-
0
2
2
-
1
0
7
- d3b98059-03da-4b8b-a57a-069658ce8766
- Shaded
- 3
-
255;196;196;196
-
255;156;156;156
- 638252831365521843
- XHG.......ⵙ∷ⵙ꞉ⵙⵔⵙ·ⵙ⊚ⵙ꞉ⵙ◯ⵙᗱᗴⵙᗯⵙᴥⵙᑎⵙᑐᑕⵙ◯ⵙИNⵙⓄⵙꖴⵙ✤ⵙꖴⵙᔓᔕⵙИNⵙᗩⵙᴥⵙ✤ⵙ◯ⵙꗳⵙᙁⵙᗱᗴⵙᔓᔕⵙ◯ⵙᙁⵙᗩⵙᗱᗴⵙᗝⵙꖴⵙ⊚ⵙ◌ⵙ⊚ⵙ◌ⵙ⊚ⵙ◌ⵙ⚪ⵙ◯ⵙ◯ⵙ⚪ⵙ◌ⵙ⊚ⵙ◌ⵙ⊚ⵙ◌ⵙ⊚ⵙꖴⵙᗝⵙᗱᗴⵙᗩⵙᙁⵙ◯ⵙᔓᔕⵙᗱᗴⵙᙁⵙꗳⵙ◯ⵙ✤ⵙᴥⵙᗩⵙИNⵙᔓᔕⵙꖴⵙ✤ⵙꖴⵙⓄⵙИNⵙ◯ⵙᑐᑕⵙᑎⵙᴥⵙᗯⵙᗱᗴⵙ◯ⵙ꞉ⵙ⊚ⵙ·ⵙⵔⵙ꞉ⵙ∷ⵙ.......GHX
- 0
-
98
399
- 0.05292158
- 0
- 0
- 5
- Palette, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null
- 1.0.0.0
- Michael Pryor
- d94849ce-6c4d-4303-8ff4-765a58e82529
- Palette
- Bengesht, Version=3.3.0.0, Culture=neutral, PublicKeyToken=null
- 3.3.0.0
- 00000000-0000-0000-0000-000000000000
- Heteroptera, Version=0.7.3.0, Culture=neutral, PublicKeyToken=null
- 0.7.3.0
- Amin Bahrami [Studio Helioripple]
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
- Heteroptera
- 0.7.3.4
- Anemone, Version=0.4.0.0, Culture=neutral, PublicKeyToken=null
- 0.4.0.0
- Mateusz Zwierzycki
- 4442bb24-c702-460c-a1e4-fcdd321eb886
- Anemone
- 0.4
- Pufferfish, Version=3.0.0.0, Culture=neutral, PublicKeyToken=null
- 3.0.0.0
- Michael Pryor
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Pufferfish
- 3.0.0.0
- 604
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- ce1ec062-ce13-4671-9f88-a44eb02106ee
- d8073bf9-317e-46c3-870a-95ce7aa609eb
- a9485951-a0a3-4d49-94ea-8e98b365eb1f
- eef6124b-3fcd-4667-95f3-62a6f5701b13
- 73d57946-2d79-4acc-ace4-f082f53db977
- 782b8411-b435-4f86-b51e-83a746dc8746
- ca32a89c-9e1e-4608-af15-c2f8c5aebe82
- fadad9fa-e0cd-463a-97cb-627c4001f1b1
- 8df9fc13-813a-47d6-97e1-b7c7f9640157
- 5e44e181-5006-4610-a893-b56165fdc072
- cfd355a8-73ed-4ac8-8ec9-98a00fe36d6e
- 1934f7b7-8597-495a-8e31-29665ed66e6b
- 83cfdb23-e108-47d2-a227-49545aed148a
- f955a134-e1c3-41cc-a613-c147701720d6
- fa041d61-2260-4390-8bf7-5700f6f72f0e
- ef3f33aa-8e82-44fb-abca-b0f773702dc0
- 1735a3f4-3ca3-458b-8d07-6d3524379f45
- 634a94ce-52a8-49bc-9452-6f6366b08a22
- 1ff051ba-031f-4327-ae05-2bee20ca6608
- 19
- a9218d1d-6e7b-4690-9057-5874c724dcb2
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- e5ad68df-cc7f-49c4-94ee-29300cdc9a84
- d12c1703-3bed-49f0-b846-8fdc87815d79
- a8715700-f6aa-423f-ace5-a52d21979d01
- a120cfc4-5b43-48b9-9cbc-5df113280928
- 585f30f0-d789-4121-84e7-74deb7cbf39e
- 9a23593c-d205-4c67-9e60-eb7fab25bffb
- 3cbe7052-5c66-4c76-9a5d-17a6a39fde97
- 4df237da-2232-4199-b650-fa712c3de91c
- bb54191d-58b0-442b-9afb-87b613ded20c
- a9893790-7d4b-4087-a7b8-ff6a5935408a
- aad237bb-fdad-42e4-849e-0c964ea67289
- 21ff9a12-aa27-4fa9-b211-20114f77e0e1
- 24362cd7-326d-4731-b2ad-502bf575d612
- d28d279b-fd8f-4171-b331-ca63b44f17ee
- 3f9fe5ec-6176-4d1f-9f91-5abbe39e027c
- b21b215d-ad9f-41b3-9e3e-7353cf23abca
- 135bf4da-4db7-4259-a721-301f23da2e3d
- 237f4f0d-fdc6-4d87-9054-fe8570c642bc
- c45d1ab1-067e-4c98-9c6d-556fdc34bea0
- 23e9200c-3132-40f5-9759-cbaa05f45d91
- 1457c7e7-78e6-482d-8e72-8c651cdabc1d
- 74231a10-52cb-4139-8b54-b46d2ae77465
- 62497d70-cabf-4568-93b9-483a2778e8e0
- 21840820-7b03-45cf-914e-8d05118a8772
- 154459f8-56b4-47e3-8f74-2be68cd83b0e
- 83a04ee0-dcaa-4764-8f51-9a5af7e9c6c8
- fae63135-516e-4bfe-ab70-dc4f2b45ab66
- c6aecd68-308a-4a6a-b29f-68933f542f84
- c2a92653-9119-4312-8a0a-bfe4efc11ad1
- cd852686-49f6-43b5-930a-504e7c0e8fa4
- dd3e81a3-f392-4fff-9fba-35855c2e8144
- c4fdf2ab-39ec-4f9b-947c-a8f85d40334d
- fb4a3cd7-41d4-44c5-9aaf-914e96b16bad
- a65c84f5-46fc-4b72-8e74-2acff1ca258b
- 58b84e16-46ab-4bef-af27-b755fa42c6db
- 8c191374-3718-4371-8f0d-4782a857fbcf
- f023b241-9d43-4d09-a743-5754826ed592
- 82f09685-9fec-40ef-8635-845751351416
- 7ea03512-0074-40d1-8807-06c5269c256c
- d6cd2b21-684d-4d55-84dc-cf67022c00fd
- dfa3d6d1-68ca-4f13-b440-3d042a308f48
- dbda2230-e7eb-467e-aa88-5c1e6b723f5a
- 48b9bf60-45d3-45d4-a928-df64b25235ff
- a7828cae-f032-48ad-9499-baf0a62e9b16
- 3bac0bc7-d166-4c5e-bb08-20a20985222f
- 199759e7-6c7b-4150-b4bf-9b4fdf05a03f
- 65486801-6614-44c2-ba37-ac0384a48812
- 053e6276-507a-47e0-a156-4f54d918eed9
- ef414688-663d-4a76-b64c-d9da5e08c56c
- c118d3a6-21e5-404c-965f-22c44c00965b
- 240fa235-09b9-405d-989a-af59edf91192
- da31bf03-7f19-4df6-83b7-e4247638b6ba
- ae83d3bf-85ae-4eb8-9a93-d7b82f6eb1ff
- 1b18947f-649b-4aa7-b635-0c8ffaba1c52
- 659c929d-50c0-47c3-a9f8-7a31b3925ddc
- 55
- 9fdfb721-bd12-4bc0-bbde-bec7b225ed1d
- Group
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- e5ad68df-cc7f-49c4-94ee-29300cdc9a84
- Quick Graph
- Quick Graph
- false
- 0
- 71331d5b-b298-4259-a4fe-dc9adc2b0144
- 1
-
7469
-2700
50
50
-
7469.181
-2699.249
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- d12c1703-3bed-49f0-b846-8fdc87815d79
- Quick Graph
- Quick Graph
- false
- 0
- fb284101-9ac9-4a70-b2f4-a594ed3bc763
- 1
-
7468
-2678
50
50
-
7468.181
-2677.249
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- a8715700-f6aa-423f-ace5-a52d21979d01
- Quick Graph
- Quick Graph
- false
- 0
- 9c1ef8b4-e132-41e0-8db8-0eb2de24c077
- 1
-
7469
-2656
50
50
-
7469.181
-2655.249
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- a120cfc4-5b43-48b9-9cbc-5df113280928
- Quick Graph
- Quick Graph
- false
- 0
- 5331dc73-40c7-45dd-9ec5-6ae050d5dace
- 1
-
7468
-2633
50
50
-
7468.181
-2632.249
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 585f30f0-d789-4121-84e7-74deb7cbf39e
- Quick Graph
- Quick Graph
- false
- 0
- 25257494-4b0e-4bf8-8e7b-5a202abd036b
- 1
-
7469
-2611
50
50
-
7469.181
-2610.249
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 9a23593c-d205-4c67-9e60-eb7fab25bffb
- Quick Graph
- Quick Graph
- false
- 0
- 1bd632db-815a-49df-8056-d9b68aac1b2d
- 1
-
7468
-2589
50
50
-
7468.181
-2588.249
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 3cbe7052-5c66-4c76-9a5d-17a6a39fde97
- Quick Graph
- Quick Graph
- false
- 0
- c303f18c-ec2e-44f6-bcc9-c6c97dcdaea8
- 1
-
7468
-2566
50
50
-
7468.181
-2565.249
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 4df237da-2232-4199-b650-fa712c3de91c
- Quick Graph
- Quick Graph
- false
- 0
- cd9ab9ba-48a6-43fd-bf09-e50035dc093d
- 1
-
7469
-2544
50
50
-
7469.181
-2543.249
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- bb54191d-58b0-442b-9afb-87b613ded20c
- Quick Graph
- Quick Graph
- false
- 0
- 93d932e5-f99c-4911-8200-065f7e63b31c
- 1
-
7469
-2522
50
50
-
7469.181
-2521.249
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- a9893790-7d4b-4087-a7b8-ff6a5935408a
- Quick Graph
- Quick Graph
- false
- 0
- 80aa9ec5-4e68-4151-87f5-77dd9cb73995
- 1
-
7468
-2499
50
50
-
7468.181
-2498.249
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- aad237bb-fdad-42e4-849e-0c964ea67289
- Quick Graph
- Quick Graph
- false
- 0
- 1c283afd-2268-4211-af8f-8cdf4d25d66c
- 1
-
7469
-2477
50
50
-
7469.181
-2476.249
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 21ff9a12-aa27-4fa9-b211-20114f77e0e1
- Quick Graph
- Quick Graph
- false
- 0
- 844bd38b-b927-437c-8231-bd2cb384f4ce
- 1
-
7469
-2455
50
50
-
7469.181
-2454.249
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 24362cd7-326d-4731-b2ad-502bf575d612
- Quick Graph
- Quick Graph
- false
- 0
- f582ca69-21fd-4e0c-ac4c-c757f53b16e7
- 1
-
7468
-2432
50
50
-
7468.181
-2431.249
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- d28d279b-fd8f-4171-b331-ca63b44f17ee
- Quick Graph
- Quick Graph
- false
- 0
- 0ea07907-b707-47fb-aac5-b80ec6de4038
- 1
-
7468
-2410
50
50
-
7468.181
-2409.249
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 3f9fe5ec-6176-4d1f-9f91-5abbe39e027c
- Quick Graph
- Quick Graph
- false
- 0
- 7e4bc6cb-be01-4aad-8929-fa0633ad5eab
- 1
-
7468
-2388
50
50
-
7468.181
-2387.249
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- b21b215d-ad9f-41b3-9e3e-7353cf23abca
- Quick Graph
- Quick Graph
- false
- 0
- 54c2ec9f-a8b8-4bb9-bfcb-571630ac488b
- 1
-
7469
-2365
50
50
-
7469.181
-2364.249
- -1
- e1905a16-da43-4705-bd65-41d34328c4e6
- Bar Graph
-
255;255;0;90
- 9999
- Bar graph representation of a set of numbers
- 135bf4da-4db7-4259-a721-301f23da2e3d
- Bar Graph
- Bar Graph
- false
- 71331d5b-b298-4259-a4fe-dc9adc2b0144
- 1
-
7395.181
-2700.249
50
50
- e1905a16-da43-4705-bd65-41d34328c4e6
- Bar Graph
-
255;255;0;90
- 9999
- Bar graph representation of a set of numbers
- 237f4f0d-fdc6-4d87-9054-fe8570c642bc
- Bar Graph
- Bar Graph
- false
- fb284101-9ac9-4a70-b2f4-a594ed3bc763
- 1
-
7395.181
-2677.249
50
50
- e1905a16-da43-4705-bd65-41d34328c4e6
- Bar Graph
-
255;255;0;90
- 9999
- Bar graph representation of a set of numbers
- c45d1ab1-067e-4c98-9c6d-556fdc34bea0
- Bar Graph
- Bar Graph
- false
- 9c1ef8b4-e132-41e0-8db8-0eb2de24c077
- 1
-
7395.181
-2655.249
50
50
- e1905a16-da43-4705-bd65-41d34328c4e6
- Bar Graph
-
255;255;0;90
- 9999
- Bar graph representation of a set of numbers
- 23e9200c-3132-40f5-9759-cbaa05f45d91
- Bar Graph
- Bar Graph
- false
- 5331dc73-40c7-45dd-9ec5-6ae050d5dace
- 1
-
7395.181
-2633.249
50
50
- e1905a16-da43-4705-bd65-41d34328c4e6
- Bar Graph
-
255;255;0;90
- 9999
- Bar graph representation of a set of numbers
- 1457c7e7-78e6-482d-8e72-8c651cdabc1d
- Bar Graph
- Bar Graph
- false
- 25257494-4b0e-4bf8-8e7b-5a202abd036b
- 1
-
7395.181
-2611.249
50
50
- e1905a16-da43-4705-bd65-41d34328c4e6
- Bar Graph
-
255;255;0;90
- 9999
- Bar graph representation of a set of numbers
- 74231a10-52cb-4139-8b54-b46d2ae77465
- Bar Graph
- Bar Graph
- false
- 1bd632db-815a-49df-8056-d9b68aac1b2d
- 1
-
7395.181
-2588.249
50
50
- e1905a16-da43-4705-bd65-41d34328c4e6
- Bar Graph
-
255;255;0;90
- 9999
- Bar graph representation of a set of numbers
- 62497d70-cabf-4568-93b9-483a2778e8e0
- Bar Graph
- Bar Graph
- false
- c303f18c-ec2e-44f6-bcc9-c6c97dcdaea8
- 1
-
7395.181
-2565.249
50
50
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 63e9037d-576c-413f-bfe1-195094d49159
- bc131f89-e2c1-43d2-ac21-36cce03c61c4
- 7571d6a7-f9fb-43c5-b492-ebb1699bbe58
- 5705c628-a671-4ea2-8861-c39e6c31f184
- 8ce21e2b-1311-46c7-8305-9be4aeadbc48
- acb47850-cd31-4ea1-ad1c-8d027295fe5b
- a2e7717e-c537-462c-a03e-36d06f4600e8
- b5e8ba51-1f5f-453f-b4d3-f2e760598a98
- 07127bdd-1ca8-43c8-a0e6-b6634f4ea7e2
- 6e897604-8413-4005-967f-aa26aa4bacbb
- 4caac69f-0c5a-4d20-bfd4-d541b3bc321b
- 6d8b0409-1300-453d-a4c2-65b0b0989f4b
- 97d086c9-1f66-4d81-a605-b5c3e54b2cb1
- 27066b99-163c-49af-b78d-2b373f91b9b5
- 36490051-2898-452f-96c1-81007a065ffb
- 81df0eaa-5106-4fa2-bfe7-c2073c37a781
- 2a8e46a0-9509-4aff-8701-b3c411851f02
- 8839b1ee-a905-40a7-ad7e-621a91f28769
- 369d0c3d-b9de-4c16-aaec-07a459ba87fd
- 477360fe-ea68-469f-abe5-7f5fa5fbd55a
- b05af234-ce5b-432e-8b3f-32a94a964bbf
- 21
- 51946891-2a4d-4858-928b-3fff076fc412
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 07127bdd-1ca8-43c8-a0e6-b6634f4ea7e2
- 6e897604-8413-4005-967f-aa26aa4bacbb
- 4caac69f-0c5a-4d20-bfd4-d541b3bc321b
- 3
- 63e9037d-576c-413f-bfe1-195094d49159
- Group
- ac3c856d-819d-4565-a2cc-8d1cbdc05c97
- d94849ce-6c4d-4303-8ff4-765a58e82529
- Palette
- Customize Grasshopper's GUI and toggle between your Custom GUI and Grasshopper's standard GUI.
- true
- cf580cd3-8c86-4628-8244-702ca09bb9a6
- Palette
- Palette
-
166
-975
256
1344
-
408
-303
- True = Custom
False = Standard
- 6a6c6aa9-0d90-44dd-a419-91bdcd0085fb
- Mode(Custom/Standard)
- Mode(Custom/Standard)
- false
- 0
-
168
-973
228
20
-
282
-963
- 1
- 1
- {0}
- true
- This input does nothing, it is just a spacer
- c8adee2d-568a-431a-9a3b-65078c21d9d3
- Spacer
- Spacer
- true
- 0
-
168
-953
228
20
-
282
-943
- Component_Normal_Deselected_Fill_Color
- f6b959c6-305e-4556-851e-dfe3db8616ce
- Component_Normal_Deselected_Fill_Color
- Component_Normal_Deselected_Fill_Color
- false
- 5d9fa098-4495-4ddf-aeb5-b9e61060f110
- 1
-
168
-933
228
20
-
282
-923
- 1
- 1
- {0}
-
255;255;255;255
- Component_Normal_Deselected_Edge_Color
- 58f3f6bb-4870-4132-b2ed-38ba0cd16373
- Component_Normal_Deselected_Edge_Color
- Component_Normal_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
168
-913
228
20
-
282
-903
- 1
- 1
- {0}
-
255;201;201;201
- Component_Normal_Deselected_Text_Color
- 44b220b8-34dd-484a-947e-534161ff26b0
- Component_Normal_Deselected_Text_Color
- Component_Normal_Deselected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
168
-893
228
20
-
282
-883
- 1
- 1
- {0}
-
255;82;82;82
- Component_Normal_Selected_Fill_Color
- 0a62a62f-77bd-4dda-b0ed-3a12b7fc7643
- Component_Normal_Selected_Fill_Color
- Component_Normal_Selected_Fill_Color
- false
- 2d4bf402-3325-4e67-89d9-d7cd367c5896
- 1
-
168
-873
228
20
-
282
-863
- 1
- 1
- {0}
-
255;224;224;224
- Component_Normal_Selected_Edge_Color
- 3e3bf076-2f8d-473e-8fb4-f92db28df2ff
- Component_Normal_Selected_Edge_Color
- Component_Normal_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
168
-853
228
20
-
282
-843
- 1
- 1
- {0}
-
255;186;186;186
- Component_Normal_Selected_Text_Color
- 095dd5d8-570e-49a2-8e67-cea92b6be7a3
- Component_Normal_Selected_Text_Color
- Component_Normal_Selected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
168
-833
228
20
-
282
-823
- 1
- 1
- {0}
-
255;92;92;92
- This input does nothing, it is just a spacer
- d905c0b0-8e82-4b7f-8eba-51505c30c8e7
- Spacer
- Spacer
- true
- 0
-
168
-813
228
20
-
282
-803
- Component_Hidden_Deselected_Fill_Color
- 321957b9-2793-4637-848c-5ce91391c786
- Component_Hidden_Deselected_Fill_Color
- Component_Hidden_Deselected_Fill_Color
- false
- 5d9fa098-4495-4ddf-aeb5-b9e61060f110
- 1
-
168
-793
228
20
-
282
-783
- 1
- 1
- {0}
-
255;255;255;255
- Component_Hidden_Deselected_Edge_Color
- 0a7dd4a1-56e3-4430-83fa-b6dee39ba5e2
- Component_Hidden_Deselected_Edge_Color
- Component_Hidden_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
168
-773
228
20
-
282
-763
- 1
- 1
- {0}
-
255;140;140;140
- Component_Hidden_Deselected_Text_Color
- d4ff0608-c217-43bf-90b9-c3174669c5b5
- Component_Hidden_Deselected_Text_Color
- Component_Hidden_Deselected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
168
-753
228
20
-
282
-743
- 1
- 1
- {0}
-
255;66;66;66
- Component_Hidden_Selected_Fill_Color
- fe81550d-42f1-474d-82fa-fc63ded3a33c
- Component_Hidden_Selected_Fill_Color
- Component_Hidden_Selected_Fill_Color
- false
- 2d4bf402-3325-4e67-89d9-d7cd367c5896
- 1
-
168
-733
228
20
-
282
-723
- 1
- 1
- {0}
-
255;207;207;207
- Component_Hidden_Selected_Edge_Color
- d242f68d-4dde-4615-b1e4-cfc397eef79a
- Component_Hidden_Selected_Edge_Color
- Component_Hidden_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
168
-713
228
20
-
282
-703
- 1
- 1
- {0}
-
255;148;148;148
- Component_Hidden_Selected_Text_Color
- bda0eb10-ab2b-48c8-9d8e-97a6e8fd4ae1
- Component_Hidden_Selected_Text_Color
- Component_Hidden_Selected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
168
-693
228
20
-
282
-683
- 1
- 1
- {0}
-
255;0;25;0
- This input does nothing, it is just a spacer
- 4673c598-8f3d-4e72-b57e-b181a741ced8
- Spacer
- Spacer
- true
- 0
-
168
-673
228
20
-
282
-663
- Component_Disabled_Deselected_Fill_Color
- 7bde9353-e2ff-4945-b4c9-14b806259c72
- Component_Disabled_Deselected_Fill_Color
- Component_Disabled_Deselected_Fill_Color
- false
- 1da98593-0ce8-41ff-a667-7c2be94a0815
- 1
-
168
-653
228
20
-
282
-643
- 1
- 1
- {0}
-
255;173;173;173
- Component_Disabled_Deselected_Edge_Color
- 71159c9b-1e20-4c06-97da-3c2eb5b91d32
- Component_Disabled_Deselected_Edge_Color
- Component_Disabled_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
168
-633
228
20
-
282
-623
- 1
- 1
- {0}
-
255;135;135;135
- Component_Disabled_Deselected_Text_Color
- 4b17e381-1311-43c2-8544-d1d5b9458697
- Component_Disabled_Deselected_Text_Color
- Component_Disabled_Deselected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
168
-613
228
20
-
282
-603
- 1
- 1
- {0}
-
255;66;66;66
- Component_Disabled_Selected_Fill_Color
- 12baaaf6-1012-42ee-86b6-cbdc737d8de1
- Component_Disabled_Selected_Fill_Color
- Component_Disabled_Selected_Fill_Color
- false
- 41622ff4-285a-4767-ad45-9c5a68eb3205
- 1
-
168
-593
228
20
-
282
-583
- 1
- 1
- {0}
-
255;145;145;145
- Component_Disabled_Selected_Edge_Color
- c8896686-befd-4231-b333-7faff2e2c4fb
- Component_Disabled_Selected_Edge_Color
- Component_Disabled_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
168
-573
228
20
-
282
-563
- 1
- 1
- {0}
-
255;122;122;122
- Component_Disabled_Selected_Text_Color
- baa2bdde-0550-4e7c-abf0-07aabbc25870
- Component_Disabled_Selected_Text_Color
- Component_Disabled_Selected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
168
-553
228
20
-
282
-543
- 1
- 1
- {0}
-
255;110;110;110
- This input does nothing, it is just a spacer
- 156de1c3-5ce0-4b3c-b550-7dc589cf19f9
- Spacer
- Spacer
- true
- 0
-
168
-533
228
20
-
282
-523
- Component_Warning_Deselected_Fill_Color
- f011810c-2c52-41fe-a8af-3048783663f4
- Component_Warning_Deselected_Fill_Color
- Component_Warning_Deselected_Fill_Color
- false
- 5d9fa098-4495-4ddf-aeb5-b9e61060f110
- 1
-
168
-513
228
20
-
282
-503
- 1
- 1
- {0}
-
255;255;255;255
- Component_Warning_Deselected_Edge_Color
- 9edde004-fda3-4653-99de-fbc2c5927c8d
- Component_Warning_Deselected_Edge_Color
- Component_Warning_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
168
-493
228
20
-
282
-483
- 1
- 1
- {0}
-
255;125;125;125
- Component_Warning_Deselected_Text_Color
- a7c322df-e6ad-4443-833b-a5027d642b5a
- Component_Warning_Deselected_Text_Color
- Component_Warning_Deselected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
168
-473
228
20
-
282
-463
- 1
- 1
- {0}
-
255;0;0;0
- Component_Warning_Selected_Fill_Color
- 4332093e-f0bf-4490-9902-f6cb75830c83
- Component_Warning_Selected_Fill_Color
- Component_Warning_Selected_Fill_Color
- false
- 2d4bf402-3325-4e67-89d9-d7cd367c5896
- 1
-
168
-453
228
20
-
282
-443
- 1
- 1
- {0}
-
255;230;230;230
- Component_Warning_Selected_Edge_Color
- 2a4c368c-47ff-4197-9cd7-c08a1cfc5cd2
- Component_Warning_Selected_Edge_Color
- Component_Warning_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
168
-433
228
20
-
282
-423
- 1
- 1
- {0}
-
255;0;50;0
- Component_Warning_Selected_Text_Color
- 4ad8f30a-a901-41f6-9368-60f73d1feafa
- Component_Warning_Selected_Text_Color
- Component_Warning_Selected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
168
-413
228
20
-
282
-403
- 1
- 1
- {0}
-
255;0;0;0
- This input does nothing, it is just a spacer
- 83a35c52-95be-4aa6-b663-9f62ca3af846
- Spacer
- Spacer
- true
- 0
-
168
-393
228
20
-
282
-383
- Component_Error_Deselected_Fill_Color
- 0a0cf5a2-ebc6-47a6-aa59-29d08219bc7c
- Component_Error_Deselected_Fill_Color
- Component_Error_Deselected_Fill_Color
- false
- 5d9fa098-4495-4ddf-aeb5-b9e61060f110
- 1
-
168
-373
228
20
-
282
-363
- 1
- 1
- {0}
-
255;200;0;0
- Component_Error_Deselected_Edge_Color
- f2d5a1d2-54e4-4d9e-849a-7a321a51c71f
- Component_Error_Deselected_Edge_Color
- Component_Error_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
168
-353
228
20
-
282
-343
- 1
- 1
- {0}
-
255;60;0;0
- Component_Error_Deselected_Text_Color
- 10f13eed-fb06-48d2-88fe-4ccd2b4c1de1
- Component_Error_Deselected_Text_Color
- Component_Error_Deselected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
168
-333
228
20
-
282
-323
- 1
- 1
- {0}
-
255;0;0;0
- Component_Error_Selected_Fill_Color
- 3c282599-5602-4c4f-a224-4e67e49976af
- Component_Error_Selected_Fill_Color
- Component_Error_Selected_Fill_Color
- false
- 0
-
168
-313
228
20
-
282
-303
- 1
- 1
- {0}
-
255;255;255;255
- Component_Error_Selected_Edge_Color
- 1cce579f-e827-4b62-a4eb-2db9743078b4
- Component_Error_Selected_Edge_Color
- Component_Error_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
168
-293
228
20
-
282
-283
- 1
- 1
- {0}
-
255;0;50;0
- Component_Error_Selected_Text_Color
- 45c987ff-932c-44a5-a12c-9b6313e72b8a
- Component_Error_Selected_Text_Color
- Component_Error_Selected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
168
-273
228
20
-
282
-263
- 1
- 1
- {0}
-
255;255;255;255
- This input does nothing, it is just a spacer
- 5b2574b8-2175-4877-90c0-7d3edea60d33
- Spacer
- Spacer
- true
- 0
-
168
-253
228
20
-
282
-243
- Component_Label_Deselected_Fill_Color
- 2c1c26ee-6404-49ca-b28a-cfb4ead0d2e1
- Component_Label_Deselected_Fill_Color
- Component_Label_Deselected_Fill_Color
- false
- 0
-
168
-233
228
20
-
282
-223
- 1
- 1
- {0}
-
255;50;50;50
- Component_Label_Deselected_Edge_Color
- 602244c8-bf52-4371-a87b-388a0612939a
- Component_Label_Deselected_Edge_Color
- Component_Label_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
168
-213
228
20
-
282
-203
- 1
- 1
- {0}
-
255;0;0;0
- Component_Label_Deselected_Text_Color
- 4f76b9df-5ef3-4336-a982-66c0a18b2f8c
- Component_Label_Deselected_Text_Color
- Component_Label_Deselected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
168
-193
228
20
-
282
-183
- 1
- 1
- {0}
-
255;255;255;255
- Component_Label_Selected_Fill_Color
- 4755f628-28f0-43e7-9567-c9f4a6347eb7
- Component_Label_Selected_Fill_Color
- Component_Label_Selected_Fill_Color
- false
- 0
-
168
-173
228
20
-
282
-163
- 1
- 1
- {0}
-
255;25;60;25
- Component_Label_Selected_Edge_Color
- 1a80ded9-3255-4d13-b155-c6a4b3fbc080
- Component_Label_Selected_Edge_Color
- Component_Label_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
168
-153
228
20
-
282
-143
- 1
- 1
- {0}
-
255;0;35;0
- Component_Label_Selected_Text_Color
- 7ceb31d3-04c8-461d-811f-f33619dd34a8
- Component_Label_Selected_Text_Color
- Component_Label_Selected_Text_Color
- false
- a5070296-591f-454e-b939-4e1ba45b08e2
- 1
-
168
-133
228
20
-
282
-123
- 1
- 1
- {0}
-
255;190;250;180
- This input does nothing, it is just a spacer
- d652999b-5a4b-41c8-a7b9-a9ae76fb5699
- Spacer
- Spacer
- true
- 0
-
168
-113
228
20
-
282
-103
- Galapagos_Deselected_Fill_Color
- b9fafc3f-9f97-4907-93d7-d61a29223c7f
- Galapagos_Deselected_Fill_Color
- Galapagos_Deselected_Fill_Color
- false
- 0
-
168
-93
228
20
-
282
-83
- 1
- 1
- {0}
-
255;252;252;252
- Galapagos_Deselected_Edge_Color
- 74a688e8-b34e-4091-9b76-27007c49de29
- Galapagos_Deselected_Edge_Color
- Galapagos_Deselected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
168
-73
228
20
-
282
-63
- 1
- 1
- {0}
-
255;100;0;50
- Galapagos_Selected_Fill_Color
- 1e33c84f-2937-486e-bb9f-9ab17866e471
- Galapagos_Selected_Fill_Color
- Galapagos_Selected_Fill_Color
- false
- 0
-
168
-53
228
20
-
282
-43
- 1
- 1
- {0}
-
255;255;255;255
- Galapagos_Selected_Edge_Color
- 200dc3d8-e55f-429e-aac4-6083a05e41e4
- Galapagos_Selected_Edge_Color
- Galapagos_Selected_Edge_Color
- false
- b5a6a551-46d2-4806-81c1-4e694142c31a
- 1
-
168
-33
228
20
-
282
-23
- 1
- 1
- {0}
-
255;0;50;0
- This input does nothing, it is just a spacer
- f728dada-ea5d-41b0-b98a-8de512f00fc4
- Spacer
- Spacer
- true
- 0
-
168
-13
228
20
-
282
-3
- Wire_Normal_Color
- 0fcc9cb5-ff01-4adc-80db-8249b1cb1362
- Wire_Normal_Color
- Wire_Normal_Color
- false
- ab85a55e-b675-4974-8817-fc5f46ae741a
- 1
-
168
7
228
20
-
282
17
- 1
- 1
- {0}
-
255;230;230;230
- Wire_Empty_Color
- 78a2afee-b670-426b-a371-999235a7e337
- Wire_Empty_Color
- Wire_Empty_Color
- false
- ab85a55e-b675-4974-8817-fc5f46ae741a
- 1
-
168
27
228
20
-
282
37
- 1
- 1
- {0}
-
180;230;55;2
- Wire_Selected_Start_Color
- d41f6915-a75d-46dc-b44c-982c253a5b9e
- Wire_Selected_Start_Color
- Wire_Selected_Start_Color
- false
- 2251b2a2-b627-43f5-aa8b-4c758e59a7bf
- 1
-
168
47
228
20
-
282
57
- 1
- 1
- {0}
-
255;230;230;230
- Wire_Selected_End_Color
- 2410a63c-6af9-409a-b554-f2e05e8d3950
- Wire_Selected_End_Color
- Wire_Selected_End_Color
- false
- 2251b2a2-b627-43f5-aa8b-4c758e59a7bf
- 1
-
168
67
228
20
-
282
77
- 1
- 1
- {0}
-
255;230;230;230
- This input does nothing, it is just a spacer
- be73375b-cea8-4bb4-b84f-47c1c53dba45
- Spacer
- Spacer
- true
- 0
-
168
87
228
20
-
282
97
- Panel_Default_Color
This does not change the color of Panels already on the canvas, it changes the default color for new Panels
- 29278a69-6358-418c-aba8-2f26dfb10578
- Panel_Default_Color
- Panel_Default_Color
- false
- 0
-
168
107
228
20
-
282
117
- 1
- 1
- {0}
-
255;255;255;255
- Group_Default_Color
This does not change the color of Groups already on the canvas, it changes the default color for new Groups
- 99defed7-0c8b-446e-be4d-436c05592d1b
- Group_Default_Color
- Group_Default_Color
- false
- 0
-
168
127
228
20
-
282
137
- 1
- 1
- {0}
-
255;255;255;255
- This input does nothing, it is just a spacer
- 19fc00c2-190e-4e70-998b-e26dc4f9f8af
- Spacer
- Spacer
- true
- 0
-
168
147
228
20
-
282
157
- Canvas_Background_Color
- 8b28a632-1507-43a4-8735-9a181ad39bcc
- Canvas_Background_Color
- Canvas_Background_Color
- false
- 0
-
168
167
228
20
-
282
177
- 1
- 1
- {0}
-
255;255;255;255
- Canvas_Gridline_Color
- 72826570-5a41-4ef5-936d-59e648e96383
- Canvas_Gridline_Color
- Canvas_Gridline_Color
- false
- 0
-
168
187
228
20
-
282
197
- 1
- 1
- {0}
-
255;240;240;240
- Canvas_Gridline_Width
- f2e7af00-bbdc-4f45-a020-e3f2020b5345
- Canvas_Gridline_Width
- Canvas_Gridline_Width
- false
- 0
-
168
207
228
20
-
282
217
- 1
- 1
- {0}
- 2
- Canvas_Gridline_Height
- b32ba782-b9e0-40b1-9b49-c17de5b67dae
- Canvas_Gridline_Height
- Canvas_Gridline_Height
- false
- 0
-
168
227
228
20
-
282
237
- 1
- 1
- {0}
- 2
- Canvas_Edge_Color
- 5859d87e-580c-4f1f-af8c-3683e3dc94d8
- Canvas_Edge_Color
- Canvas_Edge_Color
- false
- 0
-
168
247
228
20
-
282
257
- 1
- 1
- {0}
-
255;207;207;207
- Canvas_Shadow_Color
- 6f769f3e-eb42-4a27-af68-d95482a87942
- Canvas_Shadow_Color
- Canvas_Shadow_Color
- false
- 0
-
168
267
228
20
-
282
277
- 1
- 1
- {0}
-
0;237;237;237
- Canvas_Shadow_Size
- 57186c1f-9afb-4410-9800-b9138d1f1a74
- Canvas_Shadow_Size
- Canvas_Shadow_Size
- false
- 0
-
168
287
228
20
-
282
297
- 1
- 1
- {0}
- 2
- This input does nothing, it is just a spacer
- 288db22f-a056-435a-ba44-1260facefde8
- Spacer
- Spacer
- true
- 0
-
168
307
228
20
-
282
317
- True = Removes Canvas Grid, Edge, and Shadow - Canvas uses Monochromatic_Color
False = Keeps Canvas Grid, Edge, and Shadow - Canvas uses Canvas_Background_Color
- d5f8a2aa-1f17-4d15-adf8-66c82a72a6ee
- Monochromatic(On/Off)
- Monochromatic(On/Off)
- false
- 0
-
168
327
228
20
-
282
337
- 1
- 1
- {0}
- false
- Monochromatic_Color
- 55f56dcf-b4a3-4ffe-b7fa-e71cbe5737fb
- Monochromatic_Color
- Monochromatic_Color
- false
- 0
-
168
347
228
20
-
282
357
- 1
- 1
- {0}
-
255;255;255;255
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- bc131f89-e2c1-43d2-ac21-36cce03c61c4
- Digit Scroller
- SEMENT LENGTH
- false
- 0
- 12
- SEMENT LENGTH
- 2
- 0.0023000000
-
1266
-56
250
20
-
1266.726
-55.83565
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- 7571d6a7-f9fb-43c5-b492-ebb1699bbe58
- Series
- Series
-
1344
-19
106
64
-
1405
13
- First number in the series
- 9a4fd554-d7a2-4807-aa3b-c5bc6f8f54ab
- Start
- Start
- false
- 0
-
1346
-17
47
20
-
1369.5
-7
- 1
- 1
- {0}
- 0
- Step size for each successive number
- 3989d717-5c52-4fc1-9e3f-d8cf0c4e6334
- Step
- Step
- false
- 7ea2aa96-2d9e-44d9-bf1b-90bc86fbf709
- 1
-
1346
3
47
20
-
1369.5
13
- 1
- 1
- {0}
- 1
- Number of values in the series
- 83ae208f-c932-4aaf-9f7f-74fdb4f54dae
- Count
- Count
- false
- b5e8ba51-1f5f-453f-b4d3-f2e760598a98
- 1
-
1346
23
47
20
-
1369.5
33
- 1
- 1
- {0}
- 10
- 1
- Series of numbers
- 90e3f7ea-df08-465a-8194-bf4035c20fb1
- Series
- Series
- false
- 0
-
1417
-17
31
60
-
1432.5
13
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 5705c628-a671-4ea2-8861-c39e6c31f184
- Digit Scroller
- INCREASE BEND PER SEGMENT
- false
- 0
- 12
- INCREASE BEND PER SEGMENT
- 1
- 0.49222173845
-
1281
222
250
20
-
1281.69
222.3956
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- b5a6a551-46d2-4806-81c1-4e694142c31a
- Colour Swatch
- false
- 0
-
255;209;209;209
-
24
-144
60
20
-
24
-143.6801
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- 5d9fa098-4495-4ddf-aeb5-b9e61060f110
- Colour Swatch
- false
- 0
-
255;255;255;255
-
24
-1073
60
20
-
24
-1072.802
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- a5070296-591f-454e-b939-4e1ba45b08e2
- Colour Swatch
- false
- 0
-
255;115;115;115
-
24
-184
60
20
-
24
-183.6801
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- 2d4bf402-3325-4e67-89d9-d7cd367c5896
- Colour Swatch
- false
- 0
-
255;227;227;227
-
24
-1013
60
20
-
24
-1012.802
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- ab85a55e-b675-4974-8817-fc5f46ae741a
- Colour Swatch
- false
- 0
-
255;222;222;222
-
24
211
60
20
-
24
211.0692
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- 2251b2a2-b627-43f5-aa8b-4c758e59a7bf
- Colour Swatch
- false
- 0
-
255;168;168;168
-
24
271
60
20
-
24
271.0692
- de131812-96cf-4cef-b9ee-7c7031802751
- 00000000-0000-0000-0000-000000000000
- InfoGlasses
- To show the components' advances information.Right click to have advanced options
- true
- c54e16b2-ccf6-4f4e-95dc-0fd1ce565c24
- 0
- true
- InfoGlasses
- InfoGlasses
- 0
- 0
-
255;255;255;255
-
255;115;115;115
- true
- true
- true
-
255;59;59;59
- 1000
- 8
- false
- 0
- false
- true
- false
- 2
- 1
- 8
- false
- false
- false
-
211
-1168
176
28
-
316
-1154
- Run
- 72e93834-66d7-4933-aef0-991e6bdf6f81
- true
- Run
- Run
- false
- 0
-
213
-1166
31
24
-
288.5
-1154
- 1
- 1
- {0}
- true
- b6d7ba20-cf74-4191-a756-2216a36e30a7
- Rotate
- Rotate a vector around an axis.
- true
- 8ce21e2b-1311-46c7-8305-9be4aeadbc48
- Rotate
- Rotate
-
1310
-344
150
64
-
1413
-312
- Vector to rotate
- 7e771656-f78f-4d30-a2ec-6451880f237a
- Vector
- Vector
- false
- 6cb3a800-b587-4653-acc2-5744ae0cdd07
- 1
-
1312
-342
89
20
-
1384.5
-332
- Rotation axis
- 42e4c4a3-e40f-4dd6-80da-7db696fc492c
- Axis
- Axis
- false
- f447cd71-4dec-426b-9c17-991c06398d6d
- 1
-
1312
-322
89
20
-
1384.5
-312
- Rotation angle (in degrees)
- d36dc3cf-9b9b-4570-818a-af1d2a32e878
- -X
- Angle
- Angle
- false
- true
- 50431618-b1c9-44cb-915e-6a1ce1fcbf6a
- 1
- true
-
1312
-302
89
20
-
1384.5
-292
- Rotated vector
- c13cd37b-e089-4f8d-883b-54203d5df027
- Vector
- Vector
- false
- 0
-
1425
-342
33
60
-
1441.5
-312
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 27066b99-163c-49af-b78d-2b373f91b9b5
- Interpolate
- Interpolate
-
1391
-680
225
84
-
1564
-638
- 1
- Interpolation points
- 1cfa6ffd-56c1-44b4-8264-031c3bfcadc9
- Vertices
- Vertices
- false
- 2a8e46a0-9509-4aff-8701-b3c411851f02
- 1
-
1393
-678
159
20
-
1472.5
-668
- Curve degree
- 4e7bb25b-6ce9-4b77-879b-a77033e4f7f1
- Degree
- Degree
- false
- 0
-
1393
-658
159
20
-
1472.5
-648
- 1
- 1
- {0}
- 3
- Periodic curve
- bc7913c7-f8c4-4cf1-a3b1-425a45cf7d60
- Periodic
- Periodic
- false
- 0
-
1393
-638
159
20
-
1472.5
-628
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 6252188d-187f-4d0b-b8c7-ba56fa4c5af2
- KnotStyle
- KnotStyle
- false
- 0
-
1393
-618
159
20
-
1472.5
-608
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 812b2004-5d23-4a36-8867-c4d7e1d7c8c3
- Curve
- Curve
- false
- 0
-
1576
-678
38
26
-
1595
-664.6667
- Curve length
- cd8cb434-3248-490d-b1bd-9d308f8f6e84
- Length
- Length
- false
- 0
-
1576
-652
38
27
-
1595
-638
- Curve domain
- cad893e9-0cca-4cc6-9205-224b9074636b
- Domain
- Domain
- false
- 0
-
1576
-625
38
27
-
1595
-611.3334
- 79f9fbb3-8f1d-4d9a-88a9-f7961b1012cd
- Unit X
- Unit vector parallel to the world {x} axis.
- true
- acb47850-cd31-4ea1-ad1c-8d027295fe5b
- Unit X
- Unit X
-
1346
-192
114
28
-
1392
-178
- Unit multiplication
- 9c8e3800-eb50-4449-8428-e70fa45c8743
- Factor
- Factor
- false
- c45782da-fece-45d1-903c-95142361b873
- 1
-
1348
-190
32
24
-
1364
-178
- 1
- 1
- {0}
- 1
- World {x} vector
- 21b93f54-19f5-40ef-a176-df902815f398
- Unit vector
- Unit vector
- false
- 0
-
1404
-190
54
24
-
1431
-178
- 9103c240-a6a9-4223-9b42-dbd19bf38e2b
- Unit Z
- Unit vector parallel to the world {z} axis.
- true
- a2e7717e-c537-462c-a03e-36d06f4600e8
- Unit Z
- Unit Z
-
1148
-345
114
28
-
1194
-331
- Unit multiplication
- aa91a118-d75b-43c7-a0d7-4a6fbf6865f8
- Factor
- Factor
- false
- 06332314-4669-466a-9627-5ee802d91f0f
- 1
-
1150
-343
32
24
-
1166
-331
- 1
- 1
- {0}
- 1
- World {z} vector
- f447cd71-4dec-426b-9c17-991c06398d6d
- Unit vector
- Unit vector
- false
- 0
-
1206
-343
54
24
-
1233
-331
- ab14760f-87a6-462e-b481-4a2c26a9a0d7
- Derivatives
- Evaluate the derivatives of a curve at a specified parameter.
- true
- c3a5eb6d-f6f6-4e7d-8ede-60fcdc1f4260
- true
- Derivatives
- Derivatives
-
527
-4713
120
144
-
606
-4641
- 2
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 7
- fbac3e32-f100-4292-8692-77240a42fd1a
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- Curve to evaluate
- f3ee6bc2-fdad-4aa8-bc05-a096970cebc8
- true
- Curve
- Curve
- false
- 0
-
529
-4711
65
70
-
561.5
-4676
- Parameter on curve domain to evaluate
- 04c36552-d571-45f3-874e-eb0200b47d22
- true
- Parameter
- Parameter
- false
- 0
-
529
-4641
65
70
-
561.5
-4606
- Point on curve at {t}
- baaac401-d9a7-411b-805d-a15c35db80eb
- true
- Point
- Point
- false
- 0
-
618
-4711
27
20
-
631.5
-4701
- First curve derivative at t (Velocity)
- d5b87ddb-341e-4bd8-afdb-367567c6bba3
- true
- false
- First derivative
- 1
- false
- 0
-
618
-4691
27
20
-
631.5
-4681
- Second curve derivative at t (Acceleration)
- 2639343a-12c6-4387-90cc-a3114bd783d6
- true
- false
- Second derivative
- 2
- false
- 0
-
618
-4671
27
20
-
631.5
-4661
- Third curve derivative at t (Jolt)
- 06921a77-02a5-44a5-ab76-62a2ec504ada
- true
- false
- Third derivative
- 3
- false
- 0
-
618
-4651
27
20
-
631.5
-4641
- Fourth curve derivative at t (Jounce)
- 92510296-d128-4ce9-a581-482c09cbc15e
- true
- false
- Fourth derivative
- 4
- false
- 0
-
618
-4631
27
20
-
631.5
-4621
- Fifth curve derivative at t
- ce3af00f-0726-43e6-b974-248803cfe0e6
- true
- false
- Fifth derivative
- 5
- false
- 0
-
618
-4611
27
20
-
631.5
-4601
- Sixth curve derivative at t
- e943f2d8-f1f9-4bb1-aef8-c108ef86c002
- true
- false
- Sixth derivative
- 6
- false
- 0
-
618
-4591
27
20
-
631.5
-4581
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- a28e949a-03f8-43f8-b244-d21a8d6e41e4
- true
- Line SDL
- Line SDL
-
409
-5976
179
64
-
552
-5944
- Line start point
- 79adb25f-f822-4463-a547-0638ba3af362
- true
- Start
- Start
- false
- 0
-
411
-5974
129
20
-
483.5
-5964
- Line tangent (direction)
- 03636d62-1370-4942-88f4-857a65464d92
- true
- Direction
- Direction
- false
- 06921a77-02a5-44a5-ab76-62a2ec504ada
- 1
-
411
-5954
129
20
-
483.5
-5944
- 1
- 1
- {0}
-
0
0
1
- Line length
- 71e8a980-e875-42d1-82e8-80286c8cbc52
- -X
- true
- Length
- Length
- false
- 0
-
411
-5934
129
20
-
483.5
-5924
- 1
- 1
- {0}
- 1
- Line segment
- b317086f-b6bc-47a5-ac87-3e7d34547ac2
- true
- Line
- Line
- false
- 0
-
564
-5974
22
60
-
575
-5944
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 391756f9-4358-45d1-936e-c496ba6104e0
- true
- Create Material
- Create Material
-
447
-6100
152
104
-
545
-6048
- Colour of the diffuse channel
- 99cd1941-02ef-4b60-9081-2924d6df2987
- true
- Diffuse
- Diffuse
- false
- 0
-
449
-6098
84
20
-
491
-6088
- 1
- 1
- {0}
-
255;232;232;232
- Colour of the specular highlight
- b4fa067f-1df1-4344-b55f-bc629475264a
- true
- Specular
- Specular
- false
- 0
-
449
-6078
84
20
-
491
-6068
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 38f16f51-687d-44ec-9aab-4b4c5db2f705
- true
- Emission
- Emission
- false
- 0
-
449
-6058
84
20
-
491
-6048
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- f0216951-6a43-4fe8-8f72-957347479ac7
- true
- Transparency
- Transparency
- false
- 0
-
449
-6038
84
20
-
491
-6028
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 1a0cdefa-8194-428a-b2af-d416a232075e
- true
- Shine
- Shine
- false
- 0
-
449
-6018
84
20
-
491
-6008
- 1
- 1
- {0}
- 100
- Resulting material
- 200bbd93-5b58-4c27-8078-0adeb21b162c
- true
- Material
- Material
- false
- 0
-
557
-6098
40
100
-
577
-6048
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- true
- d7be4360-884f-4c85-be96-44fb8a798a7d
- true
- Custom Preview
- Custom Preview
-
560
-6163
76
44
-
622
-6141
- Geometry to preview
- true
- 7d2280d0-5877-4448-8407-b4d0b2e99066
- true
- Geometry
- Geometry
- false
- b317086f-b6bc-47a5-ac87-3e7d34547ac2
- 1
-
562
-6161
48
20
-
586
-6151
- The material override
- 0ab4a55d-2d50-496f-9431-24974e37bb78
- true
- Material
- Material
- false
- 200bbd93-5b58-4c27-8078-0adeb21b162c
- 1
-
562
-6141
48
20
-
586
-6131
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 4f93409d-e3de-4e47-b8ce-b1a1fa6684c9
- true
- Evaluate Length
- Evaluate Length
-
450
-6247
149
64
-
535
-6215
- Curve to evaluate
- ece5eb15-d68e-4325-8ac6-14e1983b8848
- true
- Curve
- Curve
- false
- b317086f-b6bc-47a5-ac87-3e7d34547ac2
- 1
-
452
-6245
71
20
-
487.5
-6235
- Length factor for curve evaluation
- b7b17610-8182-4eb0-beff-f9003e5cd200
- true
- Length
- Length
- false
- 0
-
452
-6225
71
20
-
487.5
-6215
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- e9204942-5fcb-43c4-9bd7-bad7da1f1095
- true
- Normalized
- Normalized
- false
- 0
-
452
-6205
71
20
-
487.5
-6195
- 1
- 1
- {0}
- true
- Point at the specified length
- 0b07833a-e9b0-4c65-b08a-a86c6f095e42
- true
- Point
- Point
- false
- 0
-
547
-6245
50
20
-
572
-6235
- Tangent vector at the specified length
- d4d0d2a3-7672-4c9b-847d-0720f0276387
- true
- Tangent
- Tangent
- false
- 0
-
547
-6225
50
20
-
572
-6215
- Curve parameter at the specified length
- 4821c9f2-9535-42fb-89a8-46c9b7c32eca
- true
- Parameter
- Parameter
- false
- 0
-
547
-6205
50
20
-
572
-6195
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- f8bf8b17-5f64-4003-9ce1-9026aaac4695
- true
- Interpolate
- Interpolate
-
364
-6351
225
84
-
537
-6309
- 1
- Interpolation points
- 5b1939bb-f0f0-413a-9564-dbeb140f85b7
- true
- Vertices
- Vertices
- false
- 0b07833a-e9b0-4c65-b08a-a86c6f095e42
- 1
-
366
-6349
159
20
-
445.5
-6339
- Curve degree
- 03f9d6bf-b682-46a6-9e8a-34324164c9b0
- true
- Degree
- Degree
- false
- 0
-
366
-6329
159
20
-
445.5
-6319
- 1
- 1
- {0}
- 3
- Periodic curve
- cf0efaf9-d364-4835-a799-f77814defd1e
- true
- Periodic
- Periodic
- false
- 0
-
366
-6309
159
20
-
445.5
-6299
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 68ab4f2d-155f-49e9-9089-6cceba7398b5
- true
- KnotStyle
- KnotStyle
- false
- 0
-
366
-6289
159
20
-
445.5
-6279
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- cd554e84-a87c-47bc-a79c-19347e2f0445
- true
- Curve
- Curve
- false
- 0
-
549
-6349
38
26
-
568
-6335.667
- Curve length
- 84582cb4-6638-42b4-a325-f4e841513b71
- true
- Length
- Length
- false
- 0
-
549
-6323
38
27
-
568
-6309
- Curve domain
- 2d16f12e-6fb5-4594-8c47-80e046dd4a10
- true
- Domain
- Domain
- false
- 0
-
549
-6296
38
27
-
568
-6282.333
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 59480eb6-f67d-4aed-af3c-80bcc65b0c97
- true
- Create Material
- Create Material
-
447
-6475
152
104
-
545
-6423
- Colour of the diffuse channel
- d0a233c4-5cbf-47b6-b827-30877f3c0605
- true
- Diffuse
- Diffuse
- false
- 0
-
449
-6473
84
20
-
491
-6463
- 1
- 1
- {0}
-
255;207;207;207
- Colour of the specular highlight
- f52f3c21-e882-40ff-8233-68e3e5495edb
- true
- Specular
- Specular
- false
- 0
-
449
-6453
84
20
-
491
-6443
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- b9730379-a406-4b51-a3c9-a8491583fea5
- true
- Emission
- Emission
- false
- 0
-
449
-6433
84
20
-
491
-6423
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 34d39782-03a8-4ac3-8ce4-9b4b5b91336e
- true
- Transparency
- Transparency
- false
- 0
-
449
-6413
84
20
-
491
-6403
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- cbcb1a83-292f-4d78-a691-b5e20a9d993d
- true
- Shine
- Shine
- false
- 0
-
449
-6393
84
20
-
491
-6383
- 1
- 1
- {0}
- 100
- Resulting material
- d1ae5845-db5c-4627-82e9-c54c822208ed
- true
- Material
- Material
- false
- 0
-
557
-6473
40
100
-
577
-6423
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- true
- 570796f7-f90e-4361-858c-c1f014778449
- true
- Custom Preview
- Custom Preview
-
560
-6538
76
44
-
622
-6516
- Geometry to preview
- true
- 501744d7-62ef-4952-a5df-acf7700d473f
- true
- Geometry
- Geometry
- false
- cd554e84-a87c-47bc-a79c-19347e2f0445
- 1
-
562
-6536
48
20
-
586
-6526
- The material override
- e4f2c01f-e44e-43f1-b46b-56bcc7fb4ad8
- true
- Material
- Material
- false
- d1ae5845-db5c-4627-82e9-c54c822208ed
- 1
-
562
-6516
48
20
-
586
-6506
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 7bba5658-4cbd-432f-a660-fc5cb3f3794c
- true
- Quick Graph
- Quick Graph
- false
- 0
- baaac401-d9a7-411b-805d-a15c35db80eb
- 1
-
523
-4876
150
150
-
523.7125
-4875.101
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 167436ff-de50-491f-8e47-5da60e700291
- true
- Quick Graph
- Quick Graph
- false
- 0
- d5b87ddb-341e-4bd8-afdb-367567c6bba3
- 1
-
523
-5045
150
150
-
523.7125
-5044.101
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 93ccbc8f-68af-4b11-adf7-aabf23dbd5b7
- true
- Quick Graph
- Quick Graph
- false
- 0
- 2639343a-12c6-4387-90cc-a3114bd783d6
- 1
-
523
-5212
150
150
-
523.7125
-5211.101
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 8afb402c-3b86-45d3-84ea-d3432b3a52a6
- true
- Quick Graph
- Quick Graph
- false
- 0
- 06921a77-02a5-44a5-ab76-62a2ec504ada
- 1
-
523
-5381
150
150
-
523.7125
-5380.101
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 08ca05ad-d4b6-4ba5-9d86-2dfa8d24fbe1
- true
- Quick Graph
- Quick Graph
- false
- 0
- 92510296-d128-4ce9-a581-482c09cbc15e
- 1
-
523
-5551
150
150
-
523.7125
-5550.101
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- efd6e82c-6389-40c3-b1fa-a1f3d7f406cb
- true
- Quick Graph
- Quick Graph
- false
- 0
- ce3af00f-0726-43e6-b974-248803cfe0e6
- 1
-
523
-5721
150
150
-
523.7125
-5720.101
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- dc664508-b5c0-4996-9899-a06cb3c1f6cf
- true
- Quick Graph
- Quick Graph
- false
- 0
- e943f2d8-f1f9-4bb1-aef8-c108ef86c002
- 1
-
523
-5889
150
150
-
523.7125
-5888.101
- -1
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 36490051-2898-452f-96c1-81007a065ffb
- Relay
- false
- 9fd99022-1a7f-4cea-a05e-11bb80d4ec7d
- 1
-
1385
-442
40
16
-
1405
-434
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- b5e8ba51-1f5f-453f-b4d3-f2e760598a98
- Relay
- false
- 502e62c7-4437-40b9-bd0f-64f09fc22560
- 1
-
1388
242
40
16
-
1408
250
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
- Mathematical addition
- true
- 07127bdd-1ca8-43c8-a0e6-b6634f4ea7e2
- Addition
- Addition
-
1365
268
85
44
-
1405
290
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for addition
- 3efa2d60-d24c-4da5-b586-ead577c32d7b
- A
- A
- true
- 0
-
1367
270
26
20
-
1380
280
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 1
- Second item for addition
- 493117c9-0781-4f7a-9da2-810c2c0c8e21
- B
- B
- true
- 891c2d5f-30f4-4657-a7f6-e91f07dc0e63
- 1
-
1367
290
26
20
-
1380
300
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- Result of addition
- 502e62c7-4437-40b9-bd0f-64f09fc22560
- Result
- Result
- false
- 0
-
1417
270
31
40
-
1432.5
290
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
- Mathematical addition
- true
- 6e897604-8413-4005-967f-aa26aa4bacbb
- Addition
- Addition
-
1318
333
155
44
-
1358
355
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for addition
- 06b19fd1-cc87-433b-8994-3b63504bbe2d
- A
- A
- true
- 0
-
1320
335
26
20
-
1333
345
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 1
- Second item for addition
- b04a041f-efb2-463f-88b8-e8d878371e7c
- B
- B
- true
- b05af234-ce5b-432e-8b3f-32a94a964bbf
- 1
-
1320
355
26
20
-
1333
365
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 1
- Result of addition
- 891c2d5f-30f4-4657-a7f6-e91f07dc0e63
- Result
- NUMBER OF POINTS
- false
- 0
-
1370
335
101
40
-
1420.5
355
- e2039b07-d3f3-40f8-af88-d74fed238727
- Insert Items
- Insert a collection of items into a list.
- true
- 81df0eaa-5106-4fa2-bfe7-c2073c37a781
- Insert Items
- Insert Items
-
1344
-543
116
84
-
1427
-501
- 1
- List to modify
- 07b21d74-57aa-470b-9886-25c6218657ca
- List
- List
- false
- 36490051-2898-452f-96c1-81007a065ffb
- 1
-
1346
-541
69
20
-
1380.5
-531
- 1
- Items to insert. If no items are supplied, nulls will be inserted.
- b2066849-f7ec-46b6-bbac-bbdda3212e65
- Item
- Item
- true
- 0
-
1346
-521
69
20
-
1380.5
-511
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- {0,0,0}
- 1
- Insertion index for each item
- b77429fa-e425-429a-8f89-628efd4a0362
- Indices
- Indices
- false
- 0
-
1346
-501
69
20
-
1380.5
-491
- 1
- 1
- {0}
- 0
- If true, indices will be wrapped
- 89a48d9c-1bc1-457e-b823-d92ff7d61eda
- Wrap
- Wrap
- false
- 0
-
1346
-481
69
20
-
1380.5
-471
- 1
- 1
- {0}
- false
- 1
- List with inserted values
- 9bfa77bb-a647-437e-ae62-842d46b2a2f1
- List
- List
- false
- 0
-
1439
-541
19
80
-
1448.5
-501
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 2a8e46a0-9509-4aff-8701-b3c411851f02
- Relay
- ⊙☉⊙
- false
- db6ab01e-9fb2-4f8e-99b4-ceef5dc1505f
- 1
-
1753
-650
44
16
-
1775
-642
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- 1da98593-0ce8-41ff-a667-7c2be94a0815
- Colour Swatch
- false
- 0
-
255;196;196;196
-
24
-648
60
20
-
24
-647.6801
- 9c53bac0-ba66-40bd-8154-ce9829b9db1a
- Colour Swatch
- Colour (palette) swatch
- 41622ff4-285a-4767-ad45-9c5a68eb3205
- Colour Swatch
- false
- 0
-
255;176;176;176
-
24
-588
60
20
-
24
-587.6801
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 07127bdd-1ca8-43c8-a0e6-b6634f4ea7e2
- 6e897604-8413-4005-967f-aa26aa4bacbb
- 2
- 4caac69f-0c5a-4d20-bfd4-d541b3bc321b
- Group
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
-
7VsJdBNlHp+2aZqjh1AVUJDR4nqwFnTxKbJgk6ZHaNPGFhAEH50m03YgycRkUuSy5UFBKiBdLD0ALT6oINUqlCqHEt3isiuLZQEBRXvo4sqxsquuuKt0v2/mm7RzJC00tfCw7yWd+f+/8/c/v/9MVAba4rGTDqYD/IVgGKYAn2inzZNPOWYWki43RTsgywzIkA3/ImATvl8qSVhJF2wSjtganmU0QLIakMZcOjtytZdIqP/3oYZTmoq5EWYXWUiRcyBfA/jK7AIwijUGkU2ku2DSXCcJ2WFo4ijEy6BddsIGOSMAdePGjR18r2zSRloY0srzKIrquNFA5lEOigG7MLtoJ+liKNLNDws/CgPBsPOowM2ONntp2bJPVVoD6ba4KCeDNg+XiCkyCDvJ350Pm5qaEh/fvrPqzIvLwXd7RT34bqt4s62igb1gbxs2w++yVez36raycl/L5soMeL1mCRxhLezSvn6T77rthTVtL5T7mrVVbPWNxjXjBjlTsQPSqxYJpub7oiUh7lbh8jZ0zltazTZeEei6+lXfgOgbUQL2Yq/RjtgZuyxgq29taJ38sjvbsFxuj2hSdu8IVXYEhA/fV4okhzBCm5uIFwSSCxpNID4ELyvZ+PiU1KnqLKBh0BTcvJnAvyiemkh7OAMK400AKNssoIxIf0IRWTmJcOWTbMvbwG39zx0dC0AXxRM0bectaEb0jY+GTwHqLJhKDSmSadRZFmc6MZf2MF3balJctMcpaTyg0xQyc+HifBPEgI+Wowl6QbqSo8MBQpElKlImd1r27aEl0+/a+XHaityvdQV/dfxXYCVRJsLtxnVWKzurOpF2MATl6PQW0NfI2drdZtKVB+wct8P+BOqP03k4gdsoNwOvKIa0u5WplNVKOviNhEQaHW6GcFjIFA9l5ZeYde8QY4GCTFrvTDrqHdR6JMASVRmUZbZ/tkbHMC4q18NwPsQnVj1AzcqS4uB9zmEDlpDWhGH/0WPYaH24mSqkWVCHQ27xxwbMm9SkdRIuwj6Tcjg9LLoqhK5SZ7GQbp+PCvED0XAj7IgXEjYP6cYBWEKs4mWRaD+uO765/s7MNfUzZu2fe/BbARLh7IgSBBA5k52dc7ysoimzaY/LQrJqCHX5zImwPQ+8ZiyuLZt3TrewVsuxBfoE+/UQwhoAoXcigPCEDsNwMYTmIyyEkRyEQP0RhsoAgA3KIt0eG6s6AqRkgcoZyZiXPTw5bePDpkcpe4FHAJSSG0mCFE+XQCWHBdZzLLATCItngTrV6ERYJJwCypYqxALOGnF5+jQoHdkVGIehCBvuYjfjloUnY8DzCysOz0xtNHy07WVLcaUAnhgzGoGDwy3BSdKgTwBLCghYYhNybCH+HNv9m7L2T6/fmrxlU8yH7z/z/VqhrbAuVujQhvCA62kXyoj4JEOZSNvAjvjEBP6Xk8FtOjwfjgvFkOICSlpAO0HKgtOcuw41Gnhr2/v9yJ/+kntj8luN4y/u1Jy/AbBCEKvi2WP3LnQcNe3539jVD936kA6wQv3YKGCFIdaEphGF65406JYe/PKBhyfc/yVgKRDrnainNR+UJOpWRZfeY8kebgCscMQSe1bAUiLWV3t/GHjg9Cjdcuv3UWWmk07AikCs4bHjl6hm70wuqc2d/zMW2w5YKn7xT72+H1/vyax5Y8ePKe+9qgYsNWINxMdNyK4rz3zh3S+KJsfEXQIsDd9rfcffqFtWJ1RvemyxjigsBSwtYkVuqco4dPiCvuaH7xQjT6xsAKxIxBpf/fzYoqPbU98ZM6ShapR1GmBFIdbce8pLKuM6THsXTGEWlI35CbCiEWvI19/dd+HgtIw/ZH6DPzPkk2GAFYNYiw8NO3XAHJ/2zp4Nm1KGzhgKWDcg1ruvT45vHFOSsmr2cXvdxI7lgDUAsSz3XYiek16fVmp4Lun8ix3vqYyGmQLFHwi3IWeF8zNObVA8cbN+2xuxRUZs/lYZDZXYntiEMN6EOGsI9WcNeH5c47Mrl+vX/LEuverHXfOFc2WRNmKu0Br8hLNQP+4nVofPoVwk8DpgJKTwspsW67DMQqSb7jZ6iaXay+iFHQcOKKoJRi4Q78UOqPgk4Gp5BxR21UMu9g3BgXxpS+GjxPRLaSUt2q8ysyLWBQHy1rpAkLdu4yFX+IO8pmyl59zEiylrn7rZXV362yeFYT8ZnjwZaRbrD+CHuA64m7aTuJVgCNzjphz5uNNGWMgC2gaCBEhDHFaYvYF2DOQxRH7PklqxY5NbqjRD4eiXkcYW3wEgDU0ECIpzsFYQRotvaYoyw7yDZEgXOEgTkAsjAERYwyaOAnnCTwRLNlp5Pcgo+XxC9p/OJiz5sKFY9a/Mozyfj2eLH99Y9IlzRmqlt6bqdOWKCTyfD2rTrAdWhexTG3b/c5ApamRsszaTTYEkeqTi6P4n5tbLbodFI4BktZPIpxkkNlnpTLVhyTVYdsbuUQ9+dfD9EecuRzpBT4dgLo1BOa6XS4fgcaR4eFO0GdZ63AzpYHhBhiDkwiVYKvUusOMCrIsdSRspzARTwO8tbP7ohQojOLLxfdh9OTw220w32IMjv9NNdN6z/mX+6EeyFnaRTUg3shmY3GlNFpBeelykrIiafw7dvP3t8PTKO1LjqD175wlEFJHI9ZTIyMfoEyENCyikW35RIfHVBEV6IucgYZcin12zsoDj8lFHThZ3wFXiDI1TDjfpYnDgDMEUAgcoK5tP98dOWFG/LWPfka3MK+cWlEeYPAyRayN9YAvtiZ1ltERWIaMlUgrp+1MrNjigEG9qQg5K4Gj8ARiNlJm04gxwObJg7Vt304ppSybpq14r/fuxhTHHBNgooKeSIMNRg63COZ8jP+MFZ3anJF60sCqMQjAfNyUh+LEvWjIjbIdSXtr1bmhR4+1LBbvRZBdQeQwOj6rSMBzuB8NbM/Py3CRQPpuNKxoBbUR1pPgehVrxAcjfkiQwd+H1EEL8qAEkIQDCV/UyIbfmE8Bd2dvKURR70gdG6Yarkz/f5647P72V0r+cHodPTftMmFwoZPfKUbtL+sSFg17aWw6AKwfCNVjO3rzA3vDVArj4woi/4BHJSYxmNUYWmim1LS/FXoqduOPBjlvrXjy7S5gMs92lJTSO3B044kNiEMBpXRUIHKBL/RFRlA6PPbezQMLqaRcZhWLdJF+PuwgnKnzKiije883e+9bWJW7+YNHpcR7bY0Lthb2l2stSg+4QoXquCKiez/WLBCJyadpGEj6/h0kqqZdZPeTsBkQp6FVlhSI+7l25S+mlUPBTyGdUykUp82esWaAoxauhJEpVv906bdmXF4273965+83ZbelCL2AmHKRNGKDUART6bh3uhD3YKr7F42ZoO+6gwTbYwyGM+4G0XVz8kllKT07n2myLi7bZsghAh0Ql1vkn8lPihMOfn1JNBkkfzDT4ae800B6QxeEWG1gPjECklWLQ3i0ALWAC7cW1IjnyT5XFckxoBvnEOCDHWHA6fVmvMRGufMqRTuYJlELLkbOo/ALhkzOOPol2dqUKleFQRrNhS+64phgWROHj4wh+VXKVXRcxx+iwUhbS94QtRA2J0C67kEzgKEHZgIb4SJHZTtJCEbZE2trZF8DPuEjC7rtnnZWvD1JVPqpdzaoqLvz2vaq+UhtydF6x1/jWWMPJC+NUh/tHVXOgqm7pS1VNntVsODlvy7Whqip/qnoNld/ETyP6qPzmnRWo/ObN/bX8JiudoUWDp7+uNSYt2ZugvvRM3PB+L78lzApUFPDmX3/ltzONpxrH1x8xlTg6fmzJeu/Oq6D8lkAGFFLudVN+GxqRtnvoCKtpV5UhR7XBMqbPym9BLgewQswJKMQng15+G2z+xwL1uMakutWr1p59fltmv5bfWD/jt/wGVBiFYD7Hu5ZDsPgNgz4Kwdj6QCEYq/w1BMtKR6N+qt1gr9I3PO44+MNvmj/v9xDsXRewLl99/YVgz10tO+45U59afnzQ+ZE/jaq9GkJwVSAhAWO7XkLwaUeNeeyfv51Yfdbzu98vHjanz0JwkF/DYC1tbUBLKw96CBaf8vs1BLN+xm8IBiqMQrAGu/oLNuLX8fq+YCPOpvqvYNO6qC8LNhfpZkPL8UXXRsFG609Vb25faRj4yEeJGx/8Yl/9gTmGbl9RU6NRBiSyqij3MxsNxxKoVDSiiVWtV6+1id/5u8LX2nroMnwPv0Sq5j0GnEJ4E3QX0G0gxCP9IX6pZPum2HiFvnHG4Opap2lzt4hrriLExS/IBudFQvHriT2MYIEEkrBdLJCoKzMB9rHYL24C3T/FFj9q7s1T7CAYQMIyMd7RV2QA6BcYv7gFXNZvS8QvfPfutyUiYxD/cCUIxoBN8Qnn/w==
- true
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAZdJREFUSEvV1M8rBGEcx/GHJL8ixYHdcnBwcuBgExYnF6Tk4K4cXJjZuLg4uOxhy4+U5Cgl+QMUSXIQ/gMkSn4lF1La8f7uzjbraWaatRx86nWYp5nnM/PMPKP+S5px7aIWeacMa7Bc1CFQejGqacUArnCIvAr2oF98i3N0oQDFLgKlHA/QCz4RRw0qMexCls83IZziCAtIZBmzx56wAf0GRAM8E4Esw0zqyDthbMKzoBRvmg+8YBBBUo8VLGmqkVont/ZZ/ErkCV4173iEbKAgKYQ8ha4InpFv/R5tqSP/yHtwW4UW+KYfd+iGLGW2zHcuN3CCHxVI+vAM/eJdrOIGJmTTnWma4CSppsNJZUbTYo32sGQdeoG8p2VUIFiSyohZyrQEJYv2sGQeF5pjyA6fQxUmXXz/F/kUeEV2+hYuoT+h6GBSM5JUU+NpxrZTYOxnxi1ldHKyX0bgVWDEM5N64SZkl/qlBPJL0YV+q8A7fC3tlEzYdpyJjQNn3Izap+cXJsv1JeeWPy9g4h5KEoIlGrKH84hSX+x+CmKBvnCmAAAAAElFTkSuQmCC
- 6d8b0409-1300-453d-a4c2-65b0b0989f4b
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
- true
- 4
- 107520da-eb3b-47a9-9721-33358834b9e6
- 24b8a3ee-14d2-47ce-a373-78c04667a5da
- 50431618-b1c9-44cb-915e-6a1ce1fcbf6a
- ec77cd0b-e393-4575-96cb-81a591e15b27
- 2e55aebe-34b6-4785-8e6b-d76dac4aff89
- 0ef02d63-4c77-4baf-8a44-8b45ed9effc1
- dc1dce83-50c8-4b2e-bdbb-9da4471c5c1c
- 2df4e919-ccf0-4e59-924f-ef207e19da1d
-
1380
-261
49
44
-
1409
-239
- 2
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- 2
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Shift offset
- 107520da-eb3b-47a9-9721-33358834b9e6
- Shift
- true
- 0
-
1382
-259
15
20
-
1389.5
-249
- 1
- 1
- {0}
- 1
- 2
- A wire relay object
- ec77cd0b-e393-4575-96cb-81a591e15b27
- Relay
- true
- 90e3f7ea-df08-465a-8194-bf4035c20fb1
- 1
-
1382
-239
15
20
-
1389.5
-229
- 2
- A wire relay object
- 50431618-b1c9-44cb-915e-6a1ce1fcbf6a
- Relay
- false
- 0
-
1421
-259
6
20
-
1424
-249
- Result of mass addition
- 24b8a3ee-14d2-47ce-a373-78c04667a5da
- Result
- false
- 0
-
1421
-239
6
20
-
1424
-229
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
-
7VsJdBNlHp+2aZqjh1AVUJDR4nqwFnTxKbJgk6ZHaNPGFhAEH50m03YgycRkUuSy5UFBKiBdLD0ALT6oINUqlCqHEt3isiuLZQEBRXvo4sqxsquuuKt0v2/mm7RzJC00tfCw7yWd+f+/8/c/v/9MVAba4rGTDqYD/IVgGKYAn2inzZNPOWYWki43RTsgywzIkA3/ImATvl8qSVhJF2wSjtganmU0QLIakMZcOjtytZdIqP/3oYZTmoq5EWYXWUiRcyBfA/jK7AIwijUGkU2ku2DSXCcJ2WFo4ijEy6BddsIGOSMAdePGjR18r2zSRloY0srzKIrquNFA5lEOigG7MLtoJ+liKNLNDws/CgPBsPOowM2ONntp2bJPVVoD6ba4KCeDNg+XiCkyCDvJ350Pm5qaEh/fvrPqzIvLwXd7RT34bqt4s62igb1gbxs2w++yVez36raycl/L5soMeL1mCRxhLezSvn6T77rthTVtL5T7mrVVbPWNxjXjBjlTsQPSqxYJpub7oiUh7lbh8jZ0zltazTZeEei6+lXfgOgbUQL2Yq/RjtgZuyxgq29taJ38sjvbsFxuj2hSdu8IVXYEhA/fV4okhzBCm5uIFwSSCxpNID4ELyvZ+PiU1KnqLKBh0BTcvJnAvyiemkh7OAMK400AKNssoIxIf0IRWTmJcOWTbMvbwG39zx0dC0AXxRM0bectaEb0jY+GTwHqLJhKDSmSadRZFmc6MZf2MF3balJctMcpaTyg0xQyc+HifBPEgI+Wowl6QbqSo8MBQpElKlImd1r27aEl0+/a+XHaityvdQV/dfxXYCVRJsLtxnVWKzurOpF2MATl6PQW0NfI2drdZtKVB+wct8P+BOqP03k4gdsoNwOvKIa0u5WplNVKOviNhEQaHW6GcFjIFA9l5ZeYde8QY4GCTFrvTDrqHdR6JMASVRmUZbZ/tkbHMC4q18NwPsQnVj1AzcqS4uB9zmEDlpDWhGH/0WPYaH24mSqkWVCHQ27xxwbMm9SkdRIuwj6Tcjg9LLoqhK5SZ7GQbp+PCvED0XAj7IgXEjYP6cYBWEKs4mWRaD+uO765/s7MNfUzZu2fe/BbARLh7IgSBBA5k52dc7ysoimzaY/LQrJqCHX5zImwPQ+8ZiyuLZt3TrewVsuxBfoE+/UQwhoAoXcigPCEDsNwMYTmIyyEkRyEQP0RhsoAgA3KIt0eG6s6AqRkgcoZyZiXPTw5bePDpkcpe4FHAJSSG0mCFE+XQCWHBdZzLLATCItngTrV6ERYJJwCypYqxALOGnF5+jQoHdkVGIehCBvuYjfjloUnY8DzCysOz0xtNHy07WVLcaUAnhgzGoGDwy3BSdKgTwBLCghYYhNybCH+HNv9m7L2T6/fmrxlU8yH7z/z/VqhrbAuVujQhvCA62kXyoj4JEOZSNvAjvjEBP6Xk8FtOjwfjgvFkOICSlpAO0HKgtOcuw41Gnhr2/v9yJ/+kntj8luN4y/u1Jy/AbBCEKvi2WP3LnQcNe3539jVD936kA6wQv3YKGCFIdaEphGF65406JYe/PKBhyfc/yVgKRDrnainNR+UJOpWRZfeY8kebgCscMQSe1bAUiLWV3t/GHjg9Cjdcuv3UWWmk07AikCs4bHjl6hm70wuqc2d/zMW2w5YKn7xT72+H1/vyax5Y8ePKe+9qgYsNWINxMdNyK4rz3zh3S+KJsfEXQIsDd9rfcffqFtWJ1RvemyxjigsBSwtYkVuqco4dPiCvuaH7xQjT6xsAKxIxBpf/fzYoqPbU98ZM6ShapR1GmBFIdbce8pLKuM6THsXTGEWlI35CbCiEWvI19/dd+HgtIw/ZH6DPzPkk2GAFYNYiw8NO3XAHJ/2zp4Nm1KGzhgKWDcg1ruvT45vHFOSsmr2cXvdxI7lgDUAsSz3XYiek16fVmp4Lun8ix3vqYyGmQLFHwi3IWeF8zNObVA8cbN+2xuxRUZs/lYZDZXYntiEMN6EOGsI9WcNeH5c47Mrl+vX/LEuverHXfOFc2WRNmKu0Br8hLNQP+4nVofPoVwk8DpgJKTwspsW67DMQqSb7jZ6iaXay+iFHQcOKKoJRi4Q78UOqPgk4Gp5BxR21UMu9g3BgXxpS+GjxPRLaSUt2q8ysyLWBQHy1rpAkLdu4yFX+IO8pmyl59zEiylrn7rZXV362yeFYT8ZnjwZaRbrD+CHuA64m7aTuJVgCNzjphz5uNNGWMgC2gaCBEhDHFaYvYF2DOQxRH7PklqxY5NbqjRD4eiXkcYW3wEgDU0ECIpzsFYQRotvaYoyw7yDZEgXOEgTkAsjAERYwyaOAnnCTwRLNlp5Pcgo+XxC9p/OJiz5sKFY9a/Mozyfj2eLH99Y9IlzRmqlt6bqdOWKCTyfD2rTrAdWhexTG3b/c5ApamRsszaTTYEkeqTi6P4n5tbLbodFI4BktZPIpxkkNlnpTLVhyTVYdsbuUQ9+dfD9EecuRzpBT4dgLo1BOa6XS4fgcaR4eFO0GdZ63AzpYHhBhiDkwiVYKvUusOMCrIsdSRspzARTwO8tbP7ohQojOLLxfdh9OTw220w32IMjv9NNdN6z/mX+6EeyFnaRTUg3shmY3GlNFpBeelykrIiafw7dvP3t8PTKO1LjqD175wlEFJHI9ZTIyMfoEyENCyikW35RIfHVBEV6IucgYZcin12zsoDj8lFHThZ3wFXiDI1TDjfpYnDgDMEUAgcoK5tP98dOWFG/LWPfka3MK+cWlEeYPAyRayN9YAvtiZ1ltERWIaMlUgrp+1MrNjigEG9qQg5K4Gj8ARiNlJm04gxwObJg7Vt304ppSybpq14r/fuxhTHHBNgooKeSIMNRg63COZ8jP+MFZ3anJF60sCqMQjAfNyUh+LEvWjIjbIdSXtr1bmhR4+1LBbvRZBdQeQwOj6rSMBzuB8NbM/Py3CRQPpuNKxoBbUR1pPgehVrxAcjfkiQwd+H1EEL8qAEkIQDCV/UyIbfmE8Bd2dvKURR70gdG6Yarkz/f5647P72V0r+cHodPTftMmFwoZPfKUbtL+sSFg17aWw6AKwfCNVjO3rzA3vDVArj4woi/4BHJSYxmNUYWmim1LS/FXoqduOPBjlvrXjy7S5gMs92lJTSO3B044kNiEMBpXRUIHKBL/RFRlA6PPbezQMLqaRcZhWLdJF+PuwgnKnzKiije883e+9bWJW7+YNHpcR7bY0Lthb2l2stSg+4QoXquCKiez/WLBCJyadpGEj6/h0kqqZdZPeTsBkQp6FVlhSI+7l25S+mlUPBTyGdUykUp82esWaAoxauhJEpVv906bdmXF4273965+83ZbelCL2AmHKRNGKDUART6bh3uhD3YKr7F42ZoO+6gwTbYwyGM+4G0XVz8kllKT07n2myLi7bZsghAh0Ql1vkn8lPihMOfn1JNBkkfzDT4ae800B6QxeEWG1gPjECklWLQ3i0ALWAC7cW1IjnyT5XFckxoBvnEOCDHWHA6fVmvMRGufMqRTuYJlELLkbOo/ALhkzOOPol2dqUKleFQRrNhS+64phgWROHj4wh+VXKVXRcxx+iwUhbS94QtRA2J0C67kEzgKEHZgIb4SJHZTtJCEbZE2trZF8DPuEjC7rtnnZWvD1JVPqpdzaoqLvz2vaq+UhtydF6x1/jWWMPJC+NUh/tHVXOgqm7pS1VNntVsODlvy7Whqip/qnoNld/ETyP6qPzmnRWo/ObN/bX8JiudoUWDp7+uNSYt2ZugvvRM3PB+L78lzApUFPDmX3/ltzONpxrH1x8xlTg6fmzJeu/Oq6D8lkAGFFLudVN+GxqRtnvoCKtpV5UhR7XBMqbPym9BLgewQswJKMQng15+G2z+xwL1uMakutWr1p59fltmv5bfWD/jt/wGVBiFYD7Hu5ZDsPgNgz4Kwdj6QCEYq/w1BMtKR6N+qt1gr9I3PO44+MNvmj/v9xDsXRewLl99/YVgz10tO+45U59afnzQ+ZE/jaq9GkJwVSAhAWO7XkLwaUeNeeyfv51Yfdbzu98vHjanz0JwkF/DYC1tbUBLKw96CBaf8vs1BLN+xm8IBiqMQrAGu/oLNuLX8fq+YCPOpvqvYNO6qC8LNhfpZkPL8UXXRsFG609Vb25faRj4yEeJGx/8Yl/9gTmGbl9RU6NRBiSyqij3MxsNxxKoVDSiiVWtV6+1id/5u8LX2nroMnwPv0Sq5j0GnEJ4E3QX0G0gxCP9IX6pZPum2HiFvnHG4Opap2lzt4hrriLExS/IBudFQvHriT2MYIEEkrBdLJCoKzMB9rHYL24C3T/FFj9q7s1T7CAYQMIyMd7RV2QA6BcYv7gFXNZvS8QvfPfutyUiYxD/cCUIxoBN8Qnn/w==
- true
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAZdJREFUSEvV1M8rBGEcx/GHJL8ixYHdcnBwcuBgExYnF6Tk4K4cXJjZuLg4uOxhy4+U5Cgl+QMUSXIQ/gMkSn4lF1La8f7uzjbraWaatRx86nWYp5nnM/PMPKP+S5px7aIWeacMa7Bc1CFQejGqacUArnCIvAr2oF98i3N0oQDFLgKlHA/QCz4RRw0qMexCls83IZziCAtIZBmzx56wAf0GRAM8E4Esw0zqyDthbMKzoBRvmg+8YBBBUo8VLGmqkVont/ZZ/ErkCV4173iEbKAgKYQ8ha4InpFv/R5tqSP/yHtwW4UW+KYfd+iGLGW2zHcuN3CCHxVI+vAM/eJdrOIGJmTTnWma4CSppsNJZUbTYo32sGQdeoG8p2VUIFiSyohZyrQEJYv2sGQeF5pjyA6fQxUmXXz/F/kUeEV2+hYuoT+h6GBSM5JUU+NpxrZTYOxnxi1ldHKyX0bgVWDEM5N64SZkl/qlBPJL0YV+q8A7fC3tlEzYdpyJjQNn3Izap+cXJsv1JeeWPy9g4h5KEoIlGrKH84hSX+x+CmKBvnCmAAAAAElFTkSuQmCC
- 97d086c9-1f66-4d81-a605-b5c3e54b2cb1
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
- true
- 4
- 145c00d8-7777-4049-bf74-b9b5e909ef37
- 174144b0-4ae3-4180-953b-db9eb75aae07
- 9fd99022-1a7f-4cea-a05e-11bb80d4ec7d
- a5c6a97b-9ebf-4882-90fd-6067bef90fd6
- 0ef02d63-4c77-4baf-8a44-8b45ed9effc1
- 2df4e919-ccf0-4e59-924f-ef207e19da1d
- dc1dce83-50c8-4b2e-bdbb-9da4471c5c1c
- 2e55aebe-34b6-4785-8e6b-d76dac4aff89
-
1380
-407
49
44
-
1409
-385
- 2
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- 2
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Shift offset
- a5c6a97b-9ebf-4882-90fd-6067bef90fd6
- Shift
- true
- 0
-
1382
-405
15
20
-
1389.5
-395
- 1
- 1
- {0}
- -1
- 2
- A wire relay object
- 174144b0-4ae3-4180-953b-db9eb75aae07
- Relay
- true
- c13cd37b-e089-4f8d-883b-54203d5df027
- 1
-
1382
-385
15
20
-
1389.5
-375
- 2
- A wire relay object
- 9fd99022-1a7f-4cea-a05e-11bb80d4ec7d
- Relay
- false
- 0
-
1421
-405
6
20
-
1424
-395
- Result of mass addition
- 145c00d8-7777-4049-bf74-b9b5e909ef37
- Result
- false
- 0
-
1421
-385
6
20
-
1424
-375
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 21840820-7b03-45cf-914e-8d05118a8772
- Digit Scroller
-
- false
- 0
- 12
-
- 3
- 0.099999999
-
6701
-2366
250
20
-
6701.182
-2365.249
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 154459f8-56b4-47e3-8f74-2be68cd83b0e
- Digit Scroller
-
- false
- 0
- 12
-
- 2
- 0.0800000000
-
6701
-2386
250
20
-
6701.182
-2385.249
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 83a04ee0-dcaa-4764-8f51-9a5af7e9c6c8
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 0.07250000000
-
6701
-2406
250
20
-
6701.182
-2405.249
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- fae63135-516e-4bfe-ab70-dc4f2b45ab66
- Digit Scroller
-
- false
- 0
- 12
-
- 5
- 5.3225000
-
6701
-2426
250
20
-
6701.182
-2425.249
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- c6aecd68-308a-4a6a-b29f-68933f542f84
- Digit Scroller
-
- false
- 0
- 12
-
- 2
- 0.2225000000
-
6701
-2446
250
20
-
6701.182
-2445.249
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- c2a92653-9119-4312-8a0a-bfe4efc11ad1
- Digit Scroller
-
- false
- 0
- 12
-
- 6
- 5101.122500
-
6701
-2466
250
20
-
6701.182
-2465.249
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- cd852686-49f6-43b5-930a-504e7c0e8fa4
- Digit Scroller
-
- false
- 0
- 12
-
- 2
- 0.1225000000
-
6701
-2486
250
20
-
6701.182
-2485.249
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- dd3e81a3-f392-4fff-9fba-35855c2e8144
- Digit Scroller
-
- false
- 0
- 12
-
- 6
- 0.122500
-
6701
-2506
250
20
-
6701.182
-2505.249
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- c4fdf2ab-39ec-4f9b-947c-a8f85d40334d
- 2
- Curve
- Curve
- false
- 329990e8-083a-43f7-baaa-90fed18836f2
- 1
-
6902
-2326
50
24
-
6935.181
-2314.249
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- DIFERENCE CURWATURE SHAPED GRAPH
-
7H0HXBNZ13dQpEpRUVAswYp07KishBCKhKKgYlsJJEA0JDEJCmtZVOwNFRVREXsX7NgboK5l7b2vq9hW7GUt372TmZCZzAzJQ4A83/u4P12Yk5nc+Z9zT7n33HPMAiTxKckCseIn+GPEYDDqgL/WUlFKolA8bJRAJhdKxJAUCS5DMvxjCj+C3Rcs4PEFMviROijZAiOFBMDL5uCS9+HO46fcm8Ne+/b9woW3t5iZRsoEo4SC0ZBuAegmUUngKXwb9HKYQJ4UnSYVQHJt9IutUFq4RJbME0FKa3B15cqVP7G7ogQiQbxCwMdoQqHwp12AIEEoFirAW0TKJFKBTCEUyLHHwr/GATwF8j1m4JedD5NnzJt628wyQCCPlwmlCvTl4RAZxuG8ZAH226vaMcFBHh6Pdi95njsd/PtocT749+Hi7Q8X70J+QH7dtRb+O28O8m/mw3kLVZ+8kB0Of16QAZ+wCN7yaNka1c8PsxY8zFqo+tjDxRtVT1N+TPmQ54t3wutLJuC+GrsXHRJK3Ygf3vLy752Rg3x4Ft3POZtUD0T/Ra/Q3oX8jL4R8o1qA9ioGhs6TmzY5Z9BqMp3RL8UeXcUVeQJKD7YvZpIKhFG0VZ+EcYIlC/o03DsQ+FFOOvhERQcY94XSBicCnJsmsA/VthVtiRFOYFqY1MACNtwIIyo/NRCL5tE82SJAuSTzcGvpz/9/Gm5HkjWIIkkGZtB6/8d2KtOfyDOuK8yh1c0vsa8b7yUy0uTpCjUP2sRJJOkSDU+XDcomMUVxsl4MnQKGKEzqw7uo/CKqfJzaciY0dttWXK5IDlOlBaYIhKpTwVWZEpCgkCWIJQnuTH7KzWGb0cPL/ifG5OdIlKkyAS+YkGKQsYTuTEjU+JEwvhQQVq0ZIRA7CsGT7PBHt2/XN/AJ5uiTzFhpSiSJDLsslWYMD6JJxAxI2VpElmtED6mZVaWLm86zLs/N99krvBHqcVvuBlrUT5MU4rvqVeuLCLiIPtUMEUBDloqr+HAgtdNlNchRrVQ/IyD+qnpvjV9iwfnbwzcsMbmzPHxHxbhRlUH4ZU5WyJW8IRipR51Rp9i4i+RoaoVY4wJWyKSpMgwDQf/T6armrOYifC5TEkCM0jGk8uTJFKg+5gS5VvVCglApAf8XdD3+diB7xPDZ3i+8Pj6LGURIBmhpJ+xt67ev9s6NKvP9mHZZ/+wAKRaKEk25odbqZdlQP4f+S8dC0IbAlJtlPTIqTvvqMdM7uZVm71fCWycAckYJW0/yRr11dEh+MiTB3O72TrdA6Q6KOnd1UeFqxqUcvOePB2aEbP5GSCZoKQVBzvaXf1eN+iQUa3C8c2zvwKSKUqS5nNzN9t056Q3msMKaTN+NCCZoaSJHw8yrA8bRxQc7GZ0cW/QGkAyR0nTThT3O/KXFXdLxqN53Z59dgUkC5Qk3uP+vOTZNs6mB5tjfZz3fQEkS5RU+8CIq3V8fvjlvZr/YIfnwKuAVBclzRjf5tura3GBC60iX72PdBwESFYoKfVDIydXaXbo6vEzTZd+nj4AkKxR0rdHrbufe9W5916fKPeRK2PfA5INSvq+n7V80MLVATnmPy+uvplhBki2KKlFi+VnZnd6GDwv91TRjqCvCwCpHkpaEvqCe3RzN+78Pa5Ncwf1cQOk+ijp1eq6TQvu2UbsiO3Dv+vYsgiQGqAkJ/Njrl6hb1iF0d+OzqvTqBsg2aGkJkOky+t3fR2y0Hif5UjrkMWA1BAl3Xv+fv3sjEbB246NeGy7ZelGQGqEkkrbcUr+zezFPrCU5Rk/7uNDQLJHSb/PzjY79fp74DS3y/l/rJ2QBEgOKCmhYdQXoyljA6ca7ZWJnUKnAVJjlBSRXTgxtXY4a9WwxPovzDL+BaQmKOlkSsdOb8enhx28t/bmVbO0CYDkiJLOd1kwev7xC70L6q8/wCyZ4AJITVFS9uQre78uT2ZtfeNkzRfnQIlqhk2HIuGU+vbZnMy3nA7Hub4vAKk5Sup5qcWVBblHWGvHbpmYPGLMJkBqgb3XvQ0D10/uHDEh4ekdBiMrDpCYKClXmJy1a7UHZ22dnBsHf/TfYxYSMAynQZygZg4RyxU8cbwgKEWoUmaTZH/WuXmkVvCRPWGzHxzlGZOoDbNwYfwI9csMC5ZCIRPGpSiUGh5V3ZiKMtKbiupejSqqY3Th4m8h19kbej3rytp7SaGmoqS7muWbmCZz8q+7dZ4+8fkQNRW1Of/8tomv7ofuiLONfWXVy1ZNRU3oF/7h1LrUwI2S6cHT/NOOq6moxy/3rXgTFOI/3bX9XEYw87GaitqZf+xH8O6B3NnNZ5adWXzURk1F9YtuerL5gJ+sJSc65ZlHf3+vpqKiezZOntL6RcTMcKP3k6xCv6qpqHFBCsnwtd5BB2pdzrhf98g7NRW11DW8eeC/v4Zvly9dut5lwnY1FfU1OzVgUwgjaEejmb5PJ/V7q6aiFkzjdLrgOCZwVffVnCdFO1upqaiy3+vV+3NKWPDS4Ba7ot3bf1RTURZhXT5eXN4yOL/3jV6/tr5yTk1FXYh8W+D+NIyzsdWq5lbecg81FTXDdXWaYyQ3KDMtx3HHpb771VTU3iVFpo6mMu66Adeam14tGqimotrvunXqzYcXobNWvvGMGmCfpaaiavnumP/bvvERiz718O0w7ecVNRV1/GXk2yY2LqFL3JYvt1gfuFVNRX3I7x9oke8Xuq+VZ73Evr22qqmo28OYwv1X+wYvc7rc99qwAyvUVNSM4azPs86uCNme9q5B3uOwVDUVxfgrsWvk7jL/zNZvXg+d1fO6mopiRA18evTK6t47LjfeV2fmrfpqKqpvF9/sBlGurF1Dpvd2nvsqQ01FTW082jFn59nQmWN49kUvhzPVVFT/lGHsjkVpoTtNfQvs3staqako7nmHkuWF9QJzj/6e0HBnh59qKuq99wKOz5uy4J3svP1XhrZOVlNRdf6ZnsIaOCN4Wh/W4HOSYD81FbXlXcS6rp9bB+y22P722IQFMjUV1erjHy/9nI4FLTPZwpwcY9wAkJxQko/LQa4nu2vg9pMhXVgjdswFpJYoaUSgdz+TnSv8J1hNnjX+7mnoArTCBh+dMWTzMuPAJXEf19kf+K0XILVGSYecXi+KnerAmnIy64bvtkNHAKkNSkp3ztzUqvk8/wPt90cvHvTQAZDaoqTx3N2DTiZvCNyb3HXpnAEt7AGpHUpyv81cwv/sy5nZdbl99wFy+F3O2AgHXLJeOqp975z1tm2fFfWaAUjtUdLCej/Du/DHhi1/0fLdbXlYH0ByQUmr3QsW3PCY7jebGT0lsmjuLUByRUnNV/v+cSY5KXDX6m03lzM6swHJDSVtNOrT+hQ3ij3lUs4w056WpwHJHSWVzLc1+eXN/bB1a5Y/CD936BAgeWBTb8qqkrpWr3uv6+NhG9O7pSMgeaKkfxt3XvNrhxi/Qys//cU97SYBJC+U9Onz4/XnmpYFT/lFfDGz5aUxgOSNkv5wO9HoTO05YUemf3B6YVZ/KSB1QElrJ3d1yx18039Hc4XtH82vTNMwRB0ZFIZo8vqnMay2p4MnPDs5y8JmnLUeDBFU0qSG6PC6Wb9s+J7fe/fRntGnDsjr477LJDwlOU4gw1siU/RRZDbGE/2knMljxktEImVABi1OgkjCUwjFiUypRChWMMXIg+Wkr080P2RD0nh/7HoEMh7lcgUSnplEAdsYL2CgXFn/cEnjcTe7he/7c3xSmOuFyZZKskZARoBTFU/6gw/ykUtw8jHSXTiMWFYxgxHsz2AcZdWJFI6SIM+BaoBh68ZJyPUrto6E0Y9cIRArAngKHn0kaOIvA4AkMdQYpvkh40ieIgl79dpjvMYZhygEyQxG+YqRiRJh+BksnmQwMv1QcahNJQ6HBOs2ib+f4c52K97pJas/FIe9OTtFNooHg0u8RECDbUIhET04o3iiFJ5CwFQkCZjx2AOgSPCQXwVMngL8KJcK4oUJQgGfKeXJwHcqBDIPk2Ahny8Qq/AilRaiR0IxYg2BKSdpyWqmM4eRFw5Y/RWwOt2fwGqmG6Byiy2R0Q8TiqUpSHxqioJMBk09NvL6CglTgGJE+oJjXz9zeZm1KmTWYMsO/Va9n4DXBsgzNF4OvVzRZCD6ZZWcDH4AofRwdDKUESfDhfYcRmYYDiGjChBqE4nJAhNoEaW08CXJQPAqRG1+aqt839CeoVuvXttvn91MhhcL1XM1xaKcVBF6PwbME5XWzQmcWjvdo2f/qbv0gB6QIBr0CkKL6yrRk6QoUAEzoYGvYSSia1XQgYk2RjGOFC7HwQvuLPKO9Ntt87BJ4NWBUXghQ56jKWTKyxowkeHA0B6HB26oFPUEOOQRcYjx4DAehOFxMKoAB3vVVGeOAspPIqNDgv/IzITLnsldGfJLtzVvLrzQXZ9UCSJ+YXSIALnBIVJLe0TihbJ4Ea1snBlw/WfwumNhm3iif4rsHvkZCCIMLh0isaHFqK2DkSaprfN4Guf0TfY5NGvglRueGzbZ4d6rboBwlJAvYCKKVNPcmVIA2x69DbNtYIIARTUyhSdiigTiREUSUy5IhDs1cq2MGzGmph6iBvo4qpawegEV5BcCYP1IZuIyXQE1SCcTZ6MycXxkNKQv2Wt5ytSbT+oGZ0w9vGlOSNEPwzVwkQAfJsSHSSZ2mUBFpweTGjgqf7m+0muF3hAmF6QQXUitF9u2sSJ8ucWTc91/m7qeABF8HRKIkMsVQUSMe/QA0YMgOoiACNWwQwxvYkKOqHEK05hUnLKPkoqEChWXoL4cIRSPoIhg/uhonDumRciB2V+fNho5YyCeXaHwPk12KS/rW1NCfuQF0vGDEVgj/DCNk0hEAp5KATI0XBtMsZiw4uMFcrn640l1DVR4cJNJGWKSc2b5HZ7Jhuv3WKs61vmbw+99GB9bIg6NJmuw63rnjRuqToaQ8cbMA1EnGp6OjrC0jOaJEwFjUdcHkVy+FkjtbirYkBs6kzUp7Pq0hft7P8QhZYY+VBOrckpVoIVoFkq0gGbR8IJ0RKtVecQBowuB1nARgwHCTij2VE3A1GlVARky+SkhA5MfdZPqMCjcpBVjFl39p3QEe8PW9t/P/9nhKol5xvtH5jT4tqNcIAJCI5AJ45V+k3beEdG6m4bxpFKhOBFDCr6OHp2JRx2NG5jfPRA2Z0XWcOeI4C6VtJQwovOyB8yZQbJ0NCjHjeMkboQxx4SKOXHOU1rlGB/22x3T2mHTmZuNcK9rEyCIlwDcZCnxCiZLFq/pxtahYFOPvgLwCoJRylWbOJ5cwJSKeGKBG1PG4wtTAPfEfPA3UaSKx+F6jpjJk8Vrt2pD3PahHbcGw4gf0DZqALbwQhRA/CyZe8sA7u2FPjq5t03BdzNBOMlWxlDQzS0fGOl739uT/tzxzaDAfcM7ZHIiiu7g3rs22bsiFysSTWKIVknRZMDFBghUHovBkBKBymuPAKXTUoSjv0qGEFFR4qaMPUmBWv2n0YbbXqmB+1v0athOvrQZXp8iT4uET9PUp2o0fevTo64oLjFk+lTqzmHYRum4NNFXOZ+0wiRg98Hjh2feDZiRda3D+NGWn/DOi/JJms4Ler0qsJD2pcOCKCMVLUowWeoKxRn8hcqGJ5a3R+EhBcWssKSB8ft89rbXyxXPyz4+wCt85JGaCl95uSog8epDB0lmJKbRsahQQ6N7zh+X1qz7j8B5/TrPZCwduBgv+BFg/kSMAt5JjKYyr02BawO2JBnADyYenHzw5lTtlDRxA55qKJpzsJymracCdEpeKoCuAED3gAgdA/gxR0frpJotQ+CnlE4c6cstfVrvR/G2fhGb7E92uB7FI6x49of3acqN8nJF2pi4K1xJbSyF6woQm1IWyR5TjAuCjU7auG4E8jEadF7wRzSuO6hhxG6/Ubc6Xn6QQ1A1AnmKSHPFAbuu93nlhgLwmQyAQncEAHRemVHNq5FHhK7C8E3svYcjRE8fD36NeyPLPingXWBajDSJ3JnVMn5oHSCUAyuXBne0BAqot9LcsUAC+ryJ8BtIESemtFCOTwN2HFEDe/MoiUwRoZ4zRCKxxJQULSVW9TQCw2LbcRiREwHDGrHhX4JrO7wdZ0vwxGIrLHs8RMwXpGKPg/9HWWlOxcoX/cO5xp5f2AtXnw1cGREyCAeVMRewTlM5GlMwzIktE8DdSR5TBD7OjBMoRgsEYqZitASN9rRTlcSsI80habANuaqD55qnQD1XLw3PFcwAP7lO6tEWfjkTvIdMoXxP0rdq33jZI6PnKzmzh0zc/MNqpwNeJqOQu8n3hnDEivQlcfNJD95rOgQrkswM5wF9+UCu0zakNQKWAIQ81FA93v1Lp13uj/03XuzP61vgMwu/ScIB95IDpUaqCCaiS6wHmIDU0MCUJ9PRrCiFSrlESopSUnJacN+7u9lbj7jVmjxyaittp4n+TYo7KiMFLLg0SnTVPBBoUD1kQaWHTi/lcb/72AdNXNfc9HmrMfjFRDMEjKgArvZRtz9eF6FAgpgyAfzKZ8alqU9YN6YCXdiDsbhyc8ljnFbKipgHST5uzaU9jKIlxnlAaZmtAhjfIQu3/QAHzFZWgdKKbnRua3SvYZzJiZZjPa9bBOIdO0QvaTp2ysvVrKiOAoA+ryyGITbJDGSCaGLDSp22kxwQgDC5cOYLZcr1tfakQP2eZM/bwH3LmbkkuMGu9pGWeJUVgN2sqbLKSRUBRtxM1wNgMbSAAYmqkc0l5eI6/ExHBtWfsl7EDSfMWSUNYBBeKuc1ebr6Jd7Jo2mFnP2mwV+mOe22rR8iVghkgBmcVKkMuKpqz6rlHoN34LnIYzUdePR6RWwlZt/qga2FeXRsTcqr6T3D8iS6sl56Noox+yc8fdu6NHzW3c9dGy/qv6jGjCLDA9VHBWTLfgUeyPRCjaIlg8Io9m9Ra0TWdlv/fStFr3uMMwvGr+yqsgGVkqZ9YsU+I9WtuLzBeIEMPoCZwFMm9ogk4kSmUCHHLCL6RShdzozniYGTz5SnSKUimG0YJwFEIZYhlSKGt0KDKkYOvQp/Ax9BLnow2UlQryIL4oPDh5anKcJlX4UkES5dqaIH8BkYQSRL+AItAwjiAQRa2DQXxAkf0HZlAcRp0k3FcImIxELngbBburEqUhodD75LSfG04U58tn1z2oGry/W4SUOcTJVUTZkAodhN6CaNhmoqBC607SYNE02XR9ASJ4/MBLjii2CGAgY+SgqZtUnknAF7d3HmGQf+cWTGxNjK6fNKKgqIytGNdKgAuTEgha1LokenkARmtCxF4IbMYjy3hHJ1veDs5eHFHM/09vAi969MNwvyNi5tG5Kx9ZDdSudOn/HLp+GqB2kun6rRqoJ1TFrWXdhgEPkgRjpZ2WbKVFdgEiDXypPJafyn+Xcn1M50PNx7S9b5w315L/Bbp9Wb8hrrjmqZYDKmlHkgWkanfaW2+KwPnYDx8rnS2a6dLTv3hnnRjRUX8Mv+puiDNaBREaoCHETZUIIDlI1OG03tlFaq3ILrgg4/dXFW7c77uRsKjt8Nap8+Rx+J5XpAiEmLEJjTqN9Wl0Hht3FYLq4/fa+wNtxrvvFS7uuO+LU+JLaQSkTAomv6bGYUOHfG1jPEMA8Wu5+PGjxFkkySkphUvlKuy3or8VAm5Wg1VybViNr6xW04jLytAF8ecJM2EN2kC54cRuQWDTfJDFOP2m0c2JUPq4JMo9g3FxtHb0oNnGOcciJkz/WZ+NWb/rDgCvhCzdUbFaUiF4qoGCvpQjEBepkQvRZsEul0cOEw/Lbq5ELVVU5fviBRJiD3L8/lWbc1G72AM/NkbtbfP9654J2lAORGTWcJva7v2Qnfv2wL3fvnbalpZ0klmTo4SnDIQgkfS9kiZcSW+ds9DnUv5OwZ/lf6/thnf+NlFXuApqyqKFXBjEhaZjBqhhka6bDqrKhdASs8QsUSBTBfvHh4wtLZyxeErCCySHZjevvGJ0lkfDdmB1/5SJkC+YXcW53W3GLa2NxBAVPOeD9MyvxZgrdr8AuiFGkkuRRqpKpgVsFmOmbFbjaEmQMfpdvBLOVGOWSWOEUWJ6eZQZmf7DJ6/lLWe9IjR/GzSc1vVSZUrmzo4IUqcgfgZlwgsuOoN6dfm626eamoJqfxtrrld/E6POx82Ny+p8PsvXb1rdmwFwBwdAsKwA0SAKBq0ckTxUwZkvJECsDo7ZYpXcLbctYuqTfws+X9MoIpQ24kMWXK61UBQOlmGgA2/bYZczStGBSO5n924pwKQb2cOCfW8dDriXPicXY9nDiPLKA4cT6oiRsn7WU+xgNrKh7onNNtRsMCveZ0E+um6HFpkKhK9cCIB9voGDF2G8YIGypGMBNb7Zk2e7r/ghNbuEu+7BuDf92+AhEvjZwRhLCCyjNowGKOFsoETBl8ElrqhxR3YgYQyUA0cDdiVog5MY+ssjnzAPMLaehppnSScguMyDQMc1sqzM2jFo9alzI8IP/VZ0FX5kZ87GiDxqxh4B+ZkCfSfoeiSXm0GyEViIO4zGT0GdqFtMTaP7TD0twBIHxA27zLdiA4WQs1OnCxLmjkQbgDQNdohLZ0rmgzZTEqOPvhkgpfmJCQIhcw45N4YrFARPriN907PzpxJ9vv4IZfz//WNvA0fr0pQPkEzfUmjKBvIwc3RR5ASDaQrabYAgnMXFsjXmcdoFwlqjJfnz59+qlL1MzEMwaudaWIeDJmkjAxSQT+kquFM8O+/znt+ISw9d++L3Sc+uMEPoCLQh+iGcCpKFXBHT9a7pStMQDu/PzJ+KlLMN2CkyyUy4XAF4zHsQlTIaTMkazZkntty8rQXXUnvGie8eQgnjnKJ5Lkb5RTqoI5eWvomBNpCMyB/NElvO7KSoZfifAEDAfE2TKBOD5NuQHky5RIeSPhfpE38lv5J8hnVJ+c27Jmzo7cudN//y7d3iMJf6Q/Wu35mkf6cdSqYB6DlnkFq2s62i7f1HuA29QzroCDvuUclCcJxWli4DoB9gF2iSXwVJs3+EkkGY0Q4a9ekJTMS1VeIF/aCru+7PrTT/6ztzp9WiL7mUhIM0siS9tAL1cF52JX03HOtsY5B2/iM3RcJ6lfvk5CqwhzuZw+gU4mAYW79ry5PHJNHbwipPSZyin65oiXB+pDQD/1lIZb5YkoQtRPrceg8FMbG4+JOn7gfcQRs/y/23YZ44Z7K2t2ilwhSWaildjxbirElOo0UDuWCEi6HM08gM9ANrMTBZJkgUKWxpQqHyi3CRHHi1L4ghBxX4EYPT1A7bwSq1PSjVWDDwS6Nay8LZXIFIFCkUKgKkKtLfYFcA97PcA+myxXPhPula2n3K0hjaGCMGwUEgwerTx6s1q/55981jZoSr5oc/0GHefjxRJ7qqZYqijVnOwCTyQfhcj5kemRSHjgb71O+agNo9VcGOTomYyqCEwzn5xuDxq9Cdm31n9oh1aE6Oc/msIErIg6Qg9YMWmxurCuWnUu1gvCFA254Iegs3M37+5PMwHq8WEX/b38f9ZBbBvRqpphgQH2Ufj/uupuD/4OBlZhsj6VGjPQcJtYNLfawm0/b7pwm+FR1eH26vVN5A9m1g9eMnvl3xbPDy0xgHCb6U3nvKR7GUDMUFBQUA3hdukyzpE7sS0CF/79sFCgcH1uEOH2A0867vh5GgB3qiXcvvZplS3v8Sv2RLMVy38fdzfSMMJtDzrmAG1S88xh1GS4XTrjqc1q5hP29q+nno8a3mGGQYXbse50zDvqVtNBmwGF29khPiXXW3b2397PJsLr6K8jajjcZrrRWizXmuZclYbbs861edn5mjl79ZsOdc1srAsMItxGfAjKcBsoQtRPbcD4/yDcJrZ1qOFwu6ArXbgd2aV6wu2BfEvPnkN9QyY1uz2wTePtO/Uebuu5mihSELsrXQhZ1qWqwu29F3wmiS4+Dtoo6ijhuvzzq97DbaKO0ANWQI5osCro/H8q3LajUmMGGm4Tu81UW7idtJsu3D61s6rDbYtp669kDhzAzopY8KPlWKOVBhBux+ymc17MdhtAzHDv3r1qCLc7ZDuv7danXcTcxA61T3d+ud8gwu3CXXTcSdplANyplnD7ejbXcXv+ipCsF7fTHkU7WRpEuO1AyxygTWqeOYyaDLctQna0vDLAgpWV3vJewfUfvQ0q3E7dScc855phnmGG27e7rbb9caAte4LX7B2tbZptruFw+8YOOs5N21HTnKvScNvGtZWTT+uY0JkzDszrmSbfaBDhNuJDUIbbQBGifmpDxv8H4TaxH2INh9uxe+nC7YI91RNu+7uyFw/vm9Z7ztLYy0fuN36l93CbmAqujxByL10IydhbVeH20/l3GygU0b13Xp/2r82eX+7qPdwm6gg9YAXkiAar2D3/p8LtRlRqjPVjlPylYnzIzsQWPyJlsTMJca2qzRJJaVH4NVRlKZsFyHhAjfUFLyFhEp6i5RFpYqdWE64kfoSAr7qJdqQkETj+A9qeGIJFBnvBSuL+JBVmCmDhSl8NdUXXQMBJeWIK6vfyESFVVUE0jpRe1QqcH56N540sELLzBjmHpzE6dqIFx6B6EEEDwOxFVbYRTs30X3RSY82ieMlSEfRCAGpyoSINi86CKGvVFv7y+q/SznUDFtSX/Wj8POsPWvRMA5SPJVnjQAn69k8gRA986SACQmcAHiMi4zqUhLOOiueJkPr51GWE29hNSWh5Zm7oxt7TgwcUtbGlF2zkgSSOPHK5IsEm9nvWg2Dn9aTjGqOnIXBNyFBZBXsGhVVI+XKw44686NAl32OGTO+ROw3vMAYIE4UKZlS8DB6W06G7bqvwlGTkPJ0cvRVRg3IhUjaf7nwjkVO0QkEYnlanvqgmrBn2FHgRs+EmyBeojq7BiiQmwDlOEKaWf0Ud2LVAVRTaEhG+lAS1j6C12DHIErBvZCg5p23PzdYcxgUfIHO/sTVlblDv1hyn8z5YJONAxWx2u7OePpPuc/MCV75R+DTGt6qw6itI5kmZyrOicu375rZT3odyVdlHkMcUC0bDS4gQKA8Na2XtiO3XaUaowW48WduzkSBmT88uhgXhSMy+Fyy+u1inwnLWCLdhiCKDwyFvlrhPlhw06GzQxvEPVk/PPnFPjxX9iZ3oK6nq8mDdPQhPDpmqM3MBFj5bJxtupRwP3UFyi5adxaeCpEE7Pobe5rM8zfBnnJX3a55xRq9XhE/kgcvPbc+e464ZtSKyz5fDDfSAz4XFdPgA8akJU2CGVOkZpQSiJ4P4R7dKc1bRPFmiQEHHtI9D+2zb19cudN8AztA5c9/hi2maKO/XZBp6Xd9uFeSKFy1XHiwyTK7otCxngyg8qYCPKl9SxoT2Ket95sMtbpYotN82l0X40z8mYcj9moxBr+ubMWXuqDqB63EanaO9PDmMz4t1K8zhqMIA1kKNFwkrwuPrOCPL8NPF3NnfPyRyul96g48A2MoHaEYAGKEqEElfTIeI2WLMrjdmUNj1gvmh7wf36B4y5f13hdmJW/gy6eg3at+Fp6equDvegDNHJwnjk5gCcbwkWcqTy2GnEKYIzCDo56PmX7uAn/FXYtfI3WX+ma3fvB46q+d1svFqyqTyug4l3csWoiXdNdr0+ME+LQsrWwmtKepqQGMvVK7SwgK9ypGQvrjo+R4Lp37RESsUowsiXEYdwgsflWOjIlSz8YfVrh9ADL38SbrZMF0QDHXSWD2xuEBZ9gVXhlgkGS2QK3sEwL1w+HO5T8kcE07e8ptoz2u06gxsb4IA5kAGGNyMAIChk7kJ1WQ2mEIbRGnSU6GN/7CDD+UCMBDD1Cy6QhvdsjDMHQ0ec2K9ej1hbmX8dfme8CDW4o8rfrcfnfaXHjDPXkGHecwKDPOmVJiH7w08f5pRxE4f1LiH8HnvevjQPgzuN0pFwnikyqSm8aJC2jEM+GDAJVCAO0XMZNxTtLJNUxuPdszZeTZ05hiefdHL4Uy6YWnuoOHp2vZMas9hFOYCOGeR7ZRJYbOI3GIrVVVWzFvFbLgF0kAOx0v4TabI5RA+JgMD+afmGB0xD9j/j32YlWuDCxjdiIJuqWy9piEjZsrr1A9WjgcZLvwIXbDcLFAoA3peCNxkZIUIzy9S/niYZgjG71kYmDO/4d/tRw3FN5g3YmnODpbG7DAizI5mr4/dWdx2fsiyEUkjto3cuKqy7YrA7NgA2enFIok+YBe8mNxiNZCMKgCpeRRs1crXCaXkpc5j599/FrF+9ssZr4+I8cWpjPw1UfKvEKU/3E40OlN7TtiR6R+cXpjVX6oHlMxoUSpcXozKoEqW6HwLB2WSAnRGtQCIqBFrtG2glxsqMbBtoEaPJ2d3BClUnzaj0qc5hQ8GTn38OWR/4e7920c85BKqhPPEApFmw0AqNerMYkrhHWrpCUyxRCFQtpxQCFLRlozkbi73vEPJ8sJ6gblHf09ouLPDT5KhaGDLIEMVWZPtC7kIL6oXyicIJ2t7UlsLh6bcScOS18Vc5VOu8Jv1kwtk0WD42Ne2CZCkxIkEMHKMH4G0g+ALFei7g1kHVwcepa8j8FG1PkzM4m3LYdhKAB992Iz0qWyLMJ4sUSjmChJwQmGpvNwXJnuqXzdXXo+WSNWvElZ6+7blxBhJim0QECNlEimslawclSk2KmWGKbyEbRxbwk3aEDEfVlVWzW9zeBEuWahdQuyXCN2PVhpJmEIq5InYsEOIijUmUQoQJCarfjceIONJyzWHUlSbU4mqwbhb770XcHzelAXvZOftvzK0dbKe3C2i/OvB3XogpXO3YqWYemhh8JgTe87qCXNiy2k9YJ7Xjw5zZj8McyYV5t5r+hYPzt8YuGGNzZnj4z/g+yXVCZJJUqR4zOtimPtL1PugGlHNahJngcVMhM+FZjBIxpPLkyRSoCNQhshrhQRggPVPGcbuWJQWutPUt8DuvawVIGGuIFF+AakWSiLOGECqzSBvJgxIxijpZ492t99ctWdtrv90Sq3H5+zMQgKG4TgDNSp58aJ3Eeu6fm4dsNti+9tjExbISCDUNCUEHjMwHivZ5UTFLgOyoD4uB7me7K6B20+GdGGN2DFX7xZUY/4U9bgzdDFvnX+BdMSDfv/86V4zFvRCGw7j6FxYqrTKLOitNpy0g3P/OyxoSypRNRhtPiLQu5/JzhX+E6wmzxp/93RDPWlzovzrQZsHz6PT5mbzMG3eyuAx50ZnDNm8zDhwSdzHdfYHfutluAtzXpPoMC+biGHemgrzr3GDT3a0WB+29lDt74yk7wvIqqprv7PRPEzAk8M0PGS9WdkwC9hJtE2fdnsXh5xeL4qd6sCacjLrhu+2Q0d0qfOubTgI20K3B8gVku1dlLkCz8RZt3a0qmZ3yUoASN/sxJSFnJjReyJmdPw7aEQ+n+AMG1JmYSRMLYcAlbFI1tn9XBCAdOt9WWF9/85Gjd/MZksD9nzwSyq4Mrtm6/sXuKEAmJFtNMCW0QAAdG61oZpbBroAm+6cualV83n+B9rvj1486KFDNS3Axi6lW4AtyPnfAizKn20jWm+YP2oCZ8PggAPP96b01cMC7MJ6P8O78MeGLX/R8t1teVgfPSwtRi6lW1pkLK3qBdiZjvcjfH7Zwdm8bmLD5CFyBz0swBIzOfSAEhBrGpRic6pwAZa46F7jC7CIxFAuwAKkUH3alkqfGox/OJ67e9DJ5A2Be5O7Lp0zoIW9Nv4hSfBY9e7htO107mHwdgzydgYP+YgBl6yXjmrfO2e9bdtnRb1m6AfypOS04L53d7O3HnGrNXnk1Fb6WNNKoV3TSsEgdzZ4yIlGQz+QE908PUAes4QOcoclGOTtqSBvmLAvP6f4NGfZlke/nWk6Ng+fNcRJlYokfJJml3UoEG6L3oHFPcqUbXkyD0nUR/u/a5nJtaDv87ED3yeGz/B84fH1Wcoi0qFpJjShBG3dM1ja8VAxXJchcc8iAYheh/7DeEigHAjpu/1lF2gfseti4J6pAz9+7cpZqsd4SM8HRhnOHMYFCBCfLN/1FAwnD+nUuLJzXwEQDaQOBl8A0/0kciGkM8H4hCImkBSVnDB5MtjgXpIsjCdF8U+TN7VsVoUG5kyfXNygSyJeQsxV36PZra+cpPc0LWdEYmjgenDQIForanaWxqRaywxFd3Si8cvZpUjiKZjJvBECZooUWQeJ48G6QJRt/TbUHtYmd7M8dInt+sSZM7fYEirPoI8lqTyDUfTNPVt3VNgDyLiX7YEIu0YOsY7AOWE9aLEjhgIikKRgLXU7GJ8xu29ozlNZTPNts/C7Ff9Rx1s9gOVFCxYQddT+uDAo7E//FrVGZG239d+3UvS6xzgzfG6/DQduY8B8YarVOKpCXfuMVLdilgiIJvgRgAGTQ9FW9jyRRJwIYi85ujrjgW91L2fG82AiKVOeIgURB+BQnAQQwf3KR6aI4a1wz0Ws6lWvvOjBZCfBTuAIfweHD1Vrsw0sg0KSCA+rqWeoKkZLmMlwEV872/gz9tbV+3dbh2b12T4s++wfFrSwaR5jJnxA2w7bsHrMUcDwhmTnmeC6UeoRnWxlvXJbiQ6I9GWHd+DYBF5bFryV6zj6+raieno0lkQNVNlueLDUGkRoDtmUKATa3+GoTsayJU4e0f0+iBkKGFUE7Kv49nHEuEth269G7I/p6RtdoyuKEJVTR+hQAXJjoFWHKjq+1CkkgRktg6Wh4CzGc0soV9cLSCWp8bCCFHnr4f7zZ/02tbAfd9+Gbt9Wf7xwGccyi3DVgzTYpk6rCtY507LuxmEDdWfolpOaRSLdUIFJwOrkCROgeqdZo085fdHbJPddyIQ74n1xR6cRNsaQ52kqIeVlvdeCcke1TDAZUxieiJbR6aRT22horAAiowRKu6gDMI1/1r7g4fIHZ2PWeEbWzBeECBJ9sGaYhhGqAhxE2VCCA5SNTu2J2ymtVLkF1wWd3nN35p+wSQ6ZXeverNSOtgvxIYpq2V8zRCknVQVCzrQIgTmN+m2uDAq/7fRSHve7j33QxHXNTZ+3GnMY741ygY/GjArgar9w4K86GAbzGzBPGESICeBX4HelMQG2MoWyjTFQtqi8Qt8Ldd3GaeU4ycb8cCv1sgzI/yP/pWNBaEPycWt60RhFhyNiXh/RI2IarpIf9Jw/6LasgAxADQPyajc7evp0bxAQvGnBP/14h6acJ9S5gHeT1LlALlfkKRH1nx7OfzEhQFIyIWTCzkEfdDr87YAAhMmFM18oU3ZgJje21zctezzLakJgegPeoMKyR7vw0zIAu1lzWpaTKgLM2+u9S8TfS3vnLjPaavTjTIIeAEv/QAcYkKgacaKUNgN+piOD6o/mmXC6Ei+WCC9ptKosY7+ibdyboOkNxY1+m3TCoj5y9hkwg5MqlQlUZbAQp5blH+Uc075yDjCBtckF04+kFjsGZliPWGrRSjFBH2ch39OxNvO94fjHmbodJK/LVdPnpMy0Mzd1a5fTNmBh46nb+rU7iG9qYcwlK7KpvKr3tTsPVCcVsCAviPGtBzLFUMPoxqAwjP5X7O+O6rrTb+vgXx1m9j+ET/S0g1sHCrj0CStbC2CtNYEOp6c92ZJkALlyAwN5DL/8MUhwWH5omg+ERCuL+MipO++ox0zu5lWbvV8JbJwrHrAGO0g/pa03Ai3lGQB6KVlCUiwQ/qN/VPYwNYurBgpcboCJmdDbkIiZzthBYIAeYliRn5Q6TQ5XoyWjBXxyI3IlZbrdNS9e2N7FPdrty/F2wesYpKYKyVFz9HpFOiYr0MUlNOqX4IVPI7zPDPHpWEkdkwntLYTZmCyrJ7s9AnNll4TbqLFftboVLxHLBfEpiHjALAfy1c3Rd50Z33u7+uceigoZkr64Jw5Ly/Lnaoa/OKK+VQLTDYVtCBlsN9wR2FCV4E6lEs5Yt3rn3UUSNuXt61CPy79ziIWHpCJevIAZniISkegCKofZHbtPDO+DMisUj+KJhHylkI8WwvxDEKbItNcE20+yRn11dAg+8uTB3G62TvdoxklWIEmNrG2qGawAdBqga0m2+ZYH0T1V2bnfCBo1pIyCAh77h0oSIkaeWHP+xJ9bLvUOXDjr+JqB75+G4N1n5EGa7rPyckXTeeLHgwzrw8YRBQe7GV3cG7Smsnu/sG8WRG4VmcsAE2xsT1O6z1oi56hCToYTNSha5Nl1JQ+npjG4gTtPmra/0mvmV3zZc1RAyLd08FR9z2KIFpAkGrSkp6rVwcIGahadJhWo49BK7VyNRyhwaQUiD/gZuUdQ8DDo5CYKZIRKfPBPZRV3I8RAQsaCR4CgOk3JalIuEw1TZSZJJfka64HOgjKyNLNIT2QW6LQQ5qAshwJ9BcRWYaLPJy8QEhba9vKWzN7bUiasvJbwmVBRAXkrko0J5HJVQIGIOCUUQMRRQ+XBMPT8G6K21E/+DTF3TR/VQU7SVgc5iUHuafCQTztR3O/IX1bcLRmP5nV79tlVP5CP+dY23PvO2LCDA4wORm6yL9UD5Dcu0UGefQmD3IsKcp1PTtpgkFfDyUliNKZ2cpLonqmdnHx39VHhqgal3LwnT4dmxGx+pnZycsXBjnZXv9cNOmRUq3B88+yvaicnpfnc3M023TnpjeawQtqMHw1IdRjk7gogmaAkoqAAkilKym4m9ro3KSl4qsMWd6PHV+5pHMWEwksqfeI97s9Lnm3jbHqwOdbHed8XPRzF9Kbif8vQIve72y0C1xvz4649s8Xzv4FysZ8tksihu4hs4Ghfr7RloBAewEyCJxaVD0BCShhn6nQQqPaBEVfr+Pzwy3s1/8EOz4FXKxyiBjhkH9LWKwehYrcTYJLdIFu7hicWuh3Xae3aUbnbhnRWkCCHmiUwK5A6L8hl2p8lD4XiiIIlVnXNmzT4vTJ7bVW7jH0BYOV8AjW7GiX2jsIGAsdJ/XAqrBqqUiLUsSKvvsjvblPWoV3IgsUDfvVJqHPHcM9UQZSAzNCgdPSYbmeq3CKxeYVMNgQzbMrBUA/LPaPeKkkebVbWmLkvYs+wzAEJ/Zva1+B+LjwhgAgR6YYcPHF147hubqyLavcQQqSEBy20CCwQTjeRV7AZHtPoX/m/IavsFNfPXQpJNoBdSwjStON0IHU7rtu+bpsAofLNVUtV5SKjrPhJqaA2nWBe+7rUMWy/zcKGPuMWtcbvImLP1dxFVFGqAp3SY3ToZB/DHKMODArD+KJ/ONfY8wt74eqzgSsjQgZpLsRrWkKq1h1O+P1cVarbaAm6yqqdIZwxvs23V9fiAhdaRb56H+lIMiTyvQFts7+BYiooBrCdJTucB0suMoqrYJt2o6noUpPk2f4bNi1rfebe8In4xU5kP5bCrOOIFW5TEVRcZTPBYWuCYqrWBHnwYFyxTrbOGgFLAGYaNVQ5tUPX7fLpF7ho/od676KPifGaiAPuJQdKjVTNLgGEiUELU0GRjgeIK9xCI+4119gWGnI8uBjdQtM47Cb1QKBB9VBHKj1k+K0EUj80cnKVZoeuHj/TdOnn6QOqpZXA0Zd0rQSOvtB7K4HXHx5atvzlvN+Ozxvq2wTUa6rHVgLf97OWD1q4OiDH/OfF1TczzPRQKr/gJV1R9tiX+m4l0EzShSmrw+s9ocHNft3jbm3RayuBa63afeSyOrG2NetUtO+Z7I4e8LGlxQeIj0EWrddzK4G27tPH/Jy5LmDufiNjpwaT29R4KwHpCzquMA2KK2VHMK7ov5VA9IFjd/1NH7JmmfkIkrs5P6zxVgKIOqEsnN/tZRW3Eujiyy7Z0GcCZ+7aKfPkWxsTDj/WSCuBoy/oEAl+gdn1TgwKu/7f1krg26PW3c+96tx7r0+U+8iVse+rqJWA13O6VgJHn1V/K4GzQ/wuSsL6cw503LSRf+z0Jz23EtCz8UdSSZ/TtRIAGNZwKwGiPa/xVgIIYJStBABg6GTuTDWZDWbjiihNeqpYRtzm0MPOVWEp3c5VaimGeRcqzA20qlKLFsvPzO70MHhe7qmiHUFfF9ANS49VlT6/pauqFPz2f1WVUP5cSCvqdmv/haDJvh2sTUReT/VQVena0lNzHji1jlj2rdad/FibSq+ZgNlR+pauXlD226quqrRAtPLS6nPrwreN2uLh0ikhQA9VlaZ2vsCctu8Re37YNUE0a21ld78hSsG0KH1+U4VVlYhZ7zVeVQmRGMqqSgApVJ92/S/Tp0tCX3CPbu7Gnb/HtWnuoD5u1aRP817T6dOyf/6nT1H+PPzZ4eOfd2YErl/snb794f6NetCnr1bXbVpwzzZiR2wf/l3HlkV60BSZr+k0hd/rqtan/UfODRnlnxIwo3PzWqu6u4/Rgz4lLhLoASUg1jQo5f1ThfqUaENrXJ8iEkOpTwFSqD7tRqVPDSYmIE4ng63flf2KLiSIeYVB7kMFuc7JbNYY5NWQzEbcJlFLZiOuraglsxEDOrVkNmKkoZbMRjSaaslsRGlQS2YjemgaGWtQK5KKmJP5MVev0DeswuhvR+fVadRNDxlr3fXGZMtqZDKxTJsak4lVatSYTMxwU2Mycc9fgyfGVDxpMkS6vH7X1yELjfdZjrQOWawHnvSg4okBNXQobccp+TezF/vAUpZn/LiPD0mGoueWSKuckqfwb81gLfR7nN5tZdq2mmuJFPmwuIpbIh3kPvzvaOjQk0pUDcYs/z472+zU6++B09wu5/+xdkKSnpbqiPKvB7sc+YjOLts+wuyyr8FjntAw6ovRlLGBU432ysROodMMd3m09DId5hsuY5j/QoW5zmbSilF9ZvLe8/frZ2c0Ct52bMRj2y1LN6qZSaL8qplJ4oxRM5NExqr5Qum73e6fanWGs6lk8fkeHi3t1HyhnRv9Z+SH3+NuS/rUfum6TjM1jCvU+qSCFJFdODG1djhr1bDE+i/MMv7Vg3HtRcVJ86jFo9alDA/If/VZ0JW58S2+vB268RcG/pEBVal9VcAm2JahmBkhFYiDuMxk9BnabQieTOnY6e349LCD99bevGqWNoF2WJpV9wgf0LYhRTsOg/kV7tawwTzRWJqBPd4/a2wR0qVJNFOKNlZ9EpYQSIFlOpN4YmDkSF9cLhwWNagr33/WyIBfkxWtH+E3BAOUT9DcEMQIeq9gBNNZICQbyBInbOGO35caSZyoEw+gVSmNsrKyn7oU+2PiGQPrS6WIeDJkn1EE3RdS3mSf2JY9OrdH2JHshv92frt5J6GIKvoQkiKqGKUquCP9QscdpiFwB2ijn7pkF7XgJAvlSNnieBybMBVCypxd/aR7ywbPjJhwwivA8cTmsXjmKJ9IsohbTqkK5lz4TMccoE1qnjmQP+rMwSwTFXO6spLhVyI8AcORg1sF4vg0ZdFFX6ZEyhsJazR6I7+Vf4J8Rr05s2bgztRv/mu7/tPuwc7O+DoIdaPVnq95jh1HrQrmedEy78EnwykUhC+kaVwBB33LOShPEorTxMAJBuwD7BJLxJB14CeRZDRChL96QVIyL1V5gZSPwoUtuvdZ+1f4zBN3Vkj6B14gVENLIkuLRi9XBecyP9Fxzq/GOQdvgjsqOqXK1FeuRwvFifSK0ON2/OFlQo+QaUljWj877foBrwgpfaZyit4XvD1QHwJGHKc03CpPRBGifqofg8JPbWw8Jur4gfcRR8zy/27bZQxhp46tXMiJlAlGCQWj8W4qxJQqs60dC1YdkqstBiEFZBMFkmSBQpbGlCofKLcJUWZzhYj7CsRo/ELtvJ7vsmD0/OMXehfUX3+AWTLBhW6smruKeLp1f/CPVCJTBApFCuUXk7n7lCdM23MYMd8A9tlku42ZwKXd8C9l1htpNByEYYMcnETGqJVH77ap3vK96U0jMq5enPH78+n4c8dm2FM1xVJFqShOJhY3q2ycDJALhsj5kemRSFcO4/O/OiW6N4xWc2GYklECmUxI0bPC3jL017pO1zlr69Y5NenEtgaVn8IErIg6Qg9YATmiwSrm32rVudg6pikacsEPQWfnbt7dn2YC1OPDLvp7+f+sg9g2olU1wwID7KPw/3XV3R78Hapwm0Wlxv5XhP8/KsKfPfnK3q/Lk1lb3zhZ88U5X2lh01cRfuhJOPwshif8SU4C5cGuPz+qogj/fnb28Il3j/feXzui/QpGs8d6PG2uZx2ZCRAygwjNIJv3sGZ54Y9qKcLfrN6OPQduL2VPGm6/fca+5NAaLcIPUUn6QYcKkBuDiR10O/ijvyL8E5J6NVg9u17wZq/lrGe9tww1iCL8kHWnvtOxLvX7/40i/HWeTNp46rBdwJKyM03/PPaqJ2GnszqLNsS6o1qG9MR9mQeiZaqtCP+UX099u9M0PWir/36fZbOn47MRqr8IPwQHUTaU4Dj8qMYi/Ieueh0/vKnEf0OdZWGbP1y9aQDlLCBCyJymRAjMadRv82dQ+G0clovrT98rrA33mm+8lPsaX4rPEjnEJ5WIgEXX9NnMKHDuXL5FIiy/H62FARCXSVISk4APJxcgSzW61HJYUCScUt8+m5P5ltPhONf3BeVoNaseqBG1ze1rw2F4GZUwGDw2XHQh4HsBhPfTGCWVPFhlVz4scBXFgvTVTV1c1j8cHxWyUB4yaW2JZ2nle3cRXCiiYqykC8UE6DlD9FqwSaTTAXY5NirRxYVCe6DzBYkyAbl/aTXFckFOzPveGeev1bXcf6UF4YQUciPJCSnldb2X/QXvf4NB9/4FjBIDWK5DJFMHRwkOWSjhC+NpattEj42zdP+2J3SCw4Ssh1186uBlFXuApqyqKFXBjGm0zIitGWYQ3R+GLjsWHqFiiQKYL148XDt19vIFISuILJLdmN6+8UkSGd+N2cFXPlKmQH4h91Yvdn1qXTDrof+c09KL6azgSXi7Br8gSpEmIul/WU6qCmZ1o2WWrUHMHPgonbzVhuUL3eIUWZycZga5nu5SyOzvxZ5XtGjfyIzrnyoTKlc2dPBCFTk86nlBoy6UN2fzW0aJTl4qqslpvK2wmPpck5ZzIrYPub/7D+mVHTUb9gIAjjJQAG6QAABVi06eKGbKqItMpH0zDor96MHd+GePfx0b9ZpVo4d9IQDRDBoJ6N+MUYI6mmzGf1c+Ts9LLa4syD3CWjt2y8TkEWM2VVs+jlvtEpp8nCG1NDxLPefjjH5Sr+Gfcdv8dn18O2/Z6MxQA8jHaQ0hodzd/FarRpQ+Pqng2rVr1ZCP8/uaVyyrG1vDVjwK43f8OaK7QeTjXKlFx50thsCdasnHuVFk1O6UhZybNf5nmwHtHh8wiHycDFrmDDEE5jBqMh9nu2lXo/l/xbJ2Ojqw/nLs1cqg8nE60TKvbs0wzzDzcSSZO/q/S+gRUTg7MuHXG4Mdazgf57ERHecOGtU056o0H2dxclgO+5l3yFzh+Ev+XqdLDSIfB/EhKPNxgCJE/dQAxv8H+Ti/39swcP3kzhETEp7eYTCy4mo4H6eTcQlNPs6d2pSLpXrNx0loFrZAYT/YL+NN9nX/eXGZes/HIcbmesgxcYPIUeaYGBtrLJTqKR+H+3s2d5RNit++JWFhbVrWra33fByijtADVndq02G1q3a16tyazsfhUKmxkUeErsLwTey9hyNETx8Pfo3fKemTAs9OBsl40iTNE6Y6bF+0DhDKpfD0mGo3J81decqUyYM18xLhN5BKXq4wOWvXag/O2jo5Nw7+6L+HcnyaOznqRA35M48CKixC/SgWiVQSzz1pKZWqpxE34mDp2KfFDEYjNvxLOP85vB3n4JanxVZRAhFgmIAfAvR6KvY4hK1KVgZSsVLnM2nOKtmu+jNpNrPSumd0rud/uMhmb7fwWjPVzqTNeveuafrNm0EZSU8GN2tlGqF2Jm2u9xue/6ag8M0e/7azNXZarHYm7UzM/tBbbov8d19ImO18znOm2pm0ubZh7RcHZQauan1zWE6HQz/VzqSdHxp7h9P6Y8SmL+On1w+45al2Pr97+KWTi9oWBWcO6CNb3GxqvlqzmbkPeSXRt6ScfFGj7vujNnoDkhlKWtLsoWPC1J7+m9Ikd5fnOcOzduYoqcOfq3+sTwjlrLebOXil+a0pgGSBko7IL99LsbgSNj33wnjvkw12AJIlSprvk/L3gjH3Q+bx5ndr0FYeCEh1UVL9+i3bdDJi9s6f/PRySMKv0wHJCiVNsYge0SuUH7TpXlETeYDPRUCyRknDhjHX/x3VMXDenLzxz0f9OR+QbFCSz9nQg1NDI8OnuUrth445NhKQbFFS+60JCTc7nuudX8uk94qYH2GAVA8leRQ/ONTa+4TfrN+i4y4vW3oOkOqjpAvNXKbtGXEncNIvn5tcmmUxFpAaoKTg/cGpS8oSg/MfpjTLrnVrHyDZoSRpiw5W4Rd3sbKPlF0aMrBRIiA1REl/Rx35efuyOetAc6H3l96HfwWkRigp/tw18/arcjiHWrxqP/kfn0mAZI8N/vLjhJAp37kzfunKCBha3B+QHDBhi7GbcXiJKWvv9vNPSvok/A1IjVFSp34RliMO+YXv/P3HquUTcniA1AQlWcWvtjs7Pi7o8MRtZ+Ybt58MSI4o6XnHsi+xLx6Er5xwb+/JyDndAKkpSvKXdPqc+yIpYEJmq12vv+yIA6RmGJdvCb5cnHvUP9d0/IvxR0/NAKTmKMn7knWj1Nf7I1aXuI9rUvfpP4DUAiVt6WD/4sTVOv6ZLTuJ7T+cge/FREml7CK70uJF/lu6D39Sq+EhmcZhSycGxWHLJfU7Nyt1eMqe6mfX5PWgc7/q4bBlEJWKapiwLz+n+DRn2ZZHv51pOjYPv5jISZWKJHySDAKqxqRt0TtUOZ9IqXV5Mk8kAkoIrWKvZcoAUUGRDk1znRMlaFv7CliAYPMSqF9JvN9INw6jzEzD+6VtAlGeUakcCOm7dahTd4+bYyl35ruz8RZ9Rv7QY0Klnp1chjOH4QcB4pM5bqdg6qC5TtkAnfsCh0mGrN3xBbBMr0QuRFIowPiEIth0WSUnTOBBMXkw5IonRfHv+Kbnfxm4mD3Jyar9DZ/fW+K3QFXfo7kFWk7Se3lVZ0RiaOA6ZWYQ+9Wa6Xo6tg11Rycav5xdiiSeAsQvIwRM4ICo2jBR75X+eNxcUnhtbWjWh08PnXoVpxJWy9HHkqyWYxR9c8/WHRX2ADLuZXsgwq6xY6ojcE5YYg+2aC0gAkkKVt+Gu/d8yLnkP6vZ0d9WjvmcVPk0Ij2AhYg6JVhA1FH7E8z43+kDfZ4+IHro1XL6AEZLWRYlsE8dyemDAmAr7Sx0spVanj64n5G6LvXqtOA9ddo2b9HGYbwejSVRA1XSWMJOLbMgQnOokrX5FjoZy//09MHKuUKXFauF4buneMc8athhRY2mYUBUetKiAuTGQHdKqu/0weRb+W57H6f1nrs6y3rFuajlBnH6ALLupTkd64rMDdSd0fPpg6eNSsSLN7dlzwg5Xmfh6uMXa/D0AUwzQbQMafo4wxPRMtV2+uDkpJzNYd/MAhbcet/a62lM2xo+fQDB6UkLjp2FbjlflTp9MLz/uvYD0r7656aa3Kvb4yW+BkjNnD6ACCFzmhIhMKdRvy2EQeG3nV7K4373sQ+auK656fNWYw7jvVGkZ11UAFf7hQN/fMtI1BMGEWIC+BX4XWnqfRWBskXlFfpeqOs2TivHibh+ST5uTS8ao+jQ2kXRpkTZ2kXDVfIDHHjfWrdlBa16S0omT23r6CvxX1v4V4s1zPXtCJvs8G6STXbkckWeElH/6aFviwgCJCUTQqYrhxHQRqe9MwcEIEwunPlCGRBfQCc3tmcGbZ5gMdaDkzm4KO5Om2P4GsHmAdjNmtOynFQRYP/0n1O8b2Bm4ITLLUTX2oVW9kA7BKwpLWBAomrEiVLaDPiZjgyqP5pHOs1oeGmJ8JJGq/rP3P4ys3Mq54BT4rGNuxI+1UcO4wBmcFKlMoFq6w5xaln+Uc4x7SvnABNYK7OZO/tJ4+lhczo+GXqpT8EBPbD2bGs61q6pIdaS+ceZujWAq7h/aZCX1fU6T9z8p9nUCf7cYUB6jfUvZXigOgn2L5VqxLceyBRDDWNvBoVh9L9if3dU151+Wwf/6jCz/yF8aWA7WHJTAZc+YTauAO4PC3ToeubJliQDyJWFP5HH8MsfgwSH5c3O+EBItLKIxG27igeswQ7ST2nrjcAFUxsAeqk/SRO0WCD8hTaVPavH4qqBApcbYClf6G1IxExnrIEXQE95iA/+pNRpcrgaLRktoDiBcznQ2bFjzMLAOS3yZ4h2h9ngdQzSC5WkRRx6vcL8C+v+9p3NerK3d3f7vkbWqUNl6yIAmEshzMb+JG2/stsjMFd2SbiNGvtVq1vxErFcEJ+CiAdsIUG+ull7U3Jq319PBOVfZfebxzsXj88qKH+uZviLI+r9RJMbCtsQMthuuCOwoSohlEolnLFu9c67iyRsytvXoR6Xf+cQGwZLRbx4ATM8RSQi0QVUDrM7dp8Y3gdlVigexRMJ+UohHy1UJDElIEyRaa8JiLv0NOMka2ysRtY29QyW8oToWpJtvuVBdK0rO/cbQaOGtD9UwHZ9UElCxEgB2HF8zajE0svh81/9FnTqkclRvPuMPEjTfVZermg6E7MSKptOBcucQORWkbkMsHvJA2tK91lL5BxVyMlwogZFixS+hYErUx6cOx9y0M6DO/rYq+f4VG1UQMi3dPBUfc9iiBaQJBq0Mq2r1cHCBmoWnSYVqOPQSi1nxyMUuLQCkQf8jNwjKHgYdHITBTJCljD8U1nF3QgxkJCx4BEgqE5Tspo8eZhgmCozSSpbR8EDnQVlLLKkQk9kFui0EOagbGMKfQXEVmGizyeFYmJAB4s7FoHswoO7ZImLxxkTNibgW5FsTCCXqwIKRMQpoQAijhoqLoPCUBlM3XqittRPC58qKFtvZ40mrZOWrX9vhUEeZvCQE3Pj9AO5wwH3dld+JoSuuDHdrsOXs4/1AHlRAzrI1zTAIA+nglznrEwbDPJqyMokSaLEsjJJkiixrEySJEosK5MkiVKVlamZRIllZZIkUWJZmSRJlFhW5q/BLZ83PPDEbx2fyxtgN2eqRsobFF5S6SOmX+oh5S2Civ8tQ4vc7263CFxvzI+79swWz/8GysV+tkgih+4isoGj6ZSbUMy2loFC2LInCfa4UT4ACSlhnImmIWi3vU9MOa1wiBrgkH1IW68chIrvLcEku0G2dg3bQSosdVq7dlTutiGnQSSQNQAP8At1XtB9/98vOWVN95u6iBd78vjZdZXZa6vaZewLAKuXlqjZLdM4YA/C6gJLUj+cCquGqpQIdaxIUbppnj/5/p2WnMncMX8nv9nO0GNaxIR+4R9OrUsN3CiZHjzNP+24HlBS0KLUzVJz8YHOT3OLxOYVMtkQzLApB0M9LPeMeqtkyrf9PXiC+5ylTsknbXMVN2twPxe2X0SEiHRD7igIg4ssdXNjXVS7hxCieLWaFdAC4XQTeWIl63nxn8u2BE/mHbtkM65sngHsWkKQltGCpLDUbV+3TYBQ+eaqpapykUE2FqkVlOWPk4eujvozZMnioL8uM1fjK+6ZYc/V3EVUUaoCHS4tOq0tMccokkFhGF/0D+cae35hL1x9NnBlRMggzYV4TUtoTAGuE34/V5XqNlqiU9k44gELbfcGtM3+BorJywrAdpbs7CMDwHajbhVs06Z1GNDAJG2n/4FZxrsuu8w9jl/sRPZjKcw6jliRFiequMpmggM97QzBiiSTsTxYF85KJ1tnjYAlADONGqrvjc9cybIv8Fv0pEHY0l4ifGN2cw64lxwoNVI1uwQQJiA1NDAV1NXN2FW8hUbca66xLTSoaRAZgVtoGp2EpR4INKge6kOlh9jtznr6TLrPzQtc+Ubh07gZcR06mSdlKtdpSNbLqVzzdsr7sN0e5FwKjykWjIaXBDJhPGogtVJLxMNdNCMkWylXI+uQh3eQWQJTZkl8ci+Y88TUSVFZI9tQysVdMBzSt/zNNf/kpZKtIXlr251ZvL6rF95FQh6g6SIpL1c054jn3Co55/IAPLsgPDlkc84MzLlZTJ2ySayU46Er9DVu6ZTtF88sZB1I55Scj6k9EL/7p7xfc/cPvV4RPlc2nB4vWDw98FCzZ12mPRaL9IAPnxYfID41kWFghiRujFIC0ZNB/KNbJXCraJ4sUaCgY1rn5Y1zevVZHbbXvt6q0ZwDhLQQ5f2aTEOv61tZQq7Y0XLlZQtD4krZEYwrOpkvG0ThSQV8VPmSMsblvO/t3V+WBc92iMx1zOi9DM+YMOR+Tcag1/XNmDJ3VJ3AZUaNeNXLk8NIZeoWkDmqMEACC5GwIjxOnWgxKOLNmICJDuZS6ZPao/BZtWzlAzSzajFCVSDSkxYRBhOz630ZFHa9YH7o+8E9uodMef9dYXbi1js8j5XfqH0yTE9VhIE34MzRScL4JOBWwrOFPLkcVjRQZcWg5l+74IN4TptsvJoyqbyuS55oCzRPVCP7xQ9EdT1bVHYHvCnqakBjL1QWqYFHmJQjIe/2ujzQcvI/PwPyBnqePbRpBt7wm1I5NipCNRt/JJUUYuhFlqPBdEEw1Elj9QxHJUpZlhN3UAvmA8mV6wOwFCD8udynZI4JH0eKKNGe12hVUBjXIoA5kAEGazEBwNDJHEU1mQ1m44ooTXrqcU3c5tDDzlVhc7qdq+zmGObRVJiH7w08f5pRxE4f1LiH8HnveviqUUg/ealIGI8cC9NUpFRIO4YBfwCYJwW4U8RMxj1FKz1JrExBNyzNYlZ4urYLNzDIbgXgnEW2cAP3KNJblVipViMxzwmzJxYhUJfieAm/yRS5HMLHZGAg/9QcoyPmAfv/sQ+zcm1wAaMbUdAtIxD1oiEjZsrr1A9WjgcZLvwIXeDWLFAoAzoHZicgyUx4fpHy53H20MtRH46GTM4NiRvx5Hd88z8jlubsYGnMDiPC7OhWN6bnCa/uIRu7D5+f+KStorJrJmB2XIDs9CLLXoAJOhtalaiBVNHKUvMoQbwEaGhdUBroPOPw148pAZuCv77L27zkEh4lf02U/CtE6VlZ6f73Lsv9sgZtbGL2vWiQHlBKp0UpplUJKoMqWaLNdlHWC4SOkRYAEbPe8TZM+ShNG4Zer4oFb0RiPpMtNDm7I0ih+rTff5k+JZbzqSZ96taSTp9ecfqfPkX5U9/s+L4ZzaaHr/rYp+fya4mletCnxDJNetAUrVvSaYpvTlWtT1dy101qfOUFa8Xf2YsKjwxcpgd9Slwk0ANKQKxpUNriVIX6lGhDa1yfIhJDqU8BUqg+7U+lTw0mJiBOJ/0ks3U2avxmNlsasOeDX1LBldl99RASODvRhQRmKsgHUEGuczKbNQZ5NSSzkdTAw1Q9SQ08LJmNpAYelsxGUgMPS2YjqYGHJbOR1MDDktmIHppGxhrUiqQiRqyep4eMtRi9MdmyGpn8n9WRJCmqiDGZuOevwRNjKp4QyxbqgScDqXiSU/hg4NTHn0P2F+7ev33EQ/w5vzqRPLFApFmglUqxObOYUniHWpVppliiECiLCykEqQqmsjgr6WsT6y6SDEUbbWcZFS+TiER9ocWCF9UbshI04Z7bE6/xBg73P/JHsU+/b7W+UmlCs35ygSwaDB/72jYBkpQ4EczVgpVgYeEfvlCBvjvwMOAux6P0dQSWYKV6NZqxtOUwypoABerDZqRPZVuE8WSJQjFXkIAzgJbKy31hzw716+bK69ESqfpVQgnYvm05Gf80KbFBQIyUwXODCqFyVKbYqMgmlIw3OkTMh2W3MHiNzOFFuPWidgnx1UVoWWFlQAA7gQh5IjasBaVmiBQyAS9Z9bvxABlPqroHFdVBVKJqMGaZWAVUT0t1RPnXg13OcKSzy3xHzC4PNnjMieVVDXd5NNaODnM/OwzzIVSY62wmrRjVZyZJ6uZiZpKkbi5mJknq5mJmkqRuLuYLvahbLyful9zgOY15MS36j7yi5gtxF2Vlt4xuGbz60+B+7MXOPhrGFWp9UkEiFuPVg3EdSsVJA205Riw6XG0tx0Tt6FqOLWtb1S3HolyLpx1/7BqWM6phu917M/CFVmum5Ri/HV0Dl57tDKBvUmlpaTW0HHv2amfcvPwmQYu7zRt2uGzHdoNoOWZHy52XbQ2AO9XSckx6KfqXFt/cWDkmOTzP5t/PGkTLsaK2dMxZZgjMYdRky7F97+Y8y5C/YBcOH+nwMessPue4pluOKWiZx60Z5hlmy7Fj/Tq2vXdmCXtb420HE0Nm4nf0qr/lWGtazn1rU9OcgzdVWcuxXnsaP21y8jf2wfVH7Vp33oqvTFdTLccQH4Ky5RhQhKif+iuDwk/9b2o5RmyLUcMtx6Y507Uc83KuppZjHxb29Lz5JWQ1J92ixGzaR723HCMWN9NDG610Z7o2WjHOVdVybOybvf7zG48My1iecjt2UYunem85RtQResDKixYrM+f/Uy3HhlGpsf8V4f+PivATuwlVSxF+6EmUti+BJ/xJTgLluXEYSe2rogj/nnrypt03TQ2dkdim5ZXJ9f31eNpczzoyEyD0ACI0g2zew5rlhe2rpQi/+YJZASs23Ou9iTHxyq1RiR41WoQfopJJiwqQG4OJHXQ7+KO/Ivz/fGt2qHHzv8JmXvZ1X2h5+qRBFOGHrPOjZZ1DzbCu2ovw298R1pcf2hU0J+5H82aXe12vwaINse6oliE9cV/mgWiZaivCH+RonXP7WJ+gLaLx+65Yf8Fr5+ovwg/ByaQFJ6l9NRbhN7K++9NOEhI6q2V+6tnmg3cbQDkLiJAfLUJgTqN+WyyDwm/jsFxcf/peYW2413zjpdzXHfF1BJBDfFKJCFh0TZ/NjALnzuVbJMLy+9FaGABxmSQlMYmpahqrSy0HYodFytFqVj1QI2qb29eGw5jlCvDlseGiCwHfCyC8f+xS2YNVduXDAldRLEhfve7Fc6HDAw4FFgxdyTu3bKF95Xt3EVwoomKspAvFBOhlQPRasEmk08GFwxjiqpMLVVc5ffmCRJmA3L+88e+fiz98FYXlz922c9qyHmLCCSnkRpITUsrrei/7C96/E+3713WtaWdJJZk6OEpwyEIJXxhPU9tmzI4lk5yfWoUtznh3dfj+UgFeVrEHaMqqilIVzACTlYYZB10Mwv1h6LJj4REqliiA+eLFw7VTZy9fELKCyCLZjentG58kkfHdmB185SNlCuQXcm81J3/ThVzPZxHrOxbta5Pouhlv1+AXRCnSRCT9L8tJVcGsLFpmiWqGWYSZAx+lk7fasHyhW5wii5PTzKBbjCUm1k+Mwg+/OuK257PzjMqEypUNHbxQRQ6Pel7QqAvlzdkc7qqbl4pqchpv6xT3gKhRj1VB69bVGXNTHDWmZsNeAEBTDIAbJABA1aKTJ4qZMuoiE9tu97C/dMszKOv70LCcsYp2BFNWvYd9IQAFLjQA9E9zwRxNHuO/Kx+H2Ji72vJxprnT5eMUulV1Ps6nJ3G//lvaK3yvzSgj7uE5fQwgHyfdnW53M8bdAJIK/vzzz2rIx8m8vmvJ4MD4kHWRAzvbnT0bYRD5OF603DEzBO5USz5O608LB4iXGfktyPM8GWiVsN0g8nEeuNExB2iTmmcOoybzcepJdvdJNLcO3ng6OMn47C9DDSofJ5OWeUk1wzzDzMe5v7Cva/MjBwPnbt3xy8LfrnSt4XwcP1rOOdQ456o0H2d6V/6B1J6PuBssPROnTJm+0SDycRAfgjIfByhC1E+NY/x/kI+zpYP9ixNX6/hntuwktv9wpn8N5+NketDl43TzqJ58nAabza7G3AsLXer70n7D/dbz9J6PQ4zN9ZBjMs2DLsck1qOq8nG8lky+HjM3O2DFjpzlg3c4vNV7Pg5RR+gBq260WNl6/J/Kx4mnUmMjjwhdheGb2HsPR4iePh78Gr9T0icFnp0MkvGkSZonTHXYvmgdIJRL4ekx1W5OmrvylCmTB2vmJcJvIJW8UnaRXWnxIv8t3Yc/qdXwkIxyfJo7OepEDfkzjwIqLEL9KBaJVBLPPWkplaqnETfigCdgDAtzNWLDv4Tzn8PbcSbXal5iFSUQAYYJ+CFAr6dij0PYqmQln4qVOp9Jc1bJdtWfSWuU2fximw9/cyfeahvp9nniW7UzaS3mhg9r72nVe2ODTjavNrT5oXYm7drP72/8OuzgrJcZxS+NyjysdiZN3p93vp5pUeiBPhFxuaWjf1M7k7bzWrBk0P5OYbnDbyayu4Xz1M6k3V83O+iz26uISfeDmGkrHr5UO58/iiHZ+9F6EHfXzFoOdf5YuVOt2Uz3hafb/L1hit/Wv002NkzNCgUkM5SUFfHLzaTLzwIX7rtQGB9xfDYgmaOkKw0Wc1YMCeAs2/erVZ+RF58DkgVKCju44O3wexHh6z7K7q45E+kESJYoKdjip4znxePMXi1z9RnxdiUg1UVJFvWHZv1bEBu663jAxKLkm+sByQolZYy7PX5Enyz/jTsaFY3JeASP4VljI4yfbRJTb2/AalG9uq+/plsBkg1Kcpk2cEhiqx2ha1KL5wSv6DAGkGwxhTxQcTdUPj9i5t/N+1qf8oAY1kNJt5d2H5mwaVDoWvsh7lOXWmQDUn2UdPzU8ANtCweGrJOnMn1ENyGXG6CkAaM7t/rGbRqc3jDIeE6QbStAssPu2vMwauX3/oEr70YP3nBJAZFviJLuesSaXlvCCFiwuseMf9sszACkRihp7tzF97w/NQ7dZu01XVQ6YjQg2aOkvZ+nz3h0qmfQyv3RYRMHb54KSA4o6aLr9BayJsfZ+x8954afOZUJSI1R0hjfdPtiQTf/gxHtT6+R3+0FSE1Q0pTnkc5dhr8LmJHn2WOr/T93AMkRJZ0LkPS99WN/4CJbx3V5+wLbAFJTlJTff9WySzNe+i0b7xRduugcFLZmmESZiOY+uiP3y2jU51u3Hy6pgNQcJa0qXe7bOaNVyNb6n/zHjM+QAlILlPRk5c2kVM6X8L0u8b7zVk2E1SWYKMnKZ+NYtztXOfvTGiUe/vXZa43Dlk4MisOWm2YsfXXHKTV84tAlc+8/zLqvh8OWAioV1TBhX35O8WnOsi2PfjvTdGwefjGRkyoVSfgkGQRUjUnboneocj6RUuvyZJ5IBJQQWsVey5QBooIiHZrmOidK0Lb2FTxV410C9SuJ9xvpxmE09datCUR5RqVyIKTvZuL7bL9Hrht79fmtHZyaH9BnQqWenVwGLLAKAeKTOW6ngFsX4K1TNkDnvsBhkiFrd3wBLNMrkQuRFAowPqEINl1WyQkTeFBMHgy54klRdB5QMOjeifv+hYuSmo1pW/s9fgtU9T2aW6DlJL2XV3VGJIYGrvdeBrFfrZmup2PbUHd0ovHL2aVI4ilA/DJCwAQOiKoNE/Ve6dhG50onv+sZVjCldYMngwPsCKvl6GNJVssxir65Z+uOCnsAGfeyPRBh19gx1RE4JyyxB1u0FhCBJAVr44/Pg7bF/MGdueMs53Rhq4LKpxHpAaymtGABUUftTwKDwv787/TBf3T6gOihV8vpAxgtHe1QAvvUkZw+KIB1OjpUxekD97SGj/0V80IKr7ar7/w+MESPxpKogSppLGGnlkKI0ByqZO3MDtVy+sBhfmD3g00z/PZNjPknJOt7ZI2mYUBUkmhRAXJjoDsl1Xf6YMJDl3/zXff675E1azu/2YBeBnH6ALLOgZZ1Zd4G6s7o+fQBP3SLl0X65ZCpsicF7Z/zJ/w/9q4DrImsa0cXFUWwAYJYYkek2bsSQuhNwO6qkQSIBoIhCioqYkNBxY6Iir0rNkRUcC3YlV0b9t5Xxbara/vvncyEzMydgSwhyfd/H8/j88gcZjJ5z73nnnvPe87RY/YBRjNpz0Qf5zhhVkZn2QeXB03wTv+nsXdmwf5nJzo2P6Ln7AMITgQrOC7tdZh94DiwRgfRpbkeW+YO3vPVoZjc21g/2QcQIStWhMCcxv22cA6D33ZmhdD3e7f6HokbG1d72XxiHtkbxXrWBbv5lv3gwJXcMhL3hMEOMQz8Cvyu8ep9FYGxxccr9L1w121SmRwn6vkl+r3pXjQh0aC1y/MAvLULzVVygWM0oAJ6S25aO+Pkt9Tn/tMTut6Yl3vxLSXIDu9GBNmxy6V5SlT7p4W+LfchQNGoQchtCyxcgEaxMysMIGJc2IokcjB8gRy92IYM61N8oENH7/kN/27+9/iG6eRp6UbcTJ+WJaLSANt98fOE+EXN3ZPuvkz6mN/IWguApbICBkaUXpwo5ZoB/6YDh+mHntJpzKJLE0yXLFbVtzB+1Du7WwHL3xSenZL56EVdLBkHKEMQFy0Xq0J3mFPLcw22HdimfA4wRbXrbuXPXnnssF/in9stJ/0M2a0F1bqwqtZKT6pF+cepmjWAK71/6YvUyh47LD64H9w2qMerF3IzvfUv5TjiNgn2L42m7W8dsSmGL4wRHIaF0fVK/Tvjuux12TFkmFVy/yPk0sDmsOSmAh59QjauGMaHxRp0PXPiyyIB5MrCn9hjRCWPwTaHJc3ORGCQlGlFpIbtSn9hmjqQf1VWbwQemHYFoD93RTRBGwEG/+Mu5c3V4/mqgQKPG2ApX+htyKK4tkQDL4CeMokP/k9p02LgabQsVsyQgfNg8ox1ozvnCHITao46+3tKEdnGYL1QES3i8Oul2ZgWtT61Hf6ti+v6G3MbHz6wzqq8dREAzOYQZiNXRNuvtDYYzOU9Em6ppn7V6VaoLCpGHDoWGx6whQT6dHNr38V1jj6q5THbKHNevxccckV1k5Ln0re/JKHWM5rscdiGomArcsBgw02ChMkknDNr/qFdZ5nfzPdvfRwvTxFQGwZHS4WhYq7/WKkUYQuYHGYH4r4oeB8cs5KocUKpRKQc5LESRQRXBrYp8rJbAmqUnuU9UY2N1cRlpZ61FnB6dgHomqCCb5kQ3c7lnfuWcFHD2h8qYLs+aCQhYgw9Hy8EdrpdnTejif/ILqv8X5PdZ+xBdPdZebm06UxlJZSXTgWQ6wiRW4tyGWD3kppdGN3nMiJno0JOThpqcGgh4Uu87lAjKegP/613rAfE1u+wiEzVxgcIOqRDlmp7FkO0wEhiQetwZ506WMSLGoeMjxar49BcjbPj6ANcWrHUEf5NjKOH53Do5IaL5RSWMPwpr+G2xBZIqFjwCLCpHq9UNTqLgrIwlWeSlLeOgiM+C4p5KFKhEzYLNDoIs1K2MYW+ArZWEUNfhITC2HRpzA//F76HxHsDb5m/eEAJTMBvhQhMYJcrAgpsiDNCAYY4vlCN4jAsVAZTt55qLbXTwqcCyta7dGYrW89VQT7a4CGncuO0A3mL81O+RNX9wZ96b2rmg4fxTbQAeXEPNsgLexCQS5kg15iVWYuAXAesTASJkmBlIkiUBCsTQaIkWJkIEiXBykSQKAlWJoJESbAyESRKgpU565dZHsKtV93ydhbWsXh88Vca5Q0OXuToo9IvtUB5i2TSfzOfEw53dtdw32QkGnntRW2y/uspD/v5UlkMdBexAA7dKa/KMNuauUtgy54I2ONG+QBsSwn3mTgNoWzhfSrltNRXpIGD+qOyeuVgq8jtCCZZEersGraDzOyg0dm1jTLahmWDyKBqAB7gF2ZekLW8/9bkoTEue56fmGw5xKlneWJtFXuMXQiwsuqIL7vFtAR7sK2+3QHphzNhZaGiRKhjhUTJ5NLXQKP+A/mLsuvOX1UlvaEWaRFT+/l/Or0xzn2LbLZnkuv4Y1pACYwZFpREHTRr0m4fSMwrbLJhmBFTDm71CO4ZS6jkW8dxPxLzvLLdOiTO4kpO6DGeC9svYoMIGZA7CrbBxR00c2PtVNFDCFGoWs0KuAKRbBMSnPmTu7dMf7Wet1Bi3oxrU2+4AUQtIUinO7CBlNlBs7huSzeJ8purjqpKhgwWWGQ2ULENnvZfYXLbNyl04O/zflt+kRxFJJ5LjyKqJBWBThwrOoEdCMcoisOwML7q7+9r5PSFv2Tdefc1AV6D6Qfx9JXQiAHcpuR4rorqFivTqGwcNcGirLGBsrK/gWEa2gnAdh6V+8gBsBl1qoAw7cVuMwLyHAf4L7v6pG4Po5aU0n1YPJZhWScJS7PiVBNXXiY4sNMhEKxA1BjLBK65fSeN1jozDCwxmGnMULlUXxI52POU73rfS+NyHdf2I1siAbgXDZSaSMcuAYTJiBWm2x01W+xKD6FRY816C6FBS4ONERhCo3USjnbEoMHtkIzJDvFbn3fqNu2eb6b7mneKbtaNqOfQkcJorvKcBnFezuSat1beR0R7sLwUITdKHAsvieWSUHyBLJNZoiZ3sbwh6qRcTawBD8/ZpwBSZhE+uTNAPctbI0NlhoWhlIe74HXQZQJ6WSw2+t6dP6tO+D7P3kPI37IK9gC6i6S8XNqco+a5lXPOZQJ4bCE86ag5ZwzmHMdHIzaJqfJ92Ap92fX/uf3Zi8a8xYWj+7Xst3YlOfqnvJ8e/cOvl4ZPvQb1jXs9vuC7IffbkFqzejtrAZ8ibzZ8wPDRB8PAGCNujFMC0ZND/dGsErhpiFAeLlawKU3qcnJH96KfLjlGH75vrtqGUp1NeT9dafh1bRtLqJUkVq2MMCitFOcTWtFo+aqFGbxosQg3vkjFKJZY5E8wn+N15NuDNdcyR9qQFeOH3U9XDH5d24opdsDNCTxmpO1XnZ0EnD+9NduQ2agwwDYWUklpeJhFhF0cs/Q8bztHePK1YP54MquWr3wAnVVLCCoCkSxvNkQU3sS6Hs1hWNezFvp8HNKju9fMj98VxsdvfiDrWPmJZSfD9FTtMMgLODc2QhIaAdxKmFsojImBFQ1UrBh8+S/b5oOap416X/qYVF7XhCfqhfNEaewXF7Cry/IqbwS8Ie5qwMVeoixSA1OYlG+C/OKTPSYleHt5eWyyfnBzyC0rciC3GpNjoxLoePHHqKQQQ2cUR4Nrh2GokcXq6Y+PKGVZTlKiFuQDxSjPB2ApQPj/Ep+SO9F/Erq0DWU912tVULivxQCzQgEGazEBwPDJPIZpMhtM4Io6mrTU45oa5tBC5Mreiy1yVVOFuZwJc/8D7hfPcE7wEwZb95C89K5DrhqF9ZOPlkpCsbQwuiFlQtrGD/gDYHlSgDul3EjSU8pkJ6mVKdhei17Miiwv68EN2GT7+gM4U1AHNzBG8dGvwFR1Gkl4TsR6UsML2lKSLuEnVcMue4mIMTBIdHpepfzqbrlv6vuZtq1XSMgrMchNAjDzQhsjxsrrzA9Wvg/2uvBP2DZujdwlcmBzIDsBIzOR9YXUz5GTzS4c/xDkvlG+cLWV1UQyJbUSjz47eLTZUYkyOzpnW/ZN9e7mN6dhs5meRzvHl/fMBMwON6hOZxR7ARJ0GvoXqIFU2slS42BxqAxYaE1Qct6xPtOku6Xr9rwZPj0ube1NRsmVjpJrqSi96iffuD7MwXVnoY/owuI/orWAEhjWLCid9yvAx6BqLLGyXZT1AqFjVAaAqKx38hqmfBR9DcOvV8SBNzZiPqMOmmwdMKRwexrzH2ZPqeV8dGVPfVntqc//7Cmun3YHqr/IbX+BtzV90NrZRQ2basGeUss0acOe+rLaU9+Ktqdp9R5P37ZnoecBuXXVUZsrtdGCPaUeEmjDnvqw2lOfCrSn1DVU//bUl9We+hD2VMFkTw1mT0CdTtohs3WqZP1uLj/aLfuTS0TWlblBWtgSZPiwbQniVZCPZYJcYzKbGQG5DshsiBp4hKlH1MAjyGyIGngEmQ1RA48gsyFq4BFkNkQNPILMRvXQaIw1aBWRQ4xaPU8LjLVxWlOyiQ6V/O/qSCKKKhJKpsb8aToxYtIJtWyhFnQSy6ST9Jz7g2Y9/uyVm7M/d/foB+RNVZVAYZRYSi/QymTYbHncaHiHWpVpbpRMIVYWF1KI4xRcZXFWNFuHUncR8SplsXYmwaFymVQaBFcseFG9ISvFEtpfbZxge7urR1LS22k+A1Yz5jYb94sRy0PA6xMf29JNNnakFHK1YCVYWPhHJFHg3x14GDDK8TBhI0UlRKleWjOWVgLOQAEwoN34nIRZ/Bp+Qnm4JMpXHEZaAE2Ul4Ngzw7169WV10Nk0epXKSVgg1oJPAcICmphIAbKYd6gQqJ8q2rEW6EmlFwY6xUlgmW3CHgrVYcXYehF7RLmq0vxssLKDQHsBCIRSvmwFpTaQqSQi4WRqt+NBsiF0ap78KEaxzRUDWZZplYB1dJRHXX8a2Fd/ixgW5eLBMS6PN7gMaeWVzXc49GUnmyYS3sSmE9gwlzjZdKUo7tlElE3l1gmEXVziWUSUTeXWCYRdXMJX6goc3mvj7P2uu5MqWcUKazWVc0X6lgsr2NissXtUPGu0Tk21yvTFldo9dGtISnFeLWwuE5k0qSBthyjFh3WWcux+33ZWo7V7lvRLcc+rDT72OXMvoCUjkO/bk0cvNYAWo4V9WVr4JLV1wD6Jt2/f18HLcdWLPb79cT8NF6Gx6uxuU/ivhpEy7EkVu2MMATt6KTl2MF/6iW8Ddvpt6/my2t9e7ch01f11XKsK6tyahuCcjj6bDl2tbfg6L4DlXnpM+b+3BXuuc+gWo49D2RT3tFAwykUpPeWY9/yIi81uzLTb9OewHaZF8MS9dxyLI1Vc9F61xy8qcJaju36tdny3y785bV3RKNn+z9kGRlEyzHMh2BsOQYMIe6nxnMY/NT/pJZj1LYYem459i2IreXY+iDdtBxrt+RskKxmgCB3ek73eVeibmq95Ri1uJkW2mh9DGJro3U+qKJajg1ekW3ad2O9gFnG9sMsNqzdqPWWY1QboQWs1rNiFR/0X9VybBKTGftfEf5/VYSf2k1IJ0X4oScxNKQAZvgjMoEy7QWc28EVUYS/YEGbe65VI90P/Dn685qQ+eR26+XLNteyjUwFCIVAhOag5j2sWW4fopMi/P1n252x3FDXc3ZfUY26yT1r6bUIP0TFiBUVMG4MZu+gWeKP9orw1zWZu7mvl7dge+RW69HrI8jH9voqwg9Vty+YTXUp+lGdzovwdwhpKAgfEuiXWH3Vx7pHRvL1WLRhhANuZZAZ98WOmJXRWRH+Bem+NvGP0z1zB1f9srTOFXLBLN0X4YfgGLGCA4yN7orwm89s9qV2vxX+cwN//9RB/pxcTkc/5SwgQticZkQIzGncb5vMYfDbBDy7tj97XeFtvtt4yx+r3lLqCGBJfNEyKVjR6T6bMQPOnUpCJJKS+/FaGABxuWxseARX1TRWk1oO1A6LjG9Lr3qgJiwrt6+lACzAAF8hHx66UPAtBNv7gf3Km1hlXvJa4CqOBfKrf1m3ul4tSQ+vJS8iDl0p7Edm9P6r3l0UF4pqGMvpQnEBep/7AfSa8BGj08pOwCnsp5ELVVM5fUXicLkY7V+eSex+7F3RE/7aJIu8m+uKPSgZUtiNiAwp5XWtl/0F338z6/dP6KdvZ0k1MjVwlOArS2QiSShLbZvem72mzfYP9l5srvBL2LY4mTxWiQfQx6pKUhHKGMiqDGf9KIPq/nA0iVg4+kTJFGD5EobCs1Nb515gywp2FpH23Ha9QiNkcpE9t32vmDFyBfYL2lsNnna1qOBMc8GCQc9eFN84IyOva/ADghXjpYj+lyWiilCWMauy7ocYwsyBj9LIW7UoOeiOGisfGcMygxLvmFg4jQzgTz+UuSjwfeeW5dkql3fr4IwbcpjqWUirC9VOsO1YP828VNySs3hbxyxni4yrP+QdSJmR3cPz8wz9bnsBAKkEAEUIAKBp0cgTJZYy5iITbvmPa888FOCWvPfG4D2N+jbQa7IvBKAFGwD9X4cQjuYUzn8WH4famFtnfJxvA9j4OPYDKpqPw90WO3F/fpHruie//fm2aNJxA+DjfBzAFt08P8AASAWnTp3SAR/n5vBKOZ37DXPbcUuxt2b4mziD4OOsZ9VOvCFoRyd8nPwAzohWAaaeyU0Sspou/3WwQfBxQliVY28IyuHok4/T9/fUJ0dP8X0SMjskH8zaaWxQfBwjVuXd7q9vZ9eA+DhONW2e1tpe4Dvt0ZOmcw53665nPs6+/myaS9G75iqUj2O/UXSNf32Vx5Kt81am/ro3wyD4OJgPwcjHAYYQ91MTOP8P+DhP19yIiBN88T9gF9prwdrEeD3zcYwGsfFxtg/UDR8n4VLG5MWnMj1S4hYPkh5ov0XrfBzq3lwLHJNvA9k4JlcGVhQfZ94JnxUPxw51z14f3vrHL0c3a52PQ7URWsBqOytW0wf+V/FxpjKZsTH5krYS/638A3kB0mePh5Db+Jr0HQtzJz3kwugIeoapBuGLFm6SmGiYPaaK5ox3UGaZcoWwZl44/ATkyDPttiXe/vZVQe54y/C8YS+Y348eyVEX0sZf9WBgwgLUU7EQo5Ka91TGUal6GjUQBzyBCE8wKi358B8l/3NUa4FnuGeBabBYChQmFnkBux5HPA5Tq1KViUyq1DgnzVY1tis+J23RmH9if2nU339FyqreU6ec6qOWk3a608LD96p58HZ0tnjbpceWN2o5abXCZpsZnz3Pm93dKfVFhxYJajlp7t1//vbnPzv8VtY9MO/O1D4xajlp9+ufGxG5z4639bcWtp+XL96jlpPWUtbjXeVpU3iZC3IkofmPXqrl57fY9dTo8l9nPebOyvtWeKX7OrVmMxbplwOmXh3uPeuQz4+teV/aA5ExLjpUc1xxTq8zgn19Htn6xo7vCETVcdGrKeZOixp1dkma9fdU3qdt64GoBi76Ou3zN8/Oi/mLDjo8Pfi3ZygQmeCiuicbF0/N3uSbbHTVo0+/GzuBqCYuOpu+qNrXDiLPeeJqR15ndvwFiExx0Rfv294Dpmz13l1t95azp/adAyIzXJSa+bzopPyq59ok0f0/TXfcA6JauKi6ZP2qxLxvAav37X2y9/Id+Bq1cdGbBu4b5x1N9M4cdrvqo+X28LPq4KLWz4y318rb6r2ow3TxstS7EUBUFxedDDa7XtzxrMuWOtLngwuXRwJRPVw0PGXDHE4vB9fD+W/n3g2yvQ5E5rhI7nH+7g7/Ga67fWotDfpSrzYQWeCiM+ePZSjOtvRKfZjf9tXqzJFAZImLqkT2yC9OzfLYbNU4d1xejzAgqo+LhtrOXjFs6YqANctuRtU/+fE0EFnhok/L1vX9/P5TwKrtng5BQxo+ByJrXORxf8Axn6ubvWbe63LqU7d9PYCoAS7aVOw0dffs9R5TV/5Y7twmFN5lg4vm55gYt99+yX/ak1Fdhw09bQZEDXHRO8nBt696nBUkzunQfsP32R5A1AgXPbIxa3zzarHrzLZN9/Z5VfcoEDUmvle7ad0/nUjk7XOabmE3MHwpEDXBRV2c7wywibXyXzCxx6ubd24uAyIuLnJ9EpkgX3E+YMaUbXaHbjW5QEu2bMphSLbMKG5/z2Lufd6C0Cbtny/5YI8wG5omW05jMlEWYQd3pZ88I8jY/nDCuYbxmeTDREFctFQmQjAImBqTtsLvUHE+sVLrMZFCqRQYIbyKfRkpA1QDhXw1+jknLihr7SuwAsQNK4D2FeH9BsI+bsM0awJRwqhUvgiaj5+6pMaG3G7+Oy9dikxf+zJbi4RKLTu5HFsBJxoCJEI5bqeBW+c5TCM2QKcg4DDJsbM7kRiW6ZXFSDAKBXg/iRQ2XVaNEy7woLhCuOUKRaK4jddtw0obuX9ux2q5aTfib5FDoKrPoYdAS0RaL69qi40YFrg+/2oQ8Wo6XU/DtqEO+EQTlahLESFUgP3LaDEXOCCqNkzMsdKCGb5nfrNdy9v11DXznavbMsppOf5YxGk5IdG29mo74IPdDaW9NEdssNMiphoC15Qg9hCH1mIqkEiwKi+obX+rSlW/5QGcnGsXhFXKTyPSAlhcVrDAUMfXn+kchvXnf9kH/yr7gOqh6yT7AO6WTgwvgH3qENkHWbCI3PCKyD648KTY6lb1Zn6r/unZpVHNc2ZaXCypFqiciyXs1HIYIjSPiay9eLhOsg+KGl4c/7yj1GOFnXTAsdeRx/RKw4CoSFlRAePGQCMluss+WLphwV8fPw12X/wo/ajsayz5XEVf2QdQdQ1ZVfdxmIG6M1rOPhicbhkj9ajiO7v54BrJ25911WP2AaSZYFYGSR/nOGFWRmfZBy0b+9ZJifF1OTLu1s+a/Y2les4+gOBIWcFxG67D7APLWKd2k27f9ljQcf95kwVGRwwg+wAi1JAVITCncb9tBofBbzuzQuj7vVt9j8SNjau9bD4xj+yNYj3rgt18y35w4EpuGYl7wmCHGAZ+BX7XePW+isDY4uMV+l646zapTI4T9fwS/d50L5qQaNDaJW0i3tqF5iq5AA1YTayA3pIPXadIr47Z5j+jyukVw3LfW1GC7PBuRJAdu1yap0S1f1ro25IKAYpGDUJuWwEnYqJGsTMrDCBiXNiKJHIwfIEcvdhuPSXInjppEn/Gbz6/r7t1cxJ5WroRN9OnZYmoNMCOXAq+/bUK32dlt8Z7hjvbmWsBMBdWwMCI0osTpVwz4N904DD90FM6jVl0aYLpksWqxlgohic9dXTdtcam6NvvT9/WxZJxgDIEcdFysSp0hzm1PNdg24FtyucAU1Qb7LmF82vPXJ+919ztomb6uWhBtcUT2FR7eoLh+MepmjWAK71/6YdqwYszTNw8prs4NVte80CA3vqXchxxmwT7l0bT9reO2BTDF8aZHIaF0fVK/Tvjuux12TFkmFVy/yPk0sDmsOSmAh59QjauGMaHxRp0PXPiyyIB5MrCn9hjRCWPwTaHJc3ORGCQlGlFpIbtSn9hmjqQf1VWbwQemIoB6M9dEU3QRoDB/1xU3lw9nq8aKPC4AZbyhd6GLIprSzTwAugpk/jg/5Q2LQaeRstixQwZOGePb4jnnknxXvG7eHVbn+FPyDYG64WKaBGHXy/NxlT79sNI/M9gt/m8dz0fPhCUl3+RCmC2gjAbuSLafqW1wWAu75FwSzX1q063QmVRMeLQsdjwgC0k0KebPvVeHLfgr/deXVskcEwaWo/MKih5Ln37SxJqPaPJHodtKAq2IgcMNtwkzGIyCefMmn9o11nmN/P9Wx/Hy1ME1IbB0VJhqJjrP1YqRdgCJofZgbgvCt4Hx6wkapxQKhEpB3msRBHBlYFtirzsloAapWd5T1RjYzVxWalnrYFPIwLomqCCb5kQ3dDyzn1LuKhh7Q8VsF0fNJIQMTSpKmCly5/rBvGWVvp59GtjyVOy+4w9iO4+Ky+XNp2prITy0qlgJUeI3FqUywC7l9QWMbrPZUTORoWcnDTU4NBC9zmc9ujhk6vTPBbeDv7E+5n7D5mqjQ8QdEiHLNX2LIZogZHEgtbRUJ06WMSLGoeMjxar49BcjbPj6ANcWrHUEf5NjKOH53Do5IaL5RSWMPwpr+G2xBZIqFjwCLCpHq9UNVLL1IWpPJOkvHUUHPFZUMxDkQqdsFmg0UGYlbKNKfQVsLWKGPoiJBRtMo0iN8hmeC3PzgmeErd6FyUwAb8VIjCBXa4IKLAhzggFGOL4QpXEYVioDKZuPdVaaqeFTwWUrXcLZStb30IF+WyDh5zKjdMO5G+li1dVNx7E3/fwnxGtnYZ81ALkHyPYIL8SQUA+hwlyjVmZtQjIdcDKRJAoCVYmgkRJsDIRJEqClYkgURKsTASJkmBlIkiUqq5JdBIlwcp0vN+n19wxRe5ZQ2YmWPf149Eob3DwIkcflX6pBcpbMpP+m/mccLizu4b7JiPRyGsvapP1X0952M+XymKgu4gFcOhOeVWG2dbMXQJb9kTAHjfKB2BbSrjPxGkIZQvvUymnpb4iDRzUH5XVKwdbxRZCMMmKUGfXsB3k+hEanV3bKKNtWDaIDKoG4AF+YeYFTdnX6OzwE2b+iZ67muw9vG1xeWJtFXuMXQiwaijEl91iWoI92FbfH4H0w5mwslBRItSxQnNA1u7ObuuzyX3O6QnvvLpXn6JFWsTUfv6fTm+Mc98im+2Z5Dr+mBZQAmOGBaWIEZo1abcPJOYVNtkwzIgpB7d6BPeMOVTSP/Xsqgut53vsuDvGy+bFg7d6jOfC9ovYIEIG5I7C9osjNHNj7VTRQwhRqFrNCrgCkWwTEpyVXXyvv+9x1D/tasJcwequswwgaglBOj+CDaT1IzSL67Z0kyi/ueqoqmTIYIFFZgN1dLnkQY5zpFfOX4fNUy5enEyOIhLPpUcRVZKKQCeeFZ2QEYRjlMJhWBhf9ff3NXL6wl+y7rz7mgCvwfSDePpKaMQAblNyPFdFdYuVaVQ2jppgUdbYQFnZ38AwjRgJYDuPyn3kANiMR1ZAmDa5s/fG86NFvmsuBV7p5sZdRT7sxOKxDMs6SViaFaeauPIywYGdHgjBCkSNsUxYimukRmudGQaWGMw0ZqgGpjftOTegv1vi/RH7U5t3IbNeqwvAvWig1EQ6dgkgTMasMN0XarbYlR5Co8aa9RZCg5YGGyMwhEbrJBztiEGD26G5THaI3/q8U7dp93wz3de8U3SzbkQ9h44URnOV5zSI83Im17y18j4i2oPlpQi5UeJYeEksl4TiC2SZzBI1uYvlDVEn5WpiDXh498cVQMoswid3BqiPGKeRoTLDwlDKw13wOuhCQ58nnQ9f/pfrOrNz0iXre9Ulu0jYA+gukvJyaXOOmudWzjmXCXuCQXjSUXPOGPYEG6cRm8RU+T5shb4cH3ycuanNA7dNK/YZjd5e9xI5+qe8nx79w6+Xhs/e4e+8irv+7pngO37YrEXiv7WATxIrPmD46INhYIwRN8YpgejJof5oVgncNEQoDxcr2JTmUV0S4zfhGi//XrRTpwsLCslKU95PVxp+XdvGEmqlK6tWahuUVorzCa1otHzVwgxetFiEG1/0dqxpfuUWo6vzVo+4dnvhsqrk+G9VP+x+umLw69pWTLEDbk7gMSNtv+rsJOBkjNNsQ2ajwgDbWEglpeHxtGCE7OCfdXyTzF5Vb9WlKzm1rRpf+QA6q5YQVAQiI1gRaTGOWNfncRjW9ayFPh+H9OjuNfPjd4Xx8ZsfyDpWfmLZyTA9VTsM8gLOjY2QhEYAtxLmFgpjYmBFAxUrBl/+y7b5oOZpo96XPiaV1zXhiY7FeaI09osL2NWNGFveCHhD3NWAi71EWaQGpjAp3wT5xW1m32hxYMMa36Sf0Z+za64jc92rMTk2KoGOF3+MSgoxdEZxNLh2GIYaWaye/viIUpblJCVqQT5QjPJ8AJYChP8v8Sm5E/0nIRGlrud6rQoK97UYYFYowGAtJgAYPpnnM01mgwlcUUeTlnpcU8McWohc3VawRa4OKwjMU5kw9z/gfvEM5wQ/YbB1D8lL7zrkqlFYP/loqSQUSwujG1ImpG38gD8AlicFuFPKjSQ9pUx2klqZgu216MWsyPKyHtzA0kvjAZwpqIMbLEYxvsBUdRpJeE7EelLDC9pSki7hJ1XDLnuJiDEwSHR6XqX86m65b+r7mbatV0jIKzHITQIw80IbI8bK68wPVr4P9rrwT9g2bo3cJXJgcyA7ASMzkfWF1M9GYY1NNVY9dd+/qbD6VEdpZ5J+KvHos4NHmx2VKLPjpNffT2rOM3LN2zvHeHebgpTynpnAuC5UpzOKvQAJOufHF6iBVNrJUuNgcagMWGhNUGq3wSVx5pRlXjtGZS3JEM4YSUbJlY6Sa6ko/WXWozn/8zW35d9WXao2ySZOCyitZ0UpfnwBPgZVY4mV7aKsFwgdozIARGW9k9cw5aPoaxh+vSIOvLER8xl10GTrgCGF29MF/2H2lFrOR0f2NDCOzZ5+jv2fPcX1M+eo1+rii/28slbbuFt8utpSG/aUUqZJC5bCM47NUnDjKtqeTpese92z3RSPJY+sLSw823XTgj2lHhJoASUwrFlQKoytQHtKXUP1bk+xEcNoTwFSuD1dyGRPDWZPQJ1O2iGzdapk/W4uP9ot+5NLRNaVuUFa2BL4xrJtCexVkC9iglxjMpsZAbkOyGyIGniEqUfUwCPIbIgaeASZDVEDjyCzIWrgEWQ2RA08gsxG9dBojDVoFZFDjFo9TwuMtcVaU7KJDpX87+pIIooqEkqmxvxpOjFi0gm1bKEWdLKESSfpOfcHzXr82Ss3Z3/u7tEPyHl+VQKFUWIpvUArk2Gz5XGj4R1qVaa5UTKFWFlcSCGOU3CVxVmRX5tadxHxKmWxdibBoXKZVBoEVyx4Ub0hK8USvjlT73yL+z5uixf88c35rD0jk9q4X4xYHgJen/jYlm6ysSOlkKsFK8HCwj8iiQL/7sDDgFGOhwkbKSohSvVSDahLKwHHaAwwoN34nIRZ/Bp+Qnm4JMpXHEZaAE2Ul4Ngzw7169WV10Nk0epXyVbYyLuVYGflMQW1MBAD5TBvUCFRvlU14q1QE0oujPWKEsGyWwS8larDizD0onYJ89WleFlh5YYAdgKRCKV8WAtKbSFSyMXCSNXvRgPkwmjVPfhQXco0VA1mWaZWAdXSUR11/GthXd48hm1dThpDrMvLDB5zanlVwz0ezZCwYR4vITBPY8Jc42XSlKO7ZRJRN5dYJhF1c4llElE3l1gmEXVzCV/IeGH+y/Qle13nvPt0scPjGw3UfCG7UcnZvxW88c55HNQ3qvBtC9riCq0+OnROKcarhcV1OZMmDbTlGLXosM5ajqVOYms5djS+oluOpbW6ajx40wzPPZ2DR8973GSlAbQcS5rE1sBlxCQD6Jt048YNHbQcC4gNut5U+j5g+m8rZ0+QzTQxiJZjXVm1U9sQtKOTlmNLKucM/H3yRZ+8b50uRQTfHG0QLceex7MpB1gT/SuHo8+WY5GVijOCRbl++S8WTohYdHCaQbUcS2NVXrR+lGeYLccu33no+e2rZ0C29OZfl9ZNXK3nlmOerJrj6l1z8KYKaznGC800CWmr8Ej62b2tuXV/vkG0HMN8CMaWY8AQ4n5qOofBT/1PajlGbYuh55Zj2yeztRwLmayblmPcOkFj/o47KNj1D8c9yHf4cq23HKMWN9NCG631k9naaMVPrqiWY/k/7rXweNnSfXnxpqGFnv1WaL3lGNVGaAGrEFas7Cf/V7UcW8Fkxv5XhP9fFeGndhPSSRF+6ElUTSiAGf6ITKBMewEnZUpFFOEfY/vz4DeLEL85ba+ffBG2hUwiK1+2uZZtZCpAqDJEaA5q3sOa5ben6KQI/8PvbcKy7c399ppOm+pXa2NrvRbhh6jsm8KGChg3BrN30CzxR3tF+Ic8Wm3N6R3hnT14z55mVezbGkQRfqg6EavqeupHdTovwh+VFtOg2tyaLguG3Dq4quOhND0WbRjhgFsZZMZ9sSNmZXRWhN+pYHXr+38MdF24eMqGheOyq+q5CD8EBzM2jOCkTNFhEf43NcyHLpAUueTF9srbNOnyDgMoZwERErEiBOY07rdlcBj8NgHPru3PXld4m+823vLHqrcdyHUEsCS+aJkUrOh0n82YAedOJSESScn9eC0MgLhcNjY8gqtqGqtJLQdqh0XGt6VXPVATlpXb11LAKYLTU8iHhy4UfAvB9n56QnkTq8xLXgtcxbFAfvXfOnyu2vbUI/7CURf92lXbRu6y+K96d1FcKKphLKcLxQXoXYHoNeEjRqcVPCVO0MiFqqmcviJxuFyM9i8tHG7efyrIdJ1lsvG33GfJaykZUtiNiAwp5XWtl/0F33876/dPS9C3s6QamRo4SvCVJTKRJJSlts2yrU98cxM++2WIfR42ed+/KXmsEg+gj1WVpCKUMZ1VGdH6UQbV/eFoErFw9ImSKcDyJQyFZ6e2zr3AlhXsLCLtue16hUbI5CJ7bvteMWPkCuwXtLdafUf2De9xc1ymD287y2iCV1/yugY/IFgxXorof1kiqghlDWVVlqdBzBz4KI28VYuSg+6osfKRMSwzaOyPJm2HzVzjf6hS9Ze/Xe92vzxb5fJuHZxxQw5TPQtpdaHaCfodTNDMS8UtOYu3dURiNGFDq41eRyxuNGmakdBfv9teAEAmAUARAgBoWjTyRImljLnIRLOo5VPCLau4JDvXPSHytXus12RfCMAoNgC2+icQjuZKzn8WH4famFtnfJxrU9n4OFFTK5qPc+NVwcgdN4M8M1832m+ZNaGuAfBx/pjKFt3Mm2oApIL8/Hwd8HFGNzuSvmRiqG/uSw6n7avMAoPg42xl1c5SQ9COTvg4iQ2T6t0IOO22112yeq/vQWOD4OMksionyhCUw9EnH4fz+O+I65+H+a16dbuSpNbQ+QbFxxnMqjx3/SjPMPk4/Z27Js44pPDIzjeN+97D8aWe+TjtWTXXWO+aq1A+jkVkx55jCnJdVg8c1/uSuKfQIPg4mA/ByMcBhhD3U1dx/h/wcbo43xlgE2vlv2Bij1c379xcpmc+zuBENj6OY6Ju+DiXLHfedduw2yspPzdl9gD5ea3zcah7cy1wTPonsnFMXBMrio8z+PC1+vYb53itanjjepf7n85onY9DtRFawMqRFasGif9VfJzVTGZsTL6krcR/K/9AXoD02eMh5Nr0Jn3HwtxJD7kwOoKeYapB+KKFmyQmGmaPqaI54x2UWaZcIayZFw4/ATnyXJ9EJshXnA+YMWWb3aFbTS4wvh89kqMupI2/6sHAhAWop2IhRiU176mMo1L1NGogDvagg4W5LPnwH3lUDh7VWmDeU1FgGiyWAoWJRV7ArscRj8PUqlRlJpMqNc5Js1WN7YrPSRsaWqfns7CTggX3P5xb136dUC0njfv1cuDdj3U9Vlu32+r1dd4BtZw0U5Opsdd+KHirh47qbDa9gUItJ23ncYvbPzKKPBetzWo8+djAILWcNOvhh7qO6ZnhMat7/CGJtFm+Wk4ab2D08ztrBN5zHzrun9zlZLh6fr599KaEsfFuixt3qTJq4TiBWrOZAWavXm9v/9J7+YCBOTcWTrwGRMa4yHjXt/P7Kkl8cq0TGm3KG/gViKrjoqqD+v3NX5Mn2Pf0VNKokF1RQFQDF7W547/qyezYgA2ZP74NedP2FBCZ4KJGbf758P7dSPfpK12Gm5q9fQ1ENXHR3YfvN8T8HSpYFmwybPfd9rC4gCku8n3ybOiW9dP9t5/bsLTy+YhbQGSGi2YFmDnf8ijg5S4xilrxscplIKqFiyZUPbk0seNR94wFF7j7h+y1A6LauKjLi4Lxo4JD/Tfuef5Pm25O3kBUBxdVqiXYfqfBDo+pHvWLrjzcUgBEdXFRS89BD2u7zwlIj2rt7Z9b5wYQ1cNFtzqPz+/QP5Y/c0RQsn3zlWeByBwXPTmYPuPkfFOvqa+bHn+3qsp+ILLARbsv7Z/ZIKmjYPnSV4k9qz6HX9kSF/U9s/X5dEVT7/1x61+djPd1AKL6uOhR53E9XK77CfbYzDKv3mb/FCCywkWvLoV4jvylr2vu6tY/XM7L4GCzxkU149+/SOs7xW/OUbtR57NnbgCiBrgoa2ndMTGXNvlMH2605kOiJRTZ4KImEbe79zZt77+m3dIZx66ehJ/VEBd5TD/Yau9NT795NhZ7q1dZawREjXCR1a7wN9uOrfPZmvX5TAOLHmlA1BgX8R/NjtswfTt/g5VDrwN1+uwGoia4aKPCss6nZfO8UxXLm9WrvBm+BhcXbdnz8vYPwUDftXOTbXuv7X6ClmzZlMOQbCkytzJ1vnTPb+GIX7dc6O8UgTAbmiZbrmEyURZhB3elnzwjyNj+cMK5hvHk4HQ1QVy0VCZCMAiYGpO2wu9QcT6xUusxkUKpFBghvIp9GSkDVAOFfDX6OScuKGvtK7ACdJ9eAO0rwvsNtBdwzKZr1gSihFGpfBHkdxvm6htUX1SZt/6ea73WvVq+0iKhUstOLsdWwOkMARKhHLfTwK1rNl0jNkCnIOAwybGzO5EYlumVxUgwCgV4P4kUNl1WjRMu8KC4QrjlCkWiGProk0vWSWP/tIJfn7vc/hZIDoGqPoceAi0Rab28qi02Yljg+meaQcSr6XQ9DduGOuATTVSiLkWEUAH2L6PFXOCAqNowMcdKg9usO/bNosBnZ+HVgYseHutNOS3HH4s4LSck2tZebQd8sLuhtJfmiA12WsRUQ+CaEsQe4tBaTAUSXXOodvzCqhv/5mVfTOcM7P80tfw0Ii2AZcYKFhjq+PqzlvO/7ANtZh9QPXSdZB/A3dJ9qHALVPZBFlgrMzVbK8uYfVB8VzFqxc/3nodsNtetFjMkQouLJdUClXOxhJ1abkOE5jGRtU9rtlj+2+wDr4fvF/Rded1t39yJLY9PEC3TKw0DorKPFRUwbgw0UqK77IOZ0x9v7Wu1xy+h38c+eyLfHzOI7AOouhRW1cXpR3U6zz5oHfDlw6QMa/fcDitsCt+u/lWP2QeQZoJZGSR9nOOEWRmdZR+s+x7Z7OOmnfy5jcwyGt6NJ58H6j77AIKzjxWczOk6zD5o3+DL3DNd1nscmmplXtV/9A8DyD6ACKWwIgTmNO63reMw+G1nVgh9v3er75G4sXG1l80n5pG9UaxnXbCbb9kPDlzJLSNxTxjsEMPAr8DvGq/eVxEYW3y8Qt8Ld90mlclxop5fot+b7kUTEg1auzxeiLd2oblKLrBC+cIK6C35ItT2585OSz2nef/ZaX6Nf85SguzwbkSQHbtcmqdEtX9a6NtyHwIUjRqE3LYCzvmFGsXOrDCAiHFhK5LIwfAFcvRie9/1xrV9H6/7bvYVTqs6PeINeVq6ETfTp2WJqDTADhy/ltbhcrLfjEoHnd8cbSDVAmA5rICBEaUXJ0q5ZsC/6cBh+qGndBqz6NIE0yWLVT298tRk3+nHA/ZOu7Jodk1Zfl0sGQcoQxAXLRerQneYU8tzDbYd2KZ8DjBFtQOm36nXMOyZIMPtWJ9pT59/1kYPI1bVxutJtSj/OFWzBnCl9y99OaVVWuuON71m/6oI2jU3MkFv/Us5jrhNgv1Lo2n7W0dsiuEL43oOw8LoeqX+nXFd9rrsGDLMKrn/EXJpYHNYclMBjz4hG1cM48NiDbqeOfFlkQByZeFP7DGiksdgm8OSZmciMEjKtCJSw3alvzBNHci/Kqs3Agb/vFkA9OeuiCZoI8Dgl88qb64ez1cNFHjcAEv5Qm9DFsW1JRp4AfSUSXzwf0qbFgNPo2WxYoYMHJsYp6O72x12XVwj//sIo/4Sso3BeqEiWsTh10uzMcm+Nz5+G9eet/bRuzvLtvUeUt66CADmORBmI1dE26+0NhjM5T0SbqmmftXpVqgsKkYcOhYbHrCFBPp0M/P4L6ZvCme7bzl0aG7h9OGdyKyCkufSt78kodYzmuxx2IaiYCtywGDDTcIGJpNwzqz5h3adZX4z37/1cbw8RUBtGBwtFYaKuf5jpVKELWBymB2I+6LgfXDMSqLGCaUSkXKQx0oUEVwZ2KbIy24JqFF6lvdENTZWE5eVetZawGkM0TVBBd8yAbrvZ5Z37lvCRQ1rf6iA7fqgkYSIobnGrqfXp/3o6LvkzudT951788juM/YguvusvFzadKayEspLpwLINYDIrUW5DLB7SdVZjO5zGZGzUSEnJw01OLSQ8A2aZuPc4MGegOSRKWviZ7aKJVO18QGCDumQpdqexRAtMJJY0Lo7U6cOFvGixiHjo8XqODRX4+w4+gCXVix1hH8T4+jhORw6ueFiOYUlDH/Ka7gtsQUSKhY8AmyqxytVjdQydWEqzyQpbx0FR3wWFPNQpEInbBZodBBmpWxjCn0FbK0ihr4IvWg9yX6fsOOae6rJhsYn7j9JpgQm4LdCBCawyxUBBTbEGaEAQxxfqDZyGBYqg6lbT7WW2mnhUwFl6zNnspWtT1VBvsngIady47QDubjysH31/in2SDQqLHDOrrxHC5DHzWaDPGI2AflmJsg1ZmXWIiDXASsTQaIkWJkIEiXBykSQKAlWJoJESbAyESRKgpWJIFESrEwEiZJgZS7KOHc1zfdXj50TPvtJg8fUoVHe4OBFjj4q/VILlLctTPpv5nPC4c7uGu6bjEQjr72oTdZ/PeVhP18qi4HuIhbAoTvlVRlmWzN3CWzZEwF73CgfgG0p4T4TpyGULbxPpZyW+oo0cFB/VFavHB5HzQCTrAh1dg3bQQbO0Ojs2kYZbcOyQWRQNQAP8AszL2hAneLJQa6ufttuHYwKyPyrqDyxtoo9xi4EWKXMwJfdYlqCPdhWR81A+uFMWFmoKBHqWCFROmEknXrPcWHA1u/baoe1f9hQi7SIqf38P53eGOe+RTbbM8l1/DEtoBTIilL7GZo1abcPJOYVNtkwzIgpB7d6BPeMOVSSHHnEbok33zfx9lhxfNR0Rz3Gc2H7RWwQIQNyR8E2OG6GZm6snSp6CCEKVatZAVcgkm1CglNr+pnuvRN+8jdm3q2/or63iQFELSFIIlaQAmdoFtdt6SZRfnPVUVXJkMECi8wGyj58Ta/Aoj4e6+sMWJllJzAiRxGJ59KjiCpJRaDTkxUd2xmEY7SVw7Awvurv72vk9IW/ZN159zUBXoPpB/H0ldCIAdym5HiuiuoWK9OobBw1waKssYGysr+BYXKELvx5VO4jB1Z5pB9AlT9Me0d4om8ld6n73rg/FcOzk+qRDzuxeCzDsk4SlnqETDFx5WWCAzttB8EKRI2xTOCaW87UaK0zw8ASg5nGDFWcT2XP+OerBfmtN7Wp3WbicLIlEoB70UCpiXTsEkCYKrPC9EbDxa70EBo11qy3EBq0NNgYgSE0WifhaEcMGtwObWOyQ/zW5526Tbvnm+m+5p2im3Uj6jl0pDCaqzynQZyXM7nmrZX3EdEeLC9FyI0Sx8JLYrkkFF8gy2SWqMldLG+IOilXE2vAw0tKLYCUWYRP7gxQ90zVyFCZYWEo5eEueB3kt/znRbekTdYxHksXOLa7t/sHpWMj9gC6i6S8XNqco+a5lXPOZQJ4pkN40lFzzhhWCUzViE1iqnwftkJfozPGTN2cvN578aUo47zktmPI0T/l/fToH369NHxm/XR8tmHzD7dFNx4v9b/Zf6MW8BnKig8YPvpgGBhjxI1xSiB6cqg/mlUCNw0RysPFCjal3Wr4ZqTdgwy/xZucDvBfN99MVpryfrrS8OvaNpZQKx1ZtcI1KK0U5xNa0Wj5qoUZvGixCDe+SMUsmHr/eovw4b7bliz7dfO8BmPJivHD7qcrBr+ubcUUO+DmBB4z0varzk4CTliqZhsyGxUG2MZCKikNj+dhj7u4v853nVHgWuQ09g8XMquWr3wAnVVLCCoCEU9WROxSiXV9O4dhXc9a6PNxSI/uXjM/flcYH7/5gaxj5SeWnQzTU7XDIC/g3NgISWgEcCthbqEwJgZWNFCxYvDlv2ybD2qeNup96WNSeV0Tnuh8nCdKY7+4gF3d6fnljYA3xF0NuNhLlEVqYAqT8k3Q3aIetLQe+8PUPX3K40UbssyPkAcfk2OjEuh48ceopBBDZxRHg2uHYaiRxerpj48oZVlOUqIW5APFKM8HYClA+P8Sn5I70X8SeihR1nO9VgWF+1oMMCsUYLAWEwAMn8w7mCazwQSuqKNJSz2uqWEOLUSuZs5ni1yNU2G+kwlz/wPuF89wTvATBlv3kLz0rkOuGoX1k4+WSkKxtDC6IWVC2sYP+ANgeVKAO6XcSNJTymQnqZUp2F6LXsyKLC/rwQ3YZFtCqmYK6uAGxiheLigwVZ1GEp4TsZ7U8IK2lKRL+EnVsMteImIMDBKdnlcpv7pb7pv6fqZt6xUS8koMcpMAzLzQxoix8jrzg5Xvg70u/BO2jVsjd4kc2BzITsDITGR9IfUTstBt89JKK3ymHzhxemKYDXnYVOLRZwePNjsqUWbHqnlPrA+ftQvIHXKl8SCjEeXt2sQBs6MuVKczir0ACTo/FhSogVTayVLjYHGoDFhoTVB62HrUpzybHW7zVizKfln40pSMkisdJddSUfpsmnWnWBzovu7U7JORm4pHawElMKxZULq2oAAfg6qxxMp2UdYLhI5RGQCist7Ja5jyUfQ1DL9eEQfe2Ij5jDposnXAkMLt6a7/MHtKLeejI3vqsoDNnpr/z54S+onfMGCn14c9PktuD5/4zS7+sRbsKbVMkxYsRU9WS2Fb4fY0ckzzjOZ5vV2XXouOKurlsFML9pR6SKAFlMxZUeJUpD2lrqF6t6fYiGG0p+Yqe5rFZE8NZk9AnU7aIbN1qmT9bi4/2i37k0tE1pW5QVrYEuSlsm0JdqrOVHYzQa4xmc2MgFwHZDZEDTzC1CNq4BFkNkQNPILMhqiBR5DZEDXwCDIbogYeQWajemg0xhq0iuiTZEr1PC0w1vZoTckmOlTyv6sjiSiqSCiZGvOn6cSISSfUsoVa0MleJp0sff5ppUO/FN+DZwN+8/iZ2YxcrqMkD5WsGLaYk2VJyaIoWBMKf0ANek5rHfeAID9eiG2zic7dgyY1sw9oUya/klq6saqvLHS0WKS6iekr0CuOlMjKSk9vJeAkJgNb15nPcM4ZlozwL41wuBD+JeayUPzLtO8JuWsWDPTK3rTF3+VJ21va8h9Zq12XYMEdJ5RLhCOlaM5Q3+hOZ5ctzHXJXsU36fTsTC47+v3xR3ED6I5SQKmOErWmZnnLGgHtTU7GHSV6FlwrTHtUR4nNnzQvcZRKBjoStaujrZt9GMtx2zOp1e1ru/96z4oak9OEOu4rp7/k0g6H5KgLApLodhgkuA3Zx2RD0nPuD5r1+LNXbs7+3N2jH5BzhasECqPEUnqRZybzYcvjRsM71CrVc6NkCrGyQJlCHKfgKgs8o0cnpXYr4lXK4jGZBIfKZVJpEPR64cWStPHiPpQx6u9k8bv13lCXrAVrXbtN3LeXaYwa94sRy0PA6xMf29JNNhbOjFAprCYNi4eJJAr8u4NdCoyUPkzYSNEjUe6b1tAJDN7UuUCP3fichFn8Gn5CebgkylccRhoUJsrLQbDvj/r16srrIbJo9auUMtJBrQTX588tqIWBGCiHuccKifKtqhFvhVqU5cJYrygRLN2nGu3V4UUYvlW7hO33pXhpcqXxh92EJEIpH9aTU6mmarBCLhZGqn43GiAXRpcYEOVQ3c80VA3GtadWEtbScT91/GvBt/9zLptvf3suYR6yDR5z6nJiuCGW86zJQYdVyUEHmDDX2NU25ejO1UbU3iZcbUTtbcLVRtTeJlxtRO1tYj9lmTC6fae+tp7Z6Wsb1m/coKrafmrCl5dbH66b5nvofsffz2zy2kJz0KHVRw4kakFvLTjoOUyaNNC2hdTC5TprW3h/EVvbwrhFFd22UNTSquO0U28DtrevFnK70y9iA2hbeHsRWxOo04sMoPfa77//roO2ha0Hr8gWTa/nl2E+8H1Dq/RZBtG2cB+rdjINQTs6aVtY8+OTXr/cOy6Y8UfyvYPLjciNnvXVtjCFVTlxhqAcjj7bFiaebdrx+68c/7yTjmvrZGwg10fUd9tCEavyAvWjPMNsWyi7fGFNcWEtfl598afAFlat9dy2sCer5mz1rjl4U4W1LXx8Pfnch/kP/PZ7p0ydPG7UFYNoW4j5EIxtC4EhxP3UgxwGP/U/qW0htbWOntsWRi1ma1voulg3bQvbWvjy23p/FWxODrXqlMkl9+PWRttCaoFELbTiG7WYrRVf/8UV1bbwwP6190NvLHQ7fKprsXFjmVH5pzAFK6qN0AJWrqxYOS7+r2pbmMtkxv7XyONfNfKgdiTTSSMP6Ek0XlIAq4Qgsgkz7QWcu3TbqYVGHq8eHD3z/p+uPtlhfVLOvlv1UIsVK7RsI1NhfT2I0BzUvId9D6ou0UkjD4H3m4B//pzvcuT19ht5dVuQ68frupEHROX9YjZU7urWGrLuHTRLHtReI4+Mzyln556r5J8yNf7LoQZDJhhEIw+ourOsqsvWj+p03shj4qm67Uy/XvJNbDQs2mRWvJkeC7+McMCtDLJqR7EjZmV01shjamqty7sOTPXaaPTcrsYF3m09N/KA4GDGhhEcYGx018iDM6rvmy+zt7it7p3tmTqxfrYBlMSBCJ1lRQjMadxvO8Rh8NsEPLu2P3td4W2+23jLH6vediDXIsESgaNlUrCi0302YwacO5WESCQl9+P1dADictnY8AiuqvG0JvVgqF1aGd+WXjlFTVhWfnBLAacYTk8hHx66UPAtBNv7jCXlTc40L3ktyCBSYoH86j2OhDmsTLzHz1sbW9Re9hu52Oi/6v9HcaGohrGcLhQXoPcnRK8JHzE6rewEnCLNXKiayukrEofLxWj/MvBZu6SHf/4iyPhaPLin45uTlCxL7EZElqXyutZLh4Pvf4L1+2ct0bezpBqZGjhK8JUlMpEklKU+1mGHC9vynJMCpnmuez9+/K/W5LFKPIA+VlWSilBGBqsykvSjDKr7w9EkYuHoEyVTgOVLGArPTm2de4EtK9hZRNpz2/UKjZDJRfbc9r1ixsgV2C9ob/VOSu/wxyP3C3YMSh7rvaPmIfK6Bj8gWDFeiuihWyKqCGUpWJU1wiBmDnyURt6qRclBd9RY+cgYlhn0Ivvds1/jF3pP7bNu18vkPUfKs1Uu79bBGTfkMF28kFZbrp2g3+8aeqm4JWfxtoq5Ph7HbLcHzDk7SbDpQfAM/W57AQA5BABFCACgadHIEyWWMuZCNdt3fVt7qeluQXrDiDeFrd7Uoyxlui0YAAFIZANga9gSwtE8zPnP4uPwH82O2zB9O3+DlUOvA3X67NYZH+fNUjY+zsylFc3H2fTD76WnWRWfhd6O7d/V/hBqAHycl0vZopvXlhoAqSAnJ0cHfJyH/b/IBy8v8l8Z1+9Zxhe/WgbBxznGqp2dhqAdnfBxOhTzUwLfHPbZsORYUeRfe8cbBB8nnVU5Mw1BORx98nHWB1/cttM/3mtBo7VpLpFrHxgUH0fOqrxh+lGeYfJxXuccklUZ1sYl8eGx19s7/8zUMx/Hm1VznfWuuQrl43BTZIlPRvu6rqzTNH+Yt3WaQfBxMB+CkY8DDCHupx7h/D/g42xUWNb5tGyed6piebN6lTdv0DMfR76MjY/jvkw3fJy+d2v8trjPHcHmMQV9+vfyHaB1Pg51b64FjknUMjaOyeBlFcXH+cRrPMVywFm/uUveLg79lrFV63wcqo3QAlburFi1X/ZfxcfJYzJjY/IlbSX+W/kH8gKkzx4PeUuOlPQdC3MnPeTC6Ah6hqkG4YsWbpKYaJg9pormjHdQZplyhbDuZjj8BOTI27Ln5e0fgoG+a+cm2/Ze2/0E4/vRIznqQtr4qx4MTFiAeioWYlT+y/xo1dOogTjgCVjB4n6WfPiPkv85qrXgev35BabBYilQmFjkBex6HPE4TK1KVeYzqVLjnDRb1diu+Jy0TYKONuaOV/hLoieFHqjklqGWk3YtLXt3/B9ywb79rnEPRUkP1XLSrtaeK51j/drt8DuxvHfGiV5qOWl+7R4FZ9otFiw/MH3H4Ic5jdRy0pLGr5oyaBrXL+W04/AOH3t+VctJa/Ti5FJJgY0g/1D1W1Nfbi9Uq/HReckSjm/zvV5bjgycW/jew1WtYdXcvMETuGc9/HdMXBY+4dDNj0BkTDwwbF3X5lvWemQ1bPo+scYv94CoOiGSrcht2Hiay4L0q3V5R5pIgagG8fLWwwojn0T5bXIO2aKYdas2EJngop3Bf7p/+m28f9KG4V97/zMkGYhq4qIBw2TzPmfH8tYKfbtukO2DxTBMcdGalS1uT1nX323a0rat/RrUjQAiM1x02y819kCvI74zRly7W7vT/N5AVAsX1d97+kpC4A3P5CHb77Y/urkeENXGRbKa6UeO9+rKW98mvPmn3Q0tgagOLnoX1av2yrGD3dftfeNdt/aNbUBUFxdx0mz9ikKqum84fiI5YMDMX4GoHi7aVmnxxOhqHwN227Ty3JX9pAUQmeOi7qvrnJxvl+I/93bYxX8m+T0CIgviNR704ca+buy2L6la6K1eh7KAyBIX/Qyzfdty1GbezJnx3q+HST2BqD4uOiLkLFt7rpPnnKAmT/27JXwGIitcNHpK/OhdB8f6zMpK+fX+k6vdgcgaF3V68npXgne+35zBM9uvOfb8BRA1wEXJYxT+Q6fV8Z0xeOz2hYlpAUBkg4t+q/ryUrUEc989Hb8a18gZUwREDXGR+QjvZh26bXU//P2+vKnEbTEQNcJFk/Mn5yxNlXovOn7C+uz9sxD5xoS+JA3XN19/3evwL6d+8u77wAHQBBdd8Aw8Lv34t39SszHWspCkZUDExUWPpr2Im/yyOm/l6fN5zZJvutOSLZtyGJItMy6uMHFInOq97ebXoZd+mr5HmA1Nky2PMpkoi7CDu9JPnhFkbH844VzDePK2rJogLloqEyEYBEzNjVvhd6g4n1i7hphIoVQKjBDeCaOMlAGqgUK+Gv2cExeUtX4eWAG+pRVA+4rwfgPtBZzCNM0ayZQwKpUvgvb/7RYN+y6s6zcjjTuce+B6by0SKrXs5HJsBZzPECARynE7Ddy6x2kasQE6BQGHSY6d3YnEsNS3LEaCUSjA+0mksHG7apxwgQfFFcItVygSRWHGi2OCLZ/4adK7sio3Gy4nh0BVn0MPgZaItF6i2RYbMSxwHU4ziHg1na6nYethB3yiiUrUpYgQKsD+ZbSYCxwQVSs3lm5cB82DBny95XakY7+2XR7fFlBOy/HHIk7LCYm2tVfbAR/sbijtpTlig50WMdUQuKYEsYc4tBZTgUT3LO7fmLO98yr/lHu17nVv+pJXfhqRFsAqZAULDHV8/fmN87/sA21mH1A9dJ1kH8Dd0sblBbDXJSL7IAvWAlteEdkHH/4aEffhylX/BVcvexxqXve5FhdLqgUqb70tgNBaiNA8JrL2vOU6yT6Q82t6JT/1F8y/VS1sUeDs5nqlYUBUJrCiAsaNgUZKdJd98GPN2IWj+pjxs83u7H+wYn4Lg8g+gKoLYlVdb/2oTufZB5f7NRxkHDPO83Cqk922c/Om6zH7ANJMMCuDpI9znDAro7Psg3nL+EYrB81yzeMOkXZauopcMEH32QcQnAms4IQt12H2Qc/G4/yTr+5xn2M0qNqb/nFDDSD7ACIUxIoQmNO433aMw+C3nVkh9P3erb5H4sbG1V42n0jWujHW9zLYzbfsBweu5LazuCcMdohh4Ffgd41X780KjC0+XqHvhbtuk8rkOFHPL9HvTfeiCYkG7aFub8LbQ9FcJReggYxNFdCftm41+3OSqCzXdadXL8mtEliHEmSHdyOC7Njl0jwlqv3TQu+nIghQNGoQctsKOCc2aRQ7s8IAIsaFrUgiB8MXyNGLrdfJI71frM/irezwPP+sW8Yx8rR0I26mT8sSUWmA7f2tVf3IkB4BC4yzzpp2zi9vzXsIWBYrYGBE6cWJUq4Z8G86cJh+6Cmdxiy6NMF0yWJVeU9vBQztf8Ijzct+YeP4hx/rYsk4QBn0kstVea7BtgPblM8Bpqh237cfq9885bmn5/VOuDqhxQUtqDaJVbUKPakW5R+natZEsvQeyIpmj0YNbmbtsdo4aGMzl9x8vfVA5jjiNgn2QI6m7W8dsSmGL4zHOQwLo+uV+nfGddnrsmPIMKvk/kfIpYHNYclNBTz6hGxcMYwPizXonOjEl0UCyJWFP7HHiEoeg20OSxomisAgKdOKSA3blf7CNHUg/6qs3ggY/CEZAPTnrogC4yPA4O+aUd5cPZ6vGijwuAGW8oXehiyKa0s0AQToKZP44P+UNi0GnkbLYsUMGThe3tcFbSPjeEut4xQfOrwlt1muivVTRrSZxK+XZmP+Gn/kQuS3mfzFvZxHtv62/EN56yIAmAMhzEauiLLXaW0wmMt7JNxSTf2q061QWVSMOHQsNjxgGxr06WZYz25dmpj/E7By9YpJJgV55FZ0JiXPpW9/SUKtZzTZ47ANRcFW5IDBhpuEE0wm4ZxZ8w/tOsv8Zr5/6+N4eQr5mNs0SBwtFYaKuf5jpVKELWBymB2I+6LgfXDMSqLGCaUSkXKQx0oUEVwZ2KbIy24JqFF6lvdENUdXE5eVetZawHm8AqBrggq+ZQJ0c1aUd+5bwkUNa6GqgC0/oZGEiKFTSkyszj7+WNn34OcbYTPF49qT3WfsQXT3WXm5tOlMZSWUl04F68JC5NaiXAbYAen8Ckb3uYzI2aiQk5OGGhxaSPiW1vXItEyt4rNs68GQXoO3/kqmauMDBB3SIUu1PYshWjmsaK1foVMHi3hR45Dx0WJ1HJqrcXYcfYBLK5Y6wr+JcfTwHA6d3HCxnMIShj/lNdyW2AIJFQseATbV45WqRmqZujCVZ5KUt46CIz4LinkoUqETNgs0OgizUrZChr4CtlYRQ1+EhOJt3swlUX5vPA+8u/+iYe3fm1ACE/BbIQIT2OWKgCKHFQowxPGF6iSHYaEymLr1VGupnTZgFVC2PmwFW9n6/irICwwfcgo3TjuQd3w3MmPiwbreK1f3+Xi2lri8p0YQ8t6r2CB3XEVAfooJco1ZmbUIyHXAykSQKAlWJoJESbAyESRKgpWJIFESrEwEiVLFyqSTKAlWJoJESbAypYGnC6vXaMBf4x01s8Fn3480yhscvOhNKIV+qQXK22km/TfzOeFwZ3cN901GopHXXtQm67+e8rCfL5XFQHcRC+DQnfKqDLOtmbsEtuyJgD1ulA/AtpRwn4nTEMoW3qdSTkt9RRo4qD8qq1cOtor908EkK0KdXcOWspbpGp1d2yijbVg2iAyqBuABfmHmBf0TVvX4alkLt5zDI7seiyoeXJ5YW8UeYxcCrILS8WW3mJZgD7bVHdORfjgTVhYqSoQ6VkiUhnyckH+pkpyX+yijVcCBQ5W1SIuY2s//0+mNce5bZLM9k1zHH9MCSpasKH1eTj98YPPT7AOJeYVNNgwzYsrBrR7BPWMOlYR/b90nL6O1IPFSpxUmPi1q6TGeC1u4YoMIGZA7CrbBvdM1c2PtVNFDCFGoWs0KuAKRbBM6WdPfqcvXP/Z457TatrqS77j5BhC1hCDZsYJkma5ZXLelm0T5zVVHVSVDBgssMhuocfX6jh70xyK/be0PJH8TOJCb2RkTz6VHEVWSikCnMis6b1Qx3TMchoXxVX9/XyOnL/wl6867rwnwGkw/iKevhEYM4DYlx3NVVLdYmUZl46gJFmWNDZSV/Q0M00cI23lU7iMHwHZas6WubGHavOQhl6/deOq+17FfjNVi+5rkw04sHsuwrJOEpVlxqokrLxMc2OliCFYgaoxlAtf8tmZrnRkGlhjMNGao7o3aN6KaeYHXqpPDH+38qyCVbIkE4F40UGoiHbsEEKbTrDDtS9dssSs9hEaNNesthAYtDTZGYAiN1o082hGDBrdDZ5nsEL/1eadu0+75ZrqveafoZt2Ieg4dKYzmKs9pEOflTK55a+V9RLQHy0sRcqPEsfCSWC4JxRfIMpklanIXyxuiTsrVxBrw8BI2FEDKLMIndwaou2zQyFCZYWEo5eEueB3kt5xwycnSvWidy9wxlVbm7tg1huwiYQ+gu0jKy6XNOWqeWznnXCaAJx7Ck46ac8ZgzkVs0IhNYqp8H7ZCX4JJgcLCRWt880LHid2bJf1Cjv4p76dH//DrpeHTzW/Mw+8Zn/wO9rp9Lu3Yq3dawCeEFR8wfPTBMDDGiBvjlED05FB/NKsEbhoilIeLFWxK+2f8ooBdOe5+C4I+m2akPSdTyasq76crDb+ubWMJtWLPqhUrg9JKcT6hFY2Wr1qYwYsWi3Djiy5JkjZ+YOdIb9dpa6sONO3IOUxWjB92P10x+HVtK6bYATcn8JiRtl91dhJwhm3QbENmo8IA21hIJaXh8eVTZ9OBPDOfpB+fHBo7dWxKZtXylQ+gs2oJQUUg4sKKSLMNxLp+jsOwrmct9Pk4pEd3r5kfvyuMj98kR47wTyw7GaanaodBXsC5sRGS0AjgVsLcQmFMDKxooGLF4Mt/2TYf1Dxt1PvSx6TyuiY80fU4T5TGfnEBu7qj68sbAW+IuxpwsZcoi9TAFCblm6C3t0++VHF8U9NjazDv8+3l68mnsdWYHBuVQMeLP0YlhRg6ozgaXDsMQ40sVk9/fEQpy3KSErUgHyhGeT4ASwHC/5f4lNyJ/pOQiFLXc71WBYX7WgwwKxRgsBYTAAyfzOeZJrPBBK6oo0lLPa6pYQ4tRK4mr2eLXEWpML/AhLn/AfeLZzgn+AmDrXtIXnqT6d1mWD/5aKkkFEsLoxtSJqRt/IA/AJYnBbhTyo0kPaVMdpJamYLttejFrMjysh7cgE22GaRqpqAObmCM4uHGAlPVaSThORHrSQ0vaEtJuoSfVA277CUixsAg0el5lfKru+W+qe9n2rZeISGvxCA3CcDMC22MGCuvMz9Y+T7Y68I/Ydu4NXKXyIHNgewEjMxE1hdSP6M71y+o8vtT39R+t6yf7s+YStJPJR59dvBos6MSZXa0rrHmLafJGL9Vd/qE5l8qPl7eMxMwO2pAdTqj2AuQoPPXxgI1kEo7WWocLA6VAQutCUoh6+zNOwf85T9/8bXMDjG/u5FRcqWj5FoqSrPf2b+7ujLZJ9HBYfOQ7RPKm10KUQLDmgWlixsL8DGoGkusbBdlvUDoGJUBICrrnbyGKR9FX8Pw6xVx4I2NmM+ogyZbBwwp3J5e/A+zp9RyPjqyp103stnTmv+zp4R++rmfGDWjcVf3A+7jal8aPkiuBXtKLdOkBUvRkdVScCvcnnY3WemQen2ST3rEkM09VhlFacGeUg8JtIBSTVaUPm+oQHtKXUP1bk+xEcNoT2uq7OklJntqMHsC6nTSDpmtUyXrd3P50W7Zn1wisq7MDdLCliB7A9uWYKPqTKWQCXKNyWxmBOQ6ILMhauARph5RA48gsyFq4BFkNkQNPILMhqiBR5DZEDXwCDIb1UOjMdagVUQOMWr1PC0w1n7XmpJNdKjkf1dHElFUkVAyNeZP04kRk06oZQu1oJM/mHSSnnN/0KzHn71yc/bn7h79gJznVyVQGCWW0gu0Mhk2Wx43Gt6hVmWaGyVTiJXFhRTiOAVXWZwV+bWpdRcRr1IWa2cSHCqXSaVBcMWCF9UbslIs4fQ2S/0ftDjun7Jw7sIj9989Y7KExv1ixPIQ8PrEx7Z0k40dKYVcLVgJFhb+EUkU+HcHHgaMcjxM2EhRCVGql9aMpRXY8awFBrQbn5Mwi1/DTygPl0T5isNIC6CJ8nIQ7Nmhfr268nqILFr9KtkKVw1uJRh3fm1BLQzEQDnMG1RIlG9VjXgr1ISSC2O9okSw7BYBb6Xq8CIMvahdwnx1KV5WWLkhgJ1AJEIpH9aCUluIFHKxMFL1u9EAuTBadQ8+VC8zDVWDWZapVUC1dFRHHf9aWJcfr2Vbl6+sJdblKwaPObW8quEejy5kJfYnqoj9V5kw13iZNOXobplE1M0llklE3VximUTUzSWWSUTdXMIXWur+pUGPeB5/3yHekEVD9/HUfKE+Hi5exYOT3XOvPKyfvjp8HW1xhVYfOZCoxXi1sLheY9KkgbYcoxYd1lnLsaLNbC3HojdXdMux/a1TjxTG+3suCjqtkA1I4RpAy7Erm9kauBzdbAB9k86cOaODlmMv/uTXqLX+T+/cM33TDkxqb2sQLce2s2onzRC0o5OWY9+e7PVyOmHmvrtWcR9xWi6ZyqivlmPTWZUTbQjK4eiz5djac1fjg1b39Vte+fLSiL+T2hlUy7GhrMrz1I/yDLPl2JQXySlVB90TTPsx6FnzlQUcPbcc68iqOa7eNQdvqrCWY0dPerSwsanklZ85ZkUT3z+7GUTLMcyHYGw5Bgwh7qde5zD4qf9JLceobTH03HIsbAtby7HuW3TTcszIyfLxnE3HeYmWWw6s2/6UzAfWRssxanEzLbTRGrmFrY2W/5aKajn2snb/5FqPZN6bbpo9XLBlzyyttxyj2ggtYNWdFatWW/6rWo4VMZmx/xXh/1dF+KndhHRShB96EpZbC2CGPyITKNNewLlGt51aKMIf3dur7dnWl3yyD7SVZeV77dFitrmWbWQqQKguRGgOat7DmuU/6DayIorwH/ncMK8Gr6XP1lqd7ZYfzCYXmdV1EX6IysstbKhc0601ZN07aJb4o70i/GPvTXj9q9Ted/Xv04a0az6AXHhDX0X4oeqOsapup35Up/Mi/B1WvKk3oMZs90X5wvCwpO5WeizaMMIBtzLIjPtiR8zK6KwIf/KmajctK9XyXX0t9X71nF4Wei7CD8HBjA0jONe26LAI/1TZ+geLKzfySDi4a32f2jGnDKCcBUToGCtCYE7jftsNDoPfJuDZtf3Z6wpv893GW/5Y9bYDuY4AlsQXLZOCFZ3usxkz4NypJEQiKbkfr4UBEJfLxoZHcFVNYzWp5UDtsMj4tvSqB2rCsnL7Wgo4z+H0FPLhoQsF30KwvV+8tbyJVeYlrwWu4lggv3rhu7CO4d6bA/afOtMi9vTv5EZ1/6p3F8WFohrGcrpQXIDeY4heEz5idFrZCTiFWzVyoWoqp69IHC4Xo/3LmAadulcNu+eSe+7ewdEbq5GPUqq6YTciMqSU17Ve9hd8/8Os33/zVn07S6qRqYGjBF9ZIhNJQllq2xgfGxZrH/XZf53573+endjiDnmsEg+gj1WVpCKUsZhVGQn6UQbV/eFoErFw9ImSKcDyJQyFZ6e2zr3AlhXsLCLtue16hUbI5CJ7bvteMWPkCuwXtLda+VVu7arjNnnuUvxyU/7kCJ+8rsEPCFaMlyL6X5aIKkJZUlZlDTSImQMfpZG3alFy0B01Vj4yhmUGJZts/pHzobLPgU617Ve6Hm9Wnq1yebcOzrghh6mehbS6UO0E/c5s1cxLxS05i7d1wfHVs7o5PgEpoYOjj5k3qa7fbS8AIIsAoAgBADQtGnmixFLGXGTiQv6hDk1vnvHOmVb1a7NPecspS5luk30hABPYANg6bCvhaN7k/GfxcaiNuXXGx3m6jY2PM3lbRfNx7hpduNhgfjf3TZvfbnTeNy7MAPg4D7exRTcvbjMAUkFWVpYO+Di1/mpx422t7n6bviS5h4aNemoQfJxcVu1sNATt6ISPEzPxrdP6E2sCMjZ2GtLzb2M7g+DjLGRVzmRDUA5Hn3yc3FurckY4vnGZVc+kdvHzrESD4uOMYlVef/0ozzD5OH8aBXxNMKnrNiPD8tu5DdU/6pmP48qqOUe9a65C+TivvYdEnIw7651sfvBh2sdeHQyCj4P5EIx8HGAIcT/1Fuf/AR/ngmfgcenHv/2Tmo2xloUkLdMzH2fUdjY+Tu/tuuHjtFpeEGw/Zbhg6bW2j0/s+SVb63wc6t5cCxyTsO1sHJOg7RXFx+lr0ur1oDfdvfOsk7odqM77qHU+DtVGaAGr3qxY2W3/r+Lj3GYyY2PyJW0l/lv5B/ICpM8eD3lLjpT0HQtzJz3kwugIeoapBuGLFm6SmGiYPaaK5ox3UGaZcoWwZl44/ATkyHs07UXc5JfVeStPn89rlnzTnfH96JEcdSFt/FUPBiYsQD0VCzEqqXlPZRyVqqdRA3HAE6gJC3NZ8uE/8qgcPKq1YEaN9QWmwWIpUJhY5AXsehzxOEytSlXeYVKlxjlptqqxXfE5admXbZt+vzrZfY3j0vOf3i4ZrZaTtrr3Cfv6qb+4HhI22/6ooY+VWk7a5HGJ3C5Vu3vNdm2/M9c3RKqWk/bymclBu8VfPfa+EnlP/NiqWC0nbejqVrW51lt85nz/5aH/hT8lajlpHj9OLZdMKA5IKaq71c/80Si1/PwbXZbKF7ys5ps8OGh7Bn9sulqzma2PZq/xz9rD2zUgzrlVTMARIDLGRb0iN0+b/P6lx9r4P062rG2UBkTVcdGScZknQ5qauebLM+y/DQ3YCEQ1cJF7/U1bnDK/uqfNTP59+90lAUBkgosaKaw6vrsu5yXd+cVin09nmMheExd1rX+5Ur0/5L576vWOtniaag5Eprio71z34mHRJwQ5A5b9s+ln3yQgMiO+V+M/lnt63fXfcrZyC/OXlh2AqBYuirtru0EwuT4v58Hir08X7D8BRLVx0R8rJv00PZDknmQqDKk3yHkmENXBRbWLek4Up1YOyN8fNlZR88QjIKqLi96+fWr2fL0xf0GnYst3q5p8B6J6uMjfOyJzyrYY/zVXI5/Pv3z4IhCZ4yKXVoKAp+2W8Xb9+mtno7CQG0BkgYte1Xkyv0Pd+V6b/77sd+Wv+j+ByBIX1S2c+jLlxW8BCwfcmS457PMLENXHRYs3dT95sJud7xqLHZWHmVZaDURWuMhxesq6kcd/es55m+Pa9fsfG4DIGhcN6vO6vaJZB/clKbe/zz1iAbXcABdNCzJrX3ePuefWIctsL9dQfAEiG1zkuUh++vTT1R4zXxvPut3w7BkgaoiLQlrUMpN98OYduH7wsCXHCmLYCBctMyvo3XVmR4+cT/MPScMbhANRY1zkldn9z2V5HQMWFOcFjRu2cwEQNcFFD6vWmmwe4cVLV1Qe0vpw5AQg4uKiC38MX9K3ymO/bbxDHnuXbRHRki2bchiSLVuIrz3b5njBP+HXI5cH5b+eo4Vky7tMJsoi7OCu9JNnBBnbH0441zA+k3yYKIiLlspECAYBU2PSVvgdKs4nVmo9JlIolQIjhFexLyNlgGqgkK9GP+fEBWWtfQWLh+8ogPYV4f0Gwg6wOzRrAlHCqFS+CPK7rRz/Zpi80iiXpZGL4ltNtKpdnihRxTq5HFsBJw4CJEI5bqeBWyfaoREboFMQcJjk2NmdSAzL9MpiJBiFAryfRAqbLqvGCRd4UFwh3HKFonN8NkQfPe/7xnXl5N+EzXv+H3vXAdfE8vyjoqJYsHeNHRUQe1eSEGooCmIvEQJEQ4JJsPvEhl2xdwU76BMLFlDRp4Jdefbee0XF3v67l7vA3e0diRxJ/v6en4/vyS13uXxndr6zO7MzQ66TQ6D6z6GHQLOHOC+vaodpDAtcHf+2iHg1PV3PyLahDvhEC84WlzZMqgXrlyEyPnBA9G2YmGOlJ4tcixwqaeKx40W9ilW7N+VTdsvxxyJ2y4kRrqVn64AruwtKekscMWWnRUyNBK42kdhDbFrLqECiW6/eTapUbtwelwM9F2+w2tx7Td7TiDgAy48VLKDqOP/c4THwz3+nD37r9AHVQzfJ6QO4WqqzNR32qUOcPtgGuPK+cVxp4OmDAlPHXx6TFCdIWilJ6WG3fjuHZEm1QHkkS9ippSZEaDZTsnbxrSY5fXBocbn6/d5VFE8M3Nip+8+ZI8yahgFR+fg3Gyr3zcOJBkRKTHf6IGO3eOjFsOle+29+X/5izrVtFnH6AIruLKvoUizVneH49MHGHiFZyeNHihP/ejR/6uIYSj8kk54+gGkmmJVBpo/zmmJWxmSnDzrw5IN2T2gnGZ+ZFNWi7ilyVN30pw8gOJixYQTn/t8mPH0wv/Qbfogw1CupTOnR53zKW1nA6QOI0FlWhFL0fttdHoPfdmK5VPKjXSW3CRtqFn1ed3Qq2RvFetb5u0gM3zgQkltG4p4wWCGGgB+B3zUyZ19FYGxxfYW+F+66jTXsHAJl/xL93nQvmhgxorVL8f14axeaq+QMJHByXz70ljzxtGutck2uO08vUPh8A2mlNpQgO7wbEWTHLufmKVHtHwd9W4pAgCJQSshvIua922dU7KwyBhChF3bBcjVQXzCOJlsnUefT5d9Heu6fV+uFX+dus8nT0oW4mT4ts4dyA8xv1FXZhIFpwoRS1ZZWEb6bzwFgt/exAQY0yixOlI4z4O+04DH9oR/ptGaRpQ0mSxaretH3fM2MX/Vc5qrXRH6qVfNJWewwDhCGeESEWqYP3WFOrUDob9ezUd4cYIpoBUNtWwztXUMc82n1TO2gRz4ciHY3q2jXmEm0KP84xrgGcLn3L33f7/jw6BGZ4i3NG88p7OfQ3Gz9S3mOuE2C/UsjaOtbR2yK4cR4j8dAjMKLlW4Na7PT+e8+/SvPCDxALg1cHpbc1MKtT5iNK4PxYZkRXc+ailThAHJd4U/sMcHZj8EWh9nNzoKBkhjEiNSwXe4vTBMH8rcM9UaA8mdsA6A/FSKaoA0Eyp+0La9n9QSSHKDA7QZYyhd6Gyol345o4AXQ0x3ig//S2TQN3I1WDZcxnMDp/bX+/C9V4gVzC35P63H2+k2yjcF6oSJaxOHXc7Uxlyc/erVpl/PmvTdLjK85IiGvdREAzKchzFZCRNuvJY0wmPO6JVw/h/j1u1tBKqVGFhSJqQdsIcHQda7BZf+Cbdp6b0qX3bl/Z3ArclZB9nPpy1/SIOcnmuxx2PqiYLvqgMGGm4T7TCbhVKm675u1VnlHv3vj5XhhnJjaMDhCIQ2S8X0iFQqELWBymB2I+5TwPqizcuUwqUIerFPy4XJtGF8Flilqwy0BNUrP8p6oxsY5hg1NPWso5g2E6Nqggm+xAN2WeZ77FSGpYe0PtbBdHzSSEDEkAG2vufUo1nmeIKGM7S6fUjXrkt1n7EF091l3ObfpTM1KyGs6FSwGCJFbg3IZYPcS922M7rOByFXTI6cmqRpULXTcOuHtkHsr+T7RBUcMdszyG0dO1cYVBB3SIY9yPYshWi1Z0eJvM6mDRbyodcDICFlOHOrmyNlx9AIurUzhCH9H4+jmPgA6uaEyNSVLGP7Jq+GuiBEkFCx4BFhUj9SJGillKjHlZZLktY6CIz4LMgWopMKm2CwwaiOssq6NKfQVMK4iVD8YCcW5yqVKjbuhFsybctWl+/HCPymBCfitEIEJ7HJ+QNGSFQq+nqge8BiIymLq1lOtJTctfPKhbP39RLay9ecTCcgfWjzk1Nw4biCX1v7lXWvIOLfN7kUqV2vmfIkDyFN2sEGesIOA/BET5EZnZZYmIDdBViYiiZLIykQkURJZmYgkSiIrE5FESWRlIpIoiaxMRBIlkZWJSKIksjLvL6/1rfmOxt7r+oSemr7L25GW8gaVF6l91PRLDlLeHjPJv47XUYdb24u7brQKHnT5mS1Z/uV0m/0ihUoD3UUsgEN3yoswzLY6rnLYsicM9rjRPQBbUsJ1Jp6GYFh4n5pymusr0sBB/ZKhXjlYKp6H4aWrqL1r2A5y3laj9q6r6aJt2GkQFRQNwAP8wJwX9PWExrPnpsruG+46jX7kmdYvL7G2/N3GzgBYnd2K024m7YA9WFZvowf82bCqoE+JyIkVEqXwfe7PX235W7S3nFu5tl3ja3OYFjG+u8+H4xtGuMarprlPFY48zAFK81hR0m41rkm7vR8xr7DJhmFGTDm41CNyz5hDJQEXji51eTvYfUn/kOieL2+ONmM8F7ZfPMsYzz0ElsEpRsZzG+ujhxCioBw1KyADkWwTOmrp5e9ye3IxyfhGLnPOdoj/aQFRSwjSBlaQ5m01Lq5b30Wu++b6rapslcECi8wG6lHXr42HPGrsnVjO/d/vq1ZFkaOIxHPpUUT9SH6g8xcrOoO3Eo7REx4DMb4I9JFYNf0iWrj2tGucr0dv+kY8nQmtGMCtTY7n6lPdhquMKhtHPWBhaGzA0OxvYJgioAt/GnX2kQdgc0nMhzDtoqOZ2ujWE91WLetdRXLh8m3yZicWj2WgddJgblacauLymgkO7LQCguWH0rFYWN0p0SiuK4WBJQMzjRmq7mlLy+xf1dP1gHaLO/+EHZnkionBvWigcgyZ2CWAMLmwwuSUaBzZ5R5Co8aazRZCg5YG0xEYQqN1Eo5wxKDB7dBTJjskani6abuJdySxrnFvte2q1KDuQ4dLI/i6fRrEfjmTa95Qdx8R7cHOpUj5StlweEmmlgfhBGmQWaIe7mJ5Q9ROeY5hI/Lwtianw5RZhE/uBFBXJhtlqEphYSjd5i54HeS3rFlrdd/5Dp88ov0Pq64MvLGC7CJhD6C7SLrLuc056jm3PM65WABPAoRnGWrOWYM5tyjZqGySkrr3YSv0NbPQtMA1z/7y2tnteTPXe6MKkKN/uvvp0T/8em74RHQZ9e+qlntcZpTzXL6r9r1wDvCZwIoPUB9zZBhYY4kbw3RAdORR/xhXCbxkgFQdKtOyCa394RENbxwp4h1/PlK9svu4V2Sh6e6nCw2/zrWxhFLpzSoVV4uSSuZBQipG0VdpzOBFyIJx44sUTOvpmx+JC80T7rFJ2Xj30GApWTDe2P10weDXuRZMpgNuTuA2I2296tRUzJuZbNyCrJoeA2xhoZDnhseJfXe+LnJ57nrgS9rQso1+NiVn1Yp0D6Bn1RID+YGIkhURv2SC15/xGHh92zyvrD4d2ntEZ/3QWh+5/p4sY90nGp4M01G/wiATOH94mDwoDLiV8GyhVKOBFQ30WTE4/Ru2+KCe00a9L10nddeNyRNNxvNEadkvzmBV93pvXiPg1XFXA5K9XFekBh5h0r0J8ouLbz64OTj4pXPM66pXCldKJrdSL8rk2OgHTEz+WCopxNAJlaPBb4xhaJTF6uiDa5SuLCfpoBbMB9Lo9gdgKUD472yfkj/aZyy6gQqFz81aFRSuazHAKqMAg7WYAGD4ZH7ONJktJnBF1SaOelxTwxwcRK627GWLXK3QY/6CCXOfPa5nT/COiqJ6V+kgf+5Zhlw1CusnH6GQB2HHwuiGlAnpat7AHwD0pAV3KvjhpKcYZCeplSnYXotezIo8bujGDTxIDVNmZ6I2bmCMwnZfekn9biThORF8UtwD2lKSLOEnFcUuewQTOtAr+PjsAgeLuaS8ruRdskm5DGK8AMO4jS9mXmg6Yq27zvxg3ftgrwt/hW3hVsNVrgY2B2YnYMlMZHkh5RP01Tm2Wvk23nGSrg/S/bZNI8mngIA+OwS02VGAMjt6TSrYYutsa6895SMDPfpNf5XXPRMwO9pCcTqhshdggk69fek5QMptZ6mmvyxIBSy0MSjtn79qR+13v5xjJtYbc04US85ALCCkoyTMFaU6917uK1n8i+hAzd2PBz9xucMBSrasKH1PScd1UK9LrNkuunqB0DEyACBq1juZw3SPonMYfj0/NrwxjfmM2miyc8CQwu3py/9n9pRazsdE9jQkhc2etk/5z57i8lk/rN7cFnZ8yfRTHeur5C8Hc2BPqWWaOLAUg1LYLIVPSn7b02fLxPLZY6dK5jWfOLxKWsI0DuwpdZOAA5Tas6LUID/tKZVDzW5PMY1htKcAKdyevmKypxazJqBOJ26S2VoVqPJ2lijCZfcH57BtF2d142BJ8DCZbUlwUb+n8poJcqOT2UoRkJsgmQ1RA48w9YgaeEQyG6IGHpHMhqiBRySzIWrgEclsiBp4RDIb1UOjZaxBq4hUMWr1PA4y1t5wJmQbEwr59+pIIooqEkKmxvxpMrFikgm1bCEHMslkksmyvXd7TXn42SNl766U7UPukc/5FfaTKmUKeoFWJsNmJ+BHwDtyVJnmK1Vama64kFY2QsvXFWdFfm1q3UXEqxhi7Wz8g9QqhaIbZCx4MWdDVool9Lrq7GBddIJwzpaR9w87dS3HZAmtu2tk6gDw+sTH1ndRRQ5SwFwtWAkWFv4Jlmvx7w48DBjluB+1gSISolQvrRlLA2AidwMD2k7Ei5oiKu4tVYfKlRJZCIkAbXSXu8GeHTmvF9NdD1BF5LxKKQHbrYH4yPnd6aUxEP3U8NygVq57q6LEW6EmlFo63EMZDMtuEfAWKAYvwtBLjkuYr67AywrrFgSwE4hcqhDBWlA5iEirlknD9T9b9VBLI/T34Kr6lklVLYaWqVVAOdqqo+o/B7xcdg8bLxfcQ/DyO4vHnFpe1XK3R3+yJva/1if2v2fC3GiaLMkzHU0i6uYSNImom0vQJKJuLkGTiLq5hC+0z/Hk9VMNstynTm74l4hfel4OX2jdolpNNSuFrslBJfys54Zl0sgVWn30coVSjJcDcs1ikqSFthyjFh02WcuxIgfYWo6t2p/fLcc8fz4rdy8jULBq5UzH2g6rIy2g5VjBA2wNXF7vt4C+SYcPHzZByzG3zVUOL/lcVrjlWEJ656FulGYuZmo5dn0/m3TSLUE6Jmk59leE47ZdWZddtziNSUz7mRxsES3HdrAKZ5UlCIdnzpZjFWYvPfb9n92uqev2n7zQ/PsAi2o5Np1VeMPMIzzLbDnWbkraZeuXboI5GVfsszSXDpm55dggVsn5mF1y8KZ8azk2qkXH6ZlXe/ismzPmSa1HoUUtouUY5kMwthwDhhD3Uz/wGPzU/08tx6htMczccmzBAbaWY2EHTNNyrFXLL6uFR4J9Fs5ZvHnt6/PkmDYXLceoxc04aKMVc4CtjdaYA/nVciytYn1Jvaxo13XhBQv/U2jL+rxPYQpWVBvBAVZhrFgFHPifajn2kcmM/VeE/7eK8FO7CZmkCD/0JFxS0+EJf8RJoFh7Mc8qNT+K8O84fHzklIA2zuPPuN0dNyFtIYenzTm2kTEAIWeI0HTUvIc1y+1TTVKE/4a9Q8D4ER7OyTUGr/o5fQy5sqKpi/BDVCqzogL0xmLWDsYd/OGuCH+NyAOr+rqt9Z6mXtLIa8KF4RZRhB+KLvMAm+humpbICNGZvAj/o9IP64wf3Vs483CRlWt2dOtsxqINAx1wK4M8cZ/piFkZkxXh//lS03eM/xe3hfftqxzOuHLQzEX4ITiVWcGxSjVhEf5CrrWXvOrv6hs3r0tsmbnKZAsoZwERwuY0I0JgTuN+2yceg98mFjRu8qvTRcGm2zXjz696Q976tcEO8UWoFIDR6T6bNQPOrbJDJPLs+/FaGABxtSoyNIyvbxprTC0HaodFxrelVz3IMWhobl99Ma/iQYCvVAQ3XSj4ZoDl/WG6m2Tkwary2a8FruJYIL/6tB2Vz5Q+81oYfdo6scDzYq/z3ruL4kJRDWMeXSg+QK8sRK+WCKGdlWGw1jgXqoRu+gbLQtUytH/5c2NaAS87gdfa9prY5Z+cTlFOSGE3Ik5I6a5zXvYXfP/nqWzf/7LZnSW9ZhrhKMFXlquC5UEstW2u+vMPr08v4H3Ac8pRu71N+5J1lXgAXVf1I/khjMOswthqHmFQ3R+eMRELRy+lSgvoSxoE907tnDqBJStYWYTb85t1CgpTqYPt+c07aYaqtdgPaG9VunjxgLdti/ssGef7oNbxq/5kXoMf4K8dqUD0v8weyg9hLWMVVrRFzBz4KKO81QrZG93KSPUgDcsM2pM21bnwm3NuiS/XVD9y72OpvCyV87p0cMINOTzqmUGrC9VM3P2TkV4qbslZvK2FskpvTjrFCQ8m7/fr2rbTDfMuewEAt1NxAK4iAICmxShPlKAy5iITkksXEs+PXuKzK6Hww+OPzgea9bAvBGATGwAJM1MJR/Mz7/9XPg61MbfJ8nHKH2LLx9lyML/zcRacu5x2qqyDR5KT2xBfjyG1LCAfx/YQW3Tz+0ELSCrYtGmTCfJxVi+2Xe7ftZv7vksrvDfc63TEIvJxnh5kk85FS5COSfJxfEePbJ444pbHzr6fph9612GXReTjHGIVzhZLEA7PnPk41w8n11rKS3Gfln7ofqRvfKBF5eMsYRXeJPMIzzLzcVw+zvmUuiLQec+gnq7pN6cvNHM+TgSr5PqaXXL5mo/jP+XVfXmPpc6L6lfd19+290+LyMfBfAjGfBxgCHE/9QvvD8jHuV+k9F/lwzwEy7QF+zTcHz7KzPk4Sw6x5eMoDpkmH6dJn8zA9uMTJSv6ppQbU6XgSM7zcahrcw5yTBYcYssxiTqUX/k40+Iybu69tlAQc35dvwOf5h7mPB+HaiM4wErBilXPQ/9T+ThfmczY0IPyJnKfBNGeVF/Fk4d93pAjJV0j4dlJN7U0Iox+wtSI8EU9F7kmAp4e00dzRjroTpnypbBmXij8BKTmnTk/YGHXwg+9Nwv2ue1cHB/M+H70SE7OQZr+FfMHJsw351EshFZSzz0ZqJX6p1EDccATaAsLc1UUwb+U85+DG4q9W+9NL+kvUwCByYI9gF0fQTwOE6tOlN+YRNkiyUfYvkkv99TEKO/pmYlXKFYeiE+tUugKVRvR/K+1eATQryBdCBTfjsQfhfewhPlQQ5Qq2M0yhG9U75G1DtvmX3Wc5jyLHxDtd3TOdbY3RvASadyIktkxtdJ4vKNCRE7TIWAZYmqk5UNOU8ClDTUfrFGI9iX8VA7idQvlMKeJ4w4afIBQBEQIdtCgtaaF/ipAKK9d4GqLyDqEL6h9oH45wNiEIxLF6mNGf67U8LUw6cWe208XViA3HS/CoCjEda7dyCh7HCg+imRgefKMmmm0DW8jgaraQwa3fzCEyPMOjdDPSusOpDe76zFXfDBGXGTqVfJ2Hf4w+nYdMZAfGDnVZMOIqkwFfwMjLL6Fp7IAnHLVogldFiauuOESv/T1XyW8N30nz0X4MERbQd3l/MAnszobPn7V03DD/53J8Df6UanyVn4h8S5h5jdZzVCy4bfB+i0y5dMyrUNqeMukmki1Lp9VF4DRWXdY3dYw415zbaeTp8LDXJPWbr22ktdKxPhWdObOMWiMWa8DcDwsRBS3tQVmfVttmlk3MgejmBD2bIEAIL/vjNoBB6fOP+WzXnPAY42miQu1MYKGnhSlu5qbfacaPS7sO4RqiQBRkhWm+AGoGO07MjmF2slSruRLkBgdGD8x9tsYF89pyU93LKoXtqMsltYCvrt4BFi66Z1gzH3u6dDMrOG8jCY4TjBtiobTXXsMJ3xq/sCnEm1qWjXLEpQ6luG+tnXr6wUS6x4pJJEPIsbinq6sPqBZoCSxyBz5z6fFyatyPPSnSzoxfN7y3WQ6T02X/qIr5WK0XxZfoGu94xJ/UfT5ZQOKdrQ5wfxm9F3QnKNGaKRfVYD0ftTkvQvlUMUon4yv98lC0XCg66C3uT3qyGgH8fpdWdXtMnnlLNdFcwaAOVXFXTR6VeXGGGBG7eVVcaHoi77XGbpparEz649LbgkSRrn3Pb3gn1BK2Nm0GVTwIAKGhi1qokIOBWjgE/Unj4FDFz39sNKh+0xJ8knff9x+xdYhZ2Nnmyf6Vh7T9krF7BMpSr5M/4DidFNXWOAgbNLMoJlZPHpNeomSbzw3dHW07elZpxrTa9KTxrPHjOjNGNMgTdebEVmn06l+Wp7rdC75EZUSN7enx+6N8T7Oj5rcoNbppI6bok5nuWyswIRQy6WDFOhpcPHJBJ/vo8Tes+c6nqtX9NUWsjQC8Vv5v1Wmk0qVHPRFjIDSRBagtAMGJaN+mhFlOg3GiNe0yNJ+H9w9oycm/KvsKmzLgNFvFemkmiEOMAI6zYJRTL00Y4p0ls8u0pltAJAobby3tMrYa219ks/9FebdJGOyWQt0woRxTFeQBTp7OmIo4Qb1F5NBrXh/lkvZ9udEca0eHEw8PtwFwaboLcUyungDAk5ecd0QqewPHp6glQNCZ/brPhBuOQapFHCfDeovEE+oTIl1YcAoD51Yfb+FVblit/Z5z169YLCdr3trE6Ta6SN11AAWYPiBldLg9gxkPFwUED3jRVFAaHIx/E6J35P2RyqeKjTb++C0D7VfWJdd/hslfrlAPXMFFfUCfzLqU1pl8Kcm3xfN874sCxCsf2om1D9nUlEv+Cej/izzaUpW45XOC3rHV7X+cbS3mVC/WyedgnqhPxn1F93VG9aFOAi3ZngFn1lwPsJMqHf0pqJu9Sej/rFUh7qiz5ddln5fda7o2GojzIQ6fyQV9cJ/MuqfS267lSnzc117bFpa+MbMIWZCPXYuFfUifzLq097av720cobXBAeHTX22jBKbCfWYDVTUi/7JqFPrrpsJ9b0pVNStfwt1XdaJyZEvm73Hj3eHRq+SvlVpta5/857OB+I+PZCcsFch3h2xSsIu5wfqti5Uz7EYE+o/J+9YV87RSri7b+VlGyK8UdWLyagXz3/UDS69/Onzw41nqme6R3dW/htT5zyqBvTvlF4u7t36478r67gnel7t0r/exTMGbrCwrltHUyVS/I+USNQu+zvH654SJ6QvPtvBsU55jiQSUsH/S4HoMa5TCuxRK2t7TeVAIlGXqBKx+SMl8qJEmWWDOq9yn11F2rNW4NCLHElkZs/y01OXFhXs2X72cXrXkEccSIRfgcoVJf5IiVyNXdopa8pO4daZ5azCpUXbciSRf5tMq6WueliUcv+5xOfU8RgOJNKzE1UiJf9IiVjPO/h82cKdwulvP5xt8fBaVY4k8mHx2q6f333wXbXF3aFbn+pPOZBI2GCqREr9kRKpGDWkeauudu67l62pXqlm1SIcSeTFuQD3QYW6ClNWN/zpfFq1hwOJtJ5OlUjpP1Iii1y/VO0wRiBK2ifoM79vkoAjiQwZN2ZIYnKk15RtM/vdfXSpPQcSyVpFlYjtHykRahMKjiTym+nfbBLpvZMqkTJMEun64I5vUcVZt9XJqQXH7a5NLvlY3D9MHqLlw/wxsljgWTumVO5qviEhMP1eqlBkJ2rhKX1IXJfUUDrdnhjmPqXyFocCDy/eZnoFBLiGhhoBJsfPAf8zAJWOHWEPRs/mNW+vJJZOqFXB44IhaAUqd3FC1y3Twr2Tzv1j3XlfVXLiGTp3zwD9GX7LjvfDs4lw1QF/j75RizvmMTwdBXcRzuGJe/R6J00AJ55LM6pSkk6CKkwrkLhsiSw1r/3QINGGiok2TV+Ovkw7RhliGDB5zZIF37wy6zcHWmIBRygxDTTiXLkN7K3F1m6t8acOnzbadnZfM2Fvu4ZNz5JjElhnLlPBP+IsG/x25oGfVhUpr8cSdDMCVvhjyvId/b2BT7ObY7z39yiw3y+h0tPftBR5PcHqgJuCQ86IMxowfwNMCJxgylowwfR3r/O8wr7HzhuCJdIe5WdPyR+CqVc2nYVg1pXJa3E+Awim8MpF5ar+8hTNaXXh7xH/Vq3NDcEUSggf0a3/EbfES6Luc6VngjggmOoQK8Z5nlXGuFJ8uRLMtD6hnkMC1Z6JhbsvSH0yb68ZCeZ0GbZvDrTkTyQYt1fXCq+4Xcl75gCR6uj8oo3NRzBjWOEPMA/8ZiCYyvscGl78FeK1+uq08s2/nH5oPoLBTAEjwYAJgRNMOQsmmCmFprhJEy65pG7NKFPh4dl++UMwM9uzEUyJ9iYgmF0NapS8v6uV86zmI50KrQ2/wg3BJHRdUObQg9Ju06xiZ3d/xkvmgGAmtWeb533bc0wwr3916TCl9zfBds+zxz4lh7w2I8G0ZP3mQEv+RIIpLo22v+c61SfZSTmodIt4MxLMw3Zs8O9v979CMPVOj/uiLPtTNP7O+Nh798fUMh/BYKaAkWDAhMAJpjwTwcTOnRX50vOz26KhFTXLptuTrXsRV9gmQWv4gZ02uhv4GlW4jB8MNIAfqYHFjSIU0iBZmEoRDNQDK3YQgv0eVvhIKw3VGHRw51eHhjfeXqok2Fz2SXTBh2fKF5GogobIgvU3oV6dnvCvu27omVg7Mc+5D1gkFhShSh3ApgK9EAd4IESQgxEHeOBf6gEen8m3O/sfe+E86VRSlPVb34vUAzwTe8SNux7R133Jodilj5fM7EyMF+Shz+kYfMCH+sGIAz6MVgv2icfFiA4V7y0ZLmnaySX148J6r5qsHpoXaXFf9xjIlQ/lugJ1ZjwGRvR7m3Q7hnhRG2WkQjFAA76DMlT/ZYtk/4xR7min9t3GIg4aMcmqrGv2bAuKVGgj1ehzRvt9t2ee3TnbLTpq+oWFvhfjWEVWVKR7Er0QAjGQH0K724tNaGAymoOBrCQinUGFt4zTz3tMNsQcZSKbOvAtoV8qV2pkaqy/CvgIksFEympMT/8XvNOp4oV/D/C6WLpyc6qsinpHauGpMD34lPOl8FOd6CzllOuBscKvp0UKek13n9pV0OeMyt05r0fpgVBje7IJldeTdmCM7VRdKVzZAX9rgYlCgifYHtageOXqkokDwjf0vBS8mlXRraClo9cdwK5y7mQ54nbpkABB6c5NMRXHKb3CH0Dp6ye3sV/V55pwR02t7cmaF6eaiNIrR7NReuXJ/1E6+oRl1fWj5u6Z4BJd65BbWufdnS2O0q2j2QzJ3sn/e5QeJXi4cOIovmTNsYIxh9ffklggpYdNZhNaZdMKzZyUXuSltpZzW3vReIdR05fsXn3RZJQuCZjUd/MKK9elgz5uqLRvVBcOKP34JDahjpjEOaUf7XCz32LpBuG2iCF3u78+52BRlI7ZJUZKByqOU3rFP4DSd8YLpyf63JZsDfvUaPmGljNMROnWV9ko3frKf5SO7snx9ZdY1Evmu156IfX4oqS5Fkfpn6+wGZJNV/73KL3viA3jylQf67r5fOFDs/pKylggpfdkFZq1aYVmTkofPa33qpS0Zl5TX/i+aMyz6WsySv/NMy5sQt17mU2oYZc5p/Q1tcOjg69PFyx0fhjVNm7kVouidMwuMVI6UHGc0iv9AZQuWbRgSZ2AOu5rP/XpLlps185UG+8V01ko/VCF9P8oHSWtaE3JB1cnlvNZ2+VJzIWIAV0sjtLbQrkyGhLbiiaNIloEpV9vHjf4bLkJwjVfrKZ4i6/Vt0BKf1qBTWhgMv6vUHrQ8A9K+yIFJZMWXm1yNTzmksko/TcPSbIJdQmrUCMqpHNN6btvTLgs7TVYePBkWrvu3wt+tShKx+wSI6UDFccpvfIfQOktM9VlbGziXfZlJg7ZW+1KQRNR+vfObJQ+pvN/lI6UVuamAwcG3z3mtaSb15i0sa3LWhylZ3VmMySnO//vUfrlmRoX8aEirnNPeaqX3j71wQIpfR2r0MaYVmjmpPRK9Y8kJu695h4tHdTjo2LFNZNR+m+esmcTagCrUO07c07p9pdqRtndbOs2deqbiV49VlexKErH7BIjpQMVxym9yh9A6Y0Hz9j9T/prz70Pu3VVZrypZyJKL6Fgo/SZQ/6jdKS0StdXbRuZ2VAyp9neCiEVzy+3OEq3UrAZkptD/vco3XZ8847Wu+sLp8huDy3Zxa+uBVJ60hA2oc00rdDMSeltDi0cX/uZynf7bfnn7ZP7VDUZpf9mmRY2oQazCrXjEM4p/fWJcqfr3fVyWTD3/Henk/bPLYrSMbvESOlAxXFKr/oHUPqoL88T7q+dKNl3t+W/JzZ6xJuI0l9PZ6P0rdP/o3S0A7Z04M2vc9cL55er6FLomJqdH8xB6c+nsxmSy9P/9yjd8apfnZ9fJ7mv62Pf/5vL864WSOmHWYW21bRCMyelD70Z/9dP3n3v6DbKjXsXdq5jMkr/zTpfbEJdxirU6OmcU7pP0wr/VtkZ5Lxt7hphu9FJOy2K0jG7xEjpQMVxSq/2B1B6Fzdnj8zeM1xTLt6vtGx16FoTUfrt1WyUvmr1f5SOlNaefUffPWzf2nnyYLu+HUbe2G9xlH59NZshSV/9v0fp0mZnn0+QughnjBkzV3C4AfspUfNQ+g5Woa0yrdDMSenLm4+6te7dZp8UT0HNi0Ep00xG6b9ZKJJNqNNZhTpsNeeUPqnRIp979Y74zJw3a96Bu2+fWBSlY3aJkdKBiuOUXv0PoPR1i2o11awUuiYHlfCznhuWaSJKb5zERunPd/5H6UhpyRQ1AzZm7HZPdfun2ZsaybMsjtIbJLEZkrJJ/3uUrlV0bWXX4x+XndMdi/xw6NvHAin95042oYHJ+L9C6f+mvih34Emsx4wDV16f7PmgpMko/TcrDbMJ9TKrUA/v5JzSva46O1gXnSCcs2Xk/cNOXctZFKVjdomR0oGK45Reg4nSm63rltYnMd5107rSpw7/9WERuY6Um1oVGUFmdDv9dFCpg8kFloqIVArwjeCleuBH+H9ksyMBPxQ+F/bccVNLNZowVUQEbMGDvammoIcLoT4Nk8dtHZLWy2Xi3IpW+xrd7A+GCJrb0eKvqEXn90l2t1R4VEv/6Q6GiNmzU9n+oeRRfdGa+cXHLYr72gQMFcKHnp748t76faj7pH0Z9q3PZCnAkBU+tKZevw7i6LcucS/fDxn97VgtMFQYH3o82nfqvuaNPGPaPyi3rn3tWDBUBB+aW2VCh/hdhby2azyLBnQ5chAMFcWH+v5Trdn1Ow6esWtTKz6S92sKhqzxoSODrw9N2vVNeOCz7ZPTzkP+BUPF8KHxVTue73j4q2h7k4LKe7HivmCoOD6UfL7pgrFpvV2n3FVFVV89DaJhgw/trfB87hPpHueYsqVPz6l/zRoMlcCH2meodwj2q0WLAz/bJA86cQIMlcSH7gw++u6m+wjndYUX3J68uv4oMFQKHxIdu2Vf6G8bn7VxG2e0PVK2EhgqjQ9tnL35y+Mq333jTsw7J41dugcM2eJDrssKpjfY7+Gd/H3H+r/jhsOvXAYfOr5p5puViuPOSYpWZ9qu6v4SDJXFh07947Po2ZCLvlP61N/4SNS0Oxgqhw95zKpWJcW1j9uCrFZ3bn98fB4MlceHzoinJF4p2FAy/a1iX82GBxuCoQr40Isyj+a0KDvHY9OnC94XP1b6BYYq4kNukw/sHP/UTbCgZeFaO29/hqKshA/Nqy6/+6nbKPGM3oF7FfX9zoGhyvjQ6jmPhqVUS3LePqXqz2IJNv5gqAo+VOv8jWFRJbx8ZvXtdGtk33MTwFBVfGhhh8eD2lf8KNnRb0aHhCoXT4KhavjQ+QernfsfTPCcHSp6feLhVvjA6vjQq4TYqj9GFHZJmXOwXRmnExPBUA18aMO9rsOT/vYR7r5YeALfpRPU3pr40NhTA2XL7/QUThQ2qrhEvvkdGKqFD71//GtDlY7xgk0l2p9+uTgtDgzx8aFnpxZ1vbBLLFh4MWFfr9RAa2sPlwEka1Qb/EUaxerNz+6UtXL3mrmovCQ0cV9phNmgWUGqXeMRdk1nomoymagKIcmJy9JOiFdsuT/qVPUxsWTPQjwiQqEKpvRchjOXqdZiA/wOvlTXFRmQKaxAGC5VKIARIpqAORq0yqAaKOSr0Z0efMBAO3+3oZjndDgd2ldEw3o/ezHP6jCtEiMb69li3ZuhHyHTvQjyux0stzCw4sDO3ou8DnxLq3QlT32hKW7BnrSpzoXfnHNLfLmm+pF7H0vl0S2ACy97CFAwyi043kjMq3zYqPKLrbrJgGpo5ACkYFmQKjxCpZHDcT54P7kCq9JJ6AlfqgaapFWFy4OQKA7JWP1M0fugz5aGt885DxhILgRcTP85NCRzDHHtN0C4rFjhyvzHIooGFshr0UAHfKIFZ4tLGwac5nDpEBkfOCDaMBl/kFQj0xkCpPyS12dZV42+Ll6xvuTcm8J/OpDkZ+2PP5YmvuwRrqVn64AruwtKekscMWUnAVfAeOBqB4LlhRz8JvTRIEoyKpBIsN6vfpm1vtdW0cy2C6PHyf6pRwaLeCYdLP1IfoBlxQoWUHWcf2ox8U9grYJDFmy3FSbHKd50GGvtTvpWpcWwSKhUK+NLZMpQbRidh4oyYJxcQH8rwURANcE/ARjgAfwQaZBWpQbGRgVW4nKgugrsAxzxD8LHNfwgqZI/SMbXREZEKORAQoNUYBDcr3tkpBLeCnfRlHCpo5CPAr+CXXTki8KkylAZJt8+Pv34EcTOFGQGrSo0VAFmh0w7XCZTYr+jHa7ihwMlMJAbqR46K2w0naD+gqFViwFXXoYCr4Dag9sGuHKRcVxZJpsr8RdC9046mr4ivPpE1wNr4lYVaFoojkOypFqgvNYqBgidhwjNRk2JvcD6pxpHlnVI+oh1r9WpHg6YnKF/rXBDQaHL6gRB1OcDzVMKLOCT9xwY1IK4zvlaGqCSwIoK0Bsz1zEuwiP+3O1iTC3jlh4h/AB1pMwem8Vkack1Oe2CnZOjE/8vfjNHp0ZIkaWHVb219myYx4rNc4b+1b9uA3LVcR/9g2hiyzmWH6KbwCo6pXlEl7s7U4TF8NTwU4GFCaQEKDVNhCxIHgLNu44FkOIZ0WBFyI1my9wO/F247Oqxh4uTjRD2PLoR0l3mWigRDriVcUcJhdcUszI0L4UNjwYBkKwAIsNkOl40ApijE4u8Przghm9yi+E/Fk+7voK8TMMfTF+mEQP5AU4CKziLKOAUzAWchjqWymZwY9CpV7Z41g75cfeo5l98bnT8NZu8RNHHq+hLlOyh/EBoAitCYE7jfhufyW87sVwq+dGuktuEDTWLPq87OpXsjUqAj8b3d5EYvnEgFKllOm9NAe/FPWGwQgwBPwK/ayQfYKvW8iPgjALGFtdX6HvhrttYw4p1UfYv0e9N96KJEQMxjgXLwNQMgPFNIcJVcgYS+CvDuG0F7AVyYID8dnNa/jvramJf96iAXovnHLtBbo1U2B/eTTdSusu5eUpU+5dHT+kQACglA+9rSFNCfhMxb0MGzVNiC61VxgAi9MIuWK4G6gvG0WQbtku9+Hn4BJ+NM1s3Xh96KYQ8LV2Im+nTMnso1z5Llfde3HH4vXBlVpVCgc3X5LV6AQRsHitgQKPM4kTpOAP+Tgse059MmlNlzSJLG0yWLFb1YomdNj/2OXikdH8z5tzkgEtlPZTAUgJhiEdEqMESPMezigiE/nY9G+XNAaaIdmPamJHzl78V7kopGzCietPHHIh2MKtoA80kWpR/HNPFKFerhCSHPUcK89X0zHExqe7eUYfWup2VXsug9pZQ0ld3uquc79054jZpGyrmt80Rm2I4MdZmIkbhxUq3hrXZ6fx3n/6VZwQekJC+TXnYVlYLtz5d5CEhMrUMQKGhk2QhBiybilThAHJdc1vsMcHZj8EWh7q2RnBjCeb8GMSI1LBd7i9MEwfytwz1RoDyT0oDoD8Fyn+XqvwDYYPStLy2QhJIcoACtxtUETI19DZUSr6dTsc1fIAeRqzYv3Q2TQN3o1XDZcFoEtm6sF+lIOtMn/0hNeLix62tS7YxgVh/G7qNwa/nZmMav3hTqPT+H+6TXOsNfP3PzEt5tDExAOYoCLOVEMa0qZt1jTCY87olXD+H+PW7W0EqpUYWFImpB9Z+C4nl/MjNiU6HfV3nHx1abe8Tt5skLG2yn0tf/pIGOc90scdh64uC7aoDBhtuEuowmYRTpeq+b9Za5R397o2X44VxYtJ3K9lNhqWY8H0iFQqELWBymB2I+2CeEqazcuUwqUIerFPy4XJtGF8Flilqwy0BNUrP8p40KZCHDUR3W0MxrzxE1wYVfIsF6D49mte5X9EDa/kGd11lGixPDkMMCcD2nd9/jFqf5BkV7nsn4LWSnH1SGHsQ3X3WXc5tOlOzEvI4nTMAcrYQuTUol6FnYzHv+1FG99lA5KrpkVOTVA2qFhI+qzNWST2uPhLvq1awcLJq/SESfCVwBUGHdMijXM9iiBbQJBa0Lh41S5KhdcDICFlOHOrmyNlx9AIurUzhCH9H4+jmPgA6uaEyNaX7GvyTV8NdESNIKFjwCLCoHqkTNfrQJ4WY8jJJ8ijXgY74LMgUIOTq1xSbBUZthFX2wbCFvoKuVSSu+sHo9hCl+yw6snynx6a6f22s5VhvECUwAb8VIjCBXc4PKDAVZ4QCqDhOVHWZiIofWnf31FnThPOPbJEs/ZI8mvx9oJM3kkxQDLaYaV1XTgB0TK1zX0fiKWlIYKnWEvEi9AyYXG3wwmGxaQG1SwkPqlfYf+/ruyGvNhjYjUUQcj7c46FCbgs8h2g95PUsHnJqbhw3kHtYrf/ZeWysYM3hwA+Liy68wwHkymNskPc/RkBen7OszNIE5CbIykQkURJZmYgkSiIrE5FESWRlIpIoiaxMRBIlkZWJSKIksjIRSZREVua1otUdU7ZJXSZe6/Rga+G9TWgpb1B50ZkglPRLDlLeGjDJv47XUYdb24u7brQKHnT5mS1Z/uV0m/0ihUoD3UUsgEN3yoswzLY6rnJlMBYcCMIfgC0p4ToTT0MwLLxPTTnN9RVp4KB+yVCvHCwVo4+ASXYVtXcdAVbkrkeM2ruupou2AUcyQq3CogoqmBXInBfUZkvtPmGPigpS672+V1UavS0vsbb83cbOAFhNOILTbibVIB0Cy+rgI0g/nAmrCvqUiJxYIVF6+LZ4wRZPfH1XTrvmEXTsdDyHaRHju/t8OL5hhGu8apr7VOHIwxyg5MqKkt0R+uYDm59m70fMK2yyYZgRUw4u9YjcM+ZQSZc3ze0+FHrpvDBj89hztkfszBjPdbLHlQgZkINn25RHjHNjG+ujhxAiHTzBqnCY+QQYiGSb0M7A6z3/Xik91HP1yWNl1r8b890CopYQpN6sILkeMS6uW99Frvvm+q2qbJXBAovMBkpwvPnWgZ+3uu04smiHq+AbObpgTTyXHkXUj+QHOs1Z0al5hHCMGjIR44tAH4lV0y+ihWtPu8b5evSmb8TTmdCKAdza5HiuPtVtuArfZTWMCKkHLAyNDRia/Q0MUz3owp8WIjageAC2z8ZRnWFh2ldLosuduNDdY2Gv/jf8lpyeTt7sxOKxDLROGszNilNNXF4zwYGd5kOw/FA6Fgtc8xLoPScmsEphYMnATGOG6lzsd59Ze1+5rxu7eHifPpHklWAxMbgXDVSOIRO7BBCmz0fYYHpoJNnlHkKjxprNFkKDlgbTERhC49N8R0cMGtwO2THZIVHD003bTbwjiXWNe6ttV6UGdR86XBrB1+3TIPbLmVzzhrr7iGgPdi5FylfKhsNLMrU8CCdIg8wS9XAXyxuidspzDBuRhzfobDpMmUX45E4A9TpnjTJUpbAwlG5zF7wO8luW3KH5sVDa1ScpoWcNz28RVmQXCXsA3UXSXc41gk4555bHORcL4OkP4VmGmnPWYM55njUqm6Sk7n1wnUCiM9mmXr8pqfV9k6Xvbk0aHrOJHP3T3U+P/uHXc8PncoW6LZMOufmmVt7T4vzdkLzaJIhPa1Z8gPqYI8PAGkvcGKYDoiOP+oeeNsKWi1syQKoOlWnZhFZWmbin6NIB3jEdi7c4/z6OfO6qiO5+utDw61wbSyiVUqxS+XrGkqSSeZCQilH0VRozeBGyYNz4IgUz8ETD2yPqVPFOmv7+VO+9fZLJgvHG7qcLBr/OtWAyHXBzArcZaetVJ9iU/KxxC7JqegywhYVCnhseccdilrbsWU6yflP5n706LKtGqfigewCi4gM+kB+I1GFFxOosweuNmHh92zyvrD4d2ntEZ/3QWh+5/p4sY90nGp4M01G/wiATOH94mDwoDLiV8GyhVANWujmyYnD6N2zxQT2njXpfuk7qrhuTJ3oGzxOlZb84g1XdmjN5jYBXx10NXW2LIEVkMDyWy9e9CfKLfxpu/1dDj5POk6aeu7Pl+rt0svIxOTb6AROTP5ZKCjF0QuVo8BtjGBplsTr64BrlotOonAe1YD6QRrc/ECYPDYP/zvYp+aN9xqKbo1D4nFIDBPsYuirh1znPc3PAAauMAszJEQMMn8yNLT5wRdUmQwJXBfi5b4FSwhwcRK4GnmGLXPnpMW/ChLnPHtezJ3hHRVG9q3SQP/csQ/qqpbwjFVp5hEIehB0LoxtSJqSreQN/ANCTFtyp4IeTnmKQnaRWpmB7LZooKOOGbtzAg9TnAJwzURs3MEZx9ByiHBjBJ4hyYPCTqOXAqOW8qOXAfrvcF/VGRLkvJttUw1WuBjYHZidgyUxkeSHls6LB38d/Hh3tsa1dcpMNbcsOJMmngIA+OwS51h5aE7L34MI3lYQp12ukDG5/xi2veyZgdryE4nRCZS/ABJ2r59IRdbaYQKrpLwtSAQttDEqXK7YoFdRsgnBBxPOI4eX7k4sJFBDSURLmitLYAamt53ca6LO8p2Ns2bAjvzhA6SgrStvO0So0sWa7dJNpADDQMTIAIGrWO5nDdI+icxh+PT82vDGN+YzaaLJzwJDC7an9/zN7Si3nYyJ7WpXVnr4++589xeXzdL8kKXDFHtcpA9tJrz6oNZsDe0ot08SBpajIaikK5rs9bVG1YMl6y/u4Ld0Yv3j/53PFObCn1E0CDlB6fZYNpetn89GeUjnU7Pa0Iqs9fa1f4DtY/JqAOp24SWZrVaDK21miCJfdH5zDtl2c1Y2DJcGSs2xLgql6yB05S2YrRUBugmQ2RA08wtQjauARyWyIGnhEMhuiBh6RzIaogUcksyFq4BHJbFQPjZaxBq0iUsWo1fM4yFhrypmQbUwo5N+rI4koqkgImRrzp8nEikkm1LKFHMjEiUkmy/be7TXl4WePlL27UrYPuUc+51fYT6qUKcgyKcZi2OwE/Ah4B17gRaNVhfOVKq1MV1wIVk/lD8OOjSG/NrXuIuJVDLF2Nv5BapVC0Q0yFryYfeQzswvFEsZ/cDkcv2iL+6KEoO8JnS89ZLKE1t01MjWsz0p8bH0XVeQgBczVAu+DFf4Jlmvx7w48DBjluB+1gSKSwgwG1LmBmBd1ChjQdiJe1BRRcW+pOlSulMhCSARoo7vcTR4aRrpeTHc9QBWR8yrZCh/zaCCOH3cqvTQGop8anhvUynVvVZR4K9SEUkuHeyiDYdktAt4CxeBFGHrJcQnz1WGCjP5SCX9YVUKqEMFaUDmISKuWScP1P1v1UEsj9PfgqtrM4mmZWgWUo606qv5zwMvpp9h4efcpgpebWzzm1PKqlrs9uoM1sX+NPrG/BWc0WZJnOppE1M0laBJRN5egSUTdXIImEXVzCV9oyfwbU6NP8oWTd/7bNsK1QOkcvtCPcYEfxpezd91kO8Xm4cDwCzRyhVYfqUjUYrwckGtLJkkW8188bEPkYJfEV59lbfjx78jl7fDAnzf4jxqYSsOrAlYlQoZKvm+ETOkm4YfjzzAsIEgtOsz6WvSqe5RfMHBq+DUU81L+hdEaEZgntK0ZsDLr9i8tRMiWJlFDp9pE9UlYQiASlukMkyoBySG/+OxOBxsV7DNMuLDP5SdLWkwdSg4IuuieQA8IEgOcVzACkOyGkGxCJU7Ywojfv2ZJnCgcBKDVG42UlJRfxhT745MFA+tLRSqkaizOqIDuCzpzomHrVl5DBrqv7LGoX/e9T8nbCNb++EMQRVSJkfyQzmxW6YyyBOkAa/TLmOyiWuJwuQYrWxxEEhNhQpDCKT91WU9F+8ZeKds9Xuye+tKFLBzdExGbuNkj+SGcEFbhdLME4UD55BQOwUxMwmkjCIcfickEvI4G3CpTBo3UFV3sxFdFSIfCGo3NsJ+yfwM9o9rYf90cX/qKILnVo1k7Z1zZTj7HHpDj+fRz7KTR/BBeZ1bhNTaP8AwopGmViwQ7ZUtQEyZXjlQCJxiID4hLqVJC0YF/KVTDsUH4oxMcCpeO0F1AyvH52erqCJ9Cwj3HA08tn/LvFUo1tDBUWjR+OT8kV5FVcgXNLjl4E4yoGJUqU1a3Hw0bGrEawrFBArsdz9Z4rH12Inh5akIS2RAy+kzZI5xveDviPgRccRynuVVNMUOI+6mtmPzUKlaj/Q/vy/I9aJ34qEHr0fbkSJ1It5Hjp5YNk8uG03u3MWW2NRTAqkOaHJtBWAHZUJkqXKZVj+RH6B6oKe2hy+byUHaTKfH1C7PzSm2Lwfau9KgiebxUIPhPhEqtdZUrtLoPRrn7jCdMG4l57ucB9ktQ0cYY4NJWP8+Y9YZcDbsR2GAHJ7F3NMijT1j07Lzt7pYeMdoKdvuGlM0iqyXxVLpa6kdyWydTi5vldZ0MkHOByDmj7IhfEzHP6bxRie4VAnK4MHzVMJlaLWfoWXHJrfLyRj73hPEPJ5z+NM3pet6nMDVdgmIjOMCqOitW1udNanOJfcyi+JIL/hJ0dm7F3vplLcM9PuKi0En4qzDGbVRWtSYWBsSvwv+XyOn2kO/QL7dbM5mx/4rw/1YRfmo3IZMU4YeexGeo1eVQJ4Fi7cW8vXTbyUER/rcVHy49+GOw898epZNGPx9HPu6St9PmHNvIGIBQFkRoOmrew5rld+k2Mj+K8Nt1fnfaIc7Oe9nzSnULPJQ6m7UIP0TlNCsqe01rDVnXDsYd/OGuCP+h6LLtii7v4rb/2OwZjYquJUcozFWEH4puHavoYswjOpMX4a8tvbT9zKwMccyD0zOGO16eY8aiDQMdcCuDPHGf6YhZGZMV4T/21uOy6GVR32kxk6zbPMtabuYi/BCc06zg7D1vwiL8ktF9/1YNtRLuLWpTSpS4kVxPxjzlLCBC61gRAnMa99vaMPltYkHjJr86XRRsul0z/vyqNy3IdQSwQ3wRKgVgdLrPZs2Ac6vsEIk8+368FgZAXK2KDA0DPpxGhm3VGFPLgdphkfFt6VUPcgwamttXX8w7eQHgKxXBTRcKvhlgeT/sQl4PVpXPfi1wFccC+dULx0x9f7HXY7fZgY0HHbEN0+S9dxfFhaIaxrz2AgbopUP0aokQ2lkZBmsvGOVCldBN32BZqFqG9i8bzo7pXm9CDfGkh8euF6ud7kE5IYXdiDghpbvOedlf8P1XsX7/6RfM7SzpNdMIRwm+slwVLA9iqW3zKPNt6RexG8TRJZ1ndNi0lpx9bk08gK6r+pH8EMYwVmEMMo8wqO4Pz5iIhaOXUqUF9CUNgnundk6dwJIVrCzC7fnNOgWFqdTB9vzmnTRD1VrsB7S3OqKjw5t/XqdIlre++nb49pPryLwGP8BfO1KB6H+ZPZQfwvJhFVZ7i5g58FFGeasVsje6lZHqQRqWGVTtlv8s6Z0tHhNPLfB4fux647wslfO6dHDCDTk86plBqwvVTNx98wXjvFTckrN4WyHlWnQv87mOcFPK2B5BP8ZWM++yFwAwjwDgKgIAaFqM8kQJKmMuMrFi3ljllqIv3P7e+LTjVVmyC4XKTHvYFwLQlw2ABOcLhKPZ9v9ZPg61MbfJ8nGOX2TLxxl4Mb/zcSosc9u3q5Kj74LuNR1XdbtaygLycY5eZItubrtoAUkFcXFxJsjHabt8hcfMgWfFSfNtNW1T+H4WkY+zglU6Uy1BOibJx8noULhRoSOP3eeXHFUobs6qFhaRj6NlFc5ASxAOz5z5OEcvxm20C3b13J0hDYyft22fReXjSFiF19Y8wrPMfJw7EZtDC71s55M04Yvfjc2dFpg5H6ceq+RszS65fM3H+TfWweP0+0bOsy8EKO/z0ntZRD4O5kMw5uMAQ4j7qe3+hHyc949/bajSMV6wqUT70y8Xp8WZOR9HcoktH4d/yTT5OPzCI5c89rIX/v3se4nwtFcazvNxqGtzDnJM3C+x5Zi0vJRf+TgPggW8Z7Mqec/uUOHKKqtH9znPx6HaCA6w4rNiVeLS/1Q+TnsmMzb0oLyJ3CdBtCfVV/HkYZ835EhJ10h4dtJNLY0Io58wNSJ8Uc9FromAp8f00ZyRDrpTpnwprJkXCj8BqXnPTi3qemGXWLDwYsK+XqmB1ozvR4/k5Byk6V8xf2DCfHMexUJoJfXck4FaqX8aNRAHPIGHp4FWVhTBv5Tzn9KG4hYPTqeX9JcpgMBkwR7Aro8gHoeJVSfKDkyirHh/lkvZ9udEca0eHEw8Ppy8F1RAiBZgGZ11R8iMV1w3RDpkhZMB7fAVV5U8qIfkf6OSh6HeQQEGKTkBj0wBy1PAFrmHBDjqHZlQ/zl5x7pyjlbC3X0rL9sQ4b0+19OXxfMfeYNPbFJP73F0YvM35w2bREodp0qkE5NEYufOinzp+dlt0dCKmmXT7fuR90RdYfKMlu6RMS4vdTfwNYD1df0uIzXQ5cV6tYWpFMGwHCNMCQzBfg9zh7XSUI1BPgj1iGQRiSpoiCxYfxPq1enbubrrhkar7cS82xDMgqikPlhUfdVxRPklCBFcxyHKL8G/1PJLPpNvd/Y/9sJ50qmkKOu3vhep5Zcm9ogbdz2ir/uSQ7FLHy+Z2ZkYJw6j/nZ5JuoHI8ozMUnaBlYPwMWIlNaMnUfaDd0cIonyGZ1RPD3AIS/S4j4aBuR6Hcp1BcrliYEHzY+bpfGkDezvOEADvoMyNNtgZP+MmZrRTu27jUVUiWKSVVnX7NkGHCJtpJrBcb0/on79EcN8UkpsFjTpl7GKVWRFRbonIWod4wP5IbQdrEJbZVqhESbYSiLSGVR4yzj9vMdkQ8xRJmevjgve+lqu1MjUWNYd+AiSwUTKalnX5q/6NbzgOT/T+tnzl8EzqLIq6h2plQ5S6AtY8CjBLvipTnS6csq11tdv0hWbUKezCnXYcVqtL9YGCriyy3T1WZDgUcuksCq6FbR09DYd2FWuVTzKEbdLhwSITvfOTTEVxym9MxOld31wx7eo4qzb6uTUguN2144m58r6h8lDtHzYV5ZM65CvmHpaV/MNCYFLEalCgbdflcPGebB4tyMSYMe7XTrNGnrVdVuf6KgqXb0FTK+A8JcMzdMDmtE3FCAVIEQ1w7MX826G5DWPrCTWfRfMTQ18YXTxhUmee7sVauwTdb7K4mvfKtemNnhBfsVcXUKvcs+OVBCt81xtGyx2nNq3XB7nWBTAKgBitUSAyv0AC3z7UOOyxnQSVGFagcTFS9OivnfJu97b5VsPb0yvd4e2pRxiGDB5nU/gm1uxfnOgJRawnYxpoBExNhtYZ4it9NRhR6mj6JPQe8bKvr1+Fbz9gqyX8G5TwZ8Uwgb/TPPAT8sQy2ujbt2MgNnO4JsgJfJGsWBVMeteoqT7Xwc2bNon6zctRV538x1wU3DIGUEwMPkZTAicYLpYMMHMX3Hq0hJJP7etoz57K/yHlskfglk2lY1gek81AcGcO6oJtjr+yH3ipCKPpu3+5sgNwcQeKVTydcY01/h9+2ZlTBrQigOCWTSVbZ5PmMoxwcxaVnH1r2+BbtO8vU6NGTDAy4wEo2T95kBL/kSCqbrsQ+GPH2+4TXXqcKvzsXv9zUcwrqzwNzcP/GYgGFnB/knlvma6TbDKSHfaXXCH+QgGMwWMBAMmBE4wzhZMMAq/4xnFilcVxXkqo6t+lmTlD8FEr2QjGNeVJiCYskktD9rVTPJMOBcw5LuDJI4bggnp2K5NrfJffVeuXj7WJj3VkwOCmbCSbZ4rV3JMMNPKtxTdvbDVbfHq3puL+JxfZkaC6c36zYGW/IkEs1BaadCqQ688NnXdWX9uZrHn5iOY5qzw1zQP/GYgmJZvB60YnVzWc+XqLlknS8smmY9gMFPASDBgQuAEI7Bggrm/vNa35jsae6/rE3pq+i5vx/whmKztbASTtN0EBJPineZfc5S9x8LhhWY13v40iRuCGdbgsn/BNm29N6XL7ty/M5iLFUzmdtaNou0cE0znIYFHO7Y77bOs8KjXq337ZpmRYI6zfnOgJX8iwXTd0Gjmiqs24oPNurTfXH5GX/MRTCwr/DPNA78ZCEZa+5d3rSHj3Da7F6lcrZnzJfMRDGYKGAkGTAicYIQWTDDXilZ3TNkmdZl4rdODrYX3NskfgtmQzkYwIekmIJjNY+0Djv81yWveqtfbv75YcosbgpkfuTnR6bCv6/yjQ6vtfeJ2kwOCWZPONs9np3NMMAMjPvX46DXZeUv1rHtlb89zMSPBjGL95kBL/kSCGfWuXv0Cn0+J195a+eTarxVu5iOYbqzwdzYP/GYgGA+r9T87j40VrDkc+GFx0YV3zEcwmClgJBgwIXCCETERjNE9Fez00sv/ngrVbtd8+8+I8ZJF3999WhyZmpqjp4LjkcQH4oq1JTMEDjVnNxdMz9FTYcpfO6tf1gR6Lgrc2r1K4o2ZOXoq3A5r9qzf8rteKbxCsellgufl6KnQyO1e8AteWZfZj9dGlpcHfs7RU+HxaN+p+5o38oxp/6Dcuva1Y3P0l5pbZUKH+F2FvLZrPIsGdDlyEAwVxYf6/lOt2fU7Dp6xa1MrPpL3g72srPEhl1528/s0HeSxdm9KRNDN1bADVjF8qMWThPGxV72dUzLUc52y3HzAUHF86PPMw/v69Wsm/Ht8v2qBW2bAXhE2+BC/16964saXPBbvHDfu8rNJW8BQCXzIXhGffHveMY+EzQ+S5h/wTgdDJfGhSUtXrU+bV0gUs6lMM3d714dgqBQ+lDGn+byCT1f6Tt24ycGvRufWYKg0PnRrfVOf7wVOuO36bNXr27mNPDBkiw8Fdno7+/r7Ft5Rvi1sS37t/A8YKoMPLSj7MeGO9J3bWvsyTb5kFBoEhsoS8AYWXFJmj8Z30fT425ucWkDkyxEPjCmWOGruUs/4yx7Pv+9LrAuGyuND8xpVmvHtXhnxkh4PZzQ4XrsYGKrAY2zFUZF44F/jIo562wkTL/6oWbhB5jgwVAkfUkm+LF+z4Ibnsn9/PapvXXg8GKpMCMXuc9cBC6/5Lur5vECvnZfagaEq+FBI5fnFW0yxd5/uGrth2IyA4mCoKj70qs6bkuFV1rhua7vuScKjZcPAUDV8qJLm7qG2rTZ4RQ2SJq79XqQCGKqODyVYZ3w77zvEZafP16yGvUIDwVANfKhbyQIRkTYbxas/2jezuioaCYZq4kNbvwXENXI65by13andLwudmQGGauFDq8Y6+mTdCpGs//jiROinxiPAEB8fWlfrdOrJj7GC5aXmSxclLn9LaxZSm8fQLOSALH1m6bOrReusUldU63ZtO8JsGNssxIXJRFUISU5clnZCvGLL/VGnqo8ht78qKh4RoVAFIypgMTnADfA7+ETNUrkSuoXhwCEGRkgjCw2XGVzyimqgkK9Gz2zEBwzt3dpQzLt9NR3aV8TpLT/gHu+4alRFUNvsiqC6F0F+t6gT6d+H8bv6jt9VQPBE8HY+hwVBOT6kBbOrr0OAglG5f8cbiXnpV43yiVt1kwHVwM6eB8uCVOERKo0cKwEG3k+uwJZOhJ7wpWpY9VYVLg9Ca8j9Fb86bPLx2vVrzj8jFWMDyCV89J9DL+GTPcS13wDh2sEK16qrFuHJ0ctNGunJOeATLThbXNowqZYfLh0i4wMHBJYTGCSFtTgYa/00eXL1evfD74QbO1sPP7msw7+Uag/4YxHVHogRrqVn64AruwtKekscMWWnVfwxErjaRGE6ouiCjAokuiVw0dJH7rQrK9r+dGBgnR7jnua9DB4HYO1gBQuoOs4/Yib++a969m9Vz6Z66Capng1P+026BgReAXXQZhvgSpdr+VE9+9iXJmcVzrbCHWVC7mzpcSiIQ7KkWqC8biABhKIgQrNRUwIWG1ZcM0n17OSrdz/5tPF32z1xHq9nlldvs5YRg6j0ZEUF6I2FVvrIbYOJu+rZ8645lx3Mv+O67+Lgg9e2r9ltEdWzoeicWEVX3TyiM3n17PryhCOC81/dZh1KfRR5aw7fjNWzYZk0zMogyx/zmmJWxmTVsz+tsasoi/YSrJ6oONT+jBU5hGH66tkQnJ6s4LhcM2H17FJZ3xe3in3lGz/nbDeXld6DLaB6NkTIiRUhMKdxv82VyW87sVwq+dGuktuEDTWLPq87mrw4t5YAH43v7yIxfONASFQz5MOOzoQnDFaIIeBH4HeN5ANs1VpdnWhgbHF9hb4X7rqNNchxou5fot+b7kUTIwZiHAuWgYonAOObqKibM5CA/RPjthWwF8iBAdpTal7mfqE+Apc9icsD5P1ntqBEk+DdiCJR2OXcPCWq/cujp3QIABT2BD8BT1NCfhMxL+CJUbVfKmMAEXphFyxXA/UF42iyDVdWqB24vKnnwkNPvoffPi4nT0sX4mb6tMweyrUh0+XrkldlF7stfBX7ZO7xq+85AMyZFTCgUWZxonScAX+nBY/pD70liTWLLG0wWbJY1edx7t2j7qs8dvSaWmedW3rNslgxeSAM8YgItUxfegZzagVCf7uejfLmAFNEW2rxtPV/uZ0ULh18MbX9Ja03B6KtzCpaKzOJFuUfx3QxytUqIclhz5HCLOMx91bIlSJeK9ymnhw2sX4wNeCHKGynu8r53p0jbpO2CRAxv22O2BTDidGNiRiFFyvdGtZmp/PfffpXnhF4QEL6NuVhARIt3PqE1WRlsL6RTEMnyUIMWDYVqcIB5LoyKNhjgrMfgy0OdbkmcGMJFvYwiBGpYbvcX5gmDuRvGeqNAOVvfhOA/hQo/12q8g8Eyl/xZl7zUwSSHKDA7QZVhEwNvQ2Vkm+n03ENH6Cna0IB/6WzaRq4G60aLmOoIF9ieZqDwK23a0xgse6iQd1tyDYmEEs6oNsY/HpuNuZ6+UN+814+8lof5StY4rNOm9e+XgBmRwizlRAeXKdu1jXCYM7rlnD9HOLX724FqZQaWVAkph5YThR6FfG501Cf6zPEk/oNFsSPsCOXt7TJfi59+Usa5LychT0OW18UbFcdMNhwk+DOZBJOlar7vllrlXf0uzdejhfGiUnfrWQ3GVZHgu8TqVAgbAGTw+xA3AeLkWA6K1cOkyrkwTolHy7XhvFVYJmiNtwSUKP0LO9JkwJ52NDSiQ3FvMM3ALo2qOBbLDyldCOvc7+iB5aHB3ddZRqsGA6GGBIAn8J1CngXaeI5++ugV79mT+xEdp+xB9HdZ93l3KYzNSshr+UAAXKpELk1KJehZ2MxL+EGo/tsIHLV9MipSaoGVQsJ35WO8zwLBz10m1z6/vZXn95QWn/jCoIO6ZBHuZ7FEK1FrGhNuGGWSkLWASMjZDlxqJsjZ8fRC7i0MoUj/B2No5v7AOjkhsrUlJQ4+CevhrsiRpBQsOARYFE9UidqpJSpxJSXSZLXPmCO+CzIRKXN+TXFZoFRG2GVfTBsoa+gy9/FVT8YCUWNcd8LX6v/VbgnIFl53r5Ha0pgAn4rRGACu5wfUCxihQKoOE5UHkxExQ+tu3vqrGnC+Ue2SJZ+SR6da+U/BlvMtK4zuIof1VoaUsWPl6sNHl+14/mOh7+KtjcpqLwXK+6bVxsM7IbLDbzochStDDbwHFrqIfe0eMipuXHcQJ6+JVrb7cUJl5gf1bNGVZlzmQPIq99mg7zEbQJyL86yMksTkJsgKxORRElkZSKSKImsTEQSJZGViUiiJLIyEUmURFYmIomSyMpEJFESWZmtS92Lend5sevydOtXD7zq29BS3qDyIrWPmn7JQcqbhEn+dbyOOtzaXtx1o1XwoMvPbMnyL6fb7BcpVBroLmIBHLpTXoRhttVxlSuDseBAEP4AbEkJ15l4GoJh4X1qymmur0gDB/VLhnrlYKnY8jqYZFeRJ0bAijzLuDB/NV20DatmroKiAXiAH5jzghoHKJNF1ad7xqnTHmwMWtI+L7G2/N3GzgBYOV3HaTeT1iAKLKvLXkf64UxYVdCnROTEColSTVlCyxoNOvrsu1z+8o/q789xmBYxvrvPh+MbRrjGq6a5TxWOPMwBSlnX2FC6fI2++cDmp9n7EfMKm2wYZsSUg0s9IveMOVQyOWt9Vj+FozDGwU9Rc8QUiRnjuU72uBIhA3KwgG3168a5sY310UMIUVCOnmuQgUi2CQnOr3nxHybtribcvdw2LDhks8gCopYQJGtWkLKMjOvWd5Hrvrl+qypbZbDAIrOB0nzoGn/7/lPvxXuSHn52d9hPjiISz6VHEfUj+YHOXcaYLkTntD6m681EjC8CfSRWTb+IFq497Rrn69GbvhFPZ0IrBnBrk+O5+lS34Sqj2h5TD1gYGhswNPsbGKbzUKlOCxEbUDwA24br+RCmFT8fsV62apPzCj5vyEmvzuQOdDZYPJaB1kmDuVlxqonLayY4sNNnIVh+KB2LBa55inFcVwoDSwZmGjNU9TrLmg9cGSBaV3XU4/k1i7ciWyIxuBcNVI4hE7sEEKYNrDDNu24c2eUeQqPGms0WQoOWBtMRGELj03xHRwwa3A75MNkhUcPTTdtNvCOJdY17q21XpQZ1HzpcGsHX7dMg9suZXPOGuvuIaA92LkXKV8qGw0sytTwIJ0iDzBL1cBfLG6J2ynMMG5GHZ/soHabMInxyeFgx46FRhqoUFobSbe6C10F+S8nPLl9OV5opSK31U7bnwEDKOSTsAXQXSXc5tzlHPeeWxzkXC+ApAeFZhppz1mDOfX5oVDZJSd37sDWqXds50sl7/HvBwmv7Wq1Lm51Ijv7p7qdH//DrueFz7lit7eEnHFzmDdmZOl9RpgsH+Dx8yIYPUB9zZBhYY4kbw3RAdORR/9DTRthycUsGSNWhMi2b0N5c21XV1WuN+4Qhg0MWtD1Rjyw03f10oeHXuTaWUCr7WaWyyaKkknmQkIpR9FUaM3gRsmDc+CIFM7LLsBrxDad5bEia8XyXx9qCZMF4Y/fTBYNf51owmQ64OYHbjLT1qlNTMe/1Q+MWZNX0GGALC4U8Nzwm2i2q0XSarfvB5CEtKpd+1pTS1kH3AERbB3wgPxDJeMiGyI6HBK/7MvH6tnleWX06tPeIzvqhtT5yneyl4J9oeDJMR/0Kg0zg/OFh8qAw4FbCs4VSjQZ25NJnxeD0b9jig3pOG/W+dJ3UXTcmT/QhnidKy35xBqs6PzqvGxkBr467GroGFliTRXiESfcmyC++Y9+LKbe2H/CJf3XTa9y4a8vJysfk2OgHTEz+WCopxNAJlaPBb4xhaJTF6uiDa5SurTzpoBbMB9Lo9gdgK2v472yfkj/aZyy6QjSFz83a1R6uazHAKqMAg71E/fST2c/iA1dUbeKo4xc1zMFB5KrUQ7bI1c8HBOZdmTD32eN69gTvqCiqd5UO8uee5ILqpbxJzejohpQJ6WrewB8A9KQFdyooLe0MspPUyhRsr0VvxkoeN3TjBh6kfgzgnInauIExCvVjRM8vgk8QPb/gJ1F7flF7dlF7fv12Ty/qjYieXky2qYarXA1sjjEtCOc13Tiw9lNbn4XSg+s3L7b5i9yCUECfHYJcGwx93798aru/OnrOe1Dw2Mbi8nd53TOBdfyhOJ1Q2QswQSf6cTqimRYTSL/TqHFFg+j92oaFnA86Sp//LCYlbzUa1qiRitLE5w96fev61XXG9fmz7s0YwwVKalaU+j+mtWFizXbR9buGjpEBAFGz3skcpnsUncPw6/mx4Y1pzGfURpOdA4YUbk+7/T+zp9RyPiayp8cfsdnTFY/+s6e4fBptFjk6rN3uE3d9Rsg/L1POcmBPqWWaOLAURx+xWYptj/Lbnrar4LlgbOO6ztEby24Y3XptGgf2lLpJwAFKK1hRmvooH+0plUPNbk8xjWG0pwAp3J76W/yagDqduElma1WgyttZogiX3R+cw7ZdnNWNgyWB6yO2JUFrPeQBnCWzlSIgN0EyG6IGHmHqETXwiGQ2RA08IpkNUQOPSGZD1MDTlxik18AjktmoHhotYw1aRfSih1I9j4OMte6cCdnGhEL+vTqSiKKKhJCpMX+aTKyYZEItW8iBTAKZZLJs791eUx5+9kjZuytl+5B71PwhqVKmoPenZzJsdgJ+BLwDL/AC26LzlSqtTFdcCLZIZathS627iHgVQ6ydjX+QWqVQdIOMBS9mH/nM7EKxhGttXt+qGtHIJcVVpllfcI6ayRJad9fI1LAJK/Gx9V1UkYMUMFcLvA9W+CdYrsW/O/AwYJTjftQGikgKMxhQ5wZiXuP7wIC2E/GipoiKe0vVoXKlRBZCIkAb3eVu8tAw0vViuusBqoicV8lWuLakgfhbo/vppTEQ/dTw3KBWrnurosRboSaUWjrcQxkMy24R8BYoBi/C0EuOS5ivDhNk9JdK+MOqElKFCNaCykFEWrVMGq7/GStMrL8HV9UeFk/L1CqgHG3VUfWfA17W3mfj5eD7BC/3tHjMqeVVLXd7dCBrYr+fPrG/F2c0WZJnOppE1M0laBJRN5egSUTdXIImEXVzCV/ofvLAp23uVpYsmd6uE2/B1Yc5fKEB8/45G++V5rln8IOG9SVjg2nkCq0+UpGoxXg5INfeTJIs5r942IbIwS6Jrz7L2vDjyUuj0njgzxv8Rw1MpeFVAasSIUMl3zdCpnST8MPxZxgWEKQWHWZ9LXrVPcovGDg1/BqKeWFPYbRGBOYJbWsGrMx4T2khQrY0iRo61SaqT8ISApGwTGeYVAlIDvnF06tG7l572UGwal6nU5uflitEDgi66J5ADwgSA5xXMAKQBENINqESJ2xhxO+pWRInCgcBaPVGY8eOHb+MKfbHJwsG1peKVEjVWJxRAd0XpGz833g+2Os12nvhgorWn9dJb1KKqOIPQRRRJUbyQzodWaVjZwnSAdbolzHZRbXE4XINVrY4iCQmwoSgE+kPiq412X3Sc9sD+Zqs7WvJoTFr3RMRm7jZI/khnPKswuFZgnAgdDmFQzATk3DaCMLhR2IyAa+jAbfKlEEjdUUXO/FVEdKhsEZjM+yn7N9gSM++Iu0o2dJZ8PfSLwnl5i4MJ59jD8jxfPo5dtJofgjv5RM24V21oEJB5EKaVrlIsFO2BDVhcuVIJXCCgfiAuJQqJRQd+JdCNRwbhD86waFw6QjdBXRNkQxNwy2vinmsmVxgW7VDa4fTeusg0qLxy/khuaOskttmdsnBm2BExahUmbK6/Wi5MpTdEN4O/uS053gr300l+o8qkDye7D1aM/pM2SOcb3g74j4EXHEcp7lVTTFDiPupfZj81CpWo/0P78vyPWid+KhB69H25EidSLeR46eWDZPLhpPdVIgpU2ZbQwGsOqTJsRmEFZANlanCZVr1SH6E7oGa0h66bC4PZTeZEl+/MDuv1LYYbO9KjyqSx0sFgv9EqNRaV7lCq/tglLvPeMK0kZj3EWK/BBVtjAEu7Um6S0sskJGrYTcCG+zgJPaOBnn0pTvuaFK3RnuPjXWc0oefKECuPWZNPJWulvqR3NbJ1OJmeV0nA+TeQeScUXbEr4mYd/upUYnuFQJyuDB81TCZWi1n6FnB2+UxUiUb5TY/ZsDHMjPeN8v7FKZgRbURHGB1khWr3aZ1dYh9zKL4kgv+EnR2bsXe+mUtwz0+4qLQSfirMMZtVFa1JhYGxK/C/5fI6faQ79Avt/symbH/ivD/VhF+ajchkxThh57Ehmfp8IQ/4iRQLOzn+Cw/ivCPj+32tLxymPvuZotT/XpuWs/haXOObWQMQGgNRGg6at7DmuWzn5mkCP/cV4F+Pd5tEs/jZzx6u3TMCbMW4YeojGJFBeiNxawdjDv4w10R/pKVNG+XjeI5r205eEvfEMclFlGEH4quG6voOptHdCYvwr/kSsi9Oau7+2723xiT5TntuxmLNsAWkJiVQZ64z3TErIzJivAXWxtXcmuXMLdJM71CWl+RXDBzEX4IzihWcEKembAI/8oqE4tWv1PVdUq517WXR4epLKCcBUSoGytCYE7jfls/Jr9NLGjc5Feni4JNt2vGn1/1hlzu3QY7xBehUgBGp/ts1gw4t8oOkciz78drYQDE1arI0DDgw8Eu16oQo2o5UDssMr4tvepBjkFDc/vqi3kjngN8pSK46ULBNwMs7+s9z+vBqvLZrwWu4lggv/rxEf1k8ycI3Bcf99362T3DKu+9uyguFNUw5tGF4gP0tBC9WiJUP2IYrH1uXCNs3fQNloWqZWj/0rOlS4m4B3u8o9aUP7a/4c/FlBNS2I2IE1K665yX/QXfX8L6/ds+N7ezpNdMIxwl+MpyVbA8iKW2zcJ7vEO2vPleSar7fZpu/0jpM0c8gK6r+pH8EEY9VmHYmkcYtObYxkQsHL2UKi2gL2kQ3Du1c+oElqxgZRFuz2/WKShMpQ625zfvpBmq1mI/oL3Vx10r+1zxvCfeOPXWjoPttd/IvAY/wF87UoHof5k9lB/C+v6MTVhPzb7MIPJqjPJWK2RvdCsj1YM0LDMo4YNf96SZsZ6pfsHTNVm9O+dlqZzXpYMTbsjhUc8MWl2oZuLuvZ4b56XilpzF24p8OXfhy1nRvvNLfwuzSXGSmHfZCwBwJgC4igAAmhajPFGCypiLTEy+NTuhiMN38ZqEk40mBr5pRqEy0x72hQAUZwMg4bXe0ez//ywfh9qY+//Y+w6wJpL3/+ihNBFFQRTFWAGlqWdvQAi9KZY7eyRBooFgElTEgr1iPRU7NhAVxa7YsPfuqeedDXs5xd71P7PZDezu7JKYJcn39z+ex+eRfdnN5vPOvPPOzGc+r8H4OEOesfFxKj4rbT5O7t9LB961KQzdNbdnnwv3C4+aAB9H8Yxtd7PPMxMgFSxcuNAAfJwHPbOUZk39Q1bfvNiyzpxH902CjxPC6p0WpuAdg/BxpkU6h77Z6h68edT9d0sfKGaYBB+nLqtzKpqCc3jG5ONUjK80sdbFlz7pFQrHZVnYpZoUH+fzUzbnPTT6NNGE+DgD3MrwqoyqH77y/qw01/hJ/xiZj3OJ1XP7je65UuXj+Hxr+XJ8vTaB2beqPHT5sueaSfBxsByCkY8DAiGep/b9v8DHWTbSM+LtzdiwNe+fnRzwodEwI/NxPj9j4+Oco6e0pcLH2SOyu3aiSpXATR335z8dnyXlnI9DnZtzwDF5/4yNY1LwrLT4OKrrj6KqjI7wWWA2oN2Xj0/iOefjUGMEB1idY8Uqz7CpjrH5OP2YwtjgA9LG0oh1gp37I2WP7vd8Sd4p6ZQEz04GKkSJcfQTpjpsX9T3lyoT4ekxzW5Osof6lClfBDXzBsBPQLa81bXP7D/1PsN3ccW5ovmbFr9ifD/6Tk5xI639WUaDEBZZ/CgWolVSzz1p2So1T6NuxIFMYMY90CodBPAf5fyn2EU4Ie3eMZtoiQw4TCIOBnF9GPE4zK1qV4qYXOlQkOZv1+a8YEXzewc2nRjqT1HBQDuwsjq6I3zGs1KbSIes8MGAdviKKyUP6iH5n1Dy0DY7KMPgJW+QkdWAcj+wRG6+L456fybUv0/YsrqKp5nfjl6OizITwylkJcTpS6vSR17rE5vU03tcndj8uX7D5pG9t6geiWHySMbstKTnIR8D5w92UC6a6t6bvCYaAMkzKnpGxji9VN/AV4JRX13vMkkJU16sVlucXCaGcoyQEhiL/R2WDqtEA5Ra5SDUI5Llw+QxgyRizU2oV6cv56qva7tb7SrkTb8NwCyLIvVBUfWw2wj5JQgRnMch5JfgP6r8UsSEWx2ijz/zGX96W6rFq8grVPmlcd1XjL6R2CsoPT9j4cP06R0IO3EY9aflmagfjJBnYvK0NVQPwN2I3gOz/LC69ZzFIdvlvq1u7drfUh9vcb8bBvw6Gfp1CSrlmQUPmt82SuFJa1jfsa8SfIeEAUUBo+h3LNSkeLfpPBKhEsXkK7uAot4GEiJVkgKduD4NPPlrlwqnfSbHjT/kWbPDNVaXmQvUT0JoHeOG0nBaP1anhRnWaUQINgsTqAMqvGW0pt9jviH6KFOyV9cfL30tTVBKFBjrDnwEKWAifTWo07Y+Ix4v891ba1/TkNBqa6i+Mg9PUon6yzQCFjzKZhf8VG/6cOVdotbXTw5XbE5txerU+rdpWl+sBRTwxi5R67OgSwRQZFJYG7oZjHT0Mh3YVa6beKonHpfyfRGV7n28sCaOD+lipiG9073bkeayc4HLd+8vO3pHnYlkrmx0nDRWxYd1ZcnDOhyvmGpaO0XGxsKpiEgmw8uvSmHhPCje7YkEmFpwkOkVEPmStjw90DK63ARIdfFDFcNzF/Kq3tSXR2aDVd8FfVMJXxgtj19n05Yvh/JDZo/OfvrIvDCHWuAF+RVLTAmpRdf17GOp8OA9xCrdF8X9ABP8djd1Y42pPSjHWgUSl55B6a1uT9okSPsnKmbCzPVutCXlWO2A0bc/wUPtrN8ctBITWE7GWqAOe2zWUGeITXqqa+Tm1Bq/jBeM6y2vcWL7jVxyu4R3Gwp+Hiv8z/8xDYaYvoW61T0Csp3BN0FLdVAq7v5kpNB3Nd8DDwX5PogBBpKfQYfABxgJ0wCjs56Pq8Z7pa/no5qdP6r/iVa++2qmJS8cWielmJ5Pk8Vnff5YUj08/cj4x/9um2xXTM/npOek347Hromc3XzGoNN9rcOL6fkcqbS3/mBHaeTaMoJJr28LFxfT89ntVC4wsWaB785NKyYn9P5zZnFtQ3rlX0LbEFH5lyjUi6j8a4GbFlbr06tPXoZfate/gx/++QEKM1ripvL7Kq6xS+gStrTumTcfIkIrApMVbqpbIWDDi31zQ3ePjh8rsq2RAEzWuMm/09HokS4nfGfVXPfZb9L6b8BUATfl3hnu5tDuUkB2dMe7snm92wOTDW66e2VCtVTrd8HLvf44Nb76syBgqoibmgbI33vtXeq3dPjQ/MDDgVuByRY3ZcWNqpF2vFroKrus0fVn9agETJVw0y/x24/Wsn0uXPalT0bPg+Z+wFQZN73+Z9ultbEDBUv/jX9Zdu229cBkh5veP5/QZYdT+6Cdos6DJsRaKoCpCm6q3eHF9qwT6YLV72c1SbmSkQZMVYnvNWR+reETVZErLK80WzjtSQww2fMYZaAccNP6z8PjGswKEayr3PHk36IpjsBUDTfdSdrXIbZXQMCsJ45jDvT7WhOYHHHTmDv5Ze40auGzvFvDFsfthwwGpuq46dvi9Y3WuQ/z2dP/2F83vrxaB0w1cNP916rMu20mh0yYX+NNj+F/LgUmJ9zUzPHQrnsvX4UtnjJwbnTOYQhUTdwUd+f7svEjDvhmL2hX/y/3527AVAs3SVrWm/umq1/45pQedqsa72sATM6Ev7a3Nr9+84vfmosxr+vWTISinbVx0z2hS8jwhwrh4uV5Oe3eL5wOTHyiO0S/WZwcHRS+07vWuA09RrnQhKrq8BiEqu7LfhfVPlchaN6nf1zbzLS6wIFQVSxTiLKP3b1p0dGTwiUbCoafrjkigzx1FQ5LlMnFiNMXTAlwQ/wOPnFeFitTp4wHCTEIQngFQC2PW1ADFPLV6LNq3KCtbrgLmFa9OAbjK2LnMAoWZH+hWwHNotOo6hdBfrdHNRe1ffIgLmjFhc+H7YbV3sjhYVSONwjhyt6vECAxat55wk3I47/QKSdu3lkCmgbGexJLYIkjuVKKHT8B7yeVYVMnop3wRQp44loeL41BM9WGpzQqU2dkSNaSVnck+TtWkOnjms+h08eLTJyXpnHFWgwLXB//NYlMjn7UUcdMzgPvaOIid6niRCp+vGiQhA8SEE0Ja2aeuUWu/ODI2psDN+0zOxoTLqtNYRrij0UwDQkL196r5IE3dn+U99I9scZOY5vrCFwd4lAUQfiTUIFEguXdordQ4eQeNrWR/4kTXWaTI/VPHcHiAKwKrGCBpo6PPwOYxp//lBt+SrmBmqEbRLkB7jTfgg63R23y5IKxcpluY6WWyg0v2//2t21+leC8eeLh1d+fvcfhYEmNQPouIAGEbkCEZjAddD+m22D5s8oNXZ3XNd5xcWD4+E91zBo7ZCUZ9QgLRGULKyqg3Zgoy9Rwyg1+98s1n5Nwz2elR7kw8f02A0xCuQG6biqr64YYx3UGV27gl8ncIJ/aU7DJ8VuM/NCUF0ZUboBHdLAogzx6z/PCoozBlBuOD+PbDpm3I2LCjhpBq2YUrDOycgMEZwsrOMteGFC5oeEEyzuuq8Qh09+/ibn14SC5KJtxlBsgQlNZEQJ9Gs/b4pjytpOLRWHfWlcLHJvpbP60Xsp+cjYaBnI0frR/mPYLB36aYriwmgCRCYMZYiz4FeRdyXyArUKl1igAwRZvrzD3wlO3kVolTtT1S/R707NowqJDWdxjX/GyuLRUyQd4YOJX3ZYVsBcohgHy22XyLvc5eOZmwMR/57XZNvxNf8puErwbcUABu1xSpkSNfxzUvD30FWdf0Rohv7GQt/GrTrxjRwwgol24iqUK0HyBHT3YWnhZ87euehy+utpzhZXTCLKssaU/cTO9WxaZSgJsrO3Z5ZcqPBNuzX1vfqBLywYcALaIFTDQooySRKnHDPg3zXhMP3Q5LAsWX1pjvmSJql7mp+c9FZUN3pi+eXXqzWs/7DAhE+AM4bBEhURDe8aSWl+/aNff3PRLgCmu3ROVXk84qHPoplav3o7LynXlwLUKVtf2MZJrUfnxrI46pVoVworFc6QzR93pdivo5DCf9NrnO6dkX99L3fBDHKpSX+V87c4Tj0m5KFJJrifWxfCBUco0MPpdqXZzSMutPjk9+zhO67aPLB5QFZJfVXDpE55klkBuvUSHivFeAnk8gFxNwcUeIy56DDY5LCoUD0mlWo2I1G27kl+Y5g7kX2mbjUDm6CsA+mM/RAH5fqDxJ77Sl5/iG1YMFLjcAMsgwWxDnsB3JYqfA/TUAkjwf+qYpoSr0fKhEgb1kj+zu6a1aPRMsOyo3T81vZeQR9vy3TDSAT3G4NdLijE1Pt5yG/ohIGLbojYNrZt03ayvpiQkckKYzfwQJdPT3TCY9V0SblDM/ZrVrRh5glISk4Q1D4wThdbW4t/5Z8elw0G7xjn4BL+/Sy54aF30XPr0l2TknErpjsPWCwXbdQ8MNjwkDGQKCacr1nvTpIU8fOLrl6Gel0cLSd/NprME4zDyI5JkMkQsYEqYPYj7IBEWa7PShCEimVSsbuRDpao4vhxMUxTaRwLqLj3Le9K8QDZre2zPRcirCdG1Rm2+ZQB0Cwv17fsOwRgPD666SpQYERtDDAnAMM+J39p0GRM5ffvTMnVPXO9BTp+xB9HTZ/XlkrozlZWg71E0gJwjRG4lKmWAlV/NXjGmz1oi56RBTkFqarBpIeF7v2mI7dw1VfzGtXrx22f/NuSkugLeQNBbOmQr170YogVaEgta/xQahcVu0SU5UVIch3rFODueoSCllcg84d8oPQOD+sIkd4BEQaHEwR99A7cDNkBCx4JHgEl1strVSC9TByZ9Oom+GpSeeC8oRNHmorywXqDTQphjBIYtzBXU/F286YuRUDQatXj4mhvrIse1tCp/YEjkDcrGBPxWiI0J7HJpQIE1cUYoQBPHB6pBTAOVydT8o0ZLbsofl0LJv2WFbCX/Zmggl5k85FRuHDeQjzEr32xOm9jgxaq2K/c+c+rIAeRD3rBBHvuGgDyeM1amLQG5AViZCBIlwcpEkCgJViaCREmwMhEkSoKViSBREqxMBImSYGUiSJQEK7N9muS92RJBwPzpB1WHrS2W0ihvsPEiWx+VfskB5S2Byf91Q4943NxsFZBlJu5/9Uklsv+rqBf7BTK5EqaL2AYOPSkvz9Db6gZIYbnjOFgfWP0AbEoJ55k4DUG77X0q5bTEV6SBg/ojbbNyMFWc8RJ0suvIEyNgRh7xUqe1ayf1bhumpCGHrgF4gF+YeUFdZnwf/rDT87D0eNfM2pMLtumz11a6y9gXAFZTX+LDbiFNnBBMq2UvkXk4E1b2GkpEcayQKM1d0C320VUXn3Vub+atGzA+iENaxJiuEe9OZA4LyJZPCZrsl3yIA5QiWFHyfklffGDL09yjiH6FdTYMM6LLwakewT1j3ippNO1jmY0d/g0ba32mlqKPzWsj7ud6u+ONCLkhBw9PD3mpWxrbSLN7CCGKKab3CUcgUmxCgnM0xT+v/1P7oNlRW2enXh3X0wR2LSFI/VlBinip275uA3+p+ptrlqqKmgy2scgcoF72WdfcNSAnJMvHerVrRFcKcZF4Ln0XUWMpDXTasKLT8CWRGMmZBsZn3SLCzLw+CeatOhOwIjK4B30hnj4SmjGAW4e8n6uhug2V6yS5Tz1goe3egLbsbxCY3GEKf8YPsQDFg6WJ6QtQ+m/T/upk2/Ovfot8xzeKrRzS9Dm5DLM1th/LMKyTjCVFcWqI05cJDuK0KwQrCtXGMkBqXrVQp7GuIgaWBPQ0ZqhUv9fPKrdDGTj9r5ZbutvWPUOOREJwLxqoYiYDpwQQJh4rTM91HOxK3kKj7jUbbQsNRhqsjcAtND4td/TEoMHjUCJTHBK4nPFqPe52WEbAileq1tVrUdeh40WJfPU6DWK9nCk1d1HfR+z2YOdSRPwEyVB4SaKQxuADpFZhiXq4i+UNUSvlxcw68PAGfj4GKbOInBweVmz0WadAVRHbhlIv7oLXQS+H/xiZutb3nd+uV22chW1ukUuelsMeQE+R1JdL6nPUc2569rkMAE8shGcRqs9ZgD7X+bNObBIb9fuwiaR3fHFjvIdjq+DUhkf/DllYKZu8+6e+n777h18vCZ/qVwqeDmm2KXxMYCOLnn16DuQAnw6s+IDmYwyGgQVG3BiiBqIdj/qjWxU1my4ixQCJis1pT7eI637Oyo7M7TDoirO8R2ey09T3052GX+c6WEKvOLB6paxJeaXwAOEVnYYvWyzgJUrEePBFOubm0CVT9rbcKFjm2HRIaMvR58mOCcfupzsGv861Ywo98HAClxlp81VvLyEv6LNuEzInDQbYxEImLQmPqLW1T3gMnhaWvT18y14zuz0USSH1AxCSQrihNBBpxIpIhc/EuD6YaVzPnRP6tmfbNsET335TWRy+8YbsY/Unak+GaaeZYZAHcP7QOGlMHEgr4dlCkVIJ1SA1rBh8+Ndu8kE9p416X3qbVF/XhSf6CeeJ0tgvPmBWt+6TvjvgNfFUQy2ehAn8wiNM6jdBfnHP57Oi4uV3w+c5b3gXaN6lObnxMSU2GoOBB3+MSgox9EZxNPiNMAx1iljtIvAWpS5pQjqoBflASvX6ACyjAP9flFPyUyJGIhGljudGragC57UYYI4owKCONQAM78wKk9+4orYmjtQmqdscHOxcxX1i27n6TYO5kgnziJ0B507yjghSe1RvK30aUpmsuB1OEkKlB1ImpJ3CQT4AhicVuFNGkVPVKk5SlSnYXosuBE62a7twAw9SfwFwTkct3MA9ijNfEHqTxHiC0JuEn0TVm6TqRVL1Jn9aT5J6I0JPkik21QqQKkDM0UX+9nnlb84NLT19Z/RxO9o+r8FfZPlbX3rv8C1R3O5zh7hyjVo+j1xSOKLgbr7zcn3XTEDveAvd6Y1iL0CCzp0vxxBCjkwg/YxI8LeTt3Pa160VPv22zcrQaXXJ56u1EwmmonSnVb1RD76Kg/OOP5XVb/RdXw4nROkMK0q7vtAkAFnZLupaCzAx0gIgKuudPIapH0Ufw/DrpbHgjbWYj6iFJlcPDCk8nqr+x+IpVc7HQPG0Lms8ff/5v3iK+0fiJ7KfoHoeMmd9bLZbec9lHMRTqkwTB5HCmTVSWJV6PH1hM0e48FVY6PImnd5UzL40ioN4Sl0k4ACl95/ZUCr4XIrxlDqGGj2eOrPG0/eaCX6Syc8JqN2JGzJb8zLVX6UJEv13vPOJy72S1pmDKUHGZ7YpwSwN5EM4I7NVJCA3AJkNoYFHhHqEBh5BZkNo4BFkNoQGHkFmQ2jgEWQ2hAYeQWajZmg0xhqMisgmRlXP44CxNpQzJ1sb0Mk/pyOJEFUknEzd86f5xIzJJ1TZQg58MozJJ4t23fl90v2PwXm7tudtHnSXfM6vXJQoQSKj10ZhCmyuvvxEeEexCl38BLlKohYXgvLcbBq2VN1FxKtoE+2so2MUcpmsMxyx4MWiI5+FHSmRcHvP769uZ5ePnK08NfjFpOqMTGqLrkqJAgqAEx/bwF+e1F8GuVqwig4U/hFLVfh3BxkG3OUoSM2kuIQoc0QNoD4NhbyxH0AAbS3gpU4SWIWLFAOkCWGSWNIAaK2+3BnWOy1+3VJ9vYs8sfhVchSuGtFQeGnMh2O2GIhRCnhuUCVVv5U58VaoDqUQDQ1OEEPZLQLeMpbwItx6KXYJy9VleEkm9YQAVlGVimQCqAVVbCBSKSSieM3vmDCx5h68qSab/LBMVQHlaKmO2v45GJfPfWAbl/d/IMbl4SaPOVVe1XSXR/NYif3rNMT+FM6GSRue4YZJhG4uMUwidHOJYRKhm0sMkwjdXCIXiu1QJfruxLqCPROGf11zqHZksVzo0LjkA9d3jPOd0ONcH9sRj2/RBlcY9dHrYxQxXg4G1xFMnjTRcu1U0WGDlWs/9I2tXHuPb6Vdrv3YoEXv0ltHBMw+bN7oWP/fY02gXPv+b2zFb9d9M4Ga0+vXrzdAufbgs85tnv+eHrls3/2V0a0XUyqOGqlc+3xW74w1Be8YpFz7L1EXC5Rb4nyW8uKnbR+aucQkyrUnsDqnhyk4h2fMcu1nIs9dyTvV03dn7MPynQcdJdelNXa59gBW5zU1jvNMs1z7/go5dR29l/hO3btW8tclC3K1KsOXa3dm9ZyV0T0Hbyq1cu2tJR/sV3o6hW2fu2pch6hNZG0IY5Vrx3IIxnLtIBDieepIpjz1f6lcO7UshpHLtUd9ZyvXXv+7Ycq1V3kfvuLg7PDgve8D411WlxvEebl2qrgZByXIw76zlSBv9b20yrVXGpdbbd7ERRGrO7Vqluw8cBfn5dqpMYIDrOqzYlXp+/9X5dpHMYWx/0T4f0qEn1pNyCAi/DCT4P04Bk/4I04CZbgLefn02MmBCP+fHXy9Z9dtFbBilFOiZE06WZ5cv9PmHMfIWQChr7DfT0X1e6hZ/pgeI0tDhH9V4Zns69cbB63yfNbac5WwtVFF+CEqV1hRyTdsNGSdO+h28Ic7Ef5Ymysd3+xrEj6h3pLdDbc5k0vXG0uEH7puA6vr0o3jOoOL8HeYM/i3TzWr+m8YOvF55wpXKbsqBhVtgCUgsSiDPHFf6IlFGYOJ8OeeuHpK1F4QmlvT7euF8w3JO2uGF+GH4FxhBSf/uwFF+Nsc/XFg35+z/Td8XNbTJtubPE0zjpwFRGgDK0KgT+N522imvE3o26jxj/ZXfNfecs6+tOxlM7KOAHaIL1EuAyM6PWezYMC5edEWibToflwLAyCukCcNiAM5HKxyLY/VScuBWmGR8W3pqgfFjNpy+xoIeZdgmiQSwEUXCr4XwPR+1A99D1ZVLXotcBXHAvnVlyh71k3PLRQsO2TrZd8nkSxx/VO1uygpFDUw6ltsHqB3DqJXW4CqRww3a3/oVghb3X3FkgEKCTq/bJC1iOc7snLY9OsbHDcfjuVTTkhhNyJOSKmvcy77C75/Juv3n/PD2MmSpmXqkCjBV5bKxdIYFm2bqOZmC5MvbPPfdqnyPVXO+Zbktko8gN5WNZbScMYoVmcMNI4zaMWxddmx8AxNkKvA8CWKgWunrt7twZQVzCzi3flN2sfEyRVid37T9srBChX2CzpbvRFz4Wn1iMigxY93hczMb7aaPK7BD4hWJcsQ9S+LTKXhrG6szvIziZ4DH6VTtmpftNCdkKTor2TpQeOmqLKDCxaE7Gp0a3jGh8r79Jkq6zt18MYDOTzqeYGmC9VE2HXrD92yVDySs2RbWS3vZB4/KhOsWnnqePDzDguMO+0FACwiALiOAACGFp0yUWIoYxaZaNA06Ihl8/U+eyx7D5k+WrWXMpQZ9rAvBEDMBsC6oB9Eopn6P8bHoRbmNhgfJ453nIWP8yvveCnzcVZujqrzedLjiEljZm9d0zw1ywT4OLEQEsbdzV6848YnFcyePdsAfJzr6YWb7Rpn+02qXqbptwppy0yCj9OZ1TtBpuAdg/Bx2taefurdFX7kzl1/nmz9qdMFk+DjdGB1zq+m4ByeMfk4cXFXM1sHroqYuyVkyun2EedMio/TiNV5fOM4zzT5OAu3ebZa6fYuYEPswSVDvjRvYGQ+jgOr5yoY3XOlysdZObd7k5N2/PD5O3ccbfPHyqsmwcfBcghGPg4IhHieOub/Ah/nntAlZPhDhXDx8rycdu8XTjcyH2cdxJ6Rj/MHPaUtFT7Ol7RxJ6sogsMzL2w88araGQHnfBzq3JwDjslaiBwjx2QZGTkO+Tjv7JXvg8yWRWzrsrBJ+YZLkznn41BjBAdY/cGK1VTDxlxj83HGMoWxwQekjaUR6wQ790fKHt3v+ZK8U9IpCZ6dDFSIEuPoJ0x12L6o7y9VJsLTY5rdnGQP9SlTvghq5g2An4AuGRn9ZnFydFD4Tu9a4zb0GOXC+H70nZziRlr7s4wGISyy+FEsRKuknnvSslVqnkbdiAOZwMOPx3g8BwH8Rzn/Gesi7PXg4zGbaIkMOEwiDgZxfRjxOMytaleOY3KlQ0Gav12b84IVze8d2HRiqD9FBQPtwMrq6I7wGc9KbSIdssIHA9rhK66UPKiH5H9CyUPb7KAMg5e8QUam+oKXyM33xVEfz4T69wlbVlfxNPPb0ctxUWZi+JoST19alT7yWp/YpJ7e4+jE5k/2GzaPOLylemQCk0cyZqclPQ/5GDh/sINy0VT33uQ10QBInlHRMzLG6aX6Br4SjPrqepdJSpjyYrXa4uQyMZRjhJTAWOzvsHRYJRqg1CoHoR6RLB8mjxkkEWtuQr06fTlXfV3b3WpXEIQgmGVRpD4oqp75FiG/BCGC8ziE/BL8R5Vfiphwq0P08Wc+409vS7V4FXmFKr80rvuK0TcSewWl52csfJg+vQNhJw6j/rQ8E/WDEfJMTJ62huoBuBuR3rJ61i7tn2yviH1xhUOvDKpcoI+3uN8NA34tgH5dgkp5ZsGD5m+NUnjSGtZ37KsE3yFhQFHAKPodCzUp3m06j0SoRDH5yi6gqLeBhEiVpEAnri0v1W9xtl1q6Nor1atVkBTeZ3WZuUD9JITWMW4oDaflsTot07BOI0KwWZhAHVDhLaM1/R7zDdFHmZK9uv546WtpglKiwFh34CNIARPpq+WREo9OIxeFZsY/Nx+4+FY/qq/Mw5NUov4yjYAFj7LZBT/Vmz5ceZeo9fWTwxWbU+ewOnXUW5rWF2sBBbyxS9T6LEjwqDIprA3dDEY6epkO7CrXTTzVE49L+b6ISvc+XlgTx4f0iUxDeqd7tyPNZecCl+/eX3b0jjoTyVzZ6DhprIoP68qSh3U4XjHVtHaKjI2FUxGRTIaXX5XCwnlQvNsTCTC14CDTKyDyJW15eqBlbHwNkOrihyqG5y7kJbzWl0dmg1XfBX1TCV8Y+UX9bO1eLL71NGTG9L2D7Y59jqIWeEF+xRJTQmrRdT37WCo8eA+xSvdFcT/ABH/+a91YY2oPyrFWgcTFwfXtsxHdbUP3DFgpbvT71++0JeVY7YDRtz/BQ+2s3xy0EhNYTsZaoA57bNZQZ4hNeqqlbFe6z5U5grlBs35sbxnei9wu4d2Ggr8HK/wBxoGfxhDTt1C3ukdAtjP4Jmi9H0rF3Z+MFPqu5nvgoSDfBzHAQPIz6BD4ADOJaYDRWc/HVeO90tfz6e7cpXHyod2+K/4d3cn+TcewYno+V75e/fuL62BhntitwvZgq4fF9HxG5V6dv2zdbyGzVJWnvGhSOLiYnk9MY17fJ9//8V125Yp0W99el4vp+czJaewyK/FiyIIzQRUP3m34qpieD6LyL6FtiKj8SxTqRVT+tcBNt4/UaGLbbXrYmE/r/61+6sFhYLLETRYp5Va8lz4Pz17TT5q9UwbRsMJNd1sfrN7ulxs+aRVVQdGDnjQHJmvcdHnQs6X/dCsQpA0O6b3vmvM5YKqAm25unnvKffn5kPWBv/Ka/X3lNjDZ4KaclB/zfSKlfmPcm53+MTcoGZgq4qagqJZi73NKwX7x0+yp1zpkAZMtbkrxspANvT0jKK/d13vpudLZwFQJN7XcKr786M2GsNQ7CQvvHD1dC5gq46apr846P5GUD8s4efqfgv7XbYDJDjedab/9wpc8+4j0Zs0vJLzs9yswVSHgbTCqzKqjF0P2n55f/922x0eAqSpuKv/yzoPm2YME26td3/zxatMewGTPY5SBcsBNk9c+eLm589TgTb0P97kurtUPmKrhpoDZVwZ2vDM3eKLr8hSnhW1PApMjbhqfpjyy5k4H38kXg/opDh/fA0zVcZPn1M2xERkD/dd4lN3Qu6fLVWCqgZuEW7affSd7EjapTpsKgindoEKUE27qXMVs3bl/LgpmnXY7faNFw6fAVBM3VXVu5a2Sn/Rb7jXDfufXJ7Bt1MJNn5eN6PCqz1e/tJ2P+TvMclcCkzNuap0r7XzHbbj/NPEo+/mtHPKBqTZuqlDWTbip4vCAidMSbuQvrAI/i4+bPjm3OT1ndoOArJkVgj7vOB9FE6qqw2MQqrJa3uBs925ePiv6qmbO35cn50CoajJTiLKP3b1p0dGTwiUbCoafrjmCLBpvLhyWKJOLEacvmBLghvgdfOK8LFamThkPEmIQhPAKgFoet6AGKOSr0WfVuEFb3XAXIa+wzHEYXxE7h1EgPb5RhrZzyFpAs+g0qvpFkN+tzJtA5YLunoK1r7oM7rR4YjkOD6NyvEEIV/ZeQIDEqHnnCTch734Z2gYhW0rWvLMENA2M9ySWwBJHcqUUO34C3k8qw6ZORDvhixTwxLU8XhqDrmDnuOPQ1DUFkROORN4buERELkNqqfkcOn28yMR5aRpXrMWwwHWhjFF4GSUfddQxk/PAO5q4yF2qOJGKHy8aJOGDBERTwpqZZ976Xvyryks+hG94cSpvkRmfXMzOIhp/LIJpSFi49l4lD7yx+6O8l+6JNXYa21xH4OoQh6IIwp+ECiQSrOkrJ3e0eyGImFPmwYRt/o3JJyR/6ggWB2DdYAULNHV8/JnCNP78p9zwU8oN1AzdIMoNcKdZUBY43B61yZMLxsp6ZXUaK7VUbnB6l/qtn8dpQd6a0z2mHbRw5XCwpEYgfReQAEK+EKEZTAfdW5bVabD8WeUGXr2UbfNG3fRZdbDx2Oy+Ky8b9QgLRMWDFRXQbkyUZWo45YZK//Z4d+T6u8gNOfM9eO+7kLf8jaXcAF1XndV1tsZxncGVG6r1yfHwSszxXXjL/GqzPpTjvYZVboBHdLAogzx6z/PCoozBlBvOZx7InT2gZWTO9weh19fwybo6hldugOB4sIJTjwJOqSo3JHh+CrifdihyWZtdX+zHlXlvAsoNEKHqrAiBPo3nbVOZ8raTi0Vh31pXCxyb6Wz+tF7KfnI2GgZyNH60f5j2Cwd+mmK4sJoAkQmDGWIs+BXkXcl8gK1CpdYoAMEWb68w98JTt5FaJU7U9Uv0e9OzaMKiQ1nclpbH1WVxaamSD/BANUvdlhWwFyiGAfLb/eswoGXang6RGZ0Xbpn41awfZTcJ3o04oIBdLilTosY/DmreNocAJaIaIb+xkNfYUifesSMGENEuXMVSBWi+wI4ebKe82/7y/tejPlurSKs22hpI1uGx9CdupnfLIlNJgOW5XJv1d79e/rl3f5nc6uThfA4Aq8MKGGhRRkmi1GMG/JtmPKYfuhyWBYsvrTFfskRV2xf3t9Q62SZo3fiuzV/teJhjhwmZAGcIhyUqJBraM5bU+vpFu/7mpl8CTHHtyY2pp+4O+js875SHq/sgGz8OXGvD6tpfjORaVH48q6NOqVaFsGLxHOnM+f5vhlo8bx24VLTh3uuInX7UDT/EoSr1Vc7X7jzxmJSLIpXkemJdDB8YpzENjH5Xqt0c0nKrT07PPo7Tuu0jr1pXheRXFVz6hCeZJZBbL9GhYryXQB4PIFdTcLHHiIseg00OiwrFQ1KpViMidduu5BemuQP5V9pmI6DxL/oFgP7YD1FAvh9o/NN/YTy6o+WKm29YMVDgcgMsgwSzDXkC35Uofg7QUwsgwf+pY5oSrkbLh0oY1Euq1cr5/ln1VDhVfvXT3envyHsn5bthpAN6jMGvlxRjagXetB24caNgTcLzF+JGM5fpqykJYE6HMJv5IUqmp7thMOu7JNygmPs1q1sx8gSlJCYJax4YJwqJZZO3+VemvdgWuLkir3aPCy2ukU9kFD2XPv0lGTmnUrrjsPVCwXbdA4MNDwnTmULC6Yr13jRpIQ+f+PplqOfl0ULSd7PpLME4jPyIJJkMEQuYEmYP4j5IhMXarDRhiEgmFasb+VCpKo4vB9MUhfaRgLpLz/KeNC+Qzdoe23MR8vpDdK1Rm28ZAN0wvfu+QzDGw4OrrhIlRsTGEEM3QlFUe0FmrYB5VyYmBS6aUYucPmMPoqfP6ssldWcqK0Hfo2gAuX4QuZWolAFWfu32C2P6rCVyThrkFKSmBpsWEr4301bl1Wq4MWjX3MIBVb+X/518zB1vIOgtHbKV614M0QpjRcvvF4MmWMSLWnRJTpQUx6FeMc6OZyhIaSUyT/g3Ss/AoL4wyR0gUVAocfBH38DtgA2Q0LHgEWBSnax2NdLL1IFJn06irwalJ94LClG0uSgvrBfotBDmGIFhC3MFNX8Xb/pitCxnvuWUVm+8/GZXuvXXtw/25ykbE/BbITYmsMulAUUYKxR+moEqjWmgMpmaf9RoyU3541Io+VfvF/zAP7Lkn5MG8hkmDzmVG8cN5LF/OHWXTt3rk9bhw8PH5sIPHEA+04wN8klmBOQzOWNl2hKQG4CViSBREqxMBImSYGUiSJQEKxNBoiRYmQgSJcHKRJAoCVYmgkRJsDIn7QurZzvFPWDO/L+aRn3atYxGeYONF9n6qPRLDihvs5j8Xzf0iMfNzVYBWWbi/lefVCL7v4p6sV8gkythuoht4NCT8vIMva1ugBSWO46D9YHVD8CmlHCeidMQtNvep1JOS3xFGjioP9I2KwdTxcVwf+A68sQImJGn6LbN76TebcOUNOTQNQAP8AszL+hISBeHxFlzIqY/d2vvNb7tKX322kp3GfsCwGphWXzYLaSJE4Jp9VT6hj8bVvYaSkRxrJAopR92nbI371349rLzm9W4NvY0h7SIMV0j3p3IHBaQLZ8SNNkv+RAHKKWwoiQrS198YMvT3KOIfoV1NgwzosvBqR7BPWPeKvlhl1F9waZ+YbtdlVfP5rZRGXE/19sdb0TIDTl4eHqmjvu5jTS7hxCimGJ6n3AEIsUmJDgb3szMj/j4S2BeOfeFV4eM9TaBXUsI0gRWkFJ03Ndt4C9Vf3PNUlVRk8E2FpkD1Mcclz9kiQVBmdnPfEIC/qFw8Yjn0ncRNZbSQGcwKzoDNHu6s5kGxmfdIsLMvD4J5q06E7AiMrgHfSGePhKaMYBbh7yfq6G6DZXrJLlPPWCh7d6AtuxvEJieQtjO+CEWoHiwCIRuQ51227Szb+x88rj8qohx336PbjLswE7yYie2H8swrJOMJUVxaojTlwkOCw9BsKJQbSwDpOa3dBvrKmJgSUBPY4bqadLDsGrpgUHjm7xOmXhuOFnM3VII7kUDVcxk4JQAwnSFFaZTOg52JW+hUfeajbaFBiMN1kbgFhqfljt6YtDgcWgOUxwSuJzxaj3udlhGwIpXqtbVa1HXoeNFiXz1Og1ivZwpNXdR30fs9mDnUkT8BMlQeEmikMbgA6RWYYl6uIvlDVEr5cXMOvDwLC2OQ8osIieHhxWfmOsUqCpi21DqxV3wOshvGVJ25vFpPzYHT9xad+ebuJxG5BQJewA9RVJfLqnPUc+56dnnMgA85hCeRag+ZwH63DdzndgkNur3YRNJ3zSogJ9d39pvw+aLh8tOPn6PvPunvp+++4dfLwmfh8ebukVVmeKzJyXb3+LfZvqum0B83piz4QOajzEYBhYYcWOIGoh2POqPblXUbLqIFAMkKjan7e1RbvLRPzYFZkUuzh3c/Gso2Wnq++lOw69zHSyhV26zeuVPk/JK4QHCKzoNX7ZYwEuUiPHgi6658CSHt7n9Cr8ZeSent7CPdCY7Jhy7n+4Y/DrXjin0wMMJXGakzVe9vYS8j+a6TcicNBhgEwuZtCQ8lqUI97ZK/zV4+osedUcULBBTJIXUD0BICuGG0kDkiTkbIjfMiXF9LtO4njsn9G3Ptm2CJ779prI4fOMN2cfqT9SeDNNOM8MgD+D8oXHSmDiQVsKzhSKlEqpBalgx+PCv3eSDek4b9b70Nqm+rgNPdKc5zhOlsV98wKwumz6u67gDXhNPNdTiSZjALzzCpH4T5Be33KCMnvTWzXdPfHzTOtJ+5KHNnCmx0RgMPPhD+tx2iKE3iqPBb4RhqFPEaheBtyh1SRPSQS3IB1Kq1wdgGQX4/6Kckp8SMRKJKHU8N2pFFTivxQBzRAEGdayzNZ35D5PfuKK2Jo7UJqnbHBzsXE02Z9u5StVgPo8J84idAedO8o4IUntUbyt9GlKZrLgdThJCpQdSJqSdwkE+AIYnFbhTRpFT1SpOUpUp2F6LLgROtmu7cAMPUsMRejpq4QbuUeRZHKfrTRLjCUJvEn4SVW+SqhdJ1Zv8aT1J6o0IPUmm2FQrQKoAMUcX+dsukw7m3Tx2SLAo7s2eI79ssCfL3/rSe4dvieJ2hUrnUWbhAyOX/Wv+LfLog+P6rplAIUnoTm8UewESdI5YHEcIOTKB9DMiwTfDjkn6zwkPmm15qrO7c6t1PyESTEUp+fe7aRUqrw4+MPiTey97ib4cTohSHitKuRbHqRKArGwXda0FmBhpARCV9U4ew9SPoo9h+PXSWPDGWsxH1EKTqweGFB5P5/+PxVOqnI+B4qmENZ5G/hdPCf9M27U+tEmzf/1WzKxkpvzr3g0O4ilVpomDSBHDGil+L/V4mjKrV4dXUzzCVgTeyxu1ek8DDuIpdZGAA5QiWVESlmY8pY6hRo+nMazxNFITTxeY/JyA2p24IbM1L1P9VZog0X/HO5+43Ctp+opFwClBfQu2KUFNDeTpnJHZKhKQG4DMhtDAI0I9QgOPILMhNPAIMhtCA48gsyE08AgyG0IDjyCzUTM0GmMNRkX0Hi5FPY8DxtpCzpxsbUAn/5yOJEJUkXAydc+f5hMzJp9QZQs58MkiJp8s2nXn90n3Pwbn7dqet3nQXfI5v3JRogSJjF4bhSmwufryE+EdxSp08RPkKolaXAjKc7Np2FJ1FxGvok20s46OUchlss5wxIIXi458FnakRMK2XtVP1Jhcx2dW3Tje4xpJjLrLFl2VEgUUACc+toG/PKm/DHK1YBUdKPwjlqrw7w4yDLjLUZCaSXEJUeaIVsi2oZA3tzwIoK0FvNRJAqtwkWKANCFMEksaAK3VlzvDeqfFr1uqr3eRJxa/So7CFTs1FNrMKX/cFgMxSgHPDaqk6rcyJ94K1aEUoqHBCWIou0XAW8YSXoRbL8UuYbm6DC/JpJ4QwCqqUpFMALWgig1EKoVEFK/5HRMm1tyDN9XFJj8sU1VAOVqqo7Z/DsblPeXZxuWt5YlxeYnJY06VVzXd5dHNrMT+bA2xfylnw6QNz3DDJEI3lxgmEbq5xDCJ0M0lhkmEbi6RC+Wd8T79x9rTws1/jh9+jdepQbFcaPFf2xb6PmkVPLtiQrM1oSNH0QZXGPWRDYkqxsvB4LqMyZMmWq6dKjpssHLt2y3ZyrWPoUvJcFyu/UGPSmXLpo4MT0/2Spu3s08HEyjXvtWSrfhttnEEM8g1p1etWmWAcu19PRpEx049JVw0aUL3IbWEC0yiXPtyVu/MMwXvGKRc+8VjNdctUk31mfIt1qzza4sHJlGufRqrc8aYgnN4xizXvsripmzPzjyfrZLrh27LKtmaVLn2oazOizchoSCjl2t3uNGDX27wLcG827+cOhgy1snI5dpjWD33u9E9B28qtXLtfMnvlRrt8whY1C7RLKvivYsmUa4dyyEYy7WP0Yg9LWfKU/+XyrVTy2IYuVz7V0u2cu0P6SltqZRrl/uf7zV18Z/+0+rGhv5rmbWD83LtVHEzDkqQf7ZkK0FeqJtsog7l2v+u3Kzsir5b/be0Ti/j1lwyUf8uTMGKGiM4wOohK1b/GDbmGrtcewZTGPtPhP+nRPip1YQMIsIPM4kuVsfhCX/ESaAMdyHvV6vSEOFvyx/d8BB/jWDewbvfdph1usXhaXOOY+QsgFBniNBUVL+HmuVBVgYR4X905EabgblfI7PKfU06fLhPsFFF+CEqHVhRAe3GZOYOuh384U6EP+TU6ZspPmd9DsyzcPKs8/mMSYjwQ9c1YnUd3ziuM7gIf422S2V5+94FT2nae9/ga1ffU3Y6DSnaAEtAYlEGeeK+0BOLMgYT4R8mW/HXp8f5kSt/xFiNiYyZbGQRfghOB1ZwfrUyoAj/P149Lbf9+j1k8YXyGZ8PJpOnPsaRs4AINWJFCPRpPG9bwZS3CX0bNf7R/orv2lvO2ZeWvWxG1hHADvElymVgRKfnbBYMODcv2iKRFt2Pa2EAxBXypAFxIIeDVa7lsTppOVArLDK+LV31oJhRW25fAyFvH8RXJICLLhR8L4Dp/Vx6mqTjwaqqRa8FruJYoMlCfeZ9uNi0aui6wze7pJyyoBQ6+5naXZQUihoY9S02D9DbA9GrLUDVI4abtbqlUBXU3VcsGaCQoPNL8UhPxdcvdfx2LD38LGljXgLlhBR2I+KElPo657K/4PtnsX7/pUZPljQtU4dECb6yVC6WxrBo24yqVXfdxsu8gCkx+Q7LuoysT26rxAPobVVjKQ1nzGV1xhTTSH94uuxYeIYmyFVg+BLFwLVTV+/2YMoKZhbx7vwm7WPi5AqxO79pe+VghQr7BZ2tjv0wircydn7oikHpAX+s6LucPK7BD4hWJcsQ9S+LTKXhrNGszkoyiZ4DH6VTtmpftNCdkKTor2TpQU4zZk0e4fBP8J75g5fOrTphqD5TZX2nDt54IIdHPS/QdKGaCNfn6Jil4pGcJdvaroxKbOTsGJi6fE+gf9NKJ4077QUArCAAuI4AAIYWnTJRYihjFpk4+vJOeprYLGjOn/Xu9pl5J5kylBn2sC8EYCIbAN2GaRLNlf9jfBxqYW6D8XHaWbPxcSysS5uP8/eLLsLBPb6FzZVs6B3X20VhAnycNtZsu5ve1iZAKpg6daoB+DhW0/dM9mt3w2/5RJekf2qLzpoEH6chq3dqmoJ3DMLH2T9QGN/nXrfgKX3fCuq8V8abBB/HjtU5FqbgHJ4x+TjL4qKds+omhqVNn3rGzdb5g0nxcb5bsTnvrdGTXRPi4xRcXuOd4jvDb/NU34TBx6o3NjIf5ymr5+4Y3XOlysf58WF/oFvDlr5z7VolTxVf2WQSfBwsh2Dk44BAiOepq/4v8HEqlHUTbqo4PGDitIQb+QurGJuPM8qajY8TR09pS4WPM3b0wbgPL1MEe+b4NBlv6/Kacz4OdW7OAcdkhDUbx0RhXVp8nMrbX8vNfpX4LVpzro1t2+gxnPNxqDGCA6ziWLHqY9hUx9h8nNVMYWzwAWljacQ6wc79kbJH93u+JO+UdEqCZycDFaLEOPoJUx22L+r7S5WJ8PSYZjcn2UN9ypQvgpp5A+AnIFveJ+c2p+fMbhCQNbNC0Ocd56MY34++k1PcSGt/ltEghEUWP4qFaJXUc09atkrN06gbcSAT8IfCXA4C+I9y/lPqIrwkMD9uEy2RAYdJxMEgrg8jHoe5Ve3KNUyudChI87drc16wovm9A5tODPWnqGCgHVhZHd0RPuNZqU2kQ1b4YEA7fMWVkgf1kPxPKHlomx2UYfCSN8jIZljgJXLzfXHUM5lQ/z5hy+oqnmZ+O3o5LspMDF9T4ulLq9JHXusTm9TTexyd2PzJfsPmkdtmVI9kMXkkY3Za0vOQj4HzBzsoF011701eEw2A5BkVPSNjnF6qb+ArwaivrneZpIQpL1arLU4uE0M5RkgJjMX+DkuHVaIBSq1yEOoRyfJh8phBErHmJtSr05dz1de13a12FfICywEwy6JIfVBU3aUcQn4JQgTncQj5JfiPKr8UMeFWh+jjz3zGn96WavEq8gpVfmlc9xWjbyT2CkrPz1j4MH16B8JOHEb9aXkm6gcj5JmYPG0N1QNwN6LFBz8/He5SuEk4703+2c9d9+zUx1vc74YBvwqhX5egUp5ZoAu1LWeUwpPWsL5jXyX4DgkDigJG0e9YqEnxbtN5JEIlislXdgFFvQ0kRKokBTpxPdFIuHjlvcrhua//lA1qlf0vq8vMBeonIbSOcUNpOK0Jq9NcDOs0IgSbhQnUARXeMlrT7zHfEH2UKdmr64+XvpYmKCUKjHUHPoIUMJG+Gvrq04txWe8jpv1aPzN3ySge1Vfm4UkqUX+ZRsCCR9nsgp/qTR+uvEvU+vrJ4YrNqbVYnVqlHE3ri7WAAt7YJWp9FjRnmiKTwtrQzWCko5fpwK5y3cRTPfG4lO+LqHTv44U1cXxIX8s0pHe6dzvSXHYucPnu/WVH76hDPg9iFR0njVXxYV1Z8rAOxyummtZOkbGxcCoiksnw8qtSWDgPind7IgGmFhxkegVEvqQtTw+0jMYwzenihyqG5y7kWZvpyyOzwarvgr6phC+M/KKh3nsXZi45EDGhU179CV3Hk9WGzBi+YokpIbXoup59LBVg5QaxSvdFcT/ABL+2mW6sMbUH5VirQOKS6934jpvzGb+JVTY0X1fw2Za2pByrHTD69ifwze1ZvzloJSawnIy1QB322KyhzhCb9FT+9j7DqkyWBM1pxh9ye1u7o+R2Ce82FPxlWOH/YNj63gT8NIaYvoW61T0Csp3BN0F6hFpx9ycjhb6r+R54KMj3QQwwkPxsrdHzyWYaYHTW83HVeK/09XwEaVt7+Lh+C9nZIGhM93PllcX0fDxeNOAlp62NWHXe9h/VfIfsYno+LRq2GxW/4oDP1gtOj/PXupQrpudzMjxlWvbDyiFznr1cKdoR9U8xPZ/VZ1c+dho1K3Tt9ibj7lU51qKYng+i8i+hbYio/EsU6kVU/rXATU0XVA1ev/W7YGqt7wd97qauBiZL3LTAPCCplZ80eIb/H/VOfTg3F5iscJPVjDURUX19wxeM33svavRUH2Cyxk0FwyKWJ31YHL7TNr13u5fvofpiBdw0K2vlgZRIG//906cm9u/RNBiYbHBTm1+uBVR+/zx0Srmz5zOb9jsOTBWJB665d2Fywo2IdWvsW70Ut7QEJlvcFOf+e1cPRZOQhVfLvonvOWk4MFXCTW6JVvZ9+fsDc4TfLEbdTpgMTJVxk6KJTxTP41Lg/rJnA0f53UkDJjvc1PLrmDH+5YWhY5eH+Xwe22IBMFXBTU/WyWzEiT3DM6Z8PGv2b7e3wFQVN8UeeWK+Z9Bn//GJt95e7z37ETDZ8xhloBxw0+Wejb5VePWHT+7qlTHz1z7YCkzVcNOrZ0cOh1qNDl3Q32+JbZO5UEjRETeN2DE9LsymU+DmQwni7m3EFsBUHTdtcyz3sMGtpPAFOVdrjrqw4CAw1cBN1qP+7jJo4bXQzS4N9zQLmKIAJifc5PDgidvp2S8j5yqtKnf2qTQLmGripkk9LMImJHcUzksb/Cph1CczYKqFm+pGe5zc83SY3/Le73fNdWwFTc646TfBjN9HuP4Vvm04v1KlPMeFwFQbNwW5qf64O6yG3x+DLjbLqZL8BJj4RCfafeDI5cwR4Tktr/jFt3E8TROqqsNjEKqKeyXf27zGmchlkqkNNkyqdxIRNnQVqlrHFKLsY3dvWnT0pHDJhoLhp2uOyCBPXYXDEmVyMeL0BVMC3BC/g0+cl8XK1CnjQUIMghBeAVDL4xbUAIV8NfqsGjdoqxsOS1hVOA7jK2LnMAqkxycr6FZAs+g0qvpF0MXqK9ydcv3XqIAlY3794HXyHlmKXr/DqBxvEMKVvZsQIDFq3nnCTci7XEGnnLh5ZwloGhjvSSyBJY7kSil2/AS8n1SGTZ2IdsIXKeCJa3m8NAaJYp8nhRsmhvODF9df+rp9dOJDMn1c8zl0+niRifPSNK5Yi2GB60AFk8jk6EcddczkPPCOJi5ylypOpOLHiwZJ+CAB0ZSwZuaZW13efmhewDlBetyrTa9/9a1GYRrij0UwDQkL196r5IE3dn+U99I9scZOY5vrCFwd4lAUQfiTUIFEgrUkosbAfS+X+M9bann/RMetZB3MnzqCxQFYJ1nBAk0dH3/WM40//yk3/JRyAzVDN4hyA9xpbmoDHG6P2uTJBWOlnU1pKDc4WlxYfuxofMTyJZvrvFmW34zDwZIagfRdQAIIeUOEZjAddG9oYxDlhmXml9ZOOOEgyMtpeKequ2ULox5hgajUZEUFtBsTZZkaTrnhfGiF4BZfEkLWVtmZumrCtJ4modwAXWfB6rrvpprOcKzcYDVyTY9TFvMiM74f+bz0tie5RpxhlRvgER0syiCP3vO8sChjMOWGFk5zU198+yJcME9k/m/2mB9GVm6A4NRkBcfOxoDKDYt/q1gwanmjwKWOmXvrdV733ASUG7ATXqwIfdfkbRuY8raTi0Vh31pXCxyb6Wz+tF7KfnI2GgZyNH60f5j2Cwd+mmK4sJoAkQmDGWIs+BXkXcl8gK1CpdYoAMEWb68w98JTt5FaJU7U9Uv0e9OzaMKiQ1nchlXxsri0VMkHeKB8Vd2WFbAXKIYBmhT/x9Z/bktGB25bXD2v3cC4V5TdJHg34oACdrnETIkS/zioeVu/Ks6+ojVCfmMhr0ZVnXjHjhhARLtwFUsVoPkCO3qwPRy9O7vhyd/CVib1nJyd8vA7uVv6EzfTu2WRqSTAHh+/U79O4uyIqQ/5z3Z32t6IA8AqsQIGWpRRkij1mAH/phmP6Ycuh2XB4ktrzJcsUXX887cXKk0IDN9n37Uwc+WWnnaYkAlwhnBYokKioT1jSa2vX7Trb276JcAU1/ZXJNf/Nutd0NZnU6rfVjiEceDar1XYXPu6iunkx7M66pRqVQgrFs/RkmUrLeym+Mz12T5hyYi/lr3fTd3wQxyqUl/lfO3OE49JuShSSa4n1sXwgTGHaWD0u1Lt5pCWW31yevZxnNZtH5noUBWSX1Vw6ROeZJZAbr1Eh4rxXgJ5PIBcTcHFHiMuegw2OSwqFA9JpVqNiNRtu5JfmOYO5F9pm42Axj+lIgD9sR+igHw/0PhTKurLT/ENKwYKXG6AZZBgtiFP4LsSxc8BemoBJPg/dUxTwtVo+VAJg3pJ//Xeh6qM3+2XO+Hggshjtcllict3w0gH9BiDXy8pxowM++t42lmfoKlDNoY25d3ara+mJIB5EoTZzA9RMj3dDYNZ3yXhBsXcr1ndipEnKCUxSVjzwDhRSCx3/73yT7/Rn3ym+1x4dmnDuBrkExlFz6VPf0lGzqmU7jhsvVCwXffAYMNDwkamkHC6Yr03TVrIwye+fhnqeXm0kPTdbDpLMA4jPyJJJkPEAqaE2YO4DxJhsTYrTRgikknF6kY+VKqK48vBNEWhfSSg7tKzvCfNC2Sztsf2XIS8ThBda9TmWwZAt63efd8hGOPhwVVXiRIjYmOIIQFoMPrd5DPC/gFL/51sMTmuL4WMhT2Inj6rL5fUnamsBH2PogHkIiFyK1EpA1b5tSJj+qwlck4a5BSkpgabFrqQi8vw+RH+g4PXPKsx6bN8cV/yMXe8gaC3dMhWrnsxRKstK1pNKhqFxW7RJTlRUhyHesU4O56hIKWVyDzh3yg9A4P6wiR3gERBocTBH30DtwM2QELHgkeASXWy2tVIL1MHJn06ib4alJ54LyhE0eaivLBeoNNCmGMEhi3MFdT8Xbzpi5FQDCgY79zn4kWfdV5NN0V9zThH2ZiA3wqxMYFdLg0o2rJC0UQzUG1iGqhMpuYfNVpyU/64FEr+2VVkK/lnpYE81+Qhp3LjuIH8q/TyE6uGnfzXPpQvCOKPzOcA8lG2bJAPsSUg38wZK9OWgNwArEwEiZJgZSJIlAQrE0GiJFiZCBIlwcpEkCgJViaCREmwMhEkSoKVOf9YTi0X2aeAHS1lOea5uZtolDfYeNG7KxT6JQeUty1M/q8besTj5margCwzcf+rTyqR/V9FvdgvkMmVMF3ENnDoSXl5ht5WN0AKyx3HwfrA6gdgU0o4z8RpCNpt71MppyW+Ig0c1B9pm5WDqeJUuD9wHXliBMzIB+q2ze+k3m3DlDTk0DUAD/ALMy9o3MKrX2aYpwmyf/n7RKFX1iR99tpKdxn7AsBqsg0+7BbSxAnBtDqZvuHPhpW9hhJRHCv0VsZdW+/JwV99xrVyyrn24Px8DmkRY7pGvDuROSwgWz4laLJf8iEOUBrIilJPG/riA1ue5h5F9Cuss2GYEV0OTvUI7hnzVknIyZt/d2j+IHLP6Efr7mXaPzLifq63O96IkBty8PD0KB33cxtpdg8hRDHF9D7hCESKTUhwchpE1f/VeXdY2mRlpmJchtwEdi0hSCpWkAbquK/bwF+q/uaapaqiJoNtLDIHqBbP06webforYEZaoyPNq+1uRd5FJJ5L30XUWEoDnX6s6HSzIRKjrUwD47NuEWFmXp8E81adCVgRGdyDvhBPHwnNGMCtQ97P1VDdhsp1ktynHrDQdm9AW/Y3CEx/QdjO+CEWoHgAtsO6DXXabdNOb3HOen3a3wHbL65/cPFjYD/yYie2H8swrJOMJUVxaojTlwkO4vQ1CFYUqo1lgNT8rG5jXUUMLAnoacxQjRp8dewNq1uB6+wOdUrv4dyGHImE4F40UMVMBk4JIEyHWWHareNgV/IWGnWv2WhbaDDSYG0EbqHxabmjJwYNHoe2McUhgcsZr9bjbodlBKx4pWpdvRZ1HTpelMhXr9Mg1suZUnMX9X3Ebg92LkXET5AMhZckCmkMPkBqFZaoh7tY3hC1Ul7MrAMP76PdcUiZReTk8LDidTudAlVFbBtKvbgLXgf5La8973u9/qFhwTn9Wh39cr5gJDlFwh5AT5HUl0vqc9Rzbnr2uQwAz3sIzyJUn7MAfe65nU5sEhv1+7CJpOesT9tzeFpNwUan7DPfE8LIKkf416Xv/uHXS8Jn0NbP0gsXbQPSbpxPKrAx53OATwErPqD5GINhYIERN4aogWjHo/7oVkXNpotIMUCiYnPax0nN9jV79Htgaj+HO9FVbzYlO019P91p+HWugyX0yjlWrxwxKa8UHiC8otPwZYsFvESJGA++aCX8oIMVAt44R84ftOHA8OzB5cmOCcfupzsGv861Ywo98HAClxlp81VvLyHvkZ1uEzInDQbYxEImLQmPIWWvnxk755b/ho4LD1b73LY7RVJI/QCEpBBuKA1ErrMictKOGNe3M43ruXNC3/Zs2yZ44ttvKovDN96Qfaz+RO3JMO00MwzyAM4fGieNiQNpJTxbKFIqoRqkhhWDD/9arsJRzmmj3pfeJtXXdeCJZtrhPFEa+8UHzOrS6eO6jjvgNfFUQy2ehAn8wiNM6jdBfvFfJlSfHDL/e+iY8s9W+pdtW5Pc+JgSG43BwIM/pM+thhh6ozga/EYYhjpFrHYReItSlzQhHdSCfCClen0AllGA/y/KKfkpESORiFLHc6NWVIHzWgwwRxRgUMc6XdOZd5j8xhW1NXGkNknd5uBg52qoHdvOlVyD+U4mzCN2Bpw7yTsiSO1Rva30aUhlsuJ2OEkIlR5ImZB2Cgf5ABieVOBOGUVOVas4SVWmYHstuhA42a7twg08SA0ps9NRCzdwjyK7CkJvkhhPEHqT8JOoepNUvUiq3uRP60lSb0ToSTLFploBUgWIObrI3/p6XinYMlwcOKb2/Vkftn16Qpa/9aX3Dt8Sxe2iGoVeH/jwjG9eYOrDOhebe+m7ZgJ6xz7oTm8UewESdLZWOY4QcmQC6WdEgj16y0cva+MSnLE/bfX0BXVG/IRIMBWl+tm9lVn3TgnniVscbNB/hBUHKGWzorS8Ck0CkJXtoq61ABMjLQCist7JY5j6UfQxDL9eGgveWIv5iFpocvXAkMLj6a7/sXhKlfMxUDztwhpPO/wXTwn/ZL8bl1H12s2IfXuP964+VHGCg3hKlWniIFJ0Zo0UQaUeT2vFHGo1f+3tgDXSZ/+G/L6xOQfxlLpIwAFKHVhR+rU04yl1DDV6PO3MGk87aOLpbpOfE1C7EzdktuZlqr9KEyT673jnE5d7Ja0zB1OCKlXYpgTWGsjzOCOzVSQgNwCZDaGBR4R6hAYeQWZDaOARZDaEBh5BZkNo4BFkNoQGHkFmo2ZoNMYajIrIJkZVz+OAsbaHMydbG9DJP6cjiRBVJJxM3fOn+cSMySdU2UIOfLKXySeLdt35fdL9j8F5u7bnbR50l5wNl4sSJUhk9NooTIHN1ZefCO8oVqGLnyBXSdTiQlCem03Dlqq7iHgVbaKddXSMQi6TdYYjFrxYdOSzsCMlElbsej5E7PU6MudL7XprZrSszBQJLboqJQooAE58bAN/eVJ/GeRqwSo6UPhHLFXh3x1kGHCXoyA1k+ISoswRrZBtQyEvtTIIoK0FvNRJAqtwkWKANCFMEksaAK3VlzvDeqfFr1uqr3eRJxa/So7CM8FHvBld+bgtBmKUAp4bVEnVb2VOvBWqQylEQ4MTxFB2i4C3jCW8CLdeil3CcnUZXpJJPSGAVVSlIpkAakEVG4hUCokoXvM7JkysuQdvqvtMflimqoBytFRHbf8cjMvrKrONyysrE+PyfpPHnCqvarrLoxmsxP50DbH/AGfDpA3PcMMkQjeXGCYRurnEMInQzSWGSYRuLpELbd7r4nZ87fzgbeedrZXfFe7FcqFLh68fajDzZVja0Kir8QdkB2mDK4z6yIZEFePlYHDNZ/KkiZZrp4oOG6xc++qqbOXaE+lSMhyXa7d13PHHUenz8FWX/hzbLPOQKZRrX1mVrfhtunG0UMg1p5csWWKAcu1T5w6yDEmND1vk3fnyxD9PDjWJcu0zWL0z3hS8Y5By7Z9lDaPtGqwUblPUute+ehR5J91Y5dqHszon0RScwzNmufY51rmJqk2ioEWFf7ukfDhGliU2drn2WFbn9TKSBpRJlms/7NA1tWebOWHpoRO3exxIyjRyufbOrJ4LMrrn4E2lVq49pYZ53dS6CeFzAmzOJNtNJRc2N1a5diyHYCzXnqgRezrIlKf+L5Vrp5bFMHK59mdV2cq1/0lPaUulXDtv3F9t1566Ebizz4K/a8qmbOK8XDtV3IyDEuRPqrKVIL+tm2yiDuXaPy5PyVVuqxq5aXTB5Jp/963Aebl2aozgAKs/WbE6bdiYa+xy7YeYwth/Ivw/JcJPrSZkEBF+mEkI7I/DE/6Ik0AZ7kJePfvSEOHvPrWW6sWEXwM2rB146dBZn3scnjbnOEbOAgj5QoSmovo91CxvaW8QEf6ci4/jz1yoGTAv9KDt3jHK7UYV4YeoeLCiAtqNycwddDv4w50If/mJMdscIq8E5Z5dPSJmgGMvkxDhh66rzuo6W+O4zuAi/FcfdsgLfRceMn/whczHA9J3GFG0AZaAxKIM8sR9oScWZQwmwv9QnLrysluA7+TuiVFmDarNNLIIPwTHgxWcevYGFOHf8dSifX5+l6CtB3cda1bvr5cmIGcBEarOihDo03jedpgpbxP6Nmr8o/0V37W3nLMvLXtJLoxjjR3iS5TLwIhOz9ksGHBuXrRFIi26H9fCAIgr5EkD4kAOB6tcy2N10nKgVlhkfFu66kExo7bcvgZC3gaIr0gAF10o+F4A0/ux9DRJx4NVVYteC1zFsUBPnUaL/TZszwrMsegw7k6VJeSatj9Vu4uSQlEDo77F5gF66yB6tQWoesRws1a3FKqCuvuKJQMUEnR+ueHO9NzvZ+YFrq8e7PVPu0yylmJ5f+xGxAkp9XXOZX/B95/P+v2nGz1Z0rRMHRIl+MpSuVgaw6Jt0+jjbIccSSX/7EZRiW3XZVHaKvEAelvVWErDGWNZnTHMNNIfni47Fp6hCXIVGL5EMXDt1NW7PZiygplFvDu/SfuYOLlC7M5v2l45WKHCfkFnqw/aOezqMK67b+br3Zvax1cmL+lZwg+IViXLEPUvi0yl4awEVmeJTaLnwEfplK3aFy10JyQp+itZetCx2Z6n+3Q5EjRuU9UtPSzNnuozVdZ36uCNB3J41PMCTReqiXD9Eh2zVDySs2RbSU9m+u587RqU7X96OS//83jjTnsBALMIAK4jAIChRadMlBjKmEUmWpf7vuGf1I0BeV1/dW5VrscYox72hQAksQHQbYAm0TzyP8bHoRbmNhgfp7EDGx/nAz2z5JiPE9AicvJzi06h63tK+l9Yfe5PE+DjuDmw7W7WdjABUsHYsWMNwMcZ2Xr0j3mzV4cu3+13OUNY8NQk+Dj2rN6xNgXvGISPs9hx3nPZlWV+27f0+eaTdLyKSfBxyrA654Nx8iUT4uPEnGq/80hYQ58cvwcVauaUfWpSfJx/7dmcd8/oya4J8XGc81b3eH6le2Dq6S81t/ufrW9kPs5frJ47b3TPlSofx771ge0r5OOCJz1bs7BF2SmTTIKPg+UQjHycD5o89ej/BT5OkJvqj7vDavj9Mehis5wqyU+MzMeJd2Dj43R3MAwfp/KdsRLltZO+qwqHuc7c67GMcz4OdW7OAcdkkAMbx0TkUFp8nLNpi7p7e24O3/iy5YOz16+e5ZyPQ40RHGDVnRWrcMPmocbm4xxjCmODD0gbSyPWCXbuj5Q9ut+TvF9l3SkJnp0MVIgS4+gnTHXYvqjvL1UmwtNjmt2cZA/1KVO+CGrmDYCfgJbK2X3gyOXMEeE5La/4xbdxPM34fvSdnOJGWvuzjAYhLLL4USxEq6See9KyVWqeRt2IA5lAUyjM5SCA/yjnP+NchDua2B23iZbIgMMk4mAQ14cRj8PcqnblcSZXOhSk+du1OS9Y0fzegU0nhvpTVDDQDqysju4In/Gs1CbSISt8MKAdvuJKyYN6SP4nlDy0zQ7KMHjJG2RkI4kSufm+OOonmFD/PmHL6iqeZn47ejkuykwMX1Pi6Uur0kde6xOb1NN7HJ3Y/Ml+w+aRc7ZUj5xk8kjG7LSk5yEfA+cPdlAumurem7wmGgDJMyp6RsY4vVTfwFeCUV9d7zJJCVNerFZbnFwmhnKMkBIYi/0dlg6rRAOUWuUg1COS5cPkMYMkYs1NqFenL+eqr2u7W+0q5LWoBMAsiyL1QVF1h0oI+SUIEZzHIeSX4D+q/FLEhFsdoo8/8xl/eluqxavIK1T5pXHdV4y+kdgrKD0/Y+HD9OkdCDtxGPWn5ZmoH4yQZ2LytDVUD8DdiC4Q8KvzlhVlCgL/aJM5MGvSseb6eIv73TDg11+hX5egUp5ZoAs1qmSUwpPWsL5jXyX4DgkDigJG0e9YqEnxbtN5JEIlislXdgFFvQ0kRKokBTpxNV/K//H291OC5bE3DyY522WwusxcoH4SQusYN5SG0/isTnMwrNOIEGwWJlAHVHjLaE2/x3xD9FGmZK+uP176WpqglCgw1h34CFLARPrqxrDhp+dKc4VbK2z8PvJRb1eqr8zDk1Si/jKNgAWPstkFP9WbPlx5l6j19ZPDFZtTK7A6tWwlmtYXawEFvLFL1PosSPCoMimsDd0MRjp6mQ7sKtdNPNUTj0v5vohK9z5eWBPHh/RTTEN6p3u3I81l5wKX795fdvSOOhPJXNnoOGmsig/rypKHdTheMdW0doqMjYVTEZFMhpdflcLCeVC82xMJMLXgINMrIPIlbXl6oGXUgGlOFz9UMTx3Ie+z3iWqbbDqu6BvKuELI7/o4KXvnvwV31E461HVTgNytpCVU8wYvmKJKSG16LqefSwVYOUIsUr3RXE/wAS/oq1urDG1B+VYq0Di0raf/S92CxIiNsSVf9bE+sw52pJyrHbA6NufwDc3Y/3mnw1bYJphORlrgTrssVlDnSE26an966rWkE20CphU7va/z2XdyGtQmEqRoeAvrMgG/0PjwE9jiOlbqFvdIyDbGXwTpEeoFXd/MlLou5rvgYeCfB/EAAPJz581tZFPMw0wOuv5uGq8V/p6PvsKFWatR1wI2lYwNXL4/Pr8Yno+dt0tfDsd3RK8otICh/FZsnvF9HwOD91441Tr88EZ0uvP0mOCmxTT8zl8b+Ds3osVobsXvbOsO7zZrWJ6Pu/vZq3eqRjsMy/EJta+n92xYno+iMq/hLYhovIvUagXUfnXAjdNtGwVsntUrYiMMftT7rV7Yg1Mlrjpxe6/UhL9/wzZOi1sl4dr87HAZIWbrs+Zn7mzsLPPotUrF/Qa0aIjMFnjJov6d7sfvtozdMeIOaqklF0CYKqAm9qOqeAu3vubf+r50xK3Tff3AJMNbnpcJirra+fHIdsaXF0weEtVX2CqSKDR0bLrwMghPou+9+rW+e8tfwCTLW7yONLN4cPEy34rbl3tNnu3KBCYKuGmMiPMw8vyef7LCuoXPJx1dCUwVcZNZVsFxh555O2z788aNuOHu08EJjvctGNEhdbZ5+74bjsSuXLZg2b9gKkKbhrjGbGv829fg3NSb73tUmnPHGCqipuGhtSUltlxLPTA1W6PbT/+XQGY7HmMMlAOuGnbpr/ceQrwwMc7naY+jb0GTNVw08Dhz8omvy4Innln3cfhime7gMkRN41Nqv77oqfjgzaWiVFlfkr2BqbquGnWuMMVOr27Erns4qJfZro0HglMNXCT//azPLOXbSMneb92OnQlvz4wOeGmgLTn1yd/2Rgyxsdf2Sp/CfRyTdzU5ur8gloPv4bvEC5PDvmlPNSVqoWbqtXfcE9QRhmwI0BRZY9drRhgcsZNLi57Xi/e9Ejwx8sn836bXFEKTLVxU/vUS/KhAQ19to18NuZmjwVQIJSPm+qO3d7r0w/HyAO/3/owxSNkEU2oqg6PQaiq9eOVQ5plZfnsnrH+2vI97zM4EKo6wxSi7GN3b1p09KRwyYaC4adrjiB/lrlwWKJMLkacvmBKgBvid/CJ87JYmTplPEiIQRDCKwBqedyCGqCQr0afVeMGbXXDXYS8U9WOw/iK2DmMAunxtmq6FdAsOo2qfhF0/b3KMRGnW3cIXXvi2bV5gZOnc3gYleMNQriydwICJEbNO0+4CXn7q+mUEzfvLAFNA+M9iSWwxJFcKcWOn4D3k8qwqRPRTvgiBTxxLY+XxiBRPPUkoXprywUhs4OPb1gwquI8Mn1c8zl0+niRifPSNK5Yi2GBa101k8jk6EcddczkPPCOJi5ylypOpOLHiwZJ+CAB0ZSwZuaZ8xpOvDqp/WC/rAt/bL/4uGtPCtMQfyyCaUhYuPZeJQ+8sfujvJfuiTV2GttcR+DqEIeiCMKfhAokEqxFQ0Nrt6h0IHSKxR7rkKDe5JniTx3B4gCsbaxggaaOjz9nmcaf/5Qbfkq5gZqhG0S5Ae4013IEDrdHbfLkgrHym25jpZbKDaqXzedOeXDdZ+2tAed/ez5zGoeDJTUC6buABBByggjNYDroXtnRIMoNdTvb7cp2Wy1YfPvvVmb3Wy036hEWiIo5KyrfjDMmasEyNZxyg+fZ+xeuZZwWzpe7rS57eNVGk1BugK57U43NdU9MNZ3hWLlh9LKEO28X9Qtcs7p97+lPrp0xonIDPKKDRRnk0XueFxZlDKbcMNv91i/W3sfCs5tUvuAzuwGZFG145QYIjjkrON+qGVC54UfXvB89v23znxe0fKDlskdkCUfjKDdAhLA+zYjQE03edo4pbzu5WBT2rXW1wLGZzuZP66XsJ2ejYSBH40f7h2m/cOCnKYYLqwkQmTCYIcaCX0HelcwH2CpUao0CEGzx9gpzLzx1G6lV4kRdv0S/Nz2LJiw6lMWtXBsvi0tLlXyAB14567asgL1AMQzQBxReJM7x7+/ps9w5uHr7y6GXKbtJ8G7EAQXsckmZEjX+cVDz1rY2zr6iNUJ+YyGvXG2deMeOGEBEu3AVSxWg+QI7erBVNpk34cTF1xHT5oyS/zvarT25W/oTN9O7ZZGpJMCCZUFP+hY0D50pOxnSffRpew4A++LMBhhoUUZJotRjBvybZjymH7oclgWLL60xX7KNOUcX3s/o8N4nt0WDZ4+SbCvbYUImwBnCYYkKiYb2jCW1vn7Rrr+56ZcAU1x79PWPAv8+nQL2u9yc/Wl0izYcuPYRq2tvGsm1qPx4VkedUq0KYcXiOdKZ7aavy2o9o2NIjuppzqj+fB/qhh/iUJX6Kudrd554TMpFkUpyPbEuhg+M55kGRr8r1W4OabnVJ6dnH8dp3faRyypVheRXFVz6hCeZJZBbL9GhYryXQB4PIFdTcLHHiIseg00OiwrFQ1KpdiMiZduu5BemuQP5V9pmI6Dxq6oD0B/7IQrI9wONP7a6vvwU37BioMDlBlgGCWYb8gS+K1H8HKCnFkCC/1PHNCVcjZYPlTCol2T1lFesy88M35LV7E+RcBz5EHv5bhjpgB5j8OslxRi/hecSNxy28tniuHXmoN+W1NZXUxLArIAwm/khSqanu2Ew67sk3KCY+zWrWzHyBKUkJglrHhgnCk3Ty3pwc/bnwLDFY7rNfX5/4mLyiYyi59KnvyQj51RKdxy2XijYrntgsOEh4QJTSDhdsd6bJi3k4RNfvwz1vDxaSPpuNp0lGIeRH5EkkyFiAVPC7EHcB4mwWJuVJgwRyaRidSMfKlXF8eVgmqLQPhJQd+lZ3pPmBbJZ22N7LkJeO4iuNWrzLQOg21Dvvu8QjPHw4KqrRIkRsTHEkACcX3d69ouCcv5bO7Tvu+vsiZ3k9Bl7ED19Vl8uqTtTWQn6HkUDyLWByK1EpQyw8qt3dcb0WUvknDTIKUhNDTYtJHyvN7hNnv9pYvi6W7trDVknsiEfc8cbCHpLh2zluhdDtBqyolWzulFY7BZdkhMlxXGoV4yz4xkKUlqJzBP+jdIzMKgvTHIHSBQUShz80TdwO2ADJHQseASYVCerXY30MnVg0qeT6KtB6Yn3gkIUbS7KC+sFOi2EOUZg2MJcQc3fxZu+GAmFk3RIjWsZz/3z5t26Nyd6c0vKxgT8VoiNCexyaUDRkBWKmpqB6iLTQGUyNf+o0ZKb8selUPLvmyNbyb93jgTkl0wecio3jhvIrQa8v9JgU0Logu0Rwtpvc19xALm0BhvkohoE5Jc5Y2XaEpAbgJWJIFESrEwEiZJgZSJIlAQrE0GiJFiZCBIlwcpEkCgJViaCREmwMgf7hY7oW7dTyKxdQ86n+BacolHeYONFtj4q/ZIDytsVJv/XDT3icXOzVUCWmbj/1SeVyP6vol7sF8jkSpguYhs49KS8PENvqxsgheWO42B9YPUDsCklnGfiNATttveplNMSX5EGDuqPtM3KwVQxCca168gTI2BG3tVRp7VrJ/VuG6akIYeuAXiAX5h5QZduTUyxaFfBf1Liq30eKzwn6LPXVrrL2BcAVkpHfNgtpIkTgmm1mL7hz4aVvYYSURwrJEoLfrn9IHRHtO/SL6NebDX/UpdDWsSYrhHvTmQOC8iWTwma7Jd8iAOUurKiFOBIX3xgy9Pco4h+hXU2DDOiy8GpHsE9Y94qiWu9+bTr798jxmRl/Fm799SBRtzP9XbHGxFyQw4enpbquJ/bSLN7CCGKKab3CUcgUmxCgjPE5/at2sHPhNnBsb+Hna8WbAK7lhCkvqwgdXXUbV+3gb9U/c01S1VFTQbbWGQOUDHXfyQdv1fff8KvbdY3OmoxhbyLSDyXvouosZQGOqGs6PhqctE/mQbGZ90iwsy8PgnmrToTsCIyuAd9IZ4+EpoxgFuHvJ+roboNleskuU89YKHt3oC27G8QmI5A2M74IRageAC2jboNddpt01bPDTh5hZ8RNn/InRSv1aPJm1PW2H4sw7BOMpYUxakhTl8mOIjThyBYUag2lgFS8126jXUVMbAkoKcxQ1XoNFVcuKJu0MbU6hef95i5lRyJhOBeNFDFTAZOCSBMG1lhWq3jYFfyFhp1r9loW2gw0mBtBG6h8Wm5oycGDR6HrjLFIYHLGa/W426HZQSseKVqXb0WdR06XpTIV6/TINbLmVJzF/V9xG4Pdi5FxE+QDIWXJAppDD5AahWWqIe7WN4QtVJezKwDD+9ereOQMovIyeFhxcO1dApUFbFtKPXiLnid/9fed4A1kbz/R+UURewiiiVYQWkWLNgSktCLgl1PjRAgGggmQcRyolhQwY4iVuy99342bOfZe69nOct53ql36n9mS2B3Z5eELEnu9//yPD6P7LDJ7ueded93Zj7zeZFvuXJqxoyWo/YH7JSV2ns/JaIVNUXCPoCZIuGXCxtz9HNuJo65pQCehxCeHNSYswVj7nodo9gk9vjzcImkHy3xtG+7vd1Euf+U2Wr3XRJM3f3D72fu/hHXC8On7JpuF9/aBYTsatrgnDxojQMP+PzCiQ/oPpZgGNhixI1hOBAdBPQf46qo2XeTa2IVOi6jPfnybmCJvO0hGa0jO6w9ebc11Wj4/UyjEdf5dpbQKns5rbLZqqzy7jBpFaPCV0XM4SUqognnizTMuKltIoYfvx+65bHHS+dyzamLMqVDsfuZhiGu822Yd+6EO4HLjIz5qpenTHCpjnETMic9BtjEQqUsDI8HJUq+3/33Xv/D4hJujaJGUpdjy0jwD0BIChENxYHIMU5EdtQh4/p1tri+ZVbwn33b+wRO/POrzvbYrQ9UG+PfaDgZpoN+hkEN4MLkOGVUHEgr4dlCuVYL1SD1rBgi/Bs2+aCf00Y9L7NP4teN4InOrEPwRBnsFxGY1aUx47qRO+C1iVQDF0/CBH7hESb8SdD1X6pm+HdscS54u7zfJLdDp+TUzseW2OgbzBz8IX1uOsTQC8XREDbFMDTKY3UII3oUXtKEclAL8oG0+PoALKMA/5+fUwpHho1GIkqP5xatqALntRhgjijAoI51mn4w37D6jSt6b+JJbZK+zcHDztWgOlw7V330mN9kwzxst9/504LjktQ+NdsrXwZVpipuh1KEUJmOlA1pp1CQD4DwpAN3qmhyqgb5SboyBddjMYXAqe2GLtzAg9SQMpuBWriBexRz6iL0Jsl4gtCbhN9E15uk60XS9SaLrCdJvxGhJ8nmm+r4KTXA5xgjfysPWOt1epAqYF+tpv6h8vaZVPlbMXN0iAsVtxv86+2PvUp4iWaWmDuv3dC+LU1dMwGjYw00pxeKvQAJOovr5iGEHNlAKopI8Jl+OzZUurRPln09pVvisOcRRRAJpqMUmbZy2+kXirC1goQvMQHzGvKA0hxOlKbUZUgAcrJd8FoLMDEyACA6650aw/CPYsYw4npxLHhjPeYTaqHJxR1DivCnt/5j/pQu52Mmf9qZ05+6/s+fkvZpnXZ0X4mfgqVb9x37u8fLHnIe/CldpokHT9GR01O0LHZ/euWnjLbHBiYE767Rqt3hx3cjefCn9EUCHlBy5USpXnH6U3oMtbg/7cjpT131/vS21c8J6MOJHzKbd4ma7zMlidJdH0VxW65kRvAwJfjGOSX4Sz8luMMbma0CCbkZyGwIDTw9mY2pgUeS2RAaeCSZDaGBR5LZEBp4JJkNoYFHktnoGRqDsQa9IrKL0dXzeGCs3eXNyHZmNHLRdCQRooqkkel7/gyb2LDZhC5byINN7rHZJGfPg96TnnwK3Ldn576tQx5Sz/n90EWeoFAxa6OwOTYXsTAR3lGgQpcwQa1T4OJCUJ6bS8OWrruIeBRDvJ1dZJRGrVJFwIgFL+Yf+XzXmeYJl48IfTjx7aHQvT0WyFKk9sPZPKFtd61CAwXAya9tJFUnDVJBrhasogOFf6KVOuLdQYYBdzkepa6imYQsc8QoZNtYJlDWBg60nUSQOklSLlSuiVUmhChiKAHQDr8cAeudFrxeFr/eTZ1Y8CrVCy/u3li2Nq52XkUMxC4aeG5Qp8Sfqgz5VKgBpZEnByZEQ9ktEt4SZeFFuPVS4BKWq6uIkkz4hABWUVXKVRKoBVUgEOk0Cnm8/ndMmFh/D9FV71t9WKargPK0VEfv/zzE5azaXHE5szYZlx9YPeZ0eVXrXR6dyknsT9MT+x/yFibtBeYLkwjdXDJMInRzyTCJ0M0lwyRCN5fMhX7J/jp2+ekfRRPjf//j32V+YwrkQl2eva+0JLOcX9qmiSf7dn2SxAiu0OsjOxJdjJeH4PqIzZJWWq6dLjpstnLt0+txlWvvW6+4y7Wf1e0OXVMmSrYi6O7+wDk/U+dTlinXnlmPq/htWj0rqDk9Z84cM5RrH3wqq2n/X6r4b92wektqr7+zraJcewqnddTWYB2zlGs/8+bXkvPqOIkyv/2cJD9Yk6ptYqly7QpO4/S1BuMILFmuvema3+dE7ZUGHe46x7ZmyMFrVlWuvSun8fwtYzzrLNfeed9v33MDFgcuKatqVGrB2x8sXK69I6flWlrccvCmYivXvriCT6Dw8IrANc+2jyvzptM/VlGuHcshWMu1A0dI5KmP2fLU/1K5dnpZDAuXa79Wj6tc+xFmSlss5dodIrfZKN1c/df//XDRhe/9R/Berp0ubsZDCfIr9bhKkJ8xTjbRiHLtupDjE9Ym75Nsj1reXT5mXXXThzANK7qP4AGrI5xY7TKvz7V0ufYnbG7sfyL8RRLhp1cTMosIP8wkPIR58IQ/4iTQUjeZoIKwOET4d+67O+3+l1HS3OsH/Pqda12Gx9PmPPvIGQAhN4jQFNS4h5rl9YVmEeFvOSW006Gd1cJXec8dNWpSBalFRfghKo6cqIB+YzVzB+MO/vAnwj9X86xKmZ1t/TMG1knS1axOFcO0lAg/NJ0Np+m+WGbyYHYR/sqddDXLHtBJVg+Y/mHG98d5FhRtgCUgMS+DPHH/zgPzMmYT4b+7bNEQ2+qLAw+e7rayw+nfe1pYhB+C48gJTgWhGUX4Z31oMT+lXMfQhc2DG9Ub+9dYK5CzgAjZcCL0RT/9fMqWt8nETZt973hFvOZe3bWXFr+lMsjssEN8iWoViOjMnM2WBWfv/C0SZf79hBYGQFyjToqNAzkcrHKtjjFKy4FeYZH1aZmqBwUaDeX2NZIJ5kF85RK46ELD9wKY3scz0yQjD1ZVy38scJXAAi037+bTek1ebki6/GzjBYsWrDa9dhcthaI7RlOLzQP0siB69SSoesRws9a4FKo8PnyjFbEaBTq/vDCzwV37Ay/Es+bWFme4HV5MOyGF3Yg4IYVf5132F7z/WM73T7Z4sqTvmUYkSvCRlepoZRSHtk2fDV++x7UOF2dtPv348MeQitS+Sn4As6/qW4rDGPGcxoiyjDEYxbGN2bHwCE5Q60D4kkfBtVMXr45gygpmFvFuwuYdo+LUmmg3YYuO2qEaHfYLOlstcyQ+2k3+WbphwOJdVbwfUrfky8IviNSlqBD1L/ObisNYvTmNFW4VIwd+lFHZavX8he6EJM0gLccI+jW78mEHdfWAlfUGj7u0P/WOKVNlU6cOXoQjh0c9LzB0oZrL1k8yMkslPDlHtnVepPik6bo1eH9N79D7z/fssey0FwAwkgTgBgIA6FqMykTJUMYuMlH58ckQ+5wewXPqVttZSf7ki0UP+0IABnIB0CNCSCaaz/5jfBx6YW6z8XEcnLn4OI+YmSXPfJwf3old+gizA7Oa/rzh7n2nH62Aj1PNmWt3s5yzFZAKRowYYQY+zoPFo2O/JseL5q1q3b/asjfPrIKPI+C0zl+WCckW4OOMPe4siWvZwG9/lcm/1PJ65W8VfJzXQi7jPLIG4wgsycdJC9DO77fwdMiCw43n3B9+epNV8XFucBrvvMWTXSvi49jPG13X4+j1oKmlnqT7xC/+3cJ8nOOclttnccsVKx9n2w5x3UWLPMN3bO/zIOtqUIJV8HGwHIKVj/NIn6c+/7/Ax+mYekmd7NdYtGP0q7F3+8zLszAfp5czFx/H19k8fJz2rikfSiRcD02N7t7qn44rVvHOx6HPzXngmPRw5uKYhDgXFx/nVN93lye4nZJmh7g/sat/NZ53Pg7dR/CAlS8nVm3NO0uwNB/nNzY3NvSwspkybJ1k96Fw1fMnfd9Sd0q6JsGzk/4aeWIc84SpEdsXDaVKbSI8PabfzUlxx0+ZCuVQMy8WfgOy59Uft7Pf5++O4Yd73/t7sntQDuvzMXdyCjYy+l/ZSODCwgsexUL0Svq5JwN7pf7T6BtxIBNwgqfwHSTwH+38Z3wTmapWnTz7SIUKGEwRHQj8+nDy4zCz4qZ8wWZKh0eZ0io+v0pyvR8f3nwqmcoBKeGLNmBl3LsjbCYohzdRDlkRwYBx+IovJQ/6IfkiKHkYmh2UYLGSF8jI4sgSuUfEBOov2VD/NmHbiqoeNr67+jnmrEoMXVno6ctyxY+8wSc26af3eDqxWcRxw2WRvbXoFnnFZpGlMzOTXgd98p871EGbM8WNumJV2g+SZ3TMjIx1eonfINSCqI/Xu0zSwpQXq9UWp1ZFQzlGSAmMwf4OS4d18litQTkI/Yhk6RB11BBFtP4m1KMzl3Px64buVrvIBM5OAMySKFIfFFUv4YSQX4IQwXkcQn4J/qPLL4VNuNcpMu+VaPzZHam278Ov0OWX0nrmjrmV2C8g+8jS+c+yMzqR7eRh1CLLM9G/GCHPxGZpO6geQJgRXQUnt96Mksk3JJtc4j7uvRfVyBRr8b8bBuxaD9p1ISrlmQGGUHUnixSetIP1HQdowTskxOY7jPzfMVcz0ssnYjRCJYrNVlX88kcbSIh0SRp04rrZrVzsgpvrfPePvnWxenxlIafJykjwT0JoHRMNxWE0O06jlTCv0UgXbBMiwR0qvGWMftxjtiHHKFuyV19KlL5WJmgVGox1B76C4jCRturx+FPp0mvTgsdv2T50Re7gs3RblQlN0skHqfQCFgLaZhf8Vi9muPIqXOuraOGKy6h/1+Iy6u+1GFpfnAUUiM6uwPVZkODRZVI4O7oN9HTMMh3YVb67eKoH4ZeOiBGV7kWeWBcnQvprtpDe9fH98DKq8/5L9h4qOWaXM1WmsFxknDJGJ4R1ZalhHcYrtprWTuExMXAqIlepiPKrSlg4D4p3eyABphccZHsERL5kKE8P9IwfYL/p5osqhucmEzw1uUS1PVZ9F4xNLXxgNL8zb8TLZVl5opyRvzpEeoRRC6LasLxioSkhvei6iWMsFWBVCmKVLUZxP8AE/zOzKDUnawy3oBrrFeiy8aeXtxwx+w/JjhULGy1X/ixnLCnHGAaMqeMJvPnbmlxv/tS8BaZZlpOxHmjEHpsd1Bnikp6a38Bh7Pnf0/3mpL2pcyqzZRi1X8K7zQX/bU74L1oGfgZDzNRC3fiIgGxn8CZIi9Ar7hbRU5i6mu9OuIIjIkSAgeTnp/py1L+zBRij9Xxc9NYrfj2f6hc8XZf8ek288VZewyNvsvIK6Pm0/Wv+wCriQeKFqs+Sv6O8XhTQ8/H55fKlg7WXiqfP7v3p7xO7rxbQ89E8uLIo+ugq6b5St87NfTj9hwJ6Pke+2l5/uO9gwOGo30JDb8a9LaDng6j8S2obIir/koV6EZV/bYmmdcsb3SzfIcJ/il38Jo9qDr+BprJEU7uPGSMevzgqTutz/MsNm4WlQFM5omlGl+fOl6e+CtrWO+zr+84fToAmO6KpblDjHU9nf/PL7NBU+3Wl/TPQVJ5oups9vsritp39c4MGH69dW6ABTfYkUFHtx3RovcovbcvQH6/+smIoaKpANAkfrTi6dHI52cYdXZQtdklTQFNFommKqH451zb1/HZtu/a8hFuKN2iqRDR1yTp6rOY/dwK2dvUZ27Pl6HqgqTLRdND+U/ZRxWRRxkibUxWd9kMlpSpEU2zc08HCgEqBqV+eVQwo2yMWNFUlmtZUefhXsyZTRKm1Hj6ceNoffmA1oml9tveipT1vhuweluu344lmBGiqLmCVgXIgmj6fdBh1+sha6fLsGY2yfI62Bk01iCb5q3bd3HyC/bLr3616aV7oBdDkSDR9T0w77uzhI90oKVv5QMNYEWiqSTS5VfXN6yRZ5Zthb1vm60/PXoGmWkTT+clVdt6qFuU7dXniL53ntOgBmpyIplLN2oQLbo0O3e5VqlWV+Rqo51ibaMpa8+VcU59SwYfajZjc58rWRaCpDtkBfp797VQLx7Ctj/fcrX3dKRg01SWaMk8Fd6z0eL3f9EWBU6q1en0ENNUjmrq+L98k2Fkjmu55NKL5B0kd0CQkmlpv37OubGRg4KJVJ0ofe1jGliFU5SxgEapqX/tK9WfL7ENWZjtdf9rnYBTCbRgrVPWGzUVVj9m7OefEadnCDY9GnK09ail16iobnqhSRyNOX7AlwI2JO4TkeVmsTJ02HiTEwAkRFQANPG5Bd1DIR2POqokGQ3XDIbeoQR70r4idwy4gPX5Z37gCmvmnUfEHQb7bwLvTO+h+Hxa2/kRN55mSoFweD6PyvEEIV/a+1QcARaPmnadcZYI/6xuVE3tHKEDXwHhP0QpY4kitVWLHT8DzKVXY1InsJ0K5Bp64Vscro9AK3RsdSw2tZRe+71r5RT0OTOxOpY/rv4dJH89v4r00jQvWYzjgelDfKjI55lFHIzM5d2KgReebSxcn1wnj5UMUQpCA6EtYs/PMvx0aMqx27XDJHMHlE906ruhEYxoSH4tgGpItfFuvkjvR2aUo62V7YJ2dwTY3Ejhn8lAUSfhT0IFEgqWp0WNt5P3x0pkZ4p5vBH4dTT+CxQNYLznBAl2diD9v2eLP/5QbiqTcQM/QzaLcAHeaI2GsrI7a5NkCYmXLBsWh3OC+40Rii9/TA9Y1rdZjzMx5q3kMlnQPZOoCEtQ3gwhNYzvo7t/ALMoNk8bMStocvtt/btvUHvu73Tlv0SMsEJWOnKiAfmOlLFPzKTecXqcrse1DJ9/ZgzddLb/jwFWrUG6ApnPlNF09y5jO7MoNL6vVfFlh8r3QNX4nX+RVmuViQeUGeEQH8zLIo/cCT8zLmE25QeMzrM3ESil+k5Wrlv/8pAZtBml25QYITkdOcFo2MKNyQ9Ke2TcC1WeCxq07tvl8zz4PrEC5ASLkyokQGNNE3vaOLW87vUAe8rVdDf9xq+qWedlg5CFqNhoCcjRhpDTE8IUDX30xXFhNgMyEwQwxBvwK8q4UIcBWo8M1CoCzJforzL2I1G20YZJXtPVL9HMzs2iyxYiyuP5NibK4jFRJBCzQpKlxywrYAxTAAPl2bSRRQTO+/itNO1/jyr9/tqJlSpHwbsQBBexyYZkS3f/xUPNW1pRgXzE6obCZTNC+qVG8Y0cMILJfuEQrNaD7gnZ0sO1yOaLUwaulRel7l/h1XaOkVvwsKyVvZg7L/KbCABtca1Pbug+cpKsdhPKmfa8reQCsOSdgoEdZJInCYwb8m5YCth+mHJYthy3tMFtyeNWM48dPzro4Urot9tqAo9rfc6pgQibAGLLhiRqFnvaMJbVi30iXXq6mJcD0sphd2lQemPdbQHpauuv5B1N68WDaOpymrWoh06Ly4xmdjUq1yocU8Ododu7LjHKDwj/6bZ5X/8Psx93r0Tf8EIeq8Ku8r915ED5pC4pUssUDG2JEYHzPFhh9r9S4O6zNdtHGvv0dp/Y4SC2rVA2SX3Vw6ROeZFZAbr3CiIrxnhJ1PIAcp+BiHxOd/zHY5DC/UDwklRoUEenbdoU/MMMcyL8yNBsBnX9dQwD6b76IAvIDQedf2NBUfoo4pAAocLkBlkGC2YY6QehCFj8H6OECSPB/uE/TwtVodbKCRb1k0B3Pm0+z1km39/AsO1i5R0H1MT0w0gHTxxDXC/MxP0oGLnB/1Eg0V5fbbeLAnrtM1ZQEMK+BMNv4IkqmZ7tiMJu6JNyogPn1q1tR6gStIioJ6x4YJwqJZcIg3cX6QzL8Vn1qtvvmq2+O1BMZ+Z/LnP5SGnmnUroRsPVDwXbDHYONcAl/sLmEsxUafGjeWh068Y+3wR6Xx8go72YfocA4jMKwJJUK4QvYEmZ38j5IhMX6rDJhmFyljMY7ebJSFydUg2mKxnBPQN+l53hOhhWozYYe22siE2ggunaozbelAN1+Jo99h0CMhwdXXRVajIiNIYYE4NHd0ZteVb4lTu17fcX3sY2OUdNn7IOY6TN+ubDhTGclmHoUDSCXCJFbhkoZYOXXmIas6bOByDnpkdNQuhrsWkj4Fp0dN/Rvm6cBa4bUUSR0rb2Besyd6CDoLR1qK9+jGKLVjxOtiIYWYbHbdktJVBTEoUEBzo5HMEhpFSoP+DdaD/+AATDJjVVoaJQ4+GOq43bAAiQ0LPgIMKlOwU2NtDI9MJkySEzVoPQgRsE7FG2uiyc2CoxaCHMMw7CFuQLO3yW6fjQSilJjm54feeqw/7qDlaYFzhxD8xfYWyE2JrDLxQFFP04oIvSB6gNboLKamn90b8lP+eNiKPnXsiFXyb9mesj/tHrI6dw4fiAXdvontHKLmdJMh81uFfZHLOMB8iWNuCCf14iE/CNvrMyKJORmYGUiSJQkKxNBoiRZmQgSJcnKRJAoSVYmgkRJsjIRJEqSlYkgUZKszE821T60HZXnv2JAjRLyLs9/YVDeYOdF12ak0S95oLz9xWb/+sHH3e9uLee32iZ60LUXlaj2r4ov9ktUai1MF7ENHGZSXppltNX3U8Jyx3GwPjD+AdiUEs4zCRqCYdv7dMppoY/IAAf1R4Zm5WCquB7uD9xAnhgBM/Kpxm3zO+G7bZiShhqaBuABfmHnBTXt++b27XuVAzYvHP691sTbfqbstRXvMvYFgNXaBkTYfccQJwTT6hzmhj8XVtX1lIiCWKGP1Li4bX7yqVHQzN5HHtV6pdXxSIsY2z3s46lVw/3WqicHpPumHOUBpamcKI1qwFx84MrT3LqQ4wobbBhm5JCDUz2Se8a+VeLXN2pFmX8CZAttvaeMU4xNseB+rpcb0YmQG3Lw8PQSI/dzm+p3DyFEUQX0PmEEovgm9ErAsKbhp0qGyzbcTJjc5Mzvp61g1xKClMUJ0lQj93UbSZX4m+uXqvK7DLaxyO6gHIcqbe0aPg1ZUMnxn9xBf9ei7iKSn8vcRdS3FAc6YznRSdbv6f7NFhhf9QgLsfH8LMlafs4vNzywD3MhnhkJbVjAdabu5+qpbslqoyT36QcsDN0bMJT9DRzTFwjbOV/EApQAwPbEuFBn2Dbt63K19qXnLAnaubZ88rO3L9tQFzux/ViWsE5pLMyL012cqUxw4Kc/QbC6oPrYUpCavzEu1lXAwFKAkcYO1c5R5649T1kQsG5i/I7fvP+mFv0rKwP3ooEq0GTmlADC9IQTpltGBrvCt9Doe80W20KDngbrI3ALTcjIHT0waAg/9InND0manPNsl3Y/ZKlf7ntdu5p16OvQ8fJEIb5Og1gvZ0vNm+D3kbs92LkUuTBBkQwvKTTKKCJAGsYioR3u4nhC1Ep5gWYjeHg1XfMgZRaRk8PDip9djHJUFbBtKHxxFzwO8i2bH3jpoyo70X/zh3rDA7ddbUJNkbAPYKZI+OXCxhz9nJuJY24pgKcGhCcHNeZswZizdzWKTWKPPw+XSHpYyoB237p2DFr/ote4Nq9vUCcpxOsyd/+I64UebG/39aRrSp2QTZujfv93QvWePOBTihMf0H0swTCwxYgbw3AgOgjoP8ZVUbPvJtfEKnRcRjtV8vDYVj/3Ec8+OfJ7o48/U4/WlcbvZxqNuM63s4RWeevCZZWnVmWVd4dJqxgVvipiDi9REU04X3TNhaGRgQq/gYFjw8Tze9ZacJdqmFDsfqZhiOt8G+adO+FO4DIjY77q5SkT2LoaNyFz0mOATSxUysLwmNe/6z/SkI5hy4TLay/7a/xAmqQQ/gEISSGioTgQ+ezChchLFzKuf2aL61tmBf/Zt71P4MQ/v+psj936QLUx/o2Gk2E66GcY1AAuTI5TRsWBtBKeLZRrtVANUs+KIcK/YZMP+jlt1PMy+yR+3QieaJ4LwRNlsF9EYFa3lxnXjdwBr02kGrh4EibwC48w4U+CfPG/5nxIfvTv16A185+4PPy7BZU8V4YtsdE3mDn4Q/rcCYihF4qjIWyKYWiUx+oQRvQovKQJ5aAW5ANp8fUBWEYB/j8/pxSODBuNlnmhxXOLVlSB81oMMEcUYFDHeq9+MH+x+o0rem/iSW2Svs3Bw85VtgvXztUMPeb/sGEettvv/GnBcUlqn5rtlS+DKlMVt0MpQqhMR8qGtFMoyAdAeNKBO1U0OVXD9CZpyhRcj8UUAqe2G7pwAw9SwwidgVq4gXsUZ1wRepNkPEHoTcJvoutN0vUi6XqTRdaTpN+I0JNk8011/JQa4HOMkb9dJ/vl/NgtLwJm/b7tH8326NlU+Vsxc3SICxW3m3E6slLJp0sCNt06KWuRNsPUc5MCMDruQXN6odgLkKBzxTUPIeTIBlJRRIKT0seJHm2sJ553eNackbZrWxdBJJiO0u4PNZb/NuGl3+G1e/4uv/KYqYQDiNIZTpSOuDIkADnZLnitBZgYGaKiTGO9U2MY/lHMGEZcL44Fb6zHfEItNLm4Y0gR/vTf/5g/pcv5mMmfJnH60wH/86ekfeb3VUQ8ttkgWnFnwJtz3Zbs5MGf0mWaePAUWk5PoSx2f3pwxzOffbV6BM0OebQxdeng1zz4U/oiAQ8oDeBEqXtx+lN6DLW4P9Vy+tMBen/61ernBPThxA+ZzbtEzfeZkkTpro+iuC1XMiN4mBK0cuWaErjpIf/GG5mtAgm5GchsCA080tUjNPBIMhtCA48ksyE08EgyG0IDjySzITTwSDIbPUNjMNagV0R2Mbp6Hg+Mte+8GdnOjEYumo4kQlSRNDJ9z59hExs2m9BlC3mwCTQI0iY5ex70nvTkU+C+PTv3bR3ykHrO74cu8gSFilkbhc2xuYiFifCOAhW6hAlqnQIXF4Ly3FwatnTdRcSjGOLt7CKjNGqVKgJGLHgx/8jnu840T7jQaX5Wtb6j/bNKTqwWOMvlNJsntO2uVWigADj5tY2k6qRBKsjVglV0oPBPtFJHvDvIMOAux6PUVTSTkGWOGIVsG8sEC5sAB9pOIkidJCkXKtfEKhNCFDGUAGiHX46A9U4LXi+LX++mTix4leqFe0Q0lrVc0CSvIgZiFw08N6hT4k9Vhnwq1IDSyJMDE6Kh7BYJb4my8CLceilwCcvVVURJJnxCAKuoKuUqCdSCKhCIdBqFPF7/OyZMrL+H6Kol2Lqq1YRlugooT0t19P7PQ1w+24QrLh9rQsblklaPOV1e1XqXR3/mJPbv1RP7S7FhbnSYtBeYL0widHPJMInQzSXDJEI3lwyTCN1cMhca32rewqqPZ0hXp3bYED3+j2MFcqHr63scHPRr/bDlqcmyrleS1zCCK/T6yI5EF+PlIbjasFnSSsu100WHzVau/URTrnLtM5lSMjyXa7+i2zf0o/SR5PDUuVOfP3N+ZwXl2o815Sp+u9cyghnUmtMZGRlmKNf+9I/MyuXCpvvujg3cskOXQl0ttFS59s2c1llpDdYxS7n2qMp1vncMbi+Zfq1t0LG2IdQVZkuVa1/AaZyZ1mAcgSXLtVe+WupV73tDguaFt2lf+XCPMlZVrn0Sp/FGW5FQkMXLtU+rn+4+TlrRb3+Vy38O3KUYZeFy7VpOyyktbjl4U7GVay/zefecmHtq8fIxOZ+Eyz5/tIpy7VgOwVqufaZe7OkHtjz1v1SunV4Ww8Ll2ss34yrX/hczpS2Wcu2DI+8MCZu/1H+x8scXy37cRZOD5KFcO13cjIcS5OWacZUgFzQrrnLtrw6IS/7rezF0w/kBo7pmvDnJe7l2uo/gAau/mnJh9dq8PtfS5dpLs7mx/4nwF0mEn15NyCwi/DCTiIYeoCrqJNBSN5lA2qw4RPhf/Zmw5+DvjoEL3uz8NsutTn0eT5vz7CNnAIQGQYSmoMY91CzvxfSRxSHCX2H85tTAna3CNtUqf/7LY/9si4rwQ1TCOFEB/cZq5g7GHfzhT4S/6hzHTYExpSR7OlXu06fWl4pWIcIPTefDaTovy5jO7CL8v1y//2/C1rai6WO7RWxfV74ibafTnKINsAQk5mWQJ+7feWBexmwi/JkHHD8n/TxXPEOU/e2h2+0aFhbhh+CEcYIjbWZGEf47GzzOj2+w3Hd5+R0fj62pO90K5CwgQj6cCIExTeRtZdjyNpm4abPvHa+I19yru/bS4rctqToC2CG+RLUKRHRmzmbLgrN3/haJMv9+QgsDIK5RJ8XGgRwOVrlWxxil5UCvsMj6tEzVgwKNhnL7GskEv0B85RK46ELD9wKY3i9npklGHqyqlv9Y4CqBBfLVh7+/JK1crYd07rQOC1b59aHqqRSpdhcthaI7RlOLzQP0zkL06klQ9YjhZq1xKVR5fPhGK2I1CnR+GViltG9Zn/ah2fdyWm66tv4J7YQUdiPihBR+nXfZX/D+uznff6PFkyV9zzQiUYKPrFRHK6M4tG3C2j8pd+7nB77zvzbTPPw3QkXtq+QHMPuqvqU4jLGc0xjzrSP9ERizY+ERnKDWgfAlj4Jrpy5eHcGUFcws4t2EzTtGxak10W7CFh21QzU67Bd0tirqvPTKX8Jj/uMdu+78un4mldtRFn5BpC5Fhah/md9UHMaazmmsCVYxcuBHGZWtVs9f6E5I0gzScoygdTtFvTPSy4TMvFeteuC1cU9MmSqbOnXwIhw5POp5gaEL1Vy2/qCRWSrhyTmyrVLKrw32vBgZsF5VWrypcb2tlp32AgC2kgDcQAAAXYtRmSgZythFJm48/BzSUN1BfGDy5G3NXwVNsOhhXwjAXC4AeqTrE03b/xgfh16Y22x8nBA3Lj6Oo1tx83FGxQ6J+sn+Yei8HVnp16qmDbQCPk6QG9fupsjNCkgFWpDSFz8f527PX6at7joiKGtvmvNd2xtlrYKP05rTOm7WYB2z8HES0zbX2pp6zm/e7d4PVn1JO2kVfJz6nMZxtAbjCCzJx3lY6+63e8vtwlY+DF/3Zc/UI1bFx6nAaTwbyxjPOvk46aWWugSU+Ekyb+kVt9RrD3wtzMf50ozLcu+sYppSbHycSR96X59zda547YLdj1+XbS61Cj4OlkOw8nGAIyTy1LL/F/g4Xd+XbxLsrBFN9zwa0fyDpI6F+TjT3Lj4OMOZKW2x8HGav+6yZ0j6q4AtkZ/rNdt20593Pg59bs4DxyTDjYtjMs6tuPg49nGeCUNWf5Kk5QS1s6mZcIR3Pg7dR/CA1XBOrBLMGy0tzccpx+bGhh5WNlOGrZPsPhSuev6kL7UQm13XJHh20l8jT4xjnjA1YvuioVSpTYSnx/S7OSnu+ClToRxq5sXCb0D2vNbb96wrGxkYuGjVidLHHpaxZX0+5k5OwUZG/ysbCVxYeMGjWIheST/3ZGCv1H8afSMOZAKhUJjLQQL/0c5/Dm4i+yvEJc8+UqECBlNEBwK/Ppz8OMysuCnt2Ezp8ChTWsXnV0mu9+PDm08lU+NsCV+0ASvj3h1hM0E5vIlyyIoIBozDV3wpedAPyRdBycPQ7KAEi5W8QEa22JUokXtETKBeng31bxO2rajqYeO7q59jzqrE0JWFnr4sV/zIG3xik356j6cTm0UcN1wWeduIbhF7NossnZmZ9Drok//coQ7anCluP1LXRP0geUbHzMhYp5f4DUItiPp4vcskLUx5sVptcWpVNJRjhJTAGOzvsHRYJ4/VGpSD0I9Ilg5RRw1RROtvQj06czkXv27obrWLTNCzMQCzJIrUB0XV2zRGyC9BiOA8DiG/BP/R5ZfCJtzrFJn3SjT+7I5U2/fhV+jyS2k9c8fcSuwXkH1k6fxn2RmdyHbyMGqR5ZnoX4yQZ2KztB1UDyDMiNZ8cNt9QFVVEzLn2bAviRXPnzPFWvzvhgG7dod2XYhKeWaAIRTc2CKFJ+1gfccBWvAOCbH5DiP/d8zVjPTyiRiNUIlis1UVv/zRBhIiXZIGnbgOjT30YWGXzQHZKUcF19fFL+E0WRkJ/kkIrWOioTiMJuY0WhvzGo10wTYhEtyhwlvG6Mc9ZhtyjLIle/WlROlrZYJWocFYd+ArKA4TLZi+++H14TfeirftT95as/WdSXRblQlN0skHqfQCFgLaZhf8Vi9muPIqVOuriOGKy6junEZt0Jih9cVZQIHo7ApcnwUJHl0mhbOj20BPxyzTgV3lu4unehB+6YgYUele5Il1cSKkV2AL6V0f3w8vozrvv2TvoZJjdjlPpHJlI+OUMTohrCtLDeswXrHVtHYKj4mBUxG5SkWUX1XCwnlQvNsDCTC94CDbIyDyJUN5eqBntIdpTjdfVDE8N5nAqZGpPDJ7rPouGJta+MDIFw1/dW/cliZZkuXZF8qvGRF3kF7gBfmKhaaE9KLrJo6xVIBVO4hVthjF/QATfM9GxrHGcAuqsV6BxMVueHiJnHWLwjeLVT06/SgvzVhSjjEMGFPHE3jzRpxvDnqJFSwnYz3QiD02O6gzxCU91TNK5jx8mkQ0veyAGvdy5q+j9kt4t7ngr8wJfxnLwM9giJlaqBsfEZDtDN4EXbSAVnG3iJ7C1NV8d8IVHBEhAgwkPzvp9XwqsgUYo/V8XPTWK349nziniWH3ZrYJSD+QVTN5deuC2oafss6eex+ulE6/vG/SkS+CLQX0fPrJGj4s0X+waEvc4SYxd1o5FtDzGZ/4dnazU9XDZl2b/MX/5LDWBfR8SoQ/XVktdr/kQLVLw4SNxP0L6PkgKv+S2oaIyr9koV5E5V9boqnUUvuZF1blhh84sE/s+/BhfdBUlmhampQ8cs6Ga74zloz82lIxuhZoKkc0bV9bUdRn8FDp4d/HnPvk9Q1+oB3RNGyYx8glT1Si7A9Da6Z+TasBmsoTTV1+Wnvc8Z+y0sxHIyf97JebBJrsiSaPtw6XpkUeDZ91+vayZ7G+M0BTBaJpgOex0Fs1T4Vs3L3esXngfTFoqkga5cuKmdt/vhlwoEXI2mO7B8PHqEQ0la/vN8pjj5N0U8syW7vnDnAFTZWJptNLhI+/5Wj8UpM3Z/42SvQjaKpCNNne/fNAH7vaAVvD/Tq5JnbvDJqqEk0OHT/23j+hUfAcv/6jfpmg2AyaqhFNK1NjXjc/eFl0uO2ANoEBeVVBU3UBqwyUA9F0/3iOuOb8paKDpXr2f6+L8gFNNYgm+5Sy+yvMqSzLcV/21LX2GdgBHImm4A8LNMnNZ/lndT/Q9+KbBPhdNUkr994THFArSTSxddiqKdmx3UFTLaLpQk6fw1Wkc0R7SgXfbF932nTQ5EQ07fdv1LR6uRX+i7OuZa2Mc5eDptpE06+/XHx2r2ZYQG6vSxPi7JfsBE11iKZtQ7KchFNPypbdCe6t/Hb2EWiqSzTZ2HX1qrp+lGzGpZtDxO8r3AZN9Ygmv1Y7vOpdjw7NXZnWLfKE9w3QJCSaHp13l//7Zo547J0Lx95VvHmaIVTlLGARqord/NSnfO+/wg/cTzpXOfazPQ9CVZXYXFT1mL2bc06cli3c8GjE2dqjllKnrrLhiSp1NOL0BVsC3Ji4Q0iel8XK1GnjQUIMnBBRAdDA4xZ0B4V8NOasmmgw0M9XAtOqxR550L8idg5TQXqc7mFcAc3806j4gyDfrXd8QM/o1RX9JhxdffjHKarrPB5G5XmD0AsAtBACFI2ad35ylQlmeRiVE3tHKEDXwHhP0QpY4kitVWLHT8DzKVXY1InsJ0K5Bp64Vscro5Ao9n1TqXyt+g7Bs1a0uN8sY/tMKn1c/z1M+nh+E+95gwvWYzjg+snDKjI55lFHIzM5d2KgReebSxcn1wnj5UMUQpCA6EtYs/PM19Tt4u+W01mybe4//TKWVbxBYxoSH4tgGpItfFtP5E50dinKeqc8sM7OYJsbCZwzeSiKJPwp6EAiwXpn1+nfCbO8JZvXlhuVfbF8tOlHsHgAK50TLNDVifhTmS3+/E+5oUjKDfQM3SzKDfAY93to8OqoTZ4HIFZeNC5WGqjckDSlpEZy8Kh40l0X+RWfD/d5DJZ0D2RisNwCC2JChKahhsRvwPs/NS5YFlW5odqEUvV3zWkXeHhV3OEJR+dS+4e5j7BAVG5zonLRMjHRAJZpYQtM/Ck3nPn6vMrAiU9CV7Y8MtPd92h7q1BugKbL4zTdQWtNZ3hWbkiyr+r1qury0MnrP2afrFzyiwWVG5a6E14GefQe1jJ9ishSiku5oc7J7I3VtgjC92SW/Vi5zicqQcj8yg0QnNuc4Fz0MKNyQ3oZp6nrM7uEp8aOLCmVdmllBcoNEKE8ToQO6vO2Kmx52+kF8pCv7Wr4j1tVt8zLBiMPUbPREJCjCSOlIYYvHPjqi+HCagJkJgxmiDHgV5B3pQgBthodrlEAnC3RX2HuRaRuow1KnOjrl+jnZmbRZIuhVFEwDXzqTZTFZe66wfql3sYtK2APUAAD5Ns1jC2Vnjj9Uti+0Z4hlXym0Q7uRsK7EQcUsMuFZUp0/2dipvQOAPTYm2BfIbm0N72N4h07YgCR/cIlWqkB3Re0o4Ntn562bSZfayLac+fJk2kjBZOow1JK3swclvlNhQH2/Gp0swnZf0kyFbVTttdXHeABsF85AQM9yiJJFB4z4N+0FLD9MOWwbDlsaYfZksOrhq50Sw1tvz9w75SZb3qWnupRBRMyAcaQDU/UKPS0ZyypFftGuvRyNS0Bppn2TJ0Pv3WYNkKSlev65tWcXFP13qBp93OadquFTIvKj2d0NirVKh9SwJ+jjzTW+21n7NgH0sXnnAZHefteoW/4IQ5V4VeL4wQP5pO2oEglDzywIUYExqpsgdH3So27w9psF23s299xao+D1LJK1SD5VQeXPuFJZgXk1iuMqBjvKVHHA8hxCi72MdH5H4NNDvMLxUNSqUERkb5tV/gDM8yB/CsjCsgHeAHQf/NFFJCfATq/j5ep/BRxSAFQ4HIDLIMEsw11gtCFLH4O0MMFkOD/cJ+mhavR6mQFi3rJI23Jip9neYXnDD6Wu1jSmlqkr3QPjHTA9DHE9cJ8jOLh1dx+ohV+ExJdNBO/RqTxUGPeD8Js44somX7KFYPZ1CXhRgXMr1/dilInaBVRSVj3wDhRSCznpXt8k+SKpLvSHg6Jmxl4m3oiI/9zmdNfSiPfLqGLGwFbPxRsth4YbIRLqMbmEs5WaPCheWt16MQ/3gZ7XB4jo7ybfYQC4zAKw5JUKoQvYEuY3cn7IBEW67PKhGFylTIa7+TJSl2cUA2mKRrDPQF9l57jORlWoDYbWrS3iUxQCaJrh9p8uwCy5C+epo59h0CMhwdXXRVajIiNIYYE4Gz/7ZtTHgkCch+8F6b5nW1HTZ+xD2Kmz/jlwoYznZVgauVXMJwrQOSWoVKGdHhw24s1fTYQOSc9chpKV4NdCwmfrMvUbVXulA2eWu/d0RaZA6nCW+WJDoLe0qG28j2KIVqgJ3Gg9c7TIix2224piYqCODQowNnxCAYprULlAf9G6+EfMAAmubEKDY0SB39MddwOWICEhgUfASbVKbipkVamByZTBomp0kAexCh4h6LNpXpio8CohTDHMAxbmCvg/F2i60cjodBOCz96dVm3wPHP+1388FZF43dhb4XYmMAuFwcUWBdnhQJ0cSJQVWcLVFZT84/uLfkpf8xzyT8ByE0verKV/BOBzOG0HnIHq4eczo3jB/JjJ+7IG010CF4x+OKDeUc+xvAAecfmXJB7Nychr8EbK7MiCbkZWJkIEiXJykSQKElWJoJESbIyESRKkpWJIFGSrEwEiZJkZSJIlCQrs+x5725vKm6RZDcunTUuY28Sg/IGOy+y99HplzxQ3hzZ7F8/+Lj73a3l/FbbRA+69qIS1f5V8cV+iUqthekitoHDTMpLs4y2+n5KWO44DtYHxj8Am1LCeSZBQzBse59OOS30ERngoP7I0KwcZEuB0K/dQK1dLwVD0JWZlXOtXTvhu22YkoYamgbgAX5h5wXVbVFr/NM5MwKn/bAo1L9pnQRT9tqKdxlbACbO/mTYfcdQwQatbT2ReTgbVtX1lIiCWCFR+vefw/2qd78sm7ti8IwDunFPeaRFjO0e9vHUquF+a9WTA9J9U47ygJIrJ0q1PJmLD1x5mlsXclxhgw3DjBxycKpHcs/Yt0oGHcl72PJIj6BZoqehgjVjFZZU4ncjOhFaSh1Mgzt6GpfGNtXvHkKIogrofcIIRPFN6DqxwtW2jxc+FE+6fnvF23JxU6xg1xKC1JITJFdP4/Z1G0mV+Jvrl6ryuwy2scjhoE6Nevr+4PHQ8fNf/Fjq+6lN1F1E8nOZu4j6luJApx4nOtX1uWhNtsD4qkdYiI3nZ0nW8nN+ueGBfZgL8cxIaMMCrjN1P1dPdUtWGyW5Tz9gYejegKHsb+B6siFs53wRC1DwDNA440KdYdu0sU6D//K8U0qWKkr5uPXt0zPUxU5sP5YlrFMaC/PidBdnKhMcgDUXgtUF1cdgAfQM42JdBQwsBRhp7FDNHPP7/gzPsrLJUQ1dX27Y24HqiWTgXjRQBZrMnBJAmMZxwjTcyGBX+BYafa/ZYlto0NNgfQRuoQkZuaMHBg3hh2qx+SFJk3Oe7dLuhyz1y32va1ezDn0dOl6eKMTXaRDr5WypeRP8PnK3BzuXIhcmKJLhJYVGGUUESIPcEv1wF8cTolbKCzQbwcPb3SoPUmYROTk8jjivlVGOqgK2DYUv7oLHQb7l/T6H8uqfT5etSxn5b7eTbR2oKRL2AcwUCb9c2Jijn3MzVZkNwLMTwpODGnNtwZhb38ooNok9/jxcIum1k17LrwzoL8l23xO+SrR8A3X3D7+fuftHXC8MnyPTd9WOvzovbMXg3HvNczZc4AGfXE58QPexBMPAFiNuDMOB6CCg/xhXRc2+m1wTq9BxGe3g1supUyOGSBadHOJ3cUNMENVo+P1MoxHX+XaW0CqZnFZJsyqrvDtMWsWo8FURc3iJimjC+SIN06Z0jnZU3BX/6bkbbz/vvId62K90KHY/0zDEdd4FdDwIdwKXGRnz1YGeMsGqVsZNyJz0GGATC5WyMDyW91XuGPL6VuiizBqTE7LPedEkhfAPQEgKEQ3Fgcg8TkTSW5Fx3Yktrm+ZFfxn3/Y+gRP//KqzPXbrA9XG+DcaTobpoJ9hUAO4MDlOGRUH0kp4tlCu1UI1SD0rhgj/hk0+6Oe0Uc/L7JP4dSN4oopWBE+UwX6B6iw9mXHdyB3w2kSqgYsnYQK/8AgT/iTIF3/ZaNQJv8Gt/JbfXjY3tMdKWudjS2z0DWYO/pA+FwUx9EJxNLo0xTA0ymN1CCN6FF7ShHJQC/KBtPj6ACyjAP+fn1MKR4aNRiJKj+cWragC57UYYI4owAZ6YIARg7m21W9c0XsTT2qT9G0OHnauWrfi2rny0GNehw3zsN1+508LjktS+9Rsr3wZVJmquB1KEUJlOlI2pJ1CQT4AwpMO3Kmiyaka5CfpyhRcj8UUAqe2G7pwA0b1T5CqmYFauIF7FHHeCL1JMp4g9CbhN9H1Jul6kXS9ySLrSdJvROhJsvmmOn5KDfA5xsjftnGM/HRBKvHdc+7FMt3Oq2qq/K2YOTrEhYrbjajsObVi+cvSXYGqDcM1rQaZumYCzDkKmtMLxV6ABB2Ndx5CyJENpKKIBG8ZvuP9nfkTfedPfbLrrPPBy0UQCaajpOgZEXR/bfvw6ZuOHvIae2EHDyjFcaLU35shAcjJdsFrLcDEyACA6Kx3agzDP4oZw4jrxbHgjfWYT6iFpl7uGFKEP637H/OndDkfM/nTqpz+9Gur//lTwj6vSq6Prj36R2n2QY9PSn+bcjz4U7pMEw+eojKnpyhT7P70tOTQlloek0MXpx+IrrlYXBTRdTpK9EUCHlD62ooLpQ+titGf0mOoxf1pZU5/+lWfn9az+jkBfTjxQ2bzLlHzfaYkUbrroyhuy5XMCB6mBJc4pwRn9JALeSOzVSAhNwOZDaGBR7p6hAYeSWZDaOCRZDaEBh5JZkNo4JFkNoQGHklmo2doDMYa9IrILkZXz+OBsebMm5HtzGjkoulIIkQVSSPT9/wZNrFhswldtpAHm9Rns0nOnge9Jz35FLhvz859W4c8pJ7z+6GLPEGhYtZGYXNsLmJhIryjQIUuYYJap8DFhaA8N5eGLV13EfEohng7u8gojVqlioARC17MP/L5rjPNE/7a3H/L9YTRobObbH3g1+WBO5sntO2uVWigADj5tY2k6qRBKsjVglV0oPBPtFJHvDvIMOAux6PUVTSTkGWOGJz3xjJBu5bAgbaTCFInScqFyjWxyoQQRQwlANrhlyNgvdOC18vi17upEwtepXrhd/May+zbtsyriIHYRQPPDeqU+FOVIZ8KNaA08uTAhGgou0XCW6IsvAi3XgpcwnJ1FVGSCZ8QwCqqSrlKArWgCgQinUYhj9f/jgkT6+8humoDqw/LdBVQnpbq6P2fh7isbMkVl+Utybjc0Ooxp8urWu/y6ABOYn9PPbG/EW9h0l5gvjCJ0M0lwyRCN5cMkwjdXDJMInRzyVyo2YaRszuvmyAd7706+Ifx7rcK5EKqe7M6nazwMGin8103cc4aMSO4Qq+PVk6hifHyEFwbs1nSSsu100WHzVKuPbWJTBDVmq1cOxTz8Wxd3OXaj9UUjt6sPS1bO8u3rXxhberJTvOXa18KIJG3Zit+K4I7fq2toOb0hAkTzFCufU3LGbr9S7PCtt1IGns/Mpq6+2KJcu3QOqGc1pFYg3XMUq69Vocse2fxB99Jz+fsL3Gj0y6Ll2uHxmnHaRxPazCOwJLl2o+GnFEOqRUs3jt1QP8GlcZRlXYtWa4dGq8Rp/GcLGM86yzXLlkwtkbXKjrZ4qx+J09WD9lrwXLt0HKVOS1XxuKWgzcVW7n2cu/7HLdvNUS02C6r9pmSGyQWL9cOaS5YDoEs177UE3OERJ7ahC1P/S+Va6eXxbBgufYHrjLButZs5dphtdA5zJS2WMq1/53a/PGYAd/8N89K+q3f5hyqYCIf5drp4mamzpOBp1jTmq0EeSqYRS9uXVzl2u86XA7xW9nPf2zHQ0KR4uJD3su1030ED1jN4cRqinl9rqXLtbuwubH/ifAXSYSfXk3ILCL8MJMo2SYPnvBHnAS64CYTPGL6Th5E+Ev//Ne4epU6Bc5+nL5/571jz3g8bc6zjzwCEBJAhKagxj3ULP+L6SOLQ4Tf07vP3d+n9/FdKAnbvtFrL7UOurlF+CEqr1tzofLI4hlowR0ny4jw16gdr7KN2CddUKNG2taVAxZYhQg/NN0NTtOdt4zpzC7CX+aj65jHATm+K7bMSjrl2e6NBUUbZrgTXgZ54l7oiXkZs4nwP7nwMs350/3ALFevJrJwWTMLi/BDcDBnwwrOo9ZmFOEfvmz7vLSmTyWzGq/dXLLhzrtWIGcBEbrBidB5/fTTlS1vk4mbNvve8Yp4zb26ay8tftuSqiOAHeJLVKtARGfmbLYsOHvnb5Eo8+8ntDAA4hp1UmwcyOFglWt1jFFaDvQKi6xPy1Q9KNBoKLevkUwwBA5PuQQuutDwFXjJBOI2ph6sqpb/WOAqgQXy1duW7xZ8NGl++J6dGbMP1Eo5bnrtLloKRXeMJqZQXQB6SohePQmidwaAidWANsYVwsaHb7QiVqNA55dD53Wp2mL+2/DNDs01Y5JqUwsxl5ZiNyJOSOHXeZf9Be/fnfP9g9tYOlnS90wjEiX4yEp1tDKKQ9vmt71H166tleE7rsehN4K0z1Q9cFvyA5h9Vd9SHMYQcxqjjWWMwSiObcyOhUdwgloHwpc8Cq6dunh1BFNWMLOIdxM27xgVp9ZEuwlbdNQO1eiwX9DZaoMHo5XbP08WLQx87LstcDg1HSoLvyBSl6JC1L/MbyoOY7lzGquBVYwc+FFGZavV8xe6E5I0g7QcIyjXe3j59PhXvnsjQ0Zk2j18a8pU2dSpgxfhyOFRzwsMXajmsvV92xiXpRKenCPbmpjhPOTN+Eqh85skjHaon33ZstNeAEA4CcANBADQtRiViZKhjF1konVqjfUb6j8NXXMnosqIbSF1aKHMvId9IQCtuADo0bgNmWg2/Y/xceiFuc3Gx3nZhouPs4uZWfLMx7E9OmzstrDxIfOHr/5piPbNOCvg4/zWhmt3855lnD6VVDBkyBAz8HGSa8xc1aRWJcm2un1a/BJ9X2gVfJwrnNY5Yw3WMQsfp8+332vEPI8IPrx60L3MiRs+WgUf5wincXZZg3EEluTjlBwzOa5DWrLvXK9PiUe+fw23Kj7OBk7jLbN4smtFfJxPSaMzWyfGSNJqzc740Gd9LQvzcbI5LTfN4pYrVj6O+y9Oi+Ymrw3buPLsjzN/Vr21Cj4OlkOw8nF26fPUZv8X+Dh+rXZ41bseHZq7Mq1b5AnvGxbm47i15eLjOLQ1Dx+nlvL78sO+faSbTm1uPk1wqQ7vfBz63JwHjknTtlwcE2Hb4uLjOEdXcwx6uzR0ypEryx5JK6/gnY9D9xE8YOXAiVX5tv9f8XHc2NzY0MPKZsqwdZLdh8JVz5/0pTpnu65J8Oykv0aeGMc8YWrE9kVDqVKbCE+P6XdzUtzxU6ZCOdTMi4XfgC58eN5d/u+bOeKxdy4ce1fx5mnW52Pu5BRsZPS/spHAhYUXPIqF6JX0c08G9kr9pyEygZfwtJ+DBP6jnf/c3ET264uWefaRChUwmCI6EPj14eTHYWbFTenOZkqHR5nSKj6/SnK9Hx/efCqZWh29hC/agJVx746wmaAc3kQ5ZEUEA8bhK76UPOiH5Iug5GFodlCCxUoDge/oQJbIPSImUPdgQ/3bhG0rqnrY+O7q55izKjF0ZaGnL8sVP/IGn9ikn97j6cRmEccNl0Uym9Mt4slmkaUzM5NeB33ynzvUQZszxY2qaVTaD5JndMyMjHV6id8g1IKoj9e7TNLClBer1RanVkVDOUZICYzB/g5Lh3XyWK1BOQj9iGTpEHXUEEW0/ibUozOXc/Hrhu5Wu8gEHyGYJVGkPiiqfrU5Qn4JQgTncQj5JfiPLr8UNuFep8i8V6LxZ3ek2r4Pv0KXX0rrmTvmVmK/gOwjS+c/y87oRLaTh1GLLM9E/2KEPBObpe2gegBhRqS1Bmr+3LihgVfo7KxDxx/U2xtqirX43w0Ddv0A7boQlfIcAUPoRXOLFJ60g/UdB2jBOyTE5juM/N8xVzPSyydiNEIlis1WVfzyRxtIiHRJGnTiet7xRef6IX1CZq3revrZ88oNOE1WRoJ/EkLrmGgoDqPd5zTaVfMajXTBNiES3KHCW8boxz1mG3KMsiV79aVE6WtlglahwVh34CsoDhN95Nkzqp7nxpLBu2eUfOS8ZGJjuq3KhCbp5INUegELAW2zC36rFzNceRWq9VXEcMVl1LOcRv25OUPri7OAAtHZFbg+C5ogTpNJ4ezoNtDTMct0YFf57uJbPAi/dESMqHSf6Il1cSKke7GF9K6P74eXUZ33X7L3UMkxu5wnUrmykXHKGJ0Q1pWlhnUYr9hqWjuFx8TAqYhcpSLKryph4Two3u2BBJhecJDtERD5kqE8PdAzbsISs918UcXw3GSCvSaXp7fHqu+CsamFD4x80R77G2xYc2RB2N45FQaOX7ZcSS/wgnzFQlNCetF1E8fYFoDVdYhVthjF/QAT/F+YRak5WWO4BdVYr0DikjEh/cvx3B9k20d4e29wdy7NWFKOMQwYU8cTePNjnG8OeokVLCdjPdCIPTY7qDPEJT0V6PHu1cE71YL2r7p3u+X78+nUfgnvNhf8mznhX2kZ+BkMMVMLdeMjArKdwZugpTpoFXeL6ClMXc13J1zBEREiwEDyMxgQRIBpzhZgjNbzcdFbr/j1fG4Jq+1erbWRHmz31KZUh4vBBfR8PjwrF3o4Z3DIwl19yjjI9qsL6PmE6cJuBocuC179pyjJPyhzTQE9nx5Vox4NdTnrOzNy6m2bM3VCC+j53OuQ89G+yyDZodaf7Cp5LlYU0PNBVP4ltQ0RlX/JQr2Iyr+2RFPjVnbN+znkBi764fdc1fbov0BTWaLpRcmHDU9sT5TN6RV1rdPRur6gqRzR1KTW67WRrVLCl2QFz2kb8Gsr0GRHNN3euDbulvtgca78xsXhl27XBE3liaZZZbUn5j/ZJd6WcNUhbu/qeNBkTzRljOv4LKfDzZBpfgNz/tXO6wGaKhBN1wY7RwXU0gUtSK7tdEJT5SZoqkgCZTehzh+vg323O+2ttddG2B00VSKafG7bXqpqlxi0xu+oZLRNy0OgqTLRVKGb98NuDkm+u8YNH/hq5PS+oKkK0dQyPO3fl1vHSSbvbfnwcr+G9qCpKtF08ur5iH0/vPDduFXU4FubXqdAUzWiqWe5D++dPgf6rxriXmJkSEgb0FRdwCoD5UA0+R86fqN96ITQrB1XsiZkX98DmmoQTfHveznlrr0l3dDV26mez3g30ORINCl3LwuYd6WEeOIGl97nHGe8AU01iabh7qquX2XOgdt/a1572GX7xaCpFtE0YsrJK4PkEt9ZohsfF104PAg0ORFNe58/apWz7J+A6VOirgy9M+gFaKpNNDW3idu6Zst1ceYHh+dNt01/D5rqEE3je62Z/pNd+5AlqqrNmpfsD+1Vl2iKOXy6utuRE6Kx2092T3ab9Ag01SORP3E9LHOKyH/yl7tn9klHzgdNQvKuuZ0uLlvcUrw+xLXytDq7KjCEqpwFLEJVc/YIl/V1TA9Zu7d2pxSJ0yEehKpasLmo6jF7N+ecOC1buOHRiLO1Ry2lTl1lwxNV6mjE6Qu2BLgxcYeQPC+LlanTxoOEGDghogKggcct6A4K+WjMWTXRYMQ+uo9PHvSviJ3DSiA9buhjXAHN/NOo+IMg321020k+D11XB2ZUGJF9aGmfsjweRuV5gxCe3WsLAYpGzTvTXWUCDx+jcmLvCAXoGhjvKVoBSxyptUrs+Al4PqUKmzqR/UQo18AT1+p4ZRRawvbhtjXXSm2TjM9a8mZVzME1VPq4/nuY9PH8puI46tiQE65aPlaRyTGPOhqZybkTAy0631y6OLlOGC8fohCCBERfwpqdZx7RoUGD0B4fJdN6Pp7oESL9h8Y0JD4WwTQkW3gvaOdGdHYpynq9PLDOzmCbGwmcM3koiiT8KehAIsHa2W2pw8nx3aTTLs/smnX578GmH8HiAayGnGCBrk7En5Zs8ed/yg1FUm6gZ+hmUW4QwnKP0ODVUZs8sNZbvHGx0kDlBtuJV+XjVjn7Lx27x1GzdbMHj8GS7oFMDJYigNBUiNA01JAYDrz/WOOCZVGVG3b/MfTCxdsXQ1b3v3A3YMpDWplQMx9hgagkc6ISb5mYaADLtLAFJv6UG54KJUmxI2tLZ7YaWv7O0pfUU0eWUm6ApoviNF1va01neFZueNjq3nQP76ig2f/0PfSgZj8bCyo3wPKHmJdBHr0/4oF5GbMpN6T/3uTbzumbJOs9nr0O/lxqiIWVGyA4yZzgxPuYUbkh/afSB9Y7iqTpW2PdT955/cIKlBuw6pmcCPXW522t2PK20wvkIV/b1fAft6pumZcNRlLXKGxDQI4mjJSGGL5w4KsvhgurCZCZMJghxoBfQd6VIgTYanS4RgFwtkR/hbkXkbqNNihxoq9fop+bmUWTLYYuH7uAQSgmyuIyUiUwdxLIxcYtK2APUAAD9NH3xTHzwp8pRfvmJZ0ZpCr1iLabBO9GHFDALheWKdH9n4mZUioAaIyYYF8xOuGDpjJBktgo3rEjBhDZL1yilRrQfUE7OthOWFBVI9CcC1txvUXOK/dp96nDUkrezByW+U2FAXalf9mwqY9sg1d5LZtwr969FjwANoQTMNCjLJJE4TED/k1LAdsPUw7LlsOWdpgtObxqq5LH341adTUgIyfo0ILZF1tUwYRMgDFkwxM1Cj3tGUtqxb6RLr1cTUuAaaY9239H3cT180Rpzn/fUj6r3p4H0/bkNG2ohUyLyo9ndDYq1SofUsCfI425ccXggMZhP4gXzIk54RK3pS59ww9xqAq/yvvanTvhk7YgSSUe2BAjAqM3W2D0vVLj7rA220Ub+/Z3nNrjILWsUjVIftXBpU94klkBufUKIyrGe0rU8QBynIKLfUx0/sdgk8P8QvGQVGpQRKRv2xX+wAxzIP/KCObok/YA9N98EQXkhc1kgmvtTeWniEMKgAKXG2AZJJhtqBOELmTxc4AeLoAE/4f7NC1cjVYnK1jUS+7UG7l988LSQXv/eLOnqd8aqnpV6R4Y6YDpY4jrhfmYfSUf1g+/IZNM0rp1vnjLJZcH+tgjCLONL6Jkei9XDGZTl4QbFTC/fnUrSp2gVUQlYd0D40ShnUDdT8uXDdsWOu7LzDW/vv3pPPVERv7nMqe/lEa+XcKDZgRs/VCwZbtjsBEuoTWbSzhbocGH5q3VoRP/eBvscXmMjPJu9hEKjMMoDEtSqRC+gC1hdifvg0RYrM8qE4bJVcpovJMnK3VxQjWYpmgM9wT0XXqO52RYgdpsILqJ8PgxRNcOtfkGKRhzTR77DoEYDw+uuiq0GBEbQwwJgPaLbsuGe1PDVt5Z+n5n8Kgr1PQZ+yBm+oxfLmw401kJJg7nGQC5dRC5ZaiUwRGkDEvbs6bPBiLnpEdOQ+lqsGsh4ev7156xse3tJfPuXM19M9quL/WYO9FB0Fs61FbetQqbYD2JA62M9hZhsdt2S0lUFMShQQHOjkcwSGkVKg/4N1oP/4ABMMmNVWholDj4Y6rjdsACJDQs+AgwqU7BTY20Mj0wmTJITLSr0IMYBe9QtLlKntgoMGohzDEMwxbmCjh/l+j60UgoKsb5rHme8oN4Tok1ZQ5OqzeRtjEB3wqxMYFdLg4o5nJCkaEPVG3YApXV1Pyje0t+yh/zXPIPMqvj27OV/LsAMgeFHvK2Vg85nRvHD+RvIj+M61dylu/ePs7Htnzc6coD5Dc7cEF+sQMJeTveWJkVScjNwMpEkChJViaCREmyMhEkSpKViSBRkqxMBImSZGUiSJQkKxNBoiRZmfGjy4oPhJ/3n9G/wsAeAx9dZVDeYOdF9j46/ZIHypsPm/3rBx93v7u1nN9qm+hB115Uotq/Kr7YL1GptTBdxDZwmEl5aZbRVt9PCcsdx8H6wPgHYFNKOM8kaAiGbe/TKaeFPiIDHNQfGZqVg6niU7g/cAO1du0FBtkJ47b5nfDdNkxJQ40Vg1dDViA7L2josYoK2cBwyaY2c6KX7auxzpS9tuJdxp4BsHrsQ4TddwxJCDCtvsLc8OfCqrqeElEQKyRKew7e2TlvkXdgVnqla/PdZct4pEWM7R728dSq4X5r1ZMD0n1TjvKA0glOlHb5MBcfuPI0ty7kuMIGG4YZOeTgVI/knrFvlXS+fH7nye37AxZv/dBqXfSXbxbcz33XjOhEyA25VDANvmnkfm5T/e4hhCiqgN4njEAU34QE5/XKH9IT6t0P35N6KrXX/u+brGDXEoL0KydIJ4zc120kVeJvrl+qyu8y2MYiu4NKvj/oyELvKmEzHv8dkVTqSk/qLiL5ucxdRH1LcaCznxOdrfo93fZsgfFVj7AQG8/Pkqzl5/xywwP7MBfimZHQhgVcZ+p+rp7qlqw2SnKffsDC0L0BQ9nfwDG1gin8OV+UbpSbTFCXuQBl+jata796id+3zZesTP6garNi62rqYie2H8sS1imNhXlxuoszlQkOwGoBweqC6mNQTsMFvebEBlYFDCwFGGnsUMWsqp1241mpsF0uZ+bNzp3xL9UTycC9aKAKNJk5JYAw1eWEqRpipd20LTT6XrPFttCgp8H6CNxCEzJyRw8MGsIPdWDzQ5Im5zzbpd0PWeqX+17XrmYd+jp0vDxRiK/TINbL2VLzJvh95G4Pdi5FLkxQJMNLCo0yigiQBrkl+uEujidErZQXaDaChxcpyoOUWZS+CnBULUVGOaoK2DYUvrgLHgf5li67xp652WOMaPn1Upkbulygypb+gH0AM0XCLxc25ujn3EwccwMBPF0hPDmoMXcKJJj+IqPYJPb483CJpC/Yv6xh6GqnkA1ftL28HoSUoe7+4fczd/+I64Xhk/x4yb8ta84O3v1qjFvWyHlrecCnIyc+oPtYgmFgixE3huFAdBDQf4yrombfTa6JVei4jLZibedZazf97D9l5vkOJ7fG3qEaDb+faTTiOu9njIFVXDmtUs+qrPLuMGkVo8JXRczhJSqiCeeLNMzkqH+jO9TpJt3bt++hOWvPOlANE4rdzzQMcZ334/juhDuBy4yM+eo7EMV8RcZNyJz0GGATC5WyMDxK+Y2NGX/gffiBP5vPdpo5piRNUgj/AISkENFQHIi05ESkoYiM6x3Z4vqWWcF/9m3vEzjxz68622O3PlBtjH+j4WSYDvoZBjWAC5PjlFFxIK2EZwvlWi1Ug9SzYojwb9jkg35OG/W8zD6JXzeCJ1pCRPBEGewXAYjrHzqbugNem0g1cPEkTOAXHmHCnwT54sFX3qfWXf3U/0D/uVf/3jqkI7XzsSU2+gYzB39In/veOQ9O4BAcDSgNDDA0ymN1CCN6FF7ShHJQC/KBtPj6ACyjAP+fn1MKR4aNRi8Y0OK5ZSuquBGAOaIAg2J9ADBiMHey+o0rem/iSW2Svs3Bw87Vpc5cO1dn9Jh3ZsM8bLff+dOC45LUPjXbK18GVaYqbodShFCZjpQNaadQkA+A8KQDd6pocqoG+Um6MgXXYzGFwKnthi7cwIPUkKqZgVq4gXsUNmKE3iQZTxB6k/Cb6HqTdL1Iut5kkfUk6Tci9CTZfFMdP6UG+Bxj5G83jfqzvv+hnUGT7ret5N13diWq/K2YOTrEhYrbbZjyPLldxRTxpowB5wacPm/y0hIwpyM0pxeKvQAJOhXEeQghRzaQiiIS/LTUtrPxwQPCJo8O1Xqkv5xcBJFgOkonx/8lESprB4w9P8VrbuPMBjygZMOJ0hcRQwKQk+2C11qAiZEBANFZ79QYhn8UM4YR14tjwRvrMZ9QC02/uWFIEf5U9B/zp3Q5HzP5080iLn86X/Q/f0rY55JCcCRzaPuAhfLJi9ddChjCgz+lyzTx4Ck2irg8xXJRcfvTTnabWz+acSw8+8cpnZ+PPdWBB39KXyTgAaX5nChNL05/So+hFvenWI9h9afz9RN8sdXPCejDiR8ym3eJmu8zJYnSXR9FcVuuZEbwMCVIEHFNCWL0kPvyRmarQEJuBjIbQgOPdPUIDTySzIbQwCPJbAgNPJLMhtDAI8lsCA08ksxGz9AYjDXoFZFdjK6exwNjTcKbke3MaOSi6UgiRBVJI9P3/Bk2sWGzCV22kAebSNlskrPnQe9JTz4F7tuzc9/WIQ+p5/x+6CJPUKiYtVHYHJuLWJgI7yhQoUuYoNYpcHEhKM/NpWFL111EPIoh3s4uMkqjVqkiYMSCF/OPfL7rTPOEC1s9Oi9fEykb36l36fUdLp5m84S23bUKDRQAJ7+2kVSdNEgFuVqwig4U/olW6oh3BxkG3OV4lLqKZhKyzBFjU7SxTHCpE3Cg7SSC1EmScqFyTawyIUQRQwmAdvjlCFjvtOD1svj1burEglepXnhuSGPZxIud8ipiIHbRwHODOiX+VGXIp0INKI08OTAhGspukfCWKAsvwq2XApewXF1FlGTCJwSwiqpSrpJALagCgUinUcjj9b9jwsT6e4iuKrP6sExXAeVpqY7e/3mIyz9wLtV97UTGZT+rx5wur2q9y6P/cBL7P+iJ/f68hUl7gfnCJEI3lwyTCN1cMkwidHPJMInQzSVzodkTmq5z/OAn23dTlzdvSrXNBXIhj97Jswe/+BC6emgpz1LSXoGM4Aq9PrIj0cV4eQiuAWyWtNJy7XTRYbOUa6/URCb4LmYr1w7FfM4ypWR4Ltfe1ca5ZtdNF6TLXlde1XaCB3V33vzl2r0AJF/FbMVvL8AdP8sIZlBrTo8ePdoM5drPjGogaXVsqGxShU5j/2xYhXq63BLl2qF1XnBa5741WMcs5dr/fPvLW+/TvaRz1lxsuG99/+MWL9cOjXOV0zhnrcE4AkuWa29X1+/vFiVjg6dPz8qLPxM9y2rKtUPj/cxpvN1WJBRk8XLttwe9L3k9uEbwikXPzxy8ICtnwXLt0HIbOS233OKWgzcVW7n2t2W31Smf985/a71JDx48evHa4uXaIc0FyyGQ5dq9PDFHSOSpgWx56n+pXDu9LIYFy7Ungv7u58tWrr0LsIyXr3nKtfcce+fBtOeLg7a8rOH7qO4GEe/l2uniZqbOkwFyUl+2EuSVwDzZx7e4yrWPvpU8P3tElt+Oh2rbhgd3fuW9XDvdR/CAlRcnVo19/78q1x7E5sb+J8JfJBF+ejUhs4jww0xiMezVVVEngQa6yQQ/MX0nDyL8Ub08Px5TeoSlNtQkHCvXcyqPp8159pFdAEILIUJTUOMeapbPYvrI4hDhv1z+wlDBjqayPWOezbuULhFbVIQfopLOicpP5vWGnHMH4w7+8CfCf0K7M3HH++2hK22e/zqp/ZONViHCD02n4zTdYMuYzuwi/MG1xBE/pVQMWuH07J/O3o8sKdogdCe8DPLEPaxPDLyM2UT4J4k/33jZtGLQxr+37WirOUbtt+YX4YfgpHOC85OvGUX4/xiwvUJgpe2SWe3feQ+pVfGqFchZQIR0nAiBMU3kbcFseZtM3LTZ945XxGvu1V17afFbqgCtHXaIL1GtAhGdmbPZsuDsnb9Fosy/n9DCAIhr1EmxcSCHg1Wu1TFGaTnQKyyyPi1T9aBAo6HcvoYyQRkJwFcugYsu9PqtYHp/l32KaeDBqmr5jwWuEligk6f+H78MGH7Cf0nk1S1+v0loeiFFqd1FLzZPc4wmplAPAHo/QPTqSRC98waIOP8Yl0KVx4dvtCJWo0Dnl9ccf8zJaDA/IOfSt/kBv7tQy/6WlmI3Ik5I4dd5l/0F7//el+v9n1s8WdL3TCMSJfjISnW0MopD26a2+JRM55suzV7ZsPvSmZPzqH2V/ABmX9W3FIcx7nIa47J1pD8CY3YsPIIT1DoQvuRRcO3UxasjmLKCmUW8m7B5x6g4tSbaTdiio3aoRof9gs5Wf3E+O2jq2rCgCZN3He1V2XMBNa7BL4jUpagQ9S/zm4rDWKc5jXXYKkYO/CijstXq+QvdCUmaQVqOERTWxSZQ2uilbIZ0YbOp3s36mTJVNnXq4EU4cnjU8wJDF6q5bP3fRmaphCfnyLZ6TczqPuFeWPjC97Mfus5sXM+y014AwCtfAoAbCACgazEqEyVDGbvIhM+/bp71FmYE7kiRTX1Q2/+oRQ/7QgAucAHQ46g+0Qz5j/Fx6IW5zcbHmSjh4uNESIqbj1PxVosXfaslBs093CXN9s2Sl1bAxxkv4drdHCGxAlJBVFSUGfg4kyucG/PkXmrQjnufpv82/EOSVfBxEjmtE2MN1jELH+dY4pZTjunLpMvrvL4Y0XmXo1XwcfpxGifCGowjsCQfp27qn5+PP+8bMKdmtZ9f/R063ar4OAGcxutkGeNZJx/nzu7Zz379s6Lo4PymB0/U+fbSwnycVpyWa2pxyxUrH2fulZPfHfdGB65ptHN5uUoDU6yCj4PlEKx8HOAIiTw19P8CH6fCiethmVNE/pO/3D2zTzpyvoX5OKckXHycbcyUtlj4OJIBvUtGZLwVzZz8dnibrfEreefj0OfmPHBMTkq4OCYHJMXFx4mtOOCn0gODwxbc2vTuQsuAxrzzceg+ggestnFitca8PtfSfJwwNjc29LCymTJsnWT3oXDV8yd931J3SromwbOT/hp5YhzzhKkR2xcNpUptIjw9pt/NSXHHT5kK5VAzLxZ+A3rePbfTxWWLW4rXh7hWnlZnVwXW52Pu5BRsZPS/spHAhYUXPIqF6JX0c08G9kr9pyFEOMfD034OEviPdv4zuoksIK1znn2kQgUMpogOBH59OPlxmFlxU4azmdLhUaa0is+vklzvx4c3n0qW0lQw0AasjHt3hM0E5fAmyiErIhgwDl/xpeRBPyRfBCUPQ7ODEixWegd8xw0RUSL3iJhAvQsb6t8mbFtR1cPGd1c/x5xViaHUMII6fVmu+JE3+MQm/fQeTyc2izhuuCzi2pFuka5sFlk6MzPpddAn/7lDHbQ5U9x+pK6J+kHyjI6ZkbFOL/EbhFoQ9fF6l0lamPJitdri1KpoKMcIKYEx2N9h6bBOHqs1KAehH5EsHaKOGqKI1t+EenTmci5+3dDdauCEZkIwS6JIfVBUfWhHhPwShAjO4xDyS/AfXX4pbMK9TpF5r0Tjz+5ItX0ffoUuv5TWM3fMrcR+AdlHls5/lp3RiWwnD6MWWZ6J/sUIeSY2S9tB9QDCjEhr3Tr96WtSr61hq8e3XyjuJu9oirX43w0Ddp0O7boQlfJ0aSoTTOhokcKTdrC+4wAteIeE2HyHkf875mpGevlEjEaoRLHZqopf/mgDCZEuSYNOXBfV2JN7NP6D396b21+++fFzS06TlZHgn4TQOiYaisNoIzmNNtS8RiNdsE2IBHeo8JYx+nGP2YYco2zJXn0pUfpamaBVaDDWHfgKisNE2ur03G8REQtGSzZXS/ULvNmeMbzKhCbp5INUegELAW2zC36rFzNceRWq9VXEcMVl1FhOo/7YkaH1xVlAgejsClyfBQkeXSaFs6PbQE/HLNOBXeW7i4s8CL90RIyodC/wxLo4EdIj2EJ618f3w8uozvsv2Xuo5JhdztTqp+Ui45QxOiGsK0sN6zBesdW0dgqPiYFTEblKRZRfVcLCeVC82wMtKEIrOMj2CIh8yVCeHugZSVCYopsvqhiem0zQvYOpPDJ7rPouGJta+MDIF+3TMVPwU5JQMnV7fb/u2psH6QVekK9YOPGeVnTdxDEmAlhpIVbZYhT3A7QqOxjHGsMtqMZ6BRKX6Crp4Zu33xBlaT1+VA54OI+xpBxjGDCmjifwbgM43xz0EitYTsZ6oBF7bHZQZ4hLekpTI6rm5RlN/LacOfL7t1Plnan9Et5tLviDOeEXWwZ+BkPM1ELd+IiAbGfwJkiL0CvuFtFTmLqa70a4giMiRICB5GcwIP4f
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAtFJREFUSEu1lF1ojmEYx6/eliRHDiRJEpq1RLSDpUhrSg4IJ0os5Wus5ECxA7UMpRUnSEmjmLWEOZKcKGlpaQc7WNKOlvQerLWDtdb8/vd93c/79bzvmV/vv/f+X89139f9PPeHlXPFbJc3G7HO/zMumm33Zn0umW3pMVvuNtsmT7Fb6GN4WGIVWkRdwcFZszXkLaE7HsrnstkRFTgXB5HvkGd2O0JCiXtoAe0MDsjrUhH6nPdQLcz8sAY8bbbSQ+o4iYbdJgroK5rwdoACfWghZ0IRPaieMR2O+8yaPZRoRcuoM7hIgdxxNOq+BiUUGeyGe1HwtxhyX85P9CA2I/Q/hRZZz9UeqoSBnpKgV8+g4Bl1umC21kOJF+hzbEbo36qvoH8PVULlvUpgwBYPmRad2CyFrnoo8QRVFGAd96s/K73JQzXok8xQoM99gNgQsU9uEyPoQ2xGyBlAv93mQ8Jj9MNtAH8zp+M4ehib8TwwkTnetNdD+eibkzjvNkCshwJ/3AptZZ2Fk8EBz5+jv3UXOEFSd9Vg+kT9aNKt6EDaphtk0hlCR+UbwuAj6IvbAB2/oUG34j6ais2wvad5/tJ9ffaZNZFYsWN0NzHAkmbpITGGnqlBbjN9dIftkW8IA3UqmdO82UOKadF/0UzXQhPShRe+f9qaOeekFgZ6jTS7gO+MeWL8MjYiff92GR60qACLm11+ufiB0mBMKqItR2y2ame0IRUIh+mE2Qrvx4s3gKRDmkn5q9JpGg24TRxAKlCe9wZlb54Ls71LgWwr4ttUMOf61WKqQLZO6Yrh1Q96qBZm8Aq9dasC1+g047YczVwF9CYZ9B1FU3UPmhfQ/RJQMfTObTUqfD02I8x+PflFJvVe6+LhEjy8jdLhkR9Dj9xWo0P1PTZLkN9OgTn+J/jf7eGIH5h+t1r0YWZ1zG01+jzF2KyEflvRIH2ze+o/YvYPvDLEdqaZG+8AAAAASUVORK5CYII=
- fb4a3cd7-41d4-44c5-9aaf-914e96b16bad
- DIFERENCE CURWATURE SHAPED GRAPH
- DIFERENCE CURWATURE SHAPED GRAPH
- true
- 36
- 0ea07907-b707-47fb-aac5-b80ec6de4038
- 1bd632db-815a-49df-8056-d9b68aac1b2d
- 1c283afd-2268-4211-af8f-8cdf4d25d66c
- 25257494-4b0e-4bf8-8e7b-5a202abd036b
- 2915c280-bfa9-4e2d-a3b4-c85ad1f5779c
- 3035a7ed-ab59-4e3a-8745-e23e7f66fe4c
- 31617f0a-328e-427f-9bea-aa64226efd1f
- 5331dc73-40c7-45dd-9ec5-6ae050d5dace
- 54c2ec9f-a8b8-4bb9-bfcb-571630ac488b
- 59c2f307-496f-4631-b396-0b00f904f005
- 5d2c2b15-5cda-4ff4-b8a3-405e7b306012
- 66ccb4a7-cf16-40a2-9928-a3a5e5603b2f
- 6faf33d4-d041-482d-af65-54b263412868
- 70102562-363e-430a-afa5-f663fb2d93c6
- 71331d5b-b298-4259-a4fe-dc9adc2b0144
- 7e4bc6cb-be01-4aad-8929-fa0633ad5eab
- 80aa9ec5-4e68-4151-87f5-77dd9cb73995
- 844bd38b-b927-437c-8231-bd2cb384f4ce
- 867df14b-b84e-4903-880e-679477d08b40
- 8b0397d8-5f8e-4b4c-96f7-58c3d1b3ea7a
- 8e6bf451-05c0-4dc6-a74e-45f4a70b43bb
- 92b46693-4fc6-466e-b09d-6a1bdf99435e
- 93d932e5-f99c-4911-8200-065f7e63b31c
- 9c1ef8b4-e132-41e0-8db8-0eb2de24c077
- a04899d6-6a10-48b7-b519-0ca4e8b4be37
- b7c06fbf-48d8-4a10-8e70-95a2dfb7ae59
- bc983a9a-51bc-45e0-b2f3-5dd524ebe645
- c303f18c-ec2e-44f6-bcc9-c6c97dcdaea8
- ca63a059-0a01-4560-a8ca-8869c5f2d87e
- cd9ab9ba-48a6-43fd-bf09-e50035dc093d
- d057826f-a473-488a-8c43-ba941c74c870
- dac19e22-ff36-4a6a-bfd0-61013cc4fee0
- f582ca69-21fd-4e0c-ac4c-c757f53b16e7
- f5cd8ef6-3195-4c5e-93d0-7c2e0a7b3023
- fb284101-9ac9-4a70-b2f4-a594ed3bc763
- fed1bdd2-732c-446f-a1d2-dac5c6a1893a
- 3d99a0d8-87f4-42b3-ae8c-13046d610738
- cb30ccba-a894-45cb-b1d5-847ad7005125
- 1af94696-7c3b-4341-b4bb-415b935cb441
- 2927bcb1-a8c7-4996-b4cf-1e0b73fe722c
- 36be5f7d-3d93-4e60-9b58-2ea01268c3ff
- 59e3ea83-51fb-46fa-8bda-938de18b7cf2
- a317f3b7-85e8-46ea-bfa9-b8f70ca5c382
- 81fd98cd-c9a3-405d-866d-edf2fca2467f
- df2cb580-23c8-45cb-aac6-97ce3b2e2214
- 735da924-e3a7-45ca-9564-36c125627c0a
- 233b0ef6-f843-44d6-99fc-9ecf077d1b78
- a67255eb-66a4-422d-aed0-4b64cd94d270
- 4a525765-a9df-4f3b-8fae-c2be3081d0b4
- 16c32cca-03cb-4d8e-bf89-f521eb08129b
- aa2a8593-f318-4546-bad9-74c7978a14af
- 9a110ceb-3e62-489e-8e19-61581f5671d4
- daca2ebb-26cb-48f4-8885-277e43200f92
- 326b8016-5135-4828-b69a-a21c171e1a06
- bbece122-0a0d-43f9-bd1e-b6e66ae744df
- b2a58353-e9c9-4e65-a900-6efa66489724
- a43519fb-325e-4058-bda1-f7e34cc92c6f
- a7e4f8f7-1ccd-48f0-863e-6ed19022d27b
- 88db9398-ca86-4220-85b3-d1387046010f
- 9c973484-e313-4490-a780-3cac6484f2c3
- ddb00df8-65f0-4650-a3c7-89c56da7f06b
- 7e2338e0-fce5-4964-bac7-ea6c242afeb1
- 20d03587-b988-43e2-924d-d6655441a5e8
- 53133e66-86e1-4322-bb85-7afca5c21f4f
- f12cf189-9dd5-4b8b-822d-2da85bac7a45
- e860b9e2-e037-4c18-988a-393d0094d8e4
- bae8f0e9-2af4-409d-945a-a91a08fdc45a
- 130433e2-dd09-4dbb-8e9f-946a284f4836
- eabf9208-959a-42b3-8af1-f5ce33e4d91a
- 43f684c6-6920-481c-81ce-8a3096268d23
- 937bac2b-aa3f-4485-8435-a74b05842dda
- 8de15979-110c-49a4-bf71-f92c5c15659e
-
6980
-2691
388
384
-
7348
-2499
- 19
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 17
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Second item for multiplication
- f5cd8ef6-3195-4c5e-93d0-7c2e0a7b3023
- B
- SIXTENTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- 659c929d-50c0-47c3-a9f8-7a31b3925ddc
- 1
-
6982
-2689
354
20
-
7159
-2679
- Second item for multiplication
- 6faf33d4-d041-482d-af65-54b263412868
- B
- FIFTENTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- 1b18947f-649b-4aa7-b635-0c8ffaba1c52
- 1
-
6982
-2669
354
20
-
7159
-2659
- Second item for multiplication
- 31617f0a-328e-427f-9bea-aa64226efd1f
- B
- FOURTENTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- ae83d3bf-85ae-4eb8-9a93-d7b82f6eb1ff
- 1
-
6982
-2649
354
20
-
7159
-2639
- Second item for multiplication
- 8b0397d8-5f8e-4b4c-96f7-58c3d1b3ea7a
- B
- THIRTENTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- da31bf03-7f19-4df6-83b7-e4247638b6ba
- 1
-
6982
-2629
354
20
-
7159
-2619
- Second item for multiplication
- 59c2f307-496f-4631-b396-0b00f904f005
- B
- TWELWTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- 240fa235-09b9-405d-989a-af59edf91192
- 1
-
6982
-2609
354
20
-
7159
-2599
- Second item for multiplication
- fed1bdd2-732c-446f-a1d2-dac5c6a1893a
- B
- ELEWENTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- c118d3a6-21e5-404c-965f-22c44c00965b
- 1
-
6982
-2589
354
20
-
7159
-2579
- Second item for multiplication
- b7c06fbf-48d8-4a10-8e70-95a2dfb7ae59
- B
- TENTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- ef414688-663d-4a76-b64c-d9da5e08c56c
- 1
-
6982
-2569
354
20
-
7159
-2559
- Second item for multiplication
- 3035a7ed-ab59-4e3a-8745-e23e7f66fe4c
- B
- NINTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- f023b241-9d43-4d09-a743-5754826ed592
- 1
-
6982
-2549
354
20
-
7159
-2539
- Second item for multiplication
- 2915c280-bfa9-4e2d-a3b4-c85ad1f5779c
- B
- EIGHTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- 8c191374-3718-4371-8f0d-4782a857fbcf
- 1
-
6982
-2529
354
20
-
7159
-2519
- Second item for multiplication
- 867df14b-b84e-4903-880e-679477d08b40
- B
- SEWENTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- dd3e81a3-f392-4fff-9fba-35855c2e8144
- 1
-
6982
-2509
354
20
-
7159
-2499
- Second item for multiplication
- ca63a059-0a01-4560-a8ca-8869c5f2d87e
- B
- SIXTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- cd852686-49f6-43b5-930a-504e7c0e8fa4
- 1
-
6982
-2489
354
20
-
7159
-2479
- Second item for multiplication
- a04899d6-6a10-48b7-b519-0ca4e8b4be37
- B
- FIFTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- c2a92653-9119-4312-8a0a-bfe4efc11ad1
- 1
-
6982
-2469
354
20
-
7159
-2459
- Second item for multiplication
- 5d2c2b15-5cda-4ff4-b8a3-405e7b306012
- B
- FOURTH DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- c6aecd68-308a-4a6a-b29f-68933f542f84
- 1
-
6982
-2449
354
20
-
7159
-2439
- Second item for multiplication
- 66ccb4a7-cf16-40a2-9928-a3a5e5603b2f
- B
- THIRD DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- fae63135-516e-4bfe-ab70-dc4f2b45ab66
- 1
-
6982
-2429
354
20
-
7159
-2419
- Second item for multiplication
- d057826f-a473-488a-8c43-ba941c74c870
- B
- SECOND DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- 83a04ee0-dcaa-4764-8f51-9a5af7e9c6c8
- 1
-
6982
-2409
354
20
-
7159
-2399
- Second item for multiplication
- bc983a9a-51bc-45e0-b2f3-5dd524ebe645
- B
- FIRST DIFERENCE CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- 154459f8-56b4-47e3-8f74-2be68cd83b0e
- 1
-
6982
-2389
354
20
-
7159
-2379
- Second item for multiplication
- 70102562-363e-430a-afa5-f663fb2d93c6
- B
- CUWATURE SHAPED STACK GRAPH MAGNITUDE
- true
- 21840820-7b03-45cf-914e-8d05118a8772
- 1
-
6982
-2369
354
20
-
7159
-2359
- Contains a collection of generic curves
- 8e6bf451-05c0-4dc6-a74e-45f4a70b43bb
- Curve
- SEGMENT NUMBER
- true
- 58b84e16-46ab-4bef-af27-b755fa42c6db
- 1
-
6982
-2349
354
20
-
7159
-2339
- Contains a collection of generic curves
- true
- dac19e22-ff36-4a6a-bfd0-61013cc4fee0
- Curve
- CURWE
- true
- c4fdf2ab-39ec-4f9b-947c-a8f85d40334d
- 1
-
6982
-2329
354
20
-
7159
-2319
- 2
- A wire relay object
- 71331d5b-b298-4259-a4fe-dc9adc2b0144
- Relay
-
- false
- 0
-
7360
-2689
6
22
-
7363
-2677.823
- 2
- A wire relay object
- fb284101-9ac9-4a70-b2f4-a594ed3bc763
- Relay
-
- false
- 0
-
7360
-2667
6
22
-
7363
-2655.47
- 2
- A wire relay object
- 9c1ef8b4-e132-41e0-8db8-0eb2de24c077
- Relay
-
- false
- 0
-
7360
-2645
6
23
-
7363
-2633.118
- 2
- A wire relay object
- 5331dc73-40c7-45dd-9ec5-6ae050d5dace
- Relay
-
- false
- 0
-
7360
-2622
6
22
-
7363
-2610.765
- 2
- A wire relay object
- 25257494-4b0e-4bf8-8e7b-5a202abd036b
- Relay
-
- false
- 0
-
7360
-2600
6
22
-
7363
-2588.412
- 2
- A wire relay object
- 1bd632db-815a-49df-8056-d9b68aac1b2d
- Relay
-
- false
- 0
-
7360
-2578
6
23
-
7363
-2566.059
- 2
- A wire relay object
- c303f18c-ec2e-44f6-bcc9-c6c97dcdaea8
- Relay
-
- false
- 0
-
7360
-2555
6
22
-
7363
-2543.706
- 2
- A wire relay object
- cd9ab9ba-48a6-43fd-bf09-e50035dc093d
- Relay
-
- false
- 0
-
7360
-2533
6
22
-
7363
-2521.353
- 2
- A wire relay object
- 93d932e5-f99c-4911-8200-065f7e63b31c
- Relay
-
- false
- 0
-
7360
-2511
6
23
-
7363
-2499
- 2
- A wire relay object
- 80aa9ec5-4e68-4151-87f5-77dd9cb73995
- Relay
-
- false
- 0
-
7360
-2488
6
22
-
7363
-2476.647
- 2
- A wire relay object
- 1c283afd-2268-4211-af8f-8cdf4d25d66c
- Relay
-
- false
- 0
-
7360
-2466
6
22
-
7363
-2454.294
- 2
- A wire relay object
- 844bd38b-b927-437c-8231-bd2cb384f4ce
- Relay
-
- false
- 0
-
7360
-2444
6
23
-
7363
-2431.941
- 2
- A wire relay object
- f582ca69-21fd-4e0c-ac4c-c757f53b16e7
- Relay
-
- false
- 0
-
7360
-2421
6
22
-
7363
-2409.588
- 2
- A wire relay object
- 0ea07907-b707-47fb-aac5-b80ec6de4038
- Relay
-
- false
- 0
-
7360
-2399
6
22
-
7363
-2387.235
- 2
- A wire relay object
- 7e4bc6cb-be01-4aad-8929-fa0633ad5eab
- Relay
-
- false
- 0
-
7360
-2377
6
23
-
7363
-2364.882
- 2
- A wire relay object
- 54c2ec9f-a8b8-4bb9-bfcb-571630ac488b
- Relay
-
- false
- 0
-
7360
-2354
6
22
-
7363
-2342.53
- 2
- A wire relay object
- 92b46693-4fc6-466e-b09d-6a1bdf99435e
- Relay
-
- false
- 0
-
7360
-2332
6
23
-
7363
-2320.177
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 21840820-7b03-45cf-914e-8d05118a8772
- 154459f8-56b4-47e3-8f74-2be68cd83b0e
- 83a04ee0-dcaa-4764-8f51-9a5af7e9c6c8
- fae63135-516e-4bfe-ab70-dc4f2b45ab66
- c6aecd68-308a-4a6a-b29f-68933f542f84
- c2a92653-9119-4312-8a0a-bfe4efc11ad1
- cd852686-49f6-43b5-930a-504e7c0e8fa4
- dd3e81a3-f392-4fff-9fba-35855c2e8144
- c4fdf2ab-39ec-4f9b-947c-a8f85d40334d
- fb4a3cd7-41d4-44c5-9aaf-914e96b16bad
- 58b84e16-46ab-4bef-af27-b755fa42c6db
- 11
- a65c84f5-46fc-4b72-8e74-2acff1ca258b
- Group
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 44b95cea-3f46-4b6b-b282-cdac19364d61
- 2
- Curve
- Curve
- false
- 329990e8-083a-43f7-baaa-90fed18836f2
- 1
-
6937
-2808
50
24
-
6970.651
-2796.283
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 71bb1397-567c-4d75-8665-b4e3269ab3e7
- Digit Scroller
-
- false
- 0
- 12
-
- 3
- 0.190000000
-
6739
-2836
250
20
-
6739.547
-2835.202
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 21aeed4b-3362-447a-b26d-c1b13691a4d9
- Digit Scroller
-
- false
- 0
- 12
-
- 3
- 22.300000000
-
6739
-2875
250
20
-
6739.547
-2874.766
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 8d5c2ca0-245f-4e3f-af2c-234a7c61b647
- Digit Scroller
-
- false
- 0
- 12
-
- 4
- 2100.02000000
-
6739
-2915
250
20
-
6739.547
-2914.534
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- b7d3231e-4e24-4334-aeb6-4329747a1277
- Digit Scroller
-
- false
- 0
- 12
-
- 6
- 99999.999999
-
6739
-2955
250
20
-
6739.547
-2954.424
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 4a308d7b-b922-454e-862c-36cb6bf9879c
- Digit Scroller
-
- false
- 0
- 12
-
- 7
- 3699999.99999
-
6739
-2995
250
20
-
6739.547
-2994.722
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 3a2cac49-3804-45c3-a1f1-9ae387f633dc
- Digit Scroller
-
- false
- 0
- 12
-
- 8
- 29999999.9999
-
6739
-3036
250
20
-
6739.547
-3035.277
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 8f4c10af-71d4-4573-9fd9-fd55b1c360a8
- Digit Scroller
-
- false
- 0
- 12
-
- 6
- 0.000000
-
6739
-3075
250
20
-
6739.547
-3074.302
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- acd1b930-6ee9-4f99-a19b-6cb48f642842
- Digit Scroller
-
- false
- 0
- 12
-
- 6
- 0.000000
-
6739
-3115
250
20
-
6739.547
-3114.412
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- dcd58bba-6ec5-4665-9f5e-9748abeb09fe
- Digit Scroller
-
- false
- 0
- 12
-
- 7
- 0.00000
-
6739
-3155
250
20
-
6739.547
-3154.472
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- ff698c9a-fbff-4811-a2fc-7bd7fdb14f0e
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 0.00000000000
-
6739
-2856
250
20
-
6739.547
-2855.054
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 2ed8e93d-a8b4-44c0-a86e-99d91d8d6905
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 1.00000000000
-
6739
-2896
250
20
-
6739.547
-2895.054
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- aacf07bb-5a48-481d-b1bd-7337be133f9e
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 2.00000000000
-
6739
-2935
250
20
-
6739.547
-2934.947
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- b2df309f-5daa-4345-833e-d910c82a19a1
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 3.00000000000
-
6739
-2976
250
20
-
6739.547
-2975.054
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 12d062ca-3afb-41be-a33a-cf0b30d40747
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 4.00000000000
-
6739
-3015
250
20
-
6739.547
-3014.725
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- e3ee9ed7-1080-4a98-9406-a1760d620df4
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 5.00000000000
-
6739
-3056
250
20
-
6739.547
-3055.054
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 3aed1e90-8f45-4b3e-8f50-bd809fd87c29
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 6.00000000000
-
6739
-3095
250
20
-
6739.547
-3094.353
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- a8eb7470-ff2a-44f8-8106-541d81b0944c
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 7.00000000000
-
6739
-3135
250
20
-
6739.547
-3134.696
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 3f1d8e98-725f-4789-856a-9ff9dd88ba16
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 8.00000000000
-
6739
-3175
250
20
-
6739.547
-3174.544
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- DIFERENCE CURWATURE LINEAR GRAPH
-
7J0JIFTr+8dHZW2jkEo1JSIl7XvNWMZgLKHS3mAwYmgs0aqSXVGJUFFpQVlCdupGum1alHbt0r7r3pbfOeOMzpyZc+I6Y073d/3/t1/NO3Oc+T7v+7zv+7zP5zlyRp6Ovh4sjs8P4EeKRCJJA//18HL3dWFzlvixuN5sTw7YZA28DDaDP7LgW/ifo7OYTiwu+BZpqFmB32RqBL4sD7w04dGL+DWhGebxXzhNLkYrPstac1l+bNYKsF0BaJexdQWu4tQTetmC5e1qF+DFAps7Q7+4O9Rm6cn1YLqDLUOBV1NSUn7wP2XLcmc5+rCc+G1sNvuHshHLmc1h+wDfwprr6cXi+rBZ3vzLgv91MWL68H6PHPCPY/c9wmNCbsl1NWJ5O3LZXj7QlwdvkdTFkunB4v/rZWd7uome3oO8nY27w4A/H8RlAn/ej8u+H5fL+wvvn7mp4J8xm3l/Rt+PiW15Z028Jfj3bUHgFXaAH3mQtL/l7/e3b7u/PbblbffjDrdcrfltzRdpjDsGvr5zvcCv5n8WuiWo9bDg7e36+XvDE3hvjsT6e0JaywWhP6FXMD/F+zv0jXi/EXYDh1vuDbpP/m3/fA+vtfk7Qr+U990hVXlXgPThf1ZYyWaFIbWbfxHfEJBdoKsJmA+Sl2dZPT0Tur28DdDDwKHgzR8m4E93/quGnr7NA6gzfwgAnc0N6IxQ/+kEvSxjx+S6sHjvHAj8c5cWiTRdDehZ8z09PfgjSGn++ZnSc4DuLPCr5MFXhH6NvI2jF4MZ4OnrA3+vggnX09dL6M3dTOhUBtuBy+RCQ0AKGlnSAm8FX5Ftfl8A756hjytSvb1ZHg7uATRfd3f4UKBa+zo7s7jObG/XEeQ5zR5j+lg9ffD/RpANfd19fLms6RyWrw+X6T6CbO3r4M52NGcF2HkuY3Gmc4Cr9eRfes5PfwNeWRa6igzV18fVk8t/ubsF29GVyXInW3MDPLmdTJ34XialYZf6ktFzGJkyW9jfGxRWCoxYhZ+3KYvye5R+OgsrB9B8LTJJA390bX5NQCzwdZnm10GNOkH6dTGZ/dP3jd5vU7kg8zDt0P6eZ0+u/bhD4K6kebaSN/Tk+DDZnGY/qg1dRcbAkwu5Vr5hZAw93T19uXwPB/6vKF81kEp2Aa9L9nQmm3CZ3t6unl6A7yN7Nn+rTqZGvN4D/Pd9yZHkozMaLUIOpscr2/oaA01SUBM3V8khuH+l+QHtK04a9R9fAU2doKb+x5Yk1c9i0bMis9dl9JxmDjR1hppke6vlOysqWpac/VuB4xVkADR1gZpmXGuw7JuezEi9fj2k+GbnRqBJGmoKNzAKl481oW/f3bBtjV/YdqBJhn+HLr1flTGvW224G+d3ikJvAppkoab8xytOVspUWYY4PKgK+R7ZBWiSg5rSPRgHvyjFWBTU6z5TyEujAk3yUNPLIR/OTl8zy3iz8bWzbAWX5UCTAtSkxRocpzw3jFYQsVSWpJu1DGjqCjX59ZA7UxCjx1h/e04GXa+xBGjqBjXt3vzwplf3y8axdpPZwRpTIoGm7lCTekRolzG6t6wO1r9ec2N67A2gqQfU9CLQ5fPStFT6cZl6I1eZGCmgqSfUxDY7SXa2fE7Zun/C9+cqlNdAkyLU1EVaRUdpuB8j69Nj0yMhX6cATUpQ03HnUaf8aTPo+2b3cFkrrfABaOoFNcV+X/DS1J9pnnNyR2OvKfesgKbeUNNyjbi7Jw1OMjZtHbI2PWZ5Z6BJmX/BnQOuX0+aRg2lzley3uUyFWhSgZq2KHQ/Q8o5YnmcnbA2rqyxDGhShZpG7B8c3meFrfEB//vU+9cT/wKa+kBNtzJjrmidljHLGtZtU7bFYGmgSQ1qWjxE2aKetMIk1LJSe8w4p6NAU1+oie7tprGs5yODmB9SDkn9S/WApn5QEyl9s6P3fF9a2SfLU3PHXNIEmvpDTZcTcpa/mLPSOJIZomNtKFMONKnzb35fjxxmigZl46X5ows8R8QATQOgptuDbfqEXw6hH3tnnqN3qRw0ykCo6fSJ+M8GPXrQ8s+OtpmXVb4BaBoENf35sjz629+ypml2us+GBef0B5rIUBP1eeipJV5ZFpur+1ksLm8IkzM1WiLgQQaDntmU4+3D5DiyTHzZLc5MSV/l0z6j72YpY7e+jH51q16E25CzZDsug79MUqD6+HDZDr4+zR4ect18FyWFm4sa1IEuqrTP0iMpC0Iti85+CrXRCbCFuSjaAd1y2VcvrfJedNZuYH2pgrmoo+waebPZ/U02PLnTcw3F/APMRaVneE88aW5KC+4jzaBVT1aGuSjjtRXJlNAms82LkjgGz/N1YS7q0kJZ9eLlewzzpqp+HDNPWgPmosrnelxd8NHXNHh0X39akOYpmIvyD6lctXn4BErKyLJUOY3ZwTAXxT6wtoQ17rJpajRp8ky9iiSYi1L7MZp0wUXaJEKp79H4SZQSmIuydjI/+CLAnZJ+XCskYmzXIzAXZTdMV/3Kk1KLBDkPTsjWSzYwFzU15/3gyddqLZNLV2vUjBlyBOaiNALchofeizKLq9lZZZcyZCHMRZ0M/yP2agTXMmLNiZsH1t5YCHNRjF2yav79WFaHT7JuVH5SmwZzUQ9TJ7wd8mQgNYW7y/6lbPlKmIuy3PhusGlssWlhjMVchTOqn2AuKrHo24PDO1MN8j1kNiekvdODuaixl1mM6bPkTYLyU0M1V/fbDXNR3Btxh4p6TbZK/XDi73kjjzyCuaj56zn5IyISLeMNHBJyfryThbkoIy9Nm3wFW7PYC3UNmywna8NcFLXpG0dtro7x7muRT/S5qkOExqsa2ngdUfJgTv7ijUaZlXZ7v02trcFhvHbCbbxqdeB4FbFu4I9XEesG/ngVsW7gj1cR6wb+eF11w733812mRgVB5Xb7z2hd/W9J8d+SohVLCuSsDFtSBBl2LkjX8KSmXzFWv3QiRRG2pFgy/0v9IupQ46P2UxiBAfulYEuKEVrj1E5bqNGSWScXelyllsCWFFfmTGCT0/cbH06ITD30JWMCbEmx5BhDmr7pqeF6Hd3yKUrTLws5m0Fozga5bMfB2XTGzdmodqCzEeFR+M5GhEfhOxsRHoXvbER4FL6zEeFR+M5GLkBN81VhrmX4WY/03bWPH8CcTXpTRsyiwi+MaAPqx8lr1obAnI0IP8R3NiL8EN/ZiPBDfGcjwg/xnY0IP8R3NiL8EN/ZJN05PMXt/mdaxA7Hwc/dVn6FORvk8BLqvD3ROi9ygsCh83ZB67x6Tx0Gf+U2mW+fd7Vu1KE0ZYHf1c2I7cd2YpENfbl+LME+DBoWNJOo3qkDfYxJdgQ/SGZzfDzJrOW+THeyO4vj4uNK9ma5gPFPbxk628mJxWkJtoiUA9mF0W9RSBWBVoRCLTEnA8AoTryXNMB/1x+vJNWlVpJInwxIpEADaWu2n6cPf01P0s8HWvdXdvVicpkeS9gcL19eYEMW0laUHD15v50MaODEuxuRX/LGhr3FixIG0NIKJ9bXzg29Lmhz0d8OetmK99uaQ768EJeMLeBCHFl8F+BhHeI8uvtG8+011jenft0U3bW5WSio1Up9agB9qkF9yIA+yVSkPkCrf6qAPlKQPp1Q9Oll6evhADov55Z+IVKivd1oX4NnDjfdFW/tPvdW7ViERODXESER7+VfSYScQHGQSBtTIqAL9bAGg2zePsD3NWL6MFvGAElUwFHGgAvI4UqCDWPhN3WxZvq48r9551X6a7qY+rA8SKSfBxMyHJ7U/A+B74NbCry0DIal+th6ubN9WqxEZvqQl7E5y0Sbq/Tr6/IRA84zMgtXfCpROqAvaC5z8HPC5mp+Wchcouwhwulh2SN0P5Y9JknGHrIOnp7uLGaLAyR1a7aGp68PwrHIUB0dWd7e8MuL9DWgwwNDt2QvTzbaQPoY9K33a8ullglbY9h0b9rfApaRseZ9UMg0/Ndxt00e5E4WirLNh1yeOxGQRartsgyxY3JcAMOS/YC50JPL67lOrVCqwVThUpfPW02CR5tnrecc+kNAKTnoosJa/WwRh1ramGoBnkVArU5tV0vDGvw8ywfwyX5Md19Wq+Va9uR+U8ONKfTseZnrr2rdHos4X+BfVVgweJs4JOMNflTJgMEPLZOkSSjLpDOJTMa3yX1MNhwYKNuosapMsCMwgFUR2daIIbxEkkaR2MCQy2L6gEskd/CzkEclO4HnKywnskMAGVCX69Ms9giyD9R9mRwnaAmlt6ZVayfkGl/0fQt3YH5LKzUOLKgk6e8DNNYwFLFmCgU01t8rtGbCmmkUeTcA00Dkt0v76ndvgGWYSfL5k8dry5NzBacYW/DTwlNM88t49zIvQAEyqMADUb0sA1g11uyVyBSjYOgJ7DLZHOgUfywJ/Qe5aMMykBrPQPx+qe3E5jaf5uqINJTXo6r4Hqy+9DS5l5oJz3r9JWAoeSP+h4WMBWsSh8EC92IZTF8yBpNpnqMEjfVmJpaxfrVu68ozVrPjEGmfLT00n3/OeWdQXJ+jMXrqciPBFQGD90HhFQH0ujgsU5+CZZnoFEmvnvmH/qBlhNZsMiT0ubUbA+bvRdoCuV0TsEUX8ONClmh+FW87aOdCLi2LChgF6dRrjvFGCDRx8nvfv2biREbAxDhxFqRjTZwFaSKDDe2bOJ/UubNWDZppsqXC/MtNQ1lKeyZOxFYaublo51YadAaH0rGcgX36/++8eskg5/3bCSbmx267+DhmzN9HkHlVDtNgQI8mzLzK//k5vyLnVazB9st5dayBT6LcskzLvZTArORXz0PaN68iRprqnX73fgRuo8XmU/wSbm+dhsNIc03DMpyahAzXIdPuVKnbMx7bORpkXYmQUpUuNZfotMvzeKjTLjCAoGmX3zmFpl3L47QLZ0inDAPn953KbjRTEvg2PSx83X3YXu5sRyZ468KTL1p/728B2IrlAXzKkelO9hC4SqtmVeQJEdZtCcmNaG+lnIrHAcEOAnJGAt1aHyknHejWcgcru7fEH/i9GpSBFyI1BR2BgC15XoH3sqkTfyzOc6reLFUub1T0qo9Fd93eNfx2KZT2rla8bis0GuSaX0e/cPP98G6XRMI+dxhAY3O9fchsYDiRnT25CHuJtE/NQHnNCd0GWsR22xz7ZdECFwH7SFGFTAK8hOz+UggvhTxya6eXIgHmPASaU58qwktdBdcDBythIkn9QqSBtixHT2Bx2BaVBul9pNhd7G60cd+9KKsLRXKCKhkIq2TwS5Wicw7GB6puYcRcowQ+Hn5zCw4qyWGqVHCgEuqDLX0Jy3+q2bC8AWHAM5pWCIScmQSnveZLCU970Ot4+9OGPKjHNFHBAwCEFu55PKUgfyqH5k93NHzcNXJ2JKPwT6sTJj+ShwhGNo39vbgsb28hX4q10FM1BmOrvK0Mh8xquQDsWvx3KtGsbCyodtpDVulPsVkzZISVTqt8LfLwHO2WhYOxP9taG2IFYykxgMQTgF1MPbK71QMSK8aI8LH8Q2kRPlZKhI+N/xZYlBJjb5p/8LAl5bHurY7wob1/akH2Y3LZTAd30ee3ah9KpM6NpNKT3/Quu39qXaWg2nOgj5KthJ2DVUe70ArAWl4xkHOoQFprewHPWm1xDso/ncPPjixSpbnpCRdotz+YpJ7su5U2wjehVY5Bioy7T1h6DJKggiJCAvoxngSQT5BH8wkJBfXzQh41mRYV5BVlL7vPENxEWzM5LHdBd8C/kigNtalkL/ATvDnI0dfbx9ODzPH0Ac9egNnJh+XvA53FiNQVmQ0j4laEM0ZEqerI9XR3twE9O99/Nf+8mYnok0hLovVJudneLK4dcPv8X6tp5OkLjgRHYAZZBiZFsJzYPtB3B2ZicGfxIPAAwo58cg5pR3phJUk7AbDjHENSYIihggWT68LmMFjOAp2ia/PLNmwXV0E6qPl1O08v+KuCnSHZuLCyCzmhsidPREFETpZ/V6KStrjMFaYcJ7YjDCWSB18Etzuwl3hrWjCU9dOZ23qxHNlMd0NPp5+fBfZ+PlwW06Pl313mcplePx1Gc1dVQOuqZBeN/NCoMINtf2Qwdn4pXCXYP2xY7swAwa4qRxJ5YojWe3tTySvYXBaZC14JykIT2VGRuVkibqRV4x/RG5H9v50eMh5YIC1NhPIFApHuoQmYz8iJfPfQlfCaI6cPnDRH5r7ioLlcNJbm1Vv4mndD07zNqZhd+Zp3BEomnM3I3x6KyGbkp2KKyGbkp2IiDSuUYQgusER2CWSyIw4Zht3RbLK8nK3LtkwzPF5m5f700YLXAr+r6yxfcBoAhPNyFZ4s25CzMNSI7e0FDgQm2ZvFW4oEjOQnLwD/D9gI+A0itUBmd6Len5AiAo1Cw0Xe1pPrYwXvVSIG0T9c2rVcDTkfgku7ZGAQqRqC/wkOolqjgsokTnJldz4HDsxPLH+ByzWbsgeaKUtZB9I4384yokZUHtPn9lokGG4GsxGZIMsqHFCSQbHa1JZNkI8ri5ctyrsAaD5+8ijTBzQpOCU6s1lOZC/+JkKvVZsgJCeAcsfCAfKWptbuMoEdd5YHoPxforJGwT1o1rI2ZY0qtWSNsiCNRH7BkdlrJ+46e8nssMUsk5Xzxp3BMW8USUu008HXAQpFgwrRAYXeIB08GKZLdheZN4qmkObPNCVgd9bcW5w8PYCO90vVSHbfvKf+rcjYPEI16erLWhXBbtFyXeFu8bPpV+p17REXW5anYxalpXJjo+sbHRzUA3oQhnoVbpVtComr8BL6fkoHDLRVPmtEyhUnN6nqWM44w/WL9VZ2jrhxFrG9AK8j3MmaX8Z75xaaB/WiaaJOKc7lVpLeuAunC2Lp0KdlqEPZgVhKDA/vbEzTVaPFr7s9Y+9Rr+y2+xOxKGLtjqUI0G+EUgJbqYgjm+vojtk3vDzMjlcbvaWWl+sYzDc2XUAQRRSXYSni5cZfSoIQxu8KRiBJtw4AIwJdscCIQGf8wYiPK0s2StncYGzcHfN190JKDXEnODDLfKkrVpZ5hYtYwIiiVPOl3Z8r0UMfW5xYlbF4K45gBJLAw0EisguWREAX+reDEYGhO90dpL5bJr0daUPp8ucFCYMR9Swse1BY/0dgxLprzy19xtOoqfF7FDUmbvgqcTCC505Q89YBdyIpMMKmbrjbF/UAy4LJnCdpz+2uEAKM4HkWVLUAzyIxMAK5GSAMGMEb/KiSAYMfWiYpklCWSXtW7ah91bDM8NARnW8XLo6pFTE9i47riNJ3GPROMGDj6Onu3pyiBs5/QKdhcdmOzeum1q2OkLO7rAXTy4vNceErBX4dHBcTSIy9nTMlGVxMWFeCKTPCJ1TnC/IqveKt+MZRQjOOg3awRkKXMkqe/VC1tLM3VAW+bk8jMPPB24fr6+hDpnIdW5+DO9WGBXwFll9z1MaB6c0ie7kzOawRZC7Tie3bfGQFDHT3lv04GM/hkJlcx9ZFbZDFGDDvW8hgyDe0UvFocIHGBRQ/J2p5Gwgsbyu82rS8VQd+NxnYTho276HAZe7PGxP5vbOSZ3z1sWHTkuZsHGHxx3bB+FpnUd+V9+KvuiZyi9bOrhkIhmpAoZJFJajx1rlebQtF9Ddo6UO8rtKsW/PeU6RQlIWqxp+KN5mmDGFxZ5xrWivoT3lXswavJuxPYW14+1NyPqSLvSh/Sge8LYnbxtCETfN4apUmezc2fZTV6my076rPwbzwJycQZ+u8K4lIuml+XRxaLF2OpQWyj/wqKEGmwh2KNvAf6GyYHG8dSB6Rotg92bAp5lKlUflc8qNd/at7CTp83iWFHX7zy+KQhOyFJUmgJ9+j90Lz6KO2rgkYMOU7LWb2+AhS4rw4wY5vBYwfKz9gdWIv7Mw7o+ja29DTA5AfGHjg4AM/7N86J40si4N2K8Jj8GdbK6WzB7eNm8GUWAMR+UUkQNisqDa55q68DKDmRZzIL3fS5P4OzloN0/ScCRdV3tQIJqpKzwE/J9xvml/+lTdG1vFppzemA9oogto0iMrmudqsTdtypZtTfzDUMfxb5mZiqZ/RkfimZ/2ZT1ZINL8vOQ8SoEmUAEPzeAJA46o32rgizGE98lQdp8N6pMXwOKzfgnlYv5mvuTKa5r9hTiWyqJeYcyr1/bFyKq1X/MtzKqtkhvc/ntvFLN8jY8Mzn21FeOZU4uyFwZxKRX+snErAWuLJqdS3u7hrAXOKediKqdpyka9VW+WMxZRTyZMANacSkADyCSpoPoFAOZXIKn3iz6lEWlIyOZV1IMC3CbDjZHHlVIZdLag067yJ2DmV/GQYVbSuSpwlA6JmJE5LBmT/x2HJYB+MtWRQC+a7hz6E1xw5feCkOXIPj4PmNT5Ymlv78DVXQ9O87EDkjEPfMs3yKqbZVRd7C26hZZqPKAVFxzrTHIUa4nV29wR8JMelOY5Obj6QE+2akeXaRN2S8P4Dev1XNhhTu0N5lLEmY6fZJrksu2Ol7V0ZgPUqmFDiDnJalPucV6l2fqmkjzx/zknRFKg79EXrDm0O+POHoNgD/shStzgG95FwMA59gn4EpU/c+phXSXucwR+X/dAM0eZc5xZf2AG5zkhbCKUmg79VpBWRZVNbk5osLSqNhd+lIR37o+l4ccDzZ5+2WlgEHd0xZOTSj4K50F0sPEUl+KCdjAy3A4amtzu4A9X2AD6pA25Em9UhM909AefGhE5aWxdjQz7aQfjehKF08NVW9sM3YKy+COiHX0Wx0WBcTbGoTXG17rzwugvLE9iTcgNEfqXCvsv+2tynyLA06/3CnaZ3JwmeHJtAHxU+OW5p+dXODtn12jlWwaynLFAjiqiwLe+YrqhtWT38PsLb//I6g+hDsKtDB6fVylnG1+wbdqyxv+CZsYyFp0hGnv/6rxya3nl/Ds1G3zxQ2U66K4O0BweRFDFFqigkXtEP/s9QSpvio71bBrkTdlfXfqc/QJN13Spe3b506MzsK+3u6niESnl9mS7KTHW5vL7cphOqZi2cwUfO8fqzE2BY0Z7MLFF5seZjRlTA/bdma3t/F0wTbbmKcJrozyaxBI4x1QA6LTR7qJNQZo90vcI5gy99Ntx+xb3uzZ3GOkSMqjmh2H7e/NYzEVotFa6gdGRnrqcHeZV/wMo1wBrJw8uTAybQtG7+QD7/B+3uhOOVP9vaUD4GjFmSBhqKOD4nAVrXHBeaS/i8vcgIGHQLq/xh31vktzSlLP9hS8tjRDiV5KqofInuZcrxYXGBniIc9+000l6Q77H/eW1hvgfe+CuPeupMTey24GPmCa+WZ9V5H+zfTo+6FJASDCqSKkR1zmRgagYEJ8y24U15W2bAFssG/MqyR+6QsgNeFVHy/MimvafOSBS03Tws281rg+3s7wQEWPhHGqRTByVInZ3a3gQJ0HZkTNsBQ4EwtmtbpmuL7Vb+ynYfBvZVZZevZuxJeSKlzBkSLmi7+Vi2m49lu/aGqcFaFcexjKNPKOO0aWmiCFkHO80IufgTXFk2X0J4ZQm9jvssnAs5OjlRYJMa0EovaNuapDskAkZdtnTt5KzvclrGh658u1uY0e+NROudggqAidjoCtgf569DBpBQ1iHZSxhPFgZlm4UpLRm7SbVIsHKTjC0LfKZp6/ex/VvWIN68T4Ibfigg17qFB/LpgqJuR1jg5tfbQMSB0Anpjah8PXDzqp/XpprT/ZrrZTV/TzJIEbqyoO8v8jsqvOvDVZv9yXhX8c68FeF5HyVYfboaTJABtRgnyqkpA601ecRxam9mtqUi5lBbH5YX2Zu9ksU7x2MxHV3J3r68cD7bjwWZS6SBXo30Xfed7myyvXaDsqp/4RfB6Al4WeHoCe9VcZgnMA/LPPqENQ8/TR7NPAN/QkpQTvyvR85GU1dzttYa42Oj7PaS7C8iHt3ZLmAJ+YDSdi7lQMvV52JZLjpX0pbjA0tCKwWUwy+0eVPJFunrRRoPudH5ZV79L9y9WPb1PGcI4p9C+clgQhgw2qD5dCAJZT7V+dZH7Si5s3GewZu/WQNdBJ/H1JUBWJvcvBxofablAAsW0xuEasHRAfGevEIH7sDVWjetIp/Mi3pXwmtqWGMrdfQHH+WUBeh4UlTWpReYApYlckffhj4nzwsYgwKI7mtf0pLmLuxpnq87OmDUeh/BbLgu4FcSVZTV+9duAmf00xWQyhWUKl5U+o/6cZ5UqAibyH3WT7cKlqbkeVWGSI1UGv5+MsfWjBET99ZjP8WrH3I8SgmNxw5e3yrmQ+KIOu3iwdqAONB4HIQ2HgmUGIScYnBPDBLqrXKh2SMP3V1lme6Qd9AgSrmbZBKDCgA7+h9riZeKITEoJD+/cvHyY3gkBpGEE4NI+BZbI6N11cGdNi0YlnfNPNLhGdX1PEcwO6G7BdPbm0x1AuwglNoKCt8FrcsCawwwCk72AD/PhD7/c/5ocRStmkeQz2rHuEWhrizY3IYDItccqHaA0EkjmKdSkN3euWQQLKnfu7mWL1wrPdGRgJ270g5Nn2KSabDZIu5UNeIUnXdF4aVo88u/mmOQjhkHdt4elLCOShKuY+t0nCdhm6JFfWBFfeFKiRQK6YMkmvM/KR/SIlTUslwbnFJy2s1G92FA4wq4jg/gI8hc3pcRPSns2lww9M2gdKPSkV3mj/v26r4gsmgNXaFZDuGlsNAbxCEY0D0wBHPN5s/Bg9EcW5szTnrxBe+AjBNkqgSsuh7yFAxWXQ8Zp4JV10OutWEPOkauAGAPOkZ6VtiDjvVebg8L3xFmvuNHry89h15YAnvQ8apns96OjtQyOkQa+0q6KCQY9qBjxYEHzxSaf6Buqj+aNm3l7XGwBx1PiJ5NCVF6bbVLPnM5c2rhANiDji9l1oZtKz3PSIxT77zH4fIPofwbsPChyI7858vy6G9/y5qm2ek+Gxac0x+H0oBD0DoU0UsDIh+D3qGlAf8hodByNVGlASNQSgP2pRVUnmZH/Lo0oAaaKX/X5zyV9ll6JGVBqGXR2U+hNjoBtmJ8zpPXK6znPHm9FMNzno5f3BR8wCHdfO/wInWFk1X72hOiFv9znpa+wnr6jOKr/9/nPF2efjP6y6Rd9O2Kpxk0le5vCfKcp4qXWAYDejThUr7E9JynHaRpUwwV7Gkpvfwaa08vO4nrc54UL7h2vWKobJYxcvTOwyNlt+Ew0siYhqt5IemQthif83TQdFp0dr9ZVntZ3ZKXul3dLdHnPPE8HupznoABBE27Q0ko0+5vyNDSDuiWy756aZX3orN2A+tLlZgZWvpNLIa27sa/nKG9llg9P1b1iUVpr9gdl248+ownQ2u8tiKZEtpktnlREsfgeb4uDgztpJtYDC1gLfEwtDnWL1I69z1ET1zr9C1TNvyAJBlangSoDC0gAeQTNNF8AoFC5UfZNfJms/ubbHhyp+caivkHfEPlpy90akAytEhLSu65JPUPxPlckk1GhZWd6h4Qm6Hlh8q10LoqYXjO9AzviSfNTWnBfaQZtOrJyiJu5J/wnMj+jwPPqf0Ii+dseMh3D8MIrzly+sBJc/+QylWbh0+gpIwsS5XTmB2MB0Nbh6V5dB1fc200zYke6Lq0UFa9ePkew7ypqh/HzJPW6NBA1z9cRqAFuqyBhYL2M5RAV5F5QWWS1rNfB7p0CD98Tob/EXs1gmsZsebEzQNrbywkbqUgtRqs4VN3kT98hqNpbnC1zx2/iccoRxYsVouYUyq4olEGv6oPmApoxHZ2ZnFZgE4iUl3RsnJG8eufcfmXcfp5Gd6q5+cBK0g3tWqPUz7X4+qCj76mwaP7+tOCNE/9+oaFTCXyXW3IWqPXgjXBRGXuWAMmqbva3tNWKgMmCrheAlcgTF4dObI2lD8GVixsrooL/q2lxLC7u+cKlpPoSFeNh/qfoxqWGAYmasWt1+2SishN53kzEbnpza//qm8nUaRPXr0whX4w6tLnKvq7l+3s2wWAzJNAmbuISmwZd5wnc3sLV2vCzE92YPmsYLE4vPx+lqMvr3vwTv1Favk89Mbn4WlPrFJPyFncuZknWBik68/rOgl7dXgj3pucN3mQbAtFyaacx5MNcgm6hHfDyOVGa9ywiC0OoqciTYdH8ZVrmMVXrvElH0F4ydkH1pawxl02TY0mTZ6pV5GEj+TI+RQHyd9cwpI86xJf8pFokhP6eXbIng87cUdaCHbijpwaYSfu1k7mB18EuFPSj2uFRIzteqT1z7NT+zGadMFF2iRCqe/R+EmUEhwOrfXQbHK2h8b70RM8LYLfvTbXu7LOWDB3yoYFrMAdWWRLX3f3NgA3I/mf44CfA2dLNgdYurOdmqfXFWwwV9jHFbBDq9cgSDUx7lM4x0ugubUFboGFd/0VoMd3NRSR4wXmmOhfae+qQ9WUlwwLLDeAm/HhLc9AxUQKoGl+btm6Xvom66cmW3S75tyISO0CLyQitYv38q98BbJ/t9NXKILsNKjcXlFHMufAJ+tcQa0x0Url+rcoxxXoamDXEinfxEHltSo9bhgcuV7edVFBRbXg04WgDuIh8jEPgq245xMX8HoShlr1lzv0AIt/o3J2AV4suA4aMAeqZ87icljueuB7vPVM6EtASN2FxUWAHOBPe5eMqrylOWhY4BJkJieg2dQirYxcErdnkLSXksqFRsEbqgi7WufyRkGbSFA1ZBI91PWdREpxpmBLatrBfMs0px0PVBcUCZ6ltZFKwkEKfUwpgC4OTVSjSCgTleVx2oUzpFOGgfP7TmU3mikJfJ8evACvlzvbkSk6ERltldbfAhgGLLDchyPTnewhcJVWzUt2w3TVrzwptUiQ8+CEbL1kg3VbQnoj2lvrMcAnFjQCckaKyj6mgyu1ZyLOAflhAxHngLyMAcQ5IPI4j98uhdLeEeeEA5qZVrD3N2dEC8gn0j6pL/t4D5o53jR3sfyYuXVp6gL2kaIKx5SoHX1QSAKxu0booFBodIAlzymNlTCRpH4h0kBb8LkcTm1Sqb5kg7N21CCLGIeeC29MviyYNyZlIKySwS9Vyr6xdbtG0CaD/UP/iL29LqK9T5ABVXrzDEul5GdtOk5Vg6WL/1ogZNaKRPPFwefv8noMWCNeKHfePY+nFORP9dH8KZELxU3NeT948rVay+TS1Ro1Y4YcEb63dheKk/uAVSjO/j3eheL+iIvdvWqMnnnCp6tWX3Ot03EvFIfMBMKhBlrTe6waaIfei6VQ3HyFddv31WcZpk5eu2hkhas2roXiznW3jJr5Pco0otjD+N0fsWdxEMkeUyS598TLGuT/iKtQHPkvx/fvx+qalro9KYt5MvREu7s6Hgg1ry+jlkYD+rJ4CsXFvHlgcLgXhxL7et76xX1WZBCkUJw9phpAp4Vmj9EklNmD2IXiNALchofeizKLq9lZZZcyZCHa3eFUKE7xHVahOMW3YioUVzZg++am+zONIvY7b9xpqZIpkUJx1KZvHLW5Osa7r0U+0eeqDsGh2BjpHVY9q6y3BErnFVOhuN0WjisMi7OMg/rvrl1+NSVETIXizh8fd8nhb12zw1LfK/de3/gMB9stfYtlO0Ui2U6oLgw+heL6NibuGDr9qnFZYMli5VPqKgQqFFfxBrMC4xviGEcsheKQiz+JF4rjOTrUMmmhb3EvFPdjpepzrfv1lnu+j7b0vPTMXeKF4hTfYikQ/4a/DhlDQlmH/K6g3u57I2Z2uxVgnO8/tnxU+K2uYgT1uqlUYYB6kcpV+IN6chd9aLqnd5pFJsbNKC6mC5ZHJhyo1wUUCBUfuq1c9X8L6hVu+LZq5Pw7Zql2yS9/PFAVfECc5EC9XGUsg0VKxmCSAPW2Nqjc13e+ZbZ5yOX9j4wjZuEK6inRCjSTNhVTjnZycDvZe9ZHHEaaE6bhpknIcB0C6qWOGXDj88juBkkG9q7nmMMFK7B1NKjH83iooB4wgKBpdywJZdr9DUE9taVZB1/QWZaFb2f0c3ctlka7ZZxAPXf5KgxQb5x81b8b1KsO7/fAIJVrUZZUMOvmlpHyeIJ6NdNkI54U9LQ6ntf1WUaNySocQD0n0FqooB5gLfGAeudTY59dJU1mJCrnnogfbGIoSVCPJwEqqAdIAPmEcWg+gUCgXlq+OnUjc49xsunIb6tM0p3F/7BLpCUlB+plda8SI6jnbFJYmXOke9VvAeqNR+uqhMn9vTdsts0a6S/0DQ3aG8sG6FrjRL0g+z8Oyb/WPaowkn/1e/DdwwTCa46cPnDSfM66WxutNVYYhI/QkTp5cwgHB82z5LA0j5bjaz4RTXOig3pHD8v5PGE2mux7YFWokL/zW4eCev9wGYEG6oEVqeoUq0SDegm0gsrvVxWrfgnqTUIz5W8Hje05e3zojaEcq3Dd8sXSnKVrJACNvZCpwoDGcmWEIl/EgMaKdLTHKfULpu064ttt+NGbkxBx6vZBY/231jsc3VfD2DqC+qchY3IiDtDYI1BmVGgMkFmC0FjaYbk/5ywaZZGtUBVNG/BZ8PmbkoXGeLKhQmOAbJBLmIzmEggzoyKnPnwIJqTpcJhQfWSxJlQ7Wb7kUwgv+fPEc1FcIz3zYNmoGLM532bhI/k7ysCupgkXzHJuPvW/nTw/CwfJKdJYkpOl+ZJPRZP8dwGU3l4e84n8eTT16H39rLJAj20Y94kfoDQJ9CGogFK9dHtnuLYASupSnzVuD1AyKF6583VRuj+CWmsXoITs7TgASvqgcqjIjZzg2gCe2SEuQOnJ2pd/p9hwLFK3vI8cGV7NJRSgVC+NpVaBdIcG7n9nQAm5/JIwoMQbBahUjhxi6farDIS2AUqjTocpjHWzNM2YvPjgsdevkyUMKPG6OKoUBS0T1TQSykRFUEDJf/sYh665+YwDD6duvb84hNZBgNKk3lUYgFJ9LxHnH/+fgFLgM6u53MgjFkf6q3JvMY8Y4QAo4XxAAqI3+r2rMNAbud5VYgaUmoZ1K8oKnm11aOFdRmFdTRAOgFLne9sfpBX1Mi8c9WydwY9xL3BQCejWGCoV9GrTMVLbACXkab3EASVej0EFlAClIH86Hc2fEhlQSto4bOXwHTuogX11PG5se3ZTDIBSfJ8qDECJ0kdk2hZqbuCvAaVpj09uNFa4ycgefT366XyZzbgDSsgMCBzYm2hQI1T2xrUP6iK+PYDSoWnGWld8aYz8soTkV73NnHAFlMiTPmkv6PbB9Jj3cLlLg/9wx0EkCqZIan2Ily3F/xEXoPTRzlGN8yaNVm5xLOPdsI8NhACUeH0ZFckB+rJ4AKUDWe5VY1lFlNJLI/onFR30JAigRMFUA+i00Owxg4QyexAbUBomlzn+04t7jE0n3d6cHXPTUcyA0nbVKgxASVlVZJio/YDSMJXLvmsSFloEvbqvPa6mIFEigNIChRDb7nJv6QdsrZTe//3nJhwgl0hQTlSOwkmVQGmMYgKUPnX5Y3zoAGfqVrtOJv3+XO0tJkCporYk0N5OkVoyPq229rEUHQfbTcO0nTKBbEeiiAdQWj11lJ+Kxier43GLaO7R60YRCFB6oYJlnFMqBDKOOAAl5OJP4oASz9Gh4jnWqm1bk7QCULoRNz9YXfUhZY8MlTwm1i9e4oCSMqYCdSr8dchMEso6pM01Dwe19F7x1zxEUkiwmofIdGlYzUNkdhms5iEynw32lEFkUAr2lEFkGhDsKYPILBLYUwaRp86wpwwiz4tgTxlEHtPBnjKIjJQCTV2hJuR+H2jqBjUhl3JAU3eS6ONUoKkH1GT4V40fM4Bmtnt+5fYfRT7g4xh7Qk2dB4WN3b/DzjJS0af6Uo7HO6BJEWp69uhcWR+pbKNAPSN6SkDnYUCTEtS0b/FEsvrpG4zjlwcxxj4fsgJo6gU1lb/qXG308ZxpePcJd6QszeYCTb2hpjdb3VlNUlxK3MFBm1LqdsUCTcpQk6LtcN3pu54abymTzjp8OmYE0KQCNfX86n32lUGcVcrwOYsVZzSaA02qUNOyhpe5svN30NeX2x+62a14AdDUhyR6ISZUD1ONhFIPc2XPOHrCxDhKqE5ZwbQFR/fjUA+TgjZeCXPCj+w8OKUp4ly8ives4y5YR/zxXfg+koqm+e8KcX67Ub/8xsKZFpsWmHZfq9G0UPR94wJxRupjQZzd9MUAcYbay6eHcrmMiNC+A9aMUbhMbIgzSB8LLVuo//8LcUY9rE5ziW+wOBhf1uPCQLYgaiw5iHMcpsG6ScZgkoA4FwyZl7nz7VHz/KndyrYr1WXiCnEG9vm+qdeiSsqeHL9eKqHPHHEYaY9GYRmuZBRxNmm4Q5zslwO8K0/Np4aWHY0tdn4bKFGIk+fxUCFOYABB064BCWXa/Q0hTrlZWjF3N7lY7PO/mRvzh3upmCFOkhYWxFmt+S+HOHv32Mo6f20u7eA13Zpr/YoRz7ZsH8Q5v++FQ9ecKijbltcdvRszLQQHiLNJEwviBKwlHojz9BqHs5u8rE12j1M46Oxw6LkkIU6eBKgQJyAB5BMM0XwCgSBOZlCP1RsZGxkHdr7T3fD22RfxQ5xIS0oO4vQZLk6Ic79RYSXde/jvAXEaoXVVwuzU4wu1Q1fdTTZN7BUUvH547gOcdurI/o/DTl1ZF2un/mE43z0YE15z5PSBk+bLT1ZM6CVPNwtPmDld/rxfe4vogppHa2Jp7tXikmlomhMd4hzvvcEvpGiXWZaec9wuqbMdC3H+w2UEGsQJPm0xeSQKxHnDvKBy0J6Rv4Y4TdBM+dtBnBTmvPsH000tj3C6mH8ivd326xvGHeJ0H4oFcY4bSlCIc7+FxpeEo8qGh19cLYnb2nsnrhDnthE7h9nm7DcIa7ieo7si3RsHiNNpKBbECcgsQYgz465V/NIuc2ibLPxMXYYtFsxRkizEyZMNFeIEZINcAh3NJRBmRkVOffgQhUjT4TChfh2KNaHebpHclPCSh/fo/dz28ljzAzcUl7iMeXsDH8nfhCfmpLkdYuytK+EcSllcjkchiiGYhSiG8CU3Q5P8d4E4B4ek+Go6DTMpPpm8/2n2rMkdAnHmamBBnAs1OhLiNJuSp6UxydUyZdE269GRaYhTx3ZBnMjejgPEmaGBhSUGaXQ4xFkUnmFr+WCJQcljldr5T24LYtmShjgXYqo1TuM/iLOVECdy+SVhiJM3ClDJRWAUiBHiHC4bMn3rJaphxsSG2KTURU8kDHEuxJQC6OLQRGVOQpmoCApxDtzd5+vA/REWmUudOzlqzx2CdVs4QpwlelgQp5PefxAnZJ9O8dXjZjd+Nso9GXb9yNttPXCAOHE+IAHxxFw9LDwxUk/cEKf7ScZ6XRtr+rYXEw0LJ2oLlpP+ZxCnhabKEeb7M7Toa3m3+i99eBkHlZwwVZqmJ0aIE3laL3GIk9djUCFOQCnInzLQ/CmRIc6/7DTNK1jOViWPmZOfJbw0Fr63dkOc6mOxIM5TY/CGOP0vBVcznRYzAoeUHdBifVLFHeJEZkDgwCcqj8XiE1+MEQvE2ePSgQM2OneNEiKHfe3d9Smi8m47Ic7d347fub/hlXHRcrtduhen3MFBJKCrYIiUNIZ42VL8H3FBnLNW1b+38tlA2bd09AS/cOp9QkCcvL6Mii0CfVk8EGeWH9Oe5rKZvrXfrUB1ZSPB3iw5iJPXaVHVADotNHtYkFBmD2JDnK9XVmzLaog33L/B3Kv6AGOsmCFOtTFYEGf8aDFBnJ7lN/sve+JglWZVv2prUI88iUCcH2Z/ORESFmixvtezs/5PC/vjAAIqjsFizRpGEyiNUUwQp+1K+mqO0myzIM3GCfrXTgvmLeAHcXZiePVhfjQ2KHHRy1x9qV6kY2mj7SpGY9kunkC2kxMTxKnqmr5laYiv2ZGqymtP9h8Q9IyShTi9MI1DJ5BxxAJxIhd/Eoc4eY4OFWG8Ohp3iLMfPWiQrYqn6eZRrOXAvkrwSSuSgDjjR2MpsHA0fx1iSUJZh7QZ4hzY0nvFD3EiKSQYxIlMl4ZBnMjsMhjEicxng0GcyKAUDOJEpgHBIE5kFgkM4kSeOsMgTuR5EQziRB7TwSBOZKQUBnEi9/swiBO5lINBnMjjVBjE2TdHUSv0RZVh6JlpoRV3S71hEOfsPudyh34LMM42W7Jgb97deTCIc6ROcUz0nUGU0qVSeTNH98qAQZw733RJvPLXB8tjg95tto11U4ZBnPb6qrmFro+sdmk6JNtF2tXCIM5o+2yryrHdrEq5D1Zt83DoB4M455+W4pydlcXIGZmxePmSgf4wiHOoQ7ViUmYD5WC1uv71uh7RMIgTudoSIjVBpFPk0J/ktSLtbPczZnG1m28tC/6wCwdS0wptUBLmGB/ZQ3DKRcS5ih94jk/GPMcntZzjW6Np/ruSmg+761+3Z/mabL6Vx3w07k8NMZKaQQwsUrMLQwyk5tzsr6vDjr80Kn//pUuFUtJLYpOaqxlY/Jgd4/+X1GxY7vFu6JBFtCM6myo2XulbSRBScwSmwbpIxmCSIDUZysnxtQMKjcIWXPQfr7MlA1dSc+ych4u2zb9hGGcxMnL9ZN1sHEbabXMsw+WaE2cnhjupKV0u9/ltKNu4vFEpQY0ZOliipCbP46GSmsAAgqbdWSSUafc3JDV3esR/llKxMo870Yt0dvmBfWImNbUNsEjNN9R/OalpcfNYYcXFtUY77/zYqP50EuLhpu0jNfOPDVsqzfiDntvtS5Za9bcKHEhNsgEWqQlYSzyk5uFcnS/1M+ZZFYwc8pTiZVUtSVKTJwEqqQlIAPkEGzSfQCBSc6aZz72GA+7UXJugzfVHtw4XP6mJtKRkSE3rwkrSIZo4Sc1488LKP/bTfg9S0xatqxJmp07uHMH4PjmbEup1bcdz1cYGnHbqyP6Pw06dboK1U9c24bsHO8Jrjpw+cNL8pWPkNPlCF4vSXVutaj0/PcNBcy8qlubWLS55NprmRCc15aaGUD6nKVATRktPP7Wm0/gOJTX/4TICi9SsMUUhNc+bFVQqnzP9Nak5B82Uvx2pua2r98P7DUqGGbLOftcG3TKXAKn5YSYWqVkyk6CkZr/dmssUtDNpUZM4lv3u+SXgSmo6fOYcpS61Y6R8W2DywKWsvVm8IKn5YiYWqQnILEFSU1M5yeXolUBK0FS5imG7R7EJRGryZEMlNQHZIJcwF80lEGZGRU59+GCDSNPhMKGupmBNqAspfMntCS/5NacZy3toq1oW9x8//viwol74SP69IDh0ydDJhilds+IMs3zG47FunIG5bpzBl3wemuS/C6nZI0f6jz3xH2gpCof0Zf58uKVDSE3KTCxSs2FGR5KaJvr7P2XW7zU7di6wjFGTK/hct/aRmsjejgOpOWkmFnuoOLPDSU3teqVJTdeCzCMNEwa4377gRihSs2EGlloVM/4jNVtJaiKXXxImNXmjABVPVJwpTlIzeKvJwuCmyQaRtbuHqyzcLkjidDypyeviqFJUtExU80koExVBSc0lXLktjJJtZptnk1OvpY7CvC0cSc0PZlikZpLZf6QmZJ+AdbKkJV6VZkf2VAx7ckZrDw6kJs4HJCCD+MIMi0E8ZSZuUjNw2y39kevKLFMO1ew3TWQLPoz6n5Ga77127sqfn0fJend57o/XQ0bioFISpko+ZmIkNZGn9RInNXk9BpXUBJSC/OkCNH9KZFJTvsymcMBCT6MtTdnZj1x8P4mB1LSzwiI1v1riTWqeWh3gvmNfmGWsVG+XweGHj+JOaiIzIHCAEBlWWBDiUCuxkJouQ5x69H750SywbrXqp3vBiriSmv01bS+uDr9Mz3wz/NYrhuUoHEQCugqGSFctiZctxf8RF6n5nlRgeOX6K+OQ/rSVZWefDm93V8eDTeT1ZVQ2EejL4iE1JyUt/WaQEmFW8o5UebDLd0uCkJq8TouqBtBpodljIQll9iA2qVn4OSrJdIkCfedLWwPa7ZM9xUxqWltikZo1FmIiNd+xnxla9ltFObp1Q6d91wIGS4TUVM9ySA0zO0HdfEfeek1sxQAcaD+6JRZQRpaQR+1IUvO7bLK5XvgYejpdL8F4+6SzYiI1VW0aQ18NKTQsNyv3HrXfZQsOtmuywLIdMBQIYztFMZGaV2w7W1I83xgHJXaXG6v1qR+BSM1DmMYJJJBxxEJqIhd/Eic1eY4OlVPsZok7qWniPUf5yc1zlLKQ/vEuE0YtkjipWWOBpcB2C/46ZBEJZR1CaFITSSHBSE1kujSM1ERml8FITWQ+G4zURAalYKQmMg0IRmois0hgpCby1BlGaiLPi2CkJvKYDkZqIiOlMFITud+HkZrIpRyM1EQep8JIzSXB1YnTOg0wjvgoZfLgXMAVGKmpdTelgVk4yaJc72LU3VcT98JITd+ziVGzA99aZAzr6pSaKhsEIzXTq95rlQdPYBxoTFmaUmtSACM170g9KXIbeYsa5r955fbXE0bDSM3MzOSZtiXuZhsyFUxuFn+kwUhNm6KR1BGKZy1CKoLUo/0GPICRmtE/7vd+do5hGH7vauyZJ4XGMFITudpqPamZNXqCpvuXlfS8ly+4j+6onxUxUNpKai5GG5SEOcZH9hCcchFxLtUHnuNXTMc6x0+ezneES9A0/11JTeSDccVEamoXVZK0ewEaB4vapjXkAIsjJaFtGtaCsHWkpvtTq5TAvEXmiVSdW6tfjjjVHlKzndOtGqAAGVRgvqGIBWAW0AeblIiCYoZnHlchNZEqoi4PVlj244dIuo+/HMIHxRxxS96+/zBX+vbPaZMKvwXPIwCKCRqsRgnLYIckYzCRwcWsmYL/K4xiYhnrlyjmh0+OPT0CiwxKOq2Y+sdy+lOJrlxBywRiWsZeQpbpENZy8Krn41gl9sZpqifcUmXqzkiMtQzNgVyaSNZSv9mpQxPnUtK/bOIc8mPyjg97cumlf12U33z262MxljgoccUqcTDNVQwlDr6OSpTpOsHfcNe2sVctVKZ+JXaJg1xXLPA60pUo8yraj/jmVb9Y1dNZhY9M4qkacfMOP9hKgHkVNJgTpsGmScZgkihxkBVPujR0Od0o9rCpuuK8w7q4ljjY9ddN9QFFcqb7Cxw4U0YObm++M2g4ZUzDvXD5F0+7E/c2Td1iP4uWXVidnjjg8ViJTbtgiQOex0MtcQAMIGjaZZJQpt3fsMTBfZPtWbZnJ9Li9R89S5120knMJQ6GLsYqcfBi0b+8xEH11phPU+RqjYLrow0snk0chmeJg13db1303ffcNO1h6YojW7S0cShxoL4Yq8QBYC3xlDhYemaEptYBN4PoZ7p2EbesnCVZ4oAnAWqJA0ACyCc4oPkEApU4qI4zGvpRoRMl59hp443P1+uJv8QB0pKSK3Gw30GcJQ7KTAsrz6c4/B4lDhzRuiphQtyZk8ffzAjZbhVT5Cq1WXvtCJxC3Mj+j0OIe6kjVoib4sh3D06E1xw5feCkedHb8mvLDnOpmcOsfUeFeKzBQfPcRViab29xySw0zYle4kD6jcpg/VMRBqGkqyODewX3Q70/cZQ4+IfLiJariShxcI6FUuLgA72gctAZ1q9LHDijmfK3K3FQbDCmTmk61yCtb5zn6Wo5LQmUOHizAKvEQcECgpY42BA850PPgdX05IcNWRce9VdCZLq0r8SB54/4/RpXtM22+ldRJqTUthfsAEscNCzAKnEAyCzBEgcaD/uNzVhrR0+ep98UenbzDAKVOODJhlriAJANcgkuaC6BMDMqcurDh7dHmg6HCdV/IdaEar+QL7kr4SU3LdZJHho10XDvtu4nXgUx8/GR/M/K2jlWK+8yUqnaul71c7fhILnRfCzJh87nS85Gk/x3KXHgu3O8xdSbVNPExQZxh4PXze6QEgfTFmCVOHg0vyNLHNRTV8grKMcZH0lRtPcrGWOEY4kDZG/HocTBuAVY0H63BR1e4qBP4t3K4jFJhpkfpsbtLpxdS6gSB4/mY6lVMv+/EgetLHGAXH5JuMQBbxSgcv3dFoizxEHJ4oUqXGZfxpb6tdETZ85AFEbq8BIHvC6OKkVJy0TlRkKZqAha4mDM2nPG1jfq6bncbIPopr6bOqjEQZ0zVomDQOf/ShxA9jl0x3TDi9qX9CAptVexJd264lDiAOcDEhDer3HGgvcPOYu7xEGkxpQ+5Mhs033F/Wt72jXMwqHEgdG6jc/CvvsZpxTVOd3ow3LCQaVATJXsncVY4gB5Wi/xEge8HoNa4gBQCvKny9D8KZFLHKTkXTQPqtY1LZqyLVrh4sPVYihxQF+GVeLgjRveJQ5sQoNX1q32NThePHmAdpDOYtxLHCAzIHCg9ynLsOh9tWViKXFAMc0sG2FiZLXNJGZKSrGfB64lDv407q89NmsyrWCYT44nIzwSB5GAroIhUrUb8bKl+D/iKnEwZcO8GXSSIy2za+NG5yjNNEKUOOD1ZVSoH+jL4ilxMGjE4KqBs9NpO+wyFp57LqNOkBIHvE6LqgbQaaHZw52EMnsQu8RB1O6MVcseW5rE5L0nHz6x2VvMJQ4YblglDs6xxVTiYDw9baRuaYJ5oU1deMJ45WyJlDgIMNW+YB20xWrThR4ulA/yWThg8kZuWCS2uoQ8akeWOPBXfdN4w8DBOG/cnX6699NTxVTiICVFcdpH+QHUozK9L/fvufo6Drb7wMayHTAUCGM7ZTGVOIhVebbSZ24WbUfd3yoD6QqNBCpxsB/TOKsJZByxlDhALv4kXuKA5+hQAX85N9xLHCya7G3x6eQZSrnmo4A+Lzj6Ei9xcI6NpUA0m78O8SChrEPaXOJAvaX3ir/EAZJCgpU4QKZLw0ocILPLYCUOkPlssBIHyKAUrMQBMg0IVuIAmUUCK3GAPHWGlThAnhfBShwgj+lgJQ6QkVJYiQPkfh9W4gC5lIOVOEAep8JKHJi8MNcJ2j2Fus1XZ8WWxcfOw0ocjDxrO8Bjb7ZR8XTHgd92DFWDlThYxD5qaaU02SrF/o+01MFV4bASB3/cV013+BJiUloaZD7HcfEiWIkDDXlbOd2BEfSc61dVWL1IprASB9akxY+s9sy3SLNUujhhj4MirMQBct0kVKwALHggchBz+5L9o1+PMg/aPTet8xnlQTgUK+CgDS/CHMgjbY1TViHO1WrBE/mSeVgn8knz+C7NE03z35W5zD11UnXG648m2cmHm07ZvugvRubSYAMWc9lpgxiYy4u2Xjr5GmzLSAuDPqphDxyIzVzO2IBFgg3f8P/LXBa/s0+as1TaZP3BA5ej4vdLEYS5VMU0WCfJGEwSzOWbfazzFyvemuZQOy+98re0L67MpazRFtkbTT7GidGrqpS/L9XCYaS9Wo9luJvribOnwp25PP3SZcRbtwUGR1W/asxq7JMuUeaS5/FQmUtgAEHTrhcJZdr9DZnLfeThTRcKc6y2/X1L7duD2YFiZi4jV2Ixl3Yr/+XM5fa1J9efZk6g5lVREsglxt/xZC4nJ9eWqC/vZBSfnDhs9y5FNxyYy6CVWMwlYC3xMJcyt183Wr3PNjj4TGbWg0X7FkqSueRJgMpcAhJAPmE5mk8gEHNpcO8KOzLnjvGGifJ5Om96cUXcCs7MJdKSkmMuS9aKk7msNC2sXFi89vdgLrloXZUwO/Vu+a/mTOtsbRjby3bEzE1DYnHaqSP7Px5PZFyH+UTGdXz34E14zZHTB06a50ldvpLCuUVdP6ariay8DAcHzWsCsDTPCuBr7oOmOdGZy43jl3QJs0ywCvHbEHspTN2wQ5nLf7iMwGIu3wWiMJd/0Qsqbd4G/pq59EUz5W/HXK5mz5y0zqOItuXFPfajzs8Mf33DuDOX3fyxmMurKwjKXLpkZIw2P8syL00u8kt8kJmDK3P5fbyX/Z6k74wtk+Iawj89vIkDc9nFH4u5BGSWIHOZZ2/V5+omPcq+W9P7GlxwKCAQc8mTDZW5BGSDXIIfmksgzIyKnPrwAQCRpsNhQt3ujzWh+vjzJV9BeMk1Jo3KUa8OMy5zm0Gx7Ze+Ax/Jb/Rabzt41l6Tsq+nSyhJ0/3xqNXhh1mrw48vuT+a5L8Lc7kjp/HEue7eBvGHD4cXzHrQC+M+8WMu7VdgMZekds9wbWEuq6c8bFrjn2mSUCA79GP2YMRRa7uYS2Rvx4G5tF6BRRFqr+hw5tLuc/iOr6XfzNJSP2cVsDMFC3xLmrkkYapV5/cfc9lK5hK5/JIwc8kbBaigofYKcTKXnFsLZuT1em2xY9TgT+sHNF6RMHNJwpSirmWiCiChTFQEZS4Dm7xKr3VpMix9Myf54eHLvbBuC0fmkrsei7mkrf+PuYTsM6XwuvGAuBSz9RsCGcbFUn44MJc4H5CANCFnPRZNOH+9uJnLK7NDrn+crGMWLfdFnz7hnWDQ7p8xlzKNJ3MNRp0ySjSzN6esXIeHSjRMlcasFyNziTytlzhzyesxqMwloBTkT1ei+VNCM5fmO2NHLZE3TJKLnq4/dv0z4XtrN3OZvxGLuQzfiDdz6X718eAeIa8oYX9fyDIpmHMId+YSmQGBA06YsxELJ9y9USzMpZbnLm6M0z6jY1sPK/1NfTwGV+Zyq1/XqVZDNhol6jGM13gYPcZBpHBMkfw2Ei9biv8jLuZSLedtYYRDMK1w/fNP3t/3d213V8eDMuT1ZVTKEOjL4mEuZefX3ejZ/YTloaSM/e4yxX8RhLkMx1QD6LTQ7LGKhDJ7EJu5bJqn2dVJx9UsuNScNX32dAe0u8OJuRy3EYu5/CCcAowPc6kfQH0btUzNYOM6Gr2Lz8U6iTCXplpcyx7y/alZcd1d3IKeHMKB29PfiMlcSsijdiRzqfnn325RJ/+kRpIarBu3eL4VE3Pp+nz1+FlPelsWnHLbGPFAOQEH28lh2u6DhHKHRdlOTUzMZYoOqXrt0y+UnQetKLMPxZoTiLms34AJxBLIOGJhLpGLP4kzlzxHh0oc9mrjmqQVzOWMQsPGIU/KaQcmhPYPOF9YI3Hm8sMGLAWutWRKryahrEMI/VhpJIUEYy6R6dIw5hKZXQZjLpH5bDDmEhmUgjGXyDQgGHOJzCKBMZfIU2cYc4k8L4Ixl8hjOhhziYyUwplLxH4fxlwil3Iw5hJ5nApjLmnDV9duqrUx3n7UPsht8ekFMOZSyTu0zu36FPPydyqjD3S6ngFjLt9bbo04O3wYbX3X9Een4l9cgzGXpfcPrPkQvcGsbLJm5kIrhfcw5jJjyMRjPTW/GWWHReTphmgpwZhLs96KJ63iZlseWEc/tuLZnusw5tJPbaA86/hLy0iT4GtvV3dVgz1W+tIflw+dnxhIOTpgl+zKd2p/wR4rjVxttf6x0oell6796OJvWqLW5ciK2L1xOJCaa9AGJWGO8ZE9BKdcRJyL7oHn+HW+WOf4Bb58R7gWTfPfldT0c5RKydq31yLtkSuNuv5Bjej7xoXUdI3GIjW1o8VAapqNbpp+rXEzfXtU/Kuynq+riE1qOkVj8WPW0f+/pKZ+5ZilTt2zzXetX0Y97Np3MkFIzWmYBtOWjMEkQWqWpy95sfOqpkHu8QmVB9x1NrVvYYsYaXe3DaudUGXFyL4TMiVwaeFgPJ6OiWk4koQM1yGk5hVjlVHOyfvM1yekDlIberdaoqQmz+OhkprAAIKm3XUklGn3NyQ1NTMfmEye2WhUxJqwTUlVapqYSU3tCCxSs1vEv5zUDJi0K9P5fGej0rsBhaFHeh3Hk9RU3EN+7hUSQC0ZftN0VnHVCBxIzaERWKQmYC3xkJpq9iOfOfoampfeV3Z4p3lPXpKkJk8CVFITkADyCYFoPoFApOaMmZN6yw3PNM8Y2yOr593c4yJuBWdSE2lJyZGarlHiJDUj6IWV512ifg9Scz1aVyXMTn2gXW2iy9Egav4rpRVpI+Yswmmnjuz/eFCDUVg79YoovnvYQHjNkdMHTppXnFL+njghzjQ/f5VG2Lple3HQ/M9wLM2Lwvmab0TTnOikZqfXWoZX7r83CQot/Xo06jytQ0nNf7iMQCM16cBC4etmFFLzhElBpd/fm39NagahmfK3IzUvnfPWMT3mRNt/8Eh+w3cVv1/fMO6kplo4Fqn5NYygpCbHZ8moH1O+G4bqZcn5FXDH4UpqBsjelE38pGGy/QqlH+PScQscSE3lcCxSE5BZgqSm2v2X6n+P/mKSXVXYY3ZsCZ1ApCZPNlRSE5ANcgmb0FwCYWZU5NSHDzaINB0OE+pCzAmV0TKhBhNe8mKXm4Mdjj6i7gyT772tJmsnPpJ/uL5/a/SDg/T8g9+Ca9xex+MguUEYluRjWnp5CJrkvwupGTkw957st/tm+ctdX+249D2xQ0jNsjAsUnNru2e4tpCaSkbjn7KGbzdPrjvxeu7tU4LBjPaRmsjejgOpWRSGxR4eCOtwUtPROlHhxokRJntvkU//8NouWJ9B0qTmVky11ob9R2q2ktRELr8kTGryRgEqnnggTJykptzYc6Fbk+uM8yf2smI9v+0qYVJzK6YUa1smqlASykRFUFLT8GKTlueZ+VY7x59zUNL80KmDSM0NW7BIzTlb/iM1IftUZaklxt7faJI0+N5akzxlwafS/TNSE+cDEpBBXLsFi0F02yJuUlPHTsPJxsDbKO6OV9mi5RTBknb/jNS8uWeMsbaxB+WQht3D+VU/fHBQaQ6mSgZbxEhqIk/rJU5q8noMKqkJKAX50zA0f0pkUvN77pS0V6tP0LKXb+65/loZVQykZnUMFqmZFIM3qWm+wq7HSK2VFjlJJSNnxZ8XTFDAg9REZkDgACGeisGCELNixEJq7k2Za/v6/BXzXVZraTUhNYKJBO0lNYfExrI+1gaaJvchOT6+MfwSDiIlYYoUGkO8bCn+j7hIzU0ji6372rmZpOd4a5XV/MFpd1fHg03k9WVUNhHoy+IhNc+rqCQX+t6gbvm6w23ckk+CXlZypGYSphpAp4Vmj3ASyuxBbFIzL3m7hV/QQVrK9d09ZoXu/ypmUpMWg0VqygjPJfiQml3vRVTemXHMPCa6YrvajDvDJUJqrnQfcsTPTdu4TOHE1XlLvqjjQPsZxGABZXoS8qgdSWreMtpCeX5Sz3zHu1EOeq+j+omJ1Iyt3RH9jPTaqDzi3uoi872NONiuH6btZAhkO3UxkZqBnYtvZR7eQ4mL+/GMNKFGMAQlWVLzXTSWce4SKD9YLKQmcvEncVKT5+hQOcWhbVyTtILUHBPK3N1p9x7TsPcBC84f7RQvcVJTBlOBhpZM6QgSyjqE0KQmkkKCkZrIdGkYqYnMLoORmsh8NhipiQxKwUhNZBoQjNREZpHASE3kqTOM1ESeF8FITeQxHYzUREZKYaQmcr8PIzWRSzkYqYk8ToWRmjfucL1fx00yOuT2N7WsrHMcjNQc63D2QUH+MYMdjSMujp019jCM1DxuldzN4QzNKGvxgQNPv+Srw0hN19QhKTV+blbR8wMWvN/r+BBGaqaPvVusqE1hxFE1/Q8qdkuDkZpjVl3hXDmXQikfGdeYvKxeA0Zq1hzsbpbmv5GxLf1LN72Yc9YwUnNKj7rJYW9dTeMyjE4/oFqMgpGayNVW60nNqKLo1D3HRhsmGT+8WOu4IVbEQGkrqRmJNigJc4yP7CE45SLiXKoPPMf/Hop1jv8qlO8Io9A0l7eN8zvg62aU+bKJNZF8+J3AV+0J7a0sgD+4bKa78K5MFkXqfvxdGYds5cXimDDIHtA1WrcTy9933PVmHwYl2TW3u8wiXU/M2xKyBfINrRTUHljrxJdVApMIsCerETogAQRtKqlE7smwVn8DmmcG0OP7uDan7/l6s8iOrkwOhyX6uD7ZuKa7pfo506BelkPXlD8ZIPDFZY2aryD0hVsa8J5swfTJUFCSQ6KWf01AD5xUVimJ5Z+0IyBty5z7+fPnH23hLcmChvH2Yjn6ujO5ZFe2i6s7mIAv0jbDvRZYV1glUA9/X9xzs90xweweOVvoIsIBqpYWcVinoRTLOvGlBLAOMAP8aMumaZCxB9vbG8wgdBQwE9+FiD6KurTs1fcX+yxS76nuq8k4P1fQOM1XFBEB/tkiDuPQMY0DeBPJGwe0D9w4nX9hnIlUD/BX8mwCxhqBj7I4jgFkbX09ffJ0sqcXc7kvawR5NO9fP98hekRtmXv1LuecBy3/4aWjun9b5wtm19jBri+cXSPQKg7jHSrBMp69ZIwncttbPxNuwS6/sOD0nxb0dmVzAjjA0gkwH2AujicHNB3wN3fPFbxG8J/6YJMH07/5BdEl7vQ+7+93z9Aqvl9KqOWmoGJEZQFXURwt9LI4LCeHabmCYklbDvwQmNfQpmBFr+ZTYTbHBdsR2qgZMfVXbaZv/xJU1M13wVJBR4i6ZvrZgvuxcy60hgDXqdVCy6pcniOE1qmbSSjr1L5dVtmeLP5gVS6X+VhrwipBPKiHYTOKaM1l+bFZK4TxZjTEYhgVzPj3huGM7JWwYyqyV/MFvXuachzdfZ1YphwbFgfa/qMvXjNGZle6zPOiJA072ljS69wBrHsVzu0RbO8xB/jDy5PrQ2O7+zT/YlFbLFSs/DigbjmgfbyoI+tJwJKWXi60pOVvq0TuofinbWAOJSRPq1b0U9bpOq4/1oOWOyxqSv0gu6ftP91D7K603+kP0GRdt4pXty8dOjP7Sjt3V2qAcg2gciLPaO3BtZWgcr8K46vYwZYwZE8/FpfLdhLtTp+cpX6u+UQyjZaPGjbWzZvU/iGM0ArpI3DQio6pVVPH7hL4JK4stOUC3wQudu4k3/khx4JWfPwXDfQNfkjz5jbkrCrH3xjw3wr+bzf4skfwEy0hji1obqzNcccW6K8D4o7ITTcs7oh0aUIBJPDbiuzLei+3h4XvCDPf8aPXl55DLyzBIYAUjaYuQYMZjF2yav79WFaHT7JuVH5Sm9ZhwYymz1jBDPtP4g5mzOg2XdbA34iWP6HQeab8kBEECGY0fMbcLn8mwI7szZs3HRDM+EP1Y94tXW/Lg1F/Nz5KpTIJEcygY1qn6RMBrNMhwYxOE5yr9uw7a1ps9fbdSY3FwYQIZhz6hLkfJoJxSJIMZlyMeFw6xSLTcFP9Jusvh3bTCBXMkMM0XsFHSW+JCRTMWCRjPl9hbqZB6r1XT8O2joqTcDDD9SOW5dQkbjmxBjN8qxLzq9aOMtxH8d03S3nhPUIEM3hrCNRgBuAIoXVqDOlfEMx4mDrh7ZAnA6kp3F32L2XLV0o4mNHwBSuYMelLxwQzNhrq5k1/lWkZnjyQ5L66Zzfcgxnkvxzfvx+ra1rq9qQs5snQEzhs0Ou+YG3QQ7+IK5jxZXjjbG+1WsPdnoHMEQsLB+EezED6CBy0moSpVUPT/1UwYyuaGyN0MAO56YYFM5AurfXBDMuN7wabxhabFsZYzFU4o/oJh2DGNjR1CRrM6DwobOz+HXaWkYo+1ZdyPLBvC89gRmDfKoxgRpaaULY8zsGMxypJ23vVTzTecOqO/PsflyYSIJjhD0qCujS07iuRxFzBHVlDQ0MHBDOi19nRPjX0pER4DqmM0ewdTIhghjamdUhEsE6HBDNqFvierRzRmXHIfWUe4/JRO0IEM+rUsIwDeBPJG4ckyWDGtmNTB1BJFIvDdl1P2LjrPyFUMCMU03hLJWM8YgYz1iRHcnbNzTCOmrxmxfWzf3yTcDBjEqblFCVuObEGM7ZW3hpZZ5hGTzvy19eC73o0QgQzeGsI1GAG4Aihdep20r8gmPHs0bmyPlLZRoF6RvSUgM7DJBzMWN2vCiOYMbQfap0wXIMZN695vHi1U8PgILdf0/vPgz/iHsz4aOeoxnmTRiu3OJbxbtjHBhw26D790Oh5cIPO6NemEgNtCGZYK2S+l02eaVCoGnLaQs/WFvdgBtJH4KDVUEytvnbsOlTSwYxYNDdG6GAGctMNC2YgXVrrgxn7Fk8kq5++wTh+eRBj7PMhK3AIZuxAU5egwYy+OYpaoS+qDEPPTAutuFvq3WHBjG7jsYIZ08aJO5gx3bx6R/dFkxi7hsaHj7i38iMBghldxmMtDW+PI8COrL6+vgOCGQs+a3wsPV9Ai/njnu4eudFRhAhm5I7Dsk4kEazTIcGMYYOPyEwfn2satt9n1KhOfRiECGY4YRpnGhGMQ5JkMOPkkDHsytpBlIID3ooDi5O6ESqYoYxpvBdjJb0lJlAwo6568stHVxpMQl/etOoW8U1NwsGMU2OxLJckccuJNZjx1zHOxa0jOBapy8OzKSkRxwkRzOCtIVCDGYAjhNapcaR/QTBjdp9zuUO/BRhnmy1ZsDfv7jwJBzO6TcAKZuSO75hghnG2wyafr06GxyZvln/1VqP99RKRG/RZq+rfW/lsoOxbOnqCXzj1Pg4b9C4TsDbot8eLK5hxtYK57fDwdxZxpYNfv3jKOI97MAPpI3DQKnc8llaR4/+vghnxaG6M0MEM5KYbFsxAurTWBzNG6hTHRN8ZRCldKpU3c3SvDByCGTvR1CVoMGNJcHXitE4DjCM+Spk8OBdwpcOCGZNmYQUzXK3FHcw41cOgWxpb3Wjf0c5yBZztZgQIZujPwloays0iwI7sxo0bHRDMUMvdu+jcRyXzkimBz1dtc0ogRDCj3hrLOgXWBLBOhwQziivcXhSvemhUsMpv3gL7iHRCBDOiMY3jSgTjkCQZzHhsUFG5w/2r4fZpL5b276yjRKhgBgXTeGqSMR4xgxlmgXl07WQ5+s4wxZ4xtcPeSziY8cYKy3LVVpK2nFiDGYYzB53QMt5NKVa4rBJVPpAYmAlvDYEazAAcIbROTSD9C4IZWndTGpiFkyzK9S5G3X01ca+Egxn6NljBjLpZHRPMeHzp1pqXci6MHfEXWGO7vx+GezDjPanA8Mr1V8Yh/Wkry84+HY7DBl3bBmuDTrIRVzBjwMJ7ufsP7zUJmuanqXx9Df41M5A+Ag8kZxaWVlkdu0uQdDAjEc2NETqYgdx0w4IZSJfW+mCG79nEqNmBby0yhnV1Sk2VDcIhmJGEpi5Bgxn5SVq3R6faGG68df3sMqd+rh0WzJjmgRXMcHcXdzDDzuFBZ9stnak503o4jg2yXkqAYMY4D6ylYTcPAuzILl261AHBjLS4yesUY/oYRe486GtbIp1LiGDGI3cs65S4E8A6HRLMmOQ8l7voiAEl8smfu+TGJHIJEczYjmkcdyIYhyTJYIbc8MbpcjNJ5hFTR0UY9ta5Q6hghhGm8dQlYzxiBjPGDIxe5jZmHGWn1OrqqyovoiQczPiwDMty55ZJ2nJiDWaMOvH6ylKp3sahOyvodtl6pwgRzOCtIVCDGYAjhNapu0j/gmBGmMHXp+zBncyOudhvMxgVc0LCwYxxHKxgxm2PjglmrI+59WIj7alVWdIynZL1XqdxD2ZM2TBvBp3kSMvs2rjROUozDYcN+ggO1ga9C0dcwYxpJX9NerzA32qv0oWZmfZ1LNyDGUgfgYNWtz2wtMrt2F2CpIMZu9HcGKGDGchNNyyYgXRprQ9mmLww1wnaPYW6zVdnxZbFx87jEMzYg6YuQYMZtOGrazfV2hhvP2of5Lb49IIOC2YcDcIKZtCCxB3MGGDyfGGXmzaMjZfOZhTH7btJgGBGWhDW0nBHEAF2ZGfOnOmAYAZzuePYOz28TY9p6T1gbi6mESKYsQHTOhwiWKdDghlZtxiyTqbPTHMW2hbfWpjfiRDBjPmYxqERwTj/a+9M4KHq3jg+KFnKq12bJpUUaX2l3YxtMDNki1bbhLKTtFOIUhGhshNCyJalkCKlRdpLmzbttEqp/71jRubO3Btvd+be1//t876fT91jrnt/z3Oe85znfM8ZApbFDJ9MitbJe8FqOcFDRTcPHZyPq2LGdETjyWJjPHwWMxy3jxHxkdqrtdNhTqbVmF2OGBczJBAt93k71pbjazHD2D9hXHP+IN2DiiVBi8fcm4eLYgYzh4AtZgCBkJWnxhF6QDGjv3vArdU35+iVvR88LVn4ZgbGxQwlP6RiBsFPMMWMgYQNt9e8MdXPuHJg3N+umzRRL2bI5DQX7bLy1yryefXZ/UeSJBpkhh/SBH2QH7+KGf7kmY3zZ5fRvF8/nmb3Mncb6sUMaIxAQSsColavBTtaYl3MiIcLY7guZkAn3Z2KGdCQ1vVixgf6vl01kyZo+UimPzkT+foGCsWMBDh1cVrMgH5HssCKGaKhSMWMmH38LmacPXWIMU5fmBLmU22V+NdzHxwUM4RDkVLDt/twMCOrqKgQQDHDaMD5q0/nJVCCAy49Fh1mIYaLYsadfUjWqcKDdQRSzJg+b3TL3IfvNQNOvhFS2nZxCi6KGTmIxonBg3EIWBYzNokv9HyvuVeneMxAqVP7zh3EVTFjJ6LxPLExHj6LGX3+zrw+SaWZHhZNafYnS/2NcTHDCtFydMwtx9dixqSCTQtrDQgaSeIqP29rBAfjopjBzCFgixlAIGTlqYmEHlDMmGFV01BYkEsOf6l0ecaiGUcwLmZsC0UqZpiGCqaYcdI7RH7UABn9PLNREi1WC6JQL2b4TS4xGGa8Wjs9x12+tPa0EwoT9C2hSBP01aH8KmaoDTt0X8flrk7AERXGrtbnX1EvZkBjBApamSJqRQ79vypmJMGFMVwXM6CT7k7FDGhI63ox47h+XF+rc1oa2SuSk59/LRiJQjHjMJy65w5ZUttmD9Xelizb5+XYjaWc/YYKaEo00qByVzF6w3RZMruKQXQAP+vOsHUEvJdow1gF/NOGaLWeCLyvmwfRxdneyUOJCLy7Ldhu6WRDdGA42XrYKW/uUmzcoWNusdi/VGvno/M2Gal7+/F+bu7+zm7pYjf1BlKjuBigm45VB/4BHQwCgIHYIoZrMEAKadLMB+ikAc+3s27eJj4p5qhmwRHNnxnvguZCkkPw0zySQ+bl3x767Ns28B3dgn5wX4g9xV3r2x/GMRdAoChQoAZecSwD/AarGExyRwl1Z6D72zsBzgj+3AwC/J/ulEFkmPZju62Cjb0b0LuA9om8v1y9/kalsukt/bir7yulG62yOOworsH+MJctOzWhnVqCBvNANJgFNgYT9QTeuH2SzW2spoW8jCX8m84myTRWe1zhaZ+EXNOlDsNPaGRMkR+eZ5zJeWaDKJX5QS7jsK//rqeZ988kb90/jh6xoiB89hoXCRR6GhXRcKoYGY7X/LppYbdman2pnUYLnqZa+F1JMsx6qF6e01ODyxZHOXHFXlRe0+X2q2h3IIU8VsTLJgFGgQ4JtbnMDsQadpMJMMNueOOn6MkmQdSi8/qntH/GyXG8jYSmFzBNYCZc3PMyOF8foulp6bCWtYDA6LhBp3uxf7K/lr4hjWSsILdx6hzDzXJK+hO7NOKKCv9YSTfcqZW5sGlYnOHZGLhH5jJDp7YuSlwLuPqGA4DEKsCo+xDq6g+BKdiKA1X9DED/YgDpO9vTe7HkkdABgwOXJ/dhXtaxYffPyDbv4vgQM52ClCN0taeKdyX1ma7K9Tmx9uu/PmhuU71HqExco/jtUFo/xYG17b+P+TgEVkSCnQv+0oLoaQlMPKwceM9nrL7tbfGwjtM6/jHR4NWPdZxfziRhyvooUZ9LbSF9Lo8XggSmuZsHpaZHauqn3Fw1dsPxapU/DEzlgLU8QWtNBTpEOdRaYYVMa7HE7RAJKRgMai/bgNn3L0fmqVK/L5cZG0L6qvu0PC8sX+S8gjN+t9+GWyEi6jHBIpclQbkaDwkouUwJWDEhBS4mHCx8aL7jSYtOcWF+8bE1jziPsO5tYOnEcOCe6MCFAwUS0QX8RKc6DdHJGXgNZqrtwfDyIILxguHO+9wVityRmeLV2jmjBpzeVeVymsejcM9AeKlq7ebs4GBoCVyHDg8Qn4RaEs4nxUzcGW7GwOOzf+14Dee1YE+wdgCeB6ywMGzsPVjvbg2oBYwnDd7JEDuyJ7tcldCiSkLxIcCOpuoE7x3qEjRLN1t7JypjFYdTSLZfNgRXvTpfF2+/buzs0vkqpzNM0y6q9C46VPUXU0QDN2dgXulh3/5UfdhPxWuW6ma5TsfJxt66/UeZ3VocvAgOz50u0cB6pwNrYt4ezMG1NHtLB3Vnm1+fBXIVD2Ci5tjx716L3SxdfgWMdldNhXNVou3YgoDdgeTQ0xnUA1+LNnL6hyHDwXI9p6uy62OiJGvgDdzZ+sB570AScR2QARPdwDuxpt08HdXhzpbbxbJG1NCG/vnEm2rSPB6kS/0feqYIxP//MEJGAskZMYpVzvXmKrAD45l0FDs8HMG95tDhAyXNY25qS0vlhVECh2f1OZ96aSgKmg8/gKS5REdIToPT3LXMXtGenqZ+vFTf4fmTpe84XlVy0Vow5GgDHccOpgLFqTzceDdOw97dBRTdEsiAmcPe+sntwZloCfxHtAV/A09TRF7Pffpt0RlKgs1uCelPdlthn4/LIByNXKYRN3J289DvXD3jYbB/mEZ03I3HKhQ9GjDYEHXwf06D2WgVVk6kRVf1M2I4AAZj2ACxkOHFcbt2U6bDmZJ8beg9z1m5akeXrpDZZXqSc3QdBHqtB7h8DlIhDLBOyXDnLnrBrYlMUXd2BJKb9r7DvI3Nr9swR2CwHObONK0NkKx2Kd82UBcZNzLpMC36rwcV7lti5X//wFxG5vlTXew/1ccrCXaRgDkayTxycAPw27wiYZdBuuj4JGonUcCxGxwNwSkMkB0rtM8q3YmAesxCGfNv7TUCoFOAi1AMG95Vl7HvD7RdsrXV3tsU86Fmil9vzqzQlNmzuGf1rOu/C1N2p62/qEkvpBTorvzy91Szpj8MU4WAzDagzL3IPDLHmceZMnNNpft0T+fxncxPtGJ4rGMwnMDkyJ1hvZbpHvbAlJ53JrgpKzb8ZHEKbd+VOZZ7xq9T5Ywwv+5rwx1hOjeinXA35bNkW8ZLtkH5TNlYISEDLiTgZkSFDn1dGVF5pNsQT4WaDoUBNSMSaUCN6pD8KO4ltzozkkEwjlLzjSa7zGk224qO5Nviaj/JyASrxVjepoSFnHqLguT7IpAk3xbBljwTTvIaqbEfpqk40/zfv9NTvrqVE4nvZ8gAMg9rBpG+1sGBx4gHt8wzmf05J/BzYGS2dwJSFnub9lC+zt7DjujsYcdw6/p4t2JObNXLiWb0LNLiO1HlN0QRnpPLMpzNXVSXCCQcUqBDS6rzWOhXANRtiPjTEW4IWCx1B4c24GE8mKkAqBhPAcSFFymZimXRvQ2l196g5xVzuiTzRtyLPu2Xf+eXUG//Q7+UBnc/gcol8CpFXwB3P0XALvR3UbkRHcq5cbga6Fo85ZPakkB33iVHSftsckVH/mUyJxjHchCwvMytImcr2mMVqFZDBJJalyIEWrhnP6iY8XoXRmcdxnZa7FbWY7g5MRyUwZ9xV9amrNRx8mDYMtwgTBb450/TkyHMNBA0LHALoqXT+nZT87QyNP36k07yh3atzmP1giYSD7sa5DF7AYc27MVFOCFk6ExtwYyYmZGxXd+GpxRvHs/KtKwYTY3Wv5CSusLQk1MK5ltxS9F+mR9SMF0cVopLHQNVFgFmoKIf17p0jnBG3XvJsLn2L3U5F+OkmIUtFwd7a7CY6MQ9UsFlBCNoQDdgOAKfsrZ0IDpy3KVL41JrndmXkKlEamw9wfXmIfktSI/FjaZxtnc1YgBpfy04FQ7ihaBRgIiRFM1j/YM9ReWx/sFcKYWsf0CXMdjtQjDtglgfGaVl7wbEAtD7mYMlp7142mdM0mj9b1JKuj51hEGmz+3ucthHiMRdiiIJeoGEAJjzQjRrgYSrd1wDv9oiuqqTSEK/EUnWiAFM3my6pVLmDvHwsNzv+ofviC1517dgPqdKZG6VyL9VafnUoq9EWVu1sNV5tAALdTEUVEpCVCk4ulvLSDK/lpG6IBB0tb5LS0ns66jzv/ksj2khgck/RAuHfKZSrHiaDRdPL4969eLzPhrNNzNcbrLFpzWcK+Y0Z09G1/P9ScytAw5gbUbBEfjkRHCVuX16RbR0cHayJVqyajNd26wW82qVm/pIU/UUueUHVs57acv9bNyr+eDVrpYHAF+SiQP0+84rgBLAraKxPLEtOF/qR7Z0Z3RAzry3Htst3H+xrzXp5NpFe9ykDvn9Ma0L7W9QAuIP+9tDQKNBcXAEKhHcbBvXLVp3ANtHmIvbTGfgKZQrdbdr2TsVcpyneNmMZzqpnD2N5sxzIGVf/91Mp3LxhuGmdWPJifVBi8+JzNJAQSTAVRBEuhWLP1qK/WecWrcgnIEdndwG2dXvbA0ek9eQppnfetPmdtDENX/s6n8aL+PyWb5M4WWmW3lMX+5WKt6uBTC4Orb7M1jG4L1zwa94r6a4CT0gSH+kceJaCOLXcRduxO9XEz/UYDotrBqA07JGj2MEmNEjXbnIdMyVL+phVx1uNd17eQsCoDC9j2hmvoR7DBGFkVS+Aw1u913iKjdnR+JGr/UbNhOtnR1dnJ3A6XfXxo8QacbPevEF1Jjd15rP6L+8Cfd03DDSr7ZucHfhoJqyvBBgArgfhHssESPAx8lBrEfY6NXpvXm+5fese+Zul/rolQxUcD5/fbTGAHAO7gZ4CjfUJTzZjLM0b/br3tyl+c6Nv4uot1vWXhXLV6f7jR1oqjTo5p9+F4kFIOc+UM5yXs4ZBwzNWzCKqDwxxrLujIAdll3/O8tOH3x0985IS7VkYSPziW4XOc/ekDRHsp15N2xnIK0wk6KaoRFITewf2yoai4LtViPazhRHtiOqdWcHdYftNvzOdqPPFJ9YM91LO1LOQlfvntdbTtstQbLdEiTb/SmDBhiHjGgcZRwZp5s7OaVZ1gEXLT3c1sIs6kCTP8jCL/MWPBZ+26+jPgrnsQKdGBmsi0HsIQO0esR2LyfpxxIBAWgfsyxbRPbDXFr86odiSiu+mf4Z0I6CAqaICqh25CE5BJg8pNvbv2Q7vJf/27+gu5A6bf+C4tJAkzCBN10GNImwmqA8G9DUi8C7KAU09WY1QTEgoEmU1QSlSICmPgTewBXQJEbgvV4ENImzmqDLdECTBKsJWikFmiTZvwsy3wea+rKaoKkc0NSPwHs5FWiSYjVNkCZ/WacwUeNIbmHj27nvrwBNf7GaqqMbbuQqZqtHql80jRrCaAGapFlNDz5cGVw7QE87cohBYsTtL/VAU39W06pow0GBR4ZR9i6I+rhkS2Ec0DSA1aSau6XmCWG9+vb4uuoxOY2HgaaBrKa79+dNz7t3XyNj9M1mPf01F4CmQawmy6t61uaMweq7JR7KHpAZKwM0DWY17b14fvpTmfu0gyfoEQXbS78DTUMIvLMtrl2DQwkwuwZ179w6vuTLCH3/OfNzrj76lMCjo3R312AuXKfEzTI+1ENQYhGlY4mvXHasJ52YdEdnUUmVEgrr+HTEdfwFHcsjeXCa4/TYKWhHFNixU6bxSMdOvY3j97FTE/svcG7xV9aINPONWpM2lpNXwObYKcN4pEM8FsTj4Oyc4uJiARw7NfkUY8+7AURKbLHRuPBDopxLiVgdOzUJ0TpD8GAdgRw7VXQ7ZIHVsQ16AcOnPn/rdp+z/ovVsVPCiMYBogn2xiFgeeyU6tRqlbONo/QjdBbq0C/ocR6wiPWxU3fiEA90w8Z4+Dx2augFieTH9aPVc3PE50WNE4JkiQI/dioH0XIxmFsO/BDfjp2qvVuyVG1ykfaJbIJn1iZdzowOq2OnmDkE7LFTQCBk5an5BJg89d907BR0qojxsVN18UjHTiXHC+bYqcl6BG8h0lB62EtZV8+Z8rWoHzsFXT5E4SilS/FIRykVx/Pr2Klv0xp6G+5Q0w2c+2Djypv5t1E/dgoaI1DQKhlRq32CzUOxPnaqAC6M4frYKR7VL3bdERrSun7sFLQ4hkIB6TicuqajhdeEHZMmF8U7vJu7WYzCWTXoOMqivTDd9WJGkdCvUzCAYcINmJhYeoB/ZbiBNyCusmQW0NuJJXsPd/aZU6xfxGp3J1pbOhGtgNnmWhcXB3vw2CpnoBH4fPst1zqBHwX30TuBfIADcyRiXlQmqtuBRwMxJ0FL6cuJLmxGk7kFwNnW1oHRsQEL/BmPdc5ER3BjdteKLRtfLGqeFiSvkUqY8bZ38Q5/RNm4iy2QH+hizFAD8jSZ05XAiMJrATwVGJlkKiq7A1P1V2fKCO7VZz0Q7/0QeT/mvRlTo+4PeI7cChXOI756M+/Bg29mXv5dVFV4P3XUeMZN/ciRZifHLTx29Q+j6lRAITFQoZ28oupIIOYWcir0u6qHHIc/spIeUDOWYHAQ48gzwS5BifHamcLTMrYdfaqK6fIPqIpdBZIqgN/gZmbWtLA7hY+ZOquIxm7g9BnsxZzWsnfvHBeYs+0t4Cyb92bVMDHVghmHhtIz59oSFOXInBMyCXrHjbhJlk5t/DBd9Skk03mdwsR0faycnR0Ylp3CZHcmZqMMwI3E4JDAriXarwLDO8KC6vXBU3rrRWdpBgZ9vntr16hCyEko4P24g1D7ZdTny/msKMMT6/LOY0aZbi0oyxuzzrFjAVndESYhN5IR7pdCP/xq9KAYNxrnyf59WDfmLn+zG/ghDjPYwIojAxFH+DfiTGgfpX6N4N1Rp3/qubiQ6Sc141+eixT725eTJhfv2LnBTQX+auKHQsw+DasQ0KdZeVshASZv0yRNUvw5/xop9b7skbqYdzM42RcmnubiDBKk3DmbGIzOf/9agLL/9Xkb1oDnYQfknbZ2xI6jMdrPAuhauiQtm3KuSO8jye9hZtq8DfUzYZ+Wm9Tp1NhFfb2KAAWrAH0t1cGSFkRfaUBfhUquNKmb20kH/XosEEpt14Lnq2edc1kQ23aYsl/07zyhMS2cX3UuZgoeOsTrxIhfLb9LoaCB8Q9TKDtAPTtQvdHqPLzzNTAxlanqVgrVt7372jBs3Ri880v9gMSWknxTUvSDaaPXUIMTOZMlDeYHuZMl1nW0eyf4/tWVSO/vVYl1stThmd1IlMBHtne2sbdu78+8v4gsiuG7ZU2B3qFhhnc/eVRrc/oq+wbcvtrRwg9jKCAa49YZXKQ/hO6sBynrOTl7AMOXpTVYmVaYOh+YsoL8uRJx2nxrO2c3GyXi9Pnurm4ezH/wzlZ1Di4yLM0sInm/uXZH7pof52ZIcfAXGHmsd+DuNp2a+GGsgDNIxlLFxliQnsOsu3QnWx38axnBaa2blTtCD7rwyDjEXKVN47DvwEdXt86p+ZOp8h+aIzuXFchlgDSjlgv6y600aavsXpbKiuQI2ZZE44tv188O096u8/jL9TDDBEynvaAAkZUsAW7xEAAMLd3KRNlDmbMjkFDx/lrqq6SQiNfimkmG2ywUPN2LIEMZ84M8hrL26/wQoPwMggBphmfYiWYR4d9FO6kEm6jt6P9OP1o8y9VybtEogdFOU89XItBOwdVcmSXKtJP9INXqzfZ9dVLuvA2jzfrZHwe0ExGUBHbtuPYcJkGfE9m4f/++AGgn++Kv2o1L02lJEpS5Jd+cTHBBO3mfQ7LOVDxYRyC00yPZvb0+HzxATrjtGtqyZMZbXNBOD6uRjANEE+yNQ8CSdvK+2XYqU/UmNUA35I5q/dbZuKKd1BCN13QW62QXR7TTu7mizfExa/WjbqS7LXTd+BJj2inuLJLlDDC3HF9pp3Opt96aZtZTS4aWjVZzmtOIC9qJmUPA0k5AIGTlqcWEHkA7aYwclzVGqpdm8Rmr0Ny3G19hTDsRL1Qi0E4uNbDFUlRpp2TzzaP2zVam+DwbL3Si/zMD1Gkn6NwcBYJHGlQOluApr+EqlKJEO8k+UtlhKJSqkWEip/Z+xqso1GknaIxAQSvAjxC0ItYINOZiTTuVwIUxXNNO0El3J9oJGtK6TjtdyboeGHryIvVQxEiRWKu6nyjQTifg1P2PdvpHtNOh4raGIwcOkwscRfccTHuvLDDayfs7Eu3k/Y0ftJOnmOTa12dHa+blj/Bc3H9rLIq0E7HV+sOHGYo6J1c/Kw15Nu4UCrSTy3ckOIT4XSC0Uy8Z4fQnrlRa8oBy5z4id6owp51qvyGpAvgNbmZmWNFOyx69WtBW2KKXmZ4immZtjx/aaSqi6R624mK5j++0k2GrBs1X25W+q+kN5eTrIw8wpp2YUQYWVwGijMBop2tiG4ZPUV9DPzh6YhGl4k4IDmgnZrCBFQcINoKjnZ5sFHntVZSsEWJ6++GPYc2iOKGdpiIqBPRpVt52ktAjaKcZdQzq/EXi2r4FhwPGbxoew3faqfwnEu3k8kNwtJPHq14uq5rHqKVVaGRT7LfGoU47QQMjCrRT9k8kZsHiJ8q0082/Di+S2qVKT2yYoWhSkpCJOe0kjfj+5T+wTpb4RTtJpnm0Hh1LIIfcD9nywVDuAC5oJ6CzIhiDiI0xMKedys/Wa57Iq1IrVrV6f/7arXic0E61bUjG8m7DQ8/hJ+009oWj2qrKLaSwkoNDJhDGQb/4QNC0EzOQw9JOmj/Rpp0s9r2Mr18xUi+579hlknpzjmFOOz38gUQ7AaEFZdopQFNfIXDsFXpoxNwBls90J2JOO4khCZB2sI2daJYS/l20k9vtiNTiAbP1D3889c188tEnAqOdLgghne30ncDvs52aWyfu9W5bpuNdYqvgWjrsDQ5opzNCSCdlRAnh4ICaGzduCIB2sml61j9H/xA5zML0zrX5heK4oJ08EK1DxYN1BEI7rZ+8fvtgkySST6WJ17zqjVRc0E7jEI0DRBPsjUPAknbau5jcqkeo0U5YJjV0+sT4y7iina4RkIyXgY3x8Ek7OdSpi05+Ea1/KCrG9YmnCNa0ky+i5ZZhbjm+0k52Sz8NnqIXrF0asqLJTjH7LS5oJ2YOAUs7AYGQlaeWEXoA7bTEx6lAadcheiTZ6mDOz/d9MKadzggjne3kICyYs53cyR7rW5OUKUfmD/nWkHfxBOq0E3RujgLBc0IY6byiMGF+ne1kf89Id+ZQX1JxsMiVqHopEdRpJ2iMQEErB0StNIT/r852KocLY7imnaCT7k60EzSkdZ120nAZb1ggYaS7/9KtRj/6bAUUaKdTcOr+Rzv9I9qp7K1ItcanCzo7+6ncE6LrLhYY7XRhRBUC7UQd0a0vyusi7aRdSZ5iHfKeVDS5qGwk6cBZFGmnT8bWMk5NaVpltNyM9xM+/SlDCsIhZ0CFYOGQqBFcIxA/aCezb6cvPXvsSY6IeJGXe3hoG+a0kweiKoDf4GZmhhXt5PpArf8pGS29nBlW971iTyfihnYah2i678MxMZ3AaacC7yGjWupH6GzbdOAyafv0dIxpJ2aUgcVVgCgjMNrJYq/Yx/BN8poxo5cEFj5SmIUD2skDURwqRBy+0k73DlWcnFX9iBrglX2rzJashBPaaRyiQkCfZuVtFYQeQTs17XNgtAi5qUWkjPaLvxW9n++0k8OoKgTa6cxI2Ak86rRT0zXlhLqJ0lohn91zLg6lTUOddoIGRhRoJxtQPVhmYd6obqVQv6ed1qz+Oqu4xlJt/xu5c0qRWw5jTjsNQnz/1yOxTpb4RTutlV9f7vn+Ksn/o5GHiMTfTrignYDOimCMKGyMgTntZGoyk6p4N0rjiHyO4iZay2qc0E4eiMai4qLn8JN26mt2a3uvFfJqh84lbf1R2m8wxrQTM5DD0U7pyqO6l6X+nnY6O6O/tKh7klqO8UoPv5lfIjGnnb6PrEKgnYDQgjLtVBnYssahzZCck/JGUXTK6XWY007BSAKYmo9kJ5qnCf8u2knaaJLi/OjnmntLe2cfORuiJDDayWw0Eu0UIMtv2mnoMerJaoV3tJSzcns2BF79jAPayWA00tqxwmgcIBuXL18WAO209lRNeNJic1pGZu2X4V4r8UE7ERCtc0sWB9YRCO104eu1trdFo/RSRb6cdntmVocL2ilbFsk4AXgwDgFL2ulYPvnJNQ0PjZA1Igs2Wiym4Ip2skA0nio2xsMn7WTm3yqZuE2TfqyELN7i8LgFY9pJGtFyjaOwthxfaae+dgMmrKnfrhE9puKijuLCg7ignZg5BCztBARCVp56htADaKe/vrvXvCVH6MdPMl0hveClHsa0kwERiXZqGS0Y2mnMCuGTbkPGqR//0TdA69q6CtRpJ+jcHAWCh0JEIniIRH7RTtSSfotHWIjopn8O8gnLjXyEOu0EjREoaNUyGkmrWsHOErCmnSrhwhiuaSfopLsT7QQNaV2nndY0vsnrsySc4lNmlnqnb8lSFGinKjh1/6Od/hHtdKCp16GrrR/puaPf7zHav3qQwGgns1lItNMtFX7QTkeeejrEfKapZ/gdfpGn8WwFirTToo0PP+h7bFNLtJim4rmT9AgF2slgFhIcojBLILTTtMrTEyVlh6gHBUy1eLhe5gfmtBMBURXAb3AzM8OKdprS77LP368TSQHVuxNCv9jL4YZ2ylZBMl0ANqYTOO0kkZGVqTKzTd//wfYXuUa9lmFMOzGjDCyuAkQZgdFO2XU+WuMZLzSP5rb2u3MnKwIHtBMBURwg2AiOdmruo2oXpPdOs2SOXq1jpNlFnNBOzD4NqxDQp1l521lCj6CdzKYOySuye6IfPd4qzjjI+DrfaacWVSTayUBVcLTTDLE6U5eXfrT0g0IpTyRrGlGnnaCBEQXaqUkViVmoVkWZdjK5u1jmcOU43WiD6CPZS7dex5x2ikN8fy9VrJMlftFORq16VQpz6yhxaxgzJe1DKnFBOxkgGkMBG2NgTju9Mh9/9/HlMPpOJw+/XhMfz8AJ7URANNatWXjoOfyknfQWid0blzmGkn15otQzx3fKGNNOzEAOSzsVq6JNO4V4peUMMEjUK2me+lexf7Mj5rRTAFsAnrSTgSratFNx+cYr2+kSOoErI9s0lK4NwZx2GokkgOnTWexEs5rw76Kdgs2O6VfO6Kt/0q1hY6ij1XCB0U5P5iDRToPm8Jt2Iu5X1SoJ2UzKi4rRzz6z+QcOaKf6OUhrx3lzcIBsnD17VgC0U9Xuxy0Dlk3Rz6Y8+6S67zkFF7RTEKJ1bPBgHYHQTilXTBRNtLZqRvcOqlqm1K8eF7TTPETjDMKDcQhY0k5bD2pWuQ+M0A+VeJDb+DVnC65op9ezkYx3ZjbWyS6OaCe7Cy8mvPAN1d62aLHnqzFORhjTTlGIlvPA3HJ8pZ0Sbj7+mLHwJOWIXuYk0UFT7uKCdmLmELC0ExAIWXnqOUIPoJ2WnBVyqlmUTc2ZnLHCdaWsF8a0U/1cJNrJd65gaKeT1NS+4r0e6u+WejPkxCPz6ajTTtC5OQoEz7W5SARPxlx+0U6bRe2rffpM0c2KI01RPrvEAnXaCRojUNDKF1GrZXP/r2in83BhDNe0E3TS3flsJ0hI6zrtNM6qWjoqq1EtpXrk1Ju3pIJRoJ1q4NT9j3b6R7RTetUH+TJ/FWryy3iL+OvahQKjnVyMkGinJkN+0E6mSX+lX05JomeJuw7r18eJhCLt9IFQqH715lvNHSO0NpTWPJ+EAu1kZ4QEh6gZCYR2Kv22Wzzbr49WSXKfJTGP3F9gTjvJIKoC+A1uZmZY0U4umzZsLHIN0j7kkHLo7895gbihnaoNkUwXh43pBE47TfGKuOQeZUg5+e6URngybRzGtBMzysDiKkCUERjt9O7FwJgVy5zIB2MbZScNGKiLA9pJBlEcINgIjnYSPdE7LyZzot5x74iCigbdozihnZh9GlYhoE+z8rYLhB5BO90Tela8evJdUqDXng1h71Sm8Z12kjZBop3sjAVHOwX2URzuuzNBI1xZwX/HWjlT1GknaGBEgXYSM0FiFh4ao0w7rbV5f3KudQ1lT0XOuqwWOTfMaadCY6T3DzbGOlniF+1k8frFCucpWdqZE2YGrTj2yBMXtJMdojHUsDEG5rST4pQBxcsSbUjRUY0blHs7peCEdpJBNFaTER56Dj9ppxup48RKb9ZQsuRCT1n+eEnHmHZiBnJY2qnOGG3aKbZ3X0nVC8lqh0e3BB0YfeEE5rRTnDES7WRnjDbttKh1IyGpbjMlXPneYtnaTymY004zkQQwbTNiJ5oXCf8u2ikrK26h0QkH3W1ZEtp3Sj5pCYx2+m6KRDspmfKbdnKyOTBvwdRz5JRJDZty4ietwQHt9NEUae34gikOkI2ysjIB0E7So5embp5QTwuPWSmndsx/Gy5opyRE62zCg3UEQjv9EHpWqV61XW/vrvV9pn03jMYF7WSMaBwlPBiHgCXtZE2IHaUzPIaSulTt6qqD5lK4op16IRqv3gTrZBdHtNOGmELL6Jof2gVV5+O+JEz5jjHtlGeCZLkgzC3HV9qJcNtpUl2WHTngVabiAH9Fe1zQTswcApZ2AgIhK0+9ROgBtJNh8WSSknQNbUe578hgz1ENGNNOHxcj0U5RiwVDOw0JFV14b+Rk/VD56j6E4CwT1Gkn6NwcBYLn9WIkgufMYn7RTgqGZvvG5KXQct0uVi8RHuWCOu0EjREoaBWFqJXH4v8r2ukyXBjDNe0EnXR3op2gIa3rtFPwz0cDX1ygqu98cG3/uWdFmijQTrWoqdtXgOpusl+outWxWGvv6wf2T0ReqHdSN1+o7mq8012Sz3RJ7T7iok5AkzCraazqlJyR1YGapasXqBkNTw8HmkRYTeE5L09d6OdOjjxyZGfhooYBQFMvVtPtAT5GYxYlaJd+P3tCLWo+N5zWG85c2yadUUqQfqS5bdNpaZVVac9QMNcVOHP9B6f9Izhtco3RKMeEYxol861l28LHyQgMTvN1RoLTejnzA05zfdrPYv5hV92IPOrH1ZstX6EIp83ZZr6AQrDWypJ8uX3V7vFpKMBpm5yRWB5jZ4HAaSuHGMlufBlJLhCLychooJZgDqcpIaoC+A1uJtJYwWkl2tm5JS/DaDGzVBeu3tPWjBs4rd4JyXR5TrhYneU7nHYvsnn9lY0LtGPSaZst37/fhzGcxowysHQREGUEBqddCha/KyZiTd5vSNIjqxdyJnfYwGlKiOL0chYgnDbbRXxP7t4Ktb3eq67Vz1E2xwmcxuzTsAoBfZqVt9URegScttw+k67ff7Z+vNnptMNjqnbyHU5TckWC03xdBAenXc12rxgUGKKe6m1+4qB0HmcyjwacBg2MKMBp41yREJPvLijDaTUafUfKLQnWy8vbneXl+Woo5nDaNRek989wwTpZ4hecdnCa+fqnx7T1gqyT8xPLV3B+9zJWcJovojGWYWMMzOG0fP3alHSfeO2suOnzzsZJquIETpuJaKy+uOg5/ITT6pN/LE852KYWNyN1UtbSvJQ/mSqjgCYxAzksnPbWBW047XV+aa1I9htKVN6UmkSfwmTM4bQTLkhwmq8L2nDatM3SFyZtLSX5Sy1MJFerQub9GMBpBkgCmA5zYSeaVwn/Ljjt9KMh6VZfd2ifPOmrZ2q9YrnA4DQZdyQ4jeLGbzhti/zyrKDvd0g7HS8VfC5cuAkHcJq0O9JSf6MbDgibwsJCAcBp2268sUh9dY4W2udzxiupOM6v18IKTit3Q7JOJB6sIxA4TUfZKHSDiLJGgEr5OFW6+mlcwGkuiMah4ME4BCzhtC/XVpV5XWtUD5x54FPvFV8+4ApOIyIar8UV62QXR3DaPdE1pBuXYvTjH9PTiBJFnGfHCB5Oq3VFslwq5pbjK5z2fNlEsVRLUXLkwzEpKqJ7kv+cbEEBTmPmELBwGhAIWXnqNUIPgNPGihuJKcruouTcvDaYMYCggzGcJu2BBKcVugsGTiM/dn20WDVDr6T4Y7TdMqsc1OE06NwcBeBKzAMJuHrozi84TXJSX5L2oVua+SLZFXZqsfdRh9OgMQIFrQrdkbQKdv+/gtOuw4UxXMNp0El3J3wKGtK6DqcZEFY80Y9dQkuj97+sEmsljQLtdANO3f9op39EO518lLz5Y/A23dLZ47OW6Ut8EBjtdM0PiXYK8+MH7VQ5/PkWcRETWvy6OwvWictPQpF2kslpLtpl5a9V5PPqs/uPJEkUaKdaPyQ45ISfQGiniiFSLkdKe1EDPk7/MUzKbzDmtFMqoiqA3+BmZoYV7TRJ+NKP5a1F5ILH80oVjq+vww3t5I1oOgdsTCdw2inb1c0z+roYNedDhOT9D7o0jGknZpSBxVWAKCMw2ulHWcTTRcvv6heU+L3cdLJPDA5op1REccL8BEg7vWGs9tpikk8O8PpKSu3zdSNOaCdvRIWAPs3K224SegTtlCE3K/ev8W0axwJ35SvukO/Pd9op1R+JdjL2FxztlKA11SrwjS8llhx6uOamliLqtBM0MKJAOyX5Ix5F5Y8y7bT1td7W2ydVKamvlhYdcZqB/VFcmxDf384f62SJX7STzsfXs0SPL9c9vkTNSSNN/B4uaCdjRGOoYWMMzGmnLY4DLWouNmmnp5upjFj+1xec0E5KiMaSwUXP4SftdH9G47ZZRfG6BTr0mqLoob4Y007MQA5HO5kE+qNNOzGuKt7MFF5HTezd+7CIe44w5rSTC1sAnrSTsT/atNM182ULy1ef1z5uMMjQSuyJIua00xwkAdJk/dmJ5i3Cv4t20h0oXaEfYUJP3krJXfci9qbAaKeYHUi0k8oOftNOSwylTqtHDyMH5+yQZ7zPjccB7XRwB9Lasf8OHCAb2dnZAqCdRvrK3pL1NqXGeprFtFVEVuKCdnJDtM4KPFhHILRTrOP1Ph+sHfUSZSfaHHPULsMF7aSLaBwVPBiHgCXttHtB886k2VZaAbuq6s62jYjCFe0kh2g8KWyMh0/aaWxTYrNHlSF5/1ylmnLxE+8xpp1a/ZEs9wwX0xS+0U4OS530H5gaa6Y8nDqpfsP4l7ignZg5BCztBARCVp56m9ADaCdPGVlxxvE39CBt/xvNmyRlMKadhgcg0U5vuVNavtBO9mXnfux4tZZWumeAz6u0kU9Qp52gc3MUCJ4hAUgEj3AAv2inC0SlsqNnX6vvC30TT3mjMA512gkaI1DQ6u0OJK3uCHa0xJp2ugMXxnBNO0En3Z1oJ2hI6zrtdOV0XerFWd5qmaOi+2x4L9OKAu10F07d/2inf0Q72R2Wi6/1XK0fvGT90g8J1o8FRjvJhyHRTs9C+UE79Tt9d//roEJ6jH5CevDhTcEo0k5+k0sMhhmv1k7PcZcvrT3thALtJBeGBIdIhQmEdoo933u75+tF9OioXs3HnOQ8MaedWkORVAH8BjczM6xop+HD9BZG7zPWPrT87WXDwFMOuKGd6hBNV4qN6QROOy0RDqv+66Aw/eA7/y2h2s1UjGknZpSBxVWAKCMw2ml3YP++lA3yugGRUbr0hPNfcEA7MYMNrDhAsBEc7XT+r9efJSqLSAXFab4zJmzNwgntVIeoENCnWXlbPaFH0E7pM+6XSCuoUSNI471SpPum8Z12ag1Dop2SwwRHO5EO7HpQFLmPtF+ylTFt8sQK1GknaGBEgXb6HIbELDR0L4X6Pe30mHrdRTL1Ai0s/vNWsWXv5mBOO11CfP/iMKyTJX7RTidPkQgyux6p71zSMCz2VM55XNBOyYjG2IeNMTCnnexVqfH7/36jHVg558vb2QmrcUI7bUE01mpc9Bx+0k5W4rQtyxTuUYOnl98t01zogzHtxAzksLTT3W5mqb+nnU6VHBaaliKhd8xnDOmHWJk25rRTBVsAnrRTchjatJPJq4VnA+/b6JTtX7tYbUxZMea0UxCSAGkuYexE8x7h30U7Td941enqhXi1sskRL+PWPBwrMNqpaT8S7RSwn9+0k9Jj6zEJcb104o9ta/25WlsDB7TT6/1Ia8e39uMA2UhNTRUA7XRgj1KT1ixDtb3yezxJC0JP4oJ2OoNonWw8WEcgtFOfQ7QxSjEzdXyd5b5a71m6ARe0UxSicQLwYBwClrRTfcXS1J87bOkJG4Ofbzk77hWuaCcPRONZYGM8fNJODTGxRy1U36jFHb8eLhWh7YYx7URFtJwq5pbjK+30vbXcfqxGsGaMVL/JxgOLz+KCdmLmELC0ExAIWXnqfUIPoJ1qU/rppnltp4amf+2rHHLBAGPaySEciXZSCxcM7eQ2Xu64SbK3bkJw6WzxiT5PUaedoHNzFAgeu3Akgsc4nF+009y5FzZv7fVSK/ToBNc2ofuuqNNO0BiBglZqiFophf9f0U4P4MIYrmkn6KS7E+0EDWldp53mSN2aHdhspxORoXG2gUSbggLt9BBO3f9op39EO62KNhwUeGQYZe+CqI9LthTGCYx22pCARDvNSeAH7aQa/vCzPmkKbWfgscJlYseMUKSd7mwNHpPXkKaZ33rT5nbQxDUo0E6eCUhwiFWCQGinJv/VYr77v6jnOpRtulxuPx5z2omOqArgN7iZmWFFO2lMrL2VtXkmJc85abfbtnVrcEM7ySOabgA2phM47TR/zgqipexCndC1KxclzmDsx5h2YkYZWFwFiDICo50mjb8+YtkAIe1SskxBxWjyVxzQTnREceYkCJB2sjyUcal4zALqUV/d8V8a64g4oZ3kERUC+jQrb3tE6BG0k2rulponhPXq2+PrqsfkNB7mO+1ET0SinVq50yS+0U51e9L9lq5xou0Pay1ctk9HGnXaCRoYUaCddBORmAWVRJRppwDzvaT+ymtoh3LCRj0K/SqEOe0kh/j+UolYJ0v8op0+T6kgbh6pQU1sNG5++uCpLy5op9YEJGM8w0f6I3DaSf/HiieU3X9pputTfI6bH96IE9qpDtFYpZhPM/hNO53Zk2MkN1SNliA6xMj99VB7jGknZiCHpZ2mJKJNOy1WMI4RCSzRPNZY0eDlttQPc9ppCFsAnrRTazcz0d/TTtHP6/uYmqdRwj/kOU0m3ZiAOe30MAGJdjrTkWg2EP5dtNPd+/Om5927r5Ex+maznv6aCwKjnTSSkGin+kR+0055ay7Jnig/pB7xvWjqkvDmDTigndSSkNaOlZJwgGzEx8cLgHaiyovd+qSxTC9YbmCvNwcjSnBBO8kgWqcXHqwjENqpok7qneZlDe2oVSseJBY/9sAF7dSUiGScemxmGjiinbwa6dH3Gq5r7FbNW7k8rD8VV7RTNaLx8jCfJuKIdvK7kVtFl63XSZnvr2PgY5qAMe0Uh2i5IMwtx1faiVyyvvys8lPtPdahnk2R87JwQTsxcwhY2gkIhKw89TGhB9BOllf1rM0Zg9V3SzyUPSAzFuuzncqTkGinsCTB0E6rfmQVL194jbS9YfSTjBPbpqFOO0Hn5igQPCeSkAie1CR+0U7qFz5pazTF07abNdUfHzGhN+q0EzRGoKBVGKJW3oLNQ7GmnZ7AhTFc007QSXcn2gka0rpOO+29eH76U5n7tIMn6BEF20u/o0A7PYVTl2g7tiBgdyA59HQG9cDXIs6qaW9DhoPlek51YZaF4LrwQBJxnb0bg+gG3oklIO898C1tTjKLJ2rG3Ah6NtVtiByPB+F+6d9HuHO1+0P9c/UOvnXNvuWeMuIPe20k+EUW7yrbx2VvrkwJGBsU3lWyJH+Ge8mXSuww6ifWTEk20u//4dt5P9xKTh1chSC50mB2KvQc95J/NPl6akegN81nwIsar+dFI3Ar+YWpSJJnTGVL3oh7yUdmWx0O1D1F2nNP3GDz/vJRuJVcjIYkeSOVLfkL3Eu+XkfhkoHvXn2/S1K2ah/Fs3Er+Xc7JMnr7diSv8S95DrybnQp8RGk7Ih+tqt9n6XiVvKgbUiSb9rGlvwV7iXf4CB31HO1gmapxKlr5iu/jsSt5EnBSJKHBbMlf417yW+3rL0qlq9O9xs70FRp0M1JuJW8KQZJ8ocxbMnfwEk+I49OnqNoTinN8qbtbMq6CSmIAGK7OTsQmTSnO/caY28YoVU0vYCpmHU7LchauWfdqh3YYm4dWOPkDPwNmPuwNip0bf3RRW1R/u595RoppeMuHitvakZ6Yh4lHI72LirtDUyis82AdPwMmQf+TwS3rptW8gH/t5qft2SW3CvN8GdG8dYrGcko4v+vvW2/WKQdphwXfahhJxoi9Ie+6AIoFAwq1EQC/gFVqKVdIa6aKluiLqJ/Y9Q5fYi19kQH/WsyiPEo81RxjXZkgbP0EM2T1VKk25fKNDnJABhHYV9Hu+Jans8SisirHkMEWpsWV3KxId0UavhiBrhSylSIs9/xVmjZ+5XNRktNtJIeua3PiPUv5VzZZt2Me2Wb3cAPjQwWI2kEdSbhf6AREwVjUd+ATr/zotarDcV6V1vJkRufTSmtqfrJ2RfBm3ErxLrMD32kTZH0cTFhVwfewgX+iW1DZTKJIpr55KZvDFlbzsAvSbV394DdegZXsh9FY1i6r3Vr3/rVziq1R3cH4G5dC+7K/Ye9SywbS81XIs0ptVl2HvapuHHlTo1dxZXBnaBLAR0rAB0fQnV0Ac9NWMIV1ruJK4uTLd0ZTAF4vu9xvYkfD5w5rb2LsWDkvWGinF/J1wt8Ja4Xbb/6u/gODXp/yiYDUhFBqSKB+F7OazcMIBVsfOfJcdOZa26gg9h7MBzdwb2FVJ4auVasezqtUp4cGtuboSJm7juASYAD767p5eLG6KgXMyvNZpM5Vy8ETb5JF7B0AncYcOkUkM/UidU137G6ElfX7DXtI0nqbC0lUUXljlDW2NMiVHsrdlt8Y/TIldNMqVmie+1/NEpwQkgsSq6dz+56vyVqM9oztXZSnAimJIxu52W+6iKF6WOdSelXNUdeORUvDf9k3MBA59ZuZBxxRoDSJ3h1XtAO5YbdysmIHTmZLW85eJ8UcM2V1EZ21zwQ7Wxwgzr3jw7Z42+KZgEI5m3EStG4XLOxXbBuLXsP04D4CygaPKE7/dKqR+W0QJ0IGeNUowJlJ0w3G2Tns9SQ5tVRwTEUUIPVUZsIMGNoeOOn6MkmQdSi8/qntH/Gca4lSPwKT9yr3nAz1CG/Nm87ERkdN5DgDnW9SZPJitO61DOV5GfKnKXJaMUxKpY5XiOdgHtM7v2Vv9q6KGsqOE6sBGS9xWtRmwI62fLKfh07vNirjezoJKED9lSu1as+zMs6NuyeEdnmXRwfYqZTkHKErvZU8S67XQimXVKf6c9cPUes/fqvG5vbVO8RKhPXKH47lNZPcWBt+/MwH/d34WPgL62ADuFmb2nlwLsbtDbf36VrWKkTXa2SOfuBO2cElzBlfZRI4rKGEImrFwhBQgZ0qPzTCgNgTQJozakkHommAzjqr6jspJEQWhoNVX3rN6FvvN4ekZ29RD4nZsNoRObWiPxbjaBhCAWNAJ9G0Ii4vJLlgB2OhBRVB7XDRGA8/RUAeAfU6+GDpmiOpx7Q9RPLNs7lPOJPtP023AGVdR3tgGqQz/KVFhI4MYHocC2PqRIroDbDBdQhDbs1Bsy5rB7/9+OyrOp1nAdKCpF5r7/3b8dyeEhJkGhv4ijTsSgervIdzwV6IwYwf7ZhZqhMEskRxLxcHOyt4Q8gCM5JifQespcackPN++mkO3sh79AVl+2qLTr4NYgtiMWVBJmUSrASAw5uLNXf/yPV25MVgSs/gfUL3cEk1NnBAXh+MGoAncKWATwFezMd752fV01V7InpSZpHDgYdTv2aoSKAvUBwpigHCRsa1BQf/pEpJM0BKRxdnJ0YTh4CN8gg0/ZSycb1m389BU/1ze6tX0/zCiKnk0YfFKqZuxT2Hbjn8J0b0baEWEkl81AHQmlnS3zsyaHo2O19YWN9/chJ407vr9+6SwWjUER4CfX/Tz3Z/y8en3nF6pui7hGhH5UJN7e/wJH/uzRD/f9zT/Z/kQdhDWnFA/SKprzYSv458zVG/t84oAri/196sv+XXz/hbWYsTTrxd9r160+FKDjyf40hVRD/b+nJ/k8bP/io5YdzWsE38u+OsHhch5H/OyhD/f9rT/Z/YarLUMtPmuQTtspZm648JODI/6unQf2/tSf7/weXA9EFS/LVst/XLf75Tm4yRv6fpAv1/2892f+HGL4MeCtXpF6mW+Y+Jcl2L478n0CH+v/3nuz/Glu3vwj84akZX3zL5vZQhg1G/h+wCur/bT3Z/+Pjped9Eh9FyhQdWDfir003ceT/3+2h/v+jJ/u/6MuKPPKUMxqHdM301DZsXY2R/+v6QP3/Z0/2f7tXm/5e9GwgvfDM6u27GgYdxJH/990O9X9Qth7r/3dip2sqaDqqpY41fryk6qcHRv6/ZC/U/4X+ker/Ev/ffz08+AXhnUbZrgebivUSXuLI/2VDoP4v3JP9f/nUoq9EWVu1sNV5tAALdTGM/D81Gur/Ij3Z/w2kFWZSVDM0AqmJ/WNbRWNx5P9OsVD/7/WPLNG+4VngNhjwi5lzZ9g6MuBOPl2ZS+1N8Xuu7jNRsWxO//l1PJ6dx/oX8zLaqoNcUZx1R/3/fw==
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAJdJREFUSEvdk4EKgCAMRPfF9gn9WZ/W6sYWmZqRG0EPRorb3SFGv4P1GwLErdw5i4eZgDBh4zsDnog59Uvbm1QbIL4mWrTmRsmZjjSpG+zJIKDbIQqDU/puuieUBo7pQWbgnR7kBs7pwWEQIQ6uBm5XY4hBVHogqWGge3fkdx+4mm4wxtPU9RsweztvDR4VQqg4CBWvQLQBFW6Sxd+iMagAAAAASUVORK5CYII=
- fb371ae8-5b99-4464-8511-d9d8f0b30abf
- DIFERENCE CURWATURE LINEAR GRAPH
- DIFERENCE CURWATURE LINEAR GRAPH
- true
- 20
- 06ef9e04-bc97-4227-8e5c-0baf1b521abd
- 1d74ab03-d5a6-4c43-878d-a11593a776e9
- 24f7bdca-045b-421d-96c9-07956873e094
- 2eba86c1-c323-4d98-a856-bf3a7dec3965
- 2edbebac-85ae-4867-9c11-da446ffbc094
- 56b13bf3-2c10-429e-8166-e8d6dd530880
- 59b0f9d5-da24-461d-9293-4372ce2a132e
- 6da74475-a224-46e0-b568-d112ce0c308e
- 7cbc819b-232a-4183-913f-629dcf38d672
- 8a33c936-934c-44ed-b2dd-3ea79f64eeb4
- 8d4cc25d-16ee-4372-9b3f-f869c6b8b84f
- 8ee68260-160e-4c3c-8412-07c3b2899075
- a480cd9d-26c8-4bdf-8aae-345290e945da
- b3622dfb-344f-48e2-bbc5-3c7e97b001a7
- cf237ad3-6b75-42e7-ba90-9d94c0f0bdbb
- d4d2a496-55de-4893-aaae-2f5c47e61e5d
- ee03b20d-1501-42ae-a84c-4acca9a161d6
- f8a7e30f-9336-45c6-897c-5deca2663077
- fa4c9def-0c2a-4b57-beb3-0eb5808c5d64
- fd26031c-119d-4d02-99eb-e98e506dbc09
- e9837f44-fe89-4576-a1ba-d864d9176564
- 80bcd5c0-5458-4110-bc35-aad5d5e50148
- 9492d9b1-8423-4285-a424-c395dc7f8b36
- 88ea5216-22ee-43b9-bf4a-bf732fa4678f
- 693656d3-ab20-45a4-a99a-8ca5a8f9ac36
- 98a7b290-1680-4c8f-91d6-4080e52ada8f
- d134b7cd-fb62-4a2b-a901-fec5a2d783e9
- 45329fda-4528-406d-a823-54e35ac6ff74
- 9096d595-00e9-44ef-bf8b-df7cba4ba2ea
- 34281050-3848-44ac-894c-a3119ffa069f
- 7979dd58-784d-428c-ab41-1f9a01cb3b5b
- 357ceb68-e651-4e13-b8c4-6a838be2149a
- 3c10a1a1-09f5-411d-ae06-13d21b0f7cd7
- f9b9305d-1e20-4067-946a-b44d88604308
- 17704c02-f561-4245-bc67-2eaf7cd1e000
- 054cb35f-8548-43e7-8129-2bbf3a113dd2
- e294df03-baaa-4b12-b92f-e97f42ff34ec
- 9d9970f3-5ab6-40b5-b0f2-d257ffef222d
- b4c2ea06-2f42-44c4-9b4a-584b407a7f6a
- ad15254d-f361-46c9-90d6-b5db1b60e3d2
-
6985
-3191
366
404
-
7337
-2989
- 20
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 0
- Vector {y} component
- 8a33c936-934c-44ed-b2dd-3ea79f64eeb4
- Y component
- EIGHTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- 3f1d8e98-725f-4789-856a-9ff9dd88ba16
- 1
-
6987
-3189
338
20
-
7156
-3179
- 1
- 1
- {0}
- 8
- Second item for multiplication
- b3622dfb-344f-48e2-bbc5-3c7e97b001a7
- B
- EIGHTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- dcd58bba-6ec5-4665-9f5e-9748abeb09fe
- 1
-
6987
-3169
338
20
-
7156
-3159
- Vector {y} component
- 7cbc819b-232a-4183-913f-629dcf38d672
- Y component
- SEWENTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- a8eb7470-ff2a-44f8-8106-541d81b0944c
- 1
-
6987
-3149
338
20
-
7156
-3139
- 1
- 1
- {0}
- 7
- Second item for multiplication
- 6da74475-a224-46e0-b568-d112ce0c308e
- B
- SEWENTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- acd1b930-6ee9-4f99-a19b-6cb48f642842
- 1
-
6987
-3129
338
20
-
7156
-3119
- Vector {y} component
- 8ee68260-160e-4c3c-8412-07c3b2899075
- Y component
- SIXTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- 3aed1e90-8f45-4b3e-8f50-bd809fd87c29
- 1
-
6987
-3109
338
20
-
7156
-3099
- 1
- 1
- {0}
- 6
- Second item for multiplication
- fa4c9def-0c2a-4b57-beb3-0eb5808c5d64
- B
- SIXTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- 8f4c10af-71d4-4573-9fd9-fd55b1c360a8
- 1
-
6987
-3089
338
20
-
7156
-3079
- Vector {y} component
- a480cd9d-26c8-4bdf-8aae-345290e945da
- Y component
- FIFTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- e3ee9ed7-1080-4a98-9406-a1760d620df4
- 1
-
6987
-3069
338
20
-
7156
-3059
- 1
- 1
- {0}
- 5
- Second item for multiplication
- 06ef9e04-bc97-4227-8e5c-0baf1b521abd
- B
- FIFTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- 3a2cac49-3804-45c3-a1f1-9ae387f633dc
- 1
-
6987
-3049
338
20
-
7156
-3039
- Vector {y} component
- 2eba86c1-c323-4d98-a856-bf3a7dec3965
- Y component
- FOURTH DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- 12d062ca-3afb-41be-a33a-cf0b30d40747
- 1
-
6987
-3029
338
20
-
7156
-3019
- 1
- 1
- {0}
- 4
- Second item for multiplication
- f8a7e30f-9336-45c6-897c-5deca2663077
- B
- FOURTH DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- 4a308d7b-b922-454e-862c-36cb6bf9879c
- 1
-
6987
-3009
338
20
-
7156
-2999
- Vector {y} component
- cf237ad3-6b75-42e7-ba90-9d94c0f0bdbb
- Y component
- THIRD DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- b2df309f-5daa-4345-833e-d910c82a19a1
- 1
-
6987
-2989
338
20
-
7156
-2979
- 1
- 1
- {0}
- 3
- Second item for multiplication
- fd26031c-119d-4d02-99eb-e98e506dbc09
- B
- THIRD DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- b7d3231e-4e24-4334-aeb6-4329747a1277
- 1
-
6987
-2969
338
20
-
7156
-2959
- Vector {y} component
- 1d74ab03-d5a6-4c43-878d-a11593a776e9
- Y component
- SECOND DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- aacf07bb-5a48-481d-b1bd-7337be133f9e
- 1
-
6987
-2949
338
20
-
7156
-2939
- 1
- 1
- {0}
- 2
- Second item for multiplication
- ee03b20d-1501-42ae-a84c-4acca9a161d6
- B
- SECOND DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- 8d5c2ca0-245f-4e3f-af2c-234a7c61b647
- 1
-
6987
-2929
338
20
-
7156
-2919
- Vector {y} component
- 59b0f9d5-da24-461d-9293-4372ce2a132e
- Y component
- FIRST DIFERENCE CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- 2ed8e93d-a8b4-44c0-a86e-99d91d8d6905
- 1
-
6987
-2909
338
20
-
7156
-2899
- 1
- 1
- {0}
- 1
- Second item for multiplication
- 24f7bdca-045b-421d-96c9-07956873e094
- B
- FIRST DIFERENCE CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- 21aeed4b-3362-447a-b26d-c1b13691a4d9
- 1
-
6987
-2889
338
20
-
7156
-2879
- Vector {y} component
- 8d4cc25d-16ee-4372-9b3f-f869c6b8b84f
- Y component
- CUWATURE LINEAR STACK GRAPH HEIGHT
- true
- ff698c9a-fbff-4811-a2fc-7bd7fdb14f0e
- 1
-
6987
-2869
338
20
-
7156
-2859
- 1
- 1
- {0}
- 0
- Second item for multiplication
- 56b13bf3-2c10-429e-8166-e8d6dd530880
- B
- CUWATURE LINEAR STACK GRAPH MAGNITUDE
- true
- 71bb1397-567c-4d75-8665-b4e3269ab3e7
- 1
-
6987
-2849
338
20
-
7156
-2839
- Number of segments
- d4d2a496-55de-4893-aaae-2f5c47e61e5d
- Count
- SEGMENT NUMBER
- true
- f682b0f6-c58d-441c-aad3-7e78ad618eaa
- 1
-
6987
-2829
338
20
-
7156
-2819
- 1
- 1
- {0}
- 10
- Contains a collection of generic curves
- true
- 2edbebac-85ae-4867-9c11-da446ffbc094
- Curve
- CURWE
- true
- 44b95cea-3f46-4b6b-b282-cdac19364d61
- 1
-
6987
-2809
338
20
-
7156
-2799
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 329990e8-083a-43f7-baaa-90fed18836f2
- 2
- Curve
- Curve
- false
- 3d3ed989-8005-4440-b88c-cbb6953144b9
- 1
-
2164
-1805
50
24
-
2197.805
-1793.825
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- 2ffb9bf8-04bb-43ad-870c-27cb8a977834
- Rotate
- Rotate
-
1223
-1003
191
64
-
1350
-971
- Base geometry
- 4679268b-6817-4395-a3c3-a1e4dea43f86
- Geometry
- Geometry
- true
- 14ec1382-b570-4ef8-99b7-e60c8326e39d
- 1
-
1225
-1001
113
20
-
1281.5
-991
- Rotation angle in radians
- 1d3eca4d-22e4-4954-a38d-015b21550e37
- Angle
- Angle
- false
- 0
- false
-
1225
-981
113
20
-
1281.5
-971
- 1
- 1
- {0}
- 3.1415926535897931
- Rotation plane
- 06872847-c633-4277-b62f-e4e890f8f0bc
- Plane
- Plane
- false
- 9a4e5cd1-079f-4046-81ea-caf4fddeeedf
- 1
-
1225
-961
113
20
-
1281.5
-951
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 94d8eb89-7381-426b-b8b1-357c8092b963
- Geometry
- Geometry
- false
- 0
-
1362
-1001
50
30
-
1387
-986
- Transformation data
- 6c3ebb08-bb3b-4305-a5e4-82e1c0d63cd1
- Transform
- Transform
- false
- 0
-
1362
-971
50
30
-
1387
-956
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- true
- b281d2be-84b4-47dc-8ace-27a3ac332b9e
- Join Curves
- Join Curves
-
1286
-1113
116
44
-
1353
-1091
- 1
- Curves to join
- 8e108abf-70eb-4972-8f90-5391e067fb23
- Curves
- Curves
- false
- e4b1f6e7-170d-45df-9791-bbb815ee8035
- 1
-
1288
-1111
53
20
-
1314.5
-1101
- Preserve direction of input curves
- 8c7f6020-76cb-440e-b2fa-92f2505ab7e6
- Preserve
- Preserve
- false
- 0
-
1288
-1091
53
20
-
1314.5
-1081
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- acedbd1c-3467-434c-8006-a0abb17d5c5b
- Curves
- Curves
- false
- 0
-
1365
-1111
35
40
-
1382.5
-1091
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- b25143b9-9232-4aca-8ca0-a057cea222b4
- Merge
- Merge
-
1296
-1067
90
64
-
1341
-1035
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 1e73bf28-e6fb-40d3-a61a-8b33553b4022
- false
- Data 1
- D1
- true
- 14ec1382-b570-4ef8-99b7-e60c8326e39d
- 1
-
1298
-1065
31
20
-
1313.5
-1055
- 2
- Data stream 2
- 41f58047-fef6-4899-9f0c-d87d578dbc4f
- false
- Data 2
- D2
- true
- 94d8eb89-7381-426b-b8b1-357c8092b963
- 1
-
1298
-1045
31
20
-
1313.5
-1035
- 2
- Data stream 3
- 402d0dad-1d72-4358-93ec-b1c6cfbbe701
- false
- Data 3
- D3
- true
- 0
-
1298
-1025
31
20
-
1313.5
-1015
- 2
- Result of merge
- e4b1f6e7-170d-45df-9791-bbb815ee8035
- Result
- Result
- false
- 0
-
1353
-1065
31
60
-
1368.5
-1035
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- c45782da-fece-45d1-903c-95142361b873
- Relay
- false
- f928b4e1-c43f-4b19-8907-59137d64cd77
- 1
-
1380
-104
40
16
-
1400
-96
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- edd9c7a4-8615-499d-a043-ffd807b04ba3
- Panel
- false
- 0
- 0
- 0.51542256311
-
1703
50
112
20
- 0
- 0
- 0
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- O/4^(OO-4)
- true
- f1deee2a-afa6-4f2d-8b08-f72bb2a1a015
- Expression
- Expression
-
1712
155
157
44
-
1785
177
- 2
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- f928ed43-d347-4844-a591-5dceb1e585ae
- Variable O
- O
- true
- 29387d88-3c9a-4bf6-bf27-d341223ee6f9
- 1
-
1714
157
19
20
-
1723.5
167
- Expression variable
- 0abafe6c-cd84-4c72-8432-d40ca0cc172d
- Variable OO
- OO
- true
- 7db51a7e-d0ae-40f1-9f81-e70f2ecefa8f
- 1
-
1714
177
19
20
-
1723.5
187
- Result of expression
- 7ea2aa96-2d9e-44d9-bf1b-90bc86fbf709
- Result
- Result
- false
- 0
-
1836
157
31
40
-
1851.5
177
- 7ab8d289-26a2-4dd4-b4ad-df5b477999d8
- Log N
- Return the N-base logarithm of a number.
- true
- e7b015dd-9f52-47f6-8002-08f897a09deb
- Log N
- Log N
-
1698
263
115
44
-
1768
285
- Value
- 2400f0db-df14-44ad-8e44-4db1eb91aa4b
- Number
- Number
- false
- b05af234-ce5b-432e-8b3f-32a94a964bbf
- 1
-
1700
265
56
20
-
1728
275
- Logarithm base
- 34b0f2e3-4f87-455a-8499-21bab2e5d51c
- Base
- Base
- false
- 0
-
1700
285
56
20
-
1728
295
- 1
- 1
- {0}
- 2
- Result
- 7db51a7e-d0ae-40f1-9f81-e70f2ecefa8f
- Result
- Result
- false
- 0
-
1780
265
31
40
-
1795.5
285
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- 58b84e16-46ab-4bef-af27-b755fa42c6db
- X*2
- Number
- Number
- false
- 87a4cb63-b93f-4b2e-981a-a3a9a624f47e
- 1
-
6902
-2348
50
24
-
6935.181
-2336.249
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- f682b0f6-c58d-441c-aad3-7e78ad618eaa
- X*2+1
- Number
- Number
- false
- 87a4cb63-b93f-4b2e-981a-a3a9a624f47e
- 1
-
6937
-2827
50
24
-
6970.651
-2815.816
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- 87a4cb63-b93f-4b2e-981a-a3a9a624f47e
- Number
- Number
- false
- b05af234-ce5b-432e-8b3f-32a94a964bbf
- 1
-
2114
-1662
50
24
-
2139
-1650
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 09130dc2-bf14-48a3-b968-ca16910a4892
- Digit Scroller
- INCREASE BEND PER SEGMENT
- false
- 0
- 12
- INCREASE BEND PER SEGMENT
- 1
- 0.52264895353
-
1431
-1096
250
20
-
1431.372
-1095.58
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- f85cb8da-bd1b-49bb-8035-385bbb922ec2
- Panel
- false
- 0
- 0
- 16 0.492221738454693386
32 0.507180224586
-
1722
92
194
30
- 0
- 0
- 0
- 1
-
255;255;255;255
- false
- false
- true
- true
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- c85b34d5-5d2b-4638-a09d-3d68379bd5df
- Panel
- false
- 0
- 0
- 0.492221738454693386
-
1455
251
112
20
- 0
- 0
- 0
-
1455.228
251.1919
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- 7f1ff041-dd6a-4f2e-9058-c73e06303a55
- Deconstruct
- Deconstruct
-
749
-179
120
64
-
790
-147
- Input point
- 546b7ad3-e8d4-4bbd-ad50-132350de7ad5
- Point
- Point
- false
- 13781004-33cd-4faf-a5ff-8f57a2815ff8
- 1
-
751
-177
27
60
-
764.5
-147
- Point {x} component
- 7b046e1f-a132-4964-84dd-3c63d46254fa
- X component
- X component
- false
- 0
-
802
-177
65
20
-
834.5
-167
- Point {y} component
- 3132fa1c-9bb8-4ace-8cbf-97b0ed747357
- Y component
- Y component
- false
- 0
-
802
-157
65
20
-
834.5
-147
- Point {z} component
- 96f383ff-1b51-44f6-acfc-f7eedf5764e5
- Z component
- Z component
- false
- 0
-
802
-137
65
20
-
834.5
-127
- d3d195ea-2d59-4ffa-90b1-8b7ff3369f69
- Unit Y
- Unit vector parallel to the world {y} axis.
- true
- 39a8b18d-4ef6-4367-ad26-ab4e89848a2d
- Unit Y
- Unit Y
-
1176
-273
114
28
-
1222
-259
- Unit multiplication
- baa57436-1b77-40bd-8383-08a933dc0acf
- Factor
- Factor
- false
- 06332314-4669-466a-9627-5ee802d91f0f
- 1
-
1178
-271
32
24
-
1194
-259
- 1
- 1
- {0}
- 1
- World {y} vector
- 6cb3a800-b587-4653-acc2-5744ae0cdd07
- Unit vector
- Unit vector
- false
- 0
-
1234
-271
54
24
-
1261
-259
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 606ca8c5-66bd-428f-8cb7-fd6eb00aa1b3
- Evaluate Length
- Evaluate Length
-
1271
-941
149
64
-
1356
-909
- Curve to evaluate
- 1c024430-9c34-4d16-8301-93119a108f0a
- Curve
- Curve
- false
- 14ec1382-b570-4ef8-99b7-e60c8326e39d
- 1
-
1273
-939
71
20
-
1308.5
-929
- Length factor for curve evaluation
- 7500abe9-f2cc-47c8-aa3e-b65a2e09ab78
- Length
- Length
- false
- 0
-
1273
-919
71
20
-
1308.5
-909
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- d486e061-286c-42bc-9138-3989847fb280
- Normalized
- Normalized
- false
- 0
-
1273
-899
71
20
-
1308.5
-889
- 1
- 1
- {0}
- true
- Point at the specified length
- 9a4e5cd1-079f-4046-81ea-caf4fddeeedf
- Point
- Point
- false
- 0
-
1368
-939
50
20
-
1393
-929
- Tangent vector at the specified length
- 34d58739-aac2-406b-928c-b9b6d6a12ce2
- Tangent
- Tangent
- false
- 0
-
1368
-919
50
20
-
1393
-909
- Curve parameter at the specified length
- db69d6e6-0b87-422d-abd7-da897b9067fb
- Parameter
- Parameter
- false
- 0
-
1368
-899
50
20
-
1393
-889
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- f4e55ef7-e921-423d-a4b9-a32406e60f0f
- Rotate
- Rotate
-
1275
-1429
226
81
-
1437
-1388
- Base geometry
- f0991e2a-9a9e-42a0-a3bd-3231d66c8297
- Geometry
- Geometry
- true
- c480a418-7b92-41a4-8e6c-a45c5205253c
- 1
-
1277
-1427
148
20
-
1359
-1417
- Rotation angle in degrees
- 2f555c56-80f7-4ed0-b440-c396bef5c3b1
- Angle
- Angle
- false
- c03c099b-a7c6-4d23-b175-ab5fab635ab4
- 1
- true
-
1277
-1407
148
20
-
1359
-1397
- 1
- 1
- {0}
- 1.5707963267948966
- Rotation plane
- e5b0498c-53e3-4a85-af16-895e00fef36c
- Plane
- Plane
- false
- 0
-
1277
-1387
148
37
-
1359
-1368.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- b58cf43f-a267-47e8-9e9a-1f80643adde8
- Geometry
- Geometry
- false
- 0
-
1449
-1427
50
38
-
1474
-1407.75
- Transformation data
- fb70e5fa-bedf-456b-a274-6740af642011
- Transform
- Transform
- false
- 0
-
1449
-1389
50
39
-
1474
-1369.25
- b464fccb-50e7-41bd-9789-8438db9bea9f
- Angle
- Compute the angle between two vectors.
- true
- 0f531a0c-f65f-4de1-82f9-e765c8b1ce3c
- Angle
- Angle
-
1290
-1341
197
81
-
1426
-1300
- First vector
- 75939b2f-0f4a-4ea1-9ae5-89a2a2c178c3
- Vector A
- Vector A
- false
- 948413de-ddd1-4364-91d2-1aff1940aa31
- 1
-
1292
-1339
122
20
-
1353
-1329
- Second vector
- 7657460d-f1de-4b0f-a801-cc60487e4863
- Vector B
- Vector B
- false
- 0
-
1292
-1319
122
20
-
1353
-1309
- 1
- 1
- {0}
-
1
0
0
- Optional plane for 2D angle
- 8e0214cf-5a1d-4edc-95c8-61d9944f00b5
- Plane
- Plane
- true
- 0
-
1292
-1299
122
37
-
1353
-1280.5
- Angle (in radians) between vectors
- c03c099b-a7c6-4d23-b175-ab5fab635ab4
- -DEG(X)
- Angle
- Angle
- false
- 0
-
1438
-1339
47
38
-
1453.5
-1319.75
- Reflex angle (in radians) between vectors
- a3ef210c-24d5-4e3c-befe-58ae1552ec11
- Reflex
- Reflex
- false
- 0
-
1438
-1301
47
39
-
1453.5
-1281.25
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- b05ed285-f920-4459-87d9-4dcbc561ad6f
- Evaluate Length
- Evaluate Length
-
1328
-1257
149
64
-
1413
-1225
- Curve to evaluate
- 4c4cdfb8-b781-4a19-b6bd-1eb1ae6ca26c
- Curve
- Curve
- false
- c480a418-7b92-41a4-8e6c-a45c5205253c
- 1
-
1330
-1255
71
20
-
1365.5
-1245
- Length factor for curve evaluation
- d1398e04-87cd-40dc-aff8-f9277e343c0a
- Length
- Length
- false
- 0
-
1330
-1235
71
20
-
1365.5
-1225
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- c6ff7eb8-5ed0-4cfa-80b5-1e98b85fb9c7
- Normalized
- Normalized
- false
- 0
-
1330
-1215
71
20
-
1365.5
-1205
- 1
- 1
- {0}
- true
- Point at the specified length
- 599b7afd-dc58-401b-b9c6-a7d163a195a1
- Point
- Point
- false
- 0
-
1425
-1255
50
20
-
1450
-1245
- Tangent vector at the specified length
- 948413de-ddd1-4364-91d2-1aff1940aa31
- Tangent
- Tangent
- false
- 0
-
1425
-1235
50
20
-
1450
-1225
- Curve parameter at the specified length
- 8fb8bb53-380e-4b9f-9038-d66ea2e8d722
- Parameter
- Parameter
- false
- 0
-
1425
-1215
50
20
-
1450
-1205
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- addfb0aa-2359-4428-8ddf-f66d8b9d07a5
- Panel
- X
- false
- 0
- 5a6cef5c-7428-4a9f-b1a0-d2ef28a0e749
- 1
-
852
-379
194
40
- 0
- 0
- 0
-
852.9645
-378.7256
- 1
-
255;255;255;255
- false
- false
- true
- true
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 0e01196e-344a-4efb-b4f6-56abfc1a0ad6
- Panel
- Y
- false
- 0
- 60b392d6-8fb9-4b62-8594-808f81fe6f3b
- 1
-
1072
-60
194
40
- 0
- 0
- 0
-
1072.541
-59.86125
- 1
-
255;255;255;255
- false
- false
- true
- true
- false
- true
- 797d922f-3a1d-46fe-9155-358b009b5997
- One Over X
- Compute one over x.
- true
- 3b61006c-c85c-4ef7-91d4-73045e807f9f
- One Over X
- One Over X
-
1193
-142
88
28
-
1236
-128
- Input value
- c89e8e1f-8b0d-4358-b121-6c8f6e23e90f
- Value
- Value
- false
- 6d3f9f9a-f57e-4854-bee7-99c12bfb0de8
- 1
-
1195
-140
29
24
-
1209.5
-128
- Output value
- f928b4e1-c43f-4b19-8907-59137d64cd77
- Result
- Result
- false
- 0
-
1248
-140
31
24
-
1263.5
-128
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- d59b6b9a-832f-4f1f-8be7-bb55b8fad88c
- Evaluate Length
- Evaluate Length
-
1323
-1607
149
64
-
1408
-1575
- Curve to evaluate
- e70f0f2b-95f9-4040-b5f9-dd6038a76567
- Curve
- Curve
- false
- 65dd17ea-eac5-4ec2-a76c-a6001d9921c7
- 1
-
1325
-1605
71
20
-
1360.5
-1595
- Length factor for curve evaluation
- c0726cdb-cb28-444a-bcdc-c0fe2329460d
- Length
- Length
- false
- 0
-
1325
-1585
71
20
-
1360.5
-1575
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 1d0b6b42-adaf-486d-aaa4-753815696b4c
- Normalized
- Normalized
- false
- 0
-
1325
-1565
71
20
-
1360.5
-1555
- 1
- 1
- {0}
- true
- Point at the specified length
- 13781004-33cd-4faf-a5ff-8f57a2815ff8
- Point
- Point
- false
- 0
-
1420
-1605
50
20
-
1445
-1595
- Tangent vector at the specified length
- 0a50b716-1ac1-44b0-aeeb-eb12b77a1395
- Tangent
- Tangent
- false
- 0
-
1420
-1585
50
20
-
1445
-1575
- Curve parameter at the specified length
- d6987d4f-8bdf-4475-98a4-969438058e83
- Parameter
- Parameter
- false
- 0
-
1420
-1565
50
20
-
1445
-1555
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- 046deea4-16c1-4120-97a8-17ec891df087
- Format
- Format
-
896
-288
130
64
-
988
-256
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- 98738ce1-2291-47b9-bc75-d1080184d438
- Format
- Format
- false
- 0
-
898
-286
78
20
-
937
-276
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 80582564-9be9-4b17-94c4-196f19b00f26
- Culture
- Culture
- false
- 0
-
898
-266
78
20
-
937
-256
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- 4df5a87d-67b7-4aa2-94d7-13c76b1b1b1f
- false
- Data 0
- 0
- true
- 7b046e1f-a132-4964-84dd-3c63d46254fa
- 1
-
898
-246
78
20
-
937
-236
- Formatted text
- 5a6cef5c-7428-4a9f-b1a0-d2ef28a0e749
- Text
- Text
- false
- 0
-
1000
-286
24
60
-
1012
-256
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- b39cf207-0be5-4356-9e3d-1ee3e6c914e4
- Format
- Format
-
1026
-189
130
64
-
1118
-157
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- 7b43e52a-ab05-42f4-9635-af3ed47689bf
- Format
- Format
- false
- 0
-
1028
-187
78
20
-
1067
-177
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- c2722e47-9ff7-47ed-9794-752ba29b8a94
- Culture
- Culture
- false
- 0
-
1028
-167
78
20
-
1067
-157
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- 6be4559e-98d6-4ee5-b041-60f58803e67b
- false
- Data 0
- 0
- true
- f111daf4-75b5-457f-9376-dc544e65bd65
- 1
-
1028
-147
78
20
-
1067
-137
- Formatted text
- 86d1677c-49bf-49da-8fae-553310fdb9b4
- Text
- Text
- false
- 0
-
1130
-187
24
60
-
1142
-157
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- b839537a-ac49-4b48-8198-4108a87b9c93
- Format
- Format
-
896
-96
130
64
-
988
-64
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- a369ea40-a139-42fc-8267-3d8c149e743a
- Format
- Format
- false
- 0
-
898
-94
78
20
-
937
-84
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 4f88ef81-ab66-4ab6-b541-02a886ecc7c2
- Culture
- Culture
- false
- 0
-
898
-74
78
20
-
937
-64
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- 7b5103ea-5b86-427e-a2a3-d8d976bf49f7
- false
- Data 0
- 0
- true
- 3132fa1c-9bb8-4ace-8cbf-97b0ed747357
- 1
-
898
-54
78
20
-
937
-44
- Formatted text
- 60b392d6-8fb9-4b62-8594-808f81fe6f3b
- Text
- Text
- false
- 0
-
1000
-94
24
60
-
1012
-64
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- dcf4fd04-6bea-4087-bb14-e58892057212
- Division
- Division
-
910
-179
70
44
-
935
-157
- Item to divide (dividend)
- f61db63a-17ae-4265-9cd9-e7c9bc24b0c3
- A
- A
- false
- 7b046e1f-a132-4964-84dd-3c63d46254fa
- 1
-
912
-177
11
20
-
917.5
-167
- Item to divide with (divisor)
- 19e5bc8f-7ab9-4b68-9a46-07305ba27e64
- B
- B
- false
- 3132fa1c-9bb8-4ace-8cbf-97b0ed747357
- 1
-
912
-157
11
20
-
917.5
-147
- The result of the Division
- f111daf4-75b5-457f-9376-dc544e65bd65
- Result
- Result
- false
- 0
-
947
-177
31
40
-
962.5
-157
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- edb18e5e-d55d-485a-98ff-c5c5639c5761
- Panel
- X/Y
- false
- 0
- 86d1677c-49bf-49da-8fae-553310fdb9b4
- 1
-
1400
96
97
40
- 0
- 0
- 0
-
1400.306
96.41949
- 1
-
255;255;255;255
- false
- false
- true
- true
- false
- true
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 78309d6b-b193-47b1-808d-be817299073c
- Digit Scroller
- INCREASE BEND PER SEGMENT
- false
- 0
- 12
- INCREASE BEND PER SEGMENT
- 1
- 0.77246531995
-
1270
58
250
20
-
1270.93
58.32095
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 2ffb9bf8-04bb-43ad-870c-27cb8a977834
- b281d2be-84b4-47dc-8ace-27a3ac332b9e
- b25143b9-9232-4aca-8ca0-a057cea222b4
- 606ca8c5-66bd-428f-8cb7-fd6eb00aa1b3
- 14ec1382-b570-4ef8-99b7-e60c8326e39d
- 9e6f10a3-bd36-4964-aad1-24a4ce2b7179
- 6
- fbe0ec2d-15dc-432f-8456-cebcbccffd3e
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- f4e55ef7-e921-423d-a4b9-a32406e60f0f
- 0f531a0c-f65f-4de1-82f9-e765c8b1ce3c
- b05ed285-f920-4459-87d9-4dcbc561ad6f
- c480a418-7b92-41a4-8e6c-a45c5205253c
- 04c74da6-9a7f-43a4-9219-a0080f87dff0
- 5
- 985e3e1d-42b8-4c5b-a7de-d49ab6853df8
- Group
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- f601c683-1f7c-4ae0-b011-4d536c07718c
- Panel
- false
- 0
- 0
- 0.87246531994281165
-
1178
68
112
55
- 0
- 0
- 0
-
1178.065
68.78601
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- e260ab68-7da2-413f-838e-44a5912eea1f
- Panel
- false
- 0
- 0
- 12 0.77246531994281165
-
1154
157
122
55
- 0
- 0
- 0
-
1154.766
157.1919
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- b6d7ba20-cf74-4191-a756-2216a36e30a7
- Rotate
- Rotate a vector around an axis.
- true
- e29e6418-8c00-4d8a-a673-6b82912c1156
- true
- Rotate
- Rotate
-
-959
1598
130
64
-
-876
1630
- Vector to rotate
- 1d7a5b02-7337-4f5d-8e48-61731e90f2e9
- true
- Vector
- Vector
- false
- bbc158b1-5993-4244-a6ab-15cd26cd8ba5
- 1
-
-957
1600
69
20
-
-904.5
1610
- Rotation axis
- ffa8554c-3cac-40a0-87ab-727954436cf7
- true
- Axis
- Axis
- false
- fd189997-da6e-423b-a2f3-32bf46b50f4c
- 1
-
-957
1620
69
20
-
-904.5
1630
- Rotation angle (in radians)
- e08d290e-0cc4-4895-a371-a8fdcb9894d2
- -X
- true
- Angle
- Angle
- false
- true
- 9e3dcfde-ca63-4d17-81a7-8769a95d0489
- 1
- false
-
-957
1640
69
20
-
-904.5
1650
- Rotated vector
- 8f8fd733-f8a3-4d1a-a02a-3b9b52c174ca
- true
- Vector
- Vector
- false
- 0
-
-864
1600
33
60
-
-847.5
1630
- 9103c240-a6a9-4223-9b42-dbd19bf38e2b
- Unit Z
- Unit vector parallel to the world {z} axis.
- true
- 43ddac0e-8b67-4d25-a887-8bcb29fec5b8
- true
- Unit Z
- Unit Z
-
-1357
1518
114
28
-
-1311
1532
- Unit multiplication
- 8dab20e7-5608-4037-8a56-fd20812f4fc1
- true
- Factor
- Factor
- false
- c45782da-fece-45d1-903c-95142361b873
- 1
-
-1355
1520
32
24
-
-1339
1532
- 1
- 1
- {0}
- 1
- World {z} vector
- fd189997-da6e-423b-a2f3-32bf46b50f4c
- true
- Unit vector
- Unit vector
- false
- 0
-
-1299
1520
54
24
-
-1272
1532
- d3d195ea-2d59-4ffa-90b1-8b7ff3369f69
- Unit Y
- Unit vector parallel to the world {y} axis.
- true
- 5c8fa90a-3389-424e-bf36-0a2c9a14d20d
- true
- Unit Y
- Unit Y
-
-1201
1596
114
28
-
-1155
1610
- Unit multiplication
- 260b1a04-4c5c-4667-a9be-c653aad301d8
- true
- Factor
- Factor
- false
- 5816c66f-aeed-4e62-b892-f2c6fca3acff
- 1
-
-1199
1598
32
24
-
-1183
1610
- 1
- 1
- {0}
- 1
- World {y} vector
- bbc158b1-5993-4244-a6ab-15cd26cd8ba5
- true
- Unit vector
- Unit vector
- false
- 0
-
-1143
1598
54
24
-
-1116
1610
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 491447e2-4a6b-4439-a17a-c0a2528511ae
- true
- Interpolate
- Interpolate
-
-1257
1149
225
84
-
-1084
1191
- 1
- Interpolation points
- 2ce12550-db2e-4e15-a0d3-1d3dba4942bc
- true
- Vertices
- Vertices
- false
- d04d5c59-a074-4422-8ecf-43916a301521
- 1
-
-1255
1151
159
20
-
-1175.5
1161
- Curve degree
- 9ada358b-89bb-4753-a235-1b09833bce7b
- true
- Degree
- Degree
- false
- 0
-
-1255
1171
159
20
-
-1175.5
1181
- 1
- 1
- {0}
- 5
- Periodic curve
- dc2afda7-6e88-4302-9fac-0f570ec25bfc
- true
- Periodic
- Periodic
- false
- 0
-
-1255
1191
159
20
-
-1175.5
1201
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 31741437-8132-4b0a-ae6f-9e5085f4e6ee
- true
- KnotStyle
- KnotStyle
- false
- 0
-
-1255
1211
159
20
-
-1175.5
1221
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- a3efb7e5-318e-42c1-af7a-aaa9278633a7
- true
- Curve
- Curve
- false
- 0
-
-1072
1151
38
26
-
-1053
1164.333
- Curve length
- 442bf00d-f17c-4381-8496-77dab3170e5a
- true
- Length
- Length
- false
- 0
-
-1072
1177
38
27
-
-1053
1191
- Curve domain
- 4ed1956c-fc24-4e90-819b-3b288354c862
- true
- Domain
- Domain
- false
- 0
-
-1072
1204
38
27
-
-1053
1217.667
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- a29fb8dc-e0e5-43ed-a405-11f92ea9db21
- true
- Relay
- false
- 9b91a053-e282-461d-bd47-a2b750c543c4
- 1
-
-1172
1390
40
16
-
-1152
1398
- e2039b07-d3f3-40f8-af88-d74fed238727
- Insert Items
- Insert a collection of items into a list.
- true
- 23f5268a-379b-40bf-9256-9a9464b08d97
- true
- Insert Items
- Insert Items
-
-1228
1285
116
84
-
-1145
1327
- 1
- List to modify
- 64a80fd2-7d4d-4954-bca3-f93fa97e6db5
- true
- List
- List
- false
- a29fb8dc-e0e5-43ed-a405-11f92ea9db21
- 1
-
-1226
1287
69
20
-
-1191.5
1297
- 1
- Items to insert. If no items are supplied, nulls will be inserted.
- 4bb43bf3-e12e-4263-b939-300388bcd733
- true
- Item
- Item
- true
- 0
-
-1226
1307
69
20
-
-1191.5
1317
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- {0,0,0}
- 1
- Insertion index for each item
- d132512c-df0e-4cea-adf6-64adc66785ef
- true
- Indices
- Indices
- false
- 0
-
-1226
1327
69
20
-
-1191.5
1337
- 1
- 1
- {0}
- 0
- If true, indices will be wrapped
- 19cdb848-7b1b-45ad-9cbb-9962ae417d81
- true
- Wrap
- Wrap
- false
- 0
-
-1226
1347
69
20
-
-1191.5
1357
- 1
- 1
- {0}
- false
- 1
- List with inserted values
- 46348972-5a47-4f96-ac33-83a9684d9844
- true
- List
- List
- false
- 0
-
-1133
1287
19
80
-
-1123.5
1327
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- d04d5c59-a074-4422-8ecf-43916a301521
- true
- Relay
- ⊙☉⊙
- false
- 46348972-5a47-4f96-ac33-83a9684d9844
- 1
-
-1174
1252
44
16
-
-1152
1260
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
-
7VsJdBNlHp+2aZqjh1AVUJDR4nqwFnTxKbJgk6ZHaNPGFhAEH50m03YgycRkUuSy5UFBKiBdLD0ALT6oINUqlCqHEt3isiuLZQEBRXvo4sqxsquuuKt0v2/mm7RzJC00tfCw7yWd+f+/8/c/v/9MVAba4rGTDqYD/IVgGKYAn2inzZNPOWYWki43RTsgywzIkA3/ImATvl8qSVhJF2wSjtganmU0QLIakMZcOjtytZdIqP/3oYZTmoq5EWYXWUiRcyBfA/jK7AIwijUGkU2ku2DSXCcJ2WFo4ijEy6BddsIGOSMAdePGjR18r2zSRloY0srzKIrquNFA5lEOigG7MLtoJ+liKNLNDws/CgPBsPOowM2ONntp2bJPVVoD6ba4KCeDNg+XiCkyCDvJ350Pm5qaEh/fvrPqzIvLwXd7RT34bqt4s62igb1gbxs2w++yVez36raycl/L5soMeL1mCRxhLezSvn6T77rthTVtL5T7mrVVbPWNxjXjBjlTsQPSqxYJpub7oiUh7lbh8jZ0zltazTZeEei6+lXfgOgbUQL2Yq/RjtgZuyxgq29taJ38sjvbsFxuj2hSdu8IVXYEhA/fV4okhzBCm5uIFwSSCxpNID4ELyvZ+PiU1KnqLKBh0BTcvJnAvyiemkh7OAMK400AKNssoIxIf0IRWTmJcOWTbMvbwG39zx0dC0AXxRM0bectaEb0jY+GTwHqLJhKDSmSadRZFmc6MZf2MF3balJctMcpaTyg0xQyc+HifBPEgI+Wowl6QbqSo8MBQpElKlImd1r27aEl0+/a+XHaityvdQV/dfxXYCVRJsLtxnVWKzurOpF2MATl6PQW0NfI2drdZtKVB+wct8P+BOqP03k4gdsoNwOvKIa0u5WplNVKOviNhEQaHW6GcFjIFA9l5ZeYde8QY4GCTFrvTDrqHdR6JMASVRmUZbZ/tkbHMC4q18NwPsQnVj1AzcqS4uB9zmEDlpDWhGH/0WPYaH24mSqkWVCHQ27xxwbMm9SkdRIuwj6Tcjg9LLoqhK5SZ7GQbp+PCvED0XAj7IgXEjYP6cYBWEKs4mWRaD+uO765/s7MNfUzZu2fe/BbARLh7IgSBBA5k52dc7ysoimzaY/LQrJqCHX5zImwPQ+8ZiyuLZt3TrewVsuxBfoE+/UQwhoAoXcigPCEDsNwMYTmIyyEkRyEQP0RhsoAgA3KIt0eG6s6AqRkgcoZyZiXPTw5bePDpkcpe4FHAJSSG0mCFE+XQCWHBdZzLLATCItngTrV6ERYJJwCypYqxALOGnF5+jQoHdkVGIehCBvuYjfjloUnY8DzCysOz0xtNHy07WVLcaUAnhgzGoGDwy3BSdKgTwBLCghYYhNybCH+HNv9m7L2T6/fmrxlU8yH7z/z/VqhrbAuVujQhvCA62kXyoj4JEOZSNvAjvjEBP6Xk8FtOjwfjgvFkOICSlpAO0HKgtOcuw41Gnhr2/v9yJ/+kntj8luN4y/u1Jy/AbBCEKvi2WP3LnQcNe3539jVD936kA6wQv3YKGCFIdaEphGF65406JYe/PKBhyfc/yVgKRDrnainNR+UJOpWRZfeY8kebgCscMQSe1bAUiLWV3t/GHjg9Cjdcuv3UWWmk07AikCs4bHjl6hm70wuqc2d/zMW2w5YKn7xT72+H1/vyax5Y8ePKe+9qgYsNWINxMdNyK4rz3zh3S+KJsfEXQIsDd9rfcffqFtWJ1RvemyxjigsBSwtYkVuqco4dPiCvuaH7xQjT6xsAKxIxBpf/fzYoqPbU98ZM6ShapR1GmBFIdbce8pLKuM6THsXTGEWlI35CbCiEWvI19/dd+HgtIw/ZH6DPzPkk2GAFYNYiw8NO3XAHJ/2zp4Nm1KGzhgKWDcg1ruvT45vHFOSsmr2cXvdxI7lgDUAsSz3XYiek16fVmp4Lun8ix3vqYyGmQLFHwi3IWeF8zNObVA8cbN+2xuxRUZs/lYZDZXYntiEMN6EOGsI9WcNeH5c47Mrl+vX/LEuverHXfOFc2WRNmKu0Br8hLNQP+4nVofPoVwk8DpgJKTwspsW67DMQqSb7jZ6iaXay+iFHQcOKKoJRi4Q78UOqPgk4Gp5BxR21UMu9g3BgXxpS+GjxPRLaSUt2q8ysyLWBQHy1rpAkLdu4yFX+IO8pmyl59zEiylrn7rZXV362yeFYT8ZnjwZaRbrD+CHuA64m7aTuJVgCNzjphz5uNNGWMgC2gaCBEhDHFaYvYF2DOQxRH7PklqxY5NbqjRD4eiXkcYW3wEgDU0ECIpzsFYQRotvaYoyw7yDZEgXOEgTkAsjAERYwyaOAnnCTwRLNlp5Pcgo+XxC9p/OJiz5sKFY9a/Mozyfj2eLH99Y9IlzRmqlt6bqdOWKCTyfD2rTrAdWhexTG3b/c5ApamRsszaTTYEkeqTi6P4n5tbLbodFI4BktZPIpxkkNlnpTLVhyTVYdsbuUQ9+dfD9EecuRzpBT4dgLo1BOa6XS4fgcaR4eFO0GdZ63AzpYHhBhiDkwiVYKvUusOMCrIsdSRspzARTwO8tbP7ohQojOLLxfdh9OTw220w32IMjv9NNdN6z/mX+6EeyFnaRTUg3shmY3GlNFpBeelykrIiafw7dvP3t8PTKO1LjqD175wlEFJHI9ZTIyMfoEyENCyikW35RIfHVBEV6IucgYZcin12zsoDj8lFHThZ3wFXiDI1TDjfpYnDgDMEUAgcoK5tP98dOWFG/LWPfka3MK+cWlEeYPAyRayN9YAvtiZ1ltERWIaMlUgrp+1MrNjigEG9qQg5K4Gj8ARiNlJm04gxwObJg7Vt304ppSybpq14r/fuxhTHHBNgooKeSIMNRg63COZ8jP+MFZ3anJF60sCqMQjAfNyUh+LEvWjIjbIdSXtr1bmhR4+1LBbvRZBdQeQwOj6rSMBzuB8NbM/Py3CRQPpuNKxoBbUR1pPgehVrxAcjfkiQwd+H1EEL8qAEkIQDCV/UyIbfmE8Bd2dvKURR70gdG6Yarkz/f5647P72V0r+cHodPTftMmFwoZPfKUbtL+sSFg17aWw6AKwfCNVjO3rzA3vDVArj4woi/4BHJSYxmNUYWmim1LS/FXoqduOPBjlvrXjy7S5gMs92lJTSO3B044kNiEMBpXRUIHKBL/RFRlA6PPbezQMLqaRcZhWLdJF+PuwgnKnzKiije883e+9bWJW7+YNHpcR7bY0Lthb2l2stSg+4QoXquCKiez/WLBCJyadpGEj6/h0kqqZdZPeTsBkQp6FVlhSI+7l25S+mlUPBTyGdUykUp82esWaAoxauhJEpVv906bdmXF4273965+83ZbelCL2AmHKRNGKDUART6bh3uhD3YKr7F42ZoO+6gwTbYwyGM+4G0XVz8kllKT07n2myLi7bZsghAh0Ql1vkn8lPihMOfn1JNBkkfzDT4ae800B6QxeEWG1gPjECklWLQ3i0ALWAC7cW1IjnyT5XFckxoBvnEOCDHWHA6fVmvMRGufMqRTuYJlELLkbOo/ALhkzOOPol2dqUKleFQRrNhS+64phgWROHj4wh+VXKVXRcxx+iwUhbS94QtRA2J0C67kEzgKEHZgIb4SJHZTtJCEbZE2trZF8DPuEjC7rtnnZWvD1JVPqpdzaoqLvz2vaq+UhtydF6x1/jWWMPJC+NUh/tHVXOgqm7pS1VNntVsODlvy7Whqip/qnoNld/ETyP6qPzmnRWo/ObN/bX8JiudoUWDp7+uNSYt2ZugvvRM3PB+L78lzApUFPDmX3/ltzONpxrH1x8xlTg6fmzJeu/Oq6D8lkAGFFLudVN+GxqRtnvoCKtpV5UhR7XBMqbPym9BLgewQswJKMQng15+G2z+xwL1uMakutWr1p59fltmv5bfWD/jt/wGVBiFYD7Hu5ZDsPgNgz4Kwdj6QCEYq/w1BMtKR6N+qt1gr9I3PO44+MNvmj/v9xDsXRewLl99/YVgz10tO+45U59afnzQ+ZE/jaq9GkJwVSAhAWO7XkLwaUeNeeyfv51Yfdbzu98vHjanz0JwkF/DYC1tbUBLKw96CBaf8vs1BLN+xm8IBiqMQrAGu/oLNuLX8fq+YCPOpvqvYNO6qC8LNhfpZkPL8UXXRsFG609Vb25faRj4yEeJGx/8Yl/9gTmGbl9RU6NRBiSyqij3MxsNxxKoVDSiiVWtV6+1id/5u8LX2nroMnwPv0Sq5j0GnEJ4E3QX0G0gxCP9IX6pZPum2HiFvnHG4Opap2lzt4hrriLExS/IBudFQvHriT2MYIEEkrBdLJCoKzMB9rHYL24C3T/FFj9q7s1T7CAYQMIyMd7RV2QA6BcYv7gFXNZvS8QvfPfutyUiYxD/cCUIxoBN8Qnn/w==
- true
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAZdJREFUSEvV1M8rBGEcx/GHJL8ixYHdcnBwcuBgExYnF6Tk4K4cXJjZuLg4uOxhy4+U5Cgl+QMUSXIQ/gMkSn4lF1La8f7uzjbraWaatRx86nWYp5nnM/PMPKP+S5px7aIWeacMa7Bc1CFQejGqacUArnCIvAr2oF98i3N0oQDFLgKlHA/QCz4RRw0qMexCls83IZziCAtIZBmzx56wAf0GRAM8E4Esw0zqyDthbMKzoBRvmg+8YBBBUo8VLGmqkVont/ZZ/ErkCV4173iEbKAgKYQ8ha4InpFv/R5tqSP/yHtwW4UW+KYfd+iGLGW2zHcuN3CCHxVI+vAM/eJdrOIGJmTTnWma4CSppsNJZUbTYo32sGQdeoG8p2VUIFiSyohZyrQEJYv2sGQeF5pjyA6fQxUmXXz/F/kUeEV2+hYuoT+h6GBSM5JUU+NpxrZTYOxnxi1ldHKyX0bgVWDEM5N64SZkl/qlBPJL0YV+q8A7fC3tlEzYdpyJjQNn3Izap+cXJsv1JeeWPy9g4h5KEoIlGrKH84hSX+x+CmKBvnCmAAAAAElFTkSuQmCC
- 6a9d7808-9366-4f1e-a23b-bac869ea06e7
- true
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
- true
- 4
- 262462a3-9bd4-4c05-8b83-46ecd6dc79fc
- 7d623191-84ed-4dd2-a1a2-b1e024737557
- 85d6359a-11fa-42c9-a75c-0e1ce9fb14fd
- 9b91a053-e282-461d-bd47-a2b750c543c4
- 2e55aebe-34b6-4785-8e6b-d76dac4aff89
- 0ef02d63-4c77-4baf-8a44-8b45ed9effc1
- 2df4e919-ccf0-4e59-924f-ef207e19da1d
- dc1dce83-50c8-4b2e-bdbb-9da4471c5c1c
-
-1177
1425
49
44
-
-1148
1447
- 2
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- 2
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Shift offset
- 262462a3-9bd4-4c05-8b83-46ecd6dc79fc
- true
- Shift
- true
- 0
-
-1175
1427
15
20
-
-1167.5
1437
- 1
- 1
- {0}
- 1
- 2
- A wire relay object
- 85d6359a-11fa-42c9-a75c-0e1ce9fb14fd
- true
- Relay
- true
- 8f8fd733-f8a3-4d1a-a02a-3b9b52c174ca
- 1
-
-1175
1447
15
20
-
-1167.5
1457
- 2
- A wire relay object
- 9b91a053-e282-461d-bd47-a2b750c543c4
- true
- Relay
- false
- 0
-
-1136
1427
6
20
-
-1133
1437
- Result of mass addition
- 7d623191-84ed-4dd2-a1a2-b1e024737557
- true
- Result
- false
- 0
-
-1136
1447
6
20
-
-1133
1457
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- df08b906-e214-4329-a753-6683da349b64
- true
- Series
- Series
-
-1126
1788
106
64
-
-1065
1820
- First number in the series
- 821ddc44-a3c2-45c2-b962-c25e74cd0e2d
- true
- Start
- Start
- false
- 0
-
-1124
1790
47
20
-
-1100.5
1800
- 1
- 1
- {0}
- 0
- Step size for each successive number
- 2ad3b0f3-7d93-4dde-b755-eafe469ae331
- true
- Step
- Step
- false
- c3af5d23-c43f-4376-b656-adfc6959ad5f
- 1
-
-1124
1810
47
20
-
-1100.5
1820
- 1
- 1
- {0}
- 1
- Number of values in the series
- 405dd7db-8581-4869-a26c-ee66edb4381c
- true
- Count
- Count
- false
- 0a6c3e13-79eb-46b8-85b5-d89f6ac29e25
- 1
-
-1124
1830
47
20
-
-1100.5
1840
- 1
- 1
- {0}
- 10
- 1
- Series of numbers
- 9e3dcfde-ca63-4d17-81a7-8769a95d0489
- true
- Series
- Series
- false
- 0
-
-1053
1790
31
60
-
-1037.5
1820
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- a74498e1-111a-4102-95c6-efdd2cc07458
- true
- Series
- Series
-
-1177
1695
106
64
-
-1116
1727
- First number in the series
- 647ff5fe-acd5-4493-875a-321427a5c75c
- true
- Start
- Start
- false
- 0
-
-1175
1697
47
20
-
-1151.5
1707
- 1
- 1
- {0}
- 0
- Step size for each successive number
- f4d2a5a6-a28e-46f7-949f-5c8d663c494a
- true
- Step
- Step
- false
- c3af5d23-c43f-4376-b656-adfc6959ad5f
- 1
-
-1175
1717
47
20
-
-1151.5
1727
- 1
- 1
- {0}
- 1
- Number of values in the series
- 4f091ad6-c79f-4fb6-84c5-fa7c320b7fe6
- true
- Count
- Count
- false
- b5e8ba51-1f5f-453f-b4d3-f2e760598a98
- 1
-
-1175
1737
47
20
-
-1151.5
1747
- 1
- 1
- {0}
- 10
- 1
- Series of numbers
- 5816c66f-aeed-4e62-b892-f2c6fca3acff
- true
- Series
- Series
- false
- 0
-
-1104
1697
31
60
-
-1088.5
1727
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- c3af5d23-c43f-4376-b656-adfc6959ad5f
- true
- Digit Scroller
- SEMENT LENGTH
- false
- 0
- 12
- SEMENT LENGTH
- 2
- 0.0737955968
-
-1466
1704
250
20
-
-1465.599
1704.75
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 0f7363db-148a-4609-a72d-c5acb1f943fe
- true
- Digit Scroller
- INCREASE BEND PER SEGMENT
- false
- 0
- 12
- INCREASE BEND PER SEGMENT
- 2
- 5.0000000000
-
-1477
1829
250
20
-
-1476.037
1829.699
- 797d922f-3a1d-46fe-9155-358b009b5997
- One Over X
- Compute one over x.
- true
- 011d3286-03b6-44b7-9ae4-53dfff04b332
- true
- One Over X
- One Over X
-
-1227
1646
88
28
-
-1184
1660
- Input value
- 60b9c45b-e421-480f-8ba9-7deceeb66478
- true
- Value
- Value
- false
- 5816c66f-aeed-4e62-b892-f2c6fca3acff
- 1
-
-1225
1648
29
24
-
-1210.5
1660
- Output value
- b26ece8f-4077-4fc2-82a6-beee4ac7074a
- true
- Result
- Result
- false
- 0
-
-1172
1648
31
24
-
-1156.5
1660
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- 9cd5fd34-0805-4140-a0c9-c2cb98930ef7
- true
- Point
- Point
- false
- 46348972-5a47-4f96-ac33-83a9684d9844
- 1
-
-1075
1272
50
24
-
-1050.309
1284.709
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- 10f9fcbf-f996-4afe-a932-1eeeeb7e92ba
- Point
- Point
- false
- 0bc3ce43-0665-4ef5-8cf4-236fdf0a40b3
- 1
-
1483
-396
50
24
-
1508.849
-384.0226
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
- Mathematical addition
- true
- 35344ecf-85c0-420e-b2f1-2273471c2264
- true
- Addition
- Addition
-
-1339
1881
70
44
-
-1314
1903
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for addition
- 2b0690ca-ce6b-476a-a3dc-a795f76a6e02
- true
- A
- A
- true
- 995d2e59-4c86-49c8-8672-754d9bba0381
- 1
-
-1337
1883
11
20
-
-1331.5
1893
- Second item for addition
- e12b0f1b-5353-48d2-8d27-40586d9d152c
- true
- B
- B
- true
- 8e2ebd88-e76e-48af-ae19-5bc8b4ff040a
- 1
-
-1337
1903
11
20
-
-1331.5
1913
- Result of addition
- 0a6c3e13-79eb-46b8-85b5-d89f6ac29e25
- true
- Result
- Result
- false
- 0
-
-1302
1883
31
40
-
-1286.5
1903
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 995d2e59-4c86-49c8-8672-754d9bba0381
- true
- Relay
- false
- b5e8ba51-1f5f-453f-b4d3-f2e760598a98
- 1
-
-1538
1792
40
16
-
-1518
1800
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 8e2ebd88-e76e-48af-ae19-5bc8b4ff040a
- true
- Digit Scroller
-
- false
- 0
- 12
-
- 11
- 5.0
-
-1590
2012
250
20
-
-1589.876
2012.188
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 14ec1382-b570-4ef8-99b7-e60c8326e39d
- Relay
- false
- 8839b1ee-a905-40a7-ad7e-621a91f28769
- 1
-
1338
-859
40
16
-
1358
-851
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 9e6f10a3-bd36-4964-aad1-24a4ce2b7179
- Relay
- false
- acedbd1c-3467-434c-8006-a0abb17d5c5b
- 1
-
1333
-1132
40
16
-
1353
-1124
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- 93f455b9-5a4d-43c3-955b-8cf8199e223c
- true
- Rotate
- Rotate
-
-1200
955
191
64
-
-1073
987
- Base geometry
- f237688c-e66f-4dd2-996b-f0bf1fcfc017
- true
- Geometry
- Geometry
- true
- 07e4584d-bf54-436b-9e53-5c8d193069b5
- 1
-
-1198
957
113
20
-
-1141.5
967
- Rotation angle in radians
- a5e0af2d-2873-4e44-ab84-1429acb4cc6c
- true
- Angle
- Angle
- false
- 0
- false
-
-1198
977
113
20
-
-1141.5
987
- 1
- 1
- {0}
- 3.1415926535897931
- Rotation plane
- c5705502-81ad-4254-96c4-8862886a176f
- true
- Plane
- Plane
- false
- cccd0e8c-ef92-4894-ae17-a7c1ca5d4de6
- 1
-
-1198
997
113
20
-
-1141.5
1007
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 231863cc-a65f-4b96-b5bb-7df4c01658ea
- true
- Geometry
- Geometry
- false
- 0
-
-1061
957
50
30
-
-1036
972
- Transformation data
- c83e5253-e445-4252-94c0-c0827a1ef861
- true
- Transform
- Transform
- false
- 0
-
-1061
987
50
30
-
-1036
1002
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- true
- a01bc16e-e45d-4bde-ac2e-85fe116976c2
- true
- Join Curves
- Join Curves
-
-1137
845
116
44
-
-1070
867
- 1
- Curves to join
- b2fc37ee-72d9-458a-a827-4cd005fa9e4f
- true
- Curves
- Curves
- false
- bd0b7a3a-3479-442e-a24e-31364299e45f
- 1
-
-1135
847
53
20
-
-1108.5
857
- Preserve direction of input curves
- aec142ef-6116-4e64-96aa-effc9b0ba3e0
- true
- Preserve
- Preserve
- false
- 0
-
-1135
867
53
20
-
-1108.5
877
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- 10ca2987-87e1-4356-8936-f744cbe088f0
- true
- Curves
- Curves
- false
- 0
-
-1058
847
35
40
-
-1040.5
867
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- 3389a26f-281f-41e0-aad7-9420e09ce80e
- true
- Merge
- Merge
-
-1127
891
90
64
-
-1082
923
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 8d956783-f3d0-4531-bc78-f44cda2d1c22
- true
- false
- Data 1
- D1
- true
- 07e4584d-bf54-436b-9e53-5c8d193069b5
- 1
-
-1125
893
31
20
-
-1109.5
903
- 2
- Data stream 2
- a37a2534-a862-4211-a4c2-13bea8745568
- true
- false
- Data 2
- D2
- true
- 231863cc-a65f-4b96-b5bb-7df4c01658ea
- 1
-
-1125
913
31
20
-
-1109.5
923
- 2
- Data stream 3
- 15493808-170d-456a-b241-01afa650776a
- true
- false
- Data 3
- D3
- true
- 0
-
-1125
933
31
20
-
-1109.5
943
- 2
- Result of merge
- bd0b7a3a-3479-442e-a24e-31364299e45f
- true
- Result
- Result
- false
- 0
-
-1070
893
31
60
-
-1054.5
923
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- d5cd1560-e326-43d4-a027-3737cc7e91d9
- true
- Evaluate Length
- Evaluate Length
-
-1156
1020
149
64
-
-1071
1052
- Curve to evaluate
- 308e22e3-b866-4671-a284-46e207deff05
- true
- Curve
- Curve
- false
- 07e4584d-bf54-436b-9e53-5c8d193069b5
- 1
-
-1154
1022
71
20
-
-1118.5
1032
- Length factor for curve evaluation
- 07c43a38-4676-477b-a734-e199179909f5
- true
- Length
- Length
- false
- 0
-
-1154
1042
71
20
-
-1118.5
1052
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- fba23678-1aa6-4ff0-be4f-d38476d1fc36
- true
- Normalized
- Normalized
- false
- 0
-
-1154
1062
71
20
-
-1118.5
1072
- 1
- 1
- {0}
- true
- Point at the specified length
- cccd0e8c-ef92-4894-ae17-a7c1ca5d4de6
- true
- Point
- Point
- false
- 0
-
-1059
1022
50
20
-
-1034
1032
- Tangent vector at the specified length
- f4d6df6b-fa14-4d45-a67a-41287c44d03f
- true
- Tangent
- Tangent
- false
- 0
-
-1059
1042
50
20
-
-1034
1052
- Curve parameter at the specified length
- 98977d38-82e4-4b8f-86fd-31ca3a57a4af
- true
- Parameter
- Parameter
- false
- 0
-
-1059
1062
50
20
-
-1034
1072
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 93f455b9-5a4d-43c3-955b-8cf8199e223c
- a01bc16e-e45d-4bde-ac2e-85fe116976c2
- 3389a26f-281f-41e0-aad7-9420e09ce80e
- d5cd1560-e326-43d4-a027-3737cc7e91d9
- 07e4584d-bf54-436b-9e53-5c8d193069b5
- c6fbfaf9-9698-4664-85d0-95e0f769b52d
- 6
- 4f01a11b-b73a-4338-95ce-a49704fea478
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 07e4584d-bf54-436b-9e53-5c8d193069b5
- true
- Relay
- false
- a3efb7e5-318e-42c1-af7a-aaa9278633a7
- 1
-
-1087
1085
40
16
-
-1067
1093
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- c6fbfaf9-9698-4664-85d0-95e0f769b52d
- true
- Relay
- false
- 10ca2987-87e1-4356-8936-f744cbe088f0
- 1
-
-1090
826
40
16
-
-1070
834
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- c480a418-7b92-41a4-8e6c-a45c5205253c
- Relay
- false
- 9e6f10a3-bd36-4964-aad1-24a4ce2b7179
- 1
-
1415
-1158
40
16
-
1435
-1150
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 04c74da6-9a7f-43a4-9219-a0080f87dff0
- Relay
- false
- b58cf43f-a267-47e8-9e9a-1f80643adde8
- 1
-
1530
-1453
40
16
-
1550
-1445
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 8839b1ee-a905-40a7-ad7e-621a91f28769
- Relay
- false
- de4cd356-ac2d-465c-8792-ed49b1a320ab
- 1
-
1529
-830
40
16
-
1549
-822
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- 43d80855-3637-40f4-9fdc-746fda48a777
- Deconstruct
- Deconstruct
-
1329
-1699
120
64
-
1370
-1667
- Input point
- edc37744-dde3-4c81-b038-39e1fa1d2347
- Point
- Point
- false
- 13781004-33cd-4faf-a5ff-8f57a2815ff8
- 1
-
1331
-1697
27
60
-
1344.5
-1667
- Point {x} component
- 3eeee9f3-4d5d-4d38-af75-0b43cdc25b05
- X component
- X component
- false
- 0
-
1382
-1697
65
20
-
1414.5
-1687
- Point {y} component
- 04b421f3-5fa0-4719-ba9f-a540d38ce422
- Y component
- Y component
- false
- 0
-
1382
-1677
65
20
-
1414.5
-1667
- Point {z} component
- 0bdcf854-db9f-46dc-8656-341dfa324da6
- Z component
- Z component
- false
- 0
-
1382
-1657
65
20
-
1414.5
-1647
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 65dd17ea-eac5-4ec2-a76c-a6001d9921c7
- Relay
- false
- 04c74da6-9a7f-43a4-9219-a0080f87dff0
- 1
-
1366
-1518
40
16
-
1386
-1510
- 290f418a-65ee-406a-a9d0-35699815b512
- Scale NU
- Scale an object with non-uniform factors.
- true
- fc6beaab-f021-4878-98e8-8cb7e36635ae
- Scale NU
- Scale NU
-
1275
-1853
226
121
-
1437
-1792
- Base geometry
- 5ab60e03-c0b5-4162-9642-36f488ca4128
- Geometry
- Geometry
- true
- 65dd17ea-eac5-4ec2-a76c-a6001d9921c7
- 1
-
1277
-1851
148
20
-
1359
-1841
- Base plane
- 409f76c5-2364-4a27-8aa8-d04faeee52b5
- Plane
- Plane
- false
- 0
-
1277
-1831
148
37
-
1359
-1812.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Scaling factor in {x} direction
- 32e9924d-3606-42bb-b61e-c74ae9f4f23a
- 1/X
- Scale X
- Scale X
- false
- 3eeee9f3-4d5d-4d38-af75-0b43cdc25b05
- 1
-
1277
-1794
148
20
-
1359
-1784
- 1
- 1
- {0}
- 1
- Scaling factor in {y} direction
- 6106007f-7f08-4242-b033-05df5fe86a6b
- 1/X
- Scale Y
- Scale Y
- false
- 04b421f3-5fa0-4719-ba9f-a540d38ce422
- 1
-
1277
-1774
148
20
-
1359
-1764
- 1
- 1
- {0}
- 1
- Scaling factor in {z} direction
- 810087c0-a605-4154-9858-53b8e8853b92
- 1/X
- Scale Z
- Scale Z
- false
- 0bdcf854-db9f-46dc-8656-341dfa324da6
- 1
-
1277
-1754
148
20
-
1359
-1744
- 1
- 1
- {0}
- 1
- Scaled geometry
- 02c0f61e-223c-4bb3-9505-292df6e48811
- Geometry
- Geometry
- false
- 0
-
1449
-1851
50
58
-
1474
-1821.75
- Transformation data
- 2dfd4f0a-fb4d-424a-9157-7b0a59ee21db
- Transform
- Transform
- false
- 0
-
1449
-1793
50
59
-
1474
-1763.25
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 59c3c505-15cc-45e9-933f-c8595f7093cc
- Relay
- false
- 02c0f61e-223c-4bb3-9505-292df6e48811
- 1
-
1369
-1886
40
16
-
1389
-1878
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- d59b6b9a-832f-4f1f-8be7-bb55b8fad88c
- 43d80855-3637-40f4-9fdc-746fda48a777
- 65dd17ea-eac5-4ec2-a76c-a6001d9921c7
- fc6beaab-f021-4878-98e8-8cb7e36635ae
- 59c3c505-15cc-45e9-933f-c8595f7093cc
- 5
- 3064bf3b-431b-4788-be6f-b6c01940fdd1
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 7571d6a7-f9fb-43c5-b492-ebb1699bbe58
- edd9c7a4-8615-499d-a043-ffd807b04ba3
- f1deee2a-afa6-4f2d-8b08-f72bb2a1a015
- e7b015dd-9f52-47f6-8002-08f897a09deb
- f85cb8da-bd1b-49bb-8035-385bbb922ec2
- 5
- 369d0c3d-b9de-4c16-aaec-07a459ba87fd
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 7f1ff041-dd6a-4f2e-9058-c73e06303a55
- addfb0aa-2359-4428-8ddf-f66d8b9d07a5
- 0e01196e-344a-4efb-b4f6-56abfc1a0ad6
- 046deea4-16c1-4120-97a8-17ec891df087
- b39cf207-0be5-4356-9e3d-1ee3e6c914e4
- b839537a-ac49-4b48-8198-4108a87b9c93
- dcf4fd04-6bea-4087-bb14-e58892057212
- 7
- 477360fe-ea68-469f-abe5-7f5fa5fbd55a
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- dc9dd93a-6cc9-4856-a81f-8679243afd47
- db096fe4-5c8c-4baf-bf19-0c39c9a69a62
- 27c85e2b-78dd-4c1c-9a20-c928164cbb44
- 3fafe3df-2f20-4143-a557-d444450838f1
- 6e2d58db-c02c-4e82-bcfc-5ad11aaa6d4f
- 8de88415-ff31-4de1-bdb1-10fa85768dd6
- 2ed1099b-4e71-4b4e-83f3-6c0e2bd00d6c
- 8fd309ab-5857-461b-b780-749942b832a8
- b883a44b-cfe6-46dc-8192-97293b781e47
- d7b18b8c-16a0-47f6-90ca-ecbcf0cbeed8
- b8f4b2f4-3504-46b4-a535-5d55353d495a
- ae80b8e3-7525-49ab-966b-b5abfe0c3986
- eafc2c25-2253-4ad7-9552-ad079e117c91
- 98626144-c386-434c-b6b5-fa34826c1cb3
- 9829cf68-30ca-4eab-befe-c58a0d44a370
- 6bbf56be-7a74-437b-870e-fcdd88371dc3
- 42a8a86a-d3b2-44a1-b132-208a43112713
- 9e392594-9c88-466e-a19c-e833e6e9db0c
- 1070bd2f-76a4-4b0d-9285-8bd6e91816fc
- 86ff0bb1-7081-48f7-a924-3e72d64c1993
- 340f78f3-1fb8-489d-a0b9-dca8378f7c0d
- 5aa647ab-09b5-4453-b64a-d2c8747096d5
- 0ad09fc1-1279-4ea4-b205-9c9a89f9ebc6
- 9a6f91f6-0630-4830-8fd0-477d17fef0fb
- 143565e7-4ae8-41d7-9a06-d4bd76248b54
- 380e8b0d-a629-4458-919f-d5253db452f1
- b96e7bfa-ed4f-4382-94f3-5b1a98b41212
- f41b3bef-9cff-41c5-baf9-5225a1425419
- 8323abec-af76-487a-a094-87f7f9bbfdcc
- 926f989d-3adc-4d9d-955b-0aef18ac1dc0
- 00035756-ae62-4826-9139-7fcd846aa0c7
- eeb347c1-708e-4973-8afe-e154fd52e0f7
- ec5f2614-0df0-4917-890c-da4bd44522a5
- d8d9cf70-ca1d-4a80-b178-6588262411bb
- a9218d1d-6e7b-4690-9057-5874c724dcb2
- 35
- 2f4ee1ec-9541-4bbc-bd9f-d19167eaa0d1
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- b883a44b-cfe6-46dc-8192-97293b781e47
- d7b18b8c-16a0-47f6-90ca-ecbcf0cbeed8
- b8f4b2f4-3504-46b4-a535-5d55353d495a
- ae80b8e3-7525-49ab-966b-b5abfe0c3986
- 4
- dc9dd93a-6cc9-4856-a81f-8679243afd47
- Group
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- db096fe4-5c8c-4baf-bf19-0c39c9a69a62
- Digit Scroller
- SEMENT LENGTH
- false
- 0
- 12
- SEMENT LENGTH
- 2
- 0.0023000000
-
3716
-355
250
20
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- 27c85e2b-78dd-4c1c-9a20-c928164cbb44
- Series
- Series
-
3708
-320
106
64
-
3769
-288
- First number in the series
- 8cb575df-54d5-4c57-8efc-47b16283704d
- Start
- Start
- false
- 0
-
3710
-318
47
20
-
3733.5
-308
- 1
- 1
- {0}
- 0
- Step size for each successive number
- 3855fb02-b658-4132-95b0-f27bd226b330
- Step
- Step
- false
- 87eb8849-af2f-42d1-b625-11ad905beff4
- 1
-
3710
-298
47
20
-
3733.5
-288
- 1
- 1
- {0}
- 1
- Number of values in the series
- 86985f1f-f862-468b-b2d1-b776dc747482
- Count
- Count
- false
- 8fd309ab-5857-461b-b780-749942b832a8
- 1
-
3710
-278
47
20
-
3733.5
-268
- 1
- 1
- {0}
- 10
- 1
- Series of numbers
- 9a2afc6f-b4ce-4502-b366-642a8e9a3e95
- Series
- Series
- false
- 0
-
3781
-318
31
60
-
3796.5
-288
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 3fafe3df-2f20-4143-a557-d444450838f1
- Digit Scroller
- INCREASE BEND PER SEGMENT
- false
- 0
- 12
- INCREASE BEND PER SEGMENT
- 1
- 0.49222173845
-
3716
-98
250
20
-
3716.187
-97.66576
- b6d7ba20-cf74-4191-a756-2216a36e30a7
- Rotate
- Rotate a vector around an axis.
- true
- 6e2d58db-c02c-4e82-bcfc-5ad11aaa6d4f
- Rotate
- Rotate
-
3757
-645
150
64
-
3860
-613
- Vector to rotate
- 7ad44e35-1634-421c-a993-42236b49ffac
- Vector
- Vector
- false
- 1180af4e-9307-495e-960d-727614eb69d9
- 1
-
3759
-643
89
20
-
3831.5
-633
- Rotation axis
- 3a26189d-1b03-453c-8eba-081eb037a13b
- Axis
- Axis
- false
- 90a2a9bf-2bbb-4418-ae07-28be1fc76902
- 1
-
3759
-623
89
20
-
3831.5
-613
- Rotation angle (in degrees)
- 064be048-17d6-4295-9dd6-6c924fedd100
- -X
- Angle
- Angle
- false
- true
- acd09b79-8c5d-4e09-a955-eb348888f844
- 1
- true
-
3759
-603
89
20
-
3831.5
-593
- Rotated vector
- 7aa6146c-3218-4cf5-bae0-c3348a131110
- Vector
- Vector
- false
- 0
-
3872
-643
33
60
-
3888.5
-613
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 9829cf68-30ca-4eab-befe-c58a0d44a370
- Interpolate
- Interpolate
-
3952
-955
225
84
-
4125
-913
- 1
- Interpolation points
- a459fe42-94a7-4c68-b4e1-32ab1fb41915
- Vertices
- Vertices
- false
- 9e392594-9c88-466e-a19c-e833e6e9db0c
- 1
-
3954
-953
159
20
-
4033.5
-943
- Curve degree
- 836761a6-2eda-48f9-b525-bcb86a8fc18a
- Degree
- Degree
- false
- 0
-
3954
-933
159
20
-
4033.5
-923
- 1
- 1
- {0}
- 3
- Periodic curve
- d6a575ba-71ff-43f6-aab2-04db9deeb2c5
- Periodic
- Periodic
- false
- 0
-
3954
-913
159
20
-
4033.5
-903
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 1b84b834-60f5-4e9b-a38b-a374888f6ac6
- KnotStyle
- KnotStyle
- false
- 0
-
3954
-893
159
20
-
4033.5
-883
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 2e386569-64dc-4855-9dc6-cad8052d4e8d
- Curve
- Curve
- false
- 0
-
4137
-953
38
26
-
4156
-939.6667
- Curve length
- 18f4b7b8-c785-4c03-a312-339c5cf1b3f7
- Length
- Length
- false
- 0
-
4137
-927
38
27
-
4156
-913
- Curve domain
- ef0f423c-dbcb-461f-a18e-03902bf571ea
- Domain
- Domain
- false
- 0
-
4137
-900
38
27
-
4156
-886.3334
- 79f9fbb3-8f1d-4d9a-88a9-f7961b1012cd
- Unit X
- Unit vector parallel to the world {x} axis.
- true
- 8de88415-ff31-4de1-bdb1-10fa85768dd6
- Unit X
- Unit X
-
3793
-493
114
28
-
3839
-479
- Unit multiplication
- 79a73b8c-e4fe-4099-a581-6c73dc664a86
- Factor
- Factor
- false
- 0ad09fc1-1279-4ea4-b205-9c9a89f9ebc6
- 1
-
3795
-491
32
24
-
3811
-479
- 1
- 1
- {0}
- 1
- World {x} vector
- 8c73dad7-a448-4e8e-b7cb-6c6f4d269949
- Unit vector
- Unit vector
- false
- 0
-
3851
-491
54
24
-
3878
-479
- 9103c240-a6a9-4223-9b42-dbd19bf38e2b
- Unit Z
- Unit vector parallel to the world {z} axis.
- true
- 2ed1099b-4e71-4b4e-83f3-6c0e2bd00d6c
- Unit Z
- Unit Z
-
3591
-645
114
28
-
3637
-631
- Unit multiplication
- e37d6296-cca3-49b2-ac1d-9248d749a84f
- Factor
- Factor
- false
- 0ad09fc1-1279-4ea4-b205-9c9a89f9ebc6
- 1
-
3593
-643
32
24
-
3609
-631
- 1
- 1
- {0}
- 1
- World {z} vector
- 90a2a9bf-2bbb-4418-ae07-28be1fc76902
- Unit vector
- Unit vector
- false
- 0
-
3649
-643
54
24
-
3676
-631
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 6bbf56be-7a74-437b-870e-fcdd88371dc3
- Relay
- false
- dce06aa0-d107-49e6-9ac4-a1f96241f82c
- 1
-
3832
-743
40
16
-
3852
-735
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 8fd309ab-5857-461b-b780-749942b832a8
- Relay
- false
- d142bc30-3598-43ae-ba1c-c10d7516e5db
- 1
-
3832
-73
40
16
-
3852
-65
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
- Mathematical addition
- true
- b883a44b-cfe6-46dc-8192-97293b781e47
- Addition
- Addition
-
3809
-38
85
44
-
3849
-16
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for addition
- 82e897f6-bb13-49f1-a9d2-f0a8cd4248d4
- A
- A
- true
- 0
-
3811
-36
26
20
-
3824
-26
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 1
- Second item for addition
- aa883421-9a43-42c1-bfc3-8a0b29812225
- B
- B
- true
- 02b758f3-00c4-452d-90dd-3a0316fe6760
- 1
-
3811
-16
26
20
-
3824
-6
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- Result of addition
- d142bc30-3598-43ae-ba1c-c10d7516e5db
- Result
- Result
- false
- 0
-
3861
-36
31
40
-
3876.5
-16
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
- Mathematical addition
- true
- b8f4b2f4-3504-46b4-a535-5d55353d495a
- Addition
- Addition
-
3765
32
155
44
-
3805
54
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for addition
- ff784f4a-4c7e-40b8-aa3b-3384b9ff4028
- A
- A
- true
- 0
-
3767
34
26
20
-
3780
44
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 1
- Second item for addition
- 52fccfc6-d16e-4d6d-9039-65312df9d015
- B
- B
- true
- 1e02c87b-f332-4fb0-8d48-6d02635e8746
- 1
-
3767
54
26
20
-
3780
64
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 1
- Result of addition
- 02b758f3-00c4-452d-90dd-3a0316fe6760
- Result
- NUMBER OF POINTS
- false
- 0
-
3817
34
101
40
-
3867.5
54
- e2039b07-d3f3-40f8-af88-d74fed238727
- Insert Items
- Insert a collection of items into a list.
- true
- 42a8a86a-d3b2-44a1-b132-208a43112713
- Insert Items
- Insert Items
-
3794
-851
116
84
-
3877
-809
- 1
- List to modify
- 2cc5517c-b67e-4fb4-84af-067f6f69f16e
- List
- List
- false
- 6bbf56be-7a74-437b-870e-fcdd88371dc3
- 1
-
3796
-849
69
20
-
3830.5
-839
- 1
- Items to insert. If no items are supplied, nulls will be inserted.
- b056a52f-7901-4299-9727-6dbac79167d3
- Item
- Item
- true
- 0
-
3796
-829
69
20
-
3830.5
-819
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- {0,0,0}
- 1
- Insertion index for each item
- a47e4d69-3eef-424d-822a-60355513532c
- Indices
- Indices
- false
- 0
-
3796
-809
69
20
-
3830.5
-799
- 1
- 1
- {0}
- 0
- If true, indices will be wrapped
- 4ffd3652-2927-443f-84e8-79d1c8033050
- Wrap
- Wrap
- false
- 0
-
3796
-789
69
20
-
3830.5
-779
- 1
- 1
- {0}
- false
- 1
- List with inserted values
- 0a00ceda-7e56-4a16-968c-96ff8825cb63
- List
- List
- false
- 0
-
3889
-849
19
80
-
3898.5
-809
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 9e392594-9c88-466e-a19c-e833e6e9db0c
- Relay
- ⊙☉⊙
- false
- 0a00ceda-7e56-4a16-968c-96ff8825cb63
- 1
-
3831
-875
44
16
-
3853
-867
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- b883a44b-cfe6-46dc-8192-97293b781e47
- b8f4b2f4-3504-46b4-a535-5d55353d495a
- 1e02c87b-f332-4fb0-8d48-6d02635e8746
- 3
- ae80b8e3-7525-49ab-966b-b5abfe0c3986
- Group
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
-
7VsJdBNlHp+2aZqjh1AVUJDR4nqwFnTxKbJgk6ZHaNPGFhAEH50m03YgycRkUuSy5UFBKiBdLD0ALT6oINUqlCqHEt3isiuLZQEBRXvo4sqxsquuuKt0v2/mm7RzJC00tfCw7yWd+f+/8/c/v/9MVAba4rGTDqYD/IVgGKYAn2inzZNPOWYWki43RTsgywzIkA3/ImATvl8qSVhJF2wSjtganmU0QLIakMZcOjtytZdIqP/3oYZTmoq5EWYXWUiRcyBfA/jK7AIwijUGkU2ku2DSXCcJ2WFo4ijEy6BddsIGOSMAdePGjR18r2zSRloY0srzKIrquNFA5lEOigG7MLtoJ+liKNLNDws/CgPBsPOowM2ONntp2bJPVVoD6ba4KCeDNg+XiCkyCDvJ350Pm5qaEh/fvrPqzIvLwXd7RT34bqt4s62igb1gbxs2w++yVez36raycl/L5soMeL1mCRxhLezSvn6T77rthTVtL5T7mrVVbPWNxjXjBjlTsQPSqxYJpub7oiUh7lbh8jZ0zltazTZeEei6+lXfgOgbUQL2Yq/RjtgZuyxgq29taJ38sjvbsFxuj2hSdu8IVXYEhA/fV4okhzBCm5uIFwSSCxpNID4ELyvZ+PiU1KnqLKBh0BTcvJnAvyiemkh7OAMK400AKNssoIxIf0IRWTmJcOWTbMvbwG39zx0dC0AXxRM0bectaEb0jY+GTwHqLJhKDSmSadRZFmc6MZf2MF3balJctMcpaTyg0xQyc+HifBPEgI+Wowl6QbqSo8MBQpElKlImd1r27aEl0+/a+XHaityvdQV/dfxXYCVRJsLtxnVWKzurOpF2MATl6PQW0NfI2drdZtKVB+wct8P+BOqP03k4gdsoNwOvKIa0u5WplNVKOviNhEQaHW6GcFjIFA9l5ZeYde8QY4GCTFrvTDrqHdR6JMASVRmUZbZ/tkbHMC4q18NwPsQnVj1AzcqS4uB9zmEDlpDWhGH/0WPYaH24mSqkWVCHQ27xxwbMm9SkdRIuwj6Tcjg9LLoqhK5SZ7GQbp+PCvED0XAj7IgXEjYP6cYBWEKs4mWRaD+uO765/s7MNfUzZu2fe/BbARLh7IgSBBA5k52dc7ysoimzaY/LQrJqCHX5zImwPQ+8ZiyuLZt3TrewVsuxBfoE+/UQwhoAoXcigPCEDsNwMYTmIyyEkRyEQP0RhsoAgA3KIt0eG6s6AqRkgcoZyZiXPTw5bePDpkcpe4FHAJSSG0mCFE+XQCWHBdZzLLATCItngTrV6ERYJJwCypYqxALOGnF5+jQoHdkVGIehCBvuYjfjloUnY8DzCysOz0xtNHy07WVLcaUAnhgzGoGDwy3BSdKgTwBLCghYYhNybCH+HNv9m7L2T6/fmrxlU8yH7z/z/VqhrbAuVujQhvCA62kXyoj4JEOZSNvAjvjEBP6Xk8FtOjwfjgvFkOICSlpAO0HKgtOcuw41Gnhr2/v9yJ/+kntj8luN4y/u1Jy/AbBCEKvi2WP3LnQcNe3539jVD936kA6wQv3YKGCFIdaEphGF65406JYe/PKBhyfc/yVgKRDrnainNR+UJOpWRZfeY8kebgCscMQSe1bAUiLWV3t/GHjg9Cjdcuv3UWWmk07AikCs4bHjl6hm70wuqc2d/zMW2w5YKn7xT72+H1/vyax5Y8ePKe+9qgYsNWINxMdNyK4rz3zh3S+KJsfEXQIsDd9rfcffqFtWJ1RvemyxjigsBSwtYkVuqco4dPiCvuaH7xQjT6xsAKxIxBpf/fzYoqPbU98ZM6ShapR1GmBFIdbce8pLKuM6THsXTGEWlI35CbCiEWvI19/dd+HgtIw/ZH6DPzPkk2GAFYNYiw8NO3XAHJ/2zp4Nm1KGzhgKWDcg1ruvT45vHFOSsmr2cXvdxI7lgDUAsSz3XYiek16fVmp4Lun8ix3vqYyGmQLFHwi3IWeF8zNObVA8cbN+2xuxRUZs/lYZDZXYntiEMN6EOGsI9WcNeH5c47Mrl+vX/LEuverHXfOFc2WRNmKu0Br8hLNQP+4nVofPoVwk8DpgJKTwspsW67DMQqSb7jZ6iaXay+iFHQcOKKoJRi4Q78UOqPgk4Gp5BxR21UMu9g3BgXxpS+GjxPRLaSUt2q8ysyLWBQHy1rpAkLdu4yFX+IO8pmyl59zEiylrn7rZXV362yeFYT8ZnjwZaRbrD+CHuA64m7aTuJVgCNzjphz5uNNGWMgC2gaCBEhDHFaYvYF2DOQxRH7PklqxY5NbqjRD4eiXkcYW3wEgDU0ECIpzsFYQRotvaYoyw7yDZEgXOEgTkAsjAERYwyaOAnnCTwRLNlp5Pcgo+XxC9p/OJiz5sKFY9a/Mozyfj2eLH99Y9IlzRmqlt6bqdOWKCTyfD2rTrAdWhexTG3b/c5ApamRsszaTTYEkeqTi6P4n5tbLbodFI4BktZPIpxkkNlnpTLVhyTVYdsbuUQ9+dfD9EecuRzpBT4dgLo1BOa6XS4fgcaR4eFO0GdZ63AzpYHhBhiDkwiVYKvUusOMCrIsdSRspzARTwO8tbP7ohQojOLLxfdh9OTw220w32IMjv9NNdN6z/mX+6EeyFnaRTUg3shmY3GlNFpBeelykrIiafw7dvP3t8PTKO1LjqD175wlEFJHI9ZTIyMfoEyENCyikW35RIfHVBEV6IucgYZcin12zsoDj8lFHThZ3wFXiDI1TDjfpYnDgDMEUAgcoK5tP98dOWFG/LWPfka3MK+cWlEeYPAyRayN9YAvtiZ1ltERWIaMlUgrp+1MrNjigEG9qQg5K4Gj8ARiNlJm04gxwObJg7Vt304ppSybpq14r/fuxhTHHBNgooKeSIMNRg63COZ8jP+MFZ3anJF60sCqMQjAfNyUh+LEvWjIjbIdSXtr1bmhR4+1LBbvRZBdQeQwOj6rSMBzuB8NbM/Py3CRQPpuNKxoBbUR1pPgehVrxAcjfkiQwd+H1EEL8qAEkIQDCV/UyIbfmE8Bd2dvKURR70gdG6Yarkz/f5647P72V0r+cHodPTftMmFwoZPfKUbtL+sSFg17aWw6AKwfCNVjO3rzA3vDVArj4woi/4BHJSYxmNUYWmim1LS/FXoqduOPBjlvrXjy7S5gMs92lJTSO3B044kNiEMBpXRUIHKBL/RFRlA6PPbezQMLqaRcZhWLdJF+PuwgnKnzKiije883e+9bWJW7+YNHpcR7bY0Lthb2l2stSg+4QoXquCKiez/WLBCJyadpGEj6/h0kqqZdZPeTsBkQp6FVlhSI+7l25S+mlUPBTyGdUykUp82esWaAoxauhJEpVv906bdmXF4273965+83ZbelCL2AmHKRNGKDUART6bh3uhD3YKr7F42ZoO+6gwTbYwyGM+4G0XVz8kllKT07n2myLi7bZsghAh0Ql1vkn8lPihMOfn1JNBkkfzDT4ae800B6QxeEWG1gPjECklWLQ3i0ALWAC7cW1IjnyT5XFckxoBvnEOCDHWHA6fVmvMRGufMqRTuYJlELLkbOo/ALhkzOOPol2dqUKleFQRrNhS+64phgWROHj4wh+VXKVXRcxx+iwUhbS94QtRA2J0C67kEzgKEHZgIb4SJHZTtJCEbZE2trZF8DPuEjC7rtnnZWvD1JVPqpdzaoqLvz2vaq+UhtydF6x1/jWWMPJC+NUh/tHVXOgqm7pS1VNntVsODlvy7Whqip/qnoNld/ETyP6qPzmnRWo/ObN/bX8JiudoUWDp7+uNSYt2ZugvvRM3PB+L78lzApUFPDmX3/ltzONpxrH1x8xlTg6fmzJeu/Oq6D8lkAGFFLudVN+GxqRtnvoCKtpV5UhR7XBMqbPym9BLgewQswJKMQng15+G2z+xwL1uMakutWr1p59fltmv5bfWD/jt/wGVBiFYD7Hu5ZDsPgNgz4Kwdj6QCEYq/w1BMtKR6N+qt1gr9I3PO44+MNvmj/v9xDsXRewLl99/YVgz10tO+45U59afnzQ+ZE/jaq9GkJwVSAhAWO7XkLwaUeNeeyfv51Yfdbzu98vHjanz0JwkF/DYC1tbUBLKw96CBaf8vs1BLN+xm8IBiqMQrAGu/oLNuLX8fq+YCPOpvqvYNO6qC8LNhfpZkPL8UXXRsFG609Vb25faRj4yEeJGx/8Yl/9gTmGbl9RU6NRBiSyqij3MxsNxxKoVDSiiVWtV6+1id/5u8LX2nroMnwPv0Sq5j0GnEJ4E3QX0G0gxCP9IX6pZPum2HiFvnHG4Opap2lzt4hrriLExS/IBudFQvHriT2MYIEEkrBdLJCoKzMB9rHYL24C3T/FFj9q7s1T7CAYQMIyMd7RV2QA6BcYv7gFXNZvS8QvfPfutyUiYxD/cCUIxoBN8Qnn/w==
- true
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAZdJREFUSEvV1M8rBGEcx/GHJL8ixYHdcnBwcuBgExYnF6Tk4K4cXJjZuLg4uOxhy4+U5Cgl+QMUSXIQ/gMkSn4lF1La8f7uzjbraWaatRx86nWYp5nnM/PMPKP+S5px7aIWeacMa7Bc1CFQejGqacUArnCIvAr2oF98i3N0oQDFLgKlHA/QCz4RRw0qMexCls83IZziCAtIZBmzx56wAf0GRAM8E4Esw0zqyDthbMKzoBRvmg+8YBBBUo8VLGmqkVont/ZZ/ErkCV4173iEbKAgKYQ8ha4InpFv/R5tqSP/yHtwW4UW+KYfd+iGLGW2zHcuN3CCHxVI+vAM/eJdrOIGJmTTnWma4CSppsNJZUbTYo32sGQdeoG8p2VUIFiSyohZyrQEJYv2sGQeF5pjyA6fQxUmXXz/F/kUeEV2+hYuoT+h6GBSM5JUU+NpxrZTYOxnxi1ldHKyX0bgVWDEM5N64SZkl/qlBPJL0YV+q8A7fC3tlEzYdpyJjQNn3Izap+cXJsv1JeeWPy9g4h5KEoIlGrKH84hSX+x+CmKBvnCmAAAAAElFTkSuQmCC
- eafc2c25-2253-4ad7-9552-ad079e117c91
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
- true
- 4
- 6a4f00bc-f020-46e2-bac0-a54d7b80df5b
- acd09b79-8c5d-4e09-a955-eb348888f844
- f59c53ec-0eaf-48a0-bae2-fcea96acda3c
- f6e440a5-48c8-42b5-bad5-8c356f264006
- 2e55aebe-34b6-4785-8e6b-d76dac4aff89
- dc1dce83-50c8-4b2e-bdbb-9da4471c5c1c
- 0ef02d63-4c77-4baf-8a44-8b45ed9effc1
- 2df4e919-ccf0-4e59-924f-ef207e19da1d
-
3827
-562
49
44
-
3856
-540
- 2
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- 2
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Shift offset
- 6a4f00bc-f020-46e2-bac0-a54d7b80df5b
- Shift
- true
- 0
-
3829
-560
15
20
-
3836.5
-550
- 1
- 1
- {0}
- 1
- 2
- A wire relay object
- f6e440a5-48c8-42b5-bad5-8c356f264006
- Relay
- true
- 287aea96-d5dd-4ba7-b8a2-da692d6c4829
- 1
-
3829
-540
15
20
-
3836.5
-530
- 2
- A wire relay object
- acd09b79-8c5d-4e09-a955-eb348888f844
- Relay
- false
- 0
-
3868
-560
6
20
-
3871
-550
- Result of mass addition
- f59c53ec-0eaf-48a0-bae2-fcea96acda3c
- Result
- false
- 0
-
3868
-540
6
20
-
3871
-530
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
-
7VsJdBNlHp+2aZqjh1AVUJDR4nqwFnTxKbJgk6ZHaNPGFhAEH50m03YgycRkUuSy5UFBKiBdLD0ALT6oINUqlCqHEt3isiuLZQEBRXvo4sqxsquuuKt0v2/mm7RzJC00tfCw7yWd+f+/8/c/v/9MVAba4rGTDqYD/IVgGKYAn2inzZNPOWYWki43RTsgywzIkA3/ImATvl8qSVhJF2wSjtganmU0QLIakMZcOjtytZdIqP/3oYZTmoq5EWYXWUiRcyBfA/jK7AIwijUGkU2ku2DSXCcJ2WFo4ijEy6BddsIGOSMAdePGjR18r2zSRloY0srzKIrquNFA5lEOigG7MLtoJ+liKNLNDws/CgPBsPOowM2ONntp2bJPVVoD6ba4KCeDNg+XiCkyCDvJ350Pm5qaEh/fvrPqzIvLwXd7RT34bqt4s62igb1gbxs2w++yVez36raycl/L5soMeL1mCRxhLezSvn6T77rthTVtL5T7mrVVbPWNxjXjBjlTsQPSqxYJpub7oiUh7lbh8jZ0zltazTZeEei6+lXfgOgbUQL2Yq/RjtgZuyxgq29taJ38sjvbsFxuj2hSdu8IVXYEhA/fV4okhzBCm5uIFwSSCxpNID4ELyvZ+PiU1KnqLKBh0BTcvJnAvyiemkh7OAMK400AKNssoIxIf0IRWTmJcOWTbMvbwG39zx0dC0AXxRM0bectaEb0jY+GTwHqLJhKDSmSadRZFmc6MZf2MF3balJctMcpaTyg0xQyc+HifBPEgI+Wowl6QbqSo8MBQpElKlImd1r27aEl0+/a+XHaityvdQV/dfxXYCVRJsLtxnVWKzurOpF2MATl6PQW0NfI2drdZtKVB+wct8P+BOqP03k4gdsoNwOvKIa0u5WplNVKOviNhEQaHW6GcFjIFA9l5ZeYde8QY4GCTFrvTDrqHdR6JMASVRmUZbZ/tkbHMC4q18NwPsQnVj1AzcqS4uB9zmEDlpDWhGH/0WPYaH24mSqkWVCHQ27xxwbMm9SkdRIuwj6Tcjg9LLoqhK5SZ7GQbp+PCvED0XAj7IgXEjYP6cYBWEKs4mWRaD+uO765/s7MNfUzZu2fe/BbARLh7IgSBBA5k52dc7ysoimzaY/LQrJqCHX5zImwPQ+8ZiyuLZt3TrewVsuxBfoE+/UQwhoAoXcigPCEDsNwMYTmIyyEkRyEQP0RhsoAgA3KIt0eG6s6AqRkgcoZyZiXPTw5bePDpkcpe4FHAJSSG0mCFE+XQCWHBdZzLLATCItngTrV6ERYJJwCypYqxALOGnF5+jQoHdkVGIehCBvuYjfjloUnY8DzCysOz0xtNHy07WVLcaUAnhgzGoGDwy3BSdKgTwBLCghYYhNybCH+HNv9m7L2T6/fmrxlU8yH7z/z/VqhrbAuVujQhvCA62kXyoj4JEOZSNvAjvjEBP6Xk8FtOjwfjgvFkOICSlpAO0HKgtOcuw41Gnhr2/v9yJ/+kntj8luN4y/u1Jy/AbBCEKvi2WP3LnQcNe3539jVD936kA6wQv3YKGCFIdaEphGF65406JYe/PKBhyfc/yVgKRDrnainNR+UJOpWRZfeY8kebgCscMQSe1bAUiLWV3t/GHjg9Cjdcuv3UWWmk07AikCs4bHjl6hm70wuqc2d/zMW2w5YKn7xT72+H1/vyax5Y8ePKe+9qgYsNWINxMdNyK4rz3zh3S+KJsfEXQIsDd9rfcffqFtWJ1RvemyxjigsBSwtYkVuqco4dPiCvuaH7xQjT6xsAKxIxBpf/fzYoqPbU98ZM6ShapR1GmBFIdbce8pLKuM6THsXTGEWlI35CbCiEWvI19/dd+HgtIw/ZH6DPzPkk2GAFYNYiw8NO3XAHJ/2zp4Nm1KGzhgKWDcg1ruvT45vHFOSsmr2cXvdxI7lgDUAsSz3XYiek16fVmp4Lun8ix3vqYyGmQLFHwi3IWeF8zNObVA8cbN+2xuxRUZs/lYZDZXYntiEMN6EOGsI9WcNeH5c47Mrl+vX/LEuverHXfOFc2WRNmKu0Br8hLNQP+4nVofPoVwk8DpgJKTwspsW67DMQqSb7jZ6iaXay+iFHQcOKKoJRi4Q78UOqPgk4Gp5BxR21UMu9g3BgXxpS+GjxPRLaSUt2q8ysyLWBQHy1rpAkLdu4yFX+IO8pmyl59zEiylrn7rZXV362yeFYT8ZnjwZaRbrD+CHuA64m7aTuJVgCNzjphz5uNNGWMgC2gaCBEhDHFaYvYF2DOQxRH7PklqxY5NbqjRD4eiXkcYW3wEgDU0ECIpzsFYQRotvaYoyw7yDZEgXOEgTkAsjAERYwyaOAnnCTwRLNlp5Pcgo+XxC9p/OJiz5sKFY9a/Mozyfj2eLH99Y9IlzRmqlt6bqdOWKCTyfD2rTrAdWhexTG3b/c5ApamRsszaTTYEkeqTi6P4n5tbLbodFI4BktZPIpxkkNlnpTLVhyTVYdsbuUQ9+dfD9EecuRzpBT4dgLo1BOa6XS4fgcaR4eFO0GdZ63AzpYHhBhiDkwiVYKvUusOMCrIsdSRspzARTwO8tbP7ohQojOLLxfdh9OTw220w32IMjv9NNdN6z/mX+6EeyFnaRTUg3shmY3GlNFpBeelykrIiafw7dvP3t8PTKO1LjqD175wlEFJHI9ZTIyMfoEyENCyikW35RIfHVBEV6IucgYZcin12zsoDj8lFHThZ3wFXiDI1TDjfpYnDgDMEUAgcoK5tP98dOWFG/LWPfka3MK+cWlEeYPAyRayN9YAvtiZ1ltERWIaMlUgrp+1MrNjigEG9qQg5K4Gj8ARiNlJm04gxwObJg7Vt304ppSybpq14r/fuxhTHHBNgooKeSIMNRg63COZ8jP+MFZ3anJF60sCqMQjAfNyUh+LEvWjIjbIdSXtr1bmhR4+1LBbvRZBdQeQwOj6rSMBzuB8NbM/Py3CRQPpuNKxoBbUR1pPgehVrxAcjfkiQwd+H1EEL8qAEkIQDCV/UyIbfmE8Bd2dvKURR70gdG6Yarkz/f5647P72V0r+cHodPTftMmFwoZPfKUbtL+sSFg17aWw6AKwfCNVjO3rzA3vDVArj4woi/4BHJSYxmNUYWmim1LS/FXoqduOPBjlvrXjy7S5gMs92lJTSO3B044kNiEMBpXRUIHKBL/RFRlA6PPbezQMLqaRcZhWLdJF+PuwgnKnzKiije883e+9bWJW7+YNHpcR7bY0Lthb2l2stSg+4QoXquCKiez/WLBCJyadpGEj6/h0kqqZdZPeTsBkQp6FVlhSI+7l25S+mlUPBTyGdUykUp82esWaAoxauhJEpVv906bdmXF4273965+83ZbelCL2AmHKRNGKDUART6bh3uhD3YKr7F42ZoO+6gwTbYwyGM+4G0XVz8kllKT07n2myLi7bZsghAh0Ql1vkn8lPihMOfn1JNBkkfzDT4ae800B6QxeEWG1gPjECklWLQ3i0ALWAC7cW1IjnyT5XFckxoBvnEOCDHWHA6fVmvMRGufMqRTuYJlELLkbOo/ALhkzOOPol2dqUKleFQRrNhS+64phgWROHj4wh+VXKVXRcxx+iwUhbS94QtRA2J0C67kEzgKEHZgIb4SJHZTtJCEbZE2trZF8DPuEjC7rtnnZWvD1JVPqpdzaoqLvz2vaq+UhtydF6x1/jWWMPJC+NUh/tHVXOgqm7pS1VNntVsODlvy7Whqip/qnoNld/ETyP6qPzmnRWo/ObN/bX8JiudoUWDp7+uNSYt2ZugvvRM3PB+L78lzApUFPDmX3/ltzONpxrH1x8xlTg6fmzJeu/Oq6D8lkAGFFLudVN+GxqRtnvoCKtpV5UhR7XBMqbPym9BLgewQswJKMQng15+G2z+xwL1uMakutWr1p59fltmv5bfWD/jt/wGVBiFYD7Hu5ZDsPgNgz4Kwdj6QCEYq/w1BMtKR6N+qt1gr9I3PO44+MNvmj/v9xDsXRewLl99/YVgz10tO+45U59afnzQ+ZE/jaq9GkJwVSAhAWO7XkLwaUeNeeyfv51Yfdbzu98vHjanz0JwkF/DYC1tbUBLKw96CBaf8vs1BLN+xm8IBiqMQrAGu/oLNuLX8fq+YCPOpvqvYNO6qC8LNhfpZkPL8UXXRsFG609Vb25faRj4yEeJGx/8Yl/9gTmGbl9RU6NRBiSyqij3MxsNxxKoVDSiiVWtV6+1id/5u8LX2nroMnwPv0Sq5j0GnEJ4E3QX0G0gxCP9IX6pZPum2HiFvnHG4Opap2lzt4hrriLExS/IBudFQvHriT2MYIEEkrBdLJCoKzMB9rHYL24C3T/FFj9q7s1T7CAYQMIyMd7RV2QA6BcYv7gFXNZvS8QvfPfutyUiYxD/cCUIxoBN8Qnn/w==
- true
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAZdJREFUSEvV1M8rBGEcx/GHJL8ixYHdcnBwcuBgExYnF6Tk4K4cXJjZuLg4uOxhy4+U5Cgl+QMUSXIQ/gMkSn4lF1La8f7uzjbraWaatRx86nWYp5nnM/PMPKP+S5px7aIWeacMa7Bc1CFQejGqacUArnCIvAr2oF98i3N0oQDFLgKlHA/QCz4RRw0qMexCls83IZziCAtIZBmzx56wAf0GRAM8E4Esw0zqyDthbMKzoBRvmg+8YBBBUo8VLGmqkVont/ZZ/ErkCV4173iEbKAgKYQ8ha4InpFv/R5tqSP/yHtwW4UW+KYfd+iGLGW2zHcuN3CCHxVI+vAM/eJdrOIGJmTTnWma4CSppsNJZUbTYo32sGQdeoG8p2VUIFiSyohZyrQEJYv2sGQeF5pjyA6fQxUmXXz/F/kUeEV2+hYuoT+h6GBSM5JUU+NpxrZTYOxnxi1ldHKyX0bgVWDEM5N64SZkl/qlBPJL0YV+q8A7fC3tlEzYdpyJjQNn3Izap+cXJsv1JeeWPy9g4h5KEoIlGrKH84hSX+x+CmKBvnCmAAAAAElFTkSuQmCC
- 98626144-c386-434c-b6b5-fa34826c1cb3
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
- true
- 4
- 1786a6ca-a831-45f1-841a-6761df4e3437
- 472c32b4-816e-4b88-a831-f6a3db1b3d47
- 54d41705-20d5-476c-8174-d6bedd6f63b8
- dce06aa0-d107-49e6-9ac4-a1f96241f82c
- 2e55aebe-34b6-4785-8e6b-d76dac4aff89
- 2df4e919-ccf0-4e59-924f-ef207e19da1d
- 0ef02d63-4c77-4baf-8a44-8b45ed9effc1
- dc1dce83-50c8-4b2e-bdbb-9da4471c5c1c
-
3827
-708
49
44
-
3856
-686
- 2
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- 2
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Shift offset
- 1786a6ca-a831-45f1-841a-6761df4e3437
- Shift
- true
- 0
-
3829
-706
15
20
-
3836.5
-696
- 1
- 1
- {0}
- -1
- 2
- A wire relay object
- 472c32b4-816e-4b88-a831-f6a3db1b3d47
- Relay
- true
- 7aa6146c-3218-4cf5-bae0-c3348a131110
- 1
-
3829
-686
15
20
-
3836.5
-676
- 2
- A wire relay object
- dce06aa0-d107-49e6-9ac4-a1f96241f82c
- Relay
- false
- 0
-
3868
-706
6
20
-
3871
-696
- Result of mass addition
- 54d41705-20d5-476c-8174-d6bedd6f63b8
- Result
- false
- 0
-
3868
-686
6
20
-
3871
-676
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- ce1ec062-ce13-4671-9f88-a44eb02106ee
- Rotate
- Rotate
-
3762
-1258
191
64
-
3889
-1226
- Base geometry
- 808573a4-822a-422e-9e98-6c173b8e4079
- Geometry
- Geometry
- true
- cfd355a8-73ed-4ac8-8ec9-98a00fe36d6e
- 1
-
3764
-1256
113
20
-
3820.5
-1246
- Rotation angle in radians
- e2633928-4571-47db-8d76-fae82f10ed08
- Angle
- Angle
- false
- 0
- false
-
3764
-1236
113
20
-
3820.5
-1226
- 1
- 1
- {0}
- 3.1415926535897931
- Rotation plane
- cd07018e-660d-4656-bfb3-7b6a2a07cc97
- Plane
- Plane
- false
- 572a8ce2-d9e2-4f66-a641-056986b98367
- 1
-
3764
-1216
113
20
-
3820.5
-1206
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 5f2b9ace-8677-4990-9222-d07a6d2af5df
- Geometry
- Geometry
- false
- 0
-
3901
-1256
50
30
-
3926
-1241
- Transformation data
- c3d14047-4c99-4aa3-98f8-e18d2725169f
- Transform
- Transform
- false
- 0
-
3901
-1226
50
30
-
3926
-1211
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- true
- d8073bf9-317e-46c3-870a-95ce7aa609eb
- Join Curves
- Join Curves
-
3825
-1368
116
44
-
3892
-1346
- 1
- Curves to join
- 7aaefd25-0e21-483a-8ceb-21ef508d78fa
- Curves
- Curves
- false
- 67262b53-6f7e-4d97-96f5-f1cbbd68ce83
- 1
-
3827
-1366
53
20
-
3853.5
-1356
- Preserve direction of input curves
- 21fe4208-0f3e-474b-b78e-1deeb43bdfab
- Preserve
- Preserve
- false
- 0
-
3827
-1346
53
20
-
3853.5
-1336
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- c8d48b4d-cba1-4240-8c79-bd2bf70f48b4
- Curves
- Curves
- false
- 0
-
3904
-1366
35
40
-
3921.5
-1346
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- a9485951-a0a3-4d49-94ea-8e98b365eb1f
- Merge
- Merge
-
3835
-1322
90
64
-
3880
-1290
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- d939d545-310b-4fd6-855e-d89eff118d7d
- false
- Data 1
- D1
- true
- cfd355a8-73ed-4ac8-8ec9-98a00fe36d6e
- 1
-
3837
-1320
31
20
-
3852.5
-1310
- 2
- Data stream 2
- 6d21104c-e393-4119-b98f-1f12813982a5
- false
- Data 2
- D2
- true
- 5f2b9ace-8677-4990-9222-d07a6d2af5df
- 1
-
3837
-1300
31
20
-
3852.5
-1290
- 2
- Data stream 3
- 9dec4af9-1e15-4f4d-8e0f-5a844059f38a
- false
- Data 3
- D3
- true
- 0
-
3837
-1280
31
20
-
3852.5
-1270
- 2
- Result of merge
- 67262b53-6f7e-4d97-96f5-f1cbbd68ce83
- Result
- Result
- false
- 0
-
3892
-1320
31
60
-
3907.5
-1290
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 0ad09fc1-1279-4ea4-b205-9c9a89f9ebc6
- Relay
- false
- 5759550e-d8e3-4555-90d8-9ffd2d30a3f2
- 1
-
3780
-419
40
16
-
3800
-411
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- d3c0119f-bc4d-4023-bea3-7f07de919d1a
- Panel
- false
- 0
- 0
- 0.51542256311
-
3967
-249
112
20
- 0
- 0
- 0
-
3967.912
-249
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- O/4^(OO-4)
- true
- 920386d7-a4f5-49ac-8d98-ae8582f6761e
- Expression
- Expression
-
3991
-144
157
44
-
4064
-122
- 2
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 511d663a-aa32-4d79-912e-51e8980f1ed2
- Variable O
- O
- true
- ec5f2614-0df0-4917-890c-da4bd44522a5
- 1
-
3993
-142
19
20
-
4002.5
-132
- Expression variable
- 1d00cae8-9902-4fdf-aca2-0493d9f13b2b
- Variable OO
- OO
- true
- d9e00b4e-988b-46b7-83ed-23e855867e23
- 1
-
3993
-122
19
20
-
4002.5
-112
- Result of expression
- 87eb8849-af2f-42d1-b625-11ad905beff4
- Result
- Result
- false
- 0
-
4115
-142
31
40
-
4130.5
-122
- 7ab8d289-26a2-4dd4-b4ad-df5b477999d8
- Log N
- Return the N-base logarithm of a number.
- true
- 53b53895-a6e0-450a-8894-4abe407a28d4
- Log N
- Log N
-
3959
-38
115
44
-
4029
-16
- Value
- 4462301e-7bb2-46e5-acd4-99fa1c621c66
- Number
- Number
- false
- 1e02c87b-f332-4fb0-8d48-6d02635e8746
- 1
-
3961
-36
56
20
-
3989
-26
- Logarithm base
- 3b9b4efb-53fa-4d48-94df-799620521055
- Base
- Base
- false
- 0
-
3961
-16
56
20
-
3989
-6
- 1
- 1
- {0}
- 2
- Result
- d9e00b4e-988b-46b7-83ed-23e855867e23
- Result
- Result
- false
- 0
-
4041
-36
31
40
-
4056.5
-16
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 9a6f91f6-0630-4830-8fd0-477d17fef0fb
- Digit Scroller
- INCREASE BEND PER SEGMENT
- false
- 0
- 12
- INCREASE BEND PER SEGMENT
- 1
- 0.48635028132
-
3682
-190
250
20
-
3682.429
-189.908
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 982abbaa-3dc5-4e91-82c5-b89e6889b245
- Panel
- false
- 0
- 0
- 16 0.492221738454693386
32 0.507180224586
-
3986
-207
194
30
- 0
- 0
- 0
-
3986.912
-207
- 1
-
255;255;255;255
- false
- false
- true
- true
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 143565e7-4ae8-41d7-9a06-d4bd76248b54
- Panel
- false
- 0
- 0
- 0.492221738454693386
-
3728
-122
112
20
- 0
- 0
- 0
-
3728.995
-121.1867
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- fe8168de-7728-4459-9d5b-12ac139649dc
- Deconstruct
- Deconstruct
-
4329
-410
120
64
-
4370
-378
- Input point
- cfca3bce-dac3-410d-bdb1-1a78b549fa9a
- Point
- Point
- false
- 1f5e8e09-adb1-4c11-ab78-b4c1a72b0d2f
- 1
-
4331
-408
27
60
-
4344.5
-378
- Point {x} component
- 98023ec4-8abd-465a-9fc6-113bad1bb42b
- X component
- X component
- false
- 0
-
4382
-408
65
20
-
4414.5
-398
- Point {y} component
- b1151352-39d9-4cbb-be71-3baf994d9ae1
- Y component
- Y component
- false
- 0
-
4382
-388
65
20
-
4414.5
-378
- Point {z} component
- 645efb83-0efd-4a49-adf5-af4c1bb37ee1
- Z component
- Z component
- false
- 0
-
4382
-368
65
20
-
4414.5
-358
- d3d195ea-2d59-4ffa-90b1-8b7ff3369f69
- Unit Y
- Unit vector parallel to the world {y} axis.
- true
- 380e8b0d-a629-4458-919f-d5253db452f1
- Unit Y
- Unit Y
-
3578
-574
114
28
-
3624
-560
- Unit multiplication
- c559f25e-fc15-43c3-a956-b8c2c699772b
- Factor
- Factor
- false
- 0ad09fc1-1279-4ea4-b205-9c9a89f9ebc6
- 1
-
3580
-572
32
24
-
3596
-560
- 1
- 1
- {0}
- 1
- World {y} vector
- 1180af4e-9307-495e-960d-727614eb69d9
- Unit vector
- Unit vector
- false
- 0
-
3636
-572
54
24
-
3663
-560
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- eef6124b-3fcd-4667-95f3-62a6f5701b13
- Evaluate Length
- Evaluate Length
-
3806
-1193
149
64
-
3891
-1161
- Curve to evaluate
- 5cf566a1-5b0a-4e57-a8a7-f455d4df35ca
- Curve
- Curve
- false
- cfd355a8-73ed-4ac8-8ec9-98a00fe36d6e
- 1
-
3808
-1191
71
20
-
3843.5
-1181
- Length factor for curve evaluation
- a54b513f-9cca-447a-80ef-59f000b81ffb
- Length
- Length
- false
- 0
-
3808
-1171
71
20
-
3843.5
-1161
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 77d2f604-ae30-467d-9e2f-b63e4d4b5872
- Normalized
- Normalized
- false
- 0
-
3808
-1151
71
20
-
3843.5
-1141
- 1
- 1
- {0}
- true
- Point at the specified length
- 572a8ce2-d9e2-4f66-a641-056986b98367
- Point
- Point
- false
- 0
-
3903
-1191
50
20
-
3928
-1181
- Tangent vector at the specified length
- 8cd8769e-24f6-414e-8ed9-3354ee8dc7a1
- Tangent
- Tangent
- false
- 0
-
3903
-1171
50
20
-
3928
-1161
- Curve parameter at the specified length
- 39706695-c878-4d5c-8866-d838b917b710
- Parameter
- Parameter
- false
- 0
-
3903
-1151
50
20
-
3928
-1141
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- 73d57946-2d79-4acc-ace4-f082f53db977
- Rotate
- Rotate
-
3763
-1686
226
81
-
3925
-1645
- Base geometry
- a441d4f7-d8ae-48cc-a1f9-f511f4bba37c
- Geometry
- Geometry
- true
- 83cfdb23-e108-47d2-a227-49545aed148a
- 1
-
3765
-1684
148
20
-
3847
-1674
- Rotation angle in degrees
- e8b34da6-db34-4faf-8440-d7ca4eaca90e
- Angle
- Angle
- false
- 71d4dd4b-48d3-4cb8-9e35-acafdbe85ee9
- 1
- true
-
3765
-1664
148
20
-
3847
-1654
- 1
- 1
- {0}
- 1.5707963267948966
- Rotation plane
- b78afd36-0bbc-478b-9736-105cbc336e8c
- Plane
- Plane
- false
- 0
-
3765
-1644
148
37
-
3847
-1625.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 3e55012b-12e1-41f2-bc2d-a9212ea990eb
- Geometry
- Geometry
- false
- 0
-
3937
-1684
50
38
-
3962
-1664.75
- Transformation data
- 0d35ff02-b944-4adc-bf6a-5100d2e95463
- Transform
- Transform
- false
- 0
-
3937
-1646
50
39
-
3962
-1626.25
- b464fccb-50e7-41bd-9789-8438db9bea9f
- Angle
- Compute the angle between two vectors.
- true
- 782b8411-b435-4f86-b51e-83a746dc8746
- Angle
- Angle
-
3781
-1601
197
81
-
3917
-1560
- First vector
- 46a989e2-6e63-4c7c-b660-bec8246c329a
- Vector A
- Vector A
- false
- d5ed76f7-d0a5-4586-bec0-352840881b20
- 1
-
3783
-1599
122
20
-
3844
-1589
- Second vector
- 88a08c31-32c3-4fe9-9d57-eed807f14453
- Vector B
- Vector B
- false
- 0
-
3783
-1579
122
20
-
3844
-1569
- 1
- 1
- {0}
-
1
0
0
- Optional plane for 2D angle
- 38d8667d-f5e0-433f-a2eb-02567ba63430
- Plane
- Plane
- true
- 0
-
3783
-1559
122
37
-
3844
-1540.5
- Angle (in radians) between vectors
- 71d4dd4b-48d3-4cb8-9e35-acafdbe85ee9
- -DEG(X)
- Angle
- Angle
- false
- 0
-
3929
-1599
47
38
-
3944.5
-1579.75
- Reflex angle (in radians) between vectors
- b2429c1c-501f-49ad-a843-ee4931788309
- Reflex
- Reflex
- false
- 0
-
3929
-1561
47
39
-
3944.5
-1541.25
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- ca32a89c-9e1e-4608-af15-c2f8c5aebe82
- Evaluate Length
- Evaluate Length
-
3833
-1508
149
64
-
3918
-1476
- Curve to evaluate
- 1b8855b0-c021-4109-8d91-3be5ecf86900
- Curve
- Curve
- false
- 83cfdb23-e108-47d2-a227-49545aed148a
- 1
-
3835
-1506
71
20
-
3870.5
-1496
- Length factor for curve evaluation
- 8de410cf-0597-4038-a17d-5f483b45b0cd
- Length
- Length
- false
- 0
-
3835
-1486
71
20
-
3870.5
-1476
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 0e275a88-4e93-4e3a-9556-e902c47694b0
- Normalized
- Normalized
- false
- 0
-
3835
-1466
71
20
-
3870.5
-1456
- 1
- 1
- {0}
- true
- Point at the specified length
- 8a2565fe-6767-47e0-8c6e-c714ae6391d6
- Point
- Point
- false
- 0
-
3930
-1506
50
20
-
3955
-1496
- Tangent vector at the specified length
- d5ed76f7-d0a5-4586-bec0-352840881b20
- Tangent
- Tangent
- false
- 0
-
3930
-1486
50
20
-
3955
-1476
- Curve parameter at the specified length
- 40f93bbe-bbc4-408a-9de9-ee8f5a9df282
- Parameter
- Parameter
- false
- 0
-
3930
-1466
50
20
-
3955
-1456
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 0bcd4978-57f4-4e7b-b1b6-d2f7833e3ef0
- Panel
- X
- false
- 0
- 1b2ada02-6253-49ca-a21b-2fa46d01a8b6
- 1
-
4636
-506
194
40
- 0
- 0
- 0
- 1
-
255;255;255;255
- false
- false
- true
- true
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- cec1ad7e-4fc8-4b70-b4ae-f9981a037932
- Panel
- Y
- false
- 0
- 6e1db03e-3286-4420-89a4-bfc4cca91f93
- 1
-
4656
-288
194
40
- 0
- 0
- 0
- 1
-
255;255;255;255
- false
- false
- true
- true
- false
- true
- 797d922f-3a1d-46fe-9155-358b009b5997
- One Over X
- Compute one over x.
- true
- b96e7bfa-ed4f-4382-94f3-5b1a98b41212
- One Over X
- One Over X
-
3662
-430
88
28
-
3705
-416
- Input value
- 7ff74437-2a95-4bee-9695-786fcec1ecbe
- Value
- Value
- false
- eeb347c1-708e-4973-8afe-e154fd52e0f7
- 1
-
3664
-428
29
24
-
3678.5
-416
- Output value
- 5759550e-d8e3-4555-90d8-9ffd2d30a3f2
- Result
- Result
- false
- 0
-
3717
-428
31
24
-
3732.5
-416
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- fadad9fa-e0cd-463a-97cb-627c4001f1b1
- Evaluate Length
- Evaluate Length
-
3806
-1847
149
64
-
3891
-1815
- Curve to evaluate
- db9d69f5-ffd3-488d-96a0-33c00bb6bf5c
- Curve
- Curve
- false
- ef3f33aa-8e82-44fb-abca-b0f773702dc0
- 1
-
3808
-1845
71
20
-
3843.5
-1835
- Length factor for curve evaluation
- fb4e2c46-be67-4dac-857d-1ed9b161de5e
- Length
- Length
- false
- 0
-
3808
-1825
71
20
-
3843.5
-1815
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- bf08ac35-3e10-41fd-8cef-3816dc364e2b
- Normalized
- Normalized
- false
- 0
-
3808
-1805
71
20
-
3843.5
-1795
- 1
- 1
- {0}
- true
- Point at the specified length
- 1f5e8e09-adb1-4c11-ab78-b4c1a72b0d2f
- Point
- Point
- false
- 0
-
3903
-1845
50
20
-
3928
-1835
- Tangent vector at the specified length
- e3f1b87d-bb4b-407c-9ca0-9ff6a5a6b326
- Tangent
- Tangent
- false
- 0
-
3903
-1825
50
20
-
3928
-1815
- Curve parameter at the specified length
- 8925cfad-84bb-45ed-b498-f88c93a91b76
- Parameter
- Parameter
- false
- 0
-
3903
-1805
50
20
-
3928
-1795
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- 82d1a17c-31bc-4ed8-a659-15e381bdf18d
- Format
- Format
-
4476
-519
130
64
-
4568
-487
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- 8bcebdbb-aecb-4b41-9763-6a385dcab687
- Format
- Format
- false
- 0
-
4478
-517
78
20
-
4517
-507
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 7601b593-13c4-44ed-ab2f-b85178c2c4ea
- Culture
- Culture
- false
- 0
-
4478
-497
78
20
-
4517
-487
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- c4f708c0-c631-47c4-bd56-26b9be6ff247
- false
- Data 0
- 0
- true
- 98023ec4-8abd-465a-9fc6-113bad1bb42b
- 1
-
4478
-477
78
20
-
4517
-467
- Formatted text
- 1b2ada02-6253-49ca-a21b-2fa46d01a8b6
- Text
- Text
- false
- 0
-
4580
-517
24
60
-
4592
-487
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- 9e5f31de-add9-4c8d-84d7-dfccca603655
- Format
- Format
-
4606
-420
130
64
-
4698
-388
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- f69fba51-d3a2-43f5-a91d-4fafbe5917eb
- Format
- Format
- false
- 0
-
4608
-418
78
20
-
4647
-408
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 7e817915-79a3-4126-9cb3-28e2f197ffef
- Culture
- Culture
- false
- 0
-
4608
-398
78
20
-
4647
-388
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- d80427bc-2854-429a-8a06-e580cd79d2cd
- false
- Data 0
- 0
- true
- 78d1fa54-2acb-47b5-b319-1ac5da0af5a8
- 1
-
4608
-378
78
20
-
4647
-368
- Formatted text
- 675330af-91a9-4396-8695-cd525e6e50e2
- Text
- Text
- false
- 0
-
4710
-418
24
60
-
4722
-388
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- 47e543cb-0490-4dc3-be9a-462020413a73
- Format
- Format
-
4476
-327
130
64
-
4568
-295
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- 0ca71344-7912-4a8c-a2a9-d32c040ec271
- Format
- Format
- false
- 0
-
4478
-325
78
20
-
4517
-315
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- f3c7e9e1-b938-460b-90b1-9c4e100d369b
- Culture
- Culture
- false
- 0
-
4478
-305
78
20
-
4517
-295
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- b6eeaea6-caba-4b56-b151-e27a82a5f2b5
- false
- Data 0
- 0
- true
- b1151352-39d9-4cbb-be71-3baf994d9ae1
- 1
-
4478
-285
78
20
-
4517
-275
- Formatted text
- 6e1db03e-3286-4420-89a4-bfc4cca91f93
- Text
- Text
- false
- 0
-
4580
-325
24
60
-
4592
-295
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- b46696fd-3559-42b4-a813-143a1171f274
- Division
- Division
-
4490
-410
70
44
-
4515
-388
- Item to divide (dividend)
- 04b7d620-77cc-425b-8d03-1672b9a93880
- A
- A
- false
- 98023ec4-8abd-465a-9fc6-113bad1bb42b
- 1
-
4492
-408
11
20
-
4497.5
-398
- Item to divide with (divisor)
- e4f7f740-3d52-4915-a7fc-845ff43ca470
- B
- B
- false
- b1151352-39d9-4cbb-be71-3baf994d9ae1
- 1
-
4492
-388
11
20
-
4497.5
-378
- The result of the Division
- 78d1fa54-2acb-47b5-b319-1ac5da0af5a8
- Result
- Result
- false
- 0
-
4527
-408
31
40
-
4542.5
-388
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- f41b3bef-9cff-41c5-baf9-5225a1425419
- Panel
- X/Y
- false
- 0
- 675330af-91a9-4396-8695-cd525e6e50e2
- 1
-
3822
-232
97
40
- 0
- 0
- 0
-
3822.662
-231.4982
- 1
-
255;255;255;255
- false
- false
- true
- true
- false
- true
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 8323abec-af76-487a-a094-87f7f9bbfdcc
- Digit Scroller
- INCREASE BEND PER SEGMENT
- false
- 0
- 12
- INCREASE BEND PER SEGMENT
- 1
- 0.77246531995
-
3671
-258
250
20
-
3671.549
-257.4567
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- ce1ec062-ce13-4671-9f88-a44eb02106ee
- d8073bf9-317e-46c3-870a-95ce7aa609eb
- a9485951-a0a3-4d49-94ea-8e98b365eb1f
- eef6124b-3fcd-4667-95f3-62a6f5701b13
- cfd355a8-73ed-4ac8-8ec9-98a00fe36d6e
- 1934f7b7-8597-495a-8e31-29665ed66e6b
- 6
- 8df9fc13-813a-47d6-97e1-b7c7f9640157
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 73d57946-2d79-4acc-ace4-f082f53db977
- 782b8411-b435-4f86-b51e-83a746dc8746
- ca32a89c-9e1e-4608-af15-c2f8c5aebe82
- 83cfdb23-e108-47d2-a227-49545aed148a
- f955a134-e1c3-41cc-a613-c147701720d6
- 5
- 5e44e181-5006-4610-a893-b56165fdc072
- Group
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 926f989d-3adc-4d9d-955b-0aef18ac1dc0
- Panel
- false
- 0
- 0
- 0.87246531994281165
-
3580
-245
112
55
- 0
- 0
- 0
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 00035756-ae62-4826-9139-7fcd846aa0c7
- Panel
- false
- 0
- 0
- 12 0.77246531994281165
-
3557
-157
122
55
- 0
- 0
- 0
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- d8d9cf70-ca1d-4a80-b178-6588262411bb
- Point
- Point
- false
- 0a00ceda-7e56-4a16-968c-96ff8825cb63
- 1
-
3577
-870
50
24
-
3602
-858
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- cfd355a8-73ed-4ac8-8ec9-98a00fe36d6e
- Relay
- false
- 1070bd2f-76a4-4b0d-9285-8bd6e91816fc
- 1
-
3875
-1107
40
16
-
3895
-1099
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 1934f7b7-8597-495a-8e31-29665ed66e6b
- Relay
- false
- c8d48b4d-cba1-4240-8c79-bd2bf70f48b4
- 1
-
3872
-1387
40
16
-
3892
-1379
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 83cfdb23-e108-47d2-a227-49545aed148a
- Relay
- false
- 1934f7b7-8597-495a-8e31-29665ed66e6b
- 1
-
3883
-1438
40
16
-
3903
-1430
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- f955a134-e1c3-41cc-a613-c147701720d6
- Relay
- false
- 3e55012b-12e1-41f2-bc2d-a9212ea990eb
- 1
-
3858
-1701
40
16
-
3878
-1693
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 1070bd2f-76a4-4b0d-9285-8bd6e91816fc
- Relay
- false
- 2e386569-64dc-4855-9dc6-cad8052d4e8d
- 1
-
3851
-982
40
16
-
3871
-974
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- fa041d61-2260-4390-8bf7-5700f6f72f0e
- Deconstruct
- Deconstruct
-
3812
-1939
120
64
-
3853
-1907
- Input point
- e1c41fd9-72f3-43c9-94dd-9a461e673da2
- Point
- Point
- false
- 1f5e8e09-adb1-4c11-ab78-b4c1a72b0d2f
- 1
-
3814
-1937
27
60
-
3827.5
-1907
- Point {x} component
- 284a6c1d-f333-4822-9cfa-898efe16a332
- X component
- X component
- false
- 0
-
3865
-1937
65
20
-
3897.5
-1927
- Point {y} component
- bfa1e26a-f67e-42bb-978f-c2260d736bf5
- Y component
- Y component
- false
- 0
-
3865
-1917
65
20
-
3897.5
-1907
- Point {z} component
- f4ebab43-c145-40c6-8072-2abfd8f55d89
- Z component
- Z component
- false
- 0
-
3865
-1897
65
20
-
3897.5
-1887
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- ef3f33aa-8e82-44fb-abca-b0f773702dc0
- Relay
- false
- f955a134-e1c3-41cc-a613-c147701720d6
- 1
-
3849
-1758
40
16
-
3869
-1750
- 290f418a-65ee-406a-a9d0-35699815b512
- Scale NU
- Scale an object with non-uniform factors.
- 1735a3f4-3ca3-458b-8d07-6d3524379f45
- Scale NU
- Scale NU
-
3758
-2093
226
121
-
3920
-2032
- Base geometry
- 3e1ace1a-75da-4d4c-a891-4d9356d9adac
- Geometry
- Geometry
- true
- ef3f33aa-8e82-44fb-abca-b0f773702dc0
- 1
-
3760
-2091
148
20
-
3842
-2081
- Base plane
- cb809d10-4e1a-4af1-af6e-ddb00c730175
- Plane
- Plane
- false
- 0
-
3760
-2071
148
37
-
3842
-2052.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Scaling factor in {x} direction
- 8ecf3918-f88a-413a-b1ca-ce689fae4a5e
- 1/X
- Scale X
- Scale X
- false
- 284a6c1d-f333-4822-9cfa-898efe16a332
- 1
-
3760
-2034
148
20
-
3842
-2024
- 1
- 1
- {0}
- 1
- Scaling factor in {y} direction
- cca03214-3ddb-49a5-893d-c7eda1f0ad7b
- 1/X
- Scale Y
- Scale Y
- false
- bfa1e26a-f67e-42bb-978f-c2260d736bf5
- 1
-
3760
-2014
148
20
-
3842
-2004
- 1
- 1
- {0}
- 1
- Scaling factor in {z} direction
- 1c581bdd-8004-401e-a63f-4a934a8e58cb
- 1/X
- Scale Z
- Scale Z
- false
- f4ebab43-c145-40c6-8072-2abfd8f55d89
- 1
-
3760
-1994
148
20
-
3842
-1984
- 1
- 1
- {0}
- 1
- Scaled geometry
- 2c3ba2b4-d4cd-45c3-bd10-22e623dadbef
- Geometry
- Geometry
- false
- 0
-
3932
-2091
50
58
-
3957
-2061.75
- Transformation data
- a97e786b-40ce-48b1-aec1-a7924e568e3c
- Transform
- Transform
- false
- 0
-
3932
-2033
50
59
-
3957
-2003.25
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 634a94ce-52a8-49bc-9452-6f6366b08a22
- Relay
- false
- 2c3ba2b4-d4cd-45c3-bd10-22e623dadbef
- 1
-
3852
-2126
40
16
-
3872
-2118
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- fadad9fa-e0cd-463a-97cb-627c4001f1b1
- fa041d61-2260-4390-8bf7-5700f6f72f0e
- ef3f33aa-8e82-44fb-abca-b0f773702dc0
- 1735a3f4-3ca3-458b-8d07-6d3524379f45
- 634a94ce-52a8-49bc-9452-6f6366b08a22
- 5
- 1ff051ba-031f-4327-ae05-2bee20ca6608
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 27c85e2b-78dd-4c1c-9a20-c928164cbb44
- d7b18b8c-16a0-47f6-90ca-ecbcf0cbeed8
- d3c0119f-bc4d-4023-bea3-7f07de919d1a
- 920386d7-a4f5-49ac-8d98-ae8582f6761e
- 53b53895-a6e0-450a-8894-4abe407a28d4
- 982abbaa-3dc5-4e91-82c5-b89e6889b245
- 6
- 86ff0bb1-7081-48f7-a924-3e72d64c1993
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- fe8168de-7728-4459-9d5b-12ac139649dc
- 0bcd4978-57f4-4e7b-b1b6-d2f7833e3ef0
- cec1ad7e-4fc8-4b70-b4ae-f9981a037932
- 82d1a17c-31bc-4ed8-a659-15e381bdf18d
- 9e5f31de-add9-4c8d-84d7-dfccca603655
- 47e543cb-0490-4dc3-be9a-462020413a73
- b46696fd-3559-42b4-a813-143a1171f274
- 7
- 340f78f3-1fb8-489d-a0b9-dca8378f7c0d
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 1e02c87b-f332-4fb0-8d48-6d02635e8746
- Relay
- false
- b05af234-ce5b-432e-8b3f-32a94a964bbf
- 1
-
3834
112
40
16
-
3854
120
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- eeb347c1-708e-4973-8afe-e154fd52e0f7
- Relay
- false
- 1e02c87b-f332-4fb0-8d48-6d02635e8746
- 1
-
3872
0
40
16
-
3892
8
- 310f9597-267e-4471-a7d7-048725557528
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
- GraphMapper+
- External Graph mapper
You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
- true
- 237c228c-493b-44c1-bc8b-e664861cc7d4
- GraphMapper+
- GraphMapper+
- true
-
3389
-698
114
104
-
3450
-646
- External curve as a graph
- 9f085382-1a88-404f-a745-ea3125137d76
- Curve
- Curve
- false
- bd33433c-3d5b-4bd6-a798-eb56bd4ea429
- 1
-
3391
-696
47
20
-
3414.5
-686
- Optional Rectangle boundary. If omitted the curve's would be landed
- 6eeb4bb9-eb05-4d1e-add9-eeeb08a85b48
- Boundary
- Boundary
- true
- 0f25a7e7-954a-4c6a-bb35-9c257040bcb6
- 1
-
3391
-676
47
20
-
3414.5
-666
- 1
- List of input numbers
- 80f5f91d-d11f-47d4-9990-7d9f08f17a14
- Numbers
- Numbers
- false
- 6de021de-e2ab-4e7c-85a7-e5888dbcd1ca
- 1
-
3391
-656
47
20
-
3414.5
-646
- 1
- 9
- {0}
- 0.1
- 0.2
- 0.3
- 0.4
- 0.5
- 0.6
- 0.7
- 0.8
- 0.9
- (Optional) Input Domain
if omitted, it would be 0-1 in "Normalize" mode by default
or be the interval of the input list in case of selecting "AutoDomain" mode
- 5f770b78-a0ba-47b3-acf0-0c929a944a73
- Input
- Input
- true
- 9f77261c-85bb-4b3b-95f1-78af58008a52
- 1
-
3391
-636
47
20
-
3414.5
-626
- (Optional) Output Domain
if omitted, it would be 0-1 in "Normalize" mode by default
or be the interval of the input list in case of selecting "AutoDomain" mode
- 291ebab8-7ac1-4bd6-8c36-edcab3744d70
- Output
- Output
- true
- 9f77261c-85bb-4b3b-95f1-78af58008a52
- 1
-
3391
-616
47
20
-
3414.5
-606
- 1
- Output Numbers
- 287aea96-d5dd-4ba7-b8a2-da692d6c4829
- Number
- Number
- false
- 0
-
3462
-696
39
100
-
3481.5
-646
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
- Extract the end points of a curve.
- true
- 858691e0-ab7b-410f-83d3-5f3e48bfe297
- End Points
- End Points
-
3404
-410
84
44
-
3448
-388
- Curve to evaluate
- 65fdd193-0704-4d0c-a064-fe14b316639d
- Curve
- Curve
- false
- bd33433c-3d5b-4bd6-a798-eb56bd4ea429
- 1
-
3406
-408
30
40
-
3421
-388
- Curve start point
- a91ab5ae-913d-40b5-9de8-c289c10d0563
- Start
- Start
- false
- 0
-
3460
-408
26
20
-
3473
-398
- Curve end point
- 8ae72c50-a16f-4525-bfd2-d416651d7553
- End
- End
- false
- 0
-
3460
-388
26
20
-
3473
-378
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- bd33433c-3d5b-4bd6-a798-eb56bd4ea429
- Relay
- false
- 2f68ea2e-9807-4230-b9b8-8a2a4bd298d7
- 1
-
3426
-333
40
16
-
3446
-325
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
- Create a rectangle from a base plane and two points
- true
- 6053a02f-d7f2-437d-8e78-c7779115a06c
- Rectangle 2Pt
- Rectangle 2Pt
-
3344
-517
198
101
-
3480
-466
- Rectangle base plane
- e2c28fec-a86f-41f6-ae6d-67746fe0a8c4
- Plane
- Plane
- false
- 0
-
3346
-515
122
37
-
3407
-496.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- First corner point.
- 196e3a18-cad5-4ac9-92ab-b2a65bb565ce
- Point A
- Point A
- false
- a91ab5ae-913d-40b5-9de8-c289c10d0563
- 1
-
3346
-478
122
20
-
3407
-468
- 1
- 1
- {0}
-
0
0
0
- Second corner point.
- 49f0afd9-2ca0-438a-aefa-c73926a52eaf
- Point B
- Point B
- false
- 8ae72c50-a16f-4525-bfd2-d416651d7553
- 1
-
3346
-458
122
20
-
3407
-448
- 1
- 1
- {0}
-
10
5
0
- Rectangle corner fillet radius
- 67f13d9a-ae4a-4c03-910d-a5e50c335b16
- Radius
- Radius
- false
- 0
-
3346
-438
122
20
-
3407
-428
- 1
- 1
- {0}
- 0
- Rectangle defined by P, A and B
- 0f25a7e7-954a-4c6a-bb35-9c257040bcb6
- Rectangle
- Rectangle
- false
- 0
-
3492
-515
48
48
-
3516
-490.75
- Length of rectangle curve
- 9331c6b8-2aa2-4a69-bb95-6f6a26113365
- Length
- Length
- false
- 0
-
3492
-467
48
49
-
3516
-442.25
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- 88aac4c3-bcc4-4ded-baed-4ec5f4a8ebb2
- Bounds
- Bounds
-
3391
-571
110
28
-
3449
-557
- 1
- Numbers to include in Bounds
- 3d1cb814-54d0-4393-b726-d4045679967e
- Numbers
- Numbers
- false
- 6de021de-e2ab-4e7c-85a7-e5888dbcd1ca
- 1
-
3393
-569
44
24
-
3415
-557
- Numeric Domain between the lowest and highest numbers in {N}
- 9f77261c-85bb-4b3b-95f1-78af58008a52
- Domain
- Domain
- false
- 0
-
3461
-569
38
24
-
3480
-557
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 6de021de-e2ab-4e7c-85a7-e5888dbcd1ca
- Relay
- false
- 9a2afc6f-b4ce-4502-b366-642a8e9a3e95
- 1
-
3426
-538
40
16
-
3446
-530
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 237c228c-493b-44c1-bc8b-e664861cc7d4
- 858691e0-ab7b-410f-83d3-5f3e48bfe297
- bd33433c-3d5b-4bd6-a798-eb56bd4ea429
- 6053a02f-d7f2-437d-8e78-c7779115a06c
- 88aac4c3-bcc4-4ded-baed-4ec5f4a8ebb2
- 6de021de-e2ab-4e7c-85a7-e5888dbcd1ca
- 0f2dee87-1bc5-4015-ba00-3d771757533d
- 7
- 5aa647ab-09b5-4453-b64a-d2c8747096d5
- Group
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 0477f978-75c8-4073-ae96-43a8fcca2956
- Digit Scroller
- LOP
- false
- 0
- 12
- LOP
- 11
- 4.0
-
2217
-2011
250
20
- 7cd2f235-466e-4d30-bd3c-3b9573ac7dda
- 4442bb24-c702-460c-a1e4-fcdd321eb886
- Fast Loop Start
- Loop Start
- true
- 55c019df-0659-4876-bf58-5f79d81d5357
- true
- Fast Loop Start
- Fast Loop Start
-
2521
-2030
112
64
-
2580
-1998
- 2
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 3
- 6cc73910-22ac-4eb4-882b-eb9d63b8f3c2
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Loop iterations
- d0585d53-48ee-4f51-9104-036f83e859b9
- true
- Iterations
- Iterations
- false
- 0477f978-75c8-4073-ae96-43a8fcca2956
- 1
-
2523
-2028
45
30
-
2545.5
-2013
- 1
- 1
- {0}
- 0
- 2
- Data to loop
- df3bf6a2-914a-4592-b72c-8b59b0693f22
- true
- Data
- Data
- true
- 1d0bf2e0-f67d-4a2d-a256-b3237aa6cf7f
- 1
-
2523
-1998
45
30
-
2545.5
-1983
- Connect to Loop End
- c9b7f208-347f-475b-885f-7a4c65588465
- true
- >
- >
- false
- 0
-
2592
-2028
39
20
-
2611.5
-2018
- Counter
- d417db9c-aec8-4bb7-8abc-3de0f5f139c7
- true
- Counter
- Counter
- false
- 0
-
2592
-2008
39
20
-
2611.5
-1998
- 2
- Data to loop
- 1f0a6b3f-c026-4d9a-8d9f-570c3226e235
- true
- Data
- Data
- false
- 0
-
2592
-1988
39
20
-
2611.5
-1978
- 4e5b891f-3e8d-4b3d-b677-996c63b3ac70
- 4442bb24-c702-460c-a1e4-fcdd321eb886
- Fast Loop End
- Loop End
- true
- 101ff1bf-fb74-4f79-9211-183bf9e8ab06
- true
- Fast Loop End
- Fast Loop End
- false
- 0
-
2667
-2020
93
64
-
2721
-1988
- 3
- 6cc73910-22ac-4eb4-882b-eb9d63b8f3c2
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Connect to Loop Start
- bcafef25-2c23-47ec-b9ef-d641bfb93224
- true
- <
- <
- false
- c9b7f208-347f-475b-885f-7a4c65588465
- 1
-
2669
-2018
40
20
-
2689
-2008
- Set to true to exit the loop
- 1e8dc351-76fa-46e3-95c7-39e8374a8c53
- true
- Exit
- Exit
- true
- 0
-
2669
-1998
40
20
-
2689
-1988
- 1
- 1
- {0}
- false
- 2
- Data to loop
- 12b663a4-ef2f-4a67-a753-e47c1fcc8413
- true
- Data
- Data
- false
- 0
-
2669
-1978
40
20
-
2689
-1968
- 2
- Data to loop
- ff2f6ed7-b1ad-4798-8a36-7aabe52934e8
- true
- Data
- Data
- false
- 0
-
2733
-2018
25
60
-
2745.5
-1988
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- b05af234-ce5b-432e-8b3f-32a94a964bbf
- Relay
- false
- 126337dd-1af0-4677-9f3d-c9aca13780b3
- 1
-
1440
408
40
16
-
1460
416
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 29387d88-3c9a-4bf6-bf27-d341223ee6f9
- Relay
- false
- 9a3a2565-ca9c-4cba-a8f2-71893c185078
- 1
-
1525
150
40
16
-
1545
158
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- ec5f2614-0df0-4917-890c-da4bd44522a5
- Relay
- false
- 57882812-a11c-41f7-9da0-24f2bf7b1630
- 1
-
3933
-140
40
16
-
3953
-132
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 76d86607-84be-4bd2-a5fd-b914901fb804
- 09130dc2-bf14-48a3-b968-ca16910a4892
- 02bdc090-95ea-42c1-8f04-b9126740fdd6
- 126337dd-1af0-4677-9f3d-c9aca13780b3
- 39e2e112-f2a9-4f7f-b3ea-47cac2e7027d
- 5
- d74e7daf-f3ef-4a28-b630-edd99ca81fc1
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- a9f9c005-baca-48d6-a9b5-c90641990a40
- Relay
- false
- c9cede5a-3217-4818-a755-a317d4e40aca
- 1
-
3426
-149
40
16
-
3446
-141
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 3d3ed989-8005-4440-b88c-cbb6953144b9
- Relay
- false
- 030f2990-06f2-466d-8c0e-2a414bd0aff7
- 1
-
2320
-1833
40
16
-
2340
-1825
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- 7eae606a-a783-4ca0-8496-6541254db4aa
- Scale
- Scale
-
3342
-278
201
64
-
3479
-246
- Base geometry
- c7a84905-86a7-46ab-adb6-eea4e810d0bb
- Geometry
- Geometry
- true
- a9f9c005-baca-48d6-a9b5-c90641990a40
- 1
-
3344
-276
123
20
-
3405.5
-266
- Center of scaling
- a00ed075-c064-4083-abae-0e3cc3c1c89a
- Center
- Center
- false
- 0
-
3344
-256
123
20
-
3405.5
-246
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 002628f5-2906-42ee-95a9-fad0a1c5f8d5
- Factor
- Factor
- false
- 86a4e16d-a85d-4541-a0e9-6f42c3488e71
- 1
-
3344
-236
123
20
-
3405.5
-226
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- 2430dfca-1aa5-4c45-8fa8-e5c60471d7c3
- Geometry
- Geometry
- false
- 0
-
3491
-276
50
30
-
3516
-261
- Transformation data
- 0cee081a-94a8-427a-a7a3-89f45aef875a
- Transform
- Transform
- false
- 0
-
3491
-246
50
30
-
3516
-231
- 78fed580-851b-46fe-af2f-6519a9d378e0
- Power
- Raise a value to a power.
- 61a7655a-5951-4110-a1a7-6cc34fe35e29
- Power
- Power
-
3403
-216
85
44
-
3443
-194
- The item to be raised
- 434ba44f-64bd-4863-bb54-3249720e8ca1
- A
- A
- false
- 0
-
3405
-214
26
20
-
3418
-204
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 2
- The exponent
- 9acf53a2-1544-4c72-bc5e-9543a45b2282
- B
- B
- false
- 41b6d614-494b-478a-b642-89bab1e20b7c
- 1
-
3405
-194
26
20
-
3418
-184
- A raised to the B power
- 86a4e16d-a85d-4541-a0e9-6f42c3488e71
- Result
- Result
- false
- 0
-
3455
-214
31
40
-
3470.5
-194
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 41b6d614-494b-478a-b642-89bab1e20b7c
- Digit Scroller
- SCALE POWER
- false
- 0
- 12
- SCALE POWER
- 11
- 16.0
-
3321
-169
250
20
-
3321.278
-168.6886
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 2f68ea2e-9807-4230-b9b8-8a2a4bd298d7
- Relay
- false
- 2430dfca-1aa5-4c45-8fa8-e5c60471d7c3
- 1
-
3426
-299
40
16
-
3446
-291
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
- Mathematical addition
- 63e3cd47-332f-4710-9370-2870a1156c05
- Addition
- Addition
-
1947
276
70
44
-
1972
298
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for addition
- b39c8344-dd4a-413b-9cb1-bfb05d85c2c2
- A
- A
- true
- c53b33e6-0f3c-44c2-9c20-257e6e421dd6
- 1
-
1949
278
11
20
-
1954.5
288
- Second item for addition
- 957f96ec-f7db-4c20-9b40-b43daf2844f0
- B
- B
- true
- 29387d88-3c9a-4bf6-bf27-d341223ee6f9
- 1
-
1949
298
11
20
-
1954.5
308
- Result of addition
- af407afe-bc69-44de-8820-633b511719d7
- Result
- Result
- false
- 0
-
1984
278
31
40
-
1999.5
298
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 02bdc090-95ea-42c1-8f04-b9126740fdd6
- Digit Scroller
- ADD LOP BEND
- false
- 0
- 12
- ADD LOP BEND
- 1
- 0.00000000000
-
1480
-1122
250
20
-
1480.784
-1121.126
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- c53b33e6-0f3c-44c2-9c20-257e6e421dd6
- Relay
- false
- 02bdc090-95ea-42c1-8f04-b9126740fdd6
- 1
-
1789
-1114
40
16
-
1809
-1106
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 126337dd-1af0-4677-9f3d-c9aca13780b3
- Relay
- false
- cb929041-b122-407f-ad06-615145a3fc97
- 1
-
1776
-911
40
16
-
1796
-903
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- 39e2e112-f2a9-4f7f-b3ea-47cac2e7027d
- Division
- Division
-
1761
-984
85
44
-
1801
-962
- Item to divide (dividend)
- 5e8c1812-dc27-45f9-a30e-ceadf53d3ddd
- A
- A
- false
- 9361e405-3817-4de7-9409-cb3eb2c5b242
- 1
-
1763
-982
26
20
-
1776
-972
- Item to divide with (divisor)
- 4313f75e-d27a-4da8-b83a-08d7d112bfd2
- B
- B
- false
- 0
-
1763
-962
26
20
-
1776
-952
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- The result of the Division
- cb929041-b122-407f-ad06-615145a3fc97
- Result
- Result
- false
- 0
-
1813
-982
31
40
-
1828.5
-962
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- GH Python Remote
-
7TwJlBvFlZrxnBrLxsZAslwdOcaa9VgemytxMmCNNJc9V2bGOMY4co9Ukjru6RbdrZlRMGCICYvXmAVMwhrDcjjA8kJscxoTYod7QxJgH0tgITziQDYhCS/mijmC99fV6m61NDfZfbt6TzPqX1W/qv5V/1f96qqIGssMIMU4Ap8Sj8dTDt8ZaTmTlJToINJ0SVVwUTeAcTH+VOIqvF0rEuNIw1XKWbGXF7VFMLgaQJ9/c3BFsGFr6KrKT8pP/spLv6/s1tCghIZwuRfKK3pTgCU+k4E7kJ7qy6YRLp7GOvaxsk5VGxBlXPJFgDYJpWarXiSjmIHivOyI58z4nAhKSIpkwCy6NTWNNENCOkeLv2UR0SD9VMHDe1fOybx21QtVNRGkxzQpbbDJ4yF6yjrFAcSfjm9pjaazRkpVohoaUA0U1Q0ptj4bTKaGq3tgOJhuOqcp/vg4NKxmKLWncXrByL4JI2edlTJwRZ+oJRGpeRI8/ht8DWhSdq6qDnByn3bqbWeXnwNzt3VVjSF53VT3xNLtYlbNGNa63hZNzaTzKk9vaQ21S/2aqDF6lTA2lNuqYkglrZclY2bNjwrpOhrol7PNGVm20u3sRqQkgbtGnXAOFa6GU4OnBuuD9XVCOCMbGQ01KChjaKJcJ3Rn+mUptgJl+9T1SGlQANdMjvicnGhivJUMS0UoA0zRTKaVtsW5DDo/Nn56Kh0IPbNyktPVj9ljkuEo+NZQmI0YGF5B4R4mXbh6WcvKnCLsWVkZWu4/qX1n5f4lHze9ddE0IN6oBujrJtIm9BK5rA6riiFKClW86XiimMNhNY7alDTlMG71X2UJTR0QVF2QBtKqZghp0Uj5vATYoom6nlLToBTBZlUGJTZrrdSRRifCCnxenzcmZ3QDadGYOpAWGoRkCimDwTA8qAroerBL6ZaUJFf9QG2wawiG5/OmRQ2eo3E1FsWdQ0srovxmzZKMuskofV4pITibS7qgqIbQCZ0u9XkF+MwVWhCdmGCorL7Q0irEGU5aK44SIshXdEjV1kOH0bikwVBwq6DYr+P/AfIAcAXIHnD0W1vr8yJZz/XZLMpyvxhbT/ukfWeAbIJKhYV3KABC2iajRhOEms5+86i9pn5tLW1DCABVJR3Q0AF+U5WUgImrTvAnUwupJVpILZG/tpaNsmivo0ZWjH5mUzeLuaAlxYQ2ramDUhzpgigwCK0sxLj4zGiKS4aqtasxkaPARq+Tfb20uFf6FlEIAUBPg34Nwbe6VbIIPTFTXgzqyhhWWA2p0qZj0TLt3/Q2RTdEJYZaMpJpJ9qvvjb9y02vdd1Qf9/qJ86eu21Gmx6KD+Ja8Q7QL7PxzA5R01OiDB3h5jkrWURvqzphkbAWV9Bib8gwNKk/Y1Bjay4BjWBfKOa5BHBzCMxC2ON5p9HjeT1U3i0NqmSKJ5PSKoDODvu6RQ16AA2DpU20WmovoUGera+hpMoz7FUU3hYnqwd8V8ef3lqyvzqy7+3jOnwLjn6ONST9ceuPG7oJg58SQFBJEzdxCrpyQ7n7rNt6rv5L53V3vPnlzRfNvtRG3KNd0OSR2LVSFxkc9SMIN2t61YwWQ/mL8yg58yWgfQVwZh/8P5DHmYcIZ9jiUMLMdd7isH3v66svf+Nw27699+/bs/7X7ba5lneLCpLthr+aYXIjeCAE+g4thISqCTGwuGDywXJiJVTigoGGDWFQlDNIdyX7oVtOePWZrb1du9//5W+WPRnZ7TKUPEJ73Kga01RZ7sFKjYHcPyAkpBTnwuVktBtDiFRic9kHw+fdzouo4CcgWFYkao4R2Ao29xhQC6zLwY23O/jIfdU8PjYDD98Cbq2H/3KjF3QcHOF2lLBrDAX3SMmU3cWi8D41bYXaheG465vDG7Q/NM4kRLQ7pZVsjhVhVYbZYxB2ZM/96MiRmogmDrUpcSlm8ceqMRBbNAuoA0RdkkFCTND03jSKSaKMvYOcn1jRa2hIHDCfy1ZpYjpnw5pVSnZT4JvFAUnOcqLXAF/ANdSETjRUxs0yJerGZUzOSwvJeRKKvui7o2vP8JUHfhBt/KNNuLznYKkU2iXd4eVgB72ygLAv6s6tMDK0FFRYODWkIy7kWC5iKVXVkYCdH1eZ331H1yt3z/tO6IpfTDtlx4yfbK7GY7DJHxbfKgzlC4Hp4xWYQZ6OlBHoqK0P6azNQMS8miapaRjPzeqtev3hnra+tnCo3W8bShUHV1mDoxIb6pLiqCv9TT09XT12vOUEVgRpaXGk1f5VoZ7Ots4WO9pKBi2CeFpxxBX+ts7mLjvWMgwqgrJsJAJEmhpXOkZaTmB5SEtMpOXFkVb5O7v6epv67FgrKDB/rA7rxYM3V+t1AKzXTvjuDjE9nFZIDz+97J6dRwfLGh8473Pbb093fN82lmmwUtsV0MtwzAqT1cRFDWdCfV0FW0xX+aCX1rQtEjMYzLl4uKm1E5+r2t6gtD/16peOtN30jYdO8P71T1flzSJPCQkwTwcd69GvVn+89D8eeaPj+k2ZJwLprp8XWo9GyZoDCyLYZfN40sRBYKwpGxdrZtEwLQq0AEmD9U0fK6OaYBFNZGQe7+UQsTBGMFKIFaK4MKDGMzLYUEkRskAE5rzrE2bv5IzCVSh63n3sxa8dmt16b/qML2w74f7zRqBfnoi4VBlJYJ49bcnpN81+qunGr168dvmeS11t+hgEZlkKBCYYdghMeSGBOfbglZHZS58N33L6b/bvenooYl8GZBZX5buPxeXkzRLeUgjohla7VOhmsa4o0DhRQMMoljFE8MDqBPA0SRGLOGO0M/C5hXW0dhBqr6P1gLU40MYrtYhrxsWFMXBIMKcHJc3IiLKAFPilKpj8eDVPSMNQ2J8V1pHqSxctWicEzN9QOYoRrqsNCm0JAQ2kjWydkJCApnyoZNuDyM4QgNUhXZjXHeprnTdhQf4/QiZXTdvg3f/EloqfNz/wiPeeR+94O+oueHkKlisZbyhWdBG8HiztZqviVIxLcaZpmTHrzF0l0EgI9KuwcIkKyEKY8EsnvAQ2KHSrt47EYdTM6IKChriBqxOGUkgRjIymAB9BUPq0DAoKKyRZzsOBUcTBWeDogftIQ8AhYkJz5jMfabMo62jCgv+/aa6u0nvXkXd2Ltlzd8d9718Wqt49+9t53M93HjBwSmS2vtFh7CvHJbOVjLZjldvHS/kKi20YCaOAoe0smqJlxBYRerM1GxZjygu8WcgMSFDoS6EsGA9ZFvqRIMbjlA24Iu2VhOXDRpCemQgQ1BJyamCJRFlWh7AphNoDuFU/xg7OQJzaJRXgGrdU5vahzgeiY1tp2dk2d4GDQm+m35wg3hNBw+JAGqa0TskMpLNBCJlFOblOSImDiPVLR46G07IUkww5Sych6TTEZHUGRUnGZl2QQfC1CWvU/3NhMrjgquuvP3T2m4f6Lgvd8M5fH5xzorjZVWvy9N0smBKd3wL6/k9Wna8aV0QwA+i2HsWjrqo/cjiwspMIlClg2MCKhjAE9lXQMzEwsTr46UD6sUjRhFVhakblKhp3fri79tHWkzvvPPTh8f9y2o8/KEbcPAlxlo8UKDx1yV9WLLvGaLr7yhWffv3E/cOTEVluca4duKPJPYE8qqWVn970EEMz2kPIHSeYZkpPw9B8XvYsq8kkGBl2Huk8pORRYVZnFQxpAJmxooxQmhwRsmcr1y3wZIoaKWoaGSI7MMh8DDV3/mkxXX0qnXOPFYH16HQFAjdDDra0RnuAfzDEDpBLMYna0SAyQ9smTVO1OmGVqClkwj4vdn/lKFAgKpOKDUISQaxpaAFGlTrBLKzjlAqy/bFa3D6ZJId6vAiatxNYwG+fn9+sHdShDkYYcPQONWIpCy66NdwKHpcM+EhpsbYJnJJhGLbhNHNYwD8vQCriRatWXyrMC7Bf5ynzAgOUWLW63+wl19LEm5tBio5Jh57WrDWhYAD4YGOpMREH881QWSoHHoPP29PV1Vf0aJiJMUaakGQUsGOsxSemWjobi+pIG0Qa4ObYyGkrRl8n+GkTXEWKoWA6S/se5xm7zztX6EWGxVvG1jDc3tXbFMFnyGS5lKjbnJA0WDbBicWNiFuOkxxEWfoW2E5EvAxqz7jV9XkNLctOlFmuC8t8wZsjGShHwzGUNgRsLIigF6kMk/LTcflpJXm9aTihDAYQqKXzWSVKBj27sk2KPZHYGGkD4C5grcR6h/ld7/MOpYAnBfrGnXd1djaF+/DWM8ZRuB4MEldicyH2JrCYHYbT7hY0CIvNY3o2AgDVW07fc5Tjn2RqSTobHRAVEQtuNIqGJSMaDfw9mDmI+mNRSUmoAX7ojj+MuE3kHxDBgS8NligHGRXJC5KdFzKlhIKAvTN/OMcLGSWI4ykq8Be4ooM3hncgyI4ZESycp6EhHIZhFYRFA4uX34ERLIMGo8U1LEWWwQBtbVqRnwDCP7a8klA8brfHAWZ86/j0LH1ooqQjgdUnIhzIVSJpKKAvS01e04kVEJyu7qZO/9JRsCQniLnKNumAWgUXIgdj7Pamzl7Id1oa+A9HOZ60mjEaFtc7CvDS1YAJnYeQ2f6G3BJlr2E5am+w/K5z5TCZNLF2DtVQMDejVsksRExCdMwqXAlsoZFJJLi3KMRARGE9i6WYWUpnQfJ5f2B6eQYf1wdAEMKrMV7QEhmFiju2RCIJvOI87qH1TaQmRovBAlQ9iBxEkl3tXIwmMSdU0FQQJpozxCyNi/+6xg/4/WuhB/jPJwkSnjPRGISHiGcm8aHpRS2Ra0fQkHUDvwLwrXWwPmc38KrrqMFsVRtxeqxLgY3VY7F++DN6C4A/I1iB/Ab4Q/0z97L54JjL1Joxb45F4f4LLvRjYjOWUvUMzg9St8WFePjjABHLk2/su5rdqPe3JkSPdaIQousQeiOI/2UVbwxkFIjRybGlnJ0/2onjrLqRLCpbvEbhVeSM6VwSowyiPF8GF1oUxSLPFhLGwSEvqB48H65AFaqqtNKYxL3gkjzioo7dpTB4xrBkD4qaRPZByKFBP4qJ+ByNe6gCSYnQ2XEq2UHCwgP1gCRIwDaSeob2iBY70rnB0eiF+N1k/H6IC3ESJN8MMo0fiCdoCFcHt1ngqU9R5uC6Mo/nt6WumYN/hLj4lPLRZg56Rp85+HcbK9dvTP4wcsuivZFdc35618QyB/Pi7fyNh5ZWq08w2lS1P4c9nsMhj+dE+P9coyNVbWN1xOO5vTE/iZAc2nhckwjxoWQlpZKZK7jh6o82vXTSvR3/+OsLXl0ev+5WXl4yQnnpCOXTRigvK1DuluSIv3lJjp2XvXZW71N/WLbpmfs2Vh3qesGswEfuzII0K5QWqEApZmZJ1rBdmZkhvMnapyEUIntZphS4acSxLH1SwqhMj859M2ve9hU3PumdG97z1gX//Kr/ld9O+ESuZBbtnUwhN1i+3+nrTcE8smnUKim5LPkSx66X85yw4K4Xx5TbsjrtuFPOfOrt7q4H7tz7/LuPf3n9aAX9EAh4WSPYgkacOevMyTwCpXWNFuaUjJc5s2zMAQPqzpePl9248I0NNSvuVe756e/KOobGedY0KdxwnnuNgRvvzy9/cdf9H3RekY5+99PQvNVj4UZfUW5ssHID45nORlFhn+aYGXSMjUHcf3Vl0t5rdx1f/uKh8H3b7rnu0+2VX5ngIUERZpWMmlnOg4vPSHWuKcqs263MmjZe1TnOYddYOOnOm51Hb923cOnl4Wufq9oqK4fvtfGm2mycxx1L0ZQokzNx9DPiz76i/PmFlT9l4+XP5238GTFb//Rlh9rPePl7jZd+bfHDv19wt93E1RTL0q8plp0/KVxyprR/Rlw6WJRLHzSO5RLFGX0pxDKJiIOtUN+aZlhwt57svSEcxwk62cd3z/B35jeON21yghcnNk6P0EUaW5sypzd68zGRu+5qttGoZAQanWi/aGKPZNyl1nkgN7mnf5NBoE1FCHTkyPdtBCodgUCz7QSCcNWdKvpH4tXXRB5s3izPvvgbL81Z6HBX0lkXdwWAUzL/J9n8q1wF5HeN7NCTDMLzt792+Z8leemj+MDK73ZYiRVXj+EdA7YtAVJEMvRy+3jkke9P5GEOiuk0UuIB/wX1F+KNgxjfiZgPgPlr/Zb9KI6rlm9ry0ixwvVavOFSX6gncug2RfH6DvZ1idcfAZa2lU7BTb/E6oPL33yot3Xr3j+dqt8xfMP/oJt+y4Ig9XWwQJwVdrvpF4HSpS43/Xg+uUuQTq5qjxCkj/smoCPEnSy/nUe95q4WpaH77R1/887+JcKK3Uuu2LB62y7dxpvpViHPY429dEpc+FHnfOQ7HysvPnz5+WveC21+6wsvbCtRLxmlBB0Isvzxa9xuJL5+JpGgsTgfgn3dyLdDrmxxZsVPRSL+RO9utjBK3eNGKaGHUIqtMDWeAulZi3f2PLFm178237lz5jOPXvT+d+23hchLFuyrB3fHYTQae4EGFwLH9T/4t8qNISeFhCTGi4/srcl27AZ6aVuES1/k5ZZrszd9tXHXP/yq7JbbbngDivhu1iUbf7ghkOrs3HP5vOf/fda6MBTxfayHA5/ueGa2J/ydtq63P6kMbIIivvu29qIdSCqbG/rxhaErPi699ZWqtkjURv6yQjb3B3Pfff6Y5Ucvu/yTD75eN5D82IVO+RdLHYz0cEZSnkwvxJOV8nkXNx+uWr5j+7OvBs578lP7RhgW534wKna2+DiiRlXOXesqDYtcIPbs2B9qLz328dJwPwftzzwapqCYFXTrhmoAxa0NMciNldNDwvkZfH0V39A1717ikjkdUkxTdTVhCL2iogu9SJMSrpR1MrmizRBlKWZqifvs87cBeYnjWufToTLrrduzbLv+7AiMJXMGfd6D114jdEsQhSAhnBmUZBl+63XCkvrFZy5cUr9kyehUc8+O74XaG497/L0LHg7ffG7a4fxxTjAx8H3mYnB+e4VVDGq2bQlTUMwKOnjyJ485xACDpkoMnAo9yWKw0S4Gy3qQjER6/IfvsuAj7o62Pgi7YkjBB3xJyUhl+oPg/i1KS3JMyyyyp0uNXhDO31L5+LLtl4U9Ty9wEQRMeCYIMz5zQfjZg+8/ZhGEHx3zuQgFxawgzzlNBxyCgEFTJQhOGz3JgrDOLgjPTe/JKPTdAuwIkBwvivjmEziosFybN6GUJBCXXAnxeWHVkpKKnn/LD9q6ZvJyV1AP4hAmpCVJKlzu8DYGjrvzEhYWSmueH39XUzpLq+MsviBHMIGbXI50pPFd67IjmegdLzu2sV744q3Hd8nH3vc4bvzYEYzv/o8j1YlfBuLgcV+2cGQzjPLmxcgZOCNdw3D2O6Y7GfbGY7qgYW86ztsaecxwubqR00OeGk14Q6a4Zj69ID+/TphPLuDjH/h2P/7PcqPxT/J2AvyDv/5g/tpaR4ZMO80MFmgX7L5xgqkmSXEW2kDhWExPXplSlOlmRpc5AeubkpgtWUVB+J1QJOE8a/Zow+XI+skh9nl7SD5lztxBMMaR2+/Kg/iB3SJEsu4T58hrz/Cwyj9/gYbDJlNFyNkEsJ4BnHdoTfmgoQfgwBvV9AGmxhLgmCC7ErGbExFEAKqTm1Sj9gx+dubhx168fk5EWPhhON8zwCsx8wxmFvIMir8JAWY51hs1S4oQoIDgTPS6zDi6dPUbfpL4876PIluaHlzc/qOGi18+fbz7vo4dEOd28qS8T8G89fLf
- Connects the Grasshopper Python component to an external Python instance.
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAWJQAAFiUBSVIk8AAABAxJREFUSEu1lXtQVGUYxo+m5agV02XGnMzJaTIrFHC5o2uywKpclpsuYqkpxB2UKKcstZtaCkWmKxJbUo5NpUSFhYWpeAsqEy2hbAmJ7U+Lohn/eXres+fAnmWt/sh35jfnO9939nne93vP+Vb5P8KelQ0dberqxVUx8ieq3Y/w3PmJkKLahqCCnQjKdwzj3vzqS9PzHA0zCmqCtMfV8DIaoV1Hqgv+IqzsjcGM/JkIgbmObi7rYpKt93ikNh4e5lJnQOSjbw0uhhTt8msgcPkaQRPzHo++ssG6/QExa/YisuJthJfXI5TVzCyuRbCfLePjY3Q0weu0q37/n0It2VRSh5BCYzWcv5EEaMj4BnK9htwrSuKWQ7b5L35+ybqpGfHPH4DlmY8wd/0HMD+1D7OeeBfRj2vVrN6N0FKnoRr+fAJ+LYfOqabsVM7dSm4hNxNFSa5qPZ1UeRgLtrRg3uaDSHjhE8Q9+zHmbmjEnKf3Y/aT7yFmzTuIemwPIrhl8gKYSl5HcGGNGEwZMliN387nNHPuDjKRTCCKkvbaKdiqjyO56igSt34BVgPrxmbEsZpYVvPAugaY13pVwxcgfNWbMJXWYfPWFeWquLsM+KUIA65l/ZS8m9xJbldSnN8EZO78Cunbv0TqqyeQ8kor1GpeaoF100HEsxqLVLPep5qKPQjKqaz/rnW5A30lFC8ALuYAPy+TqgIHTZbSwF77LRbWfI2MHW1I23aS1RxDUtURbtkhbtlnSNj4KeKea0Lshg+1at5HaNGO3RbzpJgBV2E/evOAnhUUXwq4FotBMLmP3EUUZbHzLLLqzmDRrtPIdLQjnVuW9HJro2Xt3vlcvonIXk4iU8hUq3lyRFN9StkfXbmduJhL8eVA94PAT3bgQroYmMh0cg/xGOhINRnb2xrdHXn2y33FPUMNHGok+oqB3nxuyUot62yKLwR+TAW6ksQglMgxcr/oGwwEW+Xh+OHCRGskeh9h1g97snZlMesM4AcbxRcA5+N1gxAyQ/QVu7OjwduAU2OHifs0Et1LmPUiZp1G8WSgcx7wvQX9bVFd/L0YzCRioijZzo45PgbjB4XdqyguWeuNfEhtJC5kaluSyKwTKB6Lgfbw/n3VUyv4e+mBGMjVEHK8Xks8Bu5SLWtPIzkfRSJJBAn3IYxI5oIIy1XmDCEGo8n4f2skOq3qlvBZEdHRDXRxMTaEbjDunxrJdVUE52bJ2LcKHbmXSg0hp+YoMvaya0nPlRrJddmCMJyNlrGI6Hib6RhCDORPY0x7ozXmzzNpB/7qsv3u3Uicmw0RFtwtpiN8Vvri3Ru9AqlSGm0I9dwn0uhxRL7i28hkIp/9NCLnjLx+kp0IR2tXMRBhqU7W+aEpgX8Dlwgy+Wtmo1kAAAAASUVORK5CYII=
- 75ac1cb6-ddba-4be7-bc22-ce4ed6a337b3
- true
- GH Python Remote
- GH Python Remote
- false
- MIT
- © 2017-2022 Pierre Cuvilliers, Caitlin Mueller, Massachusetts Institute of Technology
- pcuvil@mit.edu
- Pierre Cuvilliers
- https://github.com/pilcru/ghpythonremote
- 7
- 09648867-3bd2-4cea-83f0-76b1a57fd716
- 1e6bd163-b731-437b-a13c-5a6b3f78e28c
- 26fb2b4c-331e-4a42-ac74-de9f65f1b30e
- 4280c996-993d-4511-91d1-f3863d846d20
- 8698b942-1698-4f4d-9a58-9d7b0a9b7d89
- 9d7b8e46-02a5-49e7-9313-04efa45c829f
- ea17f802-dbae-4d5b-8564-d94bed84bc2f
- 29b0f9a8-48c2-4e1f-a8f1-f91b9f34bef6
- a4f2ffaa-b132-4dad-b4f5-854109b01283
- c74c6e9b-38dc-49ff-9e5e-b91c0afded8f
- baf066c1-44fa-458c-b731-4cbc3d7fd935
- d6c3f352-f151-4812-b370-3621941cb55c
- e53fb9e0-54f1-4185-9bf2-fdb7141d618a
- c5bf0a7c-068c-46cd-b6bd-0ab2c2a7ee5f
-
-854
-47
169
84
-
-788
-5
- 3
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 4
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- location (str): Path to a python executable, or to a folder containing `python.exe`, or the name of a conda-created virtual environment prefixed by `conda://` (`conda://env_name`). If empty, finds python from your windows %PATH%.
- ea17f802-dbae-4d5b-8564-d94bed84bc2f
- true
- location
- location
- true
- 0
- true
- c50f682b-1ba9-4564-af2e-d70bf4b32a2e
- 1
- 37261734-eec7-4f50-b6a8-b8d1f3c4396b
-
-852
-45
52
26
-
-826
-31.66667
- true
- run (boolean): Creates the connection, and imports new modules, when turned to True. Kills the connection,and deletes the references to the imports, when turned to False.
- 1e6bd163-b731-437b-a13c-5a6b3f78e28c
- true
- run
- run
- true
- 0
- true
- 0
- d60527f5-b5af-4ef6-8970-5f96fe412559
-
-852
-19
52
27
-
-826
-4.999998
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Boolean
- true
- 1
- true
- modules (str list): List of module names to import in the remote python. They will be added to the scriptcontext.sticky dictionary, allowing them to be reused from other python components in the same Grasshopper document. Submodules (for example `numpy.linalg` have to be added explicitly to this list to be available later.
- 9d7b8e46-02a5-49e7-9313-04efa45c829f
- true
- modules
- modules
- true
- 1
- true
- 70a78ddd-7690-40ce-b9c4-9546b8e34af5
- 1
- 37261734-eec7-4f50-b6a8-b8d1f3c4396b
-
-852
8
52
27
-
-826
21.66667
- Console output.
- 26fb2b4c-331e-4a42-ac74-de9f65f1b30e
- true
- out
- out
- false
- 0
-
-776
-45
89
20
-
-731.5
-35
- Names of modules that were successfully added to the scriptcontext.sticky dictionary.
- 09648867-3bd2-4cea-83f0-76b1a57fd716
- true
- linked_modules
- linked_modules
- false
- 0
-
-776
-25
89
20
-
-731.5
-15
- The object representing the remote python instance
- 4280c996-993d-4511-91d1-f3863d846d20
- true
- rpy
- rpy
- false
- 0
-
-776
-5
89
20
-
-731.5
5
- Useful import statements to use the imported modules in your scripts.
- 8698b942-1698-4f4d-9a58-9d7b0a9b7d89
- true
- import_statements
- import_statements
- false
- 0
-
-776
15
89
20
-
-731.5
25
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 70a78ddd-7690-40ce-b9c4-9546b8e34af5
- true
- Panel
- false
- 0
- 0
- numpy
scipy
-
-1032
20
160
57
- 0
- 0
- 0
-
-1031.022
20.13824
-
255;255;255;255
- true
- false
- false
- false
- false
- false
- 410755b1-224a-4c1e-a407-bf32fb45ea7e
- 00000000-0000-0000-0000-000000000000
- GhPython Script
- import rhinoscriptsyntax as rs
import scriptcontext as sc
import ghpythonremote
from ghpythonlib.treehelpers import list_to_tree # Rhino 6 only!
np = sc.sticky['numpy'];
sp = sc.sticky['scipy'];
a = np.diff(x);
a = ghpythonremote.obtain(a.tolist());
a = list_to_tree(a, source=[0,0]);
- GhPython provides a Python script component
-
132
132
-
550
555
- true
- false
- false
- 4c0c980d-47a2-4a63-962a-8fcae74b2a18
- false
- true
- true
- GhPython Script
- GhPython Script
-
-1006
-147
56
44
-
-983
-125
- 2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 2
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- true
- The x script variable
- a2b60e04-e911-43c9-8247-2e8bda5a149f
- true
- x
- x
- true
- 1
- true
- 0
- 39fbc626-7a01-46ab-a18e-ec1c0c41685b
-
-1004
-145
9
20
-
-999.5
-135
- 1
- 3
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 4
- Grasshopper.Kernel.Types.GH_Integer
- 16
- Grasshopper.Kernel.Types.GH_Integer
- 256
- 1
- true
- Script input y.
- aeae3f02-286a-41d4-b690-2a9cf199e7eb
- true
- y
- y
- true
- 1
- true
- 5bb3fe24-8511-41f9-b837-d4cd065536eb
- 1
- 35915213-5534-4277-81b8-1bdc9e7383d2
-
-1004
-125
9
20
-
-999.5
-115
- The execution information, as output and error streams
- 5fb368ad-087e-47d6-a13e-4dc915a8fcd1
- true
- out
- out
- false
- 0
-
-971
-145
19
20
-
-961.5
-135
- Script output a.
- 380281b2-1d3d-41a1-88a6-4a41497630b5
- true
- a
- a
- false
- 0
-
-971
-125
19
20
-
-961.5
-115
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 97b3fda7-1341-4468-be84-fdbbed594296
- true
- Panel
- false
- 0
- 09648867-3bd2-4cea-83f0-76b1a57fd716
- 1
- numpy
-
-668
-28
129
20
- 0
- 0
- 0
-
-667.8015
-27.93925
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- ed12c36c-073f-4d02-8ff7-7cc9a9ed9858
- true
- Panel
- false
- 1
- 26fb2b4c-331e-4a42-ac74-de9f65f1b30e
- 1
- numpy
-
-716
-356
197
232
- 0
- 0
- 0
-
-715.8921
-355.9852
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 8485a14d-1518-4c55-a657-271a64d0aab2
- true
- Panel
- false
- 0
- 4280c996-993d-4511-91d1-f3863d846d20
- 1
- numpy
-
-665
4
129
20
- 0
- 0
- 0
-
-664.5677
4.971985
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- d19037fe-4f50-417f-8eb6-b1d3044056c2
- true
- Panel
- false
- 0
- 8698b942-1698-4f4d-9a58-9d7b0a9b7d89
- 1
- numpy
-
-663
28
129
20
- 0
- 0
- 0
-
-662.9006
28.39899
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 376b5220-e8b6-4e24-a5d7-8f85d4f53125
- true
- Panel
- false
- 0
- 380281b2-1d3d-41a1-88a6-4a41497630b5
- 1
- numpy
-
-894
-152
160
100
- 0
- 0
- 0
-
-893.5811
-151.993
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 55985064-75aa-43c2-a62f-1e936b1d63b0
- true
- Panel
- false
- 0
- 5fb368ad-087e-47d6-a13e-4dc915a8fcd1
- 1
- numpy
-
-904
-269
160
100
- 0
- 0
- 0
-
-903.6221
-268.92
-
255;255;255;255
- true
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 5bb3fe24-8511-41f9-b837-d4cd065536eb
- true
- Panel
- false
- 0
- 0
- np.diff(x)
-
-1206
-112
160
100
- 0
- 0
- 0
-
-1205.331
-111.1691
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- c50f682b-1ba9-4564-af2e-d70bf4b32a2e
- true
- Panel
- false
- 0
- 0
- C:\O\O_ERAWTFOS_O_SOFTWARE_O\O_SMARGORP_O_PROGRAMS_O\O_GNIMARGORP_O_PROGRAMING_O\O_NOHTYP_O_PYTHON_O\O_81_7_2_O_2_7_18_O\
-
-1033
-41
160
55
- 0
- 0
- 0
-
-1032.483
-40.34236
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 75ac1cb6-ddba-4be7-bc22-ce4ed6a337b3
- 70a78ddd-7690-40ce-b9c4-9546b8e34af5
- 4c0c980d-47a2-4a63-962a-8fcae74b2a18
- 97b3fda7-1341-4468-be84-fdbbed594296
- ed12c36c-073f-4d02-8ff7-7cc9a9ed9858
- 8485a14d-1518-4c55-a657-271a64d0aab2
- d19037fe-4f50-417f-8eb6-b1d3044056c2
- 376b5220-e8b6-4e24-a5d7-8f85d4f53125
- 55985064-75aa-43c2-a62f-1e936b1d63b0
- 5bb3fe24-8511-41f9-b837-d4cd065536eb
- c50f682b-1ba9-4564-af2e-d70bf4b32a2e
- 11
- 4b1d4ac2-5ff0-46f8-b585-de8d51bad496
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 1d0bf2e0-f67d-4a2d-a256-b3237aa6cf7f
- Relay
- false
- 59c3c505-15cc-45e9-933f-c8595f7093cc
- 1
-
1790
-1792
40
16
-
1810
-1784
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 6c198fe6-a7da-4910-b0f4-013e5e53246b
- Panel
- false
- 0
- 0
- 0.5225
-
1349
191
112
51
- 0
- 0
- 0
-
1349.947
191.5142
- 2
-
255;255;255;255
- false
- false
- false
- false
- false
- true
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- c6892fb7-806c-4f25-903a-7be11de3222c
- Digit Scroller
- INCREASE BEND PER SEGMENT
- false
- 0
- 12
- INCREASE BEND PER SEGMENT
- 1
- 0.52200000000
-
1229
150
250
20
-
1229.938
150.5098
- 75eb156d-d023-42f9-a85e-2f2456b8bcce
- Interpolate (t)
- Create an interpolated curve through a set of points with tangents.
- true
- fd02f19c-db64-4ebe-a5be-c9d6426c3cc4
- Interpolate (t)
- Interpolate (t)
-
1508
-798
244
84
-
1700
-756
- 1
- Interpolation points
- c67aa571-0085-4da8-add6-4c863de2d961
- Vertices
- Vertices
- false
- 2a8e46a0-9509-4aff-8701-b3c411851f02
- 1
-
1510
-796
178
20
-
1599
-786
- Tangent at start of curve
- 8c365f4f-b6a9-4653-9037-6e5e9161b633
- Tangent Start
- Tangent Start
- false
- 0
-
1510
-776
178
20
-
1599
-766
- 1
- 1
- {0}
-
0
0
0
- Tangent at end of curve
- bfcb358b-5b29-44d4-80d3-01a0fc64624a
- Tangent End
- Tangent End
- false
- 0
-
1510
-756
178
20
-
1599
-746
- 1
- 1
- {0}
-
0
0
0
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- efa79891-ad36-4a87-bf24-7621ed73878b
- KnotStyle
- KnotStyle
- false
- 0
-
1510
-736
178
20
-
1599
-726
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 1b25de69-3391-465f-8bb6-3e2421d1931e
- Curve
- Curve
- false
- 0
-
1712
-796
38
26
-
1731
-782.6667
- Curve length
- fa097fae-a47f-4115-a5cb-d8b063fc55d3
- Length
- Length
- false
- 0
-
1712
-770
38
27
-
1731
-756
- Curve domain
- e21f6083-b154-47df-88dd-3cf3602451a2
- Domain
- Domain
- false
- 0
-
1712
-743
38
27
-
1731
-729.3334
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- 36d664f0-be9c-49a3-913e-9df35b6d3c90
- true
- Format
- Format
-
1748
-502
130
64
-
1840
-470
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- 08ced27e-543f-4845-9305-73ca37369f48
- true
- Format
- Format
- false
- 0
-
1750
-500
78
20
-
1789
-490
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 91bbd389-e9ee-43c6-8302-c1254947bf35
- true
- Culture
- Culture
- false
- 0
-
1750
-480
78
20
-
1789
-470
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- 73533767-2d78-4099-9fa0-97a4171f8075
- true
- false
- Data 0
- 0
- true
- 9bfa77bb-a647-437e-ae62-842d46b2a2f1
- 1
-
1750
-460
78
20
-
1789
-450
- Formatted text
- a9aa5286-08c4-4a0b-a113-39bf4309d9c6
- true
- Text
- Text
- false
- 0
-
1852
-500
24
60
-
1864
-470
- dde71aef-d6ed-40a6-af98-6b0673983c82
- Nurbs Curve
- Construct a nurbs curve from control points.
- true
- d729cb35-da35-401f-884b-df9b964d0415
- Nurbs Curve
- Nurbs Curve
-
1781
-806
121
64
-
1850
-774
- 1
- Curve control points
- e1befaf1-4e96-42db-996b-96733961df81
- Vertices
- Vertices
- false
- 2a8e46a0-9509-4aff-8701-b3c411851f02
- 1
-
1783
-804
55
20
-
1810.5
-794
- Curve degree
- 9b3d8450-0061-4391-877a-401ea4f18828
- Degree
- Degree
- false
- 0
-
1783
-784
55
20
-
1810.5
-774
- 1
- 1
- {0}
- 2
- Periodic curve
- 8dc49f6c-26bd-4475-8288-c87dd38a500f
- Periodic
- Periodic
- false
- 0
-
1783
-764
55
20
-
1810.5
-754
- 1
- 1
- {0}
- false
- Resulting nurbs curve
- de4cd356-ac2d-465c-8792-ed49b1a320ab
- Curve
- Curve
- false
- 0
-
1862
-804
38
20
-
1881
-794
- Curve length
- 13a0c64a-56d1-479a-8497-fb3a58287c09
- Length
- Length
- false
- 0
-
1862
-784
38
20
-
1881
-774
- Curve domain
- dbdd6ca3-8fc4-478a-8ad8-bea60772301b
- Domain
- Domain
- false
- 0
-
1862
-764
38
20
-
1881
-754
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 73b9379b-ba0f-44db-a4f1-d3f1fbde17a0
- true
- Expression
- Expression
-
1723
-409
182
28
-
1817
-395
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- c99539cc-3838-4b21-9c71-526a152838f9
- true
- Variable O
- O
- true
- 9bfa77bb-a647-437e-ae62-842d46b2a2f1
- 1
-
1725
-407
11
24
-
1730.5
-395
- Result of expression
- 93bd0b97-ebfe-4620-96d1-2ce8f30c0ea8
- true
- Result
-
- false
- 0
-
1897
-407
6
24
-
1900
-395
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- e63690dc-c7af-4f9c-ab2c-74ea0373d998
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 0.12250000000
-
1890
-1328
250
20
-
1890.041
-1327.876
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 9a3a2565-ca9c-4cba-a8f2-71893c185078
- Relay
- false
- 16ae1b43-17d1-4aa8-9af1-2c8bf4441136
- 1
-
2209
-1394
40
16
-
2229
-1386
- a3f9f19e-3e6c-4ac7-97c3-946de32c3e8e
- Fit Curve
- Fit a curve along another curve.
- true
- 445f48dd-dadc-4acf-95bc-e792a2aa385d
- true
- Fit Curve
- Fit Curve
-
2199
-812
171
64
-
2326
-780
- Curve to fit
- 2e60f70b-db67-470b-bf31-c0da56cd5db4
- true
- Curve
- Curve
- false
- de4cd356-ac2d-465c-8792-ed49b1a320ab
- 1
-
2201
-810
113
20
-
2257.5
-800
- Optional degree of curve (if omitted, input degree is used)
- 71aa7d68-55d2-444a-9391-3e3a8596ea02
- true
- Degree
- Degree
- true
- 0
-
2201
-790
113
20
-
2257.5
-780
- 1
- 1
- {0}
- 5
- Tolerance for fitting (if omitted, document tolerance is used)
- e4cefec2-09c0-4d8f-895a-c4033afe8efb
- true
- Tolerance
- Tolerance
- true
- 0
-
2201
-770
113
20
-
2257.5
-760
- 1
- 1
- {0}
- 1E-10
- Fitted curve
- 85a36b3c-252a-45cf-8ae5-dede823cf763
- true
- Curve
- Curve
- false
- 0
-
2338
-810
30
60
-
2353
-780
- 9333c5b3-11f9-423c-bbb5-7e5156430219
- Rebuild Curve
- Rebuild a curve with a specific number of control-points.
- true
- 2bba493d-2741-466c-88ce-8d9b459b2418
- Rebuild Curve
- Rebuild Curve
-
1767
-1568
118
84
-
1841
-1526
- Curve to rebuild
- 29b03cc6-3bea-4ebf-9d97-7947c1f32d3d
- Curve
- Curve
- false
- 04c74da6-9a7f-43a4-9219-a0080f87dff0
- 1
-
1769
-1566
60
20
-
1799
-1556
- Optional degree of curve (if omitted, input degree is used)
- 3f32f1c2-217b-4393-8d4a-14d9ef2a46ca
- Degree
- Degree
- true
- 0
-
1769
-1546
60
20
-
1799
-1536
- 1
- 1
- {0}
- 11
- Number of control points
- af2dc92d-6172-4ab0-b4f3-5dddc5e5cde4
- Count
- Count
- false
- 1ee0839c-ed44-4dd6-93be-ffb7d7b7b13c
- 1
-
1769
-1526
60
20
-
1799
-1516
- 1
- 1
- {0}
- 10
- Preserve curve end tangents
- b5890865-b7a7-4b13-995d-614d97a60035
- Tangents
- Tangents
- false
- 0
-
1769
-1506
60
20
-
1799
-1496
- 1
- 1
- {0}
- false
- Rebuild curve
- 14a7862d-3527-40de-a247-8fe7a9af3b78
- Curve
- Curve
- false
- 0
-
1853
-1566
30
80
-
1868
-1526
- 1817fd29-20ae-4503-b542-f0fb651e67d7
- List Length
- Measure the length of a list.
- 7110f5fc-2c75-4e94-98ca-15f134b0439b
- List Length
- List Length
-
1971
-512
81
28
-
2004
-498
- 1
- Base list
- 6dc2425f-5af5-4451-a2cb-3a787444264a
- List
- List
- false
- 216a7a8c-cbc8-459f-ba6d-1c819860a74f
- 1
-
1973
-510
19
24
-
1982.5
-498
- Number of items in L
- 1ee0839c-ed44-4dd6-93be-ffb7d7b7b13c
- Length
- Length
- false
- 0
-
2016
-510
34
24
-
2033
-498
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 74d2359a-081d-4cf4-abaa-91f052eb5720
- Panel
- X/Y
- false
- 0
- 86d1677c-49bf-49da-8fae-553310fdb9b4
- 1
-
1675
-1161
97
40
- 0
- 0
- 0
- 1
-
255;255;255;255
- false
- false
- true
- true
- false
- true
- 6f0993e8-5f2f-4fc0-bd73-b84bc240e78e
- Kinky Curve
- Construct an interpolated curve through a set of points with a kink angle threshold.
- true
- 017bfd3e-5659-4033-b233-dbc31f07186c
- Kinky Curve
- Kinky Curve
-
1760
-624
171
64
-
1879
-592
- 1
- Interpolation points
- ca9961de-ea22-4961-970c-11a195f48aca
- Vertices
- Vertices
- false
- 2a8e46a0-9509-4aff-8701-b3c411851f02
- 1
-
1762
-622
105
20
-
1814.5
-612
- Curve degree
- b8b35f00-45d8-4339-994f-823615eb5f02
- Degree
- Degree
- false
- 0
-
1762
-602
105
20
-
1814.5
-592
- 1
- 1
- {0}
- 3
- Kink angle threshold (in radians)
- 02ec224a-a443-4bc0-a338-1d4f40be45d0
- Angle
- Angle
- false
- 0
-
1762
-582
105
20
-
1814.5
-572
- 1
- 1
- {0}
- 3.1415926535897931
- Resulting nurbs curve
- 769f5c7a-cc1a-4c63-9511-6207177c86cc
- Curve
- Curve
- false
- 0
-
1891
-622
38
20
-
1910
-612
- Curve length
- b86341a0-7bf7-4758-a1a2-2428824749d7
- Length
- Length
- false
- 0
-
1891
-602
38
20
-
1910
-592
- Curve domain
- 30e0d212-44f3-41a4-a611-8fc2546d147c
- Domain
- Domain
- false
- 0
-
1891
-582
38
20
-
1910
-572
- 9333c5b3-11f9-423c-bbb5-7e5156430219
- Rebuild Curve
- Rebuild a curve with a specific number of control-points.
- true
- a8b22a6f-742f-47e2-9963-6ad9b96e34aa
- Rebuild Curve
- Rebuild Curve
-
2075
-855
118
84
-
2149
-813
- Curve to rebuild
- 14a4ca8a-9163-498d-b90f-80f2292697bd
- Curve
- Curve
- false
- 769f5c7a-cc1a-4c63-9511-6207177c86cc
- 1
-
2077
-853
60
20
-
2107
-843
- Optional degree of curve (if omitted, input degree is used)
- 12c4fb1c-7a01-471e-abc3-92e54dbeb849
- Degree
- Degree
- true
- 0
-
2077
-833
60
20
-
2107
-823
- 1
- 1
- {0}
- 11
- Number of control points
- 73ff677a-4f1e-42ed-bb20-0a6f7bd5de73
- Count
- Count
- false
- 1ee0839c-ed44-4dd6-93be-ffb7d7b7b13c
- 1
-
2077
-813
60
20
-
2107
-803
- 1
- 1
- {0}
- 10
- Preserve curve end tangents
- 2a0024be-6843-4a99-af8b-ddec9ed4fea8
- Tangents
- Tangents
- false
- 0
-
2077
-793
60
20
-
2107
-783
- 1
- 1
- {0}
- false
- Rebuild curve
- 78bd0f39-342b-4624-9183-543ae151e1a1
- Curve
- Curve
- false
- 0
-
2161
-853
30
80
-
2176
-813
- 78fed580-851b-46fe-af2f-6519a9d378e0
- Power
- Raise a value to a power.
- 4dad5c2c-ef75-4296-a6f7-691d7a419f3a
- Power
- Power
-
1135
-957
85
44
-
1175
-935
- The item to be raised
- 71cb0ba6-f714-4fa7-ae7d-0666e527b2d6
- A
- A
- false
- 0
-
1137
-955
26
20
-
1150
-945
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 2
- The exponent
- 71950e45-1f09-45fa-824f-f5ebcf1209ae
- B
- B
- false
- f6cf21b3-c1ee-4f8e-8709-c9e187a21900
- 1
-
1137
-935
26
20
-
1150
-925
- A raised to the B power
- 5c99578e-711f-41a1-bc41-2c117a6fccc7
- Result
- Result
- false
- 0
-
1187
-955
31
40
-
1202.5
-935
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- f6cf21b3-c1ee-4f8e-8709-c9e187a21900
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 11
- 16.0
-
988
-1047
250
20
-
988.5596
-1046.289
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 42f1a51b-f9dd-42cd-a45c-0a262776138d
- Scale
- Scale
-
1289
-700
56
64
-
1325
-668
- Base geometry
- e3a6cc6a-c416-4d81-98d9-7cecf6fbc78b
- Geometry
- true
- 0
-
1291
-698
22
20
-
1310
-688
- Center of scaling
- 35cd3091-f679-42d2-965c-8640c88e9741
- Center
- false
- 1b7ee8e2-b82b-474a-a1d4-8b7d7e3407e8
- 1
-
1291
-678
22
20
-
1310
-668
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 21c801ff-c71d-488e-b615-56317fa52785
- 1/X
- Factor
- false
- 5c99578e-711f-41a1-bc41-2c117a6fccc7
- 1
-
1291
-658
22
20
-
1310
-648
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- 8f7a15d8-691b-4654-a803-11ea0a3b343f
- Geometry
- false
- 0
-
1337
-698
6
30
-
1340
-683
- Transformation data
- 80a54a27-cd01-42b5-95a4-07b1c0cdcf21
- Transform
- false
- 0
-
1337
-668
6
30
-
1340
-653
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- 1b7ee8e2-b82b-474a-a1d4-8b7d7e3407e8
- Point
- Point
- false
- 0
-
947
-898
99
24
-
1034.362
-886.1389
- 1
- 1
- {0}
-
0
0
0
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 8b71bd9d-d0a2-4d95-9d30-78550069a9f1
- Scale
- Scale
-
1196
-688
40
64
-
1216
-656
- Base geometry
- c3a1c7bb-7da2-4757-a095-7367f461b4fa
- Geometry
- true
- 9bfa77bb-a647-437e-ae62-842d46b2a2f1
- 1
-
1198
-686
6
20
-
1201
-676
- Center of scaling
- fb3e8bfc-25ab-4d58-b536-7fa5903679a2
- Center
- false
- 1b7ee8e2-b82b-474a-a1d4-8b7d7e3407e8
- 1
-
1198
-666
6
20
-
1201
-656
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- e3ffcf02-5b54-4c38-ae26-f27ab900cc9f
- Factor
- false
- 5c99578e-711f-41a1-bc41-2c117a6fccc7
- 1
-
1198
-646
6
20
-
1201
-636
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- bdb8d245-0941-4238-a03e-54543e5d0284
- Geometry
- false
- 0
-
1228
-686
6
30
-
1231
-671
- Transformation data
- 5d811c6b-463b-4b9b-92a4-d5725246a41f
- Transform
- false
- 0
-
1228
-656
6
30
-
1231
-641
- 9333c5b3-11f9-423c-bbb5-7e5156430219
- Rebuild Curve
- Rebuild a curve with a specific number of control-points.
- true
- 587dbe12-4b51-4486-9ca6-2ee2f89942bf
- Rebuild Curve
- Rebuild Curve
-
1938
-1579
118
84
-
2012
-1537
- Curve to rebuild
- 3fa15e6c-aced-46b4-a177-714669d30d9f
- Curve
- Curve
- false
- 14a7862d-3527-40de-a247-8fe7a9af3b78
- 1
-
1940
-1577
60
20
-
1970
-1567
- Optional degree of curve (if omitted, input degree is used)
- a23d7f91-dea9-400c-a488-1c8b12056518
- Degree
- Degree
- true
- 0
-
1940
-1557
60
20
-
1970
-1547
- 1
- 1
- {0}
- 11
- Number of control points
- 16bfdfeb-5b0f-42f2-91bd-3aaf134bf4dc
- Count
- Count
- false
- 1ee0839c-ed44-4dd6-93be-ffb7d7b7b13c
- 1
-
1940
-1537
60
20
-
1970
-1527
- 1
- 1
- {0}
- 10
- Preserve curve end tangents
- d7c69a56-b989-4c71-b823-db8f85ef9881
- Tangents
- Tangents
- false
- 0
-
1940
-1517
60
20
-
1970
-1507
- 1
- 1
- {0}
- false
- Rebuild curve
- 12d0632b-ec30-48cc-9aa0-33df21b7db9e
- Curve
- Curve
- false
- 0
-
2024
-1577
30
80
-
2039
-1537
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- fdf0a2c7-b060-4288-86f5-5c3fe3253fa5
- Format
- Format
-
1512
-162
130
64
-
1604
-130
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- 110726d9-7f3e-4437-900d-310f529f6c57
- Format
- Format
- false
- 0
-
1514
-160
78
20
-
1553
-150
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 40e80840-38ab-4a7b-ba77-b0bbaa7dcdb3
- Culture
- Culture
- false
- 0
-
1514
-140
78
20
-
1553
-130
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- 45c01e9c-f5ab-401b-bae4-a26cc94c4895
- false
- Data 0
- 0
- true
- c13cd37b-e089-4f8d-883b-54203d5df027
- 1
-
1514
-120
78
20
-
1553
-110
- Formatted text
- 32fdfce1-9af5-47ef-a416-64a36f93b534
- Text
- Text
- false
- 0
-
1616
-160
24
60
-
1628
-130
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 8c191374-3718-4371-8f0d-4782a857fbcf
- Digit Scroller
-
- false
- 0
- 12
-
- 6
- 0.122500
-
6701
-2526
250
20
-
6701.182
-2525.249
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- bfc8fb88-bf90-4ae2-baf5-913e255146dc
- Rotate
- Rotate
-
2047
202
191
64
-
2174
234
- Base geometry
- 207719d0-dd1b-4b35-928f-4e363a6ea662
- Geometry
- Geometry
- true
- d04782ae-aee6-46ab-8ba5-c6947322bae9
- 1
-
2049
204
113
20
-
2105.5
214
- Rotation angle in radians
- 12da6342-b770-45ce-902d-c3b6cc13ccc7
- Angle
- Angle
- false
- 0
- false
-
2049
224
113
20
-
2105.5
234
- 1
- 1
- {0}
- 3.1415926535897931
- Rotation plane
- d1d7cd92-dc5f-4510-9f03-70a6f275847f
- Plane
- Plane
- false
- b2d464ef-efef-4780-a893-e7309417e1c2
- 1
-
2049
244
113
20
-
2105.5
254
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 2575e670-30cb-4e2c-8512-3de211e061c6
- Geometry
- Geometry
- false
- 0
-
2186
204
50
30
-
2211
219
- Transformation data
- 4a843ecf-0f9e-4c6b-8272-e336a1a285d1
- Transform
- Transform
- false
- 0
-
2186
234
50
30
-
2211
249
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 863a1e5a-3e57-4481-b18a-0cc94d336cb0
- List Item
- List Item
-
2112
288
93
64
-
2185
320
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 4bf09691-215a-48a6-97c2-6fd02c9b9057
- List
- List
- false
- true
- d04782ae-aee6-46ab-8ba5-c6947322bae9
- 1
-
2114
290
59
20
-
2151.5
300
- Item index
- e30c3e17-f7a3-4175-9a57-0c8d2678eaf7
- Index
- Index
- false
- 0
-
2114
310
59
20
-
2151.5
320
- 1
- 1
- {0}
- 0
- Wrap index to list bounds
- 185d938c-27f2-4575-a6ef-ca6cfa93fd2e
- Wrap
- Wrap
- false
- 0
-
2114
330
59
20
-
2151.5
340
- 1
- 1
- {0}
- false
- Item at {i'}
- b2d464ef-efef-4780-a893-e7309417e1c2
- false
- Item
- i
- false
- 0
-
2197
290
6
60
-
2200
320
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- d04782ae-aee6-46ab-8ba5-c6947322bae9
- Point
- Point
- false
- 2a8e46a0-9509-4aff-8701-b3c411851f02
- 1
-
2131
388
50
24
-
2156
400
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- f13365e1-fea3-4477-9b6a-58a6c6d0cd54
- List Item
- List Item
-
2116
-43
93
64
-
2189
-11
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- fe9606c6-cac0-47a4-ad00-482222630932
- List
- List
- false
- true
- 0bc3ce43-0665-4ef5-8cf4-236fdf0a40b3
- 1
-
2118
-41
59
20
-
2155.5
-31
- Item index
- ccb93457-aee0-4a16-809e-3dca2d18d002
- Index
- Index
- false
- 0
-
2118
-21
59
20
-
2155.5
-11
- 1
- 1
- {0}
- 0
- Wrap index to list bounds
- bb7b1b2a-8d1f-4211-915f-610f90c10cd1
- Wrap
- Wrap
- false
- 0
-
2118
-1
59
20
-
2155.5
9
- 1
- 1
- {0}
- false
- Item at {i'}
- 1375bcbe-2d38-4ea8-8f3e-a450e0a9c421
- false
- Item
- i
- false
- 0
-
2201
-41
6
60
-
2204
-11
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- b2ff4a5d-d597-4760-8a41-19fb5dea48b7
- Merge
- Merge
-
2122
138
91
44
-
2168
160
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 8ca703a2-65ae-4094-a782-bc36b1557f61
- false
- Data 1
- D1
- true
- d04782ae-aee6-46ab-8ba5-c6947322bae9
- 1
-
2124
140
32
20
-
2148
150
- 2
- Data stream 2
- 7f1adbaf-8b94-4dd0-abf3-3150f9d2b13a
- false
- Data 2
- D2
- true
- true
- 2575e670-30cb-4e2c-8512-3de211e061c6
- 1
-
2124
160
32
20
-
2148
170
- 2
- Result of merge
- 5c96690b-2054-4a0f-9497-493bd0da0f59
- Result
- Result
- false
- 0
-
2180
140
31
40
-
2195.5
160
- 6eaffbb2-3392-441a-8556-2dc126aa8910
- Cull Duplicates
- 1
- Cull points that are coincident within tolerance
- true
- 84c7ae41-5bcd-4b44-b399-32ce8b3594b2
- Cull Duplicates
- Cull Duplicates
-
2077
37
180
64
-
2204
69
- 1
- Points to operate on
- 1c627f88-113b-439a-a830-09f5409e5ccc
- Points
- Points
- false
- 5c96690b-2054-4a0f-9497-493bd0da0f59
- 1
-
2079
39
113
30
-
2135.5
54
- Proximity tolerance distance
- 83f1b1c9-99d1-4ed6-87e4-7b8894df8ac3
- Tolerance
- Tolerance
- false
- 0
-
2079
69
113
30
-
2135.5
84
- 1
- 1
- {0}
- 1E-10
- 1
- Culled points
- 0bc3ce43-0665-4ef5-8cf4-236fdf0a40b3
- Points
- Points
- false
- 0
-
2216
39
39
20
-
2235.5
49
- 1
- Index map of culled points
- 735110da-f9ae-43cf-8151-cd789f02c437
- Indices
- Indices
- false
- 0
-
2216
59
39
20
-
2235.5
69
- 1
- Number of input points represented by this output point
- afc72907-93a5-4c7a-a7dd-7e9af818a5c5
- Valence
- Valence
- false
- 0
-
2216
79
39
20
-
2235.5
89
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- 336f6da2-ce88-41f3-8908-7cecbb77e5b3
- Rotate
- Rotate
-
2040
-296
246
81
-
2222
-255
- Base geometry
- 3c176451-b28d-4d01-8047-32b4467461a6
- Geometry
- Geometry
- true
- 0bc3ce43-0665-4ef5-8cf4-236fdf0a40b3
- 1
-
2042
-294
168
20
-
2144
-284
- Rotation angle in degrees
- 1aec86dc-a335-4ab6-bfd6-289e000792a7
- -X
- Angle
- Angle
- false
- 301d5304-299d-45b2-915f-70006d8faad2
- 1
- true
-
2042
-274
168
20
-
2144
-264
- 1
- 1
- {0}
- 1.5707963267948966
- Rotation plane
- 24500bd6-cb1e-4f2d-9aee-023bece30c3c
- Plane
- Plane
- false
- 0
-
2042
-254
168
37
-
2144
-235.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- de7580ab-fa25-44cb-87a3-a9e09d940a87
- Geometry
- Geometry
- false
- 0
-
2234
-294
50
38
-
2259
-274.75
- Transformation data
- b2a78d67-9655-420b-8bfe-eeff853c3704
- Transform
- Transform
- false
- 0
-
2234
-256
50
39
-
2259
-236.25
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- a23b30fc-1048-4635-a93d-a0f1f7fb3fdd
- List Item
- List Item
-
2112
-438
93
64
-
2185
-406
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 13bef6dd-3568-42ff-b9bf-5c66fd617081
- List
- List
- false
- true
- de7580ab-fa25-44cb-87a3-a9e09d940a87
- 1
-
2114
-436
59
20
-
2151.5
-426
- Item index
- 12d07dcf-8ba4-4ec0-b054-e26c3483be71
- Index
- Index
- false
- 0
-
2114
-416
59
20
-
2151.5
-406
- 1
- 1
- {0}
- 0
- Wrap index to list bounds
- a078fd52-f4f5-4bbb-a0c7-5bfb98a84f11
- Wrap
- Wrap
- false
- 0
-
2114
-396
59
20
-
2151.5
-386
- 1
- 1
- {0}
- false
- Item at {i'}
- d80d3e93-5819-49a7-b55d-b77e4bc04c8c
- false
- Item
- i
- false
- 0
-
2197
-436
6
60
-
2200
-406
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- 65a0986c-c8e8-44da-b39b-8aac1291441b
- Deconstruct
- Deconstruct
-
2094
-526
120
64
-
2135
-494
- Input point
- 9ea29e15-edff-4fc0-aef9-0613fe39b185
- Point
- Point
- false
- d80d3e93-5819-49a7-b55d-b77e4bc04c8c
- 1
-
2096
-524
27
60
-
2109.5
-494
- Point {x} component
- c618f45d-d87a-4bf1-be1d-906ee3937690
- X component
- X component
- false
- 0
-
2147
-524
65
20
-
2179.5
-514
- Point {y} component
- 0ac2b2ad-e476-4f89-b7ec-4df536469f37
- Y component
- Y component
- false
- 0
-
2147
-504
65
20
-
2179.5
-494
- Point {z} component
- d721c21d-68cf-4923-8f6b-605564d2de34
- Z component
- Z component
- false
- 0
-
2147
-484
65
20
-
2179.5
-474
- 290f418a-65ee-406a-a9d0-35699815b512
- Scale NU
- Scale an object with non-uniform factors.
- true
- aa335879-76b1-420c-82f4-54477f4cf8fa
- Scale NU
- Scale NU
-
2078
-686
226
121
-
2240
-625
- Base geometry
- 206cadb3-554d-4809-a46e-86f4c0117a9a
- Geometry
- Geometry
- true
- de7580ab-fa25-44cb-87a3-a9e09d940a87
- 1
-
2080
-684
148
20
-
2162
-674
- Base plane
- 9367cb6c-42ea-48bf-9e2a-912029360121
- Plane
- Plane
- false
- 0
-
2080
-664
148
37
-
2162
-645.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Scaling factor in {x} direction
- 89e435ef-7cd8-407a-ae27-cca5baedd143
- 1/X
- Scale X
- Scale X
- false
- c618f45d-d87a-4bf1-be1d-906ee3937690
- 1
-
2080
-627
148
20
-
2162
-617
- 1
- 1
- {0}
- 1
- Scaling factor in {y} direction
- 72d0c737-f7a7-4ac2-b27b-c078356be7b6
- 1/X
- Scale Y
- Scale Y
- false
- 0ac2b2ad-e476-4f89-b7ec-4df536469f37
- 1
-
2080
-607
148
20
-
2162
-597
- 1
- 1
- {0}
- 1
- Scaling factor in {z} direction
- ab0d508e-c91c-40b8-95af-54d636d6a5dc
- 1/X
- Scale Z
- Scale Z
- false
- d721c21d-68cf-4923-8f6b-605564d2de34
- 1
-
2080
-587
148
20
-
2162
-577
- 1
- 1
- {0}
- 1
- Scaled geometry
- edad4520-fa2d-4ed2-acba-b69a086afe13
- Geometry
- Geometry
- false
- 0
-
2252
-684
50
58
-
2277
-654.75
- Transformation data
- e886c65b-ff87-4e0e-8983-6e13c4f2ba51
- Transform
- Transform
- false
- 0
-
2252
-626
50
59
-
2277
-596.25
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 216a7a8c-cbc8-459f-ba6d-1c819860a74f
- Relay
- false
- edad4520-fa2d-4ed2-acba-b69a086afe13
- 1
-
1978
-691
40
16
-
1998
-683
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- f6a05b4a-b1c0-4407-8950-a956407f8238
- 65a0986c-c8e8-44da-b39b-8aac1291441b
- bcdf77a5-4a93-4597-8535-7f89da53fd43
- aa335879-76b1-420c-82f4-54477f4cf8fa
- 216a7a8c-cbc8-459f-ba6d-1c819860a74f
- a23b30fc-1048-4635-a93d-a0f1f7fb3fdd
- 6
- 32cfc1ea-d9cb-4c4c-aeb6-2ee2d3811069
- Group
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- 5cc5bba4-19f6-482c-a142-2dfeac8775d7
- Format
- Format
-
2392
-644
130
64
-
2484
-612
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- 5334b48c-5517-4b1b-9d53-77ce7d5be04f
- Format
- Format
- false
- 0
-
2394
-642
78
20
-
2433
-632
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- cda211f8-1a83-4f7e-8f64-74c256fb24ef
- Culture
- Culture
- false
- 0
-
2394
-622
78
20
-
2433
-612
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- 220b6bae-2ed1-4b4b-92c1-943f9fbe0ddf
- false
- Data 0
- 0
- true
- 4b5c17db-187f-4af8-967a-999ead56fb38
- 1
-
2394
-602
78
20
-
2433
-592
- Formatted text
- 2f15086e-f4d1-464d-9acf-b055eb1af20d
- Text
- Text
- false
- 0
-
2496
-642
24
60
-
2508
-612
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 9b42a226-e738-4dae-9071-7c1c84d2e21a
- Division
- Division
-
2324
-526
70
44
-
2349
-504
- Item to divide (dividend)
- d2cc5a5a-f5d6-4c99-b4e1-2e74252854de
- A
- A
- false
- c618f45d-d87a-4bf1-be1d-906ee3937690
- 1
-
2326
-524
11
20
-
2331.5
-514
- Item to divide with (divisor)
- d99f32c8-0557-4475-8009-7950c8af187c
- B
- B
- false
- 0ac2b2ad-e476-4f89-b7ec-4df536469f37
- 1
-
2326
-504
11
20
-
2331.5
-494
- The result of the Division
- 4b5c17db-187f-4af8-967a-999ead56fb38
- Result
- Result
- false
- 0
-
2361
-524
31
40
-
2376.5
-504
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 015870b0-07b6-437e-80d6-dce84c7aef22
- Panel
- X/Y
- false
- 0
- 2f15086e-f4d1-464d-9acf-b055eb1af20d
- 1
-
2098
-745
97
40
- 0
- 0
- 0
- 1
-
255;255;255;255
- false
- false
- true
- true
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- db6ab01e-9fb2-4f8e-99b4-ceef5dc1505f
- Relay
- false
- 9bfa77bb-a647-437e-ae62-842d46b2a2f1
- 1
-
1538
-581
40
16
-
1558
-573
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- f023b241-9d43-4d09-a743-5754826ed592
- Digit Scroller
-
- false
- 0
- 12
-
- 6
- 0.122500
-
6701
-2546
250
20
-
6701.182
-2545.249
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- deg(atan(x/y))
- true
- 2bfcd1de-a972-4618-adbd-07b238b0c838
- Expression
- Expression
-
2075
-185
157
44
-
2156
-163
- 2
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- c146ad91-f1ef-4eb9-a91f-56ab41ad62e9
- Variable X
- X
- true
- a6d2c9ad-2fce-4360-a1bd-58c63274c3fa
- 1
-
2077
-183
11
20
-
2082.5
-173
- Expression variable
- e437f466-cd26-493a-9b33-95aa43fdeb70
- Variable Y
- Y
- true
- 914ed3ed-c1c9-450b-9981-726b87dd3e28
- 1
-
2077
-163
11
20
-
2082.5
-153
- Result of expression
- 301d5304-299d-45b2-915f-70006d8faad2
- Result
-
- false
- 0
-
2224
-183
6
40
-
2227
-163
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 0120052c-04de-4738-b710-dc5e65077f53
- List Item
- List Item
-
1689
-358
77
64
-
1746
-326
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- b0d43ffe-1ea2-4866-a44c-980f0582bccd
- List
- List
- false
- 10f9fcbf-f996-4afe-a932-1eeeeb7e92ba
- 1
-
1691
-356
43
20
-
1712.5
-346
- Item index
- 054f2d79-9267-4504-a7f3-58644d35dce9
- Index
- Index
- false
- 0
-
1691
-336
43
20
-
1712.5
-326
- 1
- 1
- {0}
- -1
- Wrap index to list bounds
- 1a59304c-a645-4054-b1e6-2e4d5190765a
- Wrap
- Wrap
- false
- 0
-
1691
-316
43
20
-
1712.5
-306
- 1
- 1
- {0}
- true
- Item at {i'}
- 1006d687-58d1-4df9-934d-72ab10813334
- false
- Item
- i
- false
- 0
-
1758
-356
6
60
-
1761
-326
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- 1217a11a-1879-4861-a93b-84b3972f3c7b
- Deconstruct
- Deconstruct
-
2108
-131
120
64
-
2149
-99
- Input point
- 21f20e70-7b9c-44b8-82a4-906fe63a7cbc
- Point
- Point
- false
- 1375bcbe-2d38-4ea8-8f3e-a450e0a9c421
- 1
-
2110
-129
27
60
-
2123.5
-99
- Point {x} component
- a6d2c9ad-2fce-4360-a1bd-58c63274c3fa
- X component
- X component
- false
- 0
-
2161
-129
65
20
-
2193.5
-119
- Point {y} component
- 914ed3ed-c1c9-450b-9981-726b87dd3e28
- Y component
- Y component
- false
- 0
-
2161
-109
65
20
-
2193.5
-99
- Point {z} component
- bf7ee571-fa35-4954-836c-ca6a06f4eb29
- Z component
- Z component
- false
- 0
-
2161
-89
65
20
-
2193.5
-79
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 6d3f9f9a-f57e-4854-bee7-99c12bfb0de8
- Relay
- false
- b05af234-ce5b-432e-8b3f-32a94a964bbf
- 1
-
1164
-90
40
16
-
1184
-82
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 82f09685-9fec-40ef-8635-845751351416
- Quick Graph
- Quick Graph
- false
- 0
- 92b46693-4fc6-466e-b09d-6a1bdf99435e
- 1
-
7468
-2343
50
50
-
7468.181
-2342.249
- -1
- e1905a16-da43-4705-bd65-41d34328c4e6
- Bar Graph
-
255;255;0;90
- 9999
- Bar graph representation of a set of numbers
- 7ea03512-0074-40d1-8807-06c5269c256c
- Bar Graph
- Bar Graph
- false
- cd9ab9ba-48a6-43fd-bf09-e50035dc093d
- 1
-
7395.181
-2543.249
50
50
- ae4835db-ae71-4361-8536-1a5e50386819
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Smooth Curve
- Smooth a curve recursively by fairing, without changing its control point count.
- true
- 5c7c9dbd-3af2-493e-a165-162c94ff10eb
- true
- Smooth Curve
- Smooth Curve
-
2379
-842
236
124
-
2551
-780
- Curve to smooth
- ce57f281-9a29-4398-bad8-7b9511a2ed6d
- true
- Curve
- Curve
- false
- 812b2004-5d23-4a36-8867-c4d7e1d7c8c3
- 1
-
2381
-840
158
20
-
2460
-830
- Number of recursive smoothing steps
- 9dbe2ab5-d001-4231-b375-7b378313d09b
- true
- Steps
- Steps
- false
- 0
-
2381
-820
158
20
-
2460
-810
- 1
- 1
- {0}
- 16
- Determines how the start of the curve is preserved
0 = Preserve start point only
1 = Preserve first two points
2 = Preserve first three points
- e93ac18b-07a2-4ab0-b5e2-771df8e34c40
- true
- Start Type
- Start Type
- false
- 0
-
2381
-800
158
20
-
2460
-790
- 1
- 1
- {0}
- 0
- Determines how the end of the curve is preserved
0 = Preserve end point only
1 = Preserve last two points
2 = Preserve last three points
- 62999c09-f409-46dc-a0f8-5c1460db5a56
- true
- End Type
- End Type
- false
- 0
-
2381
-780
158
20
-
2460
-770
- 1
- 1
- {0}
- 0
- Tolerance distance the smooth curve is allowed to deviate from the curve to smooth
- 3a1759d1-918c-4aa5-adcf-380b1d032d23
- true
- Deviation Tolerance
- Deviation Tolerance
- false
- 0
-
2381
-760
158
20
-
2460
-750
- 1
- 1
- {0}
- 1E-10
- Tolerance angle in degrees for kink smoothing
- a060427d-b9e2-4f18-b9c5-dc5d45a14852
- true
- Angle Tolerance
- Angle Tolerance
- false
- 0
-
2381
-740
158
20
-
2460
-730
- 1
- 1
- {0}
- 1E-10
- Resulting smoothed curve
- 266c431b-d404-47f3-a489-81251532efe1
- true
- Smoothed
- Smoothed
- false
- 0
-
2563
-840
50
120
-
2588
-780
- e1905a16-da43-4705-bd65-41d34328c4e6
- Bar Graph
-
255;255;0;90
- 9999
- Bar graph representation of a set of numbers
- d6cd2b21-684d-4d55-84dc-cf67022c00fd
- Bar Graph
- Bar Graph
- false
- 93d932e5-f99c-4911-8200-065f7e63b31c
- 1
-
7395.181
-2521.249
50
50
- e1905a16-da43-4705-bd65-41d34328c4e6
- Bar Graph
-
255;255;0;90
- 9999
- Bar graph representation of a set of numbers
- dfa3d6d1-68ca-4f13-b440-3d042a308f48
- Bar Graph
- Bar Graph
- false
- 80aa9ec5-4e68-4151-87f5-77dd9cb73995
- 1
-
7395.181
-2498.249
50
50
- e1905a16-da43-4705-bd65-41d34328c4e6
- Bar Graph
-
255;255;0;90
- 9999
- Bar graph representation of a set of numbers
- dbda2230-e7eb-467e-aa88-5c1e6b723f5a
- Bar Graph
- Bar Graph
- false
- 1c283afd-2268-4211-af8f-8cdf4d25d66c
- 1
-
7395.181
-2476.249
50
50
- e1905a16-da43-4705-bd65-41d34328c4e6
- Bar Graph
-
255;255;0;90
- 9999
- Bar graph representation of a set of numbers
- 48b9bf60-45d3-45d4-a928-df64b25235ff
- Bar Graph
- Bar Graph
- false
- 844bd38b-b927-437c-8231-bd2cb384f4ce
- 1
-
7395.181
-2454.249
50
50
- e1905a16-da43-4705-bd65-41d34328c4e6
- Bar Graph
-
255;255;0;90
- 9999
- Bar graph representation of a set of numbers
- a7828cae-f032-48ad-9499-baf0a62e9b16
- Bar Graph
- Bar Graph
- false
- f582ca69-21fd-4e0c-ac4c-c757f53b16e7
- 1
-
7395.181
-2431.249
50
50
- e1905a16-da43-4705-bd65-41d34328c4e6
- Bar Graph
-
255;255;0;90
- 9999
- Bar graph representation of a set of numbers
- 3bac0bc7-d166-4c5e-bb08-20a20985222f
- Bar Graph
- Bar Graph
- false
- 0ea07907-b707-47fb-aac5-b80ec6de4038
- 1
-
7395.181
-2409.249
50
50
- e1905a16-da43-4705-bd65-41d34328c4e6
- Bar Graph
-
255;255;0;90
- 9999
- Bar graph representation of a set of numbers
- 199759e7-6c7b-4150-b4bf-9b4fdf05a03f
- Bar Graph
- Bar Graph
- false
- 7e4bc6cb-be01-4aad-8929-fa0633ad5eab
- 1
-
7395.181
-2387.249
50
50
- e1905a16-da43-4705-bd65-41d34328c4e6
- Bar Graph
-
255;255;0;90
- 9999
- Bar graph representation of a set of numbers
- 65486801-6614-44c2-ba37-ac0384a48812
- Bar Graph
- Bar Graph
- false
- 54c2ec9f-a8b8-4bb9-bfcb-571630ac488b
- 1
-
7395.181
-2364.249
50
50
- e1905a16-da43-4705-bd65-41d34328c4e6
- Bar Graph
-
255;255;0;90
- 9999
- Bar graph representation of a set of numbers
- 053e6276-507a-47e0-a156-4f54d918eed9
- Bar Graph
- Bar Graph
- false
- 92b46693-4fc6-466e-b09d-6a1bdf99435e
- 1
-
7395.181
-2342.249
50
50
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- ef414688-663d-4a76-b64c-d9da5e08c56c
- Digit Scroller
-
- false
- 0
- 12
-
- 6
- 0.122500
-
6701
-2566
250
20
-
6701.182
-2565.249
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- c118d3a6-21e5-404c-965f-22c44c00965b
- Digit Scroller
-
- false
- 0
- 12
-
- 6
- 0.122500
-
6701
-2586
250
20
-
6701.182
-2585.249
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 240fa235-09b9-405d-989a-af59edf91192
- Digit Scroller
-
- false
- 0
- 12
-
- 6
- 0.122500
-
6701
-2606
250
20
-
6701.182
-2605.249
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- da31bf03-7f19-4df6-83b7-e4247638b6ba
- Digit Scroller
-
- false
- 0
- 12
-
- 6
- 0.122500
-
6701
-2626
250
20
-
6701.182
-2625.249
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- ae83d3bf-85ae-4eb8-9a93-d7b82f6eb1ff
- Digit Scroller
-
- false
- 0
- 12
-
- 6
- 0.122500
-
6701
-2646
250
20
-
6701.182
-2645.249
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 1b18947f-649b-4aa7-b635-0c8ffaba1c52
- Digit Scroller
-
- false
- 0
- 12
-
- 6
- 0.122500
-
6701
-2666
250
20
-
6701.182
-2665.249
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 659c929d-50c0-47c3-a9f8-7a31b3925ddc
- Digit Scroller
-
- false
- 0
- 12
-
- 6
- 0.122500
-
6701
-2686
250
20
-
6701.182
-2685.249
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- 610cf6f6-e391-4ad8-bf2c-78c03415fe83
- Point
- Point
- false
- d80d3e93-5819-49a7-b55d-b77e4bc04c8c
- 1
-
2371
-415
50
24
-
2396
-403
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 7e412465-e306-4cde-bc52-a148d592b463
- Panel
- false
- 0
- 0bc3ce43-0665-4ef5-8cf4-236fdf0a40b3
- 1
- Double click to edit panel content…
-
2387
-338
160
338
- 0
- 0
- 0
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- 65915424-f5fa-4a08-9efd-77e9b1f75cdb
- Evaluate Length
- Evaluate Length
-
2219
-1355
149
64
-
2304
-1323
- Curve to evaluate
- f73a0ce8-3494-4393-8849-0b2a795b1a80
- Curve
- Curve
- false
- c4fdf2ab-39ec-4f9b-947c-a8f85d40334d
- 1
-
2221
-1353
71
20
-
2256.5
-1343
- Length factor for curve evaluation
- 3d134c00-df9c-449c-8a4e-c1d23ea39163
- Length
- Length
- false
- 0
-
2221
-1333
71
20
-
2256.5
-1323
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 0ab2dd80-cae9-4661-a9c8-3c4808d6d64a
- Normalized
- Normalized
- false
- 0
-
2221
-1313
71
20
-
2256.5
-1303
- 1
- 1
- {0}
- true
- Point at the specified length
- 43f8c076-aedd-48cf-8879-569ca97a7c3e
- Point
- Point
- false
- 0
-
2316
-1353
50
20
-
2341
-1343
- Tangent vector at the specified length
- db80abd4-d4ff-4e99-bfcc-940cf824e3af
- Tangent
- Tangent
- false
- 0
-
2316
-1333
50
20
-
2341
-1323
- Curve parameter at the specified length
- c9ae47c9-abba-4e2b-a276-58a6e6df478c
- Parameter
- Parameter
- false
- 0
-
2316
-1313
50
20
-
2341
-1303
- 11e95a7b-1e2c-4b66-bd95-fcad51f8662a
- Vector Display Ex
- Preview vectors in the viewport
- 35d80b83-f25f-4b89-8cff-2273825e14ba
- Vector Display Ex
- Vector Display Ex
-
1942
-1428
76
84
-
2004
-1386
- Start point of vector
- a61fd522-2e08-40ee-99e4-77f3c5fad3d8
- Point
- Point
- true
- 43f8c076-aedd-48cf-8879-569ca97a7c3e
- 1
-
1944
-1426
48
20
-
1968
-1416
- Vector to display
- 604e28b0-9157-4684-a04a-f6df639581f3
- Vector
- Vector
- true
- db80abd4-d4ff-4e99-bfcc-940cf824e3af
- 1
-
1944
-1406
48
20
-
1968
-1396
- Colour of vector
- ed960af1-da41-409f-998d-6dbf6cf897f3
- Colour
- Colour
- true
- 0
-
1944
-1386
48
20
-
1968
-1376
- 1
- 1
- {0}
-
255;0;0;0
- Width of vector lines
- 0a3d2bb7-0ff9-478c-9bcd-db6825486b1f
- Width
- Width
- true
- 0
-
1944
-1366
48
20
-
1968
-1356
- 1
- 1
- {0}
- 2
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- deg(atan(x/y))
- true
- 974a883a-1cb8-4452-97b3-3cac6e6970a1
- Expression
- Expression
-
1647
-1280
157
44
-
1728
-1258
- 2
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- b74e67eb-0d6e-4b11-b4de-0ac96fbbfcdb
- Variable X
- X
- true
- 9064d6c8-e279-400f-acc2-5bd10364766e
- 1
-
1649
-1278
11
20
-
1654.5
-1268
- Expression variable
- 6573d876-4847-4b12-8435-36c564be8af6
- Variable Y
- Y
- true
- 2e289cfb-50af-447d-96a5-703ece5739cc
- 1
-
1649
-1258
11
20
-
1654.5
-1248
- Result of expression
- bf698a48-a07d-491d-97c2-2628ea3e3cbb
- Result
-
- false
- 0
-
1796
-1278
6
40
-
1799
-1258
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- 7eeb441b-d73b-4ab0-846b-1221226618d8
- Deconstruct
- Deconstruct
-
1675
-1226
120
64
-
1716
-1194
- Input point
- d9e60103-59e5-4927-96ce-1d8d4dc02652
- Point
- Point
- false
- 948413de-ddd1-4364-91d2-1aff1940aa31
- 1
-
1677
-1224
27
60
-
1690.5
-1194
- Point {x} component
- 9064d6c8-e279-400f-acc2-5bd10364766e
- X component
- X component
- false
- 0
-
1728
-1224
65
20
-
1760.5
-1214
- Point {y} component
- 2e289cfb-50af-447d-96a5-703ece5739cc
- Y component
- Y component
- false
- 0
-
1728
-1204
65
20
-
1760.5
-1194
- Point {z} component
- fd1515f8-de69-4356-bc71-14c09f26cadd
- Z component
- Z component
- false
- 0
-
1728
-1184
65
20
-
1760.5
-1174
- 9c007a04-d0d9-48e4-9da3-9ba142bc4d46
- Subtraction
- Mathematical subtraction
- 2e1fa4c5-8678-4abb-8dfe-5e230162d41d
- Subtraction
- Subtraction
-
1707
-1339
85
44
-
1747
-1317
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First operand for subtraction
- 480b4e47-8d11-4e5b-940f-c9fa752e909a
- A
- A
- true
- 0
-
1709
-1337
26
20
-
1722
-1327
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 90
- Second operand for subtraction
- c24cab37-b808-4512-a3bc-6f4e1f49ceea
- B
- B
- true
- bf698a48-a07d-491d-97c2-2628ea3e3cbb
- 1
-
1709
-1317
26
20
-
1722
-1307
- Result of subtraction
- 2f40a3cf-0b9a-47e2-aa04-fd53087ffdfc
- Result
- Result
- false
- 0
-
1759
-1337
31
40
-
1774.5
-1317
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- fc134f39-092b-446b-9f32-850887255fcd
- Panel
- false
- 0
- 0
- (0.52264895353371794+ 0.52264895353371804)/2
-
1658
-1059
120
40
- 0
- 0
- 0
- 2
-
255;255;255;255
- false
- false
- true
- true
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 16ae1b43-17d1-4aa8-9af1-2c8bf4441136
- Relay
- false
- fc134f39-092b-446b-9f32-850887255fcd
- 1
-
1843
-1266
40
16
-
1863
-1258
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 9361e405-3817-4de7-9409-cb3eb2c5b242
- Digit Scroller
- NUMBER OF SEGMENTS
- false
- 0
- 12
- NUMBER OF SEGMENTS
- 11
- 1024.0
-
1492
-982
250
20
-
1492.532
-981.983
- dde71aef-d6ed-40a6-af98-6b0673983c82
- Nurbs Curve
- Construct a nurbs curve from control points.
- true
- d6845181-2485-4643-958f-5457c3222642
- Nurbs Curve
- Nurbs Curve
-
3691
-969
121
64
-
3760
-937
- 1
- Curve control points
- c5701f1c-ecc4-4e5e-82fd-5ffd16978065
- Vertices
- Vertices
- false
- 9e392594-9c88-466e-a19c-e833e6e9db0c
- 1
-
3693
-967
55
20
-
3720.5
-957
- Curve degree
- 9f1b5080-9e95-4b43-b00f-ba66f4d37ff2
- Degree
- Degree
- false
- 0
-
3693
-947
55
20
-
3720.5
-937
- 1
- 1
- {0}
- 2
- Periodic curve
- b7675a09-cc79-4902-b104-d3caf999d899
- Periodic
- Periodic
- false
- 0
-
3693
-927
55
20
-
3720.5
-917
- 1
- 1
- {0}
- false
- Resulting nurbs curve
- acdea7eb-21ac-4670-8097-e58e7e196266
- Curve
- Curve
- false
- 0
-
3772
-967
38
20
-
3791
-957
- Curve length
- fa2b3ab1-4fc6-4e7a-8127-416cedfa57f8
- Length
- Length
- false
- 0
-
3772
-947
38
20
-
3791
-937
- Curve domain
- 1b834e6d-b6d0-48e8-8a64-dd3297dd77d3
- Domain
- Domain
- false
- 0
-
3772
-927
38
20
-
3791
-917
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- a9f9c005-baca-48d6-a9b5-c90641990a40
- 7eae606a-a783-4ca0-8496-6541254db4aa
- 61a7655a-5951-4110-a1a7-6cc34fe35e29
- 41b6d614-494b-478a-b642-89bab1e20b7c
- 2f68ea2e-9807-4230-b9b8-8a2a4bd298d7
- 5
- 0f2dee87-1bc5-4015-ba00-3d771757533d
- Group
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 57882812-a11c-41f7-9da0-24f2bf7b1630
- Panel
- false
- 0
- 0
- 0.4863502813211475209
-
3792
-168
125
40
- 0
- 0
- 0
-
3792.384
-167.2238
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 81c78050-42ce-42e1-b704-c28af80d0879
- 16c22ddd-5c25-4c4f-acce-a3d7f0148828
- 3784dae5-ec06-4b36-9eb4-32475f135a17
- 978abbde-eb2d-4d4f-9c9f-6a4f665f7b49
- e7fa1c0a-6dee-469e-bd81-b490fe80e04b
- 6d669f59-dcfb-404b-94b1-22bb7f83e90c
- d5bb524f-50cb-4f8e-84b6-4b1bb53032d7
- 9b896070-f198-4c28-aaf3-2300ba4b3e28
- e9dc22bb-1af1-44fe-a7e9-138433e85c45
- 50bfb567-cca9-49e1-9cbf-228dd5d96490
- 48a77407-1ef5-408c-98e8-f8c22c4b8306
- aacb785c-7a0d-4362-a6ab-7067ad0a24e2
- eed3e60c-da42-452d-840a-628600c254ce
- 2b382be1-77d5-4f5a-bdd7-fe0469361e00
- 134d7423-6dfa-4662-87b3-965a2fbcbb41
- 579c985b-e3f7-44b1-a94e-ebd88c119761
- 0d6c0a90-7dc3-42d0-bff0-bb567ffcbe11
- 56233623-7b3b-4690-a754-0d9746d30ac9
- d9d9590a-177b-461d-a939-038c8cfc418a
- 19
- f61afa6c-1c6d-43a5-b086-aea72fcb5143
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 4a7806e2-f319-4974-99b5-de39b849bf17
- 560ab2ee-b222-47a5-b166-360b8fba9a75
- 138e4cfd-c4b0-4978-9726-ad0413a4ec0b
- 08367c48-9073-4bf6-9593-a5e2021100d0
- c879fe7e-3294-4d38-be33-f7ba59030551
- 1be8539a-934e-4f3c-9d8d-1cf41fa5b3f9
- 79f5883a-82e2-40ff-9180-49cf756189f8
- 0ed5c6e4-d403-4cdd-bf32-7e675481932d
- a503a94e-e524-481c-abf8-2b53d1124543
- d7b18b8c-16a0-47f6-90ca-ecbcf0cbeed8
- 54624d31-4e99-49ce-bafd-5071cf6504db
- a736fbae-7bd8-47bd-a818-924d4c6b0fd5
- 69ae5d2b-f8b0-45e5-b3c0-4b7f7d9c4314
- 56b85b52-533e-46e6-a4ef-6bfb977952bb
- c07e10ab-b7a2-499c-a808-bf70ce44c08f
- bbd32612-db4e-463d-bcce-b67bcede8c61
- bca1b843-1168-41fd-b4dc-e55d87681afb
- d87260b8-9262-4a70-aca6-3d05ceda11ba
- f490919c-9fab-4539-b860-a82406a83adb
- ec4ce578-adbb-43a1-b906-c7b70140deb3
- 5f1006ab-7a4a-405d-bc12-555ef6980263
- a14fb7d1-a2ca-4221-ab5c-9c06d3e86e69
- a97649ee-fe8f-4128-8d41-11d1c7771844
- 5b2cc981-7e40-4a82-88b8-624b14091777
- fea29e22-ad99-4c97-a41a-7d5ac36eb3ce
- 898393e5-1cbe-4939-9cd6-16052006348b
- db07fc6c-26cd-41c6-93d6-de33385a43f7
- 6999a1ac-2e35-49b0-8457-650cb70ce4ad
- 034bc291-6391-48e9-97a3-a0861e18b0a3
- 5a2fa394-e753-49b3-92bf-ce2f99b38de6
- e32cafbe-23ca-4862-a5b6-6805f5fb5a02
- d4e5c598-1665-4ef4-8cb9-a34cd9ede92b
- 04250f66-9b19-4960-81e5-c75d6a635b9a
- 4cfbdefd-ba72-40dc-afdb-b7bcb2839654
- f61afa6c-1c6d-43a5-b086-aea72fcb5143
- 35
- 7a4ef36a-5e44-46b8-a0f4-09d46a212955
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- a503a94e-e524-481c-abf8-2b53d1124543
- d7b18b8c-16a0-47f6-90ca-ecbcf0cbeed8
- 54624d31-4e99-49ce-bafd-5071cf6504db
- a736fbae-7bd8-47bd-a818-924d4c6b0fd5
- 4
- 4a7806e2-f319-4974-99b5-de39b849bf17
- Group
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 560ab2ee-b222-47a5-b166-360b8fba9a75
- Digit Scroller
- SEMENT LENGTH
- false
- 0
- 12
- SEMENT LENGTH
- 2
- 0.0023000000
-
5439
-356
250
20
-
5439.01
-355.1965
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- 138e4cfd-c4b0-4978-9726-ad0413a4ec0b
- Series
- Series
-
5431
-321
106
64
-
5492
-289
- First number in the series
- 0342d8db-b236-4d8f-826d-51fffc330f49
- Start
- Start
- false
- 0
-
5433
-319
47
20
-
5456.5
-309
- 1
- 1
- {0}
- 0
- Step size for each successive number
- 3faaee9f-1abd-4447-94bc-29b9b0e345a7
- Step
- Step
- false
- 969c17c3-b421-462c-b1dc-0b89d2fdb2bd
- 1
-
5433
-299
47
20
-
5456.5
-289
- 1
- 1
- {0}
- 1
- Number of values in the series
- 4eec71c6-7f17-4c91-8be0-77b2a8a5f6a0
- Count
- Count
- false
- 0ed5c6e4-d403-4cdd-bf32-7e675481932d
- 1
-
5433
-279
47
20
-
5456.5
-269
- 1
- 1
- {0}
- 10
- 1
- Series of numbers
- 71849fea-9319-49c4-81a0-4ca7c0b6374f
- Series
- Series
- false
- 0
-
5504
-319
31
60
-
5519.5
-289
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 08367c48-9073-4bf6-9593-a5e2021100d0
- Digit Scroller
- INCREASE BEND PER SEGMENT
- false
- 0
- 12
- INCREASE BEND PER SEGMENT
- 1
- 0.49222173845
-
5439
-98
250
20
-
5439.196
-97.86229
- b6d7ba20-cf74-4191-a756-2216a36e30a7
- Rotate
- Rotate a vector around an axis.
- true
- c879fe7e-3294-4d38-be33-f7ba59030551
- Rotate
- Rotate
-
5480
-646
150
64
-
5583
-614
- Vector to rotate
- c6e1b79c-2b1d-4c8e-9bc8-41e9cc6be5c2
- Vector
- Vector
- false
- 5daa660a-905c-43f7-92a4-ea551e4af786
- 1
-
5482
-644
89
20
-
5554.5
-634
- Rotation axis
- 8300e4ec-ef97-4b59-9bdd-286f760c4a0e
- Axis
- Axis
- false
- 3e50e4ba-3e50-4cae-b7c3-3c1da2baa30a
- 1
-
5482
-624
89
20
-
5554.5
-614
- Rotation angle (in degrees)
- d123f974-c772-4439-8fb0-019aa9699610
- -X
- Angle
- Angle
- false
- true
- bf962535-6875-4317-b65e-ec8249e02594
- 1
- true
-
5482
-604
89
20
-
5554.5
-594
- Rotated vector
- adbceb33-b653-49dc-aefa-e907e8f462ff
- Vector
- Vector
- false
- 0
-
5595
-644
33
60
-
5611.5
-614
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- c07e10ab-b7a2-499c-a808-bf70ce44c08f
- Interpolate
- Interpolate
-
5675
-967
197
84
-
5820
-925
- 1
- Interpolation points
- b6f5c622-b28c-4706-a532-56f679223c9d
- Vertices
- Vertices
- false
- d87260b8-9262-4a70-aca6-3d05ceda11ba
- 1
-
5677
-965
131
20
-
5742.5
-955
- Curve degree
- 94472fea-c249-4900-beab-dd93d29af82f
- Degree
- Degree
- false
- 0
-
5677
-945
131
20
-
5742.5
-935
- 1
- 1
- {0}
- 3
- Periodic curve
- f9b74bda-8f8e-4a63-b870-e7e40939efd5
- Periodic
- Periodic
- false
- 0
-
5677
-925
131
20
-
5742.5
-915
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- e250f7f2-3a76-421d-8884-41a15e666af8
- KnotStyle
- KnotStyle
- false
- 0
-
5677
-905
131
20
-
5742.5
-895
- 1
- 1
- {0}
- 1
- Resulting nurbs curve
- 55bd8b03-85a2-4209-b828-65ef0f73ebf3
- Curve
- Curve
- false
- 0
-
5832
-965
38
26
-
5851
-951.6667
- Curve length
- f9aac3d6-b066-4cd2-95aa-bb54f08a97bb
- Length
- Length
- false
- 0
-
5832
-939
38
27
-
5851
-925
- Curve domain
- 9bfc02c9-4512-4165-badc-803ce11eb532
- Domain
- Domain
- false
- 0
-
5832
-912
38
27
-
5851
-898.3334
- 79f9fbb3-8f1d-4d9a-88a9-f7961b1012cd
- Unit X
- Unit vector parallel to the world {x} axis.
- true
- 1be8539a-934e-4f3c-9d8d-1cf41fa5b3f9
- Unit X
- Unit X
-
5516
-494
114
28
-
5562
-480
- Unit multiplication
- d7861f50-28a2-44e3-b197-a9de61fe1282
- Factor
- Factor
- false
- a97649ee-fe8f-4128-8d41-11d1c7771844
- 1
-
5518
-492
32
24
-
5534
-480
- 1
- 1
- {0}
- 1
- World {x} vector
- 994b319d-24d6-43c4-a089-60bbddc63663
- Unit vector
- Unit vector
- false
- 0
-
5574
-492
54
24
-
5601
-480
- 9103c240-a6a9-4223-9b42-dbd19bf38e2b
- Unit Z
- Unit vector parallel to the world {z} axis.
- true
- 79f5883a-82e2-40ff-9180-49cf756189f8
- Unit Z
- Unit Z
-
5314
-646
114
28
-
5360
-632
- Unit multiplication
- 8a257eb2-8ae0-4de2-8cd7-20b52b4cdcdf
- Factor
- Factor
- false
- a97649ee-fe8f-4128-8d41-11d1c7771844
- 1
-
5316
-644
32
24
-
5332
-632
- 1
- 1
- {0}
- 1
- World {z} vector
- 3e50e4ba-3e50-4cae-b7c3-3c1da2baa30a
- Unit vector
- Unit vector
- false
- 0
-
5372
-644
54
24
-
5399
-632
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- bbd32612-db4e-463d-bcce-b67bcede8c61
- Relay
- false
- 47f8c543-3f12-46b6-9c45-d7679aa73eda
- 1
-
5555
-744
40
16
-
5575
-736
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 0ed5c6e4-d403-4cdd-bf32-7e675481932d
- Relay
- false
- 7f2e7848-da9a-427d-b504-eee28eab0626
- 1
-
5555
-74
40
16
-
5575
-66
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
- Mathematical addition
- true
- a503a94e-e524-481c-abf8-2b53d1124543
- Addition
- Addition
-
5532
-39
85
44
-
5572
-17
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for addition
- 9c3e189a-db08-46ea-8d0c-5953eb550c5e
- A
- A
- true
- 0
-
5534
-37
26
20
-
5547
-27
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 1
- Second item for addition
- c1b29164-b1f0-40f5-a284-31e3975d7674
- B
- B
- true
- 5a2d12fc-c904-4812-bfef-ff31cf7645e9
- 1
-
5534
-17
26
20
-
5547
-7
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- Result of addition
- 7f2e7848-da9a-427d-b504-eee28eab0626
- Result
- Result
- false
- 0
-
5584
-37
31
40
-
5599.5
-17
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
- Mathematical addition
- true
- 54624d31-4e99-49ce-bafd-5071cf6504db
- Addition
- Addition
-
5488
31
155
44
-
5528
53
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for addition
- b75e33db-8966-4b64-8f38-154533e5f858
- A
- A
- true
- 0
-
5490
33
26
20
-
5503
43
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 1
- Second item for addition
- 56c62a7a-0de5-4cd6-90c0-48c9885acc53
- B
- B
- true
- 5b3c723a-3f23-441f-9c84-ffbe637729f5
- 1
-
5490
53
26
20
-
5503
63
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 1
- Result of addition
- 5a2d12fc-c904-4812-bfef-ff31cf7645e9
- Result
- NUMBER OF POINTS
- false
- 0
-
5540
33
101
40
-
5590.5
53
- e2039b07-d3f3-40f8-af88-d74fed238727
- Insert Items
- Insert a collection of items into a list.
- true
- bca1b843-1168-41fd-b4dc-e55d87681afb
- Insert Items
- Insert Items
-
5517
-852
116
84
-
5600
-810
- 1
- List to modify
- ed262261-3893-489d-bd38-50b99b47e5dd
- List
- List
- false
- bbd32612-db4e-463d-bcce-b67bcede8c61
- 1
-
5519
-850
69
20
-
5553.5
-840
- 1
- Items to insert. If no items are supplied, nulls will be inserted.
- 4d57446d-97f7-4d99-ac3e-3c9482702dc2
- Item
- Item
- true
- 0
-
5519
-830
69
20
-
5553.5
-820
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- {0,0,0}
- 1
- Insertion index for each item
- 0049ee86-d042-4539-8bc4-9f47292ab5a0
- Indices
- Indices
- false
- 0
-
5519
-810
69
20
-
5553.5
-800
- 1
- 1
- {0}
- 0
- If true, indices will be wrapped
- 62e99271-8a06-48fe-9cd6-76869b392f00
- Wrap
- Wrap
- false
- 0
-
5519
-790
69
20
-
5553.5
-780
- 1
- 1
- {0}
- false
- 1
- List with inserted values
- 640ec4ca-bfa6-445b-93b9-dd6a74030587
- List
- List
- false
- 0
-
5612
-850
19
80
-
5621.5
-810
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- d87260b8-9262-4a70-aca6-3d05ceda11ba
- Relay
- ⊙☉⊙
- false
- 640ec4ca-bfa6-445b-93b9-dd6a74030587
- 1
-
5554
-876
44
16
-
5576
-868
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- a503a94e-e524-481c-abf8-2b53d1124543
- 54624d31-4e99-49ce-bafd-5071cf6504db
- 5b3c723a-3f23-441f-9c84-ffbe637729f5
- 3
- a736fbae-7bd8-47bd-a818-924d4c6b0fd5
- Group
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
-
7VsJdBNlHp+2aZqjB1AVUJDR4nqwFnTxKbJgk6ZHaNPGFhAEH50m03YgycRkUuSy5UFBKiBd6Alo8UEFqVahVDmU6haXXVksCwgo2kMXV46VXXXFXaX7fTPfpJ0jaaGphYd9L+nM//+dv//5/WeiMtAWj510MB3gLwjDMAX4RDptnlzKMSufdLkp2gFZZkCGbPgXBpvw/ZJJwkq6YJNQxNbwLKMBktWANPbyuVFrGom4un8frj+tKZ8XZnaR+RQ5F/I1gK/MzAOjWKMQ2US68ybPc5KQHYImjkC8NNplJ2yQMxJQN23a1MH3yiRtpIUhrTyPoqiOmwxkDuWgGLALs4t2ki6GIt38sPCjMBAMO48K3OxssxeXLP9UpTWQbouLcjJo83CJmCKNsJP83YWQaclJsbHtuyrPvrgCfLeX14HvtvI328rr2Qv2tn4L/C5ZzX6vaSsp9bZsrkiD12uXwhHKYJf2DZu9123r1ratK/U2ayvf5h2Na8YNcrZ8J6RXLhZMzfdFS0LcbcLlbeyct7iKbbzS33XVq94B0Tei+O3FXqMdsTN2WcA279rQOvlld7Zhudwe0aTs3hGq7AgIH76vFEkOYYQ2NxEvCCQXNJpAfAheVrKxsUnJ09QZQMOgKbh5M4F/ETw1nvZwBhTCmwBQttlAGZH+BCOycjLhyiXZlreD27qfOzoWgi6KJ2nazlvQzMibHgudCtRZMJUaUiTTqDMszlRiHu1hurbVJLloj1PSeGCnKaRnw8V5J4gCHy1HE/SCdCVHhwMEI0tUJE3ptOw7gotm3L3r45SV2V/r8v7q+K/ASiJMhNuN66xWdlZ1PO1gCMrR6S2gr5GztXvMpCsH2Dluh/0J1B+nc3ACt1FuBl5RDGl3K5Mpq5V08BsJCjc63AzhsJBJHsrKLzHjvqHGPAWZsMGZcKxxcOtRP0tUpVGWOb7ZGh3DuKhsD8P5EK9Y9QA1K0uKgfdZRwxYXEoThv1Hj2Fj9KFmKp9mQR0BuYUfG7DGhCatk3AR9lmUw+lh0VUhdJU6i4V0e31UkA+IRhhhRzyfsHlINw7AEmIVK4tE+wndiS11d6WvrZs5+8C8Q98KkAhlR5QggMjp7Oyc42UVTZlJe1wWklVDqMtnT4bsffA1Y2FNyfzzukU1Wo4t0CfYr4cQVgMIGycBCE/qMAwXQ2g+ykIYzkEI1B9hqPQD2OAM0u2xsaojQEoWqKxRjHn5I1NSNj1ieoyy53kEQCm5kSRI8XQJVHJYYD3HAjuJsHgOqFO1ToRF3GmgbMlCLOCsYVemT4NTkV2BcRiKsOEudjNuWXjSBr6wqPzIrOQGw0fbX7YUVgjgiTKjETg43BKcJA36BLAEv4DFNyHHFuTLsT2wOePAjLptiVs3R334/rPflwlthXWxQoc2lAdcT7tQRsQnGcp42gZ2xCcm8L+cDG7X4blwXCiGJBdQ0jzaCVIWnObcdbDRwFvbvu9H/fSX7JsS32qYcGmX5sIAwApCrPLnjt+3yHHMtPd/49Y8fNvDOsAK9mGjgBWCWBObRuavf8qgW3boywcfmfjAl4ClQKx3Ip7RfFAUr1sdWXyvJXOEAbBCEUvsWQFLiVhf7fth0MEzo3UrrN9HlJhOOQErDLFGRE9YqpqzK7GoJnvBz1h0O2Cp+MU//foBfIMnvfqNnT8mvfeqGrDUiDUIHz8xs7Y0fd27XxRMiYq5DFgavteGjr9Rt66Jq9r8+BIdkV8MWFrECt9amXb4yEV99Q/fKUadXFUPWOGINaHqhXEFx3YkvzN2aH3laOt0wIpArHn3lhZVxHSY9i2cyiwsGfsTYEUi1tCvv7v/4qHpaX9I/wZ/dugnwwErCrGWHB5++qA5NuWdvRs3Jw2bOQywBiDWu69PiW0YW5S0es4Je+2kjhWANRCxLPdfjJybWpdSbHg+4cKLHe+pjIZZAsUfBLchZ4UL0k5vVDx5i377G9EFRmzBNhkNldie2IQw3oQ4awj2ZQ14bkzDc6tW6Nf+sTa18sfdC4RzZZA2Yp7QGnyEs2Af7idah8+lXCTwOmAkpPCymxbrsMxCpJvuNnqJpdrL6IWdAA4ooglGLhDvxQ6o8BTgankHFHLNQy72DYGBfFlL/mPEjMspRS3ar9IzwtYHAPLWWn+Qt27nIVf4gry6ZJXn/KRLSWVP3+KuKv7tU8KwnwhPnow0i/UF8MNcB9xN20ncSjAE7nFTjlzcaSMsZB5tA0ECpCEOK8zeQDsG8hgit2dJrdixyS1VmqFw9J7mYCBRLbwTQPoGhFScg7WCMFp4a1OEGeYdJEO6wEGagFwYASDCGjZxFMgTfsJYstHK60Fa0ecTM/90Lm7ph/WFqn+lH+P5fDxb8sSmgk+cM5MrGqsrz1SsnMjz+aA23XpwddB+tWHPPwebIkZFN2vT2RRIokcqju57Ym697HZYNPxIVjuZfIZBYpOVzjQblliNZabtGf3QV4feH3n+SqQT8HSoFcgRg3IcIJcO4cA0Ckc0RZphrcfNkA6GF2QQQi5UgqVS7wI7zsO62JG0kcJMMHn83kIWjFmkMIIjG9+H3ZfDY7PNcoM9OHI73UTnPetfFox5NGNRF9kEdSObQYmd1mQB6aXHRcqKqPnn4C073g5NrbgzOYbau2++QERh8VxPiYy8jD4R0nC/Qrr1FxUSX01QpMZzDhJ2KfDaNSsLOC4fdeRkcSdcJc7QOOVwky4GB84QTCFwgLKy+fRA9MSVddvT9h/dxrxyfmFpmMnDENk20gu20J7YWcZIZBU0RiKloL49tbJCHOJXiDc3IQclcDS+AIxEykxacQa4HFmw9q+/eeX0pZP1la8V//34oqjjAmwU0FNJkOGogVbhrM+Rn2kEZ3anJF60sCqMQjAfNyUh+PEvWtLDbIeTXtr9bnBBwx3LBLvRZOZROQwOj6rSMBzqA8Pb0nNy3CRQPpuNKxoBbUR1pNgehVrxAcjXkiQwd+H1FMLjBpCEAAjL5EJu9SeAu6q3laMI9qQPjNINVyd/vs9ef2FGK6V/OTUGn5bymTC5UMjulaN2l/SJCwe9rRIBuLIgXK06GXvLAikhvkYAF18Y8RU8wjmJ0azGyEIztablpejL0ZN2PtRxW+2L53YLk2G2u7SExpG7A0d8SAwAOK2r/YEDdKk/IorS4bFndxZIWD3tIqNgrJvk6wkX4USFT1kRxXq+2Xd/WW38lg8WnxnvsT0u1F7YW6q9LDXQDpFVz5V+1fP5fpFAWDZN20jC6/cwSSX1CquHnN2AKAW9qqxQxMe9q3cpvRQKfhr5jAq5KGX+jDULFKV4NZREqaq3W6cv//KScc/bu/a8OactVegFzISDtAkDlNqPQt+jw52wB1vFt3jcDG3HHTTYBns4hHHfn7aLi18yS+nJ6VybaXHRNlsGAeiQqMQ6/0R+Spxw+PJTqikg6YOZBj/tXQbaA7I43GID64ERiLRSDNq7BaAFTKC9sEYkR/6psliOcc0gnxgP5Bgdj2Ev6zUmwpVLOVLJHIFSaDlyBpWbJ3xyxtEn086uVKEyHE5rNmzNHt8UxYIofHwcxq9KrrLrIuYaHVbKQnqfsAWpIRHaZReSCRwlKBvQEC8pPNNJWijCFk9bO/sC+BkXSdi996yz8vZBqspHtWtZVcWF375X1Vdqgo7NL2w0vjXOcOrieNWR/lHVLKiqW/tSVRNnNxtOzd96faiqypeqXkflN/HTiD4qvzXO9ld+a8z+tfwmK51hBUNmvK41JizdF6e+/GzMiH4vv8XN9lcUaMy98cpvZxtON0yoO2oqcnT82JLx3l3XQPktjvQrpOwbpvw2LCxlz7CRVtPuSkOWaqNlbJ+V3wJcDmCFmOVXiE8FvPw2xPyPherxDQm1a1aXnXthe3q/lt9YP+Oz/AZUGIVgPse7nkOw+A2DPgrB2AZ/IRir+DUEy0pHo3663WCv1Nc/4Tj0w2+aP+/3ENy43m9dvurGC8Geu1t23nu2Lrn0xOALo34aXXMthOBKf0ICxnajhOAzjmrzuD9/O6nqnOd3v18yfG6fheAAv4bBWlqZX0srDXgIFp/y+zUEs37GZwgGKoxCsAa79gs24tfx+r5gI86m+q9g07q4Lws2l+hmQ8uJxddHwUbrS1VvaV9lGPToR/GbHvpif93BuYZuX1FTo1EGxrOqKPczGw3HEqhUJKKJVa1Xr7WJ3/m7ytfaeugyvA+/RKrWeBw4hdAm6C6g20CIh/tC/HLRjs3RsQp9w8whVTVO05ZuEddcQ4iLX5ANzIuE4tcTexjB/AkkbodYIBFXZwLsY7Ff3AS6f4otftTcm6fYATCAuOVivCOvygDQLzB+cQu4ot+WiF/47t1vS0TGIP7hSgCMAZvqFc7/AQ==
- true
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAZdJREFUSEvV1M8rBGEcx/GHJL8ixYHdcnBwcuBgExYnF6Tk4K4cXJjZuLg4uOxhy4+U5Cgl+QMUSXIQ/gMkSn4lF1La8f7uzjbraWaatRx86nWYp5nnM/PMPKP+S5px7aIWeacMa7Bc1CFQejGqacUArnCIvAr2oF98i3N0oQDFLgKlHA/QCz4RRw0qMexCls83IZziCAtIZBmzx56wAf0GRAM8E4Esw0zqyDthbMKzoBRvmg+8YBBBUo8VLGmqkVont/ZZ/ErkCV4173iEbKAgKYQ8ha4InpFv/R5tqSP/yHtwW4UW+KYfd+iGLGW2zHcuN3CCHxVI+vAM/eJdrOIGJmTTnWma4CSppsNJZUbTYo32sGQdeoG8p2VUIFiSyohZyrQEJYv2sGQeF5pjyA6fQxUmXXz/F/kUeEV2+hYuoT+h6GBSM5JUU+NpxrZTYOxnxi1ldHKyX0bgVWDEM5N64SZkl/qlBPJL0YV+q8A7fC3tlEzYdpyJjQNn3Izap+cXJsv1JeeWPy9g4h5KEoIlGrKH84hSX+x+CmKBvnCmAAAAAElFTkSuQmCC
- 69ae5d2b-f8b0-45e5-b3c0-4b7f7d9c4314
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
- true
- 4
- 366990f3-4b5c-4486-8cee-28705f6abe90
- bf962535-6875-4317-b65e-ec8249e02594
- e5160ef4-a399-419f-9445-3e29f0a8b53d
- ea997ec2-dc59-48b3-be9a-cae09aa6ff28
- 0ef02d63-4c77-4baf-8a44-8b45ed9effc1
- dc1dce83-50c8-4b2e-bdbb-9da4471c5c1c
- 2df4e919-ccf0-4e59-924f-ef207e19da1d
- 2e55aebe-34b6-4785-8e6b-d76dac4aff89
-
5550
-563
49
44
-
5579
-541
- 2
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- 2
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Shift offset
- ea997ec2-dc59-48b3-be9a-cae09aa6ff28
- Shift
- true
- 0
-
5552
-561
15
20
-
5559.5
-551
- 1
- 1
- {0}
- 1
- 2
- A wire relay object
- e5160ef4-a399-419f-9445-3e29f0a8b53d
- Relay
- true
- 7ae860ec-f02e-44f7-90a2-ee7b43b7a113
- 1
-
5552
-541
15
20
-
5559.5
-531
- 2
- A wire relay object
- bf962535-6875-4317-b65e-ec8249e02594
- Relay
- false
- 0
-
5591
-561
6
20
-
5594
-551
- Result of mass addition
- 366990f3-4b5c-4486-8cee-28705f6abe90
- Result
- false
- 0
-
5591
-541
6
20
-
5594
-531
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
-
7VsJdBNlHp+2aZqjB1AVUJDR4nqwFnTxKbJgk6ZHaNPGFhAEH50m03YgycRkUuSy5UFBKiBd6Alo8UEFqVahVDmU6haXXVksCwgo2kMXV46VXXXFXaX7fTPfpJ0jaaGphYd9L+nM//+dv//5/WeiMtAWj510MB3gLwjDMAX4RDptnlzKMSufdLkp2gFZZkCGbPgXBpvw/ZJJwkq6YJNQxNbwLKMBktWANPbyuVFrGom4un8frj+tKZ8XZnaR+RQ5F/I1gK/MzAOjWKMQ2US68ybPc5KQHYImjkC8NNplJ2yQMxJQN23a1MH3yiRtpIUhrTyPoqiOmwxkDuWgGLALs4t2ki6GIt38sPCjMBAMO48K3OxssxeXLP9UpTWQbouLcjJo83CJmCKNsJP83YWQaclJsbHtuyrPvrgCfLeX14HvtvI328rr2Qv2tn4L/C5ZzX6vaSsp9bZsrkiD12uXwhHKYJf2DZu9123r1ratK/U2ayvf5h2Na8YNcrZ8J6RXLhZMzfdFS0LcbcLlbeyct7iKbbzS33XVq94B0Tei+O3FXqMdsTN2WcA279rQOvlld7Zhudwe0aTs3hGq7AgIH76vFEkOYYQ2NxEvCCQXNJpAfAheVrKxsUnJ09QZQMOgKbh5M4F/ETw1nvZwBhTCmwBQttlAGZH+BCOycjLhyiXZlreD27qfOzoWgi6KJ2nazlvQzMibHgudCtRZMJUaUiTTqDMszlRiHu1hurbVJLloj1PSeGCnKaRnw8V5J4gCHy1HE/SCdCVHhwMEI0tUJE3ptOw7gotm3L3r45SV2V/r8v7q+K/ASiJMhNuN66xWdlZ1PO1gCMrR6S2gr5GztXvMpCsH2Dluh/0J1B+nc3ACt1FuBl5RDGl3K5Mpq5V08BsJCjc63AzhsJBJHsrKLzHjvqHGPAWZsMGZcKxxcOtRP0tUpVGWOb7ZGh3DuKhsD8P5EK9Y9QA1K0uKgfdZRwxYXEoThv1Hj2Fj9KFmKp9mQR0BuYUfG7DGhCatk3AR9lmUw+lh0VUhdJU6i4V0e31UkA+IRhhhRzyfsHlINw7AEmIVK4tE+wndiS11d6WvrZs5+8C8Q98KkAhlR5QggMjp7Oyc42UVTZlJe1wWklVDqMtnT4bsffA1Y2FNyfzzukU1Wo4t0CfYr4cQVgMIGycBCE/qMAwXQ2g+ykIYzkEI1B9hqPQD2OAM0u2xsaojQEoWqKxRjHn5I1NSNj1ieoyy53kEQCm5kSRI8XQJVHJYYD3HAjuJsHgOqFO1ToRF3GmgbMlCLOCsYVemT4NTkV2BcRiKsOEudjNuWXjSBr6wqPzIrOQGw0fbX7YUVgjgiTKjETg43BKcJA36BLAEv4DFNyHHFuTLsT2wOePAjLptiVs3R334/rPflwlthXWxQoc2lAdcT7tQRsQnGcp42gZ2xCcm8L+cDG7X4blwXCiGJBdQ0jzaCVIWnObcdbDRwFvbvu9H/fSX7JsS32qYcGmX5sIAwApCrPLnjt+3yHHMtPd/49Y8fNvDOsAK9mGjgBWCWBObRuavf8qgW3boywcfmfjAl4ClQKx3Ip7RfFAUr1sdWXyvJXOEAbBCEUvsWQFLiVhf7fth0MEzo3UrrN9HlJhOOQErDLFGRE9YqpqzK7GoJnvBz1h0O2Cp+MU//foBfIMnvfqNnT8mvfeqGrDUiDUIHz8xs7Y0fd27XxRMiYq5DFgavteGjr9Rt66Jq9r8+BIdkV8MWFrECt9amXb4yEV99Q/fKUadXFUPWOGINaHqhXEFx3YkvzN2aH3laOt0wIpArHn3lhZVxHSY9i2cyiwsGfsTYEUi1tCvv7v/4qHpaX9I/wZ/dugnwwErCrGWHB5++qA5NuWdvRs3Jw2bOQywBiDWu69PiW0YW5S0es4Je+2kjhWANRCxLPdfjJybWpdSbHg+4cKLHe+pjIZZAsUfBLchZ4UL0k5vVDx5i377G9EFRmzBNhkNldie2IQw3oQ4awj2ZQ14bkzDc6tW6Nf+sTa18sfdC4RzZZA2Yp7QGnyEs2Af7idah8+lXCTwOmAkpPCymxbrsMxCpJvuNnqJpdrL6IWdAA4ooglGLhDvxQ6o8BTgankHFHLNQy72DYGBfFlL/mPEjMspRS3ar9IzwtYHAPLWWn+Qt27nIVf4gry6ZJXn/KRLSWVP3+KuKv7tU8KwnwhPnow0i/UF8MNcB9xN20ncSjAE7nFTjlzcaSMsZB5tA0ECpCEOK8zeQDsG8hgit2dJrdixyS1VmqFw9J7mYCBRLbwTQPoGhFScg7WCMFp4a1OEGeYdJEO6wEGagFwYASDCGjZxFMgTfsJYstHK60Fa0ecTM/90Lm7ph/WFqn+lH+P5fDxb8sSmgk+cM5MrGqsrz1SsnMjz+aA23XpwddB+tWHPPwebIkZFN2vT2RRIokcqju57Ym697HZYNPxIVjuZfIZBYpOVzjQblliNZabtGf3QV4feH3n+SqQT8HSoFcgRg3IcIJcO4cA0Ckc0RZphrcfNkA6GF2QQQi5UgqVS7wI7zsO62JG0kcJMMHn83kIWjFmkMIIjG9+H3ZfDY7PNcoM9OHI73UTnPetfFox5NGNRF9kEdSObQYmd1mQB6aXHRcqKqPnn4C073g5NrbgzOYbau2++QERh8VxPiYy8jD4R0nC/Qrr1FxUSX01QpMZzDhJ2KfDaNSsLOC4fdeRkcSdcJc7QOOVwky4GB84QTCFwgLKy+fRA9MSVddvT9h/dxrxyfmFpmMnDENk20gu20J7YWcZIZBU0RiKloL49tbJCHOJXiDc3IQclcDS+AIxEykxacQa4HFmw9q+/eeX0pZP1la8V//34oqjjAmwU0FNJkOGogVbhrM+Rn2kEZ3anJF60sCqMQjAfNyUh+PEvWtLDbIeTXtr9bnBBwx3LBLvRZOZROQwOj6rSMBzqA8Pb0nNy3CRQPpuNKxoBbUR1pNgehVrxAcjXkiQwd+H1FMLjBpCEAAjL5EJu9SeAu6q3laMI9qQPjNINVyd/vs9ef2FGK6V/OTUGn5bymTC5UMjulaN2l/SJCwe9rRIBuLIgXK06GXvLAikhvkYAF18Y8RU8wjmJ0azGyEIztablpejL0ZN2PtRxW+2L53YLk2G2u7SExpG7A0d8SAwAOK2r/YEDdKk/IorS4bFndxZIWD3tIqNgrJvk6wkX4USFT1kRxXq+2Xd/WW38lg8WnxnvsT0u1F7YW6q9LDXQDpFVz5V+1fP5fpFAWDZN20jC6/cwSSX1CquHnN2AKAW9qqxQxMe9q3cpvRQKfhr5jAq5KGX+jDULFKV4NZREqaq3W6cv//KScc/bu/a8OactVegFzISDtAkDlNqPQt+jw52wB1vFt3jcDG3HHTTYBns4hHHfn7aLi18yS+nJ6VybaXHRNlsGAeiQqMQ6/0R+Spxw+PJTqikg6YOZBj/tXQbaA7I43GID64ERiLRSDNq7BaAFTKC9sEYkR/6psliOcc0gnxgP5Bgdj2Ev6zUmwpVLOVLJHIFSaDlyBpWbJ3xyxtEn086uVKEyHE5rNmzNHt8UxYIofHwcxq9KrrLrIuYaHVbKQnqfsAWpIRHaZReSCRwlKBvQEC8pPNNJWijCFk9bO/sC+BkXSdi996yz8vZBqspHtWtZVcWF375X1Vdqgo7NL2w0vjXOcOrieNWR/lHVLKiqW/tSVRNnNxtOzd96faiqypeqXkflN/HTiD4qvzXO9ld+a8z+tfwmK51hBUNmvK41JizdF6e+/GzMiH4vv8XN9lcUaMy98cpvZxtON0yoO2oqcnT82JLx3l3XQPktjvQrpOwbpvw2LCxlz7CRVtPuSkOWaqNlbJ+V3wJcDmCFmOVXiE8FvPw2xPyPherxDQm1a1aXnXthe3q/lt9YP+Oz/AZUGIVgPse7nkOw+A2DPgrB2AZ/IRir+DUEy0pHo3663WCv1Nc/4Tj0w2+aP+/3ENy43m9dvurGC8Geu1t23nu2Lrn0xOALo34aXXMthOBKf0ICxnajhOAzjmrzuD9/O6nqnOd3v18yfG6fheAAv4bBWlqZX0srDXgIFp/y+zUEs37GZwgGKoxCsAa79gs24tfx+r5gI86m+q9g07q4Lws2l+hmQ8uJxddHwUbrS1VvaV9lGPToR/GbHvpif93BuYZuX1FTo1EGxrOqKPczGw3HEqhUJKKJVa1Xr7WJ3/m7ytfaeugyvA+/RKrWeBw4hdAm6C6g20CIh/tC/HLRjs3RsQp9w8whVTVO05ZuEddcQ4iLX5ANzIuE4tcTexjB/AkkbodYIBFXZwLsY7Ff3AS6f4otftTcm6fYATCAuOVivCOvygDQLzB+cQu4ot+WiF/47t1vS0TGIP7hSgCMAZvqFc7/AQ==
- true
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAZdJREFUSEvV1M8rBGEcx/GHJL8ixYHdcnBwcuBgExYnF6Tk4K4cXJjZuLg4uOxhy4+U5Cgl+QMUSXIQ/gMkSn4lF1La8f7uzjbraWaatRx86nWYp5nnM/PMPKP+S5px7aIWeacMa7Bc1CFQejGqacUArnCIvAr2oF98i3N0oQDFLgKlHA/QCz4RRw0qMexCls83IZziCAtIZBmzx56wAf0GRAM8E4Esw0zqyDthbMKzoBRvmg+8YBBBUo8VLGmqkVont/ZZ/ErkCV4173iEbKAgKYQ8ha4InpFv/R5tqSP/yHtwW4UW+KYfd+iGLGW2zHcuN3CCHxVI+vAM/eJdrOIGJmTTnWma4CSppsNJZUbTYo32sGQdeoG8p2VUIFiSyohZyrQEJYv2sGQeF5pjyA6fQxUmXXz/F/kUeEV2+hYuoT+h6GBSM5JUU+NpxrZTYOxnxi1ldHKyX0bgVWDEM5N64SZkl/qlBPJL0YV+q8A7fC3tlEzYdpyJjQNn3Izap+cXJsv1JeeWPy9g4h5KEoIlGrKH84hSX+x+CmKBvnCmAAAAAElFTkSuQmCC
- 56b85b52-533e-46e6-a4ef-6bfb977952bb
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
- true
- 4
- 47f8c543-3f12-46b6-9c45-d7679aa73eda
- 4c02a302-57af-4cef-bd41-85e89bc3be06
- 681d33cd-141f-4054-b4c5-cb2b1d97d8cc
- f72ac5a0-f0bb-4f18-a519-31a45e4cbc58
- dc1dce83-50c8-4b2e-bdbb-9da4471c5c1c
- 2df4e919-ccf0-4e59-924f-ef207e19da1d
- 2e55aebe-34b6-4785-8e6b-d76dac4aff89
- 0ef02d63-4c77-4baf-8a44-8b45ed9effc1
-
5550
-709
49
44
-
5579
-687
- 2
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- 2
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Shift offset
- 681d33cd-141f-4054-b4c5-cb2b1d97d8cc
- Shift
- true
- 0
-
5552
-707
15
20
-
5559.5
-697
- 1
- 1
- {0}
- -1
- 2
- A wire relay object
- 4c02a302-57af-4cef-bd41-85e89bc3be06
- Relay
- true
- adbceb33-b653-49dc-aefa-e907e8f462ff
- 1
-
5552
-687
15
20
-
5559.5
-677
- 2
- A wire relay object
- 47f8c543-3f12-46b6-9c45-d7679aa73eda
- Relay
- false
- 0
-
5591
-707
6
20
-
5594
-697
- Result of mass addition
- f72ac5a0-f0bb-4f18-a519-31a45e4cbc58
- Result
- false
- 0
-
5591
-687
6
20
-
5594
-677
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- 81c78050-42ce-42e1-b704-c28af80d0879
- Rotate
- Rotate
-
5485
-1259
191
64
-
5612
-1227
- Base geometry
- 00a540ab-9749-4d8c-96c9-2fc32ed39a1f
- Geometry
- Geometry
- true
- 48a77407-1ef5-408c-98e8-f8c22c4b8306
- 1
-
5487
-1257
113
20
-
5543.5
-1247
- Rotation angle in radians
- 226e3dcc-2451-4e3e-a826-4e56af0fd78a
- Angle
- Angle
- false
- 0
- false
-
5487
-1237
113
20
-
5543.5
-1227
- 1
- 1
- {0}
- 3.1415926535897931
- Rotation plane
- e5b63ff6-0729-47bf-b231-8951b2226050
- Plane
- Plane
- false
- 3b38221c-a947-47b4-9a1a-4e8ff76e2c4f
- 1
-
5487
-1217
113
20
-
5543.5
-1207
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- afe51e5b-2aba-4ee7-912e-9f81a3eec6d7
- Geometry
- Geometry
- false
- 0
-
5624
-1257
50
30
-
5649
-1242
- Transformation data
- c66b686c-536a-465e-8728-ddae72d50ffc
- Transform
- Transform
- false
- 0
-
5624
-1227
50
30
-
5649
-1212
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- true
- 16c22ddd-5c25-4c4f-acce-a3d7f0148828
- Join Curves
- Join Curves
-
5548
-1369
116
44
-
5615
-1347
- 1
- Curves to join
- 137167ed-b8a3-4c6a-811c-61784ff10db1
- Curves
- Curves
- false
- 87471af4-c825-4e7a-b78e-3baf0ade13a1
- 1
-
5550
-1367
53
20
-
5576.5
-1357
- Preserve direction of input curves
- f553c93a-1dde-4da3-854a-a476c1211dc8
- Preserve
- Preserve
- false
- 0
-
5550
-1347
53
20
-
5576.5
-1337
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- ed45085a-8c02-44de-abcb-eeed1ed143df
- Curves
- Curves
- false
- 0
-
5627
-1367
35
40
-
5644.5
-1347
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- 3784dae5-ec06-4b36-9eb4-32475f135a17
- Merge
- Merge
-
5558
-1323
90
64
-
5603
-1291
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 1992602a-efc1-4b0b-9939-37f269c5499f
- false
- Data 1
- D1
- true
- 48a77407-1ef5-408c-98e8-f8c22c4b8306
- 1
-
5560
-1321
31
20
-
5575.5
-1311
- 2
- Data stream 2
- 1cb41ee5-37b1-453c-b111-ad53da685999
- false
- Data 2
- D2
- true
- afe51e5b-2aba-4ee7-912e-9f81a3eec6d7
- 1
-
5560
-1301
31
20
-
5575.5
-1291
- 2
- Data stream 3
- 57cca058-8f50-4e6b-ba12-0751532bf79f
- false
- Data 3
- D3
- true
- 0
-
5560
-1281
31
20
-
5575.5
-1271
- 2
- Result of merge
- 87471af4-c825-4e7a-b78e-3baf0ade13a1
- Result
- Result
- false
- 0
-
5615
-1321
31
60
-
5630.5
-1291
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- a97649ee-fe8f-4128-8d41-11d1c7771844
- Relay
- false
- 8597afef-d390-48ff-bfdf-3c8f4a1ab9aa
- 1
-
5503
-420
40
16
-
5523
-412
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 94a2a565-7b38-4eac-992c-a8b833d53e1c
- Panel
- false
- 0
- 0
- 0.51542256311
-
5690
-250
112
20
- 0
- 0
- 0
-
5690.922
-249.1965
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- O/4^(OO-4)
- true
- 5bb68c64-8e55-4ede-a373-3b553f00b8f5
- Expression
- Expression
-
5714
-145
157
44
-
5787
-123
- 2
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 97d9a087-6b0c-4acf-bd43-383c56431d87
- Variable O
- O
- true
- 04250f66-9b19-4960-81e5-c75d6a635b9a
- 1
-
5716
-143
19
20
-
5725.5
-133
- Expression variable
- f7d623e1-5147-402a-9ee0-b90c3c22b0f8
- Variable OO
- OO
- true
- ace881a5-d17e-48cc-8091-b504f097c407
- 1
-
5716
-123
19
20
-
5725.5
-113
- Result of expression
- 969c17c3-b421-462c-b1dc-0b89d2fdb2bd
- Result
- Result
- false
- 0
-
5838
-143
31
40
-
5853.5
-123
- 7ab8d289-26a2-4dd4-b4ad-df5b477999d8
- Log N
- Return the N-base logarithm of a number.
- true
- c9ed6af8-fb3d-4e12-b8eb-94fbb41d8973
- Log N
- Log N
-
5682
-39
115
44
-
5752
-17
- Value
- 6eb8c039-dcbe-48a3-9798-d0c45254fc4e
- Number
- Number
- false
- 5b3c723a-3f23-441f-9c84-ffbe637729f5
- 1
-
5684
-37
56
20
-
5712
-27
- Logarithm base
- 319b7b83-1aa9-4939-b860-73d08c058601
- Base
- Base
- false
- 0
-
5684
-17
56
20
-
5712
-7
- 1
- 1
- {0}
- 2
- Result
- ace881a5-d17e-48cc-8091-b504f097c407
- Result
- Result
- false
- 0
-
5764
-37
31
40
-
5779.5
-17
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 5b2cc981-7e40-4a82-88b8-624b14091777
- Digit Scroller
- INCREASE BEND PER SEGMENT
- false
- 0
- 12
- INCREASE BEND PER SEGMENT
- 1
- 0.48758816891
-
5405
-191
250
20
-
5405.438
-190.1045
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 11fa940e-cfd5-4601-9b24-2fd715db1f3a
- Panel
- false
- 0
- 0
- 16 0.492221738454693386
32 0.507180224586
-
5709
-208
194
30
- 0
- 0
- 0
-
5709.922
-207.1965
- 1
-
255;255;255;255
- false
- false
- true
- true
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- fea29e22-ad99-4c97-a41a-7d5ac36eb3ce
- Panel
- false
- 0
- 0
- 0.492221738454693386
-
5452
-122
112
20
- 0
- 0
- 0
-
5452.005
-121.3832
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- 083da795-56a8-4934-b454-6e2db47c35ee
- Deconstruct
- Deconstruct
-
6052
-411
120
64
-
6093
-379
- Input point
- 8b3f5170-858d-42d7-8649-2dd06911382c
- Point
- Point
- false
- c16cbadd-b9e5-4b4c-a7f6-d0a2af9bd438
- 1
-
6054
-409
27
60
-
6067.5
-379
- Point {x} component
- 04c2b22c-6673-4905-abc8-faf33e2da54b
- X component
- X component
- false
- 0
-
6105
-409
65
20
-
6137.5
-399
- Point {y} component
- 5c15c61b-748e-4d37-8f07-4d67dd9da867
- Y component
- Y component
- false
- 0
-
6105
-389
65
20
-
6137.5
-379
- Point {z} component
- 61a0a803-d15e-4c0a-bd03-e9173dc47ab1
- Z component
- Z component
- false
- 0
-
6105
-369
65
20
-
6137.5
-359
- d3d195ea-2d59-4ffa-90b1-8b7ff3369f69
- Unit Y
- Unit vector parallel to the world {y} axis.
- true
- 898393e5-1cbe-4939-9cd6-16052006348b
- Unit Y
- Unit Y
-
5301
-575
114
28
-
5347
-561
- Unit multiplication
- 604e846e-5334-45cc-b358-e8275259a522
- Factor
- Factor
- false
- a97649ee-fe8f-4128-8d41-11d1c7771844
- 1
-
5303
-573
32
24
-
5319
-561
- 1
- 1
- {0}
- 1
- World {y} vector
- 5daa660a-905c-43f7-92a4-ea551e4af786
- Unit vector
- Unit vector
- false
- 0
-
5359
-573
54
24
-
5386
-561
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 978abbde-eb2d-4d4f-9c9f-6a4f665f7b49
- Evaluate Length
- Evaluate Length
-
5529
-1194
149
64
-
5614
-1162
- Curve to evaluate
- 609d0e08-a115-4818-85f2-e0fddbd3c482
- Curve
- Curve
- false
- 48a77407-1ef5-408c-98e8-f8c22c4b8306
- 1
-
5531
-1192
71
20
-
5566.5
-1182
- Length factor for curve evaluation
- e9ae8d24-71ad-479c-a1cb-011009bb755e
- Length
- Length
- false
- 0
-
5531
-1172
71
20
-
5566.5
-1162
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 36427eab-9517-4ae9-8b53-5ecde7b832ff
- Normalized
- Normalized
- false
- 0
-
5531
-1152
71
20
-
5566.5
-1142
- 1
- 1
- {0}
- true
- Point at the specified length
- 3b38221c-a947-47b4-9a1a-4e8ff76e2c4f
- Point
- Point
- false
- 0
-
5626
-1192
50
20
-
5651
-1182
- Tangent vector at the specified length
- d80629a8-1bbd-4ecc-840b-0cecd25d1828
- Tangent
- Tangent
- false
- 0
-
5626
-1172
50
20
-
5651
-1162
- Curve parameter at the specified length
- bb2712ae-97d9-47a4-8a62-3b354df87e65
- Parameter
- Parameter
- false
- 0
-
5626
-1152
50
20
-
5651
-1142
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- e7fa1c0a-6dee-469e-bd81-b490fe80e04b
- Rotate
- Rotate
-
5486
-1687
226
81
-
5648
-1646
- Base geometry
- d859fb44-f1f1-44ad-88d4-2cec87520b1c
- Geometry
- Geometry
- true
- eed3e60c-da42-452d-840a-628600c254ce
- 1
-
5488
-1685
148
20
-
5570
-1675
- Rotation angle in degrees
- 6d1a58cb-dc0e-4d96-a845-4430b1755619
- Angle
- Angle
- false
- 073fb8d2-f971-4f1f-a5cb-c70731174f1a
- 1
- true
-
5488
-1665
148
20
-
5570
-1655
- 1
- 1
- {0}
- 1.5707963267948966
- Rotation plane
- f8993e77-cb96-457b-ba55-5914f3f9a84c
- Plane
- Plane
- false
- 0
-
5488
-1645
148
37
-
5570
-1626.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 3143d331-a6cc-487a-9d6e-98844d184687
- Geometry
- Geometry
- false
- 0
-
5660
-1685
50
38
-
5685
-1665.75
- Transformation data
- aa79130c-2e49-4f9f-8045-32819256da62
- Transform
- Transform
- false
- 0
-
5660
-1647
50
39
-
5685
-1627.25
- b464fccb-50e7-41bd-9789-8438db9bea9f
- Angle
- Compute the angle between two vectors.
- true
- 6d669f59-dcfb-404b-94b1-22bb7f83e90c
- Angle
- Angle
-
5504
-1602
197
81
-
5640
-1561
- First vector
- 49c3e659-47fc-4806-a1a7-a90ae62a2118
- Vector A
- Vector A
- false
- a9986f1c-b6a1-432b-98a1-86f37c910392
- 1
-
5506
-1600
122
20
-
5567
-1590
- Second vector
- 211c037d-ad50-43ce-9e18-99e373a7fa37
- Vector B
- Vector B
- false
- 0
-
5506
-1580
122
20
-
5567
-1570
- 1
- 1
- {0}
-
1
0
0
- Optional plane for 2D angle
- f549f8d8-2052-432e-9d02-6064ae210e29
- Plane
- Plane
- true
- 0
-
5506
-1560
122
37
-
5567
-1541.5
- Angle (in radians) between vectors
- 073fb8d2-f971-4f1f-a5cb-c70731174f1a
- -DEG(X)
- Angle
- Angle
- false
- 0
-
5652
-1600
47
38
-
5667.5
-1580.75
- Reflex angle (in radians) between vectors
- adbd9356-8441-4587-beb8-1cca3d95d43c
- Reflex
- Reflex
- false
- 0
-
5652
-1562
47
39
-
5667.5
-1542.25
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- d5bb524f-50cb-4f8e-84b6-4b1bb53032d7
- Evaluate Length
- Evaluate Length
-
5556
-1509
149
64
-
5641
-1477
- Curve to evaluate
- 0ad0e1a4-a61f-4782-8953-56e97b11a659
- Curve
- Curve
- false
- eed3e60c-da42-452d-840a-628600c254ce
- 1
-
5558
-1507
71
20
-
5593.5
-1497
- Length factor for curve evaluation
- 5d75aa5f-cd40-4463-a606-a24969050e6c
- Length
- Length
- false
- 0
-
5558
-1487
71
20
-
5593.5
-1477
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 718e13ff-de7e-4d4e-800e-a4a89c12d060
- Normalized
- Normalized
- false
- 0
-
5558
-1467
71
20
-
5593.5
-1457
- 1
- 1
- {0}
- true
- Point at the specified length
- f211f2c6-f743-4471-9aee-eb2cb9de482a
- Point
- Point
- false
- 0
-
5653
-1507
50
20
-
5678
-1497
- Tangent vector at the specified length
- a9986f1c-b6a1-432b-98a1-86f37c910392
- Tangent
- Tangent
- false
- 0
-
5653
-1487
50
20
-
5678
-1477
- Curve parameter at the specified length
- 8cd731f3-ea06-485a-a069-42e6719da761
- Parameter
- Parameter
- false
- 0
-
5653
-1467
50
20
-
5678
-1457
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- d2f1a870-6ec7-451d-ba61-c993471b9a2f
- Panel
- X
- false
- 0
- 2e55baa2-20b1-44cf-b7ac-aa0b126535af
- 1
-
6359
-507
194
40
- 0
- 0
- 0
-
6359.01
-506.1965
- 1
-
255;255;255;255
- false
- false
- true
- true
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 24e48d98-c61b-415c-b273-4b3dbab4fd16
- Panel
- Y
- false
- 0
- fe241549-f029-4024-a10a-e27d4d6d7874
- 1
-
6379
-289
194
40
- 0
- 0
- 0
-
6379.01
-288.1965
- 1
-
255;255;255;255
- false
- false
- true
- true
- false
- true
- 797d922f-3a1d-46fe-9155-358b009b5997
- One Over X
- Compute one over x.
- true
- db07fc6c-26cd-41c6-93d6-de33385a43f7
- One Over X
- One Over X
-
5385
-431
88
28
-
5428
-417
- Input value
- 4c922936-dade-42d3-8fe3-7d2e5413792e
- Value
- Value
- false
- d4e5c598-1665-4ef4-8cb9-a34cd9ede92b
- 1
-
5387
-429
29
24
-
5401.5
-417
- Output value
- 8597afef-d390-48ff-bfdf-3c8f4a1ab9aa
- Result
- Result
- false
- 0
-
5440
-429
31
24
-
5455.5
-417
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 9b896070-f198-4c28-aaf3-2300ba4b3e28
- Evaluate Length
- Evaluate Length
-
5529
-1848
149
64
-
5614
-1816
- Curve to evaluate
- 1e5a0a89-9608-43c5-adfb-9cc8f66aeaaf
- Curve
- Curve
- false
- 579c985b-e3f7-44b1-a94e-ebd88c119761
- 1
-
5531
-1846
71
20
-
5566.5
-1836
- Length factor for curve evaluation
- 9a579e77-5061-4ebd-8d6d-d2076cff2238
- Length
- Length
- false
- 0
-
5531
-1826
71
20
-
5566.5
-1816
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 4eaeccf0-5da5-4d4f-b254-6a421ca86373
- Normalized
- Normalized
- false
- 0
-
5531
-1806
71
20
-
5566.5
-1796
- 1
- 1
- {0}
- true
- Point at the specified length
- c16cbadd-b9e5-4b4c-a7f6-d0a2af9bd438
- Point
- Point
- false
- 0
-
5626
-1846
50
20
-
5651
-1836
- Tangent vector at the specified length
- c1d4f0c0-e8e0-4f5c-be90-220d85fc293d
- Tangent
- Tangent
- false
- 0
-
5626
-1826
50
20
-
5651
-1816
- Curve parameter at the specified length
- 966bd2b9-2deb-4d74-80b4-97aff9045b0d
- Parameter
- Parameter
- false
- 0
-
5626
-1806
50
20
-
5651
-1796
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- 45fed133-b4b8-4f87-9dfc-33879ab249e9
- Format
- Format
-
6199
-520
130
64
-
6291
-488
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- 5e987017-e63c-4ed5-a423-7cfea5d7e90f
- Format
- Format
- false
- 0
-
6201
-518
78
20
-
6240
-508
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 50b4d2c3-431c-4f9d-89b7-0185ba5399f6
- Culture
- Culture
- false
- 0
-
6201
-498
78
20
-
6240
-488
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- 3e65133d-05bb-4f1a-ae6d-b658609266d0
- false
- Data 0
- 0
- true
- 04c2b22c-6673-4905-abc8-faf33e2da54b
- 1
-
6201
-478
78
20
-
6240
-468
- Formatted text
- 2e55baa2-20b1-44cf-b7ac-aa0b126535af
- Text
- Text
- false
- 0
-
6303
-518
24
60
-
6315
-488
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- 1f17eb73-a220-462a-abd9-0e0d5cdbc9c8
- Format
- Format
-
6329
-421
130
64
-
6421
-389
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- b9a6c942-37d4-48b0-b6e4-7671ebde333a
- Format
- Format
- false
- 0
-
6331
-419
78
20
-
6370
-409
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 50492468-b201-4da4-9e21-4e43bfbcc76d
- Culture
- Culture
- false
- 0
-
6331
-399
78
20
-
6370
-389
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- 03aade20-4661-4812-9cf6-7d1b8b896575
- false
- Data 0
- 0
- true
- 639c7e81-d788-4203-b264-dc69ee35dda7
- 1
-
6331
-379
78
20
-
6370
-369
- Formatted text
- df429e15-7bad-41b2-909f-90887b6242e7
- Text
- Text
- false
- 0
-
6433
-419
24
60
-
6445
-389
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- 6d53808f-1b7d-4a5c-87bb-d4e56e8541f2
- Format
- Format
-
6199
-328
130
64
-
6291
-296
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- dc424dcb-43a1-4500-8999-e12b2dacff89
- Format
- Format
- false
- 0
-
6201
-326
78
20
-
6240
-316
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 4cfcc7cc-65f3-43b6-92e4-3f8334993581
- Culture
- Culture
- false
- 0
-
6201
-306
78
20
-
6240
-296
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- 7496c375-1da7-41aa-80bf-7bf497a749ce
- false
- Data 0
- 0
- true
- 5c15c61b-748e-4d37-8f07-4d67dd9da867
- 1
-
6201
-286
78
20
-
6240
-276
- Formatted text
- fe241549-f029-4024-a10a-e27d4d6d7874
- Text
- Text
- false
- 0
-
6303
-326
24
60
-
6315
-296
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 73c5a74c-e00e-4bb8-9931-c5e10f367a91
- Division
- Division
-
6213
-411
70
44
-
6238
-389
- Item to divide (dividend)
- ba7492bd-661c-447e-b645-859ee288374b
- A
- A
- false
- 04c2b22c-6673-4905-abc8-faf33e2da54b
- 1
-
6215
-409
11
20
-
6220.5
-399
- Item to divide with (divisor)
- 4c444ccb-fc0b-4d55-8b93-a5df2d8ef35a
- B
- B
- false
- 5c15c61b-748e-4d37-8f07-4d67dd9da867
- 1
-
6215
-389
11
20
-
6220.5
-379
- The result of the Division
- 639c7e81-d788-4203-b264-dc69ee35dda7
- Result
- Result
- false
- 0
-
6250
-409
31
40
-
6265.5
-389
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 6999a1ac-2e35-49b0-8457-650cb70ce4ad
- Panel
- X/Y
- false
- 0
- df429e15-7bad-41b2-909f-90887b6242e7
- 1
-
5545
-232
97
40
- 0
- 0
- 0
-
5545.672
-231.6947
- 1
-
255;255;255;255
- false
- false
- true
- true
- false
- true
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 034bc291-6391-48e9-97a3-a0861e18b0a3
- Digit Scroller
- INCREASE BEND PER SEGMENT
- false
- 0
- 12
- INCREASE BEND PER SEGMENT
- 1
- 0.77246531995
-
5394
-258
250
20
-
5394.559
-257.6532
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 81c78050-42ce-42e1-b704-c28af80d0879
- 16c22ddd-5c25-4c4f-acce-a3d7f0148828
- 3784dae5-ec06-4b36-9eb4-32475f135a17
- 978abbde-eb2d-4d4f-9c9f-6a4f665f7b49
- 48a77407-1ef5-408c-98e8-f8c22c4b8306
- aacb785c-7a0d-4362-a6ab-7067ad0a24e2
- 6
- e9dc22bb-1af1-44fe-a7e9-138433e85c45
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- e7fa1c0a-6dee-469e-bd81-b490fe80e04b
- 6d669f59-dcfb-404b-94b1-22bb7f83e90c
- d5bb524f-50cb-4f8e-84b6-4b1bb53032d7
- eed3e60c-da42-452d-840a-628600c254ce
- 2b382be1-77d5-4f5a-bdd7-fe0469361e00
- 5
- 50bfb567-cca9-49e1-9cbf-228dd5d96490
- Group
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 5a2fa394-e753-49b3-92bf-ce2f99b38de6
- Panel
- false
- 0
- 0
- 0.87246531994281165
-
5303
-246
112
55
- 0
- 0
- 0
-
5303.01
-245.1965
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- e32cafbe-23ca-4862-a5b6-6805f5fb5a02
- Panel
- false
- 0
- 0
- 12 0.77246531994281165
-
5280
-158
122
55
- 0
- 0
- 0
-
5280.01
-157.1965
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- 4cfbdefd-ba72-40dc-afdb-b7bcb2839654
- Point
- Point
- false
- 640ec4ca-bfa6-445b-93b9-dd6a74030587
- 1
-
5300
-870
50
24
-
5325.01
-858.1965
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 48a77407-1ef5-408c-98e8-f8c22c4b8306
- Relay
- false
- f490919c-9fab-4539-b860-a82406a83adb
- 1
-
5598
-1108
40
16
-
5618
-1100
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- aacb785c-7a0d-4362-a6ab-7067ad0a24e2
- Relay
- false
- ed45085a-8c02-44de-abcb-eeed1ed143df
- 1
-
5595
-1388
40
16
-
5615
-1380
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- eed3e60c-da42-452d-840a-628600c254ce
- Relay
- false
- aacb785c-7a0d-4362-a6ab-7067ad0a24e2
- 1
-
5606
-1439
40
16
-
5626
-1431
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 2b382be1-77d5-4f5a-bdd7-fe0469361e00
- Relay
- false
- 3143d331-a6cc-487a-9d6e-98844d184687
- 1
-
5581
-1702
40
16
-
5601
-1694
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- f490919c-9fab-4539-b860-a82406a83adb
- Relay
- false
- 55bd8b03-85a2-4209-b828-65ef0f73ebf3
- 1
-
5574
-983
40
16
-
5594
-975
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- 134d7423-6dfa-4662-87b3-965a2fbcbb41
- Deconstruct
- Deconstruct
-
5535
-1940
120
64
-
5576
-1908
- Input point
- 1724a7b2-903f-4a96-9a58-10bd0629a290
- Point
- Point
- false
- c16cbadd-b9e5-4b4c-a7f6-d0a2af9bd438
- 1
-
5537
-1938
27
60
-
5550.5
-1908
- Point {x} component
- e2c76670-29b5-4ba2-9fc6-138d1450ba94
- X component
- X component
- false
- 0
-
5588
-1938
65
20
-
5620.5
-1928
- Point {y} component
- c35d6943-2549-4bc5-ab5c-546a3c0bbc02
- Y component
- Y component
- false
- 0
-
5588
-1918
65
20
-
5620.5
-1908
- Point {z} component
- 2066c14c-5cf5-4cf3-a8ce-66ed9c58c81c
- Z component
- Z component
- false
- 0
-
5588
-1898
65
20
-
5620.5
-1888
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 579c985b-e3f7-44b1-a94e-ebd88c119761
- Relay
- false
- 2b382be1-77d5-4f5a-bdd7-fe0469361e00
- 1
-
5572
-1759
40
16
-
5592
-1751
- 290f418a-65ee-406a-a9d0-35699815b512
- Scale NU
- Scale an object with non-uniform factors.
- 0d6c0a90-7dc3-42d0-bff0-bb567ffcbe11
- Scale NU
- Scale NU
-
5481
-2094
226
121
-
5643
-2033
- Base geometry
- 0ba8e449-2048-4690-961c-56491532a067
- Geometry
- Geometry
- true
- 579c985b-e3f7-44b1-a94e-ebd88c119761
- 1
-
5483
-2092
148
20
-
5565
-2082
- Base plane
- dfee0f2c-58a4-442a-8774-fbba69de44dc
- Plane
- Plane
- false
- 0
-
5483
-2072
148
37
-
5565
-2053.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Scaling factor in {x} direction
- 15950144-dd7c-4d54-99f0-e6869dda7343
- 1/X
- Scale X
- Scale X
- false
- e2c76670-29b5-4ba2-9fc6-138d1450ba94
- 1
-
5483
-2035
148
20
-
5565
-2025
- 1
- 1
- {0}
- 1
- Scaling factor in {y} direction
- a8c836f4-5efc-4994-b74f-f1358b180e13
- 1/X
- Scale Y
- Scale Y
- false
- c35d6943-2549-4bc5-ab5c-546a3c0bbc02
- 1
-
5483
-2015
148
20
-
5565
-2005
- 1
- 1
- {0}
- 1
- Scaling factor in {z} direction
- 550ba3f6-1beb-4048-a3da-af26bc7319b0
- 1/X
- Scale Z
- Scale Z
- false
- 2066c14c-5cf5-4cf3-a8ce-66ed9c58c81c
- 1
-
5483
-1995
148
20
-
5565
-1985
- 1
- 1
- {0}
- 1
- Scaled geometry
- c09bc9ea-a789-4a32-a859-a4d5ca5192a2
- Geometry
- Geometry
- false
- 0
-
5655
-2092
50
58
-
5680
-2062.75
- Transformation data
- df3757dd-7522-4bf4-9e56-1944cedb99dd
- Transform
- Transform
- false
- 0
-
5655
-2034
50
59
-
5680
-2004.25
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 56233623-7b3b-4690-a754-0d9746d30ac9
- Relay
- false
- c09bc9ea-a789-4a32-a859-a4d5ca5192a2
- 1
-
5575
-2127
40
16
-
5595
-2119
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 9b896070-f198-4c28-aaf3-2300ba4b3e28
- 134d7423-6dfa-4662-87b3-965a2fbcbb41
- 579c985b-e3f7-44b1-a94e-ebd88c119761
- 0d6c0a90-7dc3-42d0-bff0-bb567ffcbe11
- 56233623-7b3b-4690-a754-0d9746d30ac9
- 5
- d9d9590a-177b-461d-a939-038c8cfc418a
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 138e4cfd-c4b0-4978-9726-ad0413a4ec0b
- d7b18b8c-16a0-47f6-90ca-ecbcf0cbeed8
- 94a2a565-7b38-4eac-992c-a8b833d53e1c
- 5bb68c64-8e55-4ede-a373-3b553f00b8f5
- c9ed6af8-fb3d-4e12-b8eb-94fbb41d8973
- 11fa940e-cfd5-4601-9b24-2fd715db1f3a
- 6
- ec4ce578-adbb-43a1-b906-c7b70140deb3
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 083da795-56a8-4934-b454-6e2db47c35ee
- d2f1a870-6ec7-451d-ba61-c993471b9a2f
- 24e48d98-c61b-415c-b273-4b3dbab4fd16
- 45fed133-b4b8-4f87-9dfc-33879ab249e9
- 1f17eb73-a220-462a-abd9-0e0d5cdbc9c8
- 6d53808f-1b7d-4a5c-87bb-d4e56e8541f2
- 73c5a74c-e00e-4bb8-9931-c5e10f367a91
- 7
- 5f1006ab-7a4a-405d-bc12-555ef6980263
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 5b3c723a-3f23-441f-9c84-ffbe637729f5
- Relay
- false
- b05af234-ce5b-432e-8b3f-32a94a964bbf
- 1
-
5557
111
40
16
-
5577
119
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- d4e5c598-1665-4ef4-8cb9-a34cd9ede92b
- Relay
- false
- 5b3c723a-3f23-441f-9c84-ffbe637729f5
- 1
-
5595
-1
40
16
-
5615
7
- 310f9597-267e-4471-a7d7-048725557528
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
- GraphMapper+
- External Graph mapper
You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
- true
- 80207157-6822-4664-8152-d267c25284cb
- GraphMapper+
- GraphMapper+
- true
-
5112
-699
114
104
-
5173
-647
- External curve as a graph
- fbe2c5cd-3a51-4e37-8784-892a94851bc8
- Curve
- Curve
- false
- 3f1983ed-497b-43f6-bb23-9f15a0364fad
- 1
-
5114
-697
47
20
-
5137.5
-687
- Optional Rectangle boundary. If omitted the curve's would be landed
- 34a6609a-7369-46b9-a05f-47c1cf408d79
- Boundary
- Boundary
- true
- b29fdce9-9822-4fb0-a0a7-8b47d4ab27c0
- 1
-
5114
-677
47
20
-
5137.5
-667
- 1
- List of input numbers
- 30d53ca3-4d0d-4c94-b389-003fc727c19e
- Numbers
- Numbers
- false
- 34c5257c-bf85-4468-b97d-93f8d57280f0
- 1
-
5114
-657
47
20
-
5137.5
-647
- 1
- 9
- {0}
- 0.1
- 0.2
- 0.3
- 0.4
- 0.5
- 0.6
- 0.7
- 0.8
- 0.9
- (Optional) Input Domain
if omitted, it would be 0-1 in "Normalize" mode by default
or be the interval of the input list in case of selecting "AutoDomain" mode
- 2cf70fe4-989f-417c-aa58-51181ac5555f
- Input
- Input
- true
- 688fe47c-389e-49a3-b795-8c1fe6e21597
- 1
-
5114
-637
47
20
-
5137.5
-627
- (Optional) Output Domain
if omitted, it would be 0-1 in "Normalize" mode by default
or be the interval of the input list in case of selecting "AutoDomain" mode
- e1344d82-c8c8-4ef2-9355-33faa9d3488e
- Output
- Output
- true
- 688fe47c-389e-49a3-b795-8c1fe6e21597
- 1
-
5114
-617
47
20
-
5137.5
-607
- 1
- Output Numbers
- 7ae860ec-f02e-44f7-90a2-ee7b43b7a113
- Number
- Number
- false
- 0
-
5185
-697
39
100
-
5204.5
-647
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
- Extract the end points of a curve.
- true
- 6b881bd1-ede7-4601-bbf7-a7c20eca61f2
- End Points
- End Points
-
5127
-411
84
44
-
5171
-389
- Curve to evaluate
- ce9347cf-485b-4442-8f35-14bb7a4f8057
- Curve
- Curve
- false
- 3f1983ed-497b-43f6-bb23-9f15a0364fad
- 1
-
5129
-409
30
40
-
5144
-389
- Curve start point
- 26ac0036-e88d-4946-9874-f5d2f543d67b
- Start
- Start
- false
- 0
-
5183
-409
26
20
-
5196
-399
- Curve end point
- 21c7cf4f-0512-4ab7-98b7-c0ca40a0bd8e
- End
- End
- false
- 0
-
5183
-389
26
20
-
5196
-379
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 3f1983ed-497b-43f6-bb23-9f15a0364fad
- Relay
- false
- 71683435-e1f1-4844-8c57-78929934dd9b
- 1
-
5149
-334
40
16
-
5169
-326
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
- Create a rectangle from a base plane and two points
- true
- 7f7648cf-21d1-4e0b-919e-02ccad934dab
- Rectangle 2Pt
- Rectangle 2Pt
-
5067
-518
198
101
-
5203
-467
- Rectangle base plane
- fc0037a5-03b5-4dd2-9180-ef4cffb0aa12
- Plane
- Plane
- false
- 0
-
5069
-516
122
37
-
5130
-497.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- First corner point.
- 31333b3a-8559-431e-abff-ac10cc94b296
- Point A
- Point A
- false
- 26ac0036-e88d-4946-9874-f5d2f543d67b
- 1
-
5069
-479
122
20
-
5130
-469
- 1
- 1
- {0}
-
0
0
0
- Second corner point.
- 6f250389-1476-4f13-a139-c28439c10a32
- Point B
- Point B
- false
- 21c7cf4f-0512-4ab7-98b7-c0ca40a0bd8e
- 1
-
5069
-459
122
20
-
5130
-449
- 1
- 1
- {0}
-
10
5
0
- Rectangle corner fillet radius
- 0def13ce-1da8-4a6f-a803-a49868d5971d
- Radius
- Radius
- false
- 0
-
5069
-439
122
20
-
5130
-429
- 1
- 1
- {0}
- 0
- Rectangle defined by P, A and B
- b29fdce9-9822-4fb0-a0a7-8b47d4ab27c0
- Rectangle
- Rectangle
- false
- 0
-
5215
-516
48
48
-
5239
-491.75
- Length of rectangle curve
- 62e2b4e8-3bbd-4423-8070-f9c62ef8feec
- Length
- Length
- false
- 0
-
5215
-468
48
49
-
5239
-443.25
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- 38e339ce-936d-49f3-9b4e-a5574f7599e1
- Bounds
- Bounds
-
5114
-572
110
28
-
5172
-558
- 1
- Numbers to include in Bounds
- 2f4f12c8-1c05-4085-bcdd-94c34403e98c
- Numbers
- Numbers
- false
- 34c5257c-bf85-4468-b97d-93f8d57280f0
- 1
-
5116
-570
44
24
-
5138
-558
- Numeric Domain between the lowest and highest numbers in {N}
- 688fe47c-389e-49a3-b795-8c1fe6e21597
- Domain
- Domain
- false
- 0
-
5184
-570
38
24
-
5203
-558
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 34c5257c-bf85-4468-b97d-93f8d57280f0
- Relay
- false
- 71849fea-9319-49c4-81a0-4ca7c0b6374f
- 1
-
5149
-539
40
16
-
5169
-531
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 80207157-6822-4664-8152-d267c25284cb
- 6b881bd1-ede7-4601-bbf7-a7c20eca61f2
- 3f1983ed-497b-43f6-bb23-9f15a0364fad
- 7f7648cf-21d1-4e0b-919e-02ccad934dab
- 38e339ce-936d-49f3-9b4e-a5574f7599e1
- 34c5257c-bf85-4468-b97d-93f8d57280f0
- e1441288-7e8f-4341-9eb3-fb7e2789c35a
- 7
- a14fb7d1-a2ca-4221-ab5c-9c06d3e86e69
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 04250f66-9b19-4960-81e5-c75d6a635b9a
- Relay
- false
- 50931588-90c0-4430-9aa2-94da3f5a7e47
- 1
-
5656
-141
40
16
-
5676
-133
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 476a41ac-d7e0-4b69-b0ea-ff6b9cf22b4e
- Relay
- false
- bfcbee3a-b2cb-4f84-b04e-6d617f69140d
- 1
-
5149
-150
40
16
-
5169
-142
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- 61fa6c42-0784-4dc5-8ae0-f18dd585eb08
- Scale
- Scale
-
5065
-279
201
64
-
5202
-247
- Base geometry
- 72ed12ec-bfe0-42e3-9e49-0b11ac457146
- Geometry
- Geometry
- true
- 476a41ac-d7e0-4b69-b0ea-ff6b9cf22b4e
- 1
-
5067
-277
123
20
-
5128.5
-267
- Center of scaling
- d7ca9e28-3a02-49cc-be62-1f77aa753929
- Center
- Center
- false
- 0
-
5067
-257
123
20
-
5128.5
-247
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 39ff0785-4cca-4476-80bf-7905410cc545
- Factor
- Factor
- false
- 96a7278e-9f39-4139-8e39-8664e709fce8
- 1
-
5067
-237
123
20
-
5128.5
-227
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- a2cb0fdb-7a84-45d1-a169-ab1a983e8da9
- Geometry
- Geometry
- false
- 0
-
5214
-277
50
30
-
5239
-262
- Transformation data
- 0e9412a4-8c1d-4c65-a962-d03b6c3b9a6f
- Transform
- Transform
- false
- 0
-
5214
-247
50
30
-
5239
-232
- 78fed580-851b-46fe-af2f-6519a9d378e0
- Power
- Raise a value to a power.
- fefba9a8-83c4-43b4-97f8-0639a9c34551
- Power
- Power
-
5126
-217
85
44
-
5166
-195
- The item to be raised
- 7c5a8b3e-a5d1-42f0-86e3-b8baf9a06c52
- A
- A
- false
- 0
-
5128
-215
26
20
-
5141
-205
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 2
- The exponent
- 85dfc02e-a3fa-4c23-83f4-f58788333f09
- B
- B
- false
- 20912e25-1a65-4656-8a75-ef362a197274
- 1
-
5128
-195
26
20
-
5141
-185
- A raised to the B power
- 96a7278e-9f39-4139-8e39-8664e709fce8
- Result
- Result
- false
- 0
-
5178
-215
31
40
-
5193.5
-195
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 20912e25-1a65-4656-8a75-ef362a197274
- Digit Scroller
- SCALE POWER
- false
- 0
- 12
- SCALE POWER
- 11
- 16.0
-
5044
-169
250
20
-
5044.288
-168.8851
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 71683435-e1f1-4844-8c57-78929934dd9b
- Relay
- false
- a2cb0fdb-7a84-45d1-a169-ab1a983e8da9
- 1
-
5149
-300
40
16
-
5169
-292
- dde71aef-d6ed-40a6-af98-6b0673983c82
- Nurbs Curve
- Construct a nurbs curve from control points.
- true
- 47534ba1-a920-49a2-96f6-df6a9f8c589d
- Nurbs Curve
- Nurbs Curve
-
5414
-970
121
64
-
5483
-938
- 1
- Curve control points
- 862f1ea1-eb0e-4575-8c95-d2b95b0fb6c5
- Vertices
- Vertices
- false
- d87260b8-9262-4a70-aca6-3d05ceda11ba
- 1
-
5416
-968
55
20
-
5443.5
-958
- Curve degree
- 86bde19a-e78a-4cad-8d55-692349c770ec
- Degree
- Degree
- false
- 0
-
5416
-948
55
20
-
5443.5
-938
- 1
- 1
- {0}
- 2
- Periodic curve
- 5921849f-e0f4-4d67-a4b7-ce1dfabe83a9
- Periodic
- Periodic
- false
- 0
-
5416
-928
55
20
-
5443.5
-918
- 1
- 1
- {0}
- false
- Resulting nurbs curve
- 009dae59-c1b5-4dd5-8442-ca8805d4d1dc
- Curve
- Curve
- false
- 0
-
5495
-968
38
20
-
5514
-958
- Curve length
- 50d4883f-675e-4b1e-85bc-a057480aa3af
- Length
- Length
- false
- 0
-
5495
-948
38
20
-
5514
-938
- Curve domain
- c4b71572-0400-46cf-a697-5c9562feab02
- Domain
- Domain
- false
- 0
-
5495
-928
38
20
-
5514
-918
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 476a41ac-d7e0-4b69-b0ea-ff6b9cf22b4e
- 61fa6c42-0784-4dc5-8ae0-f18dd585eb08
- fefba9a8-83c4-43b4-97f8-0639a9c34551
- 20912e25-1a65-4656-8a75-ef362a197274
- 71683435-e1f1-4844-8c57-78929934dd9b
- 5
- e1441288-7e8f-4341-9eb3-fb7e2789c35a
- Group
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 50931588-90c0-4430-9aa2-94da3f5a7e47
- Panel
- false
- 0
- 0
- 0.4875881689164849049
-
5498
-164
121
40
- 0
- 0
- 0
-
5498.579
-163.8391
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 030f2990-06f2-466d-8c0e-2a414bd0aff7
- Relay
- false
- 0447472e-5591-46af-bb0e-c7bb17204a7b
- 1
-
8923
-2222
40
16
-
8943
-2214
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 92160099-1a10-438c-a8eb-39a5bfdb74ee
- 72817673-4fa9-47a2-8619-191262972134
- cba8136d-fdbb-4a88-8ac9-8566ac35864b
- 6cc8b961-3d16-490f-8a92-6de71388cfb0
- a68f174f-f652-4ebe-9283-84d3ce1414cb
- c668c4d9-d991-4613-b402-cdf66b7b7cbf
- b3184d2b-6d05-4ad8-88fc-8731eb4712d3
- e5551d65-9328-4cb1-82b6-2faf9de39787
- 7fe491ec-0db4-4128-8335-9cc4bc710ae4
- 6f1bc802-fc40-41e1-a2fb-da13054f99d4
- 98856ba9-ac48-4dc5-8173-4a04a125f4c3
- 262e2432-cf75-4946-b0ca-fff148556327
- de7d3b1c-087f-4d20-b155-1466adf1be7e
- 1eba0942-8ed3-4598-819a-092d8157d7b5
- 46e9ac55-9c5e-4e2a-820d-a0f057cb1848
- a201152b-09cd-4875-8f5e-65a7d1b5e6ae
- caec2bbc-5ae6-4081-8207-b03134d3be40
- a1e0f8c4-4e32-4423-a640-6d28fa2603ad
- b03695a5-af3b-4879-8c6a-bb7b760d5119
- 19
- 72fc9130-bf79-472e-8944-9bc467993de7
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- f85445d6-ede0-4463-b2ae-79067124f2cc
- 42507fb3-79c1-42a3-8e3e-da3430ef4cc8
- 730c8146-4f1e-49ff-9a25-0ad360a13d92
- 420e1625-e39b-4b86-ac6d-1aa61552e9dd
- 4724d2ad-95b1-4c3c-bc2b-68a6f62acccc
- 52288440-728a-43ac-9f45-b604f05e9101
- 0732fbe9-fdb8-485c-948d-e3a04f39124b
- 20d55929-82e1-4798-87e2-73ae11f6cf01
- cab11098-2986-47e5-b217-9ed1137c64aa
- d7b18b8c-16a0-47f6-90ca-ecbcf0cbeed8
- a05fd376-ba50-4830-86fa-ecbae080a257
- dc6e3f6c-b3b2-44ac-a61e-18f9fcde538e
- 7f7aa427-fe06-4787-b54a-21d0992dc312
- c3a8f2ac-93c2-4497-a1bf-88879c0ff2b9
- 28b69dba-5fc8-4a4a-9202-6f50ae84d1cd
- 89d087b9-89b1-4d0e-860a-310a805b1dbc
- 02583296-943b-4bee-aa18-40a95d47301f
- acd2ff85-cc67-4ee9-90ed-98053d88dae3
- ed4e0638-c6d0-4126-95f7-75935e8b71d0
- 0dde96ac-ef58-4d9c-b16a-67f5cb559ea7
- 2c29d287-fb31-40d2-9e9c-ef2e29387bb4
- 1ca98984-5d1f-4236-b2d3-e20c153c5940
- 661278b1-7115-4eef-931d-363a21259e10
- d3a6959a-bba8-449a-982e-ef7604520f53
- c310bdd9-cdbb-41d1-9fff-c0a3b50b9761
- ca7fa2f7-8da6-406c-a0d0-1a15b937245d
- b326ab19-e884-4588-875b-7b9eff4591c1
- 52044557-936a-42d3-ba5a-430897e96bd7
- c8ebd8f8-4948-43fb-8832-395b91c34f25
- 638bdb64-0e1d-4038-a36b-41c4d795d42a
- f06569ba-0f8e-421c-bfd1-06b651268985
- 903082e1-697f-4b4c-870e-e7756893c833
- fb2a6dbf-b02f-4775-ad6e-36cf33201f14
- e23e2f01-18f7-49ba-b41a-08ccfff91ebc
- 72fc9130-bf79-472e-8944-9bc467993de7
- 35
- adcc41ca-6721-4f8e-8515-09f7baf4cbd8
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- cab11098-2986-47e5-b217-9ed1137c64aa
- d7b18b8c-16a0-47f6-90ca-ecbcf0cbeed8
- a05fd376-ba50-4830-86fa-ecbae080a257
- dc6e3f6c-b3b2-44ac-a61e-18f9fcde538e
- 4
- f85445d6-ede0-4463-b2ae-79067124f2cc
- Group
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 42507fb3-79c1-42a3-8e3e-da3430ef4cc8
- Digit Scroller
- SEMENT LENGTH
- false
- 0
- 12
- SEMENT LENGTH
- 2
- 0.0023000000
-
7135
-332
250
20
-
7135.727
-331.6487
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- 730c8146-4f1e-49ff-9a25-0ad360a13d92
- Series
- Series
-
7127
-298
106
64
-
7188
-266
- First number in the series
- 065c5a39-4888-4c0a-b3cc-3673da8a2597
- Start
- Start
- false
- 0
-
7129
-296
47
20
-
7152.5
-286
- 1
- 1
- {0}
- 0
- Step size for each successive number
- 74c7cfb6-60ea-49d9-8a09-d9372d1879b0
- Step
- Step
- false
- 66e0c859-9a3f-4653-87cc-c7dbc80b8137
- 1
-
7129
-276
47
20
-
7152.5
-266
- 1
- 1
- {0}
- 1
- Number of values in the series
- 834198ec-7a53-404d-a4bb-d25c0b66a5f1
- Count
- Count
- false
- 20d55929-82e1-4798-87e2-73ae11f6cf01
- 1
-
7129
-256
47
20
-
7152.5
-246
- 1
- 1
- {0}
- 10
- 1
- Series of numbers
- 368a9ccd-be2a-42fd-bfe7-c97f72d95c12
- Series
- Series
- false
- 0
-
7200
-296
31
60
-
7215.5
-266
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 420e1625-e39b-4b86-ac6d-1aa61552e9dd
- Digit Scroller
- INCREASE BEND PER SEGMENT
- false
- 0
- 12
- INCREASE BEND PER SEGMENT
- 1
- 0.49222173845
-
7135
-75
250
20
-
7135.913
-74.31444
- b6d7ba20-cf74-4191-a756-2216a36e30a7
- Rotate
- Rotate a vector around an axis.
- true
- 4724d2ad-95b1-4c3c-bc2b-68a6f62acccc
- Rotate
- Rotate
-
7176
-623
150
64
-
7279
-591
- Vector to rotate
- 8c0f6279-2330-41a2-bf9a-e2d85c9ec0b6
- Vector
- Vector
- false
- a62455d0-5cb4-4f1c-9433-d173ad04b5fc
- 1
-
7178
-621
89
20
-
7250.5
-611
- Rotation axis
- b4010274-e53d-464b-9b4a-c84c1a66db48
- Axis
- Axis
- false
- 37cad7e6-de58-4d14-b427-b8c6f3d2aaf7
- 1
-
7178
-601
89
20
-
7250.5
-591
- Rotation angle (in degrees)
- bac034eb-9bf8-4c5f-a2d1-c36cf4c788d8
- -X
- Angle
- Angle
- false
- true
- a4f1e714-5f7a-4724-bd97-7b483b7746f0
- 1
- true
-
7178
-581
89
20
-
7250.5
-571
- Rotated vector
- 2f7ab1b7-3138-4d5d-9552-056fd3796316
- Vector
- Vector
- false
- 0
-
7291
-621
33
60
-
7307.5
-591
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 28b69dba-5fc8-4a4a-9202-6f50ae84d1cd
- Interpolate
- Interpolate
-
7371
-933
225
84
-
7544
-891
- 1
- Interpolation points
- 8edb192f-2ec8-4da5-9f77-4b3e64f89d39
- Vertices
- Vertices
- false
- acd2ff85-cc67-4ee9-90ed-98053d88dae3
- 1
-
7373
-931
159
20
-
7452.5
-921
- Curve degree
- f414fab4-6d1c-4376-aa9e-1e506ab9e956
- Degree
- Degree
- false
- 0
-
7373
-911
159
20
-
7452.5
-901
- 1
- 1
- {0}
- 3
- Periodic curve
- a70503f4-2f59-4a2c-9c2f-3925463c4487
- Periodic
- Periodic
- false
- 0
-
7373
-891
159
20
-
7452.5
-881
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 18fce8c4-ce8e-4072-b3ee-6f741d4ef4ff
- KnotStyle
- KnotStyle
- false
- 0
-
7373
-871
159
20
-
7452.5
-861
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 1900dc99-f091-4392-9450-44615b7569e4
- Curve
- Curve
- false
- 0
-
7556
-931
38
26
-
7575
-917.6667
- Curve length
- 4fcb10f3-d7c5-411f-a18e-d4c90b6f10d8
- Length
- Length
- false
- 0
-
7556
-905
38
27
-
7575
-891
- Curve domain
- 6cc1ef59-d04a-4161-98ae-221e931bda6a
- Domain
- Domain
- false
- 0
-
7556
-878
38
27
-
7575
-864.3334
- 79f9fbb3-8f1d-4d9a-88a9-f7961b1012cd
- Unit X
- Unit vector parallel to the world {x} axis.
- true
- 52288440-728a-43ac-9f45-b604f05e9101
- Unit X
- Unit X
-
7212
-471
114
28
-
7258
-457
- Unit multiplication
- 89633f26-1168-4ebb-8d48-dabeee16dee8
- Factor
- Factor
- false
- 661278b1-7115-4eef-931d-363a21259e10
- 1
-
7214
-469
32
24
-
7230
-457
- 1
- 1
- {0}
- 1
- World {x} vector
- ac95bab4-75e5-40cc-bdfd-c73adf735f14
- Unit vector
- Unit vector
- false
- 0
-
7270
-469
54
24
-
7297
-457
- 9103c240-a6a9-4223-9b42-dbd19bf38e2b
- Unit Z
- Unit vector parallel to the world {z} axis.
- true
- 0732fbe9-fdb8-485c-948d-e3a04f39124b
- Unit Z
- Unit Z
-
7010
-623
114
28
-
7056
-609
- Unit multiplication
- 5256d44b-b57f-4365-8912-87d1d9c48b84
- Factor
- Factor
- false
- 661278b1-7115-4eef-931d-363a21259e10
- 1
-
7012
-621
32
24
-
7028
-609
- 1
- 1
- {0}
- 1
- World {z} vector
- 37cad7e6-de58-4d14-b427-b8c6f3d2aaf7
- Unit vector
- Unit vector
- false
- 0
-
7068
-621
54
24
-
7095
-609
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 89d087b9-89b1-4d0e-860a-310a805b1dbc
- Relay
- false
- 85860cd9-cada-48fc-bbe1-b942bed79495
- 1
-
7251
-721
40
16
-
7271
-713
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 20d55929-82e1-4798-87e2-73ae11f6cf01
- Relay
- false
- ffa522c5-c02b-4c03-81c7-f6af91c32362
- 1
-
7251
-51
40
16
-
7271
-43
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
- Mathematical addition
- true
- cab11098-2986-47e5-b217-9ed1137c64aa
- Addition
- Addition
-
7228
-16
85
44
-
7268
6
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for addition
- e4390d07-6416-4572-b307-fa1900347f4e
- A
- A
- true
- 0
-
7230
-14
26
20
-
7243
-4
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 1
- Second item for addition
- cea1e8ef-21b4-4001-97e9-abef5ca304f6
- B
- B
- true
- 17becc84-61de-40dd-9e66-99b8b8caa481
- 1
-
7230
6
26
20
-
7243
16
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- Result of addition
- ffa522c5-c02b-4c03-81c7-f6af91c32362
- Result
- Result
- false
- 0
-
7280
-14
31
40
-
7295.5
6
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
- Mathematical addition
- true
- a05fd376-ba50-4830-86fa-ecbae080a257
- Addition
- Addition
-
7184
54
155
44
-
7224
76
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for addition
- a5790900-68dc-4a14-b54b-71c9a5c3eb9f
- A
- A
- true
- 0
-
7186
56
26
20
-
7199
66
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 1
- Second item for addition
- 91fd4502-f46e-40f5-bc74-873a3da398a7
- B
- B
- true
- 3b9ee1da-2b6d-4e87-94f1-2b90b167ae40
- 1
-
7186
76
26
20
-
7199
86
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 1
- Result of addition
- 17becc84-61de-40dd-9e66-99b8b8caa481
- Result
- NUMBER OF POINTS
- false
- 0
-
7236
56
101
40
-
7286.5
76
- e2039b07-d3f3-40f8-af88-d74fed238727
- Insert Items
- Insert a collection of items into a list.
- true
- 02583296-943b-4bee-aa18-40a95d47301f
- Insert Items
- Insert Items
-
7213
-829
116
84
-
7296
-787
- 1
- List to modify
- d28ba653-8b50-4e5f-8909-7dd73fb9e509
- List
- List
- false
- 89d087b9-89b1-4d0e-860a-310a805b1dbc
- 1
-
7215
-827
69
20
-
7249.5
-817
- 1
- Items to insert. If no items are supplied, nulls will be inserted.
- c128d391-0c0b-4242-84dd-49c9eb79755e
- Item
- Item
- true
- 0
-
7215
-807
69
20
-
7249.5
-797
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- {0,0,0}
- 1
- Insertion index for each item
- 12a89c49-8516-494d-962c-965df2b3bf29
- Indices
- Indices
- false
- 0
-
7215
-787
69
20
-
7249.5
-777
- 1
- 1
- {0}
- 0
- If true, indices will be wrapped
- bbfd198c-2267-4380-bbb6-8934efa40bce
- Wrap
- Wrap
- false
- 0
-
7215
-767
69
20
-
7249.5
-757
- 1
- 1
- {0}
- false
- 1
- List with inserted values
- 8d954422-a302-472f-bf5f-7a241205bdc6
- List
- List
- false
- 0
-
7308
-827
19
80
-
7317.5
-787
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- acd2ff85-cc67-4ee9-90ed-98053d88dae3
- Relay
- ⊙☉⊙
- false
- 8d954422-a302-472f-bf5f-7a241205bdc6
- 1
-
7250
-853
44
16
-
7272
-845
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- cab11098-2986-47e5-b217-9ed1137c64aa
- a05fd376-ba50-4830-86fa-ecbae080a257
- 3b9ee1da-2b6d-4e87-94f1-2b90b167ae40
- 3
- dc6e3f6c-b3b2-44ac-a61e-18f9fcde538e
- Group
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
-
7VsJdBNlHp+2aZqjB1AVUJDR4nqwFnTxKbJgk6ZHaNPGFhAEH50m03YgycRkUuSy5UFBKiBd6Alo8UEFqVahVDmU6haXXVksCwgo2kMXV46VXXXFXaX7fTPfpJ0jaaGphYd9L+nM//+dv//5/WeiMtAWj510MB3gLwjDMAX4RDptnlzKMSufdLkp2gFZZkCGbPgXBpvw/ZJJwkq6YJNQxNbwLKMBktWANPbyuVFrGom4un8frj+tKZ8XZnaR+RQ5F/I1gK/MzAOjWKMQ2US68ybPc5KQHYImjkC8NNplJ2yQMxJQN23a1MH3yiRtpIUhrTyPoqiOmwxkDuWgGLALs4t2ki6GIt38sPCjMBAMO48K3OxssxeXLP9UpTWQbouLcjJo83CJmCKNsJP83YWQaclJsbHtuyrPvrgCfLeX14HvtvI328rr2Qv2tn4L/C5ZzX6vaSsp9bZsrkiD12uXwhHKYJf2DZu9123r1ratK/U2ayvf5h2Na8YNcrZ8J6RXLhZMzfdFS0LcbcLlbeyct7iKbbzS33XVq94B0Tei+O3FXqMdsTN2WcA279rQOvlld7Zhudwe0aTs3hGq7AgIH76vFEkOYYQ2NxEvCCQXNJpAfAheVrKxsUnJ09QZQMOgKbh5M4F/ETw1nvZwBhTCmwBQttlAGZH+BCOycjLhyiXZlreD27qfOzoWgi6KJ2nazlvQzMibHgudCtRZMJUaUiTTqDMszlRiHu1hurbVJLloj1PSeGCnKaRnw8V5J4gCHy1HE/SCdCVHhwMEI0tUJE3ptOw7gotm3L3r45SV2V/r8v7q+K/ASiJMhNuN66xWdlZ1PO1gCMrR6S2gr5GztXvMpCsH2Dluh/0J1B+nc3ACt1FuBl5RDGl3K5Mpq5V08BsJCjc63AzhsJBJHsrKLzHjvqHGPAWZsMGZcKxxcOtRP0tUpVGWOb7ZGh3DuKhsD8P5EK9Y9QA1K0uKgfdZRwxYXEoThv1Hj2Fj9KFmKp9mQR0BuYUfG7DGhCatk3AR9lmUw+lh0VUhdJU6i4V0e31UkA+IRhhhRzyfsHlINw7AEmIVK4tE+wndiS11d6WvrZs5+8C8Q98KkAhlR5QggMjp7Oyc42UVTZlJe1wWklVDqMtnT4bsffA1Y2FNyfzzukU1Wo4t0CfYr4cQVgMIGycBCE/qMAwXQ2g+ykIYzkEI1B9hqPQD2OAM0u2xsaojQEoWqKxRjHn5I1NSNj1ieoyy53kEQCm5kSRI8XQJVHJYYD3HAjuJsHgOqFO1ToRF3GmgbMlCLOCsYVemT4NTkV2BcRiKsOEudjNuWXjSBr6wqPzIrOQGw0fbX7YUVgjgiTKjETg43BKcJA36BLAEv4DFNyHHFuTLsT2wOePAjLptiVs3R334/rPflwlthXWxQoc2lAdcT7tQRsQnGcp42gZ2xCcm8L+cDG7X4blwXCiGJBdQ0jzaCVIWnObcdbDRwFvbvu9H/fSX7JsS32qYcGmX5sIAwApCrPLnjt+3yHHMtPd/49Y8fNvDOsAK9mGjgBWCWBObRuavf8qgW3boywcfmfjAl4ClQKx3Ip7RfFAUr1sdWXyvJXOEAbBCEUvsWQFLiVhf7fth0MEzo3UrrN9HlJhOOQErDLFGRE9YqpqzK7GoJnvBz1h0O2Cp+MU//foBfIMnvfqNnT8mvfeqGrDUiDUIHz8xs7Y0fd27XxRMiYq5DFgavteGjr9Rt66Jq9r8+BIdkV8MWFrECt9amXb4yEV99Q/fKUadXFUPWOGINaHqhXEFx3YkvzN2aH3laOt0wIpArHn3lhZVxHSY9i2cyiwsGfsTYEUi1tCvv7v/4qHpaX9I/wZ/dugnwwErCrGWHB5++qA5NuWdvRs3Jw2bOQywBiDWu69PiW0YW5S0es4Je+2kjhWANRCxLPdfjJybWpdSbHg+4cKLHe+pjIZZAsUfBLchZ4UL0k5vVDx5i377G9EFRmzBNhkNldie2IQw3oQ4awj2ZQ14bkzDc6tW6Nf+sTa18sfdC4RzZZA2Yp7QGnyEs2Af7idah8+lXCTwOmAkpPCymxbrsMxCpJvuNnqJpdrL6IWdAA4ooglGLhDvxQ6o8BTgankHFHLNQy72DYGBfFlL/mPEjMspRS3ar9IzwtYHAPLWWn+Qt27nIVf4gry6ZJXn/KRLSWVP3+KuKv7tU8KwnwhPnow0i/UF8MNcB9xN20ncSjAE7nFTjlzcaSMsZB5tA0ECpCEOK8zeQDsG8hgit2dJrdixyS1VmqFw9J7mYCBRLbwTQPoGhFScg7WCMFp4a1OEGeYdJEO6wEGagFwYASDCGjZxFMgTfsJYstHK60Fa0ecTM/90Lm7ph/WFqn+lH+P5fDxb8sSmgk+cM5MrGqsrz1SsnMjz+aA23XpwddB+tWHPPwebIkZFN2vT2RRIokcqju57Ym697HZYNPxIVjuZfIZBYpOVzjQblliNZabtGf3QV4feH3n+SqQT8HSoFcgRg3IcIJcO4cA0Ckc0RZphrcfNkA6GF2QQQi5UgqVS7wI7zsO62JG0kcJMMHn83kIWjFmkMIIjG9+H3ZfDY7PNcoM9OHI73UTnPetfFox5NGNRF9kEdSObQYmd1mQB6aXHRcqKqPnn4C073g5NrbgzOYbau2++QERh8VxPiYy8jD4R0nC/Qrr1FxUSX01QpMZzDhJ2KfDaNSsLOC4fdeRkcSdcJc7QOOVwky4GB84QTCFwgLKy+fRA9MSVddvT9h/dxrxyfmFpmMnDENk20gu20J7YWcZIZBU0RiKloL49tbJCHOJXiDc3IQclcDS+AIxEykxacQa4HFmw9q+/eeX0pZP1la8V//34oqjjAmwU0FNJkOGogVbhrM+Rn2kEZ3anJF60sCqMQjAfNyUh+PEvWtLDbIeTXtr9bnBBwx3LBLvRZOZROQwOj6rSMBzqA8Pb0nNy3CRQPpuNKxoBbUR1pNgehVrxAcjXkiQwd+H1FMLjBpCEAAjL5EJu9SeAu6q3laMI9qQPjNINVyd/vs9ef2FGK6V/OTUGn5bymTC5UMjulaN2l/SJCwe9rRIBuLIgXK06GXvLAikhvkYAF18Y8RU8wjmJ0azGyEIztablpejL0ZN2PtRxW+2L53YLk2G2u7SExpG7A0d8SAwAOK2r/YEDdKk/IorS4bFndxZIWD3tIqNgrJvk6wkX4USFT1kRxXq+2Xd/WW38lg8WnxnvsT0u1F7YW6q9LDXQDpFVz5V+1fP5fpFAWDZN20jC6/cwSSX1CquHnN2AKAW9qqxQxMe9q3cpvRQKfhr5jAq5KGX+jDULFKV4NZREqaq3W6cv//KScc/bu/a8OactVegFzISDtAkDlNqPQt+jw52wB1vFt3jcDG3HHTTYBns4hHHfn7aLi18yS+nJ6VybaXHRNlsGAeiQqMQ6/0R+Spxw+PJTqikg6YOZBj/tXQbaA7I43GID64ERiLRSDNq7BaAFTKC9sEYkR/6psliOcc0gnxgP5Bgdj2Ev6zUmwpVLOVLJHIFSaDlyBpWbJ3xyxtEn086uVKEyHE5rNmzNHt8UxYIofHwcxq9KrrLrIuYaHVbKQnqfsAWpIRHaZReSCRwlKBvQEC8pPNNJWijCFk9bO/sC+BkXSdi996yz8vZBqspHtWtZVcWF375X1Vdqgo7NL2w0vjXOcOrieNWR/lHVLKiqW/tSVRNnNxtOzd96faiqypeqXkflN/HTiD4qvzXO9ld+a8z+tfwmK51hBUNmvK41JizdF6e+/GzMiH4vv8XN9lcUaMy98cpvZxtON0yoO2oqcnT82JLx3l3XQPktjvQrpOwbpvw2LCxlz7CRVtPuSkOWaqNlbJ+V3wJcDmCFmOVXiE8FvPw2xPyPherxDQm1a1aXnXthe3q/lt9YP+Oz/AZUGIVgPse7nkOw+A2DPgrB2AZ/IRir+DUEy0pHo3663WCv1Nc/4Tj0w2+aP+/3ENy43m9dvurGC8Geu1t23nu2Lrn0xOALo34aXXMthOBKf0ICxnajhOAzjmrzuD9/O6nqnOd3v18yfG6fheAAv4bBWlqZX0srDXgIFp/y+zUEs37GZwgGKoxCsAa79gs24tfx+r5gI86m+q9g07q4Lws2l+hmQ8uJxddHwUbrS1VvaV9lGPToR/GbHvpif93BuYZuX1FTo1EGxrOqKPczGw3HEqhUJKKJVa1Xr7WJ3/m7ytfaeugyvA+/RKrWeBw4hdAm6C6g20CIh/tC/HLRjs3RsQp9w8whVTVO05ZuEddcQ4iLX5ANzIuE4tcTexjB/AkkbodYIBFXZwLsY7Ff3AS6f4otftTcm6fYATCAuOVivCOvygDQLzB+cQu4ot+WiF/47t1vS0TGIP7hSgCMAZvqFc7/AQ==
- true
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAZdJREFUSEvV1M8rBGEcx/GHJL8ixYHdcnBwcuBgExYnF6Tk4K4cXJjZuLg4uOxhy4+U5Cgl+QMUSXIQ/gMkSn4lF1La8f7uzjbraWaatRx86nWYp5nnM/PMPKP+S5px7aIWeacMa7Bc1CFQejGqacUArnCIvAr2oF98i3N0oQDFLgKlHA/QCz4RRw0qMexCls83IZziCAtIZBmzx56wAf0GRAM8E4Esw0zqyDthbMKzoBRvmg+8YBBBUo8VLGmqkVont/ZZ/ErkCV4173iEbKAgKYQ8ha4InpFv/R5tqSP/yHtwW4UW+KYfd+iGLGW2zHcuN3CCHxVI+vAM/eJdrOIGJmTTnWma4CSppsNJZUbTYo32sGQdeoG8p2VUIFiSyohZyrQEJYv2sGQeF5pjyA6fQxUmXXz/F/kUeEV2+hYuoT+h6GBSM5JUU+NpxrZTYOxnxi1ldHKyX0bgVWDEM5N64SZkl/qlBPJL0YV+q8A7fC3tlEzYdpyJjQNn3Izap+cXJsv1JeeWPy9g4h5KEoIlGrKH84hSX+x+CmKBvnCmAAAAAElFTkSuQmCC
- 7f7aa427-fe06-4787-b54a-21d0992dc312
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
- true
- 4
- 0d2e58b9-3bab-49da-9860-007cbe5e7f70
- 4ec6965f-8868-4616-a02a-322a340bf3cb
- a4f1e714-5f7a-4724-bd97-7b483b7746f0
- efd66ba5-12ae-4c50-97b7-a239f8f3c62e
- 2e55aebe-34b6-4785-8e6b-d76dac4aff89
- 2df4e919-ccf0-4e59-924f-ef207e19da1d
- dc1dce83-50c8-4b2e-bdbb-9da4471c5c1c
- 0ef02d63-4c77-4baf-8a44-8b45ed9effc1
-
7246
-540
49
44
-
7275
-518
- 2
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- 2
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Shift offset
- 0d2e58b9-3bab-49da-9860-007cbe5e7f70
- Shift
- true
- 0
-
7248
-538
15
20
-
7255.5
-528
- 1
- 1
- {0}
- 1
- 2
- A wire relay object
- 4ec6965f-8868-4616-a02a-322a340bf3cb
- Relay
- true
- 0c9554e2-bfa6-483c-979b-54cc19c5ff56
- 1
-
7248
-518
15
20
-
7255.5
-508
- 2
- A wire relay object
- a4f1e714-5f7a-4724-bd97-7b483b7746f0
- Relay
- false
- 0
-
7287
-538
6
20
-
7290
-528
- Result of mass addition
- efd66ba5-12ae-4c50-97b7-a239f8f3c62e
- Result
- false
- 0
-
7287
-518
6
20
-
7290
-508
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
-
7VsJdBNlHp+2aZqjB1AVUJDR4nqwFnTxKbJgk6ZHaNPGFhAEH50m03YgycRkUuSy5UFBKiBd6Alo8UEFqVahVDmU6haXXVksCwgo2kMXV46VXXXFXaX7fTPfpJ0jaaGphYd9L+nM//+dv//5/WeiMtAWj510MB3gLwjDMAX4RDptnlzKMSufdLkp2gFZZkCGbPgXBpvw/ZJJwkq6YJNQxNbwLKMBktWANPbyuVFrGom4un8frj+tKZ8XZnaR+RQ5F/I1gK/MzAOjWKMQ2US68ybPc5KQHYImjkC8NNplJ2yQMxJQN23a1MH3yiRtpIUhrTyPoqiOmwxkDuWgGLALs4t2ki6GIt38sPCjMBAMO48K3OxssxeXLP9UpTWQbouLcjJo83CJmCKNsJP83YWQaclJsbHtuyrPvrgCfLeX14HvtvI328rr2Qv2tn4L/C5ZzX6vaSsp9bZsrkiD12uXwhHKYJf2DZu9123r1ratK/U2ayvf5h2Na8YNcrZ8J6RXLhZMzfdFS0LcbcLlbeyct7iKbbzS33XVq94B0Tei+O3FXqMdsTN2WcA279rQOvlld7Zhudwe0aTs3hGq7AgIH76vFEkOYYQ2NxEvCCQXNJpAfAheVrKxsUnJ09QZQMOgKbh5M4F/ETw1nvZwBhTCmwBQttlAGZH+BCOycjLhyiXZlreD27qfOzoWgi6KJ2nazlvQzMibHgudCtRZMJUaUiTTqDMszlRiHu1hurbVJLloj1PSeGCnKaRnw8V5J4gCHy1HE/SCdCVHhwMEI0tUJE3ptOw7gotm3L3r45SV2V/r8v7q+K/ASiJMhNuN66xWdlZ1PO1gCMrR6S2gr5GztXvMpCsH2Dluh/0J1B+nc3ACt1FuBl5RDGl3K5Mpq5V08BsJCjc63AzhsJBJHsrKLzHjvqHGPAWZsMGZcKxxcOtRP0tUpVGWOb7ZGh3DuKhsD8P5EK9Y9QA1K0uKgfdZRwxYXEoThv1Hj2Fj9KFmKp9mQR0BuYUfG7DGhCatk3AR9lmUw+lh0VUhdJU6i4V0e31UkA+IRhhhRzyfsHlINw7AEmIVK4tE+wndiS11d6WvrZs5+8C8Q98KkAhlR5QggMjp7Oyc42UVTZlJe1wWklVDqMtnT4bsffA1Y2FNyfzzukU1Wo4t0CfYr4cQVgMIGycBCE/qMAwXQ2g+ykIYzkEI1B9hqPQD2OAM0u2xsaojQEoWqKxRjHn5I1NSNj1ieoyy53kEQCm5kSRI8XQJVHJYYD3HAjuJsHgOqFO1ToRF3GmgbMlCLOCsYVemT4NTkV2BcRiKsOEudjNuWXjSBr6wqPzIrOQGw0fbX7YUVgjgiTKjETg43BKcJA36BLAEv4DFNyHHFuTLsT2wOePAjLptiVs3R334/rPflwlthXWxQoc2lAdcT7tQRsQnGcp42gZ2xCcm8L+cDG7X4blwXCiGJBdQ0jzaCVIWnObcdbDRwFvbvu9H/fSX7JsS32qYcGmX5sIAwApCrPLnjt+3yHHMtPd/49Y8fNvDOsAK9mGjgBWCWBObRuavf8qgW3boywcfmfjAl4ClQKx3Ip7RfFAUr1sdWXyvJXOEAbBCEUvsWQFLiVhf7fth0MEzo3UrrN9HlJhOOQErDLFGRE9YqpqzK7GoJnvBz1h0O2Cp+MU//foBfIMnvfqNnT8mvfeqGrDUiDUIHz8xs7Y0fd27XxRMiYq5DFgavteGjr9Rt66Jq9r8+BIdkV8MWFrECt9amXb4yEV99Q/fKUadXFUPWOGINaHqhXEFx3YkvzN2aH3laOt0wIpArHn3lhZVxHSY9i2cyiwsGfsTYEUi1tCvv7v/4qHpaX9I/wZ/dugnwwErCrGWHB5++qA5NuWdvRs3Jw2bOQywBiDWu69PiW0YW5S0es4Je+2kjhWANRCxLPdfjJybWpdSbHg+4cKLHe+pjIZZAsUfBLchZ4UL0k5vVDx5i377G9EFRmzBNhkNldie2IQw3oQ4awj2ZQ14bkzDc6tW6Nf+sTa18sfdC4RzZZA2Yp7QGnyEs2Af7idah8+lXCTwOmAkpPCymxbrsMxCpJvuNnqJpdrL6IWdAA4ooglGLhDvxQ6o8BTgankHFHLNQy72DYGBfFlL/mPEjMspRS3ar9IzwtYHAPLWWn+Qt27nIVf4gry6ZJXn/KRLSWVP3+KuKv7tU8KwnwhPnow0i/UF8MNcB9xN20ncSjAE7nFTjlzcaSMsZB5tA0ECpCEOK8zeQDsG8hgit2dJrdixyS1VmqFw9J7mYCBRLbwTQPoGhFScg7WCMFp4a1OEGeYdJEO6wEGagFwYASDCGjZxFMgTfsJYstHK60Fa0ecTM/90Lm7ph/WFqn+lH+P5fDxb8sSmgk+cM5MrGqsrz1SsnMjz+aA23XpwddB+tWHPPwebIkZFN2vT2RRIokcqju57Ym697HZYNPxIVjuZfIZBYpOVzjQblliNZabtGf3QV4feH3n+SqQT8HSoFcgRg3IcIJcO4cA0Ckc0RZphrcfNkA6GF2QQQi5UgqVS7wI7zsO62JG0kcJMMHn83kIWjFmkMIIjG9+H3ZfDY7PNcoM9OHI73UTnPetfFox5NGNRF9kEdSObQYmd1mQB6aXHRcqKqPnn4C073g5NrbgzOYbau2++QERh8VxPiYy8jD4R0nC/Qrr1FxUSX01QpMZzDhJ2KfDaNSsLOC4fdeRkcSdcJc7QOOVwky4GB84QTCFwgLKy+fRA9MSVddvT9h/dxrxyfmFpmMnDENk20gu20J7YWcZIZBU0RiKloL49tbJCHOJXiDc3IQclcDS+AIxEykxacQa4HFmw9q+/eeX0pZP1la8V//34oqjjAmwU0FNJkOGogVbhrM+Rn2kEZ3anJF60sCqMQjAfNyUh+PEvWtLDbIeTXtr9bnBBwx3LBLvRZOZROQwOj6rSMBzqA8Pb0nNy3CRQPpuNKxoBbUR1pNgehVrxAcjXkiQwd+H1FMLjBpCEAAjL5EJu9SeAu6q3laMI9qQPjNINVyd/vs9ef2FGK6V/OTUGn5bymTC5UMjulaN2l/SJCwe9rRIBuLIgXK06GXvLAikhvkYAF18Y8RU8wjmJ0azGyEIztablpejL0ZN2PtRxW+2L53YLk2G2u7SExpG7A0d8SAwAOK2r/YEDdKk/IorS4bFndxZIWD3tIqNgrJvk6wkX4USFT1kRxXq+2Xd/WW38lg8WnxnvsT0u1F7YW6q9LDXQDpFVz5V+1fP5fpFAWDZN20jC6/cwSSX1CquHnN2AKAW9qqxQxMe9q3cpvRQKfhr5jAq5KGX+jDULFKV4NZREqaq3W6cv//KScc/bu/a8OactVegFzISDtAkDlNqPQt+jw52wB1vFt3jcDG3HHTTYBns4hHHfn7aLi18yS+nJ6VybaXHRNlsGAeiQqMQ6/0R+Spxw+PJTqikg6YOZBj/tXQbaA7I43GID64ERiLRSDNq7BaAFTKC9sEYkR/6psliOcc0gnxgP5Bgdj2Ev6zUmwpVLOVLJHIFSaDlyBpWbJ3xyxtEn086uVKEyHE5rNmzNHt8UxYIofHwcxq9KrrLrIuYaHVbKQnqfsAWpIRHaZReSCRwlKBvQEC8pPNNJWijCFk9bO/sC+BkXSdi996yz8vZBqspHtWtZVcWF375X1Vdqgo7NL2w0vjXOcOrieNWR/lHVLKiqW/tSVRNnNxtOzd96faiqypeqXkflN/HTiD4qvzXO9ld+a8z+tfwmK51hBUNmvK41JizdF6e+/GzMiH4vv8XN9lcUaMy98cpvZxtON0yoO2oqcnT82JLx3l3XQPktjvQrpOwbpvw2LCxlz7CRVtPuSkOWaqNlbJ+V3wJcDmCFmOVXiE8FvPw2xPyPherxDQm1a1aXnXthe3q/lt9YP+Oz/AZUGIVgPse7nkOw+A2DPgrB2AZ/IRir+DUEy0pHo3663WCv1Nc/4Tj0w2+aP+/3ENy43m9dvurGC8Geu1t23nu2Lrn0xOALo34aXXMthOBKf0ICxnajhOAzjmrzuD9/O6nqnOd3v18yfG6fheAAv4bBWlqZX0srDXgIFp/y+zUEs37GZwgGKoxCsAa79gs24tfx+r5gI86m+q9g07q4Lws2l+hmQ8uJxddHwUbrS1VvaV9lGPToR/GbHvpif93BuYZuX1FTo1EGxrOqKPczGw3HEqhUJKKJVa1Xr7WJ3/m7ytfaeugyvA+/RKrWeBw4hdAm6C6g20CIh/tC/HLRjs3RsQp9w8whVTVO05ZuEddcQ4iLX5ANzIuE4tcTexjB/AkkbodYIBFXZwLsY7Ff3AS6f4otftTcm6fYATCAuOVivCOvygDQLzB+cQu4ot+WiF/47t1vS0TGIP7hSgCMAZvqFc7/AQ==
- true
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAZdJREFUSEvV1M8rBGEcx/GHJL8ixYHdcnBwcuBgExYnF6Tk4K4cXJjZuLg4uOxhy4+U5Cgl+QMUSXIQ/gMkSn4lF1La8f7uzjbraWaatRx86nWYp5nnM/PMPKP+S5px7aIWeacMa7Bc1CFQejGqacUArnCIvAr2oF98i3N0oQDFLgKlHA/QCz4RRw0qMexCls83IZziCAtIZBmzx56wAf0GRAM8E4Esw0zqyDthbMKzoBRvmg+8YBBBUo8VLGmqkVont/ZZ/ErkCV4173iEbKAgKYQ8ha4InpFv/R5tqSP/yHtwW4UW+KYfd+iGLGW2zHcuN3CCHxVI+vAM/eJdrOIGJmTTnWma4CSppsNJZUbTYo32sGQdeoG8p2VUIFiSyohZyrQEJYv2sGQeF5pjyA6fQxUmXXz/F/kUeEV2+hYuoT+h6GBSM5JUU+NpxrZTYOxnxi1ldHKyX0bgVWDEM5N64SZkl/qlBPJL0YV+q8A7fC3tlEzYdpyJjQNn3Izap+cXJsv1JeeWPy9g4h5KEoIlGrKH84hSX+x+CmKBvnCmAAAAAElFTkSuQmCC
- c3a8f2ac-93c2-4497-a1bf-88879c0ff2b9
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
- true
- 4
- 123072f6-783b-4a7b-a265-8008ec99ebf4
- 67035528-cb64-4636-9189-14120990c7cf
- 85860cd9-cada-48fc-bbe1-b942bed79495
- f2004cff-51f1-449c-a788-543cb9e34646
- 2e55aebe-34b6-4785-8e6b-d76dac4aff89
- 0ef02d63-4c77-4baf-8a44-8b45ed9effc1
- dc1dce83-50c8-4b2e-bdbb-9da4471c5c1c
- 2df4e919-ccf0-4e59-924f-ef207e19da1d
-
7246
-686
49
44
-
7275
-664
- 2
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- 2
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Shift offset
- 123072f6-783b-4a7b-a265-8008ec99ebf4
- Shift
- true
- 0
-
7248
-684
15
20
-
7255.5
-674
- 1
- 1
- {0}
- -1
- 2
- A wire relay object
- f2004cff-51f1-449c-a788-543cb9e34646
- Relay
- true
- 2f7ab1b7-3138-4d5d-9552-056fd3796316
- 1
-
7248
-664
15
20
-
7255.5
-654
- 2
- A wire relay object
- 85860cd9-cada-48fc-bbe1-b942bed79495
- Relay
- false
- 0
-
7287
-684
6
20
-
7290
-674
- Result of mass addition
- 67035528-cb64-4636-9189-14120990c7cf
- Result
- false
- 0
-
7287
-664
6
20
-
7290
-654
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- 92160099-1a10-438c-a8eb-39a5bfdb74ee
- Rotate
- Rotate
-
7181
-1236
191
64
-
7308
-1204
- Base geometry
- 07c160e4-bf52-4741-ad10-eec06ab534c8
- Geometry
- Geometry
- true
- 98856ba9-ac48-4dc5-8173-4a04a125f4c3
- 1
-
7183
-1234
113
20
-
7239.5
-1224
- Rotation angle in radians
- 7c7113a4-3f05-438f-bff0-addf70abd838
- Angle
- Angle
- false
- 0
- false
-
7183
-1214
113
20
-
7239.5
-1204
- 1
- 1
- {0}
- 3.1415926535897931
- Rotation plane
- 47c448a4-cc1f-43c7-8e22-2b50af9e6c8c
- Plane
- Plane
- false
- cf3a8e64-db34-4748-b512-dd4b3a3cd2ea
- 1
-
7183
-1194
113
20
-
7239.5
-1184
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- ce762bb0-1553-44e3-a798-9a48cf2d0d98
- Geometry
- Geometry
- false
- 0
-
7320
-1234
50
30
-
7345
-1219
- Transformation data
- 99d37c2e-9ff8-4cb8-bd53-fe4ba0f0cf89
- Transform
- Transform
- false
- 0
-
7320
-1204
50
30
-
7345
-1189
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- true
- 72817673-4fa9-47a2-8619-191262972134
- Join Curves
- Join Curves
-
7244
-1346
116
44
-
7311
-1324
- 1
- Curves to join
- aa6d9674-3ffb-4385-a390-24d8fb773c7d
- Curves
- Curves
- false
- 718b7e00-4d0a-424a-a87d-be93992cc1c9
- 1
-
7246
-1344
53
20
-
7272.5
-1334
- Preserve direction of input curves
- 2ab551e3-8141-4d98-90dd-0407c41856d0
- Preserve
- Preserve
- false
- 0
-
7246
-1324
53
20
-
7272.5
-1314
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- c60d2465-5d77-40e9-b83a-d648f3a5982e
- Curves
- Curves
- false
- 0
-
7323
-1344
35
40
-
7340.5
-1324
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- cba8136d-fdbb-4a88-8ac9-8566ac35864b
- Merge
- Merge
-
7254
-1300
90
64
-
7299
-1268
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 9803b99c-80f0-465c-b165-5e393d9cac5a
- false
- Data 1
- D1
- true
- 98856ba9-ac48-4dc5-8173-4a04a125f4c3
- 1
-
7256
-1298
31
20
-
7271.5
-1288
- 2
- Data stream 2
- 43a1b5d1-ebfd-43d6-9e3e-be988524c0dc
- false
- Data 2
- D2
- true
- ce762bb0-1553-44e3-a798-9a48cf2d0d98
- 1
-
7256
-1278
31
20
-
7271.5
-1268
- 2
- Data stream 3
- dbeccb43-5982-4b6f-aa64-1612c272d4b4
- false
- Data 3
- D3
- true
- 0
-
7256
-1258
31
20
-
7271.5
-1248
- 2
- Result of merge
- 718b7e00-4d0a-424a-a87d-be93992cc1c9
- Result
- Result
- false
- 0
-
7311
-1298
31
60
-
7326.5
-1268
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 661278b1-7115-4eef-931d-363a21259e10
- Relay
- false
- f8ad527b-60e4-4a4d-8227-555fab4e8c6c
- 1
-
7199
-397
40
16
-
7219
-389
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- a426d303-f899-404c-bd9d-48804708b6fd
- Panel
- false
- 0
- 0
- 0.51542256311
-
7387
-226
112
20
- 0
- 0
- 0
-
7387.639
-225.6487
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- O/4^(OO-4)
- true
- 73383578-2553-4fa9-9c76-a79bc56e9f1c
- Expression
- Expression
-
7410
-122
157
44
-
7483
-100
- 2
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- d3b88769-9169-49b6-be88-a1e22389db36
- Variable O
- O
- true
- fb2a6dbf-b02f-4775-ad6e-36cf33201f14
- 1
-
7412
-120
19
20
-
7421.5
-110
- Expression variable
- 3ceb906c-57ef-458b-9bdd-16815fce9d6b
- Variable OO
- OO
- true
- 118d6a6e-a7b7-4f47-a11e-d176a0f5e664
- 1
-
7412
-100
19
20
-
7421.5
-90
- Result of expression
- 66e0c859-9a3f-4653-87cc-c7dbc80b8137
- Result
- Result
- false
- 0
-
7534
-120
31
40
-
7549.5
-100
- 7ab8d289-26a2-4dd4-b4ad-df5b477999d8
- Log N
- Return the N-base logarithm of a number.
- true
- d6006a37-f52f-44c5-8843-4b4c76e75d91
- Log N
- Log N
-
7378
-16
115
44
-
7448
6
- Value
- d7045ca4-1772-4fc7-8f7d-fa1f1ec995e6
- Number
- Number
- false
- 3b9ee1da-2b6d-4e87-94f1-2b90b167ae40
- 1
-
7380
-14
56
20
-
7408
-4
- Logarithm base
- f13fbbf7-e636-4655-a355-d0a829018831
- Base
- Base
- false
- 0
-
7380
6
56
20
-
7408
16
- 1
- 1
- {0}
- 2
- Result
- 118d6a6e-a7b7-4f47-a11e-d176a0f5e664
- Result
- Result
- false
- 0
-
7460
-14
31
40
-
7475.5
6
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- d3a6959a-bba8-449a-982e-ef7604520f53
- Digit Scroller
- INCREASE BEND PER SEGMENT
- false
- 0
- 12
- INCREASE BEND PER SEGMENT
- 1
- 0.48627696593
-
7102
-167
250
20
-
7102.155
-166.5567
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 3bd58d69-967e-43a7-83f9-2ac9b80f78e7
- Panel
- false
- 0
- 0
- 16 0.492221738454693386
32 0.507180224586
-
7406
-184
194
30
- 0
- 0
- 0
-
7406.639
-183.6487
- 1
-
255;255;255;255
- false
- false
- true
- true
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- c310bdd9-cdbb-41d1-9fff-c0a3b50b9761
- Panel
- false
- 0
- 0
- 0.492221738454693386
-
7148
-98
112
20
- 0
- 0
- 0
-
7148.722
-97.83535
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- 6d028da1-0f48-408c-93e7-967fdf542a50
- Deconstruct
- Deconstruct
-
7748
-388
120
64
-
7789
-356
- Input point
- d52eac7f-7d31-4133-aea6-6202516efb39
- Point
- Point
- false
- ad060237-9a0b-4008-a8a1-242e68167c1a
- 1
-
7750
-386
27
60
-
7763.5
-356
- Point {x} component
- 35efd855-fd11-474b-9c35-002d2c21885d
- X component
- X component
- false
- 0
-
7801
-386
65
20
-
7833.5
-376
- Point {y} component
- 23303988-7ecf-4a11-bc1e-35898011a20c
- Y component
- Y component
- false
- 0
-
7801
-366
65
20
-
7833.5
-356
- Point {z} component
- c2e0a7e1-fc22-46c0-ae94-c36350dd6d24
- Z component
- Z component
- false
- 0
-
7801
-346
65
20
-
7833.5
-336
- d3d195ea-2d59-4ffa-90b1-8b7ff3369f69
- Unit Y
- Unit vector parallel to the world {y} axis.
- true
- ca7fa2f7-8da6-406c-a0d0-1a15b937245d
- Unit Y
- Unit Y
-
6997
-552
114
28
-
7043
-538
- Unit multiplication
- 20d7ed77-a242-4e78-bc22-a47dcbd676e2
- Factor
- Factor
- false
- 661278b1-7115-4eef-931d-363a21259e10
- 1
-
6999
-550
32
24
-
7015
-538
- 1
- 1
- {0}
- 1
- World {y} vector
- a62455d0-5cb4-4f1c-9433-d173ad04b5fc
- Unit vector
- Unit vector
- false
- 0
-
7055
-550
54
24
-
7082
-538
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 6cc8b961-3d16-490f-8a92-6de71388cfb0
- Evaluate Length
- Evaluate Length
-
7225
-1171
149
64
-
7310
-1139
- Curve to evaluate
- a356b7de-1d69-4095-a4fe-4fe01dc14673
- Curve
- Curve
- false
- 98856ba9-ac48-4dc5-8173-4a04a125f4c3
- 1
-
7227
-1169
71
20
-
7262.5
-1159
- Length factor for curve evaluation
- bcbced95-3f41-4c96-a3a8-fc21211c4e84
- Length
- Length
- false
- 0
-
7227
-1149
71
20
-
7262.5
-1139
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- a5cd143c-0497-4726-a2b5-f95cf2b3273b
- Normalized
- Normalized
- false
- 0
-
7227
-1129
71
20
-
7262.5
-1119
- 1
- 1
- {0}
- true
- Point at the specified length
- cf3a8e64-db34-4748-b512-dd4b3a3cd2ea
- Point
- Point
- false
- 0
-
7322
-1169
50
20
-
7347
-1159
- Tangent vector at the specified length
- d5d3bd1f-68fe-43ad-be56-c2688ee6ab17
- Tangent
- Tangent
- false
- 0
-
7322
-1149
50
20
-
7347
-1139
- Curve parameter at the specified length
- 33d1c087-26b5-471e-8ce4-ad22302ab4ec
- Parameter
- Parameter
- false
- 0
-
7322
-1129
50
20
-
7347
-1119
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- a68f174f-f652-4ebe-9283-84d3ce1414cb
- Rotate
- Rotate
-
7182
-1664
226
81
-
7344
-1623
- Base geometry
- b725a6f7-d856-46ca-bd30-aece6543fc61
- Geometry
- Geometry
- true
- de7d3b1c-087f-4d20-b155-1466adf1be7e
- 1
-
7184
-1662
148
20
-
7266
-1652
- Rotation angle in degrees
- 930e65b2-5380-4c50-8dfd-d3ecc69a71a9
- Angle
- Angle
- false
- 513db0a5-d73e-4aad-8403-b35554601c20
- 1
- true
-
7184
-1642
148
20
-
7266
-1632
- 1
- 1
- {0}
- 1.5707963267948966
- Rotation plane
- 1d742bd5-8502-4a39-a1f5-0a575b8fc18d
- Plane
- Plane
- false
- 0
-
7184
-1622
148
37
-
7266
-1603.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 58108438-d67c-4274-9c4c-74f0b6b9c064
- Geometry
- Geometry
- false
- 0
-
7356
-1662
50
38
-
7381
-1642.75
- Transformation data
- a1c37d4d-72e7-4ba5-a526-95f282510660
- Transform
- Transform
- false
- 0
-
7356
-1624
50
39
-
7381
-1604.25
- b464fccb-50e7-41bd-9789-8438db9bea9f
- Angle
- Compute the angle between two vectors.
- true
- c668c4d9-d991-4613-b402-cdf66b7b7cbf
- Angle
- Angle
-
7200
-1579
197
81
-
7336
-1538
- First vector
- 2b5a8381-34eb-47f0-aeb0-41a548f31ea3
- Vector A
- Vector A
- false
- 807f589e-fafc-4af9-83b8-518bdfe592e0
- 1
-
7202
-1577
122
20
-
7263
-1567
- Second vector
- 91b24b53-c825-491d-bd85-d3f44178ef68
- Vector B
- Vector B
- false
- 0
-
7202
-1557
122
20
-
7263
-1547
- 1
- 1
- {0}
-
1
0
0
- Optional plane for 2D angle
- e95fd458-2eb9-4998-867f-66daba6b9481
- Plane
- Plane
- true
- 0
-
7202
-1537
122
37
-
7263
-1518.5
- Angle (in radians) between vectors
- 513db0a5-d73e-4aad-8403-b35554601c20
- -DEG(X)
- Angle
- Angle
- false
- 0
-
7348
-1577
47
38
-
7363.5
-1557.75
- Reflex angle (in radians) between vectors
- 3e7c3297-7c35-479e-a350-e4707264a8e9
- Reflex
- Reflex
- false
- 0
-
7348
-1539
47
39
-
7363.5
-1519.25
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- b3184d2b-6d05-4ad8-88fc-8731eb4712d3
- Evaluate Length
- Evaluate Length
-
7252
-1486
149
64
-
7337
-1454
- Curve to evaluate
- 523befda-7ca0-4494-91b2-0c4032de7dab
- Curve
- Curve
- false
- de7d3b1c-087f-4d20-b155-1466adf1be7e
- 1
-
7254
-1484
71
20
-
7289.5
-1474
- Length factor for curve evaluation
- 91f420cf-ceef-4883-adac-43d6c7b7c4ed
- Length
- Length
- false
- 0
-
7254
-1464
71
20
-
7289.5
-1454
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 3e6b0135-a762-48d3-ba8c-7f8e78f89068
- Normalized
- Normalized
- false
- 0
-
7254
-1444
71
20
-
7289.5
-1434
- 1
- 1
- {0}
- true
- Point at the specified length
- 3c5ba13e-23de-4f08-abed-a8f2cb6d7714
- Point
- Point
- false
- 0
-
7349
-1484
50
20
-
7374
-1474
- Tangent vector at the specified length
- 807f589e-fafc-4af9-83b8-518bdfe592e0
- Tangent
- Tangent
- false
- 0
-
7349
-1464
50
20
-
7374
-1454
- Curve parameter at the specified length
- 0b7a5fad-f50c-4734-9f64-90f997d11360
- Parameter
- Parameter
- false
- 0
-
7349
-1444
50
20
-
7374
-1434
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 072dcf19-aaed-46e8-93ac-40f0b98e06eb
- Panel
- X
- false
- 0
- dc932851-6aca-48dd-bb33-2297203e1b93
- 1
-
8055
-483
194
40
- 0
- 0
- 0
-
8055.727
-482.6487
- 1
-
255;255;255;255
- false
- false
- true
- true
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 28024223-0601-4d33-b2cd-d31a63d03970
- Panel
- Y
- false
- 0
- 5c14b869-2216-4bee-ab83-a2b2af816aa8
- 1
-
8075
-265
194
40
- 0
- 0
- 0
-
8075.727
-264.6487
- 1
-
255;255;255;255
- false
- false
- true
- true
- false
- true
- 797d922f-3a1d-46fe-9155-358b009b5997
- One Over X
- Compute one over x.
- true
- b326ab19-e884-4588-875b-7b9eff4591c1
- One Over X
- One Over X
-
7081
-408
88
28
-
7124
-394
- Input value
- 50b0d8f3-254f-4462-8623-50b69e316ba4
- Value
- Value
- false
- 903082e1-697f-4b4c-870e-e7756893c833
- 1
-
7083
-406
29
24
-
7097.5
-394
- Output value
- f8ad527b-60e4-4a4d-8227-555fab4e8c6c
- Result
- Result
- false
- 0
-
7136
-406
31
24
-
7151.5
-394
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- e5551d65-9328-4cb1-82b6-2faf9de39787
- Evaluate Length
- Evaluate Length
-
7225
-1825
149
64
-
7310
-1793
- Curve to evaluate
- 22ed8ab1-c128-4c9c-953b-36384128a70e
- Curve
- Curve
- false
- a201152b-09cd-4875-8f5e-65a7d1b5e6ae
- 1
-
7227
-1823
71
20
-
7262.5
-1813
- Length factor for curve evaluation
- a0d10dc6-63f5-426e-bbcc-8d305d2ce9db
- Length
- Length
- false
- 0
-
7227
-1803
71
20
-
7262.5
-1793
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- eb54a31c-fc89-4239-898f-2405142ff8f7
- Normalized
- Normalized
- false
- 0
-
7227
-1783
71
20
-
7262.5
-1773
- 1
- 1
- {0}
- true
- Point at the specified length
- ad060237-9a0b-4008-a8a1-242e68167c1a
- Point
- Point
- false
- 0
-
7322
-1823
50
20
-
7347
-1813
- Tangent vector at the specified length
- 441117ec-51d8-4bcc-a408-e0d7c2081edf
- Tangent
- Tangent
- false
- 0
-
7322
-1803
50
20
-
7347
-1793
- Curve parameter at the specified length
- 26c8c3a2-4e5e-46f5-ab42-be14af5ffd3e
- Parameter
- Parameter
- false
- 0
-
7322
-1783
50
20
-
7347
-1773
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- bfe60051-6592-4b37-861a-aa9270750ff8
- Format
- Format
-
7895
-497
130
64
-
7987
-465
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- ab73bac1-57b5-4317-b3c3-c83146f7e4b2
- Format
- Format
- false
- 0
-
7897
-495
78
20
-
7936
-485
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- f2967ba9-9e82-4ccc-a3a5-0864ed4aba43
- Culture
- Culture
- false
- 0
-
7897
-475
78
20
-
7936
-465
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- 2982d12a-0e9f-41aa-8469-2604b73063fd
- false
- Data 0
- 0
- true
- 35efd855-fd11-474b-9c35-002d2c21885d
- 1
-
7897
-455
78
20
-
7936
-445
- Formatted text
- dc932851-6aca-48dd-bb33-2297203e1b93
- Text
- Text
- false
- 0
-
7999
-495
24
60
-
8011
-465
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- ee79b022-0594-4756-831a-df7616c67767
- Format
- Format
-
8025
-398
130
64
-
8117
-366
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- d1bd4e74-3ccc-45ce-ab97-5f66fdcb224b
- Format
- Format
- false
- 0
-
8027
-396
78
20
-
8066
-386
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 5e98bcb1-736d-4bcd-ab10-9c99e6ebf0e0
- Culture
- Culture
- false
- 0
-
8027
-376
78
20
-
8066
-366
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- 66309512-3b30-4d2c-90c6-fb284d6cedaa
- false
- Data 0
- 0
- true
- 798b694f-b0a7-49a4-819e-41bb99b9f02d
- 1
-
8027
-356
78
20
-
8066
-346
- Formatted text
- d2943271-0562-4004-9eb3-1c9184a2c650
- Text
- Text
- false
- 0
-
8129
-396
24
60
-
8141
-366
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- 3962fab4-8056-471d-bbcc-c38f862b2466
- Format
- Format
-
7895
-305
130
64
-
7987
-273
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- 090b37ec-f9fa-42ac-8fb6-2ea6d920f88e
- Format
- Format
- false
- 0
-
7897
-303
78
20
-
7936
-293
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- c643e56e-b44d-4623-9bdb-aef3e627563a
- Culture
- Culture
- false
- 0
-
7897
-283
78
20
-
7936
-273
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- 5030886f-edfd-46a1-a33c-b6b622c9b928
- false
- Data 0
- 0
- true
- 23303988-7ecf-4a11-bc1e-35898011a20c
- 1
-
7897
-263
78
20
-
7936
-253
- Formatted text
- 5c14b869-2216-4bee-ab83-a2b2af816aa8
- Text
- Text
- false
- 0
-
7999
-303
24
60
-
8011
-273
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 04c03a88-a5d1-4046-82df-6242ef6755f4
- Division
- Division
-
7909
-388
70
44
-
7934
-366
- Item to divide (dividend)
- 477a77e5-efe5-42ab-91ef-0b48c7b4f7e6
- A
- A
- false
- 35efd855-fd11-474b-9c35-002d2c21885d
- 1
-
7911
-386
11
20
-
7916.5
-376
- Item to divide with (divisor)
- 380205a7-0d19-454c-a068-886a19a774ec
- B
- B
- false
- 23303988-7ecf-4a11-bc1e-35898011a20c
- 1
-
7911
-366
11
20
-
7916.5
-356
- The result of the Division
- 798b694f-b0a7-49a4-819e-41bb99b9f02d
- Result
- Result
- false
- 0
-
7946
-386
31
40
-
7961.5
-366
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 52044557-936a-42d3-ba5a-430897e96bd7
- Panel
- X/Y
- false
- 0
- d2943271-0562-4004-9eb3-1c9184a2c650
- 1
-
7242
-209
97
40
- 0
- 0
- 0
-
7242.389
-208.1469
- 1
-
255;255;255;255
- false
- false
- true
- true
- false
- true
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- c8ebd8f8-4948-43fb-8832-395b91c34f25
- Digit Scroller
- INCREASE BEND PER SEGMENT
- false
- 0
- 12
- INCREASE BEND PER SEGMENT
- 1
- 0.77246531995
-
7091
-235
250
20
-
7091.276
-234.1053
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 92160099-1a10-438c-a8eb-39a5bfdb74ee
- 72817673-4fa9-47a2-8619-191262972134
- cba8136d-fdbb-4a88-8ac9-8566ac35864b
- 6cc8b961-3d16-490f-8a92-6de71388cfb0
- 98856ba9-ac48-4dc5-8173-4a04a125f4c3
- 262e2432-cf75-4946-b0ca-fff148556327
- 6
- 7fe491ec-0db4-4128-8335-9cc4bc710ae4
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- a68f174f-f652-4ebe-9283-84d3ce1414cb
- c668c4d9-d991-4613-b402-cdf66b7b7cbf
- b3184d2b-6d05-4ad8-88fc-8731eb4712d3
- de7d3b1c-087f-4d20-b155-1466adf1be7e
- 1eba0942-8ed3-4598-819a-092d8157d7b5
- 5
- 6f1bc802-fc40-41e1-a2fb-da13054f99d4
- Group
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 638bdb64-0e1d-4038-a36b-41c4d795d42a
- Panel
- false
- 0
- 0
- 0.87246531994281165
-
6999
-222
112
55
- 0
- 0
- 0
-
6999.727
-221.6487
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- f06569ba-0f8e-421c-bfd1-06b651268985
- Panel
- false
- 0
- 0
- 12 0.77246531994281165
-
6976
-134
122
55
- 0
- 0
- 0
-
6976.727
-133.6487
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- e23e2f01-18f7-49ba-b41a-08ccfff91ebc
- Point
- Point
- false
- 8d954422-a302-472f-bf5f-7a241205bdc6
- 1
-
6996
-846
50
24
-
7021.727
-834.6486
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 98856ba9-ac48-4dc5-8173-4a04a125f4c3
- Relay
- false
- ed4e0638-c6d0-4126-95f7-75935e8b71d0
- 1
-
7294
-1085
40
16
-
7314
-1077
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 262e2432-cf75-4946-b0ca-fff148556327
- Relay
- false
- c60d2465-5d77-40e9-b83a-d648f3a5982e
- 1
-
7291
-1365
40
16
-
7311
-1357
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- de7d3b1c-087f-4d20-b155-1466adf1be7e
- Relay
- false
- 262e2432-cf75-4946-b0ca-fff148556327
- 1
-
7302
-1416
40
16
-
7322
-1408
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 1eba0942-8ed3-4598-819a-092d8157d7b5
- Relay
- false
- 58108438-d67c-4274-9c4c-74f0b6b9c064
- 1
-
7277
-1679
40
16
-
7297
-1671
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- ed4e0638-c6d0-4126-95f7-75935e8b71d0
- Relay
- false
- 1900dc99-f091-4392-9450-44615b7569e4
- 1
-
7270
-960
40
16
-
7290
-952
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- 46e9ac55-9c5e-4e2a-820d-a0f057cb1848
- Deconstruct
- Deconstruct
-
7231
-1917
120
64
-
7272
-1885
- Input point
- 05847d96-bd4d-4ccb-8c5f-bc6ae4702b8f
- Point
- Point
- false
- ad060237-9a0b-4008-a8a1-242e68167c1a
- 1
-
7233
-1915
27
60
-
7246.5
-1885
- Point {x} component
- 65683a72-107e-4786-bd03-62d8c0618cbb
- X component
- X component
- false
- 0
-
7284
-1915
65
20
-
7316.5
-1905
- Point {y} component
- 988c5b0f-61a8-4354-8295-19c4f4cadf64
- Y component
- Y component
- false
- 0
-
7284
-1895
65
20
-
7316.5
-1885
- Point {z} component
- 5d07a2e1-88da-4421-8682-dfe2bd6796df
- Z component
- Z component
- false
- 0
-
7284
-1875
65
20
-
7316.5
-1865
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- a201152b-09cd-4875-8f5e-65a7d1b5e6ae
- Relay
- false
- 1eba0942-8ed3-4598-819a-092d8157d7b5
- 1
-
7268
-1736
40
16
-
7288
-1728
- 290f418a-65ee-406a-a9d0-35699815b512
- Scale NU
- Scale an object with non-uniform factors.
- caec2bbc-5ae6-4081-8207-b03134d3be40
- Scale NU
- Scale NU
-
7177
-2071
226
121
-
7339
-2010
- Base geometry
- 0b89ff93-f292-4fce-beaf-92f7a36fca9d
- Geometry
- Geometry
- true
- a201152b-09cd-4875-8f5e-65a7d1b5e6ae
- 1
-
7179
-2069
148
20
-
7261
-2059
- Base plane
- dc23e541-d422-4bb7-97ed-d9cf970fb4e7
- Plane
- Plane
- false
- 0
-
7179
-2049
148
37
-
7261
-2030.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Scaling factor in {x} direction
- 0a9ef10a-462d-4dc1-bee8-e6b97d6d1efe
- 1/X
- Scale X
- Scale X
- false
- 65683a72-107e-4786-bd03-62d8c0618cbb
- 1
-
7179
-2012
148
20
-
7261
-2002
- 1
- 1
- {0}
- 1
- Scaling factor in {y} direction
- 02067a1f-d61b-40a0-89d6-53e8477ee963
- 1/X
- Scale Y
- Scale Y
- false
- 988c5b0f-61a8-4354-8295-19c4f4cadf64
- 1
-
7179
-1992
148
20
-
7261
-1982
- 1
- 1
- {0}
- 1
- Scaling factor in {z} direction
- d5c2a1a7-696b-47ff-a04a-daf13e599276
- 1/X
- Scale Z
- Scale Z
- false
- 5d07a2e1-88da-4421-8682-dfe2bd6796df
- 1
-
7179
-1972
148
20
-
7261
-1962
- 1
- 1
- {0}
- 1
- Scaled geometry
- aa3cf507-4967-46e0-8213-89ff88b65ca4
- Geometry
- Geometry
- false
- 0
-
7351
-2069
50
58
-
7376
-2039.75
- Transformation data
- 65f7b0bd-e128-4bb6-8f43-33c6bec968ff
- Transform
- Transform
- false
- 0
-
7351
-2011
50
59
-
7376
-1981.25
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- a1e0f8c4-4e32-4423-a640-6d28fa2603ad
- Relay
- false
- aa3cf507-4967-46e0-8213-89ff88b65ca4
- 1
-
7271
-2104
40
16
-
7291
-2096
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- e5551d65-9328-4cb1-82b6-2faf9de39787
- 46e9ac55-9c5e-4e2a-820d-a0f057cb1848
- a201152b-09cd-4875-8f5e-65a7d1b5e6ae
- caec2bbc-5ae6-4081-8207-b03134d3be40
- a1e0f8c4-4e32-4423-a640-6d28fa2603ad
- 5
- b03695a5-af3b-4879-8c6a-bb7b760d5119
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 730c8146-4f1e-49ff-9a25-0ad360a13d92
- d7b18b8c-16a0-47f6-90ca-ecbcf0cbeed8
- a426d303-f899-404c-bd9d-48804708b6fd
- 73383578-2553-4fa9-9c76-a79bc56e9f1c
- d6006a37-f52f-44c5-8843-4b4c76e75d91
- 3bd58d69-967e-43a7-83f9-2ac9b80f78e7
- 6
- 0dde96ac-ef58-4d9c-b16a-67f5cb559ea7
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 6d028da1-0f48-408c-93e7-967fdf542a50
- 072dcf19-aaed-46e8-93ac-40f0b98e06eb
- 28024223-0601-4d33-b2cd-d31a63d03970
- bfe60051-6592-4b37-861a-aa9270750ff8
- ee79b022-0594-4756-831a-df7616c67767
- 3962fab4-8056-471d-bbcc-c38f862b2466
- 04c03a88-a5d1-4046-82df-6242ef6755f4
- 7
- 2c29d287-fb31-40d2-9e9c-ef2e29387bb4
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 3b9ee1da-2b6d-4e87-94f1-2b90b167ae40
- Relay
- false
- b05af234-ce5b-432e-8b3f-32a94a964bbf
- 1
-
7253
134
40
16
-
7273
142
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 903082e1-697f-4b4c-870e-e7756893c833
- Relay
- false
- 3b9ee1da-2b6d-4e87-94f1-2b90b167ae40
- 1
-
7291
22
40
16
-
7311
30
- 310f9597-267e-4471-a7d7-048725557528
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
- GraphMapper+
- External Graph mapper
You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
- true
- 87484869-a243-49c7-8c84-3bbe1debc7de
- GraphMapper+
- GraphMapper+
- true
-
6808
-676
114
104
-
6869
-624
- External curve as a graph
- e066749e-8f77-4ba8-8b50-c6f55c0faddc
- Curve
- Curve
- false
- ea28df8e-abb0-4112-a27f-22f1a20d122a
- 1
-
6810
-674
47
20
-
6833.5
-664
- Optional Rectangle boundary. If omitted the curve's would be landed
- 96c0b08a-639d-421b-afbf-6e6cff18d23b
- Boundary
- Boundary
- true
- db6c48ec-4c19-44df-bca3-cc59da6e2311
- 1
-
6810
-654
47
20
-
6833.5
-644
- 1
- List of input numbers
- 9be12142-0638-444f-afaa-a5ad027c1658
- Numbers
- Numbers
- false
- cc601f46-89b7-49d3-a4b1-f80f7ec077f6
- 1
-
6810
-634
47
20
-
6833.5
-624
- 1
- 9
- {0}
- 0.1
- 0.2
- 0.3
- 0.4
- 0.5
- 0.6
- 0.7
- 0.8
- 0.9
- (Optional) Input Domain
if omitted, it would be 0-1 in "Normalize" mode by default
or be the interval of the input list in case of selecting "AutoDomain" mode
- 0777257c-d519-437c-a51b-e957fcac739a
- Input
- Input
- true
- cb6d8cac-9a56-4126-ab17-4af8f9abb851
- 1
-
6810
-614
47
20
-
6833.5
-604
- (Optional) Output Domain
if omitted, it would be 0-1 in "Normalize" mode by default
or be the interval of the input list in case of selecting "AutoDomain" mode
- bb103507-2ab7-410a-b54b-d55817dad07c
- Output
- Output
- true
- cb6d8cac-9a56-4126-ab17-4af8f9abb851
- 1
-
6810
-594
47
20
-
6833.5
-584
- 1
- Output Numbers
- 0c9554e2-bfa6-483c-979b-54cc19c5ff56
- Number
- Number
- false
- 0
-
6881
-674
39
100
-
6900.5
-624
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
- Extract the end points of a curve.
- true
- 458ad899-33cf-4d8f-bd88-a2b71add3c86
- End Points
- End Points
-
6823
-388
84
44
-
6867
-366
- Curve to evaluate
- 3b03b3aa-9e66-4ed0-b8d3-59571d2ae7c2
- Curve
- Curve
- false
- ea28df8e-abb0-4112-a27f-22f1a20d122a
- 1
-
6825
-386
30
40
-
6840
-366
- Curve start point
- 49670b5e-5e08-4545-8cef-4a885a820783
- Start
- Start
- false
- 0
-
6879
-386
26
20
-
6892
-376
- Curve end point
- 4ec5fa6c-2d34-463d-8b69-329e368b8523
- End
- End
- false
- 0
-
6879
-366
26
20
-
6892
-356
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- ea28df8e-abb0-4112-a27f-22f1a20d122a
- Relay
- false
- 9b596d86-59f2-48b7-b097-c6263e44e0fe
- 1
-
6845
-311
40
16
-
6865
-303
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
- Create a rectangle from a base plane and two points
- true
- 969c61b4-405b-479a-b31e-64e498969101
- Rectangle 2Pt
- Rectangle 2Pt
-
6763
-495
198
101
-
6899
-444
- Rectangle base plane
- 39aebbc1-45b1-4114-bca9-f67a664d9f93
- Plane
- Plane
- false
- 0
-
6765
-493
122
37
-
6826
-474.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- First corner point.
- be1d5178-22b9-4a4a-abb2-0ea46d7cb766
- Point A
- Point A
- false
- 49670b5e-5e08-4545-8cef-4a885a820783
- 1
-
6765
-456
122
20
-
6826
-446
- 1
- 1
- {0}
-
0
0
0
- Second corner point.
- 17a88c0b-1542-46a2-a082-79417dc1f68d
- Point B
- Point B
- false
- 4ec5fa6c-2d34-463d-8b69-329e368b8523
- 1
-
6765
-436
122
20
-
6826
-426
- 1
- 1
- {0}
-
10
5
0
- Rectangle corner fillet radius
- 915aaa4b-a4a5-417c-aba8-ddb583502d50
- Radius
- Radius
- false
- 0
-
6765
-416
122
20
-
6826
-406
- 1
- 1
- {0}
- 0
- Rectangle defined by P, A and B
- db6c48ec-4c19-44df-bca3-cc59da6e2311
- Rectangle
- Rectangle
- false
- 0
-
6911
-493
48
48
-
6935
-468.75
- Length of rectangle curve
- 06b98d9d-74bf-4222-8e33-b9f865255345
- Length
- Length
- false
- 0
-
6911
-445
48
49
-
6935
-420.25
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- 34950a60-d6e3-44aa-9ddd-919eabfc9ba0
- Bounds
- Bounds
-
6810
-549
110
28
-
6868
-535
- 1
- Numbers to include in Bounds
- 4e297919-08fb-4abd-81ad-6d55d330e758
- Numbers
- Numbers
- false
- cc601f46-89b7-49d3-a4b1-f80f7ec077f6
- 1
-
6812
-547
44
24
-
6834
-535
- Numeric Domain between the lowest and highest numbers in {N}
- cb6d8cac-9a56-4126-ab17-4af8f9abb851
- Domain
- Domain
- false
- 0
-
6880
-547
38
24
-
6899
-535
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- cc601f46-89b7-49d3-a4b1-f80f7ec077f6
- Relay
- false
- 368a9ccd-be2a-42fd-bfe7-c97f72d95c12
- 1
-
6845
-516
40
16
-
6865
-508
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 87484869-a243-49c7-8c84-3bbe1debc7de
- 458ad899-33cf-4d8f-bd88-a2b71add3c86
- ea28df8e-abb0-4112-a27f-22f1a20d122a
- 969c61b4-405b-479a-b31e-64e498969101
- 34950a60-d6e3-44aa-9ddd-919eabfc9ba0
- cc601f46-89b7-49d3-a4b1-f80f7ec077f6
- 9e1aa2a8-8526-4c1d-8e69-6204d7f179d9
- 7
- 1ca98984-5d1f-4236-b2d3-e20c153c5940
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- fb2a6dbf-b02f-4775-ad6e-36cf33201f14
- Relay
- false
- d3a6959a-bba8-449a-982e-ef7604520f53
- 1
-
7352
-118
40
16
-
7372
-110
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 1d3568b6-20fc-4b47-982b-0abf4d4576f9
- Relay
- false
- a117194e-2f18-4d8f-9075-d69b3dd57e9c
- 1
-
6845
-127
40
16
-
6865
-119
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- d46598fd-8b32-46af-b289-272bb54feb80
- Scale
- Scale
-
6761
-256
201
64
-
6898
-224
- Base geometry
- b50a3947-ed4c-40ba-b8a0-6f5aee5d312c
- Geometry
- Geometry
- true
- 1d3568b6-20fc-4b47-982b-0abf4d4576f9
- 1
-
6763
-254
123
20
-
6824.5
-244
- Center of scaling
- 8f0ab182-27a2-4cb8-9211-638a63193490
- Center
- Center
- false
- 0
-
6763
-234
123
20
-
6824.5
-224
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 4a2f7502-a488-416a-8d3e-36562db15d7f
- Factor
- Factor
- false
- 183564aa-a31e-4b29-870c-74f22fc1b815
- 1
-
6763
-214
123
20
-
6824.5
-204
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- a5aca6c0-bd92-4b93-8fe6-51ff8abaa728
- Geometry
- Geometry
- false
- 0
-
6910
-254
50
30
-
6935
-239
- Transformation data
- d2ff5510-2d10-45bd-b419-758094e6cd81
- Transform
- Transform
- false
- 0
-
6910
-224
50
30
-
6935
-209
- 78fed580-851b-46fe-af2f-6519a9d378e0
- Power
- Raise a value to a power.
- d063ff62-4a20-446a-8f52-31e9847a01df
- Power
- Power
-
6822
-194
85
44
-
6862
-172
- The item to be raised
- 3c361b8a-fa3d-42ea-8545-7921949855a0
- A
- A
- false
- 0
-
6824
-192
26
20
-
6837
-182
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 2
- The exponent
- bc11c0af-a55c-40a7-89a2-f2a56615dfa4
- B
- B
- false
- 9cd31870-fb82-46d0-ab50-50ae0867d8e8
- 1
-
6824
-172
26
20
-
6837
-162
- A raised to the B power
- 183564aa-a31e-4b29-870c-74f22fc1b815
- Result
- Result
- false
- 0
-
6874
-192
31
40
-
6889.5
-172
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 9cd31870-fb82-46d0-ab50-50ae0867d8e8
- Digit Scroller
- SCALE POWER
- false
- 0
- 12
- SCALE POWER
- 11
- 16.0
-
6741
-146
250
20
-
6741.005
-145.3372
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 9b596d86-59f2-48b7-b097-c6263e44e0fe
- Relay
- false
- a5aca6c0-bd92-4b93-8fe6-51ff8abaa728
- 1
-
6845
-277
40
16
-
6865
-269
- dde71aef-d6ed-40a6-af98-6b0673983c82
- Nurbs Curve
- Construct a nurbs curve from control points.
- true
- 27759fe7-9615-40c6-be3f-3a448ad3a563
- Nurbs Curve
- Nurbs Curve
-
7110
-947
121
64
-
7179
-915
- 1
- Curve control points
- e1f72200-65f3-4bd4-83aa-f871530348fa
- Vertices
- Vertices
- false
- acd2ff85-cc67-4ee9-90ed-98053d88dae3
- 1
-
7112
-945
55
20
-
7139.5
-935
- Curve degree
- 830b9280-9f3d-4287-be2f-9c1454868041
- Degree
- Degree
- false
- 0
-
7112
-925
55
20
-
7139.5
-915
- 1
- 1
- {0}
- 11
- Periodic curve
- 71d6db37-bc38-43a6-9266-96ee24235123
- Periodic
- Periodic
- false
- 0
-
7112
-905
55
20
-
7139.5
-895
- 1
- 1
- {0}
- false
- Resulting nurbs curve
- d80b4c9c-94fb-4442-aa2f-5b22954848cc
- Curve
- Curve
- false
- 0
-
7191
-945
38
20
-
7210
-935
- Curve length
- b2241b54-2085-4c45-b5f3-f04626705e1d
- Length
- Length
- false
- 0
-
7191
-925
38
20
-
7210
-915
- Curve domain
- 01ab6b46-e14c-4e97-870d-8f53907b6d92
- Domain
- Domain
- false
- 0
-
7191
-905
38
20
-
7210
-895
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 1d3568b6-20fc-4b47-982b-0abf4d4576f9
- d46598fd-8b32-46af-b289-272bb54feb80
- d063ff62-4a20-446a-8f52-31e9847a01df
- 9cd31870-fb82-46d0-ab50-50ae0867d8e8
- 9b596d86-59f2-48b7-b097-c6263e44e0fe
- 5
- 9e1aa2a8-8526-4c1d-8e69-6204d7f179d9
- Group
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- b126fd64-555c-44ea-adc3-b6f5841cfdab
- Panel
- false
- 0
- 0
- 0.4875881689164849049
-
7195
-141
121
40
- 0
- 0
- 0
-
7195.296
-140.2912
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- dbd33745-9a83-4396-bcd7-aa255f0c2791
- Multiplication
- Multiplication
-
1055
-436
70
44
-
1080
-414
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 693b1c62-fa94-4640-a1be-06db3a3e58fd
- A
- A
- true
- cbc189e9-b394-4a19-ac98-713bdfde1ea0
- 1
-
1057
-434
11
20
-
1062.5
-424
- Second item for multiplication
- 0f514996-5705-4074-93ab-75f2daaf070b
- B
- B
- true
- f928b4e1-c43f-4b19-8907-59137d64cd77
- 1
-
1057
-414
11
20
-
1062.5
-404
- Result of multiplication
- 05e6f8a5-24d2-4f5d-9043-13588ab608ea
- Result
- Result
- false
- 0
-
1092
-434
31
40
-
1107.5
-414
- 78fed580-851b-46fe-af2f-6519a9d378e0
- Power
- Raise a value to a power.
- cf95f7f6-4831-4cf1-b745-0937f6a21d1d
- Power
- Power
-
1070
-494
85
44
-
1110
-472
- The item to be raised
- cc8ece94-a30a-4f62-beba-87ca607f6868
- A
- A
- false
- 0
-
1072
-492
26
20
-
1085
-482
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 2
- The exponent
- a218b979-4f95-4051-a89a-1b931ad914b8
- B
- B
- false
- b8dfc952-2e18-4600-a4f7-b22d8d2da29e
- 1
-
1072
-472
26
20
-
1085
-462
- A raised to the B power
- cbc189e9-b394-4a19-ac98-713bdfde1ea0
- Result
- Result
- false
- 0
-
1122
-492
31
40
-
1137.5
-472
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- b8dfc952-2e18-4600-a4f7-b22d8d2da29e
- Digit Scroller
- POWER
- false
- 0
- 12
- POWER
- 11
- 64.0
-
1010
-594
250
20
-
1010.871
-593.611
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 06332314-4669-466a-9627-5ee802d91f0f
- Relay
- false
- f928b4e1-c43f-4b19-8907-59137d64cd77
- 1
-
1101
-289
40
16
-
1121
-281
- 75eb156d-d023-42f9-a85e-2f2456b8bcce
- Interpolate (t)
- Create an interpolated curve through a set of points with tangents.
- true
- 525b9199-51a8-408e-bcdd-b4e225aab588
- Interpolate (t)
- Interpolate (t)
-
7367
-834
244
84
-
7559
-792
- 1
- Interpolation points
- 07f501af-bd59-457e-9bc3-3c1c76e87651
- Vertices
- Vertices
- false
- acd2ff85-cc67-4ee9-90ed-98053d88dae3
- 1
-
7369
-832
178
20
-
7458
-822
- Tangent at start of curve
- 3c92bdaf-1582-431a-86ca-ad7e3327d3fb
- Tangent Start
- Tangent Start
- false
- 0
-
7369
-812
178
20
-
7458
-802
- 1
- 1
- {0}
-
0
0
0
- Tangent at end of curve
- e5000082-264b-4969-8e32-878fc10a5680
- Tangent End
- Tangent End
- false
- 0
-
7369
-792
178
20
-
7458
-782
- 1
- 1
- {0}
-
0
0
0
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- e1cbf2c0-3d1a-485c-84ae-23d4f5b6a9cc
- KnotStyle
- KnotStyle
- false
- 0
-
7369
-772
178
20
-
7458
-762
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 53355ff7-3f12-4c45-9950-47e93e512f32
- Curve
- Curve
- false
- 0
-
7571
-832
38
26
-
7590
-818.6667
- Curve length
- a17aa1d6-82c2-468f-b75d-644aeb4a7387
- Length
- Length
- false
- 0
-
7571
-806
38
27
-
7590
-792
- Curve domain
- 3c8acae2-2901-41d9-b296-a46bddbc38cb
- Domain
- Domain
- false
- 0
-
7571
-779
38
27
-
7590
-765.3334
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 93f58772-1bbe-4649-90b3-5c6800324636
- 61a32b7e-58e0-47bc-ae7b-99c96bc9bc05
- 9a67714e-6ef6-44c0-a794-da43da2f4460
- e3bcfc34-48d9-4bd8-bc1f-b3264bc246a4
- 71dfb3fa-efc7-45f9-ae4c-8d994a518a7a
- 464f5f8a-5b70-4652-95a8-29ad2671a756
- c956a0d2-a7ba-4165-8ed4-8d02ff8b0963
- 023de912-35f2-4457-b69e-c2a19bc0ceb3
- 8c636517-f873-4eaa-8b19-8a10c7d0063f
- a495b48d-fb5b-4cac-80de-be887aeac1bd
- 967b1ee0-e9d5-44f3-a2ec-c122f465def6
- 1b1ffffd-3591-4542-b49d-e6005771d0d7
- 0fc11ab8-c8af-42d4-bdea-8f2ea5a5eed5
- 597c8632-bd55-41f9-831a-14e8f0925b1e
- c6d80d08-d4b3-44b9-acaa-5afac8c56cfa
- 4bab40a8-1d93-412b-a75b-c6b4e84ce749
- 26bf7701-0ad2-43ce-b3c1-bb2572ec376f
- 0447472e-5591-46af-bb0e-c7bb17204a7b
- 18c14f8c-cad0-4aff-b28f-1b7151eb3ee0
- 19
- fe9b3f10-53a0-4cc2-8657-7537cb28ff35
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- b7903836-9e20-4be6-8e7b-2a25f442b23a
- 763cab81-3b1b-4147-ae95-048972832f89
- c2beef7b-6131-4575-9319-58dfaa76ac13
- 51639361-bcdc-48ab-859f-4598cb5849d2
- 8b5750cb-6432-4ac8-872a-cb8855c913f4
- 2b70240c-3e85-4f88-b259-6b82b0f4b8b0
- 20e4ce13-ef27-4c8e-8571-9be858ba4605
- d768f2f2-5c6f-4708-bd05-7918dbb8706e
- 41b36c24-e6ae-4171-b46e-9533177b41b2
- d7b18b8c-16a0-47f6-90ca-ecbcf0cbeed8
- a2eb8392-3d59-492c-81a8-352a82a87875
- ad9be727-0f01-441c-a877-296b14ab0f9f
- c168de5d-a4db-47fe-a681-e5a4331864ce
- 384f8515-9941-4863-8f7c-12efd7f19492
- d706319a-895f-4223-b33c-988c20218ad8
- 0e598859-e16c-4dcb-9468-666a60fdf126
- fd2ff708-8866-4fa1-80f5-56b1a2985a16
- b5439c69-f9e6-4772-bfd9-4ddddfd4af21
- 309e4b37-957b-41b8-874c-56ebd84d12c0
- 3d0eb249-fbc8-4f82-a8c6-6be8c0f54b91
- 97f9c74b-5a9f-4be7-8b2b-76b92bed59ce
- 7b0f4177-d6cf-4c09-9e68-2fc85e217ce5
- 1d935021-9586-4892-8a03-1803d4963624
- a9e1c8cf-fb7e-4409-a7ff-7d598e06055b
- 43abe796-6357-4c8e-95bf-a411da1995e4
- a8f7bbbf-fa6d-413d-9ed1-911c210bca52
- a618183a-b85f-4456-b013-679fc47f2968
- 61f2c450-400a-412b-8bfc-81286a183212
- f8c057c5-c404-4a05-8582-62a66d6b08a1
- bceebf35-dd0b-4960-ab17-129faa5d507d
- 2a07d436-540b-4a46-86ad-1cf5be1b55fb
- 36f8c5c0-0f87-497f-958b-5571daee768c
- 19379fed-2ec1-4c1d-a18b-aaea992f534b
- 3ee80f7b-a4da-4df5-b83f-62beb76ef4df
- fe9b3f10-53a0-4cc2-8657-7537cb28ff35
- 35
- b0b20e35-675f-497d-8245-2e857869b548
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 41b36c24-e6ae-4171-b46e-9533177b41b2
- d7b18b8c-16a0-47f6-90ca-ecbcf0cbeed8
- a2eb8392-3d59-492c-81a8-352a82a87875
- ad9be727-0f01-441c-a877-296b14ab0f9f
- 4
- b7903836-9e20-4be6-8e7b-2a25f442b23a
- Group
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 763cab81-3b1b-4147-ae95-048972832f89
- Digit Scroller
- SEMENT LENGTH
- false
- 0
- 12
- SEMENT LENGTH
- 2
- 0.0023000000
-
8780
-356
250
20
-
8780.559
-355.59
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- c2beef7b-6131-4575-9319-58dfaa76ac13
- Series
- Series
-
8771
-322
106
64
-
8832
-290
- First number in the series
- 89f09bf5-3e62-4822-b509-682060e997ae
- Start
- Start
- false
- 0
-
8773
-320
47
20
-
8796.5
-310
- 1
- 1
- {0}
- 0
- Step size for each successive number
- 2fc8de6a-75b6-4340-8d69-8382f94703f9
- Step
- Step
- false
- 0c40b082-6a5b-435a-9ecc-89e139c9c9e2
- 1
-
8773
-300
47
20
-
8796.5
-290
- 1
- 1
- {0}
- 1
- Number of values in the series
- d0d4ccdb-3bf5-4e15-ba61-d57c2b25a0fe
- Count
- Count
- false
- d768f2f2-5c6f-4708-bd05-7918dbb8706e
- 1
-
8773
-280
47
20
-
8796.5
-270
- 1
- 1
- {0}
- 10
- 1
- Series of numbers
- e0fb9285-b6f9-44fa-9dad-b60c688524ac
- Series
- Series
- false
- 0
-
8844
-320
31
60
-
8859.5
-290
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 51639361-bcdc-48ab-859f-4598cb5849d2
- Digit Scroller
- INCREASE BEND PER SEGMENT
- false
- 0
- 12
- INCREASE BEND PER SEGMENT
- 1
- 0.49222173845
-
8780
-99
250
20
-
8780.744
-98.25572
- b6d7ba20-cf74-4191-a756-2216a36e30a7
- Rotate
- Rotate a vector around an axis.
- true
- 8b5750cb-6432-4ac8-872a-cb8855c913f4
- Rotate
- Rotate
-
8820
-647
150
64
-
8923
-615
- Vector to rotate
- c0b1b3cb-f96f-4dde-8e25-473439bf8e03
- Vector
- Vector
- false
- 8f299edb-d211-4ace-ac7e-9d58c163cb49
- 1
-
8822
-645
89
20
-
8894.5
-635
- Rotation axis
- 2a93dacd-1d4c-4fc4-8e36-7f9758ad16d0
- Axis
- Axis
- false
- f20bd5ac-2a36-44fe-a7fd-36ffc6b07cd4
- 1
-
8822
-625
89
20
-
8894.5
-615
- Rotation angle (in degrees)
- c0a5d860-061b-4796-9611-a5a89fa56211
- -X
- Angle
- Angle
- false
- true
- 57f95d16-1a98-4341-bbc2-7387820b39d9
- 1
- true
-
8822
-605
89
20
-
8894.5
-595
- Rotated vector
- 4711cdef-e34b-4627-8251-2c73e002ea75
- Vector
- Vector
- false
- 0
-
8935
-645
33
60
-
8951.5
-615
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- d706319a-895f-4223-b33c-988c20218ad8
- Interpolate
- Interpolate
-
9015
-957
225
84
-
9188
-915
- 1
- Interpolation points
- bf4fd7b4-b050-4a65-8573-233b7b4bf494
- Vertices
- Vertices
- false
- b5439c69-f9e6-4772-bfd9-4ddddfd4af21
- 1
-
9017
-955
159
20
-
9096.5
-945
- Curve degree
- 0a4e5fa8-8e22-4eef-8e24-5767af0157e2
- Degree
- Degree
- false
- 0
-
9017
-935
159
20
-
9096.5
-925
- 1
- 1
- {0}
- 3
- Periodic curve
- 8cbccd7b-ee8b-4278-b12c-53c95ee91032
- Periodic
- Periodic
- false
- 0
-
9017
-915
159
20
-
9096.5
-905
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 510c768e-3d82-4961-bec3-a8330617a209
- KnotStyle
- KnotStyle
- false
- 0
-
9017
-895
159
20
-
9096.5
-885
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 0a62d7ca-ee01-4395-9030-a53e0ec1a678
- Curve
- Curve
- false
- 0
-
9200
-955
38
26
-
9219
-941.6667
- Curve length
- f7252cfe-583b-4a39-98c8-2b35f9076347
- Length
- Length
- false
- 0
-
9200
-929
38
27
-
9219
-915
- Curve domain
- c1f676cb-86ea-42d5-9072-bf0dc6ff0b0f
- Domain
- Domain
- false
- 0
-
9200
-902
38
27
-
9219
-888.3334
- 79f9fbb3-8f1d-4d9a-88a9-f7961b1012cd
- Unit X
- Unit vector parallel to the world {x} axis.
- true
- 2b70240c-3e85-4f88-b259-6b82b0f4b8b0
- Unit X
- Unit X
-
8856
-495
114
28
-
8902
-481
- Unit multiplication
- 458120b5-2e67-4a2b-9a19-93a7d53ed856
- Factor
- Factor
- false
- 1d935021-9586-4892-8a03-1803d4963624
- 1
-
8858
-493
32
24
-
8874
-481
- 1
- 1
- {0}
- 1
- World {x} vector
- 8fab27f1-5c16-4cd1-8ca1-eb99653f3ee4
- Unit vector
- Unit vector
- false
- 0
-
8914
-493
54
24
-
8941
-481
- 9103c240-a6a9-4223-9b42-dbd19bf38e2b
- Unit Z
- Unit vector parallel to the world {z} axis.
- true
- 20e4ce13-ef27-4c8e-8571-9be858ba4605
- Unit Z
- Unit Z
-
8654
-647
114
28
-
8700
-633
- Unit multiplication
- 05fb3490-fc97-44bb-a1b1-bdf1e715f3ac
- Factor
- Factor
- false
- 1d935021-9586-4892-8a03-1803d4963624
- 1
-
8656
-645
32
24
-
8672
-633
- 1
- 1
- {0}
- 1
- World {z} vector
- f20bd5ac-2a36-44fe-a7fd-36ffc6b07cd4
- Unit vector
- Unit vector
- false
- 0
-
8712
-645
54
24
-
8739
-633
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 0e598859-e16c-4dcb-9468-666a60fdf126
- Relay
- false
- 7354caf3-1bc7-4e2b-ab1c-10cb2f889447
- 1
-
8895
-745
40
16
-
8915
-737
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- d768f2f2-5c6f-4708-bd05-7918dbb8706e
- Relay
- false
- 8190c6c0-a456-49b0-9352-92927583a941
- 1
-
8895
-75
40
16
-
8915
-67
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
- Mathematical addition
- true
- 41b36c24-e6ae-4171-b46e-9533177b41b2
- Addition
- Addition
-
8872
-40
85
44
-
8912
-18
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for addition
- b7e45081-c66d-44fc-9c02-f381bf058ce5
- A
- A
- true
- 0
-
8874
-38
26
20
-
8887
-28
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 1
- Second item for addition
- 4149054f-186f-4d50-b633-2062240bac93
- B
- B
- true
- cc2acd40-6edf-42c0-8a11-7edd5c54796b
- 1
-
8874
-18
26
20
-
8887
-8
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- Result of addition
- 8190c6c0-a456-49b0-9352-92927583a941
- Result
- Result
- false
- 0
-
8924
-38
31
40
-
8939.5
-18
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
- Mathematical addition
- true
- a2eb8392-3d59-492c-81a8-352a82a87875
- Addition
- Addition
-
8828
30
155
44
-
8868
52
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for addition
- 131e64b3-30d1-4837-8a09-a2100f51f143
- A
- A
- true
- 0
-
8830
32
26
20
-
8843
42
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 1
- Second item for addition
- d9a0e68d-e665-4d74-876c-8f48076797af
- B
- B
- true
- 3a737a17-feba-4d02-a091-4fc7fc64b6af
- 1
-
8830
52
26
20
-
8843
62
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 1
- Result of addition
- cc2acd40-6edf-42c0-8a11-7edd5c54796b
- Result
- NUMBER OF POINTS
- false
- 0
-
8880
32
101
40
-
8930.5
52
- e2039b07-d3f3-40f8-af88-d74fed238727
- Insert Items
- Insert a collection of items into a list.
- true
- fd2ff708-8866-4fa1-80f5-56b1a2985a16
- Insert Items
- Insert Items
-
8857
-853
116
84
-
8940
-811
- 1
- List to modify
- e467e49e-ee21-4163-a0e0-7c8bf34ef726
- List
- List
- false
- 0e598859-e16c-4dcb-9468-666a60fdf126
- 1
-
8859
-851
69
20
-
8893.5
-841
- 1
- Items to insert. If no items are supplied, nulls will be inserted.
- 9c0f3f42-fce1-4c15-a857-6f11fab76f23
- Item
- Item
- true
- 0
-
8859
-831
69
20
-
8893.5
-821
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- {0,0,0}
- 1
- Insertion index for each item
- 101f896f-c546-4976-92ea-71ab4800cf80
- Indices
- Indices
- false
- 0
-
8859
-811
69
20
-
8893.5
-801
- 1
- 1
- {0}
- 0
- If true, indices will be wrapped
- b6904d67-8ce3-4ec3-a039-43ce0289a9bc
- Wrap
- Wrap
- false
- 0
-
8859
-791
69
20
-
8893.5
-781
- 1
- 1
- {0}
- false
- 1
- List with inserted values
- 1eaf7173-3a4a-4d85-89d5-18fc6cd9d580
- List
- List
- false
- 0
-
8952
-851
19
80
-
8961.5
-811
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- b5439c69-f9e6-4772-bfd9-4ddddfd4af21
- Relay
- ⊙☉⊙
- false
- 1eaf7173-3a4a-4d85-89d5-18fc6cd9d580
- 1
-
8894
-877
44
16
-
8916
-869
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 41b36c24-e6ae-4171-b46e-9533177b41b2
- a2eb8392-3d59-492c-81a8-352a82a87875
- 3a737a17-feba-4d02-a091-4fc7fc64b6af
- 3
- ad9be727-0f01-441c-a877-296b14ab0f9f
- Group
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
-
7VsJdBNlHp+2aZqjB1AVUJDR4nqwFnTxKbJgk6ZHaNPGFhAEH50m03YgycRkUuSy5UFBKiBd6Alo8UEFqVahVDmU6haXXVksCwgo2kMXV46VXXXFXaX7fTPfpJ0jaaGphYd9L+nM//+dv//5/WeiMtAWj510MB3gLwjDMAX4RDptnlzKMSufdLkp2gFZZkCGbPgXBpvw/ZJJwkq6YJNQxNbwLKMBktWANPbyuVFrGom4un8frj+tKZ8XZnaR+RQ5F/I1gK/MzAOjWKMQ2US68ybPc5KQHYImjkC8NNplJ2yQMxJQN23a1MH3yiRtpIUhrTyPoqiOmwxkDuWgGLALs4t2ki6GIt38sPCjMBAMO48K3OxssxeXLP9UpTWQbouLcjJo83CJmCKNsJP83YWQaclJsbHtuyrPvrgCfLeX14HvtvI328rr2Qv2tn4L/C5ZzX6vaSsp9bZsrkiD12uXwhHKYJf2DZu9123r1ratK/U2ayvf5h2Na8YNcrZ8J6RXLhZMzfdFS0LcbcLlbeyct7iKbbzS33XVq94B0Tei+O3FXqMdsTN2WcA279rQOvlld7Zhudwe0aTs3hGq7AgIH76vFEkOYYQ2NxEvCCQXNJpAfAheVrKxsUnJ09QZQMOgKbh5M4F/ETw1nvZwBhTCmwBQttlAGZH+BCOycjLhyiXZlreD27qfOzoWgi6KJ2nazlvQzMibHgudCtRZMJUaUiTTqDMszlRiHu1hurbVJLloj1PSeGCnKaRnw8V5J4gCHy1HE/SCdCVHhwMEI0tUJE3ptOw7gotm3L3r45SV2V/r8v7q+K/ASiJMhNuN66xWdlZ1PO1gCMrR6S2gr5GztXvMpCsH2Dluh/0J1B+nc3ACt1FuBl5RDGl3K5Mpq5V08BsJCjc63AzhsJBJHsrKLzHjvqHGPAWZsMGZcKxxcOtRP0tUpVGWOb7ZGh3DuKhsD8P5EK9Y9QA1K0uKgfdZRwxYXEoThv1Hj2Fj9KFmKp9mQR0BuYUfG7DGhCatk3AR9lmUw+lh0VUhdJU6i4V0e31UkA+IRhhhRzyfsHlINw7AEmIVK4tE+wndiS11d6WvrZs5+8C8Q98KkAhlR5QggMjp7Oyc42UVTZlJe1wWklVDqMtnT4bsffA1Y2FNyfzzukU1Wo4t0CfYr4cQVgMIGycBCE/qMAwXQ2g+ykIYzkEI1B9hqPQD2OAM0u2xsaojQEoWqKxRjHn5I1NSNj1ieoyy53kEQCm5kSRI8XQJVHJYYD3HAjuJsHgOqFO1ToRF3GmgbMlCLOCsYVemT4NTkV2BcRiKsOEudjNuWXjSBr6wqPzIrOQGw0fbX7YUVgjgiTKjETg43BKcJA36BLAEv4DFNyHHFuTLsT2wOePAjLptiVs3R334/rPflwlthXWxQoc2lAdcT7tQRsQnGcp42gZ2xCcm8L+cDG7X4blwXCiGJBdQ0jzaCVIWnObcdbDRwFvbvu9H/fSX7JsS32qYcGmX5sIAwApCrPLnjt+3yHHMtPd/49Y8fNvDOsAK9mGjgBWCWBObRuavf8qgW3boywcfmfjAl4ClQKx3Ip7RfFAUr1sdWXyvJXOEAbBCEUvsWQFLiVhf7fth0MEzo3UrrN9HlJhOOQErDLFGRE9YqpqzK7GoJnvBz1h0O2Cp+MU//foBfIMnvfqNnT8mvfeqGrDUiDUIHz8xs7Y0fd27XxRMiYq5DFgavteGjr9Rt66Jq9r8+BIdkV8MWFrECt9amXb4yEV99Q/fKUadXFUPWOGINaHqhXEFx3YkvzN2aH3laOt0wIpArHn3lhZVxHSY9i2cyiwsGfsTYEUi1tCvv7v/4qHpaX9I/wZ/dugnwwErCrGWHB5++qA5NuWdvRs3Jw2bOQywBiDWu69PiW0YW5S0es4Je+2kjhWANRCxLPdfjJybWpdSbHg+4cKLHe+pjIZZAsUfBLchZ4UL0k5vVDx5i377G9EFRmzBNhkNldie2IQw3oQ4awj2ZQ14bkzDc6tW6Nf+sTa18sfdC4RzZZA2Yp7QGnyEs2Af7idah8+lXCTwOmAkpPCymxbrsMxCpJvuNnqJpdrL6IWdAA4ooglGLhDvxQ6o8BTgankHFHLNQy72DYGBfFlL/mPEjMspRS3ar9IzwtYHAPLWWn+Qt27nIVf4gry6ZJXn/KRLSWVP3+KuKv7tU8KwnwhPnow0i/UF8MNcB9xN20ncSjAE7nFTjlzcaSMsZB5tA0ECpCEOK8zeQDsG8hgit2dJrdixyS1VmqFw9J7mYCBRLbwTQPoGhFScg7WCMFp4a1OEGeYdJEO6wEGagFwYASDCGjZxFMgTfsJYstHK60Fa0ecTM/90Lm7ph/WFqn+lH+P5fDxb8sSmgk+cM5MrGqsrz1SsnMjz+aA23XpwddB+tWHPPwebIkZFN2vT2RRIokcqju57Ym697HZYNPxIVjuZfIZBYpOVzjQblliNZabtGf3QV4feH3n+SqQT8HSoFcgRg3IcIJcO4cA0Ckc0RZphrcfNkA6GF2QQQi5UgqVS7wI7zsO62JG0kcJMMHn83kIWjFmkMIIjG9+H3ZfDY7PNcoM9OHI73UTnPetfFox5NGNRF9kEdSObQYmd1mQB6aXHRcqKqPnn4C073g5NrbgzOYbau2++QERh8VxPiYy8jD4R0nC/Qrr1FxUSX01QpMZzDhJ2KfDaNSsLOC4fdeRkcSdcJc7QOOVwky4GB84QTCFwgLKy+fRA9MSVddvT9h/dxrxyfmFpmMnDENk20gu20J7YWcZIZBU0RiKloL49tbJCHOJXiDc3IQclcDS+AIxEykxacQa4HFmw9q+/eeX0pZP1la8V//34oqjjAmwU0FNJkOGogVbhrM+Rn2kEZ3anJF60sCqMQjAfNyUh+PEvWtLDbIeTXtr9bnBBwx3LBLvRZOZROQwOj6rSMBzqA8Pb0nNy3CRQPpuNKxoBbUR1pNgehVrxAcjXkiQwd+H1FMLjBpCEAAjL5EJu9SeAu6q3laMI9qQPjNINVyd/vs9ef2FGK6V/OTUGn5bymTC5UMjulaN2l/SJCwe9rRIBuLIgXK06GXvLAikhvkYAF18Y8RU8wjmJ0azGyEIztablpejL0ZN2PtRxW+2L53YLk2G2u7SExpG7A0d8SAwAOK2r/YEDdKk/IorS4bFndxZIWD3tIqNgrJvk6wkX4USFT1kRxXq+2Xd/WW38lg8WnxnvsT0u1F7YW6q9LDXQDpFVz5V+1fP5fpFAWDZN20jC6/cwSSX1CquHnN2AKAW9qqxQxMe9q3cpvRQKfhr5jAq5KGX+jDULFKV4NZREqaq3W6cv//KScc/bu/a8OactVegFzISDtAkDlNqPQt+jw52wB1vFt3jcDG3HHTTYBns4hHHfn7aLi18yS+nJ6VybaXHRNlsGAeiQqMQ6/0R+Spxw+PJTqikg6YOZBj/tXQbaA7I43GID64ERiLRSDNq7BaAFTKC9sEYkR/6psliOcc0gnxgP5Bgdj2Ev6zUmwpVLOVLJHIFSaDlyBpWbJ3xyxtEn086uVKEyHE5rNmzNHt8UxYIofHwcxq9KrrLrIuYaHVbKQnqfsAWpIRHaZReSCRwlKBvQEC8pPNNJWijCFk9bO/sC+BkXSdi996yz8vZBqspHtWtZVcWF375X1Vdqgo7NL2w0vjXOcOrieNWR/lHVLKiqW/tSVRNnNxtOzd96faiqypeqXkflN/HTiD4qvzXO9ld+a8z+tfwmK51hBUNmvK41JizdF6e+/GzMiH4vv8XN9lcUaMy98cpvZxtON0yoO2oqcnT82JLx3l3XQPktjvQrpOwbpvw2LCxlz7CRVtPuSkOWaqNlbJ+V3wJcDmCFmOVXiE8FvPw2xPyPherxDQm1a1aXnXthe3q/lt9YP+Oz/AZUGIVgPse7nkOw+A2DPgrB2AZ/IRir+DUEy0pHo3663WCv1Nc/4Tj0w2+aP+/3ENy43m9dvurGC8Geu1t23nu2Lrn0xOALo34aXXMthOBKf0ICxnajhOAzjmrzuD9/O6nqnOd3v18yfG6fheAAv4bBWlqZX0srDXgIFp/y+zUEs37GZwgGKoxCsAa79gs24tfx+r5gI86m+q9g07q4Lws2l+hmQ8uJxddHwUbrS1VvaV9lGPToR/GbHvpif93BuYZuX1FTo1EGxrOqKPczGw3HEqhUJKKJVa1Xr7WJ3/m7ytfaeugyvA+/RKrWeBw4hdAm6C6g20CIh/tC/HLRjs3RsQp9w8whVTVO05ZuEddcQ4iLX5ANzIuE4tcTexjB/AkkbodYIBFXZwLsY7Ff3AS6f4otftTcm6fYATCAuOVivCOvygDQLzB+cQu4ot+WiF/47t1vS0TGIP7hSgCMAZvqFc7/AQ==
- true
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAZdJREFUSEvV1M8rBGEcx/GHJL8ixYHdcnBwcuBgExYnF6Tk4K4cXJjZuLg4uOxhy4+U5Cgl+QMUSXIQ/gMkSn4lF1La8f7uzjbraWaatRx86nWYp5nnM/PMPKP+S5px7aIWeacMa7Bc1CFQejGqacUArnCIvAr2oF98i3N0oQDFLgKlHA/QCz4RRw0qMexCls83IZziCAtIZBmzx56wAf0GRAM8E4Esw0zqyDthbMKzoBRvmg+8YBBBUo8VLGmqkVont/ZZ/ErkCV4173iEbKAgKYQ8ha4InpFv/R5tqSP/yHtwW4UW+KYfd+iGLGW2zHcuN3CCHxVI+vAM/eJdrOIGJmTTnWma4CSppsNJZUbTYo32sGQdeoG8p2VUIFiSyohZyrQEJYv2sGQeF5pjyA6fQxUmXXz/F/kUeEV2+hYuoT+h6GBSM5JUU+NpxrZTYOxnxi1ldHKyX0bgVWDEM5N64SZkl/qlBPJL0YV+q8A7fC3tlEzYdpyJjQNn3Izap+cXJsv1JeeWPy9g4h5KEoIlGrKH84hSX+x+CmKBvnCmAAAAAElFTkSuQmCC
- c168de5d-a4db-47fe-a681-e5a4331864ce
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
- true
- 4
- 36d54472-2495-475f-8e7d-ff7101fb2664
- 57f95d16-1a98-4341-bbc2-7387820b39d9
- d5f10084-20f5-45f4-81f2-7ec99483497d
- d9985a48-3b69-48d4-ad07-1eb325c64411
- 2e55aebe-34b6-4785-8e6b-d76dac4aff89
- dc1dce83-50c8-4b2e-bdbb-9da4471c5c1c
- 2df4e919-ccf0-4e59-924f-ef207e19da1d
- 0ef02d63-4c77-4baf-8a44-8b45ed9effc1
-
8890
-564
49
44
-
8919
-542
- 2
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- 2
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Shift offset
- 36d54472-2495-475f-8e7d-ff7101fb2664
- Shift
- true
- 0
-
8892
-562
15
20
-
8899.5
-552
- 1
- 1
- {0}
- 1
- 2
- A wire relay object
- d5f10084-20f5-45f4-81f2-7ec99483497d
- Relay
- true
- 6334c69f-7811-450b-a45a-cdfd99606f49
- 1
-
8892
-542
15
20
-
8899.5
-532
- 2
- A wire relay object
- 57f95d16-1a98-4341-bbc2-7387820b39d9
- Relay
- false
- 0
-
8931
-562
6
20
-
8934
-552
- Result of mass addition
- d9985a48-3b69-48d4-ad07-1eb325c64411
- Result
- false
- 0
-
8931
-542
6
20
-
8934
-532
- f31d8d7a-7536-4ac8-9c96-fde6ecda4d0a
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
-
7VsJdBNlHp+2aZqjB1AVUJDR4nqwFnTxKbJgk6ZHaNPGFhAEH50m03YgycRkUuSy5UFBKiBd6Alo8UEFqVahVDmU6haXXVksCwgo2kMXV46VXXXFXaX7fTPfpJ0jaaGphYd9L+nM//+dv//5/WeiMtAWj510MB3gLwjDMAX4RDptnlzKMSufdLkp2gFZZkCGbPgXBpvw/ZJJwkq6YJNQxNbwLKMBktWANPbyuVFrGom4un8frj+tKZ8XZnaR+RQ5F/I1gK/MzAOjWKMQ2US68ybPc5KQHYImjkC8NNplJ2yQMxJQN23a1MH3yiRtpIUhrTyPoqiOmwxkDuWgGLALs4t2ki6GIt38sPCjMBAMO48K3OxssxeXLP9UpTWQbouLcjJo83CJmCKNsJP83YWQaclJsbHtuyrPvrgCfLeX14HvtvI328rr2Qv2tn4L/C5ZzX6vaSsp9bZsrkiD12uXwhHKYJf2DZu9123r1ratK/U2ayvf5h2Na8YNcrZ8J6RXLhZMzfdFS0LcbcLlbeyct7iKbbzS33XVq94B0Tei+O3FXqMdsTN2WcA279rQOvlld7Zhudwe0aTs3hGq7AgIH76vFEkOYYQ2NxEvCCQXNJpAfAheVrKxsUnJ09QZQMOgKbh5M4F/ETw1nvZwBhTCmwBQttlAGZH+BCOycjLhyiXZlreD27qfOzoWgi6KJ2nazlvQzMibHgudCtRZMJUaUiTTqDMszlRiHu1hurbVJLloj1PSeGCnKaRnw8V5J4gCHy1HE/SCdCVHhwMEI0tUJE3ptOw7gotm3L3r45SV2V/r8v7q+K/ASiJMhNuN66xWdlZ1PO1gCMrR6S2gr5GztXvMpCsH2Dluh/0J1B+nc3ACt1FuBl5RDGl3K5Mpq5V08BsJCjc63AzhsJBJHsrKLzHjvqHGPAWZsMGZcKxxcOtRP0tUpVGWOb7ZGh3DuKhsD8P5EK9Y9QA1K0uKgfdZRwxYXEoThv1Hj2Fj9KFmKp9mQR0BuYUfG7DGhCatk3AR9lmUw+lh0VUhdJU6i4V0e31UkA+IRhhhRzyfsHlINw7AEmIVK4tE+wndiS11d6WvrZs5+8C8Q98KkAhlR5QggMjp7Oyc42UVTZlJe1wWklVDqMtnT4bsffA1Y2FNyfzzukU1Wo4t0CfYr4cQVgMIGycBCE/qMAwXQ2g+ykIYzkEI1B9hqPQD2OAM0u2xsaojQEoWqKxRjHn5I1NSNj1ieoyy53kEQCm5kSRI8XQJVHJYYD3HAjuJsHgOqFO1ToRF3GmgbMlCLOCsYVemT4NTkV2BcRiKsOEudjNuWXjSBr6wqPzIrOQGw0fbX7YUVgjgiTKjETg43BKcJA36BLAEv4DFNyHHFuTLsT2wOePAjLptiVs3R334/rPflwlthXWxQoc2lAdcT7tQRsQnGcp42gZ2xCcm8L+cDG7X4blwXCiGJBdQ0jzaCVIWnObcdbDRwFvbvu9H/fSX7JsS32qYcGmX5sIAwApCrPLnjt+3yHHMtPd/49Y8fNvDOsAK9mGjgBWCWBObRuavf8qgW3boywcfmfjAl4ClQKx3Ip7RfFAUr1sdWXyvJXOEAbBCEUvsWQFLiVhf7fth0MEzo3UrrN9HlJhOOQErDLFGRE9YqpqzK7GoJnvBz1h0O2Cp+MU//foBfIMnvfqNnT8mvfeqGrDUiDUIHz8xs7Y0fd27XxRMiYq5DFgavteGjr9Rt66Jq9r8+BIdkV8MWFrECt9amXb4yEV99Q/fKUadXFUPWOGINaHqhXEFx3YkvzN2aH3laOt0wIpArHn3lhZVxHSY9i2cyiwsGfsTYEUi1tCvv7v/4qHpaX9I/wZ/dugnwwErCrGWHB5++qA5NuWdvRs3Jw2bOQywBiDWu69PiW0YW5S0es4Je+2kjhWANRCxLPdfjJybWpdSbHg+4cKLHe+pjIZZAsUfBLchZ4UL0k5vVDx5i377G9EFRmzBNhkNldie2IQw3oQ4awj2ZQ14bkzDc6tW6Nf+sTa18sfdC4RzZZA2Yp7QGnyEs2Af7idah8+lXCTwOmAkpPCymxbrsMxCpJvuNnqJpdrL6IWdAA4ooglGLhDvxQ6o8BTgankHFHLNQy72DYGBfFlL/mPEjMspRS3ar9IzwtYHAPLWWn+Qt27nIVf4gry6ZJXn/KRLSWVP3+KuKv7tU8KwnwhPnow0i/UF8MNcB9xN20ncSjAE7nFTjlzcaSMsZB5tA0ECpCEOK8zeQDsG8hgit2dJrdixyS1VmqFw9J7mYCBRLbwTQPoGhFScg7WCMFp4a1OEGeYdJEO6wEGagFwYASDCGjZxFMgTfsJYstHK60Fa0ecTM/90Lm7ph/WFqn+lH+P5fDxb8sSmgk+cM5MrGqsrz1SsnMjz+aA23XpwddB+tWHPPwebIkZFN2vT2RRIokcqju57Ym697HZYNPxIVjuZfIZBYpOVzjQblliNZabtGf3QV4feH3n+SqQT8HSoFcgRg3IcIJcO4cA0Ckc0RZphrcfNkA6GF2QQQi5UgqVS7wI7zsO62JG0kcJMMHn83kIWjFmkMIIjG9+H3ZfDY7PNcoM9OHI73UTnPetfFox5NGNRF9kEdSObQYmd1mQB6aXHRcqKqPnn4C073g5NrbgzOYbau2++QERh8VxPiYy8jD4R0nC/Qrr1FxUSX01QpMZzDhJ2KfDaNSsLOC4fdeRkcSdcJc7QOOVwky4GB84QTCFwgLKy+fRA9MSVddvT9h/dxrxyfmFpmMnDENk20gu20J7YWcZIZBU0RiKloL49tbJCHOJXiDc3IQclcDS+AIxEykxacQa4HFmw9q+/eeX0pZP1la8V//34oqjjAmwU0FNJkOGogVbhrM+Rn2kEZ3anJF60sCqMQjAfNyUh+PEvWtLDbIeTXtr9bnBBwx3LBLvRZOZROQwOj6rSMBzqA8Pb0nNy3CRQPpuNKxoBbUR1pNgehVrxAcjXkiQwd+H1FMLjBpCEAAjL5EJu9SeAu6q3laMI9qQPjNINVyd/vs9ef2FGK6V/OTUGn5bymTC5UMjulaN2l/SJCwe9rRIBuLIgXK06GXvLAikhvkYAF18Y8RU8wjmJ0azGyEIztablpejL0ZN2PtRxW+2L53YLk2G2u7SExpG7A0d8SAwAOK2r/YEDdKk/IorS4bFndxZIWD3tIqNgrJvk6wkX4USFT1kRxXq+2Xd/WW38lg8WnxnvsT0u1F7YW6q9LDXQDpFVz5V+1fP5fpFAWDZN20jC6/cwSSX1CquHnN2AKAW9qqxQxMe9q3cpvRQKfhr5jAq5KGX+jDULFKV4NZREqaq3W6cv//KScc/bu/a8OactVegFzISDtAkDlNqPQt+jw52wB1vFt3jcDG3HHTTYBns4hHHfn7aLi18yS+nJ6VybaXHRNlsGAeiQqMQ6/0R+Spxw+PJTqikg6YOZBj/tXQbaA7I43GID64ERiLRSDNq7BaAFTKC9sEYkR/6psliOcc0gnxgP5Bgdj2Ev6zUmwpVLOVLJHIFSaDlyBpWbJ3xyxtEn086uVKEyHE5rNmzNHt8UxYIofHwcxq9KrrLrIuYaHVbKQnqfsAWpIRHaZReSCRwlKBvQEC8pPNNJWijCFk9bO/sC+BkXSdi996yz8vZBqspHtWtZVcWF375X1Vdqgo7NL2w0vjXOcOrieNWR/lHVLKiqW/tSVRNnNxtOzd96faiqypeqXkflN/HTiD4qvzXO9ld+a8z+tfwmK51hBUNmvK41JizdF6e+/GzMiH4vv8XN9lcUaMy98cpvZxtON0yoO2oqcnT82JLx3l3XQPktjvQrpOwbpvw2LCxlz7CRVtPuSkOWaqNlbJ+V3wJcDmCFmOVXiE8FvPw2xPyPherxDQm1a1aXnXthe3q/lt9YP+Oz/AZUGIVgPse7nkOw+A2DPgrB2AZ/IRir+DUEy0pHo3663WCv1Nc/4Tj0w2+aP+/3ENy43m9dvurGC8Geu1t23nu2Lrn0xOALo34aXXMthOBKf0ICxnajhOAzjmrzuD9/O6nqnOd3v18yfG6fheAAv4bBWlqZX0srDXgIFp/y+zUEs37GZwgGKoxCsAa79gs24tfx+r5gI86m+q9g07q4Lws2l+hmQ8uJxddHwUbrS1VvaV9lGPToR/GbHvpif93BuYZuX1FTo1EGxrOqKPczGw3HEqhUJKKJVa1Xr7WJ3/m7ytfaeugyvA+/RKrWeBw4hdAm6C6g20CIh/tC/HLRjs3RsQp9w8whVTVO05ZuEddcQ4iLX5ANzIuE4tcTexjB/AkkbodYIBFXZwLsY7Ff3AS6f4otftTcm6fYATCAuOVivCOvygDQLzB+cQu4ot+WiF/47t1vS0TGIP7hSgCMAZvqFc7/AQ==
- true
-
iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOvAAADrwBlbxySQAAAZdJREFUSEvV1M8rBGEcx/GHJL8ixYHdcnBwcuBgExYnF6Tk4K4cXJjZuLg4uOxhy4+U5Cgl+QMUSXIQ/gMkSn4lF1La8f7uzjbraWaatRx86nWYp5nnM/PMPKP+S5px7aIWeacMa7Bc1CFQejGqacUArnCIvAr2oF98i3N0oQDFLgKlHA/QCz4RRw0qMexCls83IZziCAtIZBmzx56wAf0GRAM8E4Esw0zqyDthbMKzoBRvmg+8YBBBUo8VLGmqkVont/ZZ/ErkCV4173iEbKAgKYQ8ha4InpFv/R5tqSP/yHtwW4UW+KYfd+iGLGW2zHcuN3CCHxVI+vAM/eJdrOIGJmTTnWma4CSppsNJZUbTYo32sGQdeoG8p2VUIFiSyohZyrQEJYv2sGQeF5pjyA6fQxUmXXz/F/kUeEV2+hYuoT+h6GBSM5JUU+NpxrZTYOxnxi1ldHKyX0bgVWDEM5N64SZkl/qlBPJL0YV+q8A7fC3tlEzYdpyJjQNn3Izap+cXJsv1JeeWPy9g4h5KEoIlGrKH84hSX+x+CmKBvnCmAAAAAElFTkSuQmCC
- 384f8515-9941-4863-8f7c-12efd7f19492
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
- ☉ᔓᔕ☉ᙁ☉ᗩ☉⊙☉✤☉ᴥ☉ᗩ☉ᑫᑭ☉◯☉ИN☉Ⓞ☉⊙☉✤☉⊙☉ᗝ☉ᗩ☉◯☉ᔓᔕ☉ᗩ☉ᙏ☉⊚☉◌☉⊚☉◌☉⊚☉◌☉✺☉◯☉◯☉✺☉◌☉⊚☉◌☉⊚☉◌☉⊚☉ᙏ☉ᗩ☉ᔓᔕ☉◯☉ᗩ☉ᗝ☉⊙☉✤☉⊙☉Ⓞ☉ИN☉◯☉ᑫᑭ☉ᗩ☉ᴥ☉✤☉⊙☉ᗩ☉ᙁ☉ᔓᔕ☉
- true
- 4
- 54726b4e-7374-4c50-a5af-5b405b05516d
- 7354caf3-1bc7-4e2b-ab1c-10cb2f889447
- a7b458e7-c3cc-468f-856d-dbc0eb364f1a
- ea29b681-bbe7-407a-a1f7-d20eea391a73
- 2e55aebe-34b6-4785-8e6b-d76dac4aff89
- dc1dce83-50c8-4b2e-bdbb-9da4471c5c1c
- 0ef02d63-4c77-4baf-8a44-8b45ed9effc1
- 2df4e919-ccf0-4e59-924f-ef207e19da1d
-
8890
-710
49
44
-
8919
-688
- 2
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- 2
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Shift offset
- 54726b4e-7374-4c50-a5af-5b405b05516d
- Shift
- true
- 0
-
8892
-708
15
20
-
8899.5
-698
- 1
- 1
- {0}
- -1
- 2
- A wire relay object
- ea29b681-bbe7-407a-a1f7-d20eea391a73
- Relay
- true
- 4711cdef-e34b-4627-8251-2c73e002ea75
- 1
-
8892
-688
15
20
-
8899.5
-678
- 2
- A wire relay object
- 7354caf3-1bc7-4e2b-ab1c-10cb2f889447
- Relay
- false
- 0
-
8931
-708
6
20
-
8934
-698
- Result of mass addition
- a7b458e7-c3cc-468f-856d-dbc0eb364f1a
- Result
- false
- 0
-
8931
-688
6
20
-
8934
-678
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- 93f58772-1bbe-4649-90b3-5c6800324636
- Rotate
- Rotate
-
8825
-1260
191
64
-
8952
-1228
- Base geometry
- a704e2e4-9a87-4371-9a9f-7ecadf370dab
- Geometry
- Geometry
- true
- 967b1ee0-e9d5-44f3-a2ec-c122f465def6
- 1
-
8827
-1258
113
20
-
8883.5
-1248
- Rotation angle in radians
- 9b82ba1e-200c-4837-856a-e86a259187ed
- Angle
- Angle
- false
- 0
- false
-
8827
-1238
113
20
-
8883.5
-1228
- 1
- 1
- {0}
- 3.1415926535897931
- Rotation plane
- ae477ebf-0b79-4935-a39e-1e29c4d82bbf
- Plane
- Plane
- false
- d81410c4-b934-4141-9991-0d26f53a82c1
- 1
-
8827
-1218
113
20
-
8883.5
-1208
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 8aa8539f-88f4-4bce-adff-a4e10d3837d2
- Geometry
- Geometry
- false
- 0
-
8964
-1258
50
30
-
8989
-1243
- Transformation data
- 99b2ba96-922d-48ec-94f8-6f1052ef2d3d
- Transform
- Transform
- false
- 0
-
8964
-1228
50
30
-
8989
-1213
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- true
- 61a32b7e-58e0-47bc-ae7b-99c96bc9bc05
- Join Curves
- Join Curves
-
8888
-1370
116
44
-
8955
-1348
- 1
- Curves to join
- fce5ef05-f968-4bae-9042-7c64b1b6495e
- Curves
- Curves
- false
- b63126d8-335d-47d4-aa3f-f194ab382527
- 1
-
8890
-1368
53
20
-
8916.5
-1358
- Preserve direction of input curves
- 7363666b-4908-4073-a33c-8648a8b3fe90
- Preserve
- Preserve
- false
- 0
-
8890
-1348
53
20
-
8916.5
-1338
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- e43f0b4f-282d-4b09-aab1-505a4b54704c
- Curves
- Curves
- false
- 0
-
8967
-1368
35
40
-
8984.5
-1348
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- 9a67714e-6ef6-44c0-a794-da43da2f4460
- Merge
- Merge
-
8898
-1324
90
64
-
8943
-1292
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- ba33ca53-3131-43f7-922b-9eaa129b40bc
- false
- Data 1
- D1
- true
- 967b1ee0-e9d5-44f3-a2ec-c122f465def6
- 1
-
8900
-1322
31
20
-
8915.5
-1312
- 2
- Data stream 2
- b6af2eb6-aa8d-4211-9bb7-dfe65cb8e8ff
- false
- Data 2
- D2
- true
- 8aa8539f-88f4-4bce-adff-a4e10d3837d2
- 1
-
8900
-1302
31
20
-
8915.5
-1292
- 2
- Data stream 3
- 5e794d87-faa6-48aa-9b2f-ddd19b13d509
- false
- Data 3
- D3
- true
- 0
-
8900
-1282
31
20
-
8915.5
-1272
- 2
- Result of merge
- b63126d8-335d-47d4-aa3f-f194ab382527
- Result
- Result
- false
- 0
-
8955
-1322
31
60
-
8970.5
-1292
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 1d935021-9586-4892-8a03-1803d4963624
- Relay
- false
- e4069cf6-715a-492e-8d3b-7d4b26110d1a
- 1
-
8843
-421
40
16
-
8863
-413
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 4508e32b-85af-4b57-bbbe-86405b8561e3
- Panel
- false
- 0
- 0
- 0.51542256311
-
9032
-250
112
20
- 0
- 0
- 0
-
9032.471
-249.59
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- O/4^(OO-4)
- true
- c633783c-54f2-434b-89ac-12664f0f9778
- Expression
- Expression
-
9054
-146
157
44
-
9127
-124
- 2
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 843571c6-96ef-4c4d-8a48-c303d18f40c3
- Variable O
- O
- true
- 19379fed-2ec1-4c1d-a18b-aaea992f534b
- 1
-
9056
-144
19
20
-
9065.5
-134
- Expression variable
- 815f35ac-36b2-448c-8b4b-22d8caebb3f1
- Variable OO
- OO
- true
- 8114a16f-5e14-43a3-8080-171aaf99ee45
- 1
-
9056
-124
19
20
-
9065.5
-114
- Result of expression
- 0c40b082-6a5b-435a-9ecc-89e139c9c9e2
- Result
- Result
- false
- 0
-
9178
-144
31
40
-
9193.5
-124
- 7ab8d289-26a2-4dd4-b4ad-df5b477999d8
- Log N
- Return the N-base logarithm of a number.
- true
- b422c589-f017-4039-910c-20cdcf68a57b
- Log N
- Log N
-
9022
-40
115
44
-
9092
-18
- Value
- 24eca3f2-6db2-4ce6-8600-2020b80385b1
- Number
- Number
- false
- 3a737a17-feba-4d02-a091-4fc7fc64b6af
- 1
-
9024
-38
56
20
-
9052
-28
- Logarithm base
- 002694ba-5eac-457e-864c-3cbe214b62c6
- Base
- Base
- false
- 0
-
9024
-18
56
20
-
9052
-8
- 1
- 1
- {0}
- 2
- Result
- 8114a16f-5e14-43a3-8080-171aaf99ee45
- Result
- Result
- false
- 0
-
9104
-38
31
40
-
9119.5
-18
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- a9e1c8cf-fb7e-4409-a7ff-7d598e06055b
- Digit Scroller
- INCREASE BEND PER SEGMENT
- false
- 0
- 12
- INCREASE BEND PER SEGMENT
- 1
- 0.48627696593
-
8746
-191
250
20
-
8746.986
-190.498
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- fee44d27-800e-4e41-9853-68ab8851421b
- Panel
- false
- 0
- 0
- 16 0.492221738454693386
32 0.507180224586
-
9051
-208
194
30
- 0
- 0
- 0
-
9051.471
-207.59
- 1
-
255;255;255;255
- false
- false
- true
- true
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 43abe796-6357-4c8e-95bf-a411da1995e4
- Panel
- false
- 0
- 0
- 0.492221738454693386
-
8793
-122
112
20
- 0
- 0
- 0
-
8793.553
-121.7766
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- a1cd4cc6-f6e2-4882-9400-15b27dd6a700
- Deconstruct
- Deconstruct
-
9392
-412
120
64
-
9433
-380
- Input point
- cb321f7c-9e2d-48d7-96d6-5adbd90d6fbf
- Point
- Point
- false
- debc2dec-4e90-40f5-a5aa-76bc7ab566f3
- 1
-
9394
-410
27
60
-
9407.5
-380
- Point {x} component
- 62c154a7-1c1d-49db-b57e-d57ee010ecfd
- X component
- X component
- false
- 0
-
9445
-410
65
20
-
9477.5
-400
- Point {y} component
- b9b67b2e-4b53-4c8a-b2e7-d13eb5f5de45
- Y component
- Y component
- false
- 0
-
9445
-390
65
20
-
9477.5
-380
- Point {z} component
- b9ab7f29-ed1e-4459-9bf6-d86177b9e99b
- Z component
- Z component
- false
- 0
-
9445
-370
65
20
-
9477.5
-360
- d3d195ea-2d59-4ffa-90b1-8b7ff3369f69
- Unit Y
- Unit vector parallel to the world {y} axis.
- true
- a8f7bbbf-fa6d-413d-9ed1-911c210bca52
- Unit Y
- Unit Y
-
8641
-576
114
28
-
8687
-562
- Unit multiplication
- f3f77601-39af-4c99-9bf6-59b7fa885f75
- Factor
- Factor
- false
- 1d935021-9586-4892-8a03-1803d4963624
- 1
-
8643
-574
32
24
-
8659
-562
- 1
- 1
- {0}
- 1
- World {y} vector
- 8f299edb-d211-4ace-ac7e-9d58c163cb49
- Unit vector
- Unit vector
- false
- 0
-
8699
-574
54
24
-
8726
-562
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- e3bcfc34-48d9-4bd8-bc1f-b3264bc246a4
- Evaluate Length
- Evaluate Length
-
8869
-1195
149
64
-
8954
-1163
- Curve to evaluate
- 4c851d4a-ffdc-4416-b7f8-fe5098d2576e
- Curve
- Curve
- false
- 967b1ee0-e9d5-44f3-a2ec-c122f465def6
- 1
-
8871
-1193
71
20
-
8906.5
-1183
- Length factor for curve evaluation
- 119fa336-021f-481b-98b3-fb41d8fcccba
- Length
- Length
- false
- 0
-
8871
-1173
71
20
-
8906.5
-1163
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 97cd4a31-4220-4753-8b0b-e32839d19ee7
- Normalized
- Normalized
- false
- 0
-
8871
-1153
71
20
-
8906.5
-1143
- 1
- 1
- {0}
- true
- Point at the specified length
- d81410c4-b934-4141-9991-0d26f53a82c1
- Point
- Point
- false
- 0
-
8966
-1193
50
20
-
8991
-1183
- Tangent vector at the specified length
- 0aa282ab-ab9f-43e1-b53b-45cfbf60ab08
- Tangent
- Tangent
- false
- 0
-
8966
-1173
50
20
-
8991
-1163
- Curve parameter at the specified length
- e6cab960-e43b-4a10-bae4-3bd38b460f62
- Parameter
- Parameter
- false
- 0
-
8966
-1153
50
20
-
8991
-1143
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- 71dfb3fa-efc7-45f9-ae4c-8d994a518a7a
- Rotate
- Rotate
-
8826
-1688
226
81
-
8988
-1647
- Base geometry
- e7c10108-f60b-445c-a99b-1421de9723f4
- Geometry
- Geometry
- true
- 0fc11ab8-c8af-42d4-bdea-8f2ea5a5eed5
- 1
-
8828
-1686
148
20
-
8910
-1676
- Rotation angle in degrees
- 7ca4306b-cd89-49d1-b978-4be70407a040
- Angle
- Angle
- false
- a20f616d-9958-4f6b-b86a-618b82c4cb96
- 1
- true
-
8828
-1666
148
20
-
8910
-1656
- 1
- 1
- {0}
- 1.5707963267948966
- Rotation plane
- 5422fcc3-782c-4f39-b670-e7877be5041f
- Plane
- Plane
- false
- 0
-
8828
-1646
148
37
-
8910
-1627.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 4d28c858-4bc8-4dc6-ae64-0d5007c9ca49
- Geometry
- Geometry
- false
- 0
-
9000
-1686
50
38
-
9025
-1666.75
- Transformation data
- a8dde2b6-84d4-4032-9485-5e187619af76
- Transform
- Transform
- false
- 0
-
9000
-1648
50
39
-
9025
-1628.25
- b464fccb-50e7-41bd-9789-8438db9bea9f
- Angle
- Compute the angle between two vectors.
- true
- 464f5f8a-5b70-4652-95a8-29ad2671a756
- Angle
- Angle
-
8844
-1603
197
81
-
8980
-1562
- First vector
- ff2f1ac3-d318-48fd-8ac2-723b964af401
- Vector A
- Vector A
- false
- 90092d57-7611-4e56-9ed0-32d8dea8d7af
- 1
-
8846
-1601
122
20
-
8907
-1591
- Second vector
- 03cac984-e6c3-433f-8ee2-9d50c493d682
- Vector B
- Vector B
- false
- 0
-
8846
-1581
122
20
-
8907
-1571
- 1
- 1
- {0}
-
1
0
0
- Optional plane for 2D angle
- a35a52fc-1bfa-460c-848e-340eb8397975
- Plane
- Plane
- true
- 0
-
8846
-1561
122
37
-
8907
-1542.5
- Angle (in radians) between vectors
- a20f616d-9958-4f6b-b86a-618b82c4cb96
- -DEG(X)
- Angle
- Angle
- false
- 0
-
8992
-1601
47
38
-
9007.5
-1581.75
- Reflex angle (in radians) between vectors
- 9636c37d-2809-4db4-b180-f9cb29ba3e18
- Reflex
- Reflex
- false
- 0
-
8992
-1563
47
39
-
9007.5
-1543.25
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- c956a0d2-a7ba-4165-8ed4-8d02ff8b0963
- Evaluate Length
- Evaluate Length
-
8896
-1510
149
64
-
8981
-1478
- Curve to evaluate
- 0a3a9d62-f9f0-4f9c-814a-8c14734e0a0d
- Curve
- Curve
- false
- 0fc11ab8-c8af-42d4-bdea-8f2ea5a5eed5
- 1
-
8898
-1508
71
20
-
8933.5
-1498
- Length factor for curve evaluation
- 78c679df-ecc3-42ac-ad37-4e814c6d7d21
- Length
- Length
- false
- 0
-
8898
-1488
71
20
-
8933.5
-1478
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 515cb896-8ff7-4286-8e2c-90a3bfdd49e3
- Normalized
- Normalized
- false
- 0
-
8898
-1468
71
20
-
8933.5
-1458
- 1
- 1
- {0}
- true
- Point at the specified length
- cbebc0a2-bc4f-4f18-9209-6d190c8ddcea
- Point
- Point
- false
- 0
-
8993
-1508
50
20
-
9018
-1498
- Tangent vector at the specified length
- 90092d57-7611-4e56-9ed0-32d8dea8d7af
- Tangent
- Tangent
- false
- 0
-
8993
-1488
50
20
-
9018
-1478
- Curve parameter at the specified length
- 5d37cf6e-d544-4711-9a70-fe46c1ee1044
- Parameter
- Parameter
- false
- 0
-
8993
-1468
50
20
-
9018
-1458
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 863b2299-6c9b-455a-a776-e8f7593acd4e
- Panel
- X
- false
- 0
- e7032e03-fb69-4e0a-8f00-c322c1ac6f6c
- 1
-
9700
-507
194
40
- 0
- 0
- 0
-
9700.559
-506.59
- 1
-
255;255;255;255
- false
- false
- true
- true
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 9d23d1ae-22d7-425b-87b9-94319dfc2a83
- Panel
- Y
- false
- 0
- ad8b3156-b8a7-4bab-a35e-1e1cd86be6bc
- 1
-
9720
-289
194
40
- 0
- 0
- 0
-
9720.559
-288.59
- 1
-
255;255;255;255
- false
- false
- true
- true
- false
- true
- 797d922f-3a1d-46fe-9155-358b009b5997
- One Over X
- Compute one over x.
- true
- a618183a-b85f-4456-b013-679fc47f2968
- One Over X
- One Over X
-
8725
-432
88
28
-
8768
-418
- Input value
- 94a09bc3-37d5-4bb1-8ddf-529c764033c3
- Value
- Value
- false
- 36f8c5c0-0f87-497f-958b-5571daee768c
- 1
-
8727
-430
29
24
-
8741.5
-418
- Output value
- e4069cf6-715a-492e-8d3b-7d4b26110d1a
- Result
- Result
- false
- 0
-
8780
-430
31
24
-
8795.5
-418
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 023de912-35f2-4457-b69e-c2a19bc0ceb3
- Evaluate Length
- Evaluate Length
-
8869
-1849
149
64
-
8954
-1817
- Curve to evaluate
- a2a53b3c-d86b-4304-9860-16f8682523fc
- Curve
- Curve
- false
- 4bab40a8-1d93-412b-a75b-c6b4e84ce749
- 1
-
8871
-1847
71
20
-
8906.5
-1837
- Length factor for curve evaluation
- db110c95-56de-4890-9573-25516634ed70
- Length
- Length
- false
- 0
-
8871
-1827
71
20
-
8906.5
-1817
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 265af9b0-8be7-4f45-b9cd-d93ee52d78fa
- Normalized
- Normalized
- false
- 0
-
8871
-1807
71
20
-
8906.5
-1797
- 1
- 1
- {0}
- true
- Point at the specified length
- debc2dec-4e90-40f5-a5aa-76bc7ab566f3
- Point
- Point
- false
- 0
-
8966
-1847
50
20
-
8991
-1837
- Tangent vector at the specified length
- 334572fe-7aec-4b33-9741-180783b39007
- Tangent
- Tangent
- false
- 0
-
8966
-1827
50
20
-
8991
-1817
- Curve parameter at the specified length
- efbe33a7-ab31-434e-b3d1-fbd98f3bc25c
- Parameter
- Parameter
- false
- 0
-
8966
-1807
50
20
-
8991
-1797
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- a0d0d610-33cd-4602-8274-045cccffcea7
- Format
- Format
-
9539
-521
130
64
-
9631
-489
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- fa9f2870-3351-4619-a252-de40fae528e2
- Format
- Format
- false
- 0
-
9541
-519
78
20
-
9580
-509
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- cce30867-b52d-4a63-b322-fd32c2d188a2
- Culture
- Culture
- false
- 0
-
9541
-499
78
20
-
9580
-489
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- c5087d46-fea7-43ed-b9b6-45636068a9d1
- false
- Data 0
- 0
- true
- 62c154a7-1c1d-49db-b57e-d57ee010ecfd
- 1
-
9541
-479
78
20
-
9580
-469
- Formatted text
- e7032e03-fb69-4e0a-8f00-c322c1ac6f6c
- Text
- Text
- false
- 0
-
9643
-519
24
60
-
9655
-489
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- 387550bf-eb68-43dd-b325-32bc7940ee48
- Format
- Format
-
9669
-422
130
64
-
9761
-390
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- 12ef807c-c301-47f6-8b2c-b64e170e3581
- Format
- Format
- false
- 0
-
9671
-420
78
20
-
9710
-410
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 28a35ebc-33ed-4bdd-8d25-85617edbf44e
- Culture
- Culture
- false
- 0
-
9671
-400
78
20
-
9710
-390
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- 870be492-2a82-4657-93e6-612ddb085801
- false
- Data 0
- 0
- true
- 88508d5c-be39-48a1-91eb-d2cd8c007312
- 1
-
9671
-380
78
20
-
9710
-370
- Formatted text
- 0fbdc445-f277-4509-b58a-73ec93c06a13
- Text
- Text
- false
- 0
-
9773
-420
24
60
-
9785
-390
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- f14069e4-1c7d-4672-bcdf-3613372f2a1d
- Format
- Format
-
9539
-329
130
64
-
9631
-297
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- 332dd968-654e-41dc-8597-efa47c10ea41
- Format
- Format
- false
- 0
-
9541
-327
78
20
-
9580
-317
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- c1149a85-b158-473d-a2de-a908724996ab
- Culture
- Culture
- false
- 0
-
9541
-307
78
20
-
9580
-297
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- 86081f60-cf59-44ab-bdf2-9dee224c6750
- false
- Data 0
- 0
- true
- b9b67b2e-4b53-4c8a-b2e7-d13eb5f5de45
- 1
-
9541
-287
78
20
-
9580
-277
- Formatted text
- ad8b3156-b8a7-4bab-a35e-1e1cd86be6bc
- Text
- Text
- false
- 0
-
9643
-327
24
60
-
9655
-297
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- f86eeb20-0cc1-43b4-b13b-36d7d0a4bfd7
- Division
- Division
-
9553
-412
70
44
-
9578
-390
- Item to divide (dividend)
- e378b4ef-90cd-48df-a357-d77c03d81542
- A
- A
- false
- 62c154a7-1c1d-49db-b57e-d57ee010ecfd
- 1
-
9555
-410
11
20
-
9560.5
-400
- Item to divide with (divisor)
- 0681e710-f76f-4f49-88e5-0f3633451752
- B
- B
- false
- b9b67b2e-4b53-4c8a-b2e7-d13eb5f5de45
- 1
-
9555
-390
11
20
-
9560.5
-380
- The result of the Division
- 88508d5c-be39-48a1-91eb-d2cd8c007312
- Result
- Result
- false
- 0
-
9590
-410
31
40
-
9605.5
-390
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 61f2c450-400a-412b-8bfc-81286a183212
- Panel
- X/Y
- false
- 0
- 0fbdc445-f277-4509-b58a-73ec93c06a13
- 1
-
8887
-233
97
40
- 0
- 0
- 0
-
8887.221
-232.0882
- 1
-
255;255;255;255
- false
- false
- true
- true
- false
- true
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- f8c057c5-c404-4a05-8582-62a66d6b08a1
- Digit Scroller
- INCREASE BEND PER SEGMENT
- false
- 0
- 12
- INCREASE BEND PER SEGMENT
- 1
- 0.77246531995
-
8736
-259
250
20
-
8736.107
-258.0466
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 93f58772-1bbe-4649-90b3-5c6800324636
- 61a32b7e-58e0-47bc-ae7b-99c96bc9bc05
- 9a67714e-6ef6-44c0-a794-da43da2f4460
- e3bcfc34-48d9-4bd8-bc1f-b3264bc246a4
- 967b1ee0-e9d5-44f3-a2ec-c122f465def6
- 1b1ffffd-3591-4542-b49d-e6005771d0d7
- 6
- 8c636517-f873-4eaa-8b19-8a10c7d0063f
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 71dfb3fa-efc7-45f9-ae4c-8d994a518a7a
- 464f5f8a-5b70-4652-95a8-29ad2671a756
- c956a0d2-a7ba-4165-8ed4-8d02ff8b0963
- 0fc11ab8-c8af-42d4-bdea-8f2ea5a5eed5
- 597c8632-bd55-41f9-831a-14e8f0925b1e
- 5
- a495b48d-fb5b-4cac-80de-be887aeac1bd
- Group
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- bceebf35-dd0b-4960-ab17-129faa5d507d
- Panel
- false
- 0
- 0
- 0.87246531994281165
-
8644
-246
112
55
- 0
- 0
- 0
-
8644.559
-245.59
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 2a07d436-540b-4a46-86ad-1cf5be1b55fb
- Panel
- false
- 0
- 0
- 12 0.77246531994281165
-
8621
-158
122
55
- 0
- 0
- 0
-
8621.559
-157.59
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- 3ee80f7b-a4da-4df5-b83f-62beb76ef4df
- Point
- Point
- false
- 1eaf7173-3a4a-4d85-89d5-18fc6cd9d580
- 1
-
8641
-870
50
24
-
8666.559
-858.5899
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 967b1ee0-e9d5-44f3-a2ec-c122f465def6
- Relay
- false
- 309e4b37-957b-41b8-874c-56ebd84d12c0
- 1
-
8938
-1109
40
16
-
8958
-1101
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 1b1ffffd-3591-4542-b49d-e6005771d0d7
- Relay
- false
- e43f0b4f-282d-4b09-aab1-505a4b54704c
- 1
-
8935
-1389
40
16
-
8955
-1381
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 0fc11ab8-c8af-42d4-bdea-8f2ea5a5eed5
- Relay
- false
- 1b1ffffd-3591-4542-b49d-e6005771d0d7
- 1
-
8946
-1440
40
16
-
8966
-1432
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 597c8632-bd55-41f9-831a-14e8f0925b1e
- Relay
- false
- 4d28c858-4bc8-4dc6-ae64-0d5007c9ca49
- 1
-
8921
-1703
40
16
-
8941
-1695
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 309e4b37-957b-41b8-874c-56ebd84d12c0
- Relay
- false
- 0a62d7ca-ee01-4395-9030-a53e0ec1a678
- 1
-
8914
-984
40
16
-
8934
-976
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- c6d80d08-d4b3-44b9-acaa-5afac8c56cfa
- Deconstruct
- Deconstruct
-
8875
-1941
120
64
-
8916
-1909
- Input point
- 7497b566-c667-4746-a4fd-58750e392561
- Point
- Point
- false
- debc2dec-4e90-40f5-a5aa-76bc7ab566f3
- 1
-
8877
-1939
27
60
-
8890.5
-1909
- Point {x} component
- 8b505339-5163-4c26-be4d-1fa4baeae003
- X component
- X component
- false
- 0
-
8928
-1939
65
20
-
8960.5
-1929
- Point {y} component
- 2535eccf-193f-4da3-a6fc-51725ace7af5
- Y component
- Y component
- false
- 0
-
8928
-1919
65
20
-
8960.5
-1909
- Point {z} component
- e09a19e9-908d-4707-aa0c-2ba7dc0aa1d5
- Z component
- Z component
- false
- 0
-
8928
-1899
65
20
-
8960.5
-1889
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 4bab40a8-1d93-412b-a75b-c6b4e84ce749
- Relay
- false
- 597c8632-bd55-41f9-831a-14e8f0925b1e
- 1
-
8912
-1760
40
16
-
8932
-1752
- 290f418a-65ee-406a-a9d0-35699815b512
- Scale NU
- Scale an object with non-uniform factors.
- 26bf7701-0ad2-43ce-b3c1-bb2572ec376f
- Scale NU
- Scale NU
-
8821
-2095
226
121
-
8983
-2034
- Base geometry
- 3db2c58d-8b53-462b-a51f-5e4aec164518
- Geometry
- Geometry
- true
- 4bab40a8-1d93-412b-a75b-c6b4e84ce749
- 1
-
8823
-2093
148
20
-
8905
-2083
- Base plane
- d57aa366-38d9-4ce1-b551-adcc3844e55f
- Plane
- Plane
- false
- 0
-
8823
-2073
148
37
-
8905
-2054.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Scaling factor in {x} direction
- 53c0bb83-d8bf-4de1-959d-e81d0e1665a8
- 1/X
- Scale X
- Scale X
- false
- 8b505339-5163-4c26-be4d-1fa4baeae003
- 1
-
8823
-2036
148
20
-
8905
-2026
- 1
- 1
- {0}
- 1
- Scaling factor in {y} direction
- 0d09d649-dbbe-4790-b60e-bf568f122124
- 1/X
- Scale Y
- Scale Y
- false
- 2535eccf-193f-4da3-a6fc-51725ace7af5
- 1
-
8823
-2016
148
20
-
8905
-2006
- 1
- 1
- {0}
- 1
- Scaling factor in {z} direction
- 59d03a89-4995-4940-badb-82e2e9a73449
- 1/X
- Scale Z
- Scale Z
- false
- e09a19e9-908d-4707-aa0c-2ba7dc0aa1d5
- 1
-
8823
-1996
148
20
-
8905
-1986
- 1
- 1
- {0}
- 1
- Scaled geometry
- 12a40a9b-a3ab-4a0f-80de-94ff5fb5804d
- Geometry
- Geometry
- false
- 0
-
8995
-2093
50
58
-
9020
-2063.75
- Transformation data
- a620d83f-a1d5-4177-81bd-3b2b7334ffcd
- Transform
- Transform
- false
- 0
-
8995
-2035
50
59
-
9020
-2005.25
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 0447472e-5591-46af-bb0e-c7bb17204a7b
- Relay
- false
- 12a40a9b-a3ab-4a0f-80de-94ff5fb5804d
- 1
-
8915
-2128
40
16
-
8935
-2120
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 023de912-35f2-4457-b69e-c2a19bc0ceb3
- c6d80d08-d4b3-44b9-acaa-5afac8c56cfa
- 4bab40a8-1d93-412b-a75b-c6b4e84ce749
- 26bf7701-0ad2-43ce-b3c1-bb2572ec376f
- 0447472e-5591-46af-bb0e-c7bb17204a7b
- 5
- 18c14f8c-cad0-4aff-b28f-1b7151eb3ee0
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- c2beef7b-6131-4575-9319-58dfaa76ac13
- d7b18b8c-16a0-47f6-90ca-ecbcf0cbeed8
- 4508e32b-85af-4b57-bbbe-86405b8561e3
- c633783c-54f2-434b-89ac-12664f0f9778
- b422c589-f017-4039-910c-20cdcf68a57b
- fee44d27-800e-4e41-9853-68ab8851421b
- 6
- 3d0eb249-fbc8-4f82-a8c6-6be8c0f54b91
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- a1cd4cc6-f6e2-4882-9400-15b27dd6a700
- 863b2299-6c9b-455a-a776-e8f7593acd4e
- 9d23d1ae-22d7-425b-87b9-94319dfc2a83
- a0d0d610-33cd-4602-8274-045cccffcea7
- 387550bf-eb68-43dd-b325-32bc7940ee48
- f14069e4-1c7d-4672-bcdf-3613372f2a1d
- f86eeb20-0cc1-43b4-b13b-36d7d0a4bfd7
- 7
- 97f9c74b-5a9f-4be7-8b2b-76b92bed59ce
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 3a737a17-feba-4d02-a091-4fc7fc64b6af
- Relay
- false
- b05af234-ce5b-432e-8b3f-32a94a964bbf
- 1
-
8897
110
40
16
-
8917
118
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 36f8c5c0-0f87-497f-958b-5571daee768c
- Relay
- false
- 3a737a17-feba-4d02-a091-4fc7fc64b6af
- 1
-
8935
-2
40
16
-
8955
6
- 310f9597-267e-4471-a7d7-048725557528
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
- GraphMapper+
- External Graph mapper
You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
- true
- 3a5689a2-656a-411c-94ae-d25352a16bac
- GraphMapper+
- GraphMapper+
- true
-
8452
-700
114
104
-
8513
-648
- External curve as a graph
- 7acfa000-d584-4960-9a5b-59f423beed5c
- Curve
- Curve
- false
- 5ab38aae-5244-4c9e-ba29-66ca546cfbc6
- 1
-
8454
-698
47
20
-
8477.5
-688
- Optional Rectangle boundary. If omitted the curve's would be landed
- a9ddcad1-b1cf-48b3-96b6-5feff9ff0997
- Boundary
- Boundary
- true
- d420c98d-2fd8-433a-ad0b-6a1223aaae72
- 1
-
8454
-678
47
20
-
8477.5
-668
- 1
- List of input numbers
- 1c5d7b04-d4f5-41f4-9af1-effb3f129c89
- Numbers
- Numbers
- false
- 95e41ba6-c812-4626-a179-c3dd2c2f2c04
- 1
-
8454
-658
47
20
-
8477.5
-648
- 1
- 9
- {0}
- 0.1
- 0.2
- 0.3
- 0.4
- 0.5
- 0.6
- 0.7
- 0.8
- 0.9
- (Optional) Input Domain
if omitted, it would be 0-1 in "Normalize" mode by default
or be the interval of the input list in case of selecting "AutoDomain" mode
- e0a04cdb-d94e-42a9-a5b7-f1f6bc290289
- Input
- Input
- true
- f8dcff9d-48cb-410a-a2b1-0bb712191a99
- 1
-
8454
-638
47
20
-
8477.5
-628
- (Optional) Output Domain
if omitted, it would be 0-1 in "Normalize" mode by default
or be the interval of the input list in case of selecting "AutoDomain" mode
- d3c32a6e-dfab-448b-80c8-423cdb54a2f4
- Output
- Output
- true
- f8dcff9d-48cb-410a-a2b1-0bb712191a99
- 1
-
8454
-618
47
20
-
8477.5
-608
- 1
- Output Numbers
- 6334c69f-7811-450b-a45a-cdfd99606f49
- Number
- Number
- false
- 0
-
8525
-698
39
100
-
8544.5
-648
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
- Extract the end points of a curve.
- true
- e7b4a974-c91e-48a3-a00b-2f0d0fbdf5a8
- End Points
- End Points
-
8467
-412
84
44
-
8511
-390
- Curve to evaluate
- 5f8c676e-559f-4777-b0bf-7925114c6446
- Curve
- Curve
- false
- 5ab38aae-5244-4c9e-ba29-66ca546cfbc6
- 1
-
8469
-410
30
40
-
8484
-390
- Curve start point
- 02ca70d6-4b4e-4423-bfe1-db3d217994ad
- Start
- Start
- false
- 0
-
8523
-410
26
20
-
8536
-400
- Curve end point
- 1de69f7a-2c7f-4d4b-8add-802c37ca7ff8
- End
- End
- false
- 0
-
8523
-390
26
20
-
8536
-380
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 5ab38aae-5244-4c9e-ba29-66ca546cfbc6
- Relay
- false
- 76643b90-6cd9-4be3-b22c-0a59c511bca6
- 1
-
8489
-335
40
16
-
8509
-327
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
- Create a rectangle from a base plane and two points
- true
- 59029ff1-b86c-4d03-ae75-f68caee71636
- Rectangle 2Pt
- Rectangle 2Pt
-
8407
-519
198
101
-
8543
-468
- Rectangle base plane
- 5d90e0a9-ea00-42d9-b369-5e320bbfcd20
- Plane
- Plane
- false
- 0
-
8409
-517
122
37
-
8470
-498.5
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- First corner point.
- a73d8113-48fe-4e72-9cb4-a71797f7c667
- Point A
- Point A
- false
- 02ca70d6-4b4e-4423-bfe1-db3d217994ad
- 1
-
8409
-480
122
20
-
8470
-470
- 1
- 1
- {0}
-
0
0
0
- Second corner point.
- 1c98320d-a294-407e-b50a-3296886b72aa
- Point B
- Point B
- false
- 1de69f7a-2c7f-4d4b-8add-802c37ca7ff8
- 1
-
8409
-460
122
20
-
8470
-450
- 1
- 1
- {0}
-
10
5
0
- Rectangle corner fillet radius
- ab426d9a-c7e6-4382-abff-412cb13fa678
- Radius
- Radius
- false
- 0
-
8409
-440
122
20
-
8470
-430
- 1
- 1
- {0}
- 0
- Rectangle defined by P, A and B
- d420c98d-2fd8-433a-ad0b-6a1223aaae72
- Rectangle
- Rectangle
- false
- 0
-
8555
-517
48
48
-
8579
-492.75
- Length of rectangle curve
- 8dee813d-fdbf-40b3-83af-1fa21457cb3f
- Length
- Length
- false
- 0
-
8555
-469
48
49
-
8579
-444.25
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- 45e2f32e-b74c-41bf-8dc5-52eeaafd43c7
- Bounds
- Bounds
-
8454
-573
110
28
-
8512
-559
- 1
- Numbers to include in Bounds
- c2fc4964-8df8-47fa-b2e4-a76b10ff47d5
- Numbers
- Numbers
- false
- 95e41ba6-c812-4626-a179-c3dd2c2f2c04
- 1
-
8456
-571
44
24
-
8478
-559
- Numeric Domain between the lowest and highest numbers in {N}
- f8dcff9d-48cb-410a-a2b1-0bb712191a99
- Domain
- Domain
- false
- 0
-
8524
-571
38
24
-
8543
-559
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 95e41ba6-c812-4626-a179-c3dd2c2f2c04
- Relay
- false
- e0fb9285-b6f9-44fa-9dad-b60c688524ac
- 1
-
8489
-540
40
16
-
8509
-532
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 3a5689a2-656a-411c-94ae-d25352a16bac
- e7b4a974-c91e-48a3-a00b-2f0d0fbdf5a8
- 5ab38aae-5244-4c9e-ba29-66ca546cfbc6
- 59029ff1-b86c-4d03-ae75-f68caee71636
- 45e2f32e-b74c-41bf-8dc5-52eeaafd43c7
- 95e41ba6-c812-4626-a179-c3dd2c2f2c04
- 1d861991-184c-47e3-b666-96be95d60e24
- 7
- 7b0f4177-d6cf-4c09-9e68-2fc85e217ce5
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 19379fed-2ec1-4c1d-a18b-aaea992f534b
- Relay
- false
- a9e1c8cf-fb7e-4409-a7ff-7d598e06055b
- 1
-
8996
-142
40
16
-
9016
-134
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- fab98bf5-57b3-4a38-9509-b35d73140a5d
- Relay
- false
- a62538ff-8f98-4562-99a8-d56a712bf392
- 1
-
8489
-151
40
16
-
8509
-143
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- 5d9cf34d-667c-45d2-8566-1ab34036be51
- Scale
- Scale
-
8405
-280
201
64
-
8542
-248
- Base geometry
- 53e82416-57dc-40b0-bb82-98fc6195316b
- Geometry
- Geometry
- true
- fab98bf5-57b3-4a38-9509-b35d73140a5d
- 1
-
8407
-278
123
20
-
8468.5
-268
- Center of scaling
- 34539307-4839-4923-8576-ab94c47b119f
- Center
- Center
- false
- 0
-
8407
-258
123
20
-
8468.5
-248
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 7fb766d4-7af0-40b3-81e1-83f3a478a349
- Factor
- Factor
- false
- aac1bb5e-b1c8-4f9b-a47e-04ede16b71b5
- 1
-
8407
-238
123
20
-
8468.5
-228
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- 367b85c6-29aa-436d-bd8c-dc06756dc477
- Geometry
- Geometry
- false
- 0
-
8554
-278
50
30
-
8579
-263
- Transformation data
- 8bb5adc2-8641-46ba-91f3-11ac9d7938c5
- Transform
- Transform
- false
- 0
-
8554
-248
50
30
-
8579
-233
- 78fed580-851b-46fe-af2f-6519a9d378e0
- Power
- Raise a value to a power.
- 73d5896c-e7ba-4678-b50b-f6b92d9c7386
- Power
- Power
-
8466
-218
85
44
-
8506
-196
- The item to be raised
- aad034d7-44ae-48d5-a563-920303788130
- A
- A
- false
- 0
-
8468
-216
26
20
-
8481
-206
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 2
- The exponent
- 64209a67-45a3-4c61-8a7b-1ccb36809166
- B
- B
- false
- 14a42f49-20f8-4e5c-9a43-559b5ab9b49b
- 1
-
8468
-196
26
20
-
8481
-186
- A raised to the B power
- aac1bb5e-b1c8-4f9b-a47e-04ede16b71b5
- Result
- Result
- false
- 0
-
8518
-216
31
40
-
8533.5
-196
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 14a42f49-20f8-4e5c-9a43-559b5ab9b49b
- Digit Scroller
- SCALE POWER
- false
- 0
- 12
- SCALE POWER
- 11
- 16.0
-
8385
-170
250
20
-
8385.836
-169.2785
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 76643b90-6cd9-4be3-b22c-0a59c511bca6
- Relay
- false
- 367b85c6-29aa-436d-bd8c-dc06756dc477
- 1
-
8489
-301
40
16
-
8509
-293
- dde71aef-d6ed-40a6-af98-6b0673983c82
- Nurbs Curve
- Construct a nurbs curve from control points.
- true
- 674feb55-23d5-4d45-8aa2-f28599445b93
- Nurbs Curve
- Nurbs Curve
-
8754
-971
121
64
-
8823
-939
- 1
- Curve control points
- 28250d89-ebc9-420e-b997-131d9855ad8b
- Vertices
- Vertices
- false
- b5439c69-f9e6-4772-bfd9-4ddddfd4af21
- 1
-
8756
-969
55
20
-
8783.5
-959
- Curve degree
- 81557209-9496-4cd3-b69f-83e15a1783bb
- Degree
- Degree
- false
- 0
-
8756
-949
55
20
-
8783.5
-939
- 1
- 1
- {0}
- 11
- Periodic curve
- 2200a0e3-bd96-4734-8e17-53d2926941dd
- Periodic
- Periodic
- false
- 0
-
8756
-929
55
20
-
8783.5
-919
- 1
- 1
- {0}
- false
- Resulting nurbs curve
- 87f2c5bb-894b-40e5-b9f0-c5920356c59b
- Curve
- Curve
- false
- 0
-
8835
-969
38
20
-
8854
-959
- Curve length
- c3d36912-a02f-477c-a804-a2af3ca01099
- Length
- Length
- false
- 0
-
8835
-949
38
20
-
8854
-939
- Curve domain
- 5f5922ee-ea58-471e-abdb-b6cd5548f2a5
- Domain
- Domain
- false
- 0
-
8835
-929
38
20
-
8854
-919
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- fab98bf5-57b3-4a38-9509-b35d73140a5d
- 5d9cf34d-667c-45d2-8566-1ab34036be51
- 73d5896c-e7ba-4678-b50b-f6b92d9c7386
- 14a42f49-20f8-4e5c-9a43-559b5ab9b49b
- 76643b90-6cd9-4be3-b22c-0a59c511bca6
- 5
- 1d861991-184c-47e3-b666-96be95d60e24
- Group
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- e8bf22d8-59fc-440f-b046-5f153608bb6e
- Panel
- false
- 0
- 0
- 0.4875881689164849049
-
8840
-165
121
40
- 0
- 0
- 0
-
8840.127
-164.2325
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 75eb156d-d023-42f9-a85e-2f2456b8bcce
- Interpolate (t)
- Create an interpolated curve through a set of points with tangents.
- true
- 3a7b6207-8fe4-4fe3-9bdd-9d57eb883b46
- Interpolate (t)
- Interpolate (t)
-
9011
-858
244
84
-
9203
-816
- 1
- Interpolation points
- 2cf30449-16c0-4f11-ac07-fe57f6171530
- Vertices
- Vertices
- false
- b5439c69-f9e6-4772-bfd9-4ddddfd4af21
- 1
-
9013
-856
178
20
-
9102
-846
- Tangent at start of curve
- d428915c-3abb-4dd2-9c85-8eb0b119f3f4
- Tangent Start
- Tangent Start
- false
- 0
-
9013
-836
178
20
-
9102
-826
- 1
- 1
- {0}
-
0
0
0
- Tangent at end of curve
- 89b8ee74-7e0a-479d-b56f-bd44120085da
- Tangent End
- Tangent End
- false
- 0
-
9013
-816
178
20
-
9102
-806
- 1
- 1
- {0}
-
0
0
0
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 62dffc2f-c615-4738-8018-484f75f4e949
- KnotStyle
- KnotStyle
- false
- 0
-
9013
-796
178
20
-
9102
-786
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- d9a049b0-690f-4a9d-9624-ffab8cf29b1e
- Curve
- Curve
- false
- 0
-
9215
-856
38
26
-
9234
-842.6667
- Curve length
- f1cc8940-d3a9-4a35-99fe-801242041856
- Length
- Length
- false
- 0
-
9215
-830
38
27
-
9234
-816
- Curve domain
- 229a1ddb-a0aa-46d0-b205-15e5d312296d
- Domain
- Domain
- false
- 0
-
9215
-803
38
27
-
9234
-789.3334
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- EXP(-1/X)/(EXP(-1/X)+EXP(-1/(1-X)))
- a4584a82-42a1-485c-b294-3ec4c8a0e4ac
- Expression
- Expression
-
8067
485
355
28
-
8235
499
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- ad33712d-926a-4129-a471-f6ebfb5f1955
- Variable X
- X
- true
- 12856f7b-6a1c-43e9-9d71-655f09f41c1e
- 1
-
8069
487
11
24
-
8074.5
499
- Result of expression
- 037bc6cc-d43c-4dbb-ac6b-d3d5905cc4a9
- Result
- Result
- false
- 0
-
8389
487
31
24
-
8404.5
499
- 9445ca40-cc73-4861-a455-146308676855
- Range
- Create a range of numbers.
- e5e94c43-a776-4d77-a75a-3fff41f8a4d5
- Range
- Range
-
8104
534
208
44
-
8266
556
- Domain of numeric range
- 6d44e681-ea33-484b-bfb1-3b52a5b86139
- Domain
- Domain
- false
- 0
-
8106
536
148
20
-
8188
546
- 1
- 1
- {0}
-
0
0.9999999999
- Number of steps
- 2a6193ac-185d-433f-9d06-456994b0f05f
- X*2
- Steps
- Steps
- false
- 1e02c87b-f332-4fb0-8d48-6d02635e8746
- 1
-
8106
556
148
20
-
8188
566
- 1
- 1
- {0}
- 10
- 1
- Range of numbers
- 12856f7b-6a1c-43e9-9d71-655f09f41c1e
- Range
- Range
- false
- 0
-
8278
536
32
40
-
8294
556
- 758d91a0-4aec-47f8-9671-16739a8a2c5d
- Format
- Format some data using placeholders and formatting tags
- true
- 7a47a64a-773c-4a85-938e-dca1036ab014
- Format
- Format
-
8156
376
130
64
-
8248
408
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 7fa15783-70da-485c-98c0-a099e6988c3e
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- Text format
- 4c76a9fa-4313-47ea-9028-10a87647625e
- Format
- Format
- false
- 0
-
8158
378
78
20
-
8197
388
- 1
- 1
- {0}
- false
- {0:R}
- Formatting culture
- 80ef257d-f140-479c-b9e9-0381c89d234a
- Culture
- Culture
- false
- 0
-
8158
398
78
20
-
8197
408
- 1
- 1
- {0}
- 127
- Data to insert at {0} placeholders
- 3b82633b-ef6a-4e79-83ef-fbb109876120
- false
- Data 0
- 0
- true
- 56cd0377-78b5-455a-a884-9852b0c5ac73
- 1
-
8158
418
78
20
-
8197
428
- Formatted text
- 6873c74f-e85b-462d-abc7-f459641bbc83
- Text
- Text
- false
- 0
-
8260
378
24
60
-
8272
408
- f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
- Replace Nulls
- Replace nulls or invalid data with other data
- true
- 83d60269-e8b5-4d1e-ba15-3d15c384651d
- Replace Nulls
- Replace Nulls
-
8157
440
139
44
-
8252
462
- 1
- Items to test for null
- f00805f2-8a4e-4b09-bec8-4bbe7e037bd6
- Items
- Items
- false
- 037bc6cc-d43c-4dbb-ac6b-d3d5905cc4a9
- 1
-
8159
442
81
20
-
8199.5
452
- 1
- Items to replace nulls with
- 1318a7a4-13fe-4d1d-95ff-09acfc917d4a
- Replacements
- Replacements
- false
- 0
-
8159
462
81
20
-
8199.5
472
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- 0
- 1
- List without any nulls
- 56cd0377-78b5-455a-a884-9852b0c5ac73
- Items
- Items
- false
- 0
-
8264
442
30
20
-
8279
452
- Number of items replaced
- 9ccbc3fb-5657-421d-b6c5-b46df1691833
- Count
- Count
- false
- 0
-
8264
462
30
20
-
8279
472
- 3581f42a-9592-4549-bd6b-1c0fc39d067b
- Construct Point
- Construct a point from {xyz} coordinates.
- true
- b6e694ee-4bdf-4f38-9cfa-530276c83f1c
- Construct Point
- Construct Point
-
8153
308
134
64
-
8246
340
- {x} coordinate
- 9747f83f-623e-412f-8987-773e11e87c99
- X coordinate
- X coordinate
- false
- 12856f7b-6a1c-43e9-9d71-655f09f41c1e
- 1
-
8155
310
79
20
-
8194.5
320
- 1
- 1
- {0}
- 0
- {y} coordinate
- a760e99c-8007-431e-af14-9ed7e76f1315
- Y coordinate
- Y coordinate
- false
- 56cd0377-78b5-455a-a884-9852b0c5ac73
- 1
-
8155
330
79
20
-
8194.5
340
- 1
- 1
- {0}
- 0
- {z} coordinate
- fa57eb62-91f8-476b-a6bf-c282726e40fa
- Z coordinate
- Z coordinate
- false
- 0
-
8155
350
79
20
-
8194.5
360
- 1
- 1
- {0}
- 0
- Point coordinate
- 75f38e11-421a-49b0-a795-44bc7bf8361c
- Point
- Point
- false
- 0
-
8258
310
27
60
-
8271.5
340
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 201dbf1e-d6f7-459e-9c74-cb66a19b8401
- Interpolate
- Interpolate
-
8094
220
225
84
-
8267
262
- 1
- Interpolation points
- 4eee2d6b-bc26-4c7d-91fc-370e9f18185c
- Vertices
- Vertices
- false
- 75f38e11-421a-49b0-a795-44bc7bf8361c
- 1
-
8096
222
159
20
-
8175.5
232
- Curve degree
- 0f7b04ae-c0b9-429c-abdf-12d116469ee5
- Degree
- Degree
- false
- 0
-
8096
242
159
20
-
8175.5
252
- 1
- 1
- {0}
- 3
- Periodic curve
- 865b3cea-b94d-4440-ba0f-581a32c3eb26
- Periodic
- Periodic
- false
- 0
-
8096
262
159
20
-
8175.5
272
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 14df08cd-7e65-4f95-aac7-12ea5d81702b
- KnotStyle
- KnotStyle
- false
- 0
-
8096
282
159
20
-
8175.5
292
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 720c155d-1f7d-402b-a043-8bee89a52787
- Curve
- Curve
- false
- 0
-
8279
222
38
26
-
8298
235.3333
- Curve length
- 4503a2e2-2370-4f63-9b87-8fb27e7fa0fe
- Length
- Length
- false
- 0
-
8279
248
38
27
-
8298
262
- Curve domain
- 0a0dc0e0-6219-4000-99e6-81f67833e624
- Domain
- Domain
- false
- 0
-
8279
275
38
27
-
8298
288.6667
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- c9cede5a-3217-4818-a755-a317d4e40aca
- Relay
- false
- 1d0bf2e0-f67d-4a2d-a256-b3237aa6cf7f
- 1
-
3206
-118
40
16
-
3226
-110
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- bfcbee3a-b2cb-4f84-b04e-6d617f69140d
- Relay
- false
- 634a94ce-52a8-49bc-9452-6f6366b08a22
- 1
-
4935
-140
40
16
-
4955
-132
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- a4584a82-42a1-485c-b294-3ec4c8a0e4ac
- e5e94c43-a776-4d77-a75a-3fff41f8a4d5
- 7a47a64a-773c-4a85-938e-dca1036ab014
- 83d60269-e8b5-4d1e-ba15-3d15c384651d
- b6e694ee-4bdf-4f38-9cfa-530276c83f1c
- 201dbf1e-d6f7-459e-9c74-cb66a19b8401
- 6
- e41feca8-44ec-48ae-9122-b25a23260a47
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- a117194e-2f18-4d8f-9075-d69b3dd57e9c
- Relay
- false
- 56233623-7b3b-4690-a754-0d9746d30ac9
- 1
-
6628
-97
40
16
-
6648
-89
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- a62538ff-8f98-4562-99a8-d56a712bf392
- Relay
- false
- a1e0f8c4-4e32-4423-a640-6d28fa2603ad
- 1
-
8309
-131
40
16
-
8329
-123
-
iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA+BSURBVHhe7dpLc1VVGsZxP2SPetwTilJRsaq/gFTZSk+6bKvs8jLqQQ+6ipuggsjFABoEwiXcVJAEAoQ73YqC9O/sZ2exc85JdZWenGSH/QxOrb32u27vf73vWjuVFzqtBT3t1Fo9Q/jF79Dhw4cnJycPHjxYP3cal0aDcP/+/YcOHXrjjTc2bdq0r1L9otPyazQIMYNw/fr1L774YodwzBoNQpqYmNi4cePrr7/eIRyzRonwlVde2bBhg6TaIRynRobQRUYIvvrqq10UjlmjQYiZ4MOvQzh+jRKhu8zLL7/cJdIxa2QI/b722mvddWb8GhlCeumll7ooHL9GidB11KU05fpFp+XXKBGuW7fO133K9YtOy6+RIfT7zjvvvPvuux2/MWs0CKOjR48eO3asfug0Lo0SYZVBuxAct0aJsNOKqEPYenUIW68OYevVIWy9OoStV4ew9eoQtl4dwtarQ9h6dQh72rug+rlVet4R1ugaql+0R88vQrQOHDhw4sSJb7755urVq/crXbly5fPPP68tWqLnGuHBgwdPnz6NIniWT7dv396zZ09t0RKZ9nON8NSpU8ePH793715F8OmtW7c6hC1Q78SrNDExAeHU1BRyP1eam5tTL8HWpm3Qc4EwwEh5//79gg+8w4cP79u3z8m3e/duBfXIKWzfvn3btm0e03b1a80irKHt3YtKmB1a0JdffomWhImfLOo6Iwr/W+nBgwf/eO+9v7z5JsB1R6teawdhTWwh1HCC4auvvjpy5IiCxwRWbbR3r+BTc+bMmZMnT/7444+WT0+ePHn//fc3v/020lWvLZBptxVhjaJiVkINMNioYKuNGh98efz000+9PXv2rEvpL7/8UhHs6aMPP9y0aVMXhaMXSHVpQQk14RJsfpWBZImQJEmhRezVk1aBTZOTk9PT0xKpWLxw4cLFixfPnz//182bN7/11qElEJbeKB1SHldKqxchT33W0K5du/wGjJMMACRyAVEjK/plILY++eQTv+nE25jFUqtEJymrZLlz584tDe3YsaMa8DOHZaRz0lszpomNWekh9k2p1DBzWG6tPEK+qEuV4h1Svn79+vz8/I0bN2ZnZ6W7byt5vHv3rnuHz/C8Zfbdd9+x94Vw9erVmZmZa9euaaKgXg2b1Li2aHvz5k1NRC2Egi/xJxCF8tGjRxWuXLmSVqWhrrw6ceKEL0g90KVLl/JB4pWZDOrrr78O+OXWsiMEw34UIvXzgtTzoJjgyl5Sm5gQGerFSi9kqlc//fSTb7VHjx49fPiQUzz6VaPgAvKfSq6RHrEUItzqVGNPLL29f/8+dz9+/PjXX3+1QL8pkPyJWcqkCWOdG6uuWiy7B7P64elTe8jQhjB6XbVY6ArHLHZZZaxlRIgTJCDxrwIlvMqB5PSCiuxZcjhFnJu7PgA2/p07d2x2391+uYy7e9/hDUFoo4g5CMnFUpNEJF9XLu2XUYxePzx9igdjTbCvqxZLsLq71g9Pn5oYYwG6VP9Cdi0gtAYXBD4VH+CJM16jEmeEFm9KUxW7SSBVhq5QE0B4gPTDDz9cvnzZr7JKfVbsfg4wfvdJLlAq7/UEP3tQFeqqxTKWIeqHCqGciQrVVYvVh9CI+peBy99X+7RGEDoMLNuGdXd3wqOYy4h6vzyIlhgNM3GZYNWQmQJUZoWQsLMV3B4FCq7Iqez5aUFibhAh+3PnznFx+ulTH0IpUZ40W8dkX+dRH0L9W5RZLZV4104U8otFuoy4KKJy/PjxY8eOWTlsBVjQUkmzAIMqMhJqkqcs6lHi6iXKxmdcNIhQlICnXo6FpByBRYMIDaGJK0xCv36xoD6Eek6G139dtVhrBCEqfq0ctoCxcz3KPwj1Lux79qCYozEXfb8JR8YFFZ+6JXJx87TLq2hoFGoigWvl0T5IfdFgIrU/8JOrPQ7aD02k33//vaitqxZr7SRSFzOJ1O52yCEKD8fxNag84gafFAoYbJoIxASlxyZC1DXhtYSU1JpX0VCEEgA/um6wh6QvEAcRShUqnYgsB3fJIML0b2mDIU5rJ5G6p0ikHOSGyQtIYKkSM4uEkFmwpUnksYlQIR9zHJeDDZKmiwcR2jeM3U0k4STGvsAaRCgEBW45O/t2SR9CZvoXuLlz1bUNtQYhXycB5lRryitXGFuVHyUc/nIQ8kKyZfKn38GGNIiQs/QjtsCgvkAcGoXsIUEu8Ng3w6UPoX2WG2lBqJWB8pYGo9CUJGpbpMyzqRYg5GVXEjlQtnSkeaxfVAIgnxCc4vIiAfKmEMSy/DEzTZilSVN9CLk+SFw6kuVUcnHZ/oMIBYeoFVjsg5BxClEfQq8gNEmkh+6SPoR9/futXyyoHQh530Qtm3N93gGZ+hQwEHZc785mz8qEFuyrgCWKMfMrCgvOIo8itIQAfwkOuU6sKOQe33RxH0IAHIHMIPfrrRr1zUDsQ2gIloYQVVoFtt80pB7CqamUdaJ/ypQk7cFAbEcidelww6wm3Pt7knBUAwnXOO3cPpx/ABOWiTyOy7e8LzaHohNRZVJrk6Ky2gfz89fPnI5zbQLisngtJDgugRiEly5fvnnu7IPrc5yLtB2joDkkcXEzEM3BN6lPzscMqp1hq5E9Z7d5ZNPcJRCemZ6+ef5c+ifGLM1KOJpVzIragVAYuY9UE+7N2KOPPznTo8VzFkdkh/qNayQrHwaIEmzlKyKfiU2KE24927e+98c/PKz+N4mP9FAN1SOX4CguhvDjjz8+d/7CP9f96cBHH7i9qORiIdVr0LiblEDs/T1oauqLv//t33/e+KjKhCapif1BCMW+BKIQPz419a8N6/d/8I/0bz4WaAhzs1Eq82dqRyLldLeVasL9CHnK2izSmW+fWqpyDg9XACGLpRoRqQfBKnyxbFJ0Fbo6Ozt/fc6HGs/6jvYb7wumBF+RONuxY4ewvnf79rXZ2ZnZWSMaq3i2IEwP1HPx7t0zFy98e3Lq2tycHsyz/CtbCVbKWHaenGFLzjkyZ2ZYWk7pv2kfOThbEIVypm+pasLPEEqbHi3bIkGySL/KtrayD+38XcqW9zg9PS2hicWQQ7FcUK2f8Y0qcAk/SDIWDMJOt5xui8gERpdIpe5bd+4wMwcGTujiYvspSU8rc5YDjGik23fvqp2p/m6goVnFPvMnW8ErXYlaqcKQzOyq9F/ypy2S/smi9G8h9mXWsqwy+nCEhseDRANxqDXH0UWYmW61hBohS2cGN1mem4tCWZvVWry1iTyBCIl6zdMq5PyimM5Vsgfer+Y65M2MRXrmRD3wpmPV6Fu3buVlozBWT6KkBIdCCKlkLytai8Nbn4HkVRMJsVSplT2nZ/a2mj2RcUmrEtxye7N/F29rsbSsZVll9CEI8XM+2eBUXUeuiBvOpSZFZdNNaipRKCYY804ayj9WG4R6g8RblvnrjNTkS0OTbFgdyqWGVt61axdH6EErPSjABjwJDr886BWX2SsyM4RuTOLV/uBNrxhoQpqHE2OcCHhzIGU9q8+rRB5IZquVUVSavGkn2+vfSaEr9cpD++8ljWvXVhihmLPv1JDJcVBOLNMqCBUAEEY57YOQ31mC6jrgdOFKi7E2nYgDvmDJZfqxbAu2J2xkLoO82a36LVu2QMsjNgFIBhIE2pK25ULIADmvjG4D6RP4fIaq10N2ITBG7/GfnxdV7I24bds2LHWeP6WauVWYsCZhozePNpmJWVr6Z5z+HQFmpXmzf1OyrTOf4qtlFZcOQWh467c8M+NBEWOihGvZWebH0WqaCC0S72Q/67F4rfhCWY2tzZiDNJdvuVInTp0mQkrPMPMp6YGP2PNXNgQ/GrEp28XoHOec0y2b3jfAmTPczad6KIdiEUfL1frUhIFlygpkTyCUQ9FsszoybUOYj/5NQCrW1naxLs2bGThiqf96ScspYw1HaIvxAopWhZMVmqv4aB7RzJDuS6QQ5rSwwp07d6q3+GxnLG1VXHXCgwo6NISCtnWnlVCUTov7tOJW/tKV3ZBoborHhRSDPGqIup61Mm0qXxdFFnXkyBG5QRpgj1zCC36TD8KmeKPc3SxZ/+yNaGn6H9wi/LCSN1IeFAQYcLFrmMu6O4hyM1bIo+tJNeFnCC3MCnu798kTwcHpXlmP1McvHu0GCGGzfqNYZ+Fn3CKvclnQW5I52e9CnN8zhAjO173N4UaqT5VqNHTisrf/zEETlUXsyaIsLZMnOwMkG8skhVT2ZZFHby3E0HaD/kVhlSNOMab02ZTUtZIIiRPlAb7m36L63YJAtTF5TduC0Ea24Gzt5GFbgUOtEwmeQk5b9dZvEwSYGszcZfRJEqlfLpYMBLqIdBT5eGcgdFQajhQEU8o2WaSVJpqbjJ7ZoBUppwn/xrjKnSetAu9q5ANmpcbBH2OtdOitVs3PVou1aQxhbqSht00109WyakmE/1cWY+oWpiFxIh4kUFITCTv7l+xu/HId0CrhyNf8yE1q4jKFUo6XiQGf8nsqUYw4lxRio6xDvx5ZBkMqHZPZFpxrr5i/X0vInAkSj82ayNbR3OTJjixmekhXUA1V5aRxiJN/I0KyEsvgWeIjRFXaxblYO7EU7F8ulm/dAsgVQ5m706og8Vt8HfF4tb+fbXD+ijJ6FIfGa4NlBuy17cVX9fdY0nNRappDNLslqcjulIotR07WcwxWj34XQrLIJFiO4IKs2To5hTscBmQvs1Ev7fhVw6zyc0995aWU4X6z6l4qpaa3FxboBmRNtSGVLO2zfGn4Lc1Xj34vQuu3VL/xjjUnqoKTATfFMi6jPK4eZeZFqTTPXlRWgJWTrq3OPlttS1gSocUkvIbKW8vLPlW2MEu1SArO2q79shbiCrLMunY1aThCk87WkwOV69pKeVWlmd4fMz1imRtEcFIsO41HwxHabuLJpw8qJRbDRg14KHoEzwWEZcFZGXYaq5aMQqhcyhNYqWweexC6NILnN/ax6TR+DUdIAYaNiCzHnvpkUZkTvMRi7DutlJZEmAyJUzKnGsCU8/UGagdvlWg4Qnhg8wGeUAs85Eh0xiCWnVZcwxHmkknKmAGZcMSyg7faNAQhSIDhJwonJydz4ezgrVr1I8Qplxfwws8HX26hadBptWkRQpzAS9ilkFzaaTWrPwqFoCyaP7XkuyJ2nVat+hHCRvgpC8ouf65+9SMET+R1n30tUj/CLvJap36EnVqnDmHr1SFsvTqErVeHsPXqELZeHcLWq0PYenUIW68OYevVIWy9OoStV4ew9eoQtl4dwtarQ9h6dQhbr0UIO7VUNcJOLdYLL/wPyQKMX2anMTYAAAAASUVORK5CYII=