YCVM4eZUIFyI2OVh0q7/hSx+B4dpQMloaCsxjPLaFcXS8glaQmwApS1K2H+y2YPWZaQV/u/tyuP9Z+LrqKY5lJmOpBJLap06qCdY6MrLt1REfdGablpGYRSDdUYBKwOnnCeKjeGdbok89d9jBY+SF44j3x/thj0wkbY8jzyEpIeVnbTIElGxEtE0TFFJYbomU0OunkEAWNFUBklEBpFzUApnFp7SLXdn9wNmVOYGXOekWIINEHk8M0jFAV4CDKhhYcoGw0ak/cRmmlyiy4Juj0mrcr76RFUvCcWg9mp3SwXIQPUVTL/uQQpYxUFQg5MiIE5jTqtzmxaPy2c8t43J+e1oGTNtgZvmw59gjeG+UCH40d6c+t+MKBr+pgGMxvwDxhECHGg1+B35XKBtjKFMo2xkDZovIKfS/UdRtfIcdJNvaXc7G7qX/eH3mvbfNDGlKPm+xFYxRNwsDP6BExkqvkDT3nT5otKyADUMOAutrNzh6e3Rr4B21e+E9f3uGplwh1LuDdFHUukMvleUpE/aeF819sCJCUSgjZsHPQJ40Of9sgAGFy4cgXypQdmKmN7c3Ny5/ONpsYkNaAN7Cg5Mlu/LT0x24mT8syUnmAebh/bBf+97JeK5frbdP7dT5eC4ClfWICDEhUjThRSpsBP9OBRfeHfCacqcSLKcJLBq0qSz+gcIh9FzijobjRmMknTeojZ58BMzgpUplAVQYLcWp9fCMdo9tWzgEmsDYpf8bRlFO2AenmI5aZtFRM1AJrH31kYm3GR93xjzM0O0hel6umzymZaWVs6Nwm28F/UeNp2/u2OYRvaqHPpSqyqbyq9SOWrqhOyveBvCDGt67IFEMNozOLxjD6XrO+P6rLLu9tg4bazOp3GJ/oaQW3DhRw6RNWthbAWmsCDU5Pu/lJkgDkyg0M5DH8sscgwWHZoWk+EJIKWcQn9t14x1xncbes2eLxRmDhWP6ASeyg/JQGiwru5wHoxVQJSTFA+I/9UdnD1D5cNVDgcgNMzITehkTMdsQOAgP0EMOK/KTUaXK4Gi0ZLeBTG5FryTOsbrjzQvct6d5mf7ZHO7yOQWqqUBw1R6+Xp2MyA9q1C4n8LWjR83CP84M9O2hhZYINYdanyurJaovAXNkl4dZq7FetbsVJxHJBXDIiHjDLgXp1c/R9R9bPXk6+Kw9HBg9OW9IDh6Vp2XPJ4S+OqG2VwHZGYRtMBdstFwQ2VCW40KmE8+YtP3h0loROff82xPXq7xxi4SGpiBcnYIcli0QUuoDOYXbB7hPD+6DMCsWjeCIhXynko4Uw/xCEKbKKa4IdZ3xGfbe1CTr67NG8rpb2DxjGSVUgSY2sgZcsPUe3+ZYD0T1b2bnfCBo1pIyCAh77h0oSIkadWHPp5J9br/QKWDT7xLoBH58H491n5EFk91l5ubzpPOnzIZb5Ef3w/ENd9S7vC1ynBZchBiKXTuUywM14y3O07nMFkbNVISfDiRoULersutOPp6WyuAG7zhi2vdZz1nd82XNUQKi3dPBUbc9iiBaQJAa0pGer1cHCBmoUlSoVqOPQUu1cjWsIcGkFIlf4GblrYNAw6OQmCGSESnzwT2UVdyPEQELGgkeAoDpVyWpKLhMNU2UmSWVrMbmis6CEKs0MFrgBs0CjhTAbZTkU6CsgtgoTfT51gZDQEIerWzN6bU+euPpG/FdCRQXkrSg2JpDLVQEFIuK0UAARRw2VK0vX82+I2lI7+TfE3DUtpDylnGFKeep6BoPcTechn37yVN+jf5lxt6Y/md/1xVcn7UA+9odDmMe9caGH+usdithsXawFyG9dYYI86woGuTsd5BqfnLTAIK+Gk5PEaEzt5CTRPVM7Ofnh+pOCNQ2KuTnPng9Jj97yQu3k5KpDHayu/6wbeFivVsEEu6zvaicnpXnclVssunHSGs31CW49YTQg1WFRuyuAZICSiIICSIYoKauZ2P3B5MSgaTZbXfSeXntAOooJhZdS+sR7XV6efrGds/nRlhhPx/3ftHAU04OO/y1CCl3u7zAJ2KjPj73xwhLP/wbKxX4/kUQO3UVkA6fi9UpbBAjhAcxEeGJR+QAkpIRxpkYHgWofHHG9jucv75w3Cx7tdBtwvdwhksCh+pAGrUa6ngST7BbV2jXMOux6QqO1a1vlbhvSWUGCHGqWwKxA+rygdtP/PP1YKA7PX2pW17hJg98rs9dWtcvYRXB/9CRqdkkl9o7BBgInKP1wOqwaqlIi1LGirr7I72ZR0r5N8MIl/Yd6xte5p7tnqiBKQGYYUDp2XLMzVc4R2LxCJhuCGTblYKiH5Z7Rb5UkjTYqaczeH753WEb/+H5NrWtwPxcWtUKEiHJDDp64unVCMze2nWr3EEKkhActtAgsEE43UVewGR7d6F/5v8FrrBQ3L14JTtKBXUsI0vQTTCB1PaHZvm5rf6HyzVVLVWUio6z4SaugNp9k3/i+zDb0gMWihp7jF7fC7yJizyXvIqooVYFO8XEmdLKOY45RexaNYXzVL4yr7/bNb9HaCwGrw4MHkhfiyZaQrnWHPX4/V5XqNlqCrrJWzBDOnND6x5sbsQGLzCLefIywpRgS9d5ABWF7BBRT/ikA2wWqBShYcpF1qgq2aTcZiq40SZrjm7t5eavzD4ZPwi92IvuxNGYdRyx3m4qg4iqpxVmwxzEEK4JKxmDjgohTGtk6cwQsAZhp9FBl1w7ZsNuzb8DiBZ/qfYg6LsZrIg64lxooNVI1uwQQJhYjTPmFGh4gLncLjbjXXGNbaFDTIDICt9BIh92krgg0qB7qQKeHdL+VQMqnRvZO0qyQtRNmGS77OqN/lbcSkAKxOfaarpVAGlwpf6X1VgJvPz02bfHbJe+dX3PrW/jXa6rFVgI/D/isGLhorX+2cenltbfTjSq7uwVn1Wu6ouy5sFPXa223Emgm6cyW1eH1mtjgdt9usXe2arWVwI2WbT5zfTr6bG/WsXD/C9k9LeBjyYgPEB+dLFqv5VYCDi4zxpbO2uA/74Cevn2DKa1rtJUA5Ir0FRNX2DrFlZKjGFe030og6uDx+76Gj31mG3kKkro6Pq7RVgLerqg6oSycnwYL57+u4lYCnb38Tuf2nsiZt37qfPm2xoTDj9XeSgAicuwVEyJBrzC73pFFY9f/21oJ/HjSqtvFN5167fOMdBm5OuZjFbUScH/J1Erg2IvqbyVwYbD3ZUloP87BDps38Y+f+6LlVgJaNv5IKulLplYCAMMabiVAtOc13koAAYy2lQAADJ3Mnegms85sXBGlSUsVy4jbHFrYuSooZtq5SinGMO9Mh7mOVlVq3nzF+TkdHwfNX3m2cGfg94VMw9JSVaVHIMj++p6uqhLcowh6/7+qSih/ilILu945UBQ4xau9uYHI/bkWqirdWHZ27iP7VuHLf9S6lxdjUek1EzA7it/T1QuKBtSs91VdVWmhaPWVtRc3hG0ftdW1Xcd4fy1UVZrWqYg9ff8TvwWhNwRRPusru/sNUQpiROnruyqsqkTMeq/RqkrIgvd7uqpKji4IUqg+7fJfpk+XhrziHtvSlbtgr1PTlQN7O1eTPs15y6RPS/75nz5F+fO4tP3nP+/NDNi4xCNtx+MDm7SgT9+srds0/4Fl+M6Y3vz7ti0KtaApMt4yaQrvt1WtT/uNnBc8yjfZf2Ynu1prurmM1YI+JS4SaAElINYMKOX8U4X6lGhDa1yfIhJDq08BUqg+7UqnT3UmJiBOJ52s3wVDgqw3TCFB9BsMck86yDVOZjPHIK+GZDbiNolaMhtxbUUtmY0Y0KklsxEjDbVkNqLRVEtmI0qDWjIb0UMjZaxBrUgpYvbGx53cQ975FET9ODa/TqOuWshY66Y1JptWI5OJZdrUmEysUqPGZGKGmxqTiXv+JJ7o0/GkyWDpivpd3gYv0t9vOtI8eIkWeNKdjic61NChuA3n9L8ZPf0OLvNxixv/+THFULTcEmmNfdJU/p2ZPou8n6Z1XZ26veZaIkU8PlXFLZEOcR//dzR06EEnqjpjln+fk2V09u3PgOnOV/P+WD8xUUtLdUT510ZzgSeMpUyfYHbZS+cxj28Y+U1v6riAaXr7ZGL7kOm6uzxafJUJ89yrGOa/0WGusZk0Y1WfmXzw8uPGOemNgrYfH/HUcuuyTWpmkii/amaSOGPUzCSRsWq+UNoe54dnW57nbD695FJ31xZWar7Qrk2+M/PCHnC3J35pu2xDx1kk4wq1PqUghWcVTEqpHeazZlhC/VdG6f9qwbj2pOOkceSSURuSh/vnvfkq6MLe9B5f3g7d+AsF/8iAqqx4VcAm2JahmB0uFYgDuewk9BkV2xA8k9yh4/sJaaGHHqy/fd0odSLjsMhV9wgf0OTk9ne06l4RaWkGRGZpX0lbhExpEs2Uoo1Vn4QlBJJhmc5EnhgYOcoXlwuHRQ7swvedPdJ/aJKi1RP8hqC/8gnkDUGMoPUWFbB5OIQkjSpxIh/u+H2rkcSJOnEAWpXSKCkpKdWk2B8bzxhYXypZxJMh+4wi6L5Q8ibr5Pas0Su7hx7Navhvp/dbdhGKqKIPoSiiilGqgjvSb0zcYesCd4A2KtUku6g5J0koR8oWx+HYhKkQSubs7ivdVzJoVvjEk+7+tie3jMMzR/lEikXcMkpVMKfoKxNzgDapeeZA/qgzB7NMdMzp4pMEvxLhCRiOHNwqEMelKosuerElUt5IWKPRA/mt7BPUM+rd+XUDdqX88F3f5Z82j3Z1wtdBqBul9nzyOXYctSqY587IvEdfdKdQEL6Qpn45HPQq46A8UShOFQMnGLAPsEssEUPWgZ9EktEIEf7qDklJvBTlBUo+Chc179Z7/V9hs07eWyXpF1BEqIaWSJUWjV6uCs5lfGHinHeNcw7eBHdUNEqVqa9cjxaKE5gVoevduCPLha7B0xPHtnpxzukTXhHS+kxlFK0veLuiPgSMOM6S3Co3RBGifqo3i8ZPbaw/NvLEwY/hR43y/nboPJawU+enXMiJkAlGCQWj8W4qxJQus62ND6w6JFdbDEIKyCYIJEkChSyVLVU+UG4RrMzmChb3EYjR+IXeeb3UeeHoBSeKeuXX33iQfXpiO6axkncV8XTzfuAfqUSmCBCKFMovpnL3aWdDWw4r+gfAPotqtzEDuLS5/9JmvVFGw4EYNsjBSWSMFfLonTfXW7EvrWl4+vXLM39/OQN/7tgIeypZLFWU8uJkYnGzysbJALkgiJw3lR6JcOKwvv6rUaJ7wyg1F4YtGSWQyYQ0PSusTUOG1rW/yVlft87ZySe3N6j8FCZgRdQRWsAKyBEDVtH/VqvOxdYxDdGQC34IOjv3c+6XGglQjw+76OvuW1oHsW1Eq2qEBQbYR+H/66q7Pfg7VOG2D50a+18R/v+oCH/WlGv7vq9I8tn2zt6cL87+zgibNovw25QyFeG3+VUVRfgP+GUNn3T/RK8DtcPbrmI1e6rF0+Za1pFwwcSolKlmecGvainC36zezr0H7y7zmzzcesfM/UkhNV6EP/EXY2uCXzXtgarvONVMEf6JiT0brJ1TL2iL+wqfF722DtGZIvxnfzL2T/j5f6MIf51nkzedPWLlv7TkfNM/j7/pQdjprO4i/IiWoa2iDrRMtRXhnzr07I97TdMCt/ke8Fw+ZwY+G6FmivAjyoa+Q8GvaizCf/i6+4kjm0/75tZZHrrl0/XbOlDOAmlT8JOxTcFPLPz0ZdH4bRyfdk6lXtd8ch/Ybbqy8i2+FJ8pcohPKhEBi0722YxocO5UtkUiLLsfrYUBEJdJkhMSgQ8nFyBLNZrUclhYKJxa3zqLk/Ge0/4E1+sV7WjJVQ/UiBXN7YOd+/ROs1hPAHq5pLbLAN/prNOVPFhlVTYscBXFgvLVDdu12/h4QmTwInnw5PWn3Yor37uL4EIRFWMlXShY9tYRokfZxS4L1sXQO62JC4X2QOcLEmQCav/SbKrpwuzoj73SL92oa3rgWnPCCSnkRooTUsrrVVH29xaL6f3zWad1YLkOkUwNHCU4ZKGEL4xjqG0TNS7W1OXH3pCJNhMzH3f2rIOXVewBZFlVUaqCGdMZmRFTM8wguj8sTXYsXEPEEgUwX7w4uHbq6O4FQlYQWSQ5sz284hIlMr4zu72XfKRMgfxC7a1e7vLcPH/2Y9+556SX03yCJuPtGvyCSEWqiKL/ZRmpKpjVlZFZljoxc+CjNPJWG5YtdIuTZbFyhhnkdK5zAbufu9/8wsX7R6bf/FKZULmyoYM7qsjhUc8iUl0oD86W96zTGnmpqCZn8LZCo+tzDVrMDd8x+OGeP6TXdtZs2AsAOMZCAbhFAQBULRp5opgpoy8ykfpDPzDmsyt305/d/7Vt1HN2jR72hQBEsRgkoF8z1mnU0fRj/Xfl4/S40vzawpVHfdaP2zopacTYzdWWj+Nc+zRDPs7gWiTPUsv5OKOf1Wv4Z+x2792f389fPjojRAfycVpBSGh3N3/UqhGlj08quHHjRjXk4/y+7o2P2a1toauehPI7lI7ophP5ONdqMXFnqy5wp1rycW4V6rU5ayLnZk4obd2/zdODOpGPk87InMG6wBxWTebj7DDsorfgrxifXbY2Pn/Z9mypU/k4HRmZV7dmmKeb+TiSjJ39PsR3Dy+YExE/9NYg2xrOx3mqx8S5Q3o1zbkqzcdZkhSa7ffCI3iecMIVX/dzxTqRj4P4ELT5OEARon6qP+v/g3yc3x/kDtg4pVP4xPjn91iszNgazsfpqH+aIR/nXm3axVKt5uPENwtdqLAe5J3+Luum7/zYDK3n4xBjcy3kmDhD5GhzTPT1SQulWsrH4f6exR1lkey9f2loaOsWdWtrPR+HqCO0gNW92kxY7a5drTq3pvNxOHRqbORRoZMwbLPfviPhoudPB73F75T0ToZnJwNlPGki+YSpBtsXrfyFcik8PabazUl1UZ4yZfNgzbwE+A2UkrdSmJS5e60rZ32d7FuHfvXbSzs+8k6OOpEkf8aRQIWFqx/FopBK4rmnCkql6mnExkltOKz856dYrEZ+8C/h/OfwNpxDW5+fMosUiADDBPxgoNdTsMchbFWyMoCOlRqfSXNUyXbVn0mzmJ3aLb1TPd8jhRb7uobVmqV2Jm32hw9N027fDkxPfDaoWUvDcLUzafM83vF8NweGbXH9t42lvv0StTNp56MPhNxxXuy7pyh+juNFt1lqZ9LmWYa2XRKYEbCm1e1h2e0Pl6qdSbs0JOYep9Xn8M3fJsyo73/HTe18frewK2cWOxQGZfTvLVvSbFqeWrOZeY95p6PuSDl5okbdDkRu8gAkI5S0tNlj2/hpPXw3p0rur8hxhGftjFFS+z/X/toYH8LZaDVr0GrjO1MByQQlHZVffZBsci10xsqiCR5nGuwEJFOUtMAz+e+FYx8Gz+ct6NrAQR4ASHVRUv36LVp31GP3ypvy/Gpw/NAZgGSGkqaaRI3oGcIP3PygsInc3/MyIJmjpGHD2Bv/juwQMH9uzoSXo/5cAEgWKMnzQsihaSERYdOdpNZDxh4fCUiWKKnttvj42x0u9sqrZdBrVfSvUECqh5JcTz063MrjpPfsMVGxV5cvuwhI9VFSUbN20/eOuBcw+bevTa7MNhkHSA1QUtCBoJSlJQlBeY+Tm2XVurMfkKxQkrR5e7Owy7t9so6WXBk8oFECIDVESX9HHi29e9XY56Cd0ONbryNDAakRSoq7eMO47ZpszuHmb9pO+cdzMiBZY4O/+jQ+eOpP7szfurD8h5zqB0g2mLBFW808stTQZ9+OS89O947/G5Aao6SOfcNNRxz2Dtv1+681KyZm8wCpCUoyi1trdWFCbOCRSdvPL9BvOwWQbFHSyw4l32JePQpbPfHBvjMRc7sCUlOU5Cvp+HXlq0T/iRktd7/9tjMWkJphXL4j+HZ53jHflYYTXk04dnYmINmhJI8r5o1S3h4IX3vaZXyTus//AaTmKGlre+tXJ6/X8c1o0VFs/ek8fC82Sir2K7QqPrXYd2u34c9qNTwsIx22tGfRHLZcWr9Ts2Kb537TvK2avB14cagWDlsG0qmohvH787JPneMs3/pkzPmm43Lwi4mcFKlIwqfIIKBrTOqA3qHK+URKrcuTeCIRUEJoFfsKpgwQFRTl0MjrnCihgn5JGogFg4xP03QhjXDmsEqMSN4vYxOIsoxK5UAo3619nbp7nW2LubM+XIgz6T3ylxYTKrXs5MIitd7GdHt6NjB10FijbIBOfYDDJEPW7vgCWKZXIhciKRRgfEIRbLqskhM28KDYPBhyxVGi+Hdc00u/DVjiN9nerO0tz99b4LdAVd9D3gItI2k7koVwAYlhgOuskU7sV5PT9TRsG+qCTjR+GbsUiTwFiF9GCNjAAVG1YaLfK/311E5ScGN9SOanL4/te55KIayWo4+lWC3HKNrmnqULKuz+lBvYroiwk3ZMNQTOHkvswRatBUQgKcHq03DP3k/ZV3xnNzs2ZvXYr4mVTyPSAliIqNOCBUQdtT9BrP+dPtDm6QOih15tpw8yTU4znD6wMtHIVlbw9MHD9JQNKdenB+2t42DXvLXNBC0aS6IG0sLpg9kQIdpkbb6JRsbyPz19sHqesN2qtcKwPVM9op80bL+qxk8f9GBEBciNju6UVN/pgyl38pz3PU3tNW9tpvmqi5ErdOb0wWtjJtYVGuuoO6Pl0wfPG50WL9ni4Dcz+ESdRWtPXK7h0weIlqFNHwdaptpOH5yZnL0l9IeR/8I7H1u5P4920IHTBz0YwbEy0Sznq1KnD4b329C2f+p335UpBg/qdn+NrwFSc6cPkDlNixCY06jfFsyi8dvOLeNxf3paB07aYGf4suXYI3hvFOlZF+nPrfjCgS++ZSTqCYMIMR78CvyuVPW+ikDZovIKfS/UdRtfIceJuH5JPW6yF41RNAgDFa1PK1u7kFwlb8CBj600W1aoUG9JyZRpDrZeEt/1BX81X8fe2IawyQ7vpthkRy6X5ykR9Z8W+raIIEBSKiFkO3FY/q012juzQQDC5MKRL5QB8QV0amN7fuCWiSbjXDkZgwpj77U+jq8RbOyP3UyelmWk8gD7p9/cU/sHZARMvNpcdKNNSGUPtEPAmjICBiSqRpwopc2An+nAovtDPtJpxMBLU4SXDFrVd9aO1xmdUjgH7ROOb9od/6U+chgHMIOTIpUJVFt3iFPr4xvpGN22cg4wgbUyi3lznjWeETq3w7MhV3rnH9QCay+0YmLtuhpiLZV/nKFZA7jy+5cGupvdrPPM2Xe6RZ2gr+37p9VY/1KWK6qTYP9SKSm+dUWmGGoYe7FoDKPvNev7o7rs8t42aKjNrH6H8aWBrWDJTQVc+oTZuAK4PyzQoOuZm58kCUCuLPyJPIZf9hgkOCxrdsYHQlIhi0jctit/wCR2UH5Kg0WFEgsAerEvRRO0GCD8BRaVPavnw1UDBS43wFK+0NuQiNmOWAMvgJ7yEB/8SanT5HA1WjJaQHMC52qAo22H6EUBc5vnzRTtCbXA6xikFypFizj0ern5F+b9rDsZ9fDb0c355zpZx/ZaWJkohjDr+1K0/cpqi8Bc2SXh1mrsV61uxUnEckFcMiIesIUE9epm7c1JKX2GngzMu+7Xdz7vYhw+q6DsueTwF0esihNNCGyDqWC75YLAhqqEEDqVcN685QePzpLQqe/fhrhe/Z1DbBgsFfHiBOywZJGIQhfQOcwu2H1ieB+UWaF4FE8k5CuFfLRQkciWgDBFVnFNQNylZxgnVWNjNbIGXrKlBd3mWw5E17yyc78RNGpI+0MFbNcHlSREjBKAnSfWjUoovhq24M2YwLNPDI7h3WfkQWT3WXm5vOlMzErQgstgBJFLp3IZYEHlR+a07nMFkbNVISfDiRoULUr4FgWsTn508VLwIStX7ujjb17iU7VRAaHe0sFTtd6Y3BGRJAa0Msyr1cHCBmoUlSoVqOPQUi1nxzUEuLQCkSv8jNw1MGgYdHITBDJCljD8U1nF3QgxkJCx4BEgqE5Vspo6eZhgmCozSSrJ1xhXdBaU+FAlFbohs0CjhTAbZRtT6CsgtgoTfT4lFJP825vcMwnwKzi0W5awZLw+YWMCvhXFxgRyuSqgQEScFgog4qih4rJoDJXO1K0nakvttPCpgrL1VuZo0jpl2fqPZhjkoToPOTE3TjuQ2xx0aXOtND5k1a0ZVu2/XXiqBcgLGzBBvq4BBnkYHeQaZ2VaYJBXQ1YmRRIllpVJkUSJZWVSJFFiWZkUSZSqrExyEiWWlUmRRIllZVIkUWJZmUODWrxsePCZ9wY+l9ffau40UsobFF5K6SOmX2oh5S2cjv8tQgpd7u8wCdioz4+98cISz/8GysV+P5FEDt1FZAOH7JQb0My2FgFC2LInEfa4UT4ACSlhnImmIVRse5+YclruEEngUH1Ig+NRH03BJLtFtXYN20EqTDVau7ZV7rYhp0EkkDUAD/ALfV7QQ9/fr9hnzvCetpgXc+bEhQ2V2Wur2mXsIrg/aoqa3RLSAXsQVuebUvrhdFg1VKVEqGNFidJt47wpD++14Ezhjv076d0OlhbTIib2Dft0dkNKwCbJjKDpvqkntICSghGlrqbkxQcmP805AptXyGRDMMOmHAz1sNwz+q2SqT8OdOcJHnKW2SedsVypuF2D+7mw/SIiRJQbcsdAGFxoqpkb2061ewghilOrWQEtEE43USdW+rw89efyrUFTeMevWIwvma8Du5YQpOWMIClMNdvXbe0vVL65aqmqTGSQjUV6BWX668zh66P+DF66JPCvq+y1+Ip7RthzybuIKkpVoMNlRKeVKeYYRbBoDOOrfmFcfbdvfovWXghYHR48kLwQT7aE+jTg2uP3c1WpbqMlGpWNIx6wqOjeQEU7H8OeCmYAtgtUC1AsANutulWwTZvavn8Dg9Rdvgdn6+++2m7eCfxiJ7IfS2PWccTytDhRxVW2Yy7Q044QrAgqGcsBrjnLTCNbZ46AJQAzjR6qn43PX8u0zvde/KxB6LKeInxjdmMOuJcaKDVSNbsEECYgNQww5dfVzNiVv4VG3GuusS00qGkQGYFbaKROwlJXBBpUD/Wm00N+bS64eU5+yM0JWP1O4dm4GXEdOoknZSvXaSjWy+lc8zbK+7DdHuRcCo8tFoyGlwQyYRxqICukloiHuxhGSLVSrkau6C4ZLErABrheovLJ02DOE1sjRWWObEMpF3fBcCjfcoxT3pkrp7cF56xvc37Jxi7ueBcJeQDZRVJeLm/OEc+5VXZ3C8CzG8JTl2rO5YKQZTZbo2wSM+V4mAp9jV82dcfl84t8DqZxTl+Krj0Av/unvJ+8+4deLw+fa7nnJgiWzAg43OxF5+lPxSIt4MNnxAeIT01kGBghiRujlED0YBH/aFYJ3CyKJ0sQKJiY1mlF4+yevdeG7rOut2Y05yAhLUR5P5lp6HWtJ9fCBURGrrxurktcKTmKcUUj82WBKDypgI8qX0rGtLvkdXfPt+VBc2wiVtqm91qOZ0wocj+ZMeh1bTPG2xVVJ3CZkRSvpsH6zGzNAjJbFQZIYCESlofH2ZPNB4a/G+s/ycZYKn1WexQ+q9ZP+QByVi1GqApEejAiwmJjdr0Pi8au5y8I+Tioe7fgqR9/KoxO3vmA57HyGyueDNNDFWHgDTh7dKIwLhG4lfBsIU8uhxUNVFkxqPmvWPBBPKdNNV6yTCqva5In2hzNEyVlv3iDqK5H88rugDdFXQ1o7IXKIjXwCJNyJNTdXlcEmE75p9Q/Z4DbhcObZ+INvyGdY6MiVLPxR1JJIYbuVDka7HYIhhpprB5hqEQpy3LiDmrBfCC5cn0AlgKEP5f5lOyxYeMpESXa8xqtCgrjWgQwGyrAYC0mABg6mSPpJrPObFwRpUlLPa6J2xxa2LkqsGPaucqywzCPosM8bF/ApXOsQr+0gY27C1/2qoevGoX0k5eKhHHIsTCyIqVD2jYU+APAPCnAnSJ2Eu4pFdKTxMoUTMMiF7PC0yu6cAOD7JYAztlUCzdwjyKt5Wkz1Wok5jlh9sQkGOpSHC/hNxkil4P5mAwM4J+dq3fU2P/AP9ahZk4NijC6Hg3dNBxRLyQZMVJep3+wcjzIcOFHmAK3ZgFCGdA5MDsBSWbC84uSP0+zhlyN/HQseMrK4NgRz37HN//T8yHPDh/S7NAjzI6udaN7nHTvFryp2/AFCc8cFJVdMwGzowiy050qeyEaUHNbnlYDqbyVJbtIQZwEaGhNUBrgOPPI98/J/puDvn/I2bL0Ch4lXzJKvuWi9KKk+MDHdiu8MwduamL0s3CgFlBKY0QpuuVpVAZVssSY7aKsFwgdowoARMx6x9sw5aPINgy9XhUL3ojEfKVaaHJ0QZBC9Wnf/zJ9SiznU0361LkFkz69Zv8/fYryp77Rif0zm80IW/O5d48VNxKKtaBPiWWatKApWrVg0hQ/7Ktan67mbpjc+Norn1V/Zy0uODpguRb0KXGRQAsoAbFmQGmrfRXqU6INrXF9ikgMrT4FSKH6tB+dPtWZmIA4nbSTzNZJr/G7OX5S/72fvBPzr83po4WQwNGeKSQwUkHenw5yjZPZzDHIqyGZjaIGHqbqKWrgYclsFDXwsGQ2ihp4WDIbRQ08LJmNogYelsxG9NBIGWtQK1KKGLF6nhYy1qK1xmTTamTyf1ZHkqKoIsZk4p4/iSf6dDwhli3UAk8G0PEku+DRgGlPvwYfKNhzYMeIx/hzfnUieGKBiFyglU6xOfqwpfAOtSrTbLFEIVAWF1IIUhRsZXFWytcm1l2kGEpFtJ1pZJxMIhL1gRYLXlRvyErQhHvvTrrBGzDc9+gfpzz7/qj1nU4TGvWVC2RRYPjY17b2lyTHimCuFqwECwv/8IUK9N2BhwF3OZ6kbSCwBCvVS1qUduCwSpoABerpx0qb5mcSypMlCMVcQTzOAJoqL/eBPTvUrxsrr0dJpOpXCSVgezlw0v9pctoCATFCBs8NKoTKURlio6KaUDLe6GAxH5bdwuDVM4YX4daL2iXEVxehZYWVAQHsBCLkifxgLSg1Q6SQCXhJqt/1+8t4UtU9qKgOpBNVnTHLxCqgWlqqI8q/Fuxyui2TXebbYnZ5kM5jTiyvqrvLozFWTJh7W2GYD6bDXGMzacaqPjNJUTcXM5MUdXMxM0lRNxczkxR1czFf6FXdetmxv60MmtuYF92838hrar4Qd3FmVouoFkFrvwzq67fE0ZNkXKHWpxQkYjFeLRjXIXSc1NGWY8Siw9XWckzUhqnl2HKHqm45Ful0avqJp06h2aMattmzLx1faLVmWo7x2zA1cOnRRgf6JhUXF1dDy7EXb3bFzs9rErik6/xhR0p27tCJlmNWjNx57aAD3KmWlmPSK1G/Nf/h7JNtkM1zs/t5QSdajhU6MDFnuS4wh1WTLcf2f5j7Il3+yq9g+Eibz5kX8DnHNd1yTMHIPG7NME83W44d79vB4cH5pX7bG28/lBA8C7+jV/0tx1oxcu5H65rmHLypylqO9dzb+HmTM2P8Dm08ZtWq0zZ8ZbqaajmG+BC0LceAIkT91KEsGj/1v6nlGLEtRg23HJvuyNRyzN2xmlqOfVrUw+32t+C1nDST00bTP2u95RixuJkW2milOTK10Yp2rKqWY+Pe7fNd0HhkaPqK5Lsxi5s/13rLMaKO0AJW7oxYGTn+n2o5NoxOjf2vCP9/VISf2E2o2orwF7dlKsKf2LYqivDvrSdv2m3ztJCZCa1bXJtS31eLp821rCPhgsmjtkw1ywvaVksRfuOFs/1X5T7otZk16dqdUQmuNV6EP4MRFSA3OhM7aHbwR3tF+P/50exwY7u/Qmdd9XJZZHrujM4U4fdmZJ1NzbCu2ovwW98T1pcf3h04N/aXXbOrPW/WcBF+RMvQVlEHWqbaivAH2ppn3z3eO3CraML+a+bf8Nq5ZorwZzCCk9i2Govw65nfL7WSBIfMbpGXcsFu0B4dKGcBEfJmRAjMadRvi2HR+G0cn3ZOpV7XfHIf2G26svJtB3wdAeQQn1QiAhad7LMZ0eDcqWyLRFh2P1oLAyAukyQnJLJVTWM1qeVA7LBIO1py1QM1YkVz+4AjNNsJ4PsE4JtLdJOKAL5P21X2YJVV2bDAVRQLyleve/liyHD/wwH5Q1bzLi5fZF353l0EF4qoGCvpQsGyt+lOdF3ssoDsDnbSyIWqq5y+fEGCTEDtX976988ln76LQvPmbd81fXl3MeGEFHIjxQkp5fWqKPvbkfH96zrVtLOkkkwNHCU4ZKGEL4xjqG0zdufSyY7PzUKXpH+4PvxAsQAvq9gDyLKqolQFM8BkZWDGoXY64f6wNNmxcA0RSxTAfPHi4Nqpo7sXCFlBZJHkzPbwikuUyPjO7PZe8pEyBfILtbeanbe5aKXbi/CNHQr3t05w2oK3a/ALIhWpIor+l2WkqmBWJiOzRDXDLMLMgY/SyFttWLbQLU6WxcoZZtAd1lID82d6YUfeHHXe+9VxZmVC5cqGDu6oIodHPYtIdaE8OFvCnDTzUlFNzuBtneUeFDXqviZww4Y6Y2+LI8fWbNgLAGiKAXCLAgCoWjTyRDFTRl9kYvvd7tZX7rgFZv4cEpo9TtGGYMqq97AvBCC/HQMA/VLbYY4mj/XflY9DbMxdbfk4012Y8nEKnKs6H+fLs9ih/xb3DNtnMUqPe2Rubx3Ix0lzYdrdjHbRgaSCP//8sxrycTJu7l46KCAueEPEgE5WFy6E60Q+jjsjd4x0gTvVko/T6sui/uLlet4Lc9zOBJjF79CJfJxHzkzMAdqk5pnDqsl8nHqSPb0TjM2DNp0LStS/8NsQncrHyWBkXmLNME8383EeLurjZHf0UMC8bTt/WzTmWpcazsfxZuScTY1zrkrzcWZ04R9M6fGEm2vqljB16oxNOpGPg/gQtPk4QBGifmos6/+DfJyt7a1fnbxexzejRUex9afz/Wo4HyfDlSkfp6tr9eTjNNhidD36QWjIMq/X1rkPW83Xej4OMTbXQo7JdFemHJMY16rKx3FfOuVm9Lws/1U7s1cM2mnzXuv5OEQdoQWsujJiZen6fyofJ45OjY08KnQShm3223ckXPT86aC3+J2S3snw7GSgjCdNJJ8w1WD7opW/UC6Fp8dUuzmpLspTpmwerJmXAL+BUvKK/Qqtik8t9t3abfizWg0Py2jHR97JUSeS5M84EqiwcPWjWBRSSTz3VEGpVD2N2DipDYelDwtzNfKDfwnnP4e34UypZXfaLFIgAgwT8IOBXk/BHoewVclKPh0rNT6T5qiS7ao/k9Yow+5y609/cyfdcYhw/jrpvdqZtObzwoa1dTPrtalBR4s3ua1/qZ1Ju1H68513+52cjTK9uGWRGUfUzqTJ+/Eu1TMsDDnYOzx2ZfHoMWpn0nbdCJIMPNAxdOXw2wl+XcN4amfSHm6YE/jV+U345IeB7NRVj1+rnc8fxZLs+2w+kLt7Vi2bOn+s3qXWbKbbonOt/86d6r3tb4NNDVMyQwDJCCVlhv92O/Hqi4BF+4sK4sJPzAEkY5R0rcESzqrB/pzl+4ea9R55+SUgmaCk0EML3w9/EB624bPs/rrzEfaAZIqSgkxKZTx3HmfOWpmT54j3qwGpLkoyqT8k89/8mJDdJ/wnFSbd3ghIZigpffzdCSN6Z/pu2tmocGz6E3gMzxwbYdwcg+h6+/zXiurVffs9zQyQLFBSu+kDBie03BmyLuXU3KBV7ccCkiWmkAco7ofIF4TP+tuuj/lZV4hhPZR0d1m3kfGbB4astx7sMm2ZSRYg1UdJJ84OP+hQMCB4gzyF7Sm6DbncACX1H92p5Q9u06C0hoH6cwMtWwKSFXbX3seRq3/2C1h9P2pQ7hUFRL4hSrrvGmN4YynLf+Ha7jP/bb0oHZAaoaR585Y88PjSOGS7ufsMUfGI0YBkjZL2fZ0x88nZHoGrD0SFThq0ZRog2aCky04zmsuanPA78OQlN+z82QxAaoySxnqlWZ8SdPU9FN723Dr5/Z6A1AQlTX0Z4dh5+Af/mTlu3bdZ/3MPkGxR0kV/SZ87vw4ELLa03ZCzP6A1IDVFSXn91iy/MvO19/IJ9lHFiy9CYWuGSZSBaN6Te3Lv9Ea9f3T91S4FkOxQ0priFV6d0lsGb6v/xXfshHQpIDVHSc9W305M4XwL29cuzmv+mkmwugQbJZl5bhrnfO8650Bqo4QjQ1+8JR22tGfRHLbcPHPZm3v2KWGThiyd9/Bx5kMtHLYU0KmohvH787JPneMs3/pkzPmm43Lwi4mcFKlIwqfIIKBrTOqA3qHK+URKrcuTeCIRUEJoFfsKpgwQFRTl0MjrnCihgn5JGjxV40HXhTTCmcNq6qFZE4iyjErlQCjfzcDrxQHXlc5+ay9ta29vd1CbCZVadnJhkVqRB92eng0Ilv09NMoG6NQHOEwyZO2OL4BleiVyIZJCAcYnFMGmyyo5YQMPis2DIVccJYqO/fMHPjj50LdgcWKzsQ61P+K3QFXfQ94CLSNpO5KFcDVlhOuju07sV5PT9TRsG+qCTjR+GbsUiTwFiF9GCNjAAVG1YaLfKx3X6GLxlA89QvOntmrwbJC/FWG1HH0sxWo5RtE29yxdUGH3p9zAdkWEnbRjqiFw9lhiD7ZoLSACSQnWpl9fB26P/oM7a+cFzrmClvmVTyPSAlhNGcECoo7an3gWjf353+mD/+j0AdFDr7bTB8faM50+8G5fFacPXFIbPvVVzA8uuN6mvuPHgGAtGkuiBtLC6YOC9kzJ2hntq+X0gc2CgG6HmqZ7758U/U9w5s+IGj99kMiICpAbHd0pqb7TBxMft/s3z2mf715ZM4cFzfr31JnTBzaMrCvx0FF3RsunD/ghW91N0q4GT5M9y2/7kj+xhk8fIFqGNn38/7F3HVBNZF8/uqgogg0QxBI7KsXeCwFCDUXAXiMJEA0EQxRQVERUFFTsiKjYEXtDRAXXgl1xbdgVu66Kbdfu995kJmQqZBmS7PdfzvEcmctMJr/73n33vfu79wIro7XsgytDJnmkfm3skZ6//9mJzs2P6EH2QQgjOA4dtZh9YDe4RifRpXmuW+YN3fPNthjf21h32QcWjAiBOY36bcEcGr/tzEqh4EeP+q5xmxpXe9l8ci7eG0V61vk7C8p+cOCIbxmJesJghxgEfgV+V7R6X0VgbNHxCn0v1HWbUibHiXh+Sf3eZC8ak2iwDXzug7Z2IblKDnCM+lRAb8nN62ae/J783Ds+tvvN+TkX3xKC7PBuiiA7crk0T4lo/1jo2/IAAhRONQi57YCF89EodmaBAISNC2uRRA6GL5BTL7YBI/sVH+jU2WNBw7+b/x3dMBU/LZ2xm8nTskRUGmC7L36eFLO4uUvCvZcJH/MaWbIAWDIjYGBE6cSJUq4Z8G86ceh+yCmdhgy6NEJ0yWBVBQUxY9+1ve2z4k3B2Wnpj17URZJxgDL4UeFysSp0hzi1PEd/68FtyucAE1S7/nbenFXHDnvF/bnNfMqvgN0sqNaBUbUWOlItlX+crFkDuNL7l75Iruy63eyDy8GtQ3q9eiE30Vn/Uo4dapNg/9Jw0v7WDpli6MIYwqFZGB2v1r87sdteh+3DRlokDjyCLw1sCktuKuDRJ2TjimF8WKxB1zN7J1kogFxZ+BN5jKjkMcjmsKTZmQgMkjKtiMSwXekvTFIH5V9pcKjQsDsA/bkjRRO00WDwP+5W3lw9nkANFHjcAEv5Qm9DFsa1xhp4AfSUSXzwf0qbFgFPo2WRYpoMnIdTZ64f1zWbnxNbc+zZy0mFeBuD9EKlaBGHXi/NxrSo9andqO/dHDfcnNf48IH1FiycTJhCmA0cKdp+pbRBYC7vkXBLNfWrTrcCZWER4sAJyPCALSSoTzcz+y+pc/RRLdc5BunzB7zg4CuqG5U8l7z9xQkrIqMJgW04FWyFtghsqEmQ0JmEcybNP3ToKvOa9f6tp92VaXxiw+BwqTBQzPWeIJVS2AI6h9kWuy8M3gfHrCRsolAqESkHeaREEcKVgW2KvOyWgBilZ3hPqsbGamINvOTe3eiCb+kQ3a7lnfvmcFFD2h8qYLs+aCQhYjQ9Hy/4drlTnTezifeYbqu9X+PdZ+RBZPdZebm06UxkJbDgMnSGyMVTuQywoHLNbrTucxmRs1IhJ8cNNTi0KOGLu2FbI8HvD+/Mu5aDIut3WoynaqMDhDqkg5ey3pjcGhlJDGgd7qpVBwt7UcOA6HCxOg7N1Tg7dp7ApRVL7eDfRNi5uo2CTm6wWE5gCcOf8hpuc2SBhIoFjwCb6milqqmzKAgLU3kmSTn1OtoOnQXFPCpSoT0yCzQ6CLNQtjGFvgKyVmFDX0QJhaHxsoif3i8Eh8R7fW+bvnhICEzAb0URmEAuVwQUyBCnhQIMcXShGsuhWaj0pm490Vqy08KnAsrWO3RlKlvPVUE+Tu8hJ3Lj2IG8xflpX8Lq/nSafn96+sOimCYsQF7ciwnygl4Y5FI6yDVmZdbCINcCK5OCRImxMilIlBgrk4JEibEyKUiUGCuTgkSJsTIpSJQYK5OCRImxMmf/NttVmHnNOXdHQR2zxxdHkChvcPBSjj4i/ZIFylsonf6beZ6wvbu7hstmA9GY6y9q4/VfT3nY7ySVRUB3EQngkJ3yqjSzrZmLBLbsCYE9bpQPQLaUcJ+J0hDKFt4nUk5LfUUSOFR/pEF6FLczmGSFVGfXsB1keieNzq6tlNE2JBtEBlUD8AC/0POCLOUDMxOHRzjseX5iqvkw+97libVV7DF2AYyPdkaX3WJSgj3YVt/pROmH02FlpqJEqGNFiZLRpW++BgMHOy3OqrtgdZXUhizSIqYP8P50elOUyxbZHLcEx+hjLKAExgwDSqJOmjVpt/HF5hUy2RDMsCkHt3oY94whVPK988SfcbnuWc6d4mZzJSd0GM+F7ReRQUQZkDsKtsHFnTRzY9uqoocQokC1mhVwBcLZJkpwFkzt2TL11QbeIolpM65VvVF6ELWEIJ3uxARSeifN4rotnSXKb646qioZMkhgkd5ARTZ4OnCl0R1BQuDgy/N/X3ERH0XEnkuOIqokFYFOFCM6vp0wxyiMQ7MwvhroLTCw/+K0dP15l7U+7kPJB/HkldCABtym+HiuiuoWKdOobBwxwaKssYGydj4Ghml4FwDbeaoDKA6AzaBLBYRpL/aY6ZNrN8h7+bUndXsZtCSU7kPisTTLOk5YmhUnmrjydswFdjoAguVLNcbSgWtu00Wjtc4EAUsMZho9VA7Vl4YOdTsl2CC4NDHHbt0AvCXig3upgVITadklgDAZMMJ0p7Nmi13pITRirFlnITRoaZAxAkNopE7C4XYINKgdktHZIafW5+17zLgvSHdZ+07Rw7IR8Rw6VBjOVZ7TUJyX07nmrZX3YdEeJC9FyA0TR8JLYrkkEF0gy2SWiMldDG9IdVKuJi5rlAwMm/aeANeLVD55LEB9l4dGhsoECUMpD3fB61CXCehjtsTgR0+n2XWC97n1HYb/llWQB5BdJOXl0uYcMc+tvNEt2E0ZwlOTas5lgC0Lx1MjNomx8n2YCn21Hfhr27MXjXlLCsYNaDlg3Sp89E95Pzn6h14vDZ96Deob9nl8QbAx5/uwWrP7tmcBn0IPJnzA8NEFw8AQIW5MVALRm0P80awSuHGAUB4sVjApTepwcnvPwl8O2QYffmRUbUOozqa8n6w09Drr5FqglQRGrYzWK60U52Fa0Wj5qoUYvHCxCDW+lIpRLDXLm2Q61/3I94drr6ePscIrxgu5n6wY9DrbinGwQ80JPGYk7Vdj7fmcPz0025BZqTBANhZSSWl4mIQEXRy/7DxvG0d48jV/QTSeVeukfACZVYsJKgKRXR5MiCg8sHU9nEOzru9a5PlxWK+e7rM+/lAYHr/1Aa9j5SeWnQzTW7XDwC/g3MgQSWAIcCthbqEwIgJWNFCxYtDlv2ybD2KeNtX7ksek8romPFF3lCdKYr84gF3dLvfyRsAboq4GXOwlyiI1MIVJ+SaUX3yq65RYD3d3182WD28Nu22BD+RWo3NsVAItL/4IlRRi2J6Ko8Fti2CokcXq7Y2OKGVZTlyiFuQDRSjPB2ApQPj/Ep+SO9l7CnVpG8J6rtOqoHBfiwBmQQUYrMUEAEMn83i6yaw3gSviaGKpxzUxzMFC5MrGnSlyVVOFuZwOc+8DLhfPcE44xQ617CV56VEHXzUK6ScfLpUEImlhZENKh7SVF/AHwPKkAHdKuaG4p5TJThIrUzC9FrmYFV5e1oMbsMkWeAM4k6gObmCM4qNXvrHqNBLznLD1pIY7tKU4XcJPqoZcdhdhY2CI6PT8SnnVnXPe1PcyblevAJNXopEb+SDmhTRGDJXX6R+sfB/kdeGfMG3cGrlI5MDmQHYCQmbC64tSP0dONrtw/IOfyyb5ojUWFpPxlNRKPPLs4JFmRyXC7OiaZd4/2aOH19yGzWa5He0aU94zE1hGAKqzPRV7YTCQNvTOVwOptJOlxv7iQBmw0Jqg1H77hnSjnuaO23Jneva6lNkXj5IjGSXHUlF6NUC+aUOQreOOAk/RhSV/hLOAEhjWDCid98pHx6BqLDGyXZT1AqFjVAaAiKx3/BqmfBR5DUOvV8SBNzJiPlMdNFnbIkih9jTiX2ZPieV8tGVPBYz21PM/e4rqp8OB6i9yOl7gZaYOWTensGFTFuwpsUwTG/ZUwGhPBRVtT1PqPY7fumeR2wG5ZdWxGZXasGBPiYcEbNhTT0Z76lmB9pS4hurengoY7aknZk8VdPZUb/YExOnEDpmtSyXLd/Ocwp2zPjmE7Lo6z4+FLUGaJ9OWIEYF+QQ6yDUms5lgkGuBzEZRAw8z9RQ18DAyG0UNPIzMRlEDDyOzUdTAw8hsFDXwMDIb0UMjMdagVaQcYsTqeSww1iaypmQjLSr5n9WRpCiqiCmZGPMn6cSATifEsoUs6CSSTiep2Q+GzH782T0ne3/O7nEP8ZuqKr7CMLGUXKCVzrBZ87jh8A61KtPcMJlCrCwupBBHKbjK4qzUbB1C3UWKVymLtTPyD5TLpFI/uGLBi+oNWQmW0OZa41jrO91dExLezvActIY2t9lwQIRYHgBeH/vYls6yCWOkkKsFK8HCwj8iiQL97sDDgFGOothNBJVgpXpJh9Kt+JzBfGBAezhxYmc71fASyoMlYQJxEG4BNFJe9oM9O9SvV1deD5CFq18llID1aMV3G8TPr4WA6CuHeYMKifKtqmFvRTWh5MJI9zARLLuFwVupOrwIQy9qlxBfXYqWFVZuCGAnEIlQ6gRrQaktRAq5WBiq+t1gkFwYrroHHapRdENVb5ZlYhVQlo7qiOOfhXX5M59pXS7kY+tytN5jTiyvqr/Ho0m9mTCX9sYwn0SHucbLpDFHe8skRd1cbJmkqJuLLZMUdXOxZZKibi7mCxWmr+jzcfZexx1J9QxChdW6q/lCnYvldYyMtjgfKt45LtvqRmXS4gqtPnVrSEIxXhYW18l0mtTTlmPEosNaazn2oD9Ty7Ha/Su65diHVSYfu53Z55PUefi3zLih6/Sg5Vhhf6YGLrv660HfpAcPHmih5djKJV4jTixI4aW5vpqQ8yTqm160HEtg1M5ofdCOVlqOHfxaL/Zt0A6vfTVfXu/ftw2evqqrlmPdGZVTWx+Uw9Fly7FrfflH9x2ozEudOe/XzmC3fXrVcuy5L5PyjvrqT6Egnbcc+54beqnZ1Vlem/f4dki/GBSn45ZjKYyaC9e55uBNFdZybOeIZit+v/CX+97RjZ7t/7DLQC9ajiE+BG3LMWAIUT81hkPjp/6bWo4R22LouOXYdz+mlmMb/LTTcqzD0rN+spo+/Jz47J7zr4bdYr3lGLG4GQtttD76MbXROu9XUS3Hhq7MMu6/qZ7PbEObkWYb121iveUY0UawgNUGRqxi/P6nWo5NoTNj/xXh/0dF+IndhLRWhH94AFMR/jv+FVGEP39hm/uOVUNdDvw57vPagAX4duvlyzZn2UbCA5OAAKaa5TYBWinCP3BO2zPmG+u6zekvqlE3sXctnRfhN2BEBYwbvdk7aJb4w14R/rpG8zL6u3vwt4VmWo7bEII/ttdlEf59/kyqS9KN6rRehL9TQEN+8DBfr7jqqz/WPTLGScdF+BErQ1tFHVgZrRXhX5gqsIp5nOqWM7Tql2V1ruILZummCL8BIzjA2GivCL/prGZfag9Y6T3P9/KnTvLn+HI6uivCj8xpWoTAnEb9tqkcGr+Nz2vb7lefq7yMe423/LH6LaGOAJLEFy6TghWd7LMZ0uDcpSREIim5H62FARCXyyYEh3BVTWM1qeVA7LBI+7bkqgdqwrJy+4AjxBkI8C0C+GYQ3aQCgO/gAeVNrDIteS1wFcWC8qt/Wb+mXi1JL/elL0IOXS0YgGf0/qPeXQQXimgYy+lCwbK3nwfQdbFLAWO3YIBGLlRN5fQViYPlYmr/8kxcz2PvCp84rUswy721vtiVkCGF3EiRIaW8XhFlfzMYv3/sAF07S6qRqYGjBF9ZIhNJAhlq2/TNcJ8xx9vfY4mpwit265JE/FjFHkAeqypJRShjMKMy2utGGUT3h6NJxMLOM0ymAMuXMBCenVq37wO2rGBnEWrD7dAnMEQmF9lwO/aJGC9XIL9Qe6v+M64V5p9pzl845NmL4ptnZPh1DX6AvyJaStH/skRUEcoyZFTWgwB9mDnwURp5q2YlB91hE+RjIhhmUNxdIzP7MT5O8YfSF/u+79qyPFvl8m4d2qOGHKZ6FpDqQnXgbz02QDMvFbXkDN7WMfM5IsPqRbwDSTOzerl9nqnbbS8AIBkDoJACAGhaNPJEsaWMvsiEc97j2rMO+Tgn7r05dE+j/g10muwLAWjBBMDA1wGYozmN8+/i4xAbc2uNj/N9EBMfx2ZQRfNxuFsjJ+/PK3Rc/+T3P98WTjmuB3ycj4OYopvnB+kBqeDUqVNa4OPcGlUpu+uAkc7bbyv21gx+E6UXfJwNjNqJ0QftaIWPk+fDGd3Kx9gtsUnsrqYrRgzVCz5OAKNybPRBORxd8nH6X05+cvSUk2dseqfEg7t2GOoVH8eAUXl3Bura2dUjPo59TauntbblC2Y8etJ07uEePXXMx9k3kElzSTrXXIXycWw2ia473VjtujRz/qrkEXvT9IKPg/gQtHwcYAhRPzWW8/+Aj/N07c2QKP4X7wNtA/ssXBcXo2M+jsEQJj7OtsHa4ePEXkqbuuRUumtS1JIh0gMdt7DOxyHuzVngmHwfzMQxuTq4ovg48094riyaMNwla0Nw65+/Hc1gnY9DtBEsYLWNEav4wf9TfJzpdGZsfJ6kncQ70+lAro/02eNh+Da+Rv0nwNxJV7kwPIScYapB+KKFsyQiHGaPqaI50bbKLFOuENbMC4afQDnyjHtsibG5c42fE20enDvyBf37kSM56kLS+KvuD0yYj3oqFsWoJOY9lXFUqp5GbJzUms8JcQOj0twJ/iPkf45tzXcLdss39hdLgcLEIndg16OwxyFqVaoyjk6VGuekWavGdsXnpC0e/zXyt0YDvVcmre47fdqpfmo5aae7LDp8v5orb3tXs7fdem15o5aTVitojonh2fO8OT3tk190ahGrlpPm0vPX739+3e61qu6B+Xen94tQy0l7UP/c6NB9bXmZv7ew/rxiyR61nLSWsl7vKs+YxktfmC0JzHv0Ui0/v8XOpwZX/jrrOm927veCqz3XqzWbMUu94jP92iiP2Yc8f2bmfukIRIao6FDNicXZfc7w9/V7ZC2IjO4MRNVR0atppvaLG3V1SJj993Tep60bgKgGKvo24/N3t65LnBYftH168G+3QCAyQkV1TzYunp61WZBocM2134CbO4CoJio6m7q42rdOIrf54mpHXqd3/g2IjFHRF487HoOmZXrsrrZ7y9lT+84BkQkqSk5/XnhSfs1tXYLowZ/G2+8DUS1UVF2yYXVc7nefNfv2Ptl75S58jdqo6E0Dl03zj8Z5pI+8U/XRChv4WXVQUetnhttq5WZ6LO4UL16efC8EiOqiopP+JjeKO5912FJH+nxowYpQIKqHikYlbZzL6WPreDjv7bx7ftY3gMgUFcldz9/b7j3TcbdnrWV+X+rVBiIzVHTm/LE0xdmW7slFee1erUkfA0TmqKhKaK+84uRdrhkWjXMm5vYKAqL6qGi49ZyVI5et9Fm7/FZY/ZMfTwORBSr6tHx9/8/vP/ms3uZm6zes4XMgskRFrg8GHfO8luE+6363U5967OsFRA1Q0eZi++m752xwnb7q54r2bQLhXVaoaEG2kWHHbZe8ZzwZ233k8NMmQNQQFb2THHz7qtdZftzcTh03/pjjCkSNUNEjK5PGt64VO85q13Rvv1d1jwJRY+x7dZjR89OJON4++3iztoODlwFRE1TUrf3dQVaRFt4LJ/d6devureVAxEVFjk9CY+Urz/vMnLa17aHbTS6Qki2bcmiSLdOKO943m/eAtzCwScfnSz/YUJgNTZMtZ9CZKLOggztTT57hp20rmnSuYUw6/jCRHxUulYkoGAR0jUlboXeoOJ9IqfWIUKFUCowQWsW+jJQBooGifDXyOScqKKNfEgv2glEj6bqQ+sI+biM1awJRwqhUvgg1Hz95aY2NOT28d1y6FJq67mUWi4RKlp1cWKQ2fCRdTM8CbJbdRmrEBujiBxwmOXJ2JxLDMr2yCAlCoQDvJ5HCpsuqccIFHhRXCLdcgZQobuX12LjKSu6d07laTsrNmNv4EKjqc8gh0BIR2ztZCBeXEa7PI/QiXk2m62nYNtQWnWiiEnUpQoQKsH8ZJ+YCB0TVhok+Vpo/U3Dmd+t1vJ1PHdPfOTovJ5yWo4+lOC3HJGxrr7YtOtidKQPYdshgJ0VMNQSuKUbswQ6txUQgKcGqvLC2ze0qVb1W+HCyr18QVik/jYgFsLiMYIGhjq4/8Rya9ee/7IN/lH1A9NC1ln1wYhRT9oHzqIrIPrjwpNjidvVmXqu/9u7WqOY5ExYXS6IFYiH74PAoJrL2klFayT4obHgx+nlnqevKttJBx16HHtN59oGUERUwbvQ0UqK97INlGxf+9fHTUJclj1KPyr5F4s9VdJl90JBRdR9H6qk7w3L2wdBU8wipaxXBnOZDayRue9Zdx9kHiJWhpY8DK6O17IOWjQV1kiIEDkcm3v5Vc6ChVA+yD6SM4DiP0mL2gXmkfYcpd+64Luy8/7zRQoMjepJ90JARITCnUb9tJofGbzuzUij40aO+a9ymxtVeNp+ci/dGkZ51/s6Csh8cOOJbRqKeMNghBoFfgd8Vrd5XERhbdLxC3wt13aaUyXEinl9SvzfZi8YkGmwDUyajrV1IrpID0IDF5AroLVnkOE16bfxW75lVTq8cmfPeghBkh3dTBNmRy6V5SkT7x0LflmQIUDjVIOS243NCJmsUO7NAAMLGhbVIIgfDF8ipF9vMU/ys6VOmOM383fPy+tu3puCnpTN2M3lalohKA+zIJf8736o4ea7q0XjPqPZtTVkAzIERMDCidOJEKdcM+DedOHQ/5JROQwZdGiG6ZLCqEWaKUQlP7Rx3rrUq/H756du6SDIOUAY/KlwuVoXuEKeW5+hvPbhN+Rxggmr93bZwRvTO8dx73aVt2CwvBxZUWzyJSbWnJ+mPf5ysWQO40vuXfqjmvyTNyNk13sG+2YqaB3x01r+UY4faJNi/NJy0v7VDphi6MM7i0CyMjlfr353Yba/D9mEjLRIHHsGXBjaFJTcV8OgTsnHFMD4s1qDrmb2TLBRAriz8iTxGVPIYZHNY0uxMBAZJmVZEYtiu9BcmqYPyrzQ4VOCKAejPHSmaoI0Gg/+5qLy5ejyBGijwuAGW8oXehiyMa4018ALoKZP44P+UNi0CnkbLIsU0GThnj2+M4Z5J8lh5WbymneeoJ3gbg/RCpWgRh14vzcZU+/7TQPx1qPMC3rveRQ/55eVfwI2cBYTZwJGi7VdKGwTm8h4Jt1RTv+p0K1AWFiEOnIAMD9hCgvp007Pei+NmThs81tQW8e0ShtfDswpKnkve/uKEFZHRhMA2nAq2QlsENtQkzKYzCedMmn/o0FXmNev9W0+7K9P4xIbB4VJhoJjrPUEqpbAFdA6zLXZfGLwPjllJ2EShVCJSDvJIiSKEKwPbFHnZLQExSs/wnlSNjdXEGnjJDiK64Fs6RDewvHPfHC5qSPtDBWzXB40kRIyaVOWzyuHP9UN4yyr9OvqtseQp3n1GHkR2n5WXS5vORFYCCy5Dd4hcPJXLAAsq1xbRus9lRM5KhZwcN9Tg0KLuczjjUdGTazNcF93x/8T7lfMVT9VGBwh1SAcvZb0xuTUykhjQOhqoVQcLe1HDgOhwsToOzdU4O3aewKUVS+3g30TYubqNgk5usFhOYAnDn/IabnNkgYSKBY8Am+popaoptUxcmMozScqp19F26Cwo5lGRCu2RWaDRQZiFso0p9BWQtQob+iJKKNqkG4RulM10X5GV7T8tas1OQmACfiuKwARyuSKgQIY4LRRgiKMLVQKHZqHSm7r1RGvJTgufCihb7xzIVLa+hQryOXoPOZEbxw7kb6VLVlc3HOK0r+jr6Nb2wz6yAPnHECbIr4ZgkM+lg1xjVmYtDHItsDIpSJQYK5OCRImxMilIlBgrk4JEibEyKUiUGCuTgkSp6ppEJlFirEy7B/36zBtf6LJr2KxYy/5ePBLlDQ5eytFHpF+yQHlLpNN/M88Ttnd313DZbCAac/1Fbbz+6ykP+52ksgjoLiIBHLJTXpVmtjVzkcCWPSGwx43yAciWEu4zURpC2cL7RMppqa9IAofqjzRIj2ohBJOskOrsGraD3DBao7NrK2W0DckGkUHVADzAL/S8oGn7Gp0ddcLEO85tZ5O9h7cuKU+srWKPsQtgfFSILrvFpAR7sK1+MJrSD6fDykxFiVDHipoDsm53VjvPzS5zT096596z+jQWaRHTB3h/Or0pymWLbI5bgmP0MRZQAmOGAaWQ0Zo1abfxxeYVMtkQzLApB7d6GPeMPlQyMPns6gutF7huvzfe3erFw7c6jOfC9ovIIKIMyB2F7RdHa+bGtlVFDyFEgWo1K+AKhLNNlOCs6ia48b7XUe+Ua7Hz+Gu6z9aDqCUE6fxoJpA2jNYsrtvSWaL85qqjqpIhgwQW6Q3U0RWSh9ntQ92z/zpsmnTx4lR8FBF7LjmKqJJUBDoxjOgEjMYcoyQOzcL4aqC3wMD+i9PS9edd1vq4DyUfxJNXQgMacJvi47kqqlukTKOyccQEi7LGBsra+RgYptFjAGznqQ6gOAA2wzEVEKZN7Oqx6fw4kWDtJd+rPZy5q/GHnUg8lmZZxwlLs+JEE1fejrnATg+GYPlSjbF04Jq3H6PRWmeCgCUGM40eqsGpTXvP8xnoHPdg9P7k5t3wrNfqfHAvNVBqIi27BBAmQ0aYHgg1W+xKD6ERY806C6FBS4OMERhCI3USDrdDoEHt0Dw6O+TU+rx9jxn3Bekua98pelg2Ip5DhwrDucpzGorzcjrXvLXyPizag+SlCLlh4kh4SSyXBKILZJnMEjG5i+ENqU7K1cRljZLBYTMR4HqRyiePBaiPnqiRoTJBwlDKw13wOtSFhj5POR+84i/H9SbnpEs39KmLd5GQB5BdJOXl0uYcMc+tvNEtAE8hhKcm1ZzLAFuWXRM1YpMYK9+HqdCX3cOPsza3eei8eeU+g3Hb6l7CR/+U95Ojf+j10vDZO+qde3H3y26xguiRsxeL/2YBnwRGfMDw0QXDwBAhbkxUAtGbQ/zRrBK4cYBQHixWMCnNtbokwmvSdV7e/XD7LhcWFuCVpryfrDT0OuvkWqCV7oxaqa1XWinOw7Si0fJVCzF44WIRanypt2NN8yq3GFedt2b09TuLllfFx3+reiH3kxWDXmdbMQ52qDmBx4yk/WqsPZ+TNlGzDZmVCgNkYyGVlIbH0/zRsoN/1hEkmLyq3qpbd3xqWzUn5QPIrFpMUBGIjGZEpMVEbF2fz6FZ13ct8vw4rFdP91kffygMj9/6gNex8hPLTobprdph4BdwbmSIJDAEuJUwt1AYEQErGqhYMejyX7bNBzFPm+p9yWNSeV0TnugElCdKYr84gF3d6AnljYA3RF0NuNhLlEVqYAqT8k0ov7jVnJstDmxcK0j4Ff45q+Z6PNe9Gp1joxJoefFHqKQQw/ZUHA1uWwRDjSxWb290RCnLcuIStSAfKEJ5PgBLAcL/l/iU3MneUygRJa7nOq0KCve1CGAWVIDBWkwAMHQyL6CbzHoTuCKOJpZ6XBPDHCxEru4omCJXhxUY5sl0mHsfcLl4hnPCKXaoZS/JS486+KpRSD/5cKkkEEkLIxtSOqStvIA/AJYnBbhTyg3FPaVMdpJYmYLptcjFrPDysh7cwNJL0QDOJKqDGyRGEZ1vrDqNxDwnbD2p4Q5tKU6X8JOqIZfdRdgYGCI6Pb9SXnXnnDf1vYzb1SvA5JVo5EY+iHkhjRFD5XX6ByvfB3ld+CdMG7dGLhI5sDmQnYCQmfD6otTPJmGNzTVWP3XZv7mg+nQ7aVecfirxyLODR5odlQiz46T7309qzjdwzN0713B3m/yk8p6ZwLguVGd7KvbCYFhDNjpfDaTSTpYa+4sDZcBCa4JSh40OcbOmLXffPnbX0jThzDF4lBzJKDmWitJfJr2aO32+7rzi++pL1aZYRbGA0gZGlGKi89ExqBpLjGwXZb1A6BiVASAi6x2/hikfRV7D0OsVceCNjJjPVAdN1rYIUqg9Xfgvs6fEcj5asqe+UUz29HPkf/YU1c/co+5rii8OcN+1xsrF7NO1lmzYU0KZJhYshVsUk6XgRlW0PY2XrH/du8M016WPLM3M3Dr0YMGeEg8JWEAJDGsGlAoiK9CeEtdQndtTZMTQ2lOAFGpPF9HZU73ZExCnEztkti6VLN/Ncwp3zvrkELLr6jw/FrYEgkimLYGNCvLFdJBrTGYzwSDXApmNogYeZuopauBhZDaKGngYmY2iBh5GZqOogYeR2Shq4GFkNqKHRmKsQatIOcSI1fNYYKwtYU3JRlpU8j+rI0lRVBFTMjHmT9KJAZ1OiGULWdDJUjqdpGY/GDL78Wf3nOz9ObvHPcTn+VXxFYaJpeQCrXSGzZrHDYd3qFWZ5obJFGJlcSGFOErBVRZnpfzaxLqLFK9SFmtn5B8ol0mlfnDFghfVG7ISLOGbM/XOt3jg6bxk4R/f25+1oWVSGw6IEMsDwOtjH9vSWTZhjBRytWAlWFj4RyRRoN8deBgwylEUu4mgEqxUL9GA+rbicwzGAwPaw4kTO9uphpdQHiwJE4iDcAugkfKyH+zZoX69uvJ6gCxc/SreChv4teLvqDw+vxYCoq8c5g0qJMq3qoa9FdWEkgsj3cNEsOwWBm+l6vAiDL2oXUJ8dSlaVli5IYCdQCRCqROsBaW2ECnkYmGo6neDQXJhuOoedKguoxuqerMsE6uAsnRURxz/LKzLGeOZ1uWE8di6vFzvMSeWV9Xf49E0CRPmMRIM8xQ6zDVeJo052lsmKermYsskRd1cbJmkqJuLLZMUdXMxX8hwUd7L1KV7Hee++3Sx0+ObDdR8obZjE7N+z3/jkf3Yr39YwdsWpMUVWn3q0DmhGC8Li+sKOk3qacsxYtFhrbUcS57C1HLsaExFtxxLaXXNcOjmmW57uvqPm/+4ySo9aDmWMIWpgcvoKXrQN+nmzZtaaDnmE+l3o6n0vU/876vmTJLNMtKLlmPdGbVTWx+0o5WWY0srZw++PPWiZ+73LpdC/G+N04uWY89jmJQDrInulcPRZcux0ErFaf6iHK+8F4smhSw+OEOvWo6lMCovXDfK08+WY1fuFrl9/+bmkyW99del9ZPX6LjlmBuj5rg61xy8qcJajvEC040C2ilcE371bGdqOdBJL1qOIT4EbcsxYAhRPzWVQ+On/ptajhHbYui45di2qUwtxwKmaqflGLeO3/i/ow7yd37luPgJRq1gveUYsbgZC220NkxlaqMVM7WiWo7l/bzfwvVlS5cVxZuHF7gNWMl6yzGijWABqwBGrGym/k+1HFtJZ8b+K8L/j4rwE7sJaa0If9VYpiL8SdMqogj/eOtfB7+bBXjNbXfj5IugLXgSWfmyzVm2kfDApHIsU83yO9O0UoS/6EeboCwbU6+9xjOme9Xa1FrnRfj3TWNCBYwbvdk7aJb4w14R/mGP1lhy+oZ4ZA3ds6dZFZt2elOEX8Sout66UZ3Wi/CHpUQ0qDavpsPCYbcPru58KEXHRfgRK0NbRR1YGa0V4bfPX9P6wR+DHRctmbZx0cSsqnpQhB8xNrTgJE3TYhH+NzVMhy+UFDrkRvbJ3TzlynY9KGcBERIxIgTmNOq3pXFo/DY+r227X32u8jLuNd7yx+q3nfB1BJAkvnCZFKzoZJ/NkAbnLiUhEknJ/WgtDIC4XDYhOISrahqrSS0HYodF2rclVz1QE5aV2wccoUI4PYsAvhlEN6kA4BsfW97EKtOS1wJXUSwov/rvnT5XbXfqkdOisRe9OlTbiu+y+I96dxFcKKJhLKcLBcveXo2l62KXAmNOsRq5UDWV01ckDpaLqf1LM9tbD57y0x1nG236PedZ4jpChhRyI0WGlPJ6RZT93cb4/VNide0sqUamBo4SfGWJTCQJZKhtszzziSAn9rNXmtizqMn7gU3xYxV7AHmsqiQVoYx4RmWE60YZRPeHo0nEws4zTKYAy5cwEJ6dWrfvA7asYGcRasPt0CcwRCYX2XA79okYL1cgv1B7q9W3Z930mDjXIX5Uu9kGk9z749c1+AH+imgpRf/LElFFKGs4o7Lc9GLmwEdp5K2alRx0h02Qj4lgmEETfjZpN3LWWu9Dlaq//P1Gjwfl2SqXd+vQHjXkMNWzgFQXqgN/wMFYzbxU1JIzeFtHJAaTNrba5H7E7GaTpmmxA3W77QUApGMAFFIAAE2LRp4otpTRF5loFrZiWrB5FYfE9nVPiARtH+s02RcCMJYJgEzvWMzRXMX5d/FxiI25tcbHuT6diY8TNr2i+Tg3X+WP2X7Lzy39daP95rsm1dUDPs4f05mim7nT9YBUkJeXpwU+zrhmR1KXTg4U5LzkcNq9Ss/XCz5OJqN2lumDdrTCx4lrmFDvps9p570ukjV7BQcN9YKPE8eonDB9UA5Hl3wczuO/Q258Hum1+tWdSpJawxfoFR9nKKPyXHSjPP3k4wxs3z1u5iGFa1aecdSPXnYvdczH6cioucY611yF8nHMQjv3Hp+f47Bm8MS+l8S9hXrBx0F8CFo+DjCEqJ+6mvP/gI/Trf3dQVaRFt4LJ/d6devureU65uMMjWPi49jFaYePc8l8xz3njbvdE/JykuYMkp9nnY9D3JuzwDEZGMfEMXGMqyg+ztDD1+vbbJrrvrrhzRvdHnw6wzofh2gjWMDKjhGrBnH/U3ycNXRmbHyepJ3EO9PpQK6P9NnjYfja9Eb9J8DcSVe5MDyEnGGqQfiihbMkIhxmj6miOdG2yixTrhDWzAuGn0A58hyfhMbKV573mTlta9tDt5tcoH0/ciRHXUgaf9X9gQnzUU/FohiVxLynMo5K1dOIjZNa8zkOsDCXuRP8hx+VQ8e25pv2VuQb+4ulQGFikTuw61HY4xC1KlWZTqdKjXPSrFVju+Jz0oYH1un9LOgkf+GDD+fWd1wvVMtJ43674nvvY13XNZYdMt2/zT+glpNmbDQ98vpPBW/N8LFdTeIbKNRy0nYcN7vzM63QbfG6XY2nHhvsp5aTZjnqUPfxvdNcZ/eMOSSRNstTy0njDQ5/fnct32Nekd3+qd1OBqvn59uEb46dEOO8pHG3KmMXTeSrNZsZZPLq9baOLz1WDBqcfXPR5OtAZIiKDHd+P7+vksQzxzK20ebcwd+AqDoqqjpkwN9Oa3P5+56eShgbsDMMiGqgojZ3vVc/mRPpszH95/dhb9qdAiIjVNSozdcP79+NcYlf5TDK2OTtayCqiYruFb3fGPF3IH+5v9HI3fc6wuICxqhI8OTZ8C0b4r23ndu4rPL5kNtAZIKKZvuYtL/tms/LWWoQtvJjlStAVAsVTap6cllc56MuaQsvcPcP29sWiGqjom4v8qPH+gd6b9rz/GubHvYeQFQHFVWqxd92t8F21+mu9QuvFm3JB6K6qKil25Ci2i5zfVLDWnt459S5CUT1UNHtrtF5nQZGOs0a7Zdo03zVWSAyRUVPDqbOPLnA2H3666bH362ush+IzFDR7kv7ZzVI6MxfsexVXO+qz+FXNkdF/c9kPo9XNPXYH7Xh1ckYgS0Q1UdFj7pO7OVww4u/x2q2afU2+6cBkQUqenUpwG3Mb/0dc9a0/ulwXgYHmyUqqhnz/kVK/2lec4+2HXs+a9ZGIGqAinYtqzs+4tJmz/hRBms/xJlDkRUqahJyp2df447eazssm3ns2kn4WQ1RkWv8wVZ7b7l5zbcy21u9yjoDIGqEiix2Br/Zemy9Z+auz2camPVKAaLGqMjp0ZyojfHbnDZa2PY5UKffbiBqgoo2KczrfFo+3yNZsaJZvcoZ8DW4qGjLnpd3fvIHC9bNS7Tuu67nCVKyZVMOTbKlyNTCuP2l+16LRo/YcmGgfQiF2dA02XItnYkyCzq4M/XkGX7atqJJ5xrG4IPT1fhR4VKZiIJBQNeYtBV6h4rziZRajwgVSqXACKFV7MtIGSAaKMpXI59zooIy+iWxYC/YM56uC6mvDZ9jEq9ZE4gSRqXyRSi/20hHgV99UWXehvuO9Vr3afmKRUIly04uLFLbNZ4upmcBNsvN4jViA3TxAw6THDm7E4lhmV5ZhAShUID3k0hh02XVOOECD4orhFuuQEoUAx99cth10tA7JX/Ec4c7333xIVDV55BDoCUitneyEC4TRri+ztCLeDWZrqdh21BbdKKJStSlCBEqwP5lnJgLHBBVGyb6WKl/m/XHvpvle+4ouDZ4cdGxvoTTcvSxFKflmIRt7dW2RQe7M2UA2w4Z7KSIqYbANcWIPdihtZgIJHXNodoxi6pu+puXdTGVM3jg0+Ty04hYAMuEESww1NH1Zx3nv+wDNrMPiB661rIPHsQzZR+ka7ZWljH7oPieYuzKX+/dDlll1K0WMSyExcWSaIFYyD64E89E1j6t2WL5T7MP3IveL+y/6obzvnmTWx6fJFquWxoGzD5gRAWMGz2NlGgv+2BW/OPM/hZ7vGIHfOy3J/T9Mb3JPkhiVF2UblSn9eyD1j5fPkxJs3TJ6bTSquDtmhE6zj5ArAwtffw0hZdSUdkH63+ENvu4eYfTvEYmaQ3vxeDPA3WUfcAITnq8FrMPOjb4Mu9Mtw2uh6ZbmFb1HvdTT7IPkhgRAnMa9dvWc2j8tjMrhYIfPeq7xm1qXO1l88m5eG8U6Vnn7ywo+8GBI75lJOoJgx1iEPgV+F3R6n0VgbFFxyv0vVDXbUqZHCfi+SX1e5O9aEyiwTbw8SK0tQvJVXKAFcoXVUBvyReB1r92dFnmNsPjzy4Lanw9Swiyw7spguzI5dI8JaL9Y6FvywMIUDjVIOS243POL9IodmaBAISNC2uRRA6GL5BTL7YPHG9e3/fxhiBDIJxRNT7kDX5aOmM3k6dliag0wA4cv57S6Uqi18xKB9u/OdpAygJg2YyAgRGlEydKuWbAv+nEofshp3QaMujSCNElg1U9verUVEH8cZ+9M64unlNTllcXScYByuBHhcvFqtAd4tTyHP2tB7cpnwNMUO2g+Lv1GgY946c5H+s34+nzz2z0MGJUbYyOVEvlHydr1gCu9P6lL6e1Smnd+Zb7nBEKv53zQmN11r+UY4faJNi/NJy0v7VDphi6MG7g0CyMjlfr353Yba/D9mEjLRIHHsGXBjaFJTcV8OgTsnHFMD4s1qDrmb2TLBRAriz8iTxGVPIYZHNY0uxMBAZJmVZEYtiu9BcmqYPyrzQ4VJg/G4D+3JGiCdpoMPjls8ubq8cTqIECjxtgKV/obcjCuNZYAy+AnjKJD/5PadMi4Gm0LFJMk4FjFWF/dHeHw45LauT9GG0wUIK3MUgvVIoWcej10mxMouDmx+8TO/LWPXp3d/nWvsNYOJmYC2E2cKRo+5XSBoG5vEfCLdXUrzrdCpSFRYgDJyDDA7aQoD7dTD/+m/GbgjkuWw4dmlcQP6oLnlVQ8lzy9hcnrIiMJgS24VSwFdoisKEmYSOdSThn0vxDh64yr1nv33raXZnGJzYMDpcKA8Vc7wlSKYUtoHOYbbH7wuB9cMxKwiYKpRKRcpBHShQhXBnYpsjLbgmIUXqG96RqbKwm1sBLbjybLviWDtB9P6u8c98cLmpI+0MFbNcHjSREjJpr7Hh6Q8rPzoKldz+fetC+Lw/vPiMPIrvPysulTWciK4EFl6EBRC6eymWABZWrzqZ1n8uInJUKOTluqMGhRQnfkBlW7Rs83OOTOCZpbcysVpF4qjY6QKhDOngp643JrZGRxIDWvVladbCwFzUMiA4Xq+PQXI2zY+cJXFqx1A7+TYSdq9so6OQGi+UEljD8Ka/hNkcWSKhY8AiwqY5WqppSy8SFqTyTpJx6HW2HzoJiHhWp0B6ZBRodhFko25hCXwFZq7ChL6JetJ5kvY/dft0l2Whj4xMPniQSAhPwW1EEJpDLFQEFMsRpoQBDHF2oNnFoFiq9qVtPtJbstPCpgLL16bOYytYnqyDfrPeQE7lx7EAurjxyX72vxa5xBgX57bMq72EB8qg5TJCHzMEgz6CDXGNWZi0Mci2wMilIlBgrk4JEibEyKUiUGCuTgkSJsTIpSJQYK5OCRImxMilIlBgrc3HauWspghGuOyZ99pL6j69DorzBwUs5+oj0SxYob1vo9N/M84Tt3d01XDYbiMZcf1Ebr/96ysN+J6ksArqLSACH7JRXpZltzVwksGVPCOxxo3wAsqWE+0yUhlC28D6RclrqK5LAofojDdKjkmeCSVZIdXYN20H6ztTo7NpKGW1DskFkUDUAD/ALPS9oUJ3iqX6Ojl5bbx8M80n/q7A8sbaKPcYugPHRmeiyW0xKsAfb6rCZlH44HVZmKkqEOlaUKJ0wkE6/b7fIJ/PH1tpBHYsaskiLmD7A+9PpTVEuW2Rz3BIco4+xgJIvI0odZ2rWpN3GF5tXyGRDMMOmHNzqYdwz+lBJYuiRtks9nARxdyaIY8Li7XQYz4XtF5FBRBmQOwq2wVEzNXNj26qihxCiQLWaFXAFwtkmSnBqxZ/p2Tf2l9Om9Hv1V9b3MNKDqCUEScQIku9MzeK6LZ0lym+uOqoqGTJIYJHeQNkEr+3jW9jPdUOdQat2teUb4KOI2HPJUUSVpCLQ6c2IjvVMzDHK5NAsjK8GegsM7L84LV1/3mWtj/tQ8kE8eSU0oAG3KT6eq6K6Rco0KhtHTLAoa2ygrJ2PgWGygy78eaoDKA6s8kg+gCp/mPau8ET/Si5Sl71RfypGZSXUwx92IvFYmmUdJyz1CJlg4srbMRfY6bYQLF+qMZYOXHPzWRqtdSYIWGIw0+ihivKs7BbzfA0/r/XmNrXbTB6Ft0R8cC81UGoiLbsEEKbKjDC90XCxKz2ERow16yyEBi0NMkZgCI3USTjcDoEGtUNb6eyQU+vz9j1m3Beku6x9p+hh2Yh4Dh0qDOcqz2kozsvpXPPWyvuwaA+SlyLkhokj4SWxXBKILpBlMkvE5C6GN6Q6KVcTlzVKBoZNQjLA9SKVTx4LK6sla2SoTJAwlPJwF7wO5bf8+qJHwmbLCNdlC+063N/9k9CxEXkA2UVSXi5tzhHz3Mob3QLwxEN4alLNuQywZQlP1ohNYqx8H6ZCX+PSxk/PSNzgseRSmGFuYrvx+Oif8n5y9A+9Xho+s3/ZPduY8dN58c3Hy7xvDdzEAj7DGfEBw0cXDANDhLgxUQlEbw7xR7NK4MYBQnmwWMGktNsN34xp+zDNa8lm+wNOr5tn4JWmvJ+sNPQ66+RaoJXOjFrh6pVWivMwrWi0fNVCDF64WIQaX0rFLJz+4EaL4FGCrUuXj8iY32ACXjFeyP1kxaDX2VaMgx1qTuAxI2m/GmvP5wQla7Yhs1JhgGwspJLS8Hge9Liby+s8x5n5joX2E/5wwLNqnZQPILNqMUFFIOLGiEjbZGxd38ahWdd3LfL8OKxXT/dZH38oDI/f+oDXsfITy06G6a3aYeAXcG5kiCQwBLiVMLdQGBEBKxqoWDHo8l+2zQcxT5vqfcljUnldE57oApQnSmK/OIBd3ekF5Y2AN0RdDbjYS5RFamAKk/JNqLtFPWxpOeGnsUvqtMeLN+4yPYIffHSOjUqg5cUfoZJCDNtTcTS4bREMNbJYvb3REaUsy4lL1IJ8oAjl+QAsBQj/X+JTcid7T6EeSoT1XKdVQeG+FgHMggowWIsJAIZO5u10k1lvAlfE0cRSj2timIOFyNWsBUyRq4kqzHfQYe59wOXiGc4Jp9ihlr0kLz3q4KtGIf3kw6WSQCQtjGxI6ZC28gL+AFieFOBOKTcU95Qy2UliZQqm1yIXs8LLy3pwAzbZ5pCqmUR1cANjFC8X5hurTiMxzwlbT2q4Q1uK0yX8pGrIZXcRNgaGiE7Pr5RX3TnnTX0v43b1CjB5JRq5kQ9iXkhjxFB5nf7ByvdBXhf+CdPGrZGLRA5sDmQnIGQmvL4o9ROwyDljWaWVnvEHTpyeHGSFHzaVeOTZwSPNjkqE2bF6/hPLw2fb+uQMu9p4iMHo8nZt4oDZUReqsz0Ve2EwkP5cmK8GUmknS439xYEyYKE1Qamo9dhPuVbbneevXJz1suClMR4lRzJKjqWi9Nl4191isa/L+lNzToZuLh7HAkpgWDOgdH1hPjoGVWOJke2irBcIHaMyAERkvePXMOWjyGsYer0iDryREfOZ6qDJ2hZBCrWnO/9l9pRYzkdL9tRhIZM9Nf3PnmL6idk4aIf7hz2eS++Mmvy9bcxjFuwpsUwTC5aiN6OlsK5wexo6vnla89y+jsuuh4cV9rHdwYI9JR4SsICSKSNKnIq0p8Q1VOf2FBkxtPbUVGVPd9HZU73ZExCnEztkti6VLN/Ncwp3zvrkELLr6jw/FrYEuclMW4IdqjOV3XSQa0xmM8Eg1wKZjaIGHmbqKWrgYWQ2ihp4GJmNogYeRmajqIGHkdkoauBhZDaih0ZirEGrSH2STKiexwJjbQ9rSjbSopL/WR1JiqKKmJKJMX+STgzodEIsW8iCTvbS6WTZ80+rbAckCQ6e9fnd9Vd6M3y5jpI8VLximGJO5iUli8JgTSj0ATXIOa11XHz8vHgB1s0mt+/pN6WZjU+bMvmVxNKNVQWywHFikeomuq9ArjhSIisrPb0VnxOXCGxdVyeac86gRAr/0gCFi8K/RFwWgn+Z8iM2Z+3Cwe5Zm7d4Ozxpd5st/5Gx2nUJFtyJQrlEOEZKzRnqH97l7PJFOQ5Zq52Mujw7k8OM/kD0UVwfsqPkU6qjRKypWc6VKhZob2oi6iiRs+BaIdojOkpM/qRpiaNUMtApUbs2zrLZhwkc5z1TWt25vvuv94yo0TlNVMd95Q2IdEAhOepAAUl4BwQS1Ibso7MhqdkPhsx+/Nk9J3t/zu5xD/G5wlV8hWFiKbnIM535sOZxw+EdapXquWEyhVhZoEwhjlJwlQWeqUcnoXYrxauUxWMy8g+Uy6RSP+j1woslaePF/Qhj1Nve7LLl3kCHXQvXOfaYvG8v3Rg1HBAhlgeA18c+tqWzbAKcGYFSWE0aFg8TSRTodwe7FBgpLYrdRNAjVu6bpEcweJPnAT32cOLEznaq4SWUB0vCBOIg3KAwUl72g31/1K9XV14PkIWrXyWUkfZoxb+xYF5+LQREXznMPVZIlG9VDXsrqkVZLox0DxPB0n2q0V4dXoThW7VLyH5fipYmVxp/2E1IIpQ6wXpyKtVU9VfIxcJQ1e8Gg+TC8BIDohyq++mGqt649sRKwiwd9xPHPwu+/Z/zmHz7O/Mw85Cl95gTlxP9DbGcZ0wOOqxKDjpAh7nGrrYxR3uuNkXtbczVpqi9jbnaFLW3MVebovY2tp8yjx3XsUt/a7es1HUN6zduUFVtPzXpy8vMovUzBIcedL58ZrP7FpKDDq0+5UAiFvRmwUHPptOknrYtJBYu11rbwgeLmdoWRi2u6LaFopYWnWeceuuzrWO1gDtdfhPrQdvCO4uZmkCdXqwHvdcuX76shbaFrYeuzBLF1/NKMx38vqFF6my9aFu4j1E76fqgHa20Laz58Umf3+4f58/8I/H+wRUG+EbPumpbmMSonCh9UA5Hl20L48427fxjBMc796TdujppG/H1EXXdtlDEqDxf3ShPP9sWyq5cWFtcUMspt774k28Li9Y6blvYm1Fz1jrXHLypwtoWPr6ReO7Dgode+z2Spk+dOPaqXrQtRHwI2raFwBCifupBDo2f+m9qW0hsraPjtoVhS5jaFjou0U7bwnZmAqd2Ht/4GYmBFl3Sufh+3Gy0LSQWSGShFd/YJUyt+AYuqai2hQf2r3sQeHOR8+FT3YsNG8sMyj+FCVgRbQQLWDkyYmW35H+qbWEOnRn7r5HHP2rkQexIprVGHo2XMjXyuEe2nSw08nj18OiZ91+7e2YF9Us6+251EYsVK1i2kfDApMFSpr4HVZdqpZEH3+ONz9c/Fzgceb3tZm7dFvj68bpo5PF+CRMq97RrDRn3DpolD7LXyCPtc9LZeecqeSdNj/lyqMGwSXrTyOMso+qydKM6rTfymHyqbgfjb5cEcY1GhhvNjjHRcSMPxMrQdmIAVkZrjTymJ9e6svPAdPdNBs/b1rjAu6MHjTwQY0MLDjA22mvkwRnb/82XOVuc1/TNckueXD9LD0riQITOMiIE5jTqtx3i0PhtfF7bdr/6XOVl3Gu85Y/Vbzvha5EgicDhMilY0ck+myENzl1KQiSSkvvRejoAcblsQnAIV9V4WpN6MMQurbRvS66coiYsKz8YOELFcHoWAXwziG5SAcA3bWl5kzNNS14LMoiUWFB+9V5HgmxXxd13yl0XWdhR9ju+2Og/6v9HcKGIhrGcLhQsnf3nUrpOmClg7BZq5kLVVE5fkThYLqb2L32fdUgo+vM3ftq34qG97d6cJGRZIjdSZFkqr1dE6fATjN9/11JdO0uqkamBowRfWSITSQIZ6mMdtr2wNbd9gs8Mt/Xvo6NHWOLHKvYA8lhVSSpCGWmMykjQjTKI7g9Hk4iFnWeYTAGWL2EgPDu1bt8HbFnBziLUhtuhT2CITC6y4XbsEzFerkB+ofZW7yb1DX48Zj9/+5DECR7bax7Cr2vwA/wV0VKKHroloopQloJRWaP1YubAR2nkrZqVHHSHTZCPiWCYQS+y3j0bEbPIY3q/9TtfJu45Up6tcnm3Du1RQw7TxQtIteU68Adc1tBLRS05g7dVzPV0PWa9zWfu2Sn8zQ/9Z+p22wsAyMYAKKQAAJoWjTxRbCmjL1Szbef3dZea7uanNgx5U9DqTT3CUqbdggEQgDgmADKDlmKO5mHOv4uP4/RoTtTG+G1OGy1s+xyo02+31vg4b5Yx8XFmLatoPs7mn14v3UyqeC7ysOv4rvaHQD3g47xcxhTdvL5MD0gF2dnZWuDjFA38Ih+6otB7VdSAZ2lfvGrpBR/nGKN2duiDdrTCx+lU7JTk++aw58alxwpD/9obrRd8nFRG5czSB+VwdMnH2eB/cesO7xj3hY3WpTiErnuoV3wcOaPyRupGefrJx3mdfUhWZWQbh7iiY6+3df2VrmM+jgej5rrqXHMVysfhJsninowTOK6q0zRvpIdlil7wcRAfgpaPAwwh6qce4fw/4ONsUpjX+bR8vkeyYkWzepUzNuqYjyNfzsTHcVmuHT5O/3s1fl/S7y4/Y3x+v4F9BINY5+MQ9+YscEzCljNxTIYuryg+zide42nmg856zVv6dkng97RM1vk4RBvBAlYujFh1XP4/xcfJpTNj4/Mk7STemU4Hcn2kzx4Pe4uPlPSfAHMnXeXC8BByhqkG4YsWzpKIcJg9pormRNsqs0y5Qlh3Mxh+AuXI27Ln5Z2f/MGCdfMSrfuu63mC9v3IkRx1IWn8VfcHJsxHPRWLYlT+w/xo1dOI2e2t+RwLWNzP3An+I+R/jm3Nv1F/Qb6xv1gKFCYWuQO7HoU9DlGrUpV5dKrUOCfNWjW2Kz4nbTO/s5Wp3VWnpeFTAg9Uck5Ty0m7npK1O+YPOX/ffseoIlFCkVpO2rXa86RzLV87H34nlvdNO9FHLSfNq8Mj//S2S/grDsRvH1qU3UgtJy0hevW0ITO4Xkmn7UZ1+tj7m1pOWqMXJ5dJ8q34eYeq357+cluBWo2PrkuXcgTN97pvOTJ4XsF7V0e1hlXzcodO4p519d4+eXnwpEO3PgKRIfbAoPXdm29Z57qrYdP3cTV+uw9E1TGRbGVOw8YzHBamXqvLO9JECkQ1sJe3HFkQ+iTMa3P7gC2K2bdrA5ERKtrh/6fLp9+jvRM2jvrW9+uwRCCqiYoGjZTN/5wVyVsnFHTfKNsHi2EYo6K1q1rcmbZ+oPOMZe1aezWoGwJEJqjojldy5IE+RwQzR1+/V7vLgr5AVAsV1d97+mqs7023xGHb7nU8mlEPiGqjIlnN1CPH+3TnbWgT3PzT7obmQFQHFb0L61N71YShLuv3vvGoW/vmViCqi4o4KdZehQFVXTYeP5HoM2jWCCCqh4q2VloyObzaR5/dVq3cdmY9aQFEpqio55o6Jxe0TfKedyfo4tcpXo+AyAx7jYf9uJGvGzvvS6gWeLvPoV1AZI6KfgVZv205NoM3a1aMx+uRUjcgqo+Kjgg5y9ed6+I216/JU+8esZ+ByAIVjZsWM27nwQmes3cljXjw5FpPILJERV2evN4Z65HnNXforI5rjz1/AUQNUFHieIX38Bl1BDOHTti2KC7FB4isUNHvVV9eqhZrKtjT+ZthjezxhUDUEBWZjvZo1qlHpsvhHw/kTSXOS4CoESqamjc1e1my1GPx8ROWZx+chcg3xvQlabih+YYb7od/O/WL98ATDoAmqOiCm+9x6ce/vROajbeUBSQsByIuKno040XU1JfVeatOn89tlnjLhZRs2ZRDk2yZdnGlkW3cdI+tt74Nv/TL+D2F2dA02fIonYkyCzq4M/XkGX7atqJJ5xrG4Ldl1fhR4VKZiIJBQNfcuBV6h4rzibRriAgVSqXACKGdMMpIGSAaKMpXI59zooKyVsgAe8HvKfk0nYx9bficghTNGsmUMCqVL0Lt/7ddPPKHsK7XzBTuKO6BG31ZJFSy7OTCQtefU+hiehZgs/w4RSM2QBc/4DDJkbM7kRiW+pZFSBAKBXg/iRQ2bleNEy7woLhCuOUKpERRmPbiGH/LJ6cU6T1ZlVsNV+BDoKrPIYdAS0Rs72QhXAWMcB1O0Yt4NZmup2HrYVt0oolK1KUIESrA/mWcmAscEFUrN4ZuXAdN/QZ9u+18pPOAdt0e3+ETTsvRx1KclmMStrVX2xYd7M6UAWw7ZLCTIqYaAtcUI/Zgh9ZiIpDUPYsHNuZs67raO+l+rfs9m77klZ9GxAJYBYxggaGOrj+/c/7LPmAz+4DooWst+2DTCqbsg6AVFZF98OGv0VEfrl7zXnjtiuuh5nWfs7hYEi0QC9kH61YwkbXnr9BK9oHcqaZ74lNv/oLb1YIW+85prvPsg0mMqIBxo6eREu1lH/xcO2HR2H4mTlkmd/c/XLmghd5kH/gxqq6vblSn9eyDKwMaDjGMmOh2ONm+7dZz8+N1nH2AWBla+jiwMlrLPpi/3Mlg1ZDZjrncYdIuy1bjCyboJvtgEiM4QSu0mH3Qu/FE78Rre1zmGgyp9mZg1HA9yT7wY0QIzGnUbzvGofHbzqwUCn70qO8at6lxtZfNJ+O1boj0vfR3FpT94MAR33YW9YTBDjEI/Ar8rmj13qzA2KLjFfpeqOs2pUyOE/H8kvq9yV40JtFgG3hnM9oeiuQqOQANpG2ugP60davZnJOE7XJcf3rN0pwqvnUIQXZ4N0WQHblcmqdEtH8s9H4qhACFUw1Cbjs+58RmjWJnFghA2LiwFknkYPgCOfVi637ySN8XG3bxVnV6nnfWOe0Yflo6YzeTp2WJqDTA9v7eqn5oQC+fhYa7zhp3zStvzXsI2C5GwMCI0okTpVwz4N904tD9kFM6DRl0aYToksGq8p7e9hk+8IRrirvNosYxRR/rIsk4QBnkkstVeY7+1oPblM8BJqh23/efa9485bmk5vaNvTapxQUWVJvAqFqFjlRL5R8na9ZEsvQeyIpmj8YObWbpusbQb1Mzh5w8nfVA5tihNgn2QA4n7W/tkCmGLozHOTQLo+PV+ncndtvrsH3YSIvEgUfwpYFNYclNBTz6hGxcMYwPizXonGjvJAsFkCsLfyKPEZU8BtkcljRMFIFBUqYVkRi2K/2FSeqg/CsNDhUC0gDozx0pCoyPBoO/e1p5c/V4AjVQ4HEDLOULvQ1ZGNcaawII0FMm8cH/KW1aBDyNlkWKaTJw3D1u8NuFRvGWWUYpPnR6i2+zXBXpp0zRZhK9XpqN+Sv6yIXQ77OclvRpP6b19xUfWDiZ8IUwGzhSlL1OaYPAXN4j4ZZq6ledbgXKwiLEgROQ4QHb0FCfbgb17tGtielXn1VrVk4xys/Ft6IzKnkuefuLE1ZERhMC23Aq2AptEdhQk3CCziScM2n+oUNXmdes92897a5Mwx9zG/uJw6XCQDHXe4JUSmEL6BxmW+y+MHgfHLOSsIlCqUSkHOSREkUIVwa2KfKyWwJilJ7hPamao6uJNWmiupIu+JYO0M1eWd65bw4XNaSFqgK2/IRGEiJGnVJiZHH28cfKgoOfbwbNEk/siHefkQeR3Wfl5dKmM5GVwEbrVIhcPJXLgBRUXknrPpcROSsVcnLcUINDixK+ZXVd082Tq3guzzwY0Gdo5gg8VRsdINQhHbyU7VkM0cpmRGvDSq06WNiLGgZEh4vVcWiuxtmx8wQurVhqB/8mws7VbRR0coPFcgJLGP6U13CbIwskVCx4BNhURytVTall4sJUnklSTr2OtkNnQTGPilRoj8wCjQ7CLJStkKGvgKxV2NAXUULxNnfW0jCvN24H3j140bD25SaEwAT8VhSBCeRyRUCRzQgFGOLoQnWSQ7NQ6U3deqK1ZKcNWAWUrQ9ayVS2fqAK8nz9h5zAjWMH8s7vxqRNPljXY9Wafh/P1hKX99QIQt53NRPkdqsxyE/RQa4xK7MWBrkWWJkUJEqMlUlBosRYmRQkSoyVSUGixFiZFCRKFSuTTKLEWJkUJEqMlSn1PV1QvUYDp7UeYbMafBZ8JFHe4OCl3oQS6JcsUN5O0+m/mecJ27u7a7hsNhCNuf6iNl7/9ZSH/U5SWQR0F5EADtkpr0oz25q5SGDLnhDY40b5AGRLCfeZKA2hbOF9IuW01FckgUP1RxqkRw1MBZOskOrsGraUNU/V6OzaShltQ7JBZFA1AA/wCz0v6GtQ1eNrZC2csw+P6X4srHhoeWJtFXuMXQDjo6nosltMSrAH2+rOqZR+OB1WZipKhDpWlCgN+zgp71IlOS/nUVornwOHKrNIi5g+wPvT6U1RLltkc9wSHKOPsYCSOSNKn1eQDx+Y/DQbX2xeIZMNwQybcnCrh3HP6EMlwT9a98tNa82Pu9RlpZFni1o6jOfCFq7IIKIMyB0F2+C+qZq5sW1V0UMIUaBazQq4AuFsE3Wyprd9t29/7PHIbrV1TSXBxAV6ELWEILVlBMk8VbO4bktnifKbq46qSoYMElikN1AT6/UfN+SPxV5bOx5I/M63xTezM8SeS44iqiQVgU5lRnTeqGK6Zzg0C+Orgd4CA/svTkvXn3dZ6+M+lHwQT14JDWjAbYqP56qobpEyjcrGERMsyhobKGv3dGCYPkLYzlMdQHEAbKc1W+rKFqbNTRx25frNpy577QZEWCyxqYk/7ETisTTLOk5YmhUnmrjydt0GdroYguVLNcbSgWt+R7O1zgQBSwxmGj1U98fuG13NNN999clRj3b8lZ+Mt0R8cC81UGoiLbsEEKbTjDDtS9VssSs9hEaMNesshAYtDTJGYAiN1I083A6BBrVDZ+nskFPr8/Y9ZtwXpLusfafoYdmIeA4dKgznKs9pKM7L6Vzz1sr7sGgPkpci5IaJI+ElsVwSiC6QZTJLxOQuhjekOilXE5c1SgaGTexGgOtFKp88FqDusFEjQ2WChKGUh7vgdSi/5aRL9uYuhesd5o2vtCpn+87xeBcJeQDZRVJeLm3OEfPcyhvdAvDEQHhqUs25DLBlCdmoEZvEWPk+TIW++FN8hQWL1wpyAyeKXZol/IaP/invJ0f/0Oul4dPDa3zRj7RPXgf73DmXcuzVOxbwCWDEBwwfXTAMDBHixkQlEL05xB/NKoEbBwjlwWIFk9K+Ri/22Znt4rXQ77NxWspzPJW8qvJ+stLQ66yTa4FWbBi1YqFXWinOw7Si0fJVCzF44WIRanypS5KkRA/uGurhOGNd1cHGnTmH8YrxQu4nKwa9znqPaDvUnMBjRtJ+Ndaezxm5UbMNmZUKA2RjIZWUhseXT12NB/NMPBN+frJtbN+5KZ5V66R8AJlViwkqAhEHRkSabcTW9XMcmnV91yLPj8N69XSf9fGHwvD4LXzkCP3EspNheqt2GPgFnBsZIgkMAW4lzC0URkTAigYqVgy6/Jdt80HM06Z6X/KYVF7XhCe6AeWJktgvDmBXd3RDeSPgDVFXAy72EmWRGpjCpHwT6u3tky9V7N7UdM30532+s2ID/jS2Gp1joxJoefFHqKQQw/ZUHA1uWwRDjSxWb290RCnLcuIStSAfKEJ5PgBLAcL/l/iU3MneUygRJa7nOq0KCve1CGAWVIDBWkwAMHQyn6ebzHoTuCKOJpZ6XBPDHCxErqZuYIpchakwv0CHufcBl4tnOCecYoda9pK89MDTu02QfvLhUkkgkhZGNqR0SFt5AX8ALE8KcKeUG4p7SpnsJLEyBdNrkYtZ4eVlPbgBm2wTSNVMojq4gTGKok35xqrTSMxzwtaTGu7QluJ0CT+pGnLZXYSNgSGi0/Mr5VV3znlT38u4Xb0CTF6JRm7kg5gX0hgxVF6nf7DyfZDXhX/CtHFr5CKRA5sD2QkImQmvL0r9jOtaP7/K5aeC5AG3LZ/uT5uO008lHnl28EizoxJhdrSusfYtp8l4r9V3+wXmXSo+Xt4zEzA7akB1tqdiLwwG0r825auBVNrJUmN/caAMWGhNUApYb2Pa1ecv7wVLrqd3irjsjEfJkYySY6kozXln8+7aqkTPOFvbjGHbJpU3uxSiBIY1A0oXN+WjY1A1lhjZLsp6gdAxKgNARNY7fg1TPoq8hqHXK+LAGxkxn6kOmqxtEaRQe3rxX2ZPieV8tGRPu29isqc1/7OnmH4GuJwYO7Nxd5cDLhNrXxo1RM6CPSWWaWLBUnRmtBTcCrenPY1W2SbfmOKZGjIso9dqgzAW7CnxkIAFlGoyovR5YwXaU+IaqnN7iowYWntaU2VPL9HZU73ZExCnEztkti6VLN/Ncwp3zvrkELLr6jw/FrYEWRuZtgSbVGcqBXSQa0xmM8Eg1wKZjaIGHmbqKWrgYWQ2ihp4GJmNogYeRmajqIGHkdkoauBhZDaih0ZirEGrSDnEiNXzWGCsXWZNyUZaVPI/qyNJUVQRUzIx5k/SiQGdTohlC1nQyR90OknNfjBk9uPP7jnZ+3N2j3uIz/Or4isME0vJBVrpDJs1jxsO71CrMs0NkynEyuJCCnGUgqsszkr5tYl1FylepSzWzsg/UC6TSv3gigUvqjdkJVjC+DbLvB+2OO6dtGjeoiMP3j2js4SGAyLE8gDw+tjHtnSWTRgjhVwtWAkWFv4RSRTodwceBoxyFMVuIqgEK9VLOpRuBXY864AB7eHEiZ3tVMNLKA+WhAnEQbgF0Eh52Q/27FC/Xl15PUAWrn4Vb4WrerbiTzy/Lr8WAqKvHOYNKiTKt6qGvRXVhJILI93DRLDsFgZvperwIgy9qF1CfHUpWlZYuSGAnUAkQqkTrAWlthAp5GJhqOp3g0FyYbjqHnSoXqEbqnqzLBOrgLJ0VEcc/yysy4/XMa3LV9dh6/JVvcecWF5Vf49HFzES++NUxP5rdJhrvEwac7S3TFLUzcWWSYq6udgySVE3F1smKermYr7QMpcvDXrF8Jz2HeINWzx8H0/NF+rn6uBePDTRJedqUf3UNcHrSYsrtPqUA4lYjJeFxfU6nSb1tOUYseiw1lqOFWYwtRwLz6jolmP7WycfKYjxdlvsd1ohG5TE1YOWY1czmBq4HM3Qg75JZ86c0ULLsRd/OtWoteFPj5wz/VMOTOlorRctx7YxaidFH7SjlZZj35/sdbc/YeKyu1ZxP3FKDp7KqKuWY/GMygnXB+VwdNlybN25azF+a/p7rah8ZVnI3wkd9Krl2HBG5bnpRnn62XJs2ovEpKpD7vNn/BzyrPmqfI6OW451ZtQcV+eagzdVWMuxoyddW1hZVXLPSx+/songzx560XIM8SFoW44BQ4j6qTc4NH7qv6nlGLEtho5bjgVtYWo51nOLdlqOGdibP567+TgvznzLgfXbnuL5wGy0HCMWN2OhjdaYLUxttLy3VFTLsZe1BybWeiTz2HzLpGjhlj2zWW85RrQRLGDVkxGrVlv+p1qOFdKZsf+K8P+jIvzEbkJaK8JvnslUhP862XayUIQ/vK97u7OtL3lmHWgn25XnvofFbHOWbSQ8MKmbyVSz/CfZRlZEEf4jnxvm1uC19Mys1bXtioNZ+CKzuijC/3ILEyrXtWsNGfcOmiX+sFeEf8L9Sa9HSG0Eay7PGNah+SB84Q1dFuE/xqi6HbpRndaL8Hda+abeoBpzXBbnCYODEnpa6LgIP2JlaKuoAyujtSL8iZur3TKvVEuw5nryg+rZfcz0oAg/Ymxowbm+RYtF+KfLNjxcUrmRa+zBnRv61Y44pQflLCBCxxgRAnMa9dtucmj8Nj6vbbtffa7yMu413vLH6red8HUEkCS+cJkUrOhkn82QBucuJSESScn9aC0MgLhcNiE4hKtqGqtJLQdih0XatyVXPVATlpXbBxyh53B6FgF8M4huUgHAd0lmeROrTEteC1xFsaD86gXvgjoHe2T47D91pkXk6cv4RnX/qHcXwYUiGsZyulCw7O3jTLoudimw8VemRi5UTeX0FYmD5WJq/zKiQZeeVYPuO+Scu39w3KZq+KOUqs7IjRQZUsrrFVH29zDj98/I1LWzpBqZGjhK8JUlMpEkkKG2jeGxkZE2YZ+915te/vPs5BZ38WMVewB5rKokFaGMJYzKiNWNMojuD0eTiIWdZ5hMAZYvYSA8O7Vu3wdsWcHOItSG26FPYIhMLrLhduwTMV6uQH6h9lYrv8qpXXXiZredit9uyZ8cccKva/AD/BXRUor+lyWiilCWlFFZg/Vi5sBHaeStmpUcdIdNkI+JYJhBiUYZP7M/VPY80KW2zSrH483Ks1Uu79ahPWrIYapnAakuVAf+gDOZmnmpqCVn8LYu2L16Vjfb0ycpcGj4MdMm1XW77QUA7MIAKKQAAJoWjTxRbCmjLzJxIe9Qp6a3znhkz6j6rdmn3BWEpUy7yb4QgElMAGSOzMQczVucfxcfh9iYW2t8nKdbmfg4U7dWNB/nnsGFiw0W9HDZnPF2U/t9E4P0gI9TtJUpunlxqx6QCnbt2qUFPk6tv1rcfFurp9fmLwkugUFjn+oFHyeHUTub9EE7WuHjREx+a7/hxFqftE1dhvX+27CtXvBxFjEqZ6o+KIejSz5Ozu3V2aPt3jjMrmdUu/j5rji94uOMZVTeQN0oTz/5OH8a+HyLNarrPDPN/Pu5jdU/6piP48ioOTuda65C+TivPYaFnIw665FoerAo5WOfTnrBx0F8CFo+DjCEqJ96m/P/gI9zwc33uPTj394JzcZbygISluuYjzN2GxMfp+827fBxWq3I97eZNoq/7Hq7xyf2/JbFOh+HuDdngWMStI2JY+K3raL4OP2NWr0e8qanR65lQo8D1XkfWefjEG0EC1j1ZcSq7bb/KT7OHTozNj5P0k7inel0INdH+uzxsLf4SEn/CTB30lUuDA8hZ5hqEL5o4SyJCIfZY6poTrStMsuUK4Q184LhJ1COvEczXkRNfVmdt+r0+dxmibdcaN+PHMlRF5LGX3V/YMJ81FOxKEYlMe+pjKNS9TRi46TWfE5NWJjL3An+w4/KoWNb82fW2JBv7C+WAoWJRe7Arkdhj0PUqlTlXTpVapyTZq0a2xWfk5Z1xbrpj2tTXdbaLTv/6e3ScWo5aWv6nrCpn/yb4yFhs22PGnpaqOWkTZ0Yx+1Wtaf7HMeOO3IEAVK1nLSXz4wOtl3yzXXvK5HH5I+titVy0oavaVWba7nFc+6P34q8L/wpUctJc/15aoVkUrFPUmHdTC/TR2PV8vNvdlsmX/iymiBxqN+2NKcJqWrNZjIfzVnrvWsPb+egqPatInyOAJEhKuoTmjFj6vuXruti/jjZsrZBChBVR0VLJ6afDGhq4pgnT7P5PtxnExDVQEUu9TdvsU//5pIyK/HytntLfYDICBU1Ulh0fndDzku4+5vZPs+uMJG9JirqXv9KpXp/yAV76vUNN3uabApExqio/zyX4pHhJ/jZg5Z/3fyrfwIQmWDfq/EfK9zc73lvOVu5helL805AVAsVRd2z3sifWp+X/XDJt6cL958Aotqo6I+VU34ZH0hwSTAWBtQb0n4WENVBRbULe08WJ1f2ydsfNEFR88QjIKqLit6+fWryfIOh08IuxebvVjf5AUT1UJG3R0j6tK0R3muvhT5fcOXwRSAyRUUOrfg+Tzss5+0cMaKrQVDATSAyQ0Wv6jxZ0KnuAveMv694Xf2r/i8gMkdFdQumv0x68bvPokF34yWHPX8DovqoaMnmnicP9mgrWGu2vfJI40prgMgCFdnFJ60fc/yX29y32Y7df/yxEYgsUdGQfq87Kpp1clmadOfHvCNmUMsNUNEMP5OOdfeYumUOW259pYbiCxBZoSK3xfLTp5+ucZ312nD2nYZnzwBRQ1QU0KKWieyDB+/AjYOHzTkWEMNGqGi5SX7f7rM6u2Z/WnBIGtwgGIgaoyL39J5/Ls/t7LOwONdv4sgdC4GoCSoqqlprqmmIOy9VUXlY68Ohk4CIi4ou/DFqaf8qj7228g657l2+RURKtmzKoUm2bCG+/myr3QXv2BFHrgzJez2XhWTLe3Qmyizo4M7Uk2f4aduKJp1rGJOOP0zkR4VLZSIKBgFdY9JW6B0qzidSaj0iVCiVAiOEVrEvI2WAaKAoX418zokKyuiXxIK9YMx2ui6kvrAD7HbNmkCUMCqVL0L53VZFvxkprzTWYVno4phWky1qlydKVLFOLixSG7WdLqZnATbLou0asQG6+AGHSY6c3YnEsEyvLEKCUCjA+0mksOmyapxwgQfFFcItVyB1js/G8KPnBW8cV039Xdi897hb+BCo6nPIIdASEds7WQiXLyNcvbfrRbyaTNfTsG2oLTrRRCXqUoQIFWD/Mk7MBQ6Iqg0Tfaz0bNWbE8YL2rnvedXCvMEAey7htBx9LMVpOSZhW3u1bdHB7kwZwLZDBjspYqohcE0xYg92aC0mAkndevXBvvr1ph1wPjJ4+SaDrUPXlZ9GxAJYvoxggaGOrj/3OTTrz3/ZB/8o+4DooWst+6DZDqbsgyLN1soyZh9USph+PWbfWt6+VYKcQdYbd7O4WBItEAvZB413MJG1a+zQSvbB0eX1Wo54b86fMXBznwE/k6J0nn3w13YmVIp0syaWIVKiveyDgiz++Kshcz0P3/m+8tWCm7v0JvvgIqPqcvTVnWE5+2DzoKCPB6dH83dOfbI4YXkyoR+S1rMPECtDSx8HVub/2LsOuCaW5x8VFcWCYK+xowJi70oSOqEoiL1ECBANCSZgL1ge9t472EGf2BVQ9KlgV54VuyL2hoq9/Xcvd4G72zsSOZL8/T0/H9+TW+5y+c7szOzO7HcMdvqgE082ZP/kDuJJ2XujWtU/S86qG+f0AWZsGMHJ/NuApw8WlX/DDxaGeO6tUH7sRe+KZiZy+uACK0JJ2rjtPo8hbju9SiL+0aGK6+TNtUs+rz82hRyNYj3r/JzEum8cCMktI/FIGKwQg8GPIO4anbevIjC2uL7C2AsP3cbrdg6Bsn+Jfm96FE2M6LEMLH0Ib+1CC5UcgQTOJBdCb8nTT7vXsW5203FmkeKXGkmqtKMk2eHdiCQ7djm/SIlq/zjo21ICAhSOUkJ+M2feu2S9cmdVMYAIvbAJkqmA+oJxtLN1EHU9V/F9pMehhXVe+HbtMZc8LZ2Im+nTMncoP8B8x2RIJw9OFcaXq7GimvDdIg4Au5vMBhjQKKMEURqfAX+nFY/pD/1IpzmLLC0wWbJY1Ss+l2qn/2rgtEC1PvJTndpPrLDDOEAYzqPCVVJt6g4LagVCP5veTQoWAFNEKxhu2Wp431rO8z+tmx0x5JE3B6Ldzyra9UYSLSo+nq9fA7j8+5e+H3BqZPSobOftLZvOK+5r19Jo/Ut59rhNgv1Lw2nrW3tsiuGO8QGPwTEKr1S5M6LdHse/+w2sOivgMJkauCKk3IyAW5+wGlcK88NSPbqeNRcpwwDkGuJP7DFBuY/BFoe5zc6CgJLo5BGpabv8X5gmDuRv6bGpkL4TgP5UiGiCNhgo/96dBT2rJxDnAQVuN0AqXxhtKBV8G6KBF0BPc4gP/ktj09RwN1o5UspwAqfv14aLvlSLEywo+j2114Wbt8k2BuuFimgRh1/P18Zc++vRq637HLcdvF1mUu1R8RzsTJyDMJsJEW2/ljfBYC7olnDDPOLX7m4FKhVqaWAkph6whQRD17lG1/yKtmvvtTVNei/z3tA25KqC3OfSl7+kwcI40YTB1h8FW4YdBhtuEjKZTMLZcvXft2ir9Ip+98bT/vJEZ2rD4HC5JFDK946UyxG2gClgtiPuU8D7oM7KFCMkclmQRslHyiJC+UqwTFHpbgmoWXqW90Q1Ns4zrEeUPHgnU/ItBqDbusBzvzJ0alj7wwjYrg8aSYgYEoD2N1x7leq6UBBfwXKfd7na9cnhM/YgevisuZzfdKZWJXAQMvSHyE1FhQyQUNltJ2P4rCNyNbTIqUiqBlULnbeOfzvswRq+d3TRUUPtc3wnkku1cQVBp3TIo5w3JrfBNIkFLf5OgwZYxIua+48Ol+bFoX6emh17TxDSSuX28HfU9q5ug2CQGyJVUaqE4Z+CGu7KmIOEggWPAIvq0RpRI6VMdUwFmSQFlOtge3wWZAtQRYXNsVmg10ZYVU0bUxgrYL6KUP0gJBQXq5YrN/GWSrBwWoZTz1PFf1ISE/BbIRIT2OXCgKI1KxR8raN6yGNwVCbDW0+1lty08CkE2vrMBDba+ksJBORZJg85tTaOG8gldX951Rk20XWbW4mqNVo4XuUA8qTdbJDH7yYgf8QEud5VmeUJyA1QlYkooiSqMhFFlERVJqKIkqjKRBRRElWZiCJKoioTUURJVGUiiiiJqszMVXW+tdzd1Gtjv5CzM/d52dNK3qDyIrWPWn7JQcnbYyb51/M8YXdnV2mXLWZBQ649syTL31qz2S+SK9UwXMQSOPSgvATDbKvnIoMte0JhjxvNA7AlJVxn4mUIuqX3qSWn+b4iDRzUL+lxPOoSTC9loPauYTvIhTv02ruuocm2YadBlFA0AA/wA3Nd0NfTao/eW6u6bb7vMPaRR+qAguTaCncbOx3mR3fgbjebdsAeLKt30hP+bFhV0pZE5MUKiVJYstvzV9v/Fh20drVu3z2uLodlEZN6en84tXmUS5xyhtt04ehjHKC0kBWliB36NWm39SXmFTbZMMyIKQeXekTtGXOqxP/yiRVOb4e6LR8YHN375e2xRsznwvaLFxjzuUfBMjhJz3xuU232EEIUmIezAnogkm1CZy09/Zzu/lVKPKmJ07wLneJ+mkDWEoK0mRWkhTv0y+s2dJJpvrl2qypXZbDEIrOBetT9a9Nhj5p6JVi7/ft97doochaReC49i6gdKQx0JrCiM3QHERg94TE4xhcB3mKz5l9ESzacc4n1ce9L34ine0IzBnDrkvO52lK3kUq9aOOoByx0zQ3o2vkYGKZwGMKfQ21A8QBsTgmFkKZdeiI7IrrtFNe1K/tWE1++dpe82YnlYxncOmkwPytONXEF7ZgL7LQcguWL0rEYEJr3TtDL15XDwJKCmcYMVc/UFRUOre3tcjhiuxv/tA3ZyZVyBveigcozZOCQAMLkxAqTQ4J+zi7/FBo112y0FBq0NJiOwBQarZNwuD0GDW6HnjLZIVHjc807TLknjnGJfRvRoVot6j50mCScr9mnQeyXM4XmjTX3Edke7FyKhK+QjoSXpCpZIO4gdTJL1MNdLG+I2inPM6xrlgzy/CYCXC+gYvIogLoiUS9DVQ5LQ2k2d8HrIL9l7Trr+i+y++Qe7XdMeX3wrdXkEAl7AD1E0lzOb85Rz7kVNLsF4ImH8JRBzbmtYMmyNFGvapKymvdhI/qaXWxGwPpnEzz39HjewuXBmCLk7J/mfnr2D7+eHz7h3cb8u7b1AadZ1h6r9tV9EMYBPpNZ8QHqY4wKA3OscGOEBojOPOof/ZjAy/pLVCHSCDahdTw2qvGt4yW84i5Fqtb0nPiKLDTN/XSh4dc5L64FUunLKhUXk5JK9hFCKnq5r/KYwQuXBuHGFymYtjO3PXIutlB4wCJpy/2jQyVkwXhh99MFg1/nWjCO9rg5gduMtPVqVHNn3uxE/RZkNbQYYAsLuSw/PE4n3/u61Om5y+EvqcOtmvxsTq6qFWkeQK+qJQYKAxEFKyK+iYRff8Zj8Os7F3rm9OvU0T0650eE+fGb78ky1nyi7sUwnbUrDLID548MlQWGgrASni2UqNWQ0UBbFYO7f90WH9Rz2qj3peuk5ro+daKJeJ0orfrFEazqXh8saAa8Jh5qQGcv05DUwCNMmjdBfnHn2w9vDw166Tj/dfXrxaskklupl2QKbLQDBnb+WCkpxNABVaPBb4phqJfF6uyNa5SGlpN0UAvWA6k1+wOQChD+Ozem5I/1Ho9uoELx50ZlBYXrWgywqijAIBcTAAyfzM+ZJrPJJK6o2sRRj2tqmoODzNX2g2yZq9VazF8wYe59wOXCad4JUVTfap1kzz0qkFmjsH7y4XJZIHYsjG5ImZCu4QXiAeCeIsCdcn4Y6Sk62UkqMwXba9HJrMjjum7cgEV2Z1gyOxu1cQNzFJbJaWW1u5FE5ET4k9Lu0JaSZAk/qSR22T2I0IE+QafmFjlSyinpdRWvss2s04nxIgzjFj6YeaHpiLnmOvODNe+DvS78FbaFWy0XmQrYHFidgBUzkeWFlE/gV8eYGhXbecWKuz9M8905gySfIgL67BDQZkcRyuzoM7Voqx1zzT0PVIwMcB8w81VB90zA7GgPxemAql7oDUYbJKflASm/naXaftJAJbDQ+qB0aNHa3XXf/XKcP6XBuIuiGHIFYhEhHSVhvijVe/AyuWzpL6LDtfc/HvrE6R4HKFmyovQ9KQ3XQa0usVa7aPgCYWCkA0DUqneyD9M8iu7D8OuFseGNacxn1EaTjR2GFG5PX/4/s6dUOh8D2dPgJDZ72jHpP3uKy2fTiAYLWtnwxTPPdm6olL0cyoE9pdI0cWAphiSxWQrvpMK2p89WOsvmjp8uXthyyshqqfEzOLCn1E0CDlDqyIpSo8K0p1QfanR7imkMoz0FSOH29BWTPTWZNQF1OnFTzNamSLW3c0ThTvs/OIbuvDKnBwdLgqxEtiXBFe2eymsmyPUuZitHQG6AYjYEBx5h6hEceEQxG4IDjyhmQ3DgEcVsCA48opgNwYFHFLNRIzRaxRq0ikgVo7LncVCx9oYzIVsYUMi/xyOJIFUkhEzN+dNkYsYkEyptIQcyyWaSycqD9/tMy/rsnnRwX9KuYQ/I5/yK+0oUUjmdoJXJsNkI+OHwjjws03yFMkKqIReKkI6K4GvIWZFfm8q7iHgVXaydhV+gSimX94AeC17M25CVYgk9MxztzEtOFs7bPjrzmEN3ayZLaN5TLVX5g9cnPrahkzJyiBzWakEmWEj8EySLwL87iDBgliMzajNFJARVL21TuhEwkfuBAe0g4kVNE5X2kqhCZAqxNJjkAC00l3vAnh15r5fSXPdXhue9SqGA9WjkfPzS/rTyGIi+KnhuMEKmeauSxFuhJpRKMtJdEQRptwh4i5SCF2HqJc8lLFaX47TCmgUB7AQik8hFkAsqjyOKUEklYdqfzXqpJOHae3BVfcukqibjlqksoBxt1VH1nwO/bHWAzS8XPUD45XcmjzmVXtV0t0d/shb2v9YW9r9nwlxvN1mWZzg3ieDNJdwkgjeXcJMI3lzCTSJ4c4lYKNn+zM2zjXLcpv/VeIKIX35hnlho49I6zdVrhC6JgWV8zReEZtOcK7T66OUKhYyXA+eawyRJE205RiUdNljLsRKH2VqOrT1U2C3HPH4+s36QHiBYu2a2fV27dZEm0HKs6GG2Bi6vD5lA36Rjx44ZoOWY67Zqx5Z/thJuPxmf1nW4K6WZi5Fajt08xCadNFOQjkFajk0It9+5L+eay3aHcQmpPxODTKLl2G5W4aw1BeHwjNlyrNLcFSe//7PfJWXjoTOXW34fZFItx2ayCm+EcYRnmi3HOkxLvWb+0lUwL/26bY766lEjtxwbwio5b6NLDt5UaC3HxrTqPDM7o5f3xnnjntR5FFLSJFqOYTEEY8sxYAjxOPUDjyFO/f/UcozaFsPILccWH2ZrORZ62DAtx9q0/rJOeDzIe8m8Zds2vL5Ezmlz0XKMSm7GQRut+YfZ2miNO1xYLcdSKzcUN8iJdtkYVrT4P8W2byr4FKZgRbURHGAVyoqV/+H/qZZjH5nM2H8k/L9Fwk/tJmQwEn6nFDYSfrOUwiDh333s1Ohp/u0cJ513vT9xcuoSDk+bc2wj4YaJYwobZ7ltikFI+G/Z2vlPGuXumFhr6NqfM8eRmRWNQcJflRUVoDcms3bQ7+APdyT8tSIPr+3vusFrhmp5E8/Jl0eaDAl/9mE20d02rCMjRGdwEv5H5bPqTRrbVzj7WIk163f36GpkEn7MyjCyqAMrYzAS/p8v1f3H+X1xXZJpW+1Y+vUjJkDCX5UVHLMUA5LwF3Opu/zVQBef2IXdYiosUCSaAJ0FRAib04wIgTmNx22feAxxm7OgabNfXa4Itt6tHXdp7Rvy1q8FdogvXCkHHp0es5kz4NwmN0Uiy70f58IAiKuUkSGhfG3TWH24HKgdFhnfls56kGdQ19o+EAhVPgLwzQT4bqWGSekA32P0MEnPg1UVc18LXMWxQH71Gburni9//rUw+px5QpHnpV4XvHcXJYSiGsYChlCQ9tbqCFMXu+VAd3/qF0KV0UzfIGmISoqOL39uSS3iaSPw3NBRHbPqk8NZygkp7EbECSnN9cKg/X2ewvb9rxk9WNJqph6BEnxlmTJIFsjCbZPhxz+2Ka2I12GPaSdsDjbvT9ZV4gF0XdWOFIYwjrEKY4dxhEENf3j6ZCzsPRXKCOC+JIFw79TGoQtYsoKVRZgtv0WXwFClKsiW37KLergqAvsBHa1Kli0b9LZ9ae/lE30e1jmV4Uf2a/AD/CJGyxH9L3OHCkNYK1mFFW0SMwc+Sq9otVLuRrciUjVEzTKDDqROdyz+5qJrwsv1NY8/+FiuIEvlgi4dHHBDDo96ptN4oVo49/ykZ5SKW3KWaGuJtMqbMw6xwiOJh3y7t+9yy7jLXgDA3RQcgAwEANC06BWJEq6MmWRCfPVywqWxy733xRfPOvXoUoBRD/tCALayARA/O4UIND/z/n/V41AbcxusHqfiUbZ6nO1HCrseZ/HFa6lnrezc9zq4DvNxH1bHBOpxLI+yZTe/HzGBooKtW7caoB5n3TLLVX7de7glX13ttflBl+MmUY/z9AibdK6YgnQMUo/jM3Z0y4RRd9z39P808+i7TvtMoh7nKKtwtpuCcHjGrMe5eSyxzgpektuMtKOZkT5xASZVj7OcVXhTjSM806zHcfo471PK6gDHA0N6u6TdnrnEyPU44ayS6290yRVqPY7ftFeZsl4rHJc2rJ480LLvT5Oox8FiCMZ6HGAI8Tj1C+8PqMfJLFF+QsVQd8HKiKL9Gh8KG2PkepzlR9nqceRHDVOP06xfdkDHSQni1f2TrMdVKzqa83oc6tqcgxqTxUfZakyijhZWPc6M2PTbB28sEcy/tHHA4U8LjnFej0O1ERxgJWfFqvfR/6l6nK9MZmz4EVkzmXe86ECKj/xJVr835ExJ90h4dtJVJQkPpZ8w1SN90cBJpg6Hp8e02ZzRdppTpnwJ5MwLgZ+A1LzzlwYt6V48y2ubINl1z7K4IMb3o2dy8g7S9K+UHzBhPnmPYiG0knruSUet1D6N2jipsTOvPSTmqiyCfynnP4c2dvZqezCtrJ9UDgQmDXIHdn0U8ThMrBpRfmMSZau93sKOzfq4pSREec3MTrhOsfJAfCqlXENUrUfzv7bOo4B+BWpSoPh2JP4ovIclrIcaplDCbpbBfL16j2yw27kow36G4xy+f7TviXk32d4Y4ZdI43pQZkdVSOXxTggRNU1HoRUtn1oINU3+VzfXfrheLkqO/6kYwusRwmFNE8cdNPgAocEQIdhBg9aa1rIphlBBu8DVFZF1CF9Qe0P9soO5CXskijXHjf1cpfFr4d4XB+4+XVKJ3HS8BIOiENe5DiOjbHGg+CgnA+nJj1qm0ja89QSqei8p3P7BECLPOzRCP6tsPJzW4r77Aucj851LTM8gb9fhD6Nv1xEDhYER35INI6oyFf0NjLD8Fl7KAnDKV4smd1uSsPqWU9yK1xPKeG39Tp6L8GGItoKay4WBz/1ybPg4lkvFDf93JsPf5EeVqjv4xZz3CbO/SWuHkA2/BdZvkamelmkdUstLKlFHqjT1rJoEjMa6Q3Zb3Yx77Q1dzpwNC3XZu2HHjTW8NiLGt6J77jyD+pj1igDHY0IEua0lMOsx1jSzrmcNRikh7NkCAUB+31l1/Y9MX3TWe5P6sPt6dTMnamMENb0oSnM1P/tONXpc2HcI1XIBgpL1YBMMKkb7jixOoXaylCn4YiRGhydNifk2zsljRuLT3UsbhO62wspawHd3HgWWbtogGAufe9u1MGo6L70ZjhMsm6LhdN8Wwwmfmj/wqUSbmmYtcgTlTqa7bWjb9maRhPrHi4llQ4ix2Kdrag5qESBOKDFP9vNpafKqHE/9aYpOdJ+3fFepJlLTlL9oqFz0jsviinRvcErsJ4q+tHJQyc4Wp5nfjL4LmndUD410LAOQPoSavPehHCz0isn42pgsBA0Hmge93d0xx8faOW/al1PTJptnbbohmiMAjF8GD9HorMpNMcD02sur5kTRF22vM3TT1FLnN50S3xHEj3Hrf27xPyGUtLNhK6hibHE0LFETFfpQgAY+UX/yGHzo0qcf1tj1nC1OPOPzj+uvmHrkauxc80TfymPaXqmceyJFwZdqH1CabuqKC+yEzVroNDNLR69PK1P2jcfm7vaWvT3q1WB6TXrReO6YHvvWUVVTNb0ZkTyd/CqpBebpXP4jKil2QW/3/VvivB0fNbtF5emkjhuCp9M6FyswIVQyyRA5ehpceTLZ+/sYZ6+5C+wvNij5ajtZGgH4rfzfoumkukoO+iIOhtJEElDaAINytEqqHjSdOmPEa15ixYAPbh7RU+L/VXQXtmfA6LdIOqlmiAOMgE6zYBRVOVUfks6KuSSduQYAidKWByuqjb/R3jvx4oRQr2bpfxmVoHOwHa4rSILO3vYYSrhB/cVkUCtnznGy6nhRFNvm4ZGEUyOdEN4UvaVYQZNvQMDJK60ZItH+4OkJGh0QurJf84FwyzFQKYf7bFB/gXhCpAqsCwPm8tCF1ZmtzKxL3Un2mrtu8VAbH7e2Bii102bqqAks4OF3Fk+F2zPQ4+GigOjpL4oiQoOL4Xcofs/YHq98tthcryMzPtR9YW616jcofguK+mCAuuMqKupF/mTUp7VJ509PzBQt9Lom9RdsemoE1KGuf86mol70T0b9WfbTpJymaxwX942rbv7jRF8joX6/XhoF9WJ/Muoveqo2bwy2E+5I9ww6v/hSuJFQ7+xFRd3sT0b9Y7lO9UWfrzmt+L72YsnxNUYZCXX+aCrqxf9k1D+X3XknW+rrsuHkjNSwLdnDjIR6zAIq6iX+ZNRnvLV9e3XNLM/JdnZb+20f42wk1OdvpqJe8k9Gncq7biTUDyZRUTf/LdQ1VScGR94qd48f7w6NXiV9q9Zm48CWvR0Px356KD5tq0S8O2KVhF0uFLvelho5lmJC/edfuzda25sJ9/evunJzuBeKvZiMeunCR11n6uVPn7O2nK+Z7RbdVfHv/HqXUBzQv0O9XNqr7cd/19RzS/DI6DawwZXzOm6wsEnEN4wqkdJ/pESi9tneO1X/rHN82rILnezrVeRIIsGV/L4UiR7nMq3IAZWirud0DiQSdZUqEYs/UiIvylRYOaTrWre51SS96wQMv8KRRGb3rjgzZUVJwYFdFx6ndQ9+xIFE+JWovqLMHymRjJgVXXKm7RHumG1tFiYp2Z4jifzbbEYdVfVjoqTM52Lvs6fmcyCR3l2oEin7R0rEfOGR5yuX7BHOfPvhQqusG9U5ksiHZRu6f373wWftdje7Hv1qPuVAIqFDqRIp90dKpHLUsJZtutu47V+5vmaV2tVLcCSRFxf93YYU6y5MWtf4p+M55QEOJNJ2JlUi5f9IiSx1+VK90ziBaG+yoN+i/nsFHElk2MRxwxISIz2n7Zw94P6jqx05kEjOWqpELP9IiVCbUHAkkd8s/2aTSN89VIlUYJJI94f3fErKL7iuS0wpOnF/XTLlY2m/UFlwBB/Wj5HFAs/aMZVy1/AJDobl9xK5PLdQCy/pQ+K6vJbC4e6UULdpVbfbFcm6cpfpFRDg6noUq5kz79RFvP6RVo4dbgtGLxS0bq8sVk4YoYTHBYPRCmR9ZXL37TPCvPZe/Me8a3J1cuEZunZPB/0ZeceG98OjmXDtYT/3/lHLOhcwPQ2PrRyEWB11RKSno8Bo6MVUvZiSNBJUYlqBxGV7ZLmFHYcHijZXTrBo/nLsNdoxymDdgClgQhp+86qs3xxoiQkcocQ0UI9z5RawtxZbu7Wmnzp92mLZ1W395IMdGje/QM5JYJ25DAX/qAts8NsYB34aK1JBjyVoZgRk+GOq8h37vZF3i9vjvA71KnLIN77K09+0FAU9wWqXxxTQzmjA+g0wIXAHY2XCDmagW73nlZIfO24OEkt6VZw7rXAcTAOrNBYHs7FCQcn5dHAwxdcsta7+y0M0r83lv0f9W70uNw6mWHzYqB4Dj7smXBX1XCA5H8iBg6kJsWKc5zkV9KPiy9fBzOgX4jEsQOWRULzn4pQnCw8a0cGcq8D2zYGW/IkOxvXVjeKr71bxmj1IpDyxqGRT4zmYcazw+xsHfiM4mKrJdo2v/Ar2XJcxo2LLL+eyjOdgtKYA6WDAhMAdjLUJO5hpxaa5SuKvOqXsSK9QKevCgMJxMLM7sjmYMh0N4GD2NapVNnNfG8c5LUc7FNsQdp0bBxPffXGFow/Lu84wi5nb8xkvkQMHM7Uj2zzv35FjB/P6V7dO0/p+E+zyuHDyU2LwayM6mNas3xxoyZ/oYEpLom0fuEz3TnRQDCnfKs6IDiarAxv8hzr8rziYBucmflFY/RRNujcp5kHmuDrGczBaU4B0MGBC4A6mIpODiVkwJ/Klx2fXpcMrq1fOtCVb9xIusE1ChO4HdtppbuCrlWFSfhDQAH6kGpIbhcslgdJQpTwIqAdGdhCM/R5GfBQhCVHrdHDnV6fGt95erSLYZvUkumjW+YolxMrAYdIg7U2oV6cX/Guu63ouqqkzz8ELLBJ3IqkOAMQOnogDPBAi6IMRB3jgX+oBHu+/7nb1O/nCcerZvVHmb32uUA/wTOkVO/FmeH+35UdjVjxePrsrMV6Uhz6no/MBH+oHIw74MFot2CceFyM6VXywbJi4eRenlI9LGrxqtm54QaTF+dQ5CuRq6YWfd6MZM3hcMlxs0O0Y4kUtFJFy+SA1+A6KEO2XLZH7M+Zyxzp07DEecdCISVZWLrmzLTBSHhGpQp8zOuSzK/vCnrmu0VEzLy/xuRLLKrKSIs2T6EQIxEBhCC3dk01oYDIawwOZiUUagwpvmaid95hsiDnK5GzqwbeEcalMoZaqsP4q4CNIBhMpq3G9/V7wzqU4L/l7kOeV8lVbUmVV0isyAp4K04JPOV8KP9WB7qUc8j0wVvz1jEhBn5lu07sL+p1XujkWMJ6FQp3vwSbUbHfagTG2U3XlcGUH/jsCmCgkeIJdoY1KV60pnjIobHPvq0HrWBXdDFo6Ou8AdpVzLgt73C4dFSBcumNzTMVxl17pD3Dpm/5qZ7u23w3h7toRlmdqX5luIJfOn8Dm0vnj/nPp6BOW1TeNWXBgslN0naOuqV33dzU5l86bwGZIBo//33PpUYKsJVPG8MXrTxadf2zTHbEJuvSj49iEBibj/4pLL/Eyoo5je1vRJLsxM5fvX3fFYC5d7D+1/7bVZi4rhnzcXCV5TDcOXHrUWDah3h/DuUs/0en2gGWSzcKd4cPu93x90c6kXDpmlxhdOlBx3KVX/gNc+p444cwE77viHaGfmqza3HqWgVy6eQabSze//p9LR/fk+PrLWdRH6rNJcjnl1NK9C0zOpX++zmZItl7/33Pp/Udtnlih5niXbZeKH53TX1zBBF16b1ahmRtWaMZ06WNn9F2blNrCc/oLnxdNeRb9DebSf/OMC5tQD15jE2roNc5d+vq6YdFBN2cKljhmRbWPHb3DpFw6ZpcYXTpQcdylV/kDXLp46eLl9fzruW341K+naJlNBwO5dMfKaSwu/WiltP9cOkpa0eqyDzOmWHtv6PZk/uXwQd1MzqW3h3JlNCSWlQ2aRTQJl36zZezQC9aTheu/mE3zcr7R0ARd+tNKbEIDk/F/xaUHjvygsC1RVDx1SUazjLD5Vw3m0n/zkCSbUJezCjW8UhrXLn3/rcnXJH2GCo+cSe3Q83vRrybl0jG7xOjSgYrjLr3qH+DSW2erKlhYxDklZycMO1jjelEDufTvXdlc+riu/7l0pLSytx4+PPT+Sc/lPTzHpY5va2VyLj2nK5shOdf1f8+lX5utdnI+WsJlwVkP1Yq7Zz+YoEvfyCq0cYYVmjFdepWGxxMSDt5wi5YM6fVRvvqGwVz6b56yZxOqP6tQbbty7tJtr9aOsrnd3nX69DdTPHutq2ZSLh2zS4wuHag47tKr/QEuvenQWfv/SXvtcTCrR3dF+psGBnLpZeRsLn32sP9cOlJa5Rsqd47Obiye1+JgpeDKl1aZnEs3k7MZktvD/vdcuuWklp3N9zcUTpPeHV62m299E3Tpe4exCW22YYVmTJfe7uiSSXWfKX123ZV93vVXv+oGc+m/SdPCJtQgVqF2Hsa5S3992vpcg/ueTosXXPrucMb2uUm5dMwuMbp0oOK4S6/+B7j0MV+ex2dumCJOvt/639Nb3OMM5NJfz2Rz6Ttm/ufS0QHYisG3vy7YJFxkXdmp2EkVu38whkt/PpPNkFyb+b/n0u0zfOv9/DrVbWM/24HfnJ53N0GXfoxVaDsMKzRjuvTht+Mm/ORlekW3U2w5uKRrPYO59N/k+WIT6kpWoUbP5Nylezev9G+1PYGOOxesF3YYu3ePSbl0zC4xunSg4rhLr/EHuPRuro7u2X1nuSRdyayycl3IBgO59Lvr2Fz62nX/uXSktA4kn3iX1bGt419Dbfp3Gn3rkMm59Jvr2AxJ2rr/PZcuaXHh+WSJk3DWuHELBMcasZ8SNY5L380qtLWGFZoxXfqqlmPubHy3zTvJQ1D7SmDSDIO59N8kimQT6kxWoY5Yx7lLn9pkqfeDBse9Zy+cs/Dw/bdPTMqlY3aJ0aUDFcddes0/wKVvXFqnuXqN0CUxsIyv+YLQbAO59KZ72Vz68z3/uXSktKTy2v5b0ve7pbj+0+JNrcQ5JufSG+1lMyRWe//3XHqEvHsbm17/OO2ZaV/ih13/fibo0n/uYRMamIz/Ky7935QX1oefxLjPOnz99ZneD8sazKX/JtMwm1CvsQr12B7OXbpnhqOdecnJwnnbR2cec+hubVIuHbNLjC4dqDju0msxufQWG3uk9kuIc9m6sfzZYxM+LCXzSLmqlJHhZI9uo50OSlUQmWCphEgpB98IXmoAfoT/RzY7EvBD4HNhzx1XlUStDlWGh8MWPNibqou6OxHq0zhx4o5hqX2cpiyobJbc5PZAMES4ud2tJkQtvZQs3t9a7l4j7acbGCJmzx5Fxyzxo4ai9YtKT1wa+7UZGCqGDz09/eW9+fsQt6nJ6bZtz+fIwZAZPrS+wYBOztFvnWJfvh829tvJOmCoOD70eKzP9OSWTTzmd3xovbFj3RgwVAIfWlBtcqe4fcU8d6k9Svp3O34EDJXEh/r/U6PFzXt2HjEbUio/kg1oDobM8aHjQ28O37vvm/DwZ8sn5xyH/QuGSuFDk6p3vtT52FfRrmZFFQ9inPuDodL4UOKl5ovHp/Z1mXZfGVVz3QyIhgU+dLDS8wVPJAcc51uVPzev4Q1zMFQGH+qYrtotOKQSLQv4bJE45PRpMFQWH7o39MS7226jHDcWX3z3r3UNx4ChcviQ6OQd22J/W3hviN0yq/1xqypgqDw+tGXuti+Pq333iT298KIkZsUBMGSJD7msLJrW6JC7V+L33Zv+jh0Jv3IFfOjU1tlv1shPOe6Vtznffm3Pl2DICh86+4/30mfDrvhM69dwyyNR855gyBofcp9To1qSSz/XxTlt7t39+PgSGKqID513npZwvWhj8cy38uTajY80BkOV8KEXFR7Na2U1z33rp8teVz5W+QWGKuNDrn8d3jPpqatgcevidfbc/QxFWQUfWlhTdv9TjzHOs/oGHJQ39L0IhqriQ+vmPRqRVGOv465p1X+WirfwA0PV8KE6l26NiCrj6T2nf5c7o/tfnAyGquNDSzo9HtKx8kfx7gGzOsVXu3IGDNXAhy49XOc48Ei8x9wQ0evTWTvgA2viQ6/iY6r/GFXcKWnekQ4VHE5PAUO18KHND7qP3Pu3t3D/leKT+U5doPbWxofGnx0sXXWvt3CKsEnl5bJt78BQHXzo/eNfm6t1jhNsLdPx3MtlqbFgiI8PPTu7tPvlfc6CJVfik/ukBJibuzsNIlmjuuAv0ijWbHlhj7SNm+fspRXFIQnJ5RFmg2YFqXaNR9g1jYmqzWSiKgUnJqxMPe28envmmLM1x8WQIwvnUeFyZRCl5zKcuUxci43wO/gSTVdk4EwhA2GYRC4HRohoAmav0yqDaqCQr0YPevABXe28jTPP4Riw85+FiIb1vrbOPLNjNCZGNq9niXVvhnGEVPMiyO92xHpJQOXBXb2Weh7+llrleoH6QlPCggOp0x2Lv7nomvByfc3jDz6WK2BYEAMAsoUAdUaFBVVB0FD1mF70i216SIFqqGUApCBpoDIsXKmWwXE+eD+ZHGPpJPSEL1EBTYpQhskCkSgOS1/3TN73iPf2xncvOg4aTCYCLqX9HBqSeYa4jhsgXGascGX/YxKkgUUKShpoh0+0oFxxRYSCoDlMMkzKBwFIRKiUP0SilmoMAVJ+iZtyzKtH33RevansgtvCfzqR5Gfuhz+WJr7cEa6lZ2mHK7sTSnrL7TFlJwFXRH/g6gaA5YUM/CaM0SBKUiqQSLDer3uZs6nPDtHs9kuiJ0r/aUAGi3gmHSztSGGAZcYKFlB13P/UYfI/AXWKDlu8y1KYGCt/02m8uRvpW5V3hiShkggpXyxVhESE0v1QSQaME4tobyU8EVBN8E8ABngAP1gSGKFUAWOjBCtxGVBdOfYB9vgH4eNqfqBEwR8i5asjw8PlMiChIUowCO7XPDJSAW+Fu2gKuNSRy8aAX8Eu2vNFoRJFiBSTbz/vAfxwYmcKeoYIZUiIHMwOacRIqVSB/U7ESCU/DCiBjr6RGqGzwkbTCeov6CjwcGDbrkGBm4kQe3A7ga9cqp+vrJDrK/EXQvdOOpG2OqzmFJfD62PXFmleLJZDZ0m1QAV0lvMBQpcgQr1RU8IRWP8U/ZxlPZI+Yt1rNaqHAyZj6F8r3FxU6LQuXhD1+XDLpCKL+eQ9Bwa1IK5zbSggKvGsqAC9MTKPcQke8ed+N324jFu7B/P9VZFSW2wWk6UlU+e1CzYO9g78CfwW9g5NkCJLC61+Z8OFUPfV2+YNnzCwfiMy67i39kE0seUdKwzRTWYVncI4oss/nCnBYnhq+SrBwgS6BCg1dbg0UBYMzbvGCyDFM6rR6uBbLVa6Hv67uNW68cdKk40Q9jy6EdJc5loo4Xa4lXFDCYXXHLMytCiFDY9G/tBZAURGSDV+UQ9gTkwp8frY4ls+ia1G/lg24+Zq8jINfzB9mUYMFAY48azgLKWAUzQfcBprvFSuB9cHnQZWpXN2y065RbX84n2r86+55CWKNl9FX6LkDhUGQpNZEQJzGo/b+Exx2+lVEvGPDlVcJ2+uXfJ5/bEp5GhUDGI0vp+TWPeNA6FIJdVEa3J4Lx4JgxViMPgRxF2j+QBbVQQ/HM4oYGxxfYWxFx66jdeNrIuyf4l+b3oUTYzosQxMSQcY30alKx2BBCak67etgL1AHgyQ325e63/nZCT0d4vy77Ns3slb5NZIxf3g3XQjpbmcX6REtX8FzTYAgJLS8b6GNCXkN3PmbU6nRUpsqbWqGECEXtgEyVRAfcE42tmG7lMtex422XvL7LZNN4VcDSZPSyfiZvq0zB3Kt89S1YNXdh97L1yTU61YQMv1BWYvAIAtZAUMaJRRgiiNz4C/04rH9CebFlSZs8jSApMli1W9UmaPxY9kO/eknm/GXfzL/6qVuwJYSiAM51HhKrAEz/OsEgKhn03vJgULgCmi3ZI6bvSiVW+F+5Ks/EfVbP6YA9EOZRVtgJFEi4qP53fTK9QqI85jz5HCfDUze+L8FDevqKMbXC9IbqRTe0so6Ks7zVWuHSPPHrdJO1E5v5322BTDHWNdJscovFLlzoh2exz/7jew6qyAw2LSt6kI28pGwK1PJ1lwsFQlBVCo6U6yGAOWzUXKMAC5prkt9pig3Mdgi0NNWyO4sQRrfnTyiNS0Xf4vTBMH8rf02FSYmgpAfwqU/z5V+QdDorXUgrZCEojzgAK3G5ThUhWMNpQKvo1Gx9V8gB7mWLF/aWyaGu5GK0dKg9BOZMeSAVUCzbO9DwXXio2buKE+2cYEYP1t6DYGv56fjWn64k2x8od+uE11aTD49T+zr3KwMxEFYTYTwpw2dbOuCQZzQbeEG+YRv3Z3K1CpUEsDIzH1wNpvIbFcFLktweGYj8uiE8NrHHziepuEpUXuc+nLX9Ig1yaBb4vD1h8FW4YdBhtuEuoxmYSz5eq/b9FW6RX97o2n/eWJzqTvVraHFCsx4XtHyuUIW8AUMNsR98E6JUxnZYoRErksSKPkI2URoXwlWKaodLcE1Cw9y3vSpEAe1iNKrpjKlHyLAeg+PVHQuV/ZHWv5BnddpWqsTg5DDAnArj3ff4zZtNcjKsznnv9rBbn6pDj2IHr4rLmc33SmViVwEDJYQuSmokKGdEg8dIIxfNYRuRpa5FQkVYOqhYTP7LzZ3l4Zj5yTaxQtnqjcdJQEXxlcQdApHfIo5/VqNpgmsaB15YRRigzN/UeHS/PiUD9PzY69JwhppXJ7+Dtqe1e3QTDIDZGqKN3X4J+CGu7KmIOEggWPAIvq0RpRow99UhxTQSZJAeU62B6fBdkChFx9m2OzQK+NsKreGLYwVtC0isRVPwjdHqJ8v6XHV+1x31p/wpY69g2GUBIT8FshEhPY5cKAAlNxRiiAiuOOqj6To+KH1N8/fc4M4aLj28UrviSOJX8fGOSNJjsoBlvMtK6zFgAdU2nC19F4SRoSWKq1RLwIvQImXxu8ZERMqn/dcsIjqtW23/v7bC6gDYZ2Y+kJooknFXJLEDlEayFvYPKQU2vjuIHc3WzTz67jYwTrjwV8WFZyyT0OIFecZIN84EkC8oacVWWWJyA3QFUmooiSqMpEFFESVZmIIkqiKhNRRElUZSKKKImqTEQRJVGViSiiJKoyb5SsaZ+0U+I05UaXhzuKH2xGK3mDyouuBKGUX3JQ8taISf71PE/Y3dlV2mWLWdCQa88syfK31mz2i+RKNQwXsQQOPSgvwTDb6rnIFEFYciAQfwC2pITrTLwMQbf0PrXkNN9XpIGD+iUdJ9lOEC1FHweTLAO1dx0OVuQux/Xau66hybaBQDJcpcSyCkpYFchcF9Rue91+oY9KClIavH5QXRK9syC5tsLdxk6H+dHjuNvNphqko2BZHXQcGYczYVVJWxKRFyskSllvSxdt9cTHZ82MG+6BJ8/FcVgWMamn94dTm0e5xClnuE0Xjj7GAUourCjZHKdvPrDFaba+xLzCJhuGGTHl4FKPqD1jTpV0e9PS5kOxl45L0reNv2h53MaI+VwHW1yJkAk5eLZNcVy/MLapNnsIIdLAE6QMg5VPwAORbBM6GHh94N/r5Yd7rDtzssKmd+O+m0DWEoLUlxUkl+P65XUbOsk031y7VZWrMlhikdlACU613DH48w7X3ceX7nYRfCNnF8yJ59KziNqRwkCnJSs6tY8TgVFjJsf4IsBbbNb8i2jJhnMusT7ufekb8XRPaMYAbl1yPldb6jZSie+y6uYIqQcsdM0N6AjbfWCYGsAQ/hxqA4oHYPusn6vTLU37anm09enLPd2X9Bl4y3f5uZnkzU4sH8vg1kmD+VlxqokroBXnATvNh2D5onQMY8ZE7zkxgVUOA0sKZhozVBdjvnvPOfjKbeP4ZSP79YskrwRLOYN70UDlGTJwSABh+nycDaYsPZ1d/ik0aq7ZaCk0rJvoCTyFxqfFjvYYNLgdsmGyQ6LG55p3mHJPHOMS+zaiQ7Va1H3oMEk4X7NPg9gvZwrNG2vuI7I92LkUCV8hHQkvSVWyQNxB6mSWqIe7WN4QtVOeZ1jXLBlQmyEXAK4XUDF5FEC93gW9DFU5LA2l2dwFr4P8lmV3q38skXT33hvfu5bHt3AzcoiEPYAeImku55tBp5xzK2h2C8AzEMJTBjXntoIli8cFvapJymreB9cJJDp/WTQYMC2loU+i5N2dqSPnbyVn/zT307N/+PX88LlWqX7rvUddfVKqHmh16X5wQW0SxKctKz5AfYxRYWCOFW6M0ADRmUf9Qy8bYavFLesvUYVII9iEZqVIOFByxSCv+Z1Lt7r0PpZ87qqE5n660PDrnBfXAqmUY5XK1/OmJJXsI4RU9HJf5TGDFy4Nwo0vUjCDTze+O6peNa+9M9+f7XuwXyJZMF7Y/XTB4Ne5FoyjPW5O4DYjbb0a1dyZ53hBvwVZDS0G2MJCLssPj9iT81e07m0t3rS14s8+nVbWoDA+aB6AYHzABwoDkXqsiJhdIPx6Eya/vnOhZ06/Th3do3N+RJgfv/meLGPNJ+peDNNZu8IgO3D+yFBZYCgIK+HZQokarHTzVMXg7l+3xQf1nDbqfek6qbmuT53oebxOlFb94ghWdevPFzQDXhMPNTTcFoHyyCB4LJeveRPkF/800nZCY/czjlOnX7y3/ea7NLLyMQU22gEDO3+slBRi6ICq0eA3xTDUy2J19sY1ykmjUXkPasF6ILVmfyBUFhIK/50bU/LHeo9HN0eh+HMKBwj2MXRVwq9zXudmhwNWFQWYgz0GGD6Zm5p84oqqTbokrorw898CpaQ5OMhcDT7Plrny1WLejAlz7wMuF07zToii+lbrJHvuUYH0Vct5RcojZOFyWSB2LIxuSJmQruEF4gHgniLAnXJ+GOkpOtlJKjMF22vRREEZ13XjBiyysy8COGejNm5gjuLERQQdGOFPEHRg8JOodGBUOi8qHdhv031Rb0TQfTHZplouMhWwObA6AStmIssLKZ/Vjf4+9fPEWPedHRKbbW5vNZgknyIC+uwQ5Ms9tD744JElb6oIk27WShra8bxrQfdMwOx4CcXpgKpe6A1GMy6mIXi2mECq7ScNVAILrQ9K1yq3KhfYYrJwcfjz8JEVB5LJBIoI6SgJ80Vp/KCUtou6DPZe1ds+xir0+C8OUDrBitLOizSGJtZqlx5SNQAGBkY6AESteif7MM2j6D4Mv14YG96YxnxGbTTZ2GFI4fbU9v+ZPaXS+RjInlZntaevL/xnT3H5PD0k3huw+oDLtMEdJBkP68zlwJ5SaZo4sBSVWS1F0UK3p62qFy3bYFU/1xVb4pYd+nyxNAf2lLpJwAFKry+woXTzQiHaU6oPNbo9rcxqT19rF/h2Jr8moE4nborZ2hSp9naOKNxp/wfH0J1X5vTgYEmw/ALbkmC6FnJ7zorZyhGQG6CYDcGBR5h6BAceUcyG4MAjitkQHHhEMRuCA48oZkNw4BHFbNQIjVaxBq0iUsWo7HkcVKw150zIFgYU8u/xSCJIFQkhU3P+NJmYMcmESlvIgUwcmGSy8uD9PtOyPrsnHdyXtGvYA/I5v+K+EoVUTpZJKRbDZiPgh8M7cIIXdYQyjK9QRkg15EKQPZU/Ajs2hvzaVN5FxKvoYu0s/AJVSrm8B/RY8GLukc/sbhRLGPfB6Vjc0u1uS+MDv8d3vZrFZAnNe6qlKsjPSnxsQydl5BA5rNUC74MR/wTJIvDvDiIMmOXIjNpMEUlxBgPq28iZF3UWGNAOIl7UNFFpL4kqRKYQS4NJDtBCc7mHLCSUdL2U5rq/MjzvVbIVPtm9kXPcxLNp5TEQfVXw3GCETPNWJYm3Qk0olWSkuyII0m4R8BYpBS/C1EueS1isDgtktJfK+EFWCYlcBLmg8jiiCJVUEqb92ayXShKuvQdX1RYm75apLKAcbdVR9Z8Dv5x2ls0v7z9L+OWWJo85lV7VdLdHd7MW9q/XFva34sxNluUZzk0ieHMJN4ngzSXcJII3l3CTCN5cIhZavujW9OgzfOFfe/5tH+5SpHyeWOjHxIAPk6xtXbZaTrPIGhx2meZcodVHKhKVjJcD59qaSZKl/JaN2Bw51Cnh1WdpO37cOzK9HZ748wL/UQFTqTsrYHUiZajg+4RLFa5ifhj+DN0SglTSYdbXorPuUX5Bj5PbSf/irHvptK0ZsDLr8S8tRchWJlFLo9oE+ySkEIiENJ2hEgVwcsgvPrfLkSZF+40QLul37cnyVtOHkxOCTpon0BOCxADXi1V4QmE/hCQKVTixE2b8/jVK4UTxQACt1mgkJSX90ofsj08WDOSXipRLVFieUQ7DF3TlROO2bTyHDXZb02vpgJ4Hn5K3Ecz98IcgSFSJkcKQzlxW6YwxBekAa/RLn+qiOs5hMjVGWxxIEhNhQpDCqTh9ZW95x6aeSbvcX+yf/tKJLBzNExGbuLkjhSGcYFbh9DAF4UD55BUO4ZmYhNNOEAY/EpMJeB01uFWqCBytIV3swleGS4ZDjsYW2E+5v4GeUe1sv26LK39dkNjm0Zw9s67vIp9j98/zfPo5dtJoYQivK6vwmhpHeDoQaZrlI8EuuRJUh8oUoxUgCAbiA+JSKBVQdOBfcuVIbBD+6ACHwiSjNBeQcnx+oaYq3LuY8MCpgLOrpv17ncKGFooqi8YvF4bkKrNKrqjRJQdvghkVvUplrDT70bChEashHB8osNn9bL37hmeng1alxO8lG0LGmCl3hPMNb3s8hoArjlO0sKo5ZgjxOLUNU5xazWys37HkHJ8j5gmPGrUda0vO1Ik0Gzm+KukImXQkvXcbU2VbYwFkHVLn2QzCCGRDpMowaYRqND9c80B1eXdNNZe7oodUga9fmINXalsMtnelZxXJ4+UCwH/ClaoIF5k8QvPBqHCfcTY0cea5XQLYL0dlG+eDkLbmJcaqN+Rq2JXABjs4ib2jThF9/NJnlyz3t3afH1HJJnmYVQ5ZLYmn0tVSO5LfOplKblbQdTJAzgki54iyI77NnHkOl/QqdK/knyeE4StHSFUqGUPPiquuVVc18X4gjMuafO7TDIebBZ/C1HIJio3gAKuarFiZXzKozSX2MUviSy74SzDYuRNz55e5FI/4iItCB+Gv4phvo3pVc2JhQPwq/H+ZvGEP+Q7tcrstkxn7j4T/t0j4qd2EDEbC//kSGwn/Qbrt5ICE/23lrBVHfgx1/Nu9/N6xzyeSj7sU7LQ5xzYSbpjkXGLjLL9Pt5GFQcJv0/XdObtYG6+Vz6vUL5IlcTQ6Cf85VlQOGtYasq4d9Dv4wx0J/9Foqw4lV3VzPXRy7qwmJTeQMxTGJOHfyCq6+cYRncFJ+OtKru46Pyfdef7Dc7NG2l+bZ2QSfszKMLKoAytjMBL+k2/dr4lelvSZMX+qebtnOatMgIT/HCs4By8ZkIRfPLb/38rhZsKDJS3KiRK2kPlkjEfCv5EVITCn8bitHVPc5ixo2uxXlyuCrXdrx11a+6YVmUcAO8QXrpQDj06P2cwZcG6TmyKR5d6Pc2EAxFXKyJBQEMOppdhWjT5cDtQOi4xvS2c9yDOoa20fCITOXAb4ZgJ8t1LDpHSA74jLBT1YVTH3tcBVHAvkVy8+f/r7K30eu84NaDrkuGWouuC9uyghFNUwFjCEgrS3aZeZutgtB7q7+7JeIVQZzfQNkoaopOj4svHc+T0bTK7lPDXr5M1SddPcKSeksBsRJ6Q01wuD9nct6/efednYwZJWM/UIlOAry5RBskAWbptH2W/Lv4jZ7Bxd1nFWp60byNXn5sQD6LqqHSkMYYxgFcYQ4wiDGv7w9MlY2HsqlBHAfUkC4d6pjUMXsGQFK4swW36LLoGhSlWQLb9lF/VwVQT2AzpaHdXZ7s0/r5PEq9pmvB2568xGsl+DH+AXMVqO6H+ZO1QYwvJmFVZHk5g58FF6RauVcje6FZGqIWqWGVTjjt8cyb3t7lPOLnZ/fvJm04IslQu6dHDADTk86plO44Vq4dxz22X9olTckrNEW8HWrXpW+FxPuDVpfK/AH+NrGHfZCwBYSACQgQAAmha9IlHClTGTTKxeOF6xveQL17+3PO2cIU10orgywx72hQD0ZwMg3vEyEWi2/39Wj0NtzG2wepxTV9jqcQZfKex6nEorXZP3VbH3Wdyztv3aHhnlTKAe58QVtuzmzismUFQQGxtrgHqc9qtWu88efMF57yJLdfskvq9J1OOsZpXOdFOQjkHqcdI7FW9S7Phjt0VlxxSLnbe2lUnU40SwCmewKQiHZ8x6nBNXYrfYBLl47E+XBMQt3JlsUvU4YlbhtTeO8EyzHude+LaQYi87eO+d/MX31rYui41cj9OAVXKWRpdcodbj/Btj537ufRPHuZf9FZm8tD4mUY+DxRCM9TjAEOJxaoc/oR7n/eNfm6t1jhNsLdPx3MtlqbFGrscRX2Wrx+FfNUw9Dr/46OWPPW2Ffz/7XiYs9ZWa83oc6tqcgxoTt6tsNSatrxZWPc7DIAHv2ZwqXnM7Vbq+1uxRJuf1OFQbwQFWfFasylz9n6rH6chkxoYfkTWTeceLDqT4yJ9k9XtDzpR0j4RnJ11VkvBQ+glTPdIXDZxk6nB4ekybzRltpzllypdAzrwQ+AlIzXt2dmn3y/ucBUuuxCf3SQkwZ3w/eiYn7yBN/0r5ARPmk/coFkIrqeeedNRK7dOojZMaO/OyzgGtrCyCfynnPyWNnVs9PJdW1k8qBwKTBrkDuz6KeBwmVo0oOzGJsnLmHCerjhdFsW0eHkk4NZK8F1REiBZgBY11R8iMV1ozRDpkhTsD2uErrpg8qIfkf4PJQ9fooAiDlBxARCaH9BSwRe5RAY56ZybUf/61e6O1vZlwf/+qKzeHe23K9/Rl6cJHXucTm9TTexyd2PzNecMmkXKnqBLpwiSRmAVzIl96fHZdOryyeuVM2wHkPVEXWDwTQY/IGJeXmhv4auD1Nf0uI9Uw5MV6tYUq5UGQjhGWBAZjv4eFwxGSELVOMQj1iGQJsTJwmDRIexPq1enbuZrrutKAAjDvQjB3ChFFfZBUfe0pBP0ShAiu4xD0S/AvlX7J+6+7Xf1OvnCcenZvlPlbnytU+qUpvWIn3gzv77b8aMyKx8tndyXGicOov03PRP1gBD0Tk6QtIHsALkaktGbtOd5h+LZgcZT32PTSaf52BZEW93T4kEMIytUSFfLcByFP2imjNJ60gP0dB6nBd1CE5BqM3J8xUzPWoWOP8QiWKCZZWbnkzjYQEEVEqhgC18xRDRuOGuGdVGaboNmA9LWsIisp0jwJwXWMDxSG0HazCm2tYYVGmGAzsUhjUOEtE7XzHpMNMUeZgr16Tnjra5lCLVVhVXfgI0gGEymrld1bvhrQ+LLHomzzZ89fBs2iyqqkV2SEZIhcS2DBoyS74Kc60N2VQ75cX7/prtiEOpNVqCNO0bi+WBso4Mou1fCzIMGj0qSwKroZtHT0Nh3YVa5VPMoet0tHBYhO947NMRXHXXpXJpfe/eE9n5LyC67rElOKTtxfN5pcK+sXKguO4MO+smS3Dv0VU0/rGj7BwXApIpHL8farMtg4D5J32yMBtr/frcuc4RkuO/tFR1Xr7iVgegVEvKTrthTQjP4hBDEFbVvK1pl3O7igdWRlse67YG6q4QujyRemehzsUaypd9SlastufKtal9rgBfkV8w0JPa2fHa8k2uixzjLI2X56f+sCzjG4hPeHWB11RMyxKDBqG6Jf1ZhGgkpMK5C4eKpbNfQqe99rl2zHsS1pDe7RtpSDdQOmgPMJfnMz1m8OtMQEtpMxDdQjx2YBeYbYqKeO2UvsRZ+EXrPW9O/zq+jdF2S9hHcbCv69wWzwzzYO/LQKsYI26tbMCFjtDL4JUiJv5IvXljLvI9qb+XVw4+b9cn7TUhR0N98ujymgOZjBdtiEwB1MNxN2MItWn726XDzAdceYz15yv+EVCsfBrJzO5mD6TjeAg7l4Qh1kduqR25SpJR7N2P/NnhsHE3O8WNnX6TNc4pKT56RPHdSGAwezdDrbPJ88nWMHM2dl5XW/vgW4zvDyPDtu0CBPIzoYBes3B1ryJzqY6is/FP/48ZbrdIdOd7qefDDQeA7GhRX+lsaB3wgORlp04F7rr9muk83S0xz2F91tPAejNQVIBwMmBO5gHE3Ywch9T6WXKl1dFOuhiK7+WZxTOA4meg2bg3FZYwAHY7W39RGb2ns94i/6D/tuJ47lxsEEd+7Qrk7Frz5r1q0ab5GW4sGBg5m8hm2eK9Zw7GBmVGwtun95h+uydX23lfC+tNKIDqYv6zcHWvInOpglkipD1h595b61+56GC7JLPTeeg2nJCn9t48BvBAfT+u2Q1WMTrTzWrOuWc6a8dKrxHIzWFCAdDJgQuIMRmLCDyVxV51vL3U29NvYLOTtzn5d94TiYnF1sDmbvLgM4mCSvVL/aY2zdl4wsNqfprqd7uXEwIxpd8yvarr3X1jTpvcx7Q7lYwWTvYt0o2sWxg+k6LOBE5w7nvFcWH/N6nU//HCM6mFOs3xxoyZ/oYLpvbjJ7dYaF85EW3Tpuqzirv/EcTAwr/LONA78RHIyk7i+vOsMmum5zK1G1RgvHq8ZzMFpTgHQwYELgDkZowg7mRsma9kk7JU5TbnR5uKP4wWaF42A2p7E5mOA0AziYbeNt/U9NmOq5cO3rXV9fLL/DjYNZFLktweGYj8uiE8NrHHziepsDB7M+jW2ez03j2MEMDv/U66PnX47ba+Y8sLq70MmIDmYM6zcHWvInOpgx7xo0LPL5rPOGO2ue3Pi12tV4DqYHK/xdjQO/ERyMu9mmn13HxwjWHwv4sKzkknvGczBaU4B0MGBC4A5GxORg9O6pYKOVXuH3VKhxt/bbf0ZNEi/9/u7TssiUlDw9FeyPJzx0rlxXPEtgV3tuS8HMPD0Vpk3YU/OaOsBjacCOntUSbs3O01PhbmiLZwNW3fdM4hWLSasQtDBPT4Umrg+CXvCsnOY+3hBZURbwOU9PhcdjfaYnt2ziMb/jQ+uNHevG5OkvtaDa5E5x+4p57lJ7lPTvdvwIGCqJD/X/p0aLm/fsPGI2pFR+JBsAe1mZ40NOfWwW9Ws+xH3DwaTwwNvrYAesUvhQqyfxk2IyvByT0lULHHJcvcFQaXzo8+xjyQMGtBD+PWlAjYDts2CvCAt8iN/nVwPnplfdl+2ZOPHas6nbwVAZfMhWHpd4d+FJ9/htD/cuOuyVBobK4kNTV6zdlLqwmGj+1got3GxdssBQOXwofV7LhUWfrvGZvmWrnW+trm3BUHl86M6m5t7fi5x23ffZrM+3i1t4YMgSHwro8nbuzfetvKJ8WlmW/dr1HzBUAR9abPUx/p7knesG2wrNvqQXGwKGrAh4A4our3BA7bN0ZtzdrQ6tIPLWxAPnl0oYs2CFR9w19+ffkxPqg6GK+NDCJlVmfXtQwXl5r6xZjU7VLQWGKvEYW3FUJh44YWL4CS8bYcKVH7WLN8qeCIaq4ENK8ZdV6xff8lj5769HDc2LTwJDVQmh2HzuPmjJDZ+lvZ8X6bPnagcwVA0fCq66qHSrabZuM11iNo+Y5V8aDFXHh17Ve1M2rNp6l53tNz6Jf7RyBBiqgQ9VUd8/2r7NZs+oIZKEDd9LVAJDNfGhePP0b5d8hjnt8f6a07hPSAAYqoUP9ShbJDzSYovzuo+2LcwyRKPBUG18aMc3/9gmDmcdd3Q4u/9lsfOzwFAdfGjteHvvnDvB4k0fX5wO+dR0FBji40Mb65xLOfMxRrCq3CLJ0oRVb2nNQuryGJqFHJamzS5/YZ1oo1nK6ho9buxCmA19m4U4MZmoSsGJCStTTzuv3p455mzNceT2VyWdR4XLlUEIBiymALgRfgef4CyVKWBYGAYCYmCE1NKQMKnOlFdUA4V8NXplIz6gazGXjTPvbgZs3Yg6veULwuPdGXoxglrmMoJqXgT53aJOp30fwe/uM2lfEcETwdtFHBKCcnxIKwYAdDODiZOmKmz3lKFXTNymhxSoBnb2PEgaqAwLV6plGAUYeD+ZHFs6EXrCl6gg660yTBaI1pDM1b86bfX23Pdr3j+j5eP9yRQ+2s+hU/jkDnEdN0C4drPCtTbDJCI5Ot2knpGcHT7RgnLFFREqieCHSYZJ+SAAgXQCQySQi4OR66fZk4ybPY+9E27paj7yzMpO/1LYHvDHItgeiBGupWdphyu7E0p6y+0xZacx/ugJXF2CmI4gXZBSgUS3BC5Z/vi9DlaiXU8HB9TrNfFpwWnwOABrNytYQNVx/+PM5H/+Y8/+LfZsaoRuMPbsqTfY2LOdbhQGe/bJL80uyB0thbsrBN/b3utoIIfOkmqBOGDPjrrBRjYsv2EQ9uzEjPufvNv5ue6fspDXO8ezr9HZs3uzogL0xkSZPvLbYOKOPXvhDUerofx7LslXhh65sWv9fpNhz3ZgFV1N44jO4OzZDWXxxwWXvrrOOZryKPLOPL6R2bMxK8NIfwysjMHYsz+tt6ksjfYUrJsiP9rxvBk5hWEc9uzerOA43TAge3a5nO/L2sS88ombd6GH0xqvoSbCnu3AihCY03jc5sIUt51eJRH/6FDFdfLm2iWf1x9LXpybi0GMxvdzEuu+cSAk2Az5sKMzEQmDFWIw+BHEXaP5AFtVhIYnGhhbXF9h7IWHbuN1Cpyo+5fo96ZH0cSIHstA+ROA8W1U1s0RSMD2iX7bCtgL5MEAHSm1rJBZrJ/A6UDCKn/ZwNmtKNkkeDeCJAq7nF+kRLV/BT1SCAAKfYKfgKcpIR8ehnqiF/dLVQwgQi9sgmQqoL5gHO1swxSV6gasau6x5OiT72F3T8nI09KJuJk+LXOH8m3IdO2m+JXVMtclr2KeLDiV8Z4DwBxZAQMaZZQgSuMz4O+04jH9obckMWeRpQUmSxar+jzWrWdUptJ9d5/p9Ta6ptW2wsjkgTCcR4WrpFrqGSyoFQj9bHo3KVgATBFtuWUzNk1wPSNcMfRKSserEV4ciLYqq2jNjCRaVHw8v5teoVYZcR57jhRmBfcFd4Kvl/Bc7Tr9zIgpDYOoCT8EsZ3mKteOkWeP26SdAkTOb6c9NsVwx+jK5BiFV6rcGdFuj+Pf/QZWnRVwWEz6NhUhAUkE3PqEbLJSyG8kVdOdZDEGLJuLlGEAcg0NCvaYoNzHYItDTa0J3FiCxB46eURq2i7/F6aJA/lbemwqtLwNQH8KlP8+VfkHA+WvfLug9SkCcR5Q4HaDMlyqgtGGUsG30ei4mg/Q0zShgP/S2DQ13I1WjpQyMMiXWZVqJ3Dt6zI/oFRP0ZCeFmQbE4AVHdBtDH49Pxtzs+JR34UvH3luivIRLPfeGMHBzoQ9hNlMCA+uUzfrmmAwF3RLuGEe8Wt3twKVCrU0MBJTD6wmCr2K+NxluPfNWc5TBwwVxI2yIdNbWuQ+l778JQ0WBiM/Blt/FGwZdhhsuElwYzIJZ8vVf9+irdIr+t0bT/vLE51J361sDynGI8H3jpTLEbaAKWC2I+6DZCSYzsoUIyRyWZBGyUfKIkL5SrBMUeluCahZepb3pEmBPKxHlHzsFlPyLQaeUrpV0Llf2R2rw4O7rlI1RoaDIYYEwLt4vSJeJZp5zP065NWvuVO6kMNn7EH08FlzOb/pTK1K4CBkSIHITUWFDOlNnXnxtxjDZx2Rq6FFTkVSNahaSPiud17oUTwwy/Wv8pm7Xn16Q2n9jSsIOqVDHuWclMYG0yQWtCbfMgqTkLn/6HBpXhzq56nZsfcEIa1Ubg9/R23v6jYIBrkhUhWlJA7+Kajhrow5SChY8AiwqB6tETVSylTHVJBJUkC5DrbHZ0G2AEWK2RybBXpthFX1xrCFsYKmfhdX/SAkFLUmfi9+o+FX4QH/RMUl215tKYkJ+K0QiQnscmFAsZQVCqDiuKNyZ3JU/JD6+6fPmSFcdHy7eMWXxLH5Mv8x2GKmdZ3OLH5Ua6kLix8vXxs8qXrnS52PfRXtalZU8SDGuX9BKVlh4uIWUVlNhdwSRA6ttZB7mDzk1No4biBP2x4d0ePFaaf5P2rmjKk27xoHkNe8ywZ5mbsE5J6cVWWWJyA3QFUmooiSqMpEFFESVZmIIkqiKhNRRElUZSKKKImqTEQRJVGViSiiJKoy25Z7EPXu2jKXVWnmrx56NrSglbxB5UVqH7X8koOSNzGT/Ot5nrC7s6u0yxazoCHXnlmS5W+t2ewXyZVqGC5iCRx6UF6CYbbVc5EpgrDkQCD+AGxJCdeZeBmCbul9aslpvq9IAwf1S3rQ+7e+CSZZBvLECDywqF+av4Ym24axmSuhaAAe4AfmuqCm/opEUc2ZHrGq1IdbApd3LEiurXC3sdNhfvQm7nazaQ2iwLLa6iYyDmfCqpK2JCIvVkiUakvjW9dq1Nk7+VrFaz9qvr/IYVnEpJ7eH05tHuUSp5zhNl04+hgHKOXcYEPp2g365gNbnGbrS8wrbLJhmBFTDi71iNoz5lTJXzmbcgbI7YXz7XzltUdNExsxn+tgiysRMiEHCWxr3tQvjG2qzR5CiALz9FyDHohkm5Dg/FoY92Hq/hrC/assQ4OCt4lMIGsJQTJnBSlHz7xuQyeZ5ptrt6pyVQZLLDIbKPWH7nF3M596LTuwN+uzm90hchaReC49i6gdKQx07jPmdCE657Q5XS8mx/giwFts1vyLaMmGcy6xPu596RvxdE9oxgBuXXI+V1vqNlKpV9tj6gELXXMDOsJ2HximS1CpzqE2oHgAts03CyFN6/x81Cbp2q2Oq/m8YWc8u5I70Flg+VgGt04azM+KU01cAa04D9jpCxAsX5SOQRbuJP18XTkMLCmYacxQNegqbTl4jb9oY/UxjxfVLt2GbImcwb1ooPIMGTgkgDBtZoVp4U39nF3+KTRqrtloKTRoaTAdgSk0Pi12tMegwe2QN5MdEjU+17zDlHviGJfYtxEdqtWi7kOHScL5mn0axH45U2jeWHMfke3BzqVI+ArpSHhJqpIF4g5SJ7NEPdzF8oaonfI8w7pmyWBTrUcA1wuomDwKoJ6epZehKoeloTSbu+B1kN9S/LPbl3NVZgtS6vyUHjg8mHIOCXsAPUTSXM5vzlHPuRU0uwXgKQPhKYOac1vBkuVzll7VJGU178PWqHZD10gHr0nvBUtuJLfZmDo3gZz909xPz/7h1/PD5+LJOrvCTts5LRy2J2WRvEI3DvDJymLDB6iPMSoMzLHCjREaIDrzqH/oZSNstbhl/SWqEGkEm9De3NhX3cVzvdvkYUODF7c/3YAsNM39dKHh1zkvrgVSOcQqla0mJZXsI4RU9HJf5TGDFy4Nwo0vUjCju42oFdd4hvvmvbOe73PfUJQsGC/sfrpg8OtcC8bRHjcncJuRtl6Nau7Me52l34KshhYDbGEhl+WHxxSbpbWaz7B0O5I4rFXV8s+aU9o6aB6AaOuADxQGIulZbIjsziL8ug+TX9+50DOnX6eO7tE5PyLMj98kRyn4J+peDNNZu8IgO3D+yFBZYCgIK+HZQolaDTtyaaticPev2+KDek4b9b50ndRc16dONAuvE6VVvziCVZ0v3a/rmQGviYcamgYWWJNFeIRJ8ybIL747+cW0O7sOe8e9uu05ceKNVWTlYwpstAMGdv5YKSnE0AFVo8FvimGol8Xq7I1rlKatPOmgFqwHUmv2B2Ara/jv3JiSP9Z7PJohmuLPjdrVHq5rMcCqogCDvUR9tZPZ1+QTV1Rt4qjjFzXNwUHmqlwWW+bq50MC8+5MmHsfcLlwmndCFNW3WifZcw8yoXo5L1IzOrohZUK6hheIB4B7igB3yikt7XSyk1RmCrbXojdjJY/runEDFtlrHwM4Z6M2bmCOQvUY0fOL8CeInl/wk6g9v6g9u6g9v367pxf1RkRPLybbVMtFpgI2R58WhAubbxlc96ml9xLJkU3blllMILcgFNBnhyDfBkPfD62a3mFCZ4+FD4ue3FJa9q6geyZgdqyE4nRAVS/0BqPRj9MQzbSYQPqdRo2rG0UfimhczPGIveT5z1IS8lajbo0aqShNef6wz7fuX11m3Vw058GscVygpGJFaeBjWhsm1moXTb9rGBjpABC16p3swzSPovsw/HphbHhjGvMZtdFkY4chhdvTHv/P7CmVzsdA9vTUIzZ7uvrRf/YUl0+TbSJ7uw27vGNvzgr+52XSBQ7sKZWmiQNLceIRm6XY+aiw7WmHSh6Lxzet7xi9xWrz2LYbUjmwp9RNAg5QWs2K0vRHhWhPqT7U6PYU0xhGewqQwu2pn8mvCajTiZtitjZFqr2dIwp32v/BMXTnlTk9OFgSuDxiWxK01ULuz1kxWzkCcgMUsyE48AhTj+DAI4rZEBx4RDEbggOPKGZDcOBpKQbpHHhEMRs1QqNVrEGriF70UNjzOKhY68mZkC0MKOTf45FEkCoSQqbm/GkyMWOSCZW2kAOZBDDJZOXB+32mZX12Tzq4L2nXsAfU+iGJQiqn96dnMmw2An44vAMneIFt0fkKZYRUQy4EW6SycdhSeRcRr6KLtbPwC1Qp5fIe0GPBi7lHPrO7USzhBovXd6qHN3FKcpGqNxWdp2KyhOY91VIVbMJKfGxDJ2XkEDms1QLvgxH/BMki8O8OIgyY5ciM2kwRSXEGA+rbyJnXNBMY0A4iXtQ0UWkviSpEphBLg0kO0EJzuYcsJJR0vZTmur8yPO9VshWu69/I+VuTzLTyGIi+KnhuMEKmeauSxFuhJpRKMtJdEQRptwh4i5SCF2HqJc8lLFaHBTLaS2X8IKuERC6CXFB5HFGESioJ0/6MERNr78FVtZfJu2UqCyhHW3VU/efAL0dksvnloEzCL/c2ecyp9Kqmuz06mLWw31db2N+HMzdZlmc4N4ngzSXcJII3l3CTCN5cwk0ieHOJWCgzcfDTdveripfP7NCFtzgjK08sNGjhPxfiPFM9Dgx92LiheHwQzblCq49UJCoZLwfOtS+TJEv5LRuxOXKoU8Krz9J2/Djy0qg8nvjzAv9RAVOpOytgdSJlqOD7hEsVrmJ+GP4M3RKCVNJh1teis+5RfkGPk9uhT3HWvXTa1gxYmfGe0lKEbGUStTSqTbBPQgqBSEjTGSpRACeH/OJp1SP3b7hmJ1i7sMvZbU+ti5ETgk6aJ9ATgsQA14tVeEIhCEIShSqc2Akzfk+NUjhRPBBAqzUau3fv/qUP2R+fLBjILxUpl6iwPKMchi9I2fi98Xh40HOs15LFlc0/b5TcppCo4g9BkKgSI4Uhnc6s0rExBekAa/RLn+qiOs5hMjVGWxxIEhNhQtCF9EdEN5rtP+Ox86Fsfc6uDeTUmLnmiYhN3NyRwhBORVbh8ExBOBC6vMIhPBOTcNoJwuBHYjIBr6MGt0oVgaM1pItd+MpwyXDI0dgC+yn3NxjKs69LOou3dxX8veJLvPWCJWHkc+z+eZ5PP8dOGi0M4b18wia8DBMiCiITaZrlI8EuuRJUh8oUoxUgCAbiA+JSKBVQdOBfcuVIbBD+6ACHwiSjNBfQnCLp6sbbX5VyX/9XkZ01jm4YSeutgyiLxi8XhuROsEpup9ElB2+CGRW9SmWsNPvRMkUIuyG8G/TJ4cCpNj5bywwcUyRxEjl6NGeMmXJHON/wtsdjCLjiOEULq5pjhhCPU/sxxanVzMb6HUvO8TlinvCoUduxtuRMnUizkeOrko6QSUeSw1SIKVNlW2MBZB1S59kMwghkQ6TKMGmEajQ/XPNAdXl3TTWXu6KHVIGvX5iDV2pbDLZ3pWcVyePlAsB/wpWqCBeZPELzwahwn3E2NHHmfYTYL0dlG+eDkPYMPaQlFsjI1bArgQ12cBJ7R50i+vKddzerX6uj+5Z6DmkjTxchc4+ZE0+lq6V2JL91MpXcrKDrZIDcO4icI8qOwDZSd5/qVeheyT9PCMNXjpCqVDKGnhW8fe6jldIxrovmD/pYYdb7FgWfwhSsqDaCA6zOsGK137ChDrGPWRJfcsFfgsHOnZg7v8yleMRHXBQ6CH8Vx3wb1auaEwsD4lfh/8vkDXvId2iX2/2ZzNh/JPy/RcJP7SZkMBL+zc/YSPiDnxUGCf+kmB5PKypGuO1vsSzFt/fWTRyeNufYRsINk/XP2DjL5z4zCAn/glcBvr3ebXVeyE9/9HbFuNNGJ+Efw4oK0BuTWTvod/CHOxL+slXUb1eO4TluaD10e/9g++UmQ8Lfg1V0XY0jOoOT8C+/Hvxg3rqePtv8tszP8Zjx3cgk/JiVYWRRB1bGYCT8pTbElt3RLdR16mzP4LbXxZdNgIR/DCs4wc8MSMK/ptqUkjXvVXeZZv267qroUKUJ0FlAhHqwIgTmNB63DWCK25wFTZv96nJFsPVu7bhLa9+Q6d4tsEN84Uo58Oj0mM2cAec2uSkSWe79OBcGQFyljAwJBTEc7HKtDNaLy4HaYZHxbemsB3kGda3tA4HQqOcA30yA71ZqmJQO8G3wvKAHqyrmvha4imOB/OqnRg2QLposcFt2ymfHZ7d0s4L37qKEUFTDWMAQCtLeRjxn6mK3HOju4Of6NcLWTN8gaYhKio4vPVo7lYl9eMAran3Fk4ca/1xGOSGF3Yg4IaW5Xhi0v2LW79/+ubGDJa1m6hEowVeWKYNkgSzcNkse8I5a8hZ57lVm9mu+6yOlzxzxALquakcKQxgNWIVhaRxh0Jpj65OxsPdUKCOA+5IEwr1TG4cuYMkKVhZhtvwWXQJDlaogW37LLurhqgjsB3S0+rh7Ve/rHg+ct0y/s/tIx4hvZL8GP8AvYrQc0f8yd6gwhPX9GZuwnhp9mUHU1egVrVbK3ehWRKqGqFlmUPwH3557Z8d4pPgGzVTn9O1akKVyQZcODrghh0c902m8UC2ce/Z5rl+Uiltylmgr8uWCJS/nRPssKv8t1CLJQWzcZS8AwJEAIAMBADQtekWihCtjJpn4687c+BJ2353Xx59pMiXgTQuKKzPsYV8IQGk2AOJfawPNgf/P6nGojbkNVo8z4gVbPU65F4Vdj7Pz1pqhD8pmex5c1G9gelZ2qgnU46hesGU3B74wgaKCFStWGKAe51G/LWqzlk4eG+/8267uwidZJlGP48EqnbamIB2D1OPM8qnt+X6PrfuuCVkf1jxSzTWJepx6rMIpZwrC4RmzHqdcmGV0rX/fOC4vkz1li7lVlEnV43x9zia8x0ZfJppQPU5IkyI86wkNvNZnzZ9jEzbttpHrcS6xSi7F6JIr1Hocxx/t3kyt39E17q7148bfkq+bRD0OFkMw1uMAQ4jHqYP+hHqctePtvXPuBIs3fXxxOuRT01FGrsf5+oKtHucCPaQtlHqcZInV9VPW1q4J3VKOPp+6RcZ5PQ51bc5BjcnHF2w1JpkvCqseJyLjia/1RG/HZWYhnb99fhbGeT0O1UZwgNUFVqySDBvqGLseZzCTGRt+RNZM5h0vOpDiI3+S1e8NOVPSPRKenXRVScJD6SdM9UhfNHCSqcPh6TFtNme0neaUKV8COfNC4CcgNW9jnXMpZz7GCFaVWyRZmrDqLeP70TM5eQdp+lfKD5gwn7xHsRBaST33pKNWap9GbZzU2Jk39yHQysoi+Jdy/jOosfNfcx6mlfWTyoHApEHuwK7/H3vfAdZE9r0dFaWLoiKIYOxYQNS1lwVC6E2w7NojCRINBJMgIhbsFXvBjg1FRbEr9t67q667NixrW3uv371TAjNzZ0hgSPL7f8vz+Dwyh5lM3nPvOefec+57hpCPw9SKq1LCpkqHvDRf+7YXRMtb3D+w6WSSL40FA63Airh1R+hMYIWLKIesCGfAOHzFF5MH/ZB8EZg8dI0OSrFoyRNEZNUg3Q9skXvQm0C9HxvqP8ZtWVXJw8xnR0/HhZkJobRiJcTpS6uSR17nE5v003t8ndgs2rzh0sje23SNRLNpJGNmWuLzoE/+8wY5qBdObtyLuifqB4tnNMyIjHV5id8gVAOvj/e7TFTDkBfr1RarVEghHSMsCYzB/g4LhzWS/mqdYhD6EclyIcrogTKp9ibUqzO3c/HrutKAAjCn3oG06T6Ioj5Iqh5yB0G/BCGC6zgE/RL8R6dfCht3u2PUiWdeY89sS7V4HX6VTr80ptvykTcTegakH8xY8Ch9akdSTh5GLTI9E/2DEfRMbJq2huwBhBrROTDLj6vazFoUtF3p3fr2rv2tiqMt/unwIYcQ1GsFVMhzF4Q8mjtGaTxpDfs79lGD7xDfP99g5P+OmZoUz7aRwxEsUWy6svfLn20gINIkqtCB61P/U790tjnjNTF27GGP6h2vc6rMXIQ/CcF1TAhKQml9OZUWYlilkSbYLESEG1R4y0jtvMd0Q85RtmCvli/R+loer5apsKo78BEUg4nU1cBO23oPe7zUe6/LvmZBwVVX03VlHpqokfRTaAksBLRkF/xUT6a78iyU66uI7opLqa05lVrnDoPri7OBAjHYZTg/C7pFAI0mhXOgm0FLx2zTgV3le4inehB26aA3otO9VxNsiBMuXcrm0jvdvxNurjjvv2z3/tIjd9QcT62VjYqVx2iEsK8s1a1Df8XW09o5PCYGLkUkCgXRflUOG+dB8m4PJMD0hoNsr4CIl3TdlgIjo/MtkpiCsS3VWCyofKu4dWS2WPddMDfV8IXR9Pg1N235evhg0MyRWU//MX+VTW/wgvyKhYaE9KbrxZxjcAkfAbE66IWYY6lA2v6WflVjuAaV2KhA4tIjIL31nQmbRGl/R0SPm76+AWNLOUY3YIo5n+A3d+P85mCUmMB2MjYC9cixWUOeIS7qqS7hm1OrlRkrGtNLWe3k9ps51HEJ7zYU/AJO+J//bRoVYsVt1I3PCFjtDL4JmqqD1nG3iJaiuLv57gVMAcPB9HXHJgThYGRsDkZvPh83rfZKns9HM/PgiH4nW3vvq56WvCCpZkoBPp+mi855zVnsFJp+dOzjf7dNtC/A53PKY8JvJ2JWh89sMW3gmT7WoQX4fI5W2FtnkKM8fG0p0YQ3d8SLCvD57HYu659QPc9756blE+N7/TG9ILchs/MvyW2I6PxLNupFdP61IEQLqvbu2Ts3wye1y1+Bj/74CIkZLQlRuX3lV9vHdw5ZUuvs249hweWByIoQ1bLx2/Bi3+zg3SPjRkvsqsUDkTUh8u10LGp4/ZPeM6qv++IzYf13ILIhRDl3hzZwaH/ZLyvq13uKub06AJEtIbp3dVzVVOv3gcuazDk91ulZABCVJ0TN/JQfmuxd4rNkaNJB/yP+W4HIjhCtiR1RLe1E1eCV9mtG1pnRvQIQVSBEZeK2H3Oxey5e+rV3Ro9D5j5AVJEQvfl72+W1MQNES/6Ne1l67bb1QGRPiD48H9d5h3OHgJ2SyIHjYixVQFSJENXo+GL7mpPpolUfZjRNuZqRBkSVye81eJ7L0PGa8OWWV5svmPIkGoiqCFhpoBwI0fovQ2PrzggSrav466m/JJMcgagqIbqbuK9jTE8/vxlPHEcd6PutOhA5EqJRdw+WutuwpdeyrvVanqgyeBAQORGi74vWN1zXeIjXnn7H/7z59fU6IKpGiB680WTeazsxaNy8am+7D/1jCRA5E6Lmjod33X/5OmTRpAGzo7KPQKCqE6LYuz+Wjh12wDtrfvs6fzZ+3gCIXAiRrFXt2W+7+IRuTuluv7LRvrpA5Erqa3sb8xu3vvqsvhT9plb1BEjaWYMQ3RfXDxr6SCVetCw3u/2HBVOBSEhOh6i3i5KjAkJ3erqM2dB9RH0GUVVNAQtR1QPF75Ia520C5n7+263tdKuLPBBVxbCZqCoxuzctPHZKvHhD3tAz1YdlUJeu4iEJCqUUcfqCLQCuR9whJM/LYm3q1HEgIAZGiOgAqONxC7qBQr4ac1VNCHRdSLiBZdULSBuMyhxGwIbsL/RroJl/GhV/EeR3+6f6wnZPHsYGLL/45Yj9kBobeTyMynOCEDb4+eUFWz20I1iVCl/oFRO3iJSBoYHVPUllsMWRUi3Hjp+A95MrsKUTOU6EEhU8ca2Mk0ejK9WGpjQsVXN40JrFre/KDu5YTi0f134Os3w8X8R33ADhsuGE69O/JhHJMY866hnJuRMTTZqvLk2sRCOMkwyUCUEAom1hzV5nbpGjPDS8xmb/TfvMjkWHKmrQKg2JxyIqDUkJ39qr4E4Mdl9k8b8HNtgZ1eZ6AleTPBRFFvzJ6EAiwfJs2Uuscm4cMrmh78mTnWdSLXWRjmDxAJYNJ1hgqBP+pz+b//mPuaFIzA30CN1gzA23X3AxNyzVz1fqyNzwssNvf9kdrBSYO1c61OnDufs8Oku6BeKBueHmC66D7sf1c5ZFZW7o4rqu0Y5LA0LHfq5p1shhTaLRmRu2cKICxo2JVpkWtsHEH3ODz4OyLWbF3/da4V42RPqgbX+TYW6YzKm6wcZRncGZG4SlMjcoJ/cQbXL8Hq08POmFkZkbMCvDevT+OCJKKSnmhhNDhHaD5+4IG7ejWsDKaXnrTIC5YQsnOEtfGJC5od44y7tuK6VBUz+8jb798RC1KZvxmBsmcyIE5jQRt8WyxW2nFklCvrep6j8609X8ae2U/dRoNATEaMIo3xDdNw58tM1wYTcBMhIGK8QY8CuIu5KFAFuVBucoAMaWGK8w9iJCt+E6BU70/Uv0ezOjaFKixzLw+DeiLS4jVPICGhj/Tb9tBewFCmCA/HaZgiu9D5295Tf+37lttw1924+WTYJ3Iw4oYJcLi5To9o+HnreHvxHVV4xBKGwkFmz8plfdsSMGEDku3KRyFRi+QI52thZNrIVbVz4OXVX1ucrKeRiV1tjSl7yZOS3zRYUBNtru3LLLNs/EW3M+mB/o3KouD4At5AQMjCijBFG4z4B/01zA9sOkw7Lg0KU1pksOq9rE/Mzcp5LSgRvTN69KvXX9pz1GZAKUIR6SoJJpy56xoNbbJ8rttwbFC4Bpqt0TkV5bPDAyeFPr1+/GrMlx40G1Kk7V9jaSalHx8Yxf9Qq1bEIK2HOkMkfc7Xo74NQQr/QaFyJTsm7spSf8EIeq8Ku8t5X2IGxSDqqoJMcDm2KEY5SzOUafq1VvDW611Su7R2/HKV33UckDKsPiVw3c+oQnmWWwtl6mR8f4JiJlHIAcL8HFHiPNfwy2OMxvFA+LSnXyiPS0XeEvzFAH8q/02FSY+hqA/tgH0UC+Lxj8Ca+LW5/iHVIAFLjdANsgwWhDGS90I5ufA/RwAiT4P9ymqeFutDJJxsJe8kdWl7SWDZ+Jlh6z/7u652Kqty3XFSs6YNoY4nphNqbap9sNkj76hW1b2LaeddMum3nYmZgIYTbzQbRMT2+AwVzcLeG6BdSv3d2KVsarZdGJ2PDAaqLQ3FrCu3/vuHwkYNcYB6/AD/eoDQ+t85/LXP5ShCXBBoPB1hMF2w13DDbCJAxgMwlnytd+27SlMnT8m5fBHldGiinfzTZShtUwCsMSFQqELWALmN3J+2AhLDZm5fGDJQq5FB/kSXJNrFAJlikq3S0BPUvP8Z4MLVDFekTJ1V+zJd8yALqvXhV37jsEYnV4cNdVpsYKsTHEkAAM8Rj/vW3nUeFTtz8tVevkje7U8Bl7EDN8xi8XNp3pVQk8hAyOELmxqJABNqMye80aPuuInLMWORVlqMGhhYTvw6bBdrNXV/IZ0/rFb19821KDahtigKBTOlQp7wXRbthI4kDr71dGqWK36JycICuIQ+0CNTsewSCklSk84N+oPfwD+sAgt79MRSuJgz/FNdwOmIOEigWPAIvqZFzVSC3THVNxJkkx9drXg5gFr7xRBzKbYLNAr40wxzAMWxgr4PW7xNCXIqFoOGLR0NU314WPaWVV7sDg8Ju0xAT8VojEBHa5JKDAhjgrFGCIE45qIJujMpmef3RryU/74xJo+bf0FVfLv2layBUmDzm9No4fyEeZlWs+q21M4CJNuxV7nzn/ygPkg99yQR7zloQ8jreqTDsScgNUZSKKKMmqTEQRJVmViSiiJKsyEUWUZFUmooiSrMpEFFGSVZmIIkqyKrNDmuyD2WKR37yphzRHrC2WMEre4OBFjj56+SUPJW/xbPqvFXzU/dZmK781ZtJ+155UoOq/Er7ZL1Io1TBcxBI4zKC8HMtsq+Unh+2OY2F/YPwB2JISrjOJMgTd0vv0ktNCX5EBDuqP9KCWmfYSTLIbyBMjYEUe9lKvvWtnPNuGMWkooWoAHuAX9rqgztN+DH3U6XlIepxbZo2JeduKk2sr2W3sizA/+pJwu68Y5IRgWa14iYzD2bCqoi2JKIgVEqXZ87vG/HOtvte6Bm/nrus/NoDHsohRXcLen8wc4pelnBQw0Sf5MA8ohXGi5PmSufnAFac1jiDnFTbZMMzIKQeXemTtGXuqpOGUT6U2dvw3ZLT1WRdVb9s3RsznejYmBhEyIQcPTw9+qV8Y21CbPYQQRRfg+4QeiGKbkOAcS/HN7fe0SsDMiK0zU6+N6WECWUsIUj9OkMJe6pfXresrx7+5dqsqf8hgiUV2A/Wy97oWbn7ZQWu8rFe5hXWhFS6Sz2VmEbWSkkCnLSc69V6SgZGSzTE+6xoWYtbks2juyrN+y8MDuzM34pme0IwF3JrUfK621C1JqRflPv2Aha65AR1huwsMU2MYwp9FbUAJYGti5gZU8dO0vzjb9fiz70LvsQ1jKgY1e05tw2yN5WNZ3DpFWJgVp5u4YlpxAbDTbhCsCNQYgwwQlV/p5evKY2DJwExjh0rze501ZXeo/af+2WpLN7taZ6mWSAzuRQNVQGTgkADCJOCE6bmezq7wFBo912y0FBq0NNgYgSk0ISN29MCgIexQApsdEtU/26TNmDshGX7LX2vaOLnQ96HjJAlCfJ8GsV/OFprXx+8jsz3YuRSJMF6WBC/JVPJowkHqZJboh7s43hC1U15ArGuWDAybAV8ArudRMXkqQL3hF70MVXksDYVv7oLXQW+H/xyeutb7vc+u121dxW1vU1uelsUewAyR8MuFzTn6ObfiZrdg9y8Ijw1qzq0FS5bIL3pVk9ji78NFkv7ri5tj3R1bB6bWO/ZX0IIKWdTsH34/M/tHXC8MH6ereU8HN98UOsq/oUWP3j0G8IBPR058wPAxRoWBBVa4MRgHor2A/qNfFzXbzhJVf5mGS2lPt0hrfVmTFZ7TceBVV2X3SKrS8PuZSiOu815cC7TiwKmV0iallVcHSK3o5b7sMIOXIJMSxhepmFtJiyftbbVRtNSx2eDgViMvUBUTit3PVAxxnW/FeHkQ5gRuMzLWq6lNxIKAL/otyJy1GGALC4W8MDwi1tY46T5oSkjW9tAte83s99AohfAHICiFCEFJINKQExGbL6RfH8Tm13NmBb/r0a5t4Ph33zUWR26+peoY/0Tdi2Haa1cYVAcuTIqVR8eCsBKeLZSo1ZANUlsVQ7h/3RYf9HPaqPdljkn8uj51op+JOlFG9YsXWNWt+1zcDHh1ItTAyZMwgl94hAl/E+QX93g+IyJOeS90ruuG9/7mnVtQBx9bYKMVGNj5Y6WkEENPVI2GsCGGoV4Wq30YMaLwliaUg1qwHkiN7w/ANgrw//kxpTAlbDgSUbo/N2pHFbiuxQBzRAEGeawBYMRkVpl84oo+mnhim6SnOXjIXMV+5spc/abFXM2GedhOv/OnBEdFqd2d2smfBlWkMm6HUohQmYaUDWnnUBAPAPekAXcqaHSqOtlJOjMF12sxicCpcl03bsAi+9NXAOdU1MYNzFGc/YrgmyT9CYJvEn4SnW+SzhdJ55ssMp8k/UYEnySbbXLxk6uAzdGH/vZ5xe+u9Sw9vKf1bnCsQ27dP6n0t97M2eFdKLndl46xZRu2eh6++NWwvHsHXZcVd88EzI53UJ2eqOqF34D07tfjCCJHNpCKQhL8/dSd7A61XEKn3rFdETylFvV8tW4kwXSU7rauPeLhN2lg7omnijoNfxS3hhOidJYTpV1fGRSAnNUueK8FGBjpABC96p3qw/BHMX0Ycb0kNryxEfMJtdHk5o4hRdhTzf+YPaXT+RjIntbitKcfvvxnTwn9yHwkVcZpngfNWh+T1aCcx1Ie7CmdpokHS+HKaSmsStyevrCdJV7wOiR4WdNOb8tnXR7Bgz2lbxLwgNKHL1wo5X0pQXtK96FGt6eunPb0g3aBn2jyawL6dOKnmK1FKafXaaIE3x3vvWJzrqZF8rAkyPjCtSSYoYV8MG/FbOVJyA1QzIbgwCNNPYIDjyxmQ3DgkcVsCA48spgNwYFHFrMhOPDIYjZ6hMaoWINWETnE6Ox5PFSsJfGmZGsDKrloPJIIUkVSyfScP0MnZmw6odMW8qCTIWw6Wbjr7u8THnwKzN21PXfzwHvUc35lIyTxMgWzNwqbYXPzFibAOwp06BLGKzUynFwI0nNzcdjSeRcRr6KLtbOOilYpFYpI6LHgxfwjn69+pVnC7T1+vL6TVS58pvr0oBcTnFgrqS26qGUqSABOfmxdX2ViPwWs1YJddCDxj1SuIb47iDBgliMvNZOmErLNEYM1t55YMPojMKBtRILUCSKrUImqvzw+RBZDcYDW+OVI2O+04HVL/HpnZULBq1QrXLlrPfHlUR+P22EgRqjguUGNHH8rc/KtUBNKJUkKjJdC2i0S3lKW8CJMvRS4hMXqCqIlE74ggF1U5RKFCHJBFXBEGpVMEqf9HSMm1t5DDNVkk3fLdBZQnrbq6OOfB798/iOXX97/kfTLQ00eczq9quluj+ZyFvav0xb2p/DmJm0FhnOTCN5c0k0ieHNJN4ngzSXdJII3l4yFYjpWiro3vpZoz7ih31YfrhFeIBY6PCb5wI0dY7zHdT/f227Y49sM5wqtPnp/jEbGy4NzHcamSRNt104nHTZYu/bD37natXf/XtLt2o8PXPg+vU2Y38wj5g2P9/s9xgTate//ztX8dt13E+g5vX79egO0aw8859r2+e/p4Uv3PVgR1WYRreOokdq1z+PUzmhT0I5B2rWXibiUp94S67VEEDdle1LmYpNo1x7PqZzupqAcgTHbtZ8NP38193QP750xj8pFDjxG7Utr7HbtfpzKa2Yc5Zlmu/b9Ntm1HD0Xe0/eu1b252ULarcqw7drd+XUnJXRNQdvKrF27W1kH6us8HAO2T575ZiOEZuo3BDGateOxRCs7dqBISTi1OFscer/Urt2elsMI7drj/jB1a69zg/DtGuv9CF0+aGZoYF7P/jH1V9VdiDv7drp5GY8tCAP+cHVgrz1j5Jq115hTE7VueMXhq3q1Lp5suuAXby3a6fbCB6wqsOJVYUf/1+1ax/BZsb+I+EvEgk/vZuQwUj4BT+5SPgPMm0nDyT8f3T09pxZq7Xf8hHOCbLV6VR68uKdNufZRsINk28/uDjLHzNtZEmQ8K98dTbrxo1GASs9nrXxWCluY3QS/qucqBw0rDXkXDvod/CHPxL+GNurv77d1zR0XO3Fu+ttc6W2rjcmCf8GTtWlG0d1Bifh7zhr0G+fq1f23ZA0/nmkzTVaVsXgJPyYlWFlUQdWxmAk/Dknr52WdBAF51Rv8O3ihXrUzJpxSPivcoJz8IcBSfjbHvt5YN8fM303fFrawzbLk7pMMx4J/wZOhMCcJuK2kWxxm9i7YaOfHa56r73tmnV56cvmVB4B7BBfglIBPDozZrNgwblFfopEnn8/wYUBEFcpE/vHghgOdrlWxujF5UDvsMj6tkzWgwJCXWv7QCB0GYZJeQDftfQw6SLAd8TP4h6sqpz/WuAqgQXyqy9W96iVnvNKtPSwXZMqvROoFNdF6t1FC6HohrGYIRSkvT3/k62LXToYu7k/9WuEjU9fqay/SoaOL+uuWSjwHl4xZOqNDY6bj8QIaSeksBsRJ6Tw6yVB+5vJ+f1n/TR2sKQdmXoESvCV5UqpPJqD2yaihdmC5IvbfLddrnhfk32hFXWskg9gjlWtpCSUMYJTGQOMowxGc2x9MhYewfFKDXBfkmi4d+rm2QEsWcHKIq6xsGmH6FilStpY2KyDepBKg/2CjlZvRl986hQWHrDo8a6g6Qebr6L6NfgBUZpkBaL/Zb6oJJTVlVNZPiYxc+Cj9IpWq+RvdMcnqvqpOWbQmEmarMC8+UG7Gt4emvGx4r7iLJWLu3TwJAw5POp5kcEL1VTcZetP/aJUwpJzRFtrWt3NPHFMIVq54vSJwOcd5xt32QsAWEgCcAMBADQtekWipCtjJ5mo2yzgqGWL9V57LHsNnjpSs5fmygx72BcCIOUCYF3ATzLQTP0fq8ehN+Y2WD1OrOAERz3OL4ITJVyPs2JzRM0vEx6HTRg1c+vqFqlrTKAeJwZCwprd7Ck4YfyigpkzZxqgHudG+qvN9o2yfCY4lWr23SZtqUnU40RyaifAFLRjkHqcdjWmnn5/VRi+c9cfp9p87nTRJOpxOnIq5xdTUI7AmPU4sbHXMtv4rwybvSVo0pkOYedNqh6nIafyhMZRnmnW4yzY5tF6RYP3fhtiDi0e/LVFXSPX4zhwas7G6Jor0XqcFbO7NT1lLwydt3PHsbZzVlwziXocLIZgrccBhpCIU0f9X6jHuS+uHzT0kUq8aFludvsPC6YauR5nHcSetR5nDjOkLZF6nK9pY05VUgWGZl7cePJ11bMi3utx6GtzHmpM1kLkWGtMllKR47Ee530V9YcAs6Vh2zovaFqu3pJk3utx6DaCB6zmcGI12bA219j1OKPZzNigA/JG8rB1op37wxX/POjxkpop6ZQIz076qyQJscwTpnqkL+r4ytUJ8PSYNpuT7I6fMhVKIGdef/gJ6JaRUW8XJUcFhO70dBmzofuI+qzvx8zkFBQyxp9lFDBh4QWPYiFGJf3ck46jUvs0euOk+mLBo0/HBQIHEfxHO/8ZU1/c8+Gn47ZRMgVQmEwaCOz6EPJxmFpxVY5hU6VDXpqvfdsLouUt7h/YdDLJl8aCgVZgRdy6I3QmsMJFlENWhDNgHL7ii8mDfki+CEweukYHpVi05AkiMs1XokXuQW8C9bFsqP8Yt2VVJQ8znx09HRdmJoSuLvT0pVXJI6/ziU366T2eTmwWcd5wacThHV0j49g0kjEzLfF50Cf/eYMc1AsnN+5F3RP1g8UzGmZExrq8xG8QqoHXx/tdJqphyIv1aotVKqSQjhGWBMZgf4eFwxpJf7VOMQj9iGS5EGX0QJlUexPq1Znbufh1XWlAAZiPIJg5PoiiPkiqnvkOQb8EIYLrOAT9EvxHp18KG3e7Y9SJZ15jz2xLtXgdfpVOvzSm2/KRNxN6BqQfzFjwKH1qR1JOHkYtMj0T/YMR9ExsmraG7AGEGpHasnrWPu3vrCZh+2JfJV0dWDGvONrinw4fcghBvVZAhTx3Qchz/p1RGk9aw/6OfdTgO8T3zzcY+b9jpibFs23kcARLFJuu7P3yZxsIiDSJKnTg2upynZbn2qcGr73qVNVG9uoBp8rMRfiTEFzHhKAklJbLqbRMwyqNNMFmISLcoMJbRmrnPaYbco6yBXu1fInW1/J4tUyFVd2Bj6AYTKSuloXL3DsNXxicGffcfMCi233pujIPTdRI+im0BBYCWrILfqon0115Fsr1VUR3xaXUWZxKHfGOwfXF2UCBGOwynJ8FCR6dJoVzoJtBS8ds04Fd5XuIp3oQdumgN6LTvVcTbIgTLn08m0vvdP9OuLnivP+y3ftLj9xRczy1VjYqVh6jEcK+slS3Dv0VW09r5/CYGLgUkSgURPtVOWycB8m7PZAA0xsOsr0CIl7SdVsKjIyNb0hiCsa2VGOxIP5NcevIbLHuu2BuquELI7+oj539i0W3nwZNm7p3kP3xLxH0Bi/Ir1hoSEhvul7MOQaX8OsgVge9EHMsFUjnvdGvagzXoBIbFUhcHNzePRvWzS54T/8V0oa/f/vB2FKO0Q2YYs4n+M1Hc35zMEpMYDsZG4F65NisIc8QF/VUK8WudK+rs0SzA2b83N4qtCd1XMK7DQV/d074/YwDP6NCrLiNuvEZAaudwTdB8/3QOu4W0VIUdzffvYApYDiYvu7YhCAczAQ2B6M3n4+bVnslz+fTzbVzo+TDu72X/zuyU5W3v4YU4PO5+u3aX1/dBolzpQ1stgdaPSrA5zMi59q8pet+C5qhqTjpRdNXgwrw+UQ3EvR58uNv76VXr8q39el5pQCfz6zsRvVnJFwKmn82oPyhe/VeF+DzQXT+JbkNEZ1/yUa9iM6/FoToztFqTe26Tg0Z9Xn9v06nHx4BIktCZJFSdvkH+fPQrNV95Vk7FRANK0J0r80hp/ZlbnqlldcERA180gKIrAnRlYHPlvzdNU+UNiio177rrueByIYQ3do8+3TjZReC1vv/Imj+19U7QGRLiLJTfs7zCpf7jGrc/MzP2QHJQFSeEAVEtJJ6nleL9kufZk2+3nENENkRopQmFoqkO9MCctt/u5+eI58JRBUIUaut0iv/vN0Qkno3fsHdY2dcgKgiIZr8+pzrE1m5kIxTZ/7O63fDFojsCdHZDtsvfs2tEpbevMXF+Jd9fwGiSiS8dUeUWnnsUtD+M/PqvN/2+CgQVSZE5V7efdgia6Boe9Ubmz9da9YdiKoIWGmgHAjRxLUPX26OnBy4qdeR3jekLn2BqCoh8pt5dcCvd2cHjndbluK8oN0pIHIkRGPT1EdX3+3oPfFSQF/VkRN7gMiJEHlM3hwTljHAd7V76Q29etS/BkTVCJF4y/Zz7xVPQibUbGsjmtQVMkQ5E6LISmbrzv99STTjTIMzN1vWewpE1QlRZdfWnhrlKZ9lTaZV2fntCRwbLoToy9JhHV/3/uaTtvOxcIdZzgogciVEbXLkkXcbDPWdIh1RZV5rh4NAVIMQ2ZRuIN5Ufqjf+CnxNw8uqAQ/S0iIPru2PTNrZl2/NdNtAr7suBDBIKqqKWAhqrJaVvdct65NvJb30Uyfty9XyQNR1UQ2E1UlZvemhcdOiRdvyBt6pvowKmm8uXhIgkIpRZy+YAuA6xF3CMnzslibOnUcCIiBESI6AOp43IJuoJCvxlxVEwJdFxJuYsGrUicEgk+ozGEECI9vlmJkDjkbaOafRsVfBPndSr31V8/v5iFa+7rzoE6Lxpfl8TAqzwlC2ODnBQQIWQ/tCFalD0oxEoRcIVmLSBkYGljdk1QGWxwp1XLs+Al4P7kCWzqR40QoUcET18o4eTS6g53jjsOTV+eFjzsafn/AYgm1Daml9nOY5eP5Ir7jBgjXTU64LpYySl1G4Ucd9Yzk3ImJJs1XlyZWohHGSQbKhCAA0bawZq8zb3M/7nXFxR9DN7w4nbvQTEhtZmcRRTwWUWlISvjWXgV3YrD7Iov/PbDBzqg21xO4muShKLLgT0YHEgnW1BUTf7V/IQqbVerhuG2+jagnJIt0BIsHsG5yggWGOuF/JrH5n/+YG4rE3ECP0A3G3CAqfYKDuaF2ab18pY7MDc7vU7/3dT8jyl19pvuUQxZuPDpLugXigbnBGyLEetC9VWm9nGVRmRsEtVO2zR1xy2vloUajs/qsuGJ05gZ3TlTAuDHRKtPCNpj4Y26o8G/390dvvA/fkD3PXfChMzXlb0zmBidO1dkZR3UGZ26o2jvbvUlCtveC2+bXmvemHe81PHMDZmVYj94DK2Mw5oYLmQdyZvZvFZ7942HwjdVCKq+OcZgb3DnBqU0Dp7DzcsViboj3+Oz3IO1w+NK2u75WGVPqg4kwNzhxIgTmNBG3TWaL204tkoR8b1PVf3Smq/nT2in7qdFoCIjRhFG+IbpvHPhom+HCbgJkJAxWiDHgVxB3JQsBtioNzlEAjC0xXmHsRYRuw3UKnOj7l+j3ZkbRpESPZWAryxN4W1xGqOQFNFDVUr9tBewFCmCA/Hb/OvRvlbanY3hG5IIt47+Z9aVlk+DdiAMK2OXCIiW6/eOh520LCFACahAKG4kFjSz1qjt2xAAix4WbVK4CwxfI0c520vvtLx98O+a1tZK8csOt/lQeHktf8mbmtMwXFQZYbv3rM/7q29M3516Zia1PHTnIA2A1OQEDI8ooQRTuM+DfNBew/TDpsCw4dGmN6ZLDqtq9eLDF5VTbgHVju7R4veNRtj1GZAKUIR6SoJJpy56xoNbbJ8rttwbFC4Bpqj21MfX0vYF/heaedndrPNDWhwfV2nKqtoyRVIuKj2f8qleoZRNSwJ4jlTnP922SxfM2/kskG+6/CdvpQ0/4IQ5V4Vd5byvtQdikHFRRSY4HNsUIxziFzTH6XK16a3CrrV7ZPXo7Tum6j7prXRkWv2rg1ic8ySyDtfUyPTrGNxEp4wDkeAku9hhp/mOwxWF+o3hYVKqTR6Sn7Qp/YYY6kH+lx6bCwjIA9Mc+iAbyfcHgn1qG9eiOjjtu3iEFQIHbDbANEow2lPFCN7L5OUAPJ0CC/8NtmhruRiuTZCzsJVVdsn980TwVT1Ze+3xv6ntq7qRcV6zogGljiOuF2RgX/1t2AzZuFK2Of/5C2nD6Uh52JtIhzGY+iJbp6Q0wmIu7JVy3gPq1u1vRyni1LDoRGx5YTRQSy6bvDl6d8mKb/+byghrdL7a8Tj2Rkf9c5vKXIiwJNhgMtp4o2G64Y7ARJmEqm0k4U77226YtlaHj37wM9rgyUkz5braRMqyGURiWqFAgbAFbwOxO3gcLYbExK48fLFHIpfggT5JrYoVKsExR6W4J6Fl6jvdkaIEq1iNK7leGLfmWAdANKfbcdwjE6vDgrqtMjRViY4ihB6EkooMo08Vv7tXxif4Lp7lQw2fsQczwGb9c2HSmVyXwEDL0hciNRYUMsBlV1zKs4bOOyDlrkVNRhhocWkj43k5ZmetSb2PArtmv+lf+Ue536jF3YoCgUzpUKe8F0W7YSOJAy6eMQQMs8kUtOicnyAriULtAzY5HMAhpZQoP+DdqD/+APjDI7S9T0Uri4E9xDbcD5iChYsEjwKI6GVc1Ust0x1ScSVJMvfb1IGbBK2/Ugcwm2CzQayPMMQzDFsYKeP0uMfSlaFrOg5aTWr9t4jOzwu0/v3+scoGWmIDfCpGYwC6XBBQhnFD4aB1VGpujMpmef3RryU/74xJo+Ve7DHHgH9nyz1kL+TSTh5xeG8cP5DFznLvJJ+/1Suv48dFjc/FHHiCfbsYF+QQzEvLpvFVl2pGQG6AqE1FESVZlIoooyapMRBElWZWJKKIkqzIRRZRkVSaiiJKsykQUUZJVmRP2hdS2m9TYb9a8P5tFfN61lFHyBgcvcvTRyy95KHmbwab/WsFH3W9ttvJbYybtd+1JBar+K+Gb/SKFUg3DRSyBwwzKy7HMtlp+ctjuOBb2B8YfgC0p4TqTKEPQLb1PLzkt9BUZ4KD+SA9qmUUwP3ADeWIErMhT9EvzO+PZNoxJQwlVA/AAv7DXBR0N6uyQMGNW2NTnDTo0GdvudHFybSW7jX0RYLWgNOF2XzHICcGyejIz4c+FVRVtSURBrJAopR9xm7Q3933o9tLzmle7PvoMj2URo7qEvT+ZOcQvSzkpYKJP8mEeUErhRElRmrn5wBWnNY4g5xU22TDMyCkHl3pk7Rl7quSnfYbT/E19Q3a7qa+dy2mrMWI+17MxMYiQCTl4eHq6nvnchtrsIYQougDfJ/RAFNuEBGfD2+kHwz6V8c8t23jBtcGjPU0gawlBGscJUoqeed26vnL8m2u3qvKHDJZYZDdQn7Lrz1Ek5AVkZj3zCvL7m1aLRz6XmUXUSkoCnUGc6PTX5nRnsjnGZ13DQsyafBbNXXnWb3l4YHfmRjzTE5qxgFuTms/VlrolKfWi3KcfsNA1N6AjbHeBYXoKYTuL2oASwCYQ+rk63dK0M2/ufPK43MqwMd9/j2o65MBO6mYnlo9lcesUYWFWnG7iimnFBcBOP4ZgRaDGGGSAuK2fryuPgSUDM40dqqeJj0KqpvsHjG36JmX8+aFUMndLMbgXDVQBkYFDAgjTVU6YTuvp7ApPodFzzUZLoUFLg40RmEITMmJHDwwawg7NYrNDovpnm7QZcyckw2/5a00bJxf6PnScJEGI79Mg9svZQvP6+H1ktgc7lyIRxsuS4CWZSh5NOEidzBL9cBfHG6J2yguIdc2SgWFjaQFwPY+KyVMB6k/M9TJU5bE0FL65C14H+S2DSk8/MeXn5sDxW2vtfBub3ZAaImEPYIZI+OXC5hz9nFtxs1sAHnMIjw1qzq0FS5bv5npVk9ji78NFkr5pYJ4wq461z4bNl46UnnjiPjX7h9/PzP4R1wvD59GJZg0iKk3y2pOS5Wvxb/Pi7ptAfN6ac+EDho8xKgwssMKNwTgQ7QX0H/26qNl2lqj6yzRcStvbvezEY3M2+a8JX5QzqMW3YKrS8PuZSiOu815cC7Ryh1Mrf5iUVl4dILWil/uywwxegkxKGF90z4Un2YLNHZb7TMs9NbVllXBXqmJCsfuZiiGu860YLw/CnMBtRsZ6NbWJWPDJXL8FmbMWA2xhoZAXhsfSFPHe1um/BE590b3WsLz5UhqlEP4ABKUQISgJRJ6YcyFy05z067PZ/HrOrOB3Pdq1DRz/7rvG4sjNt1Qd45+oezFMe+0Kg+rAhUmx8uhYEFbCs4UStRqyQWqrYgj3r9vig35OG/W+zDGJX9cjA77TnKgTZVS/eIFVXRbTr+uZAa9OhBo4eRJG8AuPMOFvgvzilhvUURPeNfDeExfXrKa8L9W1mbMFNlqBgZ0/zO5uhxh6omo0hA0xDPWyWO3DiBGFtzShHNSC9UBqfH8AtlGA/8+PKYUpYcORiNL9uVE7qsB1LQaYIwowyGOdpZ3Mc0w+cUUfTTyxTdLTHDxkriaac2WuUrWYz2XDPGyn3/lTgqOi1O5O7eRPgypSGbdDKUSoTEPKhrRzKIgHgHvSgDsVNDpVnewknZmC67WYROBUua4bN2CRfRF66KmojRuYo8i1OMHkmyT9CYJvEn4SnW+SzhdJ55ssMp8k/UYEnySbbXLxk6uAzdGH/rbzhEO5t44fFi2MfbvnaJkNVaj0t97M2eFdKLndK7XrCLPQAeFL/zX/Hn7s4Yni7pmA2XEeqtMTVb3wG5AetTiBIHJkA6koJMG3Qo7L+s0KDZhpeTqysWvrdUUgCaajlPz7vTSbiqsCDwz63LhnFVlxazghSrmcKOVYnKBTAHJWu+C9FmBgpANA9Kp3qg/DH8X0YcT1ktjwxkbMJ9RGk5s7hhRhT+f9j9lTOp2PgeypjNOehv9nT0n9TNm1Prhp8399lk+vYKb+8/5NHuwpnaaJB0sRzWkpfi9xe5oyo2fH15PcQ5b7388dsWpPXR7sKX2TgAeUwjlREpekPaX7UKPb02hOexqutafzTX5NQJ9O/BSztSjl9DpNlOC7471XbM7VtOKSRcAlQR0LriVBdS3k6bwVs5UnITdAMRuCA4809QgOPLKYDcGBRxazITjwyGI2BAceWcyG4MAji9noERqjYg1aRXQOl8aex0PF2gLelGxtQCUXjUcSQapIKpme82foxIxNJ3TaQh50spBNJwt33f19woNPgbm7tuduHniPes6vbIQkXqZg9kZhM2xu3sIEeEeBDl3CeKVGhpMLQXpuLg5bOu8i4lV0sXbWUdEqpUIRCT0WvJh/5PPVrzRL2K6J08lqE2t6zagVK3hcLZGVd9mii1qmggTg5MfW9VUm9lPAWi3YRQcS/0jlGuK7gwgDZjnyUjNpKiHbHDE2peuJBbPLAQPaRiRInSCyCpWo+svjQ2QxFAdojV+OhP1OC163xK93ViYUvEq1wuUD64ltZ5U7YYeBGKGC5wY1cvytzMm3Qk0olSQpMF4KabdIeEtZwosw9VLgEharK4iWTPiCAHZRlUsUIsgFVcARaVQySZz2d4yYWHsPMVQXmbxbprOA8rRVRx//PPjlPeW4/PLWcqRfXmzymNPpVU13e3QzZ2F/lrawfwlvbtJWYDg3ieDNJd0kgjeXdJMI3lzSTSJ4c8lYKPes55k5a8+IN/8xduh1Qae6BWKhRX9uW+D9pHXgzPLxzVcHDx/BcK7Q6iMHEp2MlwfnupRNkybarp1OOmywdu3bLbnatY9iUsnw3K79YfcKpUunDg9NT26SNndn744m0K59qyVX89ss4xBmUHtOr1y50gDt2vu4142KmXxavHDCuG6DXcTzTaJd+zJO7cw1Be0YpF37pePV1y3UTPaa9D3GLPKNxUOTaNc+hVM5o0xBOQJjtmtfaXFLsWdnrtdW2Y3DdxQV7EyqXXsSp/LiTIgoyOjt2h1udheWHXRbNPdOmdOHgkY7G7ldezSn5n43uubgTSXWrl0o+71Cw33ufgvbJ5itKX//kkm0a8diCNZ27aO0ZE/L2OLU/6V27fS2GEZu1/7Nkqtd+yNmSFsi7dqVvhd6Tl70h++UWjHB/1qu2cF7u3Y6uRkPLci/WHK1IH+lH22iHu3a/6rYvPTyPlt9t7RJL9WghWx88acwDSu6jeABq0ecWP1tWJtr7HbtGWxm7D8S/iKR8NO7CRmMhL+zFRcJ/y9WJUHC3044st5h4WrR3EP3vu8w63Sbx9PmPNtIuGESacXFWR5gZRAS/n+O3mw7IOdb+Jqy3xKPHOkdaHQS/o6cqIBxYzJrB/0O/vBHwh90+sytFK9zXgfmWjh71Pxy1mRI+Btyqk5oHNUZnIS/Wrslitx97wMnNeu1b9D1ax9omU5Dk/BjVoaVRR1YGYOR8A9RLP/z8+OD4St+RluNCo+eaAIk/B05wfnFyoAk/H836WG57ZcfQYsulsv4ciiZuvQxHgl/Q06EwJwm4rblbHGb2Ltho58drnqvve2adXnpy+ZUHgHsEF+CUgE8OjNms2DBuUV+ikSefz/BhQEQVykT+8eCGA52uVbG6MXlQO+wyPq2TNaDAkJda/tAILQP4psH8F1LD5MuAnxnM8MkPQ9WVc5/LXCVwAJdLNR77sdLzSoHrztyq3PKaQtao7Oi9O6ihVB0w1jMEArS3u6xYutilw7G7mb9QigbfPpKZf1VMnR8KR3uofr2tabPjiVHniVuzI2nnZDCbkSckMKvlwTt7xrO77/E6MGSdmTqESjBV5YrpfJoDm6bES611m28IvCbFH3QYWnn4XWoY5V8AHOsaiUloYzZnMqYZBrhj0CfjIVHcLxSA9yXJBrunbp5dgBLVrCyiGssbNohOlapkjYWNuugHqTSYL+go9XRH0cIVsTMC14+MN1vzvI+y6h+DX5AlCZZgeh/mS8qCWWN5FRWoknMHPgovaLVKvkb3fGJqn5qjhnkPG3GxGEOfwfumTdoyezK45KKs1Qu7tLBkzDk8KjnRQYvVFPx+mw9o1TCknNEW9vVEQkNXR39U5ft8fdtVuGUcZe9AIDlJAA3EABA06JXJEq6MnaSiWMv76anSc0CZv1R+17v6XeTaa7MsId9IQDjuQDoOkQbaK74H6vHoTfmNlg9TntrrnocC+uSrsf560Vn8aDu30Nmyzb0iu1VX2UC9Thtrbmym57WJlBUMHnyZAPU41hN3TPRp/1Nn2Xj6yf+XUNyziTqcepxaqe6KWjHIPU4+weI43rf7xo4qc87Uc0P6jiTqMex51SOhSkoR2DMepylsVGua2olhKRNnXy2gZ3rR5Oqx/lhxaW8d0YPdk2oHifvymrPFO9pPpsne8cPOu7UyMj1OE85NXfX6Jor0Xqcnx/3+zeo18p7tn3r5MnSq5tMoh4HiyFY63GAISTi1JX/F+pxbEo3EG8qP9Rv/JT4mwcXVDJ2Pc4Ia656nFhmSFsi9TijRx6K/fgyRbRnllfTsXb13/Bej0Nfm/NQYzLMmqvGRGVdUvU4Fbe/UZr9IvNZuPp8W7t2UaN4r8eh2wgesIrlxKq3YUMdY9fjrGIzY4MOyBvJw9aJdu4PV/zzoMdLaqakUyI8O+mvkiTEMk+Y6pG+qOMrVyfA02PabE6yO37KVCiBnHn94ScgR95n17ZnZs2s67dmuk3Alx0XIljfj5nJKShkjD/LKGDCwgsexUKMSvq5Jx1HpfZp9MZJ9cUCX0jM5SCC/2jnP+X1xZdF5idso2QKoDCZNBDY9SHk4zC14qpczaZKh7w0X/u2F0TLW9w/sOlkki+NBQOtwIq4dUfoTGCFiyiHrAhnwDh8xReTB/2QfBGYPHSNDkqxaMkTRGTTLIgWuQe9CdQz2VD/MW7LqkoeZj47ejouzEwIXV3o6Uurkkde5xOb9NN7PJ3YLOK84dLIHTO6RtawaSRjZlri86BP/vMGOagXTm7ci7on6geLZzTMiIx1eYnfIFQDr4/3u0xUw5AX69UWq1RIIR0jLAmMwf4OC4c1kv5qnWIQ+hHJciHK6IEyqfYm1Kszt3Px67rSgAIw/ctC2nQfRFEfJFWvXxZBvwQhgus4BP0S/EenXwobd7tj1IlnXmPPbEu1eB1+lU6/NKbb8pE3E3oGpB/MWPAofWpHUk4eRi0yPRP9gxH0TGyatobsAYQa0eSDX54Orf9qk3ju24PnvnTZs7M42uKfDh9yCEG9VkCFPHdByNOurFEaT1rD/o591OA7xPfPNxj5v2OmJsWzbeRwBEsUm67s/fJnGwiINIkqdOB6sqF40Yr7FUNz3vyhGNg6619OlZmL8CchuI4JQUkorSmn0uobVmmkCTYLEeEGFd4yUjvvMd2Qc5Qt2KvlS7S+lserZSqs6g58BMVgInWV9PrzizFrPoRN+aVOZs7iEQK6rsxDEzWSfgotgYWAluyCn+rJdFeehXJ9FdFdcSnVhVOplcoyuL44GygQg12G87Oga6ZpNCmcA90MWjpmmw7sKt9DPNWDsEsHvRGd7r2aYEOccOlr2Vx6p/t3ws0V5/2X7d5feuSOmtTzIFZRsfIYjRD2laW6deiv2HpaO4fHxMCliEShINqvymHjPEje7YEEmN5wkO0VEPGSrttSYGQ00hJTMLalGosF1mbFrSOzxbrvgrmphi+M/KLBnnsXZC4+EDauU26dcV3GUtmGzFi+YqEhIb3pejHnGFzCN4BYHfRCzLFUIK1hpl/VGK5BJTYqkLjkeDa628D1rM/4ShtarMv7YsfYUo7RDZhizif4zatwfnMwSkxgOxkbgXrk2KwhzxAX9dTB7b2HVJooC5jVXDj4zrb2x6jjEt5tKPhLccL/0bD9vUn4GRVixW3Ujc8IWO0MvglSI/SOu0W0FMXdzXcvYAoYDqavOzYhCAeTxeZg9ObzcdNqr+T5fERpW7t7uX0P2lk3YFS38+XUBfh83F/UFSSnrQ1becHub808h6wCfD4t67UfEbf8gNfWi86PD66tX7YAn8+p0JQpWY8qBs169nKFZEfE3wX4fFadW/HYecSM4LXbm465X+l4ywJ8PojOvyS3IaLzL9moF9H514IQNZtfOXD91h+iyS4/DnndS10FRJaEaL65X2JrH3ngNN85tU9/PD8biKwIkdW01WERfbxD54/dez9i5GQvILImRHlDwpYlflwUutMuvVf7lx8g+6INIZqxZsWBlHBb3/1TJyf0694sEIhsCVHbMtf9Kn54Hjyp7LkLmc36ngCi8uQDV9+/ODH+Zti61VVav5S2sgQiO0IU2/j3Lu6qpkELrpV+G9djwlAgqkCIGiRYVekj3O+fLf5uMeJO/EQgqkiIVE29IgTul/33lz7nP8LnbhoQ2ROiVt9GjfItJw4evSzE68volvOBqBIherJOYStN6BGaMenTObN/u74DosqEKOboE/M9A7/4jk24/e5Gr5n/AFEVASsNlAMhutKj4Xeb13O8clatiJ639uFWIKpKiF4/O3ok2Gpk8Px+Povtms6GRIqOhGjYjqmxIbad/Dcfjpd2ayu1ACInQrTNseyjurcTQ+dnX6s+4uL8Q0BUjRBZj/ir88AF14M316+3p7nfJBUQORMih4dPGpyZ+TJ8ttqqYqRXhRlAVJ0QTehuETIu+Vfx3LRBr+NHfDYDIhdCVCvK/dSep0N8lvX6sGu2Y2sociVEv4mm/T7M7c/QbUOFFSrkOi4AohqEKKCBZs69IdV85gy81Dy7UvITIBKSk2j3gaNXMoeFZre66hPX1vEMg6iqpoCFqCr2tXJvi2pnw5fKJtfdMKH2KYTZ0Jeoah2biaoSs3vTwmOnxIs35A09U31YBnXpKh6SoFBKEacv2ALgesQdQvK8LNamTh0HAmJghIgOgDoet6AbKOSrMVfVhEDXhYSbWHDHBtIGozKHESA8PmWjXwPN/NOo+Iugm9Xb3Jt045cIv8WjfvnY5NR9KhV98Q6j8pwghA1+btmw1UM7glXpFRu9YuIWkTIwNLC6J6kMtjhSquXY8RPwfnIFtnQix4lQooInrpVx8mgkir2fvNowPlQYuKjOkjcdohIeUcvHtZ/DLB/PF/EdN0C4TnHCdcDGJCI55lFHPSM5d2KiSfPVpYmVaIRxkoEyIQhAtC2s2evMra5sPzzX77woPfb1pje/eFelVRoSj0VUGpISvrVXwZ0Y7L7I4n8PbLAzqs31BK4meSiKLPiT0YFEgrU4rNqAfS8X+85dYvng5K9bqTyYRTqCxQNYpzjBAkOd8D/r2fzPf8wNRWJuoEfoBmNuaGbLxdxgb1sSzA2OFheXHT8WF7Zs8eaab5cebM6js6RbIB6YGzxtuQ6617M1CHPDUvPLa8eddBDlZte7W7mxZUujMzdU50QFjBsTrTItbIOJP+aGC8E2gS2/xgetrbQzdeW4KT1MhrnBglN1P0w1nOGZucFq+Orupy3mhmf8OPplyR0Pao84wzM3YFaG9eg9sDIGY25o6Tw79cX3r+L5cyXm/2aN+mkCzA3VOcGxtzUgc8Oi38rnjVjW0H+JY+be2pHrnpsIc4MFJ0I/tHHbBra47dQiScj3NlX9R2e6mj+tnbKfGo2GgBhNGOUbovvGgY+2GS7sJkBGwmCFGAN+BXFXshBgq9LgHAXA2BLjFcZeROg2XKfAib5/iX5vZhRNSvRYBtarTLTFZYRKXkAD5Srrt62AvUABDNBF8XO2/n1HNtJ/2yKn3PYDYl/TsknwbsQBBexyoZESzf7x0PO2TmWi+ooxCIWNxIJqlfWqO3bEACLHhZtUrgLDF8jRzvZI1O6seqd+C1mR2GNiVsqjH9Rp6UvezJyW+aLCAHt84m6dmgkzwyY/Ej7b3Wl7Qx4Aq8AJGBhRRgmicJ8B/6a5gO2HSYdlwaFLa0yXHFZ17PN3FyuM8w/dV6XLq8wVW3rYY0QmQBniIQkqmbbsGQtqvX2i3H5rULwAmKbafqrkOt9nvA/Y+myS0x2VQwgPqv1WiUu1byqZTnw841e9Qi2bkAL2HE1ZtsLCfpLXbK/t4xYP+3Pph930hB/iUBV+lfe20h6ETcpBFZXkeGBTjHCM2WyO0edq1VuDW231yu7R23FK133UQofKsPhVA7c+4UlmGaytl+nRMb6JSBkHIMdLcLHHSPMfgy0O8xvFw6JSnTwiPW1X+Asz1IH8Kz02FSaVB6A/9kE0kO8LBn9K+eLWp3iHFAAFbjfANkgw2lDGC93I5ucAPZwACf4Pt2lquButTJKxsJf0W+95uNLY3T454w7NDz9eg9qWuFxXrOiAaWOI64XZmOEhf55IO+cVMHnwxuBmgtu7ediZmABhNvNBtExPb4DBXNwt4boF1K/d3YpWxqtl0YnY8MBqopBY7v5rxR8+Iz97TfW6+OzyhjHVqCcy8p/LXP5ShCXBBoPB1hMF2w13DDbCJGxkMwlnytd+27SlMnT8m5fBHldGiinfzTZShtUwCsMSFQqELWALmN3J+2AhLDZm5fGDJQq5FB/kSXJNrFAJlikq3S0BPUvP8Z4MLVDFekTJncqzJd8yALrtij33HQKxOjy46ypTY4XYGGJIAOqOfD/xrLif35J/J1pMjO1DK8bCHsQMn/HLhU1nelUCDyFDOERuLCpkgM2oxOVZw2cdkXPWIqeiDDU4tNCNXOoPnRfmOyhw9bNqE74oF/WhHnMnBgg6pUOV8l4Q7YaNJA60mpY3ShW7RefkBFlBHGoXqNnxCAYhrUzhAf9G7eEf0AcGuf1lKlpJHPwpruF2wBwkVCx4BFhUJ+OqRmqZ7piKM0mKqde+HsQseOWNOpDZBJsFem2EOYZh2MJYAa/fJYa+FAlF/7yxrr0vXfJa16TZpohvGedpiQn4rRCJCexySUDRjhOKplpHtYnNUZlMzz+6teSn/XEJtPyzL8/V8s9KC3mOyUNOr43jB/Jv8itPrOp18l37SDk/QDj8IA+Qj7DjgnywHQn5Zt6qMu1IyA1QlYkooiSrMhFFlGRVJqKIkqzKRBRRklWZiCJKsioTUURJVmUiiijJqsx5x7Nd6is+++1opcg2z8nZxCh5g4MXnV2hlV/yUPK2hU3/tYKPut/abOW3xkza79qTClT9V8I3+0UKpRqGi1gChxmUl2OZbbX85LDdcSzsD4w/AFtSwnUmUYagW3qfXnJa6CsywEH9kR7UMpNhfuAG8sQIWJEP0C/N74xn2zAmDSVUDcAD/MJeFzRmwbWv08zTRFll/jr5qsmaCcXJtZXsNvZFgNVEW8LtvmKQE4JldTIz4c+FVRVtSURBrNCpjHt2nhMDv3mNae2cff3hhXk8lkWM6hL2/mTmEL8s5aSAiT7Jh3lAaQAnSj1smZsPXHFa4whyXmGTDcOMnHJwqUfWnrGnSoJO3fqrY4uH4XtG/rPufmaVf4yYz/VsTAwiZEIOHp4eoWc+t6E2ewghii7A9wk9EMU2IcHJrhtR5xfX3SFpE9WZqjEZShPIWkKQNJwgDdAzr1vXV45/c+1WVf6QwRKL7Aaq5fM0q382/ek3La3h0RZVd7emZhHJ5zKziFpJSaDTlxOdrrZkYLSVzTE+6xoWYtbks2juyrN+y8MDuzM34pme0IwF3JrUfK621C1JqRflPv2Aha65AR1huwsM058QtrOoDSgBgO2Ifq5OtzTt1Jbnrden/eW3/dL6h5c++felbnZi+VgWt04RFmbF6SaumFZcAOz0dQhWBGqMQQaIc/r5uvIYWDIw09ihGjHo2uibVrf919kf7pTe3bUt1RKJwb1ooAqIDBwSQJiOcMK0W09nV3gKjZ5rNloKDVoabIzAFJqQETt6YNAQdmgbmx0S1T/bpM2YOyEZfstfa9o4udD3oeMkCUJ8nwaxX84WmtfH7yOzPdi5FIkwXpYEL8lU8mjCQepkluiHuzjeELVTXkCsa5YMDJtP9gDX86iYPBWgfsNeL0NVHktD4Zu74HWQ3/L68z436hweEpjdt/WxrxfyhlNDJOwBzBAJv1zYnKOfcytudgvA8wHCY4Oac2vBkuW5vV7VJLb4+3CRpGevT9tzZEp10UbnrLM/4kOoLEfE12Vm/4jrheEzcOsX+cVLdn5pNy8k5tmaC3nAJ48THzB8jFFhYIEVbgzGgWgvoP/o10XNtrNE1V+m4VLapwnN9zX/53f/1L4Od6Mq32pGVRp+P1NpxHXei2uBVs5zauWoSWnl1QFSK3q5LzvM4CXIpITxRTPhBxyy8XvrGj5v4IYDQ7MGlaMqJhS7n6kY4jrfivHyIMwJ3GZkrFdTm4gF/9jrtyBz1mKALSwU8sLwGFz6xtnRs277bvh1waGqX9p1o1EK4Q9AUAoRgpJA5AYnIqfsSb++nc2v58wKftejXdvA8e++ayyO3HxL1TH+iboXw7TXrjCoDlyYFCuPjgVhJTxbKFGrIRuktiqGcP867sLRzmmj3pc5JvHremTAM+2JOlFG9YsXWNWlM/26nhnw6kSogZMnYQS/8AgT/ibIL15mnNPEoHk/gkeVe7bCt3S76tTBxxbYaAUGdv4wu7sKYuiJqtEQNsQw1MtitQ8jRhTe0oRyUAvWA6nx/QHYRgH+Pz+mFKaEDUciSvfnRu2oAte1GGCOKMAgj3W6djLvMPnEFX008cQ2SU9z8JC5SrLnylwptZjvZMM8bKff+VOCo6LU7k7t5E+DKlIZt0MpRKhMQ8qGtHMoiAeAe9KAOxU0OlWd7CSdmYLrtZhE4FS5rhs3YJF9AJbMTkVt3MAcRVYlBN8k6U8QfJPwk+h8k3S+SDrfZJH5JOk3Ivgk2WyTi59cBWyOPvS33h5X87YMlfqPqvFgxsdtn59Q6W+9mbPDu1Byu4iGwTcGPDrrneuf+qjmpRZNirtnAmbHPqhOT1T1wm9AurXSCQSRIxtIRSEJdu+lHLm0bf3AjP1pq6bOrzmsCCTBdJTqZPVSr7l/WjxX2vJQ3X7DrHhAKYsTpWWVGBSAnNUueK8FGBjpABC96p3qw/BHMX0Ycb0kNryxEfMJtdHk5o4hRdjTXf9j9pRO52Mge9qZ0552/M+ekvrJej8mo/L1W2H79p7o5ZSkOsmDPaXTNPFgKSI5LUVAidtTl+jDreetveO3Wv7s36DfN7bgwZ7SNwl4QKkjJ0q/lKQ9pftQo9vTSE572lFrT3eb/JqAPp34KWZrUcrpdZoowXfHe6/YnKtpkTwsCSpV4loSWGshz+WtmK08CbkBitkQHHikqUdw4JHFbAgOPLKYDcGBRxazITjwyGI2BAceWcxGj9AYFWvQKiKHGJ09j4eKtT28KdnagEouGo8kglSRVDI958/QiRmbTui0hTzoZC+bThbuuvv7hAefAnN3bc/dPPAeNRouGyGJlymYvVHYDJubtzAB3lGgQ5cwXqmR4eRCkJ6bi8OWzruIeBVdrJ11VLRKqVBEQo8FL+Yf+Xz1K80Slu9yIUja5E149tcatVdPa1WRzRJadFHLVJAAnPzYur7KxH4KWKsFu+hA4h+pXEN8dxBhwCxHXmomTSVkmyPGpnQ9sSC1IjCgbUSC1Akiq1CJqr88PkQWQ3GA1vjlSNjvtOB1S/x6Z2VCwatUKzw9oJ747ciKJ+wwECNU8NygRo6/lTn5VqgJpZIkBcZLIe0WCW8pS3gRpl4KXMJidQXRkglfEMAuqnKJQgS5oAo4Io1KJonT/o4RE2vvIYbqPpN3y3QWUJ626ujjnwe/vK4il19eUZH0y/tNHnM6varpbo9mcBb2p2sL+w/w5iZtBYZzkwjeXNJNInhzSTeJ4M0l3SSCN5eMhTbvrd/gxNp5gdsuuFqrf6gaF4iFLh+5cbju9JchaUkR1+IOKA4xnCu0+siBRCfj5cG5HmTTpIm2a6eTDhusXfuqylzt2hOYVDI8t2u3c9wx55j8eejKy3+Mbp552BTata+ozNX8Nt04XCjUntOLFy82QLv2ybMHWgalxoUs9Iy8Mv6PU0km0a59Gqd2xpqCdgzSrv2Lol6Ufd0V4m0ql/sdnCKomXRjtWsfyqmcBFNQjsCY7dpnWeckaDZJAha++qt+ysfjVFpiY7drj+FUXk8jcUCZZLv2Iw5dUnu0nRWSHjx+u/uBxEwjt2uP5NRcgNE1B28qsXbtKdXMa6XWig+d5Wd7Ntl+MrWxubHatWMxBGu79gQt2dMhtjj1f6ldO70thpHbtT+rzNWu/Q9mSFsi7doFY/5st/b0Tf+dvef/VV0xaRPv7drp5GY8tCB/UpmrBfkd/WgT9WjX/mlZSo56W+XwTSPzJlb/q48N7+3a6TaCB6z+4MTqjGFtrrHbtR9mM2P/kfAXiYSf3k3IYCT8oipcJPy1q5QECX+3yS6aF+N+8duwdsDlw+e87vN42pxnGwk3TLyrcHGWt6piEBL+7EuP485erO43N/iQ3d5R6u1GJ+F350QFjBuTWTvod/CHPxL+cuOjtzmEXw3IObdqWHR/x54mQ8LvxKk6O+OozuAk/NcedcwNfh8aNG/QxczH/dN3GJmEH7MyrCzqwMoYjIT/kTR1xZUGft4TuyVEmNWtOt0ESPjdOcGpXcWAJPw7nlp0OHiwc8DWQ7uON6/950sToLOACDlxIgTmNBG3HWGL28TeDRv97HDVe+1t16zLS19SG+NYY4f4EpQK4NGZMZsFC84t8lMk8vz7CS4MgLhKmdg/FsRwsMu1MkYvLgd6h0XWt2WyHhQQ6lrbBwKhDRDfPIDvWnqYdBHgO5oZJul5sKpy/muBqwQW6KXTSKnPhu1r/LMtOo65W2kxtadtkXp30UIoumEsZggFaW/XVWHrYpcOxm6GfiGUDT59pbL+Khk6vtxwd2rOj7Nz/dc7BTb5u30mlUuxnC92I+KEFH69JGh/53F+/6lGD5a0I1OPQAm+slwplUdzcNs0/DTTIVtWwTerYURCu3VraGOVfABzrGolJaGM0ZzKGGIa4Y9An4yFR3C8UgPclyQa7p26eXYAS1awsohrLGzaITpWqZI2FjbroB6k0mC/oKPVh+0ddnUc0807883uTR3iKlK39CzhB0RpkhWI/pf5opJQVjynsqQmMXPgo/SKVqvkb3THJ6r6qTlm0PGZHmd6dz4aMGZT5S3dLc2eFmepXNylgydhyOFRz4sMXqim4vWL9YxSCUvOEW0lPpnuvfONW0CW75llgoNfxhp32QsAmEECcAMBADQtekWipCtjJ5loU/bHhr9TN/rldvnFtXXZ7qOMetgXApDIBUDX/tpA8+j/WD0OvTG3wepxGjlw1eN8ZEaWPNfj+LUMn/jcolPw+h6yfhdXnf/DBOpxGjhwZTdrOJhAUcHo0aMNUI8zvM3In3NnrgpettvnSoY476lJ1ONU4dSOtSloxyD1OIsc5z5XXF3qs31L7+9eiScqmUQ9TilO5Xw0TrxkQvU40ac77DwaUs8r2+ehTfXs0k9Nqh7n3ypcyrtv9GDXhOpxXHNXdX9+tZt/6pmv1bf7nqtj5HqcPzk1d8HomivRepwqbQ5sX64cEzjh2eoFLUtPmmAS9ThYDMFaj/NRG6ce+79QjxPQQDPn3pBqPnMGXmqeXSn5iZHrceIcuOpxujkYph6n4t3RMvX1U94rXw1xm77XfSnv9Tj0tTkPNSYDHbhqTCQOJVWPcy5tYTdPj82hG1+2enjuxrVzvNfj0G0ED1h148Qq1LBxqLHrcY6zmbFBB+SN5GHrRDv3hyv+edCDmq+y7pQIz076qyQJscwTpnqkL+r4ytUJ8PSYNpuT7I6fMhVKIGdef/gJaKqc3QeOXskcFprd6qpPXFvHM6zvx8zkFBQyxp9lFDBh4QWPYiFGJf3ck46jUvs0euOk+mJBM0jM5SCC/2jnP2Pri3c0tT9hGyVTAIXJpIHArg8hH4epFVflCTZVOuSl+dq3vSBa3uL+gU0nk3xpLBhoBVbErTtCZwIrXEQ5ZEU4A8bhK76YPOiH5IvA5KFrdFCKRUueICIbTrbIPehNoH6SDfUf47asquRh5rOjp+PCzITQ1YWevrQqeeR1PrFJP73H04nNIs4bLo2ct6Nr5BSbRjJmpiU+D/rkP2+Qg3rh5Ma9qHuifrB4RsOMyFiXl/gNQjXw+ni/y0Q1DHmxXm2xSoUU0jHCksAY7O+wcFgj6a/WKQahH5EsF6KMHiiTam9CvTpzOxe/risNKACzZQVIm+6DKOqDpOoOFRD0SxAiuI5D0C/Bf3T6pbBxtztGnXjmNfbMtlSL1+FX6fRLY7otH3kzoWdA+sGMBY/Sp3Yk5eRh1CLTM9E/GEHPxKZpa8geQKgR3SDgF9cty0vl+c9pmzlgzYTjLYqjLf7p8CGHENRrBVTIcxeEPA0rGKXxpDXs79hHDb5DfP98g5H/O2ZqUjzbRg5HsESx6creL3+2gYBIk6hCB67mS4Q/3/1+WrQs5tahRFf7DE6VmYvwJyG4jglBSShNyKk0B8MqjTTBZiEi3KDCW0Zq5z2mG3KOsgV7tXyJ1tfyeLVMhVXdgY+gGEykrm4OGXpmtjxHvNVm44/h//Ryo+vKPDRRI+mn0BJYCGjJLvipnkx35Vko11cR3RWXUm04lVq6AoPri7OBAjHYZTg/CxI8Ok0K50A3g5aO2aYDu8r3EE/1IOzSQW9Ep3uvJtgQJ1z6aTaX3un+nXBzxXn/Zbv3lx65o+Z4aq1sVKw8RiOEfWWpbh36K7ae1s7hMTFwKSJRKIj2q3LYOA+Sd3sgAaY3HGR7BUS8pOu2FBgZ1bTEFIxtqcZiwZdit6i2xbrvgrmphi+M/KKDlrx/8mfcr+IZ/1Tu1D97C5U5xYzlKxYaEtKbrhdzjsElvCPE6qAXYo6lAml5O/2qxnANKrFRgcSlXd8qZeznx4dtiC33rKn12fOMLeUY3YAp5nyC39yM85t/MWyDaZbtZGwE6pFjs4Y8Q1zUU/vXVa6mGG/lN6HsnX+fK7pS96AwliJDwf+qPBf8j4wDP6NCrLiNuvEZAaudwTdBaoTecbeIlqK4u/nuBUwBw8H0dccmBOFgzrA5GL35fNy02it5Pp99r1RmbYZdDNiWNzl86Lw6wgJ8PvbdLLw7HdsSuLzCfIexaxT3C/D5HEnaePN0mwuBGfIbz9KjA5sW4PM5cn/AzF6LVMG7F763rDW0+e0CfD4f7q1ZtVM1yGtukG1Mlb72xwvw+SA6/5LchojOv2SjXkTnXwtCNN6yddDuES5hGaP2p9xv/8QaiCwJ0Yvdf6Yk+P4RtHVKyC53txajgciKEN2YNS9z56tIr4WrVszvOazlr0BkTYgs6tzrduRaj+Adw2ZpElN2iYDIhhC1G2XTWLr3N9/UC2dkDTY92ANEtoTocamINd8iHwdtq3tt/qAtlb2BqDyJxq+WXQaED/Za+KNn18i/tswBIjtC5H60q8PH8Vd8lt++1nXmbok/EFUgRKWGmYeWFgp8l+bVyXs049gKIKpIiEq39o85+o+n174/qtmOHdp4PBDZE6Idw2zaZJ2/673taPiKpQ+b9wWiSoRolEfYvsjfvgVmp95+17nCnllAVJkQJQVVl5facTz4wLWuj+0+/WUDRFUErDRQDoRo26Y/GwtU4IGPdzpPfhpzHYiqEqIBQ5+VTn6TFzj97rpPQ1XPdgGRIyEanej0+8KnYwM2lorWZH5O9gQiJ0I0Y8wRm07vr4YvvbSwzPT6jYYDUTVC5Lv9nMDsZbvwCZ5vnA9fPVgHiJwJkV/a8xsTv24MGuXlq259cDHUcnVC1PbavDyXR99Cd4iXJQeVKQd5pVwIUdU6G+6LSqn9dvipKu2xd4kGIldCVL/+njeLNv0jmvPyydzfJpaXA1ENQtQh9bIyya+e17bhz0bd6j4fEoQKCVGt0dt7fv7pGH7g99sfJ7kHLWQQVdUUsBBVtXm8YnDzNWu8dk9bf33Zng8ZPBBVnWUzUVVidm9aeOyUePGGvKFnqg+jfpa5eEiCQilFnL5gC4DrEXcIyfOyWJs6dRwIiIERIjoA6njcgm6gkK/GXFUTAl0XEm5iwemqkDYYlTmMAOHxtqr6NdDMP42Kvwi6/17F6LAzbToGrz357Ppc/4lTeTyMynOCEDb4OVmVrR7aEaxK91fVKyZuESkDQwOre5LKYIsjpVqOHT8B7ydXYEsncpwIJSp44loZJ49Gonj6SbxTG8v5QTMDT2yYP6L8XGr5uPZzmOXj+SK+4wYI1zZOuNZVNYlIjnnUUc9Izp2YaNJ8dWliJRphnGSgTAgCEG0La/Y6c0G98dcmdBjks+binO2XHnfpQas0JB6LqDQkJXxrr4I7Mdh9kcX/HthgZ1Sb6wlcTfJQFFnwJ6MDiQRrYVJwjZYVDgRPsthjHRTQi7pSLNIRLB7A2sYJFhjqhP85x+Z//mNuKBJzAz1CNxhzg4sjF3PDd/18pY7MDZqXLWZPenjDa+3t/hd+ez59Co/Okm6BeGBucHbkOuhe0dEgzA21Iu13ZTVYJVp056/WZg9aLzM6c4M5JyrfjeMTdagyLWyDiT/mBo9zDy5ezzgjnqdssKr0kZUbTYa54W1VLtU9MdVwhmfmhpFL4+++W9jXf/WqDr2mPrl+1sjMDZiVYT16D6yMwZgbZja+Xcba83hoVtOKF71m1qUWRRuHucGcE5zvVQ3I3PCzS+7PHt+3+c4NWDbAcuk/VApH4zE3YHOaFaEn2rjtPFvcdmqRJOR7m6r+ozNdzZ/WTtlPjUZDQIwmjPIN0X3jwEfbDBd2EyAjYbBCjAG/grgrWQiwVWlwjgJgbInxCmMvInQbrlPgRN+/RL83M4omJXosAyvWINriMkIlL6CB1676bStgL1AAA/QBhRcJs3z7eXgtcw106nAl+AotmwTvRhxQwC4XFinR7R8PPW/tahDVV4xBKGwkFpStoVfdsSMGEDku3KRyFRi+QI52tuqmc8edvPQmbMqsEcp/RzboQJ2WvuTNzGmZLyoMsEBFwJM+eS2CpytOBXUbeaYKD4B9deUCDIwoowRRuM+Af9NcwPbDpMOy4NClNaZLLp9zbMGDjI4fvHJa1n32T6JdRXuMyAQoQzwkQSXTlj1jQa23T5Tbbw2KFwDTVHvszc88396d/PbXvzXz88iWbXlQ7T+cqr1lJNWi4uMZv+oVatmEFLDnSGW2n7puTZtpvwZla55mj+gn9KIn/BCHqvCrvLeV9iBsUg6qqCTHA5tihGO8wOYYfa5WvTW41Vav7B69Had03Udtq1QZFr9q4NYnPMksg7X1Mj06xjcRKeMA5HgJLvYYaf5jsMVhfqN4WFSqm0ekpe0Kf2GGOpB/pcemgsYJgP7YB9FAvi8Y/DFOxa1P8Q4pAArcboBtkGC0oYwXupHNzwF6OAES/B9u09RwN1qZJGNhL1nTQ1m+ljAzdMua5n9IxGOoh9jLdcWKDpg2hrhemI3xWXA+YcMRK68tjlunD/xtcQ0ediZUEGYzH0TL9PQGGMzF3RKuW0D92t2taGW8WhadiA0PrCYKXaa35uGtmV/8QxaN6jr7+YPxi6gnMvKfy1z+UoQlwQaDwdYTBdsNdww2wiRcZDMJZ8rXftu0pTJ0/JuXwR5XRoop3802UobVMArDEhUKhC1gC5jdyftgISw2ZuXxgyUKuRQf5ElyTaxQCZYpKt0tAT1Lz/GeDC1QxXpEye2d2JJvGQDdesWe+w6BWB0e3HWVqbFCbAwxJAAX1p2Z+SKvrO/Wjh367Dp3cic1fMYexAyf8cuFTWd6VQIPIUNbiNxYVMgAm1F5OrGGzzoi56xFTkUZanBoIeF7s6HBxHmfx4euu73bZfA6iS31mDsxQNApHaqU94JoN2wkcaBV3ckoVewWnZMTZAVxqF2gZscjGIS0MoUH/Bu1h39AHxjk9pepaCVx8Ke4htsBc5BQseARYFGdjKsaqWW6YyrOJCmmXvt6ELPglTfqQGYTbBbotRHmGIZhC2MFvH6XGPpSJBTO8sHVrmc8982de/v+rKjNrWiJCfitEIkJ7HJJQFGPE4rqWkd1ic1RmUzPP7q15Kf9cQm0/PvuyNXy770jCfllk4ecXhvHD+RW/T9crbspPnj+9jBxjXc5r3mAXF6NC3JJNRLyK7xVZdqRkBugKhNRRElWZSKKKMmqTEQRJVmViSiiJKsyEUWUZFUmooiSrMpEFFGSVZmDfIKH9anVKWjGrsEXUrzzTjNK3uDgRY4+evklDyVvV9n0Xyv4qPutzVZ+a8yk/a49qUDVfyV8s1+kUKphuIglcJhBeTmW2VbLTw7bHcfC/sD4A7AlJVxnEmUIuqX36SWnhb4iAxzUH+lBLZMI7doN5IkRsCLv4qjX3rUznm3DmDSUUDUAD/ALe13Q5dvjUyza2/hOSHi9z325x7ji5NpKdhv7IsBK7Ui43VcMckKwrJYyE/5cWFXRlkQUxAqJ0vwydx4G74jyXvJ1xIut5l9r8VgWMapL2PuTmUP8spSTAib6JB/mAaUunCj5OTI3H7jitMYR5LzCJhuGGTnl4FKPrD1jT5XEttl8xu33H2Gj1mT8UaPX5AFGzOd6NiYGETIhBw9Py/XM5zbUZg8hRNEF+D6hB6LYJiQ4g73u3K4R+EycFRjze8iFqoEmkLWEIPXhBKmLo3553bq+cvyba7eq8ocMllhkN1DRN34mnrhfx3fcL23XNzxmMYmaRSSfy8wiaiUlgU4wJzre2lj0DzbH+KxrWIhZk8+iuSvP+i0PD+zO3IhnekIzFnBrUvO52lK3JKVelPv0Axa65gZ0hO0uMExHIWxnURtQAgDbRv1cnW5pWqccv1NXhRkh8wbfTWmyaiQ1OWWN5WNZ3DpFWJgVp5u4YlpxAbDThyFYEagxBhkgdunn68pjYMnATGOH6pXzZOmr5bUCNqY6XXreffpWqiUSg3vRQBUQGTgkgDBt5IRplZ7OrvAUGj3XbLQUGrQ02BiBKTQhI3b0wKAh7NA1Njskqn+2SZsxd0Iy/Ja/1rRxcqHvQ8dJEoT4Pg1iv5wtNK+P30dme7BzKRJhvCwJXpKp5NGEg9TJLNEPd3G8IWqnvIBY1ywZpOJ0AbieR8XkqQD1Iy56GaryWBoK39wFr4P8lqunTJ3RfNiegO3iMrvvJEf+Qg2RsAcwQyT8cmFzjn7OrbjZLQDPPQiPDWrOrQVLlusuelWT2OLvw0WSfrjUwx5tdnf2Wv7VfLP1T1EwNfuH38/M/hHXC8PHcm3nSy+tA0J2NKx9VhK01oEHfM5x4gOGjzEqDCywwo3BOBDtBfQf/bqo2XaWqPrLNFxKe/DlVd9SJ7aGTG0Z1T7r+K2WVKXh9zOVRlznvbgWaGU3p1Y2mZRWXh0gtaKX+7LDDF6CTEoYX6RiRk9pFTnk6J3QnPseT2taNaVuypQLxe5nKoa4zrdivDwIcwK3GRnr1dQmYsFlF/0WZM5aDLCFhUJeGB53S5V+vfPjbv8D3qUa141OoW7HmovwByAohQhBSSByhBORbS6kX7/O5tdzZgW/69GubeD4d981FkduvqXqGP9E3Yth2mtXGFQHLkyKlUfHgrASni2UqNWQDVJbFUO4f90WH/Rz2qj3ZY5J/LoeGfCZLkSdKKP6xQus6sYw/bqeGfDqRKiBkydhBL/wCBP+Juj+L5Wm+ndodjZ4q6TnhMb7T0qog48tsNEKDOz8YXZ3OsTQE1WjIWyIYaiXxWofRowovKUJ5aAWrAdS4/sDsI0C/H9+TClMCRuORJTuz43aUQWuazHAHFGAQR7rMdrJfMPkE1f00cQT2yQ9zcFD5qqfC1fmqrsW8z/ZMA/b6Xf+lOCoKLW7Uzv506CKVMbtUAoRKtOQsiHtHAriAeCeNOBOBY1OVSc7SWem4HotJhE4Va7rxg1YZK+DJbNTURs3MEcxxxXBN0n6EwTfJPwkOt8knS+SzjdZZD5J+o0IPkk22+TiJ1cBm6MP/a0kIMvzVD9FQG61hv6hknZpVPpbb+bs8C6U3G7Ahb/e/1bK02tmqXnz2wzq0by4eyZgdqyF6vREVS/8BqRLXU8giBzZQCoKSfDpnts2VLicK06/ntw5YfA/kUUgCaajFDVm9ZZTT2RhWYL4/9fed4A1kbz/R+UUROwiiiVYQWkWLNgSktCLgl1PjRAgGggm4RDLiR0LdhSxYsXeez17O8/ezga2s+t5nuVO/c9sCezu7JKYJcn9/l+ex+eRHXaz+bwz7/vOzGc+7+fYwHkNeEBpDidKk+swJAA52S54rQWYGBkAEJ31To1h+KOYMYy4XhwL3liP+YhaaHL1wJAi/Omt/5g/pcv5mMmfduL0p27/86ekfVqNPbK3xM8h0i17j37o/qy7nAd/Spdp4sFTdOD0FC2K3Z9e+Xlqm6MDEkN2VW/Z9tCDO1E8+FP6IgEPKLlxolS3OP0pPYZa3J924PSnbnp/+rvVzwnow4kfMptPiRpvMyRJ0p3vRfGbr2RE8jAl+Mo5JfhbPyW4zRuZrTwJuRnIbAgNPD2ZjamBR5LZEBp4JJkNoYFHktkQGngkmQ2hgUeS2egZGoOxBr0isovR1fN4YKzd4c3I9mY08vfpSCJEFUkj0/f8GTaxYbMJXbaQB5vcZbNJ9u77vSY+/Bi0d/eOvVsG51HP+f3QWZ6oUDFro7A5NlexMAneUahClzBRrVPg4kJQnptLw5auu4h4FUO8nX1UtEatUkXCiAUvFhz5fNOJ5gmXDwvLm/D6YNie7gtkqVKHoWye0LabVqGBAuDkxzaUqpMHqiBXC1bRgcI/MUod8d1BhgF3OfLTVtFMQpY5YixKN5IJlLWAA20rEaRNlJQNk2vilImhilhKALTHL0fCeqeFr9vh17uqkwpfpXrhxWGNZGvia52sgIHYWQPPDeqU+FuVId8KNaA08pSgxBgou0XCW8IOXoRbL4UuYbm6iijJhE8IYBVVpVwlgVpQhQKRTqOQJ+h/x4SJ9fcQXfWe1YdlugooT0t19P7PQ1zOrMUVlzNqkXH5vtVjTpdXtd7l0SmcxP6xemJ/Hm9h0kFgvjCJ0M0lwyRCN5cMkwjdXDJMInRzyVzo16wvo5ef/lE0IeHln/8u8x9VKBfq/PhtxSUZZf3Hbpxwok+Xh8mM4Aq9PrIj0cV4eQiu+WyWtNJy7XTRYbOVa59el6tce5+6xV2u/axuV1humWjZiuA7+4Lm/EKdT1mmXHtGXa7it2PrWkHN6Tlz5pihXPugU5lN+v1aOWDL+tWb03p+yLKKcu2pnNZRW4N1zFKu/cyr30rOq+0syvj6S7L8QA2qtomlyrUrOI3TxxqMI7BkufYmuS/nRO+RBh/qMse2RuiBa1ZVrr0Lp/ECLGM86yzX3mnvH99yAhcHLbFTNSy14PUPFi7X3oHTci0sbjl4U7GVa19c3jdIeGhFUO7jbWPKvOr4j1WUa8dyCNZy7cAREnnqA7Y89b9Urp1eFsPC5dqv1eUq136YmdIWS7l2x6itNkp3t4B1H/IWXfjWbxjv5drp4mY8lCC/UperBPkZ42QTjSjXrgs9Nn5Nyl7Jtujl3eSj1lYzfQjTsKL7CB6wOsyJ1U7z+lxLl2t/yObG/ifC/10i/PRqQmYT4fcUconwlxcWhwj/jr13pt37PEKac32/f99zrcrweNqcZx8JF0zchVya5fWEZhHhbzE5rOPBHVUjVvnMHTFiYnmpxUX4nThRAf3GauYOxh384U+Ef67mceUyO9oETB1QO1lXoxpVDNOSIvw2nKb7bJnJg9lF+Ct11NWw26+TrO4//d2Mbw9OWliEH/MyrCrqwMuYTYT/zrJFg22rLQ46cLrryvanX/awAhF+J05wygvNKMI/613z+allO4QtbBbSsO7ov0dbgZwFRMiGE6HP+unnI7a8TSZu0vRbhyvi3Lt11lxa/JrKILPHDvElqVUgojNzNlsWnH0KtkiUBfcTWhgAcY06OS4e5HCwyrU61igtB3qFRda3ZaoeFGo0lNsHEqF5EN98gG8uPU26APBNYKZJRh6sqlrwWuAqgQVabt7dt1XuyZzQdPnZRgsWLVhteu0uWgpFd4wmplBQ9jZTyFbFLgv03SnGpVDl8OEbo4jTKND55YWZ9e847H8qnjW3lniq+6HFtBNS2I2IE1L49eKQ/R3N+f1TLJ4s6XumEYkSfGWlOkYZzaFt03v952/xrSLEmZtOPzj0PrQCta+SD2D2VX1LcRgjgdMY0ZYxBqM4tjE7Fp4hiWodCF/yaLh26urdAUxZwcwiwV3YrEN0vFoT4y5s3kE7RKPDfkFnq2UOJ8S4yz9J1/dfvLOyTx51S94OfkCULlWFqH9Z0FQcxurFaawIqxg58FFGZavVCha6E5M1A7UcI+i3rEqHHNXVAlfWHTTm0r6026ZMlU2dOngTjhwe9bzA0IVqJls30cgslfDkHNnWeZHio6bLlpB9NXzC7j3Zvduy014AwHASgBsIAKBrMSoTJUMZu8hEpQcnQh2yu4fMqVN1R0X5w88WPewLARjABUD3SCGZaD7+j/Fx6IW5zcbHcXTh4uPkMzNLnvk4P7wRu/YWZgVlNvll/Z17zj9aAR+nqgvX7mZZFysgFQwbNswMfJz7i0fGfUlJEM1b1apf1WWvHlsFH0fAaZ2/LROSLcDHGX3MRRLfor7/vsqTfq3p/TzAKvg4L4Rcxsm3BuMILMnHGRuond934enQBYcazbk39PRGq+Lj3OA03nmLJ7tWxMdxmDeyjueR68FTSj1M901Y/NLCfJxjnJbba3HLFSsfZ+t2cZ1Fi7witm/rfT/zanCiVfBxsByClY+Tr89Tn/xf4ON0SLukTvFvJNo+8vnoO73nnbQwH6enCxcfx8/FPHycdm6p70okXg9Li+nW8p8OK1bxzsehz8154Jh0d+HimIS6FBcf51SfN5fHu5+SZoV6PLSvdzWBdz4O3UfwgJUfJ1ZtzDtLsDQf5w82NzbkkLKpMnytZNfBCNWTh31eU3dKuiTDs5MBGnlSPPOEqRHbFw2kSm0SPD2m381J9cBPmQrlUDMvDn4CsufVG7Oj76dvThGHet39MMkjOJv1/Zg7OYUbGf3PLgq4sIjCR7EQvZJ+7snAXql/Gr1wUmOZwBmewneUwH+0858JjWWqmrVPOkQpVMBgipgg4NeHko/DzIqb8imbKR3zM6SVfX+T5Pg8OLTpVAqVA1LCD23ASrh3R9hMUBZvohyyIoIB4/AVX0oe9EPy36HkYWh2UILFSt4gI4snS+QeFhOoP2ND/ev4rSuqeNr47ezrlL0qKWxlkacvyxY/8gaf2KSf3uPpxOZ3jhsui+ypSbfIczaLLJ2Zkfwi+GPA3CGO2uzJ7tQVq9L+kDyjY2ZkrNNL/AahFkR9vN5lshamvFittni1KgbKMUJKYCz2d1g6rJPHaQ3KQehHJEuHqqMHK2L0N6Fenbmci183VAYUgOniDGXT/RCkPiiqXsIZIb8EIYLzOIT8EvxHl18KH3+3Y9TJ56JxZ7en2b6NuEKXXxrbI2fUraS+gVmHl85/nDW1I9lOHkb9bnkm+gcj5JnYLG0P1QMIM6Kr4OTUnVEy5YZko2v8+z13oxuaYi3+5fChhhC0a0VUynMfpDzVnC1SeNIe1nfsrwXfITGuwGEU/I65muHevpEjESpRbLaq7F8w2kBCpEvWoBPXTe5l4xbcXOu3b+Sti9USKgk5TVZGgj8JoXVMNBSH0ew5jVbCvEYjXbBNqAR3qPCWUfpxj9mGHKNsyV49KVH6WpmoVWgw1h34CIrDRNqq+4OPpUuvGRsybvO2IStyBp2l26pMWLJOPlClF7AQ0Da74Kd6M8OVd9FaX98XrriM+qEml1Ff1mRofXEWUCA6uwLXZ0GCR5dJ4ezoNtDTMct0YFf57uJpnoRfOixGVLoXeWFdnAjpL9hCepcH9yLKqM4HLNlzsOSonS5UmcKyUfHKWJ0Q1pWlhnUYr9hqWjtHxMbCqYhcpSLKryph4Two3u2JBJhecJDtFRD5kqHLUqBn/KAXpmAsS7nLBI9MLlHtgFXfBWNTC18Yze88OezZssyTouzhvzlGeYZTC6LasHzFIlNCetF1E8cYnMKXglgdFiHGWBpo/cQsSs3JGsMtqMZ6Bbps/OnlLYbN/lOyfcXChsuVv8gZS8qxhgFj4niC3/x1Da5v/si8BaZZlpOxHmjEHps91Bnikp6aX99x9PmX6f5zxr6qfSqjRTi1X8K7zQX/75zwX7QM/AyGmKmFuvERAdnO4JsgLUKvuPudnsLU1XyPQq6AEWAGeGADgggwL9kCjNF6Pq566xW/nk+1C15uS367Jt5w62SDw68yTxbS82nz9/wBlcUDxQtVnyQfor2fFtLz8f318qUDtZaKp8/u9fHD8V1XC+n5aO5fWRRzZJV0b6lb5+bmTf+hkJ7P4S+21/P2Hgg8FP1HWNjN+NeF9HwQlX9JbUNE5V+yUC+i8q8t0bR2ecOb5dpHBky2T9joWdXxD9BkRzS1fT912IOnR8Rjex/7fMNmYSnQVJZomtH5icvlKc+Dt/YK//K207vjoMmeaKoT3Gj7o9lf/TPaN9F+WenwGDSVI5ruZI2rvLhNp4Cc4EHHatUSaECTAwlUdLtR7Vut8h+7eciPV39dMQQ0lSeahPkrjiydVFa2YXtnZfOd0lTQVIFomiyqV9atdV3/nVuvPSnhnuoDmioSTZ0zjxyt8c/twC1dfEf3aDGyLmiqRDQdcPiYdUQxSTR1uM2pCs77oJJSZaIpLv7RIGFgxaC0z48rBNp1jwNNVYim3Mp5fzdtPFmUVjMvb8LpAPjAqkTTuiyfRUt73Azd9VOO//aHmmGgqZqAVQbKkWj6dMJxxOnDa6TLs2Y0zPQ90go0VSea5M/bdnX3DfHPqnenyqV5YRdAkxPR9C1p7DEXT1/pBoldpf0N4kSgqQbR5F7F72RHySq/qQ62Zb78/Pg5aKpJNJ2fVHnHrarRflOWJ/3aaU7z7qDJmWgq1bR1hODWyLBt3qVaVp6vgXqOtYimzNzP55r4lgo52HbYpN5XtiwCTbXJDvDL7K+nmjuFb3mw+06t684hoKkO0ZRxKqRDxQfr/KcvCppcteWLw6CpLtHU5W25xiEuGtF0ryORzd5JaoMmIdHUatvutXZRQUGLVh0vfTSvjC1DqMpFwCJU1a7WlWqPlzmErsxyvv6o94FohNswVqjqFZuLqha7Z1P28dOyhevzh52tNWIpdeoqG5qkUscgTl+wJcCNiDuE5HlZrEydNgEkxMAJERUADTxuQXdQyFdjzqqJBkMnEpBbVB/KBqN2DjuD9PhZPeMKaBacRsVfBPndBtyZ3l738qfwdcdruMyUBOfweBiV5w1CWODnaz02PrQTmJX+Vc+onNgnUgG6BsZ7ilHAEkdqrRI7fgLeT6nCpk5kPxHKNfDEtTpBGY1W6N7gVGpITfuIvdfKLeq+f0I3Kn1c/zlM+nhBE995A4TrGSdc9+tZRSbHPOpoZCbnQQy0mAJz6eLlOmGCfLBCCBIQfQlrdp7514ODf6pVK0IyR3D5eNcOKzrSmIbEYxFMQ7KFb+tV9CA6uxRJ/vfEOjuDbW4kcC7koSiS8KegA4kES1O9+5qoe+OkM6eKe7wS+Hcw/QgWD2A94wQLdHUi/rxmiz//U274LuUGeoZuNuWGqPpcyg0t6heHcoPH9uNJzV+mB65tUrX7qJnzVvMYLOkeiAflhi71uQ66B9Q3i3LDxFGzkjdF7AqY2yat+76ut89bXLmhAycqoN9YKcu0qAUm/pQbTq/Vldj6rqPf7EEbr5bbvv+q1Sg3uHGarq5lTGd25YZnVWs8Kz/pbliu/4mnJyvOcrWwcgPmZViP3gMvYzblBo3vT60nVEz1n6RctfyXh9VpM0iLKDd04ASnRX0zKjck7559I0h9JnjM2qObzvfofd9KlBvcOBECY5rI296w5W2nF8hDv7StHjBmVZ0yz+oPP0jNRkNBjiaMkoYavnDgpy+GC6sJkJkwmCHGgl9B3pUqBNhqdLhGAXC2RH+FuReRuo00TPKKtn6Jfm9mFk22GDENDGhClMVlpEoiYIHGTYxbVsBeoBAGyG/XWhIdPOPLv9Kx56tf+fevlrRMKQrejTiggF0uKlOi+z8eat7KmhDsK0YnFDaVCdo1MYp37IQBRPYL1xilBnRf0I4Otp0vR5Y6cLW0KH3PEv8uuUpqxU87KXkzc1gWNBUF2KCaG9vUue8sXe0olDfpc13JA2DNOAEDPcoiSRQeM+DftBCw/TDlsGw5bGmP2ZLDq049duzErIvDpVvjrvU/on2ZXRkTMgHGkA1N0ij0tGcsqRX7Rbn2dDMtAaaXxezcutKAk38Epo9Ndzt/f3JPHkxbm9O0VSxkWlR+PKOTUalWudBC/hzNzn02tezAiPf+m+bVezf7Qbe69A0/xKEq/CrvZaU9CZ+0GUUq2eyJDTEiML5lC4x+V6rf+an1NtGGPv2cpnQ/QC2rVBWSX3Vw6ROeZFZAbr3CiIrxXhJ1AoAcp+Bij4kpeAw2OSwoFA9JpQZFRPq2XdEvzDAH8q+MWFRY2wCA/ocfooD8AND5FzYwlZ8iDi0EClxugGWQYLahThS6ksXPAXq4ABL8H+7TtHA1Wp2iYFEvGXjb6+ajzLXSbd297AYpdyuoPqY7Rjpg+hjielE+5kfJgAUe+Q1Fc3U5XScM6LGTh5WJXAizjR+iZHqWGwazqUvCDQuZX7+6Fa1O1Cqik7HugXGikFgmDtRdrDd4qv+qj0133Xz+1Yl6IqPguczpL6WxONRgMNj6omC74YHBRriEP9lcwtny9d81a6UOm/Dn6xDPy6NklO/mEKnAOIzC8GSVCuEL2BJmD/I+SITF+qwy8Se5ShmDd/IUpS5eqAbTFI3hnoC+S8/xngwrUJuNyJI1Ddg235YCdPuaPPYdgzAeHlx1VWgxIjaGGBKA/DsjNz6vdEuc1uf6im+jGx6lps/Yg5jpM365qOFMZyXwkDIkQeTGoVIGWIwqtgFr+mwgcs565DSUrga7FhK+RWfHDPlg8ygwd3BtRWKXWuupx9yJDoLe0qG28k6IdsV6EgdakQ0swmK37ZqapCiMQ/1CnB3PEJDSKlSe8G+0ngGB/WGSG6fQ0Chx8MdUx+2IBUhoWPAIMKlOxU2NtDI9MJkySEy06wBPYhS8EaMOZHpho8CohTCncAxbmCvg/F2i68cgoSg1usn54acOBaw9UHFa0MxRNH+BfSvExgR2uTig6MsJRaQ+UL1jC1RWU/OP7i35KX9cDCX/WjTgKvnXVA/5X1YPOZ0bxw/kwo7/hFVqPlOa4bjJvfy+yGU8QL6kIRfk8xqSkL/njZVZgYTcDKxMBImSZGUiSJQkKxNBoiRZmQgSJcnKRJAoSVYmgkRJsjIRJEqSlfnRpuq7NiNOBqzoX72EvPOTXxmUN9h50bUZafRLHihvf7PZv17IMY87W8r6r7aJGXjtaUWq/avgi/0SlVoL00VsA4eZlJdmGW31/JWw3HE8rA+MPwCbUsJ5JkFDMGx7n045LfIVGeCg/sgIaZl1cH/gBvLECJiRTzFum98Z323DlDTU0DQAD/ALOy+oSZ9Xv/9+t1LgpoVDv9Wc8Lu/KXttxbuMfQFgtaY+EXbfMMQJwbQ6m7nhz4VVNT0lojBW6CM1ru6bHn5sGDyz1+H8ms+1Oh5pEaO7hb8/tWqo/xr1pMB0v9QjPKA0hROlEfWZiw9ceZp7Z3JcYYMNw4wccnCqR3LP2LdK/PtEryjzT6Bsoa3P5DGK0akW3M/1dic6EXJDDh6eXmLkfm4T/e4hhCi6kN4njEAU34ReCfipScSpkhGy9TcTJzU+8/K0FexaQpAyOUGaYuS+bkOpEv/m+qWqgi6DbSyyOyinIUpb+waPQhdUdPonZ+CHmtRdRPK5zF1EfUtxoDOaE50U/Z7uB7bA+Lx7eKiN1ydJ5vJz/jkRQb2ZC/HMSGjDAq4LdT9XT3VLURsluU8/YGHo3oCBsN0HjukzhO0cagFKAGB7aFyoM2yb9kXZmnvTs5cE71hTLuXx62etqYud2H4sS1inNBblxekuzkQvLgB++iMEqzOqj0EFiFfGxbryGFgKMNLYodox4ty1J6kLAtdOSNj+h88HatE/Oxm4Fw1UoSYzpwQQpoecMN0yMtgVvYVG32u22BYa9DRYH4FbaEJG7uiJQUP4oY9sfkjS+JxX27H3Qpf657zVta1Rm74OnSBPEuLrNIj1crbUvDF+H7nbg51LkQsTFSnwkkKjjCYCpGEsEtrhLo43RK2UF2o2dJcMdJsabgDX86icPA2g/snVKEdVHtuGwhd3wesgv2Wz/c98VXYTAja9qzs0aOvVxtQUCXsAM0XCLxc15ujn3Ezd3QLwVIfwlEONuVwwZXFwM4pN4oC/D5dIenhq/7Zfu3QIXve055jWL25QJynE12Xu/hHXizzY3vbLCbfU2qEbN0W//Hd8tR484FOKEx/QfSzBMLDFiBs/4UC0F9B/jKui5tBVrolT6LiMdqrkodEtf+ktnn1i+LeG73+hHq0rjd/PNBpxnXdyLbDKa1cuqzyyKqu8OURaxajwVQFzeEmKGML5omsuDIkKUvgPCBodLp7fo+aCO1TDhGH3Mw1DXOfbMCJPwp3AZUbGfDXNSyawdTNuQuasxwCbWKiUReExr1+Xf6ShHcKXCZfXWvb3uAE0SSH8AQhJIaKhOBD55MqFyDNXMq5/Yovrm2eF/NWnnW/QhL++6GyP3npHtTH+iYaTYdrrZxjUAC5MiVdGx4O0Ep4tlGu1UA1Sz4ohwr9hkw/6OW3U+zL7JH7diB3wk64ET5TBfhGBWd0eZlw3cge8FpFq4OJJmMAvPMKEvwnyi/89511K/r9fgnPnP3TN+9CcSp4rw5bY6BvMHPzh7u5xiKE3iqMhbIJhaJTHah9O9Ci8pAnloBbkA2nx9QFYRgH+vyCnFA4PH4mWeaHFc4tWVIHzWgwwJxRgUMd6j34wf7b6jSt6b+JJbZK+zcHDzlWWK9fO1Qw95v+wYR6+y//8acExSVrvGu2Uz4IrURW3wyhCqExHyoa0cxjIB0B40oE7VTQ5VcP0JmnKFFyvxRQCp7YbunADJtn3YYSeilq4gXsUZ9wQepNkPEHoTcJPoutN0vUi6XqT360nSb8RoSfJ5ptq+ys1wOcYI3+7Vvbr+dGbnwbOern1H822mNlU+Vsxc3SIixS3m3E6qmLJR0sCN946IWs+doap5yYFYHTcheb0RrEXeoLWK24nEUKObCB9j0hwcvoYUf6GuuJ5h2bNGW67ptV3iATTUdr1rvryP8Y/8z+0ZveHciuPmko4gCid4UTpsBtDApCT7YLXWoCJkSEqyjTWOzWG4Y9ixjDienEseGM95iNqocnVA0OK8Kf//sf8KV3Ox0z+NJnTn/b/nz8l7TO/jyLygc160Yrb/V+d67pkBw/+lC7TxIOn0HJ6CmWx+9MD2x/77q3ZPXh2aP6GtKWDXvDgT+mLBDyg1J8TpW7F6U/pMdTi/lTL6U/76/3pF6ufE9CHEz9kNp8SNd5mSJKkO9+L4jdfyYjkYUrQ0o1rSuCuh/wrb2S28iTkZiCzITTwSFeP0MAjyWwIDTySzIbQwCPJbAgNPJLMhtDAI8ls9AyNwViDXhHZxejqeTww1r7xZmR7Mxr5+3QkEaKKpJHpe/4Mm9iw2YQuW8iDTaBBkDbJ3n2/18SHH4P27t6xd8vgPOo5vx86yxMVKmZtFDbH5ioWJsE7ClXoEiaqdQpcXAjKc3Np2NJ1FxGvYoi3s4+K1qhVqkgYseDFgiOfbzrRPOFC5/mZVfuMDMgsOaFq0CzX02ye0LabVqGBAuDkxzaUqpMHqiBXC1bRgcI/MUod8d1BhgF3OfLTVtFMQpY5YixKN5IJFjYGDrStRJA2UVI2TK6JUyaGKmIpAdAevxwJ650Wvm6HX++qTip8leqFuwc3krVY0PhkBQzEzhp4blCnxN+qDPlWqAGlkacEJcZA2S0S3hJ28CLceil0CcvVVURJJnxCAKuoKuUqCdSCKhSIdBqFPEH/OyZMrL+H6Kol2Lqq1YRlugooT0t19P7PQ1w+25grLh9tTMblklaPOV1e1XqXR3/hJPbv0RP7S7FhbnSYdBCYL0widHPJMInQzSXDJEI3lwyTCN1cMhca13LewioPZkhXp7VfHzPuz6OFcqHr67ofGPhbvfDlaSmyLldSchnBFXp9ZEeii/HyEFxt2CxppeXa6aLDZivXfrwJV7n2mUwpGZ7LtV/R7R3yXpovOTRl7pQnj13eWEG59qNNuIrf7rGMYAa15vTUqVPNUK790Z8ZlcqGT/fbFRe0ebsulbpaaKly7Zs4rbPSGqxjlnLt0ZVqf+sQ0k4y/Vqb4KNtQqkrzJYq176A0zgzrcE4AkuWa690tdTzXncHB8+LaN2u0qHuZayqXPtETuONtCKhIIuXa59WL91jjLSC/77Kl/8asFMxwsLl2rWcllNa3HLwpmIr117m0645sXfV4uWjsj8Kl316bxXl2rEcgrVc+0y92NMPbHnqf6lcO70shoXLtZdrylWu/W9mSlss5doHRd0eHD5/acBi5Y9Pl/24kyYHyUO5drq4GQ8lyMs25SpBLmhaXOXan+8Xl/zX72LY+vP9R3SZ+uoE7+Xa6T6CB6z+bsKF1Qvz+lxLl2svzebG/ifC/10i/PRqQmYT4Y9pyiXCL21aHCL8z/9K3H3gpVPQglc7vs5yr12Px9PmPPtIuGAysCmXZnlPpo8sDhH+8uM2pQXtaBm+sWa5858fBGRZXIQ/nBMV0G+sZu5g3MEf/kT4q8xx2hgUW0qyu2Ol3r1rfq5gNSL8vpym87aM6cwuwv/r9Xv/Jm5pI5o+umvktrXlKtB2Os0two95GVYVdeBlzCbCn7Hf6VPyL3PFM0RZX/Pcf69uBSL84ZzgSJuaUYT/9nrP8+PqL/dbXm77+6O5daZbgZwFRMiXEyEwpom8rQxb3iYTN2n6rcMVce7dOmsuLX7dgqojgB3iS1KrQERn5my2LDj7FGyRKAvuJ7QwAOIadXJcPMjhYJVrdaxRWg70Cousb8tUPSjUaCi3DyRCv0J88wG+ufQ06QLAdzkzTTLyYFXVgtcCVwkskF996NtL0kpVu0vnTmu/YJV/b6qeynfV7qKlUHTHaGIKBWVvzzZlq2KXBfruL8alUOXw4RujiNMo0PllUOXSfna+7cKy7ma32Hht3UPaCSnsRsQJKfx6ccj+7uL8/hssnizpe6YRiRJ8ZaU6RhnNoW0T3u5h2XO/3Peb/6WpJu/fSBW1r5IPYPZVfUtxGGM5pzHmW0f6IzBmx8IzJFGtA+FLHg3XTl29O4ApK5hZJLgLm3WIjldrYtyFzTtoh2h02C/obFXUaemVv4VHA8Y5ddnxZd1MKrfDDn5AlC5Vhah/WdBUHMaazmms8VYxcuCjjMpWqxUsdCcmawZqOUbQ2h2iXlPTy4TOvFu1WtC1MQ9NmSqbOnXwJhw5POp5gaEL1Uy27oCRWSrhyTmyrVLKL/V3Px0euE5VWryxUd0tlp32AgC2kADcQAAAXYtRmSgZythFJm7kfQptoG4v3j9p0tZmz4PHW/SwLwRgLhcA3dP1iabtf4yPQy/MbTY+Tqg7Fx/Hyb24+Tgj4gZH/+yQFzZve2b6tSpjB1gBHyfYnWt3U+RuBaQCLUjpi5+Pc6fHr9NWdxkWnLlnrMsd2xt2VsHHacVpHXdrsI5Z+DhJYzfV3JJ2zn/e773ur/o89oRV8HHqcRrHyRqMI7AkHyev5p2vd5fbh6/Mi1j7efeUw1bFxynPaTwbyxjPOvk46aWWugaW+Fkyb+kV97Rr9/0szMf53JTLcm+sYppSbHycie96XZ9zda54zYJdD17YNZNaBR8HyyFY+TjAERJ5qt3/BT5Ol7flGoe4aETTvY5ENnsnqW1hPs40dy4+zlBmSlssfJxmLzrvHpz+PHBz1Ke6TbfeDOCdj0Ofm/PAMZnqzsUxGeNeXHwch3ivxMGrP0rGZge3tamReJh3Pg7dR/CA1VBOrBLNGy0tzccpy+bGhhxSNlWGr5XsOhihevKwD7UQm32XZHh2MkAjT4pnnjA1YvuigVSpTYKnx/S7Oake+ClToRxq5sXBT0D2vFbbdq+1iwoKWrTqeOmjeWVsWd+PuZNTuJHR/+yigAuLKHwUC9Er6eeeDOyV+qfRCyc1lgnCoDCXowT+o53/HNRY9neo60mHKIUKGEwREwT8+lDycZhZcVPas5nSMT9DWtn3N0mOz4NDm06lUONsCT+0ASvh3h1hM0FZvIlyyIoIBozDV3wpedAPyX+Hkoeh2UEJFit5g4xssRtRIvewmEC9HBvqX8dvXVHF08ZvZ1+n7FVJYSuLPH1ZtviRN/jEJv30Hk8nNr9z3HBZ5HVDukUc2CyydGZG8ovgjwFzhzhqsye7/0hdE/WH5BkdMyNjnV7iNwi1IOrj9S6TtTDlxWq1xatVMVCOEVICY7G/w9JhnTxOa1AOQj8iWTpUHT1YEaO/CfXqzOVc/LqhMqAAzB6NoGy6H4LUB0XVWzdCyC9BiOA8DiG/BP/R5ZfCx9/tGHXyuWjc2e1ptm8jrtDll8b2yBl1K6lvYNbhpfMfZ03tSLaXFJgoz0T/YIQ8E5ul7aF6AGFGtOaD+679qiqa0DmPf/qcVOH8OVOsxb8cPtQQgnatiEp57oOUJ6SRRQpP2sP6jv214DskxhU4jILfMVcz3Ns3ciRCJYrNVpX9C0YbSIh0yRp04jok7uC7hZ03BWalHhFcX5uwhNNkZST4kxBax0RDcRhNzGm01uY1GumCbUIluEOFt4zSj3vMNuQYZUv26kmJ0tfKRK1Cg7HuwEdQHCZaMH1X3vWhN16Lt+5L2VKj1e2JdFuVCUvWyQeq9AIWAtpmF/xUb2a48i5S6+s7wxWXUT04jVq/EUPri7OAAtHZFbg+CxI8ukwKZ0e3gZ6OWaYDu8p3F0/zJPzSYTGi0r3IC+viREgvzxbSuzy4F1FGdT5gyZ6DJUftdJlA5cpGxStjdUJYV5Ya1mG8Yqtp7RwRGwunInKViii/qoSF86B4tycSYHrBQbZXQORLhi5LgZ7RTi9MwViWcpcJnBuayiNzwKrvgrGphS+M/KIRz++O2dw4U7I860K53GHxB+gFXpBfsciUkF503cQxBqfwbSFWh0WIMZYGWr0aGscawy2oxnoFEhf7oRElstcuitgkVnXv+KO8NGNJOdYwYEwcT/CbN+T85qCXWMFyMtYDjdhjs4c6Q1zSUz2iZS5Dp0lE0+36V7+bPX8ttV/Cu80FfyVO+MtYBn4GQ8zUQt34iIBsZ/BN0EULaBV3v9NTmLqa71HIFTACzAAPbEAQAaYCW4AxWs/HVW+94tfziXeeEH53ZuvA9P2ZNVJWtyqsbfgx8+y5txFK6fTLeyce/izYXEjPp6+sQV6JfoNEm+MPNY693dKpkJ7PuKTXs5ueqhY+69qkzwEnfmpVSM+nRMSjlVXj9kn2V730k7ChuF8hPR9E5V9S2xBR+Zcs1Iuo/GtLNJVa6jDzwqqciP3794r98vLqgSY7omlpcsrwOeuv+c1YMvxLC8XImqCpLNG0bU0FUe9BQ6SHXo4699H7K3ygPdH000+ew5c8VImy3g2pkfZlbHXQVI5o6vzzmmNO/9hJM/KHT/zFPycZNDkQTZ6vHS9NizoSMev078sex/nNAE3liab+XkfDbtU4Fbph1zqnZkH3xKCpAmmUzytmbvvlZuD+5qFrju4aBF+jItFUrp7/CM/dztKNLcps6ZbT3w00VSKaTi8RPviarfFPS9mU8ccI0Y+gqTLRZHvnr/297WsFbonw7+iW1K0TaKpCNDl2eN9r3/iGIXP8+434dbxiE2iqSjStTIt90ezAZdGhNv1bBwWerAKaqglYZaAciaZ7x7LFNeYvFR0o1aPfW120L2iqTjQ5pNrtKz+nkizbY9kjt1pnYAdwIppC3i3QpDSbFZDZbX+fi68S4WfVIK3ca3dIYM1k0YRW4asmZ8V1A001iaYL2b0PVZbOEe0uFXKzXZ1p00GTM9G0L6Bhk2plVwQszryWuTLeQw6aahFNv/168fHdGuGBOT0vjY93WLIDNNUmmrYOznQWTjkhW3Y7pJfy69l80FSHaLKx7+JdZd0I2YxLNweL35b/HTTVJZr8W273rns9Jixn5diuUcd9boAmIdGUf95D/u+rOeLRty8cfVPh5mmGUJWLgEWoKm7TI99yvf6O2H8v+VyluE8OPAhVVWRzUdVi92zKPn5atnB9/rCztUYspU5dZUOTVOoYxOkLtgS4EXGHkDwvi5Wp0yaAhBg4IaICoIHHLegOCvlqzFk10WDoRMJVJljsCWWDUTuHnUF6nO5pXAHNgtOo+Isgv1uvhMAeMasr+I8/svrQj5NV13k8jMrzBiEs8LPQk40P7QRmpbM8jcqJfSIVoGtgvKcYBSxxpNYqseMn4P2UKmzqRPYToVwDT1yrE5TRSBT7vKpYrmY9x5BZK5rfazp120wqfVz/OUz6eEET33kDhCudE66fPa0ik2MedTQyk/MgBlpMgbl08XKdMEE+WCEECYi+hDU7zzy3TucA9+xOkq1z/+k7dVmFGzSmIfFYBNOQbOHbehU9iM4uRZL/PbHOzmCbGwmcC3koiiT8KehAIsF6Y9/x3/GzfCSb1pQdkXWxXIzpR7B4ACudEyzQ1Yn4U4kt/vxPueG7lBvoGbrZlBveenIpN1w0LlYaqNyQPLmkRnLgiHjiHVf5Fd9393gMlnQPxINyw2tProPuj4wLlt+r3FB1fKl6O+e0DTq0Kv7Q+CNzqf3DEsoNv3OictEyMdEAlmlRC0z8KTec+fKk8oAJD8NWtjg808PvSDurUW44yWm6A9aazvCs3JDsUMX7eZXlYZPWvc86UankZwsrN2BehvXo/SNEllJcyg21T2RtqLpZELE7w+59pdofqQQhyyg3/M4JzkVPMyo3pJdxnrIuo3NEWtzwklJp55ZWotxwkhOhA/q8rTJb3nZ6gTz0S9vqAWNW1SnzrP7wg9RsNBTkaMIoaajhCwd++mK4sJoAmQmDGWIs+BXkXalCgK1Gh2sUAGdL9FeYexGp20iDEif6+iX6vZlZNNlixDTwkQ9RFpeRKolg/VIf45YVsBcohAHy2zWIK5WeNP1S+N6RXqEVfafRDu5GwbsRBxSwy0VlSnT/x0PN2wc+BPuK0QmFTWWCmz5G8Y6dMIDIfuEao9SA7gva0cG2dw/b1pOuNRbtvv3w4bThgonUYSklb2YOy4KmogB7cjWm6fisvyUZilqp2+qp9vMA2G+cgIEeZZEkCo8Z8G9aCNh+mHJYthy2tMdsyeFVw1a6p4W12xe0Z/LMVz1KT/GsjAmZAGPIhiZpFHraM5bUiv2iXHu6mZYA00x7pva7P9pPGybJzHF79XxOjql6b9C0+zhNu8VCpkXlxzM6GZVqlQst5M/RRxrr/rEjbvR96eJzzoOiffyu0Df8EIeq8Ku8l5X2JHzSZhSpZLMnNsSIwFiFLTD6Xal+56fW20Qb+vRzmtL9ALWsUlVIftXBpU94klkBufUKIyrGe0nUCQBynIKLPSam4DHY5LCgUDwklRoUEenbdkW/MMMcyL8yYlEh0BuA/ocfooD8AND5fb1N5aeIQwuBApcbYBkkmG2oE4WuZPFzgB4ugAT/h/s0LVyNVqcoWNRL8rUlK3ya5R2RPehozmJJK2qRvtLdMdIB08cQ14vyMYq8qzl9RSv8xye5aiZ8iRzLw8qEP4TZxg9RMj3LDYPZ1CXhhoXMr1/dilYnahXRyVj3wDhRSCznpXt+leSIpDvH5g2Onxn0O/VERsFzmdNfSmNxqMFgsPVFwXbDA4ONcAlV2VzC2fL13zVrpQ6b8OfrEM/Lo2SU7+YQqcA4jMLwZJUK4QvYEmYP8j5IhMX6rDLxJ7lKGYN38hSlLl6oBtMUjeGegL5Lz/GeDCtQm43Ikit6s22+LQXofvYydew7BmE8PLjqqtBiRGwMMSQAZ/tt25SaLwjMuf9WONb/bFtq+ow9iJk+45eLGs50VgIPKUN5iNw4VMoAi1HZeLOmzwYi56xHTkPparBrIeGTdZ6ytfJtu5Apdd8caZ4xgCq8VY7oIOgtHWor74RoV6wncaD1xssiLHbbrqlJisI41C/E2fEMASmtQuUJ/0brGRDYHya5cQoNjRIHf0x13I5YgISGBY8Ak+pU3NRIK9MDkymDxES7DvAkRsEbMepAphc2CoxaCHMKx7CFuQLO3yW6fgwSCu20iCNXl3UNGvek78V3r1U0fhf2rRAbE9jl4oAC6+KsUIAuTgSqamyBympq/tG9JT/lj4uh5N9FL66Sf6f1kDtaPeR0bhw/kB89flvecIJjyIpBF+/PO/w+lgfIOzTjgtynGQl5dd5YmRVIyM3AykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZdud9ur6qsFmS1ah05pipe5IZlDfYeZG9j06/5IHy5sRm/3ohxzzubCnrv9omZuC1pxWp9q+CL/ZLVGotTBexDRxmUl6aZbTV81fCcsfxsD4w/gBsSgnnmQQNwbDtfTrltMhXZICD+iMjpGWCoF+7gTwxAmbkbsysnGvt2hnfbcOUNNTQNAAP8As7L6hO85rjHs2ZETTth0VhAU1qJ5qy11a8y9gXAFYBZNh9wxAnBNPqNl7IPJwNq2p6SkRhrJAo/fvPob7Vul2WzV0xaMZ+3ZhHPNIiRncLf39q1VD/NepJgel+qUd4QMmNE6WaXszFB648zb0zOa6wwYZhRg45ONUjuWfsWyUDD5/Ma3G4e/As0aMwQe5ohQX3c73diU6E3JCDh6c7eBmXxjbR7x5CiKIL6X3CCETxTeg6scLVtg8W5oknXv99xeuy8ZOtYNcSgtSCEyQ3L+P2dRtKlfg31y9VFXQZbGORw0GdGvHo7YFjYePmP/2x1LdTG6m7iORzmbuI+pbiQKcuJzrV9LloDbbA+Lx7eKiN1ydJ5vJz/jkRQb2ZC/HMSGjDAq4LdT9XT3VLURsluU8/YGHo3oCBsN0HjikLwnYOtQAlALCNMS7UGbZNG+c86G+v26VkaaLU91tePzpDXezE9mNZwjqlsSgvTndxJnpxAfDTcyFYnVF9DCpATDUu1pXHwFKAkcYO1cxRL/dN9bKTTYpu4PZs/Z72VE8kA/eigSrUZOaUAMI0hhOmoUYGu6K30Oh7zRbbQoOeBusjcAtNyMgdPTFoCD9Uk80PSRqf82o79l7oUv+ct7q2NWrT16ET5ElCfJ0GsV7Olpo3xu8jd3uwcylyYaIiBV5SaJTRRIA0yC3RD3dxvCFqpbxQs6G7ZKDb7GoJcD2PysnTAOrzWhrlqMpj21D44i54HeS3vNf74Ml659Nla1OH/9v1RBtHaoqEPYCZIuGXixpz9HNupu5uAXh2QHjKocZcLpiyrGtpFJvEAX8fLpH0Wskv5Ff695NkeeyOWCVavp66+4ffz9z9I64Xhc/h6TtrJVydF75iUM7dZtnrL/CATw4nPqD7WIJhYIsRN37CgWgvoP8YV0XNoatcE6fQcRntwJbLaVMiB0sWnRjsf3F9bDDVaPj9TKMR13kn1wKrZHBaZaxVWeXNIdIqRoWvCpjDS1LEEM4XaZjWpbO1I+KvBEzP2fD7k067qYf9Sodh9zMNQ1zn2zAiT8KdwGVGxnw1zUsmWNXSuAmZsx4DbGKhUhaFx/I+yu2DX9wKW5RRfVJi1jlvmqQQ/gCEpBDRUByIzONEJL0lGded2eL65lkhf/Vp5xs04a8vOtujt95RbYx/ouFkmPb6GQY1gAtT4pXR8SCthGcL5VotVIPUs2KI8G/Y5IN+Thv1vsw+iV83Ygdc0ZLgiTLYLyIwq+vBjOtG7oDXIlINXDwJE/iFR5jwN0F+8WcNRxz3H9TSf/nvy+aGdV9J63xsiY2+wczBH+7uRkMMvVEcDWETDEOjPFb7cKJH4SVNKAe1IB9Ii68PwDIK8P8FOaVwePhIJKL0eG7RiipwXosB5oQCDOpY99AP5lpWv3FF7008qU3Stzl42Llq1ZJr58pTj3ltNszDd/mfPy04JknrXaOd8llwJaridhhFCJXpSNmQdg4D+QAITzpwp4omp2qQn6QrU3C9FlMInNpu6MINmGT/DKmaU1ELN3CPIt4HoTdJxhOE3iT8JLreJF0vkq43+d16kvQbEXqSbL6ptr9SA3yOMfK3rZ2iPl6QSvx2n3u6TLfjqpoqfytmjg5xkeJ2wyp5TalQ7rJ0Z5Bq/VBNy4GmrpmA0TECmtMbxV7oCVo1PicRQo5sIH2PSPDmodvf3p4/wW/+lIc7z7ocuPwdIsF0lBQ9IoPvrWkXMX3jkYPeoy9s5wGleE6U+vkwJAA52S54rQWYGBkAEJ31To1h+KOYMYy4XhwL3liP+YhaaHL1wJAi/Gmd/5g/pcv5mMmfVuH0p19a/s+fEvZ5XnJdTK2RP0qzDnh+VAbYlOXBn9JlmnjwFJU4PUWZYvenpyUHN9f0nBS2OH1/TI3F4u8RXaejRF8k4AGlLy25UHrXshj9KT2GWtyfVuL0p1/0+Wldq58T0IcTP2Q2nxI13mZIkqQ734viN1/JiORhSnCJc0pwRg+5kDcyW3kScjOQ2RAaeKSrR2jgkWQ2hAYeSWZDaOCRZDaEBh5JZkNo4JFkNnqGxmCsQa+I7GJ09TweGGsuvBnZ3oxG/j4dSYSoImlk+p4/wyY2bDahyxbyYJN6bDbJ3n2/18SHH4P27t6xd8vgPOo5vx86yxMVKmZtFDbH5ioWJsE7ClXoEiaqdQpcXAjKc3Np2NJ1FxGvYoi3s4+K1qhVqkgYseDFgiOfbzrRPOFvzQI2X08cGTa78Zb7/p3ve7B5QttuWoUGCoCTH9tQqk4eqIJcLVhFBwr/xCh1xHcHGQbc5chPW0UzCVnmiLEo3UgmaNsCONC2EkHaREnZMLkmTpkYqoilBEB7/HIkrHda+Lodfr2rOqnwVaoXfhPRSObQpsXJChiInTXw3KBOib9VGfKtUANKI08JSoyBslskvCXs4EW49VLoEparq4iSTPiEAFZRVcpVEqgFVSgQ6TQKeYL+d0yYWH8P0VXrW31YpquA8rRUR+//PMRlZQuuuCxvQcblBlaPOV1e1XqXR/tzEvt76In9DXkLkw4C84VJhG4uGSYRurlkmETo5pJhEqGbS+ZCTdcPn91p7XjpOJ/VIT+M87hVKBdS3Z3V8UT5vOAdLnfcxdm5YkZwhV4frZxCE+PlIbg2YrOklZZrp4sOm61ce3QrrnLtXq2Ku1z70RrCkZu0p2VrZvm1kS+sRT3ZaZly7fJWXMVve7SygprT48ePN0O59twWM3T7lmaGb72RPPpeVAx198VS5drDOK0jsQbrmKVce832mQ4u4nd+E5/M2VfiRsedVlGuvS2ncbyswTgCS5ZrPxJ6Rjm4Zoh4z5T+/epXHENV2rV0ufaGnMZztozxrLNcu2TB6OpdKutkizP7njhRLXSPhcu1V+K0XBmLWw7eVGzl2su+7X3MoeVg0WL7zFpnSq6XWEW5diyHYC3XDhwhkac2ZstT/0vl2ullMSxcrn1tK65y7XOYKW2xlGv/kNbswaj+XwM2zUr+o++mbKpgIh/l2uniZjyUIM9txVWCfHGr4irXfsfxcqj/yr4BozscFIoUF/N4L9dO9xE8YDWHE6vJ5vW5li7X7srmxv4nwv9dIvz0akJmE+Ev2ZpLhD+f6Tt5EOEv/cvfY+pW7Bg0+0H6vh13jz7m8bQ5zz4SLpgIWnNplv/N9JHFIcLv5dP7zsvpvf0WSsK3bfDeQ62DbgkR/hetuFDJt3gGWnjHyTIi/NVrJahsI/dKF1SvPnbLyv4LrEaE/wan6c5bxnRmF+Ev895t1IPAbL8Vm2cln/Jq+8rCIvyYl2FVUQdexmwi/A8vPBvr8vFeUKabd2NZhKypFYjwY86GFZz8VmYU4R+6bNu8sU0eSWY1WrOpZIMdd6xAzgIidIMTofP66acbW94mEzdp+q3DFXHu3TprLi1+3YKqI4Ad4ktSq0BEZ+Zstiw4+xRskSgL7ie0MADiGnVyXDzI4WCVa3WsUVoO9AqLrG/LVD0o1Ggotw8kQoPh8MwH+ObS06QLAF9xa1MPVlUteC1wlcAC+dXblOsaciR5fsTuHVNn76+Zesz02l20FIruGE1MoaDsrbI1WxW7LNB3+7c2rhA2PnxjFHEaBTq/HDKvc5Xm819HbHJsphmVXItaiLm0FLsRcUIKv14csr/dOL9/SGtLJ0v6nmlEogRfWamOUUZzaNv8sefImjU1p/qN6X7wlWDsJ6oeuC35AGZf1bcUhzHEnMZobRljMIpjG7Nj4RmSqNaB8CWPhmunrt4dwJQVzCwS3IXNOkTHqzUx7sLmHbRDNDrsF3S2Wv/+SOW2T5NEC4Me+G0NGkpNh+zgB0TpUlWI+pcFTcVhLA9OY9W3ipEDH2VUtlqtYKE7MVkzUMsxgnJ8hpZLT3jutycqdFiGfd5rU6bKpk4dvAlHDo96XmDoQjWTrevT2rgslfDkHNnWhKkug1+Nqxg2v3HiSMd6WZctO+0FAESQANxAAABdi1GZKBnK2EUmWqVVX7e+3qOw3NuRlYdtDa1NC2XmPewLAWjJBUD3Rq3JRLPJf4yPQy/MbTY+zrPWXHycnczMkmc+ju2Rn0ZvDR8XOn/o6p8Ha1+NsQI+zh+tuXY371rG6VNJBYMHDzYDHyel+sxVjWtWlGyt07v5rzH3hFbBx7nCaZ0z1mAds/Bxen99WT32SWTIodUD72ZMWP/eKvg4hzmNs9MajCOwJB+n5KhJ8e3HpvjN9f6YdPjblwir4uOs5zTeMosnu1bEx/mYPDKjVVKsZGzN2VPf9V5X08J8nCxOy02zuOWKlY/j8avzorkpa8I3rDz748xfVK+tgo+D5RCsfJyd+jy16f8FPo5/y+3eda/HhOWsHNs16rjPDQvzcdzbcPFxHNuYh49TU/lt+SG/3tKNpzY1mya4VJt3Pg59bs4Dx6RJGy6OibBNcfFxXGKqOgW/Xho2+fCVZfnSSit45+PQfQQPWDlyYlWuzf9XfBx3Njc25JCyqTJ8rWTXwQjVk4d9qM7ZvksyPDsZoJEnxTNPmBqxfdFAqtQmwdNj+t2cVA/8lKlQDjXz4uAnoAsfnveQ//tqjnj07QtH31S4eZr1/Zg7OYUbGf3PLgq4sIjCR7EQvZJ+7snAXql/Gr1wUmMwnYen/Rwl8B/t/Ke6sey3py1OOkQpVMBgipgg4NeHko/DzIqb0oPNlI75GdLKvr9JcnweHNp0KoVaHb2EH9qAlXDvjrCZoCzeRDlkRQQDxuErvpQ86Ifkv0PJw9DsoASLlbxBRtaeLJF7WEyg7smG+tfxW1dU8bTx29nXKXtVUtjKIk9fli1+5A0+sUk/vcfTic3vHDdcFsloRreIF5tFls7MSH4R/DFg7hBHbfZkd6qmUWl/SJ7RMTMy1uklfoNQC6I+Xu8yWQtTXqxWW7xaFQPlGCElMBb7Oywd1snjtAblIPQjkqVD1dGDFTH6m1CvzlzOxa8bKgMKwHwPwdzshyD1QVH1q80Q8ksQIjiPQ8gvwX90+aXw8Xc7Rp18Lhp3dnua7duIK3T5pbE9ckbdSuobmHV46fzHWVM7ku0lBSbKM9E/GCHPxGZpe6geQJgRaa0Bmr82rK/vHTY78+Cx+3X3hJliLf7l8KGGELRrRVTKcx+kPE+bWaTwpD2s79hfC75DYlyBwyj4HXM1w719I0ciVKLYbFXZv2C0gYRIl6xBJ67nnZ52qhfaO3TW2i6nHz+pVJ/TZGUk+JMQWsdEQ3EY7R6n0a6a12ikC7YJleAOFd4ySj/uMduQY5Qt2asnJUpfKxO1Cg3GugMfQXGY6CPPXtF1vTaUDNk1o2S+y5IJjei2KhOWrJMPVOkFLAS0zS74qd7McOVdpNbXd4YrLqOe5TTqL80YWl+cBRSIzq7A9VnQBHGaTApnR7eBno5ZpgO7yncXT/Mk/NJhMaLSvcgL6+JESPdmC+ldHtyLKKM6H7Bkz8GSo3a6TKByZaPilbE6IawrSw3rMF6x1bR2joiNhVMRuUpFlF9VwsJ5ULzbEwkwveAg2ysg8iVDl6VAz7jpTQpTMJal3GWCPSaXp3fAqu+CsamFL4z8ot331V+fe3hB+J455QeMW7ZcSS/wgvyKRaaE9KLrJo4xOIW/DrE6LEKMsTTQ+iuzKDUnawy3oBrrFUhcpo5P/3ws5wfZtmE+Pus9XEozlpRjDQPGxPEEv/lRzm8OeokVLCdjPdCIPTZ7qDPEJT0V5Pnm+YHbVYP3rbr7e4u359Op/RLebS74N3HCv9Iy8DMYYqYW6sZHBGQ7g2+CluqgVdz9Tk9h6mq+RyFXwAgwAzywAUEEmGZsAcZoPR9XvfWKX8/nlrDqrtVaG+mBto9sSrW/GFJIz+fd47Jhh7IHhS7c2buMo2yfupCeT7gu/GZI2LKQ1X+JkgOCM3IL6fl0rxKdP8T1rN/MqCm/25ypHVZIz+du++z3Dp0Hyg62+mhf0WuxopCeD6LyL6ltiKj8SxbqRVT+tSWaGrW0b9bXMSdo0Q8vc1TbYv4GTXZE09OSeQ2Ob0uSzekZfa3jkTp+oKks0dS45os1US1TI5ZkhsxpE/hbS9BkTzT9vmFN/C2PQeIc+Y2LQy/9XgM0lSOaZtlpj89/uFO8NfGqY/ye1QmgyYFomjqmw+Ps9jdDp/kPyP5XO687aCpPNF0b5BIdWFMXvCCllvNxTeWboKkCCZT9+Np/vgjx2+a8p+YeG2E30FSRaPL93fZSFfuk4Fz/I5KRNi0OgqZKRFP5rj55XR2T/XaOGTrg+fDpfUBTZaKpRcTYf59tGSOZtKdF3uW+DRxAUxWi6cTV85F7f3jqt2GLqP7X1j1PgaaqRFOPsu/eOn8KClg12KPE8NDQ1qCpmoBVBsqRaAo4eOxGu7DxYZnbr2SOz7q+GzRVJ5oS3vZ0zllzS7q+i49zXd9x7qDJiWhS7loWOO9KCfGE9a69zjnNeAWaahBNQz1UXb7IXIK2/dGs1k+XHRaDpppE07DJJ64MlEv8ZoluvF904dBA0ORMNO15kt8ye9k/gdMnR18ZcnvgU9BUi2hqZhO/JXfzdXHGO8cnTbZOfwuaahNN43rmTv/Zvl3oElWVps1K9oP2qkM0xR46Xc398HHR6G0nuqW4T8wHTXVJ5I9fD8+YLAqY9PnOmb3S4fNBk5C8a27Hi8sWtxCvC3WrNK32zvIMoSoXAYtQ1ZzdwmV9nNJD1+yp1TFV4nyQB6Gq5mwuqlrsnk3Zx0/LFq7PH3a21oil1KmrbGiSSh2DOH3BlgA3Iu4QkudlsTJ12gSQEAMnRFQANPC4Bd1BIV+NOasmGgydSLjKBL6+UDYYtXPYGaTHDXyNK6BZcBoVfxHkdxvZZqJvntvqoKnlh2UdXNrbjsfDqDxvEMICP2182fjQTmBW6ulrVE7sE6kAXQPjPcUoYIkjtVaJHT8B76dUYVMnsp8I5Rp44lqdoIxGS9jmbc29VmqrZFzmklerYg/kUunj+s9h0scLmvjOGyBcDTjhqulrFZkc86ijkZmcBzHQYgrMpYuX64QJ8sEKIUhA9CWs2Xnmke3r1w/r/l4yrceDCZ6h0n9oTEPisQimIdnCt/UqehCdXYok/3tinZ3BNjcSOBfyUBRJ+FPQgUSCtaPrUscT47pKp12e2SXz8odBph/B4gGsBpxgga5OxJ8WbPHnf8oN36XcQM/QzabckOHLpdyQYFysNFC5wXbCVfmYVS4BS0fvdtJs2eTJY7CkeyAelBum+HIddB9tXLD8XuWGXX8OuXDx94uhq/tduBM4OY9WJtQCyg0pnKgkWCYmGsAyLWqBiT/lhkdCSXLc8FrSmS2HlLu99Bn11JEllRuiOU3Xy1rTGZ6VG/Ja3p3u6RMdPPufPgfv1+hrY2HlBszLsB69H43IUopLuSH9ZeOvO6ZvlKzzfPwi5FOpwVag3JDCCU6CrxmVG9J/Lr1/nZNImr4lzuPE7RdPrUS5IZoToV76vK0lW952eoE89Evb6gFjVtUp86z+cOoahW0oyNGEUdJQwxcO/PTFcGE1ATITBjPEWPAryLtShQBbjQ7XKADOluivMPciUreRBiVO9PVL9Hszs2iyxYhp4GgxURaXkSqJgAXkYuOWFbAXKIQB+uj74th5EY+Vor3zks8MVJXKp+0mwbsRBxSwy0VlSnT/x0PN21Fign3F6ITCpjJBstgo3rETBhDZL1xjlBrQfUE7OtiOX1BFI9CcC19xvXn2c49p96jDUkrezByWBU1FAXaln134lHzbkFXey8bfrXu3OQ+ADeYEDPQoiyRReMyAf9NCwPbDlMOy5bClPWZLDq/asuSxNyNWXQ2cmh18cMHsi80rY0ImwBiyoUkahZ72jCW1Yr8o155upiXANNOe7be9TtK6eaKxLh9uKR9Xa8eDaXtwmjbMQqZF5cczOhmVapULLeTPkcbcsGJQYKPwH8QL5sQed43fXIe+4Yc4VIVf5b2stCfhkzajSCWbPbEhRgRGH7bA6Hel+p2fWm8TbejTz2lK9wPUskpVIflVB5c+4UlmBeTWK4yoGO8lUScAyHEKLvaYmILHYJPDgkLxkFRqUESkb9sV/cIMcyD/yohFhYftAOh/+CEKyA8Anf9aO1P5KeLQQqDA5QZYBglmG+pEoStZ/Byghwsgwf/hPk0LV6PVKQoW9ZLbdYdv27SwdPCeP1/tbuKfS1WvKt0dIx0wfQxxvSgfs7dkXr2IGzLJRK17p4u3XHN4WJnIhzDb+CFKpme5YTCbuiTcsJD59atb0epErSI6GeseGCcK7QTqfFy+7KetYWM+z8z97fXP56knMgqey5z+UhqLQw0Gg60vCrYbHhhshEtoxeYSzpav/65ZK3XYhD9fh3heHiWjfDeHSAXGYRSGJ6tUCF/AljB7kPdBIizWZ5WJP8lVyhi8k6codfFCNZimaAz3BPRdeo73ZFiB2mxElry+Hdvm21KA7lyTx75jEMbDg6uuCi1GxMYQQwKg/azbvP7ulPCVt5e+3REy4go1fcYexEyf8ctFDWc6K4GHlGEtRG4cKmWAxaiWtmNNnw1EzlmPnIbS1WDXQsLX5+/do+PaOUjm3b6a82qkfR/qMXeig6C3dKitvBOiXbGexIHW1HYWYbHbdk1NUhTGoX4hzo5nCEhpFSpP+Ddaz4DA/jDJjVNoaJQ4+GOq43bEAiQ0LHgEmFSn4qZGWpkemEwZJCbadYAnMQreiFEHMr2wUWDUQphTOIYtzBVw/i7R9WOQUFSI9819kvqDeE6J3DIHptWdQNuYgN8KsTGBXS4OKOZyQjFVH6haswUqq6n5R/eW/JQ/LoaSfwntuEr+KfSQt7F6yOncOH4gfxX1bkzfkrP89vR2Obr5/Q43HiC/2Z4L8ovtScjb8sbKrEBCbgZWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZCBIlycpMGGkn3h9xPmBGv/IDug/Iv8qgvMHOi+x9dPolD5Q3Xzb71ws55nFnS1n/1TYxA689rUi1fxV8sV+iUmthuoht4DCT8tIso62evxKWO46H9YHxB2BTSjjPJGgIhm3v0ymnRb4iAxzUHxkhLfMI7g/cQJ4YATPy48Zt8zvju22YkoYaKwavhqxAdl7QkKMVFLIBEZKNrefELNtbfa0pe23Fu4x9AWD1wJcIu28Y4oRgWn2FueHPhVU1PSWiMFZIlHYfuL1j3iKfoMz0itfme8iW8UiLGN0t/P2pVUP916gnBab7pR7hAaXjnCjt9GUuPnDlae6dyXGFDTYMM3LIwakeyT1j3yrpdPn8jhPb9gUu3vKu5dqYz18tuJ/r7U50IuSGHDw8fdPI/dwm+t1DCFF0Ib1PGIEovgkJzouVP6Qn1r0XsTvtVFrPfd82WsGuJQTpN06Qjhu5r9tQqsS/uX6pqqDLYBuL7A4q5d7Awwt9KofPePAhMrnUlR7UXUTyucxdRH1LcaCzjxOdLfo93XZsgfF59/BQG69Pkszl5/xzIoJ6MxfimZHQhgVcF+p+rp7qlqI2SnKffsDC0L0BA2G7DxxTS5jCn0MtQAkAbHWYC1Cmb9O69a2b9G3rfMnKlHeq1iu2rKYudmL7sSxhndJYlBenuzgTvbgA+OnmEKzOqD4GFSBc0WtObGCVx8BSgJHGDlXsqlpjbzwuFb7T9cy82Tkz/qV6Ihm4Fw1UoSYzpwQQpjqcMFVFrLSbtoVG32u22BYa9DRYH4FbaEJG7uiJQUP4ofZsfkjS+JxX27H3Qpf657zVta1Rm74OnSBPEuLrNIj1crbUvDF+H7nbg51LkQsTFSnwkkKjjCYCpEFuiX64i+MNUSvlhZoN3SUD3SZKBHA9j8rJ0wDqLURGOary2DYUvrgLXgf5LV13jj5zs/so0fLrpTLWd75AlS39AXsAM0XCLxc15ujn3Ezd3QLwdIHwlEONuVwwZQkQGcUmccDfh0skfcG+ZQ3CVjuHrv+s7el9P7QMdfcPv5+5+0dcLwqflAdL/m1RY3bIruej3DOHz1vDAz4dOPEB3ccSDANbjLjxEw5EewH9x7gqag5d5Zo4hY7LaCvWdJq1ZuMvAZNnnm9/YkvcbarR8PuZRiOu806uBVZx47RKXauyyptDpFWMCl8VMIeXpIghnC/SMJOi/41pX7urdE+fPgfnrDnrSDVMGHY/0zDEdb4NI/Ik3AlcZmTMV9O8ZAI/kXETMmc9BtjEQqUsCo9S/qNjx+1/G7H/r2aznWeOKkmTFMIfgJAUIhqKA5EWnIg0EJFxvQNbXN88K+SvPu18gyb89UVne/TWO6qN8U80nAzTXj/DoAZwYUq8MjoepJXwbKFcq4VqkHpWDBH+DZt80M9po96X2Sfx60bsgJcQETxRBvtFBGZ17zqZugNei0g1cPEkTOAXHmHC3wT5xUOuvE2rs/pRwP5+c69+2DK4A7XzsSU2+gYzB3+4u/ut00k4gUNwNIRNMAyN8ljtw4kehZc0oRzUgnwgLb4+AMsowP8X5JTC4eEj0QsGtHhu0YoqcF6LAeaEAgzqWAPAiMHc0eo3rui9iSe1Sfo2Bw87V5c6ce1cndFj3okN8/Bd/udPC45J0nrXaKd8FlyJqrgdRhFCZTpSNqSdw0A+AMKTDtyposmpGuQn6coUXK/FFAKnthu6cAMm2TUhVXMqauEG7lHYiBF6k2Q8QehNwk+i603S9SLpepPfrSdJvxGhJ8nmm2r7KzXA5xgjf7txxF/1Ag7uCJ54r01Fnz6zK1Llb8XM0SEuUtxu/eQnKW0rpIo3Tu1/rv/p8yYvLYHR4QTN6Y1iL/QEreXFJxFCjmwgfY9I8KNSW88mhPQPnzQyTOuZ/mzSd4gE01E6Me5viVBZK3D0+cnecxtl1OcBJRtOlD6LGBKAnGwXvNYCTIwMAIjOeqfGMPxRzBhGXC+OBW+sx3xELTS5emBIEf5U9B/zp3Q5HzP5000iLn86X/Q/f0rY55JCcDhjSLvAhfJJi9deChzMgz+lyzTx4Ck2iLg8xXJRcfvTjvabWuXPOBqR9ePkTk9Gn2rPgz+lLxLwgNJ8TpSmF6c/pcdQi/tTrMew+tP5+gm+2OrnBPThxA+ZzadEjbcZkiTpzvei+M1XMiJ5mBIkirimBLF6yP14I7OVJyE3A5kNoYFHunqEBh5JZkNo4JFkNoQGHklmQ2jgkWQ2hAYeSWajZ2gMxhr0isguRlfP44GxJuHNyPZmNPL36UgiRBVJI9P3/Bk2sWGzCV22kAebSNlskr37fq+JDz8G7d29Y++WwXnUc34/dJYnKlTM2ihsjs1VLEyCdxSq0CVMVOsUuLgQlOfm0rCl6y4iXsUQb2cfFa1Rq1SRMGLBiwVHPt90onnChS3zz8tzo2TjOvYqva79xdNsntC2m1ahgQLg5Mc2lKqTB6ogVwtW0YHCPzFKHfHdQYYBdzny01bRTEKWOWKo5jaSCS51BA60rUSQNlFSNkyuiVMmhipiKQHQHr8cCeudFr5uh1/vqk4qfJXqhbO6NpKNv9jxZAUMxM4aeG5Qp8Tfqgz5VqgBpZGnBCXGQNktEt4SdvAi3HopdAnL1VVESSZ8QgCrqCrlKgnUgioUiHQahTxB/zsmTKy/h+iqMqsPy3QVUJ6W6uj9n4e4/APnUt2XjmRc9rd6zOnyqta7PPoPJ7H/nZ7YH8BbmHQQmC9MInRzyTCJ0M0lwyRCN5cMkwjdXDIXmj2+yVqnd/6yvTd1J+dNrrqpUC7k2Stl9qCn78JWDynlVUraM4gRXKHXR3YkuhgvD8E1kM2SVlqunS46bLZy7d/EXOXazzKlZHgu197FxqVGl40XpMteVFrVZrwndXfeMuXav4i5it++s4xgBrXm9MiRI81Qrv3MiPqSlkeHyCaW7zj6rwaVqafLLVWu/Smnde5Zg3XMUq79r9e/vvY53VM6J/dig73r+h2zinLtVzmNc9YajCOwZLn2tnX8PzQvGRcyfXrmyYQzMbOsqlz7L5zG22VFQkEWL9f++8C3Ja+HVA9ZsejJmQMXZGUtXK59A6flllvccvCmYivX/tpua+1yJ98EbKk78f79/KcvrKJcO5ZDsJZrP6vfQAxiy1P/S+Xa6WUxLFyu3d+Pq1y7t595yrX3GH37/rQni4M3P6vul19nvYj3cu10cTMeSpBL/bhKkPv6FVe59pG3UuZnDcv0356ntm1wYMcX3su1030ED1h5c2LVyO//q3LtwWxu7H8i/N8lwk+vJmQ2Ef7Fflwi/D8zfScPIvzRPb3eH1V6hqc10CQeLdtjCo+nzXn2kXDBZKEfl2b5LKaPLA4R/svlLgwRbG8i2z3q8bxL6RKxxUX40zlR+dm83pBz7mDcwR/+RPiPa3ckbX+7LWylzZPfJrZ7uMFqRPh1nKYbZBnTmV2EP6SmOPLn1ArBK5wf/9PJJ9+Sog1w4RXzMqwq6sDLmE2Ef6L4041nTSoEb/iwdXsbzVFqv7WMCH86Jzg/+5lRhP/P/tvKB1XcJpnV7o3P4JoVrlqBnAVESMeJEBjTRN4Wwpa3ycRNmn7rcEWce7fOmkuLX1MFaO2xQ3xJahWI6MyczZYFZ5+CLRJlwf2EFgZAXKNOjosHORyscq2ONUrLgV5hkfVtmaoHhRoN5faBRKiMBOCbD/DNpadJFwC+d9inmAYerKpa8FrgKoEFOnnq9/5z/6HHA5ZEXd3s/4eEphfyPbW76MXmaY7RxBQKyt7+IGGrYpcF+u4/xqVQ5fDhG6OI0yjQ+eU1px+zp9afH5h96ev8wJeu1LK/paXYjYgTUvj14pD9fevH9f2fWDxZ0vdMIxIl+MpKdYwymkPbppb4lEznly7NWtmg29KZk05S+yr5AGZf1bcUhzHucBrjsnWkPwJjdiw8QxLVOhC+5NFw7dTVuwOYsoKZRYK7sFmH6Hi1JsZd2LyDdohGh/2CzlZ/dTk7cMqa8ODxk3Ye6VnJawE1rsEPiNKlqhD1LwuaisNYpzmNdcgqRg58lFHZarWChe7EZM1ALccICu9sEyRt+Ew2Q7qw6RSfpn1NmSqbOnXwJhw5POp5gaEL1Uy27oORWSrhyTmyrZ4TMruNvxsesfDt7Dy3mY3qWnbaCwB47kcAcAMBAHQtRmWiZChjF5nw/dfdq+7CqUHbU2VT7tcKOGLRw74QgAtcAHQ/ok80Q/9jfBx6YW6z8XEmSLj4OJGS4ubjVLjV/GmfqknBcw91Hmv7askzK+DjjJNw7W4Ok1gBqSA6OtoMfJxJ5c+Neng3LXj73Y/T/xj6Ltkq+DhJnNaJtQbrmIWPczRp8ymn9GXS5bVfXIzstNPJKvg4fTmNE2kNxhFYko9TJ+2vT8ee9AmcU6PqL88/hE23Kj5OIKfxOlrGeNbJx7m9a/bj3/6qIDowv8mB47W/PrMwH6clp+WaWNxyxcrHmXvlxDenPTFBuQ13LC9bcUCqVfBxsByClY8DHCGRp4b9X+DjlD9+PTxjsihg0uc7Z/ZKh8+3MB/nlISLj7OVmdIWCx9H0r9Xycipr0UzJ70e2npLwkre+Tj0uTkPHJMTEi6OyX5JcfFx4ir0/7n0gJDwBbc2vrnQIrAR73wcuo/gAautnFjlmtfnWpqPE87mxoYcUjZVhq+V7DoYoXrysM9r6k5Jl2R4djJAI0+KZ54wNWL7ooFUqU2Cp8f0uzmpHvgpU6EcaubFwU9Az7vndry4bHEL8bpQt0rTau8sz/p+zJ2cwo2M/mcXBVxYROGjWIheST/3ZGCv1D+NXjipMYg78LSfowT+o53/jGksCxzb6aRDlEIFDKaICQJ+fSj5OMysuCkj2EzpmJ8hrez7myTH58GhTadSpDQVDLQBK+HeHWEzQVm8iXLIiggGjMNXfCl50A/Jf4eSh6HZQQkWK3mDjOyGiCiRe1hMoN6ZDfWv47euqOJp47ezr1P2qqQwahhBnb4sW/zIG3xik356j6cTm985brgs4taBbpEubBZZOjMj+UXwx4C5Qxy12ZPdf6SuifpD8oyOmZGxTi/xG4RaEPXxepfJWpjyYrXa4tWqGCjHCCmBsdjfYemwTh6nNSgHoR+RLB2qjh6siNHfhHp15nIuft1QGVAA5kwI5mY/BKkPiqoP6YCQX4IQwXkcQn4J/qPLL4WPv9sx6uRz0biz29Ns30Zcocsvje2RM+pWUt/ArMNL5z/OmtqRbC8pMFGeif7BCHkmNkvbQ/UAwoxIa906/fFLcs8t4avHtVso7irvYIq1+JfDhxpC0K4VUSnPfZDyjO9gkcKT9rC+Y38t+A6JcQUOo+B3zNUM9/aNHIlQiWKzVWX/gtEGEiJdsgaduC6qvjvnSMI7/z03tz179eOnFpwmKyPBn4TQOiYaisNowzmNNsS8RiNdsE2oBHeo8JZR+nGP2YYco2zJXj0pUfpamahVaDDWHfgIisNE2ur03K+RkQtGSjZVTfMPutmOMbzKhCXr5ANVegELAW2zC36qNzNceRep9fWd4YrLqHGcRv2xA0Pri7OAAtHZFbg+CxI8ukwKZ0e3gZ6OWaYDu8p3F0/zJPzSYTGi0r3IC+viREiPZAvpXR7ciyijOh+wZM/BkqN2ulCrn5aNilfG6oSwriw1rMN4xVbT2jkiNhZOReQqFVF+VQkL50Hxbk+0oAit4CDbKyDyJUOXpUDPSNYLUzCWpdxlgm7tTeWROWDVd8HY1MIXRn7R3h0yBD8nCyVTttXz76a9eYBe4AX5FYsm3tOKrps4xuAUXguxOixCjLE00KpsbxxrDLegGusVSFxiKqdHbNp2Q5Sp9fxR2T9vHmNJOdYwYEwcT/Cb9+f85qCXWMFyMtYDjdhjs4c6Q1zSU5rq0TUuz2jsv/nM4ZdfT5VzofZLeLe54A/hhF9sGfgZDDFTC3XjIwKyncE3QVqEXnH3Oz2Fqav5HoVcASPADPDABgQRYKLYAszpBfLQL22rB4xZVafMs/rDqbritlhRrChpKJNuwhZe/Kg16YiCWsIYRSz4NUY4MLVw4TZ3MGHE6fhwHkmcTBtp0ARyoW/S/Va3Uv23q2x3TX+81Qv93syFWbLF0F4PUhrRrOMCwX5UaHoDMBbNPM5/8TrnaYtvflxQO2BDj6nXynb/OInmcuHdiF087HJR8WjRbXnp3Ot3xcta/PBIFhN80MR4BItmeUOAvFE53wXgFu5TASpqguOEAUT2C9cYpQZ0X9COZmeKK3zrPrJunuRg+Wt93w99T61pbCclb2ayMwuaigJsRy1F7uKQKeKxYdfTM/cG5/EA2IyZXICBHmWRMIYfiYF/00LA9mPcmTF7zJYcNMajXzNHyU+UDMn8kvLx2dWRJyxKY4SWeTODyzJLZ1jGMsjTe4d4rm/Yd8uw/Qf9OoqyAht2+7BkX7jF6htu9iRcymbUxGmAFzZCiLjWlS2uCfde36n7baZ4dfd6jssTvanlP0tHqnWMEztck6a6+A0gqpHnxjTwnSGpUj5UqUVPnLpeaVSv39G+AdMqbT0b8vcsf9QrILSnseuGMsHdgDOZexwvbcQITxVBeJqRaVx46o5/P1izEHsR5Dd7vHv859ryf4JG94t6OOFlXhfqN8MfwfxmxPWi/G1Mvm3pUMmU0Jygjm1WvL3w3ER/KwIQpUGIpKhRHQhGtfdcZIBinUliFoKHkaDpkfhs798xt9ri8dLRRx6t/80/i1q20EYMbmMOJexqUdjQxygP2NzP5MKG1n3gg2wFHGUZCrBJhAf/XZWJxHkkLTp+/7O+Tqe3n0eG7H3bePScurP7UxMdMXwIM9HBLxeFlbZkcvXw2hWDZ235a8ugd7vas2LVTavAjzgViMYagZ+IE783c6wnYhjJciqPe6IYwuUhzTfg0IF3zvv6+o/Lz+1V/k3rVaY5AhPjxgUPYqTb+CHixg1PrDcTcaPbd+0l4z3P7PvJRo8qetc3ZVSZuKkMCSm7Zx8ntzD/Hw== true iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvgAADr4B6kKxwAAAAtpJREFUSEu1lF9ojXEYx59OS5IrF5IkiTVriWgXS5HWlFwQbpRYyr+xkgvFLpQMpRU3SEmjmLWEuZLcKGlpaRe7WNKulnQu1trFWms+39/ved9zzvu+59z5dr6d3/d5n3+/v1aNy2Y7fdgI6/w/xQWzbT6sj4tmW3rNlnvMmqUpdvOS2cfwsYJVcBF2BwXOmK0hZgn/O24qBskOq8DZmES6U5rutgeHCu7BBbgjKIBft4oQc85NeeBwSAlPma10kwIn4bDLBCX4FU74OIAZ3CLHQkFDEfqQ7ZigY95Zi5sStMFl2BVURAm/cWJGXedQIlkZp+uuhZLPYsh1NX7CB3EYQfKT5FhkP1e7qRYkeoqDpp6CgqcVdN5srZsSvICf4zCC+Datgv7dVAsq75EDnbS6ybTp2GYpdMVNCZ7AmgI0sk/x7PQmN+WgJZnRhrkOwDaE7ZPLBCPwQxxG4DNAkd8ui4HTY/jDZQD6RkHgOHwYh/E+0MgcM+1zUzG05jjOuwzA1kuRPy4FHWXdhRNBAXyew791NzgBiXoyybRE/XDSpdAJdUw3SDC7cIfgEemGIPkI/OIygMBvcNClcB9OxWE43tN8f+m6PvaaNeFYc2IIboZL6tJNwhh8pgG+LcToDdst3RB03iVnbvNmN4VNJ8kvhsmz0AT14IX1J3E4mgX3JA+SvYbqLsBPxjw2fik2Qq1/hwQfWlWAzU0fv0L4hVIymoqg8z5ss5mT0Q5VIFym42YrPI6JNwBOB9VJ9VSpNE3ggMsE+6EKpH74vIHpzAtBt3cpkB5FdLsKFjy/2kwVSPcpeWJo6ICb8iDhK7p461L6KkEzLquhzlVAM0lB7CicqnvRvIDelwAVg+9cZqHC1+Iwgu7XwzJNvde+uLkCkt1WBy6lx+Ajl1noUn2Pwwrw76DAHIUm+N/l5ghmoAvT71KbPozjUZdZaHnKcVgL4rbCQWLTd+o/wuwf9N7EUShQvi8AAAAASUVORK5CYII= 1e8725f4-37c6-4b42-8707-fa6926b11169 DIFERENCE CURWATURE SHAPED GRAPH DIFERENCE CURWATURE SHAPED GRAPH true 37 05a8c343-ff27-42ad-afcf-fa1ff667cbe7 0f64163b-c63e-4c64-8cbb-8773b580d59b 1cfb2837-6c50-4ee5-aa8f-99081347aba7 2b037c5f-58a9-4cb5-8e6d-67c8f9df143d 3d530c4d-e834-47c8-bcae-1b4fa53e44af 3d6b44d1-1154-4b09-a0d5-a25ea070c226 3ec98c82-8319-4c33-b41b-a024084f3a31 407bf4a9-858a-4660-9705-8e8f33050563 44da1bc7-88be-456e-b69f-45137693f9fc 48a0e7d2-c487-494e-9796-eb3b184479ec 4eec2e88-5e20-4514-909f-8ce5a6c4aeb4 566f2ed4-6b95-49f9-ad73-6761a75a717b 57c8a8a1-8116-4ccc-933d-b8e54b24f260 5eca0504-be11-4dfa-b0cc-3a8181406ff3 60a7fdec-17c1-4d75-b76a-594839ade29b 62dd3e82-b9dd-4a0d-8238-0d84ad1ad8c4 651fba8e-310a-4fb0-99f4-57c6a81c0def 6daf543e-8b47-452f-927f-1fb8d01a3f6e 7847ebb2-91c9-46ab-9994-605a8fcfd224 83fbba3d-44b7-4802-923b-8e59a8614a3a 8ccbf885-f178-4841-9249-66f8ea932254 8ee99086-b8f9-43ee-9bd6-fec9ccd7fd67 a59ab02d-69c2-4571-bb5d-457becd6a4ce af2d2cb2-cbd1-4763-ab55-47294a5f0eb4 c8100f49-2687-4e17-8c09-44290a64e5d2 c8de52bd-b70c-4863-84a1-797c4bdb334b d17d9c72-dca0-490c-a89c-6d0ff75c8dfa d6a5a595-fddc-4f1e-93a0-1d97caef0559 d72e8780-913f-4c19-ade0-67c1bc74babd dc078884-ac50-4cf1-ae81-92173c776b72 e18d388f-be39-4181-8c9a-b9b6699fd507 e458e107-80a1-4187-9513-8822082224d1 e6adadf4-be79-42f5-b3c1-7fc3b6b0cd49 ea5bacce-ee91-4be8-a5d8-d159ac821594 f0683443-95a2-4914-b42d-62d543c955d4 f25480e3-66b7-415f-b4b4-f9e6199b06e8 f8b4cc97-54ee-4b3e-a165-111b7070d704 81fd98cd-c9a3-405d-866d-edf2fca2467f cb30ccba-a894-45cb-b1d5-847ad7005125 daca2ebb-26cb-48f4-8885-277e43200f92 20d03587-b988-43e2-924d-d6655441a5e8 937bac2b-aa3f-4485-8435-a74b05842dda 2927bcb1-a8c7-4996-b4cf-1e0b73fe722c ddb00df8-65f0-4650-a3c7-89c56da7f06b f12cf189-9dd5-4b8b-822d-2da85bac7a45 bae8f0e9-2af4-409d-945a-a91a08fdc45a 3d99a0d8-87f4-42b3-ae8c-13046d610738 88db9398-ca86-4220-85b3-d1387046010f 1af94696-7c3b-4341-b4bb-415b935cb441 326b8016-5135-4828-b69a-a21c171e1a06 4a525765-a9df-4f3b-8fae-c2be3081d0b4 a7e4f8f7-1ccd-48f0-863e-6ed19022d27b bbece122-0a0d-43f9-bd1e-b6e66ae744df 9c973484-e313-4490-a780-3cac6484f2c3 e860b9e2-e037-4c18-988a-393d0094d8e4 a43519fb-325e-4058-bda1-f7e34cc92c6f 53133e66-86e1-4322-bb85-7afca5c21f4f 233b0ef6-f843-44d6-99fc-9ecf077d1b78 aa2a8593-f318-4546-bad9-74c7978a14af a67255eb-66a4-422d-aed0-4b64cd94d270 36be5f7d-3d93-4e60-9b58-2ea01268c3ff 59e3ea83-51fb-46fa-8bda-938de18b7cf2 7e2338e0-fce5-4964-bac7-ea6c242afeb1 43f684c6-6920-481c-81ce-8a3096268d23 df2cb580-23c8-45cb-aac6-97ce3b2e2214 16c32cca-03cb-4d8e-bf89-f521eb08129b a317f3b7-85e8-46ea-bfa9-b8f70ca5c382 130433e2-dd09-4dbb-8e9f-946a284f4836 17750273-1d4e-4a10-92b1-f4b16af3b73c 8de15979-110c-49a4-bf71-f92c5c15659e 9a110ceb-3e62-489e-8e19-61581f5671d4 eabf9208-959a-42b3-8af1-f5ce33e4d91a 735da924-e3a7-45ca-9564-36c125627c0a b2a58353-e9c9-4e65-a900-6efa66489724 1562 3202 103 404 1623 3404 20 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 17 b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b Second item for multiplication d17d9c72-dca0-490c-a89c-6d0ff75c8dfa B B true 00ea1faf-8f43-4db0-a493-cd9e04efce41 1 1564 3204 47 20 1587.5 3214 Second item for multiplication 5eca0504-be11-4dfa-b0cc-3a8181406ff3 B B true 00ea1faf-8f43-4db0-a493-cd9e04efce41 1 1564 3224 47 20 1587.5 3234 Second item for multiplication dc078884-ac50-4cf1-ae81-92173c776b72 B B true 00ea1faf-8f43-4db0-a493-cd9e04efce41 1 1564 3244 47 20 1587.5 3254 Second item for multiplication f8b4cc97-54ee-4b3e-a165-111b7070d704 B B true 00ea1faf-8f43-4db0-a493-cd9e04efce41 1 1564 3264 47 20 1587.5 3274 Second item for multiplication f25480e3-66b7-415f-b4b4-f9e6199b06e8 B B true 00ea1faf-8f43-4db0-a493-cd9e04efce41 1 1564 3284 47 20 1587.5 3294 Second item for multiplication e6adadf4-be79-42f5-b3c1-7fc3b6b0cd49 B B true 00ea1faf-8f43-4db0-a493-cd9e04efce41 1 1564 3304 47 20 1587.5 3314 Second item for multiplication c8de52bd-b70c-4863-84a1-797c4bdb334b B B true 00ea1faf-8f43-4db0-a493-cd9e04efce41 1 1564 3324 47 20 1587.5 3334 Second item for multiplication c8100f49-2687-4e17-8c09-44290a64e5d2 B B true 00ea1faf-8f43-4db0-a493-cd9e04efce41 1 1564 3344 47 20 1587.5 3354 Second item for multiplication af2d2cb2-cbd1-4763-ab55-47294a5f0eb4 B B true 00ea1faf-8f43-4db0-a493-cd9e04efce41 1 1564 3364 47 20 1587.5 3374 Second item for multiplication 62dd3e82-b9dd-4a0d-8238-0d84ad1ad8c4 B B true 00ea1faf-8f43-4db0-a493-cd9e04efce41 1 1564 3384 47 20 1587.5 3394 Second item for multiplication 407bf4a9-858a-4660-9705-8e8f33050563 B B true 00ea1faf-8f43-4db0-a493-cd9e04efce41 1 1564 3404 47 20 1587.5 3414 Second item for multiplication 3ec98c82-8319-4c33-b41b-a024084f3a31 B B true 00ea1faf-8f43-4db0-a493-cd9e04efce41 1 1564 3424 47 20 1587.5 3434 Second item for multiplication 8ccbf885-f178-4841-9249-66f8ea932254 B B true 00ea1faf-8f43-4db0-a493-cd9e04efce41 1 1564 3444 47 20 1587.5 3454 Second item for multiplication a59ab02d-69c2-4571-bb5d-457becd6a4ce B B true 00ea1faf-8f43-4db0-a493-cd9e04efce41 1 1564 3464 47 20 1587.5 3474 Second item for multiplication 44da1bc7-88be-456e-b69f-45137693f9fc B B true 00ea1faf-8f43-4db0-a493-cd9e04efce41 1 1564 3484 47 20 1587.5 3494 Second item for multiplication 2b037c5f-58a9-4cb5-8e6d-67c8f9df143d B B true 00ea1faf-8f43-4db0-a493-cd9e04efce41 1 1564 3504 47 20 1587.5 3514 Second item for multiplication d72e8780-913f-4c19-ade0-67c1bc74babd B B true 00ea1faf-8f43-4db0-a493-cd9e04efce41 1 1564 3524 47 20 1587.5 3534 Rotation angle (in degrees) e458e107-80a1-4187-9513-8822082224d1 Angle Angle true 0 1564 3544 47 20 1587.5 3554 1 1 {0} 0 Contains a collection of generic curves 7847ebb2-91c9-46ab-9994-605a8fcfd224 Curve Curve true f654ad66-626e-4a53-b0fb-b97bf8db47c6 1 1564 3564 47 20 1587.5 3574 1 1 {0} Grasshopper.Kernel.Types.GH_String false 256 Contains a collection of generic curves true e18d388f-be39-4181-8c9a-b9b6699fd507 Curve Curve true accfc6c7-d434-41c2-8fa9-df26450c2afb 1 1564 3584 47 20 1587.5 3594 2 A wire relay object 8ee99086-b8f9-43ee-9bd6-fec9ccd7fd67 Relay Relay false 0 1635 3204 28 23 1649 3215.765 2 A wire relay object 3d530c4d-e834-47c8-bcae-1b4fa53e44af Relay Relay false 0 1635 3227 28 24 1649 3239.294 2 A wire relay object 651fba8e-310a-4fb0-99f4-57c6a81c0def Relay Relay false 0 1635 3251 28 23 1649 3262.823 2 A wire relay object 05a8c343-ff27-42ad-afcf-fa1ff667cbe7 Relay Relay false 0 1635 3274 28 24 1649 3286.353 2 A wire relay object 3d6b44d1-1154-4b09-a0d5-a25ea070c226 Relay Relay false 0 1635 3298 28 23 1649 3309.882 2 A wire relay object 0f64163b-c63e-4c64-8cbb-8773b580d59b Relay Relay false 0 1635 3321 28 24 1649 3333.412 2 A wire relay object 83fbba3d-44b7-4802-923b-8e59a8614a3a Relay Relay false 0 1635 3345 28 23 1649 3356.941 2 A wire relay object 6daf543e-8b47-452f-927f-1fb8d01a3f6e Relay Relay false 0 1635 3368 28 24 1649 3380.47 2 A wire relay object 4eec2e88-5e20-4514-909f-8ce5a6c4aeb4 Relay Relay false 0 1635 3392 28 23 1649 3404 2 A wire relay object 1cfb2837-6c50-4ee5-aa8f-99081347aba7 Relay Relay false 0 1635 3415 28 24 1649 3427.529 2 A wire relay object 566f2ed4-6b95-49f9-ad73-6761a75a717b Relay Relay false 0 1635 3439 28 23 1649 3451.059 2 A wire relay object 57c8a8a1-8116-4ccc-933d-b8e54b24f260 Relay Relay false 0 1635 3462 28 24 1649 3474.588 2 A wire relay object f0683443-95a2-4914-b42d-62d543c955d4 Relay Relay false 0 1635 3486 28 23 1649 3498.118 2 A wire relay object 48a0e7d2-c487-494e-9796-eb3b184479ec Relay Relay false 0 1635 3509 28 24 1649 3521.647 2 A wire relay object ea5bacce-ee91-4be8-a5d8-d159ac821594 Relay Relay false 0 1635 3533 28 23 1649 3545.177 2 A wire relay object d6a5a595-fddc-4f1e-93a0-1d97caef0559 Relay Relay false 0 1635 3556 28 24 1649 3568.706 2 A wire relay object 60a7fdec-17c1-4d75-b76a-594839ade29b Relay Relay false 0 1635 3580 28 24 1649 3592.235 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 00ea1faf-8f43-4db0-a493-cd9e04efce41 Digit Scroller Digit Scroller false 0 12 Digit Scroller 2 0.0625000000 1149 3171 250 20 1149.177 3171.168 f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a DIFERENCE CURWATURE LINEAR GRAPH 7J0JIFTr+8dHZW1DSKWaEpGS9r1mBmMbS6i0NxiMGBpLtKpkV1QiVFRaqCwhO3Uj3TYtSrt2ad91b8vvnHFGZ87MOXGdMaf7u/7/26/mnTnOfJ/3fd73fd7n8xw5Iy8nP08Wx/cH8CNFIpGkgf96eHv4ubI5i/1ZXB+2FwdssgFeBpvBH1nwLfzPmbKYziwu+BZpqFmB32RmBL4sD7w0/tGLhNVhhy0SvnCaXI2Wf5a14bL82azlYLsC0C5j5wZcxbkn9LIly8fNPtCbBTZ3hn5xd6jNyovryfQAW4YAr6ampv7gf8qO5cFy8mU589vYbPYPFSOWC5vD9gW+hQ3Xy5vF9WWzfPiXBf/rYsT05f0eOeAfx+57RsSG3pLrasTyceKyvX2hLw/eIqmLFdOTxf/Xy84Opib6+g/ydjTuCgf+fBCfCfx5Pz77fnwu7y+8f+amgX/GbuL9GXM/Nq7lnTUJVuDftwaDV9gOfuRB8r6Wv9/ftvX+triWt92PP9Rytea3NV+kMf4Y+PqOdQK/mv9Z6Jag1kOCt7fz5++NSOS9OQrr74npLReE/oRewfwU7+/QN+L9RtgNHGq5N+g++bf98z281ubvCP1S3neHVOVdAdKH/1lhJZsVhtRu/kV8Q0B2ga4mYD5IXp5l9fVNTB3kbYEeBg4FH/4wAX+681819PJrHkCd+UMA6GzuQGeE+k8n6GUZeybXlcV75wDgnzu1SaRp6kDPmufl5ckfQUrzzs+Qng10Z4FfJQ++IvRr5G2dvBnMQC8/X/h7FUy4Xn7eQm/uZmJKZbAduUwuNASkoJElLfBW8BXZ5vcF8u4Z+rgi1ceH5enoEUj38/CADwWqjZ+LC4vrwvZxG06e3ewxpo3RNwD/bzjZ0M/D14/LmsZh+flymR7DyTZ+jh5sJwtWoL3XUhZnGge4Wk/+pWf/9DfglWWhq8hQ/XzdvLj8l7tbsp3cmCwPsg030IvbycyZ72VSG3ZqLB41m5Eps5n9vUFhhcCIVfh5m7Iov0fpp7OwdgTN1yKTNPBH1+bXBMQCX5dpfh3UqBOkXxeTWT9936h9tpXzMw/RD+7refbkmo/bBe5KmmcreUMvji+TzWn2ozrQVWRoXlzItfINI2Po5eHlx+V7OPB/RfmqAVSyK3hdspcL2YTL9PFx8/IGfB/Zq/lbdTIz4vUe4L/vi4+kHJ3eaBl6ICNBxc7PGGiSgpq4uUqOIf0qLfbrXHHWrP/4CmjqBDX1O7Y4uX4myzQrKnvt4Z5TLYCmzlCTbC/1fBdFRauSs38rcLyDaUBTF6hp+rUGqz4ZKYy069dDi292bgSapKGmCJpRhHyciem2XQ1bV/uHbwOaZPh36NrrVRnzuvX6u/H+pyimTUCTLNSU/3j5yUqZKqtQxwdVod+jugBNclBThifjwBelWMuCer1nCnnpVKBJHmp6OfjD2WmrZxpvMr52lq3gugxoUoCatFmD4lXmhNMLIpfIkvSylgJNXaEm/x5yZwpi9Rnrbs8+bKrfWAI0dYOadm16eNO7+2XjOPtJ7BDNyVFAU3eoSSMyrMtovVvWB+pfr74xLe4G0NQDanoR5Pp5SXqa6XGZeiM3mVgpoKkn1MQ2P0l2sXpO2bJv/PfnqpTXQJMi1NRFWlVXaZg/I+vTY7MjoV8nA01KUNNxl5GnAujTTffO6uG6RlrhA9CkDDXFfZ//0iyAaZFzcnuj8uR71kBTL6hpmWb83ZO0k4yNWwavyYhd1hloUuFfcEf/69eTp1LDqPOUbHa6TgGaVKGmzQrdz5ByjlgdZyeuiS9rLAOa1KCm4fsGRfRebme8P+A+9f71pL+Apt5Q063M2Cvap2XMs4Z225htOUgaaFKHmhYNVrGsJy03CbOq1Bk91vko0NQHajL1cddc2vMRLfaHlGNyv1J9oKkv1ETK2OTkM8+PXvbJ6tSc0Ze0gKZ+UNPlxJxlL2avMI5ihuraGMqUA00a/Jvf2yOHmapJ2XBp3qgCr+GxQFN/qOn2INveEZdDTY+9s8jRv1QOGmUA1HT6RMJnWo8e9Pyzo2znZpWvB5oGQk1/viyP+fa3rFm6vd6zoSE5/YAmMtREfR52arF3luWm6r6Wi8obwuXMjBYLeJBBoGc24/j4MjlOLBM/doszUzJQ/bTX6Lt56pgtL2Ne3aoX4TbkrNhOS+EvkxSovr5ctqOfb7OHh1w330VJ4eaiBnagiyrtveRI6vwwq6Kzn8JsdQPtYC6Kvl+vXPbVS+u8F511GlhfqmAu6ii7Rt58Vj+T9U/u9FxNsfgAc1EZh30mnLQwo4f0lmbQqyepwFyU8ZqKFEpYk/mmhckc2vN8PZiLurRAVqN42W7DvClqH0fPldaEuajyOZ5X53/0MwsZ1SeAHqx1CuaiAkIrV24aNp6SOqIsTU5zVgjMRbH3rylhjb1slhZDmjRDvyIZ5qLUf4wiXXCVNolU6nM0YSKlBOaibJwtDrwI9KBkHNcOjRzT9QjMRdkP1dO48qTUMlHOkxO65ZItzEVNyXk/aNK1WquU0lWaNaMHH4G5KM1A92Fh96LN42t2VNmnDl4Ac1EnI/6IuxrJtYpcfeLm/jU3FsBcFGOnrHpAX5b1oZOsG5Wf1KfCXNTDtPFvBz8ZQE3l7nR4KVu+AuairDa8G2QWV2xWGGs5R+GM2ieYi0oq+vbg0I40Wr6nzKbE9Hf6MBc15jKLMW2mvElwflqY1qq+u2Auinsj/mCR8iTrtA8n/p474sgjmIuat46TPzwyySqB5piY8+OdLMxFGXlr2eYr2JnHXahr2Gg1SQfmoqhN3zjqc3SNd12LemLAVRssNF7V0cbr8JIHs/MXbTDKrLTf821KbQ0O47UTbuNVuwPHq4h1A3+8ilg38MeriHUDf7yKWDfwx+vKGx69nu80MyoILrffd0b76n9Liv+WFK1YUiBnZdiSItiwc0GGphc144qxxqUTqYqwJcXieV/qF1KHGB91mMwICtwnBVtSDNceq37aUp2ewjq5wPMqtQS2pLgyezybnLHP+FBiVNrBL4fHw5YUi48xpE03PjVcp6tXPllp2mUhZzMQzdkgl+04OJvOuDkbtQ50NiI8Ct/ZiPAofGcjwqPwnY0Ij8J3NiI8Ct/ZyAWqa70qzLWKOOuZsav28QOYs8loOhy7sPALI4ZG/Thp9ZpQmLMR4Yf4zkaEH+I7GxF+iO9sRPghvrMR4Yf4zkaEH+I7m+Q7hya73/9Mj9zuNOi5+4qvMGeDHF5CnbcnWudFThA4dN4uaJ1X/6njoK/cJottc6/WjTyYriLwu7oZsf3ZziyyoR/XnyXYh0HDgmYS1Tt1oY8xyU7gB8lsjq8XmbXMj+lB9mBxXH3dyD4sVzD+6SNjynZ2ZnFagi0i5UB2YfRbFFJFoBWhUEvMiQYYxZn3kib475jjlaS6tEoS6QGNRAqiSduw/b18+Wt6kkE+0Lqvsqs3k8v0XMzmePvxAhuykLai5OjJ++1kQANn3t2I/JI31u8pXpjYn55eOKG+dk7YdUGbi/520MvWvN/WHPLlhbhk7AAX4sTiuwBPm1CXUd03WGyrsbk55evGmK7NzUJBrVbqEwToUw3q84ZKIqVQEfrIAa0BaQL6SEH6dELRR9nKz9MRdF4uLf1CpER7utG/hswYZrYzwcZjzq3aMQiJwK8jQiLey7+SCDmB4iCRDqZEQBfqYQMG2Xx8ge9rxPRltowBkqiAowyNC8jhRoINY+E3dbFh+rrxv3nnlQaru5j5sjxJpJ8HEzIcntT8D4Hvg1sKvLQMhqV623l7sH1brERm+pKXsjlLRZur9Ovr8uH9zzMyC5d/KlHabyBoLgvwc8Lman5ZyFyi7CHC6WHZI2wflj0mSsYeso5eXh4sZosDJHVrtoaXny/CschQnZxYPj7wy4v0NaDDA0O3ZG8vNtpA+hj8rddrqyVWiVti2aY+9L8FLCNjw/ugkGn4r+Ntm5o8yJ0soImwzYdcnjsRkEWq7bIMtmdyXAHDkv2BudCLy+u5zq1QqsFM4VKXz1tMQkZZZK3jHPxDQCk56KLCWv1sEYdaOphqAZ5FQK1ObVdL0wb8PMsX8Mn+TA8/VqvlWvrkflPDjcmm2XMz113Vvj0Gcb7Av6qwYPA2cUjGG/yokgGDH1omSZNQlklnkpiMb5N6m6zfP0C2UXNlmWBHYACrIrKdEUN4iSSNIjHNkMti+oJLJA/ws5BHJTuD5yssZ7JjIBlQl+vbLPZwsi/UfZkcZ2gJpb+6VWsn5Bpf9H0Ld2B+Sys1dgBWRQZ7AY1LRK2ZwgCNDfYIrZmwZhpF3g3ANBD57dK/+t/rbxVuknL+5PHa8pRcwSnGDvy08BTT/DLevcwUUIAMKmAgqpclAH2wZo9EphgFQy9gl8nmQKf4Y0joP8hFG5aB1HkG4vdLHWc2t/k0V1ekobwfVSX0YPUxTZd7qZX4TPkvAUPJG/E/LGQsWJM4DBa0B8tgBpIxmEzzHCVorDczsIz1q3VbV56xmh2HSPts7qH1/HPOO1pxfY7mqCnLjARXBAzeB4VXBNDr4rBMfSqWZWJSJb165h/6g5YRWrPJkNDn1m4MmL8XaQvkdk3AFl3AjwtZovlVvO2gkwu5tCxg1eyNdOo1x3gjBJo4+b3vXzNxIiNgYpw4CzKwJs6CdJHBhvZNnE/qPFgrB84w2Vxh8eWmoSylPRMnYiuN3Fy0cysNOoODGVjOwCHj/3devUTLef92vInFsduuvk6H5+0lyLwqh2kwoEcTZl7l//ycX5HzKtZg++W8OobmmyS3NNNqDyUoK+XV89D2zauIkaZ2p++9H0Fb6XH5FP/E21um4jDS3NKxDKcuIcN1yLQ7Rer29Mf2TrSsK5FSatKlFhKddnkeD3XaBQYQNO3yO6fQtGt1nH7hDOmUYdC8PlPYjeZKAt+mh6Wfhy/b24PtxARvXXjyRevv/SwBW7E8gU85MT3IngJXadWsijwhwrotIbkR7a2UU/E4INgBQM4oGti1EXLyvNWByu4t8Qd+rwZl4IVIzUBHIGBLnlfgvWzmzB+Lc52rN0mVyxsVvept2V2vVw2/XQqlvas1r9sKjQa55tfRL9x8P7zbJZGwzx3609lcH18yGxhOZBcvLsJeIu1TM0Bea3y3AZZx3TbFfVk431XAPlJUIZMALyG7vxTCSyGP3NrppUiAOQ+C5jQQFcq9CpjT4UAlTCSpX4g0wI7l5AUsDtui0kD9jxT7i92NNuy9F219oUhOUCWasEq0X6oUk3MgIUhtMyP2GiXo8bCbm3FQSQ5TpYL9lVAfbOlLWP5T3ZblAwgDntG0QiDkzCQ47TVfSnjag17H25825EE9pgnQgox0AB55PKUgfyqH5k+3N3zcOWJWFKPwT+sTJj9SBgtGNo0DvLksHx8hX4q10FMzBmOrvK0Mh8xquQDsWvx3KtGtbS2p9jqDVxpMtl09eLi1bqt8LfLwHO2WhYOxP9taG2ItqCQFxQISjzckkeqR3a0ekFgxVoSP5R9Ki/CxUiJ8bMK3oKLUWAez/AOHrCiP9W51hA/t9VMLsj+Ty2Y6eog+v1X/UCJ1bgTVNOVNr7L7p9ZWCqo9G/oo2VrYOVh3tAutAKzlHQs5hwqktbYV8KzVFueg8tM5/OzIIlWak5F4gX77g0nayT5b6MP9ElvlGKTIuPuEJccgCSooIiQwPcaTAPIJ8mg+IbGgfm7ooyazooK8ouyl9xmCm2gbJoflIegO+FcSpaEOlewNfoI3Bzn5+fh6eZI5Xr7g2QswO/myAnyhsxiRuiKzYUTcinDGiChVnbheHh62oGfn+6/mnzczEH0SaUm0Pik3y4fFtQdun/9rtYy8/MCR4ATMIEvBpAiWM9sX+u7ATAzuLB4E7UfYkU/OCe1ZCitJOomAHWcbkoJCDRUsmVxXNofBchHoFF2bX7Zlu7oJ0kHNr9t7ecNfFewMKcaFlV3IiZU9eSIKInKy/LsSlbTFZS434ziznWAokTz4Irjdgb3EW9OCoayfztzOm+XEZnoYejn//Cyw9/PlspieLf/uMofL9P7pMJq7qgJaVyW7auaHRYfTtv5xmLHjS+FKwf5hy/JgBgp2VTmSyBNDtN7bi0pezuayyFzwSlAWmsiOiszNEnEjrRr/iN6I7P/t9JAJwAJpSVIluFwgkYKQ7qEJmM/ISXz30JXwmiOnD5w0R+a+4qC5XAyW5tWb+Zp3Q9O8zamYXfmadwRKJpzNyN8eishm5Kdiishm5KdiIg0rlGEILrBEdglksiMOGYbd0WyyrJytx7ZKNzxeZu3x9NH81wK/q+tMP3AaAITzdhOeLNuQszDEiO3jDQ4EJtmHxVuKBI7gJy8A/w/YCPgNIrVAZnei3p+QIgKNQsNF3s6L62sN71UiBtE/XNq1XA05H4JLuxRgEKkZgv8JDqJao4LKZE5KZXc+Bw7MT6wAgcs1m7IHmilLWfvTOd/OMqKHVx4z4CovFAw3g9mITJBlFQ4oyaBYbUrLJsjXjcXLFuVdADQfP3mU6QuaFJwSXdgsZ7I3fxOh36pNEJITQLlj4QB5S1Nrd5nAjjvLE1D+L1EHOeAeNGtpm7JGlVqyRlmQRiK/4IjsNRN2nr1kfshypsmKuWPP4Jg3iqQl2ung6wCFYkCFTGlgIh5CITBMl+IhMm8UTSGtn2lKwO6subc4e3kCHe+XqpHsv/lM+VuRsWm4WvLVl7Wqgt2i5brC3eJn06/U69ojPq4sT9c8Wlv1xga3N7o4qAf0IAz1Ktwr2xQSV+Ul9P2UDhhoK31Xi5QrXm5i1bGcsYbrFumv6Bx54yxiewFeR7iTNb+M984tLA/qRVNFnVKcy60kvfEQThfE0qF3y1CHsgOxlBgW0dmYrqdOT1h7e/qeo97ZbfcnYlHExgNLEaDfCKUEtlIRJzbXyQOzb3h7mh+vNnpLLS/Xpc0zNptPEEUUl2Ip4u3OX0qCEMbvCkYgSbcOACOC3LDAiCAX/MGIjytKNkjZ3mBs2BX7ddcCSg1xJzgwy3yJG1aWeYWrWMCIojSLJd2fK5mGPbY8sfLwoi04ghFIAg8HiciuWBIBXejfDkYEhe3wcJT6bpX8doQtpcufFyQMRtSzsOxBYf0fgRFrrz238h1Hp6Yl7FbUnLD+q8TBCJ47Qc1bB9yJpMAI27ph7l80Aq0KJnGepD+3v0IIMILnWVDVAjyLxMAI5GaAMGAEb/CjSgYMfmiZpEhCWSbtXrm99lXDUsODR3S/Xbg4ulbE9Cw6riNK36HQO8GAjZOXh0dziho4/wGdhsVlOzWvm1q3OkLO7rKWTG9vNseVrxT4dXBcTCAx9nbOlGRwMWFTCabMCJ9QnS/Iq/ROsOYbRwnNOI46IZqJXcooeQ5D1NPP3lAT+Lo9jcDMBx9frp+TL5nKdWp9Du4UWxbwFVj+zVEbR6YPi+ztweSwhpO5TGe2X/ORFTDQPVr242A8h0Nmcp1aF7VBFmPAvG8hgyHf0IblbQUXUPycqOVtELC8rfBu0/JWA/jdZGA7adi8hwKXuT9vTOT3zkqZ/tXXlk1Pnr1huOUf2wTja51FfVfei7/qmsgtGg6LuBRQqBRRCWoGx3lCtSkU0Y/W0od4XaVZt+a9p0ihKAvUjD8VbzRLHcziTj/XtEbQn/KuZgNeTdifwtrw9qfkfEgXB1H+1BTwtiRuG0MTts3jqVWa7NnQ9FFWu7PR3qu+B/IinpxAnK3zriQi6ab5dXFosWQZlhbIPvKroASZCncoOsB/oLNhcnx0IXlEimL/ZP3G2EuVRuVzyI929qtWFnT4vEsKO/zml8UhCdkbS5IgL75HV0bz6CO3rA7sP/k7PXbWuEhS0tx4wY5vDYwfa39gdeIg7Mw7o+jay9DLE5AfGHjg4AM/HNA6J40si4N2K8Jj8GdbaykJcNu4CUyJpYnILyIBwmZFt8k1d+VlADUv4kR+uZMm97dz1miaZeSMv6j6pkYwUVV6Nvg54X7T/PKvvDGyjk9707YBbRRBbRpEZfNcbdambbnSzak/GOoY/i1zM6nU3+hIQtOzfswnyyWa35eSBwnQJEqAIXk8AaBx1QttXBHmsB55qo7TYT3SYngc1m/GPKzfxNdcBU3z3zCnElnUS8w5lQYBWDmVNsv/5TmVVTLD+h3P7WKe73l4/TPfrUV45lTi7IXBnErFAKycSsBa4smpNLC/uHM+c7JF+PIpOnJRr9Va5YzFlFPJkwA1pxKQAPIJqmg+gUA5lcgqfeLPqURaUjI5lXVAZ5XbCNhxkrhyKsOvFlSad95I7JxKfjKMGlpXJc6SAVEzEqclA7L/47BkcAjBWjKoh/DdQ2/Ca46cPnDSHLmHx0HzGl8szW18+Zqro2letj9q+sFvmeZ5FVPtq4t9BLfQMs1HlIKiY51pjkQN8bp4eAE+kuPaHEcnNx/IiXbNyHJtom5JeP8Bvf4rG4yu3a4y0liLscN8o1yW/bHS9q4MABvEMKHEHeS0KPc5r1L9/BJJH3n+nJNiKFB36IPWHdoc8OcPQbEH/JGlbnEM7iPhYBz6hOkRlD5x62NeJf3xYf647ItmiDbnOrf4wg7IdUbaQig1GfytIq2ILJvamtRkaVFpLPwuDenYD03Hi/2fP/u0xdIy+Oj2wSOWfBTMhe5i6SUqwQftZGSYPTA0fTzAHaiOJ/BJXXAj2qwOmenhBTg3JnTS2roYG/LRDsL3Jgylg6+2sh++AWP1RUA//CqKjQbjaopFbYqrdeeF111ZXsCelBso8isV9ln616beRYalWe8X7DC7O1Hw5NgE+qjwyXFLy692dsiu186xWg8mXoIaUUSFbXnHdEVty+rh9xHe/pfXGUQfgl0dMii9Vs4qoWbv0GON/QTPjGUsvUQy8vzXf+XQ9M8HcOi2BhZBKvbSXRmk3TiIpIgpUkUh8Yp+8H+GUNoUH+3VMsidsbu6zjuD/lqs69YJGg6lQ2ZkX2l3V8cjVMrry6aizFSXy+vLbTqhatbCBXzkHK8/OwOGFe3JzJNUFmk9ZkQH3n9rvqbXd8E00ZarCKeJ/mwSS+AYUw2g00KzhwYJZfbI0C+cPejSZ8NtVzzq3txprEPEqJoTih3mzms9E6HdUuEKSkd24Xp5klcGBK5YDayRPL29OGACTevmD+Tzf9DuTjhe+bOtlWo2AYMcjFmSehqKOD4ngQUQjwvNJXzeXmQEDLqFlQGw7y3yW5pRlv2wo+cxIp1LclVVv8Qom3F8WVygpwjHfTuNcBDkexx+XluY74E3/sqjnjpTE7c15JhF4qtlWXU+B/q106OCPAkYVCTtEdU5nYGp2buAONuGN+VtmQFbLBv4K8seuUPKDnxVRMnzJ5v1mjI9SdB2c7FsN7cNtnO4ExhoGRBFy6AOTJQ6O6W9CRKg7ciYtgOGAmFs17ZM1xbbrfiV7T4M6KPGLl/F2J36REqFMzhC0HbzsGw3D8t27S0HAiYZH8cyjgGhjNOmpYkiZB3sNCPk4k9wZdl8CeGVJfQ67rNwLuTo5ESBTepAq2lB29Yk3SERMOqyZeikZH2X0zY+eOXb3cLDfd9ItN4pqEDNcSwFHI7z1yH9SSjrkOzFjCcLgrPNw5UWj9moViRYuUnGjgU+07T1+9h+LWsQH94nwQ0/FJBr3cID+XRBUbcjLHDz6609bwIkA6ET0mVR+Xrg5tUgr001p/s218tq/p5kkCJ0Y0HfX+R3VHjXm6s+65PxzuIdecsj8j5KsPq0DTjj5KPl8deBM04ecZzamxltqYg5xM6X5U32Ya9g8c7xWEwnN7KPHy+cz/ZnQeYSaaBXI/zWfjd1MdlWu15FLaDwi2D0BLyscPSE96o4zBOUh2UeA8Kah58mj2aeAT8hJSgn/tcjZ4OZmwVbe7XxsZH2e0gOFxGP7mwXsIR8QGk7l3Kg5epzsSwXkytpy/GBJaGVAsrhF9q8qWSH9PUijYfc6Pwyr/4X7l4s+3qeMwTxT6H8ZDAhDBht0Hw6gIQyn+p+661+lNzZOI/25m/WAFfB5zF1ZQDWJjcvB1qfadnfksX0AaFacHRAvCev0IEHcLXWTavIJ/Oi3pXwmhrW2EodA8BHOWUBOp4UlXXpDaaAZYnc0behz8nzAsagAKL72pf05DkLelrk640KHLnOVzAbrgv4lUQVZfX5tZvAGf10A6RyA6VKEJX+o3GcJxUqwiZyn/XTrYKlKXlelSFSI9WGv5/MtjNnxMa/9dxH8e6LHI9SQuOxg9e3ivmQOKJOu3iwNiAONB4Hoo1HAiUGIacY3BODhHqrXFj2iIN3V1plOOYdoEWrdJNMYlABYMeAYy3xUjEkBoXm51cuWnYMj8QgknBiEAnfYmtktK46qNPG+UPzrllEOT6jup3nCGYndLdk+viQqc6AHYRSW0Hhu6B1WWCNAUbByZ7g55nQ53/OHy2OolXzCPJZ7Ri3KNSVBZvbcEDklgP0nU+iThrBPJWC7PbOJQNhSf0+zbV84Vrpi44E7NiZfnDaZJNM2ibL+FPViFN03hWFl6LNL/9qjkE65nbOMWCIwAGUsI5KEq5j63ycJ2GbokW9YUV94UqJFArpgySa8z8xH9IiTFQQTwecUnLazUb3ZkDjCriOL+AjyFzelxE9KezcVDDkzcAMo9IRXeaN/fbqviCyaANdoVkO4aWw0BvEIRjQPTAEc8vmz8GD0BxbmzNOlPmCd0DGCTJVAlZdD3kKBquuh4xTwarrIdfasAcdI1cAsAcdIz0r7EHH+i+3hUdsD7fY/kP5S88hFxbDHnS88tnMt6OitI0Oksa8ki4KDYE96FhxwIEzhRYfqBvrj6ZPXXF7LOxBx+NjZlFClV5b75TPXMacUtgf9qDjS5m14VtLzzOS4jU673a8/EMo/wYsfCiyI//5sjzm29+yZun2es+GhuT0w6E04GC0DkX00oDIx6B3aGnAf0gotFxNVGnASJTSgH3oBZWn2ZG/Lg2oiWbK3/U5T6W9lxxJnR9mVXT2U5itbqCdGJ/z5P0K6zlP3i/F8Jyn4xc3hux3zLDYM6xIQ+Fk1d72hKjF/5ynJa+wnj6j+Or/9zlPl6fdjPkycafpNsXTDLpq97cEec5TxUssgwE9mnApX2J6ztN20tTJhgoO9FRl/8ba00tP4vqcJ8ULbl2vGKqYHx4xasehEbJbcRhpZEzD1byQdEhbjM95OmA2NSa770zrPaxuKUvcr+6S6HOeeB4P9TlPwACCpt0hJJRp9zdkaOn79cplX720znvRWaeB9aVKzAyt6U0shrbuxr+cob2WVD0vTu2JZaly3PZLNx59xpOhNV5TkUIJazLftDCZQ3uer4cDQzvxJhZDC1hLPAxtjs2L1M59DpomrXH+likbsV+SDC1PAlSGFpAA8glaaD6BQKHyo+waefNZ/UzWP7nTczXF4gO+ofLTFzo1IBlapCUl91yS+gfifC7JRqPCyk51D4jN0PJD5dpoXZUwPGfGYZ8JJy3M6CG9pRn06kkqIm7kn/CcyP6PA8+p8wiL52x4yHcPQwmvOXL6wEnzgNDKlZuGjaekjihLk9OcFYIHQ1uHpXlMHV9zHTTNiR7ourRAVqN42W7DvClqH0fPldbs0EDXP1xGoAW6bICFgs4zlEBXkUVBZbL2s18HunQJP3xORvwRdzWSaxW5+sTN/WtuLCBupSD1GqzhU3eRP3yGoWlOu9r7jv+EY5Qj8xepR84uFVzRqIBf1RdMBTRiu7iwuCxAJxGprmhZOSP59c+4/Ms4/7wMb9Xz84AVpJtatccpn+N5df5HP7OQUX0C6MFap359w0KmEvmuVopefRzY99SCNcFEZe7YACapu9re01YqAyYKuF4CVyBMXh05sg6UPwZWLGyuigv+raXEsIeH13KWs+hIV42nxp8jGxYbBiVpx6/T65KGyE3neTMRuenNr/+qbydTpE9evTDZ9ED0pc9Vpu9etrNvFwAyTwRl7iIqsWXscZ7M7S1crQUzP9mR5bucxeLw8vtZTn687sE79Rep5fOwG5+HpT+xTjshZ3nnZp5gYZCuP6/rLOzV4Y14b3Le5EGyLRAlm0oeTzbIJegR3g0jlxutccMitjiInoo0HR7FV65hFl+5xpd8OOElZ+9fU8Iae9ksLYY0aYZ+RTI+kiPnUxwkf3MJS/KsS3zJR6BJTujn2SF7PuzEHWkh2Ik7cmqEnbjbOFsceBHoQck4rh0aOabrkdY/z079xyjSBVdpk0ilPkcTJlJKcDi01kezydkemu9HjfeyDHn32kL/ylpjwdwpWxawAndika38PDzaANyM4H+OA34OnC3ZHGDpznZunl6Xs8FcYV83wA6tXoMg1cS4T+EcL4HmVvb4g2Cu/BWwEKeoHC8wx8TgSntXHWpmvGRYYLkB3Iwvb3kGKiZSAC2Lc0vXKhuYrJuSYtntmksjIrULvJCI1C7ey7/yFcj+3V5fAbLToHLBoo5kYsAn61xBrTHRSuX6tSjHFehqYNcSKd+EgeW1qj1u0I5cL++6sKCiWvDpQlAH8RT5mAfBVrzXD6BaBphq1V/u0AMs/o3K2Qd6s+A6aMIcqL4Fi8theeiD7/HRNzFdDELqriwuAuQAf9q7ZFTjLc1BwwKXIDM5gc2mFmll5JK4PYOknXatzoVGgUjWxiaXNwraRIKqI5Pooa7vLFKKMwWb09IP5FulO29/oDa/SPAsrY1UEg5SGGBKAXRxaKIaSUKZqKyO0y+cIZ0yDJrXZwq70VxJ4Pv04AV4vT3YTkzRichoq7R+lsAwYIHlPpyYHmRPgau0al6yH6qnceVJqWWinCcndMslW6zbEtIb0d5aAgF8YkEjIGeUqJkJPBB/80zEOSA/bCDiHJCXMYA4B0Qe5/HbpVDaO+KcsH8z0wr2/uaMaAH5RNon7WVvn4EzxpnlLpIfPacuXUPAPlJU4ZgStaMPCkngk0QboYNCodEBljynNFbCRJL6hUgD7MDncji3SaX6kvUuOtEDLWMdey64MemyYN6YFE1YJdovVcq+sWWbZvBG2r4hf8TdXhvZ3ifIgCq9eYalUsqzNh2nqsPSxX8tEDJrRaL54uDzd3k9BqwRL5Q775HHUwrypwZo/pTIheKm5LwfNOlarVVK6SrNmtGDjwjfW7sLxcl9wCoU5/Ae70Jxf8TH7Vo5Wt8i8dNV66+5Nhm4F4pDZgLhUAOt6T1WDbSD78VSKG6ewtpte+uzDNMmrVk4osJNB9dCcee6W0XP+B5tFlnsafzuj7izOIjkgCmS3HviZQ3yf8RVKI78l9P792P0zErdn5TFPhlyot1dHQ+EmteXUUujAX1ZPIXiYt88oB1S5lDiXs9dt6j38sMEKRTngKkG0Gmh2WMUCWX2IHahOM1A92Fh96LN42t2VNmnDl6Adnc4FYpTfIdVKE7xrZgKxZX137ap6f4Mo8h9Lht2WKlmSqRQHLXpG0d9jq7xrmtRTwy4aoNxKDZGeodVzyrrLYHSecVUKG6XpdNyw+Is4+B+u2qXXU0NFVOhuPPHx15y/FvP/JDU98o91zc8w8F2S95i2U6RSLYTqguDT6G4Po1J24dMu2pcFlSySOWUhiqBCsVVvMGswPiGOMYRS6E45OJP4oXieI4OtUxa2FvcC8X9WKH2XPt+vdXu76OsvC4985B4oTjFt1gKJLzhr0NGk1DWIb8rqLfr3vAZ3W4FGucHjCkfGXGrqxhBvW6qVRigXpRKFf6gntxFX7re6R3mUUnx04uLTQXLIxMO1OsCCoSKD91Wqfq/BfUK139bOWLeHfM0+5SXPx6oCT4gTnKgXq4KlsGiJGMwSYB6WxpU7xu43DLfNPjyvkfGkTNxBfWU6AVayRuLKUc7Obqf7DXzIw4jzRnTcFMlZLgOAfXSRve/8XlEd1oyzcHtHHOYYAW2jgb1eB4PFdQDBhA07Y4hoUy7vyGop74k68ALU5ZV4dvpfT3ciqXRbhknUM9DvgoD1BsrX/XvBvWqI/o+oKVxLcuSC2be3DxCHk9Qr2aqbOSTgp7Wx/O6PjtcY7ISB1DPGbQWKqgHWEs8oN75tLhnV0mTGEkquScSBpkYShLU40mACuoBEkA+YSyaTyAQqJeer0HdwNxtnGI24ttKkwwX8T/sEmlJyYF6Wd2rxAjquZgUVuYc6V71W4B649C6KmFyf+8NnWW7WvqL6foGnQ1l/fVscKJekP0fh+Rfmx5VGMm/Bj347mE84TVHTh84aT577a0NNprLaRHDdaVO3hzMwUHzLDkszWPk+JpPQNOc6KDe0UNyvk+YjSZ7H1gXKuTv+NahoN4/XEaggXpgRao6xSrRoF4ivaDy+1XFql+CehPRTPnbQWO7zx4fcmMIxzpCr3yRNGfJaglAYy9kqjCgsVwZocgXMaCxIl2dsUp9Q+g7j/h1G3b05kREnLp90Fi/LfWOR/fWMLYMp/5pyJiUhAM09giUGRUaA2SWIDSWfkjuz9kLR1pmK1TF0Pt/Fnz+pmShMZ5sqNAYIBvkEiahuQTCzKjIqQ8fgglpOhwmVF9ZrAnVXpYv+WTCS/486Vw010jfIkQ2OtZ89reZ+Ej+jjKgq1niBfOcm08DbqfMy8JBcoo0luRkab7kU9Ak/10ApbeXR38ifx5FPXrfIKssyHMrxn3iByhNBH0IKqBUL93eGa4tgJKG1GfN2/2VaMUrdrwuyghAUGvtApSQvR0HQMkAVA4VuZETXBvAMzvEBSg9WfPy71RbjmXa5vdRIyKquYQClOqlsdQqkO7QwP3vDCghl18SBpR4owCVypFDLN1+lYHQNkBp5OlwhTHuVmaHJy06cOz16xQJA0q8Lo4qRUHLRDWVhDJRERRQCtg22rFrbj5j/8MpW+4vCqV3EKA0sVcVBqBUryzi/OP/E1AKemY9hxt1xPJIPzXuLeYRIxwAJZwPSED0xqBXFQZ6I9erSsyAUtPQbkVZIbOsDy64yyisqwnGAVDqfG/bg/QiZYvCkc/W0n6MfYGDSkC3xlCpQLlNx0htA5SQp/USB5R4PQYVUAKUgvzpNDR/SmRAKXnD0BXDtm+nBvXR9byx9dlNMQBKCb2rMAAlSm+RaVuouYG/BpSmPj65wVjhJiN71PWYp/NkNuEOKCEzIHBgb2JAjVDZG7feqIv49gBKB6caa1/xozPyyxJTXvUyd8YVUCJP/KQzv9sHs2M+w+QuDfrDAweRKJgiqfcmXrYU/0dcgNJHeyd1zpt0ernlscPvhn5sIASgxOvLqEgO0JfFAyjtz/KoGsMqopReGt4vueiAF0EAJQqmGkCnhWaP6SSU2YPYgNJQucxxn17cY2w86f7m7OibTmIGlLapVWEASipqIsNE7QeUhqpe9luduMAy+NV9nbE1BUkSAZTmK4TadZd7a7rfzlrp/d9/bsQBcokC5UTlKJzVCJTGKCZA6VOXP8aF9XehbrHvZNL3z1U+YgKUKmpLghzsFakl49Jrax9LmeJgu6mYtlMhkO1IFPEASqumjPRX1fxkfTx+Id0jZu1IAgFKL1SxjHNKlUDGEQeghFz8SRxQ4jk6VDzHRq1ta5JWAEo34ueFaKg9pOyWoZJHx/knSBxQUsFUoE6Vvw6ZQUJZh7S55uHAlt4r/pqHSAoJVvMQmS4Nq3mIzC6D1TxE5rPBnjKIDErBnjKITAOCPWUQmUUCe8og8tQZ9pRB5HkR7CmDyGM62FMGkZFSoKkr1ITc7wNN3aAm5FIOaOpOEn2cCjT1gJoM/6rxZwbSzXfNq9z2o8gXfBxjT6ip88DwMfu221tFKfpWX8rxfAc0KUJNzx6dK+stlW0UpG9kmhrYeSjQpAQ17V00gaxx+gbj+OWBjDHPBy8HmpShpvJXnauNPp4zi+g+/o6UlfkcoKkX1PRmiwerSYpLiT8wcGNq3c44oEkFalK0G6Y3bedT481l0lmHTscOB5pUoaaeX33OvqLFW6cOm71IcXqjBdCkBjUtbXiZKztvu+m6coeDN7sVzweaepNEL8SE6mGqk1DqYa7oGW+aOCGeEqZbVjB1/tF9ONTDpKCNV8Kc8CM7D05pijgXr+I967gL1hF/Qhe+j6Siaf67QpzfbtQvu7FghuXG+Wbd12g2LRB937hAnFEGWBBnNwMxQJxhDvIZYVwuIzKsT//VoxUuExviDDbAQssWGPz/QpzRD6vTXRMaLA8klPW4MIAtiBpLDuIci2mwbpIxmCQgzvmD52bueHvUIn9Kt7JtSnWZuEKcQb2/b1ReWEnZneOvrBr2zAmHkfZoJJbhSkYSZ5OGO8TJftnfp/LUPGpY2dG4Ype3QRKFOHkeDxXiBAYQNO3SSCjT7m8IccrN1I69u9HVcm/AzdzYPzxKxQxxkrSxIM5qrX85xNmrxxbW+Wtz6Aeu6dVc61uMeLZl+yDOeX0uHLzmXEHZuqzu6N3YqaE4QJxNWlgQJ2At8UCcp1c7nt3obWOya6zCARfHg88lCXHyJECFOAEJIJ9giOYTCARxMoN7rNrA2MDYv+Od3vq3z76IH+JEWlJyEKfvMHFCnPuMCitNfYb9HhCnEVpXJcxOPaFQJ2zl3RSzJOXgkHXDch/gtFNH9n8cduoqelg79Q/D+O7BmPCaI6cPnDRfdrJivLK8qXlE4oxp8uf921tEF9Q8RgtLc+8Wl0xH05zoEOc4n/X+oUU7zbP0XeJ3Sp3tWIjzHy4j0CBO8GmLKSNQIM4bFgWVA3eP+DXEaYJmyt8O4qQw594/kGFmdYTTxeIT6e3WX98w7hCnxxAsiHPsEIJCnPssNb8kHlUxPPTiakn8ll47cIU4tw7fMdQuZx8tvOF6jt7yDB8cIE7nIVgQJyCzBCHOw3etE5Z0mU3faOlv5jp0kWCOkmQhTp5sqBAnIBvkEkzRXAJhZlTk1IcPUYg0HQ4T6tchWBPq7RbJzQgveUSPXs/tLo+x2H9DcbHr6Lc38JH8TURSTrr7QcaeuhLOwdRF5XgUohiMWYhiMF9yczTJfxeIc1Boqp+W81CT4pMp+55mz5zUIRBnriYWxLlAsyMhTvPJedqaE92sUhdutRkVlY44dWwXxIns7ThAnIc1sbDEYM0OhziLIg7bWT1YTCt5rFo778ltQSxb0hDnAky1xmr+B3G2EuJELr8kDHHyRgEquQiMAjFCnMNkQ6dtuUQ1PDyhIS45beETCUOcCzClALo4NFFZkFAmKoJCnAN29f46YF+kZeYSl05OOnMGY90WjhBniT4WxOms/x/ECdmnU0L12FmNn41yT4ZfP/J2aw8cIE6cD0hAPDFXHwtPjNIXN8TpcZKxTs/WxnTriwmGhRN0BMtJ/zOI01JL9Qjz/Rl6zLW8W/2WPLyMg0rOmCpN1RcjxIk8rZc4xMnrMagQJ6AU5E8ZaP6UyBDnX/ZaFhUsF+uSx8xJzxJfGgvfW7shTo0xWBDnqdF4Q5wBl0Kqmc6LGEGDy/Zrsz6p4Q5xIjMgcOATVcZg8YkvRosF4uxxaf9+W927RolRQ7/26voUUXm3nRDnrm/H79xf/8q4aJn9Tr2Lk+/gIBLQVTBESh5NvGwp/o+4IM6ZK+vfW/uup+xdMmq8fwT1PiEgTl5fRsUWgb4sHogzy5/pQHfdZLql760gDRUjwd4sOYiT12lR1QA6LTR7WJJQZg9iQ5yvV1RszWpIMNy33sK7ej9jjJghTvXRWBBnwigxQZxe5Tf7LX3iaJ1uXb9yS3CPPIlAnB9mfTkRGh5kuU752dmAp4X9cAABFUdjsWYNowiUxigmiNNuhekqjtIs82CtxvEG104L5i3gB3F2Ynj3Zn40ppW46meuulQv0rG00XYVo7Bsl0Ag28mJCeJUc8vYvCTUz/xIVeW1J/v2C3pGyUKc3pjGMSWQccQCcSIXfxKHOHmODhVhvDoKd4izr2nwQDtVL7NNI1nLgH2V4JNWJAFxJozCUmDBKP46xIqEsg5pM8Q5oKX3ih/iRFJIMIgTmS4NgziR2WUwiBOZzwaDOJFBKRjEiUwDgkGcyCwSGMSJPHWGQZzI8yIYxIk8poNBnMhIKQziRO73YRAncikHgziRx6kwiLNPjqJ22Isqw7AzU8Mq7pb6wCDOWb3P5Q75Fmicbb54/p68u3NhEOcI3eLYmDsDKaVLpPJmjFI+DIM4d7zpknTlrw9Wxwa+22QX564CgzgdDNRyC90eWe/Uckyxj7KvhUGcMQ7Z1pVjulmXch+s3Orp2BcGcc47LcU5OzOLkTPi8KJliwcEwCDOIY7VismZDZQD1RoG1+t6xMAgTuRqS4jUBJFOkUN/ovfy9LPdz5jH1266tTTkw04cSE1rtEFJmGN8ZA/BKRcR5yp+4Dk+GfMcn9Ryjm+DpvnvSmo+7G5w3YHlZ7LpVh7z0dg/NcVIagYzsEjNLgwxkJpzsr+uCj/+0qj8/ZcuFUrJL4lNaq5iYPFj9oz/X1KzYZnnuyGDF9KP6G6s2HClTyVBSM3hmAbrIhmDSYLUZKikJNT2LzQKn38xYJzu5sO4kppjZj9cuHXeDcN4yxFR6ybpZeMw0m5bYBku14I4OzHcSU3pcrnPb8PYxuWNSonqzLBBEiU1eR4PldQEBhA07c4koUy7vyGpucMz4bOUqrVF/All0tll+/eKmdTUoWGRmm+o/3JS0/LmscKKi2uMdtz5sUHj6UTEw03bR2rmHxu6RJrxh2luty9Z6tXfKnAgNck0LFITsJZ4SM1Dubpf6qfPtS4YMfgpxdu6WpKkJk8CVFITkADyCbZoPoFApOYMc997Dfs9qLm2wZvqj24ZJn5SE2lJyZCaNoWVpIN0cZKaCRaFlX/so/8epKYdWlclzE6d3DmS8X1SNiXM+9r252qNDTjt1JH9H4eduqkJ1k5dx4TvHuwJrzly+sBJ85dOUVPlC10tS3dusa71+vQMB829qVia27S45FlomhOd1JSbEkr5nK5ATRwlPe3U6k7jOpTU/IfLCCxSs8YMhdQ8b15QqXLO7Nek5mw0U/52pObWrj4P7zcoGR6WdfG/NvCWhQRIzQ8zsEjNkhkEJTX77tJaqqCTSY+eyLHqe88/EVdS0/Ez5yh1iT0j9dt8kweuZe3N4gVJzRczsEhNQGYJkppaKsmuR68EUYKnyFUM3TWSTSBSkycbKqkJyAa5hDloLoEwMypy6sMHG0SaDocJdRUFa0JdQOFL7kB4ya85T1/WQ0fNqrjfuHHHhxYp4yP594KQsMVDJhmmds2KN8zyHYfHunE65rpxOl/yuWiS/y6kZo8c6T92J3ygpyocNJD58+HmDiE1KTOwSM2G6R1JapoY7PuUWb/H/Ni5oDJGTa7gc93aR2oiezsOpObEGVjsoeKMDic1deqVJjZdC7aIMkzs73H7gjuhSM2G6VhqVUz/j9RsJamJXH5JmNTkjQJUPFFxhjhJzZAtJgtCmibRomp3DVNdsE2QxOl4UpPXxVGlqGiZqOaRUCYqgpKai7lymxklW803zSKnXUsbiXlbOJKaH8yxSM1k8/9ITcg+gWtlSYu9K82P7K4Y+uSM9m4cSE2cD0hABvGFORaDeMpc3KRm0NZbBiPWllmlHqzZZ5bEFnwY9T8jNd9779iZPy+PkvXu8pwfrwePwEGlZEyVfM3FSGoiT+slTmryegwqqQkoBfnT+Wj+lMikpnyZbWH/BV5Gm5uysx+5+n0SA6lpb41Fan61wpvUPLUq0GP73nCrOKleroMiDh3FndREZkDgACEyrLEgxCHWYiE1XQc79+j18qN5UN0qtU/3QhRxJTX7adldXBVx2TTzzbBbrxhWI3EQCegqGCJdtSJethT/R1yk5ntSgeGV66+MQ/vRV5SdfTqs3V0dDzaR15dR2USgL4uH1JyYvOQbLTXSvOQdqfJAl+9WBCE1eZ0WVQ2g00KzxwISyuxBbFKz8HN0stliBdMdL+1o9Nsne4qZ1LSxwiI1ayzFRGq+Yz8ztOq7knJ0y/pOe68FDpIIqamR5ZgWbn6CuumOvM3quIr+ONB+plZYQBlZQh61I0nN77IpFvoRo00zTPUTjbdNPCsmUlPNtjHs1eBCw3Lzcp+R+1w342C7Jkss2wFDgTC2UxQTqXnFrrMVxeuNcXBSd7kx2p/6EojUPIhpnCACGUcspCZy8SdxUpPn6FA5xW5WuJOaJj6zVZ7cPEcpC+2X4Dp+5EKJk5o1llgKbLPkr0MWklDWIYQmNZEUEozURKZLw0hNZHYZjNRE5rPBSE1kUApGaiLTgGCkJjKLBEZqIk+dYaQm8rwIRmoij+lgpCYyUgojNZH7fRipiVzKwUhN5HEqjNRcHFKdNLVTf+PIj1ImD84FXoGRmtp3UxuYhRMty/UvRt99NWEPjNT0O5sUPSvoreXhoV2d09Jkg2GkZkbVe+3ykPGM/Y2pS1JrTQpgpOYdqSdF7iNuUcMDNq3Y9nr8KBipmZmZMsOuxMN8faaCyc3ij3QYqWlbNII6XPGsZWhFsEaMf/8HMFIz5sf9Xs/OMQwj7l2NO/Ok0BhGaiJXW60nNbNGjdfy+LLCNO/lC+6jOxpnRQyUtpKai9AGJWGO8ZE9BKdcRJxL9YHn+BXTsM7xU6bxHeFiNM1/V1IT+WBcMZGaBcB0oqOMRmo25ACLIyWhbRrWgrB1pKbHU+vUoLyFFklU3VurXg4/1R5Ss53T7UFAAbIyGiDWBD5MSokoKGZE5nFVUhOpIvryIIWlP36IpPv4yyF8UMzht+Qd+g11M932OX1i4beQuQRAMUGD1ShhGeygZAwmMriYNUPwf4VRTCxj/RLF/PDJqadnUBGtpNPyKX8sM30q0ZUraJkgTMs4SMgyHcJaDlr5fCyrxME4Xe2Ee5pM3RmJsZZhOZBLE8laGjQ7dWjiXEL6l02cg39M2v5hd65p6V8X5Ted/fpYjCUOStywShxMdRNDiYOvI5Nkuo4PMNy5dcxVS9UpX4ld4iDXDQu8jnIjyryK9iO+edU/Tu10VuEjkwSqZvzcQw+2EGBe5ZUyxzTYVMkYTBIlDrISSJeGLDM1ijtkpqE495AeriUOdv51U6N/kZzZvgJHzuQRg9qb7wwaTgXTcC9c/8XT7oQ9TVM2O8ykZxdWZyT1fzxGYtMuWOKA5/FQSxwAAwiadpkklGn3NyxxcN9kW5bd2Qn0BINHz9KmnnQWc4mDIYuwShy8WPgvL3FQvSX202S5WqOQ+hia5bMJQ/EscbCz+62Lfnufm6U/LF1+ZLO2Dg4lDjQWYZU4AKwlnhIHS84M19Le706LeaZnH3nL2kWSJQ54EqCWOAAkgHyCI5pPIFCJg+p4oyEfFTpRco6dNt7wfJ2++EscIC0puRIH+xzFWeKgzKyw8nyq4+9R4sAJrasSJsSdOWnczcOh26xji9ykNumsGY5TiBvZ/3EIcS9xwgpxU5z47sGZ8Jojpw+cNC96W35t6SEuNXOojd/IUM/VOGieuxBL820tLpmFpjnRSxxIv1EdZHAqkhZGujoiRDmkL+r9iaPEwT9cRrRcTUSJg3MslBIHH0wLKgeeYf26xIELmil/uxIHxbTRdUrTuLT0PvFep6vltCVQ4uDNfKwSBwXzCVriYH3I7A89B1SbpjxsyLrwqJ8SItOlfSUOvH4k7NO8omO+JaCKMj61tr1gB1jioGE+VokDQGYJljjQfNh3zOE19qYpcw2aws5umk6gEgc82VBLHACyQS7BFc0lEGZGRU59+PD2SNPhMKEGLMCaUB0W8CV3I7zkZsW6KUOiJxju2dr9xKtgZj4+kv9ZWTvbesVdRhpVR8+7fs5WHCQ3mocl+ZB5fMnZaJL/LiUO/HaMs5xyk2qWtIgWfyhk7awOKXEwdT5WiYNH8zqyxEE9dbm8gkq88ZFURQf/ktFGOJY4QPZ2HEocjJ2PBe13m9/hJQ56J92tLB6dbJj5YUr8rsJZtYQqcfBoHpZaJfP+K3HQyhIHyOWXhEsc8EYBKtffbb44SxyULFqgymX2YWyuXxMzYcZ0RGGkDi9xwOviqFKUtExU7iSUiYqgJQ5GrzlnbHOj3jSXm02LaeqzsYNKHNS5YJU4CHL5r8QBZJ+Dd8zWv6h9aRospf4qrqRbVxxKHOB8QALC+zUuWPD+QRdxlziI0pzcmxyVbba3uF9tT/uGmTiUODBau+FZ+Hd/49SiOucbvVnOOKgUhKmSg4sYSxwgT+slXuKA12NQSxwASkH+dCmaPyVyiYPUvIsWwdV6ZkWTt8YoXHy4SgwlDkyXYpU4eOOOd4kD27CQFXWr/GjHiyf11wnWXYR7iQNkBgQO9D5lKRa9r75ULCUOKGaZZcNNjKy3msROTi3298S1xMGfxv10xmRNohcM9c3xYkRE4SAS0FUwRKp2J162FP9HXCUOJq+fO92U5ETP7Nq4wSVaK50QJQ54fRkV6gf6snhKHAwcPqhqwKwM+nb7wwvOPZfRIEiJA16nRVUD6LTQ7OFBQpk9iF3iIHrX4ZVLH1uZxOa9Jx86sclHzCUOGO5YJQ7OscVU4mCcafoIvdJEi0LbuojEcSrZEilxEGimc8EmeLP1xgs9XCkf5LNwwOSN3LFIbA0JedSOLHEQoPam8QbN0Thv7J2+evcz0sRU4iA1VXHqR/n+1KMyvS7367nqOg62+8DGsh0wFAhjOxUxlTiIU322wndOFn173d+qA0wVGglU4mAfpnFWEcg4YilxgFz8SbzEAc/RoQL+cu64lzhYOMnH8tPJM5RyrUeBvV9wDCRe4uAcG0uBGDZ/HeJJQlmHtLnEgUZL7xV/iQMkhQQrcYBMl4aVOEBml8FKHCDz2WAlDpBBKViJA2QaEKzEATKLBFbiAHnqDCtxgDwvgpU4QB7TwUocICOlsBIHyP0+rMQBcikHK3GAPE6FlTgweWGhG7xrMnWrn+7yzYuOnYeVOBhx1q6/555so+JpTgO+bR+iDitxsJB91MpaaZJ1qsMf6WmDqiJgJQ7+uK+W4fgl1KS0NNhittOihbASB5rydnJ6AyJNc65fVWUpk8xgJQ5sSIseWe+eZ5lupXRx/G5HRViJA+S6SahYAVjwQOQg5vYhB8S8HmkRvGtOeuczKgNxKFbAQRtehDmQR9oap6xCnKvVgifyJXOxTuST5/Jdmhea5r8rc5l76qTa9NcfTbJTDjWdsnvRT4zMJW09FnPZab0YmMuLdt66+ZpsqyhLWm+18AeOxGYup6/HIsGGrf//ZS6L3zkkz14ibbLuwP7L0Qn7pAjCXKphGqyTZAwmCebyzV7W+YsVb81yqJ2XXPlb2g9X5lLWaLPsjSZf46SYlVUq35do4zDSXq3DMtzNdcTZU+HOXJ5+6Tr8rft82lG1r5ozG3tnSJS55Hk8VOYSGEDQtOtNQpl2f0Pmci95WNOFwhzrrX/fUv/2YFaQmJnLqBVYzKX9in85c7ltzcl1p5njqXlVlERyifF3PJnLSSm1JRrLOhklpCQN3bVT0R0H5jJ4BRZzCVhLPMylzO3Xjdbvs2kHnsnMfLBw7wJJMpc8CVCZS0ACyCcsQ/MJBGIuafeusKNy7hivnyCfp/tGmSviVnBmLpGWlBxzWbJGnMxlpVlh5YLiNb8Hc8lF66qE2al3y381e2pnG8M4ZbvhMzYOjsNpp47s/3g8kXEt5hMZ1/Ldgw/hNUdOHzhpnid1+Uoq5xZ13eiuJrLyMhwcNK8JxNI8K5CvuS+a5kRnLjeMW9wl3CrROtR/fdylcA3DDmUu/+EyAou5fBeEwlz+ZVpQafs26NfMpR+aKX875nIVe8bEtZ5F9M0v7rEfdX5m+Osbxp257BaAxVxeXU5Q5tL18OFRFmdZFqUpRf5JDzJzcGUuv4/zdtid/J2xeWJ8Q8SnhzdxYC67BGAxl4DMEmQu8xyse1/dqE/Ze2taH9oFxwICMZc82VCZS0A2yCX4o7kEwsyoyKkPHwAQaTocJtRtAVgTqm8AX/LlhJdcc+LIHI3qcOMy9+kUu74Z2/GR/IbyOrtBM/eYlH09XUJJnhaAR60Of8xaHf58yQPQJP9dmMvtOY0nznX3oSUcOhRRMPOBMsZ94sdcOizHYi5J7Z7h2sJcVk9+2LQ6INMksUB2yMfsQYij1nYxl8jejgNzabMciyLUWd7hzKX954jtX0u/maenfc4qYGcKFviWNHNJwlSrzv8/5rKVzCVy+SVh5pI3ClBBQ53l4mQuObfmT89Tfm25feSgT+v6N16RMHNJwpSirmWiCiShTFQEZS6DmrxLr3VpMix9Mzvl4aHLyli3hSNzyV2HxVzS1/3HXEL2mVx43bh/fKr5uvVBDONiKX8cmEucD0hAmpCzDosmnLdO3MzllVmh1z9O0jWPkftiYDr+nWDQ7p8xlzKNJ3NpI08ZJZk7WFBWrMVDJTqmSqPXiZG5RJ7WS5y55PUYVOYSUArypyvQ/CmhmUuLHXEjF8sbJsvFTDMYs+6Z8L21m7nM34DFXEZswJu59Lj6eFCP0FeU8L8vZJkUzD6IO3OJzIDAASfM2YCFE+7aIBbmUttrJzfWea/RsS2HlP6mPh6NK3O5xb/rFOvBG4yS9BnGqz2NHuMgUgSmSP4biJctxf8RF3OpnvO2MNIxhF647vknn+/7ura7q+NBGfL6MiplCPRl8TCXsvPqbvTsfsLqYPLhfR4yxX8RhLmMwFQD6LTQ7LGShDJ7EJu5bJqr1dVZ1808pNSCNW3WNEe0u8OJuRy7AYu5/CCcAowPc2kQSH0bvVSdtmEt3bSL78U6iTCXZtpcqx7y/ahZ8d1d3YOfHMSB2zPYgMlcSsijdiRzqfXn3+7RJ/+kRpEabBo3e70VE3Pp9nzVuJlPelkVnHLfEPlAJREH28lh2u6DhHKHRdlOXUzMZaouqXrN0y+UHQesKbMOxlkQiLmsX48JxBLIOGJhLpGLP4kzlzxHh0ocKrdxTdIK5nJ6oWHj4Cfl9P3jw/oFni+skThz+WE9lgLXWjKlV5FQ1iGEfqw0kkKCMZfIdGkYc4nMLoMxl8h8NhhziQxKwZhLZBoQjLlEZpHAmEvkqTOMuUSeF8GYS+QxHYy5REZK4cwlYr8PYy6RSzkYc4k8ToUxl/Rhq2o31toabzvqEOy+6PR8GHOp5BNW5359skX5O9VR+ztdPwxjLt9bbYk8O2wofV3XjEenEl5cgzGXpff3r/4Qs968bJJW5gJrhfcw5vLw4AnHemp9M8oOj8zTC9VWgjGX5r0UT1rHz7Lav9b02PJnu6/DmEt/9QHyrOMvraJMQq69XdVVHfZY6Ut/XD54fkIQ5Wj/nbIr3qn/BXusNHK11frHSh+SXrLmo2uAWYl6lyPL4/bE40BqrkYblIQ5xkf2EJxyEXEuugee49f5YZ3jF/jxHeEaNM1/V1LT30kqNWvvHsv0R2506roHNaLvGxdS0y0Gi9TUiREDqWk+qmnatcZNptuiE16V9XxdRWxS0zkGix+zifn/JTUNKkcvce6ebbFz3VLqIbc+kwhCak7FNJiOZAwmCVKzPGPxix1XtWi5x8dX7vfQ3di+hS1ipN3dOrR2fJU1I/tO6OSgJYWD8Hg6JqbhSBIyXIeQmleMVUe6pOy1WJeYNlB9yN1qiZKaPI+HSmoCAwiadteSUKbd35DU1Mp8YDJpRqNREWv8ViU1qaliJjV1IrFIzW6R/3JSM3DizkyX852NSu8GFoYdUT6OJ6mpuJv83Ds0kFoy7KbZzOKq4TiQmkMisUhNwFriITXVHUY8c/IztCi9r+L4TuuevCRJTZ4EqKQmIAHkE4LQfAKBSM3pMyb2khuWaXF4TI+snndzj4u4FZxJTaQlJUdqukWLk9SMNC2sPO8a/XuQmuvQuiphduoD7GuTXI8GU/NfKS1PHz57IU47dWT/x4MajMbaqVdE893DesJrjpw+cNK84pTK96Tx8Wb5+Ss1w9cu3YOD5n9GYGleFMHXfAOa5kQnNTu91ja8cv+9SXBY6dej0efpHUpq/sNlBBqpaQosFL5uQiE1T5gUVPr/venXpGYwmil/O1Lz0jkfXbNjzvR9B47kN3xX9f/1DeNOaqpHYJGaX8MJSmpyfBeP/DH5u2GYfpacfwF3LK6kZqDsTdmkT5om265Q+jIuHbfEgdRUicAiNQGZJUhqqt9/qfH3qC8m2VWFPWbFlZgSiNTkyYZKagKyQS5hI5pLIMyMipz68MEGkabDYUJdgDmhMlom1BDCS17senOQ49FH1B3h8r221mTtwEfyD9f3bYl5cMA0/8C3kBr31wk4SE4Lx5J8dEsvD0WT/HchNaMG5N6T/XbfPH+Z26vtl74ndQipWRaORWpuafcM1xZSU8lo3FPWsG0WKXUnXs+5fUowmNE+UhPZ23EgNYvCsdjD/eEdTmo62SQp3Dgx3GTPLfLpH97bBOszSJrU3IKp1prw/0jNVpKayOWXhElN3ihAxRP3h4uT1JQbcy5sS0qdcf4EZWvW89tuEiY1t2BKsaZlogojoUxUBCU1DS82aXudmWe9Y9w5RyWtD506iNRcvxmL1Jy9+T9SE7JPVZZ6Utz9DSbJg+6tMclTEXwq3T8jNXE+IAEZxDWbsRhE983iJjV17TWdbWk+RvF3vMsWLqMIlrT7Z6Tmzd2jjXWMPSkHNe0fzqv64YuDSrMxVaJtFiOpiTytlzipyesxqKQmoBTkT8PR/CmRSc3vuZPTX606Qc9etqnnumtlVDGQmtWxWKRmcizepKbFcvseI7RXWOYkl4yYmXBeMEEBD1ITmQGBA4R4KhYLQsyKFQupuSd1jt3r81csdlqvodeE1ggmErSX1BwcF8f6WBtkltKb5PT4xrBLOIiUjClSWCzxsqX4P+IiNTeOKLbpY+9ukpHjo11W8wen3V0dDzaR15dR2USgL4uH1DyvqppS6HeDuvnrdvexiz8JelnJkZrJmGoAnRaaPSJIKLMHsUnNvJRtlv7BB+ip13f1mBm276uYSU16LBapKSM8l+BDana9F1l5Z/oxi9iYim3q0+8MkwipucJj8BF/dx3jMoUTV+cu/qKBA+1Hi8UCyvQl5FE7ktS8ZbSZ8vykvsX2dyMd9V9H9xUTqRlXuz3mGem1UXnkvVVFFnsacbBdX0zbyRDIdhpiIjWDOhffyjy0mxIf/+MZaXyNYAhKsqTmuxgs49wlUH6wWEhN5OJP4qQmz9GhcopD2rgmaQWpOTqMuavTrt1m4e8D558/2ilB4qSmDKYCDS2Z0pEklHUIoUlNJIUEIzWR6dIwUhOZXQYjNZH5bDBSExmUgpGayDQgGKmJzCKBkZrIU2cYqYk8L4KRmshjOhipiYyUwkhN5H4fRmoil3IwUhN5nAojNW/c4fq8jp9odND9b2pZWed4GKk5xvHsg4L8Y7TtjcMvjpk55hCM1DxundLN8QzdKGvR/v1Pv+RrwEhNt7TBqTX+7tYx8wLnv9/j9BBGamaMuVusqENhxFO1Ag4odkuHkZqjV17hXDmXSikfEd+YsrReE0Zq1hzobp4esIGxNeNLN/3YczYwUnNyj7pJ4W/dzOIPG51+QLUcCSM1kaut1pOa0UUxabuPjTJMNn54sdZpfZyIgdJWUjMKbVAS5hgf2UNwykXEuVQfeI7/PQzrHP9VGN8RRqNpLm8X77/fz90o82UTawL50DuBr9oT2ltZAn9w2UwP4V2ZLIrUffm7Mg7Z2pvFMWGQPaFrtG4nlr/3uNvN3gxKiltud5mFel6YtyVkC+Qb2pA1lVBWCSgE7MlqhA5IAEGbSiqRezKs1V//5pkB9Pi+bs3pe34+LLKTG5PDYYk+rk8xrulupXHOLFjZasjq8if9Bb64rFHzFYS+cEsD3pMtmM0QBkoSJGr5dxDogRPLKiWx/JN2AqRtmXM/f/78oy28JVnQMD7eLCc/DyaX7MZ2dfMAE/BF2maY93ybCutE6qHvi3pusj8mmN0jZwddRDhA1dIiDus0lGJZJ6GUANYBZoAfbdk0DTT2ZPv4gBmETgJm4rsQ0UdRl5a++v5ir2XaPbW9NYfPzxE0TvMVRUSAf7aIwzimmMYBvInkjQPaB26czr8wzgSqJ/greTYBY43AR1kcp0CyjoG+AXka2cubucyPNZw8ivevn+8QPaI2z7l6l3POk57/8NJRvb9t8gWza+xh1xfOrhFoFYfxDpZgGc9BMsYTue2tnwG3YJdfWHDaTwv6uLE5gRxg6QSYDzAXx4sDmg74m4fXcl4j+E8DsMmTGdD8gugSd/qf9/W9Z2id0Dc1zGpjcDGisoCbKI4WelkclpPDtFxBsaQtB34IzGtoU7BCuflUmM1xxXaEtupGTIOVm0y3fQku6uY3f4mgI0RdM/1swT2ElAutIcB1arXQsiqX5wihdeomEso6tU+XlXYniz9Yl8tlPtYev1IQD+ph2Iwi2nBZ/mzWcmG8GQ2xGEoFM/59YDgjewXsmIrs3XxBn55mHCcPP2eWGceWxYG2/+iL18Mjsitd53pTkocebSxRPrcf616Fc3sE23vMBv7w9uL60tkevs2/WNQWCxUrB0ZDUzmgfYKoI+uJwJLWtFxoScvfVoncQ/FP28AcSkieVq3oJ6/Vc1p3rAc9d2j05PqB9k/bf7qH2F3pvDPor8W6bp2g4VA6ZEb2lXburtTBtRWonMgzWrCCS4Kgcr8K46vaw5YwZC9/FpfLdhbtTp+cpX6u+UQyi5GPHjrG3YfU/iGM0ArpI3DQyhRTq6aO3SXwSVxZaMsFvglc7NxJufNDjgWt+Pgv0gxoP6R5cxtyVpXjbwz4bwX/txt82SP4iZYQx2Y0N9bmuGML9NcBcUfkphsWd0S6NKEAEvhtRfZl/ZfbwiO2h1ts/6H8peeQC4txCCDFoKlL0GAGY6esekBflvWhk6wblZ/Up3ZYMKPpM1Yww+GTuIMZ07tNk6UFGNHzxxe6zJAfPJwAwYyGz5jb5c8E2JG9efOmA4IZf6h9zLul52N1IPrvxkdpVCYhghmmmNZp+kQA63RIMKPTeJeq3XvPmhVbv313UnNRCCGCGQc/Ye6HiWAckiSDGRcjH5dOtsw03Fi/0ebLwV10QgUz5DCNV/BR0ltiAgUzFspYzFOYk0lLu/fqafiWkfESDma4fcSynLrELSfWYIZfVVJ+1ZqRhnspfntnqiy4R4hgBm8NgRrMABwhtE6NJf0LghkP08a/HfxkADWVu9PhpWz5CgkHMxq+YAUzJn7pmGDGBkO9vGmvMq0iUgaQPFb17IZ7MIP8l9P792P0zErdn5TFPhlyAocNet0XrA162BdxBTO+DGuc5aNea7jLK4g5fEHhQNyDGUgfgYNWEzG1amj6vwpmbEFzY4QOZiA33bBgBtKltT6YYbXh3SCzuGKzwljLOQpn1D7hEMzYiqYuQYMZnQeGj9m33d4qStG3+lKOJ/Zt4RnMCOpThRHMyFIXypbHOZjxWDV5m3L9BOP1p+7Iv/9xaQIBghkBoCSoS0ObPhJJzBXckTU0NHRAMCNmrT39U0NPSqTX4MpYrV4hhAhm6GBah0QE63RIMKNmvt/ZyuGdGQc9VuQxLh+1J0Qwo04dyziAN5G8cUiSDGZsPTalP5VEsTxk3/WErYfBE0IFM8IwjbdEMsYjZjBjdUoUZ+ecw8bRk1Yvv372j28SDmZMxLScosQtJ9ZgxpbKWyPqDNNN04/89bXguz6dEMEM3hoCNZgBOEJonbqN9C8IZjx7dK6st1S2UZC+kWlqYOehEg5mrOpbhRHMGNIXtU4YrsGMm9c8X7zaoUk7wO3b9P7zoI+4BzM+2jupc96k08stjx1+N/RjAw4bdN++aPQ8uEFn9G1TiYE2BDNsFDLfy6bMoBWqhZ621Lezwz2YgfQROGg1BFOrrx27DpV0MCMOzY0ROpiB3HTDghlIl9b6YMbeRRPIGqdvMI5fHsgY83zwchyCGdvR1CVoMKNPjqJ22Isqw7AzU8Mq7pb6dFgwo9s4rGDG1LHiDmZMs6je3n3hRMbOIQkRw++t+EiAYEaXcVhLw9tjCbAjq6+v74BgxvzPmh9LzxfQY/+4p7dbblQ0IYIZuWOxrBNFBOt0SDBj6KAjMtPG5ZqF7/MdObJTbwYhghnOmMaZSgTjkCQZzDg5eDS7snYgpWC/j+KA4uRuhApmqGAa78UYSW+JCRTMqKue9PLRlQaTsJc3rbtFflOXcDDj1BgsyyVL3HJiDWb8dYxzcctwjmXasohsSmrkcUIEM3hrCNRgBuAIoXVqPOlfEMyY1ftc7pBvgcbZ5ovn78m7O1fCwYxu47GCGbnjOiaYYZztuNH3q7PhsUmb5F+91Wx/vUTkBn3myvr31r7rKXuXjBrvH0G9j8MGvct4rA367XHiCmZcrWBuPTTsnWV86aDXL54yzuMezED6CBy0yh2HpVXUuP+rYEYCmhsjdDADuemGBTOQLq31wYwRusWxMXcGUkqXSOXNGKV8GIdgxg40dQkazFgcUp00tVN/48iPUiYPzgVe6bBgxsSZWMEMNxtxBzNO9aB1S2drGO092lmugLPNnADBDIOZWEtDuZkE2JHduHGjA4IZ6rl7Fp77qGRRMjno+cqtzomECGbU22BZp8CGANbpkGBGcYX7i+KVD40KVvrPne8QmUGIYEYMpnHciGAckiSDGY9pFZXbPb4abpv6Ykm/zrpKhApmUDCNpy4Z4xEzmGEelGeqkyJnuiNcsWds7dD3Eg5mvLHGsly1taQtJ9ZghuGMgSe0jXdRihUuq0aXDyAGZsJbQ6AGMwBHCK1TE0n/gmCG9t3UBmbhRMty/YvRd19N2CPhYIaBLVYwo25mxwQzHl+6tfqlnCtje8IF1pju74fiHsx4TyowvHL9lXFoP/qKsrNPh+GwQdexxdqgk2zFFczov+Be7r5De0yCp/prqVxfjX/NDKSPwAPJmYmlVVbH7hIkHcxIQnNjhA5mIDfdsGAG0qW1PpjhdzYpelbQW8vDQ7s6p6XJBuMQzEhGU5egwYz8ZO3bo9JsDTfcun52qXNftw4LZkz1xApmeHiIO5hh7/igs93mztScqT2cxgTbLCFAMGOsJ9bSsJsnAXZkly5d6oBgRnr8pLWKsb2NonYc8LMrkc4lRDDjkQeWdUo8CGCdDglmTHSZw114hEaJevLnTrnRSVxCBDO2YRrHgwjGIUkymCE3rHGa3AySReSUkZGGvXTvECqYYYRpPA3JGI+YwYzRA2KWuo8eS9khtar6quqLaAkHMz4sxbLcuaWStpxYgxkjT7y+skSql3HYjgpT+2z9U4QIZvDWEKjBDMARQuvUnaR/QTAjnPb1KXtQJ/Njrg5baSNjT0g4mDGWgxXMuO3ZMcGMdbG3XmygP7UuS16qW7LO+zTuwYzJ6+dONyU50TO7Nm5widZKx2GDPpyDtUHvwhFXMGNqyV8TH88PsN6jdGFGpkMdC/dgBtJH4KDVbU8srXI7dpcg6WDGLjQ3RuhgBnLTDQtmIF1a64MZJi8sdIN3TaZu9dNdvnnRsfM4BDN2o6lL0GAGfdiq2o21tsbbjjoEuy86Pb/DghlHg7GCGfRgcQcz+ps8X9Dlpi1jw6Wzh4vj994kQDAjPRhrabg9mAA7sjNnznRAMIO5zGnMnR4+Zse09R8wNxXTCRHMWI9pHQ4RrNMhwYysWwxZZ7NnZjkL7IpvLcjvRIhgxjxM49CJYBySJIMZ647+r70zgYeqe+P4oIRK2qRNk8qrSOsr7WZsg5khW7TaJpSdpF2FKBURKjshhGxZCilSWrVQadOmnVYp9b93zMjcmXvj7c7c+/q/fd7386l7zHXv73nOc57znO85Q9E6dS9ILTtomOjmYUPzcFXMmI5oPFlsjIfPYobjjrEi2yT3ae1ymJNhNXa3I8bFDAlEy33egbXl+FrMMPaLH9+cN0T3kGJx4OKx9+bhopjBzCFgixlAIGTlqbGEHlDMGOjuX7e6do5e6fuh05KEa9MxLmYo+SIVMwi+gilmDCZsuL3mjal++rWD4/923aSJejFDJru5cLeVn1bhtlef3X8k9kWDzPBFmqAP8eVXMcOPPLNx/uxSmvfrx9PsXuZsR72YAY0RKGhFQNTqtWBHS6yLGXFwYQzXxQzopLtTMQMa0rpezPhA37+7etJfWtv6pj05G/H6FgrFjHg4dXFazIB+R7LAihmiIUjFjOj9/C5mnDt9mDFeX5gSuq3KKmHA8204KGYIhyClhm/342BGVl5eLoBihtGgC9efzounBPlffiw63EIMF8WMO/uRrFOJB+sIpJgxfd6YlrkP32v6n3ojpLT90hRcFDOyEY0TjQfjELAsZmwSX+j5XnOfTtHYwZKn958/hKtixi5E43liYzx8FjP6/J1xc5JKMz00itLsR5b8G+NihhWi5eiYW46vxYxJ+ZsWXjUgaCSKq/y8rREUhItiBjOHgC1mAIGQlacmEHpAMWOGVXVDQX4OOeyl0pUZi2YcxbiYsT0EqZhhGiKYYsYp72D50YNk9HPNRku0WC2IRL2Y4Tu52GC48WrttGx3+ZKrZ5xQmKBvCUGaoK8O4VcxQ2344fs6Lnd1/I+qMHa3Pv+KejEDGiNQ0MoUUStyyP9VMSMRLozhupgBnXR3KmZAQ1rXixkn9GP7WZ3X0shakZT0/Gv+KBSKGUfg1D1/2JLaNnuY9vYk2T4vx20s4ew3VEBTopEGlbuK0Rumy5LZVQyiA/hZd4atI+C9RBvGKuCfNkSr9UTgfd08iC7O9k4eSkTg3W3BdksnG6IDw8nWw055c5di404dc4vFfiVaux5dsElP2def93Nz93d2Sxe7KdgRY6OBbnqSDKZHkG7qDwzEFtFcgwFSSJNiPkAnDXi+nXXzdvFJ0cc0849q/kx/FzgXkhyCn+aRHDIv//bQZ5+2we/oFvRD+4PtKe5a3/4wjlHAE9VAgabyimMRwGjpH41J7iih7gx0f3snwBnBn5tBgP/TnTKIDNN+bLdVsLF3A3oX0D6R95er19+qUDat04+9/r5CqtEqk8OO4hrsD3PZslMT2qklaDAPRINZYGMwUU/gjdsn2dzGalrIy1jCv+lsfZnGao8rPO0Tn2O61GHESY30KfIjco0zOM9sEKUyP8hlHPb13/U084EZ5K0HxtPDV+SHzV7jIoFCT6MiGk4VI8Pxml83LezWTK0ftdNowdNUC78r9Q21HqaX6/TU4IrFMU5csReV13S5/SraHUghlxXxskgEggt0SLiaw+xArGE3iQAz7IY1foqabBJILbygf1r7Z6wcx9tIaHoB0wRmwsU9L4PzdWlNT0uHtawFBEbHDTrdi/2TA7X0DWkkYwW5jVPnGG6WU9Kf2KURV1T4x0q64S6tjIVNw2MNz0XDPTKXGTq1dVHiqwUVhA0HAYlV1IGcEurqDwFXX3Gwsr8B6F8MIH1ne3ovljwSOmBw4PLkPszLOjbs/hnR5l0UF2ymk598lK72VPFuX32mq3J9Tqz9+q8PmttU7RUqFdcoejuM1l9x8NX238d8HAIrIsHOBX9pQfS0BCYeVg685zNW3/a1eFjHap34mGDw6sc6zi9nkjBlfZSoz6W2kD6XxwtBAtPczUNS0iI09ZNrV43bcKJK5Q8DUxlgLU/QWlOBDlEGtVZoAdNaLHE7REIKBkPayzZg9v3LkXmq1P/LFcaG4H7q21qeF5Qtcl7BGb/bb8OtEBH1mGCRw5KgTI2HBJQcpgSsmJAMFxMOFTw03/mkRaeoIK/o+JpHnEdY9zawdGI4cE904MKBAonoAn6iU52G6OQMvAYz1fZgeHkQwXjBcOd97gpF7uhM8Srt7NGDzuyudDnD41G4ZyC8VLV2c3ZwMLQErkOHB4hPQi0J55NiJu4MN2Pg8dm/doKG81qwJ1g7AM8DVlgYNvYerHe3BtQCxpMG7ySIHdmTXa4xtrCCUHQYsKOpOsF7p7oEzdLN1t6JyljF4RR92y8bgqtena+Lt183dnbpfJXTGaZpF1Z4Fx6uHMAU0cDNGZhXeti3P1Uf9lPxmqW6Wa7TcbKxt27/UWa3FgcvgsNzp0s0sN7pwJqYtwdzcC3N3tJB3dnm12eBXMUDmKg5dvy712I3S5dfAaPdVVPgXJVoOy7ff08AOeRMOvXg18KNnP5hyHCwXM/pquz6mCjJGngDd7Y+cN47mERcB2TARDfwTqxpN09Hdbiz5XaRrBE1pGFgHrFWTYrHg3Sp/0PPFIH4/x9GyAggdSNGssq53tDw0AKMZ1KR7PBwFPeaQ4cPlDSPrtWWkswNpQSMyOxzIeXyMBQ0H3EQSXOJjpCcCqe5a6m9oj09Vf1Eib7D8ydL33G8at9Fa8GQow10HDuYChSn8nDj3XgNe3cXUHRLIANmDnvrJ7cHZ6Il8B/RFvwNPE0RcTPn6bdFZynxNnskpD7ZbYV9Pi6DcDRymUbcyNnNQ79z9YyHwf5hGtFxN2jsBRIFehRgMGl18H9Og9loFVRMpEVV9jdiOAAGY9gAsZDhxXG7dlOmwZmSfGPYPc9ZOWrHlq6Q2W16inN0HQJ6rQe4fA5SIQywTslw5y56wa2JTFF3dgSSm/a+w7yNza/bMEdgsBzmzjStDZCsdinfNlAXGT8q8QgtasCDcvctMfK/f2AuI/P8qS72n6oTFQS7CMAcjWQeObgBOBmNgF0G6aLjk6idRAHHbnA0BKcwQHas0D6rdCcC6jELZcy/tdcIgE4BLkIxbHhXXca9P9h22dZWe19T9IfqKb69ObNCU2bP4p7Vs67/LkzZnbH+oia1kJKvu/LL31PNmv4wTIEAlQ0ocy8yj8xx5gmmzFxT6T7d03lCJ/MTrRge6xgMJzA5cmdYr2W6hz0wpeedCW7KjAk7VZRM239tjuXeCetUOSPMr/vacEeYzo1oJ9xNeSzZlvGSbUgeUzZWSEiHCwm4GVGhQ19XRlQe6TbEU6GmQ2FATY9AGlAjOyQ/hnvJrc6OYhCMI9V8osguc5rNtqIj+fbYq59kZILUoi1vU0KDT79FQfL94UiSbw9nS54BJ3m15LgP01ScaX7v3+kpX9/KicT3N2QAmYc1g0hf6+DAY8SDW+aZzP6cE/g5MDLbOwEpi71NeyhfZ+9hR3T2sGO4dX28WzEnpvLlRDN6JmnxnciyW6IIz8llGc7mbmAvkqBDt/Ba6FcA1G0I/9MRThoslrqDQxvwMB7MVABUjKcA4sKLlEzFMunehlJrb9Fzizhdknkj7kWf9su/80uot/+pX4K7n0DlfHiVooPA3U/hsAv9XVRuZIdybhyuBroWT/kkt8TTnXfLUVI/m1zTkX+ZxAnGsRwELC9zq8jZivZYBarVEI6k1uVwgRbu2Q8qZrzehdFZh3GdFruV9RhuTgwHZfBn3JW1KSt1nDwYtgw3CJMF/vnT9ESamQaChgVuQbR0Wt9uap5WhqZff9JJ/tCuVbmsXtBE4mFXg1xmL+DQhr24CCeEDJ2pLZgRMzMytuvb8JTizeNZGZblY6hR+heTU1YYenJKwXwrbinaL/NDCqaLw0pxuWOgyiTADFT0E1qXzxPOqnsvGT7X/qUu52KcJLOw5eJgbw0WE524Ryq4jGAkDegGDEfgU9aWDkRHjrt0aVxqrTH7EjyVSI2pJ7jWHpbfgvRY3GgaZ3sX5ZQCIsZVcCocyGtkAhcCE6N4rH+wp6g81j+YK6WQ9Q/oMga7XQimXRDrI6O17N2AWAB6P3Ow5LQXT/uMTRyj/01SSXdbDWGI6XO7uxz2ESJxl6JIgl4gIQDmvBjFWiDh6h03wK+2iKrsJJLQb0SSNWIAkzebbqmUsVM8LDTnu/6RO2JL3vXLn8+pEplbJfJvVVo+tfArUdZWLXR1Ls3fQl0MBZUSEVUKiurWMpLMr2WkLggEXa3v0lIS+zrq/G8ey2NaSGDyD9HCIY+pFCueZsHF0yujX734vJ9G88kIk5ts8WkN54o5zdmT0fV8fxJz64ADWJtRcAQ+ORFcZW6fXhEtHZydbImWrNpM1zarRb9a5aY+ylQ9WW75wZXzXtpyPxv3aj54tavlAcCXZGIB/b7zCqAEcKtoDE9sC86X+pMt3RkdkDPvrcd2Cw9c6mdNOrV20V43ycO+f0zrQvsblID4w/72EPyO01g4ApUIbraN7RatO4jtI8zFbaYz8BTKlbrHtfSdCjnWU7x0xjOdFM6eRnPmOZCyr/9uplOxeMMI05px5IT6wMXnRWZpoCAS4CoIItXF4I+WYv8Zr9YtCGdwRye3QXb1O1uDxuY2pGrmtdba3A6cuOaPXf1P42VsHsuXKbzMVJfL9OVupeLtWgCDq2O7P4NlDN47F3yL9mmKm9D9A/VHGSeshSB+HXfhRvx+NfFDDabTwqoBOC1r9DhOgBk90pQLTcde+6Ieet2hruneyzoIgML0PqKZ+RLuMUQURlL5DjS43XeJq9ycHYkbvdZv2Ey0dnZ0cXYCp99dGz+CpRg/68UXUKP33Gg+q/+yFu7puGGkX21dVLMF6ORhoJoD1HkgwARwPwj3WCJGgI+TQ1iPsNGr03vzfMvvmffM3S730SserOB84eYYjUHgHNwN8BRuqEt4shlnad7s1725S/OdG38XUW+3rL0ulqdO9x032FRpSO2ffhdJIyDnflDOeF7OaQMMzVswiqg8McbS7oyAHZZd/zvLTh96bM+uCEu1JGEj84lulzjP3uhrjmQ7827YzkBKYSZFNV0jgJowMKZVNAYF261GtJ0pjmxHVOvODuoO2234ne3GnC06uWa6l3aEnIWu3j2vt5y2W4JkuyVItvvTOQNgHDKicZRxZJxu7uSUYlkHXLT0cFsLs6gDTf4gC7/MW/BY+G2/jvoonMsKdGJksC4GsYcM0OoR072cpD9LBASgfeyyLBHZD3Npcasfiimt+Gb6Z0A7CgqYIiqg2pGHZBNg8pBub/+S7fBe/m//gu5C6rT9C4pLA03CBN50GdAkwmqC8mxAUy8C76IU0NSb1QTFgIAmUVYTlCIBmvoQeANXQJMYgfd6EdAkzmqCLtMBTRKsJmilFGjqy/5dkPk+0NSP1QRN5YCm/gTey6lAkySr6S8p8pd1ChM1juYUNL6d+/4a0DSA1VQV1XArRzFLPUL9kmmkNKMFaJJiNT34cG3o1UF62hHSBgnht7/UA00DWU2rogyHBBwdTtm3IPLjki0FsUDTIFaTas6W6ieE9eo74mqqxmY3HgGaBrOa7t6fNz333n2N9DG1zXr6ay4CTUNYTZbX9azNGUPV90g8lD0oM04GaBrKatp36cL0pzL3aYdO0sPzd5R8B5qkCbyzLa5dg8MIMLsGde/UnVjyZaS+35z52dcffYrn0VG6u2swB65T4mYZH+ohKLGIUjHEVy4715NOTrqjs6i4UgmFdXw64jr+go7lkVw4zXF67BS0Iwrs2CnTOKRjp97G8vvYqYkDFzi3+ClrRJj5RK5JHcfJK2Bz7JRhHNIhHgvicHB2TlFRkQCOnZp8mrH33SAiJabIaHzYYVHOpUSsjp2ahGgdaTxYRyDHThXeDl5gdXyDnv+Iqc/fut3nrP9ideyUMKJxgGiCvXEIWB47pTq1SuVc42j9cJ2FOvSLepwHLGJ97NSdWMQD3bAxHj6PnRp2USLpcf0Y9Zxs8XmR44UgWaLAj53KRrRcNOaWAz/Et2Onrt4tXqo2uVD7ZBbBM3OTLmdGh9WxU8wcAvbYKSAQsvLUPAJMnvpvOnYKOlXE+NipmjikY6eS4gRz7NRkPYK3EGkYPfSlrKvnTPmrqB87BV0+ROEopctxSEcpFcXx69ipb9MaehvuVNMNmPtg48ravNuoHzsFjREoaJWEqNV+weahWB87lQ8XxnB97BSP6he77ggNaV0/dgpaHEOhgHQCTl3TMcJrQo9LkQvjHN7N3SxG4awadBxl0V6Y7noxo1Do1ykYwDDhBkxMLD3AvzLcwBsQV1kyC+jtxJK9hzv7zCnWL2K1uxOtLZ2IVsBsc62Li4M9eGyVM9AIfL79lmudwI+C++idQD7AgTkSMS8qE9XtwKOBmJOgpfTlRBc2o8ncAuBsa+vA6NiABf6MxzpnoiO4MbtrxZaNLxY1TwuU10ghzHjbu2inH6Js3MUWyA90YyegzJmK9mIL1wJ4CjAyyZRXdAemGqjOlBHcq896IN77IXJ/zHsztlrdD/AcuRUqnEd89WbegwffzLz8u6iq8H7q6AmMWv2IUWanxi88fh2FTXxioEJmvKLqQxDw5FTod1UPOQ5/ZCU9oGYsweAgxlFng1wCE+K0M4SnpW8/9lQV0+UfUBW7ciRVAL/BzcysaWF3Ch8zdVYRjd3A6TPYizmtZe/eOS4wZ9tbwFk2782qoWKq+TMOD6NnzLUlKMqROSdkEvSOG3GTLJ3a+GG6qtNIpvM6jYnp+lg5OzswLDuFye5MzEYbgBuJwSGBXUu0XwWGd4QF1ZtDp/TWi8rUDAj8fLdu9+gCyEko4P24g1D7ZdRPbstjRRmeWJd3LjPKdGtBWd6YdY4dC8jqjjDxORGMMN9k+pFXY4ZEu9E4T/bvw7oxd/mb3cAPcZjBBlYcGYg4wr8R56/2UerXCN4ddQamnI8Nnn5KM+7l+Qixv304aXLxjp0b3FTgryZ+KMTs07AKAX2albcVEGDyNk3SJMWf82+QUu7LHq2JfjeDk31h4mkuziBByp2zicHo/PevBSj7X5+3YQ14HnZA3mlrR+w4GqP9LICupUtSssnnC/U+knwfZqTO21A/E/ZpuUmdTo1d5QQBfb0qAX0bAH1ToGmSFKCvQgVXmtTN7aRDfj0WCKW2a8Hz1TPPuyyIaTtCOSD6d67Q2BbOrzoXMwUPHeJ1YsSvlt+lUNDA+KdoGdh/QfXm8fJOJTDJrOxWCtWvvfvaMGzdGLzzS33/hJbiPFNS1INpY9ZQgxI4kyUN5ge5kyXWdX7s+KiqQHp/rwqsk6UOz+xGogQ+sr2zjb11e3/m/UVkkQyfLWvy9Q4PN7z7yaNKm9NX2Tfg9tWOFn4YQwHRGHVncZH+ELqzHqSs5+TsAQxfltZgZVph6nxgygry50rEafOt7ZzdbJSI0+e7u7p5MP/BO1vVObTIsCSjkOT95sYduRu+nJshxcFfYOSx3oG723Rq4oex/M8iGUsVG2NBeg6z7tKdbHXor2UEp7VuVu4IPejiI+Ngc5U2jSM+gx9d3zqn+k+myn9ojqwcViCXAcxxlQv6y6kwaavoXpbKiuQI2ZZE44tvN88N196h8/jLzVDDeEynvaAAERUsAep4CACGlm5louyhzNkRSKh4fy31dVJw+GtxzUTD7RYKnu6FkKGM+UEeQ1n7dX4IUHYWQYBUw7PsRLOQ8O+inVSCTNR2DnynHyWe6Wo5t3C0wGinqRcqEGinoCquzBJl2sl+iGrVZvt+Osl33obSZv0ciAPaiQhKArt2fPU8JkGfE9m4f/++AGgn+6Kv2o1L02iJEpS5xd+cTHBBO3mfR7LOVDxYRyC00yPZfb0+HzpIjr/tGtKyZMZbXNBOD6uQjANEE+yNQ8CSdvKubTudoVpL9dcNvqNav3U2rmgnNUTjNZ3DOtnFEe30bq5oc1z0Wv3IW2luC103vsSYdoo9h2Q5A8wtx1fa6XxK3VvTjHpq8bDSMWpOcxpxQTsxcwhY2gkIhKw8tYjQA2gnjVHjM8dK9tIsOmsVkvN24yuMaSfixQoE2smlGrZYiirtlGS+efT+2cqUbc8mCJ0c+MwAddoJOjdHgeCRApWDJXjKqrkKpSjRTrKPVHYaCqVopJvIqb2f8SoSddoJGiNQ0ArwIwStiNUCjblY007FcGEM17QTdNLdiXaChrSu007XMm8GhJy6RD0cPkokxqrmJwq000k4df+jnf4R7XS4qK3h6MEj5HxH0b2HUt8rC4x28v6ORDt5f+MH7eQp1nft63NjNHPzRnouHrg1BkXaidhq/eHDDEWdU6uflQQ/G38aBdrJ5TsSHEL8LhDaqZeMcNoTVyotaVCZcx+RO5WY005XvyGpAvgNbmZmWNFOyx69WtBW0KKXkZYsmmptjx/aaSqi6R624mK5j++0k2GrBs1H25W+u+kN5dTrow8wpp2YUQYWVwGijMBopxtiG0ZMUV9DPzRmYiGl/E4wDmgnZrCBFQcINoKjnZ5sFHntVZikEWx6++GP4c2iOKGdpiIqBPRpVt52itAjaKcZNQzq/EXi2j75R/wnbBoRzXfaqewnEu3k8kNwtJPHq14uq5rHqqWWa2RR7LfGok47QQMjCrRT1k8kZsHiJ8q0U+2AI4skd6vSExpmKJoUx2dgTjtJIb5/2Q+skyV+0U59Uz1aj40jkIPvB2/5YCh3EBe0E9BZEYxBxMYYmNNOZefqNU/mVqoVqVq9v3CjLg4ntNPVNiRjebfhoefwk3Ya98JRbVXFFlJo8SHpvwjjoV98IGjaiRnIYWknzZ9o004W+1/G1a8YpZfUb9yyvnpzjmNOOz38gUQ7AaEFZdrJX1NfIWDcNXpI+NxBls90J2JOO4khCZB6qI2daJYQ/l20k9vt8JSiQbP1j3w8/c188rEnAqOdLgohne30ncDvs52aWyfu825bpuNdbKvgWjL8DQ5op7NCSCdlRArh4ICaW7duCYB2sml6NjBb/zA51ML0zo35BeK4oJ08EK1DxYN1BEI7rZ+8fsdQk0TStgoTr3lVG6m4oJ3GIxoHiCbYG4eAJe20bzG5VY9QrR2/THLY9IlxV3BFO90gIBkvHRvj4ZN2cqhRF538Ikr/cGS06xNPEaxpJx9Eyy3D3HJ8pZ3sln4aOkUvSLskeEWTnWLWW1zQTswcApZ2AgIhK08tJfQA2mnJNqd8pd2H6RFkq0PZP9/3wZh2OiuMdLaTg7BgznZyJ3usb01UphydL/2tIffSSdRpJ+jcHAWC56Qw0nlFocL8OtvJ/p6R7sxhPqSiIJFrkfWSIqjTTtAYgYJWDohaaQj/X53tVAYXxnBNO0En3Z1oJ2hI6zrtpOEywTBfwkj3wOW6Rl/6bAUUaKfTcOr+Rzv9I9qp9K1Ilcanizq7+qvcE6LrLhYY7XRxZCUC7UQd2a0vyusi7aRdQZ5iHfyeVDi5sHQU6eA5FGmnT8bWMk5NqVqltJz09399+lOGFCxHnQUVgoVDIkdyjUD8oJ3Mvp25/OyxJzk8/EVuzpFhbZjTTh6IqgB+g5uZGVa0k+sDtYGnZbT0smdY3feKOZOAG9ppPKLpvo/AxHQCp53yvaVHt9SP1Nm+6eAV0o7paRjTTswoA4urAFFGYLSTxT6xj2Gb5DWjxywJKHikMAsHtJMHojhUiDh8pZ3uHS4/NavqEdXfK6uu1JashBPaaTyiQkCfZuVt5YQeQTs17XdgtAi5qYUnj/GNq4s6wHfayWF0JQLtdHYU7AQeddqp6YZyfM1EKa3gz+7Zl4bRpqFOO0EDIwq0kw2oHiyzMG90t1Ko39NOa1Z/nVVUbal24I3ceaWILUcwp52GIL7/61FYJ0v8op3Wyq8v83x/neT30chDROJvJ1zQTkBnRTBGJDbGwJx2MjWZSVW8G6lxVD5bcROtZTVOaCcPRGNRcdFz+Ek79TOr29Frhbza4fOJW3+U9B+KMe3EDORwtFOa8ujuZam/p53OzRgoJeqeqJZtvNLDd+aXCMxpp++jKhFoJyC0oEw7VQS0rHFoMyRnJ79RFJ1yZh3mtFMQkgCm5qPYieYZwr+LdpIymqQ4P+q55r6S3llHzwUrCYx2MhuDRDv5y/Kbdhp2nHqqSuEdLfmc3N4NAdc/44B2MhiDtHasMAYHyMaVK1cEQDutPV0dlrjYnJaecfXLCK+V+KCdCIjWqZPFgXUEQjtd/Hqj7W3haL0UkS9n3J6Z1eCCdsqSRTKOPx6MQ8CSdjqeR35yQ8NDI3iNyIKNFospuKKdLBCNp4qN8fBJO5n5tfZN2K5JP15MFm9xeNyCMe0khWi5xtFYW46vtFM/u0F/ranfoRE1tvySjuLCQ7ignZg5BCztBARCVp56ltADaKcB392r35LD9eMmma6QWvBSD2PayYCIRDu1jBEM7TR2hfApN+nx6id+9PPXurGuHHXaCTo3R4HgoRCRCB4ikV+0E7W4/+KRFiK6aZ8Dt4XmRDxCnXaCxggUtGoZg6TVVcHOErCmnSrgwhiuaSfopLsT7QQNaV2nndY0vsntsySMsq3ULOVOv+KlKNBOlXDq/kc7/SPa6WBTr8PXWz/Sc8a832t0YPUQgdFOZrOQaKc6FX7QTkefejpEf6app/seeZGr8WwFirTToo0PP+h7bFdLsJim4rmL9AgF2slgFhIcojBLILTTtIozE/vKSqsH+k+1eLhe5gfmtBMBURXAb3AzM8OKdprS/8q2v18nkPyr9sSHfLGXww3tlKWCZDp/bEwncNpJIj0zQ2Vmm77fgx0vcox6LcOYdmJGGVhcBYgyAqOdsmq2aU1gvNA8ltPa/86dzHAc0E4ERHGAYCM42qm5j6pdoN47zeI5elcdI8wu4YR2YvZpWIWAPs3K284RegTtZDZVOrfQ7ol+1ASrWONA45t8p51aVJFoJwNVwdFOM8RqTF1e+tLSDgklP+lb3Yg67QQNjCjQTk2qSMxClSrKtJPJ3cUyRyrG60YZRB3NWrr1Jua0Uyzi+3upYp0s8Yt2MmrVq1SYW0OJXcOY2dc+uAIXtJMBojEUsDEG5rTTK/MJdx9fCaXvcvLw7TXx8Qyc0E4ERGPVzcJDz+En7aS3SOze+IyxlKwrEyWfOb5Txph2YgZyWNqpSBVt2inYKzV7kEGCXnHz1AFFfs2OmNNO/mwBeNJOBqpo005FZRuv7aBL6ASsjGjTULohjTntNApJANOns9iJZhXh30U7BZkd16+Y0U//lFvDxhBHqxECo52ezEGinYbM4TftRDygqlUcvJmUGxmtn3V28w8c0E71c5DWjnPn4ADZOHfunABop8o9j1sGLZuin0V59kl1/3MKLminQETr2ODBOgKhnZKvmSiaaG3VjOodWLlMqX89LmineYjGGYIH4xCwpJ22HtKsdB8crh8i8SCn8Wv2FlzRTq9nIxnv7Gysk10c0U52F1/89cInRHv7osWer8Y6GWFMO0UiWs4Dc8vxlXaKr338MX3hKcpRvYxJokOm3MUF7cTMIWBpJyAQsvLU84QeQDstOSfkVL0oi5o9OX2F60pZL4xpp/q5SLSTz1zB0E6nqCn9xHs91N8j+Ub65CPz6ajTTtC5OQoEz425SARP+lx+0U6bRe2rtvWZopsZS5qifG6JBeq0EzRGoKCVD6JWy+b+X9FOF+DCGK5pJ+iku/PZTpCQ1nXaabxVlVRkZqNactWoqbV1kkEo0E7VcOr+Rzv9I9oprfKDfKmfCjXpZZxF3E3tAoHRTi5GSLRTkyE/aCfTxAFpV5IT6ZnirsP793EioUg7fSAUqF+vfau5c6TWhpLq55NQoJ3sjJDgEDUjgdBOJd/2iGf59tEqTuqzJPqR+wvMaScZRFUAv8HNzAwr2sll04aNha6B2ocdkg///Tk3ADe0U5UhkulisTGdwGmnKV7hl90jDSmn3p3WCEuijceYdmJGGVhcBYgyAqOd3r0YHL1imRP5UEyj7KRBg3VxQDvJIIoDBBvB0U6iJ3vnRmdM1DvhHZ5f3qB7DCe0E7NPwyoE9GlW3naR0CNop3tCz4pWT75LCvDauyH0nco0vtNOUiZItJOdseBop4A+iiN8dsVrhCkr+O1cK2eKOu0EDYwo0E5iJkjMwkNjlGmntTbvT821rqbsLc9el9ki54Y57VRgjPT+QcZYJ0v8op0sXr9Y4TwlUzvjr5mBK44/8sQF7WSHaAw1bIyBOe2kOGVQ0bIEG1JUZOMG5d5OyTihnWQQjdVkhIeew0/a6VbKeLGS2mpKplzIacsfL+kY007MQA5LO9UYo007xfTu11f1YpLakTEtgQfHXDyJOe0Ua4xEO9kZo007LWrdSEis2UwJU763WPbqp2TMaaeZSAKYthmxE81LhH8X7ZSZGbvQ6KSD7vZMCe07xZ+0BEY7fTdFop2UTPlNOznZHJy3YOp5cvKkhk3ZcZPW4IB2+miKtHZ80RQHyEZpaakAaCepMUtTNv9VTwuLXimndtxvOy5op0RE62zCg3UEQjv9EHpWoV65Q2/f7vV9pn03jMIF7WSMaBwlPBiHgCXtZE2IGa0zIpqSslTt+qpD5pK4op16IRqv3gTrZBdHtNOG6ALLqOof2vmVF2K/xE/5jjHtlGuCZLlAzC3HV9qJcNtpUk2mHdn/VYbiID9Fe1zQTswcApZ2AgIhK0+9TOgBtJNh0WSSklQ1bWeZz6ggz9ENGNNOHxcj0U6RiwVDO0mHiC68N2qyfoh8VR9CUKYJ6rQTdG6OAsHzejESwXN2Mb9oJwVDs/1jc5NpOW6XqpYIj3ZBnXaCxggUtIpE1Mpj8f8V7XQFLozhmnaCTro70U7QkNZ12ino56PBLy5S1Xc9uHHg/LNCTRRop6uoqdtPgOpusl+outWxSGvf6wf2T0ReqHdSN0+o5nqc013Stul9tfuIizoBTcKspnGqU7JHVQVolqxeoGY0Ii0MaBJhNYVlvzx9sb87OeLo0V0FixoGAU29WE23B20zGrsoXrvk+7mTapHzueG03nDm2j7prFK81CPN7ZvOSKmsSn2GgrmuwZnrPzjtH8Fpk6uNRjvGH9conm8t2xY2XkZgcJqPMxKc1suZH3Ca69P+FvOPuOqG51I/rt5s+QpFOG3OdvMFFIK1VmbflztW7ZmQigKctskZieUxdhYInLZS2kh248sIcr5YdHp6A7UYczhNCVEVwG9wM5HGCk4r1s7KKX4ZSouepbpw9d62ZtzAafVOSKbLdcLF6izf4bR7Ec3rr21coB2dRtts+f79fozhNGaUgaWLgCgjMDjtcpD4XTERa/IBQ5IeWb2AM7nDBk5TQhSnl7MA4bTZLuJ7c/aVq+3zXnWjfo6yOU7gNGafhlUI6NOsvK2G0CPgtOX2GXT9gbP148zOpB4ZW7mL73CakisSnObjIjg47XqWe/mQgGD1FG/zk4ekcjmTeTTgNGhgRAFOG++KhJh8d0EZTqvW6DdKbkmQXm7unkwvz1fDMIfTbrggvX+6C9bJEr/gtEPTzNc/Pa6tF2idlJdQtoLzu5exgtN8EI2xDBtjYA6n5elfTU7bFqedGTt93rnYvqo4gdNmIhqrHy56Dj/htPqkH8uTD7Wpxc5ImZS5NDf5T6bKKKBJzEAOC6e9dUEbTnudV3JVJOsNJTJ3SnXCtoIkzOG0ky5IcJqPC9pw2rTNUhcnbS0h+UkuTCBXqULm/RjAaQZIApgOd2EnmtcJ/y447cwj6TSrrzu1T53y0TO1XrFcYHCajDsSnEZx4zectkV+eWbg9zukXY6X8z8XLNyEAzhNyh1pqb/RDQeETUFBgQDgtO233likvDpPC+nzOf2VZCzn12thBaeVuSFZJwIP1hEInKajbBSyQURZw1+lbLwqXf0MLuA0F0TjUPBgHAKWcNqXG6tKvW40qgfMPPip94ovH3AFpxERjdfiinWyiyM47Z7oGtKty9H6cY/pqUSJQs6zYwQPp111RbJcCuaW4yuc9nzZRLEUS1FyxMOxySqie5P+nGxBAU5j5hCwcBoQCFl56g1CD4DTxokbiSnK7qZk194YyhhE0MEYTpPyQILTCtwFA6eRH7s+Wqyarldc9DHKbplVNupwGnRujgJwJeaBBFw9dOcXnNZ3Uj+S9uE6zTyRrHI7tZj7qMNp0BiBglYF7khaBbn/X8FpN+HCGK7hNOikuxM+BQ1pXYfTDAgrnujHLKGl0gdeUYmxkkKBdroFp+5/tNM/op1OPUra/DFou27J7AmZy/QlPgiMdrrhi0Q7hfryg3aqGPF8i7iICS1u3Z0F68TlJ6FIO8lkNxfutvLTKtz26rP7j8S+KNBOV32R4JCTvgKhncqlJV2OlvSi+n+c/mO4pO9QzGmnFERVAL/BzcwMK9ppkvDlH8tbC8n5j+eVKJxYX4Mb2skb0XQO2JhO4LRTlqubZ9RNMWr2h/C+9z/o0jCmnZhRBhZXAaKMwGinH6XhTxctv6ufX+z7ctOpPtE4oJ1SEMUJ9RUg7fSGsdpri0ke2d/rKymlz9eNOKGdvBEVAvo0K2+rJfQI2ildblbOgAltGscDducp7pQfyHfaKcUPiXYy9hMc7RSvNdUq4I0PJYYccqS6VksRddoJGhhRoJ0S/RCPovJDmXba+lpv6+1TqpSUV0sLjzrNwP4ork2I72/nh3WyxC/aSefj61miJ5brnlii5qSRKn4PF7STMaIx1LAxBua00xbHwRbVl5q009LMVEYuH/AFJ7STEqKxZHDRc/hJO92f0bh9VmGcbr4OvbowapgPxrQTM5DD0U4mAX5o006M64q1GcLrqAm9ex8Rcc8Wxpx2cmELwJN2MvZDm3a6Yb5sYdnqC9onDIYYWok9UcScdpqDJECqrB870awj/LtoJ93BUuX64Sb0pK2UnHUvYmoFRjtF70SinVR28pt2WmIoeUY9ajg5KHunPON9ThwOaKdDO5HWjv124gDZyMrKEgDtNMpHtk7W25Qa42kW3VYeUYEL2skN0Tor8GAdgdBOMY43+3ywdtRLkJ1oc9xRuxQXtJMuonFU8GAcApa0054FzbsSZ1tp+e+urDnXNjISV7STHKLxJLExHj5pp3FNCc0elYbkA3OVqsvET77HmHZq9UOy3DNcTFP4Rjs5LHXSf2BqrJn8cOqk+g0TXuKCdmLmELC0ExAIWXnqbUIPoJ08ZWTFGSfe0AO1/W41b+orgzHtNMIfiXZ6y53S8oV2si89/2Pnq7W0kr2Dtr1KHfUEddoJOjdHgeCR9kcieIT9+UU7XSQqlR4791p9f8ibOMobhfGo007QGIGCVm93Iml1R7CjJda00x24MIZr2gk66e5EO0FDWtdpp2tnalIuzfJWyxgd1WfDe5lWFGinu3Dq/kc7/SPaye6IXNxVz9X6QUvWL/0Qb/1YYLSTfCgS7fQshB+0U/8zdw+8DiygR+vHpwUd2RSEIu3kO7nYYLjxau20bHf5kqtnnFCgneRCkeAQyVCB0E4xF3rv8Hy9iB4V2av5uJOcJ+a0U2sIkiqA3+BmZoYV7TRiuN7CqP3G2oeXv71iGHDaATe0Uw2i6UqwMZ3AaaclwqFVAw4J0w+989sSot1MxZh2YkYZWFwFiDICo532BAzsR9kgr+sfEalLj7/wBQe0EzPYwIoDBBvB0U4XBrz+LFFRSMovSvWZ8dfWTJzQTjWICgF9mpW31RN6BO2UNuN+sZSCGjWcNMErWapfKt9pp9ZQJNopKVRwtBPp4O4HhRH7SQf6tjKmTZ5YjjrtBA2MKNBOn0ORmIWG7qVQv6edHlNvuvRNuUgLjfu8VWzZuzmY006XEd+/KBTrZIlftNOp0ySCzO5H6ruWNAyPOZ19ARe0UxKiMfZjYwzMaSd7VWrcgb/faAdUzPnydnb8apzQTlsQjbUaFz2Hn7STlThtyzKFe9Sg6WV3SzUXbsOYdmIGclja6W43s9Tf006ni48ITUuW0Du+bSzph1ipNua0UzlbAJ60U1Io2rSTyauF5wLu2+iUHli7WG1saRHmtFMgkgCpLqHsRPMe4d9FO03feN3p+sU4tdLJ4S9j1zwcJzDaqekAEu3kf4DftJPSY+ux8bG9dOKOb2/9uVpbAwe00+sDSGvHdQdwgGykpKQIgHY6uFepSWuWodo++b2epAUhp3BBO51FtE4WHqwjENqpz2HaWKXomTo+znJfrfcu3YAL2ikS0Tj+eDAOAUvaqb58acrPnbb0+I1Bz7ecG/8KV7STB6LxLLAxHj5pp4bomGMWqm/UYk/cDJMM13bDmHaiIlpOFXPL8ZV2+t5aZj9OI0gzWrL/ZOPBRedwQTsxcwhY2gkIhKw89T6hB9BOV5P766Z67aCGpH3tpxx80QBj2skhDIl2UgsTDO3kNkHuhEmSt258UMls8YnbnqJOO0Hn5igQPHZhSASPcRi/aKe5cy9u3trrpVbIsb9c24Tuu6JOO0FjBApaqSFqpRT2f0U7PYALY7imnaCT7k60EzSkdZ12miNZNzug2U4nPF3jXAOJNgUF2ukhnLr/0U7/iHZaFWU4JODocMq+BZEfl2wpiBUY7bQhHol2mhPPD9pJNezhZ33SFNqugOMFy8SOG6FIO93ZGjQ2tyFVM6+11uZ24MQ1KNBOnvFIcIhVvEBopya/1WI+B76o5ziUbrpSZj8Bc9qJjqgK4De4mZlhRTtpTLxal7l5JiXXOXGP2/Z1a3BDO8kjmm4QNqYTOO00f84KoqXsQp2QtSsXJcxgHMCYdmJGGVhcBYgyAqOdJk24OXLZICHtErJMfvkY8lcc0E50RHHmxAuQdrI8nH65aOwC6jEf3QlfGmuIOKGd5BEVAvo0K297ROgRtJNqzpbqJ4T16jviaqrGZjce4TvtRE9Aop1audMkvtFONXvTfJeucaIdCG0tWLZfRwp12gkaGFGgnXQTkJgFlQSUaSd/832kgcpraIezQ0c/CvkqhDntJIf4/pIJWCdL/KKdPk8pJ24epUFNaDRufvrgqQ8uaKfWeCRjPMNH+iNw2kn/x4onlD0DNNP0KdtOmB/ZiBPaqQbRWCWYTzP4TTud3ZttJDdMjRYvKm3k/nqYPca0EzOQw9JOUxLQpp0WKxhHiwQUax5vLG/wclvqizntJM0WgCft1NrNTPT3tFPU8/o+puaplLAPuU6TSbf+wpx2ehiPRDud7Ug0Gwj/Ltrp7v1503Pv3ddIH1PbrKe/5qLAaCeNRCTaqT6B37RT7prLsifLDquHfy+cuiSseQMOaCe1RKS1Y6VEHCAbcXFxAqCdqPJidZ80lukFyQ3u9eZQeDEuaCcZROv0woN1BEI7lddIvtO8oqEduWrFg4Sixx64oJ2aEpCMU4/NTANHtJNXIz3qXsNNjT2quSuXhw6k4op2qkI0Xi7m00Qc0U6+t3Iq6bL1Osnz/XQMtpnGY0w7xSJaLhBzy/GVdiIXry87p/xUe691iGdTxLxMXNBOzBwClnYCAiErT31M6AG0k+V1PWtzxlD1PRIPZQ/KjMP6bKeyRCTaKTRRMLTTqh+ZRcsX3iDtaBjzJP3k9mmo007QuTkKBM/JRCSCJyWRX7ST+sVP2hpNcbQdZk31J0b+1Rt12gkaI1DQKhRRK2/B5qFY005P4MIYrmkn6KS7E+0EDWldp532Xbow/anMfdqhk/Tw/B0l31GgnZ7CqUu0HZfvvyeAHHImnXrwayFn1bS3IcPBcj2nujDLQnBdeDCJuM7ejUF0A+/EEpD3HviWNieZxRM1o28FPpvqJi3H40G4X/r3Ee781QMhfjl6h966ZtW5J4/8w14bAfRLu3cV7eOyN7TXgstsCu8qWJI/w73kSyV2GvUXa6YkGekP/PDtgi9uJacOrUSQXGkoOxV6jnvJP5p8Pb0zwJu2bdCLaq/nhSNxK/nFqUiSp09lS96Ie8lHZVkdCdA9Tdp7T9xg84Gy0biVXIyGJHkjlS35C9xLvl5H4bKBzz5938uStmofxbNwK/l3OyTJ6+3Ykr/EveQ68m50SfGRpKzw/rarfZ6l4FbywO1Ikm/azpb8Fe4l3+Agd8xztYJmicTpG+Yrv47CreSJQUiShwaxJX+Ne8lvt6y9LpanTvcdN9hUaUjtJNxK3hSNJPnDaLbkb+Akn5FLJ89RNKeUZHrTdjVl1kIKIoDYbs4ORCbN6c69xtgbRmgVTS9gKmbdTguyVu5Zt2oHtphbB9Y4OQN/A+Y+rI0KXVt/dFFblLdnf5lGcsn4S8fLmpqRnphHCYejvYtKewOT6CwzIB0/S+aB/xPBreumFXzA/63m5y6ZJfdKM+yZUZz1SkYSivj/a2/bLxapRygnRB9q2IkGC/2hL7oACgWBCjWRgH9AFWppV4irpsqWqIvo31h1Th9irT3RQf+aDGI8yjxVXKMdke8sJa15qkqSdPtyqSYnGQDjKOzraFdcy/JYQhF51WOIQGvT4gouNqSbQo1YzABXSpkKcfY73gote7+y2WipiVbiI7f16TF+JZwr26ybca9ssxv4oZHBYiSNoM4k/A80YqJgLOob0Ol3XtR6vaFI73orOWLjsykl1ZU/OfsieDNuhViX+aGPlCmSPi4m7OrAW7jAP7FtmEwGUUQzj9z0jSFryxn4+1Lt3T1gt57BlexH0xiW7mvd2rd+tbNK7dHdAbhb14K78sDh7xJKx1HzlEhzSmyWXYB9Km5cuVNjF3X0AgmKpYCO5YCOD6E6uoDnJizhCuvdxJXFyZbuDKYAPN/3hN7EjwfPntHezVgw6t5wUc6v5OsFvhLXi7Zf/V18hwa9P4zvdoBURFCqCCC+l0GlGnWCKRVsfOfJcdOZa26gg9h7MBzdwb2FVJ4auZavezqtQp4cEtOboSJm7jOISYAD767p5eLG6KgXMyvNZpM5Vy8ETb5J5bN0AncYcOnkn8fUidU137G6ElfX7DXtI0ny3FVKgorKHaHMcWdEqPZW7La4xqhRK6eZUjNF99n/aJTghJBYlFw7n931fkvUZrRnau2kOBFMSRjdzst81EUK0sY5k9Kua466djpOCv7JuIGBzq3dyDhijQClT/LqvKAdygy7lZMRO3IyW95y8D4p4IYrqY3srnkwytngFnXuHx2yx98UzQIQzNuIlaJxuWZju2DdWvYergHxF1A0eEJ3+uVVj8poATrhMsYpRvnKTphuNsjKY6khxaujgmMooAarozYRYMbQsMZPUZNNAqmFF/RPa/+M5VxLkPgVnrhXveFmqNK/Nm87ERkdN5DgDnW9SZPJitO61DOV5GfKnKPJaMUyypc53iCdhHtM7v2Vv9q6gXgQVwKy1vFa1KaATra8on/HDi/2aiM7OknogD2Va/WqD/Oyjg27Z0S0eRfFBZvp5Ccfpas9VbzLbheCae+rz/Rnrp4j1n79143Nbar2CpWKaxS9HUbrrzj4avvzMB/3d+Fj8C+tgA7hZm9p5cC7G7Q239+ta1ihE1WlkjH7gTtnBJcwZX2USOKyhhCJqxcIQUIGdKj80woDYE0CaM2pJB6JpgM46q+o6KSREFoaDVN96/tXvzi9vSK7eol8TsiC0YjMrRH5txpBwxAKGgE+jaARcXkFywE7HAkpqg5ph4nAePorAPAOqDfDhkzRnEA9qOsrlmWcw3nEn2j7bbgDKus62gHVII/lKy0kcGIC0eFGLlMlVkBthguo0g17NAbNuaIe9/fj0syqdZwHSgqRea+/D2zHcnhISZBob+Io07EoHq7yHc8FeiMGMH+2YWaoTBLJEcS8XBzsreEPIAjKTo7wlt5HDb6l5v100p19kHfoist21RYd/BrEFsSiCoJMcgVYiQEHN5bq7/+R6u3JisCV/4v1C93BJNTZwQF4fjBqAJ3ClgE8BXszHe+dn9dNVeyJaYmaRw8FHkn5mq4igL1AcKYoAwkbGtQUH/6RKfqaA1I4ujg7MZw8BG6QIabtpZKN6zf/egqe6pvdW7+e5hVITiONOSRUPXcp7Dtwz+E7N6JtCbHiCsLUAsASJZ0t8bEnh6Ljt/eHjvPxJSeOP3OgfutuFYxCEeEl1P8/9WT/v3Ri5jWrb4q6R4V+VMTX7niBI/93aYb6/+ee7P8iD0IbUosG6RVOebGV/HPma4z8v3FQJcT/v/Rk/y+7edLbzFiKdPLv1Js3nwpRcOT/GtKVEP9v6cn+T5sw9Jjlh/NaQbfy7o60eFyDkf87KEP9/2tP9n9hqsswy0+a5JO2ypmbrj0k4Mj/q6ZB/b+1J/v/B5eDUflL8tSy3tcs/vlObjJG/p+oC/X/bz3Z/6UNX/q/lStUL9UtdZ+SaLsPR/5PoEP9/3tP9n+NrTteBPzw1IwrqrO5PYxhg5H/+6+C+n9bT/b/uDipeZ/ER5MyRAfXjBywqRZH/v/dHur/P3qy/4u+LM8lTzmrcVjXTE9tw9bVGPm/7jao///syf5v92rT34ueDaYXnF29Y3fDkEM48v9+O6D+D8rWY/3/Tsx0TQVNR7WUccaPl1T+9MDI/5fsg/q/0D9S/V/i/wduhgW9ILzTKN39YFORXvxLHPm/bDDU/4V7sv8vn1r4lShrqxa6Opfmb6EuhpH/p0RB/V+kJ/u/gZTCTIpqukYANWFgTKtoDI783ykG6v+9/pEl2jc8C9wGg34xc+4MW0cG3MmnK3OovSm+z9W3TVQsnTNwfg2PZ+ex/sW8jLbqIFcUa91R//8f true iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvgAADr4B6kKxwAAAAJhJREFUSEvdk4EKgCAMRPfF9gn9WX9Wq5MtEmdKbQQ9GClud4cY/Q6WbwgQ13LnKh5mAsKEle8MeCLm1C9pb2I2QHxNtKC2RLNVeiYjTWyDIxkEZPuKykDTj6QboTZwTA8KA+/0oDRwTg9OgwhxUBh4Xo2SDaLSg5waBrJ3J//uL66mG4zxNGX9BMzezmuDR4UQKg5CxQ2IduVGkrvn0vkHAAAAAElFTkSuQmCC 1ef12e12-a315-4adc-8a69-1049182100f2 true DIFERENCE CURWATURE LINEAR GRAPH DIFERENCE CURWATURE LINEAR GRAPH false 20 02fb770c-ba15-4f83-acf9-af1ba24e79cf 3a4d3006-5e80-4a31-a2c2-77bf1567014b 3ac17cbc-7b40-4166-9558-9be4e21d91a4 40ec6168-79d7-4abc-9d6e-d41627216763 4bd05acf-e732-4c02-8528-9002b488a087 4e45cde8-7f27-431d-b06c-7f9c5ed9e84a 5f77937c-77e2-465e-8b74-0cd1dca8659f 657928da-9388-4d25-ac8c-5461f78115ff 9bbc0f84-6983-4117-821c-ceb85636c1d3 a6f5321e-1fc7-4d0b-a809-2c998b9ba647 b9b3f377-4fa1-41de-a46e-8c5b7fdb8176 bcc4995d-3075-4627-86d3-17c54f203760 c2fa32ad-abc6-48b3-98de-eddebf34447c c6051a24-e2be-4566-a3f9-7c05b6c560d3 d1f9d08d-efb2-4192-a859-fc8b5bd7b96e d3b1c4de-65d2-4988-bd21-0fa96869795b dacca8b2-18e3-46ff-a12a-1c3dcbed30d4 df5ac2ce-c295-431f-846d-10a3ddd11fe8 eef837d9-6ad7-45c0-86d4-37d5df250d0a ff97abec-08b3-4858-8f83-c4185f48b077 9096d595-00e9-44ef-bf8b-df7cba4ba2ea 7979dd58-784d-428c-ab41-1f9a01cb3b5b e9837f44-fe89-4576-a1ba-d864d9176564 98a7b290-1680-4c8f-91d6-4080e52ada8f ad15254d-f361-46c9-90d6-b5db1b60e3d2 45329fda-4528-406d-a823-54e35ac6ff74 9492d9b1-8423-4285-a424-c395dc7f8b36 88ea5216-22ee-43b9-bf4a-bf732fa4678f 693656d3-ab20-45a4-a99a-8ca5a8f9ac36 f9b9305d-1e20-4067-946a-b44d88604308 3c10a1a1-09f5-411d-ae06-13d21b0f7cd7 b4c2ea06-2f42-44c4-9b4a-584b407a7f6a 9d9970f3-5ab6-40b5-b0f2-d257ffef222d 80bcd5c0-5458-4110-bc35-aad5d5e50148 054cb35f-8548-43e7-8129-2bbf3a113dd2 d134b7cd-fb62-4a2b-a901-fec5a2d783e9 357ceb68-e651-4e13-b8c4-6a838be2149a e294df03-baaa-4b12-b92f-e97f42ff34ec 34281050-3848-44ac-894c-a3119ffa069f 17704c02-f561-4245-bc67-2eaf7cd1e000 1693 3229 110 404 1789 3431 20 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 0 Vector {y} component eef837d9-6ad7-45c0-86d4-37d5df250d0a true Y component Y component true 0 1695 3231 82 20 1736 3241 1 1 {0} 8 Second item for multiplication a6f5321e-1fc7-4d0b-a809-2c998b9ba647 true B B true 0 1695 3251 82 20 1736 3261 Vector {y} component 02fb770c-ba15-4f83-acf9-af1ba24e79cf true Y component Y component true 0 1695 3271 82 20 1736 3281 1 1 {0} 7 Second item for multiplication 4e45cde8-7f27-431d-b06c-7f9c5ed9e84a true B B true 0 1695 3291 82 20 1736 3301 Vector {y} component dacca8b2-18e3-46ff-a12a-1c3dcbed30d4 true Y component Y component true 0 1695 3311 82 20 1736 3321 1 1 {0} 6 Second item for multiplication bcc4995d-3075-4627-86d3-17c54f203760 true B B true 0 1695 3331 82 20 1736 3341 Vector {y} component b9b3f377-4fa1-41de-a46e-8c5b7fdb8176 true Y component Y component true 0 1695 3351 82 20 1736 3361 1 1 {0} 5 Second item for multiplication 3ac17cbc-7b40-4166-9558-9be4e21d91a4 true B B true 0 1695 3371 82 20 1736 3381 Vector {y} component 657928da-9388-4d25-ac8c-5461f78115ff true Y component Y component true 0 1695 3391 82 20 1736 3401 1 1 {0} 4 Second item for multiplication c2fa32ad-abc6-48b3-98de-eddebf34447c true B B true 0 1695 3411 82 20 1736 3421 Vector {y} component ff97abec-08b3-4858-8f83-c4185f48b077 true Y component Y component true 0 1695 3431 82 20 1736 3441 1 1 {0} 3 Second item for multiplication 4bd05acf-e732-4c02-8528-9002b488a087 true B B true 0 1695 3451 82 20 1736 3461 Vector {y} component c6051a24-e2be-4566-a3f9-7c05b6c560d3 true Y component Y component true 0 1695 3471 82 20 1736 3481 1 1 {0} 2 Second item for multiplication df5ac2ce-c295-431f-846d-10a3ddd11fe8 true B B true 0 1695 3491 82 20 1736 3501 Vector {y} component d3b1c4de-65d2-4988-bd21-0fa96869795b true Y component Y component true 0 1695 3511 82 20 1736 3521 1 1 {0} 1 Second item for multiplication 5f77937c-77e2-465e-8b74-0cd1dca8659f true B B true 0 1695 3531 82 20 1736 3541 Vector {y} component 3a4d3006-5e80-4a31-a2c2-77bf1567014b true Y component Y component true 0 1695 3551 82 20 1736 3561 1 1 {0} 0 Second item for multiplication 40ec6168-79d7-4abc-9d6e-d41627216763 true B B true 0 1695 3571 82 20 1736 3581 Number of segments d1f9d08d-efb2-4192-a859-fc8b5bd7b96e true Count Count true b8207e8f-d1d2-4ad2-b43b-73db4643f17e 1 1695 3591 82 20 1736 3601 1 1 {0} 10 Contains a collection of generic curves true 9bbc0f84-6983-4117-821c-ceb85636c1d3 true Curve Curve true accfc6c7-d434-41c2-8fa9-df26450c2afb 1 1695 3611 82 20 1736 3621 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object accfc6c7-d434-41c2-8fa9-df26450c2afb Relay false 650d961c-ef6f-4573-ade0-97f698f6a536 1 1466 3613 40 16 1486 3621 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object b8207e8f-d1d2-4ad2-b43b-73db4643f17e Relay false 7e1bc525-0327-427c-afd4-d8b6c2743acb 1 1444 3576 40 16 1464 3584 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 9698bc3a-1ed1-4414-86f0-6444e8ead760 Panel false 0 0 0.0003860762109180463019 -199 3409 160 84 0 0 0 -198.463 3409.569 2 255;255;255;255 true true true false false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object b0414c5e-b2a5-4397-9a26-3d16457e079d Relay false 7876afcf-7775-45c8-8a25-88d8b7e1f9c2 1 -239 3169 40 16 -219 3177 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 64dc2fad-67da-43a0-afa8-968d779d76bb Relay false b887e715-85b8-4d63-bcef-54f50d862634 1 -241 3271 40 16 -221 3279 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object ce270eae-dd35-42f1-a1e4-d2f99e5bc96c Relay false 5abe47df-fbe4-4b97-bd03-0ec1b1f6b2d8 1 -243 3321 40 16 -223 3329 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true b431a847-2dd3-434f-9b59-8a6329452c37 Format Format -185 3133 130 64 -93 3165 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format 189af6c2-3871-43ab-b4a2-828404c5bac2 Format Format false 0 -183 3135 78 20 -144 3145 1 1 {0} false {0:R} Formatting culture d97e0a39-4089-4172-9db8-c08197b8e7b4 Culture Culture false 0 -183 3155 78 20 -144 3165 1 1 {0} 127 Data to insert at {0} placeholders bfcdd9ea-5052-41e9-a97a-cd0fe30a0d83 false Data 0 0 true b0414c5e-b2a5-4397-9a26-3d16457e079d 1 -183 3175 78 20 -144 3185 Formatted text ba156c5f-31a5-4478-a04c-85f4b5333b7c Text Text false 0 -81 3135 24 60 -69 3165 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true 1e3ae344-cd92-406e-aebd-972deee07f0e Format Format -185 3217 130 64 -93 3249 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format c1c6a58e-c0c7-493c-8c2d-21b09a647d80 Format Format false 0 -183 3219 78 20 -144 3229 1 1 {0} false {0:R} Formatting culture 118c54c9-0071-4749-be06-f6920b3500fe Culture Culture false 0 -183 3239 78 20 -144 3249 1 1 {0} 127 Data to insert at {0} placeholders 896cb082-cf84-4e6b-8922-6cda5c56786c false Data 0 0 true 64dc2fad-67da-43a0-afa8-968d779d76bb 1 -183 3259 78 20 -144 3269 Formatted text 35a11262-770e-4498-9d6e-28b546897ca0 Text Text false 0 -81 3219 24 60 -69 3249 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true f2c03e9a-5b86-4789-997b-bb044bca2f3e Format Format -184 3300 130 64 -92 3332 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format bc32af76-1e3f-4774-bfb7-f91555ff91fb Format Format false 0 -182 3302 78 20 -143 3312 1 1 {0} false {0:R} Formatting culture f7c98017-af59-4278-ba02-63d1dad43791 Culture Culture false 0 -182 3322 78 20 -143 3332 1 1 {0} 127 Data to insert at {0} placeholders e773dc71-70c2-4170-b0f0-7457a89e3cb5 false Data 0 0 true ce270eae-dd35-42f1-a1e4-d2f99e5bc96c 1 -182 3342 78 20 -143 3352 Formatted text dd0736c2-159a-42d1-af5f-93e121faa9f7 Text Text false 0 -80 3302 24 60 -68 3332 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 63179a12-0556-4bc1-9bf4-ef312b611dad Relay false c923a52e-eef5-4213-b91c-a99d00b79828 1 203 3341 40 16 223 3349 290f418a-65ee-406a-a9d0-35699815b512 Scale NU Scale an object with non-uniform factors. true d25a347e-f2e0-4e4a-8983-14d071fa7194 Scale NU Scale NU 403 3098 226 121 565 3159 Base geometry 6c42c611-31df-46b6-a8ee-c7c7171400e4 Geometry Geometry true 9f5a4e05-ce5c-4e86-a807-564e2bdd48c7 1 405 3100 148 20 487 3110 Base plane f2be336e-646a-4422-ad9e-e4e57dab9a98 Plane Plane false 0 405 3120 148 37 487 3138.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Scaling factor in {x} direction 98448143-b352-4739-bfc1-429bc2747dd2 1/X Scale X Scale X false 7876afcf-7775-45c8-8a25-88d8b7e1f9c2 1 405 3157 148 20 487 3167 1 1 {0} 1 Scaling factor in {y} direction 0a1bb1d6-8dd1-4ff5-9746-b9d1ed378ab9 1/X Scale Y Scale Y false 5abe47df-fbe4-4b97-bd03-0ec1b1f6b2d8 1 405 3177 148 20 487 3187 1 1 {0} 1 Scaling factor in {z} direction 56b223c4-49a9-4561-a1a4-af9c5fd7182a Scale Z Scale Z false 0 405 3197 148 20 487 3207 1 1 {0} 1 Scaled geometry 9868f335-6dc4-451f-8094-d3711f42121a Geometry Geometry false 0 577 3100 50 58 602 3129.25 Transformation data d3a424e3-115d-4433-a6ad-a72744f7056e Transform Transform false 0 577 3158 50 59 602 3187.75 310f9597-267e-4471-a7d7-048725557528 08bdcae0-d034-48dd-a145-24a9fcf3d3ff GraphMapper+ External Graph mapper You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode. true e6c0b86a-3030-446a-831b-92169490ee8b GraphMapper+ GraphMapper+ true 902 2886 114 104 963 2938 External curve as a graph 37bb3370-d544-4693-9286-1de205aa26be Curve Curve false 0517f2f3-0517-41f2-956d-3caa6df4c5ab 1 904 2888 47 20 927.5 2898 Optional Rectangle boundary. If omitted the curve's would be landed 64776ecc-bbe9-4ec5-a5d4-07eb396f92b6 Boundary Boundary true 3bfc7a24-36db-4b47-8c33-65ba8b072928 1 904 2908 47 20 927.5 2918 1 List of input numbers 68fa507c-c522-4467-80f3-fdcf8a652e23 Numbers Numbers false 8e13165d-ec24-43b2-ab6d-2081a50fd148 1 904 2928 47 20 927.5 2938 1 9 {0} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 (Optional) Input Domain if omitted, it would be 0-1 in "Normalize" mode by default or be the interval of the input list in case of selecting "AutoDomain" mode 6653a230-3ac7-44b2-a9f5-1fe99c263419 Input Input true 213585e8-4f3a-4f2c-9e91-8385c0f5293e 1 904 2948 47 20 927.5 2958 (Optional) Output Domain if omitted, it would be 0-1 in "Normalize" mode by default or be the interval of the input list in case of selecting "AutoDomain" mode f8e14406-9226-4342-a696-98d00dc96a74 Output Output true 213585e8-4f3a-4f2c-9e91-8385c0f5293e 1 904 2968 47 20 927.5 2978 1 Output Numbers b0d8da91-bdcc-44b1-93f8-f3dc5e923e83 Number Number false 0 975 2888 39 100 994.5 2938 11bbd48b-bb0a-4f1b-8167-fa297590390d End Points Extract the end points of a curve. true 6e0d144c-1a3d-40c0-9029-376abdea13ca End Points End Points 346 2785 84 44 390 2807 Curve to evaluate 9b920e58-086f-48e0-a7d3-9489d707f19a Curve Curve false 0517f2f3-0517-41f2-956d-3caa6df4c5ab 1 348 2787 30 40 363 2807 Curve start point 8b6f6b53-ff10-4744-b784-aacd1ff32a2b Start Start false 0 402 2787 26 20 415 2797 Curve end point 2eca5a00-e598-4c14-ac50-2590832a1ec9 End End false 0 402 2807 26 20 415 2817 575660b1-8c79-4b8d-9222-7ab4a6ddb359 Rectangle 2Pt Create a rectangle from a base plane and two points true edc8e274-6c3a-472a-bf0f-4e3da7df79d1 Rectangle 2Pt Rectangle 2Pt 481 2794 198 101 617 2845 Rectangle base plane 53e04fb8-ff9e-4b0e-a27f-df57d3dc5efa Plane Plane false 0 483 2796 122 37 544 2814.5 1 1 {0} 0 0 0 1 0 0 0 1 0 First corner point. 0c1cf429-1c6b-4c8d-9622-d10850298528 Point A Point A false 8b6f6b53-ff10-4744-b784-aacd1ff32a2b 1 483 2833 122 20 544 2843 1 1 {0} 0 0 0 Second corner point. d351db95-b5de-4672-a58c-f4c75d5d5420 Point B Point B false 2eca5a00-e598-4c14-ac50-2590832a1ec9 1 483 2853 122 20 544 2863 1 1 {0} 10 5 0 Rectangle corner fillet radius da9761e7-1237-4b20-81d5-09d6e9f1afdc Radius Radius false 0 483 2873 122 20 544 2883 1 1 {0} 0 Rectangle defined by P, A and B 3bfc7a24-36db-4b47-8c33-65ba8b072928 Rectangle Rectangle false 0 629 2796 48 48 653 2820.25 Length of rectangle curve cd1c3d89-ae86-4bf4-a2f2-dcc79f52e1ba Length Length false 0 629 2844 48 49 653 2868.75 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object e3c2f7fa-3c6d-4eda-a7bf-aa70f955e050 Relay false 7abea44d-07c7-4298-8d09-060192324a84 1 899 3432 40 16 919 3440 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 9d55f829-b54c-4866-9ced-6f44b43868eb Relay false 7abea44d-07c7-4298-8d09-060192324a84 1 995 3406 40 16 1015 3414 f44b92b0-3b5b-493a-86f4-fd7408c3daf3 Bounds Create a numeric domain which encompasses a list of numbers. true 2ba1bf59-61a7-488d-a5b3-a5ed82a48731 Bounds Bounds 732 3031 110 28 790 3045 1 Numbers to include in Bounds d467ba15-dacc-49e4-a358-5f8b21727a8e Numbers Numbers false 8e13165d-ec24-43b2-ab6d-2081a50fd148 1 734 3033 44 24 756 3045 Numeric Domain between the lowest and highest numbers in {N} 213585e8-4f3a-4f2c-9e91-8385c0f5293e Domain Domain false 0 802 3033 38 24 821 3045 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 3a2cde3d-d6da-4bca-8862-90ed8bdd89e1 Multiplication Multiplication 550 2932 65 44 570 2954 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication afaeef1a-7362-4d75-84da-28445edb71ce A true 46440956-1415-4acb-9dea-f43095dd43e0 1 552 2934 6 20 555 2944 Second item for multiplication 5e47cf8a-2eec-4f4d-83d9-a82abf38af83 B true ac864993-ecc7-4645-ae0f-6a08f6579f35 1 552 2954 6 20 555 2964 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 65536 Result of multiplication 401b9053-c46d-4e8b-b861-4b450f5eb386 Result Result false 0 582 2934 31 40 597.5 2954 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 14ae5d36-3b7d-4915-90c0-7ff8f5596059 Division Division 1110 2908 40 44 1130 2930 Item to divide (dividend) 3b11c51c-7806-40a5-98b2-da1587f628a9 A false b0d8da91-bdcc-44b1-93f8-f3dc5e923e83 1 1112 2910 6 20 1115 2920 Item to divide with (divisor) e38fefc5-a2a7-43cd-9c0a-3d3bcfa80041 B false ac864993-ecc7-4645-ae0f-6a08f6579f35 1 1112 2930 6 20 1115 2940 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 65536 The result of the Division 9d63dde1-2e33-4f8a-a3cb-303f50d0a8d3 Result false 0 1142 2910 6 40 1145 2930 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 8e13165d-ec24-43b2-ab6d-2081a50fd148 Relay false 401b9053-c46d-4e8b-b861-4b450f5eb386 1 652 2946 40 16 672 2954 cae9fe53-6d63-44ed-9d6d-13180fbf6f89 1c9de8a1-315f-4c56-af06-8f69fee80a7a Curve Graph Mapper Remap values with a custom graph using input curves. true 79911ab3-0bb2-423f-9b09-cc7daf554fae true Curve Graph Mapper Curve Graph Mapper 863 2524 181 224 958 2636 1 One or multiple graph curves to graph map values with 0bb544c8-bab7-4688-bbcb-3a8261f6d9df true Curves Curves false 0517f2f3-0517-41f2-956d-3caa6df4c5ab 1 865 2526 81 27 905.5 2539.75 Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary 8f7ff6d9-d1ad-47c3-b95d-c907375d9086 true Rectangle Rectangle false 3bfc7a24-36db-4b47-8c33-65ba8b072928 1 865 2553 81 28 905.5 2567.25 1 Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis 0a194642-2ace-40a2-9371-1fdb31c6e9bd true Values Values false 8e13165d-ec24-43b2-ab6d-2081a50fd148 1 865 2581 81 27 905.5 2594.75 Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used) 1152e18b-29f2-4516-95b9-d00168a6ab5a true X Axis X Axis true 213585e8-4f3a-4f2c-9e91-8385c0f5293e 1 865 2608 81 28 905.5 2622.25 Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used) 22bd9999-24b4-4c89-b7c3-8cfceb7bfd7a true Y Axis Y Axis true 213585e8-4f3a-4f2c-9e91-8385c0f5293e 1 865 2636 81 27 905.5 2649.75 Flip the graphs X Axis from the bottom of the graph to the top of the graph e894ba31-d10e-430a-ae57-3b907326c13b true Flip Flip false 0 865 2663 81 28 905.5 2677.25 1 1 {0} false Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle 5dd47338-a69e-403c-b0e6-28ce8cb72d72 true Snap Snap false 0 865 2691 81 27 905.5 2704.75 1 1 {0} true Size of the graph labels aea304b8-4d9b-4ff0-baf1-1ab501b12c7a true Text Size Text Size false 0 865 2718 81 28 905.5 2732.25 1 1 {0} 0.0625 1 Resulting graph mapped values, mapped on the Y Axis c49f47cc-5dc4-4e0c-b8c8-2572f883a609 true Mapped Mapped false 0 970 2526 72 20 1006 2536 1 The graph curves inside the boundary of the graph af88c05c-c65a-452e-afb8-03ead7ccdd13 true Graph Curves Graph Curves false 0 970 2546 72 20 1006 2556 1 The points on the graph curves where the X Axis input values intersected true d53018cc-57d9-4a8a-8ec1-f657ce6bf8c7 true Graph Points Graph Points false 0 970 2566 72 20 1006 2576 1 The lines from the X Axis input values to the graph curves true 28ed54b6-fb95-4400-9b96-be39d08e61f2 true Value Lines Value Lines false 0 970 2586 72 20 1006 2596 1 The points plotted on the X Axis which represent the input values true 3859e8eb-a8d8-489c-9af3-07cbef237797 true Value Points Value Points false 0 970 2606 72 20 1006 2616 1 The lines from the graph curves to the Y Axis graph mapped values true 15f46ee6-4d3b-4829-92f3-0234381521fc true Mapped Lines Mapped Lines false 0 970 2626 72 20 1006 2636 1 The points mapped on the Y Axis which represent the graph mapped values true eae5032a-27c6-492d-a9ad-a32197a98c69 true Mapped Points Mapped Points false 0 970 2646 72 20 1006 2656 The graph boundary background as a surface 385cfc7d-69b8-4bf8-a8e8-235ff6dcb3a3 true Boundary Boundary false 0 970 2666 72 20 1006 2676 1 The graph labels as curve outlines e5350df2-11ec-4670-a160-59d360906919 true Labels Labels false 0 970 2686 72 20 1006 2696 1 True for input values outside of the X Axis domain bounds False for input values inside of the X Axis domain bounds 7632ccf4-a432-45cd-8527-b7823f3b8396 true Out Of Bounds Out Of Bounds false 0 970 2706 72 20 1006 2716 1 True for input values on the X Axis which intersect a graph curve False for input values on the X Axis which do not intersect a graph curve 70491f98-3972-4ff2-a978-dec7aa20383c true Intersected Intersected false 0 970 2726 72 20 1006 2736 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 0517f2f3-0517-41f2-956d-3caa6df4c5ab Relay false 2272069e-441f-44d2-9cee-25e8d582e273 1 390 2654 40 16 410 2662 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true 014f3a82-3e2e-4c4a-b79b-fb754973b0be Scale Scale 136 2607 201 64 273 2639 Base geometry 088ca25e-6ea7-48f3-ace4-0c8e930bf8c0 Geometry Geometry true 244a5752-77fd-4f13-8350-52f02184bb09 1 138 2609 123 20 199.5 2619 Center of scaling 9e7f199c-7b01-4add-9318-865c5543c1ca Center Center false 0 138 2629 123 20 199.5 2639 1 1 {0} 0 0 0 Scaling factor 43d3790a-ac7f-4569-a53a-79ba4fab9fc3 Factor Factor false ac864993-ecc7-4645-ae0f-6a08f6579f35 1 138 2649 123 20 199.5 2659 1 1 {0} 65536 Scaled geometry 2272069e-441f-44d2-9cee-25e8d582e273 Geometry Geometry false 0 285 2609 50 30 310 2624 Transformation data 6ff09d7b-d063-494c-aed8-d823c8e1aee5 Transform Transform false 0 285 2639 50 30 310 2654 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 244a5752-77fd-4f13-8350-52f02184bb09 Relay false ffc7114c-425e-4e46-9780-4f5439b2a045 1 47 2621 40 16 67 2629 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 790c5d89-8027-4b3f-9974-0aa9c9725140 Division Division 1447 3499 85 44 1487 3521 Item to divide (dividend) c76f374e-534e-4e89-b239-d9dc8de969fb A A false b8207e8f-d1d2-4ad2-b43b-73db4643f17e 1 1449 3501 26 20 1462 3511 Item to divide with (divisor) 897bf1c5-c5a3-40ee-991e-0ef5fe2738c1 B B false 0 1449 3521 26 20 1462 3531 1 1 {0} Grasshopper.Kernel.Types.GH_String false 1 The result of the Division f654ad66-626e-4a53-b0fb-b97bf8db47c6 Result Result false 0 1499 3501 31 40 1514.5 3521 78fed580-851b-46fe-af2f-6519a9d378e0 Power Raise a value to a power. true 2a8521de-e5f6-49cb-bbe3-75b663e3287e Power Power -559 2069 85 44 -519 2091 The item to be raised 29d4dc65-97fd-47bd-928a-25c3e40e4289 A A false 0 -557 2071 26 20 -544 2081 1 1 {0} Grasshopper.Kernel.Types.GH_String false 2 The exponent 9080713f-2153-4baa-8370-7871a215faff B B false 1144e4e4-28c8-484b-b1e7-db119f50edf8 1 -557 2091 26 20 -544 2101 A raised to the B power ac864993-ecc7-4645-ae0f-6a08f6579f35 Result Result false 0 -507 2071 31 40 -491.5 2091 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 1144e4e4-28c8-484b-b1e7-db119f50edf8 Digit Scroller false 0 12 11 16.0 -663 2029 250 20 -662.1945 2029.497 fb6aba99-fead-4e42-b5d8-c6de5ff90ea6 DotNET VB Script (LEGACY) A VB.NET scriptable component true 6725d6c9-efab-49aa-9d02-2daa52073dc7 DotNET VB Script (LEGACY) Turtle 0 Dim i As Integer Dim dir As New On3dVector(1, 0, 0) Dim pos As New On3dVector(0, 0, 0) Dim axis As New On3dVector(0, 0, 1) Dim pnts As New List(Of On3dVector) pnts.Add(pos) For i = 0 To Forward.Count() - 1 Dim P As New On3dVector dir.Rotate(Left(i), axis) P = dir * Forward(i) + pnts(i) pnts.Add(P) Next Points = pnts 1128 5105 104 44 1183 5127 1 1 2 Script Variable Forward Script Variable Left 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 true true Forward Left true true 2 Print, Reflect and Error streams Output parameter Points 3ede854e-c753-40eb-84cb-b48008f14fd4 8ec86459-bf01-4409-baee-174d0d2b13d0 true true Output Points false false 1 false Script Variable Forward 996d5ff5-14c1-4c31-b303-f95d048ef52d Forward Forward true 1 true 5bb9f473-b63f-45e9-b4cc-e2754dd53763 1 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 1130 5107 41 20 1150.5 5117 1 false Script Variable Left d2c0c4fb-9cf6-41fa-b702-09c17addb9e2 Left Left true 1 true 7eca8f17-b48d-4b73-ada0-90a22d3fe212 1 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7 1130 5127 41 20 1150.5 5137 Print, Reflect and Error streams 04cee30c-e625-489e-9e48-8001a66c4b60 Output Output false 0 1195 5107 35 20 1212.5 5117 Output parameter Points a249c8f7-8389-41ef-9421-d4c3316c347e Points Points false 0 1195 5127 35 20 1212.5 5137 e64c5fb1-845c-4ab1-8911-5f338516ba67 Series Create a series of numbers. true 40d5b1ce-cd1e-4185-b05f-eb342b59a010 Series Series 561 5266 89 64 605 5298 First number in the series 2b666a1d-1cca-44a3-a105-682eb0e2206c Start Start false d644c106-358a-4d53-8003-e44a23932f16 1 563 5268 30 20 578 5278 1 1 {0} 0 Step size for each successive number 85a9b54a-9b4d-46b5-aa17-b491a16746a3 Step Step false d644c106-358a-4d53-8003-e44a23932f16 1 563 5288 30 20 578 5298 1 1 {0} 1 Number of values in the series ac84610d-c601-4c95-a440-2d941cb8b3cc Count Count false 4c725ef7-1aec-4903-a426-fcecb964fe28 1 563 5308 30 20 578 5318 1 1 {0} 500 1 Series of numbers d2dee351-7ad7-4195-88b0-b83aeaa59ee9 Series Series false 0 617 5268 31 60 632.5 5298 dd8134c0-109b-4012-92be-51d843edfff7 Duplicate Data Duplicate data a predefined number of times. true f446bebf-5581-4727-80df-0479210e1c8b Duplicate Data Duplicate Data 552 5109 102 64 615 5141 1 Data to duplicate df3c469b-15dd-4113-9695-cfe00ba73739 Data Data false 46557eca-0fa8-4257-9968-cd3caf6e4133 1 554 5111 49 20 578.5 5121 Number of duplicates b029cd2f-bf2b-4ae1-ba0f-ef7e2e1f9cc2 Number Number false 4c725ef7-1aec-4903-a426-fcecb964fe28 1 554 5131 49 20 578.5 5141 1 1 {0} 500 Retain list order 5ee2542c-8564-4e98-b47e-a98477318db4 Order Order false 0 554 5151 49 20 578.5 5161 1 1 {0} true 1 Duplicated data 7a247abb-61c5-46ae-9afb-f19cc07f8a56 Data Data false 0 627 5111 25 60 639.5 5141 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 53dfe8d4-944d-46bf-8495-cdb43c7556b1 Digit Scroller . false 0 12 . 11 1024.0 27 5260 250 20 27.61891 5260.25 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers c2429a84-5049-49fc-9a38-42778a26f71d Digit Scroller ЯR false 0 12 ЯR 1 0.12228574351 32 5161 250 20 32.31831 5161.933 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers bfe92d3e-548e-4939-be0c-6a54fc045c4e Digit Scroller ° false 0 12 ° 2 0.0003860762 30 5205 250 20 30.23642 5205.192 a4cd2751-414d-42ec-8916-476ebf62d7fe Radians Convert an angle specified in degrees to radians true 2276773a-904f-4273-aa34-9d5c0f9aced4 Radians Radians 406 5167 108 28 461 5181 Angle in degrees 541b6184-b2d9-4841-abf0-775b3d5c9532 Degrees Degrees false 778435a9-4a09-40c9-a8d3-b6ca4d0b2811 1 408 5169 41 24 428.5 5181 Angle in radians d644c106-358a-4d53-8003-e44a23932f16 Radians Radians false 0 473 5169 39 24 492.5 5181 fbac3e32-f100-4292-8692-77240a42fd1a Point Contains a collection of three-dimensional points true ddf12dcc-4532-4f5f-9017-ca2181ae4120 Point Point false a249c8f7-8389-41ef-9421-d4c3316c347e 1 1057 5256 50 24 1082.998 5268.367 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 4c725ef7-1aec-4903-a426-fcecb964fe28 Relay false 9b585c51-4d8d-4d1a-abf6-db393bf44760 1 417 5229 40 16 437 5237 be52336f-a2e1-43b1-b5f5-178ba489508a Circle Fit Fit a circle to a collection of points. true ff0d8658-7c8a-4efc-9ff7-d21a2f4d80b9 Circle Fit Circle Fit 534 5527 104 64 579 5559 1 Points to fit a482c1db-c849-4af7-9253-38455522194a Points Points false ddf12dcc-4532-4f5f-9017-ca2181ae4120 1 536 5529 31 60 551.5 5559 Resulting circle b4ec1d74-9d97-4ab2-9c19-ca7a15e3e6d2 Circle Circle false 0 591 5529 45 20 613.5 5539 Circle radius 823410ef-5164-49ce-aaf0-4fd337d12394 Radius Radius false 0 591 5549 45 20 613.5 5559 Maximum distance between circle and points 721bd50f-6894-48cd-8640-471beedf3b88 Deviation Deviation false 0 591 5569 45 20 613.5 5579 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression cos((4*atan(1))/N) true 97df6443-4cee-4503-a278-5775d3d97c17 Expression Expression 469 5463 215 28 567 5477 1 ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable ac53965d-9c57-49ef-a4e1-15cf2c013e39 Variable N N true 4c725ef7-1aec-4903-a426-fcecb964fe28 1 471 5465 11 24 476.5 5477 Result of expression 8a13a8ee-43ae-490c-9a67-94c0a5edb3de Result Result false 0 651 5465 31 24 666.5 5477 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true 0fb4bac9-595d-4516-9de2-921f847556b0 Scale Scale 708 5634 126 64 770 5666 Base geometry 269c46c8-fb57-4272-8066-350e30875f30 Geometry Geometry true b4ec1d74-9d97-4ab2-9c19-ca7a15e3e6d2 1 710 5636 48 20 734 5646 Center of scaling f959d9b2-b769-41c1-a28e-850ee2a2a776 Center Center false 3554d94d-6df9-4e70-a491-7d5078530e78 1 710 5656 48 20 734 5666 1 1 {0} 0 0 0 Scaling factor f2bf6058-f07e-4ee4-aaf8-c12678761178 Factor Factor false 8a13a8ee-43ae-490c-9a67-94c0a5edb3de 1 710 5676 48 20 734 5686 1 1 {0} 0.5 Scaled geometry ec397e86-bb0d-45eb-be56-aed938deaf9d Geometry Geometry false 0 782 5636 50 30 807 5651 Transformation data 4161ae35-ffb9-4065-975d-03f05b73c621 Transform Transform false 0 782 5666 50 30 807 5681 2e205f24-9279-47b2-b414-d06dcd0b21a7 Area Solve area properties for breps, meshes and planar closed curves. true cd77b622-9a86-4cac-9598-e29eb480069a Area Area 522 5644 118 44 584 5666 Brep, mesh or planar closed curve for area computation 51ccef21-cf74-4b38-acac-13099eba9e08 Geometry Geometry false b4ec1d74-9d97-4ab2-9c19-ca7a15e3e6d2 1 524 5646 48 40 548 5666 Area of geometry 2e0e9257-78e7-4846-ae26-603cf7b7191f Area Area false 0 596 5646 42 20 617 5656 Area centroid of geometry 3554d94d-6df9-4e70-a491-7d5078530e78 Centroid Centroid false 0 596 5666 42 20 617 5676 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true e0da04d7-7efb-44af-880c-05873d34cb64 Multiplication Multiplication 833 5546 70 44 858 5568 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication 00864368-5c1c-4f5f-99fe-d6e5c94e6ebf A A true 8a13a8ee-43ae-490c-9a67-94c0a5edb3de 1 835 5548 11 20 840.5 5558 Second item for multiplication 42f713fe-412d-4667-86ff-c867d8d99fe1 B B true 823410ef-5164-49ce-aaf0-4fd337d12394 1 835 5568 11 20 840.5 5578 Result of multiplication d279ab5e-07f6-49ba-9dd7-e164e8d7e621 Result Result false 0 870 5548 31 40 885.5 5568 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression .5*L*(1/SIN(π/N)) true d089d8e3-7cf2-484e-bc5c-7ae0430080bb Expression Expression 796 5398 207 44 890 5420 2 ba80fd98-91a1-4958-b6a7-a94e40e52bdb ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable f0766318-0199-4d9f-ae92-ebd30f99e69e Variable L L true c2429a84-5049-49fc-9a38-42778a26f71d 1 798 5400 11 20 803.5 5410 Expression variable fda47015-0c34-4726-8afc-bc4c082daa74 Variable N N true 4c725ef7-1aec-4903-a426-fcecb964fe28 1 798 5420 11 20 803.5 5430 Result of expression 31cc3c48-9804-4a57-8cb1-d42fea2c8488 Result Result false 0 970 5400 31 40 985.5 5420 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 14c9fb5a-3cf2-4f86-aa99-97cab6eec72b Panel false 0 31cc3c48-9804-4a57-8cb1-d42fea2c8488 1 Double click to edit panel content… 1060 5392 160 100 0 0 0 1060.971 5392.169 255;255;255;255 true true true false false true 9df5e896-552d-4c8c-b9ca-4fc147ffa022 Expression Evaluate an expression R/(.5*(1/SIN(π/N))) true 72dcab9e-b4c9-4e1f-805d-7d9edf73b6b3 Expression Expression 452 5029 224 44 554 5051 2 ba80fd98-91a1-4958-b6a7-a94e40e52bdb ba80fd98-91a1-4958-b6a7-a94e40e52bdb 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Expression variable 4208bc57-258a-4aaa-acbb-6ff9d4f4e246 Variable R R true afcc5191-a0bd-476c-9768-591ad0f7378c 1 454 5031 11 20 459.5 5041 Expression variable eb739245-110e-46d1-9a32-a5e452ca05bd Variable N N true 4c725ef7-1aec-4903-a426-fcecb964fe28 1 454 5051 11 20 459.5 5061 Result of expression 46557eca-0fa8-4257-9968-cd3caf6e4133 Result Result false 0 643 5031 31 40 658.5 5051 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 88abfddb-dc25-4a47-b1b4-50a31d0d4a16 Division Division 223 5326 90 44 268 5348 Item to divide (dividend) 999497b8-4949-42d0-82ee-bb6922eaa656 A A false 0 225 5328 31 20 240.5 5338 1 1 {0} Grasshopper.Kernel.Types.GH_String false 360 Item to divide with (divisor) 2027e357-80d3-4640-b420-0441660b8610 B B false 53dfe8d4-944d-46bf-8495-cdb43c7556b1 1 225 5348 31 20 240.5 5358 The result of the Division 07a66282-69e2-4d09-a2fc-d9349dd70354 Result Result false 0 280 5328 31 40 295.5 5348 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values e15bd0e5-52c7-4abc-b78c-67d41b71e40a Panel false 0 823410ef-5164-49ce-aaf0-4fd337d12394 1 Double click to edit panel content… 787 4979 160 20 0 0 0 787.0285 4979.544 255;255;255;255 false false true false false true 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4 Reverse List Reverse the order of a list. true 3e455af5-11a5-4594-aa1e-1337627e9e91 Reverse List Reverse List 667 5187 66 28 700 5201 1 Base list 586d2783-4e94-43a8-943c-6fdfd3322a72 List List false d2dee351-7ad7-4195-88b0-b83aeaa59ee9 1 669 5189 19 24 678.5 5201 1 Reversed list 7c44bb6d-fef3-43c3-a0d7-3be44f7b0065 List List false 0 712 5189 19 24 721.5 5201 a3371040-e552-4bc8-b0ff-10a840258e88 Negative Compute the negative of a value. true 8bf27de0-4004-4ff7-b736-5cb42643e79f Negative Negative 693 5285 88 28 736 5299 Input value b7de0a45-9da5-47cd-8e32-3a10c8e4a2c6 Value Value false 3aa110d1-bf16-4618-8fb9-18875ca9621d 1 695 5287 29 24 709.5 5299 Output value dc80f669-d3b5-461a-bbfc-9b9c97908674 Result Result false 0 748 5287 31 24 763.5 5299 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true aaecc85c-5804-4f33-b45d-79f7f9c6f1ac Merge Merge 811 5187 122 84 872 5229 4 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 1a063d31-b99f-4b3b-a626-650425924c2b 1 false Data 1 D1 true 8f5ab813-3691-4499-bab5-66b32b35b891 1 813 5189 47 20 844.5 5199 2 Data stream 2 8b6a68fc-650b-43b3-b24c-6d7280ddacda 1 false Data 2 D2 true 0 813 5209 47 20 844.5 5219 1 1 {0} Grasshopper.Kernel.Types.GH_String false 0 2 Data stream 3 0da47d86-2eea-46ac-9cc6-efef4ba603aa 1 false Data 3 D3 true dc80f669-d3b5-461a-bbfc-9b9c97908674 1 813 5229 47 20 844.5 5239 2 Data stream 4 1e2778df-a9ca-4306-96b5-4c9c4125ec24 false Data 4 D4 true 0 813 5249 47 20 844.5 5259 2 Result of merge 277e686f-fcb5-4411-b782-b0d4e125e2c1 1 Result Result false 0 884 5189 47 80 899.5 5229 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4 Reverse List Reverse the order of a list. true 60e0663b-6476-4b01-bd63-0c0198ccc786 Reverse List Reverse List 674 5092 66 28 707 5106 1 Base list 2dbaef14-36fe-4e6b-a6fc-d6ece26ab7f3 List List false 7a247abb-61c5-46ae-9afb-f19cc07f8a56 1 676 5094 19 24 685.5 5106 1 Reversed list 332a85d2-acae-400d-b270-26b2f3125210 List List false 0 719 5094 19 24 728.5 5106 3cadddef-1e2b-4c09-9390-0e8f78f7609f Merge Merge a bunch of data streams true 23c55c34-6817-421b-8b50-44e1f6ed219e Merge Merge 879 5025 122 84 940 5067 4 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 2 Data stream 1 8b9f8878-3208-4942-ac54-df3ab345b55b 1 false Data 1 D1 true 332a85d2-acae-400d-b270-26b2f3125210 1 881 5027 47 20 912.5 5037 2 Data stream 2 19058d50-e13c-474a-95c0-830c3a9db49b 1 false Data 2 D2 true 0 881 5047 47 20 912.5 5057 2 Data stream 3 a500a7bf-9d14-419c-b493-2feba5d238de 1 false Data 3 D3 true 7a247abb-61c5-46ae-9afb-f19cc07f8a56 1 881 5067 47 20 912.5 5077 2 Data stream 4 c4fef57a-4dca-44a4-84c6-20aadccc963c false Data 4 D4 true 0 881 5087 47 20 912.5 5097 2 Result of merge 5bb9f473-b63f-45e9-b4cc-e2754dd53763 1 Result Result false 0 952 5027 47 80 967.5 5067 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 282f65b3-c82c-4daa-95bc-75a538e5c507 Panel false 0 277e686f-fcb5-4411-b782-b0d4e125e2c1 1 Double click to edit panel content… 1328 4998 160 479 0 0 0 1328.951 4998.402 255;255;255;255 true true true false false true 59daf374-bc21-4a5e-8282-5504fb7ae9ae List Item 0 Retrieve a specific item from a list. true 2d148978-bc67-490f-aac8-90ad0eee5b78 List Item List Item 954 5545 77 64 1011 5577 3 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce cb95db89-6165-43b6-9c41-5702bc5bf137 1 8ec86459-bf01-4409-baee-174d0d2b13d0 1 Base list 043107fb-534e-4338-b36d-df84e0cf9cca List List false ddf12dcc-4532-4f5f-9017-ca2181ae4120 1 956 5547 43 20 977.5 5557 Item index 350a0836-dcc8-4f52-8157-c6cd516a99d4 Index Index false 0 956 5567 43 20 977.5 5577 1 1 {0} -1 Wrap index to list bounds d7dc3b8b-6076-4e6c-b5b6-1ab79a6eb7b8 Wrap Wrap false 0 956 5587 43 20 977.5 5597 1 1 {0} true Item at {i'} f0a2926d-0090-4148-a401-3d572f930ace false Item i false 0 1023 5547 6 60 1026 5577 9abae6b7-fa1d-448c-9209-4a8155345841 Deconstruct Deconstruct a point into its component parts. true b86a52bf-2406-4de9-86d2-b4d485bc251e Deconstruct Deconstruct 1067 5551 120 64 1108 5583 Input point 548b57c4-3a3c-4a6f-8af8-bf61e4e59001 Point Point false f0a2926d-0090-4148-a401-3d572f930ace 1 1069 5553 27 60 1082.5 5583 Point {x} component 44bc53b6-00e2-489b-a5dc-407425442819 X component X component false 0 1120 5553 65 20 1152.5 5563 Point {y} component 2f6a5a53-3d55-41a3-aff0-e99afa30befd Y component Y component false 0 1120 5573 65 20 1152.5 5583 Point {z} component 7190c040-cf1d-4a5e-8023-43bb486fb5ff Z component Z component false 0 1120 5593 65 20 1152.5 5603 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values f154e627-b8c9-4f9e-b1ba-a80649ec7c08 Panel false 0 68c4ecd4-8214-404d-ae51-7077c9a01211 1 Double click to edit panel content… 95 4973 116 20 0 0 0 95.03748 4973.852 255;255;255;255 false false true false false true 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 5933667b-3af6-464f-b517-0cc7a179cde2 Panel false 0 f2e126e1-a59b-4fae-8f48-32341df4b306 1 Double click to edit panel content… 95 5055 118 20 0 0 0 95.86689 5055.486 255;255;255;255 false false true false false true 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 85f48747-2124-46a4-98df-e9d256731d7a Division Division 1211 5551 70 44 1236 5573 Item to divide (dividend) 2432be2c-9d9f-4aac-803b-2fcde25fb454 A A false 44bc53b6-00e2-489b-a5dc-407425442819 1 1213 5553 11 20 1218.5 5563 Item to divide with (divisor) 65c55d0e-0edc-48e9-8eae-b467e344896f B B false 2f6a5a53-3d55-41a3-aff0-e99afa30befd 1 1213 5573 11 20 1218.5 5583 The result of the Division 1bd4238d-59e3-4478-af43-8dbfe4dda340 Result Result false 0 1248 5553 31 40 1263.5 5573 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 007da1ee-8d7e-41b8-aae6-e1f819a393a3 Panel false 0 d2feb401-36df-4805-af94-8e108f24e9dd 1 Double click to edit panel content… 94 5015 116 20 0 0 0 94.83049 5015.627 255;255;255;255 false false true false false true c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects f154e627-b8c9-4f9e-b1ba-a80649ec7c08 5933667b-3af6-464f-b517-0cc7a179cde2 007da1ee-8d7e-41b8-aae6-e1f819a393a3 3 3d90ee0a-71c1-442e-a7e7-660c8099a19d Group 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 2bb0b080-8bdc-42a3-8107-71e06cc4368c Division Division 336 5272 49 44 365 5294 Item to divide (dividend) 16c182e4-0901-4869-a917-a38957b02052 A false 53dfe8d4-944d-46bf-8495-cdb43c7556b1 1 338 5274 15 20 345.5 5284 Item to divide with (divisor) 7858c11b-02d6-4b55-b212-bd137673d36b B false 0 338 5294 15 20 345.5 5304 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 2 The result of the Division 9b585c51-4d8d-4d1a-abf6-db393bf44760 Result false 0 377 5274 6 40 380 5294 2b2a4145-3dff-41d4-a8de-1ea9d29eef33 Interpolate Create an interpolated curve through a set of points. true 5452b66d-1aec-4c7d-9c3e-d3512215367d Interpolate Interpolate 951 4868 225 84 1124 4910 1 Interpolation points e9187188-4b3d-4dcd-89de-83e57a651893 Vertices Vertices false 065f686a-4028-4e05-b353-3c9ef8ca5da0 1 953 4870 159 20 1032.5 4880 Curve degree 036ab95a-1c40-4f62-81f0-cb6d46d98e73 Degree Degree false 0 953 4890 159 20 1032.5 4900 1 1 {0} 3 Periodic curve 02139147-d05f-45b9-af8b-12fbeb61998b Periodic Periodic false 0 953 4910 159 20 1032.5 4920 1 1 {0} false Knot spacing (0=uniform, 1=chord, 2=sqrtchord) 17783bc4-4d55-418a-9ec5-a284d3ac4e64 KnotStyle KnotStyle false 0 953 4930 159 20 1032.5 4940 1 1 {0} 2 Resulting nurbs curve ee4ecbe2-4fbf-4854-bfd4-5d67e8d925cb Curve Curve false 0 1136 4870 38 26 1155 4883.333 Curve length 926602c6-92cf-4952-979f-f93dfb6a8664 Length Length false 0 1136 4896 38 27 1155 4910 Curve domain f0d328d9-b8a7-4455-a914-0a12376e0d53 Domain Domain false 0 1136 4923 38 27 1155 4936.667 f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a DIFERENCE CURWATURE SHAPED GRAPH 7H0HXBNZ13dQpEpRUVAUgwVRuh2VlRaKhKKgYieQANGQxCQo2BYVe0NFRWzYsYIde8O2lsXe67qKbcVeVuW7dzITMhXyECDP9z7uTxfmZCZ3/ufcU+499xwjf0lccpJArCgFf/RYLFYd8NdcKkpOEIqHjRLI5EKJGJIiwGVIhn8M4Uew+4IEPL5ABj9SByWbYKRgf3jZGFzqH3j/WeSQVeHT7irCt8iS1xhGyASjhILRkG4C6AaRieApfAv0cqhAnhiVKhVAcm30i81QWphElsQTQUorcHX16tWl2F2RApEgTiHgYzShUFhq5S+IF4qFCvAWETKJVCBTCAVy7LHwr74/T4F8jxH4ZdfjpJnzp901MvUXyONkQqkCfXk4RJZ+GC9JgP32pnZ0UKCr65M9S1+unAH+fbIkD/z7eMmOx0t2Iz8gv+5eD/+dPxf5N+Px/EWqTxZlhcGfF6bDJyyGtzxZvk718+PMhY8zF6k+9njJJtXTlB9TPuTlkl3w+tKJuK/G7kWHhFI34Ye3oux7Z2YjH57N9HP2ZtUD0X/RK4x3IT+jb4R8o9oANqnGho4TG3bZZxCq8h3RL0XeHUUVeQKKD3YvGUklwijayi/CGIHyBX0ajn0ovAhnXV0Dg6KN+wAJg1NBjk0T+McMu+onSVZOoNrYFADCNhwIIyo/tdDLBlE8WYIA+aQdnGpfS0sH1QOSNVAiScJm0KSmMT3r9APijPsqY3iF9DXGfeKkXF6qJFmh/lmTQJkkWUr6cN3AIB+uMFbGk6FTQA+dWXVwH4VXDJWfS0XGjN5u6SOXC5JiRakBySKR+lTwiUiOjxfI4oXyRGd2P6XG8Org6g7/c2b7JYsUyTKBl1iQrJDxRM7siORYkTAuRJAaJRkhEHuJwdMssEf3K9M38MmG6FMMfJIViRIZdtksVBiXyBOI2BGyVImsVjAf0zKri1c0HebRj5tnME/4q9hkDG7GmpQN05Dme+qVKYvwWMg+FUz9AAdNlddwYMHrBsrrEKNaKH76gX3LdJ/Huj6nBuVtCshdZ3H+xIRPi3GjqoPwythPIlbwhGKlHnVEn2LgK5GhqhVjjIGfRCRJlmEaDv6fSlfZ+bAT4HPZknh2oIwnlydKpED3sSXKt6oV7I9ID/i7sM/LcQM+JoTNdHvl+v1F8mJA0kNJpTF3rj+83yoks/eOYVkX/jABpFooSTb2l3Oxu6l/3h95r23zQxoCUm2U9MS+G++Y6yzuljVbPN4ILBwBSR8l7TjjM+q7rU3Q0WeP5nW1tH8ASHVQ0ofrTwrWNCjm5jx7PiQ9essLQDJASasOdbC6/rNu4GG9WgUT7LK+A5IhSpLmcVdusejGSWs01ye49YTRgGSEkiZ9PsQyP6Ifnn+oq97lfYHrAMkYJU0/earv0b/MuFvTn8zv+uKrEyCZoCTxXpeXp19s52x+tCXG03H/N0AyRUm1D464Xsfzl3fOmwWPdroNuA5IdVHSzAmtf7y5ERuwyCzizccI24GAZIaSUj41sneSZoWsnTDLcNnXGf0ByRwl/XjSqtvFN5167fOMdBm5OuYjIFmgpJ8HfFYMXLTWP9u49PLa2+lGgGSJkpo3X3F+TsfHQfNXni3cGfh9ISDVQ0lLQ15xj23pyl2w16npyoG9nQGpPkp6s7Zu0/wHluE7Y3rz79u2KASkBijJ3vi4k3vIO5+CqB/H5tdp1BWQrFBSk8HSFfW7vA1epL/fdKR58BJAaoiSHrz8uHFOeqOg7cdHPLXcumwTIDVCScVtOKf/zejpd3CZj1vc+M+PAckaJf0+J8vo7NufAdOdr+b9sX5iIiDZoKT4hpHf9KaOC5imt08mtg+ZDkiNUVJ4VsGklNphPmuGJdR/ZZT+LyA1QUlnkjt0fD8hLfTQg/W3rxulTgQkW5R0qfPC0QtOFPXKr7/xIPv0xHaA1BQlZU25tu/7iiSfbe/szfnibChRzbDpUCicWt86i5PxntP+BNfrFSDZoaQeV5pfW7jyqM/6cVsnJY0YuxmQmmPv9SB3wMYpncInxj+/x2JlxgISGyWtFCZl7l7ryllfJ/vWoV/99hoF+w/DaRB7qJmDxXIFTxwnCEwWqpTZZNmfdW4frRV0dG/onEfHePoUasMoTBg3Qv0yy8RHoZAJY5MVSg2Pqm5MRelpTUX9Vo0qqkNUwZIfwTf9cnu+6OKz74pCTUVJdzfLMzBM4uTddO40Y9LLwWoqakvepe2T3jwM2RlrGfPGrKelmoqa2Dfs09kNKQGbJDOCpvumnlBTUU9f71/1LjDYd4ZT23msIPZTNRW1K+/4r6A9A7hz7GaVnF9yzEJNRfWNanrGrn+pz9KTHXOMo35+VFNRUT0aJ01t9Sp8Vpjex8lmId/VVNT4QIVk+HqPwIO1rqY/rHv0g5qKWuYUZhfw79CwHfJlyza2m7hDTUV9z0rx3xzMCtzZaJbX88l936upqIXTOR2LbMcGrOm2lvOscFdLNRVV8nu9en9ODQ1aFtR8d5RL289qKsoktPPnyytaBOX1utVzaKtrF9VUVFHE+3yX56GcTS3X2Jl5yF3VVNRMp7WpthHcwIzUbNudV/ocUFNR+5YWGtoayrgb+t+wM7xeOEBNRbXdfefsu0+vQmavfucW2d86U01F1fLauWDM/gnhi79092o/vfSamoo68TrifROLdiFLnVesMNkYsE1NRX3K6xdgkucdsr+lW72EPj23qamou8PYwgPX+wQtt7/a58awg6vUVNTM4T5fZ19YFbwj9UODnKehKWoqivVXQpeIPSW+Ga3evR0yu8dNNRXFihzw/Ni1tb12Xm28v86sO/XVVFSfzl5ZDSKdfHYPntHLcd6bdDUVNa3xaNvsXRdCZo3lWRe+Hs5WU1H9kof5dShMDdll6JVv9VHWUk1FcS/ZnF5RUC9g5bHf4xvual+qpqI+eizkeL4rCdrll3Pg2pBWSWoqqs4/M5J9BswMmt7bZ9BFSZC3mora+iF8Q5evrfz3mOx4f3ziQpmaimr5+Y/X3vbHA5cbbGVPidZvAEj2KMmz3SGum1+XgB1ngjv7jNg5D5BaoKQRAR59DXat8p1oNmX2hPvnoAvQEht8VPrgLcv1A5bGft5gfXBMT0BqhZIO279dHDPNxmfqmcxbXtsPHwWk1igpzTFjc0u7+b4H2x6IWjLwsQ0gOaCkCdw9A88k5QbsS+qybG7/5taA1AYludxlL+V/9eLM6rLCult/OfwuR2yE/a+YLxvVtlf2RkuHF4U9ZwJSW5S0qF5pWGf+uNAVr1p8uCsP7Q1I7VDSWpf8hbdcZ3jPYUdNjSicdweQnFCS3VqvP84nJQbsXrv99gpWJz9AckZJm/R6tzrLjfSbeiV7mGEP03OA5IKSTi+wNPjt3cPQDetWPAq7ePgwILliU2/qmtN1zd722tDb1TK6VwtbQHJDSf827rRuaPto78Orv/zFPecsASR3lPTl69ONF5uWBE39TXw5o8WVsYDkgZL+cD7Z6HztuaFHZ3yyf2VUfxkgtUdJ66d0cV456LbvTjuF5R9216CB7YCSno3ZN+n+RXmvrVzr4LP8Mb6A1BElLe8mfdT5TmrAbpHRvnnPdroBUidMs11zaDH05ODAufV2ng/5vCAAkDqjJHmtZOuwZpa9Fuz4uGP4h309SEavC4vG6E3Z+Dzax+Fc0MQXZ2abWIw314LRgwaB0ugd2TD7t9yfeb32HOsRdfagvD7uuwzCkpNiBTK81TNEH0Vlz9zQT8rZPHacRCRSBn/QusWLJDyFUJzAlkqEYgVbjDxYTvn6RFNHNSTS+2PXw5HxKJdGkFDQIBLY4TgBC+XKxsdLG4+/3TVs/58TEkOdiqaYKsmk4I8Apyp29QUf5COX4ERnpbXjsCI6nGKxgnxZrGM+dSKEoyTIc6DKYVk6c8bObH/KPAJGWnKFQKzw5yl4zFGnga8MAJLIUmMY+UP6ETxFIvbqtce6j9cPVgiSWKyy1SkDJcLwM1jsymJleKPiUJtOHA4LNmwW/zzPneN8ape7rP4QHPbGfsmyUTwYyOIlAjoHBjQS0Z0ziidK5ikEbEWigB2HPQCKBA/5VcDmKcCPcqkgThgvFPDZUp4MfKdCIHM1CBLy+QKxCi9KaSF6PzQjJglMGamCrGY7cgCAgNXfAavTfAmsZjsD6m+nTJHRDxOKpclILGyIgkwFTT0/5PUVErYAxYjyBce9fdHudeaa4NmDTNv3XfNxIl4bIM8gvRx6ubzJQPQBKzkZvAFCUm90MpQQJ0NRWw4rrScOIb1yEGodgckCG2gRpbTwJUlA8MpFbUFKyzyvkB4h267fOGCd1UyGFwvVc8liUUYqD71f/eeLiutmB0yrnebao9+03VpAD0gQA3o5XqfqKtGTJCtQATNggK9hBKJrVdCBiTZWMZ4SLttBC+8t9ojw3mPxuEnA9QGReCFDnkMWMuVlEkxUOLAqjsMjZ1SKegAccog4RLtyWEU98TjolYODtWqqs0cB5SeRMSHBf2JkwPWbxV0d/FvXde+KXmmuT6oEEfeeTIgAucEhUqviiMQJZXEiRtk43/9madCG46GbeaJ/Cq2eeOsIIiVeTIhEeJ1CbR2MailtnevzWPsfsq8hmQOu3XLL3WyFe6+6/sJRQr6AjShSsrkzpAG2LXobZtvABAGKamQyT8QWCcQJikS2XJAAd4XkFTJuxPidfogk9HHUCsJaBFSQe3cA6xMqE5fhBKieGpk4C5WJ4yOjoXzJniuSp91+VjcofdqRzXODC3/proErAfhYQnxKfCjE7hFQ0dJulAaOzl+ur/RaoTeEyQUlREUp9WIcGivCVpg8u9htzLSNBIjg61BAhFwuDyJijKUFiIo8mSACIlTDDjG8iQ05osYpTGPScco6UioSKlRcgvpyhFA8giaC+aOD/sqxzYMPzvn+vNHImQPw7AqB95HZpbysbU0J+ZHRlYkfJV1qhB+GsRKJSMBTKUAWybXBFIuBT1ycQC5XfzylroEKD25oKUNMas6suMczyL35wGdNhzp/c/i9juBjS8ShIbMGu65t3kQ4o+pkMJUVM3JF1AnJ09EQlhZRPHECYCzq+iCSy68AUnuaCnJXhszymRx6c/qiA70e45AyQh9KxqqMUhVoIZqFFi2gWUhekIZotSyLOGB0IagwXMRggLDrij2VDJg6rSogQyY/LWRg8qNuUh0WjZu0auzi6/8Uj/DL3db256U/21+nMM94/8iYAd82tAtEQGgEMmGc0m+qmHdEtO6GoTypVChOwJCCr6NFZ+JJB/0GxvcPhs5dlTncMTyocyUtJYzo2MaAOTMplo4GZjtzOg00wphjQMecWMepLbP1j3jviW5ls/n87Ua417XwF8RJAG6y5DgF20cWR3Zj69CwqXsfAXgFwSjlqk0sTy5gS0U8scCZLePxhcmAe2I++JsgUsXjcD1HzObJ4iq2akPcYmIcN4lhxA9UNGoAtvAYByB+gcq9ZQH39pifRu5tU/DdbBBO+iljKOjmlg2M8r0f7E17aftuYMD+4e0zOOGF93DvXZvqXZGL5YkmMUSrpGiy4GIDBCoHOA1SIlA5bRGgNFqKsPVVyRAiKkrclLEnJVBr/9TLveueEnCgec+GbeTLmuH1KfK0CPg0sj5Vo2lbnx5zQnGJptKnUhcOi8XRcGmij3I+VQgT/z2HThyZdd9/ZuaN9hNGm37BOy/KJ5GdF/R6VWAR48+EBVFGyluUYPuoKxRH8BcqG55Y3haFhxIUo4LTDfQ/5vltf7tC8bLk8yO8wkceSVb4ystVAQnbjwmSNF9Mo2NRIUmjuy0Yn9qs26+A+X07zWItG7AEL/jhYP6EjwLeSTRZmdemwbWBnyQJwA8mHpx88OaUiilp4mY/3VDIc7CMVlFPBeiUjOEAunwA3SMidCzgx+QLNVLNpsHwU0onjvLllj2v9+vU9r7hm63PtL8ZySOsePaD95HlRnm5PG1M3IGupDaWwnUFiE2xD8UeU3Q7BBuNtHHdcORjDOi84o9oXHdgw/A93qPudLj6KJugagTyZBF5xQG7rvV55YwC8JUKgAIXBAB0XhnRzauRR4VOwrDNfvuOhIuePx30FvdGpr2TwbvAFBxpIrUzW8H4oZW/UA6sXCrc0RIooN5KdcECCejzJsBvoEScmD5DOz4S7DgiCXvjSIlMEa6en0QhscT0lwpKrOppBIbFtAGqbhRgWCM/+Jfg2g5vw0kaP+qUGZapHizmC1Kwx8H/o6w0pmPlq35hXH23b36L1l4IWB0ePBAHlT4XsI6sHPVpGGbvJxPA3UkeWwQ+zo4VKEYLBGK2YrQEjfYqpiqJGU7kIZHYhlzVwHPNiEc9V3eS5wpmgLtAI/VoCb+cDd5DplC+J+VbtW28/Iney9WcOYMnbflltssGL5ORyN3Ue0M4Ynn6krj5pAXvVQrBiqAywzlAXxYJNNqGNEfAEoCQhx6qp3t+67jb5anvpsv9eH3yPWfjN0k44F5qoNRI5cFEdIm1ABOQGgaYMvgamhWlUCmXSClRSkxKDepzf4/ftqPOtaaMnNayotNE+ybFBZWRfGBS2MQJJXVFoEH1kAmdHjq3jMf96WkdOGmDneHLlmPxi4lGCBiR/tyKR92+eF2EAgliynjwK58dm6o+YZ3ZCnRhD8biys0l1/EVUlbEnEvqcZOX9jBKBTHOAUrLaA3A+B5VuO0NOGC0ugqUVlSji9uieg7jTEkwHed20yQA79gheons2CkvV7OiOgYA+rr6FAyxKWYgG0QTuas12k6yQQDC5MKRL5Qp19faUgL1e6I1L5f7njNraVCD3W0jTPEqyx+7mayyykjlARZz9PAH24ODA9Kf5A4wL+myQQuARTMCBiSqRjaXlIvr8DMdWHR/SnoSN5wwZ5UygEF4qZzX1KnxV3hnjqUWcA4YBn2bbr/Hsn6wWCGQAWZwUqQy4KqqPauWSzTegecijyU78Oj18thKzPTVAlsLcpjYmphT03uGZUl0JT21bBSjD0x8/r5Vcdjs+1+7NF7cb3GNGUWWK6qP8qmW/fJdkemFGkVTFo1R7Ne81ojMHZa++1eL3nYfbxSEX9lVZQMqJa3iiRX79VS34vIG4wQy+AB2PE+Z2COSiBPYQoUcs4joF6F0OTuOJwZOPlueLJWKYLZhrAQQhViGVLIY3goNqhg5YCscAz6CXHRl+yVCvYosiA8KG1KWpgiXfRWSBLh0pYoewGdgBJEk4QsqGEAQDzswwkZeECd8oKIrCzBhbzNguL4fhYXOh2H3pqpIabQ99CE52c2CO+nFji2pB6+v0OImDXEyVVI1ZQCEYjbTLel5AyfZcjPJRDPlEbTAySM7Hq74IpihgIGPUkJmbhAxt/++3Zz5+gF/HJ05KaZy+rySigKicmwTEypAbnRIYWuS6NExOJ4dJUsWOCOzGM8toVxdLzi6u7qzJ7A9XN2p/SvDLYKcTcscgtO3HbZa7djxK375NEz1IPLyqRqtKljHZmRdUa5O5IPoaWRlmylTXYFJgFwrSyZn8J8W3J9YO8P2SK+tmZeO9OG9wm+dVm/KK9waQLRMEBVTWG6IltFoX8kBn/WhETDuntc6WbWx9Ft5y7jw1qoi/LK/IfpgEjQqQlWAgygbWnCAstFoo6mN0kqVWXBN0OGnLMms3ekANzf/xP3AtmlztZFYrgWE2IwIgTmN+m11WTR+G8ennVOp1zWf3Ad2m66sfNsBv9aHxBZSiQhYdLLPZkSDcydsPUMM82Cx+/mowVMkyiTJCYllK+WarLcSD4DSjpa8MqlGrKhfDByhnG1oWmwu0U0qAvhGbCW5SUaYeqzYxoFV2bDKyTSKeXe5cdTmlIC5+skng/fenIVfvekHi7uALySv3qgo5blQRMVYSRcKORmzjS5XOwvIrvc2jVyousrpyxckyATU/uXFHHMHo9ELObPOrMz8+9eHdnhnyR+5kewsode1PTvh+5dsZXr/nK017SypJFMDRwkOWSjhYylblIzYumCH6+FuBZy9w/9KOxDz4m+8rGIPIMuqilIVzIhgZAarZphBSodVZ0XtcljhGiKWKID54sXBE5aO7l4gZAWRRZIz28MrLlEi4zuz23vJR8oUyC/U3up0O5Pp41YO9J963uNxYkbpabxdg18QqUilyKVQI1UFs/K3MDErZosuzBz4KM0OZik3yiGzxMmyWDnDDMr4YpXe47eSXpOf2IpfTLa7U5lQubKhgzuqyG0AO4qI7DjmwenbeptmXiqqyRm8ra55nd2PDLsUOq/PuVBr9919ajbsBQAc24oCcIsCAKhaNPJEMVOGpDxRAjB6h2ly5zAHzvql9QZ8NX1YQjBlyI0Upkx5vSoAKN7CAMDmMVswR9OMReNo/mcnzukQ1MqJc2LNEK2eOCceZ9fGifN8mhPnA5s4c1Jf52E8MKfjgcY53UYMLNBqTjexRosWlwaJqlQLjHi0nYkR47ZjjLCgYwQ7oeXe6XNm+C48uZW79Nv+sfjX7SMQ8VKpGUEIK+g8gwY+7NFCmYAtg09CywpR4k7MAKIYCAl3PXa5mBPzyCqbMw8wPzbiFNyyBwygKLfA8h6BYW5Jh7lx5JJRG5KH++e9+Srowt6Ejx0t0Jg1FPwjE/JEFd+haFIW7YZLBeJALjsJfUbFQlpinSHGYZF3AAgf0GA5sGQ9ugNQRMqDAC5WxDpSaMvkijZTFr6Csx8uqfCF8fHJcgE7LpEnFgtElC9+26XTk5P3srwP5Q69NMYh4Bx+vclf+QTyehNG0LaRyweQPIKQpFF5nfkwL2Z9jXiddYBylahKin358qVUk6iZjWcMXOtKFvFk7ERhQqII/KVWC+eH/fxz+omJoRt//FxkO+3XSXwAF4k+hBzAqShVwR1vRu6UrNMB7pSWsko1Caabc5KEcrkQ+IJxODZhKoSSOZJ1W1fe2Lo6ZHfdia/s0p8dwjNH+USK/I0ySlUwJ2cdE3MidIE5kD+ahNddfJLgVyI8AcMBcbZMII5LVW4AebElUt5IuF/kgfxW9gnqGdU7+66smaMtd96M339Kd3RPxB/pj1J7PvlIP45aFcxjMTIvf21NR9tlm3qPcJt6+uVw0KuMg/JEoThVDFwnwD7ALrEEnmrzAD+JJKMRIvzVHZKSeCnKC9RLW6E3l998/sV3zjb7L0tlpQmENLNEqrQN9HJVcC5mLRPnLGucc/AmPkvDdZL6ZeskjIpwJZfTO8DewL9g9953V0euq4NXhLQ+UxlF2xxxd0V9COinniW5VW6IIkT91HosGj+1sf7YyBMHP4YfNcr726HzWGfcW5n7JcsVkiQ2WvUd76ZCTOlOA7XxEQFJl6OZB/AZyGZ2gkCSJFDIUtlS5QPlFsHiOFEyXxAs7iMQo6cH6J1XYiVMprGS+ECgm8Mq31KJTBEgFCkEqoLXFZ4NbTmsoo0A+yyqXPkMuFe2kXa3hjKGCsSwUUgweCrk0RvV+j3vzAuHwKl5oi31G3RYgBdL7KlksVRRqjnZBZ5IPgaR86bSIxFOHJZ0o0b5qA2j1FwY5OiZjK4ITDPP7K6PGr0L3r/ed0j7loTo5z+awgSsiDpCG6e3GbEq2lCtOhfrO2GIhlzwQ9DZuZ9zv9RIgHp82EVfd9/SOohtI1pVIywwwD4K/19X3e3B38HCKkzWp1NjOhpuEwv0Vlu47d6SKdwuaV7V4fbajU3kj2bVD1o6Z/XfJi8PL9WBcNuyJZPzIm2hAzFDfn5+NYTbxcs5R+/FNA9Y9PfjAoHC6aVOhNtF9kzccbfXAe5US7h948saS97TN36TjFat+H38/QidCLcz2IxrIc11gDmsmgy3i2c+t1jLfua34/vZl6OGt5+pU+F2RHPGcNuupoM2HQq3s4I9T99s0cl3R1+LcPdjQ0fUcLhtacdosZrVNOeqNNyefbH16043jP3Wvmtf18jCPF8nwm3Eh6ANt4EiRP3UBqz/D8JtYguJGg63c9oyhdvejtUTbg/gm7r1GOIVPLnZ3QGtG+/YpfVwW8vVRJGC2G2ZQshHjlUVbu8r8pwsuvw0cJOog4Tb7p+hWg+3iTpCC1gBOWLAKqfN/6lw24pOjelouE3sbFNt4XbiHqZw++yuqg63TaZvvJYxoL9fZvjCXy3G6a3WgXA7eg+T82K0RwdihgcPHlRDuN0+y3F9195twucltK99rtPrAzoRbhfsZuJO4m4d4E61hNs3s7i2O/JWBWe+upv6JMreVCfCbRtG5gBtUvPMYdVkuG0SvLPFtf4mPplpLR7k3/zVS6fC7ZRdTMxzrBnm6Wa4fbfrWstfBx38JrrP2dnKotmWGg63b+1k4tz0nTXNuSoNty2cWtp7tooOmTXz4PweqfJNOhFuIz4EbbgNFCHqpzZk/X8QbhN7L9ZwuB2zjynczt9bPeG2r5PfkuF9UnvNXRZz9ejDxm+0Hm4TU8G1EEJG7GMKIVn7qircfr7gfgOFIqrXrpvT/7XY+9t9rYfbRB2hBayAHDFgFbP3/1S43YhOjfn8GiV/rZgQvCuh+a8IWcwsQlyrarNEUVoUfg1dWcpm/jIeUGN9wEtI2ISnVPCINLErrAFXEjdCwFfdxDhSiggc/wENDkm4ewBBmuRLVWEGFq50I6krpgYC9soTU1C/l40IqaoKonGk9GqFwPnl1nj+yHyhX85Ax7BUVoeOjODoVA8iWJjREiJqRTU1z8IkHXeN1FizSF6SVAS9EICaXKhIxaKzQNpatQW/vf2ruFNd/4X1Zb8av8z8gxE9Q3/lYynWOFCCtv0TpMSnGxNEQOh0wGNEZFyDknDmkXE8EVI/n76McGurqfEtzs8L2dRrRlD/wtaWzIKNPJDCkUculyfYxN7SWhDsDFcmrpW46ALXhCyVVbBm0ViF5G+HOuzMiQpZ+jN68IzuK6fjHUZ/YYJQwY6Mk8HDchp0120ZlpyEnKeTo7cialAuRMrmM51vJHKKUSgIw6vQqS+6CWuEPQVexGy4AfIFqqNrsCKJAXCO44UpZV9RB3YtUBWFNkWELzle7SNoLXYMsnjsG1lKzlW052YrDuuYE5C5MX5kmRvYqxWn0wEnLJKxoWO2X5sLbp6TH3JzAla/U3g2xreqMOsjSOJJ2cqzovKK981to7wP5aqyjyCPLRaMhpcQIVAeGq6QtSO2emcYIYndeHJFcYXpC/MArpeozH4EjFLmalRYzhzhNgxRZHA41M0S98uSAgdeCNw04dHaGVknH2ixoj+x630lVV0MgCcHwlOXStWlAFUXMU8jG26mHA/TQXKTFp3EZwOlgTs/h9zl+7gZ4c84K+8nn3FGr5eHT8TBqy8tL1zkrhu1KqL3tyMNtIAPixEfID41YQqMkCo9o5RA9GAR/2hWac4siidLECiYmPZ5SO/t+/tYhezvzxkyd94HfDFNA+X9ZKah17XtVkGuxMxl4oqljnJFo2U5C0ThSQV8VPlSMiakd0mv85/ucDNFIX23t1uMP/1jEIrcT2YMel3bjLF0RdUJXI8jdY6OcOOwHOdpVpjDVoUBrIUaJxKWh8f38XqmYedOcef8/JTA6XblHT4C8FM+gBwBYISqQCR/LhMiXedidr0xi8au5y8I+Tioe7fgqR9/KoxO3sGXSUe/seJdeHqoirvjDTh7dKIwLpEtEMdJkqQ8uRx2CmGLwAyCfj5q/isW8LP+SugSsafEN6PVu7dDZve4STVeskwqr2tQ0p09By3pTmrT4w3r9cyubCW0pqirAY29ULlKCwv0KkdC+eKil3tN7PtGha9SjM4PbzfqMF746BwbFaGajT+sdm0JMXT3pehmw26HYKiRxuqBxQXKsi+4MsQiyWiBXNkjAO6Fw5/LfEr22DDqlt9Ee16jVWdgexMEMBsqwOBmBAAMncxN6CazzhTaIEqTlgpt/IcdfGgXgIEY5s5iKrSROAvD3FbnMSfWq9cS5mb631fsDQv0WfJ51e/Wo1P/qmzrbJg5vJIOc3eAuftKDPOmdJiH7Qu4dI5V6Jc2sHF34cte9fChfSjcb5SKhHFIlUmy8aJD2jYU+GDAJVCAO0XsJNxTKmSbpjUebZu960LIrLE868LXw9lMwyLvoOHpFVUbcD1pBYBzNuVOGUyvXH7KTFWVFfNWMRtugjSQw/ESfpMhcjmYj8nAAP7ZuXpHjf0P/GMdaubUoAij69HQTZWt10gyYqS8Tv9g5XiQ4cKPMAXLzQKEMqDnhcBNRlaI8Pyi5I+rYbpgwt5FAdkLGv7ddtQQfIN5PR/y7PAhzQ49wuxo9vb4vSUOC4KXj0gcsX3kpjWVLSMK2JkG2enuQxV9wH2GFafUQNIrByS7SNiqla8RSknLHMctePgifOOc1zPfHhXji1Pp+ZJR8i0XpT+cTzY6X3tu6NEZn+xfGdVfpgWUgFgzoJSx/BQqgypZYvItbJRJCtAZrQBARI1Yo20DYfdrRGJg20BSj6cgFwQpVJ82o9On2QWPBkx7+jX4QMGeAztGPOYSqoTzxAIRuWEgnRp19GFL4R1q6QlssUQhULacUAhS0JaM1G4u95LN6RUF9QJWHvs9vuGu9qUUQyFhy6JCFVmT7QO5CC+qF8onCKfPjkQHE5um3MnDkjZEX+fTrvAb9ZULZFFg+NjXtvaXJMeKBDByjBuBtIPgCxXou4NZB1cHnqRtIPBRtT5MXEx04LBKYgAfPf1YadP8TEJ5sgShmCuIxwmFqfJyH5jsqX7dWHk9SiJVv0pc6XXgJL2JOWWBgBghk0hhrWTlqAyxUSkzTOElbOPYFG7SBov5sKqyan4bw4twyULtEmK/ROh+tNJIwhRSIU/kBzuEqFhjEKkAQWKS6nf9/jKetExzKEXVjk5Udcbd+uixkOP5riRol1/OgWtDWiVpyd0iyr8WXNyiWCYXNyIWUw/NdR5zYs9ZLWFObDmtBcwzApkwtwzEMGfTYe6xrs+pQXmbAnLXWZw/MeETvl9SnUCZJFmKx7wuhrmvRL0Pqh7drKZwFnzYCfC50AwGynhyeaJECnQEyhB5rWB/DLB+ycP8OhSmhuwy9Mq3+ihrCUiYK0iUX0CqhZKIMwaQarOomwkDkj5KKu3e5u6769Y+W+o/n1rr6UUro2D/YTjOQI1KXbzoQ/iGLl9b+e8x2fH++MSFMgoIyaaEwGMWxmMlu+zp2KVDFtSz3SGum1+XgB1ngjv7jNg5T+sWlDR/CrvfG7KEt8E3XzriUd9//nSpGQta1JrDKpgOS5VWmQW905ozeef0/w4L2oJOVHVGm48I8OhrsGuV70SzKbMn3D/XUEvanCj/WtDm3jOZtDlrJqbNW+o85tyo9MFblusHLI39vMH64JieurswF5HChHnRaAzzVnSYf48ddKaDycbQ9Ydr/2Ql/lxIVVW94jsbdqECnhym4SHrzcqGWcBOom36KrZ3cdj+7eKYaTY+U89k3vLafvioJnXeK5q1DttC2wLkCqj2LkqcgGfSRLN2tKpmd0lKACjf7OTURZzo0XvDZ3b4O3BEHp/gDOtSZmEETJCGAJX4UKyzw5QOAJBmvS/Lre/fSa/xuzl+Uv+9n7wT86/Nqdn6/rDhIQKAEdVGA2wZDQBA51ZrurmlowuwaY4Zm1vazfc92PZA1JKBj22qYQEWSkzXbLoF2CIw4aYv/d8CLMqf7SNa5S4YNZGTO8j/4Mt9yX20sAC7qF5pWGf+uNAVr1p8uCsP7a2FpBzHbLqlxQJAvbW0qhdgZ9k+DPf8bSdny4ZJDZMGy220sABLzOTQAkpArBlQ6rq0ChdgiYvuNboAm+GMSgzlAux0FwQpVJ860OlTnfEPJ3D3DDyTlBuwL6nLsrn9m1tXxD+kCB6r3j2cvoPJPQzagUHeRuchH9H/ivmyUW17ZW+0dHhR2HOmdiBPTEoN6nN/j9+2o861poyc1lIba1oJjGtaCRjkjjoPOdFoaAdyoptXScil8DDAEjrIoRuXvwSDvC0d5A3j9+dlnzrHWb71yZjzTcfl4LOGOClSkYRP0eyyDg3CDugdWNyjTNmWJ/GQRH20/3sFM7kW9nk5bsDHhLCZbq9cv79IXkw5NHJCE0qo6NEs2OfiMNTOVO4Z3DxzP/wfxkMC5UAo3+0vqwDr8N2XA/ZOG/D5exfOMi3GQ1o+MAqT3YogQJTt52zgfvRhjRpXduojAKKB1MHgC2C6n0QuhHQ2GJ9QxAaSopITNk8GG9xLkoRxlCj+afCulsWakIDsGVNONeicgJcQY9X3kLv1lZG0furKEZEYBrgeHdKJ1orkztKYVFcwQ9EFnWj8MnYpEnkKdhJvhICdLEXWQWJ5sC4QbVu/3NrDWq/cIg9ZarkxYdasrZaEyjPoYykqz2AUrWfMuqDC7k/FvSxXRNhJOcQaAmeP9aDFjhgKiEBSgrXM+VBc+pw+IdnPZdF222fjdyv+o463WgDLnREsIOqo/WnHorE//ZrXGpG5w9J3/2rR2+7jjfC5/RYcuI0B84XpVuPoCnXt11PdilkiIJrgRwAGTA5FW9nzRBJxAoi95OjqjCu+1b2cHceDiaRsebIURByAQ7ESQAT3Kx+ZLIa3wj0XsapXvfKiK9svEXYCR/g7KGyIWpttYBkUkgR4WE09Q1UxWsJOgov4FbONpTF3rj+83yoks/eOYVkX/jBhhI18jJnwgYo6HLB6zDG0kBj5GDOwlSlHNbKV9cpsJTogypcd3p5jEXBjedA2ru3om9sL62nRWBI1UCWNJVJqDSIUTTUl4FKQzTGNjGULnDyi+30QMxQwugjYS/Hj84jxV0J3XA8/EN3DK6pmO4YCVM4eZUIFyI2OVh0q7/hSx+B4dpQMloaCsxjPLaFcXS8glaQmwApS1K2H+y2YPWZaQV/u/tyuP9Z+LrqKY5lJmOpBJLap06qCdY6MrLt1REfdGablpGYRSDdUYBKwOnnCeKjeGdbok89d9jBY+SF44j3x/thj0wkbY8jzyEpIeVnbTIElGxEtE0TFFJYbomU0OunkEAWNFUBklEBpFzUApnFp7SLXdn9wNmVOYGXOekWIINEHk8M0jFAV4CDKhhYcoGw0ak/cRmmlyiy4Juj0mrcr76RFUvCcWg9mp3SwXIQPUVTL/uQQpYxUFQg5MiIE5jTqtzmxaPy2c8t43J+e1oGTNtgZvmw59gjeG+UCH40d6c+t+MKBr+pgGMxvwDxhECHGg1+B35XKBtjKFMo2xkDZovIKfS/UdRtfIcdJNvaXc7G7qX/eH3mvbfNDGlKPm+xFYxRNwsDP6BExkqvkDT3nT5otKyADUMOAutrNzh6e3Rr4B21e+E9f3uGplwh1LuDdFHUukMvleUpE/aeF819sCJCUSgjZsHPQJ40Of9sgAGFy4cgXypQdmKmN7c3Ny5/ONpsYkNaAN7Cg5Mlu/LT0x24mT8syUnmAebh/bBf+97JeK5frbdP7dT5eC4ClfWICDEhUjThRSpsBP9OBRfeHfCacqcSLKcJLBq0qSz+gcIh9FzijobjRmMknTeojZ58BMzgpUplAVQYLcWp9fCMdo9tWzgEmsDYpf8bRlFO2AenmI5aZtFRM1AJrH31kYm3GR93xjzM0O0hel6umzymZaWVs6Nwm28F/UeNp2/u2OYRvaqHPpSqyqbyq9SOWrqhOyveBvCDGt67IFEMNozOLxjD6XrO+P6rLLu9tg4bazOp3GJ/oaQW3DhRw6RNWthbAWmsCDU5Pu/lJkgDkyg0M5DH8sscgwWHZoWk+EJIKWcQn9t14x1xncbes2eLxRmDhWP6ASeyg/JQGiwru5wHoxVQJSTFA+I/9UdnD1D5cNVDgcgNMzITehkTMdsQOAgP0EMOK/KTUaXK4Gi0ZLeBTG5FryTOsbrjzQvct6d5mf7ZHO7yOQWqqUBw1R6+Xp2MyA9q1C4n8LWjR83CP84M9O2hhZYINYdanyurJaovAXNkl4dZq7FetbsVJxHJBXDIiHjDLgXp1c/R9R9bPXk6+Kw9HBg9OW9IDh6Vp2XPJ4S+OqG2VwHZGYRtMBdstFwQ2VCW40KmE8+YtP3h0loROff82xPXq7xxi4SGpiBcnYIcli0QUuoDOYXbB7hPD+6DMCsWjeCIhXynko4Uw/xCEKbKKa4IdZ3xGfbe1CTr67NG8rpb2DxjGSVUgSY2sgZcsPUe3+ZYD0T1b2bnfCBo1pIyCAh77h0oSIkadWHPp5J9br/QKWDT7xLoBH58H491n5EFk91l5ubzpPOnzIZb5Ef3w/ENd9S7vC1ynBZchBiKXTuUywM14y3O07nMFkbNVISfDiRoULersutOPp6WyuAG7zhi2vdZz1nd82XNUQKi3dPBUbc9iiBaQJAa0pGer1cHCBmoUlSoVqOPQUu1cjWsIcGkFIlf4GblrYNAw6OQmCGSESnzwT2UVdyPEQELGgkeAoDpVyWpKLhMNU2UmSWVrMbmis6CEKs0MFrgBs0CjhTAbZTkU6CsgtgoTfT51gZDQEIerWzN6bU+euPpG/FdCRQXkrSg2JpDLVQEFIuK0UAARRw2VK0vX82+I2lI7+TfE3DUtpDylnGFKeep6BoPcTechn37yVN+jf5lxt6Y/md/1xVcn7UA+9odDmMe9caGH+usdithsXawFyG9dYYI86woGuTsd5BqfnLTAIK+Gk5PEaEzt5CTRPVM7Ofnh+pOCNQ2KuTnPng9Jj97yQu3k5KpDHayu/6wbeFivVsEEu6zvaicnpXnclVssunHSGs31CW49YTQg1WFRuyuAZICSiIICSIYoKauZ2P3B5MSgaTZbXfSeXntAOooJhZdS+sR7XV6efrGds/nRlhhPx/3ftHAU04OO/y1CCl3u7zAJ2KjPj73xwhLP/wbKxX4/kUQO3UVkA6fi9UpbBAjhAcxEeGJR+QAkpIRxpkYHgWofHHG9jucv75w3Cx7tdBtwvdwhksCh+pAGrUa6ngST7BbV2jXMOux6QqO1a1vlbhvSWUGCHGqWwKxA+rygdtP/PP1YKA7PX2pW17hJg98rs9dWtcvYRXB/9CRqdkkl9o7BBgInKP1wOqwaqlIi1LGirr7I72ZR0r5N8MIl/Yd6xte5p7tnqiBKQGYYUDp2XLMzVc4R2LxCJhuCGTblYKiH5Z7Rb5UkjTYqaczeH753WEb/+H5NrWtwPxcWtUKEiHJDDp64unVCMze2nWr3EEKkhActtAgsEE43UVewGR7d6F/5v8FrrBQ3L14JTtKBXUsI0vQTTCB1PaHZvm5rf6HyzVVLVWUio6z4SaugNp9k3/i+zDb0gMWihp7jF7fC7yJizyXvIqooVYFO8XEmdLKOY45RexaNYXzVL4yr7/bNb9HaCwGrw4MHkhfiyZaQrnWHPX4/V5XqNlqCrrJWzBDOnND6x5sbsQGLzCLefIywpRgS9d5ABWF7BBRT/ikA2wWqBShYcpF1qgq2aTcZiq40SZrjm7t5eavzD4ZPwi92IvuxNGYdRyx3m4qg4iqpxVmwxzEEK4JKxmDjgohTGtk6cwQsAZhp9FBl1w7ZsNuzb8DiBZ/qfYg6LsZrIg64lxooNVI1uwQQJhYjTPmFGh4gLncLjbjXXGNbaFDTIDICt9BIh92krgg0qB7qQKeHdL+VQMqnRvZO0qyQtRNmGS77OqN/lbcSkAKxOfaarpVAGlwpf6X1VgJvPz02bfHbJe+dX3PrW/jXa6rFVgI/D/isGLhorX+2cenltbfTjSq7uwVn1Wu6ouy5sFPXa223Emgm6cyW1eH1mtjgdt9usXe2arWVwI2WbT5zfTr6bG/WsXD/C9k9LeBjyYgPEB+dLFqv5VYCDi4zxpbO2uA/74Cevn2DKa1rtJUA5Ir0FRNX2DrFlZKjGFe030og6uDx+76Gj31mG3kKkro6Pq7RVgLerqg6oSycnwYL57+u4lYCnb38Tuf2nsiZt37qfPm2xoTDj9XeSgAicuwVEyJBrzC73pFFY9f/21oJ/HjSqtvFN5167fOMdBm5OuZjFbUScH/J1Erg2IvqbyVwYbD3ZUloP87BDps38Y+f+6LlVgJaNv5IKulLplYCAMMabiVAtOc13koAAYy2lQAADJ3Mnegms85sXBGlSUsVy4jbHFrYuSooZtq5SinGMO9Mh7mOVlVq3nzF+TkdHwfNX3m2cGfg94VMw9JSVaVHIMj++p6uqhLcowh6/7+qSih/ilILu945UBQ4xau9uYHI/bkWqirdWHZ27iP7VuHLf9S6lxdjUek1EzA7it/T1QuKBtSs91VdVWmhaPWVtRc3hG0ftdW1Xcd4fy1UVZrWqYg9ff8TvwWhNwRRPusru/sNUQpiROnruyqsqkTMeq/RqkrIgvd7uqpKji4IUqg+7fJfpk+XhrziHtvSlbtgr1PTlQN7O1eTPs15y6RPS/75nz5F+fO4tP3nP+/NDNi4xCNtx+MDm7SgT9+srds0/4Fl+M6Y3vz7ti0KtaApMt4yaQrvt1WtT/uNnBc8yjfZf2Ynu1prurmM1YI+JS4SaAElINYMKOX8U4X6lGhDa1yfIhJDq08BUqg+7UqnT3UmJiBOJ52s3wVDgqw3TCFB9BsMck86yDVOZjPHIK+GZDbiNolaMhtxbUUtmY0Y0KklsxEjDbVkNqLRVEtmI0qDWjIb0UMjZaxBrUgpYvbGx53cQ975FET9ODa/TqOuWshY66Y1JptWI5OJZdrUmEysUqPGZGKGmxqTiXv+JJ7o0/GkyWDpivpd3gYv0t9vOtI8eIkWeNKdjic61NChuA3n9L8ZPf0OLvNxixv/+THFULTcEmmNfdJU/p2ZPou8n6Z1XZ26veZaIkU8PlXFLZEOcR//dzR06EEnqjpjln+fk2V09u3PgOnOV/P+WD8xUUtLdUT510ZzgSeMpUyfYHbZS+cxj28Y+U1v6riAaXr7ZGL7kOm6uzxafJUJ89yrGOa/0WGusZk0Y1WfmXzw8uPGOemNgrYfH/HUcuuyTWpmkii/amaSOGPUzCSRsWq+UNoe54dnW57nbD695FJ31xZWar7Qrk2+M/PCHnC3J35pu2xDx1kk4wq1PqUghWcVTEqpHeazZlhC/VdG6f9qwbj2pOOkceSSURuSh/vnvfkq6MLe9B5f3g7d+AsF/8iAqqx4VcAm2JahmB0uFYgDuewk9BkV2xA8k9yh4/sJaaGHHqy/fd0odSLjsMhV9wgf0OTk9ne06l4RaWkGRGZpX0lbhExpEs2Uoo1Vn4QlBJJhmc5EnhgYOcoXlwuHRQ7swvedPdJ/aJKi1RP8hqC/8gnkDUGMoPUWFbB5OIQkjSpxIh/u+H2rkcSJOnEAWpXSKCkpKdWk2B8bzxhYXypZxJMh+4wi6L5Q8ibr5Pas0Su7hx7Navhvp/dbdhGKqKIPoSiiilGqgjvSb0zcYesCd4A2KtUku6g5J0koR8oWx+HYhKkQSubs7ivdVzJoVvjEk+7+tie3jMMzR/lEikXcMkpVMKfoKxNzgDapeeZA/qgzB7NMdMzp4pMEvxLhCRiOHNwqEMelKosuerElUt5IWKPRA/mt7BPUM+rd+XUDdqX88F3f5Z82j3Z1wtdBqBul9nzyOXYctSqY587IvEdfdKdQEL6Qpn45HPQq46A8UShOFQMnGLAPsEssEUPWgZ9EktEIEf7qDklJvBTlBUo+Chc179Z7/V9hs07eWyXpF1BEqIaWSJUWjV6uCs5lfGHinHeNcw7eBHdUNEqVqa9cjxaKE5gVoevduCPLha7B0xPHtnpxzukTXhHS+kxlFK0veLuiPgSMOM6S3Co3RBGifqo3i8ZPbaw/NvLEwY/hR43y/nboPJawU+enXMiJkAlGCQWj8W4qxJQus62ND6w6JFdbDEIKyCYIJEkChSyVLVU+UG4RrMzmChb3EYjR+IXeeb3UeeHoBSeKeuXX33iQfXpiO6axkncV8XTzfuAfqUSmCBCKFMovpnL3aWdDWw4r+gfAPotqtzEDuLS5/9JmvVFGw4EYNsjBSWSMFfLonTfXW7EvrWl4+vXLM39/OQN/7tgIeypZLFWU8uJkYnGzysbJALkgiJw3lR6JcOKwvv6rUaJ7wyg1F4YtGSWQyYQ0PSusTUOG1rW/yVlft87ZySe3N6j8FCZgRdQRWsAKyBEDVtH/VqvOxdYxDdGQC34IOjv3c+6XGglQjw+76OvuW1oHsW1Eq2qEBQbYR+H/66q7Pfg7VOG2D50a+18R/v+oCH/WlGv7vq9I8tn2zt6cL87+zgibNovw25QyFeG3+VUVRfgP+GUNn3T/RK8DtcPbrmI1e6rF0+Za1pFwwcSolKlmecGvainC36zezr0H7y7zmzzcesfM/UkhNV6EP/EXY2uCXzXtgarvONVMEf6JiT0brJ1TL2iL+wqfF722DtGZIvxnfzL2T/j5f6MIf51nkzedPWLlv7TkfNM/j7/pQdjprO4i/IiWoa2iDrRMtRXhnzr07I97TdMCt/ke8Fw+ZwY+G6FmivAjyoa+Q8GvaizCf/i6+4kjm0/75tZZHrrl0/XbOlDOAmlT8JOxTcFPLPz0ZdH4bRyfdk6lXtd8ch/Ybbqy8i2+FJ8pcohPKhEBi0722YxocO5UtkUiLLsfrYUBEJdJkhMSgQ8nFyBLNZrUclhYKJxa3zqLk/Ge0/4E1+sV7WjJVQ/UiBXN7YOd+/ROs1hPAHq5pLbLAN/prNOVPFhlVTYscBXFgvLVDdu12/h4QmTwInnw5PWn3Yor37uL4EIRFWMlXShY9tYRokfZxS4L1sXQO62JC4X2QOcLEmQCav/SbKrpwuzoj73SL92oa3rgWnPCCSnkRooTUsrrVVH29xaL6f3zWad1YLkOkUwNHCU4ZKGEL4xjqG0TNS7W1OXH3pCJNhMzH3f2rIOXVewBZFlVUaqCGdMZmRFTM8wguj8sTXYsXEPEEgUwX7w4uHbq6O4FQlYQWSQ5sz284hIlMr4zu72XfKRMgfxC7a1e7vLcPH/2Y9+556SX03yCJuPtGvyCSEWqiKL/ZRmpKpjVlZFZljoxc+CjNPJWG5YtdIuTZbFyhhnkdK5zAbufu9/8wsX7R6bf/FKZULmyoYM7qsjhUc8iUl0oD86W96zTGnmpqCZn8LZCo+tzDVrMDd8x+OGeP6TXdtZs2AsAOMZCAbhFAQBULRp5opgpoy8ykfpDPzDmsyt305/d/7Vt1HN2jR72hQBEsRgkoF8z1mnU0fRj/Xfl4/S40vzawpVHfdaP2zopacTYzdWWj+Nc+zRDPs7gWiTPUsv5OKOf1Wv4Z+x2792f389fPjojRAfycVpBSGh3N3/UqhGlj08quHHjRjXk4/y+7o2P2a1toauehPI7lI7ophP5ONdqMXFnqy5wp1rycW4V6rU5ayLnZk4obd2/zdODOpGPk87InMG6wBxWTebj7DDsorfgrxifXbY2Pn/Z9mypU/k4HRmZV7dmmKeb+TiSjJ39PsR3Dy+YExE/9NYg2xrOx3mqx8S5Q3o1zbkqzcdZkhSa7ffCI3iecMIVX/dzxTqRj4P4ELT5OEARon6qP+v/g3yc3x/kDtg4pVP4xPjn91iszNgazsfpqH+aIR/nXm3axVKt5uPENwtdqLAe5J3+Luum7/zYDK3n4xBjcy3kmDhD5GhzTPT1SQulWsrH4f6exR1lkey9f2loaOsWdWtrPR+HqCO0gNW92kxY7a5drTq3pvNxOHRqbORRoZMwbLPfviPhoudPB73F75T0ToZnJwNlPGki+YSpBtsXrfyFcik8PabazUl1UZ4yZfNgzbwE+A2UkrdSmJS5e60rZ32d7FuHfvXbSzs+8k6OOpEkf8aRQIWFqx/FopBK4rmnCkql6mnExkltOKz856dYrEZ+8C/h/OfwNpxDW5+fMosUiADDBPxgoNdTsMchbFWyMoCOlRqfSXNUyXbVn0mzmJ3aLb1TPd8jhRb7uobVmqV2Jm32hw9N027fDkxPfDaoWUvDcLUzafM83vF8NweGbXH9t42lvv0StTNp56MPhNxxXuy7pyh+juNFt1lqZ9LmWYa2XRKYEbCm1e1h2e0Pl6qdSbs0JOYep9Xn8M3fJsyo73/HTe18frewK2cWOxQGZfTvLVvSbFqeWrOZeY95p6PuSDl5okbdDkRu8gAkI5S0tNlj2/hpPXw3p0rur8hxhGftjFFS+z/X/toYH8LZaDVr0GrjO1MByQQlHZVffZBsci10xsqiCR5nGuwEJFOUtMAz+e+FYx8Gz+ct6NrAQR4ASHVRUv36LVp31GP3ypvy/Gpw/NAZgGSGkqaaRI3oGcIP3PygsInc3/MyIJmjpGHD2Bv/juwQMH9uzoSXo/5cAEgWKMnzQsihaSERYdOdpNZDxh4fCUiWKKnttvj42x0u9sqrZdBrVfSvUECqh5JcTz063MrjpPfsMVGxV5cvuwhI9VFSUbN20/eOuBcw+bevTa7MNhkHSA1QUtCBoJSlJQlBeY+Tm2XVurMfkKxQkrR5e7Owy7t9so6WXBk8oFECIDVESX9HHi29e9XY56Cd0ONbryNDAakRSoq7eMO47ZpszuHmb9pO+cdzMiBZY4O/+jQ+eOpP7szfurD8h5zqB0g2mLBFW808stTQZ9+OS89O947/G5Aao6SOfcNNRxz2Dtv1+681KyZm8wCpCUoyi1trdWFCbOCRSdvPL9BvOwWQbFHSyw4l32JePQpbPfHBvjMRc7sCUlOU5Cvp+HXlq0T/iRktd7/9tjMWkJphXL4j+HZ53jHflYYTXk04dnYmINmhJI8r5o1S3h4IX3vaZXyTus//AaTmKGlre+tXJ6/X8c1o0VFs/ek8fC82Sir2K7QqPrXYd2u34c9qNTwsIx22tGfRHLZcWr9Ts2Kb537TvK2avB14cagWDlsG0qmohvH787JPneMs3/pkzPmm43Lwi4mcFKlIwqfIIKBrTOqA3qHK+URKrcuTeCIRUEJoFfsKpgwQFRTl0MjrnCihgn5JGogFg4xP03QhjXDmsEqMSN4vYxOIsoxK5UAo3619nbp7nW2LubM+XIgz6T3ylxYTKrXs5MIitd7GdHt6NjB10FijbIBOfYDDJEPW7vgCWKZXIhciKRRgfEIRbLqskhM28KDYPBhyxVGi+Hdc00u/DVjiN9nerO0tz99b4LdAVd9D3gItI2k7koVwAYlhgOuskU7sV5PT9TRsG+qCTjR+GbsUiTwFiF9GCNjAAVG1YaLfK/311E5ScGN9SOanL4/te55KIayWo4+lWC3HKNrmnqULKuz+lBvYroiwk3ZMNQTOHkvswRatBUQgKcHq03DP3k/ZV3xnNzs2ZvXYr4mVTyPSAliIqNOCBUQdtT9BrP+dPtDm6QOih15tpw8yTU4znD6wMtHIVlbw9MHD9JQNKdenB+2t42DXvLXNBC0aS6IG0sLpg9kQIdpkbb6JRsbyPz19sHqesN2qtcKwPVM9op80bL+qxk8f9GBEBciNju6UVN/pgyl38pz3PU3tNW9tpvmqi5ErdOb0wWtjJtYVGuuoO6Pl0wfPG50WL9ni4Dcz+ESdRWtPXK7h0weIlqFNHwdaptpOH5yZnL0l9IeR/8I7H1u5P4920IHTBz0YwbEy0Sznq1KnD4b329C2f+p335UpBg/qdn+NrwFSc6cPkDlNixCY06jfFsyi8dvOLeNxf3paB07aYGf4suXYI3hvFOlZF+nPrfjCgS++ZSTqCYMIMR78CvyuVPW+ikDZovIKfS/UdRtfIceJuH5JPW6yF41RNAgDFa1PK1u7kFwlb8CBj600W1aoUG9JyZRpDrZeEt/1BX81X8fe2IawyQ7vpthkRy6X5ykR9Z8W+raIIEBSKiFkO3FY/q012juzQQDC5MKRL5QB8QV0amN7fuCWiSbjXDkZgwpj77U+jq8RbOyP3UyelmWk8gD7p9/cU/sHZARMvNpcdKNNSGUPtEPAmjICBiSqRpwopc2An+nAovtDPtJpxMBLU4SXDFrVd9aO1xmdUjgH7ROOb9od/6U+chgHMIOTIpUJVFt3iFPr4xvpGN22cg4wgbUyi3lznjWeETq3w7MhV3rnH9QCay+0YmLtuhpiLZV/nKFZA7jy+5cGupvdrPPM2Xe6RZ2gr+37p9VY/1KWK6qTYP9SKSm+dUWmGGoYe7FoDKPvNev7o7rs8t42aKjNrH6H8aWBrWDJTQVc+oTZuAK4PyzQoOuZm58kCUCuLPyJPIZf9hgkOCxrdsYHQlIhi0jctit/wCR2UH5Kg0WFEgsAerEvRRO0GCD8BRaVPavnw1UDBS43wFK+0NuQiNmOWAMvgJ7yEB/8SanT5HA1WjJaQHMC52qAo22H6EUBc5vnzRTtCbXA6xikFypFizj0ern5F+b9rDsZ9fDb0c355zpZx/ZaWJkohjDr+1K0/cpqi8Bc2SXh1mrsV61uxUnEckFcMiIesIUE9epm7c1JKX2GngzMu+7Xdz7vYhw+q6DsueTwF0esihNNCGyDqWC75YLAhqqEEDqVcN685QePzpLQqe/fhrhe/Z1DbBgsFfHiBOywZJGIQhfQOcwu2H1ieB+UWaF4FE8k5CuFfLRQkciWgDBFVnFNQNylZxgnVWNjNbIGXrKlBd3mWw5E17yyc78RNGpI+0MFbNcHlSREjBKAnSfWjUoovhq24M2YwLNPDI7h3WfkQWT3WXm5vOlMzErQgstgBJFLp3IZYEHlR+a07nMFkbNVISfDiRoULUr4FgWsTn508VLwIStX7ujjb17iU7VRAaHe0sFTtd6Y3BGRJAa0Msyr1cHCBmoUlSoVqOPQUi1nxzUEuLQCkSv8jNw1MGgYdHITBDJCljD8U1nF3QgxkJCx4BEgqE5Vspo6eZhgmCozSSrJ1xhXdBaU+FAlFbohs0CjhTAbZRtT6CsgtgoTfT4lFJP825vcMwnwKzi0W5awZLw+YWMCvhXFxgRyuSqgQEScFgog4qih4rJoDJXO1K0nakvttPCpgrL1VuZo0jpl2fqPZhjkoToPOTE3TjuQ2xx0aXOtND5k1a0ZVu2/XXiqBcgLGzBBvq4BBnkYHeQaZ2VaYJBXQ1YmRRIllpVJkUSJZWVSJFFiWZkUSZSqrExyEiWWlUmRRIllZVIkUWJZmUODWrxsePCZ9wY+l9ffau40UsobFF5K6SOmX2oh5S2cjv8tQgpd7u8wCdioz4+98cISz/8GysV+P5FEDt1FZAOH7JQb0My2FgFC2LInEfa4UT4ACSlhnImmIVRse5+YclruEEngUH1Ig+NRH03BJLtFtXYN20EqTDVau7ZV7rYhp0EkkDUAD/ALfV7QQ9/fr9hnzvCetpgXc+bEhQ2V2Wur2mXsIrg/aoqa3RLSAXsQVuebUvrhdFg1VKVEqGNFidJt47wpD++14Ezhjv076d0OlhbTIib2Dft0dkNKwCbJjKDpvqkntICSghGlrqbkxQcmP805AptXyGRDMMOmHAz1sNwz+q2SqT8OdOcJHnKW2SedsVypuF2D+7mw/SIiRJQbcsdAGFxoqpkb2061ewghilOrWQEtEE43USdW+rw89efyrUFTeMevWIwvma8Du5YQpOWMIClMNdvXbe0vVL65aqmqTGSQjUV6BWX668zh66P+DF66JPCvq+y1+Ip7RthzybuIKkpVoMNlRKeVKeYYRbBoDOOrfmFcfbdvfovWXghYHR48kLwQT7aE+jTg2uP3c1WpbqMlGpWNIx6wqOjeQEU7H8OeCmYAtgtUC1AsANutulWwTZvavn8Dg9Rdvgdn6+++2m7eCfxiJ7IfS2PWccTytDhRxVW2Yy7Q044QrAgqGcsBrjnLTCNbZ46AJQAzjR6qn43PX8u0zvde/KxB6LKeInxjdmMOuJcaKDVSNbsEECYgNQww5dfVzNiVv4VG3GuusS00qGkQGYFbaKROwlJXBBpUD/Wm00N+bS64eU5+yM0JWP1O4dm4GXEdOoknZSvXaSjWy+lc8zbK+7DdHuRcCo8tFoyGlwQyYRxqICukloiHuxhGSLVSrkau6C4ZLErABrheovLJ02DOE1sjRWWObEMpF3fBcCjfcoxT3pkrp7cF56xvc37Jxi7ueBcJeQDZRVJeLm/OEc+5VXZ3C8CzG8JTl2rO5YKQZTZbo2wSM+V4mAp9jV82dcfl84t8DqZxTl+Krj0Av/unvJ+8+4deLw+fa7nnJgiWzAg43OxF5+lPxSIt4MNnxAeIT01kGBghiRujlED0YBH/aFYJ3CyKJ0sQKJiY1mlF4+yevdeG7rOut2Y05yAhLUR5P5lp6HWtJ9fCBURGrrxurktcKTmKcUUj82WBKDypgI8qX0rGtLvkdXfPt+VBc2wiVtqm91qOZ0wocj+ZMeh1bTPG2xVVJ3CZkRSvpsH6zGzNAjJbFQZIYCESlofH2ZPNB4a/G+s/ycZYKn1WexQ+q9ZP+QByVi1GqApEejAiwmJjdr0Pi8au5y8I+Tioe7fgqR9/KoxO3vmA57HyGyueDNNDFWHgDTh7dKIwLhG4lfBsIU8uhxUNVFkxqPmvWPBBPKdNNV6yTCqva5In2hzNEyVlv3iDqK5H88rugDdFXQ1o7IXKIjXwCJNyJNTdXlcEmE75p9Q/Z4DbhcObZ+INvyGdY6MiVLPxR1JJIYbuVDka7HYIhhpprB5hqEQpy3LiDmrBfCC5cn0AlgKEP5f5lOyxYeMpESXa8xqtCgrjWgQwGyrAYC0mABg6mSPpJrPObFwRpUlLPa6J2xxa2LkqsGPaucqywzCPosM8bF/ApXOsQr+0gY27C1/2qoevGoX0k5eKhHHIsTCyIqVD2jYU+APAPCnAnSJ2Eu4pFdKTxMoUTMMiF7PC0yu6cAOD7JYAztlUCzdwjyKt5Wkz1Wok5jlh9sQkGOpSHC/hNxkil4P5mAwM4J+dq3fU2P/AP9ahZk4NijC6Hg3dNBxRLyQZMVJep3+wcjzIcOFHmAK3ZgFCGdA5MDsBSWbC84uSP0+zhlyN/HQseMrK4NgRz37HN//T8yHPDh/S7NAjzI6udaN7nHTvFryp2/AFCc8cFJVdMwGzowiy050qeyEaUHNbnlYDqbyVJbtIQZwEaGhNUBrgOPPI98/J/puDvn/I2bL0Ch4lXzJKvuWi9KKk+MDHdiu8MwduamL0s3CgFlBKY0QpuuVpVAZVssSY7aKsFwgdowoARMx6x9sw5aPINgy9XhUL3ojEfKVaaHJ0QZBC9Wnf/zJ9SiznU0361LkFkz69Zv8/fYryp77Rif0zm80IW/O5d48VNxKKtaBPiWWatKApWrVg0hQ/7Ktan67mbpjc+Norn1V/Zy0uODpguRb0KXGRQAsoAbFmQGmrfRXqU6INrXF9ikgMrT4FSKH6tB+dPtWZmIA4nbSTzNZJr/G7OX5S/72fvBPzr83po4WQwNGeKSQwUkHenw5yjZPZzDHIqyGZjaIGHqbqKWrgYclsFDXwsGQ2ihp4WDIbRQ08LJmNogYelsxG9NBIGWtQK1KKGLF6nhYy1qK1xmTTamTyf1ZHkqKoIsZk4p4/iSf6dDwhli3UAk8G0PEku+DRgGlPvwYfKNhzYMeIx/hzfnUieGKBiFyglU6xOfqwpfAOtSrTbLFEIVAWF1IIUhRsZXFWytcm1l2kGEpFtJ1pZJxMIhL1gRYLXlRvyErQhHvvTrrBGzDc9+gfpzz7/qj1nU4TGvWVC2RRYPjY17b2lyTHimCuFqwECwv/8IUK9N2BhwF3OZ6kbSCwBCvVS1qUduCwSpoABerpx0qb5mcSypMlCMVcQTzOAJoqL/eBPTvUrxsrr0dJpOpXCSVgezlw0v9pctoCATFCBs8NKoTKURlio6KaUDLe6GAxH5bdwuDVM4YX4daL2iXEVxehZYWVAQHsBCLkifxgLSg1Q6SQCXhJqt/1+8t4UtU9qKgOpBNVnTHLxCqgWlqqI8q/Fuxyui2TXebbYnZ5kM5jTiyvqrvLozFWTJh7W2GYD6bDXGMzacaqPjNJUTcXM5MUdXMxM0lRNxczkxR1czFf6FXdetmxv60MmtuYF92838hrar4Qd3FmVouoFkFrvwzq67fE0ZNkXKHWpxQkYjFeLRjXIXSc1NGWY8Siw9XWckzUhqnl2HKHqm45Ful0avqJp06h2aMattmzLx1faLVmWo7x2zA1cOnRRgf6JhUXF1dDy7EXb3bFzs9rErik6/xhR0p27tCJlmNWjNx57aAD3KmWlmPSK1G/Nf/h7JNtkM1zs/t5QSdajhU6MDFnuS4wh1WTLcf2f5j7Il3+yq9g+Eibz5kX8DnHNd1yTMHIPG7NME83W44d79vB4cH5pX7bG28/lBA8C7+jV/0tx1oxcu5H65rmHLypylqO9dzb+HmTM2P8Dm08ZtWq0zZ8ZbqaajmG+BC0LceAIkT91KEsGj/1v6nlGLEtRg23HJvuyNRyzN2xmlqOfVrUw+32t+C1nDST00bTP2u95RixuJkW2milOTK10Yp2rKqWY+Pe7fNd0HhkaPqK5Lsxi5s/13rLMaKO0AJW7oxYGTn+n2o5NoxOjf2vCP9/VISf2E2o2orwF7dlKsKf2LYqivDvrSdv2m3ztJCZCa1bXJtS31eLp821rCPhgsmjtkw1ywvaVksRfuOFs/1X5T7otZk16dqdUQmuNV6EP4MRFSA3OhM7aHbwR3tF+P/50exwY7u/Qmdd9XJZZHrujM4U4fdmZJ1NzbCu2ovwW98T1pcf3h04N/aXXbOrPW/WcBF+RMvQVlEHWqbaivAH2ppn3z3eO3CraML+a+bf8Nq5ZorwZzCCk9i2Govw65nfL7WSBIfMbpGXcsFu0B4dKGcBEfJmRAjMadRvi2HR+G0cn3ZOpV7XfHIf2G26svJtB3wdAeQQn1QiAhad7LMZ0eDcqWyLRFh2P1oLAyAukyQnJLJVTWM1qeVA7LBIO1py1QM1YkVz+4AjNNsJ4PsE4JtLdJOKAL5P21X2YJVV2bDAVRQLyleve/liyHD/wwH5Q1bzLi5fZF353l0EF4qoGCvpQsGyt+lOdF3ssoDsDnbSyIWqq5y+fEGCTEDtX976988ln76LQvPmbd81fXl3MeGEFHIjxQkp5fWqKPvbkfH96zrVtLOkkkwNHCU4ZKGEL4xjqG0zdufSyY7PzUKXpH+4PvxAsQAvq9gDyLKqolQFM8BkZWDGoXY64f6wNNmxcA0RSxTAfPHi4Nqpo7sXCFlBZJHkzPbwikuUyPjO7PZe8pEyBfILtbeanbe5aKXbi/CNHQr3t05w2oK3a/ALIhWpIor+l2WkqmBWJiOzRDXDLMLMgY/SyFttWLbQLU6WxcoZZtAd1lID82d6YUfeHHXe+9VxZmVC5cqGDu6oIodHPYtIdaE8OFvCnDTzUlFNzuBtneUeFDXqviZww4Y6Y2+LI8fWbNgLAGiKAXCLAgCoWjTyRDFTRl9kYvvd7tZX7rgFZv4cEpo9TtGGYMqq97AvBCC/HQMA/VLbYY4mj/XflY9DbMxdbfk4012Y8nEKnKs6H+fLs9ih/xb3DNtnMUqPe2Rubx3Ix0lzYdrdjHbRgaSCP//8sxrycTJu7l46KCAueEPEgE5WFy6E60Q+jjsjd4x0gTvVko/T6sui/uLlet4Lc9zOBJjF79CJfJxHzkzMAdqk5pnDqsl8nHqSPb0TjM2DNp0LStS/8NsQncrHyWBkXmLNME8383EeLurjZHf0UMC8bTt/WzTmWpcazsfxZuScTY1zrkrzcWZ04R9M6fGEm2vqljB16oxNOpGPg/gQtPk4QBGifmos6/+DfJyt7a1fnbxexzejRUex9afz/Wo4HyfDlSkfp6tr9eTjNNhidD36QWjIMq/X1rkPW83Xej4OMTbXQo7JdFemHJMY16rKx3FfOuVm9Lws/1U7s1cM2mnzXuv5OEQdoQWsujJiZen6fyofJ45OjY08KnQShm3223ckXPT86aC3+J2S3snw7GSgjCdNJJ8w1WD7opW/UC6Fp8dUuzmpLspTpmwerJmXAL+BUvKK/Qqtik8t9t3abfizWg0Py2jHR97JUSeS5M84EqiwcPWjWBRSSTz3VEGpVD2N2DipDYelDwtzNfKDfwnnP4e34UypZXfaLFIgAgwT8IOBXk/BHoewVclKPh0rNT6T5qiS7ao/k9Yow+5y609/cyfdcYhw/jrpvdqZtObzwoa1dTPrtalBR4s3ua1/qZ1Ju1H68513+52cjTK9uGWRGUfUzqTJ+/Eu1TMsDDnYOzx2ZfHoMWpn0nbdCJIMPNAxdOXw2wl+XcN4amfSHm6YE/jV+U345IeB7NRVj1+rnc8fxZLs+2w+kLt7Vi2bOn+s3qXWbKbbonOt/86d6r3tb4NNDVMyQwDJCCVlhv92O/Hqi4BF+4sK4sJPzAEkY5R0rcESzqrB/pzl+4ea9R55+SUgmaCk0EML3w9/EB624bPs/rrzEfaAZIqSgkxKZTx3HmfOWpmT54j3qwGpLkoyqT8k89/8mJDdJ/wnFSbd3ghIZigpffzdCSN6Z/pu2tmocGz6E3gMzxwbYdwcg+h6+/zXiurVffs9zQyQLFBSu+kDBie03BmyLuXU3KBV7ccCkiWmkAco7ofIF4TP+tuuj/lZV4hhPZR0d1m3kfGbB4astx7sMm2ZSRYg1UdJJ84OP+hQMCB4gzyF7Sm6DbncACX1H92p5Q9u06C0hoH6cwMtWwKSFXbX3seRq3/2C1h9P2pQ7hUFRL4hSrrvGmN4YynLf+Ha7jP/bb0oHZAaoaR585Y88PjSOGS7ufsMUfGI0YBkjZL2fZ0x88nZHoGrD0SFThq0ZRog2aCky04zmsuanPA78OQlN+z82QxAaoySxnqlWZ8SdPU9FN723Dr5/Z6A1AQlTX0Z4dh5+Af/mTlu3bdZ/3MPkGxR0kV/SZ87vw4ELLa03ZCzP6A1IDVFSXn91iy/MvO19/IJ9lHFiy9CYWuGSZSBaN6Te3Lv9Ea9f3T91S4FkOxQ0priFV6d0lsGb6v/xXfshHQpIDVHSc9W305M4XwL29cuzmv+mkmwugQbJZl5bhrnfO8650Bqo4QjQ1+8JR22tGfRHLbcPHPZm3v2KWGThiyd9/Bx5kMtHLYU0KmohvH787JPneMs3/pkzPmm43Lwi4mcFKlIwqfIIKBrTOqA3qHK+URKrcuTeCIRUEJoFfsKpgwQFRTl0MjrnCihgn5JGjxV40HXhTTCmcNq6qFZE4iyjErlQCjfzcDrxQHXlc5+ay9ta29vd1CbCZVadnJhkVqRB92eng0Ilv09NMoG6NQHOEwyZO2OL4BleiVyIZJCAcYnFMGmyyo5YQMPis2DIVccJYqO/fMHPjj50LdgcWKzsQ61P+K3QFXfQ94CLSNpO5KFcDVlhOuju07sV5PT9TRsG+qCTjR+GbsUiTwFiF9GCNjAAVG1YaLfKx3X6GLxlA89QvOntmrwbJC/FWG1HH0sxWo5RtE29yxdUGH3p9zAdkWEnbRjqiFw9lhiD7ZoLSACSQnWpl9fB26P/oM7a+cFzrmClvmVTyPSAlhNGcECoo7an3gWjf353+mD/+j0AdFDr7bTB8faM50+8G5fFacPXFIbPvVVzA8uuN6mvuPHgGAtGkuiBtLC6YOC9kzJ2hntq+X0gc2CgG6HmqZ7758U/U9w5s+IGj99kMiICpAbHd0pqb7TBxMft/s3z2mf715ZM4cFzfr31JnTBzaMrCvx0FF3RsunD/ghW91N0q4GT5M9y2/7kj+xhk8fIFqGNn38/7F3HVBNZF8/uqgogg0QxBI7KsXeCwFCDUXAXiMJEA0EQxRQVERUFFTsiKjYEXtDRAXXgl1xbdgVu66Kbdfu995kJmQqZBmS7PdfzvEcmctMJr/73n33vfu79wIro7XsgytDJnmkfm3skZ6//9mJzs2P6EH2QQgjOA4dtZh9YDe4RifRpXmuW+YN3fPNthjf21h32QcWjAiBOY36bcEcGr/tzEqh4EeP+q5xmxpXe9l8ci7eG0V61vk7C8p+cOCIbxmJesJghxgEfgV+V7R6X0VgbNHxCn0v1HWbUibHiXh+Sf3eZC8ak2iwDXzug7Z2IblKDnCM+lRAb8nN62ae/J783Ds+tvvN+TkX3xKC7PBuiiA7crk0T4lo/1jo2/IAAhRONQi57YCF89EodmaBAISNC2uRRA6GL5BTL7YBI/sVH+jU2WNBw7+b/x3dMBU/LZ2xm8nTskRUGmC7L36eFLO4uUvCvZcJH/MaWbIAWDIjYGBE6cSJUq4Z8G86ceh+yCmdhgy6NEJ0yWBVBQUxY9+1ve2z4k3B2Wnpj17URZJxgDL4UeFysSp0hzi1PEd/68FtyucAE1S7/nbenFXHDnvF/bnNfMqvgN0sqNaBUbUWOlItlX+crFkDuNL7l75Iruy63eyDy8GtQ3q9eiE30Vn/Uo4dapNg/9Jw0v7WDpli6MIYwqFZGB2v1r87sdteh+3DRlokDjyCLw1sCktuKuDRJ2TjimF8WKxB1zN7J1kogFxZ+BN5jKjkMcjmsKTZmQgMkjKtiMSwXekvTFIH5V9pcKjQsDsA/bkjRRO00WDwP+5W3lw9nkANFHjcAEv5Qm9DFsa1xhp4AfSUSXzwf0qbFgFPo2WRYpoMnIdTZ64f1zWbnxNbc+zZy0mFeBuD9EKlaBGHXi/NxrSo9andqO/dHDfcnNf48IH1FiycTJhCmA0cKdp+pbRBYC7vkXBLNfWrTrcCZWER4sAJyPCALSSoTzcz+y+pc/RRLdc5BunzB7zg4CuqG5U8l7z9xQkrIqMJgW04FWyFtghsqEmQ0JmEcybNP3ToKvOa9f6tp92VaXxiw+BwqTBQzPWeIJVS2AI6h9kWuy8M3gfHrCRsolAqESkHeaREEcKVgW2KvOyWgBilZ3hPqsbGamINvOTe3eiCb+kQ3a7lnfvmcFFD2h8qYLs+aCQhYjQ9Hy/4drlTnTezifeYbqu9X+PdZ+RBZPdZebm06UxkJbDgMnSGyMVTuQywoHLNbrTucxmRs1IhJ8cNNTi0KOGLu2FbI8HvD+/Mu5aDIut3WoynaqMDhDqkg5ey3pjcGhlJDGgd7qpVBwt7UcOA6HCxOg7N1Tg7dp7ApRVL7eDfRNi5uo2CTm6wWE5gCcOf8hpuc2SBhIoFjwCb6milqqmzKAgLU3kmSTn1OtoOnQXFPCpSoT0yCzQ6CLNQtjGFvgKyVmFDX0QJhaHxsoif3i8Eh8R7fW+bvnhICEzAb0URmEAuVwQUyBCnhQIMcXShGsuhWaj0pm490Vqy08KnAsrWO3RlKlvPVUE+Tu8hJ3Lj2IG8xflpX8Lq/nSafn96+sOimCYsQF7ciwnygl4Y5FI6yDVmZdbCINcCK5OCRImxMilIlBgrk4JEibEyKUiUGCuTgkSJsTIpSJQYK5OCRImxMmf/NttVmHnNOXdHQR2zxxdHkChvcPBSjj4i/ZIFylsonf6beZ6wvbu7hstmA9GY6y9q4/VfT3nY7ySVRUB3EQngkJ3yqjSzrZmLBLbsCYE9bpQPQLaUcJ+J0hDKFt4nUk5LfUUSOFR/pEF6FLczmGSFVGfXsB1keieNzq6tlNE2JBtEBlUD8AC/0POCLOUDMxOHRzjseX5iqvkw+97libVV7DF2AYyPdkaX3WJSgj3YVt/pROmH02FlpqJEqGNFiZLRpW++BgMHOy3OqrtgdZXUhizSIqYP8P50elOUyxbZHLcEx+hjLKAExgwDSqJOmjVpt/HF5hUy2RDMsCkHt3oY94whVPK988SfcbnuWc6d4mZzJSd0GM+F7ReRQUQZkDsKtsHFnTRzY9uqoocQokC1mhVwBcLZJkpwFkzt2TL11QbeIolpM65VvVF6ELWEIJ3uxARSeifN4rotnSXKb646qioZMkhgkd5ARTZ4OnCl0R1BQuDgy/N/X3ERH0XEnkuOIqokFYFOFCM6vp0wxyiMQ7MwvhroLTCw/+K0dP15l7U+7kPJB/HkldCABtym+HiuiuoWKdOobBwxwaKssYGydj4Ghml4FwDbeaoDKA6AzaBLBYRpL/aY6ZNrN8h7+bUndXsZtCSU7kPisTTLOk5YmhUnmrjydswFdjoAguVLNcbSgWtu00Wjtc4EAUsMZho9VA7Vl4YOdTsl2CC4NDHHbt0AvCXig3upgVITadklgDAZMMJ0p7Nmi13pITRirFlnITRoaZAxAkNopE7C4XYINKgdktHZIafW5+17zLgvSHdZ+07Rw7IR8Rw6VBjOVZ7TUJyX07nmrZX3YdEeJC9FyA0TR8JLYrkkEF0gy2SWiMldDG9IdVKuJi5rlAwMm/aeANeLVD55LEB9l4dGhsoECUMpD3fB61CXCehjtsTgR0+n2XWC97n1HYb/llWQB5BdJOXl0uYcMc+tvNEt2E0ZwlOTas5lgC0Lx1MjNomx8n2YCn21Hfhr27MXjXlLCsYNaDlg3Sp89E95Pzn6h14vDZ96Deob9nl8QbAx5/uwWrP7tmcBn0IPJnzA8NEFw8AQIW5MVALRm0P80awSuHGAUB4sVjApTepwcnvPwl8O2QYffmRUbUOozqa8n6w09Drr5FqglQRGrYzWK60U52Fa0Wj5qoUYvHCxCDW+lIpRLDXLm2Q61/3I94drr6ePscIrxgu5n6wY9DrbinGwQ80JPGYk7Vdj7fmcPz0025BZqTBANhZSSWl4mIQEXRy/7DxvG0d48jV/QTSeVeukfACZVYsJKgKRXR5MiCg8sHU9nEOzru9a5PlxWK+e7rM+/lAYHr/1Aa9j5SeWnQzTW7XDwC/g3MgQSWAIcCthbqEwIgJWNFCxYtDlv2ybD2KeNtX7ksek8romPFF3lCdKYr84gF3dLvfyRsAboq4GXOwlyiI1MIVJ+SaUX3yq65RYD3d3182WD28Nu22BD+RWo3NsVAItL/4IlRRi2J6Ko8Fti2CokcXq7Y2OKGVZTlyiFuQDRSjPB2ApQPj/Ep+SO9l7CnVpG8J6rtOqoHBfiwBmQQUYrMUEAEMn83i6yaw3gSviaGKpxzUxzMFC5MrGnSlyVVOFuZwOc+8DLhfPcE44xQ617CV56VEHXzUK6ScfLpUEImlhZENKh7SVF/AHwPKkAHdKuaG4p5TJThIrUzC9FrmYFV5e1oMbsMkWeAM4k6gObmCM4qNXvrHqNBLznLD1pIY7tKU4XcJPqoZcdhdhY2CI6PT8SnnVnXPe1PcyblevAJNXopEb+SDmhTRGDJXX6R+sfB/kdeGfMG3cGrlI5MDmQHYCQmbC64tSP0dONrtw/IOfyyb5ojUWFpPxlNRKPPLs4JFmRyXC7OiaZd4/2aOH19yGzWa5He0aU94zE1hGAKqzPRV7YTCQNvTOVwOptJOlxv7iQBmw0Jqg1H77hnSjnuaO23Jneva6lNkXj5IjGSXHUlF6NUC+aUOQreOOAk/RhSV/hLOAEhjWDCid98pHx6BqLDGyXZT1AqFjVAaAiKx3/BqmfBR5DUOvV8SBNzJiPlMdNFnbIkih9jTiX2ZPieV8tGVPBYz21PM/e4rqp8OB6i9yOl7gZaYOWTensGFTFuwpsUwTG/ZUwGhPBRVtT1PqPY7fumeR2wG5ZdWxGZXasGBPiYcEbNhTT0Z76lmB9pS4hurengoY7aknZk8VdPZUb/YExOnEDpmtSyXLd/Ocwp2zPjmE7Lo6z4+FLUGaJ9OWIEYF+QQ6yDUms5lgkGuBzEZRAw8z9RQ18DAyG0UNPIzMRlEDDyOzUdTAw8hsFDXwMDIb0UMjMdagVaQcYsTqeSww1iaypmQjLSr5n9WRpCiqiCmZGPMn6cSATifEsoUs6CSSTiep2Q+GzH782T0ne3/O7nEP8ZuqKr7CMLGUXKCVzrBZ87jh8A61KtPcMJlCrCwupBBHKbjK4qzUbB1C3UWKVymLtTPyD5TLpFI/uGLBi+oNWQmW0OZa41jrO91dExLezvActIY2t9lwQIRYHgBeH/vYls6yCWOkkKsFK8HCwj8iiQL97sDDgFGOothNBJVgpXpJh9Kt+JzBfGBAezhxYmc71fASyoMlYQJxEG4BNFJe9oM9O9SvV1deD5CFq18llID1aMV3G8TPr4WA6CuHeYMKifKtqmFvRTWh5MJI9zARLLuFwVupOrwIQy9qlxBfXYqWFVZuCGAnEIlQ6gRrQaktRAq5WBiq+t1gkFwYrroHHapRdENVb5ZlYhVQlo7qiOOfhXX5M59pXS7kY+tytN5jTiyvqr/Ho0m9mTCX9sYwn0SHucbLpDFHe8skRd1cbJmkqJuLLZMUdXOxZZKibi7mCxWmr+jzcfZexx1J9QxChdW6q/lCnYvldYyMtjgfKt45LtvqRmXS4gqtPnVrSEIxXhYW18l0mtTTlmPEosNaazn2oD9Ty7Ha/Su65diHVSYfu53Z55PUefi3zLih6/Sg5Vhhf6YGLrv660HfpAcPHmih5djKJV4jTixI4aW5vpqQ8yTqm160HEtg1M5ofdCOVlqOHfxaL/Zt0A6vfTVfXu/ftw2evqqrlmPdGZVTWx+Uw9Fly7FrfflH9x2ozEudOe/XzmC3fXrVcuy5L5PyjvrqT6Egnbcc+54beqnZ1Vlem/f4dki/GBSn45ZjKYyaC9e55uBNFdZybOeIZit+v/CX+97RjZ7t/7DLQC9ajiE+BG3LMWAIUT81hkPjp/6bWo4R22LouOXYdz+mlmMb/LTTcqzD0rN+spo+/Jz47J7zr4bdYr3lGLG4GQtttD76MbXROu9XUS3Hhq7MMu6/qZ7PbEObkWYb121iveUY0UawgNUGRqxi/P6nWo5NoTNj/xXh/0dF+IndhLRWhH94AFMR/jv+FVGEP39hm/uOVUNdDvw57vPagAX4duvlyzZn2UbCA5OAAKaa5TYBWinCP3BO2zPmG+u6zekvqlE3sXctnRfhN2BEBYwbvdk7aJb4w14R/rpG8zL6u3vwt4VmWo7bEII/ttdlEf59/kyqS9KN6rRehL9TQEN+8DBfr7jqqz/WPTLGScdF+BErQ1tFHVgZrRXhX5gqsIp5nOqWM7Tql2V1ruILZummCL8BIzjA2GivCL/prGZfag9Y6T3P9/KnTvLn+HI6uivCj8xpWoTAnEb9tqkcGr+Nz2vb7lefq7yMe423/LH6LaGOAJLEFy6TghWd7LMZ0uDcpSREIim5H62FARCXyyYEh3BVTWM1qeVA7LBI+7bkqgdqwrJy+4AjxBkI8C0C+GYQ3aQCgO/gAeVNrDIteS1wFcWC8qt/Wb+mXi1JL/elL0IOXS0YgGf0/qPeXQQXimgYy+lCwbK3nwfQdbFLAWO3YIBGLlRN5fQViYPlYmr/8kxcz2PvCp84rUswy721vtiVkCGF3EiRIaW8XhFlfzMYv3/sAF07S6qRqYGjBF9ZIhNJAhlq2/TNcJ8xx9vfY4mpwit265JE/FjFHkAeqypJRShjMKMy2utGGUT3h6NJxMLOM0ymAMuXMBCenVq37wO2rGBnEWrD7dAnMEQmF9lwO/aJGC9XIL9Qe6v+M64V5p9pzl845NmL4ptnZPh1DX6AvyJaStH/skRUEcoyZFTWgwB9mDnwURp5q2YlB91hE+RjIhhmUNxdIzP7MT5O8YfSF/u+79qyPFvl8m4d2qOGHKZ6FpDqQnXgbz02QDMvFbXkDN7WMfM5IsPqRbwDSTOzerl9nqnbbS8AIBkDoJACAGhaNPJEsaWMvsiEc97j2rMO+Tgn7r05dE+j/g10muwLAWjBBMDA1wGYozmN8+/i4xAbc2uNj/N9EBMfx2ZQRfNxuFsjJ+/PK3Rc/+T3P98WTjmuB3ycj4OYopvnB+kBqeDUqVNa4OPcGlUpu+uAkc7bbyv21gx+E6UXfJwNjNqJ0QftaIWPk+fDGd3Kx9gtsUnsrqYrRgzVCz5OAKNybPRBORxd8nH6X05+cvSUk2dseqfEg7t2GOoVH8eAUXl3Bura2dUjPo59TauntbblC2Y8etJ07uEePXXMx9k3kElzSTrXXIXycWw2ia473VjtujRz/qrkEXvT9IKPg/gQtHwcYAhRPzWW8/+Aj/N07c2QKP4X7wNtA/ssXBcXo2M+jsEQJj7OtsHa4ePEXkqbuuRUumtS1JIh0gMdt7DOxyHuzVngmHwfzMQxuTq4ovg48094riyaMNwla0Nw65+/Hc1gnY9DtBEsYLWNEav4wf9TfJzpdGZsfJ6kncQ70+lAro/02eNh+Da+Rv0nwNxJV7kwPIScYapB+KKFsyQiHGaPqaI50bbKLFOuENbMC4afQDnyjHtsibG5c42fE20enDvyBf37kSM56kLS+KvuD0yYj3oqFsWoJOY9lXFUqp5GbJzUms8JcQOj0twJ/iPkf45tzXcLdss39hdLgcLEIndg16OwxyFqVaoyjk6VGuekWavGdsXnpC0e/zXyt0YDvVcmre47fdqpfmo5aae7LDp8v5orb3tXs7fdem15o5aTVitojonh2fO8OT3tk190ahGrlpPm0vPX739+3e61qu6B+Xen94tQy0l7UP/c6NB9bXmZv7ew/rxiyR61nLSWsl7vKs+YxktfmC0JzHv0Ui0/v8XOpwZX/jrrOm927veCqz3XqzWbMUu94jP92iiP2Yc8f2bmfukIRIao6FDNicXZfc7w9/V7ZC2IjO4MRNVR0atppvaLG3V1SJj993Tep60bgKgGKvo24/N3t65LnBYftH168G+3QCAyQkV1TzYunp61WZBocM2134CbO4CoJio6m7q42rdOIrf54mpHXqd3/g2IjFHRF487HoOmZXrsrrZ7y9lT+84BkQkqSk5/XnhSfs1tXYLowZ/G2+8DUS1UVF2yYXVc7nefNfv2Ptl75S58jdqo6E0Dl03zj8Z5pI+8U/XRChv4WXVQUetnhttq5WZ6LO4UL16efC8EiOqiopP+JjeKO5912FJH+nxowYpQIKqHikYlbZzL6WPreDjv7bx7ftY3gMgUFcldz9/b7j3TcbdnrWV+X+rVBiIzVHTm/LE0xdmW7slFee1erUkfA0TmqKhKaK+84uRdrhkWjXMm5vYKAqL6qGi49ZyVI5et9Fm7/FZY/ZMfTwORBSr6tHx9/8/vP/ms3uZm6zes4XMgskRFrg8GHfO8luE+6363U5967OsFRA1Q0eZi++m752xwnb7q54r2bQLhXVaoaEG2kWHHbZe8ZzwZ233k8NMmQNQQFb2THHz7qtdZftzcTh03/pjjCkSNUNEjK5PGt64VO85q13Rvv1d1jwJRY+x7dZjR89OJON4++3iztoODlwFRE1TUrf3dQVaRFt4LJ/d6devureVAxEVFjk9CY+Urz/vMnLa17aHbTS6Qki2bcmiSLdOKO943m/eAtzCwScfnSz/YUJgNTZMtZ9CZKLOggztTT57hp20rmnSuYUw6/jCRHxUulYkoGAR0jUlboXeoOJ9IqfWIUKFUCowQWsW+jJQBooGifDXyOScqKKNfEgv2glEj6bqQ+sI+biM1awJRwqhUvgg1Hz95aY2NOT28d1y6FJq67mUWi4RKlp1cWKQ2fCRdTM8CbJbdRmrEBujiBxwmOXJ2JxLDMr2yCAlCoQDvJ5HCpsuqccIFHhRXCLdcgZQobuX12LjKSu6d07laTsrNmNv4EKjqc8gh0BIR2ztZCBeXEa7PI/QiXk2m62nYNtQWnWiiEnUpQoQKsH8ZJ+YCB0TVhok+Vpo/U3Dmd+t1vJ1PHdPfOTovJ5yWo4+lOC3HJGxrr7YtOtidKQPYdshgJ0VMNQSuKUbswQ6txUQgKcGqvLC2ze0qVb1W+HCyr18QVik/jYgFsLiMYIGhjq4/8Rya9ee/7IN/lH1A9NC1ln1wYhRT9oHzqIrIPrjwpNjidvVmXqu/9u7WqOY5ExYXS6IFYiH74PAoJrL2klFayT4obHgx+nlnqevKttJBx16HHtN59oGUERUwbvQ0UqK97INlGxf+9fHTUJclj1KPyr5F4s9VdJl90JBRdR9H6qk7w3L2wdBU8wipaxXBnOZDayRue9Zdx9kHiJWhpY8DK6O17IOWjQV1kiIEDkcm3v5Vc6ChVA+yD6SM4DiP0mL2gXmkfYcpd+64Luy8/7zRQoMjepJ90JARITCnUb9tJofGbzuzUij40aO+a9ymxtVeNp+ci/dGkZ51/s6Csh8cOOJbRqKeMNghBoFfgd8Vrd5XERhbdLxC3wt13aaUyXEinl9SvzfZi8YkGmwDUyajrV1IrpID0IDF5AroLVnkOE16bfxW75lVTq8cmfPeghBkh3dTBNmRy6V5SkT7x0LflmQIUDjVIOS243NCJmsUO7NAAMLGhbVIIgfDF8ipF9vMU/ys6VOmOM383fPy+tu3puCnpTN2M3lalohKA+zIJf8736o4ea7q0XjPqPZtTVkAzIERMDCidOJEKdcM+DedOHQ/5JROQwZdGiG6ZLCqEWaKUQlP7Rx3rrUq/H756du6SDIOUAY/KlwuVoXuEKeW5+hvPbhN+Rxggmr93bZwRvTO8dx73aVt2CwvBxZUWzyJSbWnJ+mPf5ysWQO40vuXfqjmvyTNyNk13sG+2YqaB3x01r+UY4faJNi/NJy0v7VDphi6MM7i0CyMjlfr353Yba/D9mEjLRIHHsGXBjaFJTcV8OgTsnHFMD4s1qDrmb2TLBRAriz8iTxGVPIYZHNY0uxMBAZJmVZEYtiu9BcmqYPyrzQ4VOCKAejPHSmaoI0Gg/+5qLy5ejyBGijwuAGW8oXehiyMa4018ALoKZP44P+UNi0CnkbLIsU0GThnj2+M4Z5J8lh5WbymneeoJ3gbg/RCpWgRh14vzcZU+/7TQPx1qPMC3rveRQ/55eVfwI2cBYTZwJGi7VdKGwTm8h4Jt1RTv+p0K1AWFiEOnIAMD9hCgvp007Pei+NmThs81tQW8e0ShtfDswpKnkve/uKEFZHRhMA2nAq2QlsENtQkzKYzCedMmn/o0FXmNev9W0+7K9P4xIbB4VJhoJjrPUEqpbAFdA6zLXZfGLwPjllJ2EShVCJSDvJIiSKEKwPbFHnZLQExSs/wnlSNjdXEGnjJDiK64Fs6RDewvHPfHC5qSPtDBWzXB40kRIyaVOWzyuHP9UN4yyr9OvqtseQp3n1GHkR2n5WXS5vORFYCCy5Dd4hcPJXLAAsq1xbRus9lRM5KhZwcN9Tg0KLuczjjUdGTazNcF93x/8T7lfMVT9VGBwh1SAcvZb0xuTUykhjQOhqoVQcLe1HDgOhwsToOzdU4O3aewKUVS+3g30TYubqNgk5usFhOYAnDn/IabnNkgYSKBY8Am+popaoptUxcmMozScqp19F26Cwo5lGRCu2RWaDRQZiFso0p9BWQtQob+iJKKNqkG4RulM10X5GV7T8tas1OQmACfiuKwARyuSKgQIY4LRRgiKMLVQKHZqHSm7r1RGvJTgufCihb7xzIVLa+hQryOXoPOZEbxw7kb6VLVlc3HOK0r+jr6Nb2wz6yAPnHECbIr4ZgkM+lg1xjVmYtDHItsDIpSJQYK5OCRImxMilIlBgrk4JEibEyKUiUGCuTgkSp6ppEJlFirEy7B/36zBtf6LJr2KxYy/5ePBLlDQ5eytFHpF+yQHlLpNN/M88Ttnd313DZbCAac/1Fbbz+6ykP+52ksgjoLiIBHLJTXpVmtjVzkcCWPSGwx43yAciWEu4zURpC2cL7RMppqa9IAofqjzRIj2ohBJOskOrsGraD3DBao7NrK2W0DckGkUHVADzAL/S8oGn7Gp0ddcLEO85tZ5O9h7cuKU+srWKPsQtgfFSILrvFpAR7sK1+MJrSD6fDykxFiVDHipoDsm53VjvPzS5zT096596z+jQWaRHTB3h/Or0pymWLbI5bgmP0MRZQAmOGAaWQ0Zo1abfxxeYVMtkQzLApB7d6GPeMPlQyMPns6gutF7huvzfe3erFw7c6jOfC9ovIIKIMyB2F7RdHa+bGtlVFDyFEgWo1K+AKhLNNlOCs6ia48b7XUe+Ua7Hz+Gu6z9aDqCUE6fxoJpA2jNYsrtvSWaL85qqjqpIhgwQW6Q3U0RWSh9ntQ92z/zpsmnTx4lR8FBF7LjmKqJJUBDoxjOgEjMYcoyQOzcL4aqC3wMD+i9PS9edd1vq4DyUfxJNXQgMacJvi47kqqlukTKOyccQEi7LGBsra+RgYptFjAGznqQ6gOAA2wzEVEKZN7Oqx6fw4kWDtJd+rPZy5q/GHnUg8lmZZxwlLs+JEE1fejrnATg+GYPlSjbF04Jq3H6PRWmeCgCUGM40eqsGpTXvP8xnoHPdg9P7k5t3wrNfqfHAvNVBqIi27BBAmQ0aYHgg1W+xKD6ERY806C6FBS4OMERhCI3USDrdDoEHt0Dw6O+TU+rx9jxn3Bekua98pelg2Ip5DhwrDucpzGorzcjrXvLXyPizag+SlCLlh4kh4SSyXBKILZJnMEjG5i+ENqU7K1cRljZLBYTMR4HqRyiePBaiPnqiRoTJBwlDKw13wOtSFhj5POR+84i/H9SbnpEs39KmLd5GQB5BdJOXl0uYcMc+tvNEtAE8hhKcm1ZzLAFuWXRM1YpMYK9+HqdCX3cOPsza3eei8eeU+g3Hb6l7CR/+U95Ojf+j10vDZO+qde3H3y26xguiRsxeL/2YBnwRGfMDw0QXDwBAhbkxUAtGbQ/zRrBK4cYBQHixWMCnNtbokwmvSdV7e/XD7LhcWFuCVpryfrDT0OuvkWqCV7oxaqa1XWinOw7Si0fJVCzF44WIRanypt2NN8yq3GFedt2b09TuLllfFx3+reiH3kxWDXmdbMQ52qDmBx4yk/WqsPZ+TNlGzDZmVCgNkYyGVlIbH0/zRsoN/1hEkmLyq3qpbd3xqWzUn5QPIrFpMUBGIjGZEpMVEbF2fz6FZ13ct8vw4rFdP91kffygMj9/6gNex8hPLTobprdph4BdwbmSIJDAEuJUwt1AYEQErGqhYMejyX7bNBzFPm+p9yWNSeV0TnugElCdKYr84gF3d6AnljYA3RF0NuNhLlEVqYAqT8k0ov7jVnJstDmxcK0j4Ff45q+Z6PNe9Gp1joxJoefFHqKQQw/ZUHA1uWwRDjSxWb290RCnLcuIStSAfKEJ5PgBLAcL/l/iU3MneUygRJa7nOq0KCve1CGAWVIDBWkwAMHQyL6CbzHoTuCKOJpZ6XBPDHCxEru4omCJXhxUY5sl0mHsfcLl4hnPCKXaoZS/JS486+KpRSD/5cKkkEEkLIxtSOqStvIA/AJYnBbhTyg3FPaVMdpJYmYLptcjFrPDysh7cwNJL0QDOJKqDGyRGEZ1vrDqNxDwnbD2p4Q5tKU6X8JOqIZfdRdgYGCI6Pb9SXnXnnDf1vYzb1SvA5JVo5EY+iHkhjRFD5XX6ByvfB3ld+CdMG7dGLhI5sDmQnYCQmfD6otTPJmGNzTVWP3XZv7mg+nQ7aVecfirxyLODR5odlQiz46T7309qzjdwzN0713B3m/yk8p6ZwLguVGd7KvbCYFhDNjpfDaTSTpYa+4sDZcBCa4JSh40OcbOmLXffPnbX0jThzDF4lBzJKDmWitJfJr2aO32+7rzi++pL1aZYRbGA0gZGlGKi89ExqBpLjGwXZb1A6BiVASAi6x2/hikfRV7D0OsVceCNjJjPVAdN1rYIUqg9Xfgvs6fEcj5asqe+UUz29HPkf/YU1c/co+5rii8OcN+1xsrF7NO1lmzYU0KZJhYshVsUk6XgRlW0PY2XrH/du8M016WPLM3M3Dr0YMGeEg8JWEAJDGsGlAoiK9CeEtdQndtTZMTQ2lOAFGpPF9HZU73ZExCnEztkti6VLN/Ncwp3zvrkELLr6jw/FrYEgkimLYGNCvLFdJBrTGYzwSDXApmNogYeZuopauBhZDaKGngYmY2iBh5GZqOogYeR2Shq4GFkNqKHRmKsQatIOcSI1fNYYKwtYU3JRlpU8j+rI0lRVBFTMjHmT9KJAZ1OiGULWdDJUjqdpGY/GDL78Wf3nOz9ObvHPcTn+VXxFYaJpeQCrXSGzZrHDYd3qFWZ5obJFGJlcSGFOErBVRZnpfzaxLqLFK9SFmtn5B8ol0mlfnDFghfVG7ISLOGbM/XOt3jg6bxk4R/f25+1oWVSGw6IEMsDwOtjH9vSWTZhjBRytWAlWFj4RyRRoN8deBgwylEUu4mgEqxUL9GA+rbicwzGAwPaw4kTO9uphpdQHiwJE4iDcAugkfKyH+zZoX69uvJ6gCxc/SreChv4teLvqDw+vxYCoq8c5g0qJMq3qoa9FdWEkgsj3cNEsOwWBm+l6vAiDL2oXUJ8dSlaVli5IYCdQCRCqROsBaW2ECnkYmGo6neDQXJhuOoedKguoxuqerMsE6uAsnRURxz/LKzLGeOZ1uWE8di6vFzvMSeWV9Xf49E0CRPmMRIM8xQ6zDVeJo052lsmKermYsskRd1cbJmkqJuLLZMUdXMxX8hwUd7L1KV7Hee++3Sx0+ObDdR8obZjE7N+z3/jkf3Yr39YwdsWpMUVWn3q0DmhGC8Li+sKOk3qacsxYtFhrbUcS57C1HLsaExFtxxLaXXNcOjmmW57uvqPm/+4ySo9aDmWMIWpgcvoKXrQN+nmzZtaaDnmE+l3o6n0vU/876vmTJLNMtKLlmPdGbVTWx+0o5WWY0srZw++PPWiZ+73LpdC/G+N04uWY89jmJQDrInulcPRZcux0ErFaf6iHK+8F4smhSw+OEOvWo6lMCovXDfK08+WY1fuFrl9/+bmkyW99del9ZPX6LjlmBuj5rg61xy8qcJajvEC040C2ilcE371bGdqOdBJL1qOIT4EbcsxYAhRPzWVQ+On/ptajhHbYui45di2qUwtxwKmaqflGLeO3/i/ow7yd37luPgJRq1gveUYsbgZC220NkxlaqMVM7WiWo7l/bzfwvVlS5cVxZuHF7gNWMl6yzGijWABqwBGrGym/k+1HFtJZ8b+K8L/j4rwE7sJaa0If9VYpiL8SdMqogj/eOtfB7+bBXjNbXfj5IugLXgSWfmyzVm2kfDApHIsU83yO9O0UoS/6EeboCwbU6+9xjOme9Xa1FrnRfj3TWNCBYwbvdk7aJb4w14R/mGP1lhy+oZ4ZA3ds6dZFZt2elOEX8Sout66UZ3Wi/CHpUQ0qDavpsPCYbcPru58KEXHRfgRK0NbRR1YGa0V4bfPX9P6wR+DHRctmbZx0cSsqnpQhB8xNrTgJE3TYhH+NzVMhy+UFDrkRvbJ3TzlynY9KGcBERIxIgTmNOq3pXFo/DY+r227X32u8jLuNd7yx+q3nfB1BJAkvnCZFKzoZJ/NkAbnLiUhEknJ/WgtDIC4XDYhOISrahqrSS0HYodF2rclVz1QE5aV2wccoUI4PYsAvhlEN6kA4BsfW97EKtOS1wJXUSwov/rvnT5XbXfqkdOisRe9OlTbiu+y+I96dxFcKKJhLKcLBcveXo2l62KXAmNOsRq5UDWV01ckDpaLqf1LM9tbD57y0x1nG236PedZ4jpChhRyI0WGlPJ6RZT93cb4/VNide0sqUamBo4SfGWJTCQJZKhtszzziSAn9rNXmtizqMn7gU3xYxV7AHmsqiQVoYx4RmWE60YZRPeHo0nEws4zTKYAy5cwEJ6dWrfvA7asYGcRasPt0CcwRCYX2XA79okYL1cgv1B7q9W3Z930mDjXIX5Uu9kGk9z749c1+AH+imgpRf/LElFFKGs4o7Lc9GLmwEdp5K2alRx0h02Qj4lgmEETfjZpN3LWWu9Dlaq//P1Gjwfl2SqXd+vQHjXkMNWzgFQXqgN/wMFYzbxU1JIzeFtHJAaTNrba5H7E7GaTpmmxA3W77QUApGMAFFIAAE2LRp4otpTRF5loFrZiWrB5FYfE9nVPiARtH+s02RcCMJYJgEzvWMzRXMX5d/FxiI25tcbHuT6diY8TNr2i+Tg3X+WP2X7Lzy39daP95rsm1dUDPs4f05mim7nT9YBUkJeXpwU+zrhmR1KXTg4U5LzkcNq9Ss/XCz5OJqN2lumDdrTCx4lrmFDvps9p570ukjV7BQcN9YKPE8eonDB9UA5Hl3wczuO/Q258Hum1+tWdSpJawxfoFR9nKKPyXHSjPP3k4wxs3z1u5iGFa1aecdSPXnYvdczH6cioucY611yF8nHMQjv3Hp+f47Bm8MS+l8S9hXrBx0F8CFo+DjCEqJ+6mvP/gI/Trf3dQVaRFt4LJ/d6devureU65uMMjWPi49jFaYePc8l8xz3njbvdE/JykuYMkp9nnY9D3JuzwDEZGMfEMXGMqyg+ztDD1+vbbJrrvrrhzRvdHnw6wzofh2gjWMDKjhGrBnH/U3ycNXRmbHyepJ3EO9PpQK6P9NnjYfja9Eb9J8DcSVe5MDyEnGGqQfiihbMkIhxmj6miOdG2yixTrhDWzAuGn0A58hyfhMbKV573mTlta9tDt5tcoH0/ciRHXUgaf9X9gQnzUU/FohiVxLynMo5K1dOIjZNa8zkOsDCXuRP8hx+VQ8e25pv2VuQb+4ulQGFikTuw61HY4xC1KlWZTqdKjXPSrFVju+Jz0oYH1un9LOgkf+GDD+fWd1wvVMtJ43674nvvY13XNZYdMt2/zT+glpNmbDQ98vpPBW/N8LFdTeIbKNRy0nYcN7vzM63QbfG6XY2nHhvsp5aTZjnqUPfxvdNcZ/eMOSSRNstTy0njDQ5/fnct32Nekd3+qd1OBqvn59uEb46dEOO8pHG3KmMXTeSrNZsZZPLq9baOLz1WDBqcfXPR5OtAZIiKDHd+P7+vksQzxzK20ebcwd+AqDoqqjpkwN9Oa3P5+56eShgbsDMMiGqgojZ3vVc/mRPpszH95/dhb9qdAiIjVNSozdcP79+NcYlf5TDK2OTtayCqiYruFb3fGPF3IH+5v9HI3fc6wuICxqhI8OTZ8C0b4r23ndu4rPL5kNtAZIKKZvuYtL/tms/LWWoQtvJjlStAVAsVTap6cllc56MuaQsvcPcP29sWiGqjom4v8qPH+gd6b9rz/GubHvYeQFQHFVWqxd92t8F21+mu9QuvFm3JB6K6qKil25Ci2i5zfVLDWnt459S5CUT1UNHtrtF5nQZGOs0a7Zdo03zVWSAyRUVPDqbOPLnA2H3666bH362ush+IzFDR7kv7ZzVI6MxfsexVXO+qz+FXNkdF/c9kPo9XNPXYH7Xh1ckYgS0Q1UdFj7pO7OVww4u/x2q2afU2+6cBkQUqenUpwG3Mb/0dc9a0/ulwXgYHmyUqqhnz/kVK/2lec4+2HXs+a9ZGIGqAinYtqzs+4tJmz/hRBms/xJlDkRUqahJyp2df447eazssm3ns2kn4WQ1RkWv8wVZ7b7l5zbcy21u9yjoDIGqEiix2Br/Zemy9Z+auz2camPVKAaLGqMjp0ZyojfHbnDZa2PY5UKffbiBqgoo2KczrfFo+3yNZsaJZvcoZ8DW4qGjLnpd3fvIHC9bNS7Tuu67nCVKyZVMOTbKlyNTCuP2l+16LRo/YcmGgfQiF2dA02XItnYkyCzq4M/XkGX7atqJJ5xrG4IPT1fhR4VKZiIJBQNeYtBV6h4rziZRajwgVSqXACKFV7MtIGSAaKMpXI59zooIy+iWxYC/YM56uC6mvDZ9jEq9ZE4gSRqXyRSi/20hHgV99UWXehvuO9Vr3afmKRUIly04uLFLbNZ4upmcBNsvN4jViA3TxAw6THDm7E4lhmV5ZhAShUID3k0hh02XVOOECD4orhFuuQEoUAx99cth10tA7JX/Ec4c7333xIVDV55BDoCUitneyEC4TRri+ztCLeDWZrqdh21BbdKKJStSlCBEqwP5lnJgLHBBVGyb6WKl/m/XHvpvle+4ouDZ4cdGxvoTTcvSxFKflmIRt7dW2RQe7M2UA2w4Z7KSIqYbANcWIPdihtZgIJHXNodoxi6pu+puXdTGVM3jg0+Ty04hYAMuEESww1NH1Zx3nv+wDNrMPiB661rIPHsQzZR+ka7ZWljH7oPieYuzKX+/dDlll1K0WMSyExcWSaIFYyD64E89E1j6t2WL5T7MP3IveL+y/6obzvnmTWx6fJFquWxoGzD5gRAWMGz2NlGgv+2BW/OPM/hZ7vGIHfOy3J/T9Mb3JPkhiVF2UblSn9eyD1j5fPkxJs3TJ6bTSquDtmhE6zj5ArAwtffw0hZdSUdkH63+ENvu4eYfTvEYmaQ3vxeDPA3WUfcAITnq8FrMPOjb4Mu9Mtw2uh6ZbmFb1HvdTT7IPkhgRAnMa9dvWc2j8tjMrhYIfPeq7xm1qXO1l88m5eG8U6Vnn7ywo+8GBI75lJOoJgx1iEPgV+F3R6n0VgbFFxyv0vVDXbUqZHCfi+SX1e5O9aEyiwTbw8SK0tQvJVXKAFcoXVUBvyReB1r92dFnmNsPjzy4Lanw9Swiyw7spguzI5dI8JaL9Y6FvywMIUDjVIOS243POL9IodmaBAISNC2uRRA6GL5BTL7YPHG9e3/fxhiBDIJxRNT7kDX5aOmM3k6dliag0wA4cv57S6Uqi18xKB9u/OdpAygJg2YyAgRGlEydKuWbAv+nEofshp3QaMujSCNElg1U9verUVEH8cZ+9M64unlNTllcXScYByuBHhcvFqtAd4tTyHP2tB7cpnwNMUO2g+Lv1GgY946c5H+s34+nzz2z0MGJUbYyOVEvlHydr1gCu9P6lL6e1Smnd+Zb7nBEKv53zQmN11r+UY4faJNi/NJy0v7VDphi6MG7g0CyMjlfr353Yba/D9mEjLRIHHsGXBjaFJTcV8OgTsnHFMD4s1qDrmb2TLBRAriz8iTxGVPIYZHNY0uxMBAZJmVZEYtiu9BcmqYPyrzQ4VJg/G4D+3JGiCdpoMPjls8ubq8cTqIECjxtgKV/obcjCuNZYAy+AnjKJD/5PadMi4Gm0LFJMk4FjFWF/dHeHw45LauT9GG0wUIK3MUgvVIoWcej10mxMouDmx+8TO/LWPXp3d/nWvsNYOJmYC2E2cKRo+5XSBoG5vEfCLdXUrzrdCpSFRYgDJyDDA7aQoD7dTD/+m/GbgjkuWw4dmlcQP6oLnlVQ8lzy9hcnrIiMJgS24VSwFdoisKEmYSOdSThn0vxDh64yr1nv33raXZnGJzYMDpcKA8Vc7wlSKYUtoHOYbbH7wuB9cMxKwiYKpRKRcpBHShQhXBnYpsjLbgmIUXqG96RqbKwm1sBLbjybLviWDtB9P6u8c98cLmpI+0MFbNcHjSREjJpr7Hh6Q8rPzoKldz+fetC+Lw/vPiMPIrvPysulTWciK4EFl6EBRC6eymWABZWrzqZ1n8uInJUKOTluqMGhRQnfkBlW7Rs83OOTOCZpbcysVpF4qjY6QKhDOngp643JrZGRxIDWvVladbCwFzUMiA4Xq+PQXI2zY+cJXFqx1A7+TYSdq9so6OQGi+UEljD8Ka/hNkcWSKhY8AiwqY5WqppSy8SFqTyTpJx6HW2HzoJiHhWp0B6ZBRodhFko25hCXwFZq7ChL6JetJ5kvY/dft0l2Whj4xMPniQSAhPwW1EEJpDLFQEFMsRpoQBDHF2oNnFoFiq9qVtPtJbstPCpgLL16bOYytYnqyDfrPeQE7lx7EAurjxyX72vxa5xBgX57bMq72EB8qg5TJCHzMEgz6CDXGNWZi0Mci2wMilIlBgrk4JEibEyKUiUGCuTgkSJsTIpSJQYK5OCRImxMilIlBgrc3HauWspghGuOyZ99pL6j69DorzBwUs5+oj0SxYob1vo9N/M84Tt3d01XDYbiMZcf1Ebr/96ysN+J6ksArqLSACH7JRXpZltzVwksGVPCOxxo3wAsqWE+0yUhlC28D6RclrqK5LAofojDdKjkmeCSVZIdXYN20H6ztTo7NpKGW1DskFkUDUAD/ALPS9oUJ3iqX6Ojl5bbx8M80n/q7A8sbaKPcYugPHRmeiyW0xKsAfb6rCZlH44HVZmKkqEOlaUKJ0wkE6/b7fIJ/PH1tpBHYsaskiLmD7A+9PpTVEuW2Rz3BIco4+xgJIvI0odZ2rWpN3GF5tXyGRDMMOmHNzqYdwz+lBJYuiRtks9nARxdyaIY8Li7XQYz4XtF5FBRBmQOwq2wVEzNXNj26qihxCiQLWaFXAFwtkmSnBqxZ/p2Tf2l9Om9Hv1V9b3MNKDqCUEScQIku9MzeK6LZ0lym+uOqoqGTJIYJHeQNkEr+3jW9jPdUOdQat2teUb4KOI2HPJUUSVpCLQ6c2IjvVMzDHK5NAsjK8GegsM7L84LV1/3mWtj/tQ8kE8eSU0oAG3KT6eq6K6Rco0KhtHTLAoa2ygrJ2PgWGygy78eaoDKA6s8kg+gCp/mPau8ET/Si5Sl71RfypGZSXUwx92IvFYmmUdJyz1CJlg4srbMRfY6bYQLF+qMZYOXHPzWRqtdSYIWGIw0+ihivKs7BbzfA0/r/XmNrXbTB6Ft0R8cC81UGoiLbsEEKbKjDC90XCxKz2ERow16yyEBi0NMkZgCI3USTjcDoEGtUNb6eyQU+vz9j1m3Beku6x9p+hh2Yh4Dh0qDOcqz2kozsvpXPPWyvuwaA+SlyLkhokj4SWxXBKILpBlMkvE5C6GN6Q6KVcTlzVKBoZNQjLA9SKVTx4LK6sla2SoTJAwlPJwF7wO5bf8+qJHwmbLCNdlC+063N/9k9CxEXkA2UVSXi5tzhHz3Mob3QLwxEN4alLNuQywZQlP1ohNYqx8H6ZCX+PSxk/PSNzgseRSmGFuYrvx+Oif8n5y9A+9Xho+s3/ZPduY8dN58c3Hy7xvDdzEAj7DGfEBw0cXDANDhLgxUQlEbw7xR7NK4MYBQnmwWMGktNsN34xp+zDNa8lm+wNOr5tn4JWmvJ+sNPQ66+RaoJXOjFrh6pVWivMwrWi0fNVCDF64WIQaX0rFLJz+4EaL4FGCrUuXj8iY32ACXjFeyP1kxaDX2VaMgx1qTuAxI2m/GmvP5wQla7Yhs1JhgGwspJLS8Hge9Liby+s8x5n5joX2E/5wwLNqnZQPILNqMUFFIOLGiEjbZGxd38ahWdd3LfL8OKxXT/dZH38oDI/f+oDXsfITy06G6a3aYeAXcG5kiCQwBLiVMLdQGBEBKxqoWDHo8l+2zQcxT5vqfcljUnldE57oApQnSmK/OIBd3ekF5Y2AN0RdDbjYS5RFamAKk/JNqLtFPWxpOeGnsUvqtMeLN+4yPYIffHSOjUqg5cUfoZJCDNtTcTS4bREMNbJYvb3REaUsy4lL1IJ8oAjl+QAsBQj/X+JTcid7T6EeSoT1XKdVQeG+FgHMggowWIsJAIZO5u10k1lvAlfE0cRSj2timIOFyNWsBUyRq4kqzHfQYe59wOXiGc4Jp9ihlr0kLz3q4KtGIf3kw6WSQCQtjGxI6ZC28gL+AFieFOBOKTcU95Qy2UliZQqm1yIXs8LLy3pwAzbZ5pCqmUR1cANjFC8X5hurTiMxzwlbT2q4Q1uK0yX8pGrIZXcRNgaGiE7Pr5RX3TnnTX0v43b1CjB5JRq5kQ9iXkhjxFB5nf7ByvdBXhf+CdPGrZGLRA5sDmQnIGQmvL4o9ROwyDljWaWVnvEHTpyeHGSFHzaVeOTZwSPNjkqE2bF6/hPLw2fb+uQMu9p4iMHo8nZt4oDZUReqsz0Ve2EwkP5cmK8GUmknS439xYEyYKE1Qamo9dhPuVbbneevXJz1suClMR4lRzJKjqWi9Nl4191isa/L+lNzToZuLh7HAkpgWDOgdH1hPjoGVWOJke2irBcIHaMyAERkvePXMOWjyGsYer0iDryREfOZ6qDJ2hZBCrWnO/9l9pRYzkdL9tRhIZM9Nf3PnmL6idk4aIf7hz2eS++Mmvy9bcxjFuwpsUwTC5aiN6OlsK5wexo6vnla89y+jsuuh4cV9rHdwYI9JR4SsICSKSNKnIq0p8Q1VOf2FBkxtPbUVGVPd9HZU73ZExCnEztkti6VLN/Ncwp3zvrkELLr6jw/FrYEuclMW4IdqjOV3XSQa0xmM8Eg1wKZjaIGHmbqKWrgYWQ2ihp4GJmNogYeRmajqIGHkdkoauBhZDaih0ZirEGrSH2STKiexwJjbQ9rSjbSopL/WR1JiqKKmJKJMX+STgzodEIsW8iCTvbS6WTZ80+rbAckCQ6e9fnd9Vd6M3y5jpI8VLximGJO5iUli8JgTSj0ATXIOa11XHz8vHgB1s0mt+/pN6WZjU+bMvmVxNKNVQWywHFikeomuq9ArjhSIisrPb0VnxOXCGxdVyeac86gRAr/0gCFi8K/RFwWgn+Z8iM2Z+3Cwe5Zm7d4Ozxpd5st/5Gx2nUJFtyJQrlEOEZKzRnqH97l7PJFOQ5Zq52Mujw7k8OM/kD0UVwfsqPkU6qjRKypWc6VKhZob2oi6iiRs+BaIdojOkpM/qRpiaNUMtApUbs2zrLZhwkc5z1TWt25vvuv94yo0TlNVMd95Q2IdEAhOepAAUl4BwQS1Ibso7MhqdkPhsx+/Nk9J3t/zu5xD/G5wlV8hWFiKbnIM535sOZxw+EdapXquWEyhVhZoEwhjlJwlQWeqUcnoXYrxauUxWMy8g+Uy6RSP+j1woslaePF/Qhj1Nve7LLl3kCHXQvXOfaYvG8v3Rg1HBAhlgeA18c+tqWzbAKcGYFSWE0aFg8TSRTodwe7FBgpLYrdRNAjVu6bpEcweJPnAT32cOLEznaq4SWUB0vCBOIg3KAwUl72g31/1K9XV14PkIWrXyWUkfZoxb+xYF5+LQREXznMPVZIlG9VDXsrqkVZLox0DxPB0n2q0V4dXoThW7VLyH5fipYmVxp/2E1IIpQ6wXpyKtVU9VfIxcJQ1e8Gg+TC8BIDohyq++mGqt649sRKwiwd9xPHPwu+/Z/zmHz7O/Mw85Cl95gTlxP9DbGcZ0wOOqxKDjpAh7nGrrYxR3uuNkXtbczVpqi9jbnaFLW3MVebovY2tp8yjx3XsUt/a7es1HUN6zduUFVtPzXpy8vMovUzBIcedL58ZrP7FpKDDq0+5UAiFvRmwUHPptOknrYtJBYu11rbwgeLmdoWRi2u6LaFopYWnWeceuuzrWO1gDtdfhPrQdvCO4uZmkCdXqwHvdcuX76shbaFrYeuzBLF1/NKMx38vqFF6my9aFu4j1E76fqgHa20Laz58Umf3+4f58/8I/H+wRUG+EbPumpbmMSonCh9UA5Hl20L48427fxjBMc796TdujppG/H1EXXdtlDEqDxf3ShPP9sWyq5cWFtcUMspt774k28Li9Y6blvYm1Fz1jrXHLypwtoWPr6ReO7Dgode+z2Spk+dOPaqXrQtRHwI2raFwBCifupBDo2f+m9qW0hsraPjtoVhS5jaFjou0U7bwnZmAqd2Ht/4GYmBFl3Sufh+3Gy0LSQWSGShFd/YJUyt+AYuqai2hQf2r3sQeHOR8+FT3YsNG8sMyj+FCVgRbQQLWDkyYmW35H+qbWEOnRn7r5HHP2rkQexIprVGHo2XMjXyuEe2nSw08nj18OiZ91+7e2YF9Us6+251EYsVK1i2kfDApMFSpr4HVZdqpZEH3+ONz9c/Fzgceb3tZm7dFvj68bpo5PF+CRMq97RrDRn3DpolD7LXyCPtc9LZeecqeSdNj/lyqMGwSXrTyOMso+qydKM6rTfymHyqbgfjb5cEcY1GhhvNjjHRcSMPxMrQdmIAVkZrjTymJ9e6svPAdPdNBs/b1rjAu6MHjTwQY0MLDjA22mvkwRnb/82XOVuc1/TNckueXD9LD0riQITOMiIE5jTqtx3i0PhtfF7bdr/6XOVl3Gu85Y/Vbzvha5EgicDhMilY0ck+myENzl1KQiSSkvvRejoAcblsQnAIV9V4WpN6MMQurbRvS66coiYsKz8YOELFcHoWAXwziG5SAcA3bWl5kzNNS14LMoiUWFB+9V5HgmxXxd13yl0XWdhR9ju+2Og/6v9HcKGIhrGcLhQsnf3nUrpOmClg7BZq5kLVVE5fkThYLqb2L32fdUgo+vM3ftq34qG97d6cJGRZIjdSZFkqr1dE6fATjN9/11JdO0uqkamBowRfWSITSQIZ6mMdtr2wNbd9gs8Mt/Xvo6NHWOLHKvYA8lhVSSpCGWmMykjQjTKI7g9Hk4iFnWeYTAGWL2EgPDu1bt8HbFnBziLUhtuhT2CITC6y4XbsEzFerkB+ofZW7yb1DX48Zj9/+5DECR7bax7Cr2vwA/wV0VKKHroloopQloJRWaP1YubAR2nkrZqVHHSHTZCPiWCYQS+y3j0bEbPIY3q/9TtfJu45Up6tcnm3Du1RQw7TxQtIteU68Adc1tBLRS05g7dVzPV0PWa9zWfu2Sn8zQ/9Z+p22wsAyMYAKKQAAJoWjTxRbCmjL1Szbef3dZea7uanNgx5U9DqTT3CUqbdggEQgDgmADKDlmKO5mHOv4uP4/RoTtTG+G1OGy1s+xyo02+31vg4b5Yx8XFmLatoPs7mn14v3UyqeC7ysOv4rvaHQD3g47xcxhTdvL5MD0gF2dnZWuDjFA38Ih+6otB7VdSAZ2lfvGrpBR/nGKN2duiDdrTCx+lU7JTk++aw58alxwpD/9obrRd8nFRG5czSB+VwdMnH2eB/cesO7xj3hY3WpTiErnuoV3wcOaPyRupGefrJx3mdfUhWZWQbh7iiY6+3df2VrmM+jgej5rrqXHMVysfhJsninowTOK6q0zRvpIdlil7wcRAfgpaPAwwh6qce4fw/4ONsUpjX+bR8vkeyYkWzepUzNuqYjyNfzsTHcVmuHT5O/3s1fl/S7y4/Y3x+v4F9BINY5+MQ9+YscEzCljNxTIYuryg+zide42nmg856zVv6dkng97RM1vk4RBvBAlYujFh1XP4/xcfJpTNj4/Mk7STemU4Hcn2kzx4Pe4uPlPSfAHMnXeXC8BByhqkG4YsWzpKIcJg9pormRNsqs0y5Qlh3Mxh+AuXI27Ln5Z2f/MGCdfMSrfuu63mC9v3IkRx1IWn8VfcHJsxHPRWLYlT+w/xo1dOI2e2t+RwLWNzP3An+I+R/jm3Nv1F/Qb6xv1gKFCYWuQO7HoU9DlGrUpV5dKrUOCfNWjW2Kz4nbTO/s5Wp3VWnpeFTAg9Uck5Ty0m7npK1O+YPOX/ffseoIlFCkVpO2rXa86RzLV87H34nlvdNO9FHLSfNq8Mj//S2S/grDsRvH1qU3UgtJy0hevW0ITO4Xkmn7UZ1+tj7m1pOWqMXJ5dJ8q34eYeq357+cluBWo2PrkuXcgTN97pvOTJ4XsF7V0e1hlXzcodO4p519d4+eXnwpEO3PgKRIfbAoPXdm29Z57qrYdP3cTV+uw9E1TGRbGVOw8YzHBamXqvLO9JECkQ1sJe3HFkQ+iTMa3P7gC2K2bdrA5ERKtrh/6fLp9+jvRM2jvrW9+uwRCCqiYoGjZTN/5wVyVsnFHTfKNsHi2EYo6K1q1rcmbZ+oPOMZe1aezWoGwJEJqjojldy5IE+RwQzR1+/V7vLgr5AVAsV1d97+mqs7023xGHb7nU8mlEPiGqjIlnN1CPH+3TnbWgT3PzT7obmQFQHFb0L61N71YShLuv3vvGoW/vmViCqi4o4KdZehQFVXTYeP5HoM2jWCCCqh4q2VloyObzaR5/dVq3cdmY9aQFEpqio55o6Jxe0TfKedyfo4tcpXo+AyAx7jYf9uJGvGzvvS6gWeLvPoV1AZI6KfgVZv205NoM3a1aMx+uRUjcgqo+Kjgg5y9ed6+I216/JU+8esZ+ByAIVjZsWM27nwQmes3cljXjw5FpPILJERV2evN4Z65HnNXforI5rjz1/AUQNUFHieIX38Bl1BDOHTti2KC7FB4isUNHvVV9eqhZrKtjT+ZthjezxhUDUEBWZjvZo1qlHpsvhHw/kTSXOS4CoESqamjc1e1my1GPx8ROWZx+chcg3xvQlabih+YYb7od/O/WL98ATDoAmqOiCm+9x6ce/vROajbeUBSQsByIuKno040XU1JfVeatOn89tlnjLhZRs2ZRDk2yZdnGlkW3cdI+tt74Nv/TL+D2F2dA02fIonYkyCzq4M/XkGX7atqJJ5xrG4Ldl1fhR4VKZiIJBQNfcuBV6h4rzibRriAgVSqXACKGdMMpIGSAaKMpXI59zooKyVsgAe8HvKfk0nYx9bficghTNGsmUMCqVL0Lt/7ddPPKHsK7XzBTuKO6BG31ZJFSy7OTCQtefU+hiehZgs/w4RSM2QBc/4DDJkbM7kRiW+pZFSBAKBXg/iRQ2bleNEy7woLhCuOUKpERRmPbiGH/LJ6cU6T1ZlVsNV+BDoKrPIYdAS0Rs72QhXAWMcB1O0Yt4NZmup2HrYVt0oolK1KUIESrA/mWcmAscEFUrN4ZuXAdN/QZ9u+18pPOAdt0e3+ETTsvRx1KclmMStrVX2xYd7M6UAWw7ZLCTIqYaAtcUI/Zgh9ZiIpDUPYsHNuZs67raO+l+rfs9m77klZ9GxAJYBYxggaGOrj+/c/7LPmAz+4DooWst+2DTCqbsg6AVFZF98OGv0VEfrl7zXnjtiuuh5nWfs7hYEi0QC9kH61YwkbXnr9BK9oHcqaZ74lNv/oLb1YIW+85prvPsg0mMqIBxo6eREu1lH/xcO2HR2H4mTlkmd/c/XLmghd5kH/gxqq6vblSn9eyDKwMaDjGMmOh2ONm+7dZz8+N1nH2AWBla+jiwMlrLPpi/3Mlg1ZDZjrncYdIuy1bjCyboJvtgEiM4QSu0mH3Qu/FE78Rre1zmGgyp9mZg1HA9yT7wY0QIzGnUbzvGofHbzqwUCn70qO8at6lxtZfNJ+O1boj0vfR3FpT94MAR33YW9YTBDjEI/Ar8rmj13qzA2KLjFfpeqOs2pUyOE/H8kvq9yV40JtFgG3hnM9oeiuQqOQANpG2ugP60davZnJOE7XJcf3rN0pwqvnUIQXZ4N0WQHblcmqdEtH8s9H4qhACFUw1Cbjs+58RmjWJnFghA2LiwFknkYPgCOfVi637ySN8XG3bxVnV6nnfWOe0Yflo6YzeTp2WJqDTA9v7eqn5oQC+fhYa7zhp3zStvzXsI2C5GwMCI0okTpVwz4N904tD9kFM6DRl0aYToksGq8p7e9hk+8IRrirvNosYxRR/rIsk4QBnkkstVeY7+1oPblM8BJqh23/efa9485bmk5vaNvTapxQUWVJvAqFqFjlRL5R8na9ZEsvQeyIpmj8YObWbpusbQb1Mzh5w8nfVA5tihNgn2QA4n7W/tkCmGLozHOTQLo+PV+ncndtvrsH3YSIvEgUfwpYFNYclNBTz6hGxcMYwPizXonGjvJAsFkCsLfyKPEZU8BtkcljRMFIFBUqYVkRi2K/2FSeqg/CsNDhUC0gDozx0pCoyPBoO/e1p5c/V4AjVQ4HEDLOULvQ1ZGNcaawII0FMm8cH/KW1aBDyNlkWKaTJw3D1u8NuFRvGWWUYpPnR6i2+zXBXpp0zRZhK9XpqN+Sv6yIXQ77OclvRpP6b19xUfWDiZ8IUwGzhSlL1OaYPAXN4j4ZZq6ledbgXKwiLEgROQ4QHb0FCfbgb17tGtielXn1VrVk4xys/Ft6IzKnkuefuLE1ZERhMC23Aq2AptEdhQk3CCziScM2n+oUNXmdes92897a5Mwx9zG/uJw6XCQDHXe4JUSmEL6BxmW+y+MHgfHLOSsIlCqUSkHOSREkUIVwa2KfKyWwJilJ7hPamao6uJNWmiupIu+JYO0M1eWd65bw4XNaSFqgK2/IRGEiJGnVJiZHH28cfKgoOfbwbNEk/siHefkQeR3Wfl5dKmM5GVwEbrVIhcPJXLgBRUXknrPpcROSsVcnLcUINDixK+ZXVd082Tq3guzzwY0Gdo5gg8VRsdINQhHbyU7VkM0cpmRGvDSq06WNiLGgZEh4vVcWiuxtmx8wQurVhqB/8mws7VbRR0coPFcgJLGP6U13CbIwskVCx4BNhURytVTall4sJUnklSTr2OtkNnQTGPilRoj8wCjQ7CLJStkKGvgKxV2NAXUULxNnfW0jCvN24H3j140bD25SaEwAT8VhSBCeRyRUCRzQgFGOLoQnWSQ7NQ6U3deqK1ZKcNWAWUrQ9ayVS2fqAK8nz9h5zAjWMH8s7vxqRNPljXY9Wafh/P1hKX99QIQt53NRPkdqsxyE/RQa4xK7MWBrkWWJkUJEqMlUlBosRYmRQkSoyVSUGixFiZFCRKFSuTTKLEWJkUJEqMlSn1PV1QvUYDp7UeYbMafBZ8JFHe4OCl3oQS6JcsUN5O0+m/mecJ27u7a7hsNhCNuf6iNl7/9ZSH/U5SWQR0F5EADtkpr0oz25q5SGDLnhDY40b5AGRLCfeZKA2hbOF9IuW01FckgUP1RxqkRw1MBZOskOrsGraUNU/V6OzaShltQ7JBZFA1AA/wCz0v6GtQ1eNrZC2csw+P6X4srHhoeWJtFXuMXQDjo6nosltMSrAH2+rOqZR+OB1WZipKhDpWlCgN+zgp71IlOS/nUVornwOHKrNIi5g+wPvT6U1RLltkc9wSHKOPsYCSOSNKn1eQDx+Y/DQbX2xeIZMNwQybcnCrh3HP6EMlwT9a98tNa82Pu9RlpZFni1o6jOfCFq7IIKIMyB0F2+C+qZq5sW1V0UMIUaBazQq4AuFsE3Wyprd9t29/7PHIbrV1TSXBxAV6ELWEILVlBMk8VbO4bktnifKbq46qSoYMElikN1AT6/UfN+SPxV5bOx5I/M63xTezM8SeS44iqiQVgU5lRnTeqGK6Zzg0C+Orgd4CA/svTkvXn3dZ6+M+lHwQT14JDWjAbYqP56qobpEyjcrGERMsyhobKGv3dGCYPkLYzlMdQHEAbKc1W+rKFqbNTRx25frNpy577QZEWCyxqYk/7ETisTTLOk5YmhUnmrjydt0GdroYguVLNcbSgWt+R7O1zgQBSwxmGj1U98fuG13NNN999clRj3b8lZ+Mt0R8cC81UGoiLbsEEKbTjDDtS9VssSs9hEaMNesshAYtDTJGYAiN1I083A6BBrVDZ+nskFPr8/Y9ZtwXpLusfafoYdmIeA4dKgznKs9pKM7L6Vzz1sr7sGgPkpci5IaJI+ElsVwSiC6QZTJLxOQuhjekOilXE5c1SgaGTexGgOtFKp88FqDusFEjQ2WChKGUh7vgdSi/5aRL9uYuhesd5o2vtCpn+87xeBcJeQDZRVJeLm3OEfPcyhvdAvDEQHhqUs25DLBlCdmoEZvEWPk+TIW++FN8hQWL1wpyAyeKXZol/IaP/invJ0f/0Oul4dPDa3zRj7RPXgf73DmXcuzVOxbwCWDEBwwfXTAMDBHixkQlEL05xB/NKoEbBwjlwWIFk9K+Ri/22Znt4rXQ77NxWspzPJW8qvJ+stLQ66yTa4FWbBi1YqFXWinOw7Si0fJVCzF44WIRanypS5KkRA/uGurhOGNd1cHGnTmH8YrxQu4nKwa9znqPaDvUnMBjRtJ+Ndaezxm5UbMNmZUKA2RjIZWUhseXT12NB/NMPBN+frJtbN+5KZ5V66R8AJlViwkqAhEHRkSabcTW9XMcmnV91yLPj8N69XSf9fGHwvD4LXzkCP3EspNheqt2GPgFnBsZIgkMAW4lzC0URkTAigYqVgy6/Jdt80HM06Z6X/KYVF7XhCe6AeWJktgvDmBXd3RDeSPgDVFXAy72EmWRGpjCpHwT6u3tky9V7N7UdM30532+s2ID/jS2Gp1joxJoefFHqKQQw/ZUHA1uWwRDjSxWb290RCnLcuIStSAfKEJ5PgBLAcL/l/iU3MneUygRJa7nOq0KCve1CGAWVIDBWkwAMHQyn6ebzHoTuCKOJpZ6XBPDHCxErqZuYIpchakwv0CHufcBl4tnOCecYoda9pK89MDTu02QfvLhUkkgkhZGNqR0SFt5AX8ALE8KcKeUG4p7SpnsJLEyBdNrkYtZ4eVlPbgBm2wTSNVMojq4gTGKok35xqrTSMxzwtaTGu7QluJ0CT+pGnLZXYSNgSGi0/Mr5VV3znlT38u4Xb0CTF6JRm7kg5gX0hgxVF6nf7DyfZDXhX/CtHFr5CKRA5sD2QkImQmvL0r9jOtaP7/K5aeC5AG3LZ/uT5uO008lHnl28EizoxJhdrSusfYtp8l4r9V3+wXmXSo+Xt4zEzA7akB1tqdiLwwG0r825auBVNrJUmN/caAMWGhNUApYb2Pa1ecv7wVLrqd3irjsjEfJkYySY6kozXln8+7aqkTPOFvbjGHbJpU3uxSiBIY1A0oXN+WjY1A1lhjZLsp6gdAxKgNARNY7fg1TPoq8hqHXK+LAGxkxn6kOmqxtEaRQe3rxX2ZPieV8tGRPu29isqc1/7OnmH4GuJwYO7Nxd5cDLhNrXxo1RM6CPSWWaWLBUnRmtBTcCrenPY1W2SbfmOKZGjIso9dqgzAW7CnxkIAFlGoyovR5YwXaU+IaqnN7iowYWntaU2VPL9HZU73ZExCnEztkti6VLN/Ncwp3zvrkELLr6jw/FrYEWRuZtgSbVGcqBXSQa0xmM8Eg1wKZjaIGHmbqKWrgYWQ2ihp4GJmNogYeRmajqIGHkdkoauBhZDaih0ZirEGrSDnEiNXzWGCsXWZNyUZaVPI/qyNJUVQRUzIx5k/SiQGdTohlC1nQyR90OknNfjBk9uPP7jnZ+3N2j3uIz/Or4isME0vJBVrpDJs1jxsO71CrMs0NkynEyuJCCnGUgqsszkr5tYl1FylepSzWzsg/UC6TSv3gigUvqjdkJVjC+DbLvB+2OO6dtGjeoiMP3j2js4SGAyLE8gDw+tjHtnSWTRgjhVwtWAkWFv4RSRTodwceBoxyFMVuIqgEK9VLOpRuBXY864AB7eHEiZ3tVMNLKA+WhAnEQbgF0Eh52Q/27FC/Xl15PUAWrn4Vb4WrerbiTzy/Lr8WAqKvHOYNKiTKt6qGvRXVhJILI93DRLDsFgZvperwIgy9qF1CfHUpWlZYuSGAnUAkQqkTrAWlthAp5GJhqOp3g0FyYbjqHnSoXqEbqnqzLBOrgLJ0VEcc/yysy4/XMa3LV9dh6/JVvcecWF5Vf49HFzES++NUxP5rdJhrvEwac7S3TFLUzcWWSYq6udgySVE3F1smKermYr7QMpcvDXrF8Jz2HeINWzx8H0/NF+rn6uBePDTRJedqUf3UNcHrSYsrtPqUA4lYjJeFxfU6nSb1tOUYseiw1lqOFWYwtRwLz6jolmP7WycfKYjxdlvsd1ohG5TE1YOWY1czmBq4HM3Qg75JZ86c0ULLsRd/OtWoteFPj5wz/VMOTOlorRctx7YxaidFH7SjlZZj35/sdbc/YeKyu1ZxP3FKDp7KqKuWY/GMygnXB+VwdNlybN25azF+a/p7rah8ZVnI3wkd9Krl2HBG5bnpRnn62XJs2ovEpKpD7vNn/BzyrPmqfI6OW451ZtQcV+eagzdVWMuxoyddW1hZVXLPSx+/songzx560XIM8SFoW44BQ4j6qTc4NH7qv6nlGLEtho5bjgVtYWo51nOLdlqOGdibP567+TgvznzLgfXbnuL5wGy0HCMWN2OhjdaYLUxttLy3VFTLsZe1BybWeiTz2HzLpGjhlj2zWW85RrQRLGDVkxGrVlv+p1qOFdKZsf+K8P+jIvzEbkJaK8JvnslUhP862XayUIQ/vK97u7OtL3lmHWgn25XnvofFbHOWbSQ8MKmbyVSz/CfZRlZEEf4jnxvm1uC19Mys1bXtioNZ+CKzuijC/3ILEyrXtWsNGfcOmiX+sFeEf8L9Sa9HSG0Eay7PGNah+SB84Q1dFuE/xqi6HbpRndaL8Hda+abeoBpzXBbnCYODEnpa6LgIP2JlaKuoAyujtSL8iZur3TKvVEuw5nryg+rZfcz0oAg/Ymxowbm+RYtF+KfLNjxcUrmRa+zBnRv61Y44pQflLCBCxxgRAnMa9dtucmj8Nj6vbbtffa7yMu413vLH6red8HUEkCS+cJkUrOhkn82QBucuJSESScn9aC0MgLhcNiE4hKtqGqtJLQdih0XatyVXPVATlpXbBxyh53B6FgF8M4huUgHAd0lmeROrTEteC1xFsaD86gXvgjoHe2T47D91pkXk6cv4RnX/qHcXwYUiGsZyulCw7O3jTLoudimw8VemRi5UTeX0FYmD5WJq/zKiQZeeVYPuO+Scu39w3KZq+KOUqs7IjRQZUsrrFVH29zDj98/I1LWzpBqZGjhK8JUlMpEkkKG2jeGxkZE2YZ+915te/vPs5BZ38WMVewB5rKokFaGMJYzKiNWNMojuD0eTiIWdZ5hMAZYvYSA8O7Vu3wdsWcHOItSG26FPYIhMLrLhduwTMV6uQH6h9lYrv8qpXXXiZredit9uyZ8cccKva/AD/BXRUor+lyWiilCWlFFZg/Vi5sBHaeStmpUcdIdNkI+JYJhBiUYZP7M/VPY80KW2zSrH483Ks1Uu79ahPWrIYapnAakuVAf+gDOZmnmpqCVn8LYu2L16Vjfb0ycpcGj4MdMm1XW77QUA7MIAKKQAAJoWjTxRbCmjLzJxIe9Qp6a3znhkz6j6rdmn3BWEpUy7yb4QgElMAGSOzMQczVucfxcfh9iYW2t8nKdbmfg4U7dWNB/nnsGFiw0W9HDZnPF2U/t9E4P0gI9TtJUpunlxqx6QCnbt2qUFPk6tv1rcfFurp9fmLwkugUFjn+oFHyeHUTub9EE7WuHjREx+a7/hxFqftE1dhvX+27CtXvBxFjEqZ6o+KIejSz5Ozu3V2aPt3jjMrmdUu/j5rji94uOMZVTeQN0oTz/5OH8a+HyLNarrPDPN/Pu5jdU/6piP48ioOTuda65C+TivPYaFnIw665FoerAo5WOfTnrBx0F8CFo+DjCEqJ96m/P/gI9zwc33uPTj394JzcZbygISluuYjzN2GxMfp+827fBxWq3I97eZNoq/7Hq7xyf2/JbFOh+HuDdngWMStI2JY+K3raL4OP2NWr0e8qanR65lQo8D1XkfWefjEG0EC1j1ZcSq7bb/KT7OHTozNj5P0k7inel0INdH+uzxsLf4SEn/CTB30lUuDA8hZ5hqEL5o4SyJCIfZY6poTrStMsuUK4Q184LhJ1COvEczXkRNfVmdt+r0+dxmibdcaN+PHMlRF5LGX3V/YMJ81FOxKEYlMe+pjKNS9TRi46TWfE5NWJjL3An+w4/KoWNb82fW2JBv7C+WAoWJRe7Arkdhj0PUqlTlXTpVapyTZq0a2xWfk5Z1xbrpj2tTXdbaLTv/6e3ScWo5aWv6nrCpn/yb4yFhs22PGnpaqOWkTZ0Yx+1Wtaf7HMeOO3IEAVK1nLSXz4wOtl3yzXXvK5HH5I+titVy0oavaVWba7nFc+6P34q8L/wpUctJc/15aoVkUrFPUmHdTC/TR2PV8vNvdlsmX/iymiBxqN+2NKcJqWrNZjIfzVnrvWsPb+egqPatInyOAJEhKuoTmjFj6vuXruti/jjZsrZBChBVR0VLJ6afDGhq4pgnT7P5PtxnExDVQEUu9TdvsU//5pIyK/HytntLfYDICBU1Ulh0fndDzku4+5vZPs+uMJG9JirqXv9KpXp/yAV76vUNN3uabApExqio/zyX4pHhJ/jZg5Z/3fyrfwIQmWDfq/EfK9zc73lvOVu5helL805AVAsVRd2z3sifWp+X/XDJt6cL958Aotqo6I+VU34ZH0hwSTAWBtQb0n4WENVBRbULe08WJ1f2ydsfNEFR88QjIKqLit6+fWryfIOh08IuxebvVjf5AUT1UJG3R0j6tK0R3muvhT5fcOXwRSAyRUUOrfg+Tzss5+0cMaKrQVDATSAyQ0Wv6jxZ0KnuAveMv694Xf2r/i8gMkdFdQumv0x68bvPokF34yWHPX8DovqoaMnmnicP9mgrWGu2vfJI40prgMgCFdnFJ60fc/yX29y32Y7df/yxEYgsUdGQfq87Kpp1clmadOfHvCNmUMsNUNEMP5OOdfeYumUOW259pYbiCxBZoSK3xfLTp5+ucZ312nD2nYZnzwBRQ1QU0KKWieyDB+/AjYOHzTkWEMNGqGi5SX7f7rM6u2Z/WnBIGtwgGIgaoyL39J5/Ls/t7LOwONdv4sgdC4GoCSoqqlprqmmIOy9VUXlY68Ohk4CIi4ou/DFqaf8qj7228g657l2+RURKtmzKoUm2bCG+/myr3QXv2BFHrgzJez2XhWTLe3Qmyizo4M7Uk2f4aduKJp1rGJOOP0zkR4VLZSIKBgFdY9JW6B0qzidSaj0iVCiVAiOEVrEvI2WAaKAoX418zokKyuiXxIK9YMx2ui6kvrAD7HbNmkCUMCqVL0L53VZFvxkprzTWYVno4phWky1qlydKVLFOLixSG7WdLqZnATbLou0asQG6+AGHSY6c3YnEsEyvLEKCUCjA+0mksOmyapxwgQfFFcItVyB1js/G8KPnBW8cV039Xdi897hb+BCo6nPIIdASEds7WQiXLyNcvbfrRbyaTNfTsG2oLTrRRCXqUoQIFWD/Mk7MBQ6Iqg0Tfaz0bNWbE8YL2rnvedXCvMEAey7htBx9LMVpOSZhW3u1bdHB7kwZwLZDBjspYqohcE0xYg92aC0mAkndevXBvvr1ph1wPjJ4+SaDrUPXlZ9GxAJYvoxggaGOrj/3OTTrz3/ZB/8o+4DooWst+6DZDqbsgyLN1soyZh9USph+PWbfWt6+VYKcQdYbd7O4WBItEAvZB413MJG1a+zQSvbB0eX1Wo54b86fMXBznwE/k6J0nn3w13YmVIp0syaWIVKiveyDgiz++Kshcz0P3/m+8tWCm7v0JvvgIqPqcvTVnWE5+2DzoKCPB6dH83dOfbI4YXkyoR+S1rMPECtDSx8HVub/2LsOuCaW5x8VFcWCYK+xowJi70oSOqEoiL1ECBANCSZgL1ge9t472EGf2BVQ9KlgV54VuyL2hoq9/Xcvd4G72zsSOZL8/T0/H9+TW+5y+c7szOzO7HcMdvqgE082ZP/kDuJJ2XujWtU/S86qG+f0AWZsGMHJ/NuApw8WlX/DDxaGeO6tUH7sRe+KZiZy+uACK0JJ2rjtPo8hbju9SiL+0aGK6+TNtUs+rz82hRyNYj3r/JzEum8cCMktI/FIGKwQg8GPIO4anbevIjC2uL7C2AsP3cbrdg6Bsn+Jfm96FE2M6LEMLH0Ib+1CC5UcgQTOJBdCb8nTT7vXsW5203FmkeKXGkmqtKMk2eHdiCQ7djm/SIlq/zjo21ICAhSOUkJ+M2feu2S9cmdVMYAIvbAJkqmA+oJxtLN1EHU9V/F9pMehhXVe+HbtMZc8LZ2Im+nTMncoP8B8x2RIJw9OFcaXq7GimvDdIg4Au5vMBhjQKKMEURqfAX+nFY/pD/1IpzmLLC0wWbJY1Ss+l2qn/2rgtEC1PvJTndpPrLDDOEAYzqPCVVJt6g4LagVCP5veTQoWAFNEKxhu2Wp431rO8z+tmx0x5JE3B6Ldzyra9UYSLSo+nq9fA7j8+5e+H3BqZPSobOftLZvOK+5r19Jo/Ut59rhNgv1Lw2nrW3tsiuGO8QGPwTEKr1S5M6LdHse/+w2sOivgMJkauCKk3IyAW5+wGlcK88NSPbqeNRcpwwDkGuJP7DFBuY/BFoe5zc6CgJLo5BGpabv8X5gmDuRv6bGpkL4TgP5UiGiCNhgo/96dBT2rJxDnAQVuN0AqXxhtKBV8G6KBF0BPc4gP/ktj09RwN1o5UspwAqfv14aLvlSLEywo+j2114Wbt8k2BuuFimgRh1/P18Zc++vRq637HLcdvF1mUu1R8RzsTJyDMJsJEW2/ljfBYC7olnDDPOLX7m4FKhVqaWAkph6whQRD17lG1/yKtmvvtTVNei/z3tA25KqC3OfSl7+kwcI40YTB1h8FW4YdBhtuEjKZTMLZcvXft2ir9Ip+98bT/vJEZ2rD4HC5JFDK946UyxG2gClgtiPuU8D7oM7KFCMkclmQRslHyiJC+UqwTFHpbgmoWXqW90Q1Ns4zrEeUPHgnU/ItBqDbusBzvzJ0alj7wwjYrg8aSYgYEoD2N1x7leq6UBBfwXKfd7na9cnhM/YgevisuZzfdKZWJXAQMvSHyE1FhQyQUNltJ2P4rCNyNbTIqUiqBlULnbeOfzvswRq+d3TRUUPtc3wnkku1cQVBp3TIo5w3JrfBNIkFLf5OgwZYxIua+48Ol+bFoX6emh17TxDSSuX28HfU9q5ug2CQGyJVUaqE4Z+CGu7KmIOEggWPAIvq0RpRI6VMdUwFmSQFlOtge3wWZAtQRYXNsVmg10ZYVU0bUxgrYL6KUP0gJBQXq5YrN/GWSrBwWoZTz1PFf1ISE/BbIRIT2OXCgKI1KxR8raN6yGNwVCbDW0+1lty08CkE2vrMBDba+ksJBORZJg85tTaOG8gldX951Rk20XWbW4mqNVo4XuUA8qTdbJDH7yYgf8QEud5VmeUJyA1QlYkooiSqMhFFlERVJqKIkqjKRBRRElWZiCJKoioTUURJVGUiiiiJqszMVXW+tdzd1Gtjv5CzM/d52dNK3qDyIrWPWn7JQcnbYyb51/M8YXdnV2mXLWZBQ649syTL31qz2S+SK9UwXMQSOPSgvATDbKvnIoMte0JhjxvNA7AlJVxn4mUIuqX3qSWn+b4iDRzUL+lxPOoSTC9loPauYTvIhTv02ruuocm2YadBlFA0AA/wA3Nd0NfTao/eW6u6bb7vMPaRR+qAguTaCncbOx3mR3fgbjebdsAeLKt30hP+bFhV0pZE5MUKiVJYstvzV9v/Fh20drVu3z2uLodlEZN6en84tXmUS5xyhtt04ehjHKC0kBWliB36NWm39SXmFTbZMMyIKQeXekTtGXOqxP/yiRVOb4e6LR8YHN375e2xRsznwvaLFxjzuUfBMjhJz3xuU232EEIUmIezAnogkm1CZy09/Zzu/lVKPKmJ07wLneJ+mkDWEoK0mRWkhTv0y+s2dJJpvrl2qypXZbDEIrOBetT9a9Nhj5p6JVi7/ft97doochaReC49i6gdKQx0JrCiM3QHERg94TE4xhcB3mKz5l9ESzacc4n1ce9L34ine0IzBnDrkvO52lK3kUq9aOOoByx0zQ3o2vkYGKZwGMKfQ21A8QBsTgmFkKZdeiI7IrrtFNe1K/tWE1++dpe82YnlYxncOmkwPytONXEF7ZgL7LQcguWL0rEYEJr3TtDL15XDwJKCmcYMVc/UFRUOre3tcjhiuxv/tA3ZyZVyBveigcozZOCQAMLkxAqTQ4J+zi7/FBo112y0FBq0NJiOwBQarZNwuD0GDW6HnjLZIVHjc807TLknjnGJfRvRoVot6j50mCScr9mnQeyXM4XmjTX3Edke7FyKhK+QjoSXpCpZIO4gdTJL1MNdLG+I2inPM6xrlgzy/CYCXC+gYvIogLoiUS9DVQ5LQ2k2d8HrIL9l7Trr+i+y++Qe7XdMeX3wrdXkEAl7AD1E0lzOb85Rz7kVNLsF4ImH8JRBzbmtYMmyNFGvapKymvdhI/qaXWxGwPpnEzz39HjewuXBmCLk7J/mfnr2D7+eHz7h3cb8u7b1AadZ1h6r9tV9EMYBPpNZ8QHqY4wKA3OscGOEBojOPOof/ZjAy/pLVCHSCDahdTw2qvGt4yW84i5Fqtb0nPiKLDTN/XSh4dc5L64FUunLKhUXk5JK9hFCKnq5r/KYwQuXBuHGFymYtjO3PXIutlB4wCJpy/2jQyVkwXhh99MFg1/nWjCO9rg5gduMtPVqVHNn3uxE/RZkNbQYYAsLuSw/PE4n3/u61Om5y+EvqcOtmvxsTq6qFWkeQK+qJQYKAxEFKyK+iYRff8Zj8Os7F3rm9OvU0T0650eE+fGb78ky1nyi7sUwnbUrDLID548MlQWGgrASni2UqNWQ0UBbFYO7f90WH9Rz2qj3peuk5ro+daKJeJ0orfrFEazqXh8saAa8Jh5qQGcv05DUwCNMmjdBfnHn2w9vDw166Tj/dfXrxaskklupl2QKbLQDBnb+WCkpxNABVaPBb4phqJfF6uyNa5SGlpN0UAvWA6k1+wOQChD+Ozem5I/1Ho9uoELx50ZlBYXrWgywqijAIBcTAAyfzM+ZJrPJJK6o2sRRj2tqmoODzNX2g2yZq9VazF8wYe59wOXCad4JUVTfap1kzz0qkFmjsH7y4XJZIHYsjG5ImZCu4QXiAeCeIsCdcn4Y6Sk62UkqMwXba9HJrMjjum7cgEV2Z1gyOxu1cQNzFJbJaWW1u5FE5ET4k9Lu0JaSZAk/qSR22T2I0IE+QafmFjlSyinpdRWvss2s04nxIgzjFj6YeaHpiLnmOvODNe+DvS78FbaFWy0XmQrYHFidgBUzkeWFlE/gV8eYGhXbecWKuz9M8905gySfIgL67BDQZkcRyuzoM7Voqx1zzT0PVIwMcB8w81VB90zA7GgPxemAql7oDUYbJKflASm/naXaftJAJbDQ+qB0aNHa3XXf/XKcP6XBuIuiGHIFYhEhHSVhvijVe/AyuWzpL6LDtfc/HvrE6R4HKFmyovQ9KQ3XQa0usVa7aPgCYWCkA0DUqneyD9M8iu7D8OuFseGNacxn1EaTjR2GFG5PX/4/s6dUOh8D2dPgJDZ72jHpP3uKy2fTiAYLWtnwxTPPdm6olL0cyoE9pdI0cWAphiSxWQrvpMK2p89WOsvmjp8uXthyyshqqfEzOLCn1E0CDlDqyIpSo8K0p1QfanR7imkMoz0FSOH29BWTPTWZNQF1OnFTzNamSLW3c0ThTvs/OIbuvDKnBwdLgqxEtiXBFe2eymsmyPUuZitHQG6AYjYEBx5h6hEceEQxG4IDjyhmQ3DgEcVsCA48opgNwYFHFLNRIzRaxRq0ikgVo7LncVCx9oYzIVsYUMi/xyOJIFUkhEzN+dNkYsYkEyptIQcyyWaSycqD9/tMy/rsnnRwX9KuYQ/I5/yK+0oUUjmdoJXJsNkI+OHwjjws03yFMkKqIReKkI6K4GvIWZFfm8q7iHgVXaydhV+gSimX94AeC17M25CVYgk9MxztzEtOFs7bPjrzmEN3ayZLaN5TLVX5g9cnPrahkzJyiBzWakEmWEj8EySLwL87iDBgliMzajNFJARVL21TuhEwkfuBAe0g4kVNE5X2kqhCZAqxNJjkAC00l3vAnh15r5fSXPdXhue9SqGA9WjkfPzS/rTyGIi+KnhuMEKmeauSxFuhJpRKMtJdEQRptwh4i5SCF2HqJc8lLFaX47TCmgUB7AQik8hFkAsqjyOKUEklYdqfzXqpJOHae3BVfcukqibjlqksoBxt1VH1nwO/bHWAzS8XPUD45XcmjzmVXtV0t0d/shb2v9YW9r9nwlxvN1mWZzg3ieDNJdwkgjeXcJMI3lzCTSJ4c4lYKNn+zM2zjXLcpv/VeIKIX35hnlho49I6zdVrhC6JgWV8zReEZtOcK7T66OUKhYyXA+eawyRJE205RiUdNljLsRKH2VqOrT1U2C3HPH4+s36QHiBYu2a2fV27dZEm0HKs6GG2Bi6vD5lA36Rjx44ZoOWY67Zqx5Z/thJuPxmf1nW4K6WZi5Fajt08xCadNFOQjkFajk0It9+5L+eay3aHcQmpPxODTKLl2G5W4aw1BeHwjNlyrNLcFSe//7PfJWXjoTOXW34fZFItx2ayCm+EcYRnmi3HOkxLvWb+0lUwL/26bY766lEjtxwbwio5b6NLDt5UaC3HxrTqPDM7o5f3xnnjntR5FFLSJFqOYTEEY8sxYAjxOPUDjyFO/f/UcozaFsPILccWH2ZrORZ62DAtx9q0/rJOeDzIe8m8Zds2vL5Ezmlz0XKMSm7GQRut+YfZ2miNO1xYLcdSKzcUN8iJdtkYVrT4P8W2byr4FKZgRbURHGAVyoqV/+H/qZZjH5nM2H8k/L9Fwk/tJmQwEn6nFDYSfrOUwiDh333s1Ohp/u0cJ513vT9xcuoSDk+bc2wj4YaJYwobZ7ltikFI+G/Z2vlPGuXumFhr6NqfM8eRmRWNQcJflRUVoDcms3bQ7+APdyT8tSIPr+3vusFrhmp5E8/Jl0eaDAl/9mE20d02rCMjRGdwEv5H5bPqTRrbVzj7WIk163f36GpkEn7MyjCyqAMrYzAS/p8v1f3H+X1xXZJpW+1Y+vUjJkDCX5UVHLMUA5LwF3Opu/zVQBef2IXdYiosUCSaAJ0FRAib04wIgTmNx22feAxxm7OgabNfXa4Itt6tHXdp7Rvy1q8FdogvXCkHHp0es5kz4NwmN0Uiy70f58IAiKuUkSGhfG3TWH24HKgdFhnfls56kGdQ19o+EAhVPgLwzQT4bqWGSekA32P0MEnPg1UVc18LXMWxQH71Gburni9//rUw+px5QpHnpV4XvHcXJYSiGsYChlCQ9tbqCFMXu+VAd3/qF0KV0UzfIGmISoqOL39uSS3iaSPw3NBRHbPqk8NZygkp7EbECSnN9cKg/X2ewvb9rxk9WNJqph6BEnxlmTJIFsjCbZPhxz+2Ka2I12GPaSdsDjbvT9ZV4gF0XdWOFIYwjrEKY4dxhEENf3j6ZCzsPRXKCOC+JIFw79TGoQtYsoKVRZgtv0WXwFClKsiW37KLergqAvsBHa1Kli0b9LZ9ae/lE30e1jmV4Uf2a/AD/CJGyxH9L3OHCkNYK1mFFW0SMwc+Sq9otVLuRrciUjVEzTKDDqROdyz+5qJrwsv1NY8/+FiuIEvlgi4dHHBDDo96ptN4oVo49/ykZ5SKW3KWaGuJtMqbMw6xwiOJh3y7t+9yy7jLXgDA3RQcgAwEANC06BWJEq6MmWRCfPVywqWxy733xRfPOvXoUoBRD/tCALayARA/O4UIND/z/n/V41AbcxusHqfiUbZ6nO1HCrseZ/HFa6lnrezc9zq4DvNxH1bHBOpxLI+yZTe/HzGBooKtW7caoB5n3TLLVX7de7glX13ttflBl+MmUY/z9AibdK6YgnQMUo/jM3Z0y4RRd9z39P808+i7TvtMoh7nKKtwtpuCcHjGrMe5eSyxzgpektuMtKOZkT5xASZVj7OcVXhTjSM806zHcfo471PK6gDHA0N6u6TdnrnEyPU44ayS6290yRVqPY7ftFeZsl4rHJc2rJ480LLvT5Oox8FiCMZ6HGAI8Tj1C+8PqMfJLFF+QsVQd8HKiKL9Gh8KG2PkepzlR9nqceRHDVOP06xfdkDHSQni1f2TrMdVKzqa83oc6tqcgxqTxUfZakyijhZWPc6M2PTbB28sEcy/tHHA4U8LjnFej0O1ERxgJWfFqvfR/6l6nK9MZmz4EVkzmXe86ECKj/xJVr835ExJ90h4dtJVJQkPpZ8w1SN90cBJpg6Hp8e02ZzRdppTpnwJ5MwLgZ+A1LzzlwYt6V48y2ubINl1z7K4IMb3o2dy8g7S9K+UHzBhPnmPYiG0knruSUet1D6N2jipsTOvPSTmqiyCfynnP4c2dvZqezCtrJ9UDgQmDXIHdn0U8ThMrBpRfmMSZau93sKOzfq4pSREec3MTrhOsfJAfCqlXENUrUfzv7bOo4B+BWpSoPh2JP4ovIclrIcaplDCbpbBfL16j2yw27kow36G4xy+f7TviXk32d4Y4ZdI43pQZkdVSOXxTggRNU1HoRUtn1oINU3+VzfXfrheLkqO/6kYwusRwmFNE8cdNPgAocEQIdhBg9aa1rIphlBBu8DVFZF1CF9Qe0P9soO5CXskijXHjf1cpfFr4d4XB+4+XVKJ3HS8BIOiENe5DiOjbHGg+CgnA+nJj1qm0ja89QSqei8p3P7BECLPOzRCP6tsPJzW4r77Aucj851LTM8gb9fhD6Nv1xEDhYER35INI6oyFf0NjLD8Fl7KAnDKV4smd1uSsPqWU9yK1xPKeG39Tp6L8GGItoKay4WBz/1ybPg4lkvFDf93JsPf5EeVqjv4xZz3CbO/SWuHkA2/BdZvkamelmkdUstLKlFHqjT1rJoEjMa6Q3Zb3Yx77Q1dzpwNC3XZu2HHjTW8NiLGt6J77jyD+pj1igDHY0IEua0lMOsx1jSzrmcNRikh7NkCAUB+31l1/Y9MX3TWe5P6sPt6dTMnamMENb0oSnM1P/tONXpc2HcI1XIBgpL1YBMMKkb7jixOoXaylCn4YiRGhydNifk2zsljRuLT3UsbhO62wspawHd3HgWWbtogGAufe9u1MGo6L70ZjhMsm6LhdN8Wwwmfmj/wqUSbmmYtcgTlTqa7bWjb9maRhPrHi4llQ4ix2Kdrag5qESBOKDFP9vNpafKqHE/9aYpOdJ+3fFepJlLTlL9oqFz0jsviinRvcErsJ4q+tHJQyc4Wp5nfjL4LmndUD410LAOQPoSavPehHCz0isn42pgsBA0Hmge93d0xx8faOW/al1PTJptnbbohmiMAjF8GD9HorMpNMcD02sur5kTRF22vM3TT1FLnN50S3xHEj3Hrf27xPyGUtLNhK6hibHE0LFETFfpQgAY+UX/yGHzo0qcf1tj1nC1OPOPzj+uvmHrkauxc80TfymPaXqmceyJFwZdqH1CabuqKC+yEzVroNDNLR69PK1P2jcfm7vaWvT3q1WB6TXrReO6YHvvWUVVTNb0ZkTyd/CqpBebpXP4jKil2QW/3/VvivB0fNbtF5emkjhuCp9M6FyswIVQyyRA5ehpceTLZ+/sYZ6+5C+wvNij5ajtZGgH4rfzfoumkukoO+iIOhtJEElDaAINytEqqHjSdOmPEa15ixYAPbh7RU+L/VXQXtmfA6LdIOqlmiAOMgE6zYBRVOVUfks6KuSSduQYAidKWByuqjb/R3jvx4oRQr2bpfxmVoHOwHa4rSILO3vYYSrhB/cVkUCtnznGy6nhRFNvm4ZGEUyOdEN4UvaVYQZNvQMDJK60ZItH+4OkJGh0QurJf84FwyzFQKYf7bFB/gXhCpAqsCwPm8tCF1ZmtzKxL3Un2mrtu8VAbH7e2Bii102bqqAks4OF3Fk+F2zPQ4+GigOjpL4oiQoOL4Xcofs/YHq98tthcryMzPtR9YW616jcofguK+mCAuuMqKupF/mTUp7VJ509PzBQt9Lom9RdsemoE1KGuf86mol70T0b9WfbTpJymaxwX942rbv7jRF8joX6/XhoF9WJ/Muoveqo2bwy2E+5I9ww6v/hSuJFQ7+xFRd3sT0b9Y7lO9UWfrzmt+L72YsnxNUYZCXX+aCrqxf9k1D+X3XknW+rrsuHkjNSwLdnDjIR6zAIq6iX+ZNRnvLV9e3XNLM/JdnZb+20f42wk1OdvpqJe8k9Gncq7biTUDyZRUTf/LdQ1VScGR94qd48f7w6NXiV9q9Zm48CWvR0Px356KD5tq0S8O2KVhF0uFLvelho5lmJC/edfuzda25sJ9/evunJzuBeKvZiMeunCR11n6uVPn7O2nK+Z7RbdVfHv/HqXUBzQv0O9XNqr7cd/19RzS/DI6DawwZXzOm6wsEnEN4wqkdJ/pESi9tneO1X/rHN82rILnezrVeRIIsGV/L4UiR7nMq3IAZWirud0DiQSdZUqEYs/UiIvylRYOaTrWre51SS96wQMv8KRRGb3rjgzZUVJwYFdFx6ndQ9+xIFE+JWovqLMHymRjJgVXXKm7RHumG1tFiYp2Z4jifzbbEYdVfVjoqTM52Lvs6fmcyCR3l2oEin7R0rEfOGR5yuX7BHOfPvhQqusG9U5ksiHZRu6f373wWftdje7Hv1qPuVAIqFDqRIp90dKpHLUsJZtutu47V+5vmaV2tVLcCSRFxf93YYU6y5MWtf4p+M55QEOJNJ2JlUi5f9IiSx1+VK90ziBaG+yoN+i/nsFHElk2MRxwxISIz2n7Zw94P6jqx05kEjOWqpELP9IiVCbUHAkkd8s/2aTSN89VIlUYJJI94f3fErKL7iuS0wpOnF/XTLlY2m/UFlwBB/Wj5HFAs/aMZVy1/AJDobl9xK5PLdQCy/pQ+K6vJbC4e6UULdpVbfbFcm6cpfpFRDg6noUq5kz79RFvP6RVo4dbgtGLxS0bq8sVk4YoYTHBYPRCmR9ZXL37TPCvPZe/Me8a3J1cuEZunZPB/0ZeceG98OjmXDtYT/3/lHLOhcwPQ2PrRyEWB11RKSno8Bo6MVUvZiSNBJUYlqBxGV7ZLmFHYcHijZXTrBo/nLsNdoxymDdgClgQhp+86qs3xxoiQkcocQ0UI9z5RawtxZbu7Wmnzp92mLZ1W395IMdGje/QM5JYJ25DAX/qAts8NsYB34aK1JBjyVoZgRk+GOq8h37vZF3i9vjvA71KnLIN77K09+0FAU9wWqXxxTQzmjA+g0wIXAHY2XCDmagW73nlZIfO24OEkt6VZw7rXAcTAOrNBYHs7FCQcn5dHAwxdcsta7+y0M0r83lv0f9W70uNw6mWHzYqB4Dj7smXBX1XCA5H8iBg6kJsWKc5zkV9KPiy9fBzOgX4jEsQOWRULzn4pQnCw8a0cGcq8D2zYGW/IkOxvXVjeKr71bxmj1IpDyxqGRT4zmYcazw+xsHfiM4mKrJdo2v/Ar2XJcxo2LLL+eyjOdgtKYA6WDAhMAdjLUJO5hpxaa5SuKvOqXsSK9QKevCgMJxMLM7sjmYMh0N4GD2NapVNnNfG8c5LUc7FNsQdp0bBxPffXGFow/Lu84wi5nb8xkvkQMHM7Uj2zzv35FjB/P6V7dO0/p+E+zyuHDyU2LwayM6mNas3xxoyZ/oYEpLom0fuEz3TnRQDCnfKs6IDiarAxv8hzr8rziYBucmflFY/RRNujcp5kHmuDrGczBaU4B0MGBC4A6mIpODiVkwJ/Klx2fXpcMrq1fOtCVb9xIusE1ChO4HdtppbuCrlWFSfhDQAH6kGpIbhcslgdJQpTwIqAdGdhCM/R5GfBQhCVHrdHDnV6fGt95erSLYZvUkumjW+YolxMrAYdIg7U2oV6cX/Guu63ouqqkzz8ELLBJ3IqkOAMQOnogDPBAi6IMRB3jgX+oBHu+/7nb1O/nCcerZvVHmb32uUA/wTOkVO/FmeH+35UdjVjxePrsrMV6Uhz6no/MBH+oHIw74MFot2CceFyM6VXywbJi4eRenlI9LGrxqtm54QaTF+dQ5CuRq6YWfd6MZM3hcMlxs0O0Y4kUtFJFy+SA1+A6KEO2XLZH7M+Zyxzp07DEecdCISVZWLrmzLTBSHhGpQp8zOuSzK/vCnrmu0VEzLy/xuRLLKrKSIs2T6EQIxEBhCC3dk01oYDIawwOZiUUagwpvmaid95hsiDnK5GzqwbeEcalMoZaqsP4q4CNIBhMpq3G9/V7wzqU4L/l7kOeV8lVbUmVV0isyAp4K04JPOV8KP9WB7qUc8j0wVvz1jEhBn5lu07sL+p1XujkWMJ6FQp3vwSbUbHfagTG2U3XlcGUH/jsCmCgkeIJdoY1KV60pnjIobHPvq0HrWBXdDFo6Ou8AdpVzLgt73C4dFSBcumNzTMVxl17pD3Dpm/5qZ7u23w3h7toRlmdqX5luIJfOn8Dm0vnj/nPp6BOW1TeNWXBgslN0naOuqV33dzU5l86bwGZIBo//33PpUYKsJVPG8MXrTxadf2zTHbEJuvSj49iEBibj/4pLL/Eyoo5je1vRJLsxM5fvX3fFYC5d7D+1/7bVZi4rhnzcXCV5TDcOXHrUWDah3h/DuUs/0en2gGWSzcKd4cPu93x90c6kXDpmlxhdOlBx3KVX/gNc+p444cwE77viHaGfmqza3HqWgVy6eQabSze//p9LR/fk+PrLWdRH6rNJcjnl1NK9C0zOpX++zmZItl7/33Pp/Udtnlih5niXbZeKH53TX1zBBF16b1ahmRtWaMZ06WNn9F2blNrCc/oLnxdNeRb9DebSf/OMC5tQD15jE2roNc5d+vq6YdFBN2cKljhmRbWPHb3DpFw6ZpcYXTpQcdylV/kDXLp46eLl9fzruW341K+naJlNBwO5dMfKaSwu/WiltP9cOkpa0eqyDzOmWHtv6PZk/uXwQd1MzqW3h3JlNCSWlQ2aRTQJl36zZezQC9aTheu/mE3zcr7R0ARd+tNKbEIDk/F/xaUHjvygsC1RVDx1SUazjLD5Vw3m0n/zkCSbUJezCjW8UhrXLn3/rcnXJH2GCo+cSe3Q83vRrybl0jG7xOjSgYrjLr3qH+DSW2erKlhYxDklZycMO1jjelEDufTvXdlc+riu/7l0pLSytx4+PPT+Sc/lPTzHpY5va2VyLj2nK5shOdf1f8+lX5utdnI+WsJlwVkP1Yq7Zz+YoEvfyCq0cYYVmjFdepWGxxMSDt5wi5YM6fVRvvqGwVz6b56yZxOqP6tQbbty7tJtr9aOsrnd3nX69DdTPHutq2ZSLh2zS4wuHag47tKr/QEuvenQWfv/SXvtcTCrR3dF+psGBnLpZeRsLn32sP9cOlJa5Rsqd47Obiye1+JgpeDKl1aZnEs3k7MZktvD/vdcuuWklp3N9zcUTpPeHV62m299E3Tpe4exCW22YYVmTJfe7uiSSXWfKX123ZV93vVXv+oGc+m/SdPCJtQgVqF2Hsa5S3992vpcg/ueTosXXPrucMb2uUm5dMwuMbp0oOK4S6/+B7j0MV+ex2dumCJOvt/639Nb3OMM5NJfz2Rz6Ttm/ufS0QHYisG3vy7YJFxkXdmp2EkVu38whkt/PpPNkFyb+b/n0u0zfOv9/DrVbWM/24HfnJ53N0GXfoxVaDsMKzRjuvTht+Mm/ORlekW3U2w5uKRrPYO59N/k+WIT6kpWoUbP5Nylezev9G+1PYGOOxesF3YYu3ePSbl0zC4xunSg4rhLr/EHuPRuro7u2X1nuSRdyayycl3IBgO59Lvr2Fz62nX/uXSktA4kn3iX1bGt419Dbfp3Gn3rkMm59Jvr2AxJ2rr/PZcuaXHh+WSJk3DWuHELBMcasZ8SNY5L380qtLWGFZoxXfqqlmPubHy3zTvJQ1D7SmDSDIO59N8kimQT6kxWoY5Yx7lLn9pkqfeDBse9Zy+cs/Dw/bdPTMqlY3aJ0aUDFcddes0/wKVvXFqnuXqN0CUxsIyv+YLQbAO59KZ72Vz68z3/uXSktKTy2v5b0ve7pbj+0+JNrcQ5JufSG+1lMyRWe//3XHqEvHsbm17/OO2ZaV/ih13/fibo0n/uYRMamIz/Ky7935QX1oefxLjPOnz99ZneD8sazKX/JtMwm1CvsQr12B7OXbpnhqOdecnJwnnbR2cec+hubVIuHbNLjC4dqDju0msxufQWG3uk9kuIc9m6sfzZYxM+LCXzSLmqlJHhZI9uo50OSlUQmWCphEgpB98IXmoAfoT/RzY7EvBD4HNhzx1XlUStDlWGh8MWPNibqou6OxHq0zhx4o5hqX2cpiyobJbc5PZAMES4ud2tJkQtvZQs3t9a7l4j7acbGCJmzx5Fxyzxo4ai9YtKT1wa+7UZGCqGDz09/eW9+fsQt6nJ6bZtz+fIwZAZPrS+wYBOztFvnWJfvh829tvJOmCoOD70eKzP9OSWTTzmd3xovbFj3RgwVAIfWlBtcqe4fcU8d6k9Svp3O34EDJXEh/r/U6PFzXt2HjEbUio/kg1oDobM8aHjQ28O37vvm/DwZ8sn5xyH/QuGSuFDk6p3vtT52FfRrmZFFQ9inPuDodL4UOKl5ovHp/Z1mXZfGVVz3QyIhgU+dLDS8wVPJAcc51uVPzev4Q1zMFQGH+qYrtotOKQSLQv4bJE45PRpMFQWH7o39MS7226jHDcWX3z3r3UNx4ChcviQ6OQd22J/W3hviN0yq/1xqypgqDw+tGXuti+Pq333iT298KIkZsUBMGSJD7msLJrW6JC7V+L33Zv+jh0Jv3IFfOjU1tlv1shPOe6Vtznffm3Pl2DICh86+4/30mfDrvhM69dwyyNR855gyBofcp9To1qSSz/XxTlt7t39+PgSGKqID513npZwvWhj8cy38uTajY80BkOV8KEXFR7Na2U1z33rp8teVz5W+QWGKuNDrn8d3jPpqatgcevidfbc/QxFWQUfWlhTdv9TjzHOs/oGHJQ39L0IhqriQ+vmPRqRVGOv465p1X+WirfwA0PV8KE6l26NiCrj6T2nf5c7o/tfnAyGquNDSzo9HtKx8kfx7gGzOsVXu3IGDNXAhy49XOc48Ei8x9wQ0evTWTvgA2viQ6/iY6r/GFXcKWnekQ4VHE5PAUO18KHND7qP3Pu3t3D/leKT+U5doPbWxofGnx0sXXWvt3CKsEnl5bJt78BQHXzo/eNfm6t1jhNsLdPx3MtlqbFgiI8PPTu7tPvlfc6CJVfik/ukBJibuzsNIlmjuuAv0ijWbHlhj7SNm+fspRXFIQnJ5RFmg2YFqXaNR9g1jYmqzWSiKgUnJqxMPe28envmmLM1x8WQIwvnUeFyZRCl5zKcuUxci43wO/gSTVdk4EwhA2GYRC4HRohoAmav0yqDaqCQr0YPevABXe28jTPP4Riw85+FiIb1vrbOPLNjNCZGNq9niXVvhnGEVPMiyO92xHpJQOXBXb2Weh7+llrleoH6QlPCggOp0x2Lv7nomvByfc3jDz6WK2BYEAMAsoUAdUaFBVVB0FD1mF70i216SIFqqGUApCBpoDIsXKmWwXE+eD+ZHGPpJPSEL1EBTYpQhskCkSgOS1/3TN73iPf2xncvOg4aTCYCLqX9HBqSeYa4jhsgXGascGX/YxKkgUUKShpoh0+0oFxxRYSCoDlMMkzKBwFIRKiUP0SilmoMAVJ+iZtyzKtH33RevansgtvCfzqR5Gfuhz+WJr7cEa6lZ2mHK7sTSnrL7TFlJwFXRH/g6gaA5YUM/CaM0SBKUiqQSLDer3uZs6nPDtHs9kuiJ0r/aUAGi3gmHSztSGGAZcYKFlB13P/UYfI/AXWKDlu8y1KYGCt/02m8uRvpW5V3hiShkggpXyxVhESE0v1QSQaME4tobyU8EVBN8E8ABngAP1gSGKFUAWOjBCtxGVBdOfYB9vgH4eNqfqBEwR8i5asjw8PlMiChIUowCO7XPDJSAW+Fu2gKuNSRy8aAX8Eu2vNFoRJFiBSTbz/vAfxwYmcKeoYIZUiIHMwOacRIqVSB/U7ESCU/DCiBjr6RGqGzwkbTCeov6CjwcGDbrkGBm4kQe3A7ga9cqp+vrJDrK/EXQvdOOpG2OqzmFJfD62PXFmleLJZDZ0m1QAV0lvMBQpcgQr1RU8IRWP8U/ZxlPZI+Yt1rNaqHAyZj6F8r3FxU6LQuXhD1+XDLpCKL+eQ9Bwa1IK5zbSggKvGsqAC9MTKPcQke8ed+N324jFu7B/P9VZFSW2wWk6UlU+e1CzYO9g78CfwW9g5NkCJLC61+Z8OFUPfV2+YNnzCwfiMy67i39kE0seUdKwzRTWYVncI4oss/nCnBYnhq+SrBwgS6BCg1dbg0UBYMzbvGCyDFM6rR6uBbLVa6Hv67uNW68cdKk40Q9jy6EdJc5loo4Xa4lXFDCYXXHLMytCiFDY9G/tBZAURGSDV+UQ9gTkwp8frY4ls+ia1G/lg24+Zq8jINfzB9mUYMFAY48azgLKWAUzQfcBprvFSuB9cHnQZWpXN2y065RbX84n2r86+55CWKNl9FX6LkDhUGQpNZEQJzGo/b+Exx2+lVEvGPDlVcJ2+uXfJ5/bEp5GhUDGI0vp+TWPeNA6FIJdVEa3J4Lx4JgxViMPgRxF2j+QBbVQQ/HM4oYGxxfYWxFx66jdeNrIuyf4l+b3oUTYzosQxMSQcY30alKx2BBCak67etgL1AHgyQ325e63/nZCT0d4vy77Ns3slb5NZIxf3g3XQjpbmcX6REtX8FzTYAgJLS8b6GNCXkN3PmbU6nRUpsqbWqGECEXtgEyVRAfcE42tmG7lMtex422XvL7LZNN4VcDSZPSyfiZvq0zB3Kt89S1YNXdh97L1yTU61YQMv1BWYvAIAtZAUMaJRRgiiNz4C/04rH9CebFlSZs8jSApMli1W9UmaPxY9kO/eknm/GXfzL/6qVuwJYSiAM51HhKrAEz/OsEgKhn03vJgULgCmi3ZI6bvSiVW+F+5Ks/EfVbP6YA9EOZRVtgJFEi4qP53fTK9QqI85jz5HCfDUze+L8FDevqKMbXC9IbqRTe0so6Ks7zVWuHSPPHrdJO1E5v5322BTDHWNdJscovFLlzoh2exz/7jew6qyAw2LSt6kI28pGwK1PJ1lwsFQlBVCo6U6yGAOWzUXKMAC5prkt9pig3Mdgi0NNWyO4sQRrfnTyiNS0Xf4vTBMH8rf02FSYmgpAfwqU/z5V+QdDorXUgrZCEojzgAK3G5ThUhWMNpQKvo1Gx9V8gB7mWLF/aWyaGu5GK0dKg9BOZMeSAVUCzbO9DwXXio2buKE+2cYEYP1t6DYGv56fjWn64k2x8od+uE11aTD49T+zr3KwMxEFYTYTwpw2dbOuCQZzQbeEG+YRv3Z3K1CpUEsDIzH1wNpvIbFcFLktweGYj8uiE8NrHHziepuEpUXuc+nLX9Ig1yaBb4vD1h8FW4YdBhtuEuoxmYSz5eq/b9FW6RX97o2n/eWJzqTvVraHFCsx4XtHyuUIW8AUMNsR98E6JUxnZYoRErksSKPkI2URoXwlWKaodLcE1Cw9y3vSpEAe1iNKrpjKlHyLAeg+PVHQuV/ZHWv5BnddpWqsTg5DDAnArj3ff4zZtNcjKsznnv9rBbn6pDj2IHr4rLmc33SmViVwEDJYQuSmokKGdEg8dIIxfNYRuRpa5FQkVYOqhYTP7LzZ3l4Zj5yTaxQtnqjcdJQEXxlcQdApHfIo5/VqNpgmsaB15YRRigzN/UeHS/PiUD9PzY69JwhppXJ7+Dtqe1e3QTDIDZGqKN3X4J+CGu7KmIOEggWPAIvq0RpRow99UhxTQSZJAeU62B6fBdkChFx9m2OzQK+NsKreGLYwVtC0isRVPwjdHqJ8v6XHV+1x31p/wpY69g2GUBIT8FshEhPY5cKAAlNxRiiAiuOOqj6To+KH1N8/fc4M4aLj28UrviSOJX8fGOSNJjsoBlvMtK6zFgAdU2nC19F4SRoSWKq1RLwIvQImXxu8ZERMqn/dcsIjqtW23/v7bC6gDYZ2Y+kJooknFXJLEDlEayFvYPKQU2vjuIHc3WzTz67jYwTrjwV8WFZyyT0OIFecZIN84EkC8oacVWWWJyA3QFUmooiSqMpEFFESVZmIIkqiKhNRRElUZSKKKImqTEQRJVGViSiiJKoyb5SsaZ+0U+I05UaXhzuKH2xGK3mDyouuBKGUX3JQ8taISf71PE/Y3dlV2mWLWdCQa88syfK31mz2i+RKNQwXsQQOPSgvwTDb6rnIFEFYciAQfwC2pITrTLwMQbf0PrXkNN9XpIGD+iUdJ9lOEC1FHweTLAO1dx0OVuQux/Xau66hybaBQDJcpcSyCkpYFchcF9Rue91+oY9KClIavH5QXRK9syC5tsLdxk6H+dHjuNvNphqko2BZHXQcGYczYVVJWxKRFyskSllvSxdt9cTHZ82MG+6BJ8/FcVgWMamn94dTm0e5xClnuE0Xjj7GAUourCjZHKdvPrDFaba+xLzCJhuGGTHl4FKPqD1jTpV0e9PS5kOxl45L0reNv2h53MaI+VwHW1yJkAk5eLZNcVy/MLapNnsIIdLAE6QMg5VPwAORbBM6GHh94N/r5Yd7rDtzssKmd+O+m0DWEoLUlxUkl+P65XUbOsk031y7VZWrMlhikdlACU613DH48w7X3ceX7nYRfCNnF8yJ59KziNqRwkCnJSs6tY8TgVFjJsf4IsBbbNb8i2jJhnMusT7ufekb8XRPaMYAbl1yPldb6jZSie+y6uYIqQcsdM0N6AjbfWCYGsAQ/hxqA4oHYPusn6vTLU37anm09enLPd2X9Bl4y3f5uZnkzU4sH8vg1kmD+VlxqokroBXnATvNh2D5onQMY8ZE7zkxgVUOA0sKZhozVBdjvnvPOfjKbeP4ZSP79YskrwRLOYN70UDlGTJwSABh+nycDaYsPZ1d/ik0aq7ZaCk0rJvoCTyFxqfFjvYYNLgdsmGyQ6LG55p3mHJPHOMS+zaiQ7Va1H3oMEk4X7NPg9gvZwrNG2vuI7I92LkUCV8hHQkvSVWyQNxB6mSWqIe7WN4QtVOeZ1jXLBlQmyEXAK4XUDF5FEC93gW9DFU5LA2l2dwFr4P8lmV3q38skXT33hvfu5bHt3AzcoiEPYAeImku55tBp5xzK2h2C8AzEMJTBjXntoIli8cFvapJymreB9cJJDp/WTQYMC2loU+i5N2dqSPnbyVn/zT307N/+PX88LlWqX7rvUddfVKqHmh16X5wQW0SxKctKz5AfYxRYWCOFW6M0ADRmUf9Qy8bYavFLesvUYVII9iEZqVIOFByxSCv+Z1Lt7r0PpZ87qqE5n660PDrnBfXAqmUY5XK1/OmJJXsI4RU9HJf5TGDFy4Nwo0vUjCDTze+O6peNa+9M9+f7XuwXyJZMF7Y/XTB4Ne5FoyjPW5O4DYjbb0a1dyZ53hBvwVZDS0G2MJCLssPj9iT81e07m0t3rS14s8+nVbWoDA+aB6AYHzABwoDkXqsiJhdIPx6Eya/vnOhZ06/Th3do3N+RJgfv/meLGPNJ+peDNNZu8IgO3D+yFBZYCgIK+HZQokarHTzVMXg7l+3xQf1nDbqfek6qbmuT53oebxOlFb94ghWdevPFzQDXhMPNTTcFoHyyCB4LJeveRPkF/800nZCY/czjlOnX7y3/ea7NLLyMQU22gEDO3+slBRi6ICq0eA3xTDUy2J19sY1ykmjUXkPasF6ILVmfyBUFhIK/50bU/LHeo9HN0eh+HMKBwj2MXRVwq9zXudmhwNWFQWYgz0GGD6Zm5p84oqqTbokrorw898CpaQ5OMhcDT7Plrny1WLejAlz7wMuF07zToii+lbrJHvuUYH0Vct5RcojZOFyWSB2LIxuSJmQruEF4gHgniLAnXJ+GOkpOtlJKjMF22vRREEZ13XjBiyysy8COGejNm5gjuLERQQdGOFPEHRg8JOodGBUOi8qHdhv031Rb0TQfTHZplouMhWwObA6AStmIssLKZ/Vjf4+9fPEWPedHRKbbW5vNZgknyIC+uwQ5Ms9tD744JElb6oIk27WShra8bxrQfdMwOx4CcXpgKpe6A1GMy6mIXi2mECq7ScNVAILrQ9K1yq3KhfYYrJwcfjz8JEVB5LJBIoI6SgJ80Vp/KCUtou6DPZe1ds+xir0+C8OUDrBitLOizSGJtZqlx5SNQAGBkY6AESteif7MM2j6D4Mv14YG96YxnxGbTTZ2GFI4fbU9v+ZPaXS+RjInlZntaevL/xnT3H5PD0k3huw+oDLtMEdJBkP68zlwJ5SaZo4sBSVWS1F0UK3p62qFy3bYFU/1xVb4pYd+nyxNAf2lLpJwAFKry+woXTzQiHaU6oPNbo9rcxqT19rF/h2Jr8moE4nborZ2hSp9naOKNxp/wfH0J1X5vTgYEmw/ALbkmC6FnJ7zorZyhGQG6CYDcGBR5h6BAceUcyG4MAjitkQHHhEMRuCA48oZkNw4BHFbNQIjVaxBq0iUsWo7HkcVKw150zIFgYU8u/xSCJIFQkhU3P+NJmYMcmESlvIgUwcmGSy8uD9PtOyPrsnHdyXtGvYA/I5v+K+EoVUTpZJKRbDZiPgh8M7cIIXdYQyjK9QRkg15EKQPZU/Ajs2hvzaVN5FxKvoYu0s/AJVSrm8B/RY8GLukc/sbhRLGPfB6Vjc0u1uS+MDv8d3vZrFZAnNe6qlKsjPSnxsQydl5BA5rNUC74MR/wTJIvDvDiIMmOXIjNpMEUlxBgPq28iZF3UWGNAOIl7UNFFpL4kqRKYQS4NJDtBCc7mHLCSUdL2U5rq/MjzvVbIVPtm9kXPcxLNp5TEQfVXw3GCETPNWJYm3Qk0olWSkuyII0m4R8BYpBS/C1EueS1isDgtktJfK+EFWCYlcBLmg8jiiCJVUEqb92ayXShKuvQdX1RYm75apLKAcbdVR9Z8Dv5x2ls0v7z9L+OWWJo85lV7VdLdHd7MW9q/XFva34sxNluUZzk0ieHMJN4ngzSXcJII3l3CTCN5cIhZavujW9OgzfOFfe/5tH+5SpHyeWOjHxIAPk6xtXbZaTrPIGhx2meZcodVHKhKVjJcD59qaSZKl/JaN2Bw51Cnh1WdpO37cOzK9HZ748wL/UQFTqTsrYHUiZajg+4RLFa5ifhj+DN0SglTSYdbXorPuUX5Bj5PbSf/irHvptK0ZsDLr8S8tRchWJlFLo9oE+ySkEIiENJ2hEgVwcsgvPrfLkSZF+40QLul37cnyVtOHkxOCTpon0BOCxADXi1V4QmE/hCQKVTixE2b8/jVK4UTxQACt1mgkJSX90ofsj08WDOSXipRLVFieUQ7DF3TlROO2bTyHDXZb02vpgJ4Hn5K3Ecz98IcgSFSJkcKQzlxW6YwxBekAa/RLn+qiOs5hMjVGWxxIEhNhQpDCqTh9ZW95x6aeSbvcX+yf/tKJLBzNExGbuLkjhSGcYFbh9DAF4UD55BUO4ZmYhNNOEAY/EpMJeB01uFWqCBytIV3swleGS4ZDjsYW2E+5v4GeUe1sv26LK39dkNjm0Zw9s67vIp9j98/zfPo5dtJoYQivK6vwmhpHeDoQaZrlI8EuuRJUh8oUoxUgCAbiA+JSKBVQdOBfcuVIbBD+6ACHwiSjNBeQcnx+oaYq3LuY8MCpgLOrpv17ncKGFooqi8YvF4bkKrNKrqjRJQdvghkVvUplrDT70bChEashHB8osNn9bL37hmeng1alxO8lG0LGmCl3hPMNb3s8hoArjlO0sKo5ZgjxOLUNU5xazWys37HkHJ8j5gmPGrUda0vO1Ik0Gzm+KukImXQkvXcbU2VbYwFkHVLn2QzCCGRDpMowaYRqND9c80B1eXdNNZe7oodUga9fmINXalsMtnelZxXJ4+UCwH/ClaoIF5k8QvPBqHCfcTY0cea5XQLYL0dlG+eDkLbmJcaqN+Rq2JXABjs4ib2jThF9/NJnlyz3t3afH1HJJnmYVQ5ZLYmn0tVSO5LfOplKblbQdTJAzgki54iyI77NnHkOl/QqdK/knyeE4StHSFUqGUPPiquuVVc18X4gjMuafO7TDIebBZ/C1HIJio3gAKuarFiZXzKozSX2MUviSy74SzDYuRNz55e5FI/4iItCB+Gv4phvo3pVc2JhQPwq/H+ZvGEP+Q7tcrstkxn7j4T/t0j4qd2EDEbC//kSGwn/Qbrt5ICE/23lrBVHfgx1/Nu9/N6xzyeSj7sU7LQ5xzYSbpjkXGLjLL9Pt5GFQcJv0/XdObtYG6+Vz6vUL5IlcTQ6Cf85VlQOGtYasq4d9Dv4wx0J/9Foqw4lV3VzPXRy7qwmJTeQMxTGJOHfyCq6+cYRncFJ+OtKru46Pyfdef7Dc7NG2l+bZ2QSfszKMLKoAytjMBL+k2/dr4lelvSZMX+qebtnOatMgIT/HCs4By8ZkIRfPLb/38rhZsKDJS3KiRK2kPlkjEfCv5EVITCn8bitHVPc5ixo2uxXlyuCrXdrx11a+6YVmUcAO8QXrpQDj06P2cwZcG6TmyKR5d6Pc2EAxFXKyJBQEMOppdhWjT5cDtQOi4xvS2c9yDOoa20fCITOXAb4ZgJ8t1LDpHSA74jLBT1YVTH3tcBVHAvkVy8+f/r7K30eu84NaDrkuGWouuC9uyghFNUwFjCEgrS3aZeZutgtB7q7+7JeIVQZzfQNkoaopOj4svHc+T0bTK7lPDXr5M1SddPcKSeksBsRJ6Q01wuD9nct6/efednYwZJWM/UIlOAry5RBskAWbptH2W/Lv4jZ7Bxd1nFWp60byNXn5sQD6LqqHSkMYYxgFcYQ4wiDGv7w9MlY2HsqlBHAfUkC4d6pjUMXsGQFK4swW36LLoGhSlWQLb9lF/VwVQT2AzpaHdXZ7s0/r5PEq9pmvB2568xGsl+DH+AXMVqO6H+ZO1QYwvJmFVZHk5g58FF6RauVcje6FZGqIWqWGVTjjt8cyb3t7lPOLnZ/fvJm04IslQu6dHDADTk86plO44Vq4dxz22X9olTckrNEW8HWrXpW+FxPuDVpfK/AH+NrGHfZCwBYSACQgQAAmha9IlHClTGTTKxeOF6xveQL17+3PO2cIU10orgywx72hQD0ZwMg3vEyEWi2/39Wj0NtzG2wepxTV9jqcQZfKex6nEorXZP3VbH3Wdyztv3aHhnlTKAe58QVtuzmzismUFQQGxtrgHqc9qtWu88efMF57yJLdfskvq9J1OOsZpXOdFOQjkHqcdI7FW9S7Phjt0VlxxSLnbe2lUnU40SwCmewKQiHZ8x6nBNXYrfYBLl47E+XBMQt3JlsUvU4YlbhtTeO8EyzHude+LaQYi87eO+d/MX31rYui41cj9OAVXKWRpdcodbj/Btj537ufRPHuZf9FZm8tD4mUY+DxRCM9TjAEOJxaoc/oR7n/eNfm6t1jhNsLdPx3MtlqbFGrscRX2Wrx+FfNUw9Dr/46OWPPW2Ffz/7XiYs9ZWa83oc6tqcgxoTt6tsNSatrxZWPc7DIAHv2ZwqXnM7Vbq+1uxRJuf1OFQbwQFWfFasylz9n6rH6chkxoYfkTWTeceLDqT4yJ9k9XtDzpR0j4RnJ11VkvBQ+glTPdIXDZxk6nB4ekybzRltpzllypdAzrwQ+AlIzXt2dmn3y/ucBUuuxCf3SQkwZ3w/eiYn7yBN/0r5ARPmk/coFkIrqeeedNRK7dOojZMaO/OyzgGtrCyCfynnPyWNnVs9PJdW1k8qBwKTBrkDuz6KeBwmVo0oOzGJsnLmHCerjhdFsW0eHkk4NZK8F1REiBZgBY11R8iMV1ozRDpkhTsD2uErrpg8qIfkf4PJQ9fooAiDlBxARCaH9BSwRe5RAY56ZybUf/61e6O1vZlwf/+qKzeHe23K9/Rl6cJHXucTm9TTexyd2PzNecMmkXKnqBLpwiSRmAVzIl96fHZdOryyeuVM2wHkPVEXWDwTQY/IGJeXmhv4auD1Nf0uI9Uw5MV6tYUq5UGQjhGWBAZjv4eFwxGSELVOMQj1iGQJsTJwmDRIexPq1enbuZrrutKAAjDvQjB3ChFFfZBUfe0pBP0ShAiu4xD0S/AvlX7J+6+7Xf1OvnCcenZvlPlbnytU+qUpvWIn3gzv77b8aMyKx8tndyXGicOov03PRP1gBD0Tk6QtIHsALkaktGbtOd5h+LZgcZT32PTSaf52BZEW93T4kEMIytUSFfLcByFP2imjNJ60gP0dB6nBd1CE5BqM3J8xUzPWoWOP8QiWKCZZWbnkzjYQEEVEqhgC18xRDRuOGuGdVGaboNmA9LWsIisp0jwJwXWMDxSG0HazCm2tYYVGmGAzsUhjUOEtE7XzHpMNMUeZgr16Tnjra5lCLVVhVXfgI0gGEymrld1bvhrQ+LLHomzzZ89fBs2iyqqkV2SEZIhcS2DBoyS74Kc60N2VQ75cX7/prtiEOpNVqCNO0bi+WBso4Mou1fCzIMGj0qSwKroZtHT0Nh3YVa5VPMoet0tHBYhO947NMRXHXXpXJpfe/eE9n5LyC67rElOKTtxfN5pcK+sXKguO4MO+smS3Dv0VU0/rGj7BwXApIpHL8farMtg4D5J32yMBtr/frcuc4RkuO/tFR1Xr7iVgegVEvKTrthTQjP4hBDEFbVvK1pl3O7igdWRlse67YG6q4QujyRemehzsUaypd9SlastufKtal9rgBfkV8w0JPa2fHa8k2uixzjLI2X56f+sCzjG4hPeHWB11RMyxKDBqG6Jf1ZhGgkpMK5C4eKpbNfQqe99rl2zHsS1pDe7RtpSDdQOmgPMJfnMz1m8OtMQEtpMxDdQjx2YBeYbYqKeO2UvsRZ+EXrPW9O/zq+jdF2S9hHcbCv69wWzwzzYO/LQKsYI26tbMCFjtDL4JUiJv5IvXljLvI9qb+XVw4+b9cn7TUhR0N98ujymgOZjBdtiEwB1MNxN2MItWn726XDzAdceYz15yv+EVCsfBrJzO5mD6TjeAg7l4Qh1kduqR25SpJR7N2P/NnhsHE3O8WNnX6TNc4pKT56RPHdSGAwezdDrbPJ88nWMHM2dl5XW/vgW4zvDyPDtu0CBPIzoYBes3B1ryJzqY6is/FP/48ZbrdIdOd7qefDDQeA7GhRX+lsaB3wgORlp04F7rr9muk83S0xz2F91tPAejNQVIBwMmBO5gHE3Ywch9T6WXKl1dFOuhiK7+WZxTOA4meg2bg3FZYwAHY7W39RGb2ns94i/6D/tuJ47lxsEEd+7Qrk7Frz5r1q0ab5GW4sGBg5m8hm2eK9Zw7GBmVGwtun95h+uydX23lfC+tNKIDqYv6zcHWvInOpglkipD1h595b61+56GC7JLPTeeg2nJCn9t48BvBAfT+u2Q1WMTrTzWrOuWc6a8dKrxHIzWFCAdDJgQuIMRmLCDyVxV51vL3U29NvYLOTtzn5d94TiYnF1sDmbvLgM4mCSvVL/aY2zdl4wsNqfprqd7uXEwIxpd8yvarr3X1jTpvcx7Q7lYwWTvYt0o2sWxg+k6LOBE5w7nvFcWH/N6nU//HCM6mFOs3xxoyZ/oYLpvbjJ7dYaF85EW3Tpuqzirv/EcTAwr/LONA78RHIyk7i+vOsMmum5zK1G1RgvHq8ZzMFpTgHQwYELgDkZowg7mRsma9kk7JU5TbnR5uKP4wWaF42A2p7E5mOA0AziYbeNt/U9NmOq5cO3rXV9fLL/DjYNZFLktweGYj8uiE8NrHHziepsDB7M+jW2ez03j2MEMDv/U66PnX47ba+Y8sLq70MmIDmYM6zcHWvInOpgx7xo0LPL5rPOGO2ue3Pi12tV4DqYHK/xdjQO/ERyMu9mmn13HxwjWHwv4sKzkknvGczBaU4B0MGBC4A5GxORg9O6pYKOVXuH3VKhxt/bbf0ZNEi/9/u7TssiUlDw9FeyPJzx0rlxXPEtgV3tuS8HMPD0Vpk3YU/OaOsBjacCOntUSbs3O01PhbmiLZwNW3fdM4hWLSasQtDBPT4Umrg+CXvCsnOY+3hBZURbwOU9PhcdjfaYnt2ziMb/jQ+uNHevG5OkvtaDa5E5x+4p57lJ7lPTvdvwIGCqJD/X/p0aLm/fsPGI2pFR+JBsAe1mZ40NOfWwW9Ws+xH3DwaTwwNvrYAesUvhQqyfxk2IyvByT0lULHHJcvcFQaXzo8+xjyQMGtBD+PWlAjYDts2CvCAt8iN/nVwPnplfdl+2ZOPHas6nbwVAZfMhWHpd4d+FJ9/htD/cuOuyVBobK4kNTV6zdlLqwmGj+1got3GxdssBQOXwofV7LhUWfrvGZvmWrnW+trm3BUHl86M6m5t7fi5x23ffZrM+3i1t4YMgSHwro8nbuzfetvKJ8WlmW/dr1HzBUAR9abPUx/p7knesG2wrNvqQXGwKGrAh4A4our3BA7bN0ZtzdrQ6tIPLWxAPnl0oYs2CFR9w19+ffkxPqg6GK+NDCJlVmfXtQwXl5r6xZjU7VLQWGKvEYW3FUJh44YWL4CS8bYcKVH7WLN8qeCIaq4ENK8ZdV6xff8lj5769HDc2LTwJDVQmh2HzuPmjJDZ+lvZ8X6bPnagcwVA0fCq66qHSrabZuM11iNo+Y5V8aDFXHh17Ve1M2rNp6l53tNz6Jf7RyBBiqgQ9VUd8/2r7NZs+oIZKEDd9LVAJDNfGhePP0b5d8hjnt8f6a07hPSAAYqoUP9ShbJDzSYovzuo+2LcwyRKPBUG18aMc3/9gmDmcdd3Q4u/9lsfOzwFAdfGjteHvvnDvB4k0fX5wO+dR0FBji40Mb65xLOfMxRrCq3CLJ0oRVb2nNQuryGJqFHJamzS5/YZ1oo1nK6ho9buxCmA19m4U4MZmoSsGJCStTTzuv3p455mzNceT2VyWdR4XLlUEIBiymALgRfgef4CyVKWBYGAYCYmCE1NKQMKnOlFdUA4V8NXplIz6gazGXjTPvbgZs3Yg6veULwuPdGXoxglrmMoJqXgT53aJOp30fwe/uM2lfEcETwdtFHBKCcnxIKwYAdDODiZOmKmz3lKFXTNymhxSoBnb2PEgaqAwLV6plGAUYeD+ZHFs6EXrCl6gg660yTBaI1pDM1b86bfX23Pdr3j+j5eP9yRQ+2s+hU/jkDnEdN0C4drPCtTbDJCI5Ot2knpGcHT7RgnLFFREqieCHSYZJ+SAAgXQCQySQi4OR66fZk4ybPY+9E27paj7yzMpO/1LYHvDHItgeiBGupWdphyu7E0p6y+0xZacx/ugJXF2CmI4gXZBSgUS3BC5Z/vi9DlaiXU8HB9TrNfFpwWnwOABrNytYQNVx/+PM5H/+Y8/+LfZsaoRuMPbsqTfY2LOdbhQGe/bJL80uyB0thbsrBN/b3utoIIfOkmqBOGDPjrrBRjYsv2EQ9uzEjPufvNv5ue6fspDXO8ezr9HZs3uzogL0xkSZPvLbYOKOPXvhDUerofx7LslXhh65sWv9fpNhz3ZgFV1N44jO4OzZDWXxxwWXvrrOOZryKPLOPL6R2bMxK8NIfwysjMHYsz+tt6ksjfYUrJsiP9rxvBk5hWEc9uzerOA43TAge3a5nO/L2sS88ombd6GH0xqvoSbCnu3AihCY03jc5sIUt51eJRH/6FDFdfLm2iWf1x9LXpybi0GMxvdzEuu+cSAk2Az5sKMzEQmDFWIw+BHEXaP5AFtVhIYnGhhbXF9h7IWHbuN1Cpyo+5fo96ZH0cSIHstA+ROA8W1U1s0RSMD2iX7bCtgL5MEAHSm1rJBZrJ/A6UDCKn/ZwNmtKNkkeDeCJAq7nF+kRLV/BT1SCAAKfYKfgKcpIR8ehnqiF/dLVQwgQi9sgmQqoL5gHO1swxSV6gasau6x5OiT72F3T8nI09KJuJk+LXOH8m3IdO2m+JXVMtclr2KeLDiV8Z4DwBxZAQMaZZQgSuMz4O+04jH9obckMWeRpQUmSxar+jzWrWdUptJ9d5/p9Ta6ptW2wsjkgTCcR4WrpFrqGSyoFQj9bHo3KVgATBFtuWUzNk1wPSNcMfRKSserEV4ciLYqq2jNjCRaVHw8v5teoVYZcR57jhRmBfcFd4Kvl/Bc7Tr9zIgpDYOoCT8EsZ3mKteOkWeP26SdAkTOb6c9NsVwx+jK5BiFV6rcGdFuj+Pf/QZWnRVwWEz6NhUhAUkE3PqEbLJSyG8kVdOdZDEGLJuLlGEAcg0NCvaYoNzHYItDTa0J3FiCxB46eURq2i7/F6aJA/lbemwqtLwNQH8KlP8+VfkHA+WvfLug9SkCcR5Q4HaDMlyqgtGGUsG30ei4mg/Q0zShgP/S2DQ13I1WjpQyMMiXWZVqJ3Dt6zI/oFRP0ZCeFmQbE4AVHdBtDH49Pxtzs+JR34UvH3luivIRLPfeGMHBzoQ9hNlMCA+uUzfrmmAwF3RLuGEe8Wt3twKVCrU0MBJTD6wmCr2K+NxluPfNWc5TBwwVxI2yIdNbWuQ+l778JQ0WBiM/Blt/FGwZdhhsuElwYzIJZ8vVf9+irdIr+t0bT/vLE51J361sDynGI8H3jpTLEbaAKWC2I+6DZCSYzsoUIyRyWZBGyUfKIkL5SrBMUeluCahZepb3pEmBPKxHlHzsFlPyLQaeUrpV0Llf2R2rw4O7rlI1RoaDIYYEwLt4vSJeJZp5zP065NWvuVO6kMNn7EH08FlzOb/pTK1K4CBkSIHITUWFDOlNnXnxtxjDZx2Rq6FFTkVSNahaSPiud17oUTwwy/Wv8pm7Xn16Q2n9jSsIOqVDHuWclMYG0yQWtCbfMgqTkLn/6HBpXhzq56nZsfcEIa1Ubg9/R23v6jYIBrkhUhWlJA7+Kajhrow5SChY8AiwqB6tETVSylTHVJBJUkC5DrbHZ0G2AEWK2RybBXpthFX1xrCFsYKmfhdX/SAkFLUmfi9+o+FX4QH/RMUl215tKYkJ+K0QiQnscmFAsZQVCqDiuKNyZ3JU/JD6+6fPmSFcdHy7eMWXxLH5Mv8x2GKmdZ3OLH5Ua6kLix8vXxs8qXrnS52PfRXtalZU8SDGuX9BKVlh4uIWUVlNhdwSRA6ttZB7mDzk1No4biBP2x4d0ePFaaf5P2rmjKk27xoHkNe8ywZ5mbsE5J6cVWWWJyA3QFUmooiSqMpEFFESVZmIIkqiKhNRRElUZSKKKImqTEQRJVGViSiiJKoy25Z7EPXu2jKXVWnmrx56NrSglbxB5UVqH7X8koOSNzGT/Ot5nrC7s6u0yxazoCHXnlmS5W+t2ewXyZVqGC5iCRx6UF6CYbbVc5EpgrDkQCD+AGxJCdeZeBmCbul9aslpvq9IAwf1S3rQ+7e+CSZZBvLECDywqF+av4Ym24axmSuhaAAe4AfmuqCm/opEUc2ZHrGq1IdbApd3LEiurXC3sdNhfvQm7nazaQ2iwLLa6iYyDmfCqpK2JCIvVkiUakvjW9dq1Nk7+VrFaz9qvr/IYVnEpJ7eH05tHuUSp5zhNl04+hgHKOXcYEPp2g365gNbnGbrS8wrbLJhmBFTDi71iNoz5lTJXzmbcgbI7YXz7XzltUdNExsxn+tgiysRMiEHCWxr3tQvjG2qzR5CiALz9FyDHohkm5Dg/FoY92Hq/hrC/assQ4OCt4lMIGsJQTJnBSlHz7xuQyeZ5ptrt6pyVQZLLDIbKPWH7nF3M596LTuwN+uzm90hchaReC49i6gdKQx07jPmdCE657Q5XS8mx/giwFts1vyLaMmGcy6xPu596RvxdE9oxgBuXXI+V1vqNlKpV9tj6gELXXMDOsJ2HximS1CpzqE2oHgAts03CyFN6/x81Cbp2q2Oq/m8YWc8u5I70Flg+VgGt04azM+KU01cAa04D9jpCxAsX5SOQRbuJP18XTkMLCmYacxQNegqbTl4jb9oY/UxjxfVLt2GbImcwb1ooPIMGTgkgDBtZoVp4U39nF3+KTRqrtloKTRoaTAdgSk0Pi12tMegwe2QN5MdEjU+17zDlHviGJfYtxEdqtWi7kOHScL5mn0axH45U2jeWHMfke3BzqVI+ArpSHhJqpIF4g5SJ7NEPdzF8oaonfI8w7pmyWBTrUcA1wuomDwKoJ6epZehKoeloTSbu+B1kN9S/LPbl3NVZgtS6vyUHjg8mHIOCXsAPUTSXM5vzlHPuRU0uwXgKQPhKYOac1vBkuVzll7VJGU178PWqHZD10gHr0nvBUtuJLfZmDo3gZz909xPz/7h1/PD5+LJOrvCTts5LRy2J2WRvEI3DvDJymLDB6iPMSoMzLHCjREaIDrzqH/oZSNstbhl/SWqEGkEm9De3NhX3cVzvdvkYUODF7c/3YAsNM39dKHh1zkvrgVSOcQqla0mJZXsI4RU9HJf5TGDFy4Nwo0vUjCju42oFdd4hvvmvbOe73PfUJQsGC/sfrpg8OtcC8bRHjcncJuRtl6Nau7Me52l34KshhYDbGEhl+WHxxSbpbWaz7B0O5I4rFXV8s+aU9o6aB6AaOuADxQGIulZbIjsziL8ug+TX9+50DOnX6eO7tE5PyLMj98kRyn4J+peDNNZu8IgO3D+yFBZYCgIK+HZQolaDTtyaaticPev2+KDek4b9b50ndRc16dONAuvE6VVvziCVZ0v3a/rmQGviYcamgYWWJNFeIRJ8ybIL747+cW0O7sOe8e9uu05ceKNVWTlYwpstAMGdv5YKSnE0AFVo8FvimGol8Xq7I1rlKatPOmgFqwHUmv2B2Ara/jv3JiSP9Z7PJohmuLPjdrVHq5rMcCqogCDvUR9tZPZ1+QTV1Rt4qjjFzXNwUHmqlwWW+bq50MC8+5MmHsfcLlwmndCFNW3WifZcw8yoXo5L1IzOrohZUK6hheIB4B7igB3yikt7XSyk1RmCrbXojdjJY/runEDFtlrHwM4Z6M2bmCOQvUY0fOL8CeInl/wk6g9v6g9u6g9v367pxf1RkRPLybbVMtFpgI2R58WhAubbxlc96ml9xLJkU3blllMILcgFNBnhyDfBkPfD62a3mFCZ4+FD4ue3FJa9q6geyZgdqyE4nRAVS/0BqPRj9MQzbSYQPqdRo2rG0UfimhczPGIveT5z1IS8lajbo0aqShNef6wz7fuX11m3Vw058GscVygpGJFaeBjWhsm1moXTb9rGBjpABC16p3swzSPovsw/HphbHhjGvMZtdFkY4chhdvTHv/P7CmVzsdA9vTUIzZ7uvrRf/YUl0+TbSJ7uw27vGNvzgr+52XSBQ7sKZWmiQNLceIRm6XY+aiw7WmHSh6Lxzet7xi9xWrz2LYbUjmwp9RNAg5QWs2K0vRHhWhPqT7U6PYU0xhGewqQwu2pn8mvCajTiZtitjZFqr2dIwp32v/BMXTnlTk9OFgSuDxiWxK01ULuz1kxWzkCcgMUsyE48AhTj+DAI4rZEBx4RDEbggOPKGZDcOBpKQbpHHhEMRs1QqNVrEGriF70UNjzOKhY68mZkC0MKOTf45FEkCoSQqbm/GkyMWOSCZW2kAOZBDDJZOXB+32mZX12Tzq4L2nXsAfU+iGJQiqn96dnMmw2An44vAMneIFt0fkKZYRUQy4EW6SycdhSeRcRr6KLtbPwC1Qp5fIe0GPBi7lHPrO7USzhBovXd6qHN3FKcpGqNxWdp2KyhOY91VIVbMJKfGxDJ2XkEDms1QLvgxH/BMki8O8OIgyY5ciM2kwRSXEGA+rbyJnXNBMY0A4iXtQ0UWkviSpEphBLg0kO0EJzuYcsJJR0vZTmur8yPO9VshWu69/I+VuTzLTyGIi+KnhuMEKmeauSxFuhJpRKMtJdEQRptwh4i5SCF2HqJc8lLFaHBTLaS2X8IKuERC6CXFB5HFGESioJ0/6MERNr78FVtZfJu2UqCyhHW3VU/efAL0dksvnloEzCL/c2ecyp9Kqmuz06mLWw31db2N+HMzdZlmc4N4ngzSXcJII3l3CTCN5cwk0ieHOJWCgzcfDTdveripfP7NCFtzgjK08sNGjhPxfiPFM9Dgx92LiheHwQzblCq49UJCoZLwfOtS+TJEv5LRuxOXKoU8Krz9J2/Djy0qg8nvjzAv9RAVOpOytgdSJlqOD7hEsVrmJ+GP4M3RKCVNJh1teis+5RfkGPk9uhT3HWvXTa1gxYmfGe0lKEbGUStTSqTbBPQgqBSEjTGSpRACeH/OJp1SP3b7hmJ1i7sMvZbU+ti5ETgk6aJ9ATgsQA14tVeEIhCEIShSqc2Akzfk+NUjhRPBBAqzUau3fv/qUP2R+fLBjILxUpl6iwPKMchi9I2fi98Xh40HOs15LFlc0/b5TcppCo4g9BkKgSI4Uhnc6s0rExBekAa/RLn+qiOs5hMjVGWxxIEhNhQtCF9EdEN5rtP+Ox86Fsfc6uDeTUmLnmiYhN3NyRwhBORVbh8ExBOBC6vMIhPBOTcNoJwuBHYjIBr6MGt0oVgaM1pItd+MpwyXDI0dgC+yn3NxjKs69LOou3dxX8veJLvPWCJWHkc+z+eZ5PP8dOGi0M4b18wia8DBMiCiITaZrlI8EuuRJUh8oUoxUgCAbiA+JSKBVQdOBfcuVIbBD+6ACHwiSjNBfQnCLp6sbbX5VyX/9XkZ01jm4YSeutgyiLxi8XhuROsEpup9ElB2+CGRW9SmWsNPvRMkUIuyG8G/TJ4cCpNj5bywwcUyRxEjl6NGeMmXJHON/wtsdjCLjiOEULq5pjhhCPU/sxxanVzMb6HUvO8TlinvCoUduxtuRMnUizkeOrko6QSUeSw1SIKVNlW2MBZB1S59kMwghkQ6TKMGmEajQ/XPNAdXl3TTWXu6KHVIGvX5iDV2pbDLZ3pWcVyePlAsB/wpWqCBeZPELzwahwn3E2NHHmfYTYL0dlG+eDkPYMPaQlFsjI1bArgQ12cBJ7R50i+vKddzerX6uj+5Z6DmkjTxchc4+ZE0+lq6V2JL91MpXcrKDrZIDcO4icI8qOwDZSd5/qVeheyT9PCMNXjpCqVDKGnhW8fe6jldIxrovmD/pYYdb7FgWfwhSsqDaCA6zOsGK137ChDrGPWRJfcsFfgsHOnZg7v8yleMRHXBQ6CH8Vx3wb1auaEwsD4lfh/8vkDXvId2iX2/2ZzNh/JPy/RcJP7SZkMBL+zc/YSPiDnxUGCf+kmB5PKypGuO1vsSzFt/fWTRyeNufYRsINk/XP2DjL5z4zCAn/glcBvr3ebXVeyE9/9HbFuNNGJ+Efw4oK0BuTWTvod/CHOxL+slXUb1eO4TluaD10e/9g++UmQ8Lfg1V0XY0jOoOT8C+/Hvxg3rqePtv8tszP8Zjx3cgk/JiVYWRRB1bGYCT8pTbElt3RLdR16mzP4LbXxZdNgIR/DCs4wc8MSMK/ptqUkjXvVXeZZv267qroUKUJ0FlAhHqwIgTmNB63DWCK25wFTZv96nJFsPVu7bhLa9+Q6d4tsEN84Uo58Oj0mM2cAec2uSkSWe79OBcGQFyljAwJBTEc7HKtDNaLy4HaYZHxbemsB3kGda3tA4HQqOcA30yA71ZqmJQO8G3wvKAHqyrmvha4imOB/OqnRg2QLposcFt2ymfHZ7d0s4L37qKEUFTDWMAQCtLeRjxn6mK3HOju4Of6NcLWTN8gaYhKio4vPVo7lYl9eMAran3Fk4ca/1xGOSGF3Yg4IaW5Xhi0v2LW79/+ubGDJa1m6hEowVeWKYNkgSzcNkse8I5a8hZ57lVm9mu+6yOlzxzxALquakcKQxgNWIVhaRxh0Jpj65OxsPdUKCOA+5IEwr1TG4cuYMkKVhZhtvwWXQJDlaogW37LLurhqgjsB3S0+rh7Ve/rHg+ct0y/s/tIx4hvZL8GP8AvYrQc0f8yd6gwhPX9GZuwnhp9mUHU1egVrVbK3ehWRKqGqFlmUPwH3557Z8d4pPgGzVTn9O1akKVyQZcODrghh0c902m8UC2ce/Z5rl+Uiltylmgr8uWCJS/nRPssKv8t1CLJQWzcZS8AwJEAIAMBADQtekWihCtjJpn4687c+BJ2353Xx59pMiXgTQuKKzPsYV8IQGk2AOJfawPNgf/P6nGojbkNVo8z4gVbPU65F4Vdj7Pz1pqhD8pmex5c1G9gelZ2qgnU46hesGU3B74wgaKCFStWGKAe51G/LWqzlk4eG+/8267uwidZJlGP48EqnbamIB2D1OPM8qnt+X6PrfuuCVkf1jxSzTWJepx6rMIpZwrC4RmzHqdcmGV0rX/fOC4vkz1li7lVlEnV43x9zia8x0ZfJppQPU5IkyI86wkNvNZnzZ9jEzbttpHrcS6xSi7F6JIr1Hocxx/t3kyt39E17q7148bfkq+bRD0OFkMw1uMAQ4jHqYP+hHqctePtvXPuBIs3fXxxOuRT01FGrsf5+oKtHucCPaQtlHqcZInV9VPW1q4J3VKOPp+6RcZ5PQ51bc5BjcnHF2w1JpkvCqseJyLjia/1RG/HZWYhnb99fhbGeT0O1UZwgNUFVqySDBvqGLseZzCTGRt+RNZM5h0vOpDiI3+S1e8NOVPSPRKenXRVScJD6SdM9UhfNHCSqcPh6TFtNme0neaUKV8COfNC4CcgNW9jnXMpZz7GCFaVWyRZmrDqLeP70TM5eQdp+lfKD5gwn7xHsRBaST33pKNWap9GbZzU2Jk39yHQysoi+Jdy/jOosfNfcx6mlfWTyoHApEHuwK7/H3vfAdZE9r0dFaWLoiKIYOxYQNS1lwVC6E2w7NojCRINBJMgIhbsFXvBjg1FRbEr9t67q667NixrW3uv371TAjNzZ0hgSPL7f8vz+Dwyh5lM3nPvOefec+57hpCPw9SKq1LCpkqHvDRf+7YXRMtb3D+w6WSSL40FA63Airh1R+hMYIWLKIesCGfAOHzFF5MH/ZB8EZg8dI0OSrFoyRNEZNUg3Q9skXvQm0C9HxvqP8ZtWVXJw8xnR0/HhZkJobRiJcTpS6uSR17nE5v003t8ndgs2rzh0sje23SNRLNpJGNmWuLzoE/+8wY5qBdObtyLuifqB4tnNMyIjHV5id8gVAOvj/e7TFTDkBfr1RarVEghHSMsCYzB/g4LhzWS/mqdYhD6EclyIcrogTKp9ibUqzO3c/HrutKAAjCn3oG06T6Ioj5Iqh5yB0G/BCGC6zgE/RL8R6dfCht3u2PUiWdeY89sS7V4HX6VTr80ptvykTcTegakH8xY8Ch9akdSTh5GLTI9E/2DEfRMbJq2huwBhBrROTDLj6vazFoUtF3p3fr2rv2tiqMt/unwIYcQ1GsFVMhzF4Q8mjtGaTxpDfs79lGD7xDfP99g5P+OmZoUz7aRwxEsUWy6svfLn20gINIkqtCB61P/U790tjnjNTF27GGP6h2vc6rMXIQ/CcF1TAhKQml9OZUWYlilkSbYLESEG1R4y0jtvMd0Q85RtmCvli/R+loer5apsKo78BEUg4nU1cBO23oPe7zUe6/LvmZBwVVX03VlHpqokfRTaAksBLRkF/xUT6a78iyU66uI7opLqa05lVrnDoPri7OBAjHYZTg/C7pFAI0mhXOgm0FLx2zTgV3le4inehB26aA3otO9VxNsiBMuXcrm0jvdvxNurjjvv2z3/tIjd9QcT62VjYqVx2iEsK8s1a1Df8XW09o5PCYGLkUkCgXRflUOG+dB8m4PJMD0hoNsr4CIl3TdlgIjo/MtkpiCsS3VWCyofKu4dWS2WPddMDfV8IXR9Pg1N235evhg0MyRWU//MX+VTW/wgvyKhYaE9KbrxZxjcAkfAbE66IWYY6lA2v6WflVjuAaV2KhA4tIjIL31nQmbRGl/R0SPm76+AWNLOUY3YIo5n+A3d+P85mCUmMB2MjYC9cixWUOeIS7qqS7hm1OrlRkrGtNLWe3k9ps51HEJ7zYU/AJO+J//bRoVYsVt1I3PCFjtDL4JmqqD1nG3iJaiuLv57gVMAcPB9HXHJgThYGRsDkZvPh83rfZKns9HM/PgiH4nW3vvq56WvCCpZkoBPp+mi855zVnsFJp+dOzjf7dNtC/A53PKY8JvJ2JWh89sMW3gmT7WoQX4fI5W2FtnkKM8fG0p0YQ3d8SLCvD57HYu659QPc9756blE+N7/TG9ILchs/MvyW2I6PxLNupFdP61IEQLqvbu2Ts3wye1y1+Bj/74CIkZLQlRuX3lV9vHdw5ZUuvs249hweWByIoQ1bLx2/Bi3+zg3SPjRkvsqsUDkTUh8u10LGp4/ZPeM6qv++IzYf13ILIhRDl3hzZwaH/ZLyvq13uKub06AJEtIbp3dVzVVOv3gcuazDk91ulZABCVJ0TN/JQfmuxd4rNkaNJB/yP+W4HIjhCtiR1RLe1E1eCV9mtG1pnRvQIQVSBEZeK2H3Oxey5e+rV3Ro9D5j5AVJEQvfl72+W1MQNES/6Ne1l67bb1QGRPiD48H9d5h3OHgJ2SyIHjYixVQFSJENXo+GL7mpPpolUfZjRNuZqRBkSVye81eJ7L0PGa8OWWV5svmPIkGoiqCFhpoBwI0fovQ2PrzggSrav466m/JJMcgagqIbqbuK9jTE8/vxlPHEcd6PutOhA5EqJRdw+WutuwpdeyrvVanqgyeBAQORGi74vWN1zXeIjXnn7H/7z59fU6IKpGiB680WTeazsxaNy8am+7D/1jCRA5E6Lmjod33X/5OmTRpAGzo7KPQKCqE6LYuz+Wjh12wDtrfvs6fzZ+3gCIXAiRrFXt2W+7+IRuTuluv7LRvrpA5Erqa3sb8xu3vvqsvhT9plb1BEjaWYMQ3RfXDxr6SCVetCw3u/2HBVOBSEhOh6i3i5KjAkJ3erqM2dB9RH0GUVVNAQtR1QPF75Ia520C5n7+263tdKuLPBBVxbCZqCoxuzctPHZKvHhD3tAz1YdlUJeu4iEJCqUUcfqCLQCuR9whJM/LYm3q1HEgIAZGiOgAqONxC7qBQr4ac1VNCHRdSLiBZdULSBuMyhxGwIbsL/RroJl/GhV/EeR3+6f6wnZPHsYGLL/45Yj9kBobeTyMynOCEDb4+eUFWz20I1iVCl/oFRO3iJSBoYHVPUllsMWRUi3Hjp+A95MrsKUTOU6EEhU8ca2Mk0ejK9WGpjQsVXN40JrFre/KDu5YTi0f134Os3w8X8R33ADhsuGE69O/JhHJMY866hnJuRMTTZqvLk2sRCOMkwyUCUEAom1hzV5nbpGjPDS8xmb/TfvMjkWHKmrQKg2JxyIqDUkJ39qr4E4Mdl9k8b8HNtgZ1eZ6AleTPBRFFvzJ6EAiwfJs2Uuscm4cMrmh78mTnWdSLXWRjmDxAJYNJ1hgqBP+pz+b//mPuaFIzA30CN1gzA23X3AxNyzVz1fqyNzwssNvf9kdrBSYO1c61OnDufs8Oku6BeKBueHmC66D7sf1c5ZFZW7o4rqu0Y5LA0LHfq5p1shhTaLRmRu2cKICxo2JVpkWtsHEH3ODz4OyLWbF3/da4V42RPqgbX+TYW6YzKm6wcZRncGZG4SlMjcoJ/cQbXL8Hq08POmFkZkbMCvDevT+OCJKKSnmhhNDhHaD5+4IG7ejWsDKaXnrTIC5YQsnOEtfGJC5od44y7tuK6VBUz+8jb798RC1KZvxmBsmcyIE5jQRt8WyxW2nFklCvrep6j8609X8ae2U/dRoNATEaMIo3xDdNw58tM1wYTcBMhIGK8QY8CuIu5KFAFuVBucoAMaWGK8w9iJCt+E6BU70/Uv0ezOjaFKixzLw+DeiLS4jVPICGhj/Tb9tBewFCmCA/HaZgiu9D5295Tf+37lttw1924+WTYJ3Iw4oYJcLi5To9o+HnreHvxHVV4xBKGwkFmz8plfdsSMGEDku3KRyFRi+QI52thZNrIVbVz4OXVX1ucrKeRiV1tjSl7yZOS3zRYUBNtru3LLLNs/EW3M+mB/o3KouD4At5AQMjCijBFG4z4B/01zA9sOkw7Lg0KU1pksOq9rE/Mzcp5LSgRvTN69KvXX9pz1GZAKUIR6SoJJpy56xoNbbJ8rttwbFC4Bpqt0TkV5bPDAyeFPr1+/GrMlx40G1Kk7V9jaSalHx8Yxf9Qq1bEIK2HOkMkfc7Xo74NQQr/QaFyJTsm7spSf8EIeq8Ku8t5X2IGxSDqqoJMcDm2KEY5SzOUafq1VvDW611Su7R2/HKV33UckDKsPiVw3c+oQnmWWwtl6mR8f4JiJlHIAcL8HFHiPNfwy2OMxvFA+LSnXyiPS0XeEvzFAH8q/02FSY+hqA/tgH0UC+Lxj8Ca+LW5/iHVIAFLjdANsgwWhDGS90I5ufA/RwAiT4P9ymqeFutDJJxsJe8kdWl7SWDZ+Jlh6z/7u652Kqty3XFSs6YNoY4nphNqbap9sNkj76hW1b2LaeddMum3nYmZgIYTbzQbRMT2+AwVzcLeG6BdSv3d2KVsarZdGJ2PDAaqLQ3FrCu3/vuHwkYNcYB6/AD/eoDQ+t85/LXP5ShCXBBoPB1hMF2w13DDbCJAxgMwlnytd+27SlMnT8m5fBHldGiinfzTZShtUwCsMSFQqELWALmN3J+2AhLDZm5fGDJQq5FB/kSXJNrFAJlikq3S0BPUvP8Z4MLVDFekTJ1V+zJd8yALqvXhV37jsEYnV4cNdVpsYKsTHEkAAM8Rj/vW3nUeFTtz8tVevkje7U8Bl7EDN8xi8XNp3pVQk8hAyOELmxqJABNqMye80aPuuInLMWORVlqMGhhYTvw6bBdrNXV/IZ0/rFb19821KDahtigKBTOlQp7wXRbthI4kDr71dGqWK36JycICuIQ+0CNTsewSCklSk84N+oPfwD+sAgt79MRSuJgz/FNdwOmIOEigWPAIvqZFzVSC3THVNxJkkx9drXg5gFr7xRBzKbYLNAr40wxzAMWxgr4PW7xNCXIqFoOGLR0NU314WPaWVV7sDg8Ju0xAT8VojEBHa5JKDAhjgrFGCIE45qIJujMpmef3RryU/74xJo+bf0FVfLv2layBUmDzm9No4fyEeZlWs+q21M4CJNuxV7nzn/ygPkg99yQR7zloQ8jreqTDsScgNUZSKKKMmqTEQRJVmViSiiJKsyEUWUZFUmooiSrMpEFFGSVZmIIkqyKrNDmuyD2WKR37yphzRHrC2WMEre4OBFjj56+SUPJW/xbPqvFXzU/dZmK781ZtJ+155UoOq/Er7ZL1Io1TBcxBI4zKC8HMtsq+Unh+2OY2F/YPwB2JISrjOJMgTd0vv0ktNCX5EBDuqP9KCWmfYSTLIbyBMjYEUe9lKvvWtnPNuGMWkooWoAHuAX9rqgztN+DH3U6XlIepxbZo2JeduKk2sr2W3sizA/+pJwu68Y5IRgWa14iYzD2bCqoi2JKIgVEqXZ87vG/HOtvte6Bm/nrus/NoDHsohRXcLen8wc4pelnBQw0Sf5MA8ohXGi5PmSufnAFac1jiDnFTbZMMzIKQeXemTtGXuqpOGUT6U2dvw3ZLT1WRdVb9s3RsznejYmBhEyIQcPTw9+qV8Y21CbPYQQRRfg+4QeiGKbkOAcS/HN7fe0SsDMiK0zU6+N6WECWUsIUj9OkMJe6pfXresrx7+5dqsqf8hgiUV2A/Wy97oWbn7ZQWu8rFe5hXWhFS6Sz2VmEbWSkkCnLSc69V6SgZGSzTE+6xoWYtbks2juyrN+y8MDuzM34pme0IwF3JrUfK621C1JqRflPv2Aha65AR1huwsMU2MYwp9FbUAJYGti5gZU8dO0vzjb9fiz70LvsQ1jKgY1e05tw2yN5WNZ3DpFWJgVp5u4YlpxAbDTbhCsCNQYgwwQlV/p5evKY2DJwExjh0rze501ZXeo/af+2WpLN7taZ6mWSAzuRQNVQGTgkADCJOCE6bmezq7wFBo912y0FBq0NNgYgSk0ISN29MCgIexQApsdEtU/26TNmDshGX7LX2vaOLnQ96HjJAlCfJ8GsV/OFprXx+8jsz3YuRSJMF6WBC/JVPJowkHqZJboh7s43hC1U15ArGuWDAybAV8ArudRMXkqQL3hF70MVXksDYVv7oLXQW+H/xyeutb7vc+u121dxW1vU1uelsUewAyR8MuFzTn6ObfiZrdg9y8Ijw1qzq0FS5bIL3pVk9ji78NFkv7ri5tj3R1bB6bWO/ZX0IIKWdTsH34/M/tHXC8MH6ereU8HN98UOsq/oUWP3j0G8IBPR058wPAxRoWBBVa4MRgHor2A/qNfFzXbzhJVf5mGS2lPt0hrfVmTFZ7TceBVV2X3SKrS8PuZSiOu815cC7TiwKmV0iallVcHSK3o5b7sMIOXIJMSxhepmFtJiyftbbVRtNSx2eDgViMvUBUTit3PVAxxnW/FeHkQ5gRuMzLWq6lNxIKAL/otyJy1GGALC4W8MDwi1tY46T5oSkjW9tAte83s99AohfAHICiFCEFJINKQExGbL6RfH8Tm13NmBb/r0a5t4Ph33zUWR26+peoY/0Tdi2Haa1cYVAcuTIqVR8eCsBKeLZSo1ZANUlsVQ7h/3RYf9HPaqPdljkn8uj51op+JOlFG9YsXWNWt+1zcDHh1ItTAyZMwgl94hAl/E+QX93g+IyJOeS90ruuG9/7mnVtQBx9bYKMVGNj5Y6WkEENPVI2GsCGGoV4Wq30YMaLwliaUg1qwHkiN7w/ANgrw//kxpTAlbDgSUbo/N2pHFbiuxQBzRAEGeawBYMRkVpl84oo+mnhim6SnOXjIXMV+5spc/abFXM2GedhOv/OnBEdFqd2d2smfBlWkMm6HUohQmYaUDWnnUBAPAPekAXcqaHSqOtlJOjMF12sxicCpcl03bsAi+9NXAOdU1MYNzFGc/YrgmyT9CYJvEn4SnW+SzhdJ55ssMp8k/UYEnySbbXLxk6uAzdGH/vZ5xe+u9Sw9vKf1bnCsQ27dP6n0t97M2eFdKLndl46xZRu2eh6++NWwvHsHXZcVd88EzI53UJ2eqOqF34D07tfjCCJHNpCKQhL8/dSd7A61XEKn3rFdETylFvV8tW4kwXSU7rauPeLhN2lg7omnijoNfxS3hhOidJYTpV1fGRSAnNUueK8FGBjpABC96p3qw/BHMX0Ycb0kNryxEfMJtdHk5o4hRdhTzf+YPaXT+RjIntbitKcfvvxnTwn9yHwkVcZpngfNWh+T1aCcx1Ie7CmdpokHS+HKaSmsStyevrCdJV7wOiR4WdNOb8tnXR7Bgz2lbxLwgNKHL1wo5X0pQXtK96FGt6eunPb0g3aBn2jyawL6dOKnmK1FKafXaaIE3x3vvWJzrqZF8rAkyPjCtSSYoYV8MG/FbOVJyA1QzIbgwCNNPYIDjyxmQ3DgkcVsCA48spgNwYFHFrMhOPDIYjZ6hMaoWINWETnE6Ox5PFSsJfGmZGsDKrloPJIIUkVSyfScP0MnZmw6odMW8qCTIWw6Wbjr7u8THnwKzN21PXfzwHvUc35lIyTxMgWzNwqbYXPzFibAOwp06BLGKzUynFwI0nNzcdjSeRcRr6KLtbOOilYpFYpI6LHgxfwjn69+pVnC7T1+vL6TVS58pvr0oBcTnFgrqS26qGUqSABOfmxdX2ViPwWs1YJddCDxj1SuIb47iDBgliMvNZOmErLNEYM1t55YMPojMKBtRILUCSKrUImqvzw+RBZDcYDW+OVI2O+04HVL/HpnZULBq1QrXLlrPfHlUR+P22EgRqjguUGNHH8rc/KtUBNKJUkKjJdC2i0S3lKW8CJMvRS4hMXqCqIlE74ggF1U5RKFCHJBFXBEGpVMEqf9HSMm1t5DDNVkk3fLdBZQnrbq6OOfB798/iOXX97/kfTLQ00eczq9quluj+ZyFvav0xb2p/DmJm0FhnOTCN5c0k0ieHNJN4ngzSXdJII3l4yFYjpWiro3vpZoz7ih31YfrhFeIBY6PCb5wI0dY7zHdT/f227Y49sM5wqtPnp/jEbGy4NzHcamSRNt104nHTZYu/bD37natXf/XtLt2o8PXPg+vU2Y38wj5g2P9/s9xgTate//ztX8dt13E+g5vX79egO0aw8859r2+e/p4Uv3PVgR1WYRreOokdq1z+PUzmhT0I5B2rWXibiUp94S67VEEDdle1LmYpNo1x7PqZzupqAcgTHbtZ8NP38193QP750xj8pFDjxG7Utr7HbtfpzKa2Yc5Zlmu/b9Ntm1HD0Xe0/eu1b252ULarcqw7drd+XUnJXRNQdvKrF27W1kH6us8HAO2T575ZiOEZuo3BDGateOxRCs7dqBISTi1OFscer/Urt2elsMI7drj/jB1a69zg/DtGuv9CF0+aGZoYF7P/jH1V9VdiDv7drp5GY8tCAP+cHVgrz1j5Jq115hTE7VueMXhq3q1Lp5suuAXby3a6fbCB6wqsOJVYUf/1+1ax/BZsb+I+EvEgk/vZuQwUj4BT+5SPgPMm0nDyT8f3T09pxZq7Xf8hHOCbLV6VR68uKdNufZRsINk28/uDjLHzNtZEmQ8K98dTbrxo1GASs9nrXxWCluY3QS/qucqBw0rDXkXDvod/CHPxL+GNurv77d1zR0XO3Fu+ttc6W2rjcmCf8GTtWlG0d1Bifh7zhr0G+fq1f23ZA0/nmkzTVaVsXgJPyYlWFlUQdWxmAk/Dknr52WdBAF51Rv8O3ihXrUzJpxSPivcoJz8IcBSfjbHvt5YN8fM303fFrawzbLk7pMMx4J/wZOhMCcJuK2kWxxm9i7YaOfHa56r73tmnV56cvmVB4B7BBfglIBPDozZrNgwblFfopEnn8/wYUBEFcpE/vHghgOdrlWxujF5UDvsMj6tkzWgwJCXWv7QCB0GYZJeQDftfQw6SLAd8TP4h6sqpz/WuAqgQXyqy9W96iVnvNKtPSwXZMqvROoFNdF6t1FC6HohrGYIRSkvT3/k62LXToYu7k/9WuEjU9fqay/SoaOL+uuWSjwHl4xZOqNDY6bj8QIaSeksBsRJ6Tw6yVB+5vJ+f1n/TR2sKQdmXoESvCV5UqpPJqD2yaihdmC5IvbfLddrnhfk32hFXWskg9gjlWtpCSUMYJTGQOMowxGc2x9MhYewfFKDXBfkmi4d+rm2QEsWcHKIq6xsGmH6FilStpY2KyDepBKg/2CjlZvRl986hQWHrDo8a6g6Qebr6L6NfgBUZpkBaL/Zb6oJJTVlVNZPiYxc+Cj9IpWq+RvdMcnqvqpOWbQmEmarMC8+UG7Gt4emvGx4r7iLJWLu3TwJAw5POp5kcEL1VTcZetP/aJUwpJzRFtrWt3NPHFMIVq54vSJwOcd5xt32QsAWEgCcAMBADQtekWipCtjJ5mo2yzgqGWL9V57LHsNnjpSs5fmygx72BcCIOUCYF3ATzLQTP0fq8ehN+Y2WD1OrOAERz3OL4ITJVyPs2JzRM0vEx6HTRg1c+vqFqlrTKAeJwZCwprd7Ck4YfyigpkzZxqgHudG+qvN9o2yfCY4lWr23SZtqUnU40RyaifAFLRjkHqcdjWmnn5/VRi+c9cfp9p87nTRJOpxOnIq5xdTUI7AmPU4sbHXMtv4rwybvSVo0pkOYedNqh6nIafyhMZRnmnW4yzY5tF6RYP3fhtiDi0e/LVFXSPX4zhwas7G6Jor0XqcFbO7NT1lLwydt3PHsbZzVlwziXocLIZgrccBhpCIU0f9X6jHuS+uHzT0kUq8aFludvsPC6YauR5nHcSetR5nDjOkLZF6nK9pY05VUgWGZl7cePJ11bMi3utx6GtzHmpM1kLkWGtMllKR47Ee530V9YcAs6Vh2zovaFqu3pJk3utx6DaCB6zmcGI12bA219j1OKPZzNigA/JG8rB1op37wxX/POjxkpop6ZQIz076qyQJscwTpnqkL+r4ytUJ8PSYNpuT7I6fMhVKIGdef/gJ6JaRUW8XJUcFhO70dBmzofuI+qzvx8zkFBQyxp9lFDBh4QWPYiFGJf3ck46jUvs0euOk+mLBo0/HBQIHEfxHO/8ZU1/c8+Gn47ZRMgVQmEwaCOz6EPJxmFpxVY5hU6VDXpqvfdsLouUt7h/YdDLJl8aCgVZgRdy6I3QmsMJFlENWhDNgHL7ii8mDfki+CEweukYHpVi05AkiMs1XokXuQW8C9bFsqP8Yt2VVJQ8znx09HRdmJoSuLvT0pVXJI6/ziU366T2eTmwWcd5wacThHV0j49g0kjEzLfF50Cf/eYMc1AsnN+5F3RP1g8UzGmZExrq8xG8QqoHXx/tdJqphyIv1aotVKqSQjhGWBMZgf4eFwxpJf7VOMQj9iGS5EGX0QJlUexPq1Znbufh1XWlAAZiPIJg5PoiiPkiqnvkOQb8EIYLrOAT9EvxHp18KG3e7Y9SJZ15jz2xLtXgdfpVOvzSm2/KRNxN6BqQfzFjwKH1qR1JOHkYtMj0T/YMR9ExsmraG7AGEGpHasnrWPu3vrCZh+2JfJV0dWDGvONrinw4fcghBvVZAhTx3Qchz/p1RGk9aw/6OfdTgO8T3zzcY+b9jpibFs23kcARLFJuu7P3yZxsIiDSJKnTg2upynZbn2qcGr73qVNVG9uoBp8rMRfiTEFzHhKAklJbLqbRMwyqNNMFmISLcoMJbRmrnPaYbco6yBXu1fInW1/J4tUyFVd2Bj6AYTKSuloXL3DsNXxicGffcfMCi233pujIPTdRI+im0BBYCWrILfqon0115Fsr1VUR3xaXUWZxKHfGOwfXF2UCBGOwynJ8FCR6dJoVzoJtBS8ds04Fd5XuIp3oQdumgN6LTvVcTbIgTLn08m0vvdP9OuLnivP+y3ftLj9xRczy1VjYqVh6jEcK+slS3Dv0VW09r5/CYGLgUkSgURPtVOWycB8m7PZAA0xsOsr0CIl7SdVsKjIyNb0hiCsa2VGOxIP5NcevIbLHuu2BuquELI7+oj539i0W3nwZNm7p3kP3xLxH0Bi/Ir1hoSEhvul7MOQaX8OsgVge9EHMsFUjnvdGvagzXoBIbFUhcHNzePRvWzS54T/8V0oa/f/vB2FKO0Q2YYs4n+M1Hc35zMEpMYDsZG4F65NisIc8QF/VUK8WudK+rs0SzA2b83N4qtCd1XMK7DQV/d074/YwDP6NCrLiNuvEZAaudwTdB8/3QOu4W0VIUdzffvYApYDiYvu7YhCAczAQ2B6M3n4+bVnslz+fTzbVzo+TDu72X/zuyU5W3v4YU4PO5+u3aX1/dBolzpQ1stgdaPSrA5zMi59q8pet+C5qhqTjpRdNXgwrw+UQ3EvR58uNv76VXr8q39el5pQCfz6zsRvVnJFwKmn82oPyhe/VeF+DzQXT+JbkNEZ1/yUa9iM6/FoToztFqTe26Tg0Z9Xn9v06nHx4BIktCZJFSdvkH+fPQrNV95Vk7FRANK0J0r80hp/ZlbnqlldcERA180gKIrAnRlYHPlvzdNU+UNiio177rrueByIYQ3do8+3TjZReC1vv/Imj+19U7QGRLiLJTfs7zCpf7jGrc/MzP2QHJQFSeEAVEtJJ6nleL9kufZk2+3nENENkRopQmFoqkO9MCctt/u5+eI58JRBUIUaut0iv/vN0Qkno3fsHdY2dcgKgiIZr8+pzrE1m5kIxTZ/7O63fDFojsCdHZDtsvfs2tEpbevMXF+Jd9fwGiSiS8dUeUWnnsUtD+M/PqvN/2+CgQVSZE5V7efdgia6Boe9Ubmz9da9YdiKoIWGmgHAjRxLUPX26OnBy4qdeR3jekLn2BqCoh8pt5dcCvd2cHjndbluK8oN0pIHIkRGPT1EdX3+3oPfFSQF/VkRN7gMiJEHlM3hwTljHAd7V76Q29etS/BkTVCJF4y/Zz7xVPQibUbGsjmtQVMkQ5E6LISmbrzv99STTjTIMzN1vWewpE1QlRZdfWnhrlKZ9lTaZV2fntCRwbLoToy9JhHV/3/uaTtvOxcIdZzgogciVEbXLkkXcbDPWdIh1RZV5rh4NAVIMQ2ZRuIN5Ufqjf+CnxNw8uqAQ/S0iIPru2PTNrZl2/NdNtAr7suBDBIKqqKWAhqrJaVvdct65NvJb30Uyfty9XyQNR1UQ2E1UlZvemhcdOiRdvyBt6pvowKmm8uXhIgkIpRZy+YAuA6xF3CMnzslibOnUcCIiBESI6AOp43IJuoJCvxlxVEwJdFxJuYsGrUicEgk+ozGEECI9vlmJkDjkbaOafRsVfBPndSr31V8/v5iFa+7rzoE6Lxpfl8TAqzwlC2ODnBQQIWQ/tCFalD0oxEoRcIVmLSBkYGljdk1QGWxwp1XLs+Al4P7kCWzqR40QoUcET18o4eTS6g53jjsOTV+eFjzsafn/AYgm1Daml9nOY5eP5Ir7jBgjXTU64LpYySl1G4Ucd9Yzk3ImJJs1XlyZWohHGSQbKhCAA0bawZq8zb3M/7nXFxR9DN7w4nbvQTEhtZmcRRTwWUWlISvjWXgV3YrD7Iov/PbDBzqg21xO4muShKLLgT0YHEgnW1BUTf7V/IQqbVerhuG2+jagnJIt0BIsHsG5yggWGOuF/JrH5n/+YG4rE3ECP0A3G3CAqfYKDuaF2ab18pY7MDc7vU7/3dT8jyl19pvuUQxZuPDpLugXigbnBGyLEetC9VWm9nGVRmRsEtVO2zR1xy2vloUajs/qsuGJ05gZ3TlTAuDHRKtPCNpj4Y26o8G/390dvvA/fkD3PXfChMzXlb0zmBidO1dkZR3UGZ26o2jvbvUlCtveC2+bXmvemHe81PHMDZmVYj94DK2Mw5oYLmQdyZvZvFZ7942HwjdVCKq+OcZgb3DnBqU0Dp7DzcsViboj3+Oz3IO1w+NK2u75WGVPqg4kwNzhxIgTmNBG3TWaL204tkoR8b1PVf3Smq/nT2in7qdFoCIjRhFG+IbpvHPhom+HCbgJkJAxWiDHgVxB3JQsBtioNzlEAjC0xXmHsRYRuw3UKnOj7l+j3ZkbRpESPZWAryxN4W1xGqOQFNFDVUr9tBewFCmCA/Hb/OvRvlbanY3hG5IIt47+Z9aVlk+DdiAMK2OXCIiW6/eOh520LCFACahAKG4kFjSz1qjt2xAAix4WbVK4CwxfI0c520vvtLx98O+a1tZK8csOt/lQeHktf8mbmtMwXFQZYbv3rM/7q29M3516Zia1PHTnIA2A1OQEDI8ooQRTuM+DfNBew/TDpsCw4dGmN6ZLDqtq9eLDF5VTbgHVju7R4veNRtj1GZAKUIR6SoJJpy56xoNbbJ8rttwbFC4Bpqj21MfX0vYF/heaedndrPNDWhwfV2nKqtoyRVIuKj2f8qleoZRNSwJ4jlTnP922SxfM2/kskG+6/CdvpQ0/4IQ5V4Vd5byvtQdikHFRRSY4HNsUIxziFzTH6XK16a3CrrV7ZPXo7Tum6j7prXRkWv2rg1ic8ySyDtfUyPTrGNxEp4wDkeAku9hhp/mOwxWF+o3hYVKqTR6Sn7Qp/YYY6kH+lx6bCwjIA9Mc+iAbyfcHgn1qG9eiOjjtu3iEFQIHbDbANEow2lPFCN7L5OUAPJ0CC/8NtmhruRiuTZCzsJVVdsn980TwVT1Ze+3xv6ntq7qRcV6zogGljiOuF2RgX/1t2AzZuFK2Of/5C2nD6Uh52JtIhzGY+iJbp6Q0wmIu7JVy3gPq1u1vRyni1LDoRGx5YTRQSy6bvDl6d8mKb/+byghrdL7a8Tj2Rkf9c5vKXIiwJNhgMtp4o2G64Y7ARJmEqm0k4U77226YtlaHj37wM9rgyUkz5braRMqyGURiWqFAgbAFbwOxO3gcLYbExK48fLFHIpfggT5JrYoVKsExR6W4J6Fl6jvdkaIEq1iNK7leGLfmWAdANKfbcdwjE6vDgrqtMjRViY4ihB6EkooMo08Vv7tXxif4Lp7lQw2fsQczwGb9c2HSmVyXwEDL0hciNRYUMsBlV1zKs4bOOyDlrkVNRhhocWkj43k5ZmetSb2PArtmv+lf+Ue536jF3YoCgUzpUKe8F0W7YSOJAy6eMQQMs8kUtOicnyAriULtAzY5HMAhpZQoP+DdqD/+APjDI7S9T0Uri4E9xDbcD5iChYsEjwKI6GVc1Ust0x1ScSVJMvfb1IGbBK2/Ugcwm2CzQayPMMQzDFsYKeP0uMfSlaFrOg5aTWr9t4jOzwu0/v3+scoGWmIDfCpGYwC6XBBQhnFD4aB1VGpujMpmef3RryU/74xJo+Ve7DHHgH9nyz1kL+TSTh5xeG8cP5DFznLvJJ+/1Suv48dFjc/FHHiCfbsYF+QQzEvLpvFVl2pGQG6AqE1FESVZlIoooyapMRBElWZWJKKIkqzIRRZRkVSaiiJKsykQUUZJVmRP2hdS2m9TYb9a8P5tFfN61lFHyBgcvcvTRyy95KHmbwab/WsFH3W9ttvJbYybtd+1JBar+K+Gb/SKFUg3DRSyBwwzKy7HMtlp+ctjuOBb2B8YfgC0p4TqTKEPQLb1PLzkt9BUZ4KD+SA9qmUUwP3ADeWIErMhT9EvzO+PZNoxJQwlVA/AAv7DXBR0N6uyQMGNW2NTnDTo0GdvudHFybSW7jX0RYLWgNOF2XzHICcGyejIz4c+FVRVtSURBrJAopR9xm7Q3933o9tLzmle7PvoMj2URo7qEvT+ZOcQvSzkpYKJP8mEeUErhRElRmrn5wBWnNY4g5xU22TDMyCkHl3pk7Rl7quSnfYbT/E19Q3a7qa+dy2mrMWI+17MxMYiQCTl4eHq6nvnchtrsIYQougDfJ/RAFNuEBGfD2+kHwz6V8c8t23jBtcGjPU0gawlBGscJUoqeed26vnL8m2u3qvKHDJZYZDdQn7Lrz1Ek5AVkZj3zCvL7m1aLRz6XmUXUSkoCnUGc6PTX5nRnsjnGZ13DQsyafBbNXXnWb3l4YHfmRjzTE5qxgFuTms/VlrolKfWi3KcfsNA1N6AjbHeBYXoKYTuL2oASwCYQ+rk63dK0M2/ufPK43MqwMd9/j2o65MBO6mYnlo9lcesUYWFWnG7iimnFBcBOP4ZgRaDGGGSAuK2fryuPgSUDM40dqqeJj0KqpvsHjG36JmX8+aFUMndLMbgXDVQBkYFDAgjTVU6YTuvp7ApPodFzzUZLoUFLg40RmEITMmJHDwwawg7NYrNDovpnm7QZcyckw2/5a00bJxf6PnScJEGI79Mg9svZQvP6+H1ktgc7lyIRxsuS4CWZSh5NOEidzBL9cBfHG6J2yguIdc2SgWFjaQFwPY+KyVMB6k/M9TJU5bE0FL65C14H+S2DSk8/MeXn5sDxW2vtfBub3ZAaImEPYIZI+OXC5hz9nFtxs1sAHnMIjw1qzq0FS5bv5npVk9ji78NFkr5pYJ4wq461z4bNl46UnnjiPjX7h9/PzP4R1wvD59GJZg0iKk3y2pOS5Wvxb/Pi7ptAfN6ac+EDho8xKgwssMKNwTgQ7QX0H/26qNl2lqj6yzRcStvbvezEY3M2+a8JX5QzqMW3YKrS8PuZSiOu815cC7Ryh1Mrf5iUVl4dILWil/uywwxegkxKGF90z4Un2YLNHZb7TMs9NbVllXBXqmJCsfuZiiGu860YLw/CnMBtRsZ6NbWJWPDJXL8FmbMWA2xhoZAXhsfSFPHe1um/BE590b3WsLz5UhqlEP4ABKUQISgJRJ6YcyFy05z067PZ/HrOrOB3Pdq1DRz/7rvG4sjNt1Qd45+oezFMe+0Kg+rAhUmx8uhYEFbCs4UStRqyQWqrYgj3r9vig35OG/W+zDGJX9cjA77TnKgTZVS/eIFVXRbTr+uZAa9OhBo4eRJG8AuPMOFvgvzilhvUURPeNfDeExfXrKa8L9W1mbMFNlqBgZ0/zO5uhxh6omo0hA0xDPWyWO3DiBGFtzShHNSC9UBqfH8AtlGA/8+PKYUpYcORiNL9uVE7qsB1LQaYIwowyGOdpZ3Mc0w+cUUfTTyxTdLTHDxkriaac2WuUrWYz2XDPGyn3/lTgqOi1O5O7eRPgypSGbdDKUSoTEPKhrRzKIgHgHvSgDsVNDpVnewknZmC67WYROBUua4bN2CRfRF66KmojRuYo8i1OMHkmyT9CYJvEn4SnW+SzhdJ55ssMp8k/UYEnySbbXLxk6uAzdGH/rbzhEO5t44fFi2MfbvnaJkNVaj0t97M2eFdKLndK7XrCLPQAeFL/zX/Hn7s4Yni7pmA2XEeqtMTVb3wG5AetTiBIHJkA6koJMG3Qo7L+s0KDZhpeTqysWvrdUUgCaajlPz7vTSbiqsCDwz63LhnFVlxazghSrmcKOVYnKBTAHJWu+C9FmBgpANA9Kp3qg/DH8X0YcT1ktjwxkbMJ9RGk5s7hhRhT+f9j9lTOp2PgeypjNOehv9nT0n9TNm1Prhp8399lk+vYKb+8/5NHuwpnaaJB0sRzWkpfi9xe5oyo2fH15PcQ5b7388dsWpPXR7sKX2TgAeUwjlREpekPaX7UKPb02hOexqutafzTX5NQJ9O/BSztSjl9DpNlOC7471XbM7VtOKSRcAlQR0LriVBdS3k6bwVs5UnITdAMRuCA4809QgOPLKYDcGBRxazITjwyGI2BAceWcyG4MAji9noERqjYg1aRXQOl8aex0PF2gLelGxtQCUXjUcSQapIKpme82foxIxNJ3TaQh50spBNJwt33f19woNPgbm7tuduHniPes6vbIQkXqZg9kZhM2xu3sIEeEeBDl3CeKVGhpMLQXpuLg5bOu8i4lV0sXbWUdEqpUIRCT0WvJh/5PPVrzRL2K6J08lqE2t6zagVK3hcLZGVd9mii1qmggTg5MfW9VUm9lPAWi3YRQcS/0jlGuK7gwgDZjnyUjNpKiHbHDE2peuJBbPLAQPaRiRInSCyCpWo+svjQ2QxFAdojV+OhP1OC163xK93ViYUvEq1wuUD64ltZ5U7YYeBGKGC5wY1cvytzMm3Qk0olSQpMF4KabdIeEtZwosw9VLgEharK4iWTPiCAHZRlUsUIsgFVcARaVQySZz2d4yYWHsPMVQXmbxbprOA8rRVRx//PPjlPeW4/PLWcqRfXmzymNPpVU13e3QzZ2F/lrawfwlvbtJWYDg3ieDNJd0kgjeXdJMI3lzSTSJ4c8lYKPes55k5a8+IN/8xduh1Qae6BWKhRX9uW+D9pHXgzPLxzVcHDx/BcK7Q6iMHEp2MlwfnupRNkybarp1OOmywdu3bLbnatY9iUsnw3K79YfcKpUunDg9NT26SNndn744m0K59qyVX89ss4xBmUHtOr1y50gDt2vu4142KmXxavHDCuG6DXcTzTaJd+zJO7cw1Be0YpF37pePV1y3UTPaa9D3GLPKNxUOTaNc+hVM5o0xBOQJjtmtfaXFLsWdnrtdW2Y3DdxQV7EyqXXsSp/LiTIgoyOjt2h1udheWHXRbNPdOmdOHgkY7G7ldezSn5n43uubgTSXWrl0o+71Cw33ufgvbJ5itKX//kkm0a8diCNZ27aO0ZE/L2OLU/6V27fS2GEZu1/7Nkqtd+yNmSFsi7dqVvhd6Tl70h++UWjHB/1qu2cF7u3Y6uRkPLci/WHK1IH+lH22iHu3a/6rYvPTyPlt9t7RJL9WghWx88acwDSu6jeABq0ecWP1tWJtr7HbtGWxm7D8S/iKR8NO7CRmMhL+zFRcJ/y9WJUHC3044st5h4WrR3EP3vu8w63Sbx9PmPNtIuGESacXFWR5gZRAS/n+O3mw7IOdb+Jqy3xKPHOkdaHQS/o6cqIBxYzJrB/0O/vBHwh90+sytFK9zXgfmWjh71Pxy1mRI+Btyqk5oHNUZnIS/Wrslitx97wMnNeu1b9D1ax9omU5Dk/BjVoaVRR1YGYOR8A9RLP/z8+OD4St+RluNCo+eaAIk/B05wfnFyoAk/H836WG57ZcfQYsulsv4ciiZuvQxHgl/Q06EwJwm4rblbHGb2Ltho58drnqvve2adXnpy+ZUHgHsEF+CUgE8OjNms2DBuUV+ikSefz/BhQEQVykT+8eCGA52uVbG6MXlQO+wyPq2TNaDAkJda/tAILQP4psH8F1LD5MuAnxnM8MkPQ9WVc5/LXCVwAJdLNR77sdLzSoHrztyq3PKaQtao7Oi9O6ihVB0w1jMEArS3u6xYutilw7G7mb9QigbfPpKZf1VMnR8KR3uofr2tabPjiVHniVuzI2nnZDCbkSckMKvlwTt7xrO77/E6MGSdmTqESjBV5YrpfJoDm6bES611m28IvCbFH3QYWnn4XWoY5V8AHOsaiUloYzZnMqYZBrhj0CfjIVHcLxSA9yXJBrunbp5dgBLVrCyiGssbNohOlapkjYWNuugHqTSYL+go9XRH0cIVsTMC14+MN1vzvI+y6h+DX5AlCZZgeh/mS8qCWWN5FRWoknMHPgovaLVKvkb3fGJqn5qjhnkPG3GxGEOfwfumTdoyezK45KKs1Qu7tLBkzDk8KjnRQYvVFPx+mw9o1TCknNEW9vVEQkNXR39U5ft8fdtVuGUcZe9AIDlJAA3EABA06JXJEq6MnaSiWMv76anSc0CZv1R+17v6XeTaa7MsId9IQDjuQDoOkQbaK74H6vHoTfmNlg9TntrrnocC+uSrsf560Vn8aDu30Nmyzb0iu1VX2UC9Thtrbmym57WJlBUMHnyZAPU41hN3TPRp/1Nn2Xj6yf+XUNyziTqcepxaqe6KWjHIPU4+weI43rf7xo4qc87Uc0P6jiTqMex51SOhSkoR2DMepylsVGua2olhKRNnXy2gZ3rR5Oqx/lhxaW8d0YPdk2oHifvymrPFO9pPpsne8cPOu7UyMj1OE85NXfX6Jor0Xqcnx/3+zeo18p7tn3r5MnSq5tMoh4HiyFY63GAISTi1JX/F+pxbEo3EG8qP9Rv/JT4mwcXVDJ2Pc4Ia656nFhmSFsi9TijRx6K/fgyRbRnllfTsXb13/Bej0Nfm/NQYzLMmqvGRGVdUvU4Fbe/UZr9IvNZuPp8W7t2UaN4r8eh2wgesIrlxKq3YUMdY9fjrGIzY4MOyBvJw9aJdu4PV/zzoMdLaqakUyI8O+mvkiTEMk+Y6pG+qOMrVyfA02PabE6yO37KVCiBnHn94ScgR95n17ZnZs2s67dmuk3Alx0XIljfj5nJKShkjD/LKGDCwgsexUKMSvq5Jx1HpfZp9MZJ9cUCX0jM5SCC/2jnP+X1xZdF5idso2QKoDCZNBDY9SHk4zC14qpczaZKh7w0X/u2F0TLW9w/sOlkki+NBQOtwIq4dUfoTGCFiyiHrAhnwDh8xReTB/2QfBGYPHSNDkqxaMkTRGTTLIgWuQe9CdQz2VD/MW7LqkoeZj47ejouzEwIXV3o6Uurkkde5xOb9NN7PJ3YLOK84dLIHTO6RtawaSRjZlri86BP/vMGOagXTm7ci7on6geLZzTMiIx1eYnfIFQDr4/3u0xUw5AX69UWq1RIIR0jLAmMwf4OC4c1kv5qnWIQ+hHJciHK6IEyqfYm1Kszt3Px67rSgAIw/ctC2nQfRFEfJFWvXxZBvwQhgus4BP0S/EenXwobd7tj1IlnXmPPbEu1eB1+lU6/NKbb8pE3E3oGpB/MWPAofWpHUk4eRi0yPRP9gxH0TGyatobsAYQa0eSDX54Orf9qk3ju24PnvnTZs7M42uKfDh9yCEG9VkCFPHdByNOurFEaT1rD/o591OA7xPfPNxj5v2OmJsWzbeRwBEsUm67s/fJnGwiINIkqdOB6sqF40Yr7FUNz3vyhGNg6619OlZmL8CchuI4JQUkorSmn0uobVmmkCTYLEeEGFd4yUjvvMd2Qc5Qt2KvlS7S+lserZSqs6g58BMVgInWV9PrzizFrPoRN+aVOZs7iEQK6rsxDEzWSfgotgYWAluyCn+rJdFeehXJ9FdFdcSnVhVOplcoyuL44GygQg12G87Oga6ZpNCmcA90MWjpmmw7sKt9DPNWDsEsHvRGd7r2aYEOccOlr2Vx6p/t3ws0V5/2X7d5feuSOmtTzIFZRsfIYjRD2laW6deiv2HpaO4fHxMCliEShINqvymHjPEje7YEEmN5wkO0VEPGSrttSYGQ00hJTMLalGosF1mbFrSOzxbrvgrmphi+M/KLBnnsXZC4+EDauU26dcV3GUtmGzFi+YqEhIb3pejHnGFzCN4BYHfRCzLFUIK1hpl/VGK5BJTYqkLjkeDa628D1rM/4ShtarMv7YsfYUo7RDZhizif4zatwfnMwSkxgOxkbgXrk2KwhzxAX9dTB7b2HVJooC5jVXDj4zrb2x6jjEt5tKPhLccL/0bD9vUn4GRVixW3Ujc8IWO0MvglSI/SOu0W0FMXdzXcvYAoYDqavOzYhCAeTxeZg9ObzcdNqr+T5fERpW7t7uX0P2lk3YFS38+XUBfh83F/UFSSnrQ1becHub808h6wCfD4t67UfEbf8gNfWi86PD66tX7YAn8+p0JQpWY8qBs169nKFZEfE3wX4fFadW/HYecSM4LXbm465X+l4ywJ8PojOvyS3IaLzL9moF9H514IQNZtfOXD91h+iyS4/DnndS10FRJaEaL65X2JrH3ngNN85tU9/PD8biKwIkdW01WERfbxD54/dez9i5GQvILImRHlDwpYlflwUutMuvVf7lx8g+6INIZqxZsWBlHBb3/1TJyf0694sEIhsCVHbMtf9Kn54Hjyp7LkLmc36ngCi8uQDV9+/ODH+Zti61VVav5S2sgQiO0IU2/j3Lu6qpkELrpV+G9djwlAgqkCIGiRYVekj3O+fLf5uMeJO/EQgqkiIVE29IgTul/33lz7nP8LnbhoQ2ROiVt9GjfItJw4evSzE68volvOBqBIherJOYStN6BGaMenTObN/u74DosqEKOboE/M9A7/4jk24/e5Gr5n/AFEVASsNlAMhutKj4Xeb13O8clatiJ639uFWIKpKiF4/O3ok2Gpk8Px+Povtms6GRIqOhGjYjqmxIbad/Dcfjpd2ayu1ACInQrTNseyjurcTQ+dnX6s+4uL8Q0BUjRBZj/ir88AF14M316+3p7nfJBUQORMih4dPGpyZ+TJ8ttqqYqRXhRlAVJ0QTehuETIu+Vfx3LRBr+NHfDYDIhdCVCvK/dSep0N8lvX6sGu2Y2sociVEv4mm/T7M7c/QbUOFFSrkOi4AohqEKKCBZs69IdV85gy81Dy7UvITIBKSk2j3gaNXMoeFZre66hPX1vEMg6iqpoCFqCr2tXJvi2pnw5fKJtfdMKH2KYTZ0Jeoah2biaoSs3vTwmOnxIs35A09U31YBnXpKh6SoFBKEacv2ALgesQdQvK8LNamTh0HAmJghIgOgDoet6AbKOSrMVfVhEDXhYSbWHDHBtIGozKHESA8PmWjXwPN/NOo+Iugm9Xb3Jt045cIv8WjfvnY5NR9KhV98Q6j8pwghA1+btmw1UM7glXpFRu9YuIWkTIwNLC6J6kMtjhSquXY8RPwfnIFtnQix4lQooInrpVx8mgkir2fvNowPlQYuKjOkjcdohIeUcvHtZ/DLB/PF/EdN0C4TnHCdcDGJCI55lFHPSM5d2KiSfPVpYmVaIRxkoEyIQhAtC2s2evMra5sPzzX77woPfb1pje/eFelVRoSj0VUGpISvrVXwZ0Y7L7I4n8PbLAzqs31BK4meSiKLPiT0YFEgrU4rNqAfS8X+85dYvng5K9bqTyYRTqCxQNYpzjBAkOd8D/r2fzPf8wNRWJuoEfoBmNuaGbLxdxgb1sSzA2OFheXHT8WF7Zs8eaab5cebM6js6RbIB6YGzxtuQ6617M1CHPDUvPLa8eddBDlZte7W7mxZUujMzdU50QFjBsTrTItbIOJP+aGC8E2gS2/xgetrbQzdeW4KT1MhrnBglN1P0w1nOGZucFq+Orupy3mhmf8OPplyR0Pao84wzM3YFaG9eg9sDIGY25o6Tw79cX3r+L5cyXm/2aN+mkCzA3VOcGxtzUgc8Oi38rnjVjW0H+JY+be2pHrnpsIc4MFJ0I/tHHbBra47dQiScj3NlX9R2e6mj+tnbKfGo2GgBhNGOUbovvGgY+2GS7sJkBGwmCFGAN+BXFXshBgq9LgHAXA2BLjFcZeROg2XKfAib5/iX5vZhRNSvRYBtarTLTFZYRKXkAD5Srrt62AvUABDNBF8XO2/n1HNtJ/2yKn3PYDYl/TsknwbsQBBexyoZESzf7x0PO2TmWi+ooxCIWNxIJqlfWqO3bEACLHhZtUrgLDF8jRzvZI1O6seqd+C1mR2GNiVsqjH9Rp6UvezJyW+aLCAHt84m6dmgkzwyY/Ej7b3Wl7Qx4Aq8AJGBhRRgmicJ8B/6a5gO2HSYdlwaFLa0yXHFZ17PN3FyuM8w/dV6XLq8wVW3rYY0QmQBniIQkqmbbsGQtqvX2i3H5rULwAmKbafqrkOt9nvA/Y+myS0x2VQwgPqv1WiUu1byqZTnw841e9Qi2bkAL2HE1ZtsLCfpLXbK/t4xYP+3Pph930hB/iUBV+lfe20h6ETcpBFZXkeGBTjHCM2WyO0edq1VuDW231yu7R23FK133UQofKsPhVA7c+4UlmGaytl+nRMb6JSBkHIMdLcLHHSPMfgy0O8xvFw6JSnTwiPW1X+Asz1IH8Kz02FSaVB6A/9kE0kO8LBn9K+eLWp3iHFAAFbjfANkgw2lDGC93I5ucAPZwACf4Pt2lquButTJKxsJf0W+95uNLY3T454w7NDz9eg9qWuFxXrOiAaWOI64XZmOEhf55IO+cVMHnwxuBmgtu7ediZmABhNvNBtExPb4DBXNwt4boF1K/d3YpWxqtl0YnY8MBqopBY7v5rxR8+Iz97TfW6+OzyhjHVqCcy8p/LXP5ShCXBBoPB1hMF2w13DDbCJGxkMwlnytd+27SlMnT8m5fBHldGiinfzTZShtUwCsMSFQqELWALmN3J+2AhLDZm5fGDJQq5FB/kSXJNrFAJlikq3S0BPUvP8Z4MLVDFekTJncqzJd8yALrtij33HQKxOjy46ypTY4XYGGJIAOqOfD/xrLif35J/J1pMjO1DK8bCHsQMn/HLhU1nelUCDyFDOERuLCpkgM2oxOVZw2cdkXPWIqeiDDU4tNCNXOoPnRfmOyhw9bNqE74oF/WhHnMnBgg6pUOV8l4Q7YaNJA60mpY3ShW7RefkBFlBHGoXqNnxCAYhrUzhAf9G7eEf0AcGuf1lKlpJHPwpruF2wBwkVCx4BFhUJ+OqRmqZ7piKM0mKqde+HsQseOWNOpDZBJsFem2EOYZh2MJYAa/fJYa+FAlF/7yxrr0vXfJa16TZpohvGedpiQn4rRCJCexySUDRjhOKplpHtYnNUZlMzz+6teSn/XEJtPyzL8/V8s9KC3mOyUNOr43jB/Jv8itPrOp18l37SDk/QDj8IA+Qj7DjgnywHQn5Zt6qMu1IyA1QlYkooiSrMhFFlGRVJqKIkqzKRBRRklWZiCJKsioTUURJVmUiiijJqsx5x7Nd6is+++1opcg2z8nZxCh5g4MXnV2hlV/yUPK2hU3/tYKPut/abOW3xkza79qTClT9V8I3+0UKpRqGi1gChxmUl2OZbbX85LDdcSzsD4w/AFtSwnUmUYagW3qfXnJa6CsywEH9kR7UMpNhfuAG8sQIWJEP0C/N74xn2zAmDSVUDcAD/MJeFzRmwbWv08zTRFll/jr5qsmaCcXJtZXsNvZFgNVEW8LtvmKQE4JldTIz4c+FVRVtSURBrNCpjHt2nhMDv3mNae2cff3hhXk8lkWM6hL2/mTmEL8s5aSAiT7Jh3lAaQAnSj1smZsPXHFa4whyXmGTDcOMnHJwqUfWnrGnSoJO3fqrY4uH4XtG/rPufmaVf4yYz/VsTAwiZEIOHp4eoWc+t6E2ewghii7A9wk9EMU2IcHJrhtR5xfX3SFpE9WZqjEZShPIWkKQNJwgDdAzr1vXV45/c+1WVf6QwRKL7Aaq5fM0q382/ek3La3h0RZVd7emZhHJ5zKziFpJSaDTlxOdrrZkYLSVzTE+6xoWYtbks2juyrN+y8MDuzM34pme0IwF3JrUfK621C1JqRflPv2Aha65AR1huwsM058QtrOoDSgBgO2Ifq5OtzTt1Jbnrden/eW3/dL6h5c++felbnZi+VgWt04RFmbF6SaumFZcAOz0dQhWBGqMQQaIc/r5uvIYWDIw09ihGjHo2uibVrf919kf7pTe3bUt1RKJwb1ooAqIDBwSQJiOcMK0W09nV3gKjZ5rNloKDVoabIzAFJqQETt6YNAQdmgbmx0S1T/bpM2YOyEZfstfa9o4udD3oeMkCUJ8nwaxX84WmtfH7yOzPdi5FIkwXpYEL8lU8mjCQepkluiHuzjeELVTXkCsa5YMDJtP9gDX86iYPBWgfsNeL0NVHktD4Zu74HWQ3/L68z436hweEpjdt/WxrxfyhlNDJOwBzBAJv1zYnKOfcytudgvA8wHCY4Oac2vBkuW5vV7VJLb4+3CRpGevT9tzZEp10UbnrLM/4kOoLEfE12Vm/4jrheEzcOsX+cVLdn5pNy8k5tmaC3nAJ48THzB8jFFhYIEVbgzGgWgvoP/o10XNtrNE1V+m4VLapwnN9zX/53f/1L4Od6Mq32pGVRp+P1NpxHXei2uBVs5zauWoSWnl1QFSK3q5LzvM4CXIpITxRTPhBxyy8XvrGj5v4IYDQ7MGlaMqJhS7n6kY4jrfivHyIMwJ3GZkrFdTm4gF/9jrtyBz1mKALSwU8sLwGFz6xtnRs277bvh1waGqX9p1o1EK4Q9AUAoRgpJA5AYnIqfsSb++nc2v58wKftejXdvA8e++ayyO3HxL1TH+iboXw7TXrjCoDlyYFCuPjgVhJTxbKFGrIRuktiqGcP867sLRzmmj3pc5JvHremTAM+2JOlFG9YsXWNWlM/26nhnw6kSogZMnYQS/8AgT/ibIL15mnNPEoHk/gkeVe7bCt3S76tTBxxbYaAUGdv4wu7sKYuiJqtEQNsQw1MtitQ8jRhTe0oRyUAvWA6nx/QHYRgH+Pz+mFKaEDUciSvfnRu2oAte1GGCOKMAgj3W6djLvMPnEFX008cQ2SU9z8JC5SrLnylwptZjvZMM8bKff+VOCo6LU7k7t5E+DKlIZt0MpRKhMQ8qGtHMoiAeAe9KAOxU0OlWd7CSdmYLrtZhE4FS5rhs3YJF9AJbMTkVt3MAcRVYlBN8k6U8QfJPwk+h8k3S+SDrfZJH5JOk3Ivgk2WyTi59cBWyOPvS33h5X87YMlfqPqvFgxsdtn59Q6W+9mbPDu1Byu4iGwTcGPDrrneuf+qjmpRZNirtnAmbHPqhOT1T1wm9AurXSCQSRIxtIRSEJdu+lHLm0bf3AjP1pq6bOrzmsCCTBdJTqZPVSr7l/WjxX2vJQ3X7DrHhAKYsTpWWVGBSAnNUueK8FGBjpABC96p3qw/BHMX0Ycb0kNryxEfMJtdHk5o4hRdjTXf9j9pRO52Mge9qZ0552/M+ekvrJej8mo/L1W2H79p7o5ZSkOsmDPaXTNPFgKSI5LUVAidtTl+jDreetveO3Wv7s36DfN7bgwZ7SNwl4QKkjJ0q/lKQ9pftQo9vTSE572lFrT3eb/JqAPp34KWZrUcrpdZoowXfHe6/YnKtpkTwsCSpV4loSWGshz+WtmK08CbkBitkQHHikqUdw4JHFbAgOPLKYDcGBRxazITjwyGI2BAceWcxGj9AYFWvQKiKHGJ09j4eKtT28KdnagEouGo8kglSRVDI958/QiRmbTui0hTzoZC+bThbuuvv7hAefAnN3bc/dPPAeNRouGyGJlymYvVHYDJubtzAB3lGgQ5cwXqmR4eRCkJ6bi8OWzruIeBVdrJ11VLRKqVBEQo8FL+Yf+Xz1K80Slu9yIUja5E149tcatVdPa1WRzRJadFHLVJAAnPzYur7KxH4KWKsFu+hA4h+pXEN8dxBhwCxHXmomTSVkmyPGpnQ9sSC1IjCgbUSC1Akiq1CJqr88PkQWQ3GA1vjlSNjvtOB1S/x6Z2VCwatUKzw9oJ747ciKJ+wwECNU8NygRo6/lTn5VqgJpZIkBcZLIe0WCW8pS3gRpl4KXMJidQXRkglfEMAuqnKJQgS5oAo4Io1KJonT/o4RE2vvIYbqPpN3y3QWUJ626ujjnwe/vK4il19eUZH0y/tNHnM6varpbo9mcBb2p2sL+w/w5iZtBYZzkwjeXNJNInhzSTeJ4M0l3SSCN5eMhTbvrd/gxNp5gdsuuFqrf6gaF4iFLh+5cbju9JchaUkR1+IOKA4xnCu0+siBRCfj5cG5HmTTpIm2a6eTDhusXfuqylzt2hOYVDI8t2u3c9wx55j8eejKy3+Mbp552BTata+ozNX8Nt04XCjUntOLFy82QLv2ybMHWgalxoUs9Iy8Mv6PU0km0a59Gqd2xpqCdgzSrv2Lol6Ufd0V4m0ql/sdnCKomXRjtWsfyqmcBFNQjsCY7dpnWeckaDZJAha++qt+ysfjVFpiY7drj+FUXk8jcUCZZLv2Iw5dUnu0nRWSHjx+u/uBxEwjt2uP5NRcgNE1B28qsXbtKdXMa6XWig+d5Wd7Ntl+MrWxubHatWMxBGu79gQt2dMhtjj1f6ldO70thpHbtT+rzNWu/Q9mSFsi7doFY/5st/b0Tf+dvef/VV0xaRPv7drp5GY8tCB/UpmrBfkd/WgT9WjX/mlZSo56W+XwTSPzJlb/q48N7+3a6TaCB6z+4MTqjGFtrrHbtR9mM2P/kfAXiYSf3k3IYCT8oipcJPy1q5QECX+3yS6aF+N+8duwdsDlw+e87vN42pxnGwk3TLyrcHGWt6piEBL+7EuP485erO43N/iQ3d5R6u1GJ+F350QFjBuTWTvod/CHPxL+cuOjtzmEXw3IObdqWHR/x54mQ8LvxKk6O+OozuAk/NcedcwNfh8aNG/QxczH/dN3GJmEH7MyrCzqwMoYjIT/kTR1xZUGft4TuyVEmNWtOt0ESPjdOcGpXcWAJPw7nlp0OHiwc8DWQ7uON6/950sToLOACDlxIgTmNBG3HWGL28TeDRv97HDVe+1t16zLS19SG+NYY4f4EpQK4NGZMZsFC84t8lMk8vz7CS4MgLhKmdg/FsRwsMu1MkYvLgd6h0XWt2WyHhQQ6lrbBwKhDRDfPIDvWnqYdBHgO5oZJul5sKpy/muBqwQW6KXTSKnPhu1r/LMtOo65W2kxtadtkXp30UIoumEsZggFaW/XVWHrYpcOxm6GfiGUDT59pbL+Khk6vtxwd2rOj7Nz/dc7BTb5u30mlUuxnC92I+KEFH69JGh/53F+/6lGD5a0I1OPQAm+slwplUdzcNs0/DTTIVtWwTerYURCu3VraGOVfABzrGolJaGM0ZzKGGIa4Y9An4yFR3C8UgPclyQa7p26eXYAS1awsohrLGzaITpWqZI2FjbroB6k0mC/oKPVh+0ddnUc0807883uTR3iKlK39CzhB0RpkhWI/pf5opJQVjynsqQmMXPgo/SKVqvkb3THJ6r6qTlm0PGZHmd6dz4aMGZT5S3dLc2eFmepXNylgydhyOFRz4sMXqim4vWL9YxSCUvOEW0lPpnuvfONW0CW75llgoNfxhp32QsAmEECcAMBADQtekWipCtjJ5loU/bHhr9TN/rldvnFtXXZ7qOMetgXApDIBUDX/tpA8+j/WD0OvTG3wepxGjlw1eN8ZEaWPNfj+LUMn/jcolPw+h6yfhdXnf/DBOpxGjhwZTdrOJhAUcHo0aMNUI8zvM3In3NnrgpettvnSoY476lJ1ONU4dSOtSloxyD1OIsc5z5XXF3qs31L7+9eiScqmUQ9TilO5Xw0TrxkQvU40ac77DwaUs8r2+ehTfXs0k9Nqh7n3ypcyrtv9GDXhOpxXHNXdX9+tZt/6pmv1bf7nqtj5HqcPzk1d8HomivRepwqbQ5sX64cEzjh2eoFLUtPmmAS9ThYDMFaj/NRG6ce+79QjxPQQDPn3pBqPnMGXmqeXSn5iZHrceIcuOpxujkYph6n4t3RMvX1U94rXw1xm77XfSnv9Tj0tTkPNSYDHbhqTCQOJVWPcy5tYTdPj82hG1+2enjuxrVzvNfj0G0ED1h148Qq1LBxqLHrcY6zmbFBB+SN5GHrRDv3hyv+edCDmq+y7pQIz076qyQJscwTpnqkL+r4ytUJ8PSYNpuT7I6fMhVKIGdef/gJaKqc3QeOXskcFprd6qpPXFvHM6zvx8zkFBQyxp9lFDBh4QWPYiFGJf3ck46jUvs0euOk+mJBM0jM5SCC/2jnP2Pri3c0tT9hGyVTAIXJpIHArg8hH4epFVflCTZVOuSl+dq3vSBa3uL+gU0nk3xpLBhoBVbErTtCZwIrXEQ5ZEU4A8bhK76YPOiH5IvA5KFrdFCKRUueICIbTrbIPehNoH6SDfUf47asquRh5rOjp+PCzITQ1YWevrQqeeR1PrFJP73H04nNIs4bLo2ct6Nr5BSbRjJmpiU+D/rkP2+Qg3rh5Ma9qHuifrB4RsOMyFiXl/gNQjXw+ni/y0Q1DHmxXm2xSoUU0jHCksAY7O+wcFgj6a/WKQahH5EsF6KMHiiTam9CvTpzOxe/risNKACzZQVIm+6DKOqDpOoOFRD0SxAiuI5D0C/Bf3T6pbBxtztGnXjmNfbMtlSL1+FX6fRLY7otH3kzoWdA+sGMBY/Sp3Yk5eRh1CLTM9E/GEHPxKZpa8geQKgR3SDgF9cty0vl+c9pmzlgzYTjLYqjLf7p8CGHENRrBVTIcxeEPA0rGKXxpDXs79hHDb5DfP98g5H/O2ZqUjzbRg5HsESx6creL3+2gYBIk6hCB67mS4Q/3/1+WrQs5tahRFf7DE6VmYvwJyG4jglBSShNyKk0B8MqjTTBZiEi3KDCW0Zq5z2mG3KOsgV7tXyJ1tfyeLVMhVXdgY+gGEykrm4OGXpmtjxHvNVm44/h//Ryo+vKPDRRI+mn0BJYCGjJLvipnkx35Vko11cR3RWXUm04lVq6AoPri7OBAjHYZTg/CxI8Ok0K50A3g5aO2aYDu8r3EE/1IOzSQW9Ep3uvJtgQJ1z6aTaX3un+nXBzxXn/Zbv3lx65o+Z4aq1sVKw8RiOEfWWpbh36K7ae1s7hMTFwKSJRKIj2q3LYOA+Sd3sgAaY3HGR7BUS8pOu2FBgZ1bTEFIxtqcZiwZdit6i2xbrvgrmphi+M/KKDlrx/8mfcr+IZ/1Tu1D97C5U5xYzlKxYaEtKbrhdzjsElvCPE6qAXYo6lAml5O/2qxnANKrFRgcSlXd8qZeznx4dtiC33rKn12fOMLeUY3YAp5nyC39yM85t/MWyDaZbtZGwE6pFjs4Y8Q1zUU/vXVa6mGG/lN6HsnX+fK7pS96AwliJDwf+qPBf8j4wDP6NCrLiNuvEZAaudwTdBaoTecbeIlqK4u/nuBUwBw8H0dccmBOFgzrA5GL35fNy02it5Pp99r1RmbYZdDNiWNzl86Lw6wgJ8PvbdLLw7HdsSuLzCfIexaxT3C/D5HEnaePN0mwuBGfIbz9KjA5sW4PM5cn/AzF6LVMG7F763rDW0+e0CfD4f7q1ZtVM1yGtukG1Mlb72xwvw+SA6/5LchojOv2SjXkTnXwtCNN6yddDuES5hGaP2p9xv/8QaiCwJ0Yvdf6Yk+P4RtHVKyC53txajgciKEN2YNS9z56tIr4WrVszvOazlr0BkTYgs6tzrduRaj+Adw2ZpElN2iYDIhhC1G2XTWLr3N9/UC2dkDTY92ANEtoTocamINd8iHwdtq3tt/qAtlb2BqDyJxq+WXQaED/Za+KNn18i/tswBIjtC5H60q8PH8Vd8lt++1nXmbok/EFUgRKWGmYeWFgp8l+bVyXs049gKIKpIiEq39o85+o+n174/qtmOHdp4PBDZE6Idw2zaZJ2/673taPiKpQ+b9wWiSoRolEfYvsjfvgVmp95+17nCnllAVJkQJQVVl5facTz4wLWuj+0+/WUDRFUErDRQDoRo26Y/GwtU4IGPdzpPfhpzHYiqEqIBQ5+VTn6TFzj97rpPQ1XPdgGRIyEanej0+8KnYwM2lorWZH5O9gQiJ0I0Y8wRm07vr4YvvbSwzPT6jYYDUTVC5Lv9nMDsZbvwCZ5vnA9fPVgHiJwJkV/a8xsTv24MGuXlq259cDHUcnVC1PbavDyXR99Cd4iXJQeVKQd5pVwIUdU6G+6LSqn9dvipKu2xd4kGIldCVL/+njeLNv0jmvPyydzfJpaXA1ENQtQh9bIyya+e17bhz0bd6j4fEoQKCVGt0dt7fv7pGH7g99sfJ7kHLWQQVdUUsBBVtXm8YnDzNWu8dk9bf33Zng8ZPBBVnWUzUVVidm9aeOyUePGGvKFnqg+jfpa5eEiCQilFnL5gC4DrEXcIyfOyWJs6dRwIiIERIjoA6njcgm6gkK/GXFUTAl0XEm5iwemqkDYYlTmMAOHxtqr6NdDMP42Kvwi6/17F6LAzbToGrz357Ppc/4lTeTyMynOCEDb4OVmVrR7aEaxK91fVKyZuESkDQwOre5LKYIsjpVqOHT8B7ydXYEsncpwIJSp44loZJ49Gonj6SbxTG8v5QTMDT2yYP6L8XGr5uPZzmOXj+SK+4wYI1zZOuNZVNYlIjnnUUc9Izp2YaNJ8dWliJRphnGSgTAgCEG0La/Y6c0G98dcmdBjks+binO2XHnfpQas0JB6LqDQkJXxrr4I7Mdh9kcX/HthgZ1Sb6wlcTfJQFFnwJ6MDiQRrYVJwjZYVDgRPsthjHRTQi7pSLNIRLB7A2sYJFhjqhP85x+Z//mNuKBJzAz1CNxhzg4sjF3PDd/18pY7MDZqXLWZPenjDa+3t/hd+ez59Co/Okm6BeGBucHbkOuhe0dEgzA21Iu13ZTVYJVp056/WZg9aLzM6c4M5JyrfjeMTdagyLWyDiT/mBo9zDy5ezzgjnqdssKr0kZUbTYa54W1VLtU9MdVwhmfmhpFL4+++W9jXf/WqDr2mPrl+1sjMDZiVYT16D6yMwZgbZja+Xcba83hoVtOKF71m1qUWRRuHucGcE5zvVQ3I3PCzS+7PHt+3+c4NWDbAcuk/VApH4zE3YHOaFaEn2rjtPFvcdmqRJOR7m6r+ozNdzZ/WTtlPjUZDQIwmjPIN0X3jwEfbDBd2EyAjYbBCjAG/grgrWQiwVWlwjgJgbInxCmMvInQbrlPgRN+/RL83M4omJXosAyvWINriMkIlL6CB1676bStgL1AAA/QBhRcJs3z7eXgtcw106nAl+AotmwTvRhxQwC4XFinR7R8PPW/tahDVV4xBKGwkFpStoVfdsSMGEDku3KRyFRi+QI52tuqmc8edvPQmbMqsEcp/RzboQJ2WvuTNzGmZLyoMsEBFwJM+eS2CpytOBXUbeaYKD4B9deUCDIwoowRRuM+Af9NcwPbDpMOy4NClNaZLLp9zbMGDjI4fvHJa1n32T6JdRXuMyAQoQzwkQSXTlj1jQa23T5Tbbw2KFwDTVHvszc88396d/PbXvzXz88iWbXlQ7T+cqr1lJNWi4uMZv+oVatmEFLDnSGW2n7puTZtpvwZla55mj+gn9KIn/BCHqvCrvLeV9iBsUg6qqCTHA5tihGO8wOYYfa5WvTW41Vav7B69Had03Udtq1QZFr9q4NYnPMksg7X1Mj06xjcRKeMA5HgJLvYYaf5jsMVhfqN4WFSqm0ekpe0Kf2GGOpB/pcemgsYJgP7YB9FAvi8Y/DFOxa1P8Q4pAArcboBtkGC0oYwXupHNzwF6OAES/B9u09RwN1qZJGNhL1nTQ1m+ljAzdMua5n9IxGOoh9jLdcWKDpg2hrhemI3xWXA+YcMRK68tjlunD/xtcQ0ediZUEGYzH0TL9PQGGMzF3RKuW0D92t2taGW8WhadiA0PrCYKXaa35uGtmV/8QxaN6jr7+YPxi6gnMvKfy1z+UoQlwQaDwdYTBdsNdww2wiRcZDMJZ8rXftu0pTJ0/JuXwR5XRoop3802UobVMArDEhUKhC1gC5jdyftgISw2ZuXxgyUKuRQf5ElyTaxQCZYpKt0tAT1Lz/GeDC1QxXpEye2d2JJvGQDdesWe+w6BWB0e3HWVqbFCbAwxJAAX1p2Z+SKvrO/Wjh367Dp3cic1fMYexAyf8cuFTWd6VQIPIUNbiNxYVMgAm1F5OrGGzzoi56xFTkUZanBoIeF7s6HBxHmfx4euu73bZfA6iS31mDsxQNApHaqU94JoN2wkcaBV3ckoVewWnZMTZAVxqF2gZscjGIS0MoUH/Bu1h39AHxjk9pepaCVx8Ke4htsBc5BQseARYFGdjKsaqWW6YyrOJCmmXvt6ELPglTfqQGYTbBbotRHmGIZhC2MFvH6XGPpSJBTO8sHVrmc8982de/v+rKjNrWiJCfitEIkJ7HJJQFGPE4rqWkd1ic1RmUzPP7q15Kf9cQm0/PvuyNXy770jCfllk4ecXhvHD+RW/T9crbspPnj+9jBxjXc5r3mAXF6NC3JJNRLyK7xVZdqRkBugKhNRRElWZSKKKMmqTEQRJVmViSiiJKsyEUWUZFUmooiSrMpEFFGSVZmDfIKH9anVKWjGrsEXUrzzTjNK3uDgRY4+evklDyVvV9n0Xyv4qPutzVZ+a8yk/a49qUDVfyV8s1+kUKphuIglcJhBeTmW2VbLTw7bHcfC/sD4A7AlJVxnEmUIuqX36SWnhb4iAxzUH+lBLZMI7doN5IkRsCLv4qjX3rUznm3DmDSUUDUAD/ALe13Q5dvjUyza2/hOSHi9z325x7ji5NpKdhv7IsBK7Ui43VcMckKwrJYyE/5cWFXRlkQUxAqJ0vwydx4G74jyXvJ1xIut5l9r8VgWMapL2PuTmUP8spSTAib6JB/mAaUunCj5OTI3H7jitMYR5LzCJhuGGTnl4FKPrD1jT5XEttl8xu33H2Gj1mT8UaPX5AFGzOd6NiYGETIhBw9Py/XM5zbUZg8hRNEF+D6hB6LYJiQ4g73u3K4R+EycFRjze8iFqoEmkLWEIPXhBKmLo3553bq+cvyba7eq8ocMllhkN1DRN34mnrhfx3fcL23XNzxmMYmaRSSfy8wiaiUlgU4wJzre2lj0DzbH+KxrWIhZk8+iuSvP+i0PD+zO3IhnekIzFnBrUvO52lK3JKVelPv0Axa65gZ0hO0uMExHIWxnURtQAgDbRv1cnW5pWqccv1NXhRkh8wbfTWmyaiQ1OWWN5WNZ3DpFWJgVp5u4YlpxAbDThyFYEagxBhkgdunn68pjYMnATGOH6pXzZOmr5bUCNqY6XXreffpWqiUSg3vRQBUQGTgkgDBt5IRplZ7OrvAUGj3XbLQUGrQ02BiBKTQhI3b0wKAh7NA1Njskqn+2SZsxd0Iy/Ja/1rRxcqHvQ8dJEoT4Pg1iv5wtNK+P30dme7BzKRJhvCwJXpKp5NGEg9TJLNEPd3G8IWqnvIBY1ywZpOJ0AbieR8XkqQD1Iy56GaryWBoK39wFr4P8lqunTJ3RfNiegO3iMrvvJEf+Qg2RsAcwQyT8cmFzjn7OrbjZLQDPPQiPDWrOrQVLlusuelWT2OLvw0WSfrjUwx5tdnf2Wv7VfLP1T1EwNfuH38/M/hHXC8PHcm3nSy+tA0J2NKx9VhK01oEHfM5x4gOGjzEqDCywwo3BOBDtBfQf/bqo2XaWqPrLNFxKe/DlVd9SJ7aGTG0Z1T7r+K2WVKXh9zOVRlznvbgWaGU3p1Y2mZRWXh0gtaKX+7LDDF6CTEoYX6RiRk9pFTnk6J3QnPseT2taNaVuypQLxe5nKoa4zrdivDwIcwK3GRnr1dQmYsFlF/0WZM5aDLCFhUJeGB53S5V+vfPjbv8D3qUa141OoW7HmovwByAohQhBSSByhBORbS6kX7/O5tdzZgW/69GubeD4d981FkduvqXqGP9E3Yth2mtXGFQHLkyKlUfHgrASni2UqNWQDVJbFUO4f90WH/Rz2qj3ZY5J/LoeGfCZLkSdKKP6xQus6sYw/bqeGfDqRKiBkydhBL/wCBP+Juj+L5Wm+ndodjZ4q6TnhMb7T0qog48tsNEKDOz8YXZ3OsTQE1WjIWyIYaiXxWofRowovKUJ5aAWrAdS4/sDsI0C/H9+TClMCRuORJTuz43aUQWuazHAHFGAQR7rMdrJfMPkE1f00cQT2yQ9zcFD5qqfC1fmqrsW8z/ZMA/b6Xf+lOCoKLW7Uzv506CKVMbtUAoRKtOQsiHtHAriAeCeNOBOBY1OVSc7SWem4HotJhE4Va7rxg1YZK+DJbNTURs3MEcxxxXBN0n6EwTfJPwkOt8knS+SzjdZZD5J+o0IPkk22+TiJ1cBm6MP/a0kIMvzVD9FQG61hv6hknZpVPpbb+bs8C6U3G7Ahb/e/1bK02tmqXnz2wzq0by4eyZgdqyF6vREVS/8BqRLXU8giBzZQCoKSfDpnts2VLicK06/ntw5YfA/kUUgCaajFDVm9ZZTT2RhWYL4/9fed4A1kbz/R+UUROwiiiVYQWkWLNgSktCLgl1PjRAgGggm4RDLiR0LdhSxYsXeez17O8/ezga2s+t5nuVO/c9sCezu7JKYJcn9/l+ex+eRHXaz+bwz7/vOzGc+7+fYwHkNeEBpDidKk+swJAA52S54rQWYGBkAEJ31To1h+KOYMYy4XhwL3liP+YhaaHL1wJAi/Omt/5g/pcv5mMmfduL0p27/86ekfVqNPbK3xM8h0i17j37o/qy7nAd/Spdp4sFTdOD0FC2K3Z9e+Xlqm6MDEkN2VW/Z9tCDO1E8+FP6IgEPKLlxolS3OP0pPYZa3J924PSnbnp/+rvVzwnow4kfMptPiRpvMyRJ0p3vRfGbr2RE8jAl+Mo5JfhbPyW4zRuZrTwJuRnIbAgNPD2ZjamBR5LZEBp4JJkNoYFHktkQGngkmQ2hgUeS2egZGoOxBr0isovR1fN4YKzd4c3I9mY08vfpSCJEFUkj0/f8GTaxYbMJXbaQB5vcZbNJ9u77vSY+/Bi0d/eOvVsG51HP+f3QWZ6oUDFro7A5NlexMAneUahClzBRrVPg4kJQnptLw5auu4h4FUO8nX1UtEatUkXCiAUvFhz5fNOJ5gmXDwvLm/D6YNie7gtkqVKHoWye0LabVqGBAuDkxzaUqpMHqiBXC1bRgcI/MUod8d1BhgF3OfLTVtFMQpY5YixKN5IJlLWAA20rEaRNlJQNk2vilImhilhKALTHL0fCeqeFr9vh17uqkwpfpXrhxWGNZGvia52sgIHYWQPPDeqU+FuVId8KNaA08pSgxBgou0XCW8IOXoRbL4UuYbm6iijJhE8IYBVVpVwlgVpQhQKRTqOQJ+h/x4SJ9fcQXfWe1YdlugooT0t19P7PQ1zOrMUVlzNqkXH5vtVjTpdXtd7l0SmcxP6xemJ/Hm9h0kFgvjCJ0M0lwyRCN5cMkwjdXDJMInRzyVzo16wvo5ef/lE0IeHln/8u8x9VKBfq/PhtxSUZZf3Hbpxwok+Xh8mM4Aq9PrIj0cV4eQiu+WyWtNJy7XTRYbOVa59el6tce5+6xV2u/axuV1humWjZiuA7+4Lm/EKdT1mmXHtGXa7it2PrWkHN6Tlz5pihXPugU5lN+v1aOWDL+tWb03p+yLKKcu2pnNZRW4N1zFKu/cyr30rOq+0syvj6S7L8QA2qtomlyrUrOI3TxxqMI7BkufYmuS/nRO+RBh/qMse2RuiBa1ZVrr0Lp/ECLGM86yzX3mnvH99yAhcHLbFTNSy14PUPFi7X3oHTci0sbjl4U7GVa19c3jdIeGhFUO7jbWPKvOr4j1WUa8dyCNZy7cAREnnqA7Y89b9Urp1eFsPC5dqv1eUq136YmdIWS7l2x6itNkp3t4B1H/IWXfjWbxjv5drp4mY8lCC/UperBPkZ42QTjSjXrgs9Nn5Nyl7Jtujl3eSj1lYzfQjTsKL7CB6wOsyJ1U7z+lxLl2t/yObG/ifC/10i/PRqQmYT4fcUconwlxcWhwj/jr13pt37PEKac32/f99zrcrweNqcZx8JF0zchVya5fWEZhHhbzE5rOPBHVUjVvnMHTFiYnmpxUX4nThRAf3GauYOxh384U+Ef67mceUyO9oETB1QO1lXoxpVDNOSIvw2nKb7bJnJg9lF+Ct11NWw26+TrO4//d2Mbw9OWliEH/MyrCrqwMuYTYT/zrJFg22rLQ46cLrryvanX/awAhF+J05wygvNKMI/613z+allO4QtbBbSsO7ov0dbgZwFRMiGE6HP+unnI7a8TSZu0vRbhyvi3Lt11lxa/JrKILPHDvElqVUgojNzNlsWnH0KtkiUBfcTWhgAcY06OS4e5HCwyrU61igtB3qFRda3ZaoeFGo0lNsHEqF5EN98gG8uPU26APBNYKZJRh6sqlrwWuAqgQVabt7dt1XuyZzQdPnZRgsWLVhteu0uWgpFd4wmplBQ9jZTyFbFLgv03SnGpVDl8OEbo4jTKND55YWZ9e847H8qnjW3lniq+6HFtBNS2I2IE1L49eKQ/R3N+f1TLJ4s6XumEYkSfGWlOkYZzaFt03v952/xrSLEmZtOPzj0PrQCta+SD2D2VX1LcRgjgdMY0ZYxBqM4tjE7Fp4hiWodCF/yaLh26urdAUxZwcwiwV3YrEN0vFoT4y5s3kE7RKPDfkFnq2UOJ8S4yz9J1/dfvLOyTx51S94OfkCULlWFqH9Z0FQcxurFaawIqxg58FFGZavVCha6E5M1A7UcI+i3rEqHHNXVAlfWHTTm0r6026ZMlU2dOngTjhwe9bzA0IVqJls30cgslfDkHNnWeZHio6bLlpB9NXzC7j3Zvduy014AwHASgBsIAKBrMSoTJUMZu8hEpQcnQh2yu4fMqVN1R0X5w88WPewLARjABUD3SCGZaD7+j/Fx6IW5zcbHcXTh4uPkMzNLnvk4P7wRu/YWZgVlNvll/Z17zj9aAR+nqgvX7mZZFysgFQwbNswMfJz7i0fGfUlJEM1b1apf1WWvHlsFH0fAaZ2/LROSLcDHGX3MRRLfor7/vsqTfq3p/TzAKvg4L4Rcxsm3BuMILMnHGRuond934enQBYcazbk39PRGq+Lj3OA03nmLJ7tWxMdxmDeyjueR68FTSj1M901Y/NLCfJxjnJbba3HLFSsfZ+t2cZ1Fi7witm/rfT/zanCiVfBxsByClY+Tr89Tn/xf4ON0SLukTvFvJNo+8vnoO73nnbQwH6enCxcfx8/FPHycdm6p70okXg9Li+nW8p8OK1bxzsehz8154Jh0d+HimIS6FBcf51SfN5fHu5+SZoV6PLSvdzWBdz4O3UfwgJUfJ1ZtzDtLsDQf5w82NzbkkLKpMnytZNfBCNWTh31eU3dKuiTDs5MBGnlSPPOEqRHbFw2kSm0SPD2m381J9cBPmQrlUDMvDn4CsufVG7Oj76dvThGHet39MMkjOJv1/Zg7OYUbGf3PLgq4sIjCR7EQvZJ+7snAXql/Gr1wUmOZwBmewneUwH+0858JjWWqmrVPOkQpVMBgipgg4NeHko/DzIqb8imbKR3zM6SVfX+T5Pg8OLTpVAqVA1LCD23ASrh3R9hMUBZvohyyIoIB4/AVX0oe9EPy36HkYWh2UILFSt4gI4snS+QeFhOoP2ND/ev4rSuqeNr47ezrlL0qKWxlkacvyxY/8gaf2KSf3uPpxOZ3jhsui+ypSbfIczaLLJ2Zkfwi+GPA3CGO2uzJ7tQVq9L+kDyjY2ZkrNNL/AahFkR9vN5lshamvFittni1KgbKMUJKYCz2d1g6rJPHaQ3KQehHJEuHqqMHK2L0N6Fenbmci183VAYUgOniDGXT/RCkPiiqXsIZIb8EIYLzOIT8EvxHl18KH3+3Y9TJ56JxZ7en2b6NuEKXXxrbI2fUraS+gVmHl85/nDW1I9lOHkb9bnkm+gcj5JnYLG0P1QMIM6Kr4OTUnVEy5YZko2v8+z13oxuaYi3+5fChhhC0a0VUynMfpDzVnC1SeNIe1nfsrwXfITGuwGEU/I65muHevpEjESpRbLaq7F8w2kBCpEvWoBPXTe5l4xbcXOu3b+Sti9USKgk5TVZGgj8JoXVMNBSH0ew5jVbCvEYjXbBNqAR3qPCWUfpxj9mGHKNsyV49KVH6WpmoVWgw1h34CIrDRNqq+4OPpUuvGRsybvO2IStyBp2l26pMWLJOPlClF7AQ0Da74Kd6M8OVd9FaX98XrriM+qEml1Ff1mRofXEWUCA6uwLXZ0GCR5dJ4ezoNtDTMct0YFf57uJpnoRfOixGVLoXeWFdnAjpL9hCepcH9yLKqM4HLNlzsOSonS5UmcKyUfHKWJ0Q1pWlhnUYr9hqWjtHxMbCqYhcpSLKryph4Two3u2JBJhecJDtFRD5kqHLUqBn/KAXpmAsS7nLBI9MLlHtgFXfBWNTC18Yze88OezZssyTouzhvzlGeYZTC6LasHzFIlNCetF1E8cYnMKXglgdFiHGWBpo/cQsSs3JGsMtqMZ6Bbps/OnlLYbN/lOyfcXChsuVv8gZS8qxhgFj4niC3/x1Da5v/si8BaZZlpOxHmjEHps91Bnikp6aX99x9PmX6f5zxr6qfSqjRTi1X8K7zQX/75zwX7QM/AyGmKmFuvERAdnO4JsgLUKvuPudnsLU1XyPQq6AEWAGeGADgggwL9kCjNF6Pq566xW/nk+1C15uS367Jt5w62SDw68yTxbS82nz9/wBlcUDxQtVnyQfor2fFtLz8f318qUDtZaKp8/u9fHD8V1XC+n5aO5fWRRzZJV0b6lb5+bmTf+hkJ7P4S+21/P2Hgg8FP1HWNjN+NeF9HwQlX9JbUNE5V+yUC+i8q8t0bR2ecOb5dpHBky2T9joWdXxD9BkRzS1fT912IOnR8Rjex/7fMNmYSnQVJZomtH5icvlKc+Dt/YK//K207vjoMmeaKoT3Gj7o9lf/TPaN9F+WenwGDSVI5ruZI2rvLhNp4Cc4EHHatUSaECTAwlUdLtR7Vut8h+7eciPV39dMQQ0lSeahPkrjiydVFa2YXtnZfOd0lTQVIFomiyqV9atdV3/nVuvPSnhnuoDmioSTZ0zjxyt8c/twC1dfEf3aDGyLmiqRDQdcPiYdUQxSTR1uM2pCs77oJJSZaIpLv7RIGFgxaC0z48rBNp1jwNNVYim3Mp5fzdtPFmUVjMvb8LpAPjAqkTTuiyfRUt73Azd9VOO//aHmmGgqZqAVQbKkWj6dMJxxOnDa6TLs2Y0zPQ90go0VSea5M/bdnX3DfHPqnenyqV5YRdAkxPR9C1p7DEXT1/pBoldpf0N4kSgqQbR5F7F72RHySq/qQ62Zb78/Pg5aKpJNJ2fVHnHrarRflOWJ/3aaU7z7qDJmWgq1bR1hODWyLBt3qVaVp6vgXqOtYimzNzP55r4lgo52HbYpN5XtiwCTbXJDvDL7K+nmjuFb3mw+06t684hoKkO0ZRxKqRDxQfr/KcvCppcteWLw6CpLtHU5W25xiEuGtF0ryORzd5JaoMmIdHUatvutXZRQUGLVh0vfTSvjC1DqMpFwCJU1a7WlWqPlzmErsxyvv6o94FohNswVqjqFZuLqha7Z1P28dOyhevzh52tNWIpdeoqG5qkUscgTl+wJcCNiDuE5HlZrEydNgEkxMAJERUADTxuQXdQyFdjzqqJBkMnEpBbVB/KBqN2DjuD9PhZPeMKaBacRsVfBPndBtyZ3l738qfwdcdruMyUBOfweBiV5w1CWODnaz02PrQTmJX+Vc+onNgnUgG6BsZ7ilHAEkdqrRI7fgLeT6nCpk5kPxHKNfDEtTpBGY1W6N7gVGpITfuIvdfKLeq+f0I3Kn1c/zlM+nhBE995A4TrGSdc9+tZRSbHPOpoZCbnQQy0mAJz6eLlOmGCfLBCCBIQfQlrdp7514ODf6pVK0IyR3D5eNcOKzrSmIbEYxFMQ7KFb+tV9CA6uxRJ/vfEOjuDbW4kcC7koSiS8KegA4kES1O9+5qoe+OkM6eKe7wS+Hcw/QgWD2A94wQLdHUi/rxmiz//U274LuUGeoZuNuWGqPpcyg0t6heHcoPH9uNJzV+mB65tUrX7qJnzVvMYLOkeiAflhi71uQ66B9Q3i3LDxFGzkjdF7AqY2yat+76ut89bXLmhAycqoN9YKcu0qAUm/pQbTq/Vldj6rqPf7EEbr5bbvv+q1Sg3uHGarq5lTGd25YZnVWs8Kz/pbliu/4mnJyvOcrWwcgPmZViP3gMvYzblBo3vT60nVEz1n6RctfyXh9VpM0iLKDd04ASnRX0zKjck7559I0h9JnjM2qObzvfofd9KlBvcOBECY5rI296w5W2nF8hDv7StHjBmVZ0yz+oPP0jNRkNBjiaMkoYavnDgpy+GC6sJkJkwmCHGgl9B3pUqBNhqdLhGAXC2RH+FuReRuo00TPKKtn6Jfm9mFk22GDENDGhClMVlpEoiYIHGTYxbVsBeoBAGyG/XWhIdPOPLv9Kx56tf+fevlrRMKQrejTiggF0uKlOi+z8eat7KmhDsK0YnFDaVCdo1MYp37IQBRPYL1xilBnRf0I4Otp0vR5Y6cLW0KH3PEv8uuUpqxU87KXkzc1gWNBUF2KCaG9vUue8sXe0olDfpc13JA2DNOAEDPcoiSRQeM+DftBCw/TDlsGw5bGmP2ZLDq049duzErIvDpVvjrvU/on2ZXRkTMgHGkA1N0ij0tGcsqRX7Rbn2dDMtAaaXxezcutKAk38Epo9Ndzt/f3JPHkxbm9O0VSxkWlR+PKOTUalWudBC/hzNzn02tezAiPf+m+bVezf7Qbe69A0/xKEq/CrvZaU9CZ+0GUUq2eyJDTEiML5lC4x+V6rf+an1NtGGPv2cpnQ/QC2rVBWSX3Vw6ROeZFZAbr3CiIrxXhJ1AoAcp+Bij4kpeAw2OSwoFA9JpQZFRPq2XdEvzDAH8q+MWFRY2wCA/ocfooD8AND5FzYwlZ8iDi0EClxugGWQYLahThS6ksXPAXq4ABL8H+7TtHA1Wp2iYFEvGXjb6+ajzLXSbd297AYpdyuoPqY7Rjpg+hjielE+5kfJgAUe+Q1Fc3U5XScM6LGTh5WJXAizjR+iZHqWGwazqUvCDQuZX7+6Fa1O1Cqik7HugXGikFgmDtRdrDd4qv+qj0133Xz+1Yl6IqPguczpL6WxONRgMNj6omC74YHBRriEP9lcwtny9d81a6UOm/Dn6xDPy6NklO/mEKnAOIzC8GSVCuEL2BJmD/I+SITF+qwy8Se5ShmDd/IUpS5eqAbTFI3hnoC+S8/xngwrUJuNyJI1Ddg235YCdPuaPPYdgzAeHlx1VWgxIjaGGBKA/DsjNz6vdEuc1uf6im+jGx6lps/Yg5jpM365qOFMZyXwkDIkQeTGoVIGWIwqtgFr+mwgcs565DSUrga7FhK+RWfHDPlg8ygwd3BtRWKXWuupx9yJDoLe0qG28k6IdsV6EgdakQ0swmK37ZqapCiMQ/1CnB3PEJDSKlSe8G+0ngGB/WGSG6fQ0Chx8MdUx+2IBUhoWPAIMKlOxU2NtDI9MJkySEy06wBPYhS8EaMOZHpho8CohTCncAxbmCvg/F2i68cgoSg1usn54acOBaw9UHFa0MxRNH+BfSvExgR2uTig6MsJRaQ+UL1jC1RWU/OP7i35KX9cDCX/WjTgKvnXVA/5X1YPOZ0bxw/kwo7/hFVqPlOa4bjJvfy+yGU8QL6kIRfk8xqSkL/njZVZgYTcDKxMBImSZGUiSJQkKxNBoiRZmQgSJcnKRJAoSVYmgkRJsjIRJEqSlfnRpuq7NiNOBqzoX72EvPOTXxmUN9h50bUZafRLHihvf7PZv17IMY87W8r6r7aJGXjtaUWq/avgi/0SlVoL00VsA4eZlJdmGW31/JWw3HE8rA+MPwCbUsJ5JkFDMGx7n045LfIVGeCg/sgIaZl1cH/gBvLECJiRTzFum98Z323DlDTU0DQAD/ALOy+oSZ9Xv/9+t1LgpoVDv9Wc8Lu/KXttxbuMfQFgtaY+EXbfMMQJwbQ6m7nhz4VVNT0lojBW6CM1ru6bHn5sGDyz1+H8ms+1Oh5pEaO7hb8/tWqo/xr1pMB0v9QjPKA0hROlEfWZiw9ceZp7Z3JcYYMNw4wccnCqR3LP2LdK/PtEryjzT6Bsoa3P5DGK0akW3M/1dic6EXJDDh6eXmLkfm4T/e4hhCi6kN4njEAU34ReCfipScSpkhGy9TcTJzU+8/K0FexaQpAyOUGaYuS+bkOpEv/m+qWqgi6DbSyyOyinIUpb+waPQhdUdPonZ+CHmtRdRPK5zF1EfUtxoDOaE50U/Z7uB7bA+Lx7eKiN1ydJ5vJz/jkRQb2ZC/HMSGjDAq4LdT9XT3VLURsluU8/YGHo3oCBsN0HjukzhO0cagFKAGB7aFyoM2yb9kXZmnvTs5cE71hTLuXx62etqYud2H4sS1inNBblxekuzkQvLgB++iMEqzOqj0EFiFfGxbryGFgKMNLYodox4ty1J6kLAtdOSNj+h88HatE/Oxm4Fw1UoSYzpwQQpoecMN0yMtgVvYVG32u22BYa9DRYH4FbaEJG7uiJQUP4oY9sfkjS+JxX27H3Qpf657zVta1Rm74OnSBPEuLrNIj1crbUvDF+H7nbg51LkQsTFSnwkkKjjCYCpGEsEtrhLo43RK2UF2o2dJcMdJsabgDX86icPA2g/snVKEdVHtuGwhd3wesgv2Wz/c98VXYTAja9qzs0aOvVxtQUCXsAM0XCLxc15ujn3Ezd3QLwVIfwlEONuVwwZXFwM4pN4oC/D5dIenhq/7Zfu3QIXve055jWL25QJynE12Xu/hHXizzY3vbLCbfU2qEbN0W//Hd8tR484FOKEx/QfSzBMLDFiBs/4UC0F9B/jKui5tBVrolT6LiMdqrkodEtf+ktnn1i+LeG73+hHq0rjd/PNBpxnXdyLbDKa1cuqzyyKqu8OURaxajwVQFzeEmKGML5omsuDIkKUvgPCBodLp7fo+aCO1TDhGH3Mw1DXOfbMCJPwp3AZUbGfDXNSyawdTNuQuasxwCbWKiUReExr1+Xf6ShHcKXCZfXWvb3uAE0SSH8AQhJIaKhOBD55MqFyDNXMq5/Yovrm2eF/NWnnW/QhL++6GyP3npHtTH+iYaTYdrrZxjUAC5MiVdGx4O0Ep4tlGu1UA1Sz4ohwr9hkw/6OW3U+zL7JH7diB3wk64ET5TBfhGBWd0eZlw3cge8FpFq4OJJmMAvPMKEvwnyi/89511K/r9fgnPnP3TN+9CcSp4rw5bY6BvMHPzh7u5xiKE3iqMhbIJhaJTHah9O9Ci8pAnloBbkA2nx9QFYRgH+vyCnFA4PH4mWeaHFc4tWVIHzWgwwJxRgUMd6j34wf7b6jSt6b+JJbZK+zcHDzlWWK9fO1Qw95v+wYR6+y//8acExSVrvGu2Uz4IrURW3wyhCqExHyoa0cxjIB0B40oE7VTQ5VcP0JmnKFFyvxRQCp7YbunADJtn3YYSeilq4gXsUZ9wQepNkPEHoTcJPoutN0vUi6XqT360nSb8RoSfJ5ptq+ys1wOcYI3+7Vvbr+dGbnwbOern1H822mNlU+Vsxc3SIixS3m3E6qmLJR0sCN946IWs+doap5yYFYHTcheb0RrEXeoLWK24nEUKObCB9j0hwcvoYUf6GuuJ5h2bNGW67ptV3iATTUdr1rvryP8Y/8z+0ZveHciuPmko4gCid4UTpsBtDApCT7YLXWoCJkSEqyjTWOzWG4Y9ixjDienEseGM95iNqocnVA0OK8Kf//sf8KV3Ox0z+NJnTn/b/nz8l7TO/jyLygc160Yrb/V+d67pkBw/+lC7TxIOn0HJ6CmWx+9MD2x/77q3ZPXh2aP6GtKWDXvDgT+mLBDyg1J8TpW7F6U/pMdTi/lTL6U/76/3pF6ufE9CHEz9kNp8SNd5mSJKkO9+L4jdfyYjkYUrQ0o1rSuCuh/wrb2S28iTkZiCzITTwSFeP0MAjyWwIDTySzIbQwCPJbAgNPJLMhtDAI8ls9AyNwViDXhHZxejqeTww1r7xZmR7Mxr5+3QkEaKKpJHpe/4Mm9iw2YQuW8iDTaBBkDbJ3n2/18SHH4P27t6xd8vgPOo5vx86yxMVKmZtFDbH5ioWJsE7ClXoEiaqdQpcXAjKc3Np2NJ1FxGvYoi3s4+K1qhVqkgYseDFgiOfbzrRPOFC5/mZVfuMDMgsOaFq0CzX02ye0LabVqGBAuDkxzaUqpMHqiBXC1bRgcI/MUod8d1BhgF3OfLTVtFMQpY5YixKN5IJFjYGDrStRJA2UVI2TK6JUyaGKmIpAdAevxwJ650Wvm6HX++qTip8leqFuwc3krVY0PhkBQzEzhp4blCnxN+qDPlWqAGlkacEJcZA2S0S3hJ28CLceil0CcvVVURJJnxCAKuoKuUqCdSCKhSIdBqFPEH/OyZMrL+H6Kol2Lqq1YRlugooT0t19P7PQ1w+25grLh9tTMblklaPOV1e1XqXR3/hJPbv0RP7S7FhbnSYdBCYL0widHPJMInQzSXDJEI3lwyTCN1cMhca13LewioPZkhXp7VfHzPuz6OFcqHr67ofGPhbvfDlaSmyLldSchnBFXp9ZEeii/HyEFxt2CxppeXa6aLDZivXfrwJV7n2mUwpGZ7LtV/R7R3yXpovOTRl7pQnj13eWEG59qNNuIrf7rGMYAa15vTUqVPNUK790Z8ZlcqGT/fbFRe0ebsulbpaaKly7Zs4rbPSGqxjlnLt0ZVqf+sQ0k4y/Vqb4KNtQqkrzJYq176A0zgzrcE4AkuWa690tdTzXncHB8+LaN2u0qHuZayqXPtETuONtCKhIIuXa59WL91jjLSC/77Kl/8asFMxwsLl2rWcllNa3HLwpmIr117m0645sXfV4uWjsj8Kl316bxXl2rEcgrVc+0y92NMPbHnqf6lcO70shoXLtZdrylWu/W9mSlss5doHRd0eHD5/acBi5Y9Pl/24kyYHyUO5drq4GQ8lyMs25SpBLmhaXOXan+8Xl/zX72LY+vP9R3SZ+uoE7+Xa6T6CB6z+bsKF1Qvz+lxLl2svzebG/ifC/10i/PRqQmYT4Y9pyiXCL21aHCL8z/9K3H3gpVPQglc7vs5yr12Px9PmPPtIuGAysCmXZnlPpo8sDhH+8uM2pQXtaBm+sWa5858fBGRZXIQ/nBMV0G+sZu5g3MEf/kT4q8xx2hgUW0qyu2Ol3r1rfq5gNSL8vpym87aM6cwuwv/r9Xv/Jm5pI5o+umvktrXlKtB2Os0two95GVYVdeBlzCbCn7Hf6VPyL3PFM0RZX/Pcf69uBSL84ZzgSJuaUYT/9nrP8+PqL/dbXm77+6O5daZbgZwFRMiXEyEwpom8rQxb3iYTN2n6rcMVce7dOmsuLX7dgqojgB3iS1KrQERn5my2LDj7FGyRKAvuJ7QwAOIadXJcPMjhYJVrdaxRWg70Cousb8tUPSjUaCi3DyRCv0J88wG+ufQ06QLAdzkzTTLyYFXVgtcCVwkskF996NtL0kpVu0vnTmu/YJV/b6qeynfV7qKlUHTHaGIKBWVvzzZlq2KXBfruL8alUOXw4RujiNMo0PllUOXSfna+7cKy7ma32Hht3UPaCSnsRsQJKfx6ccj+7uL8/hssnizpe6YRiRJ8ZaU6RhnNoW0T3u5h2XO/3Peb/6WpJu/fSBW1r5IPYPZVfUtxGGM5pzHmW0f6IzBmx8IzJFGtA+FLHg3XTl29O4ApK5hZJLgLm3WIjldrYtyFzTtoh2h02C/obFXUaemVv4VHA8Y5ddnxZd1MKrfDDn5AlC5Vhah/WdBUHMaazmms8VYxcuCjjMpWqxUsdCcmawZqOUbQ2h2iXlPTy4TOvFu1WtC1MQ9NmSqbOnXwJhw5POp5gaEL1Uy27oCRWSrhyTmyrVLKL/V3Px0euE5VWryxUd0tlp32AgC2kADcQAAAXYtRmSgZythFJm7kfQptoG4v3j9p0tZmz4PHW/SwLwRgLhcA3dP1iabtf4yPQy/MbTY+Tqg7Fx/Hyb24+Tgj4gZH/+yQFzZve2b6tSpjB1gBHyfYnWt3U+RuBaQCLUjpi5+Pc6fHr9NWdxkWnLlnrMsd2xt2VsHHacVpHXdrsI5Z+DhJYzfV3JJ2zn/e773ur/o89oRV8HHqcRrHyRqMI7AkHyev5p2vd5fbh6/Mi1j7efeUw1bFxynPaTwbyxjPOvk46aWWugaW+Fkyb+kV97Rr9/0szMf53JTLcm+sYppSbHycie96XZ9zda54zYJdD17YNZNaBR8HyyFY+TjAERJ5qt3/BT5Ol7flGoe4aETTvY5ENnsnqW1hPs40dy4+zlBmSlssfJxmLzrvHpz+PHBz1Ke6TbfeDOCdj0Ofm/PAMZnqzsUxGeNeXHwch3ivxMGrP0rGZge3tamReJh3Pg7dR/CA1VBOrBLNGy0tzccpy+bGhhxSNlWGr5XsOhihevKwD7UQm32XZHh2MkAjT4pnnjA1YvuigVSpTYKnx/S7Oake+ClToRxq5sXBT0D2vFbbdq+1iwoKWrTqeOmjeWVsWd+PuZNTuJHR/+yigAuLKHwUC9Er6eeeDOyV+qfRCyc1lgnCoDCXowT+o53/HNRY9neo60mHKIUKGEwREwT8+lDycZhZcVPas5nSMT9DWtn3N0mOz4NDm06lUONsCT+0ASvh3h1hM0FZvIlyyIoIBozDV3wpedAPyX+Hkoeh2UEJFit5g4xssRtRIvewmEC9HBvqX8dvXVHF08ZvZ1+n7FVJYSuLPH1ZtviRN/jEJv30Hk8nNr9z3HBZ5HVDukUc2CyydGZG8ovgjwFzhzhqsye7/0hdE/WH5BkdMyNjnV7iNwi1IOrj9S6TtTDlxWq1xatVMVCOEVICY7G/w9JhnTxOa1AOQj8iWTpUHT1YEaO/CfXqzOVc/LqhMqAAzB6NoGy6H4LUB0XVWzdCyC9BiOA8DiG/BP/R5ZfCx9/tGHXyuWjc2e1ptm8jrtDll8b2yBl1K6lvYNbhpfMfZ03tSLaXFJgoz0T/YIQ8E5ul7aF6AGFGtOaD+679qiqa0DmPf/qcVOH8OVOsxb8cPtQQgnatiEp57oOUJ6SRRQpP2sP6jv214DskxhU4jILfMVcz3Ns3ciRCJYrNVpX9C0YbSIh0yRp04jok7uC7hZ03BWalHhFcX5uwhNNkZST4kxBax0RDcRhNzGm01uY1GumCbUIluEOFt4zSj3vMNuQYZUv26kmJ0tfKRK1Cg7HuwEdQHCZaMH1X3vWhN16Lt+5L2VKj1e2JdFuVCUvWyQeq9AIWAtpmF/xUb2a48i5S6+s7wxWXUT04jVq/EUPri7OAAtHZFbg+CxI8ukwKZ0e3gZ6OWaYDu8p3F0/zJPzSYTGi0r3IC+viREgvzxbSuzy4F1FGdT5gyZ6DJUftdJlA5cpGxStjdUJYV5Ya1mG8Yqtp7RwRGwunInKViii/qoSF86B4tycSYHrBQbZXQORLhi5LgZ7RTi9MwViWcpcJnBuayiNzwKrvgrGphS+M/KIRz++O2dw4U7I860K53GHxB+gFXpBfsciUkF503cQxBqfwbSFWh0WIMZYGWr0aGscawy2oxnoFEhf7oRElstcuitgkVnXv+KO8NGNJOdYwYEwcT/CbN+T85qCXWMFyMtYDjdhjs4c6Q1zSUz2iZS5Dp0lE0+36V7+bPX8ttV/Cu80FfyVO+MtYBn4GQ8zUQt34iIBsZ/BN0EULaBV3v9NTmLqa71HIFTACzAAPbEAQAaYCW4AxWs/HVW+94tfziXeeEH53ZuvA9P2ZNVJWtyqsbfgx8+y5txFK6fTLeyce/izYXEjPp6+sQV6JfoNEm+MPNY693dKpkJ7PuKTXs5ueqhY+69qkzwEnfmpVSM+nRMSjlVXj9kn2V730k7ChuF8hPR9E5V9S2xBR+Zcs1Iuo/GtLNJVa6jDzwqqciP3794r98vLqgSY7omlpcsrwOeuv+c1YMvxLC8XImqCpLNG0bU0FUe9BQ6SHXo4699H7K3ygPdH000+ew5c8VImy3g2pkfZlbHXQVI5o6vzzmmNO/9hJM/KHT/zFPycZNDkQTZ6vHS9NizoSMev078sex/nNAE3liab+XkfDbtU4Fbph1zqnZkH3xKCpAmmUzytmbvvlZuD+5qFrju4aBF+jItFUrp7/CM/dztKNLcps6ZbT3w00VSKaTi8RPviarfFPS9mU8ccI0Y+gqTLRZHvnr/297WsFbonw7+iW1K0TaKpCNDl2eN9r3/iGIXP8+434dbxiE2iqSjStTIt90ezAZdGhNv1bBwWerAKaqglYZaAciaZ7x7LFNeYvFR0o1aPfW120L2iqTjQ5pNrtKz+nkizbY9kjt1pnYAdwIppC3i3QpDSbFZDZbX+fi68S4WfVIK3ca3dIYM1k0YRW4asmZ8V1A001iaYL2b0PVZbOEe0uFXKzXZ1p00GTM9G0L6Bhk2plVwQszryWuTLeQw6aahFNv/168fHdGuGBOT0vjY93WLIDNNUmmrYOznQWTjkhW3Y7pJfy69l80FSHaLKx7+JdZd0I2YxLNweL35b/HTTVJZr8W273rns9Jixn5diuUcd9boAmIdGUf95D/u+rOeLRty8cfVPh5mmGUJWLgEWoKm7TI99yvf6O2H8v+VyluE8OPAhVVWRzUdVi92zKPn5atnB9/rCztUYspU5dZUOTVOoYxOkLtgS4EXGHkDwvi5Wp0yaAhBg4IaICoIHHLegOCvlqzFk10WDoRMJVJljsCWWDUTuHnUF6nO5pXAHNgtOo+Isgv1uvhMAeMasr+I8/svrQj5NV13k8jMrzBiEs8LPQk40P7QRmpbM8jcqJfSIVoGtgvKcYBSxxpNYqseMn4P2UKmzqRPYToVwDT1yrE5TRSBT7vKpYrmY9x5BZK5rfazp120wqfVz/OUz6eEET33kDhCudE66fPa0ik2MedTQyk/MgBlpMgbl08XKdMEE+WCEECYi+hDU7zzy3TucA9+xOkq1z/+k7dVmFGzSmIfFYBNOQbOHbehU9iM4uRZL/PbHOzmCbGwmcC3koiiT8KehAIsF6Y9/x3/GzfCSb1pQdkXWxXIzpR7B4ACudEyzQ1Yn4U4kt/vxPueG7lBvoGbrZlBveenIpN1w0LlYaqNyQPLmkRnLgiHjiHVf5Fd9393gMlnQPxINyw2tProPuj4wLlt+r3FB1fKl6O+e0DTq0Kv7Q+CNzqf3DEsoNv3OictEyMdEAlmlRC0z8KTec+fKk8oAJD8NWtjg808PvSDurUW44yWm6A9aazvCs3JDsUMX7eZXlYZPWvc86UankZwsrN2BehvXo/SNEllJcyg21T2RtqLpZELE7w+59pdofqQQhyyg3/M4JzkVPMyo3pJdxnrIuo3NEWtzwklJp55ZWotxwkhOhA/q8rTJb3nZ6gTz0S9vqAWNW1SnzrP7wg9RsNBTkaMIoaajhCwd++mK4sJoAmQmDGWIs+BXkXalCgK1Gh2sUAGdL9FeYexGp20iDEif6+iX6vZlZNNlixDTwkQ9RFpeRKolg/VIf45YVsBcohAHy2zWIK5WeNP1S+N6RXqEVfafRDu5GwbsRBxSwy0VlSnT/x0PN2wc+BPuK0QmFTWWCmz5G8Y6dMIDIfuEao9SA7gva0cG2dw/b1pOuNRbtvv3w4bThgonUYSklb2YOy4KmogB7cjWm6fisvyUZilqp2+qp9vMA2G+cgIEeZZEkCo8Z8G9aCNh+mHJYthy2tMdsyeFVw1a6p4W12xe0Z/LMVz1KT/GsjAmZAGPIhiZpFHraM5bUiv2iXHu6mZYA00x7pva7P9pPGybJzHF79XxOjql6b9C0+zhNu8VCpkXlxzM6GZVqlQst5M/RRxrr/rEjbvR96eJzzoOiffyu0Df8EIeq8Ku8l5X2JHzSZhSpZLMnNsSIwFiFLTD6Xal+56fW20Qb+vRzmtL9ALWsUlVIftXBpU94klkBufUKIyrGe0nUCQBynIKLPSam4DHY5LCgUDwklRoUEenbdkW/MMMcyL8yYlEh0BuA/ocfooD8AND5fb1N5aeIQwuBApcbYBkkmG2oE4WuZPFzgB4ugAT/h/s0LVyNVqcoWNRL8rUlK3ya5R2RPehozmJJK2qRvtLdMdIB08cQ14vyMYq8qzl9RSv8xye5aiZ8iRzLw8qEP4TZxg9RMj3LDYPZ1CXhhoXMr1/dilYnahXRyVj3wDhRSCznpXt+leSIpDvH5g2Onxn0O/VERsFzmdNfSmNxqMFgsPVFwXbDA4ONcAlV2VzC2fL13zVrpQ6b8OfrEM/Lo2SU7+YQqcA4jMLwZJUK4QvYEmYP8j5IhMX6rDLxJ7lKGYN38hSlLl6oBtMUjeGegL5Lz/GeDCtQm43Ikit6s22+LQXofvYydew7BmE8PLjqqtBiRGwMMSQAZ/tt25SaLwjMuf9WONb/bFtq+ow9iJk+45eLGs50VgIPKUN5iNw4VMoAi1HZeLOmzwYi56xHTkPparBrIeGTdZ6ytfJtu5Apdd8caZ4xgCq8VY7oIOgtHWor74RoV6wncaD1xssiLHbbrqlJisI41C/E2fEMASmtQuUJ/0brGRDYHya5cQoNjRIHf0x13I5YgISGBY8Ak+pU3NRIK9MDkymDxES7DvAkRsEbMepAphc2CoxaCHMKx7CFuQLO3yW6fgwSCu20iCNXl3UNGvek78V3r1U0fhf2rRAbE9jl4oAC6+KsUIAuTgSqamyBympq/tG9JT/lj4uh5N9FL66Sf6f1kDtaPeR0bhw/kB89flvecIJjyIpBF+/PO/w+lgfIOzTjgtynGQl5dd5YmRVIyM3AykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZdud9ur6qsFmS1ah05pipe5IZlDfYeZG9j06/5IHy5sRm/3ohxzzubCnrv9omZuC1pxWp9q+CL/ZLVGotTBexDRxmUl6aZbTV81fCcsfxsD4w/gBsSgnnmQQNwbDtfTrltMhXZICD+iMjpGWCoF+7gTwxAmbkbsysnGvt2hnfbcOUNNTQNAAP8As7L6hO85rjHs2ZETTth0VhAU1qJ5qy11a8y9gXAFYBZNh9wxAnBNPqNl7IPJwNq2p6SkRhrJAo/fvPob7Vul2WzV0xaMZ+3ZhHPNIiRncLf39q1VD/NepJgel+qUd4QMmNE6WaXszFB648zb0zOa6wwYZhRg45ONUjuWfsWyUDD5/Ma3G4e/As0aMwQe5ohQX3c73diU6E3JCDh6c7eBmXxjbR7x5CiKIL6X3CCETxTeg6scLVtg8W5oknXv99xeuy8ZOtYNcSgtSCEyQ3L+P2dRtKlfg31y9VFXQZbGORw0GdGvHo7YFjYePmP/2x1LdTG6m7iORzmbuI+pbiQKcuJzrV9LloDbbA+Lx7eKiN1ydJ5vJz/jkRQb2ZC/HMSGjDAq4LdT9XT3VLURsluU8/YGHo3oCBsN0HjikLwnYOtQAlALCNMS7UGbZNG+c86G+v26VkaaLU91tePzpDXezE9mNZwjqlsSgvTndxJnpxAfDTcyFYnVF9DCpATDUu1pXHwFKAkcYO1cxRL/dN9bKTTYpu4PZs/Z72VE8kA/eigSrUZOaUAMI0hhOmoUYGu6K30Oh7zRbbQoOeBusjcAtNyMgdPTFoCD9Uk80PSRqf82o79l7oUv+ct7q2NWrT16ET5ElCfJ0GsV7Olpo3xu8jd3uwcylyYaIiBV5SaJTRRIA0yC3RD3dxvCFqpbxQs6G7ZKDb7GoJcD2PysnTAOrzWhrlqMpj21D44i54HeS3vNf74Ml659Nla1OH/9v1RBtHaoqEPYCZIuGXixpz9HNupu5uAXh2QHjKocZcLpiyrGtpFJvEAX8fLpH0Wskv5Ff695NkeeyOWCVavp66+4ffz9z9I64Xhc/h6TtrJVydF75iUM7dZtnrL/CATw4nPqD7WIJhYIsRN37CgWgvoP8YV0XNoatcE6fQcRntwJbLaVMiB0sWnRjsf3F9bDDVaPj9TKMR13kn1wKrZHBaZaxVWeXNIdIqRoWvCpjDS1LEEM4XaZjWpbO1I+KvBEzP2fD7k067qYf9Sodh9zMNQ1zn2zAiT8KdwGVGxnw1zUsmWNXSuAmZsx4DbGKhUhaFx/I+yu2DX9wKW5RRfVJi1jlvmqQQ/gCEpBDRUByIzONEJL0lGded2eL65lkhf/Vp5xs04a8vOtujt95RbYx/ouFkmPb6GQY1gAtT4pXR8SCthGcL5VotVIPUs2KI8G/Y5IN+Thv1vsw+iV83Ygdc0ZLgiTLYLyIwq+vBjOtG7oDXIlINXDwJE/iFR5jwN0F+8WcNRxz3H9TSf/nvy+aGdV9J63xsiY2+wczBH+7uRkMMvVEcDWETDEOjPFb7cKJH4SVNKAe1IB9Ii68PwDIK8P8FOaVwePhIJKL0eG7RiipwXosB5oQCDOpY99AP5lpWv3FF7008qU3Stzl42Llq1ZJr58pTj3ltNszDd/mfPy04JknrXaOd8llwJaridhhFCJXpSNmQdg4D+QAITzpwp4omp2qQn6QrU3C9FlMInNpu6MINmGT/DKmaU1ELN3CPIt4HoTdJxhOE3iT8JLreJF0vkq43+d16kvQbEXqSbL6ptr9SA3yOMfK3rZ2iPl6QSvx2n3u6TLfjqpoqfytmjg5xkeJ2wyp5TalQ7rJ0Z5Bq/VBNy4GmrpmA0TECmtMbxV7oCVo1PicRQo5sIH2PSPDmodvf3p4/wW/+lIc7z7ocuPwdIsF0lBQ9IoPvrWkXMX3jkYPeoy9s5wGleE6U+vkwJAA52S54rQWYGBkAEJ31To1h+KOYMYy4XhwL3liP+YhaaHL1wJAi/Gmd/5g/pcv5mMmfVuH0p19a/s+fEvZ5XnJdTK2RP0qzDnh+VAbYlOXBn9JlmnjwFJU4PUWZYvenpyUHN9f0nBS2OH1/TI3F4u8RXaejRF8k4AGlLy25UHrXshj9KT2GWtyfVuL0p1/0+Wldq58T0IcTP2Q2nxI13mZIkqQ734viN1/JiORhSnCJc0pwRg+5kDcyW3kScjOQ2RAaeKSrR2jgkWQ2hAYeSWZDaOCRZDaEBh5JZkNo4JFkNnqGxmCsQa+I7GJ09TweGGsuvBnZ3oxG/j4dSYSoImlk+p4/wyY2bDahyxbyYJN6bDbJ3n2/18SHH4P27t6xd8vgPOo5vx86yxMVKmZtFDbH5ioWJsE7ClXoEiaqdQpcXAjKc3Np2NJ1FxGvYoi3s4+K1qhVqkgYseDFgiOfbzrRPOFvzQI2X08cGTa78Zb7/p3ve7B5QttuWoUGCoCTH9tQqk4eqIJcLVhFBwr/xCh1xHcHGQbc5chPW0UzCVnmiLEo3UgmaNsCONC2EkHaREnZMLkmTpkYqoilBEB7/HIkrHda+Lodfr2rOqnwVaoXfhPRSObQpsXJChiInTXw3KBOib9VGfKtUANKI08JSoyBslskvCXs4EW49VLoEparq4iSTPiEAFZRVcpVEqgFVSgQ6TQKeYL+d0yYWH8P0VXrW31YpquA8rRUR+//PMRlZQuuuCxvQcblBlaPOV1e1XqXR/tzEvt76In9DXkLkw4C84VJhG4uGSYRurlkmETo5pJhEqGbS+ZCTdcPn91p7XjpOJ/VIT+M87hVKBdS3Z3V8UT5vOAdLnfcxdm5YkZwhV4frZxCE+PlIbg2YrOklZZrp4sOm61ce3QrrnLtXq2Ku1z70RrCkZu0p2VrZvm1kS+sRT3ZaZly7fJWXMVve7SygprT48ePN0O59twWM3T7lmaGb72RPPpeVAx198VS5drDOK0jsQbrmKVce832mQ4u4nd+E5/M2VfiRsedVlGuvS2ncbyswTgCS5ZrPxJ6Rjm4Zoh4z5T+/epXHENV2rV0ufaGnMZztozxrLNcu2TB6OpdKutkizP7njhRLXSPhcu1V+K0XBmLWw7eVGzl2su+7X3MoeVg0WL7zFpnSq6XWEW5diyHYC3XDhwhkac2ZstT/0vl2ullMSxcrn1tK65y7XOYKW2xlGv/kNbswaj+XwM2zUr+o++mbKpgIh/l2uniZjyUIM9txVWCfHGr4irXfsfxcqj/yr4BozscFIoUF/N4L9dO9xE8YDWHE6vJ5vW5li7X7srmxv4nwv9dIvz0akJmE+Ev2ZpLhD+f6Tt5EOEv/cvfY+pW7Bg0+0H6vh13jz7m8bQ5zz4SLpgIWnNplv/N9JHFIcLv5dP7zsvpvf0WSsK3bfDeQ62DbgkR/hetuFDJt3gGWnjHyTIi/NVrJahsI/dKF1SvPnbLyv4LrEaE/wan6c5bxnRmF+Ev895t1IPAbL8Vm2cln/Jq+8rCIvyYl2FVUQdexmwi/A8vPBvr8vFeUKabd2NZhKypFYjwY86GFZz8VmYU4R+6bNu8sU0eSWY1WrOpZIMdd6xAzgIidIMTofP66acbW94mEzdp+q3DFXHu3TprLi1+3YKqI4Ad4ktSq0BEZ+Zstiw4+xRskSgL7ie0MADiGnVyXDzI4WCVa3WsUVoO9AqLrG/LVD0o1Ggotw8kQoPh8MwH+ObS06QLAF9xa1MPVlUteC1wlcAC+dXblOsaciR5fsTuHVNn76+Zesz02l20FIruGE1MoaDsrbI1WxW7LNB3+7c2rhA2PnxjFHEaBTq/HDKvc5Xm819HbHJsphmVXItaiLm0FLsRcUIKv14csr/dOL9/SGtLJ0v6nmlEogRfWamOUUZzaNv8sefImjU1p/qN6X7wlWDsJ6oeuC35AGZf1bcUhzHEnMZobRljMIpjG7Nj4RmSqNaB8CWPhmunrt4dwJQVzCwS3IXNOkTHqzUx7sLmHbRDNDrsF3S2Wv/+SOW2T5NEC4Me+G0NGkpNh+zgB0TpUlWI+pcFTcVhLA9OY9W3ipEDH2VUtlqtYKE7MVkzUMsxgnJ8hpZLT3jutycqdFiGfd5rU6bKpk4dvAlHDo96XmDoQjWTrevT2rgslfDkHNnWhKkug1+Nqxg2v3HiSMd6WZctO+0FAESQANxAAABdi1GZKBnK2EUmWqVVX7e+3qOw3NuRlYdtDa1NC2XmPewLAWjJBUD3Rq3JRLPJf4yPQy/MbTY+zrPWXHycnczMkmc+ju2Rn0ZvDR8XOn/o6p8Ha1+NsQI+zh+tuXY371rG6VNJBYMHDzYDHyel+sxVjWtWlGyt07v5rzH3hFbBx7nCaZ0z1mAds/Bxen99WT32SWTIodUD72ZMWP/eKvg4hzmNs9MajCOwJB+n5KhJ8e3HpvjN9f6YdPjblwir4uOs5zTeMosnu1bEx/mYPDKjVVKsZGzN2VPf9V5X08J8nCxOy02zuOWKlY/j8avzorkpa8I3rDz748xfVK+tgo+D5RCsfJyd+jy16f8FPo5/y+3eda/HhOWsHNs16rjPDQvzcdzbcPFxHNuYh49TU/lt+SG/3tKNpzY1mya4VJt3Pg59bs4Dx6RJGy6OibBNcfFxXGKqOgW/Xho2+fCVZfnSSit45+PQfQQPWDlyYlWuzf9XfBx3Njc25JCyqTJ8rWTXwQjVk4d9qM7ZvksyPDsZoJEnxTNPmBqxfdFAqtQmwdNj+t2cVA/8lKlQDjXz4uAnoAsfnveQ//tqjnj07QtH31S4eZr1/Zg7OYUbGf3PLgq4sIjCR7EQvZJ+7snAXql/Gr1wUmMwnYen/Rwl8B/t/Ke6sey3py1OOkQpVMBgipgg4NeHko/DzIqb0oPNlI75GdLKvr9JcnweHNp0KoVaHb2EH9qAlXDvjrCZoCzeRDlkRQQDxuErvpQ86Ifkv0PJw9DsoASLlbxBRtaeLJF7WEyg7smG+tfxW1dU8bTx29nXKXtVUtjKIk9fli1+5A0+sUk/vcfTic3vHDdcFsloRreIF5tFls7MSH4R/DFg7hBHbfZkd6qmUWl/SJ7RMTMy1uklfoNQC6I+Xu8yWQtTXqxWW7xaFQPlGCElMBb7Oywd1snjtAblIPQjkqVD1dGDFTH6m1CvzlzOxa8bKgMKwHwPwdzshyD1QVH1q80Q8ksQIjiPQ8gvwX90+aXw8Xc7Rp18Lhp3dnua7duIK3T5pbE9ckbdSuobmHV46fzHWVM7ku0lBSbKM9E/GCHPxGZpe6geQJgRaa0Bmr82rK/vHTY78+Cx+3X3hJliLf7l8KGGELRrRVTKcx+kPE+bWaTwpD2s79hfC75DYlyBwyj4HXM1w719I0ciVKLYbFXZv2C0gYRIl6xBJ67nnZ52qhfaO3TW2i6nHz+pVJ/TZGUk+JMQWsdEQ3EY7R6n0a6a12ikC7YJleAOFd4ySj/uMduQY5Qt2asnJUpfKxO1Cg3GugMfQXGY6CPPXtF1vTaUDNk1o2S+y5IJjei2KhOWrJMPVOkFLAS0zS74qd7McOVdpNbXd4YrLqOe5TTqL80YWl+cBRSIzq7A9VnQBHGaTApnR7eBno5ZpgO7yncXT/Mk/NJhMaLSvcgL6+JESPdmC+ldHtyLKKM6H7Bkz8GSo3a6TKByZaPilbE6IawrSw3rMF6x1bR2joiNhVMRuUpFlF9VwsJ5ULzbEwkwveAg2ysg8iVDl6VAz7jpTQpTMJal3GWCPSaXp3fAqu+CsamFL4z8ot331V+fe3hB+J455QeMW7ZcSS/wgvyKRaaE9KLrJo4xOIW/DrE6LEKMsTTQ+iuzKDUnawy3oBrrFUhcpo5P/3ws5wfZtmE+Pus9XEozlpRjDQPGxPEEv/lRzm8OeokVLCdjPdCIPTZ7qDPEJT0V5Pnm+YHbVYP3rbr7e4u359Op/RLebS74N3HCv9Iy8DMYYqYW6sZHBGQ7g2+CluqgVdz9Tk9h6mq+RyFXwAgwAzywAUEEmGZsAcZoPR9XvfWKX8/nlrDqrtVaG+mBto9sSrW/GFJIz+fd47Jhh7IHhS7c2buMo2yfupCeT7gu/GZI2LKQ1X+JkgOCM3IL6fl0rxKdP8T1rN/MqCm/25ypHVZIz+du++z3Dp0Hyg62+mhf0WuxopCeD6LyL6ltiKj8SxbqRVT+tSWaGrW0b9bXMSdo0Q8vc1TbYv4GTXZE09OSeQ2Ob0uSzekZfa3jkTp+oKks0dS45os1US1TI5ZkhsxpE/hbS9BkTzT9vmFN/C2PQeIc+Y2LQy/9XgM0lSOaZtlpj89/uFO8NfGqY/ye1QmgyYFomjqmw+Ps9jdDp/kPyP5XO687aCpPNF0b5BIdWFMXvCCllvNxTeWboKkCCZT9+Np/vgjx2+a8p+YeG2E30FSRaPL93fZSFfuk4Fz/I5KRNi0OgqZKRFP5rj55XR2T/XaOGTrg+fDpfUBTZaKpRcTYf59tGSOZtKdF3uW+DRxAUxWi6cTV85F7f3jqt2GLqP7X1j1PgaaqRFOPsu/eOn8KClg12KPE8NDQ1qCpmoBVBsqRaAo4eOxGu7DxYZnbr2SOz7q+GzRVJ5oS3vZ0zllzS7q+i49zXd9x7qDJiWhS7loWOO9KCfGE9a69zjnNeAWaahBNQz1UXb7IXIK2/dGs1k+XHRaDpppE07DJJ64MlEv8ZoluvF904dBA0ORMNO15kt8ye9k/gdMnR18ZcnvgU9BUi2hqZhO/JXfzdXHGO8cnTbZOfwuaahNN43rmTv/Zvl3oElWVps1K9oP2qkM0xR46Xc398HHR6G0nuqW4T8wHTXVJ5I9fD8+YLAqY9PnOmb3S4fNBk5C8a27Hi8sWtxCvC3WrNK32zvIMoSoXAYtQ1ZzdwmV9nNJD1+yp1TFV4nyQB6Gq5mwuqlrsnk3Zx0/LFq7PH3a21oil1KmrbGiSSh2DOH3BlgA3Iu4QkudlsTJ12gSQEAMnRFQANPC4Bd1BIV+NOasmGgydSLjKBL6+UDYYtXPYGaTHDXyNK6BZcBoVfxHkdxvZZqJvntvqoKnlh2UdXNrbjsfDqDxvEMICP2182fjQTmBW6ulrVE7sE6kAXQPjPcUoYIkjtVaJHT8B76dUYVMnsp8I5Rp44lqdoIxGS9jmbc29VmqrZFzmklerYg/kUunj+s9h0scLmvjOGyBcDTjhqulrFZkc86ijkZmcBzHQYgrMpYuX64QJ8sEKIUhA9CWs2Xnmke3r1w/r/l4yrceDCZ6h0n9oTEPisQimIdnCt/UqehCdXYok/3tinZ3BNjcSOBfyUBRJ+FPQgUSCtaPrUscT47pKp12e2SXz8odBph/B4gGsBpxgga5OxJ8WbPHnf8oN36XcQM/QzabckOHLpdyQYFysNFC5wXbCVfmYVS4BS0fvdtJs2eTJY7CkeyAelBum+HIddB9tXLD8XuWGXX8OuXDx94uhq/tduBM4OY9WJtQCyg0pnKgkWCYmGsAyLWqBiT/lhkdCSXLc8FrSmS2HlLu99Bn11JEllRuiOU3Xy1rTGZ6VG/Ja3p3u6RMdPPufPgfv1+hrY2HlBszLsB69H43IUopLuSH9ZeOvO6ZvlKzzfPwi5FOpwVag3JDCCU6CrxmVG9J/Lr1/nZNImr4lzuPE7RdPrUS5IZoToV76vK0lW952eoE89Evb6gFjVtUp86z+cOoahW0oyNGEUdJQwxcO/PTFcGE1ATITBjPEWPAryLtShQBbjQ7XKADOluivMPciUreRBiVO9PVL9Hszs2iyxYhp4GgxURaXkSqJgAXkYuOWFbAXKIQB+uj74th5EY+Vor3zks8MVJXKp+0mwbsRBxSwy0VlSnT/x0PN21Fign3F6ITCpjJBstgo3rETBhDZL1xjlBrQfUE7OtiOX1BFI9CcC19xvXn2c49p96jDUkrezByWBU1FAXaln134lHzbkFXey8bfrXu3OQ+ADeYEDPQoiyRReMyAf9NCwPbDlMOy5bClPWZLDq/asuSxNyNWXQ2cmh18cMHsi80rY0ImwBiyoUkahZ72jCW1Yr8o155upiXANNOe7be9TtK6eaKxLh9uKR9Xa8eDaXtwmjbMQqZF5cczOhmVapULLeTPkcbcsGJQYKPwH8QL5sQed43fXIe+4Yc4VIVf5b2stCfhkzajSCWbPbEhRgRGH7bA6Hel+p2fWm8TbejTz2lK9wPUskpVIflVB5c+4UlmBeTWK4yoGO8lUScAyHEKLvaYmILHYJPDgkLxkFRqUESkb9sV/cIMcyD/yohFhYftAOh/+CEKyA8Anf9aO1P5KeLQQqDA5QZYBglmG+pEoStZ/Byghwsgwf/hPk0LV6PVKQoW9ZLbdYdv27SwdPCeP1/tbuKfS1WvKt0dIx0wfQxxvSgfs7dkXr2IGzLJRK17p4u3XHN4WJnIhzDb+CFKpme5YTCbuiTcsJD59atb0epErSI6GeseGCcK7QTqfFy+7KetYWM+z8z97fXP56knMgqey5z+UhqLQw0Gg60vCrYbHhhshEtoxeYSzpav/65ZK3XYhD9fh3heHiWjfDeHSAXGYRSGJ6tUCF/AljB7kPdBIizWZ5WJP8lVyhi8k6codfFCNZimaAz3BPRdeo73ZFiB2mxElry+Hdvm21KA7lyTx75jEMbDg6uuCi1GxMYQQwKg/azbvP7ulPCVt5e+3REy4go1fcYexEyf8ctFDWc6K4GHlGEtRG4cKmWAxaiWtmNNnw1EzlmPnIbS1WDXQsLX5+/do+PaOUjm3b6a82qkfR/qMXeig6C3dKitvBOiXbGexIHW1HYWYbHbdk1NUhTGoX4hzo5nCEhpFSpP+Ddaz4DA/jDJjVNoaJQ4+GOq43bEAiQ0LHgEmFSn4qZGWpkemEwZJCbadYAnMQreiFEHMr2wUWDUQphTOIYtzBVw/i7R9WOQUFSI9819kvqDeE6J3DIHptWdQNuYgN8KsTGBXS4OKOZyQjFVH6haswUqq6n5R/eW/JQ/LoaSfwntuEr+KfSQt7F6yOncOH4gfxX1bkzfkrP89vR2Obr5/Q43HiC/2Z4L8ovtScjb8sbKrEBCbgZWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrE0GiJFmZCBIlycpMGGkn3h9xPmBGv/IDug/Iv8qgvMHOi+x9dPolD5Q3Xzb71ws55nFnS1n/1TYxA689rUi1fxV8sV+iUmthuoht4DCT8tIso62evxKWO46H9YHxB2BTSjjPJGgIhm3v0ymnRb4iAxzUHxkhLfMI7g/cQJ4YATPy48Zt8zvju22YkoYaKwavhqxAdl7QkKMVFLIBEZKNrefELNtbfa0pe23Fu4x9AWD1wJcIu28Y4oRgWn2FueHPhVU1PSWiMFZIlHYfuL1j3iKfoMz0itfme8iW8UiLGN0t/P2pVUP916gnBab7pR7hAaXjnCjt9GUuPnDlae6dyXGFDTYMM3LIwakeyT1j3yrpdPn8jhPb9gUu3vKu5dqYz18tuJ/r7U50IuSGHDw8fdPI/dwm+t1DCFF0Ib1PGIEovgkJzouVP6Qn1r0XsTvtVFrPfd82WsGuJQTpN06Qjhu5r9tQqsS/uX6pqqDLYBuL7A4q5d7Awwt9KofPePAhMrnUlR7UXUTyucxdRH1LcaCzjxOdLfo93XZsgfF59/BQG69Pkszl5/xzIoJ6MxfimZHQhgVcF+p+rp7qlqI2SnKffsDC0L0BA2G7DxxTS5jCn0MtQAkAbHWYC1Cmb9O69a2b9G3rfMnKlHeq1iu2rKYudmL7sSxhndJYlBenuzgTvbgA+OnmEKzOqD4GFSBc0WtObGCVx8BSgJHGDlXsqlpjbzwuFb7T9cy82Tkz/qV6Ihm4Fw1UoSYzpwQQpjqcMFVFrLSbtoVG32u22BYa9DRYH4FbaEJG7uiJQUP4ofZsfkjS+JxX27H3Qpf657zVta1Rm74OnSBPEuLrNIj1crbUvDF+H7nbg51LkQsTFSnwkkKjjCYCpEFuiX64i+MNUSvlhZoN3SUD3SZKBHA9j8rJ0wDqLURGOary2DYUvrgLXgf5LV13jj5zs/so0fLrpTLWd75AlS39AXsAM0XCLxc15ujn3Ezd3QLwdIHwlEONuVwwZQkQGcUmccDfh0skfcG+ZQ3CVjuHrv+s7el9P7QMdfcPv5+5+0dcLwqflAdL/m1RY3bIruej3DOHz1vDAz4dOPEB3ccSDANbjLjxEw5EewH9x7gqag5d5Zo4hY7LaCvWdJq1ZuMvAZNnnm9/YkvcbarR8PuZRiOu806uBVZx47RKXauyyptDpFWMCl8VMIeXpIghnC/SMJOi/41pX7urdE+fPgfnrDnrSDVMGHY/0zDEdb4NI/Ik3AlcZmTMV9O8ZAI/kXETMmc9BtjEQqUsCo9S/qNjx+1/G7H/r2aznWeOKkmTFMIfgJAUIhqKA5EWnIg0EJFxvQNbXN88K+SvPu18gyb89UVne/TWO6qN8U80nAzTXj/DoAZwYUq8MjoepJXwbKFcq4VqkHpWDBH+DZt80M9po96X2Sfx60bsgJcQETxRBvtFBGZ17zqZugNei0g1cPEkTOAXHmHC3wT5xUOuvE2rs/pRwP5+c69+2DK4A7XzsSU2+gYzB3+4u/ut00k4gUNwNIRNMAyN8ljtw4kehZc0oRzUgnwgLb4+AMsowP8X5JTC4eEj0QsGtHhu0YoqcF6LAeaEAgzqWAPAiMHc0eo3rui9iSe1Sfo2Bw87V5c6ce1cndFj3okN8/Bd/udPC45J0nrXaKd8FlyJqrgdRhFCZTpSNqSdw0A+AMKTDtyposmpGuQn6coUXK/FFAKnthu6cAMm2TUhVXMqauEG7lHYiBF6k2Q8QehNwk+i603S9SLpepPfrSdJvxGhJ8nmm2r7KzXA5xgjf7txxF/1Ag7uCJ54r01Fnz6zK1Llb8XM0SEuUtxu/eQnKW0rpIo3Tu1/rv/p8yYvLYHR4QTN6Y1iL/QEreXFJxFCjmwgfY9I8KNSW88mhPQPnzQyTOuZ/mzSd4gE01E6Me5viVBZK3D0+cnecxtl1OcBJRtOlD6LGBKAnGwXvNYCTIwMAIjOeqfGMPxRzBhGXC+OBW+sx3xELTS5emBIEf5U9B/zp3Q5HzP5000iLn86X/Q/f0rY55JCcDhjSLvAhfJJi9deChzMgz+lyzTx4Ck2iLg8xXJRcfvTjvabWuXPOBqR9ePkTk9Gn2rPgz+lLxLwgNJ8TpSmF6c/pcdQi/tTrMew+tP5+gm+2OrnBPThxA+ZzadEjbcZkiTpzvei+M1XMiJ5mBIkirimBLF6yP14I7OVJyE3A5kNoYFHunqEBh5JZkNo4JFkNoQGHklmQ2jgkWQ2hAYeSWajZ2gMxhr0isguRlfP44GxJuHNyPZmNPL36UgiRBVJI9P3/Bk2sWGzCV22kAebSNlskr37fq+JDz8G7d29Y++WwXnUc34/dJYnKlTM2ihsjs1VLEyCdxSq0CVMVOsUuLgQlOfm0rCl6y4iXsUQb2cfFa1Rq1SRMGLBiwVHPt90onnChS3zz8tzo2TjOvYqva79xdNsntC2m1ahgQLg5Mc2lKqTB6ogVwtW0YHCPzFKHfHdQYYBdzny01bRTEKWOWKo5jaSCS51BA60rUSQNlFSNkyuiVMmhipiKQHQHr8cCeudFr5uh1/vqk4qfJXqhbO6NpKNv9jxZAUMxM4aeG5Qp8Tfqgz5VqgBpZGnBCXGQNktEt4SdvAi3HopdAnL1VVESSZ8QgCrqCrlKgnUgioUiHQahTxB/zsmTKy/h+iqMqsPy3QVUJ6W6uj9n4e4/APnUt2XjmRc9rd6zOnyqta7PPoPJ7H/nZ7YH8BbmHQQmC9MInRzyTCJ0M0lwyRCN5cMkwjdXDIXmj2+yVqnd/6yvTd1J+dNrrqpUC7k2Stl9qCn78JWDynlVUraM4gRXKHXR3YkuhgvD8E1kM2SVlqunS46bLZy7d/EXOXazzKlZHgu197FxqVGl40XpMteVFrVZrwndXfeMuXav4i5it++s4xgBrXm9MiRI81Qrv3MiPqSlkeHyCaW7zj6rwaVqafLLVWu/Smnde5Zg3XMUq79r9e/vvY53VM6J/dig73r+h2zinLtVzmNc9YajCOwZLn2tnX8PzQvGRcyfXrmyYQzMbOsqlz7L5zG22VFQkEWL9f++8C3Ja+HVA9ZsejJmQMXZGUtXK59A6flllvccvCmYivX/tpua+1yJ98EbKk78f79/KcvrKJcO5ZDsJZrP6vfQAxiy1P/S+Xa6WUxLFyu3d+Pq1y7t595yrX3GH37/rQni4M3P6vul19nvYj3cu10cTMeSpBL/bhKkPv6FVe59pG3UuZnDcv0356ntm1wYMcX3su1030ED1h5c2LVyO//q3LtwWxu7H8i/N8lwk+vJmQ2Ef7Fflwi/D8zfScPIvzRPb3eH1V6hqc10CQeLdtjCo+nzXn2kXDBZKEfl2b5LKaPLA4R/svlLgwRbG8i2z3q8bxL6RKxxUX40zlR+dm83pBz7mDcwR/+RPiPa3ckbX+7LWylzZPfJrZ7uMFqRPh1nKYbZBnTmV2EP6SmOPLn1ArBK5wf/9PJJ9+Sog1w4RXzMqwq6sDLmE2Ef6L4041nTSoEb/iwdXsbzVFqv7WMCH86Jzg/+5lRhP/P/tvKB1XcJpnV7o3P4JoVrlqBnAVESMeJEBjTRN4Wwpa3ycRNmn7rcEWce7fOmkuLX1MFaO2xQ3xJahWI6MyczZYFZ5+CLRJlwf2EFgZAXKNOjosHORyscq2ONUrLgV5hkfVtmaoHhRoN5faBRKiMBOCbD/DNpadJFwC+d9inmAYerKpa8FrgKoEFOnnq9/5z/6HHA5ZEXd3s/4eEphfyPbW76MXmaY7RxBQKyt7+IGGrYpcF+u4/xqVQ5fDhG6OI0yjQ+eU1px+zp9afH5h96ev8wJeu1LK/paXYjYgTUvj14pD9fevH9f2fWDxZ0vdMIxIl+MpKdYwymkPbppb4lEznly7NWtmg29KZk05S+yr5AGZf1bcUhzHucBrjsnWkPwJjdiw8QxLVOhC+5NFw7dTVuwOYsoKZRYK7sFmH6Hi1JsZd2LyDdohGh/2CzlZ/dTk7cMqa8ODxk3Ye6VnJawE1rsEPiNKlqhD1LwuaisNYpzmNdcgqRg58lFHZarWChe7EZM1ALccICu9sEyRt+Ew2Q7qw6RSfpn1NmSqbOnXwJhw5POp5gaEL1Uy27oORWSrhyTmyrZ4TMruNvxsesfDt7Dy3mY3qWnbaCwB47kcAcAMBAHQtRmWiZChjF5nw/dfdq+7CqUHbU2VT7tcKOGLRw74QgAtcAHQ/ok80Q/9jfBx6YW6z8XEmSLj4OJGS4ubjVLjV/GmfqknBcw91Hmv7askzK+DjjJNw7W4Ok1gBqSA6OtoMfJxJ5c+Neng3LXj73Y/T/xj6Ltkq+DhJnNaJtQbrmIWPczRp8ymn9GXS5bVfXIzstNPJKvg4fTmNE2kNxhFYko9TJ+2vT8ee9AmcU6PqL88/hE23Kj5OIKfxOlrGeNbJx7m9a/bj3/6qIDowv8mB47W/PrMwH6clp+WaWNxyxcrHmXvlxDenPTFBuQ13LC9bcUCqVfBxsByClY8DHCGRp4b9X+DjlD9+PTxjsihg0uc7Z/ZKh8+3MB/nlISLj7OVmdIWCx9H0r9Xycipr0UzJ70e2npLwkre+Tj0uTkPHJMTEi6OyX5JcfFx4ir0/7n0gJDwBbc2vrnQIrAR73wcuo/gAautnFjlmtfnWpqPE87mxoYcUjZVhq+V7DoYoXrysM9r6k5Jl2R4djJAI0+KZ54wNWL7ooFUqU2Cp8f0uzmpHvgpU6EcaubFwU9Az7vndry4bHEL8bpQt0rTau8sz/p+zJ2cwo2M/mcXBVxYROGjWIheST/3ZGCv1D+NXjipMYg78LSfowT+o53/jGksCxzb6aRDlEIFDKaICQJ+fSj5OMysuCkj2EzpmJ8hrez7myTH58GhTadSpDQVDLQBK+HeHWEzQVm8iXLIiggGjMNXfCl50A/Jf4eSh6HZQQkWK3mDjOyGiCiRe1hMoN6ZDfWv47euqOJp47ezr1P2qqQwahhBnb4sW/zIG3xik356j6cTm985brgs4taBbpEubBZZOjMj+UXwx4C5Qxy12ZPdf6SuifpD8oyOmZGxTi/xG4RaEPXxepfJWpjyYrXa4tWqGCjHCCmBsdjfYemwTh6nNSgHoR+RLB2qjh6siNHfhHp15nIuft1QGVAA5kwI5mY/BKkPiqoP6YCQX4IQwXkcQn4J/qPLL4WPv9sx6uRz0biz29Ns30Zcocsvje2RM+pWUt/ArMNL5z/OmtqRbC8pMFGeif7BCHkmNkvbQ/UAwoxIa906/fFLcs8t4avHtVso7irvYIq1+JfDhxpC0K4VUSnPfZDyjO9gkcKT9rC+Y38t+A6JcQUOo+B3zNUM9/aNHIlQiWKzVWX/gtEGEiJdsgaduC6qvjvnSMI7/z03tz179eOnFpwmKyPBn4TQOiYaisNowzmNNsS8RiNdsE2oBHeo8JZR+nGP2YYco2zJXj0pUfpamahVaDDWHfgIisNE2ur03K+RkQtGSjZVTfMPutmOMbzKhCXr5ANVegELAW2zC36qNzNceRep9fWd4YrLqHGcRv2xA0Pri7OAAtHZFbg+CxI8ukwKZ0e3gZ6OWaYDu8p3F0/zJPzSYTGi0r3IC+viREiPZAvpXR7ciyijOh+wZM/BkqN2ulCrn5aNilfG6oSwriw1rMN4xVbT2jkiNhZOReQqFVF+VQkL50Hxbk+0oAit4CDbKyDyJUOXpUDPSNYLUzCWpdxlgm7tTeWROWDVd8HY1MIXRn7R3h0yBD8nCyVTttXz76a9eYBe4AX5FYsm3tOKrps4xuAUXguxOixCjLE00KpsbxxrDLegGusVSFxiKqdHbNp2Q5Sp9fxR2T9vHmNJOdYwYEwcT/Cb9+f85qCXWMFyMtYDjdhjs4c6Q1zSU5rq0TUuz2jsv/nM4ZdfT5VzofZLeLe54A/hhF9sGfgZDDFTC3XjIwKyncE3QVqEXnH3Oz2Fqav5HoVcASPADPDABgQRYKLYAszpBfLQL22rB4xZVafMs/rDqbritlhRrChpKJNuwhZe/Kg16YiCWsIYRSz4NUY4MLVw4TZ3MGHE6fhwHkmcTBtp0ARyoW/S/Va3Uv23q2x3TX+81Qv93syFWbLF0F4PUhrRrOMCwX5UaHoDMBbNPM5/8TrnaYtvflxQO2BDj6nXynb/OInmcuHdiF087HJR8WjRbXnp3Ot3xcta/PBIFhN80MR4BItmeUOAvFE53wXgFu5TASpqguOEAUT2C9cYpQZ0X9COZmeKK3zrPrJunuRg+Wt93w99T61pbCclb2ayMwuaigJsRy1F7uKQKeKxYdfTM/cG5/EA2IyZXICBHmWRMIYfiYF/00LA9mPcmTF7zJYcNMajXzNHyU+UDMn8kvLx2dWRJyxKY4SWeTODyzJLZ1jGMsjTe4d4rm/Yd8uw/Qf9OoqyAht2+7BkX7jF6htu9iRcymbUxGmAFzZCiLjWlS2uCfde36n7baZ4dfd6jssTvanlP0tHqnWMEztck6a6+A0gqpHnxjTwnSGpUj5UqUVPnLpeaVSv39G+AdMqbT0b8vcsf9QrILSnseuGMsHdgDOZexwvbcQITxVBeJqRaVx46o5/P1izEHsR5Dd7vHv859ryf4JG94t6OOFlXhfqN8MfwfxmxPWi/G1Mvm3pUMmU0Jygjm1WvL3w3ER/KwIQpUGIpKhRHQhGtfdcZIBinUliFoKHkaDpkfhs798xt9ri8dLRRx6t/80/i1q20EYMbmMOJexqUdjQxygP2NzP5MKG1n3gg2wFHGUZCrBJhAf/XZWJxHkkLTp+/7O+Tqe3n0eG7H3bePScurP7UxMdMXwIM9HBLxeFlbZkcvXw2hWDZ235a8ugd7vas2LVTavAjzgViMYagZ+IE783c6wnYhjJciqPe6IYwuUhzTfg0IF3zvv6+o/Lz+1V/k3rVaY5AhPjxgUPYqTb+CHixg1PrDcTcaPbd+0l4z3P7PvJRo8qetc3ZVSZuKkMCSm7Zx8ntzD/Hw== iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvQAADr0BR/uQrQAAAtpJREFUSEu1lF9ojXEYx59OS5IrF5IkiTVriWgXS5HWlFwQbpRYyr+xkgvFLpQMpRU3SEmjmLWEuZLcKGlpaRe7WNKulnQu1trFWms+39/ved9zzvu+59z5dr6d3/d5n3+/v1aNy2Y7fdgI6/w/xQWzbT6sj4tmW3rNlnvMmqUpdvOS2cfwsYJVcBF2BwXOmK0hZgn/O24qBskOq8DZmES6U5rutgeHCu7BBbgjKIBft4oQc85NeeBwSAlPma10kwIn4bDLBCX4FU74OIAZ3CLHQkFDEfqQ7ZigY95Zi5sStMFl2BVURAm/cWJGXedQIlkZp+uuhZLPYsh1NX7CB3EYQfKT5FhkP1e7qRYkeoqDpp6CgqcVdN5srZsSvICf4zCC+Datgv7dVAsq75EDnbS6ybTp2GYpdMVNCZ7AmgI0sk/x7PQmN+WgJZnRhrkOwDaE7ZPLBCPwQxxG4DNAkd8ui4HTY/jDZQD6RkHgOHwYh/E+0MgcM+1zUzG05jjOuwzA1kuRPy4FHWXdhRNBAXyew791NzgBiXoyybRE/XDSpdAJdUw3SDC7cIfgEemGIPkI/OIygMBvcNClcB9OxWE43tN8f+m6PvaaNeFYc2IIboZL6tJNwhh8pgG+LcToDdst3RB03iVnbvNmN4VNJ8kvhsmz0AT14IX1J3E4mgX3JA+SvYbqLsBPxjw2fik2Qq1/hwQfWlWAzU0fv0L4hVIymoqg8z5ss5mT0Q5VIFym42YrPI6JNwBOB9VJ9VSpNE3ggMsE+6EKpH74vIHpzAtBt3cpkB5FdLsKFjy/2kwVSPcpeWJo6ICb8iDhK7p461L6KkEzLquhzlVAM0lB7CicqnvRvIDelwAVg+9cZqHC1+Iwgu7XwzJNvde+uLkCkt1WBy6lx+Ajl1noUn2Pwwrw76DAHIUm+N/l5ghmoAvT71KbPozjUZdZaHnKcVgL4rbCQWLTd+o/wuwf9N7EUShQvi8AAAAASUVORK5CYII= 314fd0aa-b899-4f85-bf12-5b9e9659f93e DIFERENCE CURWATURE SHAPED GRAPH DIFERENCE CURWATURE SHAPED GRAPH true 37 098e7b9e-7b4d-4cef-bda0-50875a59b926 0fb027f2-bb77-4eca-a35d-796b227556fc 19507874-964b-46ac-a895-60e53f632f29 2adb01ba-7cd9-4c5f-a316-08243357a8cd 2d53c230-0155-47b8-be10-65af0a7e136e 3b356cfc-faae-4b8a-ad5f-521a9c4cc56e 3c447cd3-e651-430e-8806-4c598ead2225 4f8d7f4e-f77a-484d-900b-333bfe51ba19 5511ee1e-138a-45cb-b69e-9ea295492e11 5927aad1-90d6-4006-b966-f46d1465952b 5b40150d-e9eb-4ea3-8661-fb71b0a913f2 5f22b34f-4cbc-4347-a5be-30f64bdd9352 61dadb66-9f1f-481f-9353-6dd2584b5b6d 648205e6-512f-460d-8649-72b4e8c4d978 6484f3aa-0d26-42dd-912c-1d535fe27c98 66b0ed95-d3a5-4c74-8fa1-0b63e7386b14 76cd154e-bedf-48ef-8855-4e6107eba638 7b38907c-c7dc-4ebe-ae16-a3819d667992 7bdc141e-6a35-40d3-9584-5154c4315eda 87290722-834a-4c57-9a9b-e0dd5cb9b39e 9fa27823-77a0-4b75-bcd8-4f611d88e4dd a2801291-d228-47b3-8ae5-5c784851fd5f a2f18f21-fc41-4d19-b1aa-1d9a7c2c8690 a6d64955-5e50-41a2-bee1-f25dc8986948 b557f7b9-32f7-4d1b-b816-f247b02e448c b7326999-e8c5-453d-a50e-5d60958d0c4f c169fe0a-a0dc-4e54-808f-9ac11fd63248 d1929846-c2c8-4d52-92c3-08ed69f640cb d5cad9cd-1030-4389-a33e-5a68c398ba17 d774309a-3843-42ba-bb8d-21ce60b8e8ec dbde79e0-7764-4ce9-a54c-7dfbac0cbc8a dde5657d-1af7-439f-8363-65e4a0c6e86f df5def10-369b-46f8-ad3c-a280d4592df7 e457f7af-00ba-475e-92b7-cd11adf29380 e5295388-f02c-4451-a296-4ed151ef7c46 e9642a8c-122c-4b43-8755-8dcef8132cac fda35d21-9073-4d87-928a-96c2feb7e0f8 81fd98cd-c9a3-405d-866d-edf2fca2467f 4a525765-a9df-4f3b-8fae-c2be3081d0b4 16c32cca-03cb-4d8e-bf89-f521eb08129b 7e2338e0-fce5-4964-bac7-ea6c242afeb1 e860b9e2-e037-4c18-988a-393d0094d8e4 daca2ebb-26cb-48f4-8885-277e43200f92 a43519fb-325e-4058-bda1-f7e34cc92c6f a7e4f8f7-1ccd-48f0-863e-6ed19022d27b 937bac2b-aa3f-4485-8435-a74b05842dda 17750273-1d4e-4a10-92b1-f4b16af3b73c 326b8016-5135-4828-b69a-a21c171e1a06 bbece122-0a0d-43f9-bd1e-b6e66ae744df 735da924-e3a7-45ca-9564-36c125627c0a a67255eb-66a4-422d-aed0-4b64cd94d270 130433e2-dd09-4dbb-8e9f-946a284f4836 ddb00df8-65f0-4650-a3c7-89c56da7f06b 2927bcb1-a8c7-4996-b4cf-1e0b73fe722c 36be5f7d-3d93-4e60-9b58-2ea01268c3ff 59e3ea83-51fb-46fa-8bda-938de18b7cf2 1af94696-7c3b-4341-b4bb-415b935cb441 df2cb580-23c8-45cb-aac6-97ce3b2e2214 88db9398-ca86-4220-85b3-d1387046010f eabf9208-959a-42b3-8af1-f5ce33e4d91a 53133e66-86e1-4322-bb85-7afca5c21f4f 3d99a0d8-87f4-42b3-ae8c-13046d610738 9a110ceb-3e62-489e-8e19-61581f5671d4 8de15979-110c-49a4-bf71-f92c5c15659e bae8f0e9-2af4-409d-945a-a91a08fdc45a f12cf189-9dd5-4b8b-822d-2da85bac7a45 233b0ef6-f843-44d6-99fc-9ecf077d1b78 a317f3b7-85e8-46ea-bfa9-b8f70ca5c382 cb30ccba-a894-45cb-b1d5-847ad7005125 43f684c6-6920-481c-81ce-8a3096268d23 aa2a8593-f318-4546-bad9-74c7978a14af 9c973484-e313-4490-a780-3cac6484f2c3 b2a58353-e9c9-4e65-a900-6efa66489724 20d03587-b988-43e2-924d-d6655441a5e8 1631 5036 103 404 1692 5238 20 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 17 b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b b6236720-8d88-4289-93c3-ac4c99f9b97b Second item for multiplication df5def10-369b-46f8-ad3c-a280d4592df7 B B true 64c76e08-bd85-4d09-a143-3a38170cdfe1 1 1633 5038 47 20 1656.5 5048 Second item for multiplication 0fb027f2-bb77-4eca-a35d-796b227556fc B B true 64c76e08-bd85-4d09-a143-3a38170cdfe1 1 1633 5058 47 20 1656.5 5068 Second item for multiplication dbde79e0-7764-4ce9-a54c-7dfbac0cbc8a B B true 64c76e08-bd85-4d09-a143-3a38170cdfe1 1 1633 5078 47 20 1656.5 5088 Second item for multiplication e9642a8c-122c-4b43-8755-8dcef8132cac B B true 64c76e08-bd85-4d09-a143-3a38170cdfe1 1 1633 5098 47 20 1656.5 5108 Second item for multiplication 61dadb66-9f1f-481f-9353-6dd2584b5b6d B B true 64c76e08-bd85-4d09-a143-3a38170cdfe1 1 1633 5118 47 20 1656.5 5128 Second item for multiplication c169fe0a-a0dc-4e54-808f-9ac11fd63248 B B true 64c76e08-bd85-4d09-a143-3a38170cdfe1 1 1633 5138 47 20 1656.5 5148 Second item for multiplication 2adb01ba-7cd9-4c5f-a316-08243357a8cd B B true 64c76e08-bd85-4d09-a143-3a38170cdfe1 1 1633 5158 47 20 1656.5 5168 Second item for multiplication 7bdc141e-6a35-40d3-9584-5154c4315eda B B true 64c76e08-bd85-4d09-a143-3a38170cdfe1 1 1633 5178 47 20 1656.5 5188 Second item for multiplication 7b38907c-c7dc-4ebe-ae16-a3819d667992 B B true 64c76e08-bd85-4d09-a143-3a38170cdfe1 1 1633 5198 47 20 1656.5 5208 Second item for multiplication 5f22b34f-4cbc-4347-a5be-30f64bdd9352 B B true 64c76e08-bd85-4d09-a143-3a38170cdfe1 1 1633 5218 47 20 1656.5 5228 Second item for multiplication d5cad9cd-1030-4389-a33e-5a68c398ba17 B B true 64c76e08-bd85-4d09-a143-3a38170cdfe1 1 1633 5238 47 20 1656.5 5248 Second item for multiplication 66b0ed95-d3a5-4c74-8fa1-0b63e7386b14 B B true 64c76e08-bd85-4d09-a143-3a38170cdfe1 1 1633 5258 47 20 1656.5 5268 Second item for multiplication d774309a-3843-42ba-bb8d-21ce60b8e8ec B B true 64c76e08-bd85-4d09-a143-3a38170cdfe1 1 1633 5278 47 20 1656.5 5288 Second item for multiplication 648205e6-512f-460d-8649-72b4e8c4d978 B B true 64c76e08-bd85-4d09-a143-3a38170cdfe1 1 1633 5298 47 20 1656.5 5308 Second item for multiplication d1929846-c2c8-4d52-92c3-08ed69f640cb B B true 64c76e08-bd85-4d09-a143-3a38170cdfe1 1 1633 5318 47 20 1656.5 5328 Second item for multiplication fda35d21-9073-4d87-928a-96c2feb7e0f8 B B true 64c76e08-bd85-4d09-a143-3a38170cdfe1 1 1633 5338 47 20 1656.5 5348 Second item for multiplication 19507874-964b-46ac-a895-60e53f632f29 B B true 64c76e08-bd85-4d09-a143-3a38170cdfe1 1 1633 5358 47 20 1656.5 5368 Rotation angle (in degrees) 5927aad1-90d6-4006-b966-f46d1465952b Angle Angle true 0 1633 5378 47 20 1656.5 5388 1 1 {0} 0 Contains a collection of generic curves 3c447cd3-e651-430e-8806-4c598ead2225 Curve Curve true 1e4870d3-d88b-4e3b-a627-be71345d40a9 1 1633 5398 47 20 1656.5 5408 1 1 {0} Grasshopper.Kernel.Types.GH_String false 256 Contains a collection of generic curves true 6484f3aa-0d26-42dd-912c-1d535fe27c98 Curve Curve true 0e0d5017-4f0f-4bab-986c-96ea91bffc65 1 1633 5418 47 20 1656.5 5428 2 A wire relay object e457f7af-00ba-475e-92b7-cd11adf29380 Relay Relay false 0 1704 5038 28 23 1718 5049.765 2 A wire relay object 5511ee1e-138a-45cb-b69e-9ea295492e11 Relay Relay false 0 1704 5061 28 24 1718 5073.294 2 A wire relay object e5295388-f02c-4451-a296-4ed151ef7c46 Relay Relay false 0 1704 5085 28 23 1718 5096.823 2 A wire relay object 098e7b9e-7b4d-4cef-bda0-50875a59b926 Relay Relay false 0 1704 5108 28 24 1718 5120.353 2 A wire relay object 76cd154e-bedf-48ef-8855-4e6107eba638 Relay Relay false 0 1704 5132 28 23 1718 5143.882 2 A wire relay object dde5657d-1af7-439f-8363-65e4a0c6e86f Relay Relay false 0 1704 5155 28 24 1718 5167.412 2 A wire relay object a6d64955-5e50-41a2-bee1-f25dc8986948 Relay Relay false 0 1704 5179 28 23 1718 5190.941 2 A wire relay object 2d53c230-0155-47b8-be10-65af0a7e136e Relay Relay false 0 1704 5202 28 24 1718 5214.471 2 A wire relay object a2801291-d228-47b3-8ae5-5c784851fd5f Relay Relay false 0 1704 5226 28 23 1718 5238 2 A wire relay object 3b356cfc-faae-4b8a-ad5f-521a9c4cc56e Relay Relay false 0 1704 5249 28 24 1718 5261.529 2 A wire relay object 87290722-834a-4c57-9a9b-e0dd5cb9b39e Relay Relay false 0 1704 5273 28 23 1718 5285.059 2 A wire relay object 5b40150d-e9eb-4ea3-8661-fb71b0a913f2 Relay Relay false 0 1704 5296 28 24 1718 5308.588 2 A wire relay object a2f18f21-fc41-4d19-b1aa-1d9a7c2c8690 Relay Relay false 0 1704 5320 28 23 1718 5332.118 2 A wire relay object b557f7b9-32f7-4d1b-b816-f247b02e448c Relay Relay false 0 1704 5343 28 24 1718 5355.647 2 A wire relay object b7326999-e8c5-453d-a50e-5d60958d0c4f Relay Relay false 0 1704 5367 28 23 1718 5379.176 2 A wire relay object 9fa27823-77a0-4b75-bcd8-4f611d88e4dd Relay Relay false 0 1704 5390 28 24 1718 5402.706 2 A wire relay object 4f8d7f4e-f77a-484d-900b-333bfe51ba19 Relay Relay false 0 1704 5414 28 24 1718 5426.235 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 64c76e08-bd85-4d09-a143-3a38170cdfe1 Digit Scroller Digit Scroller false 0 12 Digit Scroller 2 0.0625000000 1205 4937 250 20 1205.704 4937.567 f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a DIFERENCE CURWATURE LINEAR GRAPH 7J0JIFTr+8dHZW1DSKWaEpGS9r1mBmMbS6i0NxiMGBpLtKpkV1QiVFRaqCwhO3Uj3TYtSrt2ad91b8vvnHFGZ87MOXGdMaf7u/7/26/mnTnOfJ/3fd73fd7n8xw5Iy8nP08Wx/cH8CNFIpGkgf96eHv4ubI5i/1ZXB+2FwdssgFeBpvBH1nwLfzPmbKYziwu+BZpqFmB32RmBL4sD7w0/tGLhNVhhy0SvnCaXI2Wf5a14bL82azlYLsC0C5j5wZcxbkn9LIly8fNPtCbBTZ3hn5xd6jNyovryfQAW4YAr6ampv7gf8qO5cFy8mU589vYbPYPFSOWC5vD9gW+hQ3Xy5vF9WWzfPiXBf/rYsT05f0eOeAfx+57RsSG3pLrasTyceKyvX2hLw/eIqmLFdOTxf/Xy84Opib6+g/ydjTuCgf+fBCfCfx5Pz77fnwu7y+8f+amgX/GbuL9GXM/Nq7lnTUJVuDftwaDV9gOfuRB8r6Wv9/ftvX+triWt92PP9Rytea3NV+kMf4Y+PqOdQK/mv9Z6Jag1kOCt7fz5++NSOS9OQrr74npLReE/oRewfwU7+/QN+L9RtgNHGq5N+g++bf98z281ubvCP1S3neHVOVdAdKH/1lhJZsVhtRu/kV8Q0B2ga4mYD5IXp5l9fVNTB3kbYEeBg4FH/4wAX+681819PJrHkCd+UMA6GzuQGeE+k8n6GUZeybXlcV75wDgnzu1SaRp6kDPmufl5ckfQUrzzs+Qng10Z4FfJQ++IvRr5G2dvBnMQC8/X/h7FUy4Xn7eQm/uZmJKZbAduUwuNASkoJElLfBW8BXZ5vcF8u4Z+rgi1ceH5enoEUj38/CADwWqjZ+LC4vrwvZxG06e3ewxpo3RNwD/bzjZ0M/D14/LmsZh+flymR7DyTZ+jh5sJwtWoL3XUhZnGge4Wk/+pWf/9DfglWWhq8hQ/XzdvLj8l7tbsp3cmCwPsg030IvbycyZ72VSG3ZqLB41m5Eps5n9vUFhhcCIVfh5m7Iov0fpp7OwdgTN1yKTNPBH1+bXBMQCX5dpfh3UqBOkXxeTWT9936h9tpXzMw/RD+7refbkmo/bBe5KmmcreUMvji+TzWn2ozrQVWRoXlzItfINI2Po5eHlx+V7OPB/RfmqAVSyK3hdspcL2YTL9PFx8/IGfB/Zq/lbdTIz4vUe4L/vi4+kHJ3eaBl6ICNBxc7PGGiSgpq4uUqOIf0qLfbrXHHWrP/4CmjqBDX1O7Y4uX4myzQrKnvt4Z5TLYCmzlCTbC/1fBdFRauSs38rcLyDaUBTF6hp+rUGqz4ZKYy069dDi292bgSapKGmCJpRhHyciem2XQ1bV/uHbwOaZPh36NrrVRnzuvX6u/H+pyimTUCTLNSU/3j5yUqZKqtQxwdVod+jugBNclBThifjwBelWMuCer1nCnnpVKBJHmp6OfjD2WmrZxpvMr52lq3gugxoUoCatFmD4lXmhNMLIpfIkvSylgJNXaEm/x5yZwpi9Rnrbs8+bKrfWAI0dYOadm16eNO7+2XjOPtJ7BDNyVFAU3eoSSMyrMtovVvWB+pfr74xLe4G0NQDanoR5Pp5SXqa6XGZeiM3mVgpoKkn1MQ2P0l2sXpO2bJv/PfnqpTXQJMi1NRFWlVXaZg/I+vTY7MjoV8nA01KUNNxl5GnAujTTffO6uG6RlrhA9CkDDXFfZ//0iyAaZFzcnuj8uR71kBTL6hpmWb83ZO0k4yNWwavyYhd1hloUuFfcEf/69eTp1LDqPOUbHa6TgGaVKGmzQrdz5ByjlgdZyeuiS9rLAOa1KCm4fsGRfRebme8P+A+9f71pL+Apt5Q063M2Cvap2XMs4Z225htOUgaaFKHmhYNVrGsJy03CbOq1Bk91vko0NQHajL1cddc2vMRLfaHlGNyv1J9oKkv1ETK2OTkM8+PXvbJ6tSc0Ze0gKZ+UNPlxJxlL2avMI5ihuraGMqUA00a/Jvf2yOHmapJ2XBp3qgCr+GxQFN/qOn2INveEZdDTY+9s8jRv1QOGmUA1HT6RMJnWo8e9Pyzo2znZpWvB5oGQk1/viyP+fa3rFm6vd6zoSE5/YAmMtREfR52arF3luWm6r6Wi8obwuXMjBYLeJBBoGc24/j4MjlOLBM/doszUzJQ/bTX6Lt56pgtL2Ne3aoX4TbkrNhOS+EvkxSovr5ctqOfb7OHh1w330VJ4eaiBnagiyrtveRI6vwwq6Kzn8JsdQPtYC6Kvl+vXPbVS+u8F511GlhfqmAu6ii7Rt58Vj+T9U/u9FxNsfgAc1EZh30mnLQwo4f0lmbQqyepwFyU8ZqKFEpYk/mmhckc2vN8PZiLurRAVqN42W7DvClqH0fPldaEuajyOZ5X53/0MwsZ1SeAHqx1CuaiAkIrV24aNp6SOqIsTU5zVgjMRbH3rylhjb1slhZDmjRDvyIZ5qLUf4wiXXCVNolU6nM0YSKlBOaibJwtDrwI9KBkHNcOjRzT9QjMRdkP1dO48qTUMlHOkxO65ZItzEVNyXk/aNK1WquU0lWaNaMHH4G5KM1A92Fh96LN42t2VNmnDl4Ac1EnI/6IuxrJtYpcfeLm/jU3FsBcFGOnrHpAX5b1oZOsG5Wf1KfCXNTDtPFvBz8ZQE3l7nR4KVu+AuairDa8G2QWV2xWGGs5R+GM2ieYi0oq+vbg0I40Wr6nzKbE9Hf6MBc15jKLMW2mvElwflqY1qq+u2Auinsj/mCR8iTrtA8n/p474sgjmIuat46TPzwyySqB5piY8+OdLMxFGXlr2eYr2JnHXahr2Gg1SQfmoqhN3zjqc3SNd12LemLAVRssNF7V0cbr8JIHs/MXbTDKrLTf821KbQ0O47UTbuNVuwPHq4h1A3+8ilg38MeriHUDf7yKWDfwx+vKGx69nu80MyoILrffd0b76n9Liv+WFK1YUiBnZdiSItiwc0GGphc144qxxqUTqYqwJcXieV/qF1KHGB91mMwICtwnBVtSDNceq37aUp2ewjq5wPMqtQS2pLgyezybnLHP+FBiVNrBL4fHw5YUi48xpE03PjVcp6tXPllp2mUhZzMQzdkgl+04OJvOuDkbtQ50NiI8Ct/ZiPAofGcjwqPwnY0Ij8J3NiI8Ct/ZyAWqa70qzLWKOOuZsav28QOYs8loOhy7sPALI4ZG/Thp9ZpQmLMR4Yf4zkaEH+I7GxF+iO9sRPghvrMR4Yf4zkaEH+I7m+Q7hya73/9Mj9zuNOi5+4qvMGeDHF5CnbcnWudFThA4dN4uaJ1X/6njoK/cJottc6/WjTyYriLwu7oZsf3ZziyyoR/XnyXYh0HDgmYS1Tt1oY8xyU7gB8lsjq8XmbXMj+lB9mBxXH3dyD4sVzD+6SNjynZ2ZnFagi0i5UB2YfRbFFJFoBWhUEvMiQYYxZn3kib475jjlaS6tEoS6QGNRAqiSduw/b18+Wt6kkE+0Lqvsqs3k8v0XMzmePvxAhuykLai5OjJ++1kQANn3t2I/JI31u8pXpjYn55eOKG+dk7YdUGbi/520MvWvN/WHPLlhbhk7AAX4sTiuwBPm1CXUd03WGyrsbk55evGmK7NzUJBrVbqEwToUw3q84ZKIqVQEfrIAa0BaQL6SEH6dELRR9nKz9MRdF4uLf1CpER7utG/hswYZrYzwcZjzq3aMQiJwK8jQiLey7+SCDmB4iCRDqZEQBfqYQMG2Xx8ge9rxPRltowBkqiAowyNC8jhRoINY+E3dbFh+rrxv3nnlQaru5j5sjxJpJ8HEzIcntT8D4Hvg1sKvLQMhqV623l7sH1brERm+pKXsjlLRZur9Ovr8uH9zzMyC5d/KlHabyBoLgvwc8Lman5ZyFyi7CHC6WHZI2wflj0mSsYeso5eXh4sZosDJHVrtoaXny/CschQnZxYPj7wy4v0NaDDA0O3ZG8vNtpA+hj8rddrqyVWiVti2aY+9L8FLCNjw/ugkGn4r+Ntm5o8yJ0soImwzYdcnjsRkEWq7bIMtmdyXAHDkv2BudCLy+u5zq1QqsFM4VKXz1tMQkZZZK3jHPxDQCk56KLCWv1sEYdaOphqAZ5FQK1ObVdL0wb8PMsX8Mn+TA8/VqvlWvrkflPDjcmm2XMz113Vvj0Gcb7Av6qwYPA2cUjGG/yokgGDH1omSZNQlklnkpiMb5N6m6zfP0C2UXNlmWBHYACrIrKdEUN4iSSNIjHNkMti+oJLJA/ws5BHJTuD5yssZ7JjIBlQl+vbLPZwsi/UfZkcZ2gJpb+6VWsn5Bpf9H0Ld2B+Sys1dgBWRQZ7AY1LRK2ZwgCNDfYIrZmwZhpF3g3ANBD57dK/+t/rbxVuknL+5PHa8pRcwSnGDvy08BTT/DLevcwUUIAMKmAgqpclAH2wZo9EphgFQy9gl8nmQKf4Y0joP8hFG5aB1HkG4vdLHWc2t/k0V1ekobwfVSX0YPUxTZd7qZX4TPkvAUPJG/E/LGQsWJM4DBa0B8tgBpIxmEzzHCVorDczsIz1q3VbV56xmh2HSPts7qH1/HPOO1pxfY7mqCnLjARXBAzeB4VXBNDr4rBMfSqWZWJSJb165h/6g5YRWrPJkNDn1m4MmL8XaQvkdk3AFl3AjwtZovlVvO2gkwu5tCxg1eyNdOo1x3gjBJo4+b3vXzNxIiNgYpw4CzKwJs6CdJHBhvZNnE/qPFgrB84w2Vxh8eWmoSylPRMnYiuN3Fy0cysNOoODGVjOwCHj/3devUTLef92vInFsduuvk6H5+0lyLwqh2kwoEcTZl7l//ycX5HzKtZg++W8OobmmyS3NNNqDyUoK+XV89D2zauIkaZ2p++9H0Fb6XH5FP/E21um4jDS3NKxDKcuIcN1yLQ7Rer29Mf2TrSsK5FSatKlFhKddnkeD3XaBQYQNO3yO6fQtGt1nH7hDOmUYdC8PlPYjeZKAt+mh6Wfhy/b24PtxARvXXjyRevv/SwBW7E8gU85MT3IngJXadWsijwhwrotIbkR7a2UU/E4INgBQM4oGti1EXLyvNWByu4t8Qd+rwZl4IVIzUBHIGBLnlfgvWzmzB+Lc52rN0mVyxsVvept2V2vVw2/XQqlvas1r9sKjQa55tfRL9x8P7zbJZGwzx3609lcH18yGxhOZBcvLsJeIu1TM0Bea3y3AZZx3TbFfVk431XAPlJUIZMALyG7vxTCSyGP3NrppUiAOQ+C5jQQFcq9CpjT4UAlTCSpX4g0wI7l5AUsDtui0kD9jxT7i92NNuy9F219oUhOUCWasEq0X6oUk3MgIUhtMyP2GiXo8bCbm3FQSQ5TpYL9lVAfbOlLWP5T3ZblAwgDntG0QiDkzCQ47TVfSnjag17H25825EE9pgnQgox0AB55PKUgfyqH5k+3N3zcOWJWFKPwT+sTJj9SBgtGNo0DvLksHx8hX4q10FMzBmOrvK0Mh8xquQDsWvx3KtGtbS2p9jqDVxpMtl09eLi1bqt8LfLwHO2WhYOxP9taG2ItqCQFxQISjzckkeqR3a0ekFgxVoSP5R9Ki/CxUiJ8bMK3oKLUWAez/AOHrCiP9W51hA/t9VMLsj+Ty2Y6eog+v1X/UCJ1bgTVNOVNr7L7p9ZWCqo9G/oo2VrYOVh3tAutAKzlHQs5hwqktbYV8KzVFueg8tM5/OzIIlWak5F4gX77g0nayT5b6MP9ElvlGKTIuPuEJccgCSooIiQwPcaTAPIJ8mg+IbGgfm7ooyazooK8ouyl9xmCm2gbJoflIegO+FcSpaEOlewNfoI3Bzn5+fh6eZI5Xr7g2QswO/myAnyhsxiRuiKzYUTcinDGiChVnbheHh62oGfn+6/mnzczEH0SaUm0Pik3y4fFtQdun/9rtYy8/MCR4ATMIEvBpAiWM9sX+u7ATAzuLB4E7UfYkU/OCe1ZCitJOomAHWcbkoJCDRUsmVxXNofBchHoFF2bX7Zlu7oJ0kHNr9t7ecNfFewMKcaFlV3IiZU9eSIKInKy/LsSlbTFZS434ziznWAokTz4Irjdgb3EW9OCoayfztzOm+XEZnoYejn//Cyw9/PlspieLf/uMofL9P7pMJq7qgJaVyW7auaHRYfTtv5xmLHjS+FKwf5hy/JgBgp2VTmSyBNDtN7bi0pezuayyFzwSlAWmsiOiszNEnEjrRr/iN6I7P/t9JAJwAJpSVIluFwgkYKQ7qEJmM/ISXz30JXwmiOnD5w0R+a+4qC5XAyW5tWb+Zp3Q9O8zamYXfmadwRKJpzNyN8eishm5Kdiishm5KdiIg0rlGEILrBEdglksiMOGYbd0WyyrJytx7ZKNzxeZu3x9NH81wK/q+tMP3AaAITzdhOeLNuQszDEiO3jDQ4EJtmHxVuKBI7gJy8A/w/YCPgNIrVAZnei3p+QIgKNQsNF3s6L62sN71UiBtE/XNq1XA05H4JLuxRgEKkZgv8JDqJao4LKZE5KZXc+Bw7MT6wAgcs1m7IHmilLWfvTOd/OMqKHVx4z4CovFAw3g9mITJBlFQ4oyaBYbUrLJsjXjcXLFuVdADQfP3mU6QuaFJwSXdgsZ7I3fxOh36pNEJITQLlj4QB5S1Nrd5nAjjvLE1D+L1EHOeAeNGtpm7JGlVqyRlmQRiK/4IjsNRN2nr1kfshypsmKuWPP4Jg3iqQl2ung6wCFYkCFTGlgIh5CITBMl+IhMm8UTSGtn2lKwO6subc4e3kCHe+XqpHsv/lM+VuRsWm4WvLVl7Wqgt2i5brC3eJn06/U69ojPq4sT9c8Wlv1xga3N7o4qAf0IAz1Ktwr2xQSV+Ul9P2UDhhoK31Xi5QrXm5i1bGcsYbrFumv6Bx54yxiewFeR7iTNb+M984tLA/qRVNFnVKcy60kvfEQThfE0qF3y1CHsgOxlBgW0dmYrqdOT1h7e/qeo97ZbfcnYlHExgNLEaDfCKUEtlIRJzbXyQOzb3h7mh+vNnpLLS/Xpc0zNptPEEUUl2Ip4u3OX0qCEMbvCkYgSbcOACOC3LDAiCAX/MGIjytKNkjZ3mBs2BX7ddcCSg1xJzgwy3yJG1aWeYWrWMCIojSLJd2fK5mGPbY8sfLwoi04ghFIAg8HiciuWBIBXejfDkYEhe3wcJT6bpX8doQtpcufFyQMRtSzsOxBYf0fgRFrrz238h1Hp6Yl7FbUnLD+q8TBCJ47Qc1bB9yJpMAI27ph7l80Aq0KJnGepD+3v0IIMILnWVDVAjyLxMAI5GaAMGAEb/CjSgYMfmiZpEhCWSbtXrm99lXDUsODR3S/Xbg4ulbE9Cw6riNK36HQO8GAjZOXh0dziho4/wGdhsVlOzWvm1q3OkLO7rKWTG9vNseVrxT4dXBcTCAx9nbOlGRwMWFTCabMCJ9QnS/Iq/ROsOYbRwnNOI46IZqJXcooeQ5D1NPP3lAT+Lo9jcDMBx9frp+TL5nKdWp9Du4UWxbwFVj+zVEbR6YPi+ztweSwhpO5TGe2X/ORFTDQPVr242A8h0Nmcp1aF7VBFmPAvG8hgyHf0IblbQUXUPycqOVtELC8rfBu0/JWA/jdZGA7adi8hwKXuT9vTOT3zkqZ/tXXlk1Pnr1huOUf2wTja51FfVfei7/qmsgtGg6LuBRQqBRRCWoGx3lCtSkU0Y/W0od4XaVZt+a9p0ihKAvUjD8VbzRLHcziTj/XtEbQn/KuZgNeTdifwtrw9qfkfEgXB1H+1BTwtiRuG0MTts3jqVWa7NnQ9FFWu7PR3qu+B/IinpxAnK3zriQi6ab5dXFosWQZlhbIPvKroASZCncoOsB/oLNhcnx0IXlEimL/ZP3G2EuVRuVzyI929qtWFnT4vEsKO/zml8UhCdkbS5IgL75HV0bz6CO3rA7sP/k7PXbWuEhS0tx4wY5vDYwfa39gdeIg7Mw7o+jay9DLE5AfGHjg4AM/HNA6J40si4N2K8Jj8GdbaykJcNu4CUyJpYnILyIBwmZFt8k1d+VlADUv4kR+uZMm97dz1miaZeSMv6j6pkYwUVV6Nvg54X7T/PKvvDGyjk9707YBbRRBbRpEZfNcbdambbnSzak/GOoY/i1zM6nU3+hIQtOzfswnyyWa35eSBwnQJEqAIXk8AaBx1QttXBHmsB55qo7TYT3SYngc1m/GPKzfxNdcBU3z3zCnElnUS8w5lQYBWDmVNsv/5TmVVTLD+h3P7WKe73l4/TPfrUV45lTi7IXBnErFAKycSsBa4smpNLC/uHM+c7JF+PIpOnJRr9Va5YzFlFPJkwA1pxKQAPIJqmg+gUA5lcgqfeLPqURaUjI5lXVAZ5XbCNhxkrhyKsOvFlSad95I7JxKfjKMGlpXJc6SAVEzEqclA7L/47BkcAjBWjKoh/DdQ2/Ca46cPnDSHLmHx0HzGl8szW18+Zqro2letj9q+sFvmeZ5FVPtq4t9BLfQMs1HlIKiY51pjkQN8bp4eAE+kuPaHEcnNx/IiXbNyHJtom5JeP8Bvf4rG4yu3a4y0liLscN8o1yW/bHS9q4MABvEMKHEHeS0KPc5r1L9/BJJH3n+nJNiKFB36IPWHdoc8OcPQbEH/JGlbnEM7iPhYBz6hOkRlD5x62NeJf3xYf647ItmiDbnOrf4wg7IdUbaQig1GfytIq2ILJvamtRkaVFpLPwuDenYD03Hi/2fP/u0xdIy+Oj2wSOWfBTMhe5i6SUqwQftZGSYPTA0fTzAHaiOJ/BJXXAj2qwOmenhBTg3JnTS2roYG/LRDsL3Jgylg6+2sh++AWP1RUA//CqKjQbjaopFbYqrdeeF111ZXsCelBso8isV9ln616beRYalWe8X7DC7O1Hw5NgE+qjwyXFLy692dsiu186xWg8mXoIaUUSFbXnHdEVty+rh9xHe/pfXGUQfgl0dMii9Vs4qoWbv0GON/QTPjGUsvUQy8vzXf+XQ9M8HcOi2BhZBKvbSXRmk3TiIpIgpUkUh8Yp+8H+GUNoUH+3VMsidsbu6zjuD/lqs69YJGg6lQ2ZkX2l3V8cjVMrry6aizFSXy+vLbTqhatbCBXzkHK8/OwOGFe3JzJNUFmk9ZkQH3n9rvqbXd8E00ZarCKeJ/mwSS+AYUw2g00KzhwYJZfbI0C+cPejSZ8NtVzzq3txprEPEqJoTih3mzms9E6HdUuEKSkd24Xp5klcGBK5YDayRPL29OGACTevmD+Tzf9DuTjhe+bOtlWo2AYMcjFmSehqKOD4ngQUQjwvNJXzeXmQEDLqFlQGw7y3yW5pRlv2wo+cxIp1LclVVv8Qom3F8WVygpwjHfTuNcBDkexx+XluY74E3/sqjnjpTE7c15JhF4qtlWXU+B/q106OCPAkYVCTtEdU5nYGp2buAONuGN+VtmQFbLBv4K8seuUPKDnxVRMnzJ5v1mjI9SdB2c7FsN7cNtnO4ExhoGRBFy6AOTJQ6O6W9CRKg7ciYtgOGAmFs17ZM1xbbrfiV7T4M6KPGLl/F2J36REqFMzhC0HbzsGw3D8t27S0HAiYZH8cyjgGhjNOmpYkiZB3sNCPk4k9wZdl8CeGVJfQ67rNwLuTo5ESBTepAq2lB29Yk3SERMOqyZeikZH2X0zY+eOXb3cLDfd9ItN4pqEDNcSwFHI7z1yH9SSjrkOzFjCcLgrPNw5UWj9moViRYuUnGjgU+07T1+9h+LWsQH94nwQ0/FJBr3cID+XRBUbcjLHDz6609bwIkA6ET0mVR+Xrg5tUgr001p/s218tq/p5kkCJ0Y0HfX+R3VHjXm6s+65PxzuIdecsj8j5KsPq0DTjj5KPl8deBM04ecZzamxltqYg5xM6X5U32Ya9g8c7xWEwnN7KPHy+cz/ZnQeYSaaBXI/zWfjd1MdlWu15FLaDwi2D0BLyscPSE96o4zBOUh2UeA8Kah58mj2aeAT8hJSgn/tcjZ4OZmwVbe7XxsZH2e0gOFxGP7mwXsIR8QGk7l3Kg5epzsSwXkytpy/GBJaGVAsrhF9q8qWSH9PUijYfc6Pwyr/4X7l4s+3qeMwTxT6H8ZDAhDBht0Hw6gIQyn+p+661+lNzZOI/25m/WAFfB5zF1ZQDWJjcvB1qfadnfksX0AaFacHRAvCev0IEHcLXWTavIJ/Oi3pXwmhrW2EodA8BHOWUBOp4UlXXpDaaAZYnc0behz8nzAsagAKL72pf05DkLelrk640KHLnOVzAbrgv4lUQVZfX5tZvAGf10A6RyA6VKEJX+o3GcJxUqwiZyn/XTrYKlKXlelSFSI9WGv5/MtjNnxMa/9dxH8e6LHI9SQuOxg9e3ivmQOKJOu3iwNiAONB4Hoo1HAiUGIacY3BODhHqrXFj2iIN3V1plOOYdoEWrdJNMYlABYMeAYy3xUjEkBoXm51cuWnYMj8QgknBiEAnfYmtktK46qNPG+UPzrllEOT6jup3nCGYndLdk+viQqc6AHYRSW0Hhu6B1WWCNAUbByZ7g55nQ53/OHy2OolXzCPJZ7Ri3KNSVBZvbcEDklgP0nU+iThrBPJWC7PbOJQNhSf0+zbV84Vrpi44E7NiZfnDaZJNM2ibL+FPViFN03hWFl6LNL/9qjkE65nbOMWCIwAGUsI5KEq5j63ycJ2GbokW9YUV94UqJFArpgySa8z8xH9IiTFQQTwecUnLazUb3ZkDjCriOL+AjyFzelxE9KezcVDDkzcAMo9IRXeaN/fbqviCyaANdoVkO4aWw0BvEIRjQPTAEc8vmz8GD0BxbmzNOlPmCd0DGCTJVAlZdD3kKBquuh4xTwarrIdfasAcdI1cAsAcdIz0r7EHH+i+3hUdsD7fY/kP5S88hFxbDHnS88tnMt6OitI0Oksa8ki4KDYE96FhxwIEzhRYfqBvrj6ZPXXF7LOxBx+NjZlFClV5b75TPXMacUtgf9qDjS5m14VtLzzOS4jU673a8/EMo/wYsfCiyI//5sjzm29+yZun2es+GhuT0w6E04GC0DkX00oDIx6B3aGnAf0gotFxNVGnASJTSgH3oBZWn2ZG/Lg2oiWbK3/U5T6W9lxxJnR9mVXT2U5itbqCdGJ/z5P0K6zlP3i/F8Jyn4xc3hux3zLDYM6xIQ+Fk1d72hKjF/5ynJa+wnj6j+Or/9zlPl6fdjPkycafpNsXTDLpq97cEec5TxUssgwE9mnApX2J6ztN20tTJhgoO9FRl/8ba00tP4vqcJ8ULbl2vGKqYHx4xasehEbJbcRhpZEzD1byQdEhbjM95OmA2NSa770zrPaxuKUvcr+6S6HOeeB4P9TlPwACCpt0hJJRp9zdkaOn79cplX720znvRWaeB9aVKzAyt6U0shrbuxr+cob2WVD0vTu2JZaly3PZLNx59xpOhNV5TkUIJazLftDCZQ3uer4cDQzvxJhZDC1hLPAxtjs2L1M59DpomrXH+likbsV+SDC1PAlSGFpAA8glaaD6BQKHyo+waefNZ/UzWP7nTczXF4gO+ofLTFzo1IBlapCUl91yS+gfifC7JRqPCyk51D4jN0PJD5dpoXZUwPGfGYZ8JJy3M6CG9pRn06kkqIm7kn/CcyP6PA8+p8wiL52x4yHcPQwmvOXL6wEnzgNDKlZuGjaekjihLk9OcFYIHQ1uHpXlMHV9zHTTNiR7ourRAVqN42W7DvClqH0fPldbs0EDXP1xGoAW6bICFgs4zlEBXkUVBZbL2s18HunQJP3xORvwRdzWSaxW5+sTN/WtuLCBupSD1GqzhU3eRP3yGoWlOu9r7jv+EY5Qj8xepR84uFVzRqIBf1RdMBTRiu7iwuCxAJxGprmhZOSP59c+4/Ms4/7wMb9Xz84AVpJtatccpn+N5df5HP7OQUX0C6MFap359w0KmEvmuVopefRzY99SCNcFEZe7YACapu9re01YqAyYKuF4CVyBMXh05sg6UPwZWLGyuigv+raXEsIeH13KWs+hIV42nxp8jGxYbBiVpx6/T65KGyE3neTMRuenNr/+qbydTpE9evTDZ9ED0pc9Vpu9etrNvFwAyTwRl7iIqsWXscZ7M7S1crQUzP9mR5bucxeLw8vtZTn687sE79Rep5fOwG5+HpT+xTjshZ3nnZp5gYZCuP6/rLOzV4Y14b3Le5EGyLRAlm0oeTzbIJegR3g0jlxutccMitjiInoo0HR7FV65hFl+5xpd8OOElZ+9fU8Iae9ksLYY0aYZ+RTI+kiPnUxwkf3MJS/KsS3zJR6BJTujn2SF7PuzEHWkh2Ik7cmqEnbjbOFsceBHoQck4rh0aOabrkdY/z079xyjSBVdpk0ilPkcTJlJKcDi01kezydkemu9HjfeyDHn32kL/ylpjwdwpWxawAndika38PDzaANyM4H+OA34OnC3ZHGDpznZunl6Xs8FcYV83wA6tXoMg1cS4T+EcL4HmVvb4g2Cu/BWwEKeoHC8wx8TgSntXHWpmvGRYYLkB3Iwvb3kGKiZSAC2Lc0vXKhuYrJuSYtntmksjIrULvJCI1C7ey7/yFcj+3V5fAbLToHLBoo5kYsAn61xBrTHRSuX6tSjHFehqYNcSKd+EgeW1qj1u0I5cL++6sKCiWvDpQlAH8RT5mAfBVrzXD6BaBphq1V/u0AMs/o3K2Qd6s+A6aMIcqL4Fi8theeiD7/HRNzFdDELqriwuAuQAf9q7ZFTjLc1BwwKXIDM5gc2mFmll5JK4PYOknXatzoVGgUjWxiaXNwraRIKqI5Pooa7vLFKKMwWb09IP5FulO29/oDa/SPAsrY1UEg5SGGBKAXRxaKIaSUKZqKyO0y+cIZ0yDJrXZwq70VxJ4Pv04AV4vT3YTkzRichoq7R+lsAwYIHlPpyYHmRPgau0al6yH6qnceVJqWWinCcndMslW6zbEtIb0d5aAgF8YkEjIGeUqJkJPBB/80zEOSA/bCDiHJCXMYA4B0Qe5/HbpVDaO+KcsH8z0wr2/uaMaAH5RNon7WVvn4EzxpnlLpIfPacuXUPAPlJU4ZgStaMPCkngk0QboYNCodEBljynNFbCRJL6hUgD7MDncji3SaX6kvUuOtEDLWMdey64MemyYN6YFE1YJdovVcq+sWWbZvBG2r4hf8TdXhvZ3ifIgCq9eYalUsqzNh2nqsPSxX8tEDJrRaL54uDzd3k9BqwRL5Q775HHUwrypwZo/pTIheKm5LwfNOlarVVK6SrNmtGDjwjfW7sLxcl9wCoU5/Ae70Jxf8TH7Vo5Wt8i8dNV66+5Nhm4F4pDZgLhUAOt6T1WDbSD78VSKG6ewtpte+uzDNMmrVk4osJNB9dCcee6W0XP+B5tFlnsafzuj7izOIjkgCmS3HviZQ3yf8RVKI78l9P792P0zErdn5TFPhlyot1dHQ+EmteXUUujAX1ZPIXiYt88oB1S5lDiXs9dt6j38sMEKRTngKkG0Gmh2WMUCWX2IHahOM1A92Fh96LN42t2VNmnDl6Adnc4FYpTfIdVKE7xrZgKxZX137ap6f4Mo8h9Lht2WKlmSqRQHLXpG0d9jq7xrmtRTwy4aoNxKDZGeodVzyrrLYHSecVUKG6XpdNyw+Is4+B+u2qXXU0NFVOhuPPHx15y/FvP/JDU98o91zc8w8F2S95i2U6RSLYTqguDT6G4Po1J24dMu2pcFlSySOWUhiqBCsVVvMGswPiGOMYRS6E45OJP4oXieI4OtUxa2FvcC8X9WKH2XPt+vdXu76OsvC4985B4oTjFt1gKJLzhr0NGk1DWIb8rqLfr3vAZ3W4FGucHjCkfGXGrqxhBvW6qVRigXpRKFf6gntxFX7re6R3mUUnx04uLTQXLIxMO1OsCCoSKD91Wqfq/BfUK139bOWLeHfM0+5SXPx6oCT4gTnKgXq4KlsGiJGMwSYB6WxpU7xu43DLfNPjyvkfGkTNxBfWU6AVayRuLKUc7Obqf7DXzIw4jzRnTcFMlZLgOAfXSRve/8XlEd1oyzcHtHHOYYAW2jgb1eB4PFdQDBhA07Y4hoUy7vyGop74k68ALU5ZV4dvpfT3ciqXRbhknUM9DvgoD1BsrX/XvBvWqI/o+oKVxLcuSC2be3DxCHk9Qr2aqbOSTgp7Wx/O6PjtcY7ISB1DPGbQWKqgHWEs8oN75tLhnV0mTGEkquScSBpkYShLU40mACuoBEkA+YSyaTyAQqJeer0HdwNxtnGI24ttKkwwX8T/sEmlJyYF6Wd2rxAjquZgUVuYc6V71W4B649C6KmFyf+8NnWW7WvqL6foGnQ1l/fVscKJekP0fh+Rfmx5VGMm/Bj347mE84TVHTh84aT577a0NNprLaRHDdaVO3hzMwUHzLDkszWPk+JpPQNOc6KDe0UNyvk+YjSZ7H1gXKuTv+NahoN4/XEaggXpgRao6xSrRoF4ivaDy+1XFql+CehPRTPnbQWO7zx4fcmMIxzpCr3yRNGfJaglAYy9kqjCgsVwZocgXMaCxIl2dsUp9Q+g7j/h1G3b05kREnLp90Fi/LfWOR/fWMLYMp/5pyJiUhAM09giUGRUaA2SWIDSWfkjuz9kLR1pmK1TF0Pt/Fnz+pmShMZ5sqNAYIBvkEiahuQTCzKjIqQ8fgglpOhwmVF9ZrAnVXpYv+WTCS/486Vw010jfIkQ2OtZ89reZ+Ej+jjKgq1niBfOcm08DbqfMy8JBcoo0luRkab7kU9Ak/10ApbeXR38ifx5FPXrfIKssyHMrxn3iByhNBH0IKqBUL93eGa4tgJKG1GfN2/2VaMUrdrwuyghAUGvtApSQvR0HQMkAVA4VuZETXBvAMzvEBSg9WfPy71RbjmXa5vdRIyKquYQClOqlsdQqkO7QwP3vDCghl18SBpR4owCVypFDLN1+lYHQNkBp5OlwhTHuVmaHJy06cOz16xQJA0q8Lo4qRUHLRDWVhDJRERRQCtg22rFrbj5j/8MpW+4vCqV3EKA0sVcVBqBUryzi/OP/E1AKemY9hxt1xPJIPzXuLeYRIxwAJZwPSED0xqBXFQZ6I9erSsyAUtPQbkVZIbOsDy64yyisqwnGAVDqfG/bg/QiZYvCkc/W0n6MfYGDSkC3xlCpQLlNx0htA5SQp/USB5R4PQYVUAKUgvzpNDR/SmRAKXnD0BXDtm+nBvXR9byx9dlNMQBKCb2rMAAlSm+RaVuouYG/BpSmPj65wVjhJiN71PWYp/NkNuEOKCEzIHBgb2JAjVDZG7feqIv49gBKB6caa1/xozPyyxJTXvUyd8YVUCJP/KQzv9sHs2M+w+QuDfrDAweRKJgiqfcmXrYU/0dcgNJHeyd1zpt0ernlscPvhn5sIASgxOvLqEgO0JfFAyjtz/KoGsMqopReGt4vueiAF0EAJQqmGkCnhWaP6SSU2YPYgNJQucxxn17cY2w86f7m7OibTmIGlLapVWEASipqIsNE7QeUhqpe9luduMAy+NV9nbE1BUkSAZTmK4TadZd7a7rfzlrp/d9/bsQBcokC5UTlKJzVCJTGKCZA6VOXP8aF9XehbrHvZNL3z1U+YgKUKmpLghzsFakl49Jrax9LmeJgu6mYtlMhkO1IFPEASqumjPRX1fxkfTx+Id0jZu1IAgFKL1SxjHNKlUDGEQeghFz8SRxQ4jk6VDzHRq1ta5JWAEo34ueFaKg9pOyWoZJHx/knSBxQUsFUoE6Vvw6ZQUJZh7S55uHAlt4r/pqHSAoJVvMQmS4Nq3mIzC6D1TxE5rPBnjKIDErBnjKITAOCPWUQmUUCe8og8tQZ9pRB5HkR7CmDyGM62FMGkZFSoKkr1ITc7wNN3aAm5FIOaOpOEn2cCjT1gJoM/6rxZwbSzXfNq9z2o8gXfBxjT6ip88DwMfu221tFKfpWX8rxfAc0KUJNzx6dK+stlW0UpG9kmhrYeSjQpAQ17V00gaxx+gbj+OWBjDHPBy8HmpShpvJXnauNPp4zi+g+/o6UlfkcoKkX1PRmiwerSYpLiT8wcGNq3c44oEkFalK0G6Y3bedT481l0lmHTscOB5pUoaaeX33OvqLFW6cOm71IcXqjBdCkBjUtbXiZKztvu+m6coeDN7sVzweaepNEL8SE6mGqk1DqYa7oGW+aOCGeEqZbVjB1/tF9ONTDpKCNV8Kc8CM7D05pijgXr+I967gL1hF/Qhe+j6Siaf67QpzfbtQvu7FghuXG+Wbd12g2LRB937hAnFEGWBBnNwMxQJxhDvIZYVwuIzKsT//VoxUuExviDDbAQssWGPz/QpzRD6vTXRMaLA8klPW4MIAtiBpLDuIci2mwbpIxmCQgzvmD52bueHvUIn9Kt7JtSnWZuEKcQb2/b1ReWEnZneOvrBr2zAmHkfZoJJbhSkYSZ5OGO8TJftnfp/LUPGpY2dG4Ype3QRKFOHkeDxXiBAYQNO3SSCjT7m8IccrN1I69u9HVcm/AzdzYPzxKxQxxkrSxIM5qrX85xNmrxxbW+Wtz6Aeu6dVc61uMeLZl+yDOeX0uHLzmXEHZuqzu6N3YqaE4QJxNWlgQJ2At8UCcp1c7nt3obWOya6zCARfHg88lCXHyJECFOAEJIJ9giOYTCARxMoN7rNrA2MDYv+Od3vq3z76IH+JEWlJyEKfvMHFCnPuMCitNfYb9HhCnEVpXJcxOPaFQJ2zl3RSzJOXgkHXDch/gtFNH9n8cduoqelg79Q/D+O7BmPCaI6cPnDRfdrJivLK8qXlE4oxp8uf921tEF9Q8RgtLc+8Wl0xH05zoEOc4n/X+oUU7zbP0XeJ3Sp3tWIjzHy4j0CBO8GmLKSNQIM4bFgWVA3eP+DXEaYJmyt8O4qQw594/kGFmdYTTxeIT6e3WX98w7hCnxxAsiHPsEIJCnPssNb8kHlUxPPTiakn8ll47cIU4tw7fMdQuZx8tvOF6jt7yDB8cIE7nIVgQJyCzBCHOw3etE5Z0mU3faOlv5jp0kWCOkmQhTp5sqBAnIBvkEkzRXAJhZlTk1IcPUYg0HQ4T6tchWBPq7RbJzQgveUSPXs/tLo+x2H9DcbHr6Lc38JH8TURSTrr7QcaeuhLOwdRF5XgUohiMWYhiMF9yczTJfxeIc1Boqp+W81CT4pMp+55mz5zUIRBnriYWxLlAsyMhTvPJedqaE92sUhdutRkVlY44dWwXxIns7ThAnIc1sbDEYM0OhziLIg7bWT1YTCt5rFo778ltQSxb0hDnAky1xmr+B3G2EuJELr8kDHHyRgEquQiMAjFCnMNkQ6dtuUQ1PDyhIS45beETCUOcCzClALo4NFFZkFAmKoJCnAN29f46YF+kZeYSl05OOnMGY90WjhBniT4WxOms/x/ECdmnU0L12FmNn41yT4ZfP/J2aw8cIE6cD0hAPDFXHwtPjNIXN8TpcZKxTs/WxnTriwmGhRN0BMtJ/zOI01JL9Qjz/Rl6zLW8W/2WPLyMg0rOmCpN1RcjxIk8rZc4xMnrMagQJ6AU5E8ZaP6UyBDnX/ZaFhUsF+uSx8xJzxJfGgvfW7shTo0xWBDnqdF4Q5wBl0Kqmc6LGEGDy/Zrsz6p4Q5xIjMgcOATVcZg8YkvRosF4uxxaf9+W927RolRQ7/26voUUXm3nRDnrm/H79xf/8q4aJn9Tr2Lk+/gIBLQVTBESh5NvGwp/o+4IM6ZK+vfW/uup+xdMmq8fwT1PiEgTl5fRsUWgb4sHogzy5/pQHfdZLql760gDRUjwd4sOYiT12lR1QA6LTR7WJJQZg9iQ5yvV1RszWpIMNy33sK7ej9jjJghTvXRWBBnwigxQZxe5Tf7LX3iaJ1uXb9yS3CPPIlAnB9mfTkRGh5kuU752dmAp4X9cAABFUdjsWYNowiUxigmiNNuhekqjtIs82CtxvEG104L5i3gB3F2Ynj3Zn40ppW46meuulQv0rG00XYVo7Bsl0Ag28mJCeJUc8vYvCTUz/xIVeW1J/v2C3pGyUKc3pjGMSWQccQCcSIXfxKHOHmODhVhvDoKd4izr2nwQDtVL7NNI1nLgH2V4JNWJAFxJozCUmDBKP46xIqEsg5pM8Q5oKX3ih/iRFJIMIgTmS4NgziR2WUwiBOZzwaDOJFBKRjEiUwDgkGcyCwSGMSJPHWGQZzI8yIYxIk8poNBnMhIKQziRO73YRAncikHgziRx6kwiLNPjqJ22Isqw7AzU8Mq7pb6wCDOWb3P5Q75Fmicbb54/p68u3NhEOcI3eLYmDsDKaVLpPJmjFI+DIM4d7zpknTlrw9Wxwa+22QX564CgzgdDNRyC90eWe/Uckyxj7KvhUGcMQ7Z1pVjulmXch+s3Orp2BcGcc47LcU5OzOLkTPi8KJliwcEwCDOIY7VismZDZQD1RoG1+t6xMAgTuRqS4jUBJFOkUN/ovfy9LPdz5jH1266tTTkw04cSE1rtEFJmGN8ZA/BKRcR5yp+4Dk+GfMcn9Ryjm+DpvnvSmo+7G5w3YHlZ7LpVh7z0dg/NcVIagYzsEjNLgwxkJpzsr+uCj/+0qj8/ZcuFUrJL4lNaq5iYPFj9oz/X1KzYZnnuyGDF9KP6G6s2HClTyVBSM3hmAbrIhmDSYLUZKikJNT2LzQKn38xYJzu5sO4kppjZj9cuHXeDcN4yxFR6ybpZeMw0m5bYBku14I4OzHcSU3pcrnPb8PYxuWNSonqzLBBEiU1eR4PldQEBhA07c4koUy7vyGpucMz4bOUqrVF/All0tll+/eKmdTUoWGRmm+o/3JS0/LmscKKi2uMdtz5sUHj6UTEw03bR2rmHxu6RJrxh2luty9Z6tXfKnAgNck0LFITsJZ4SM1Dubpf6qfPtS4YMfgpxdu6WpKkJk8CVFITkADyCbZoPoFApOYMc997Dfs9qLm2wZvqj24ZJn5SE2lJyZCaNoWVpIN0cZKaCRaFlX/so/8epKYdWlclzE6d3DmS8X1SNiXM+9r252qNDTjt1JH9H4eduqkJ1k5dx4TvHuwJrzly+sBJ85dOUVPlC10tS3dusa71+vQMB829qVia27S45FlomhOd1JSbEkr5nK5ATRwlPe3U6k7jOpTU/IfLCCxSs8YMhdQ8b15QqXLO7Nek5mw0U/52pObWrj4P7zcoGR6WdfG/NvCWhQRIzQ8zsEjNkhkEJTX77tJaqqCTSY+eyLHqe88/EVdS0/Ez5yh1iT0j9dt8kweuZe3N4gVJzRczsEhNQGYJkppaKsmuR68EUYKnyFUM3TWSTSBSkycbKqkJyAa5hDloLoEwMypy6sMHG0SaDocJdRUFa0JdQOFL7kB4ya85T1/WQ0fNqrjfuHHHhxYp4yP594KQsMVDJhmmds2KN8zyHYfHunE65rpxOl/yuWiS/y6kZo8c6T92J3ygpyocNJD58+HmDiE1KTOwSM2G6R1JapoY7PuUWb/H/Ni5oDJGTa7gc93aR2oiezsOpObEGVjsoeKMDic1deqVJjZdC7aIMkzs73H7gjuhSM2G6VhqVUz/j9RsJamJXH5JmNTkjQJUPFFxhjhJzZAtJgtCmibRomp3DVNdsE2QxOl4UpPXxVGlqGiZqOaRUCYqgpKai7lymxklW803zSKnXUsbiXlbOJKaH8yxSM1k8/9ITcg+gWtlSYu9K82P7K4Y+uSM9m4cSE2cD0hABvGFORaDeMpc3KRm0NZbBiPWllmlHqzZZ5bEFnwY9T8jNd9779iZPy+PkvXu8pwfrwePwEGlZEyVfM3FSGoiT+slTmryegwqqQkoBfnT+Wj+lMikpnyZbWH/BV5Gm5uysx+5+n0SA6lpb41Fan61wpvUPLUq0GP73nCrOKleroMiDh3FndREZkDgACEyrLEgxCHWYiE1XQc79+j18qN5UN0qtU/3QhRxJTX7adldXBVx2TTzzbBbrxhWI3EQCegqGCJdtSJethT/R1yk5ntSgeGV66+MQ/vRV5SdfTqs3V0dDzaR15dR2USgL4uH1JyYvOQbLTXSvOQdqfJAl+9WBCE1eZ0WVQ2g00KzxwISyuxBbFKz8HN0stliBdMdL+1o9Nsne4qZ1LSxwiI1ayzFRGq+Yz8ztOq7knJ0y/pOe68FDpIIqamR5ZgWbn6CuumOvM3quIr+ONB+plZYQBlZQh61I0nN77IpFvoRo00zTPUTjbdNPCsmUlPNtjHs1eBCw3Lzcp+R+1w342C7Jkss2wFDgTC2UxQTqXnFrrMVxeuNcXBSd7kx2p/6EojUPIhpnCACGUcspCZy8SdxUpPn6FA5xW5WuJOaJj6zVZ7cPEcpC+2X4Dp+5EKJk5o1llgKbLPkr0MWklDWIYQmNZEUEozURKZLw0hNZHYZjNRE5rPBSE1kUApGaiLTgGCkJjKLBEZqIk+dYaQm8rwIRmoij+lgpCYyUgojNZH7fRipiVzKwUhN5HEqjNRcHFKdNLVTf+PIj1ImD84FXoGRmtp3UxuYhRMty/UvRt99NWEPjNT0O5sUPSvoreXhoV2d09Jkg2GkZkbVe+3ykPGM/Y2pS1JrTQpgpOYdqSdF7iNuUcMDNq3Y9nr8KBipmZmZMsOuxMN8faaCyc3ij3QYqWlbNII6XPGsZWhFsEaMf/8HMFIz5sf9Xs/OMQwj7l2NO/Ok0BhGaiJXW60nNbNGjdfy+LLCNO/lC+6jOxpnRQyUtpKai9AGJWGO8ZE9BKdcRJxL9YHn+BXTsM7xU6bxHeFiNM1/V1IT+WBcMZGaBcB0oqOMRmo25ACLIyWhbRrWgrB1pKbHU+vUoLyFFklU3VurXg4/1R5Ss53T7UFAAbIyGiDWBD5MSokoKGZE5nFVUhOpIvryIIWlP36IpPv4yyF8UMzht+Qd+g11M932OX1i4beQuQRAMUGD1ShhGeygZAwmMriYNUPwf4VRTCxj/RLF/PDJqadnUBGtpNPyKX8sM30q0ZUraJkgTMs4SMgyHcJaDlr5fCyrxME4Xe2Ee5pM3RmJsZZhOZBLE8laGjQ7dWjiXEL6l02cg39M2v5hd65p6V8X5Ted/fpYjCUOStywShxMdRNDiYOvI5Nkuo4PMNy5dcxVS9UpX4ld4iDXDQu8jnIjyryK9iO+edU/Tu10VuEjkwSqZvzcQw+2EGBe5ZUyxzTYVMkYTBIlDrISSJeGLDM1ijtkpqE495AeriUOdv51U6N/kZzZvgJHzuQRg9qb7wwaTgXTcC9c/8XT7oQ9TVM2O8ykZxdWZyT1fzxGYtMuWOKA5/FQSxwAAwiadpkklGn3NyxxcN9kW5bd2Qn0BINHz9KmnnQWc4mDIYuwShy8WPgvL3FQvSX202S5WqOQ+hia5bMJQ/EscbCz+62Lfnufm6U/LF1+ZLO2Dg4lDjQWYZU4AKwlnhIHS84M19Le706LeaZnH3nL2kWSJQ54EqCWOAAkgHyCI5pPIFCJg+p4oyEfFTpRco6dNt7wfJ2++EscIC0puRIH+xzFWeKgzKyw8nyq4+9R4sAJrasSJsSdOWnczcOh26xji9ykNumsGY5TiBvZ/3EIcS9xwgpxU5z47sGZ8Jojpw+cNC96W35t6SEuNXOojd/IUM/VOGieuxBL820tLpmFpjnRSxxIv1EdZHAqkhZGujoiRDmkL+r9iaPEwT9cRrRcTUSJg3MslBIHH0wLKgeeYf26xIELmil/uxIHxbTRdUrTuLT0PvFep6vltCVQ4uDNfKwSBwXzCVriYH3I7A89B1SbpjxsyLrwqJ8SItOlfSUOvH4k7NO8omO+JaCKMj61tr1gB1jioGE+VokDQGYJljjQfNh3zOE19qYpcw2aws5umk6gEgc82VBLHACyQS7BFc0lEGZGRU59+PD2SNPhMKEGLMCaUB0W8CV3I7zkZsW6KUOiJxju2dr9xKtgZj4+kv9ZWTvbesVdRhpVR8+7fs5WHCQ3mocl+ZB5fMnZaJL/LiUO/HaMs5xyk2qWtIgWfyhk7awOKXEwdT5WiYNH8zqyxEE9dbm8gkq88ZFURQf/ktFGOJY4QPZ2HEocjJ2PBe13m9/hJQ56J92tLB6dbJj5YUr8rsJZtYQqcfBoHpZaJfP+K3HQyhIHyOWXhEsc8EYBKtffbb44SxyULFqgymX2YWyuXxMzYcZ0RGGkDi9xwOviqFKUtExU7iSUiYqgJQ5GrzlnbHOj3jSXm02LaeqzsYNKHNS5YJU4CHL5r8QBZJ+Dd8zWv6h9aRospf4qrqRbVxxKHOB8QALC+zUuWPD+QRdxlziI0pzcmxyVbba3uF9tT/uGmTiUODBau+FZ+Hd/49SiOucbvVnOOKgUhKmSg4sYSxwgT+slXuKA12NQSxwASkH+dCmaPyVyiYPUvIsWwdV6ZkWTt8YoXHy4SgwlDkyXYpU4eOOOd4kD27CQFXWr/GjHiyf11wnWXYR7iQNkBgQO9D5lKRa9r75ULCUOKGaZZcNNjKy3msROTi3298S1xMGfxv10xmRNohcM9c3xYkRE4SAS0FUwRKp2J162FP9HXCUOJq+fO92U5ETP7Nq4wSVaK50QJQ54fRkV6gf6snhKHAwcPqhqwKwM+nb7wwvOPZfRIEiJA16nRVUD6LTQ7OFBQpk9iF3iIHrX4ZVLH1uZxOa9Jx86sclHzCUOGO5YJQ7OscVU4mCcafoIvdJEi0LbuojEcSrZEilxEGimc8EmeLP1xgs9XCkf5LNwwOSN3LFIbA0JedSOLHEQoPam8QbN0Thv7J2+evcz0sRU4iA1VXHqR/n+1KMyvS7367nqOg62+8DGsh0wFAhjOxUxlTiIU322wndOFn173d+qA0wVGglU4mAfpnFWEcg4YilxgFz8SbzEAc/RoQL+cu64lzhYOMnH8tPJM5RyrUeBvV9wDCRe4uAcG0uBGDZ/HeJJQlmHtLnEgUZL7xV/iQMkhQQrcYBMl4aVOEBml8FKHCDz2WAlDpBBKViJA2QaEKzEATKLBFbiAHnqDCtxgDwvgpU4QB7TwUocICOlsBIHyP0+rMQBcikHK3GAPE6FlTgweWGhG7xrMnWrn+7yzYuOnYeVOBhx1q6/555so+JpTgO+bR+iDitxsJB91MpaaZJ1qsMf6WmDqiJgJQ7+uK+W4fgl1KS0NNhittOihbASB5rydnJ6AyJNc65fVWUpk8xgJQ5sSIseWe+eZ5lupXRx/G5HRViJA+S6SahYAVjwQOQg5vYhB8S8HmkRvGtOeuczKgNxKFbAQRtehDmQR9oap6xCnKvVgifyJXOxTuST5/Jdmhea5r8rc5l76qTa9NcfTbJTDjWdsnvRT4zMJW09FnPZab0YmMuLdt66+ZpsqyhLWm+18AeOxGYup6/HIsGGrf//ZS6L3zkkz14ibbLuwP7L0Qn7pAjCXKphGqyTZAwmCebyzV7W+YsVb81yqJ2XXPlb2g9X5lLWaLPsjSZf46SYlVUq35do4zDSXq3DMtzNdcTZU+HOXJ5+6Tr8rft82lG1r5ozG3tnSJS55Hk8VOYSGEDQtOtNQpl2f0Pmci95WNOFwhzrrX/fUv/2YFaQmJnLqBVYzKX9in85c7ltzcl1p5njqXlVlERyifF3PJnLSSm1JRrLOhklpCQN3bVT0R0H5jJ4BRZzCVhLPMylzO3Xjdbvs2kHnsnMfLBw7wJJMpc8CVCZS0ACyCcsQ/MJBGIuafeusKNy7hivnyCfp/tGmSviVnBmLpGWlBxzWbJGnMxlpVlh5YLiNb8Hc8lF66qE2al3y381e2pnG8M4ZbvhMzYOjsNpp47s/3g8kXEt5hMZ1/Ldgw/hNUdOHzhpnid1+Uoq5xZ13eiuJrLyMhwcNK8JxNI8K5CvuS+a5kRnLjeMW9wl3CrROtR/fdylcA3DDmUu/+EyAou5fBeEwlz+ZVpQafs26NfMpR+aKX875nIVe8bEtZ5F9M0v7rEfdX5m+Osbxp257BaAxVxeXU5Q5tL18OFRFmdZFqUpRf5JDzJzcGUuv4/zdtid/J2xeWJ8Q8SnhzdxYC67BGAxl4DMEmQu8xyse1/dqE/Ze2taH9oFxwICMZc82VCZS0A2yCX4o7kEwsyoyKkPHwAQaTocJtRtAVgTqm8AX/LlhJdcc+LIHI3qcOMy9+kUu74Z2/GR/IbyOrtBM/eYlH09XUJJnhaAR60Of8xaHf58yQPQJP9dmMvtOY0nznX3oSUcOhRRMPOBMsZ94sdcOizHYi5J7Z7h2sJcVk9+2LQ6INMksUB2yMfsQYij1nYxl8jejgNzabMciyLUWd7hzKX954jtX0u/maenfc4qYGcKFviWNHNJwlSrzv8/5rKVzCVy+SVh5pI3ClBBQ53l4mQuObfmT89Tfm25feSgT+v6N16RMHNJwpSirmWiCiShTFQEZS6DmrxLr3VpMix9Mzvl4aHLyli3hSNzyV2HxVzS1/3HXEL2mVx43bh/fKr5uvVBDONiKX8cmEucD0hAmpCzDosmnLdO3MzllVmh1z9O0jWPkftiYDr+nWDQ7p8xlzKNJ3NpI08ZJZk7WFBWrMVDJTqmSqPXiZG5RJ7WS5y55PUYVOYSUArypyvQ/CmhmUuLHXEjF8sbJsvFTDMYs+6Z8L21m7nM34DFXEZswJu59Lj6eFCP0FeU8L8vZJkUzD6IO3OJzIDAASfM2YCFE+7aIBbmUttrJzfWea/RsS2HlP6mPh6NK3O5xb/rFOvBG4yS9BnGqz2NHuMgUgSmSP4biJctxf8RF3OpnvO2MNIxhF647vknn+/7ura7q+NBGfL6MiplCPRl8TCXsvPqbvTsfsLqYPLhfR4yxX8RhLmMwFQD6LTQ7LGShDJ7EJu5bJqr1dVZ1808pNSCNW3WNEe0u8OJuRy7AYu5/CCcAowPc2kQSH0bvVSdtmEt3bSL78U6iTCXZtpcqx7y/ahZ8d1d3YOfHMSB2zPYgMlcSsijdiRzqfXn3+7RJ/+kRpEabBo3e70VE3Pp9nzVuJlPelkVnHLfEPlAJREH28lh2u6DhHKHRdlOXUzMZaouqXrN0y+UHQesKbMOxlkQiLmsX48JxBLIOGJhLpGLP4kzlzxHh0ocKrdxTdIK5nJ6oWHj4Cfl9P3jw/oFni+skThz+WE9lgLXWjKlV5FQ1iGEfqw0kkKCMZfIdGkYc4nMLoMxl8h8NhhziQxKwZhLZBoQjLlEZpHAmEvkqTOMuUSeF8GYS+QxHYy5REZK4cwlYr8PYy6RSzkYc4k8ToUxl/Rhq2o31toabzvqEOy+6PR8GHOp5BNW5359skX5O9VR+ztdPwxjLt9bbYk8O2wofV3XjEenEl5cgzGXpff3r/4Qs968bJJW5gJrhfcw5vLw4AnHemp9M8oOj8zTC9VWgjGX5r0UT1rHz7Lav9b02PJnu6/DmEt/9QHyrOMvraJMQq69XdVVHfZY6Ut/XD54fkIQ5Wj/nbIr3qn/BXusNHK11frHSh+SXrLmo2uAWYl6lyPL4/bE40BqrkYblIQ5xkf2EJxyEXEuugee49f5YZ3jF/jxHeEaNM1/V1LT30kqNWvvHsv0R2506roHNaLvGxdS0y0Gi9TUiREDqWk+qmnatcZNptuiE16V9XxdRWxS0zkGix+zifn/JTUNKkcvce6ebbFz3VLqIbc+kwhCak7FNJiOZAwmCVKzPGPxix1XtWi5x8dX7vfQ3di+hS1ipN3dOrR2fJU1I/tO6OSgJYWD8Hg6JqbhSBIyXIeQmleMVUe6pOy1WJeYNlB9yN1qiZKaPI+HSmoCAwiadteSUKbd35DU1Mp8YDJpRqNREWv8ViU1qaliJjV1IrFIzW6R/3JSM3DizkyX852NSu8GFoYdUT6OJ6mpuJv83Ds0kFoy7KbZzOKq4TiQmkMisUhNwFriITXVHUY8c/IztCi9r+L4TuuevCRJTZ4EqKQmIAHkE4LQfAKBSM3pMyb2khuWaXF4TI+snndzj4u4FZxJTaQlJUdqukWLk9SMNC2sPO8a/XuQmuvQuiphduoD7GuTXI8GU/NfKS1PHz57IU47dWT/x4MajMbaqVdE893DesJrjpw+cNK84pTK96Tx8Wb5+Ss1w9cu3YOD5n9GYGleFMHXfAOa5kQnNTu91ja8cv+9SXBY6dej0efpHUpq/sNlBBqpaQosFL5uQiE1T5gUVPr/venXpGYwmil/O1Lz0jkfXbNjzvR9B47kN3xX9f/1DeNOaqpHYJGaX8MJSmpyfBeP/DH5u2GYfpacfwF3LK6kZqDsTdmkT5om265Q+jIuHbfEgdRUicAiNQGZJUhqqt9/qfH3qC8m2VWFPWbFlZgSiNTkyYZKagKyQS5hI5pLIMyMipz68MEGkabDYUJdgDmhMlom1BDCS17senOQ49FH1B3h8r221mTtwEfyD9f3bYl5cMA0/8C3kBr31wk4SE4Lx5J8dEsvD0WT/HchNaMG5N6T/XbfPH+Z26vtl74ndQipWRaORWpuafcM1xZSU8lo3FPWsG0WKXUnXs+5fUowmNE+UhPZ23EgNYvCsdjD/eEdTmo62SQp3Dgx3GTPLfLpH97bBOszSJrU3IKp1prw/0jNVpKayOWXhElN3ihAxRP3h4uT1JQbcy5sS0qdcf4EZWvW89tuEiY1t2BKsaZlogojoUxUBCU1DS82aXudmWe9Y9w5RyWtD506iNRcvxmL1Jy9+T9SE7JPVZZ6Utz9DSbJg+6tMclTEXwq3T8jNXE+IAEZxDWbsRhE983iJjV17TWdbWk+RvF3vMsWLqMIlrT7Z6Tmzd2jjXWMPSkHNe0fzqv64YuDSrMxVaJtFiOpiTytlzipyesxqKQmoBTkT8PR/CmRSc3vuZPTX606Qc9etqnnumtlVDGQmtWxWKRmcizepKbFcvseI7RXWOYkl4yYmXBeMEEBD1ITmQGBA4R4KhYLQsyKFQupuSd1jt3r81csdlqvodeE1ggmErSX1BwcF8f6WBtkltKb5PT4xrBLOIiUjClSWCzxsqX4P+IiNTeOKLbpY+9ukpHjo11W8wen3V0dDzaR15dR2USgL4uH1DyvqppS6HeDuvnrdvexiz8JelnJkZrJmGoAnRaaPSJIKLMHsUnNvJRtlv7BB+ip13f1mBm276uYSU16LBapKSM8l+BDana9F1l5Z/oxi9iYim3q0+8MkwipucJj8BF/dx3jMoUTV+cu/qKBA+1Hi8UCyvQl5FE7ktS8ZbSZ8vykvsX2dyMd9V9H9xUTqRlXuz3mGem1UXnkvVVFFnsacbBdX0zbyRDIdhpiIjWDOhffyjy0mxIf/+MZaXyNYAhKsqTmuxgs49wlUH6wWEhN5OJP4qQmz9GhcopD2rgmaQWpOTqMuavTrt1m4e8D558/2ilB4qSmDKYCDS2Z0pEklHUIoUlNJIUEIzWR6dIwUhOZXQYjNZH5bDBSExmUgpGayDQgGKmJzCKBkZrIU2cYqYk8L4KRmshjOhipiYyUwkhN5H4fRmoil3IwUhN5nAojNW/c4fq8jp9odND9b2pZWed4GKk5xvHsg4L8Y7TtjcMvjpk55hCM1DxundLN8QzdKGvR/v1Pv+RrwEhNt7TBqTX+7tYx8wLnv9/j9BBGamaMuVusqENhxFO1Ag4odkuHkZqjV17hXDmXSikfEd+YsrReE0Zq1hzobp4esIGxNeNLN/3YczYwUnNyj7pJ4W/dzOIPG51+QLUcCSM1kaut1pOa0UUxabuPjTJMNn54sdZpfZyIgdJWUjMKbVAS5hgf2UNwykXEuVQfeI7/PQzrHP9VGN8RRqNpLm8X77/fz90o82UTawL50DuBr9oT2ltZAn9w2UwP4V2ZLIrUffm7Mg7Z2pvFMWGQPaFrtG4nlr/3uNvN3gxKiltud5mFel6YtyVkC+Qb2pA1lVBWCSgE7MlqhA5IAEGbSiqRezKs1V//5pkB9Pi+bs3pe34+LLKTG5PDYYk+rk8xrulupXHOLFjZasjq8if9Bb64rFHzFYS+cEsD3pMtmM0QBkoSJGr5dxDogRPLKiWx/JN2AqRtmXM/f/78oy28JVnQMD7eLCc/DyaX7MZ2dfMAE/BF2maY93ybCutE6qHvi3pusj8mmN0jZwddRDhA1dIiDus0lGJZJ6GUANYBZoAfbdk0DTT2ZPv4gBmETgJm4rsQ0UdRl5a++v5ir2XaPbW9NYfPzxE0TvMVRUSAf7aIwzimmMYBvInkjQPaB26czr8wzgSqJ/greTYBY43AR1kcp0CyjoG+AXka2cubucyPNZw8ivevn+8QPaI2z7l6l3POk57/8NJRvb9t8gWza+xh1xfOrhFoFYfxDpZgGc9BMsYTue2tnwG3YJdfWHDaTwv6uLE5gRxg6QSYDzAXx4sDmg74m4fXcl4j+E8DsMmTGdD8gugSd/qf9/W9Z2id0Dc1zGpjcDGisoCbKI4WelkclpPDtFxBsaQtB34IzGtoU7BCuflUmM1xxXaEtupGTIOVm0y3fQku6uY3f4mgI0RdM/1swT2ElAutIcB1arXQsiqX5wihdeomEso6tU+XlXYniz9Yl8tlPtYev1IQD+ph2Iwi2nBZ/mzWcmG8GQ2xGEoFM/59YDgjewXsmIrs3XxBn55mHCcPP2eWGceWxYG2/+iL18Mjsitd53pTkocebSxRPrcf616Fc3sE23vMBv7w9uL60tkevs2/WNQWCxUrB0ZDUzmgfYKoI+uJwJLWtFxoScvfVoncQ/FP28AcSkieVq3oJ6/Vc1p3rAc9d2j05PqB9k/bf7qH2F3pvDPor8W6bp2g4VA6ZEb2lXburtTBtRWonMgzWrCCS4Kgcr8K46vaw5YwZC9/FpfLdhbtTp+cpX6u+UQyi5GPHjrG3YfU/iGM0ArpI3DQyhRTq6aO3SXwSVxZaMsFvglc7NxJufNDjgWt+Pgv0gxoP6R5cxtyVpXjbwz4bwX/txt82SP4iZYQx2Y0N9bmuGML9NcBcUfkphsWd0S6NKEAEvhtRfZl/ZfbwiO2h1ts/6H8peeQC4txCCDFoKlL0GAGY6esekBflvWhk6wblZ/Up3ZYMKPpM1Yww+GTuIMZ07tNk6UFGNHzxxe6zJAfPJwAwYyGz5jb5c8E2JG9efOmA4IZf6h9zLul52N1IPrvxkdpVCYhghmmmNZp+kQA63RIMKPTeJeq3XvPmhVbv313UnNRCCGCGQc/Ye6HiWAckiSDGRcjH5dOtsw03Fi/0ebLwV10QgUz5DCNV/BR0ltiAgUzFspYzFOYk0lLu/fqafiWkfESDma4fcSynLrELSfWYIZfVVJ+1ZqRhnspfntnqiy4R4hgBm8NgRrMABwhtE6NJf0LghkP08a/HfxkADWVu9PhpWz5CgkHMxq+YAUzJn7pmGDGBkO9vGmvMq0iUgaQPFb17IZ7MIP8l9P792P0zErdn5TFPhlyAocNet0XrA162BdxBTO+DGuc5aNea7jLK4g5fEHhQNyDGUgfgYNWEzG1amj6vwpmbEFzY4QOZiA33bBgBtKltT6YYbXh3SCzuGKzwljLOQpn1D7hEMzYiqYuQYMZnQeGj9m33d4qStG3+lKOJ/Zt4RnMCOpThRHMyFIXypbHOZjxWDV5m3L9BOP1p+7Iv/9xaQIBghkBoCSoS0ObPhJJzBXckTU0NHRAMCNmrT39U0NPSqTX4MpYrV4hhAhm6GBah0QE63RIMKNmvt/ZyuGdGQc9VuQxLh+1J0Qwo04dyziAN5G8cUiSDGZsPTalP5VEsTxk3/WErYfBE0IFM8IwjbdEMsYjZjBjdUoUZ+ecw8bRk1Yvv372j28SDmZMxLScosQtJ9ZgxpbKWyPqDNNN04/89bXguz6dEMEM3hoCNZgBOEJonbqN9C8IZjx7dK6st1S2UZC+kWlqYOehEg5mrOpbhRHMGNIXtU4YrsGMm9c8X7zaoUk7wO3b9P7zoI+4BzM+2jupc96k08stjx1+N/RjAw4bdN++aPQ8uEFn9G1TiYE2BDNsFDLfy6bMoBWqhZ621Lezwz2YgfQROGg1BFOrrx27DpV0MCMOzY0ROpiB3HTDghlIl9b6YMbeRRPIGqdvMI5fHsgY83zwchyCGdvR1CVoMKNPjqJ22Isqw7AzU8Mq7pb6dFgwo9s4rGDG1LHiDmZMs6je3n3hRMbOIQkRw++t+EiAYEaXcVhLw9tjCbAjq6+v74BgxvzPmh9LzxfQY/+4p7dbblQ0IYIZuWOxrBNFBOt0SDBj6KAjMtPG5ZqF7/MdObJTbwYhghnOmMaZSgTjkCQZzDg5eDS7snYgpWC/j+KA4uRuhApmqGAa78UYSW+JCRTMqKue9PLRlQaTsJc3rbtFflOXcDDj1BgsyyVL3HJiDWb8dYxzcctwjmXasohsSmrkcUIEM3hrCNRgBuAIoXVqPOlfEMyY1ftc7pBvgcbZ5ovn78m7O1fCwYxu47GCGbnjOiaYYZztuNH3q7PhsUmb5F+91Wx/vUTkBn3myvr31r7rKXuXjBrvH0G9j8MGvct4rA367XHiCmZcrWBuPTTsnWV86aDXL54yzuMezED6CBy0yh2HpVXUuP+rYEYCmhsjdDADuemGBTOQLq31wYwRusWxMXcGUkqXSOXNGKV8GIdgxg40dQkazFgcUp00tVN/48iPUiYPzgVe6bBgxsSZWMEMNxtxBzNO9aB1S2drGO092lmugLPNnADBDIOZWEtDuZkE2JHduHGjA4IZ6rl7Fp77qGRRMjno+cqtzomECGbU22BZp8CGANbpkGBGcYX7i+KVD40KVvrPne8QmUGIYEYMpnHciGAckiSDGY9pFZXbPb4abpv6Ykm/zrpKhApmUDCNpy4Z4xEzmGEelGeqkyJnuiNcsWds7dD3Eg5mvLHGsly1taQtJ9ZghuGMgSe0jXdRihUuq0aXDyAGZsJbQ6AGMwBHCK1TE0n/gmCG9t3UBmbhRMty/YvRd19N2CPhYIaBLVYwo25mxwQzHl+6tfqlnCtje8IF1pju74fiHsx4TyowvHL9lXFoP/qKsrNPh+GwQdexxdqgk2zFFczov+Be7r5De0yCp/prqVxfjX/NDKSPwAPJmYmlVVbH7hIkHcxIQnNjhA5mIDfdsGAG0qW1PpjhdzYpelbQW8vDQ7s6p6XJBuMQzEhGU5egwYz8ZO3bo9JsDTfcun52qXNftw4LZkz1xApmeHiIO5hh7/igs93mztScqT2cxgTbLCFAMGOsJ9bSsJsnAXZkly5d6oBgRnr8pLWKsb2NonYc8LMrkc4lRDDjkQeWdUo8CGCdDglmTHSZw114hEaJevLnTrnRSVxCBDO2YRrHgwjGIUkymCE3rHGa3AySReSUkZGGvXTvECqYYYRpPA3JGI+YwYzRA2KWuo8eS9khtar6quqLaAkHMz4sxbLcuaWStpxYgxkjT7y+skSql3HYjgpT+2z9U4QIZvDWEKjBDMARQuvUnaR/QTAjnPb1KXtQJ/Njrg5baSNjT0g4mDGWgxXMuO3ZMcGMdbG3XmygP7UuS16qW7LO+zTuwYzJ6+dONyU50TO7Nm5widZKx2GDPpyDtUHvwhFXMGNqyV8TH88PsN6jdGFGpkMdC/dgBtJH4KDVbU8srXI7dpcg6WDGLjQ3RuhgBnLTDQtmIF1a64MZJi8sdIN3TaZu9dNdvnnRsfM4BDN2o6lL0GAGfdiq2o21tsbbjjoEuy86Pb/DghlHg7GCGfRgcQcz+ps8X9Dlpi1jw6Wzh4vj994kQDAjPRhrabg9mAA7sjNnznRAMIO5zGnMnR4+Zse09R8wNxXTCRHMWI9pHQ4RrNMhwYysWwxZZ7NnZjkL7IpvLcjvRIhgxjxM49CJYBySJIMZ647+r70zgYeqe+P4oIRK2qRNk8qrSOsr7WZsg5khW7TaJpSdpF2FKBURKjshhGxZCilSWrVQadOmnVYp9b93zMjcmXvj7c7c+/q/fd7386l7zHXv73nOc57znO85Q9E6dS9ILTtomOjmYUPzcFXMmI5oPFlsjIfPYobjjrEi2yT3ae1ymJNhNXa3I8bFDAlEy33egbXl+FrMMPaLH9+cN0T3kGJx4OKx9+bhopjBzCFgixlAIGTlqbGEHlDMGOjuX7e6do5e6fuh05KEa9MxLmYo+SIVMwi+gilmDCZsuL3mjal++rWD4/923aSJejFDJru5cLeVn1bhtlef3X8k9kWDzPBFmqAP8eVXMcOPPLNx/uxSmvfrx9PsXuZsR72YAY0RKGhFQNTqtWBHS6yLGXFwYQzXxQzopLtTMQMa0rpezPhA37+7etJfWtv6pj05G/H6FgrFjHg4dXFazIB+R7LAihmiIUjFjOj9/C5mnDt9mDFeX5gSuq3KKmHA8204KGYIhyClhm/342BGVl5eLoBihtGgC9efzounBPlffiw63EIMF8WMO/uRrFOJB+sIpJgxfd6YlrkP32v6n3ojpLT90hRcFDOyEY0TjQfjELAsZmwSX+j5XnOfTtHYwZKn958/hKtixi5E43liYzx8FjP6/J1xc5JKMz00itLsR5b8G+NihhWi5eiYW46vxYxJ+ZsWXjUgaCSKq/y8rREUhItiBjOHgC1mAIGQlacmEHpAMWOGVXVDQX4OOeyl0pUZi2YcxbiYsT0EqZhhGiKYYsYp72D50YNk9HPNRku0WC2IRL2Y4Tu52GC48WrttGx3+ZKrZ5xQmKBvCUGaoK8O4VcxQ2344fs6Lnd1/I+qMHa3Pv+KejEDGiNQ0MoUUStyyP9VMSMRLozhupgBnXR3KmZAQ1rXixkn9GP7WZ3X0shakZT0/Gv+KBSKGUfg1D1/2JLaNnuY9vYk2T4vx20s4ew3VEBTopEGlbuK0Rumy5LZVQyiA/hZd4atI+C9RBvGKuCfNkSr9UTgfd08iC7O9k4eSkTg3W3BdksnG6IDw8nWw055c5di404dc4vFfiVaux5dsElP2def93Nz93d2Sxe7KdgRY6OBbnqSDKZHkG7qDwzEFtFcgwFSSJNiPkAnDXi+nXXzdvFJ0cc0849q/kx/FzgXkhyCn+aRHDIv//bQZ5+2we/oFvRD+4PtKe5a3/4wjlHAE9VAgabyimMRwGjpH41J7iih7gx0f3snwBnBn5tBgP/TnTKIDNN+bLdVsLF3A3oX0D6R95er19+qUDat04+9/r5CqtEqk8OO4hrsD3PZslMT2qklaDAPRINZYGMwUU/gjdsn2dzGalrIy1jCv+lsfZnGao8rPO0Tn2O61GHESY30KfIjco0zOM9sEKUyP8hlHPb13/U084EZ5K0HxtPDV+SHzV7jIoFCT6MiGk4VI8Pxml83LezWTK0ftdNowdNUC78r9Q21HqaX6/TU4IrFMU5csReV13S5/SraHUghlxXxskgEggt0SLiaw+xArGE3iQAz7IY1foqabBJILbygf1r7Z6wcx9tIaHoB0wRmwsU9L4PzdWlNT0uHtawFBEbHDTrdi/2TA7X0DWkkYwW5jVPnGG6WU9Kf2KURV1T4x0q64S6tjIVNw2MNz0XDPTKXGTq1dVHiqwUVhA0HAYlV1IGcEurqDwFXX3Gwsr8B6F8MIH1ne3ovljwSOmBw4PLkPszLOjbs/hnR5l0UF2ymk598lK72VPFuX32mq3J9Tqz9+q8PmttU7RUqFdcoejuM1l9x8NX238d8HAIrIsHOBX9pQfS0BCYeVg685zNW3/a1eFjHap34mGDw6sc6zi9nkjBlfZSoz6W2kD6XxwtBAtPczUNS0iI09ZNrV43bcKJK5Q8DUxlgLU/QWlOBDlEGtVZoAdNaLHE7REIKBkPayzZg9v3LkXmq1P/LFcaG4H7q21qeF5Qtcl7BGb/bb8OtEBH1mGCRw5KgTI2HBJQcpgSsmJAMFxMOFTw03/mkRaeoIK/o+JpHnEdY9zawdGI4cE904MKBAonoAn6iU52G6OQMvAYz1fZgeHkQwXjBcOd97gpF7uhM8Srt7NGDzuyudDnD41G4ZyC8VLV2c3ZwMLQErkOHB4hPQi0J55NiJu4MN2Pg8dm/doKG81qwJ1g7AM8DVlgYNvYerHe3BtQCxpMG7ySIHdmTXa4xtrCCUHQYsKOpOsF7p7oEzdLN1t6JyljF4RR92y8bgqtena+Lt183dnbpfJXTGaZpF1Z4Fx6uHMAU0cDNGZhXeti3P1Uf9lPxmqW6Wa7TcbKxt27/UWa3FgcvgsNzp0s0sN7pwJqYtwdzcC3N3tJB3dnm12eBXMUDmKg5dvy712I3S5dfAaPdVVPgXJVoOy7ff08AOeRMOvXg18KNnP5hyHCwXM/pquz6mCjJGngDd7Y+cN47mERcB2TARDfwTqxpN09Hdbiz5XaRrBE1pGFgHrFWTYrHg3Sp/0PPFIH4/x9GyAggdSNGssq53tDw0AKMZ1KR7PBwFPeaQ4cPlDSPrtWWkswNpQSMyOxzIeXyMBQ0H3EQSXOJjpCcCqe5a6m9oj09Vf1Eib7D8ydL33G8at9Fa8GQow10HDuYChSn8nDj3XgNe3cXUHRLIANmDnvrJ7cHZ6Il8B/RFvwNPE0RcTPn6bdFZynxNnskpD7ZbYV9Pi6DcDRymUbcyNnNQ79z9YyHwf5hGtFxN2jsBRIFehRgMGl18H9Og9loFVRMpEVV9jdiOAAGY9gAsZDhxXG7dlOmwZmSfGPYPc9ZOWrHlq6Q2W16inN0HQJ6rQe4fA5SIQywTslw5y56wa2JTFF3dgSSm/a+w7yNza/bMEdgsBzmzjStDZCsdinfNlAXGT8q8QgtasCDcvctMfK/f2AuI/P8qS72n6oTFQS7CMAcjWQeObgBOBmNgF0G6aLjk6idRAHHbnA0BKcwQHas0D6rdCcC6jELZcy/tdcIgE4BLkIxbHhXXca9P9h22dZWe19T9IfqKb69ObNCU2bP4p7Vs67/LkzZnbH+oia1kJKvu/LL31PNmv4wTIEAlQ0ocy8yj8xx5gmmzFxT6T7d03lCJ/MTrRge6xgMJzA5cmdYr2W6hz0wpeedCW7KjAk7VZRM239tjuXeCetUOSPMr/vacEeYzo1oJ9xNeSzZlvGSbUgeUzZWSEiHCwm4GVGhQ19XRlQe6TbEU6GmQ2FATY9AGlAjOyQ/hnvJrc6OYhCMI9V8osguc5rNtqIj+fbYq59kZILUoi1vU0KDT79FQfL94UiSbw9nS54BJ3m15LgP01ScaX7v3+kpX9/KicT3N2QAmYc1g0hf6+DAY8SDW+aZzP6cE/g5MDLbOwEpi71NeyhfZ+9hR3T2sGO4dX28WzEnpvLlRDN6JmnxnciyW6IIz8llGc7mbmAvkqBDt/Ba6FcA1G0I/9MRThoslrqDQxvwMB7MVABUjKcA4sKLlEzFMunehlJrb9Fzizhdknkj7kWf9su/80uot/+pX4K7n0DlfHiVooPA3U/hsAv9XVRuZIdybhyuBroWT/kkt8TTnXfLUVI/m1zTkX+ZxAnGsRwELC9zq8jZivZYBarVEI6k1uVwgRbu2Q8qZrzehdFZh3GdFruV9RhuTgwHZfBn3JW1KSt1nDwYtgw3CJMF/vnT9ESamQaChgVuQbR0Wt9uap5WhqZff9JJ/tCuVbmsXtBE4mFXg1xmL+DQhr24CCeEDJ2pLZgRMzMytuvb8JTizeNZGZblY6hR+heTU1YYenJKwXwrbinaL/NDCqaLw0pxuWOgyiTADFT0E1qXzxPOqnsvGT7X/qUu52KcJLOw5eJgbw0WE524Ryq4jGAkDegGDEfgU9aWDkRHjrt0aVxqrTH7EjyVSI2pJ7jWHpbfgvRY3GgaZ3sX5ZQCIsZVcCocyGtkAhcCE6N4rH+wp6g81j+YK6WQ9Q/oMga7XQimXRDrI6O17N2AWAB6P3Ow5LQXT/uMTRyj/01SSXdbDWGI6XO7uxz2ESJxl6JIgl4gIQDmvBjFWiDh6h03wK+2iKrsJJLQb0SSNWIAkzebbqmUsVM8LDTnu/6RO2JL3vXLn8+pEplbJfJvVVo+tfArUdZWLXR1Ls3fQl0MBZUSEVUKiurWMpLMr2WkLggEXa3v0lIS+zrq/G8ey2NaSGDyD9HCIY+pFCueZsHF0yujX734vJ9G88kIk5ts8WkN54o5zdmT0fV8fxJz64ADWJtRcAQ+ORFcZW6fXhEtHZydbImWrNpM1zarRb9a5aY+ylQ9WW75wZXzXtpyPxv3aj54tavlAcCXZGIB/b7zCqAEcKtoDE9sC86X+pMt3RkdkDPvrcd2Cw9c6mdNOrV20V43ycO+f0zrQvsblID4w/72EPyO01g4ApUIbraN7RatO4jtI8zFbaYz8BTKlbrHtfSdCjnWU7x0xjOdFM6eRnPmOZCyr/9uplOxeMMI05px5IT6wMXnRWZpoCAS4CoIItXF4I+WYv8Zr9YtCGdwRye3QXb1O1uDxuY2pGrmtdba3A6cuOaPXf1P42VsHsuXKbzMVJfL9OVupeLtWgCDq2O7P4NlDN47F3yL9mmKm9D9A/VHGSeshSB+HXfhRvx+NfFDDabTwqoBOC1r9DhOgBk90pQLTcde+6Ieet2hruneyzoIgML0PqKZ+RLuMUQURlL5DjS43XeJq9ycHYkbvdZv2Ey0dnZ0cXYCp99dGz+CpRg/68UXUKP33Gg+q/+yFu7puGGkX21dVLMF6ORhoJoD1HkgwARwPwj3WCJGgI+TQ1iPsNGr03vzfMvvmffM3S730SserOB84eYYjUHgHNwN8BRuqEt4shlnad7s1725S/OdG38XUW+3rL0ulqdO9x032FRpSO2ffhdJIyDnflDOeF7OaQMMzVswiqg8McbS7oyAHZZd/zvLTh96bM+uCEu1JGEj84lulzjP3uhrjmQ7827YzkBKYSZFNV0jgJowMKZVNAYF261GtJ0pjmxHVOvODuoO2234ne3GnC06uWa6l3aEnIWu3j2vt5y2W4JkuyVItvvTOQNgHDKicZRxZJxu7uSUYlkHXLT0cFsLs6gDTf4gC7/MW/BY+G2/jvoonMsKdGJksC4GsYcM0OoR072cpD9LBASgfeyyLBHZD3Npcasfiimt+Gb6Z0A7CgqYIiqg2pGHZBNg8pBub/+S7fBe/m//gu5C6rT9C4pLA03CBN50GdAkwmqC8mxAUy8C76IU0NSb1QTFgIAmUVYTlCIBmvoQeANXQJMYgfd6EdAkzmqCLtMBTRKsJmilFGjqy/5dkPk+0NSP1QRN5YCm/gTey6lAkySr6S8p8pd1ChM1juYUNL6d+/4a0DSA1VQV1XArRzFLPUL9kmmkNKMFaJJiNT34cG3o1UF62hHSBgnht7/UA00DWU2rogyHBBwdTtm3IPLjki0FsUDTIFaTas6W6ieE9eo74mqqxmY3HgGaBrOa7t6fNz333n2N9DG1zXr6ay4CTUNYTZbX9azNGUPV90g8lD0oM04GaBrKatp36cL0pzL3aYdO0sPzd5R8B5qkCbyzLa5dg8MIMLsGde/UnVjyZaS+35z52dcffYrn0VG6u2swB65T4mYZH+ohKLGIUjHEVy4715NOTrqjs6i4UgmFdXw64jr+go7lkVw4zXF67BS0Iwrs2CnTOKRjp97G8vvYqYkDFzi3+ClrRJj5RK5JHcfJK2Bz7JRhHNIhHgvicHB2TlFRkQCOnZp8mrH33SAiJabIaHzYYVHOpUSsjp2ahGgdaTxYRyDHThXeDl5gdXyDnv+Iqc/fut3nrP9ideyUMKJxgGiCvXEIWB47pTq1SuVc42j9cJ2FOvSLepwHLGJ97NSdWMQD3bAxHj6PnRp2USLpcf0Y9Zxs8XmR44UgWaLAj53KRrRcNOaWAz/Et2Onrt4tXqo2uVD7ZBbBM3OTLmdGh9WxU8wcAvbYKSAQsvLUPAJMnvpvOnYKOlXE+NipmjikY6eS4gRz7NRkPYK3EGkYPfSlrKvnTPmrqB87BV0+ROEopctxSEcpFcXx69ipb9MaehvuVNMNmPtg48ravNuoHzsFjREoaJWEqNV+weahWB87lQ8XxnB97BSP6he77ggNaV0/dgpaHEOhgHQCTl3TMcJrQo9LkQvjHN7N3SxG4awadBxl0V6Y7noxo1Do1ykYwDDhBkxMLD3AvzLcwBsQV1kyC+jtxJK9hzv7zCnWL2K1uxOtLZ2IVsBsc62Li4M9eGyVM9AIfL79lmudwI+C++idQD7AgTkSMS8qE9XtwKOBmJOgpfTlRBc2o8ncAuBsa+vA6NiABf6MxzpnoiO4MbtrxZaNLxY1TwuU10ghzHjbu2inH6Js3MUWyA90YyegzJmK9mIL1wJ4CjAyyZRXdAemGqjOlBHcq896IN77IXJ/zHsztlrdD/AcuRUqnEd89WbegwffzLz8u6iq8H7q6AmMWv2IUWanxi88fh2FTXxioEJmvKLqQxDw5FTod1UPOQ5/ZCU9oGYsweAgxlFng1wCE+K0M4SnpW8/9lQV0+UfUBW7ciRVAL/BzcysaWF3Ch8zdVYRjd3A6TPYizmtZe/eOS4wZ9tbwFk2782qoWKq+TMOD6NnzLUlKMqROSdkEvSOG3GTLJ3a+GG6qtNIpvM6jYnp+lg5OzswLDuFye5MzEYbgBuJwSGBXUu0XwWGd4QF1ZtDp/TWi8rUDAj8fLdu9+gCyEko4P24g1D7ZdRPbstjRRmeWJd3LjPKdGtBWd6YdY4dC8jqjjDxORGMMN9k+pFXY4ZEu9E4T/bvw7oxd/mb3cAPcZjBBlYcGYg4wr8R56/2UerXCN4ddQamnI8Nnn5KM+7l+Qixv304aXLxjp0b3FTgryZ+KMTs07AKAX2albcVEGDyNk3SJMWf82+QUu7LHq2JfjeDk31h4mkuziBByp2zicHo/PevBSj7X5+3YQ14HnZA3mlrR+w4GqP9LICupUtSssnnC/U+knwfZqTO21A/E/ZpuUmdTo1d5QQBfb0qAX0bAH1ToGmSFKCvQgVXmtTN7aRDfj0WCKW2a8Hz1TPPuyyIaTtCOSD6d67Q2BbOrzoXMwUPHeJ1YsSvlt+lUNDA+KdoGdh/QfXm8fJOJTDJrOxWCtWvvfvaMGzdGLzzS33/hJbiPFNS1INpY9ZQgxI4kyUN5ge5kyXWdX7s+KiqQHp/rwqsk6UOz+xGogQ+sr2zjb11e3/m/UVkkQyfLWvy9Q4PN7z7yaNKm9NX2Tfg9tWOFn4YQwHRGHVncZH+ELqzHqSs5+TsAQxfltZgZVph6nxgygry50rEafOt7ZzdbJSI0+e7u7p5MP/BO1vVObTIsCSjkOT95sYduRu+nJshxcFfYOSx3oG723Rq4oex/M8iGUsVG2NBeg6z7tKdbHXor2UEp7VuVu4IPejiI+Ngc5U2jSM+gx9d3zqn+k+myn9ojqwcViCXAcxxlQv6y6kwaavoXpbKiuQI2ZZE44tvN88N196h8/jLzVDDeEynvaAAERUsAep4CACGlm5louyhzNkRSKh4fy31dVJw+GtxzUTD7RYKnu6FkKGM+UEeQ1n7dX4IUHYWQYBUw7PsRLOQ8O+inVSCTNR2DnynHyWe6Wo5t3C0wGinqRcqEGinoCquzBJl2sl+iGrVZvt+Osl33obSZv0ciAPaiQhKArt2fPU8JkGfE9m4f/++AGgn+6Kv2o1L02iJEpS5xd+cTHBBO3mfR7LOVDxYRyC00yPZfb0+HzpIjr/tGtKyZMZbXNBOD6uQjANEE+yNQ8CSdvKubTudoVpL9dcNvqNav3U2rmgnNUTjNZ3DOtnFEe30bq5oc1z0Wv3IW2luC103vsSYdoo9h2Q5A8wtx1fa6XxK3VvTjHpq8bDSMWpOcxpxQTsxcwhY2gkIhKw8tYjQA2gnjVHjM8dK9tIsOmsVkvN24yuMaSfixQoE2smlGrZYiirtlGS+efT+2cqUbc8mCJ0c+MwAddoJOjdHgeCRApWDJXjKqrkKpSjRTrKPVHYaCqVopJvIqb2f8SoSddoJGiNQ0ArwIwStiNUCjblY007FcGEM17QTdNLdiXaChrSu007XMm8GhJy6RD0cPkokxqrmJwq000k4df+jnf4R7XS4qK3h6MEj5HxH0b2HUt8rC4x28v6ORDt5f+MH7eQp1nft63NjNHPzRnouHrg1BkXaidhq/eHDDEWdU6uflQQ/G38aBdrJ5TsSHEL8LhDaqZeMcNoTVyotaVCZcx+RO5WY005XvyGpAvgNbmZmWNFOyx69WtBW0KKXkZYsmmptjx/aaSqi6R624mK5j++0k2GrBs1H25W+u+kN5dTrow8wpp2YUQYWVwGijMBopxtiG0ZMUV9DPzRmYiGl/E4wDmgnZrCBFQcINoKjnZ5sFHntVZikEWx6++GP4c2iOKGdpiIqBPRpVt52itAjaKcZNQzq/EXi2j75R/wnbBoRzXfaqewnEu3k8kNwtJPHq14uq5rHqqWWa2RR7LfGok47QQMjCrRT1k8kZsHiJ8q0U+2AI4skd6vSExpmKJoUx2dgTjtJIb5/2Q+skyV+0U59Uz1aj40jkIPvB2/5YCh3EBe0E9BZEYxBxMYYmNNOZefqNU/mVqoVqVq9v3CjLg4ntNPVNiRjebfhoefwk3Ya98JRbVXFFlJo8SHpvwjjoV98IGjaiRnIYWknzZ9o004W+1/G1a8YpZfUb9yyvnpzjmNOOz38gUQ7AaEFZdrJX1NfIWDcNXpI+NxBls90J2JOO4khCZB6qI2daJYQ/l20k9vt8JSiQbP1j3w8/c188rEnAqOdLgohne30ncDvs52aWyfu825bpuNdbKvgWjL8DQ5op7NCSCdlRArh4ICaW7duCYB2sml6NjBb/zA51ML0zo35BeK4oJ08EK1DxYN1BEI7rZ+8fsdQk0TStgoTr3lVG6m4oJ3GIxoHiCbYG4eAJe20bzG5VY9QrR2/THLY9IlxV3BFO90gIBkvHRvj4ZN2cqhRF538Ikr/cGS06xNPEaxpJx9Eyy3D3HJ8pZ3sln4aOkUvSLskeEWTnWLWW1zQTswcApZ2AgIhK08tJfQA2mnJNqd8pd2H6RFkq0PZP9/3wZh2OiuMdLaTg7BgznZyJ3usb01UphydL/2tIffSSdRpJ+jcHAWC56Qw0nlFocL8OtvJ/p6R7sxhPqSiIJFrkfWSIqjTTtAYgYJWDohaaQj/X53tVAYXxnBNO0En3Z1oJ2hI6zrtpOEywTBfwkj3wOW6Rl/6bAUUaKfTcOr+Rzv9I9qp9K1Ilcanizq7+qvcE6LrLhYY7XRxZCUC7UQd2a0vyusi7aRdQZ5iHfyeVDi5sHQU6eA5FGmnT8bWMk5NqVqltJz09399+lOGFCxHnQUVgoVDIkdyjUD8oJ3Mvp25/OyxJzk8/EVuzpFhbZjTTh6IqgB+g5uZGVa0k+sDtYGnZbT0smdY3feKOZOAG9ppPKLpvo/AxHQCp53yvaVHt9SP1Nm+6eAV0o7paRjTTswoA4urAFFGYLSTxT6xj2Gb5DWjxywJKHikMAsHtJMHojhUiDh8pZ3uHS4/NavqEdXfK6uu1JashBPaaTyiQkCfZuVt5YQeQTs17XdgtAi5qYUnj/GNq4s6wHfayWF0JQLtdHYU7AQeddqp6YZyfM1EKa3gz+7Zl4bRpqFOO0EDIwq0kw2oHiyzMG90t1Ko39NOa1Z/nVVUbal24I3ceaWILUcwp52GIL7/61FYJ0v8op3Wyq8v83x/neT30chDROJvJ1zQTkBnRTBGJDbGwJx2MjWZSVW8G6lxVD5bcROtZTVOaCcPRGNRcdFz+Ek79TOr29Frhbza4fOJW3+U9B+KMe3EDORwtFOa8ujuZam/p53OzRgoJeqeqJZtvNLDd+aXCMxpp++jKhFoJyC0oEw7VQS0rHFoMyRnJ79RFJ1yZh3mtFMQkgCm5qPYieYZwr+LdpIymqQ4P+q55r6S3llHzwUrCYx2MhuDRDv5y/Kbdhp2nHqqSuEdLfmc3N4NAdc/44B2MhiDtHasMAYHyMaVK1cEQDutPV0dlrjYnJaecfXLCK+V+KCdCIjWqZPFgXUEQjtd/Hqj7W3haL0UkS9n3J6Z1eCCdsqSRTKOPx6MQ8CSdjqeR35yQ8NDI3iNyIKNFospuKKdLBCNp4qN8fBJO5n5tfZN2K5JP15MFm9xeNyCMe0khWi5xtFYW46vtFM/u0F/ranfoRE1tvySjuLCQ7ignZg5BCztBARCVp56ltADaKcB392r35LD9eMmma6QWvBSD2PayYCIRDu1jBEM7TR2hfApN+nx6id+9PPXurGuHHXaCTo3R4HgoRCRCB4ikV+0E7W4/+KRFiK6aZ8Dt4XmRDxCnXaCxggUtGoZg6TVVcHOErCmnSrgwhiuaSfopLsT7QQNaV2nndY0vsntsySMsq3ULOVOv+KlKNBOlXDq/kc7/SPa6WBTr8PXWz/Sc8a832t0YPUQgdFOZrOQaKc6FX7QTkefejpEf6app/seeZGr8WwFirTToo0PP+h7bFdLsJim4rmL9AgF2slgFhIcojBLILTTtIozE/vKSqsH+k+1eLhe5gfmtBMBURXAb3AzM8OKdprS/8q2v18nkPyr9sSHfLGXww3tlKWCZDp/bEwncNpJIj0zQ2Vmm77fgx0vcox6LcOYdmJGGVhcBYgyAqOdsmq2aU1gvNA8ltPa/86dzHAc0E4ERHGAYCM42qm5j6pdoN47zeI5elcdI8wu4YR2YvZpWIWAPs3K284RegTtZDZVOrfQ7ol+1ASrWONA45t8p51aVJFoJwNVwdFOM8RqTF1e+tLSDgklP+lb3Yg67QQNjCjQTk2qSMxClSrKtJPJ3cUyRyrG60YZRB3NWrr1Jua0Uyzi+3upYp0s8Yt2MmrVq1SYW0OJXcOY2dc+uAIXtJMBojEUsDEG5rTTK/MJdx9fCaXvcvLw7TXx8Qyc0E4ERGPVzcJDz+En7aS3SOze+IyxlKwrEyWfOb5Txph2YgZyWNqpSBVt2inYKzV7kEGCXnHz1AFFfs2OmNNO/mwBeNJOBqpo005FZRuv7aBL6ASsjGjTULohjTntNApJANOns9iJZhXh30U7BZkd16+Y0U//lFvDxhBHqxECo52ezEGinYbM4TftRDygqlUcvJmUGxmtn3V28w8c0E71c5DWjnPn4ADZOHfunABop8o9j1sGLZuin0V59kl1/3MKLminQETr2ODBOgKhnZKvmSiaaG3VjOodWLlMqX89LmineYjGGYIH4xCwpJ22HtKsdB8crh8i8SCn8Wv2FlzRTq9nIxnv7Gysk10c0U52F1/89cInRHv7osWer8Y6GWFMO0UiWs4Dc8vxlXaKr338MX3hKcpRvYxJokOm3MUF7cTMIWBpJyAQsvLU84QeQDstOSfkVL0oi5o9OX2F60pZL4xpp/q5SLSTz1zB0E6nqCn9xHs91N8j+Ub65CPz6ajTTtC5OQoEz425SARP+lx+0U6bRe2rtvWZopsZS5qifG6JBeq0EzRGoKCVD6JWy+b+X9FOF+DCGK5pJ+iku/PZTpCQ1nXaabxVlVRkZqNactWoqbV1kkEo0E7VcOr+Rzv9I9oprfKDfKmfCjXpZZxF3E3tAoHRTi5GSLRTkyE/aCfTxAFpV5IT6ZnirsP793EioUg7fSAUqF+vfau5c6TWhpLq55NQoJ3sjJDgEDUjgdBOJd/2iGf59tEqTuqzJPqR+wvMaScZRFUAv8HNzAwr2sll04aNha6B2ocdkg///Tk3ADe0U5UhkulisTGdwGmnKV7hl90jDSmn3p3WCEuijceYdmJGGVhcBYgyAqOd3r0YHL1imRP5UEyj7KRBg3VxQDvJIIoDBBvB0U6iJ3vnRmdM1DvhHZ5f3qB7DCe0E7NPwyoE9GlW3naR0CNop3tCz4pWT75LCvDauyH0nco0vtNOUiZItJOdseBop4A+iiN8dsVrhCkr+O1cK2eKOu0EDYwo0E5iJkjMwkNjlGmntTbvT821rqbsLc9el9ki54Y57VRgjPT+QcZYJ0v8op0sXr9Y4TwlUzvjr5mBK44/8sQF7WSHaAw1bIyBOe2kOGVQ0bIEG1JUZOMG5d5OyTihnWQQjdVkhIeew0/a6VbKeLGS2mpKplzIacsfL+kY007MQA5LO9UYo007xfTu11f1YpLakTEtgQfHXDyJOe0Ua4xEO9kZo007LWrdSEis2UwJU763WPbqp2TMaaeZSAKYthmxE81LhH8X7ZSZGbvQ6KSD7vZMCe07xZ+0BEY7fTdFop2UTPlNOznZHJy3YOp5cvKkhk3ZcZPW4IB2+miKtHZ80RQHyEZpaakAaCepMUtTNv9VTwuLXimndtxvOy5op0RE62zCg3UEQjv9EHpWoV65Q2/f7vV9pn03jMIF7WSMaBwlPBiHgCXtZE2IGa0zIpqSslTt+qpD5pK4op16IRqv3gTrZBdHtNOG6ALLqOof2vmVF2K/xE/5jjHtlGuCZLlAzC3HV9qJcNtpUk2mHdn/VYbiID9Fe1zQTswcApZ2AgIhK0+9TOgBtJNh0WSSklQ1bWeZz6ggz9ENGNNOHxcj0U6RiwVDO0mHiC68N2qyfoh8VR9CUKYJ6rQTdG6OAsHzejESwXN2Mb9oJwVDs/1jc5NpOW6XqpYIj3ZBnXaCxggUtIpE1Mpj8f8V7XQFLozhmnaCTro70U7QkNZ12ino56PBLy5S1Xc9uHHg/LNCTRRop6uoqdtPgOpusl+outWxSGvf6wf2T0ReqHdSN0+o5nqc013Stul9tfuIizoBTcKspnGqU7JHVQVolqxeoGY0Ii0MaBJhNYVlvzx9sb87OeLo0V0FixoGAU29WE23B20zGrsoXrvk+7mTapHzueG03nDm2j7prFK81CPN7ZvOSKmsSn2GgrmuwZnrPzjtH8Fpk6uNRjvGH9conm8t2xY2XkZgcJqPMxKc1suZH3Ca69P+FvOPuOqG51I/rt5s+QpFOG3OdvMFFIK1VmbflztW7ZmQigKctskZieUxdhYInLZS2kh248sIcr5YdHp6A7UYczhNCVEVwG9wM5HGCk4r1s7KKX4ZSouepbpw9d62ZtzAafVOSKbLdcLF6izf4bR7Ec3rr21coB2dRtts+f79fozhNGaUgaWLgCgjMDjtcpD4XTERa/IBQ5IeWb2AM7nDBk5TQhSnl7MA4bTZLuJ7c/aVq+3zXnWjfo6yOU7gNGafhlUI6NOsvK2G0CPgtOX2GXT9gbP148zOpB4ZW7mL73CakisSnObjIjg47XqWe/mQgGD1FG/zk4ekcjmTeTTgNGhgRAFOG++KhJh8d0EZTqvW6DdKbkmQXm7unkwvz1fDMIfTbrggvX+6C9bJEr/gtEPTzNc/Pa6tF2idlJdQtoLzu5exgtN8EI2xDBtjYA6n5elfTU7bFqedGTt93rnYvqo4gdNmIhqrHy56Dj/htPqkH8uTD7Wpxc5ImZS5NDf5T6bKKKBJzEAOC6e9dUEbTnudV3JVJOsNJTJ3SnXCtoIkzOG0ky5IcJqPC9pw2rTNUhcnbS0h+UkuTCBXqULm/RjAaQZIApgOd2EnmtcJ/y447cwj6TSrrzu1T53y0TO1XrFcYHCajDsSnEZx4zectkV+eWbg9zukXY6X8z8XLNyEAzhNyh1pqb/RDQeETUFBgQDgtO233likvDpPC+nzOf2VZCzn12thBaeVuSFZJwIP1hEInKajbBSyQURZw1+lbLwqXf0MLuA0F0TjUPBgHAKWcNqXG6tKvW40qgfMPPip94ovH3AFpxERjdfiinWyiyM47Z7oGtKty9H6cY/pqUSJQs6zYwQPp111RbJcCuaW4yuc9nzZRLEUS1FyxMOxySqie5P+nGxBAU5j5hCwcBoQCFl56g1CD4DTxokbiSnK7qZk194YyhhE0MEYTpPyQILTCtwFA6eRH7s+Wqyarldc9DHKbplVNupwGnRujgJwJeaBBFw9dOcXnNZ3Uj+S9uE6zTyRrHI7tZj7qMNp0BiBglYF7khaBbn/X8FpN+HCGK7hNOikuxM+BQ1pXYfTDAgrnujHLKGl0gdeUYmxkkKBdroFp+5/tNM/op1OPUra/DFou27J7AmZy/QlPgiMdrrhi0Q7hfryg3aqGPF8i7iICS1u3Z0F68TlJ6FIO8lkNxfutvLTKtz26rP7j8S+KNBOV32R4JCTvgKhncqlJV2OlvSi+n+c/mO4pO9QzGmnFERVAL/BzcwMK9ppkvDlH8tbC8n5j+eVKJxYX4Mb2skb0XQO2JhO4LRTlqubZ9RNMWr2h/C+9z/o0jCmnZhRBhZXAaKMwGinH6XhTxctv6ufX+z7ctOpPtE4oJ1SEMUJ9RUg7fSGsdpri0ke2d/rKymlz9eNOKGdvBEVAvo0K2+rJfQI2ildblbOgAltGscDducp7pQfyHfaKcUPiXYy9hMc7RSvNdUq4I0PJYYccqS6VksRddoJGhhRoJ0S/RCPovJDmXba+lpv6+1TqpSUV0sLjzrNwP4ork2I72/nh3WyxC/aSefj61miJ5brnlii5qSRKn4PF7STMaIx1LAxBua00xbHwRbVl5q009LMVEYuH/AFJ7STEqKxZHDRc/hJO92f0bh9VmGcbr4OvbowapgPxrQTM5DD0U4mAX5o006M64q1GcLrqAm9ex8Rcc8Wxpx2cmELwJN2MvZDm3a6Yb5sYdnqC9onDIYYWok9UcScdpqDJECqrB870awj/LtoJ93BUuX64Sb0pK2UnHUvYmoFRjtF70SinVR28pt2WmIoeUY9ajg5KHunPON9ThwOaKdDO5HWjv124gDZyMrKEgDtNMpHtk7W25Qa42kW3VYeUYEL2skN0Tor8GAdgdBOMY43+3ywdtRLkJ1oc9xRuxQXtJMuonFU8GAcApa0054FzbsSZ1tp+e+urDnXNjISV7STHKLxJLExHj5pp3FNCc0elYbkA3OVqsvET77HmHZq9UOy3DNcTFP4Rjs5LHXSf2BqrJn8cOqk+g0TXuKCdmLmELC0ExAIWXnqbUIPoJ08ZWTFGSfe0AO1/W41b+orgzHtNMIfiXZ6y53S8oV2si89/2Pnq7W0kr2Dtr1KHfUEddoJOjdHgeCR9kcieIT9+UU7XSQqlR4791p9f8ibOMobhfGo007QGIGCVm93Iml1R7CjJda00x24MIZr2gk66e5EO0FDWtdpp2tnalIuzfJWyxgd1WfDe5lWFGinu3Dq/kc7/SPaye6IXNxVz9X6QUvWL/0Qb/1YYLSTfCgS7fQshB+0U/8zdw+8DiygR+vHpwUd2RSEIu3kO7nYYLjxau20bHf5kqtnnFCgneRCkeAQyVCB0E4xF3rv8Hy9iB4V2av5uJOcJ+a0U2sIkiqA3+BmZoYV7TRiuN7CqP3G2oeXv71iGHDaATe0Uw2i6UqwMZ3AaaclwqFVAw4J0w+989sSot1MxZh2YkYZWFwFiDICo532BAzsR9kgr+sfEalLj7/wBQe0EzPYwIoDBBvB0U4XBrz+LFFRSMovSvWZ8dfWTJzQTjWICgF9mpW31RN6BO2UNuN+sZSCGjWcNMErWapfKt9pp9ZQJNopKVRwtBPp4O4HhRH7SQf6tjKmTZ5YjjrtBA2MKNBOn0ORmIWG7qVQv6edHlNvuvRNuUgLjfu8VWzZuzmY006XEd+/KBTrZIlftNOp0ySCzO5H6ruWNAyPOZ19ARe0UxKiMfZjYwzMaSd7VWrcgb/faAdUzPnydnb8apzQTlsQjbUaFz2Hn7STlThtyzKFe9Sg6WV3SzUXbsOYdmIGclja6W43s9Tf006ni48ITUuW0Du+bSzph1ipNua0UzlbAJ60U1Io2rSTyauF5wLu2+iUHli7WG1saRHmtFMgkgCpLqHsRPMe4d9FO03feN3p+sU4tdLJ4S9j1zwcJzDaqekAEu3kf4DftJPSY+ux8bG9dOKOb2/9uVpbAwe00+sDSGvHdQdwgGykpKQIgHY6uFepSWuWodo++b2epAUhp3BBO51FtE4WHqwjENqpz2HaWKXomTo+znJfrfcu3YAL2ikS0Tj+eDAOAUvaqb58acrPnbb0+I1Bz7ecG/8KV7STB6LxLLAxHj5pp4bomGMWqm/UYk/cDJMM13bDmHaiIlpOFXPL8ZV2+t5aZj9OI0gzWrL/ZOPBRedwQTsxcwhY2gkIhKw89T6hB9BOV5P766Z67aCGpH3tpxx80QBj2skhDIl2UgsTDO3kNkHuhEmSt258UMls8YnbnqJOO0Hn5igQPHZhSASPcRi/aKe5cy9u3trrpVbIsb9c24Tuu6JOO0FjBApaqSFqpRT2f0U7PYALY7imnaCT7k60EzSkdZ12miNZNzug2U4nPF3jXAOJNgUF2ukhnLr/0U7/iHZaFWU4JODocMq+BZEfl2wpiBUY7bQhHol2mhPPD9pJNezhZ33SFNqugOMFy8SOG6FIO93ZGjQ2tyFVM6+11uZ24MQ1KNBOnvFIcIhVvEBopya/1WI+B76o5ziUbrpSZj8Bc9qJjqgK4De4mZlhRTtpTLxal7l5JiXXOXGP2/Z1a3BDO8kjmm4QNqYTOO00f84KoqXsQp2QtSsXJcxgHMCYdmJGGVhcBYgyAqOdJk24OXLZICHtErJMfvkY8lcc0E50RHHmxAuQdrI8nH65aOwC6jEf3QlfGmuIOKGd5BEVAvo0K297ROgRtJNqzpbqJ4T16jviaqrGZjce4TvtRE9Aop1audMkvtFONXvTfJeucaIdCG0tWLZfRwp12gkaGFGgnXQTkJgFlQSUaSd/832kgcpraIezQ0c/CvkqhDntJIf4/pIJWCdL/KKdPk8pJ24epUFNaDRufvrgqQ8uaKfWeCRjPMNH+iNw2kn/x4onlD0DNNP0KdtOmB/ZiBPaqQbRWCWYTzP4TTud3ZttJDdMjRYvKm3k/nqYPca0EzOQw9JOUxLQpp0WKxhHiwQUax5vLG/wclvqizntJM0WgCft1NrNTPT3tFPU8/o+puaplLAPuU6TSbf+wpx2ehiPRDud7Ug0Gwj/Ltrp7v1503Pv3ddIH1PbrKe/5qLAaCeNRCTaqT6B37RT7prLsifLDquHfy+cuiSseQMOaCe1RKS1Y6VEHCAbcXFxAqCdqPJidZ80lukFyQ3u9eZQeDEuaCcZROv0woN1BEI7lddIvtO8oqEduWrFg4Sixx64oJ2aEpCMU4/NTANHtJNXIz3qXsNNjT2quSuXhw6k4op2qkI0Xi7m00Qc0U6+t3Iq6bL1Osnz/XQMtpnGY0w7xSJaLhBzy/GVdiIXry87p/xUe691iGdTxLxMXNBOzBwClnYCAiErT31M6AG0k+V1PWtzxlD1PRIPZQ/KjMP6bKeyRCTaKTRRMLTTqh+ZRcsX3iDtaBjzJP3k9mmo007QuTkKBM/JRCSCJyWRX7ST+sVP2hpNcbQdZk31J0b+1Rt12gkaI1DQKhRRK2/B5qFY005P4MIYrmkn6KS7E+0EDWldp532Xbow/anMfdqhk/Tw/B0l31GgnZ7CqUu0HZfvvyeAHHImnXrwayFn1bS3IcPBcj2nujDLQnBdeDCJuM7ejUF0A+/EEpD3HviWNieZxRM1o28FPpvqJi3H40G4X/r3Ee781QMhfjl6h966ZtW5J4/8w14bAfRLu3cV7eOyN7TXgstsCu8qWJI/w73kSyV2GvUXa6YkGekP/PDtgi9uJacOrUSQXGkoOxV6jnvJP5p8Pb0zwJu2bdCLaq/nhSNxK/nFqUiSp09lS96Ie8lHZVkdCdA9Tdp7T9xg84Gy0biVXIyGJHkjlS35C9xLvl5H4bKBzz5938uStmofxbNwK/l3OyTJ6+3Ykr/EveQ68m50SfGRpKzw/rarfZ6l4FbywO1Ikm/azpb8Fe4l3+Agd8xztYJmicTpG+Yrv47CreSJQUiShwaxJX+Ne8lvt6y9LpanTvcdN9hUaUjtJNxK3hSNJPnDaLbkb+Akn5FLJ89RNKeUZHrTdjVl1kIKIoDYbs4ORCbN6c69xtgbRmgVTS9gKmbdTguyVu5Zt2oHtphbB9Y4OQN/A+Y+rI0KXVt/dFFblLdnf5lGcsn4S8fLmpqRnphHCYejvYtKewOT6CwzIB0/S+aB/xPBreumFXzA/63m5y6ZJfdKM+yZUZz1SkYSivj/a2/bLxapRygnRB9q2IkGC/2hL7oACgWBCjWRgH9AFWppV4irpsqWqIvo31h1Th9irT3RQf+aDGI8yjxVXKMdke8sJa15qkqSdPtyqSYnGQDjKOzraFdcy/JYQhF51WOIQGvT4gouNqSbQo1YzABXSpkKcfY73gote7+y2WipiVbiI7f16TF+JZwr26ybca9ssxv4oZHBYiSNoM4k/A80YqJgLOob0Ol3XtR6vaFI73orOWLjsykl1ZU/OfsieDNuhViX+aGPlCmSPi4m7OrAW7jAP7FtmEwGUUQzj9z0jSFryxn4+1Lt3T1gt57BlexH0xiW7mvd2rd+tbNK7dHdAbhb14K78sDh7xJKx1HzlEhzSmyWXYB9Km5cuVNjF3X0AgmKpYCO5YCOD6E6uoDnJizhCuvdxJXFyZbuDKYAPN/3hN7EjwfPntHezVgw6t5wUc6v5OsFvhLXi7Zf/V18hwa9P4zvdoBURFCqCCC+l0GlGnWCKRVsfOfJcdOZa26gg9h7MBzdwb2FVJ4auZavezqtQp4cEtOboSJm7jOISYAD767p5eLG6KgXMyvNZpM5Vy8ETb5J5bN0AncYcOnkn8fUidU137G6ElfX7DXtI0ny3FVKgorKHaHMcWdEqPZW7La4xqhRK6eZUjNF99n/aJTghJBYlFw7n931fkvUZrRnau2kOBFMSRjdzst81EUK0sY5k9Kua466djpOCv7JuIGBzq3dyDhijQClT/LqvKAdygy7lZMRO3IyW95y8D4p4IYrqY3srnkwytngFnXuHx2yx98UzQIQzNuIlaJxuWZju2DdWvYergHxF1A0eEJ3+uVVj8poATrhMsYpRvnKTphuNsjKY6khxaujgmMooAarozYRYMbQsMZPUZNNAqmFF/RPa/+M5VxLkPgVnrhXveFmqNK/Nm87ERkdN5DgDnW9SZPJitO61DOV5GfKnKPJaMUyypc53iCdhHtM7v2Vv9q6gXgQVwKy1vFa1KaATra8on/HDi/2aiM7OknogD2Va/WqD/Oyjg27Z0S0eRfFBZvp5Ccfpas9VbzLbheCae+rz/Rnrp4j1n79143Nbar2CpWKaxS9HUbrrzj4avvzMB/3d+Fj8C+tgA7hZm9p5cC7G7Q239+ta1ihE1WlkjH7gTtnBJcwZX2USOKyhhCJqxcIQUIGdKj80woDYE0CaM2pJB6JpgM46q+o6KSREFoaDVN96/tXvzi9vSK7eol8TsiC0YjMrRH5txpBwxAKGgE+jaARcXkFywE7HAkpqg5ph4nAePorAPAOqDfDhkzRnEA9qOsrlmWcw3nEn2j7bbgDKus62gHVII/lKy0kcGIC0eFGLlMlVkBthguo0g17NAbNuaIe9/fj0syqdZwHSgqRea+/D2zHcnhISZBob+Io07EoHq7yHc8FeiMGMH+2YWaoTBLJEcS8XBzsreEPIAjKTo7wlt5HDb6l5v100p19kHfoist21RYd/BrEFsSiCoJMcgVYiQEHN5bq7/+R6u3JisCV/4v1C93BJNTZwQF4fjBqAJ3ClgE8BXszHe+dn9dNVeyJaYmaRw8FHkn5mq4igL1AcKYoAwkbGtQUH/6RKfqaA1I4ujg7MZw8BG6QIabtpZKN6zf/egqe6pvdW7+e5hVITiONOSRUPXcp7Dtwz+E7N6JtCbHiCsLUAsASJZ0t8bEnh6Ljt/eHjvPxJSeOP3OgfutuFYxCEeEl1P8/9WT/v3Ri5jWrb4q6R4V+VMTX7niBI/93aYb6/+ee7P8iD0IbUosG6RVOebGV/HPma4z8v3FQJcT/v/Rk/y+7edLbzFiKdPLv1Js3nwpRcOT/GtKVEP9v6cn+T5sw9Jjlh/NaQbfy7o60eFyDkf87KEP9/2tP9n9hqsswy0+a5JO2ypmbrj0k4Mj/q6ZB/b+1J/v/B5eDUflL8tSy3tcs/vlObjJG/p+oC/X/bz3Z/6UNX/q/lStUL9UtdZ+SaLsPR/5PoEP9/3tP9n+NrTteBPzw1IwrqrO5PYxhg5H/+6+C+n9bT/b/uDipeZ/ER5MyRAfXjBywqRZH/v/dHur/P3qy/4u+LM8lTzmrcVjXTE9tw9bVGPm/7jao///syf5v92rT34ueDaYXnF29Y3fDkEM48v9+O6D+D8rWY/3/Tsx0TQVNR7WUccaPl1T+9MDI/5fsg/q/0D9S/V/i/wduhgW9ILzTKN39YFORXvxLHPm/bDDU/4V7sv8vn1r4lShrqxa6Opfmb6EuhpH/p0RB/V+kJ/u/gZTCTIpqukYANWFgTKtoDI783ykG6v+9/pEl2jc8C9wGg34xc+4MW0cG3MmnK3OovSm+z9W3TVQsnTNwfg2PZ+ex/sW8jLbqIFcUa91R//8f iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvQAADr0BR/uQrQAAAJhJREFUSEvdk4EKgCAMRPfF9gn9WX9Wq5MtEmdKbQQ9GClud4cY/Q6WbwgQ13LnKh5mAsKEle8MeCLm1C9pb2I2QHxNtKC2RLNVeiYjTWyDIxkEZPuKykDTj6QboTZwTA8KA+/0oDRwTg9OgwhxUBh4Xo2SDaLSg5waBrJ3J//uL66mG4zxNGX9BMzezmuDR4UQKg5CxQ2IduVGkrvn0vkHAAAAAElFTkSuQmCC 7a79adc7-72ae-46b0-89d1-0d7c27485b7f DIFERENCE CURWATURE LINEAR GRAPH DIFERENCE CURWATURE LINEAR GRAPH true 20 14679402-b72a-4ad2-9f68-a6c0cd5198db 1ad300f9-25cc-4f0d-9df5-1a184f55ee87 1afb9ce7-bab4-4278-8768-18616caf7412 225817fa-31b3-46fc-af73-ad1cf4cf3a29 4b3c853f-0e70-4511-bcfb-fa488944f91a 57014ce6-0b16-4557-a459-363b68df79b0 5dbed678-e1f0-47b2-ab5b-7d564e67d149 60b6e664-6dfe-4c05-a8f3-8e5d2d331a70 7dcdbf99-9851-46d1-bb6a-5efdfe64857f 8b025cb0-35f8-4d07-b162-2a8dcf56f30e 94294c1e-d8bc-4f8e-ad38-88bd70aa7022 a096998a-6360-464a-8fc9-30ca988b5c46 a3b8dfd6-6830-44ea-aacc-1b070cbc6d44 b1777aa9-7d12-4a17-b1ef-e0f649917e24 bfaecc51-7527-45a3-aa3a-ce297d97da26 c0ad88f5-83d4-41b4-a330-b847a1378401 c9a38c70-c330-4159-a2bf-918d499eef91 d4be6a2a-28d0-485a-a4a1-5a281e3dd78b f5a21887-cfc3-4a0b-b524-44283d4f606e f6ed359e-c452-4fd9-acd6-48313360e55b 45329fda-4528-406d-a823-54e35ac6ff74 357ceb68-e651-4e13-b8c4-6a838be2149a 3c10a1a1-09f5-411d-ae06-13d21b0f7cd7 88ea5216-22ee-43b9-bf4a-bf732fa4678f 9096d595-00e9-44ef-bf8b-df7cba4ba2ea 17704c02-f561-4245-bc67-2eaf7cd1e000 e294df03-baaa-4b12-b92f-e97f42ff34ec 34281050-3848-44ac-894c-a3119ffa069f 9492d9b1-8423-4285-a424-c395dc7f8b36 054cb35f-8548-43e7-8129-2bbf3a113dd2 d134b7cd-fb62-4a2b-a901-fec5a2d783e9 98a7b290-1680-4c8f-91d6-4080e52ada8f 9d9970f3-5ab6-40b5-b0f2-d257ffef222d b4c2ea06-2f42-44c4-9b4a-584b407a7f6a ad15254d-f361-46c9-90d6-b5db1b60e3d2 f9b9305d-1e20-4067-946a-b44d88604308 7979dd58-784d-428c-ab41-1f9a01cb3b5b 80bcd5c0-5458-4110-bc35-aad5d5e50148 e9837f44-fe89-4576-a1ba-d864d9176564 693656d3-ab20-45a4-a99a-8ca5a8f9ac36 1852 5038 110 404 1948 5240 20 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312 8ec86459-bf01-4409-baee-174d0d2b13d0 2e3ab970-8545-46bb-836c-1c11e5610bce d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 0 Vector {y} component 60b6e664-6dfe-4c05-a8f3-8e5d2d331a70 Y component Y component true 0 1854 5040 82 20 1895 5050 1 1 {0} 8 Second item for multiplication c0ad88f5-83d4-41b4-a330-b847a1378401 B B true 64c76e08-bd85-4d09-a143-3a38170cdfe1 1 1854 5060 82 20 1895 5070 Vector {y} component 4b3c853f-0e70-4511-bcfb-fa488944f91a Y component Y component true 0 1854 5080 82 20 1895 5090 1 1 {0} 7 Second item for multiplication 14679402-b72a-4ad2-9f68-a6c0cd5198db B B true 64c76e08-bd85-4d09-a143-3a38170cdfe1 1 1854 5100 82 20 1895 5110 Vector {y} component 1ad300f9-25cc-4f0d-9df5-1a184f55ee87 Y component Y component true 0 1854 5120 82 20 1895 5130 1 1 {0} 6 Second item for multiplication b1777aa9-7d12-4a17-b1ef-e0f649917e24 B B true 64c76e08-bd85-4d09-a143-3a38170cdfe1 1 1854 5140 82 20 1895 5150 Vector {y} component 1afb9ce7-bab4-4278-8768-18616caf7412 Y component Y component true 0 1854 5160 82 20 1895 5170 1 1 {0} 5 Second item for multiplication f5a21887-cfc3-4a0b-b524-44283d4f606e B B true 64c76e08-bd85-4d09-a143-3a38170cdfe1 1 1854 5180 82 20 1895 5190 Vector {y} component 225817fa-31b3-46fc-af73-ad1cf4cf3a29 Y component Y component true 0 1854 5200 82 20 1895 5210 1 1 {0} 4 Second item for multiplication a3b8dfd6-6830-44ea-aacc-1b070cbc6d44 B B true 64c76e08-bd85-4d09-a143-3a38170cdfe1 1 1854 5220 82 20 1895 5230 Vector {y} component 57014ce6-0b16-4557-a459-363b68df79b0 Y component Y component true 0 1854 5240 82 20 1895 5250 1 1 {0} 3 Second item for multiplication bfaecc51-7527-45a3-aa3a-ce297d97da26 B B true 64c76e08-bd85-4d09-a143-3a38170cdfe1 1 1854 5260 82 20 1895 5270 Vector {y} component d4be6a2a-28d0-485a-a4a1-5a281e3dd78b Y component Y component true 0 1854 5280 82 20 1895 5290 1 1 {0} 2 Second item for multiplication 5dbed678-e1f0-47b2-ab5b-7d564e67d149 B B true 64c76e08-bd85-4d09-a143-3a38170cdfe1 1 1854 5300 82 20 1895 5310 Vector {y} component 94294c1e-d8bc-4f8e-ad38-88bd70aa7022 Y component Y component true 0 1854 5320 82 20 1895 5330 1 1 {0} 1 Second item for multiplication 7dcdbf99-9851-46d1-bb6a-5efdfe64857f B B true 64c76e08-bd85-4d09-a143-3a38170cdfe1 1 1854 5340 82 20 1895 5350 Vector {y} component c9a38c70-c330-4159-a2bf-918d499eef91 Y component Y component true 0 1854 5360 82 20 1895 5370 1 1 {0} 0 Second item for multiplication a096998a-6360-464a-8fc9-30ca988b5c46 B B true 64c76e08-bd85-4d09-a143-3a38170cdfe1 1 1854 5380 82 20 1895 5390 Number of segments 8b025cb0-35f8-4d07-b162-2a8dcf56f30e Count Count true 1e4870d3-d88b-4e3b-a627-be71345d40a9 1 1854 5400 82 20 1895 5410 1 1 {0} 10 Contains a collection of generic curves true f6ed359e-c452-4fd9-acd6-48313360e55b Curve Curve true 0e0d5017-4f0f-4bab-986c-96ea91bffc65 1 1854 5420 82 20 1895 5430 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 0e0d5017-4f0f-4bab-986c-96ea91bffc65 Relay false e2bd9108-6f13-4773-8437-12590f64999f 1 1544 5455 40 16 1564 5463 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 72713788-9a21-48b2-80ba-d8d582f5c87b Relay false 53dfe8d4-944d-46bf-8495-cdb43c7556b1 1 1505 5336 40 16 1525 5344 59e0b89a-e487-49f8-bab8-b5bab16be14c Panel A panel for custom notes and text values 778435a9-4a09-40c9-a8d3-b6ca4d0b2811 Panel false 0 0 0.0003845696719497810789 -143 5173 160 84 0 0 0 -142.4984 5173.155 2 255;255;255;255 true true true false false true b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 2bd646c3-138b-4490-8085-395d24c3f8e8 Relay false 44bc53b6-00e2-489b-a5dc-407425442819 1 -183 4935 40 16 -163 4943 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object a09d3489-b53b-4397-8222-838de26f6b45 Relay false 1bd4238d-59e3-4478-af43-8dbfe4dda340 1 -185 5037 40 16 -165 5045 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 83ed3584-92a2-46a9-a2f5-4ea9d7c017a4 Relay false 2f6a5a53-3d55-41a3-aff0-e99afa30befd 1 -187 5087 40 16 -167 5095 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true 12c4a8f8-eb0e-4c23-9e31-db676262a272 Format Format -129 4899 130 64 -37 4931 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format 28fb2c13-7520-4ab7-b732-ed1139ded84b Format Format false 0 -127 4901 78 20 -88 4911 1 1 {0} false {0:R} Formatting culture 72db5d47-eb7d-4255-990d-0ec64b4e2aef Culture Culture false 0 -127 4921 78 20 -88 4931 1 1 {0} 127 Data to insert at {0} placeholders 9a1df9df-53e0-43bd-843c-1ab2324510d4 false Data 0 0 true 2bd646c3-138b-4490-8085-395d24c3f8e8 1 -127 4941 78 20 -88 4951 Formatted text 68c4ecd4-8214-404d-ae51-7077c9a01211 Text Text false 0 -25 4901 24 60 -13 4931 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true 65270bbe-3414-4860-81af-770ba43c1cdb Format Format -129 4983 130 64 -37 5015 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format 718156d1-1bc7-48c4-8ab1-cad81a3cf9d0 Format Format false 0 -127 4985 78 20 -88 4995 1 1 {0} false {0:R} Formatting culture c59d5187-58ba-4eb8-ba3a-cce2b9be8998 Culture Culture false 0 -127 5005 78 20 -88 5015 1 1 {0} 127 Data to insert at {0} placeholders ffd3ed7e-91bb-4d86-92d0-9c2bceabeec0 false Data 0 0 true a09d3489-b53b-4397-8222-838de26f6b45 1 -127 5025 78 20 -88 5035 Formatted text d2feb401-36df-4805-af94-8e108f24e9dd Text Text false 0 -25 4985 24 60 -13 5015 758d91a0-4aec-47f8-9671-16739a8a2c5d Format Format some data using placeholders and formatting tags true 7cafc645-fb57-44e8-bd89-b177fc3b564f Format Format -128 5066 130 64 -36 5098 3 3ede854e-c753-40eb-84cb-b48008f14fd4 7fa15783-70da-485c-98c0-a099e6988c3e 8ec86459-bf01-4409-baee-174d0d2b13d0 1 3ede854e-c753-40eb-84cb-b48008f14fd4 Text format b2d99be3-9d7e-4eb9-af2f-d4ea50055fa9 Format Format false 0 -126 5068 78 20 -87 5078 1 1 {0} false {0:R} Formatting culture 33a32ff1-3d1c-45ec-a3b6-0c24d1d51fbc Culture Culture false 0 -126 5088 78 20 -87 5098 1 1 {0} 127 Data to insert at {0} placeholders ed7c0f88-8e16-4415-9bae-ced65f520a3c false Data 0 0 true 83ed3584-92a2-46a9-a2f5-4ea9d7c017a4 1 -126 5108 78 20 -87 5118 Formatted text f2e126e1-a59b-4fae-8f48-32341df4b306 Text Text false 0 -24 5068 24 60 -12 5098 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object afcc5191-a0bd-476c-9768-591ad0f7378c Relay false c2429a84-5049-49fc-9a38-42778a26f71d 1 259 5107 40 16 279 5115 290f418a-65ee-406a-a9d0-35699815b512 Scale NU Scale an object with non-uniform factors. true a0c1250a-0597-4569-9f33-9ab63d5b8065 Scale NU Scale NU 459 4864 226 121 621 4925 Base geometry 654843b6-c012-4edc-a2a7-f285f6f8d025 Geometry Geometry true ddf12dcc-4532-4f5f-9017-ca2181ae4120 1 461 4866 148 20 543 4876 Base plane 9fc4cd47-7135-4ba4-9fca-12bb61107c40 Plane Plane false 0 461 4886 148 37 543 4904.5 1 1 {0} 0 0 0 1 0 0 0 1 0 Scaling factor in {x} direction 01caad73-e8c3-480c-94d8-6aaf2d86dde3 1/X Scale X Scale X false 44bc53b6-00e2-489b-a5dc-407425442819 1 461 4923 148 20 543 4933 1 1 {0} 1 Scaling factor in {y} direction fd670a22-a3e0-4288-8e39-88c566557d2c 1/X Scale Y Scale Y false 2f6a5a53-3d55-41a3-aff0-e99afa30befd 1 461 4943 148 20 543 4953 1 1 {0} 1 Scaling factor in {z} direction de6449f5-cc7d-4dab-97b7-f94c56833cef Scale Z Scale Z false 0 461 4963 148 20 543 4973 1 1 {0} 1 Scaled geometry 065f686a-4028-4e05-b353-3c9ef8ca5da0 Geometry Geometry false 0 633 4866 50 58 658 4895.25 Transformation data e6c37588-8d61-476f-98b4-879bcbd8ff43 Transform Transform false 0 633 4924 50 59 658 4953.75 310f9597-267e-4471-a7d7-048725557528 08bdcae0-d034-48dd-a145-24a9fcf3d3ff GraphMapper+ External Graph mapper You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode. true 9458f1e4-5dcf-4329-ae9a-248ba54fda4d GraphMapper+ GraphMapper+ true 958 4652 114 104 1019 4704 External curve as a graph b2c57c52-3939-4f33-b9ab-436fd1ebbfe1 Curve Curve false 22dbbbf7-d064-42aa-b6ff-7919cb335e9d 1 960 4654 47 20 983.5 4664 Optional Rectangle boundary. If omitted the curve's would be landed 68babcf3-de1b-4aad-a440-d0902f9dc7bb Boundary Boundary true 88860703-c3a2-44da-9f68-b7f61777e56c 1 960 4674 47 20 983.5 4684 1 List of input numbers 271151c2-8cab-443c-b33d-53f4e3b46f96 Numbers Numbers false d082c31a-7d28-4f27-855d-7007967854d7 1 960 4694 47 20 983.5 4704 1 9 {0} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 (Optional) Input Domain if omitted, it would be 0-1 in "Normalize" mode by default or be the interval of the input list in case of selecting "AutoDomain" mode d9999967-c06b-46f5-9548-ee85878e5e3f Input Input true 6662ae79-7937-416d-a1d8-3b9c21175ff3 1 960 4714 47 20 983.5 4724 (Optional) Output Domain if omitted, it would be 0-1 in "Normalize" mode by default or be the interval of the input list in case of selecting "AutoDomain" mode e29e445c-b82b-418d-86e8-57ff247ac464 Output Output true 6662ae79-7937-416d-a1d8-3b9c21175ff3 1 960 4734 47 20 983.5 4744 1 Output Numbers 89bcc9ed-3adc-47f4-a7f5-021fdf009bd8 Number Number false 0 1031 4654 39 100 1050.5 4704 11bbd48b-bb0a-4f1b-8167-fa297590390d End Points Extract the end points of a curve. true cdd22be9-92c3-4cbe-8b1a-39742554035d End Points End Points 402 4551 84 44 446 4573 Curve to evaluate a4b435ea-afbf-41ff-852e-938e38fc482f Curve Curve false 22dbbbf7-d064-42aa-b6ff-7919cb335e9d 1 404 4553 30 40 419 4573 Curve start point 99e1eab1-8fcb-4ec6-a7d6-8461b6db7ba3 Start Start false 0 458 4553 26 20 471 4563 Curve end point 9cf4e70c-1977-4c9c-8d41-3c777e6c6336 End End false 0 458 4573 26 20 471 4583 575660b1-8c79-4b8d-9222-7ab4a6ddb359 Rectangle 2Pt Create a rectangle from a base plane and two points true d4b63f37-7307-406f-b3f5-3121871ed53b Rectangle 2Pt Rectangle 2Pt 537 4560 198 101 673 4611 Rectangle base plane 5a79d744-c4d6-4c77-8e96-8f4b499eb7a2 Plane Plane false 0 539 4562 122 37 600 4580.5 1 1 {0} 0 0 0 1 0 0 0 1 0 First corner point. 8fd6a73b-4768-42e9-a050-4db35290ee9a Point A Point A false 99e1eab1-8fcb-4ec6-a7d6-8461b6db7ba3 1 539 4599 122 20 600 4609 1 1 {0} 0 0 0 Second corner point. b0023087-1c11-47ca-8da1-b9733170a79e Point B Point B false 9cf4e70c-1977-4c9c-8d41-3c777e6c6336 1 539 4619 122 20 600 4629 1 1 {0} 10 5 0 Rectangle corner fillet radius 01c6a537-4c1a-425a-9fce-5c2d4c05aeee Radius Radius false 0 539 4639 122 20 600 4649 1 1 {0} 0 Rectangle defined by P, A and B 88860703-c3a2-44da-9f68-b7f61777e56c Rectangle Rectangle false 0 685 4562 48 48 709 4586.25 Length of rectangle curve 6f9007af-2f2d-4473-9abb-f5d7287847b0 Length Length false 0 685 4610 48 49 709 4634.75 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 1709c4d6-73a6-453f-8c4e-ef2b381b40e1 Relay false 277e686f-fcb5-4411-b782-b0d4e125e2c1 1 958 5178 40 16 978 5186 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 7eca8f17-b48d-4b73-ada0-90a22d3fe212 Relay false 1709c4d6-73a6-453f-8c4e-ef2b381b40e1 1 1051 5172 40 16 1071 5180 f44b92b0-3b5b-493a-86f4-fd7408c3daf3 Bounds Create a numeric domain which encompasses a list of numbers. true 0e4926b2-68c5-4fb5-9406-5ed5323d25c5 Bounds Bounds 788 4797 110 28 846 4811 1 Numbers to include in Bounds f8364432-34aa-4b91-b0e1-9fb5df31bd3e Numbers Numbers false d082c31a-7d28-4f27-855d-7007967854d7 1 790 4799 44 24 812 4811 Numeric Domain between the lowest and highest numbers in {N} 6662ae79-7937-416d-a1d8-3b9c21175ff3 Domain Domain false 0 858 4799 38 24 877 4811 ce46b74e-00c9-43c4-805a-193b69ea4a11 Multiplication Mathematical multiplication true 481d2e17-3a5e-4c66-b2f6-96c2454e0f20 Multiplication Multiplication 606 4698 65 44 626 4720 2 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 First item for multiplication e3fe9b62-e6d7-4e08-a179-1752afe14e7c A true 164341d6-6366-4ed5-ba8e-d0916606237a 1 608 4700 6 20 611 4710 Second item for multiplication 6621c64a-0d85-41a5-9157-bf80f968c97b B true ac864993-ecc7-4645-ae0f-6a08f6579f35 1 608 4720 6 20 611 4730 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 65536 Result of multiplication 9c3c1611-96aa-4d1e-a87a-e922ccd0280c Result Result false 0 638 4700 31 40 653.5 4720 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true b9b2cd39-0a19-48b3-96da-98d6516509a6 Division Division 1128 4735 40 44 1148 4757 Item to divide (dividend) b6fa3e91-d883-437e-9e09-353a29b328bb A false 89bcc9ed-3adc-47f4-a7f5-021fdf009bd8 1 1130 4737 6 20 1133 4747 Item to divide with (divisor) 6c5f1a49-f196-4546-b9e5-a31f4d8ee704 B false ac864993-ecc7-4645-ae0f-6a08f6579f35 1 1130 4757 6 20 1133 4767 1 1 {0} Grasshopper.Kernel.Types.GH_Integer 65536 The result of the Division 8f5ab813-3691-4499-bab5-66b32b35b891 Result false 0 1160 4737 6 40 1163 4757 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object d082c31a-7d28-4f27-855d-7007967854d7 Relay false 9c3c1611-96aa-4d1e-a87a-e922ccd0280c 1 708 4712 40 16 728 4720 cae9fe53-6d63-44ed-9d6d-13180fbf6f89 1c9de8a1-315f-4c56-af06-8f69fee80a7a Curve Graph Mapper Remap values with a custom graph using input curves. true 1b15e5d7-b70d-40c0-bfb7-a3c51df6fc06 true Curve Graph Mapper Curve Graph Mapper 918 4306 181 224 1013 4418 1 One or multiple graph curves to graph map values with 47d711a0-7060-4d1b-bad2-c959a00717d5 true Curves Curves false 22dbbbf7-d064-42aa-b6ff-7919cb335e9d 1 920 4308 81 27 960.5 4321.75 Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary 6263c084-69a7-485e-b3a1-322d0d30d4bd true Rectangle Rectangle false 88860703-c3a2-44da-9f68-b7f61777e56c 1 920 4335 81 28 960.5 4349.25 1 Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis b246c3b1-0383-40df-a21c-b9274e81e7c9 true Values Values false d082c31a-7d28-4f27-855d-7007967854d7 1 920 4363 81 27 960.5 4376.75 Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used) 32dc76c2-1d1d-490b-9dee-886be569c4e3 true X Axis X Axis true 6662ae79-7937-416d-a1d8-3b9c21175ff3 1 920 4390 81 28 960.5 4404.25 Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used) fb3d9ec5-c5dd-4452-b9ed-63bf580c10b8 true Y Axis Y Axis true 6662ae79-7937-416d-a1d8-3b9c21175ff3 1 920 4418 81 27 960.5 4431.75 Flip the graphs X Axis from the bottom of the graph to the top of the graph 1cf007db-993a-4878-a634-f7a46e41c0e8 true Flip Flip false 0 920 4445 81 28 960.5 4459.25 1 1 {0} false Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle 8eddb96d-8ebc-47f7-83f3-f3158c04cd9a true Snap Snap false 0 920 4473 81 27 960.5 4486.75 1 1 {0} false Size of the graph labels 377f3048-7eac-459f-ab33-2cf99fd856ef true Text Size Text Size false 0 920 4500 81 28 960.5 4514.25 1 1 {0} 0.0625 1 Resulting graph mapped values, mapped on the Y Axis 4d507023-5f74-4ea9-90d5-c49f4efde4c4 true Mapped Mapped false 0 1025 4308 72 20 1061 4318 1 The graph curves inside the boundary of the graph 69566f84-31c7-4b60-a265-958649cc95b8 true Graph Curves Graph Curves false 0 1025 4328 72 20 1061 4338 1 The points on the graph curves where the X Axis input values intersected true 7e15eda7-e3db-46d6-b32c-07f93d04e5e0 true Graph Points Graph Points false 0 1025 4348 72 20 1061 4358 1 The lines from the X Axis input values to the graph curves true 2d35311d-b2fc-4e4a-89b9-f8415c329480 true Value Lines Value Lines false 0 1025 4368 72 20 1061 4378 1 The points plotted on the X Axis which represent the input values true 3dcf8fc7-f872-4db6-964c-02491ea708e8 true Value Points Value Points false 0 1025 4388 72 20 1061 4398 1 The lines from the graph curves to the Y Axis graph mapped values true a619b0f9-cb90-4576-a02e-d14af52404e7 true Mapped Lines Mapped Lines false 0 1025 4408 72 20 1061 4418 1 The points mapped on the Y Axis which represent the graph mapped values true 1bed34b2-cb00-432f-81b2-6a7dbf48a2e2 true Mapped Points Mapped Points false 0 1025 4428 72 20 1061 4438 The graph boundary background as a surface c2408f6a-8cd8-4da3-bab3-ad2d2fa5fd12 true Boundary Boundary false 0 1025 4448 72 20 1061 4458 1 The graph labels as curve outlines a4312d00-9ac4-4615-b68d-4a4a0e2fdfc1 true Labels Labels false 0 1025 4468 72 20 1061 4478 1 True for input values outside of the X Axis domain bounds False for input values inside of the X Axis domain bounds 22d0b470-534d-45c7-88b1-74c65784c17e true Out Of Bounds Out Of Bounds false 0 1025 4488 72 20 1061 4498 1 True for input values on the X Axis which intersect a graph curve False for input values on the X Axis which do not intersect a graph curve 016fc1ef-f251-44ce-b2ef-78713b34bdb8 true Intersected Intersected false 0 1025 4508 72 20 1061 4518 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 22dbbbf7-d064-42aa-b6ff-7919cb335e9d Relay false bea7057d-410e-465d-a4c2-343e236993d1 1 446 4420 40 16 466 4428 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703 Scale Scale an object uniformly in all directions. true d966a5ed-ebea-462a-a91a-ca140d1f1cc4 Scale Scale 192 4373 201 64 329 4405 Base geometry 5de50612-e493-4e3d-b481-d84f1f959b89 Geometry Geometry true f95021e8-3298-4a32-aa51-3b43667757bd 1 194 4375 123 20 255.5 4385 Center of scaling e329f2e2-8288-48fb-a898-3564a1c888b0 Center Center false 0 194 4395 123 20 255.5 4405 1 1 {0} 0 0 0 Scaling factor 632b3e96-d6eb-4512-8ce4-83fe43ac13a4 Factor Factor false ac864993-ecc7-4645-ae0f-6a08f6579f35 1 194 4415 123 20 255.5 4425 1 1 {0} 65536 Scaled geometry bea7057d-410e-465d-a4c2-343e236993d1 Geometry Geometry false 0 341 4375 50 30 366 4390 Transformation data 6849d363-c208-438c-a436-54d8075fb9a3 Transform Transform false 0 341 4405 50 30 366 4420 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object f95021e8-3298-4a32-aa51-3b43667757bd Relay false 650d961c-ef6f-4573-ade0-97f698f6a536 1 55 4392 40 16 75 4400 9c85271f-89fa-4e9f-9f4a-d75802120ccc Division Mathematical division true 35f29d0e-4815-42cf-ab22-85354efcb3ea Division Division 1499 5262 85 44 1539 5284 Item to divide (dividend) 282f9873-f0b4-4058-ae02-3fa37ecbeb08 A A false 72713788-9a21-48b2-80ba-d8d582f5c87b 1 1501 5264 26 20 1514 5274 Item to divide with (divisor) d96e021c-87ee-46bb-84de-cb2a4be07b14 B B false 0 1501 5284 26 20 1514 5294 1 1 {0} Grasshopper.Kernel.Types.GH_String false 1 The result of the Division 7e4e6adc-a4d1-47ab-a4c6-c48fb8239b6b Result Result false 0 1551 5264 31 40 1566.5 5284 eeafc956-268e-461d-8e73-ee05c6f72c01 Stream Filter Filters a collection of input streams true 0ed99bc6-d082-4d7e-bde6-4f2c00d9058f Stream Filter Stream Filter 1503 5556 77 104 1542 5608 5 2e3ab970-8545-46bb-836c-1c11e5610bce 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 8ec86459-bf01-4409-baee-174d0d2b13d0 1 8ec86459-bf01-4409-baee-174d0d2b13d0 Index of Gate stream e26840dc-1a24-4155-abc9-09f76d94d0e2 Gate Gate false 260f423e-0647-408e-b12e-bd215b96451f 1 1505 5558 25 20 1517.5 5568 1 1 {0} 0 2 Input stream at index 0 7b4d6bcb-9029-417e-b075-523527cc84e6 false Stream 0 0 true ee4ecbe2-4fbf-4854-bfd4-5d67e8d925cb 1 1505 5578 25 20 1517.5 5588 2 Input stream at index 1 b5c3a3c9-9d7f-42f8-b75b-c86c05a7e23b false Stream 1 1 true fd4f2049-66dc-451d-986e-db1e735564bd 1 1505 5598 25 20 1517.5 5608 2 Input stream at index 2 72eee393-69a1-4dc3-953e-434e786f7f78 false Stream 2 2 true ab0c2868-9e78-4275-96bc-66b04365341d 1 1505 5618 25 20 1517.5 5628 2 Input stream at index 3 0ffc7e3c-042a-4fc8-895a-7674dcc73f84 false Stream 3 3 true b458474d-c32e-4320-ad51-5c1da52b9f36 1 1505 5638 25 20 1517.5 5648 2 Filtered stream e2bd9108-6f13-4773-8437-12590f64999f false Stream S(0) false 0 1554 5558 24 100 1566 5608 33bcf975-a0b2-4b54-99fd-585c893b9e88 Digit Scroller Numeric scroller for single numbers 260f423e-0647-408e-b12e-bd215b96451f Digit Scroller false 0 12 11 0.0 1347 5508 250 20 1347.551 5508.053 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true b458474d-c32e-4320-ad51-5c1da52b9f36 Curve XHG..⠀⠀⠀⠀ⵙ꞉ⵙ◯ⵙᗝⵙꖴⵙⓄⵙᙏⵙᕤᕦⵙꖴⵙᔓᔕⵙ◯ⵙИNⵙⓄⵙꖴⵙ✤ⵙꖴⵙᔓᔕⵙИNⵙᗩⵙᴥⵙ✤ⵙ◯ⵙꗳⵙᙁⵙᗱᗴⵙᔓᔕⵙ◯ⵙᙁⵙᗩⵙᗱᗴⵙᗝⵙꖴⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙꖴⵙᗝⵙᗱᗴⵙᗩⵙᙁⵙ◯ⵙᔓᔕⵙᗱᗴⵙᙁⵙꗳⵙ◯ⵙ✤ⵙᴥⵙᗩⵙИNⵙᔓᔕⵙꖴⵙ✤ⵙꖴⵙⓄⵙИNⵙ◯ⵙᔓᔕⵙꖴⵙᕤᕦⵙᙏⵙⓄⵙꖴⵙᗝⵙ◯ⵙ꞉ⵙ⠀⠀⠀⠀..GHX false 0 1368 5909 50 24 1393.313 5921.028 1 1 {0;0;0;0;0;0;0;0;0;0;0;0} -1 7dh5PJXb/yhwkZSUeR4yzzNbUfqsDiWKdBCNKiSRqchQiJToNFGRkgolGUs5yBApUuZ52uZ5bKBMt57T91n9vufev+794/6xP3949n57rGetz9qvZX8+dEvo6OgWf8TP689gof/xw/LPow7OLnoux4+7OCuK7rJzP+Hg4qy7VllNQ1ldTUNz3Y8XqqpqiqJ6Hk4nPdztdJ3tPE66H3JSFDX1OOzkYLPNztvcxdHOWZdCUVdfp2anvdZmLYVC0VBl/PkUPmJwZQM7l+N2J929lU1dnLz1PNw97Zb++CWT5z8PYz7kbnPUwdNOw/b4ChdXO2dnD/fDJ5baHjp56OdNy5cvp/85TzYZOjr1H9fwuZUsKxh+vGD9+eOZOB0d/Xd/erpH4v+saXaRno7r1/qotQ0mBoM17Pm9dGxBS8QnnnyRD5n78XuXX/ey0dP9d0zAv+gfz/9vYfjtddV6/yMxsdLon6sW+jmhebZ/T4ifPfXAzpW17PkL/0zISMCb9+eE3vy6l+0/g/5MT9D/xeSC//c3ElFOTPIF/HMtgSanjnLPmcpf7+uhgHkNXcnWVmgmnArm5qlRoeXd8JH4fR9sldihkXFyEAqJ+0Zg/dRYeZPQ+K/7J+DWQYNnAYenfv3dJ2DfyhsQofXl199/hTCV/u2PmWd+jfMNGHlf8ue2f/813hz4LZzvq8iY/zXuIsy5JzW56dGhf8anQ1lHOAt8k5egm8Rz6NHJPb4JwbwM6E/ieQxI1aT70pWzS9Fq4rmMaGTTthNRw4yojHj+MvSY8mz3QwsmdJ6Yx3JkKyeIkvOXIz1iPiuQmHCQ9Es5ZrTI83NezKiNbZilMHwlyiXmx4JuLzX7VDbPgryIea5Cu2aym2rtVyNNYr6siGNEvKC9ihXNEPNmQ/0um80+32VD9cT82dAbB+8t3/5kR8+JdbCjhzbJ2gtMHOg6sR4OdHZ/pyLDKw7kSqyLE1lbcosud+dEJsT6OJHuTkPOVTJcSJFYJxcS3HZmGUcrF2Im1suNvumnf+O5xo0GiHVzo4aNvSOCW3hQCbF+HpS5jp8qOsuD4og88KJwdeMaqTReFEjkgw+5KZ4tkbfjQweJvPChHdKZf6sI8KONRH74kZLo4FPNCn4kRORJAK0UEI7VPieAvhP5EkCDnDvDN2oLokYib4Lo7arg83pjgugFkT8hFM/0t/fWh0IogsijEApaMupkbCWM3Il8CqNDs6IH/1wlgkyJvIog+GJuZvlaBCkT+V2DhMdDtuw7tQaxEHleg/xOtt9R5RFFX4l8iyJnNy+eZ66iqJfIuyja78xxlfJeFNUR+RdFxo5PV2RJif3aBzGke3RLkE6AGMok9kMMKdlR53KbxVAcsS/iSOiwjydQxFE4sT/iaKU110ThFXEUROyTOJrdm+KgPySOThD7JYGGrbZ2l+hLIBti3yRQi0XXPsN7EsiM2D8J9P7P0/Xvv0kgPWIfJVHODh5TE3NJpEHspyRK2p5WWpkiiSSIfZVE0YZGemYrpBAnsb9SKHRLT26djRSi3/xzn6WQj56fllWeFJoi9lsKHUN8ac180qiT2HdptFs3Q27/if8cTv++/vuc+e1g+2T5jv7UQVj51sXt2InJjf/xtXynLxpmeMFhzmWtCR+5yXPpifaqDXlpISC8lPdqbIg66QUHjIRmAq/DQkH5IBOnHuk7T+ZepCZFQvCjOA4nDlPS8zt1V8dUx0CdhoA5zwYr0t9o0cns9X0AwtKu1UX0h0gvNWFpbwiLB8nsVonSF0dI9wl6Vhxy+zFoc4wZO2ofJz37yMYBtUdJ8NmkpHJC3510IcXrjbfSU0Dxcbd1vJkn6eYcHK35rWkQ7vXGZtc7H9KPcybFW1pnQBkaLvZ54E+6WdR8kCf1GQw+uZyW5xpIur+BAwfdwUxwnFxy48AfwaT/rX3OvLHtBajZf3tQsjmEdHnU9qp7dxbkijtF3fYJI90zrVCbqfZvqC6M8vCiXiZ9zSCThuz2HDjjhvROr79G+vYt1GjF17lgqhBbUC8STvrz9SlfvlPy4J6p4jYOgRuk/5E0bOXzKB+2BHUUTSneIj3W5tJGw7ACWMbfbK1tGUW6uMt+6o1NhfC0TO55XGQ06cXHX0Te+loIrFv7Cicm7pJuRUdvpPfkNeQU7Tg7rBJLek6LndblfUUgZn5J54L7fdLfHRtlcF5VDPzJMnVSBQ9I59F+XdCYWwxnzh91iOWLI/3hgHt/8bE38H67Wt9H33jSVT9utZHjLYGCT/R8IYMJpOt1JUXMF5aA9UFK2v1Dj0nfXxBuoe34FmRyXLZPdCeSfs2HYaGW4x14HjjuZ+CaRHrct0tHS7PegYmcSK33smTSndc2fGXdXwqn1mlSrRJScB5YxG4+WCyF05NR95tl0ki3cMwq8o0tA2WWK3tUlqSTfjdh77Wb8B4CLg8wcXRgP3L1VOJY63t4sFs02aEwg3Tdl2pmAV7lcHt415DQ42ekIys5z60cHyB9xXIGjvDnpD+2qrmr/+QDhLh59SoHZpIemm88544+wrQto8Zujxc4P45BTtW1H8HX9bShp9NL0qM03U4ctq+A/pOPjB3ts0g/9dcBJDFTARadCmuFj/xNenDvZF2oXiUEry9qcz2aTbrbcM1t4dBKeDmXxrTNOYd0ruZjdO8rKqEmWs376qlc0m/7pttHcFVBp7nvUulzr0i/paDg52tVBaKB1VET4XmkU7nidQKjq+DgNnXLuoR80u1dnzU9aauCusIr7/cdKCCdlYGxeVqkGjR0lPwLh7CHDj+YcbSuhtnoNcVhXoWkaxWqKDHfqwbj0JZ3KUyv8X7laCXUtVXDrU0Wk8KR2HdfjnpTJVgDox1fm8vlikhvLpITpt9dA4P9tdapudgNBL0cj92ogZB4qai/TYtJr43ujlxdVQP3XZZ0dvRiD40YeT61shY22XvV8Jx+g8/Dra2fBLbUgkfgNxMzzhJ8Pg/feRrmXwvlA4YnQ5Owc3BYWxpm1cKN9J3x6fpvSZ+JOhNiNVELbE2FIXnt2EOaRMdfydSB2ju35Y+835HeLitj5negDtrT0kwPcZeSrmjTcz0mog7qTDIqutOxv2W8EitRVgfV540oUjvKSF/60tafY7EOnjV0uwuNYlevC0KuGvVQ5pmaUxD2nvR1n04vbrKvhyrl5cErFMrxeS4T237p9o/vwHeXXBgrw34kjIVh14d6WFgm9Mre8QPp6xNDrz5YrIeddZz2x1k+4v87lrrxp9QaINDu9YqZZOztw2stmg83gF0IgyudaQXpV71WJVSEN0BY6JUk/ynsAvEnQvcVNwDnSFPoS6NK0rXFBNuDPzfAJ5F+Gds72FM3dR8ylWyEPe4v7v8xhv3ZjdCsArNGaDaaZzNFVaRnsn62aQlsBCfGL+kXr2NnVFhZFJfeCFU8ad0jPdjlv+qxiVEb4Vq+psyptdWkT3kkHjRf3QSpKfYi0qHYHcWOPPxjQxNMC9SETrdiX4hLvT/u0ARPvu/aPqhSQ/qm7fSLB241gbprufW3QOxvpKK0I4qb4NTx+DapeuztFZxJ1yebQFLwyoyTXC3p4+wbL+4XaYaoOMG58tPYRXPH+6aNmmEs2XObfiV2K7b557anmiEuV/pglUQd6Sm71IoSHjaDjlTbO/dT2K9YmhQWVDTD8/MWsjLvsfccZkGZs82w5uRmzVGRetLPm/NmnJdpgfTIfc+L3LFHljEeX2vWArcsLc4mlmD/y3jrk1K/FsjP5j53V6CB9D0Zq0PgSQskWlGfxzhjv5Ygzhxd1wIfYyMEnr7GHnjthUA7XSuMzcyXFvM04s/VGdkwZsVWSBtS7e0/hj1vMYtL3LIVOG9+uc2Vjz1zo9Zu6cBW6I/dKG3E2YS/J5yK7uZLbgX7kqQPF+yx394fLzvb0AquBrzd5TnYz/TsvfCRvg32OikV8bE14/Oh7ZphhFIbWNutqjtmi91sek+csVUbtDVNXXydhZ3tvlfWbGAbNPj171uzqoV0O0re9XvJbZAme7o64BB2um9OijqNbbCQH+LVl4n9hm6IYzl9O1yMm+rdwdxK+lF2cQlLpXZIW+qdnXsAu3pTLGeLZTtsyz4fo/gMewrrwpBVYDtI/rlC7x5TG+le/gv6VU/bIbB1+yGufdjtJGyT9BvaYUqnNTssDfvR1QI3ny3pgJ1hdvyMjO34+3DObkcRxQ54XfzAJGA39tmFcv/gXR2waUhfcz4ZO6/8fZ7BgA5oTe9L8qXvIH1y/4tDhkkdEObxKWZ2F/Y5oW1nE+o64Nr3dwunk7CX3uc61zXZAVkBXxRru7H/E1T4n9cfaZ4VuLToTx/wn/f/XzRC/k+Fj6HO9ocdH6RRIVEQS6N1a/uEDsvKoDSiMJZBspoBN3sCZVAsUSDLID41ATb7Nhl0hSiUZRGT8vOLg2tlkT9RMMuiaXkTBqfrssiFKJxlUb/MwOmxEVlkTRTQcqhBMvCrq4Ec2kEU0nLorZiQ66f7cgiIgloOvRR5MegxJ4dUiMJaHj0SNLWZ2SWP1hAFtjy6xTfU6pMuj1iJhok8Os99btf8SgW0QBTcCsiDQ6TS/4gCGiUKbwVkx5plSF+ogNqIAlwBWbD8WXROUBF9IApxRbR5xcgGJk9F9IooyBWR5rLzLy5WKqKnRGGuiCQZRFVZFJTQHaJAV0JcdNmJl4OVUBhRqCsh+nkzCXaqEvIhCnZlNPVt9E64jjJyIAp3ZUT9eoGH54YysiIKeGVU+UnsauS4MjIgCnkVlDeRs0LQSAVpEQW9CkoZtQi6G6eCpIjCXgXdGRqfW7OogkKJAl8VlXzSX1+lqIroT/ws9FWR7hS7F8ceVeRNFPyqKHOi/bnZBVU0QRT+qkhxPGky4rkqOko0AFRR3KiXcn2nKqISjQBVJDiy2ZGXVQ1ZEg0BNRQ+xPHYaoMa+kg0BtQQ82BHT5SDGtpCNAjUUGD/U7GWm2ooj2gUqKFvvd4HhIrVEIVoGKght54t0fsn1dBTonGgjga6OBtjRNSRJNFAUEcHO6lc1G3q6A7RSFBHDR3JO8W81REn0VBQRzvafS4fTlBHoURjQR2VtBq8f1ijjuj3/WwwqKONLVzLe+k0kA/RaNBAmU2d+tLKGmiSaDhoIKXGlLP2ezWQA9F40EBx9b55j0M0EJVoQGggobqts4OZGsiKaERooIga7nUK3RqogmhIaKCV1V0nndg0kQHRmNBEgZWp6cm6miiPaFBoou8fT4+NHdNEWkSjQhO5fzBUUI3URMlEw0ITDb7nOer2RhNJEY0LTXSorDsuY0oT3SEaGBTU+C6t89MaCuIiGhkUZPr2jAjFmIIuEQ0NCnr3xmivpw8FMRCNDQqCYt7Il48oyJdocFDQy9c9tTO1FPSJaHRQkHJhOrsOvdavhocWSsj3M/FV0UJdRONDC4nkbQvL3af1qwGihW7k8r2bv6hFdmn/+4rPmX8fbIKpX16tZqJCHAQPcq/GHui2J1+RmwpZgdEBm+SxM1VJ7tj74/36zedVA82xfz6WejIMqMDxiEX+td9v4wTwo1c/7qOGttktScQuKm5WNuFAhXt3UxqhBnv5zJSmtD8VrHSMT5yZx248ZvxkfwQVLnRdE8+W6SRdvyBg/60f4+Zf213xZSd2uZmA0Jo8Kozt8j2gehq7fbiKJ0ctFVoe5KY5JGDfPu3sbD5Ihcdnih7cr8RO6VxfFrVAhdzkZasav2MPCCod7OLshCWxOUUsUl14nr2xWqpynZA4XHgTdmD3Si2SCNzYCTfQpZ2u3th3natWajLrBI7wZTkxD7FvYF/bQnHohJ3G3jfKPmAvXPVnbqRfJ9QYOsR8msausTPZkT6iEwz3nbzML95NurW++uUTiZ3wQUief8N27PFU25qRvE74K5U6sscTu1jAwy/OtZ0wrRmc4RGL/UShY/b3wU54HGq/6lIZdngZN3V1sRNCGZZE3/2M/eXTMR917i6ISs2cShTpIb0mYWY9Vb4LntZciU/bil27qUU+GnXBffEvuunu2J8JnDG03dUFFHMLSLqDPdfic8IGpy54/KxKKqYE++WP36ylArtgcnOb3cUJ7Otqre6tieyChA11jk4CvaQnmtvHKKZ0gc3xa9Fb9LHXnjobb1zcBSn3R3bwOmOfEAthOdfcBSsS9ZvbbmFfPn1wfdVEFzxXmjobVYidnc/ziRZTNzi7ZwUZDmMXPq7RnSncDZsNldhHufpI72jyCzDV7Ib+t/ymQRuxn1WSVVm+rRueBtbuXnkUu9H49pT2Q90Q7H5T59w17EybkyrqvLohUbZ8YiQb+/DS9lPjV7phXaydk34P9jPHfGKUHnVD5GeZyxdX9ZMuNcNocj2vG7adYZTJ0cIunZn9cE19N0TsOTvdYI1d1np1RcNoN9SWSKa2h2C3cZlie8XYAxdcWUY+pGM/oVSSXSXcA9MrwnXimrFn6X1T5NPqgQPCQtwHGQZwPplt666b9EC/8GL3ogJ2PfNDSvr2PRB75Mr8WXPsNknZL5UDeiCJeX1Cz2nsxtneC+ZRPYAWstik47EbjaRe/TujB65GwgH9D9htz2+isy7vge2fX8XofsF+hDuvw6CvB0zEuapYhQdJ94szLvCk6wVOZoPuLH3sQmeyVMZ+fP62H0jO0HLC7vDxrxdplF7Y5sTJciEc+zVHp/oC014oralJepSNfUO4y3Ixp174/Fe37s1O7Es1CnNqLvRC7sWK/abLh0if9jQ1b3nYC9HhSTdrlLFbhqbL6RT0wsfg0cPCFtgftrCfn2rtBZt7mxQVfLHnZF6MX/a9F9T6xLZ9j8XOo375mRdvH/DF5TOFlGDfN6VXZkTpg5ibL6KqhrFzijhO+pn1AVMJs2wt2zA+H9ZpCPO698GyrX+UXqJgN37Qo8j94/N9O/VJ0Mxu7HZrjg76pPWBs3CpMZcf9vWhKQxGlX2whH9mddt97F5+8xznJvrgRLpm7I432MsNpMPl2fshlFXow9EB7Fc9krs2qvdDxAt+C6mVI6RrHhtCr8364VXqm5GzStg1/pApz/ToB9sbruC7A/vX62X+ApH9cL68aWKVG3YD5pvqk9n9cIy64p7Wdey6q5hu6LT3w5VIg57JDOwP9g2oTC8ZgPoggd0barA3ZUjYyEgPgC37tpscn7DLSnXYvjcagEm3Si03jlF8/lwdQd0uA3DY7F6TuRr2ermwRucbA1A5aSqRvQP7RKJH1/GcAXi/EJN/9zh21esawx2dA3BZPPPwXCj2PsEHFsXLB+HD571l1Y+wW/Ek7hVQHQS1Mfp84WLs8r3srJ2Wg+ArksLV3IF9MPfUHt6AQaguLE9aOotdUt2IPvfxIHjnzrnd5h4j/WZha/yHqkFwFM47HKmCfa+Yf4HR7CDwy/OHzG7FPsAa/URNaghMlmrPFhzC7sJUdztgxxB8T5zr6fXGfrJc6RHFZwjeVPr72V/D3rBZosQkfgg0hu+w6z3Gnu1WUVFaOQRRpxy+eeRhN4lf6h83NwQqwckP5muws1884t4qOwz5OpaXGgawD/r7K7lYDMMbhmGDJfPYr9hW8+8JHIbCDxPeXmzjpGvFDVy4nToMSekHmnUksPP270tTahsGbZUllC0U7JGhXc/Zfny++xg6HSK3YA9ZZ3QfaY+A792E4yqWv40/HeSUbT8CCQvfDVfYY2+jv/fN5+YIeMz1Ckt6Yp8ofcvn/2YEvkfKifidwz5rqR9S9HkEPHfcvsF9HXupl8sXfclRsBE42TsQg52tIWN+0WwU1s8kBX99gr1+e4DKZNAoWLzRZdR9gf36XaOV3M9HIUDOkzmnAPuLV2eWHu0ZBVaPdWYuZdg3tnkG9nGNQdo6lGlVgz2C/3Tnpc1jcPjEARHPlt/m+fb5CUvPMRhjz4go6cLOuX5N4B+PxmCLRKuW4eBv48xdMTZqHIOWK0ob5sewT7JdZnVcMQ79U3WfOz9h3y+UMRurMw7JyV9Lv05jZ04WhgHHcai8xLhx/Sx2/vesTLp3x0F0fnQ4ZR57JdOoU/THH/evKQ3duYh95eO18yHj4yAurMDf9pv/2jX4n1c6Ole6lXd/b4RwxFQt//39Sjpa0IIWtKAFLWhBC1rQgha0oAUtaEELWtCCFrSgBS1oQQta0IIWtKAFLWhBC1rQghb/L+J/AQ== 00000000-0000-0000-0000-000000000000 d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true ab0c2868-9e78-4275-96bc-66b04365341d Curve XHG.⠀⠀⠀⠀ⵙ꞉ⵙ◯ⵙᗝⵙꖴⵙⓄⵙᙏⵙᕤᕦⵙꖴⵙᔓᔕⵙ◯ⵙИNⵙⓄⵙꖴⵙ✤ⵙꖴⵙᔓᔕⵙИNⵙᗩⵙᴥⵙ✤ⵙ◯ⵙꗳⵙᙁⵙᗱᗴⵙᔓᔕⵙ◯ⵙᙁⵙᗩⵙᗱᗴⵙᗝⵙꖴⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙꖴⵙᗝⵙᗱᗴⵙᗩⵙᙁⵙ◯ⵙᔓᔕⵙᗱᗴⵙᙁⵙꗳⵙ◯ⵙ✤ⵙᴥⵙᗩⵙИNⵙᔓᔕⵙꖴⵙ✤ⵙꖴⵙⓄⵙИNⵙ◯ⵙᔓᔕⵙꖴⵙᕤᕦⵙᙏⵙⓄⵙꖴⵙᗝⵙ◯ⵙ꞉ⵙ⠀⠀⠀⠀.GHX false 0 1368 5832 50 24 1393.624 5844.288 1 1 {0;0;0;0;0;0;0;0;0;0;0} -1 7dZ7OJRpH8DxJ2dRiTbRHnTUUSJpt8OPlBIJFRFZlUROS2ORNNJW5BCdpBJTLQqTiqSDSTZUlENO5WwcBx3eEpE369d977Xte13vdb3/vH/M74/5zv25n2vmmcdzmWFGMAwz+HmGOjSyIp8fLMx2Orq66bm5uLi5zlExt/fwdHRzXaqtNl9TTWO+5oJFn5+oq8+fo6LHct7N8rBf6mrP2u1h5zxHxYS11dlxm6G9zwa3XfauS7W0NDQWzbf/UXubtpaWlqa6+NC7TPjzxdVW2bu52O/28FEzcXP20WN5eNmLfd6U9Bp+s5F2Htt2OnrZa253kXZzt3d1ZXls9RTbbrfbbuggKSkpkaHzlFNlGI3PPdYvIyst+vnJmKEHT3mGEenbJ8I4yA9/po+DIsw4/Hx1peXGq9pKxmbxGbnAEZNfXX4363D/5/15eKycCPP3eQVf0bBn/V1E/w7s8zrD5eoMnVC11NcnpDSWu8VUpnRs1qfhE1qj7KM4dEKX8Fi5Ly86dHmW/w8nt+KfD/xzBv8c0BnuOqwF1ha7DeuA3YV1G/6QjAd2N9YL6431xfph/bFsbAB2PzYQewD7G/Yg9hD2MDYIG4w9gg3BhmLDsOHYo8NlY5kIXGOZSFxjmWO4xjLHcY1lTuAay5zENZY5hWssE4VrLHMa11gmGtdY5gyuscxZXGOZc7jGMjG4xjJfbsqv+/X9RcesSX/s2zr3r+63TO7kT+vWBcHVo2JTzBcsIvv5Ye4tCgan4Z5Nb9fcZDPis5W7Exe84kDutwni2lu2EdeKnj63dUEizJ7ZaqNvQN/n/WDa4hR3LlhuMYiJOuxNvDbffrDw2TWosvXzVNUIID7zwEwlQUMaqH5nrugvOEhcIs7b4o/ODHj+znziTvdQ4gvSFQa8X90GB4mSO7tsIombuPC5c9vvgaTsj8Uzt58kLnPtXKZ0Jw9klygnHHoUTXztv3KtrtlmgxXrm6meYeeJT00Ij7v+5AH0Rmv4VphziE9IW3w9XfMPsAiaNqJb/hLxtzum+Ow6/hC2dxlGLeqLJ36kqX1eUFcuyB56H7pF5gpxPW3LvkLdfLA1iOv7sCKFeF2xlrdY2COY6MTU5hZfJV61bpdtX/FjeP/J7lHBiWvE1wdXKxyRKwDuSJfEB043iI86f1/7jH4h3Iw6mlhhkk5c30liljLrKTw92B69cFUG8SjfdvURxs/gl+350qJrM4k/0TyYl1T9DF7bcC/9bHeH3kdXAxdHORbBsnZd5pfAe8THWMaqFb0uArFodf3Zljzi1u2yM5y8iiFwUovpGa/7xPkqskq+PcXQGnwy6dzpbOKyARr1E1kl0CLru+fR/QfED1/XLnXpLoF3r6vC73blEDe7cMIwYkcp7E8NzRmv8pB4oXe53uWqUuA43J7vuzGX+F3j7B9qDZ/DyYhBlaNhecRnKDh2WmQ+h/M+9yPEH+cTX/jSTnXZ9DK4em6pTMjIx8QVY1TN7oSXgfbatFOVRk+IO4RVBQ+8L4PWEFZuQkQB8ZyAeWJzrcvht+t5WRkVhcSnKUf/ysoqh7nWfvHNcs+IN9baRjCTKiAwVYltkU5dwtl/23t2BTweJ37shHUR8UHHgNd+tRVgMvVFc5BoMXHJ2MLGm0sqIf7khPwfrlA/oluyLS+qElaeskpcsb6EeJpcqmLB20rwjVkvaPlIXfynZI2GtVUQPqHndt/FUuLHs/UjJsVXwWWTogo34+fEx3cMVnEGq6AgO9Z18Qfqa1Olf99j8QIqHaZ1mnHKiB9bbRKdlfICHJ/s4ycZldO/7xHrSLb4S7DqUhLo9FCP7Jh+q3DzS3B1qvGX5FQQN1obfjEj9SVYsyy6e40q6d/FzsvZULIaWkpWmsh/oD5/0Z17kdbVIDdLa4fhhSp6fQxtX0WlVkNkTHx0rPEL4q1+c2UdJGpgirvj61F91MOmVteIba6B1jdtg+GXXhIXSG8Q8eHWQMyBFP4U02r6/1M2pSFPtBbyXoivzu2nPs2+uuiDRS2Y7h+12juhhnj1jHnVMkm1kKO8/pjWhlriiWapfRJNtaBwYGDp7YfUh7/rv6zriKdaejwc3CfC/rL+//mh8w9fcMMbscPVwbKxPCwTh/tYNpaHZTi4j2VjeVjmAu5j2VgelrmI+1g2lodlLuE+lo3lYZnfcR/LxvKwTDzuY9lYHpZJwH0sG8vDMom4j2VjeVjmMu5j2VgelrmC+1g2lodlknAfy8bysEwy7mPZWB6WScF9LBvLwzJc3Meyv+7Q/fWfbugk8/j9/aPqoGfpCDvOt9Qjdu0c2zezDmI8zBfyN1J3WTv2lOiGOihf1vviwRXq/N6EsIn+dfCd/MDmsyPq6Q+Ij8/99RLqIPXujFGuFtRvuUQc3VtcByESMsyiZOohum0+T/rroHuVoWSvSAPxn6yeHdJUrYcM9aRr3E3UWxrjYtNN6+GDE9/IKoW60dMcAyu/ehg1vrr8vWgjcSvLjOQp8fVgtnKDVKAlde1g5wsTiuvh0aOjOv0p1DdlFqXDQD2USL0NshVrIp7+olwjdkYDPFHSCU20pG6l+nHO8g0NMM7IJagshTprJDtSjd0A0THc1Q2ifPo6MdbabkkNcNnilELeJuoDWxObR1c2wC1PMc7+ZOq//6q6W0miER6ol0nLijTT62M7vvCMZiNsuWF2xcac+gB3wuiLdo2QfMNzovtl6iMM4ZDu0UaocImUXfzpL8fn6xQeyGqEaNbehWmmLcRHy5nc3NfdCKD6FkovUu96o7FipUoTtBfpJoX0UP8eWve2mTaBSsmoZ0UGrcQLMiJ/CjjQBLlnJxeeOEP9nbqgbFJGE1xLko/OF1Dnj10nqBM0wYko9QHrpW3Enb0MpUsn8yEqLvzMslDqnIrv3eWs+BA9kdez+SX103rjai5H8kFxeoRn3Kx24hZqWlY3n/Ah9thL475fqS+Z3vSNgVQzBOpJnzXJoe6btWOMx8pmyPWbZBc6poN4aLfP2+UHmmGlTdXxKEvqxcG9HY9ymiFW++BsSw517xLuTkXJFthX6amW1kadmbGsQdOwBTKze2oj5gmIKzffOTMzogWWj1vTUeJJ/UZ2sMNgRQt4lDyMsU2n7mrvz7o1uRVUuZw5Sj3Ul0SN0bB0bYU2QUF7k1YnvZ7npBZX326FK1uKg+M9qEvPmbZTV6YNJvGu6+snUzc48qbe37oN7r75QSyeT13tmqNuCLcNnDo2ul+d2EW8Rl/8ho1YO4SfUlFcs4663vSbk/hW7aCsu8fLmk09U37+evnr7eAU3zmmKIV6zzdnFUtkO8C0zNo7soq6QMTYUWFnB2zcULsjRLSb+N5jmyLu5nSAilpW9pWZ1C3MRNdkThbAeW3X1Boj6j8G2dS9ChBAgYMSZ5wL9doOuY2rGgQw62Kk7bJg6nueVvlx9DohNJ4jaXyR+gN9BZXmS50QMFpjq/Zt6kzsim/fSXXBCpcHhV2F1G1Ozt2b6twFKfNWeLrUUt8y2i6t/1kXNFn05cUJqAfvyfn5plY3mAVKOSa+p67DkuRlR3eD2/nFrN5+6os8qpWW1XxZ098Xw98LX3tn/Sv46w+d6pHpI/+6lmGEIxzhCEc4whGOcIQjHOEIRzjCEY5whCMc4fw3828= 00000000-0000-0000-0000-000000000000 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects b458474d-c32e-4320-ad51-5c1da52b9f36 1 d285a8e0-c870-4af1-b21c-2d8dfa72a6bc Group XHG..⠀⠀⠀⠀ⵙ꞉ⵙ◯ⵙᗝⵙꖴⵙⓄⵙᙏⵙᕤᕦⵙꖴⵙᔓᔕⵙ◯ⵙИNⵙⓄⵙꖴⵙ✤ⵙꖴⵙᔓᔕⵙИNⵙᗩⵙᴥⵙ✤ⵙ◯ⵙꗳⵙᙁⵙᗱᗴⵙᔓᔕⵙ◯ⵙᙁⵙᗩⵙᗱᗴⵙᗝⵙꖴⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙꖴⵙᗝⵙᗱᗴⵙᗩⵙᙁⵙ◯ⵙᔓᔕⵙᗱᗴⵙᙁⵙꗳⵙ◯ⵙ✤ⵙᴥⵙᗩⵙИNⵙᔓᔕⵙꖴⵙ✤ⵙꖴⵙⓄⵙИNⵙ◯ⵙᔓᔕⵙꖴⵙᕤᕦⵙᙏⵙⓄⵙꖴⵙᗝⵙ◯ⵙ꞉ⵙ⠀⠀⠀⠀..GHX c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects ab0c2868-9e78-4275-96bc-66b04365341d 1 9d0a89d6-8bb6-492d-a109-c81b095422c1 Group XHG.⠀⠀⠀⠀ⵙ꞉ⵙ◯ⵙᗝⵙꖴⵙⓄⵙᙏⵙᕤᕦⵙꖴⵙᔓᔕⵙ◯ⵙИNⵙⓄⵙꖴⵙ✤ⵙꖴⵙᔓᔕⵙИNⵙᗩⵙᴥⵙ✤ⵙ◯ⵙꗳⵙᙁⵙᗱᗴⵙᔓᔕⵙ◯ⵙᙁⵙᗩⵙᗱᗴⵙᗝⵙꖴⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀⠀⠀⠀ⵙꖴⵙᗝⵙᗱᗴⵙᗩⵙᙁⵙ◯ⵙᔓᔕⵙᗱᗴⵙᙁⵙꗳⵙ◯ⵙ✤ⵙᴥⵙᗩⵙИNⵙᔓᔕⵙꖴⵙ✤ⵙꖴⵙⓄⵙИNⵙ◯ⵙᔓᔕⵙꖴⵙᕤᕦⵙᙏⵙⓄⵙꖴⵙᗝⵙ◯ⵙ꞉ⵙ⠀⠀⠀⠀.GHX d5967b9f-e8ee-436b-a8ad-29fdcecf32d5 Curve Contains a collection of generic curves true fd4f2049-66dc-451d-986e-db1e735564bd Curve XHG.⠀ⵙᔓᔕⵙᗱᗴⵙᴥⵙᑎⵙ✤ⵙᗩⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ◯ⵙᗝⵙᗱᗴⵙߦⵙᗩⵙᙏⵙ◯ⵙ∷ⵙ◯ⵙᔓᔕⵙᗝⵙꖴⵙⓄⵙᙏⵙᕤᕦⵙꖴⵙᔓᔕⵙ◯ⵙᗝⵙᗱᗴⵙᗯⵙꖴⵙᴥⵙᗱᗴⵙᗝⵙ◯ⵙᗱᗴⵙᴥⵙᑎⵙ✤ⵙᗩⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ◯ⵙᴥⵙᗩⵙᗱᗴⵙИNⵙꖴⵙᙁⵙ⠀◯⠀ⵙ⠀◯⠀ⵙᙁⵙꖴⵙИNⵙᗱᗴⵙᗩⵙᴥⵙ◯ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗩⵙ✤ⵙᑎⵙᴥⵙᗱᗴⵙ◯ⵙᗝⵙᗱᗴⵙᴥⵙꖴⵙᗯⵙᗱᗴⵙᗝⵙ◯ⵙᔓᔕⵙꖴⵙᕤᕦⵙᙏⵙⓄⵙꖴⵙᗝⵙᔓᔕⵙ◯ⵙ∷ⵙ◯ⵙᙏⵙᗩⵙߦⵙᗱᗴⵙᗝⵙ◯ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗩⵙ✤ⵙᑎⵙᴥⵙᗱᗴⵙᔓᔕⵙ⠀.GHX false 0 1370 5750 50 24 1395.726 5762.778 1 1 {0;0;0;0;0;0;0;0;0;0;0;0;0} -1 7dp3PNXv//jxYxRJZSWKrAaFTlS0PGlRyUiDSlZCZnbKrKQkWlaDQklmQ5KkSEZ07M2xZ4iGEn7e357vc3X7fG6/f75/ff84zz+669Hpdb3O4VyubqGwUCiUqen5x3+Gm3X6l4N7La3s7Lfa29ra28mKHzB3dLKyt9usJL9aUV5hteIa5ekPqNTVsuJbXWycXRzNN9uZuzg7mtjIiuu4mNpYme02P7XP3trcbvPatQoKyqvN1yuZKa1du1aROuOfVYT+5+Ly6ub2tubOjqfkdextTm11cXQ1Z5/+Qw7XP4txmTiaWVq5mises51l72BuZ+fiaOrEfszE2eSfB3FycrL+c588yykUhWmv/57NPYtt+oN5//zydAuFwvrLm5XycMuf5zQ+xUoRwOdHr6zRUu+t4H3TSeE5yyI5nPBtRcDv6T+3x8fysFL+c4bhv9Kf/uY/CxvjIwfVP/qgAar/3NCE+H/fkDBvylHd2ZW8byb/3NCuhacW/HND7/GxPP9e9J+Xh+3fT9P/4uZmMP7uvzf3H/Kg4igVVUV1UGPUAfVBQ9BoNBXNQWkoHR3+d/2TuD4qjlJRVVQHNUYdUB80BI1GU9EclIbS0WGU4ojro+IoFVVFdVBj1AH1QUPQaDQVzUFpKB0dRilOuD4qjlJRVVQHNUYdUB80BI1GU9EclIbS0WGU4ozro+IoFVVFdVBj1AH1QUPQaDQVzUFpKB0dRikuuD4qjlJRVVQHNUYdUB80BI1GU9EclIbS0WGU4orro+IoFVVFdVBj1AH1QUPQaDQVzUFpKB0dRiluuD4qjlJRVVQHNUYdUB80BI1GU9EclIbS0WGU4o7ro+IoFVVFdVBj1AH1QUPQaDQVzUFpKB0dRimncH1UHKWiqqgOaow6oD5oCBqNpqI5KA2lo8MoxQPXR8VRKqqK6qDGqAPqg4ag0WgqmoPSUDo6jFJO4/qoOEpFVVEd1Bh1QH3QEDQaTUVzUBpKR4dRyhlcHxVHqagqqoMaow6oDxqCRqOpaA5KQ+noMErxxPVRcZSKqqI6qDHqgPqgIWg0mormoDSUjg6jFC9cHxVHqagqqoMaow6oDxqCRqOpaA5KQ+noMErxxvVRcZSKqqI6qDHqgPqgIWg0mormoDSUjg6jjEMK8Z9zBp8O9dH8b2Gb/nhhEwXHjr9/neMXbfjPnhIjILXomwW8FJdWcbVoVfm3T4j4WrR+dYNdM9o+2gxyMM4rrFpS7KY/fGFr1O8l4hoijK75W7FvYvQCvMrd03QvWIbRHawEBKSHg0BKSJuPRWwNow+cauZq+3YVitmkWo8t2Mzor6xnFB0avQHtl2pEjtZuZfTsmDxRh+EwaPDrUTH8tpPRl/y408b/ORIup72IVTupw+j5eyrHlXrvgMG5ypel2vsYXeGa8goLx2hoMRgxXB+qz+gn3vE7dAzdA1sPtW8m2wwZnW2BeCm3bQwUe2t18smZMDp3pJpGXW8sFNs8DkjpN2N06mLeni3HH8DV3JtOI03HGX1SRff1lraH4Dkq//g92wlGByOz5jLDR6DHPfGY19CW0VXuZVn21iaA9VTw82ZnB0Zvrj7k66eXCHPmlKys2efI6PZ26/eHliSBfUuV3DEtZ3K+NMgXXqyeAjXzJIZcTVwZ/aXbY/9ZxqnAbripbSrIndH1rEo3KomkgWR86MvBCg9Gl7OYUyVQmwbpy/UsFRQ9yevcqEmJuv4EtP2XSr187M3o3cmlDuVaT0HS+xY1Y7Evo/9IsWl5POsZXJt7yU7S2Y/RKxZWcEnnPQO2yLJdvNVnGX0jz6sXW72eQ1HYVQuPbecZPVF0adq4UjrwGAtz6b3xJ/dTfL1A80s6dFXaLwrZEcDoC5V2VCsmvAD+GS3Sy+ovMrpJuuPLJNMMmPv87LFZHoGMHnzFV//FwpfglUOPk1sWxOgzX6rf21P+Elaudj3h33yF0Z2y1C7aXsyER1Ny1md1Qxhd7HbpHAHVVyC02qGetv4qo7fST6xR+f4KVD7eyFoifY1c/3U/V+/jLJh/2VbMXeQ6o2dqZz7kNXkNFHajzlzBG4x+jWveiufzs+HB6fT3lAU3GX14o1wmrTAbQg1Z9iwXDWV09Xd3L5p4vgER+eNNq2TCGD3q2wsrBaEceDRzKplvYzij/8pZO2h9MgfiLqylfdgbwegJFx7/PFyUA1vUxJepO0Qy+pr4MGUWqbdw5lKrTcD1W4zu5/jkyKHTb2F5Hofy2azbjJ58m1v0eMVb6Jw5NCLff4fR71bLrZNa+Q5WblvS6icWxeixnoonQvzewY/OY/NeyUYz+lL7IZ/EunfQ/syL5v2RdB0WDg1Xai6oV4stmm1/j9E/cfJdH/DPhe3s9lv1Be6T+9+euXFuUy6wz0m6ZJpF+vD3Ool6hTwIlTspttQihlyf4/ZK7YA8WLStXvSWQCyjH7O7td2mKQ9+HSgIfpNHOusLVjOqwnuQqRa0DXKLY3Sp1Meekf7vIUGh5taU7APyuo2rhD6qfw+8UleGeTpJ/y6979kR+XxItrOTz4p6yOjxvVe7nvjmA6XlBsfvI/GMvketZMvjynyAOk3RYpFHZH9wlOnatvwDvB7VoSxpIb2YQ/mb16kPcJmfezVLbAKjO/4Wuq1f/AEyDBrEDK0fM7oQR8TcMpECKOcwlFNYm8joI157A7ptC+CaRUqCB0sSo1d+L9S8lV0ADg3FdVQa6QLpwQ/75xaCsVHuZ617yYy+L/zwQM3RQuC9v3j2J+cU8j5aJ+dmlFwI25N5Y/cvTSXvOyGrRN+JQjgjHVptd5V0bq/Rsc2aRaAieWFh6iTpN7m1y69HFoFzzZPjgrZpjC4sk5Hu11ME7P6nH99tJL1MAeS41hXDFUmuiu17njD65sct72XOFsOxMwFvOd+Qvk00Urj1UzFIRu3d37H6KaNrm1wuWiXyEUTzVlpUxZGu9HDmufmWH+FcoEdR7cJnjJ6VdOfX1acfQejdpT39IaSvjNkwEDv5EZr7y1/O4nzO6HymsuJaO0vgB+uaSqoP6XmH11kEXS+Bbx2bDA1/kj6gGHnLtKkE4tTdeS87pTO6stCieyXLSiF/T/6jl4Okv9WfYV5qXwp6tvENbSdekPfjFdnmYxmloCwfZcDeQ/oD0VHuq5RP8Mb6ZMXC4xmMLjI0Z3yvxiegUKe+S3aSnu2yMSsh+BMILeKyFzZ/yejprhbW4dWfgF/sRu+vTtLFdTwXXplLA6P6dax5FpmMfjV3asGt1TT4eWDqxsk+0h33HXBz2kcDxTy9wCnbV4xeO6defoEbDXTG8rdaj5Du7Zxr6h9BA80Na6zS3LIYPdq62OrtKxqULX/+uWSCdHt/MbWCJhqE5wduzz73mtHvXKCuvDVFg6DT8xu9uLMZ/aSC6e4NEmVwM+HLY+6bpL/8Zi3wYEsZTCxtCDRb/IbRy428ApvNymCFgAGfbzzpyTsLWDvOlUFhlXpTqnAO2d8skp+lx5XB6ltSSr5GpL+c8ZrtYH4ZPHZYVZgSR3q3QujG911lsD/p7K8NA6SbeWzLZ+EoBxnVmewSim8Z3eh2ZBb38nKQSMjNNPYgPdeI/1zXjnIYF1NwGHtL+hbRKofg4+VwW3XF3a5Z7xjd1WqslcO/HO6dc30qs5f0ZpcyOZ24cjjIo78uJ5L0cv/BCsu86esbXbGLbyd9Ib1/3d72cqjY6dtMl81l9G8/u95zs1bAdV3HcQtX0v1OHusNF68AH8WYPZtySFfy71v6Q6UClsoHKh3hymN080r92OWGFRAwUJWRv4903nlq3StOV8DeM23bPKJID0sUOcISUQHOC/afcukjPV9ezP1xegVEjB4bTF/7ntHHfmo+lamsgBhvBdjsS/oN6PU686UCvnsrCHGUkL5IeKdD7NxKoO+jfuMTzidfz6cVWe+vrAT251p+Ruakl6e6ZrhoVMKgkcex/jTSfbVOCombV0JrzLLtzydJn5EzP+aebyW8zntS/2r3B3JOuMH79dedSkic35I5EU46D1v/LtnMSjjSY8Dp0UW6gEu46rrqSjChjlmsWlPA6Ds4lfSFRyphm1tJrIgf6UU880Sq51TBzM8K51VppK+e5yRkK1MF0Q6e5RGLC8l5VaO1vHlbFahbzjVfbku6VfqGkZXGVXCEW2eg+xXp41zn2PefrgI1M1HVeq4icp5vz793KLQKynM/rZowID1IuvbQ5rQqcKN8jNB+RPqCXoGGieIqeNDJoUIbIz2e18jxdlcV/FRYdcRLo5icEw7syxdmqYa1axvz9MNJ5xBJNnddVA1KuttsjvaQvjluWe+TtdVwuoq++YryR3J+gIGGT9rVYDCmurE7gPSbmbpjJVbVYJOlImdZR7oZy+dPSWer4fAovyDPihJGnxKZscjhTjXwXP5U1ORB+t1ZbUvmv6gGD7cdKbRi0rVNym7doVXDzPrIxG6RUkbf8Pv71Ky+apAKmt8nYUe6z5WfSw+z1UB64GIZrzekB4atOnZVpAb6Og98HOf5RPbtoEvHktbWwOm5tmURpqTnuTyLTdGqAcEP7A4Hn5EeH188Hm5RA2HqzZnCbDRGNyhIzbLyqYFgTrsEQVnSrzibuUtG1IDKDv5FkvtJd7ZVnspNq4GS8fYzG71IH/q8+rZW0fT9g9FV04ekv7PpH3zXVgPF7E49oTTSgc3XS2K8BvjMuCVrf5LuU5dYfYK/FgY7zzculSoj55bVLd5RK2tB/PGhl96apAvsVmPJ2VoLW260He50Ib0nXZD+8XAtXP8VY3UgivSvZyqi8p1qAZqUL5UXkB4bxfouKbAWNDh0LQxGSD9sp5LvF1MLMb2PEvsWlZPnJSi9YserWrA/yMHpv51002BDq7HyWlgYICez0p70ugLHiYi+WuC/Ufe2Lpz00Z2DhitZ62CLUcb5q+9Ir+FXpyQJ14GOvOGKvQOkz1JuPSi2ug6kDq23WCRYQb4vZM6u9tOoA9MH178NAOm8cpS+GqM6mDPlFZJvRXqDdQdFzK0OGsxpXx9eJz3xeMl5/St14JIg0BrymvSgB29az8XVQf7bC/N9u0kP7Uo7HZs1fX3t2fvceSsZXdI0JONFRR0Mi4sau24k/XzYlvHsvjqwSfw46WFO+pvBpNhMlnq4fu3J9/PBpJfwZvI/FqqHpRe654W9JD08+mBcyKp6UFT5xZ/cTjpF7+wz6x31cCW8u6Roel/8N7+6tydyk2E9iMXwcH1WIr3gcHMSm3M9tAsohgqYks7x5vS2t5fq4aiMsZraZdIvGQanudyrh3ODXxsc00m/75+4QyKjHnZTrik9opOucTdUL6+0HsIC+Zd3cFUzer+++jKjzun7uXXRS2ot6U4aX7lGxuthxi8qv4UR6XK68zU9+RpAkmb9Kvki6Vo81gosMg2wySNT69dT0nfksM/wggbwqHsWt7OZdB+VHbO+7m8A0Ry2yNucNeT5dn/2M7NpAO37h2aOKpD+Wnfhs49+DcDjdzJf05B0syadplURDbAgfDL90QXSabF+m4NSGmDOeOrzWU9I19fi4+t83wBLfq64Z9NI+h6XulClxgaIL/6tXz6zltGXc8jPPD/SAMlOUa83rCZd91R3eAlnI+z6aJ8ad5j07c1m/rxijRBV8oif35907+rL7LprpzvlWJFfKuniRxvVL+9uhB2SgRlf60nf52pyNtekEVq+Nr2znFFH9oeEvJ7vbo0go9Jb2rzqr+6oGb/sSiMofmHLPXCIdDv71uG9sY3g47fbn3aOdAl/vuHTmY2w0TyaoplCemu1UPk9WiPIpt5fWFhH+purDW/zuhpBqjf5tTp7PaNvezTa0/G7Ed59q6/4IE/6a7MUe1b+JlhKHVXfaUD6+eL5nqIyTWB+123Gx7Ok8031rlsHTdC2O2JMO5l0O5Pkt5r7m6DmndLcqlrSLz9+qGpi3QQBcc2Kh9kayP7T0lLl5NsE4ea5B9vkSN8pKnP/XFgTFAvlWp7QJ/3KYfH315Oa4KeV8YFRP9L9WamG93KbYG/cWx7PJNLTrK9dSKprAtGW5ACOWtJHt+8zzhhqAppiSMo11kZynmw+wPpuRjPUi9u4LZYjXVBn74WiRc2w4ltnecJB0jnDajjKVzfDU/1Nz5X8SD8atPdWrXozrOlT53ufSPqsktn6zYbNcGzkVPPemr/WPbVCr92pGbpXNsxtZWki54cvz6O7LzaDaRRXhL0s6RdOhOn1RzXD92ubnCYPkP7b7pbn4PNmOHt5/Y0gX9IltZxWfSluBsXjhqMiiaT326a7j7Y2Q5hzaEBiNemGF9stvv1ohorXxzQ3sTST822NCdePOS3golan9HEl6Y6L/WzGpFpglc7NbUcOkC7x2Dvi5/oWsBwttBnwIX32Rt9bv7Rbps+HSo/PPCZ97oeI0+PmLXA8SHacu5p0g12Far9Pt4DKfX/9O5QWRn+6fuLr76stEFKS+kZuJel1Wby3Jh62wIWgGLns/aSbJn9SnnzdAjLpnVFaPqRbwPeyyYoWcHa8INCSQPrl90JWU70tcGRI8ZJ9FelZ2Y7uCWMtMMM2tfbTF9L//HgBHQb5/vl5EtJfaOknTnmz+vz7+/9DPwjx3//x8T9wojyoECqOSqNUVBlVRTVQHVQfNUYtUQfUHfVBA9AQNByNRuPRVDQDzUELUBpai9LRHnQYHfv3+fv+kRPlQYVQcVQapaLKqCqqgeqg+qgxaok6oO6oDxqAhqDhaDQaj6aiGWgOWoDS0FqUjvagw+gYSvH7IyfKgwqh4qg0SkWVUVVUA9VB9VFj1BJ1QN1RHzQADUHD0Wg0Hk1FM9ActAClobUoHe1Bh9ExlHL2j5woDyqEiqPSKBVVRlVRDVQH1UeNUUvUAXVHfdAANAQNR6PReDQVzUBz0AKUhtaidLQHHUbHUMq5P3KiPKgQKo5Ko1RUGVVFNVAdVB81Ri1RB9Qd9UED0BA0HI1G49FUNAPNQQtQGlqL0tEedBgdQynn/8iJ8qBCqDgqjVJRZVQV1UB1UH3UGLVEHVB31AcNQEPQcDQajUdT0Qw0By1AaWgtSkd70GF0DKX4/5ET5UGFUHFUGqWiyqgqqoHqoPqoMWqJOqDuqA8agIag4Wg0Go+mohloDlqA0tBalI72oMPoGEq58EdOlAcVQsVRaZSKKqOqqAaqg+qjxqgl6oC6oz5oABqChqPRaDyaimagOWgBSkNrUTragw6jYygl4L/855zx/zvYxEbn5yaw0cGm8QG/EAed0TfdcdpNmU0HtUWdGzTmk65FZw+jCNLhmcErl5AVpJdJh7dTJOhQr8Q9/c8t0m9KuCmwyNJhpaZcr/h+0mXMfM+zKNFhWeIycasTpFcfWtTCsoUOtLev9NK8ST8toriFdQ8dNn609Pt5g/QzpvCEVZ8OWiZmCWoJpJ9coarIZkaHDcKRhRffkF44nF3IZkeHmhPPmsoqSRcW+OTBfooOaxz5OoT7SNfbOFdzxjk6zHj2sc5kinTuwtitM4PpEFP79NUjgVZG/6K/w5Ijkg5VRjr+X2RIP6eh8JYzjg5Jmm1r1wPp2bvWHOBKpYNzoXG+zz7SWTniVnG/osPm3FOKBVakr8s9cWBuPh3Gz1x1n+dNupfwrwqeMjq8Fn4XcuAG6XovDzzhb6RDpWiD651Hfz1+jcBvwW463OwyXtqRTfqPmgNZC0foYCB0OXRFJekvQionF0/QwZd1Z55DL+mcTVWfpDhbYebPdfHpk6SvKFq3SYa/FYxjHm78zd9G/mE7aaG7anEr7FC966YmQ/rGcnvRddOv10hT6T5/FdKPnuxP3rymFS763yku0iNdnYdn/o7p11HSWLRyrhXpm1YkGmnvaoWVOfOO7/Uiffcn6SiD/a1wdnW7+83rpJ+iBHYcM26FSZsnbLXxpMNCF7WT1q2QtXXrhHA26VJa0gVerq3Q6DHjyOEK0o1X+gcG+bbCnHBewds9pEsq8UXdudwKhneXSzROkH71xqhgSlgr1GUmOS7ib2f0kazvHO/ut4IuPXnKQJr03RrBF6qTWiFFty4rbDPpqfl1jwcyWmH/Qs+7lXv/6gl3AtnzWqHe6VI4jyXptdu0VRZ/agVvoZC7uz3/WpfG27i+vhWKfV/GnL9G+rsbLz0PdrZCFF9JZPZD0lt4Sje5DbeCmOwK1+9ZpBtsvawYMd4KRbIflsuVk273u+fM65ltsMBg1T3TbtIPb7++poO3DRYl+VSE/ia9uva76xzRNjgSapVSyNvB6JFJKibrpdvA8uaypePLSNe9epDXUrEN2vO9l6zcRLpUzUhcxPTXU5du/m0DXdK9uC+qlO5sgw9vy874Hyf9Hf3I+Iz9bdCiMPEk7TTpLVGeE6rGbaDwYIlcQwjpDW5Fx72t24BWda+W9QHp1ge/Gbx1bYOmFTvvS78ivaDh/K+Zfm3Qf/O4qyaN9CC9RhudoDYw2p6patdJenPqmuo74W0gtcdlIOgX6WlZj44MxbRBId+6Y4/ndTL6Zl3l5dtT2iDxFvu1/CWke4m/M4zKbAPVSS2jlvWkLy7nkZl83wZnAjqffdMifcmquicmZdP38/a7x6xjpPsdyF5a1NgG8TtmRyw8RXr6qn1JStNf95WjLN+lr5C+6Ieka8Lo9OdRe7b7mhjS73M+SpKcaoO4wjj2zRmkqz476hfN1Q4ZWeE+W0pI/1L6QmqJYDu4+g1/2tZG+gvu5e+SJNrBwvpn1dYfpGfJigdvlmuH2QobXYC7i9ETNYVfVyi3w7PXzsFKEqQLFAV5O2xrBxZ66AzZdaR79E5xCei0g+X1Ny9EdpP+QfLXjezD7ZANa8/PMiZ9wmzePgeLdmgyN9UccSZd0LXRW8apHfJP0/qqL5LO2cCp2+fVDnvaJTe/uEv6zVs7WJ5eaodODT6x609J11XWLT4b2g5tWpbWJwpIv/e1v+/I/XZQshgf39REemUB/bZKcjuILk54xDVCOjV1crFMZjvsCj6gWTGzm9ED1ARTRfLbQSu2LTN0EelXYr8GC0+/n2PnyxXvo5LufshoSqy5HUoL5uyds510RwseVWpfOxx9rSuVY0D6luuPbuz63g4/xLJ4be1IN/N6o2rP2gHmrWOD/GdJv7fzUsDduR1wMeR94LMw0rlmdafVLuwAASftF1qJpGsUmlEWL+8AzvlBam05pL/aXpprp9gBn+xdRuyqSK++9VCiGDrg4dyChK+9pCevXOinqNkBkkPBkk6TpIu/j5OL1+8AmdYJqT6+Hkbf8DJzj4x5B2h/igk0WE76pjU9e16c7ABng17utxtJf6fMZrvXa/r97PDCRVyH9E5fdsr4pQ6ISzl13u0Y6Ye0FyikhXWA7ZFagXx30hXHr9i6xHYAj4tc5ewg0v1Oeo6op3VA36rdQRr3SNfxniUkk90BCwQ9fp1+TnqGZA2bcHEHVJilfI0rJN2BPotPqLYDaivlV+c3kW6WZBO4bHqfCm7yd2j8QvrkF+mSbSMdED35+VjPjF5Gp1VWiThNdcD9GQWlvcKky7vR8tO4O4G6Y9SSLke6a6ALH8vCTjgv7DlcrEb6q/7re02Wd0IZ32XhxP2kn7giklK+phN+Scx+5mNF+rlfrz33b+kEscwf9js9SS+JbZvZp90JNfP62WdeJb3/cHBoiGEnNLm/WpYeS7qVe77TTutOyE83CjTIIP2O29gXgel9MOngk+ahYtJbTnfojfp3wuLnxdXuLaS7v3/a0nGjE6pnsiz7OkK6h9el+t770/cT3uNpMrOP0c+v/XGeNa0Tzu1Rv5ojTPqUmIv8qjed8MZk7yxeOdLf6n8YtZ/eN79bPU/eq0p6xMM8qfcNnTDqQV92Xo90wS1dk/J90/dvbi0Wf5x0F6eGD0ljnZA+8WTLq1OkKxsH5qhxdMEXx5H12ZdJn3nWYFn//C6Y6aSQmhpFepTl8NaEJV3AWW2+7doT0l88+qLrrdgFvCWP7pm+J/2Uu9HlE1u6ps8t+XYStaR/ulkhZ6PbBR/DCnVL+0jvyuKyPTe9/5qri4xYTpCu9mFP4FP7Lpi7I3RgeF4/o3Oc5b7z06sLLnlJshyXJP3bvEsdB650wamcowUf1pAekcUZWnynC4Y9DnfMVyedf/uC3oNJXVA712pE24B09WK2eb+zuuDDSYnrLtakm5y8qZ7xcbr7Oev7e5IuofP99eXG6etfGmn3DSa9Iu3JvVMDXXBcWqvM4h7pZe+aRLx/d0GH30S20lPSr3StMb3D3Q0Ry4+qfckjfZmnhFelSDfkrXs650Y16ZYf4+OWyHWDpOy6J2I9pK9suDUZtLkbzogmFVz/SbowTTWTR6sbrIafNg1xDTD60hlF3xKPdoN88tkriiKkF3Vp1Zvad8OtJp8TR+VIV8yyOKHgM319szNLHFT+evwmh5ZFV7thUeQeJUtt0hV2Ldwtdr8bvtlqbNlhTPq77XdLNz3thtjA2vJZJ0kX/HnN0jmvGzoU/cOe+JJeWLVvW/70vm8ZeWOu6jXSNyymOCt0d8M8aaOStPukfzn4diRjrBvuK2V4czwlfZ/ksk4Drh7gDv54XzWX9GuSX3Tmi/RA4CfR8iMVf13/3Ca1frkeGJQVu3e4nfRw5dysBugBt86QuE2jpLs3Ohd06fbAcrli5ynWz+Tz/ij7OPf094NtMy7FxvCRPrr+ZZimaw+s3ZlfJC1J+kwnYYOHAT3waxbN88pq0nmsFB6I3OoBbdeD+ypVSffs/uqWmNQDIdfcO39qk77u4Je8Azk94Pg8r2DyKOnXbuj7LqrogceZe0LbbElXPDB591dnD3i+TemKPUN6UveROV/HeuBEpLDe9kDSU90jXnJw9wLXm30uuRGkK8wPuLJWrBdM2Uq7F8eTvkcx1dlToRdul97ZfjCd9KxvuntbtveC/P3gFTZ5pDdtspl92GB6n82QVjQsJ91LPNd32KYXHsgn/5ahk/7zZeeNKJ9eaNkju7T8M+k7n6yRtLzRC0ubzuzeP076gHAv+674XiiV3jPvKecgo5/hExHcntULPxslefvnk67pVyJrQOsFpf2mI78lSd9u3C/q39ELLiL79vesIn1ztkFW8VgvnNwi05S4ifTOnJ+1MnP6QM+QRX7XTtLnTqZtiZbog+e6gwNv9pPuG+OSL7+uD56y/Xozx5T05BTNVVW7+uDQ9hVainakh50/vOO6UR9M5p0Hqgfped/6yi2d+4BdVmgzuz/pEmoOkfsv9sFr6vfh5Kukj/HfNDa42wd5UWozqXdIV9sL3U5P+yAwTk7mQjzplksiBmML+sA7iJXj2VPS5SaF1g409UGSnYRWevZfr5vfRbedo30wn8KZHFRI+jM73pNZnP2weMu+mvWVpJd6bmzYtrgfEiQLTmc2k54Ek7Ztiv1waf4erXm9pCsvyWu5sbMf7i3/wao8Snq4uFPnYaN+CM7j1F4zQfqhS84KSi79UDL8rYeNY4jRa2qz3JcF9sOLSIuABzykm5hVWMpM7++llSpdixaS/nV+fRq86IfImeFZZlKkL1h8k8WqpB86eUrzPWVJzw12ZI9r74e0455vrdaSHsF6zXx0eh9/ufDCieUqpGcs/1iqxzMAnq38vuk7SD+rn9nzftkAsHCGvRfUJj1lcfahnZsHgM+o7Kf6QdK50jmLm/QGoHRhJX2nEemmAfeb/U4MQNADNhCxIL0zxnG98vS+fNlmYX22Hemesju8JsIGwPzqylOrXUl3KqjRKk8egC/34zqcPEmnc9bsTn8/ADIb9nedP0f6qtIhgUeNAzAQbLHTIpD0tY/KNBKm99lF7Lb1C66RLrZe6fxLrs9QH3rYIiyc9Ev+n49XS3yGW3pX33TeJV3zSMNFyvrPYJdU/ZQ1jvTxO5wXlXQ+Q8hHY8HBBNIf3o6b9LD4DP4fKzIfppLOeoLvXJHXZ3jWt811VTrpS1Z0pS0N/QwjsZvEzr8i3erYd7HLSZ+h9UNGUHwO6SJ6R80npve7KBv5WxHvSa9V8Bc61TjdOwMl9YtIn311xafJ0c+wJnIDpaOUdMdIs8VXZg9CKU2cb3PFX9e3SoxcJjUIqyxilMxqSL+xt6/mw4ZBqHR/qHuggfTBtc5WJ/cOwvDI9S2CLaTPKxJukzwxCG3z9Qbvt5HON7CissF3EMbb9Tb87iR98aBX2a2IQVjhGThHsvev90vXaWvTtEHws3DVERgg/eqkqOKq6fe/XZ7w5/JB0htyJzNYWgdhtSP7J8MvpLe4HgmqGxuEt8I67c9G/3pehhKq6dPvz0Tp+0K130jX4Ok3DpMeAsEXskYffpDeUc/rfUZ1CEr0U+L9fpIeU5kiY64/BNxNbj2zxklX4H40pOMwBFcGTfkNf5N+JDnFCAKGYHZho9iZCdJ5qQc5qdFDwKfSOsNikvRixyE3yYwhmNU/kS06RfqHCepmQdoQHG/ZvSP6r360v7GDq2cIPlQGhA/+1Tdvd4xhGxvC/xcg/c8M/1c/RJ2z5u8fhPB6Lcv+9+9nU5jDHOYwhznMYQ5zmMMc5jCHOcxhDnOYwxzmMIc5zGEOc5jDHOYwhznMYQ5zmMMc5jCHOcxhDnOYwxzmMIc5zGEOc5jDHOYwhznMYQ5zmMMc5jCHOcxhDnOYwxzm/DP/Dw== 00000000-0000-0000-0000-000000000000 c552a431-af5b-46a9-a8a4-0fcbc27ef596 Group 1 255;255;255;255 A group of Grasshopper objects fd4f2049-66dc-451d-986e-db1e735564bd 1 06de9dbf-d07f-4a85-a765-83ad8b6484b1 Group XHG.⠀ⵙᔓᔕⵙᗱᗴⵙᴥⵙᑎⵙ✤ⵙᗩⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ◯ⵙᗝⵙᗱᗴⵙߦⵙᗩⵙᙏⵙ◯ⵙ∷ⵙ◯ⵙᔓᔕⵙᗝⵙꖴⵙⓄⵙᙏⵙᕤᕦⵙꖴⵙᔓᔕⵙ◯ⵙᗝⵙᗱᗴⵙᗯⵙꖴⵙᴥⵙᗱᗴⵙᗝⵙ◯ⵙᗱᗴⵙᴥⵙᑎⵙ✤ⵙᗩⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ◯ⵙᴥⵙᗩⵙᗱᗴⵙИNⵙꖴⵙᙁⵙ⠀◯⠀ⵙ⠀◯⠀ⵙᙁⵙꖴⵙИNⵙᗱᗴⵙᗩⵙᴥⵙ◯ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗩⵙ✤ⵙᑎⵙᴥⵙᗱᗴⵙ◯ⵙᗝⵙᗱᗴⵙᴥⵙꖴⵙᗯⵙᗱᗴⵙᗝⵙ◯ⵙᔓᔕⵙꖴⵙᕤᕦⵙᙏⵙⓄⵙꖴⵙᗝⵙᔓᔕⵙ◯ⵙ∷ⵙ◯ⵙᙏⵙᗩⵙߦⵙᗱᗴⵙᗝⵙ◯ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗩⵙ✤ⵙᑎⵙᴥⵙᗱᗴⵙᔓᔕⵙ⠀.GHX ad013215-63f3-46da-8b16-ce3bf593a0c0 1c9de8a1-315f-4c56-af06-8f69fee80a7a Curve Edit Points Extract the edit points on a curve at knot averages, the points an interpolated curve interpolated through. true 1606297d-c3a7-4bc0-95e2-acd8e3cc0489 Curve Edit Points Curve Edit Points 1641 5475 123 64 1695 5507 Curve to get the edit points of c2631487-b875-473d-a3b0-c180fad25644 Curve Curve false 0e0d5017-4f0f-4bab-986c-96ea91bffc65 1 1643 5477 40 30 1663 5492 If True, only the edit points at knots (span ends) are extracted (the points an interpolated curve interpolated through) If False, all edit points are extracted which equals the same amount as the curve control points (like Rhino's EditPtOn command) ffda07ea-46a6-4262-9f81-b21190e6784c Knots Knots false 0 1643 5507 40 30 1663 5522 1 1 {0} true 1 Edit points on the curve d0b35ace-2c61-468c-b741-4314b71498c3 Points Points false 0 1707 5477 55 20 1734.5 5487 1 Tangent vectors at edit points f6957ee7-4abe-433d-8de1-f9298145bca2 Tangents Tangents false 0 1707 5497 55 20 1734.5 5507 1 Parameter values at edit points f31e48a4-7cbe-4990-89d5-e4c79512edb4 Parameters Parameters false 0 1707 5517 55 20 1734.5 5527 1817fd29-20ae-4503-b542-f0fb651e67d7 List Length Measure the length of a list. true 4b2f821b-45e3-4410-9aa9-a29a26c362df List Length List Length 1809 5483 97 28 1842 5497 1 Base list aab63b11-16ab-4f4e-8cf2-b7fa556e1009 List List false d0b35ace-2c61-468c-b741-4314b71498c3 1 1811 5485 19 24 1820.5 5497 Number of items in L 1e4870d3-d88b-4e3b-a627-be71345d40a9 (X-1)/1 Length Length false 0 1854 5485 50 24 1871 5497 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 734d95fb-156d-4c55-9bb3-56f2a3e61067 Relay false 7428efec-7c04-44c5-9681-0bb0a240649a 1 1256 388 40 16 1276 396 ad013215-63f3-46da-8b16-ce3bf593a0c0 1c9de8a1-315f-4c56-af06-8f69fee80a7a Curve Edit Points Extract the edit points on a curve at knot averages, the points an interpolated curve interpolated through. true ee2f1e04-63b6-4a7d-90ab-1493b63269f8 Curve Edit Points Curve Edit Points 1353 408 123 64 1407 440 Curve to get the edit points of 4ac4708e-5ce1-4a3f-b2cc-101c03484058 Curve Curve false 734d95fb-156d-4c55-9bb3-56f2a3e61067 1 1355 410 40 30 1375 425 If True, only the edit points at knots (span ends) are extracted (the points an interpolated curve interpolated through) If False, all edit points are extracted which equals the same amount as the curve control points (like Rhino's EditPtOn command) b5a6be64-c92f-4d78-9254-7fb33ec1220d Knots Knots false 0 1355 440 40 30 1375 455 1 1 {0} true 1 Edit points on the curve 7f0117b0-1715-4a9a-abcf-b275a2b53ae8 Points Points false 0 1419 410 55 20 1446.5 420 1 Tangent vectors at edit points 5aecc1ce-e736-4bbe-bf47-27c8e3ac96f2 Tangents Tangents false 0 1419 430 55 20 1446.5 440 1 Parameter values at edit points 03e32f79-d91b-4d6a-bd13-e38bd1e7653d Parameters Parameters false 0 1419 450 55 20 1446.5 460 1817fd29-20ae-4503-b542-f0fb651e67d7 List Length Measure the length of a list. true f11517b1-0ac6-4c19-9d0a-cbffdc540953 List Length List Length 1521 416 97 28 1554 430 1 Base list 501041b5-ac04-4879-946e-be9687ce97d0 List List false 7f0117b0-1715-4a9a-abcf-b275a2b53ae8 1 1523 418 19 24 1532.5 430 Number of items in L 3537ed18-f4f1-428c-82e7-541bd20996ee X-1 Length Length false 0 1566 418 50 24 1583 430 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object b8b25b3a-afa6-4a89-bc77-3b6f4bc1d314 Relay false 5d1cff17-fdb4-4fdc-8366-b759fcf7a3ba 1 1369 1953 40 16 1389 1961 ad013215-63f3-46da-8b16-ce3bf593a0c0 1c9de8a1-315f-4c56-af06-8f69fee80a7a Curve Edit Points Extract the edit points on a curve at knot averages, the points an interpolated curve interpolated through. true 9dd9669c-222d-464b-80ab-97d0a15ba656 Curve Edit Points Curve Edit Points 1466 1973 123 64 1520 2005 Curve to get the edit points of 4565e9e0-d985-4764-b9b1-4e627262d8e8 Curve Curve false b8b25b3a-afa6-4a89-bc77-3b6f4bc1d314 1 1468 1975 40 30 1488 1990 If True, only the edit points at knots (span ends) are extracted (the points an interpolated curve interpolated through) If False, all edit points are extracted which equals the same amount as the curve control points (like Rhino's EditPtOn command) cc45a48d-00a5-4365-9b57-8e081cf8c566 Knots Knots false 0 1468 2005 40 30 1488 2020 1 1 {0} true 1 Edit points on the curve bb25bce5-71c5-460f-afe7-35859f892cbd Points Points false 0 1532 1975 55 20 1559.5 1985 1 Tangent vectors at edit points 9cd3f046-aab3-4757-9511-931498a692a1 Tangents Tangents false 0 1532 1995 55 20 1559.5 2005 1 Parameter values at edit points ef5cdbb3-8eb5-427c-822b-1c864c28a266 Parameters Parameters false 0 1532 2015 55 20 1559.5 2025 1817fd29-20ae-4503-b542-f0fb651e67d7 List Length Measure the length of a list. true 13ba5673-2c2b-4e63-94ea-3e66f469d924 List Length List Length 1634 1981 97 28 1667 1995 1 Base list 05b2419a-f560-4e1e-98dd-cc61d83a5189 List List false bb25bce5-71c5-460f-afe7-35859f892cbd 1 1636 1983 19 24 1645.5 1995 Number of items in L 88cf909b-1dfc-4acd-9ac8-315b06ce095d X-1 Length Length false 0 1679 1983 50 24 1696 1995 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4 Reverse List Reverse the order of a list. true d24e8fab-8966-4b74-90f5-895ca7cc37b8 Reverse List Reverse List 1048 1235 66 28 1081 1249 1 Base list 8d7911d4-3eee-45bc-beda-b487d521c118 List List false 2e337179-3366-41e1-91ce-b34ea88fe906 1 1050 1237 19 24 1059.5 1249 1 Reversed list f90883e5-3fb0-4e4e-927c-2fdab122cf8c List List false 0 1093 1237 19 24 1102.5 1249 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 46440956-1415-4acb-9dea-f43095dd43e0 Relay false f8f66c7a-48a1-42fb-8fb5-b9e101750e10 1 743 3152 40 16 763 3160 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4 Reverse List Reverse the order of a list. true 105c0504-25b5-46dc-be74-dc84e2543378 Reverse List Reverse List 1205 2927 66 28 1238 2941 1 Base list a2a61519-984e-4a60-a4b3-e0561a3af6ad List List false 9d63dde1-2e33-4f8a-a3cb-303f50d0a8d3 1 1207 2929 19 24 1216.5 2941 1 Reversed list 68234acb-2189-4140-ae0c-7c1dcad9f4b8 List List false 0 1250 2929 19 24 1259.5 2941 b6236720-8d88-4289-93c3-ac4c99f9b97b Relay 2 A wire relay object 164341d6-6366-4ed5-ba8e-d0916606237a Relay false 7c44bb6d-fef3-43c3-a0d7-3be44f7b0065 1 737 4913 40 16 757 4921 6ec97ea8-c559-47a2-8d0f-ce80c794d1f4 Reverse List Reverse the order of a list. true 5fc63833-a7f3-4fb5-b173-f827a32962ca Reverse List Reverse List 1246 4795 66 28 1279 4809 1 Base list b621ef7f-c5f2-410b-8d37-9d8ee2c9b929 List List false 8f5ab813-3691-4499-bab5-66b32b35b891 1 1248 4797 19 24 1257.5 4809 1 Reversed list 3aa110d1-bf16-4618-8fb9-18875ca9621d List List false 0 1291 4797 19 24 1300.5 4809 f12daa2f-4fd5-48c1-8ac3-5dea476912ca Mirror Mirror an object. true b22f5df6-1f13-43b9-950c-1163b6c19fef Mirror Mirror 121 4469 210 61 267 4500 Base geometry 483af9d5-b555-4d4b-b9b2-6cf0ef6b7bb7 Geometry Geometry true f95021e8-3298-4a32-aa51-3b43667757bd 1 123 4471 132 20 189 4481 Mirror plane f07b085e-18a6-4571-9855-90524b249013 Plane Plane false 0 123 4491 132 37 189 4509.5 1 1 {0} 0 0.5 0 0 0 1 1 0 0 Mirrored geometry e3a02c1b-9eb1-42f0-8746-b270098a9942 Geometry Geometry false 0 279 4471 50 28 304 4485.25 Transformation data cf68bf38-eff0-4518-9271-a0bbd5fa8831 Transform Transform false 0 279 4499 50 29 304 4513.75 iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABpzSURBVHhe7Z3ZciPJdYb1CH4OvYsjFOFb3TvCdwqNJF8rwrascFgjeaSwQh57xt3NbvY02cuQvbC5LyCJjcRC7GRzBQFiB7ESS/urOjnFYgEFYtoOTzeIfzpyMrOyTladP0/mOZVV4I/GGAW8H+OTxTWFZ2dn8Xg8Go3GYjEy+zrevXt3cHBweHhI5vj4mHqKcpQiLalPJpNHR0dut9vlcolQ0L5qJs9TnW5XlQcin8+fn5+fnJyc6uBKAEXpnZS8VEoDM6RZq9VqtztKXD/kczmHw8FF+gOBq2ZT1b5/X6/XjX4/RXALNyiEqkgkIhQmEgl4Eg0CDgGo4hBF4ZKbpzGZYrH44MGDb775RleLhkat7N3xXdmoFY2rnA6kqSu6CeGMTuUyyBiVglwu9+LFi+npqUI+mysUTo4OuW7t0uMJRiLXzzX7fb6DgyPHhsPl3FzfdMwvb5RLRdXxiFFIWSixUCjqQxeiRDIcsrBIkdTv9+tqUeh2bE0wEY94vd5d325wL9S4at+7d+/NmzdYM9J6TY0agNHTCz1yAUazdDqNbc3Pz3e73U6nUy6V8vlCtVYr5HLpi0yxVKpWq5lMplqthUKhQMAfCAY2HFulUkldx+hRiF6gjbm0l0Ig1sANkzezyImcwlHmQ10tt6Ner6VT5/SHnMZV69nTp9vb2/QuffUlElDJISiUZpBKEYYuLy+VXHvAMEOE6TqbzcC3qh1JCtGLeTlEWQKxQo6S555JZZqiGfXo8dtvv3316pWuFg3N2qU/sNcauD4JUCiaRb9yTQZDcj1SaYZUypXQeHd3d3NzU8myAcOlUmuowk2MGoUCWLEYIgoFwiLWRkozOSQswsHs7OzMzIyuFg2tZv3w6LhtP5ea0GUEyCyKWGFIiCQ1aiygEmSz2cnJyYmJCSXJBuG94Hmm/wwxghSiFxRnN5dySJZDUu7czCI1qVRKV8vtwO+AYPq6yGSw1JcvX2JMnC7XADhESo8i36ixAOLpmnOVXBuYZ04LRtMKuaW+Ho1QSJ4GkkIbDagns6dDV4uGTqfNEmWnuYt0Khjw7/h2nS53rXH19ddfwSK+iYUnivQinfYlkqOchV+q5Nqj2Wgk4vGYvma3221VO6oUoiaIgcVeCgEqIBUWaSn6RY/MZk+ePNHVoqFRLTndHrugwgQspBsOhWVtE8l9ieQQDehdauQQM/DCwuLLl7MEFflCkZEhjWnCUWwUD4ZF+yyZ2nKsTzycmF9efrOwclkeXY9UgBZQqMUQNfZuhhaidBqTksenWF9f19WiAQ8Qh36YlRAQVqJsukaywZMFFiIpAtZCohE8qVaLeL2ZPk/ipKYzGbwdLvrsLAnHBImZbN7l3F5cWiSOWd/cpjvV8ahSKIC8vnMpQIOk0EYq8xttSM3x1mCkzpMXmWyhWKhUqp1Od2lpKRwOwyKsIAexdIdmpWgGNQaRXAA1rKDDrMGEMVwk53Gu+cHCyFKIprhV81xKUSD8cdtU0lJUiRLX1tZWVlZ0tWi4atYO3h3aeaSnJ0cet2vb6XRsbrEWfvnll69fv8akjN7FxOlIilJvQBrol6NFqITtSq4NKpeXduHNKFshN2axQmBMpEZKSxoQ1OPcm9fCZr0S3AvdGhc2m41Ot+t0OvGBEWVhSxZamTZVlQlUSlDx6NEjJc4GAd/OWbq/yzPKFKIg1AeLMCQsamNenzmFSLEDUiBHsVpdLd8bLE4IoRdSM1vkxdwRTqaXSKyfiIIJQAmyQb1Wu4tWiL4Y/r3LocEfRW6eQzSmhsYE+LpadHS7Zt/dglqteq3TbjcYDCIKIBP5FqrkSuSQFKUecAoOS6VSUaIGIpvJQHmhUBjlB2y9gD+DQngSCIsykQqXTKTT09PPnz/X1aKhUS17vLt2QcV+POp0bjtdxB3eeqP11Vdfzc3NyVqIcBkcZqokT3ccMlsqlLhc7pWV5XKpULqsXJbLuFSEiYVCkUyphHkXc9ksRd+O98n09PLq6tvFlUrl+pnqiFOIptCazKXoTkANQNFCIfdPHvtbWFjAv9fVoqHdaqbTF3b7he12C21jEHihV632q1evfD4fQqRTmVSRb2YRyCG5BinC1tOnT1mDMetKtXp8xGQePzw6TsRiwVCIocflMdMenyQ31taWV5Y9PoIKV7FYUNdxF6yQ27NMpAKZ2ThKSjPaYBDmeOt7IZ1Ow430CIQ56c4omsGgMTgmHWYNhuxAIEDowqTdaFw/8h59CtERqrTMpcZEKrZISjPMaGdnR1eLhnbrKpPJ2j2ctGz5IhkhMhoMIFOoMs+cAoronWuQUygqQTbA6CXTez13gkJI6jVEIY+iGCJr4YMHDx4/fqyrRQNrocvjtVsLb2z5NtsTEw+IKZlI6UU6NXpHPpUySqTSADWYLwswy7CSa4O9gC95cWd2KvoCJQKDP4BOSbEPUlRAkQnK7XbratHR7VpMzYx6vZYybfmynm1vb19cXMgq2Gt29ELvZCz1nAL35n3KvsCjqd6p/UIL0BoMoWuUKNA41FkUCJE4JsPsnvcF9gdQJX2J2WHiZrbIU9PLLo0xxCHX4Fq9Xq1WW60rVdZxV6wQxVmWQwB5pByiEmt4+/bt/Py8rhYNzXolFIm2Orc8nRHAn+rpOyAT+RYW0bVcgKrS9yIikYjX48EhrRGdtK5Ao15vNpvMAeTJkOC/cK2ry8ura6ur6w7cV9Xx3aEQoDuhUJQo/IkvQ4opPHv2zBwXXjVq8cS+HYVqyzd5hstDjD87O+t0OunF4IwM8ulLigaop0euBL2TZw0momANLpeKhVLp8CARDkdi8UQkHPYHAlH97TqXy7l/cLS2urK2vOD0elYdLsJFdR13h0KUJfOYzuD1REolGTEOzJGMrpbbobZ8d3edLpe+5fs1Riz0kFo6FbakEpCnL+o5ivkSJxDdi9g2lqcvwFhfvdFot9u4oJgjbihC/H4fcYXL7TY/zblDVsh9CoXCHxBDRJukHI3rb7PpatHQ7XTQjioMADrudkOhkOgRCRYWhS1SC4ukNOYQE8CQm1wshJDHvKrKOu4QhWgNqoRFoHFoMsRMJjM5OWl27i279tVc7tznY2bc39m5ql4vRQL8EdnylV6AQRgZVEyPdGRUCihy1sLCwuvXr5UgGyTi0Uz+mmYWS5W7UxQCMQiDP2AYIlpwOBzLy8u6WjR02q1isWSE0uVUyv/48ebbt3PffFPUttEvLjLZor7l2+50oUG2fOmll0WB9GupzOVyMzMzU1NT0osdjo8O80XlLZdLpSdPn7+vFd4nI+/rJebbO0Qh0AxQB9oU/kglw7I0YMegWamEv/12aWpq4eHDbrORPD/TtnxdTsfWtmz5vnjxAlMWhoRFepFOBX0rgZyiuhkCnU53L+h/7514f+B8X8/fLQpRFmxZDFEmUgyI2Nz8Sm7rqnFyemY85s4eHOzcu7e2uLj66FHN9MKZtuXb6Xg8bhGLNg0W6auXxV4H5+joOBGPEz+0WrZ7WyCTueDyXIybncDmo981knu19vvSZYV4425ZIXdrplDsD7USFz58+PDmZzGXu76AsRbWS6Xc/n6+UEgdH5eTSak0IFsWMlGbWURyL4tmB4eJlGBmaupJIa/tMB0fHsRi8Vg8HovFmJnj2uOIdzs73v2Dw/W1taXFhVWHY2nduTn/bWAv7Ha7X716hb96tyhEa3CGWg0WAYqGS7Rmfo90MGq1mulbsi4nCnMGi0Z3YnZSFFApI4lOcUcJKJeWljQp3U6lcol3ytxIlJjN5S8vL/FWCgVmy2YkEt50OHw+/+bmVuPqDrz+NACiU8WeyRDRfjab1dVyO77b8nW5vTv1prblS1zI6QaLqjOT2QnHqlYHw4h6JoDhdu211/5pXLj57c5IUciaxKwiICimCMioKh0UWTwMK4Q/QSqVwjOcnZ3V1aJBJlK7N1YQWi4VmVeTyTPZ8nW5XAjhmnotz45F8tRgheb3V/viPHlartRU4SZGisJUz4cjRkhgBjG7KFQ3Qg1onJUMGl6+fKka6e4MSh7usxjtK1/0yLAQhvqySANq6NrMIieyALMMK0E2iIb3UtnrnXozRorCbO76JrGnR48eEaqjNYxP1epoXl3F43EsT/gzMogbfiK1yIQ8BoHIMbNIvX6dGgwWqTdYJEObYDCoBH1/jBSFAtngZlz/8pe//OKLL/x+X/LkyOP1BoLBk7Mkrl6hdPnnP/+7x+PBINC4UEg+FArd+CxGQntVsiIRj+zs7Oz6fHuhcKPZfvDgwfLyMmuVCDSzaLZFgZlFtM/0ywqnP6dTwvuiVqtyeVwk/rT51bqRojCfL+Bi7Ozu+n0+Vpc//elPP/vZz6anprGYi3RKU1Y6nc3ma/XG/fv3UIfZEFHixMTEjaBi4Gcx2pbv+fnp2Sl+v77lO01YiXspVmUwRIpwsy0KqBGmYX1ubm5m5ttCjkmkmNK/qTjUfauj46OTU0LTM1xl1tDtrc2FhbnFlZU3C6vlUf0sZnVje3PLQcB7sJ8gZsJNWFxchCH9Tq/Ral0x6QH0aFCIyrxe79bWlmqku/hoZ6iVUN8vRKChSvOaN5hFpu75+Xk8KSYPovvMRfosmczm88mzU4jEQFksGWm5fHHH69nYWNvx+dcd2yO72ZQ8TzG5HR2fkOKL6jfYBxySexbNCosAXVd7nl8PCYzJTCEZWCS1sChFAXlqADwNswbjSHORBLAMjpGdSLlJ9LK/r71OSOhtB+JluWdSNGjwt7KyYn7MLVu+dh7pybE22519t+Vr+coXacKiFAE1fVmkkuXN8ksbvSiVioQuqnATI0Uhw1NMAUrIA9YkyRiQGjkZDQp/6JFljIXQvNnUrFfDYdsXL3q2fFVoL5IBwunIwiJ9WVhknhzmW/uAf/cOfRYjQxtNSXEAaAmjBoucAnS1fB+wZpq2fM0Q+cg0OCMj3Rk1LKKBQMDhcChpNtAfpvefD0aQQiC6M1vAAIhODdZ1tWjAx8e/UIXbIFu+fVlEspkzC4ucgjM81O/OdLXfneEcbN0cf4wmhWBIFg0Vs4xNTU09e/ZMV4uGRrXs9uzYBRXp1Hkmm4W5SlX7ypdFNBKJoGIl1wThjF6EM6MGkGECxw1eXFwoFfJFYoVigakV5yiXy5ER0CabzREpLWuvsK28mV+umCgfKQrRiKx2Ag7LajT4Dmkj2lxaWjK/hNhpXaE4u89iBn/lawHCMXEuiYxRQ6fwCkPPnz9n9BBoVmu10+PDRGL/+OR0PxEPhSP4WrQMBPwnp0nntjMSi/gC/jWHc2Q/i0EpDN7yd8Cw0BEMmVejXog2pc0HvAosqxRhqIwDJbQfGEx9WYQADilx9igUCsFgMBqNhkOh5qj+EiJ3SMyg35cG+RQIbsyTWC84pBvtEdGk+YX8dquZSqftrNACZtTB/AmgiiFlZlEuj0olyAYDVuWRonBvbw/j07eYNOAm9HUU+4L1pvezGM+O7SeijBXzz4cGg9qWr5JlDzE4VdDBOHv69Kn5wV5fEL/ciaCCsczNMLQF5KWo2tqDNlghRmz5IS3zQxAL9C1fJ0GhR235/pclLuwLOuIizSwydDY2Nubm5pRcG+Dl1Oo3Xh81MGruDFXCHJAWQwIKOWXIz1NA75Yv9Pd+WdELGS7Mn1KkU2YLJg8ldyCq1epludw0fR8KRopCVfdBwI/HpTS/kqt+tGSoz2K6zId948K+gEXWP3GgOGtvL4Q9VyuXVQwN76jRgCqIkTwZUKvV47HY3Nu51bW1lbUN87Ncjo4p1AAHL3ToatHQatZxGO2ekd7c8u0KH0rWEKAx7ijAz5TPYi4x6nJZPouJJ/aNz2Jo43a7Dt4drywtLi0vurzetU0X4aPqeUyhAbQgNqGr5XboX/lqW75Bfct3YkJt+SpxQ4DuIJ6lMRaLGR+I44XJAtxuXTWvrihKJSntPR43C7bH4x1bYR+IWcTjiW6309ZVJg+xwqG9ra0tx+YmUTZFA/qWbxLNxeNx4ytffBMlbmjg2jBusEUldyCYWiHM4mSNKVTI5/PMZs+ePcumz4N7YRYev8/n2Q28fjWzur66srG54xv0eotly3d44MvgjprfnOuLWDR8kevvao0pVEilUpjR6upqq3WFUnLZzFnyvFQua29y7HiJHAKBQRQSTnwYhZyIN4sRK0E2ODs9KZT7v2s6plCBNQmDqPTs2uMKssIBNKWqdJweaxuP0JbJalu+ElQYW77DA+0jBCNWcr8/xhQqoH232+1wbOAZlit4+NqL8UX7Lzcv0qmA3+fd3dl29t/yHRKswQQYkUhEyTWBkKLeUOG89rTJJrwZU6iAQ/Hw4cPpqSfFQv5Q+50a3JeDXX/gqn3bM1Lt5cFuKDTUA7ZesAZPT09PTk4qaSakznFZ38XixBWHsWgslcqoAzcxplCB2SwcDst7pOYN1aHQ7Q75mLsXWD8er/mdHQOEFQQPlQozQkX72QvTpzBmjClUQAtwwJpEYKZr5hYUi4VqrY5emd+g3OVyEZN8AIv0S6dDBhV9MaZQIad9MD37cnYmn8smU2mUcnR0GI0nWjZPZ97tx7e3t7a0f85ao/Xll/8xYMvXApgWkMcKPR5PXyusXpYvMlkC0FJRexhrrIsWjCnUgDZxR2dmZubevKnXaroHmi0U8qdnyQFLISbYaDaYQtud7kq/Fy+EJyBFFA1wfY/0zxm1x2v6Cx/Eo33XwnKpQGP9CY72cyW9H/0IxhRqikZTiUSCDAq1vCjWtofhJZKXx9wisC9VMAEkTyWHaCCqp4ZlWLr7ADQaDURJ158iuIX/FYXQhjb3+32/eSs4BTLgHkCDmSSBmSogZ9GLQIqAfDqd1k1f+91m/WWnrBSHAUvpnaBQlAhUWQe6Q9HoXZVtwFmGSQE5RaAzpYGjpAwFKmkjOtWZ0iByBoNTpJe4/tejpNNhYLmpTw7DUqh0+Z02JY/SUbfkqdQYHnoCBGZRBqgXOo2zhA+jpZxlB5Egs4KqGnXcQiHqjkaj5XJZj7+1P9OJ+04N9agJiLrBYKpE+wKRPABGM841yycdhk7q5fJUedQxiEKYQBF+v9/8YwQ4kNSgUPnFNZT1wVQNA0MU8oVOY6AMoJMiR2mpyiMNSLGlUAYyvoa8nCLAX6AGHaE+USUZiwapEWo/DAY3FmhEmeiUudrOOklpwFEpjjBsKeTORTX4+qJWgZkwMtSIEqVISgN8PO09+O+DUkn7gwcGxFHsS6QFQqdwKVciF8khuQUqjQseSQyyQpi79f7lqEy5pOSh/APe6WZ+JqBkrSVGpAgHsvd0q/YvzrPp8wuaAaFTrBNwFAlSc6ucTxeoy5ZCbhsKhzEFUR9aQ19utzsWi7J8ttqdK+13la8sP27Ri9ZVIxKJxGPRcDQaj8aCe6HAXviff/MbDNEwKcDgwDqRiWPFWfDdarXPSrFM6VQeFEi9gHy9XmdkkHLWMHfxiYKbHUQh43f4IUwzpsTPP/+9Y33tPJnkxLj2A8sh/94tj05E9c1Go6n9FF6rVqslEvvz82+RiXELdGnxpaUlebUQQ5fdv18H/ua+77fa6fovcFdrNThmUi6WL51O54sXLxhSW1tb5LFIuc4RA/duSyFg8GKIqjAEUJPL5SLqaGFZ2u8qa5Oj/EAh3KDKvWhsfXbmv//yl979fTNgkdEgpkPKlM74WF5e/sMffl+tXEajEZ8/WLrI7PzLv/78V3/19//01532+8xFyuv1hKJx386ub9f37vjs6dOnn3322ezs7NTU1L1791hi5SJHDKjrmkJDZUYKoJDZTPJUokogajXaGKDGbi3E1LLZ7Mvpqck//ls8GpW33Aq5DBNlSvtl5nI+n9OejWWyuXw+GotjQHjCSq5u4vS47XTKnMm5rWJx9Ve/ePKLv/vLb3+dzuaQL/PoZbksj2mDweDMzMze3p78nR/jGeyIgTu9QaEQY0mFQjLokTmNWY6MPJbE7GgjsgQ0YwXSVNgPm69fLk5efxfP3Hd4kPAHQ5DqdLoCodDZyWkkGg0EQ59//jvL3hOdQmpNf01bQ6sFk/yDL/mrBgLMXfvLBs2mUArfuVxOhp0SNFrgHq8pRPVMX6TMOZLq/9eLJQ7lIPTg8CgRi8It1rCxsbG6umq2FQCF1Gj8mIBPgW1N3L//n7/5x5nXr9c3Nlix1DEdnTbej6xuGlLn58zGfe0G+deAFh2qaAMaqJNHEajrmkJGKwPfSC3FrP7rWvsHh3iOBGC0f/ny5ddffw3rSpi+8Xv//n3n9uYRjv0RujtNxGKxfe0VYXzOUCiEx4GVIJHoAWdVo6sfsO/h3ag7DtR1TSEDHy2LrklZP4BRJMUnxLXD+OKxGGxRpN48xiH78ePHHre7kM9BO0ykU6nj0zMoRJT5NfhapRzw+1muAvwXCjM4goEAsaDPHzhLXdD+iy++QJqSO4Y9UOY1hVo83A8YBLYkGbybREIzLfhjjlJibgK71Gm6BpbHXKoKOlioiAKYcqE5my9UK5XMReaC9TWbvaxU6GJycpJDSuIY9kCZ1xQycfWCBQlAnlAoqZDHUZFiBocwUJY6M6AQqMJ3oAYicTeA5mdqvz+jHtAggbheSRxjIG5QqOp0CD3wIbSJ8Q1gzoxb/YtbMdoOyP8trBQKPUQRQhupPOKinvxYsx8hblCIwelhn/ZH7gzygJiFkEpGnTrGx4EbFOoBcZOliGXL+MS5FyyNYyI/HtygkEggnb4gDChdDvqbAb1PZMb4AQEj1xSen2m/7Lvj9RKM62T1x5jCjwowck3hkBhT+FEBRvpQyHKocv0wpvCjAoxYKWw1aqFwRNsFsMGQb7WM8f8DGLFS2G238gO/9YI/YwdxjB8cMGKlUEDo0Dw7UwUTuvo2wpjCjweQ0kNht9NoNn2bm7/96U+DS0sQ1mm3cnntR3YvMtl2u+N0Ov1+P9GhkjHGDwoY60Nhtlg8Sez/w09+8rc//vHPP/tFPpeJRMKHR0fRWBwrfPjw4eTkpHmbcIwfEDDWQ+EYnxoUhWN8wvjRj/4H4FPGxvfz7lsAAAAASUVORK5CYII=